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Abstract

Biomechanical models often need to describe very complex systems, organs or

diseases, and hence also include a large number of parameters. One of the

attractive features of physics-based models is that in those models (most)

parameters have a clear physical meaning. Nevertheless, the determination of

these parameters is often very elaborate and costly and shows a large scatter

within the population. Hence, it is essential to identify the most important

parameters (worth the effort) for a particular problem at hand. In order to dis-

tinguish parameters which have a significant influence on a specific model

output from non-influential parameters, we use sensitivity analysis, in particu-

lar the Sobol method as a global variance-based method. However, the Sobol

method requires a large number of model evaluations, which is prohibitive for

computationally expensive models. We therefore employ Gaussian processes

as a metamodel for the underlying full model. Metamodelling introduces fur-

ther uncertainty, which we also quantify. We demonstrate the approach by

applying it to two different problems: nanoparticle-mediated drug delivery in a

complex, multiphase tumour-growth model, and arterial growth and

remodelling. Even relatively small numbers of evaluations of the full model

suffice to identify the influential parameters in both cases and to separate them

from non-influential parameters. The approach also allows the quantification

of higher-order interaction effects. We thus show that a variance-based global

sensitivity analysis is feasible for complex, computationally expensive biome-

chanical models. Different aspects of sensitivity analysis are covered including

a transparent declaration of the uncertainties involved in the estimation pro-

cess. Such a global sensitivity analysis not only helps to massively reduce costs

for experimental determination of parameters but is also highly beneficial for

inverse analysis of such complex models.
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1 | INTRODUCTION

Over the past few decades, computational biomechanical models have become an essential tool in research. The goal of
these models is to allow predictions so as to better understand the underlying biological system or to support decision-
making in a medical context, for example, to choose the most efficient therapy for a specific patient. Nevertheless, the
output of such models is inherently subject to uncertainty for various reasons: first, the underlying biological process is
stochastic—which is particularly true for oncophysics and cancer treatment models (e.g., branching process models for
cancer,1,2 or stochastic models for immunotherapy of cancer3). Second, the experimental data used to calibrate models
is uncertain.4 Third, the computational model itself includes sources of uncertainty, including the assumptions made to
set up the model, other simplifications, or the input parameters.5

When analysing the uncertainty of the model output, we distinguish uncertainty analysis from sensitivity analysis5:
uncertainty analysis quantifies the uncertainty in the model output by propagating input uncertainties, via the model,
onto the output.6 Sensitivity analysis, on the other hand, apportions the uncertainty in the model output to different
sources of uncertainty in the model input.7 Inputs of interest can generally include not only model parameters but also
boundary and initial conditions, assumptions, and constraints.8 In the context of sensitivity analysis, those inputs of
interest are commonly referred to as factors. Here, we only consider model parameters as sources of uncertainty and
refer to those as input parameters.

In this study, the goal is threefold:

• Identify the most influential parameters on which further experimental estimation should focus (called factor
prioritisation or ranking).

• Identify parameters with little or no effect, which can thus be set to fixed values within their range (called factor fix-
ing or screening).

• Identify and quantify the interaction between parameters.

This knowledge expedites the efficient design of future computational and experimental studies, while avoiding
wasting resources on determining non-influential parameters.

We propose to apply a special type of sensitivity analysis to achieve the goals just described. One way of quanti-
fying the sensitivity of the model output Y on the input parameter Xi is to calculate the partial derivative ∂Y=∂Xi. In
practice, this involves choosing a base point X� and then perturbing one factor at a time while keeping all
remaining factors fixed. This results in a local sensitivity measure at the base point X� which only explores one point of
the input space and thus results in a deficient sensitivity analysis.5 In contrast, the Elementary Effects method
(also called Morris method9) is not limited to one single point but explores the whole input space. It thereby
overcomes the major limitation of local methods, while only requiring a relatively small number of model evaluations.
While the Elementary Effects method is a global sensitivity analysis method, it only provides semi-quantitative
information and is typically used for factor fixing.6,7 However, it cannot detect and quantify interactions between
parameters and nonlinearities.10 In this work, we focus on complex biomechanical problems in which interactions
between the different parameters can be expected. We therefore need a global method that can provide more detailed
information.

Our method of choice is the Sobol method,11,12 which is a variance-based global sensitivity analysis method that
decomposes the output variance into portions attributed to the input parameters (see Figure 1). The downside is that it
requires many model evaluations, which quickly becomes computationally prohibitive in the case of complex models.
We propose to introduce Gaussian processes13 as a metamodel for the full model to mitigate the problem of computa-
tionally expensive model evaluations. Since the use of a metamodel introduces a further source of uncertainty in the
sensitivity analysis, we estimate the uncertainty following the approach presented by Le Gratiet et al.14 After the full
biomechanical model is substituted by the metamodel, we can calculate the Sobol indices based on Monte–Carlo inte-
gration. The uncertainty related to metamodelling and the uncertainty related to Monte–Carlo integration are analysed
both separately and in total.

So far, the approach suggested by Reference 14 has been applied to different computational models: an individual-
based model simulation of microbial communities,15 a mathematical model of renal fibrosis,16 climate change
simulations,17 and numerical wind-turbine models.18 Moreover, Reference 19 applied the same idea to the calculation
of Elementary Effects of a heart model. In References 15–17,19, the authors state that they used the method, but no
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analysis of the associated uncertainties was presented. Only Reference 18 quantified the uncertainty related to the meta-
model and the uncertainty related to Monte–Carlo integration separately.

Our goal is to present the complete workflow of estimating Sobol indices based on Gaussian processes as a meta-
model including the uncertainties: we demonstrate how to apply the approach suggested by Reference 14 to two differ-
ent biomechanical models, and we also assess the performance of the method when applied to such complex examples.

The article is structured as follows: we first introduce the reader to the Sobol method and to Gaussian processes in
general. The Gaussian-process metamodel is then used to estimate the Sobol indices, including separate estimates for
uncertainty related to Monte–Carlo integration and uncertainty related to the metamodel based on Reference 14. As an
example, we subsequently demonstrate how to apply this approach to a multiphase model of nanoparticle-mediated
drug delivery in a solid tumour20–22 and assess its performance in detail. Finally, we conclude with an outlook on a dif-
ferent complex biomechanical model, that is, a homogenised constrained mixture model of arterial growth and
remodelling.23–25

2 | GLOBAL SENSITIVITY ANALYSIS BASED ON GAUSSIAN-PROCESS
METAMODELLING

2.1 | The Sobol method

In its most general form, a model f is a functional representation of the relevant physical process. The model calculates
an output y¼ f xð Þ�ℝ for any given realisation x �ℝD of the uncertain input parameters X , with D being the number
of parameters (see upper left side of Figure 1). We assume that the random vector X summarises the input parameters
X1,…,XD, which are independent random variables. The probability distribution of X is described by the probability
density function p xð Þ. In the following, we assume that the input parameters are uniformly distributed, with no loss of
generality. Common alternatives are the normal distribution or the log-normal distribution, among many others.

Our goal is to investigate the sensitivity of the model output to the uncertain input parameters X . Because of the
randomness in the input parameters, the model output Y is also a random variable defined as

Y ¼ f Xð Þ¼ f X1, X2, …, XDð Þ, ð1Þ

FIGURE 1 Overview of sensitivity analysis with a Gaussian process metamodel. The Gaussian-process metamodel f GP,N Xð Þ is trained
on a data set generated by the full model f Xð Þ. Uncertain input parameters Xi are propagated via the metamodel and result in an uncertain

output Y . The Sobol method, as an example of a global sensitivity analysis tool, decomposes the output variance into portions attributed to

the input parameters
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(see upper right side of Figure 1). The output distribution can (partially) be described by its first two moments: the
expected value  Y½ �, and the variance σ2Y ¼ Y½ � (with  �½ � denoting the expectation operator,  �½ � the variance opera-
tor, and σY the standard deviation as given in Supplement A.1).

One way of characterising sensitivity is to decompose the variance of the output  Y½ � into portions ascribed to the
individual input parameters. A common sensitivity analysis method based on the decomposition of variance is the
Sobol method.26 The core idea is to decompose the output variance  Y½ � as

 Y½ � ¼
XD
i¼1

Viþ
XD�1

i¼1

XD
j> i

V ijþ…þV 12…D, ð2Þ

with the conditional variances given by

Vi ¼Xi X�i Y jXi½ �½ �
Vij ¼Xi,Xj X�i,j Y jXi, Xj

� �� �
�Vi�Vj

Vijk ¼Xi,Xj,Xk X�i,j,k Y jXi, Xj, Xk
� �� �

�Vij�Vik�Vjk�Vi�Vj�Vk

…

where, X�i denotes the vector of all input parameters except Xi. Thus, the output variance  Y½ � is the sum of variances
contributed by the input parameters Xi, including interactions with other parameters. The idea now is to attribute the
total variance to the individual input parameters according to their variance contribution. Note that Vij is the variance
contributed by the input parameters Xi and Xj but not expressed in Vi nor Vj. This is called the interaction of parame-
ters Xi and Xj. Note that this decomposition assumes statistical independence of the input parameters Xi.

Because Xi X�i Y jXi½ �½ � is the portion of the output variance ascribed to input parameter Xi, we define the first-
order Sobol index Si as

Si ¼Xi X�i Y jXi½ �½ �
 Y½ � : ð3Þ

The numerator Xi X�i Y jXi½ �½ � describes the extent to which the output variance  Y½ � would be reduced if the parame-
ter Xi was fixed. A parameter Xi with a high first-order index Si should, hence, have priority when determining parame-
ters based on experiments so as to efficiently reduce the overall uncertainty of the model. The first-order Sobol index is
typically used to identify the most influential parameters, which is our first goal.10 Moreover, a parameter with a high
first-order index Si is more likely to be identifiable from experiments, but can still be non-identifiable8: to decide
whether a parameter is identifiable or not, an identifiability analysis is required, which complements the sensitivity
analysis (see Reference 27 for an overview of identifiability analysis).

The question now arises as to whether Si ¼ 0 is also sufficient to conclude that a parameter has no influence. In fact,
this is not the case because the parameter might be involved in interactions with other parameters. A parameter may
have no effect if it is varied alone; however, this may be different when it is varied in combination with another param-
eter, or even with several other parameters. An additional sensitivity measure that includes higher-order interaction
effects is needed to identify non-influential parameters. The total-order Sobol index is, therefore, defined as

STi ¼X�i Xi Y jX�i½ �½ �
 Y½ � ¼ 1�X�i Xi Y jX�i½ �½ �

 Y½ � : ð4Þ

In this case, the numerator X�i Xi Y jX�i½ �½ � describes the expected output variance that would be left if all parameters
but Xi were to be determined.10 If—and only if—this expected output variance is close to zero, is the parameter Xi non-
influential. The total-order index describes the total contribution of the parameter Xi to the output Y : this includes the
first-order effect plus any higher-order effects that arise from interactions. The difference STi�Si, then, indicates inter-
action effects between factor Xi and any other factor.6 As mentioned above, the total-order index is particularly helpful
in the context of factor fixing: if STi ¼ 0 (or is in practice sufficiently small), the parameter Xi is non-influential and can
be fixed anywhere in its input range without affecting the output variance.
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So, the first-order and the total-order Sobol indices serve our first two goals: identify the most influential and the
non-influential parameters. To additionally identify interactions between two specific parameters Xi and Xj—which is
our third goal—we define the second-order Sobol index as

Sij ¼
Xi,Xj X�i,j Y jXi, Xj

� �� �
 Y½ � �Si�Sj: ð5Þ

Finally, dividing Equation (2) by  Y½ � and inserting Equations (3) and (5) leads to

XD
i¼1

Siþ
XD�1

i¼1

XD
j> i

Sijþ…þS12…D ¼ 1: ð6Þ

All sensitivity indices, thus, sum up to 1; furthermore, they are non-negative. This leads to an interesting implication
which is worth noting: even when we have a large number of parameters, we cannot have a large number of influential
parameters. If all D parameters are equally influential, each can only contribute 1=D of the variance. If, however, a few
parameters have a strong influence on the output Y , the remaining parameters can contribute even less.6 As Reference
28 stated: only a small subset of parameters significantly influences one specific system output (sparsity of factors prin-
ciple). It should also be noted that the total-order indices STi do not, in general, sum up to 1.

2.2 | Numerical approximation of Sobol indices

To estimate the Sobol indices according to Equations (3)–(5), we need to compute conditional variances, for example,
Xi X�i Y jXi½ �½ �, which involves evaluating multidimensional integrals in the space of the input parameters ℝD. Numeri-
cal integration based on quadrature rules becomes prohibitively expensive as the number of input space dimensions
increases. This is why Monte–Carlo integration is employed, the accuracy of which is independent of the number of
input space dimensions.29 For each single integral, Monte–Carlo integration involves evaluating M Monte–Carlo sam-
ples: to compute, for example, Xi X�i Y jXi½ �½ � one would need M samples to calculate the inner expectation and then
repeat this M times to calculate the outer variance, resulting in a computational cost of O M2ð Þ.6 Since M usually has to
be large,* this is impractical, especially considering that we would need to evaluate the full model f for each Monte–
Carlo sample. To make the estimation of Sobol indices more efficient, Reference 31 rewrote the multidimensional inte-
gral so that it can be computed using a single Monte–Carlo loop (summarised in Supplement A.2).

To make the best use of the model evaluations, we employ the efficient algorithms suggested by Reference 32: to
estimate the first and the total-order indices, we generate M samples row-wise concatenated as a matrix A and further
M samples concatenated as a matrix B. This results in two independent M�D matrices. We introduce a third matrix
A ið Þ

B for each input space dimension i¼ 1,…,D, where all columns are taken from A except the ith column, which is
taken from B. One sample Bð Þm and the corresponding sample A ið Þ

B

� �
m

have Xi in common but differ in all other
parameters X�i.

To calculate the first-order index, we then use the estimator proposed by Saltelli et al.33

Xi X�i Y jXi½ �½ �≈ 1
M

XM
m¼1

f Bð Þm f A ið Þ
B

� �
m
� f Að Þm

� �
, ð7Þ

and for the total-order index, we use the estimator proposed by Jansen34:

X�i Xi Y jX�i½ �½ �≈ 1
2M

XM
m¼1

f Að Þm� f A ið Þ
B

� �
m

� �2
: ð8Þ

Alternative forms were presented in References 11,34–36, among others. The denominator is estimated as
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 Y½ �≈V f A B½ �ð Þ½ �, ð9Þ

where we estimate the variance of the output as the sample variance V of evaluations of all samples A and B. This
yields better results, that is, an estimator with lower variance, compared to  Y½ �≈V f Að Þ½ � alone.32

In addition to the first and total-order indices, we estimate the second-order indices as proposed by Saltelli32:

Xi,Xj X�i,j Y jXi, Xj
� �� �

≈
1
M

XM
m¼1

f B ið Þ
A

� �
m
f A jð Þ

B

� �
m
� f Að Þm f Bð Þm, ð10Þ

where the matrix B ið Þ
A is built similar to A ið Þ

B . More details on different sensitivity-index estimators can be found in Refer-
ences 32,33, among others.

We hence have to evaluate our model f at all samples of the triplet A, B and A ið Þ
B (and additionally B ið Þ

A if second-
order indices are included). This means 2M simulations are needed for computing f Að Þ and f Bð Þ plus D �M simulations
needed for computing f A ið Þ

B

� �
for i¼ 1,…,D. The cost of first and total-order indices is, hence, M Dþ2ð Þ simulations. If

second-order indices are included, we need an additional D �M simulations for f B ið Þ
A

� �
, resulting in M 2Dþ2ð Þ simula-

tions in total (for more details see Supplement A.3 and the original publication by Reference 32). In practice, Quasi–
Monte–Carlo (QMC) integration is often used to generate the samples because of its superior rate of convergence com-
pared to Monte–Carlo integration.37

2.3 | Gaussian process metamodels

As just described, Monte–Carlo integration to estimate the Sobol indices requires a large number of sample evaluations
and is thus computationally prohibitive if the evaluation of the underlying model is expensive. We therefore use a meta-
model (also known as surrogate model or emulator) as an approximation of the full model. Classically used metamodels
include polynomials, splines, neural networks, polynomial chaos expansion, support vector regression, and Gaussian
processes (GPs), among others.38,39 Before a metamodel can be used for a sensitivity analysis, for example, it has to be
trained to later ensure that it is a good approximation of the full model.

This process consists of three steps, which we first summarise (see Figure 2) and, then, explain in more detail
below:

1. Generate N training samples summarised in X (resulting in a N�D matrix).
2. Evaluate the full model at the training samples to obtain the corresponding response: Y¼ f Xð Þ (resulting in a N�1

vector).
3. Form and train the metamodel.

First, we generate N training samples that are summarised in the matrix X (N�D matrix). The choice of training
samples has to provide a good coverage of the input space to later ensure a good predictive quality of the metamodel.
To this end, we use a QMC approach based on Sobol sequences40 to generate the training samples.

Remark 1. Sequential design. A commonly used alternative to a QMC approach is Latin Hypercube Sam-
pling (LHS).38,41 Reference 38 states that optimised LHS is particularly well-suited for metamodel fitting.
However, sequential design is also important in the context of metamodelling: if the original number of
training samples is not sufficient to achieve a good predictive quality of the metamodel, additional samples
can be added while still making use of the original training samples. Since only advanced LHS methods42,43

enable sequentially adding new points, while this is straightforward with QMC schemes,44 we use a QMC
approach.

Subsequently, we evaluate the full model at each training sample: Y¼ f Xð Þ with Y, hence, being a N�1 vector.
This results in the training data set
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D¼ X , Yf g, ð11Þ

where each row corresponds to one training point.
Finally, we have to train the metamodel. We use a GP f GP as metamodel similar to References 14,45,46 and summa-

rise what training means for GPs below. Note that we only include a compact overview of the most relevant concepts
used in this paper. For more details, the reader is referred for example, to Reference 13.

A GP defines a distribution over functions such that any finite set of function values f GP x 1ð Þ� �
, f GP x 2ð Þ� �

, f GP x nð Þ� �
has a joint Gaussian distribution.13,47 From a Bayesian point of view, we distinguish between prior and posterior: the
prior GP reflects our beliefs about the metamodel before seeing any (training) data, and the posterior GP is then condi-
tioned on the (training) data, that is, includes the knowledge from the data (see Figure 2). This conditioning on the data
is what we refer to as training.

The prior GP f GP Xð Þ is given by

f GP Xð Þ�GP mGP Xð Þ, k X , X 0ð Þð Þ, ð12Þ

and is completely specified by its mean function mGP Xð Þ and its covariance function k X , X 0ð Þ between all possible pairs
X , X 0ð Þ. The covariance function is a positive definite kernel, for example, the squared exponential covariance function
(also called radial basis function)

k X , X 0ð Þ¼ σ2f exp � 1

2ℓ2 X�X 0k k2
� 	

, ð13Þ

with the characteristic length scale ℓ, variance parameter σf and



 �


 denoting the Euclidean L2-norm. We assume that

the prior mean function is zero: mGP Xð Þ¼ 0, which is common practice and does not limit the GP model, as any uncer-
tainty about the mean function can be included in the choice of a covariance function.47 Different covariance functions
exist and can be combined, for example, through multiplication or addition. Reference 47 presents a concise overview
of different covariance functions for GPs and how to use them to express the structure of the data. The choice of a suit-
able covariance function is essential since the more a-priori knowledge goes into choosing the covariance function, the
fewer data we need to train the metamodel.48

FIGURE 2 Schematic overview of the steps involved in training the Gaussian process metamodel. Conditioning the prior Gaussian

process on the training samples results in the posterior Gaussian process
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As described above, we observe the output at N training points. The goal, then, is to predict the output at N� new
points summarised in X �; in our case, those new points (where we predict the output) will be the Monte–Carlo samples
for the estimation of the Sobol indices.

Remember that Equation (12) is only the prior distribution and does not yet incorporate our knowledge from the
training data. To obtain the posterior, we now condition the prior GP on our set of N training data points. This condi-
tioning results in the key predictive equations

f GP,N X �ð Þ�GP mGP,N X �ð Þ, kN X �, X �ð Þð Þ with ð14Þ

mGP,N X �ð Þ¼KT
�K

�1
ε Y, ð15Þ

kN X �, X �ð Þ¼K�� �KT
�K

�1
ε K�: ð16Þ

In Equations (15) and (16), Kε ¼Kþσ2yI, where K ¼ k X , Xð Þ denotes the N�N matrix we obtain when evaluating the
covariance function (given in Equation 13) for all pairs of training points, similarly for K� ¼ k X , X �ð Þ and
K�� ¼ k X �, X �ð Þ. We use σ2y as an artificially introduced variable nugget term to alleviate numerical problems.49,50 The
hyperparameters θ¼ σf , ℓ

� �
are optimised by maximising the log marginal likelihood using a gradient-based optimiser.

The log marginal likelihood is given by

logp YjXð Þ¼�1
2
YTK�1

ε Y�1
2
log jKε j �

N
2
log2π, ð17Þ

with j � j denoting the determinant. Maximising the log marginal likelihood given by Equation (17) with respect to the
hyperparameters θ automatically incorporates a trade-off between model fit and model complexity: the first term in
Equation (17) penalises the model's failure to describe the data while the second term penalises high model complexity.
Thus, this favours the least complex model that is able to explain the data.13

One advantage of employing GPs as a metamodel is that predictions can be computed exactly in a closed
form47 and that GPs inherently provide uncertainty measures over the predictions. Moreover, one can
incorporate a wide range of modelling assumptions into the choice of the covariance function. However, note that
computing the inverse in the first term in Equation (17) (and the determinant in the second term) is
computationally expensive, that is, on the order O N3ð Þ. This cubic complexity results in slow inference as
the number of training samples increases. One further challenge of using GPs as a metamodel is that they are suscepti-
ble to the curse of dimensionality: as the dimensionality of the input space increases, the number of training samples
required to train the metamodel grows exponentially51,52 and the optimisation of hyperparameters θ becomes
impractical.

Remark 2. Advanced GPs. In case of large numbers of training samples and/or input space dimensions, vari-
ous advanced GP metamodels are available: Reference 53 reviews approaches to improve the scalability of
GPs to large data sets, for example, by using stochastic variational inference54; Reference 52 presents an
approach with built-in dimensionality reduction.

2.4 | Estimation of Sobol indices and their uncertainty

To estimate the Sobol indices, we now use the estimators given by Equations (7), (8) and (10) and substitute the
realisations of the full model f with those of the trained GP metamodel f GP,N as suggested by Reference 14:

bSi ¼ 1
M

PM
m¼1

f GP,N Bð Þm f GP,N A ið Þ
B

� �
m
� f GP,N Að Þm

� �
V f GP,N A B½ �ð Þ
� � , ð18Þ
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bSTi ¼ 1
2M

PM
m¼1

f GP,N Að Þm� f GP,N A ið Þ
B

� �
m

� �2

V f GP,N A B½ �ð Þ
� � , ð19Þ

bSij ¼ 1
M

PM
m¼1

f GP,N B ið Þ
A

� �
m
f GP,N A jð Þ

B

� �
m
� f GP,N Að Þm f GP,N Bð Þm

V f GP,N A B½ �ð Þ
� � �bSi�bSj, ð20Þ

with M again being the number of Monte–Carlo samples. We summarise the estimates as bS◇
with ◇ � i, Ti, ijf g for

the first, total, or second-order index estimates, respectively. Remember that we now evaluate the Monte–Carlo samples
with the metamodel instead of the full model. We can, therefore, afford considerably larger numbers of Monte–Carlo
samples. Since we sample realisations of the GP metamodel f GP,N , the resulting estimates bS◇

are again random vari-
ables. These include two sources of uncertainty: one related to the metamodel approximation and one related to the
Monte–Carlo integration. To estimate those uncertainties, and additionally the total uncertainty, we employ the algo-
rithm suggested by Reference 14. The steps described in the following can equally be applied to all indices of different
order.

We visually summarise the approach in Figure 3; a more detailed version is included in the Supplement A.4. The
core idea is to sample NGP realisations of the GP metamodel and, subsequently, resample each realisation B times using
the bootstrap technique.55 This results in NGP�B estimates bS◇

k,b of the respective Sobol index. We then calculate the
mean as

S
◇ ¼ 1

NGPB

XNGP

k¼1

XB
b¼1

bS◇
k,b , ð21Þ

and the total variance as

bσ2 S◇� �
¼ 1
NGPB�1

XNGP

k¼1

XB
b¼1

bS◇
k,b �S

◇
� �2

: ð22Þ

FIGURE 3 Calculation of NGP�Bð Þ estimates bS◇
k,b of the Sobol index. We sample NGP realisations of the GP metamodel and

subsequently resample each realisation B times using the bootstrap technique as suggested by Le Gratiet et al.14
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Since this estimator includes two sources of uncertainty (one related to the metamodel approximation and one related
to the Monte–Carlo integration), we decompose the variance of S◇ as

bσ2 S◇� �
¼bσ2GP S◇� �|fflfflfflfflfflffl{zfflfflfflfflfflffl}

metamodel

þ bσ2MC S◇� �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Monte�Carlo

: ð23Þ

Sampling realisations of the metamodel f GP,N Xð Þ as opposed to using only the predictive mean mGP,N Xð Þ allows us to
take into account the covariance structure of the metamodel. The part of the variance related to the metamodel approx-
imation can be estimated as

bσ2GP S◇� �
¼ 1
B

XB
b¼1

1
NGP�1

XNGP

k¼1

bS◇
k,b �bS◇

b

� 	2

with bS◇

b ¼ 1
NGP

XNGP

k¼1

bS◇
k,b : ð24Þ

Alternatively, Reference 56 presents an approach to estimate an upper bound for the metamodel error based directly on
the covariance function of the GP, but their approach only provides a rough upper bound.14 In addition, Reference 57
presents an approach to investigate the accuracy of Sobol indices based on a general relation between the accuracy of
an arbitrary metamodel and the error of the estimated indices.

To estimate the uncertainty related to Monte–Carlo integration, we use the bootstrap technique.55 The Monte–
Carlo samples A, B, A ið Þ

B and B ið Þ
A are resampled (i.e., sampled with replacement) B times as depicted in Figure 3. We

then calculate bS◇
according to Equations (18)–(20) for each bootstrap sample, resulting in B estimates for the Sobol

index for each realisation k of the metamodel. The part of the variance related to the Monte–Carlo integration is
given by

bσ2MC S◇� �
¼ 1
NGP

XNGP

k¼1

1
B�1

XB
b¼1

bS◇
k,b �bS◇

k

� 	2

with bS◇

k ¼ 1
B

XB
b¼1

bS◇
k,b : ð25Þ

The bootstrap technique is based on the fact that sampling with replacement from a set of independent, identically dis-
tributed data equals sampling from the empirical distribution function of the data.58 It is important to note that boot-
strapping does not require further model evaluations. For a general introduction to the bootstrap technique, the reader
is referred to Reference 59 or Reference 60.

3 | APPLICATION TO NANOPARTICLE-MEDIATED DRUG DELIVERY IN A
MULTIPHASE TUMOUR-GROWTH MODEL

3.1 | Model definition

An excellent example for the proposed overall approach is nanoparticle-mediated drug delivery in a multiphase
tumour-growth model as all challenging motivating arguments for our approach are present in this problem class, like
complex costly models and a large number of parameters. The tumour-growth model in its original form is based on
the works in References 61-63. References 20 and 21 extended the model to a five-phase model including the vascula-
ture. Finally, Reference 22 included and studied nanoparticle delivery. We use the tumour-growth model as a precursor
to generate physically plausible results of the tumour and its microenvironment. Those results then serve as initial con-
dition for the sensitivity analysis of nanoparticle-mediated drug delivery.

3.1.1 | Underlying tumour-growth model

The model considers the tumour as a porous structure: the extracellular matrix (ECM) is the solid phase (denoted by
superscript s) with several fluid phases filling its pore space. We include three fluid phases: tumour cells, host cells, and
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interstitial fluid (IF), denoted by superscripts t, h and l, respectively. In addition, the vasculature is modelled as an inde-
pendent porous network and denoted by superscript v. The governing equations of the model are formulated on the
macroscale by employing the Thermodynamically Constrained Averaging Theory (TCAT).64,65 Each phase is modelled
in an averaged sense based on volume fractions εα with α denoting an arbitrary phase. The sum of all phases must sat-
isfy the equation

εsþ εtþ εhþ εlþ εv ¼ 1:

The different phases additionally transport species. The vasculature and the IF transport oxygen with mass fractions
denoted by ωnv and ωnl, respectively. Similarly, ωNPv and ωNPl denote the mass fractions of nanoparticles in the vascula-
ture and the IF, respectively. Finally, tumour cells and host cells are divided up into living and necrotic cells. The mass
fraction of necrotic tumour cells is denoted by ωNt and the mass fraction of necrotic host cells by ωNh. Figure 4 schemat-
ically summarises all of the components of our multiphase tumour-growth model that are considered here. Note that
the lymph system is not explicitly modelled.

Many commonly used tumour-growth models are data driven and thus adhere to observed data. Our model, by con-
trast, is based on physical laws. To give just one example: we use Fick's laws to describe the motion of oxygen in IF and
Darcy's law to describe the flow of IF through the pores of the extracellular matrix. Such a physics-based approach
allows us to describe the system, even under unobserved circumstances. Nevertheless, Reference 6 states that physics-
based models are customarily over-parametrised: they include more laws and parameters than available data would
support. This becomes particularly critical when model parameters are to be determined, for example, by inverse analy-
sis, and thus sensitivity analysis becomes a crucial part of model development.66

3.1.2 | Nanoparticle-mediated drug delivery

The transport of nanoparticles in our multiphase tumour-growth model is included as described in Reference 22. We
only present a short summary in the following. Further details can be found in the original publication.22

Nanoparticles are intravenously injected and transported in the vasculature. They then extravasate into the IF and
are transported towards tumour cells and host cells. The focus here lies on the extravasation into the IF and the trans-
port therein. Therefore, we do not explicitly include transport in the vasculature, but rather assume a constant mass

FIGURE 4 Schematic summary of the components of the multiphase tumour-growth model. The model comprises the ECM, as the

solid phase, with three fluid phases filling its pore space: host cells, tumour cells and IF. The vasculature is included as an independent

porous network. Species transported by the different phases are: oxygen, nanoparticles, necrotic host cells and necrotic tumour cells (marked

in italics). We consider three mass transfer terms that transport nanoparticles into and out of the IF: (A) the interendothelial pathway;

(B) the transendothelial pathway; (C) lymphatic drainage (all transfer terms are marked in bold). Drugs mediated by the nanoparticles kill

tumour and host cells (marked by red lightning). The lymph system is not explicitly included in the model
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fraction of nanoparticles in the vasculature ωNPv. The governing equation for the transport of nanoparticles in IF is the
mass balance equation of nanoparticles with mass fraction ωNPl

εl
∂ωNPl

∂t
�kl

μl
=pl �=ωNPl|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
convective

transport

�= � εlDNPl=ωNPl
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffusive

transport

¼ 1
ρl

X
κ

M
NPκ!NPl

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
mass transfer

of NP to and from IF

�ωNPl
X
κ

M
κ!l

0BBBBBBBBBB@

1CCCCCCCCCCA
, ð26Þ

where the effective diffusivity of nanoparticles in IF is given by DNPl. The superscript l denotes the IF as one of the fluid
phases filling the pore space of the extracellular matrix. The IF is characterised by its viscosity μl, density ρl, permeabil-
ity tensor kl, and finally the IF pressure pl resulting from the mass balance of the fluid equation as part of the tumour-
growth model. The last term results from employing the product rule, see References 20,61. The mass transfer of
nanoparticles to and from the IF includes three terms

X
κ

M
NPκ!NPl

¼ Minter

NPv!NPl|fflfflffl{zfflfflffl}
interendothelial

þ Mtrans

NPv!NPl|fflfflffl{zfflfflffl}
transendothelial

� Mdrain

NPl!NPly|fflfflfflffl{zfflfflfflffl}
drainage

, ð27Þ

where the physical interpretation of the different transport mechanisms is included in Figure 4. Nanoparticles extrava-
sate from the vasculature into the IF through two different pathways: the interendothelial and the transendothelial
pathway.67,68 Those pathways are described by

M
NPv!NPl

¼ Minter

NPv!NPl
þ Mtrans

NPv!NPl

¼ ρvεvLvp
S
V

pv�pl�σ πv�πl
� �� �ωNPvþωNPl

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interendothelial pathway

þ ρvεvPv S
V

ωNPv�ωNPl
D E

þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transendothelial pathway

, ð28Þ

with the oncotic pressure difference between blood vessels and IF σ πv�πl
� �

, the surface-to-volume ration S=V , and
Macaulay brackets �h iþ. This equation is based on the Staverman–Kedem–Katchalsky equation similar to
Reference 69.

The first term describes the interendothelial pathway, which is a convective process: nanoparticles are dragged by
the transvascular fluid flow through gaps in the blood-vessel wall.69 This process is governed by the hydraulic conduc-
tivity Lvp of the blood-vessel wall which is defined as

Lvp ¼
γp r

2
0

8μvt
, ð29Þ

with the pore radius r0, the vessel-wall thickness t, and the fraction of pores γp.
70

The second term in Equation (28) describes the transendothelial pathway, which is a diffusive process:
nanoparticles diffuse through the vessel-wall. This diffusive flux is governed by the vascular permeability Pv.

Finally, the lymph system absorbs nanoparticles from the IF

Mdrain

NPl!NPly
¼ ρlωNPl Lp

S
V

� 	ly

pl
� 


þ 1� pt

plycoll

* +
þ

, ð30Þ
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governed by the lymphatic filtration coefficient Lp S
V

� �ly
. Lymphatic drainage is impaired above the collapsing pressure

plycoll, and thus no particles are removed.
We further assume that the nanoparticles transport and release anti-cancer drugs. Those kill tumour cells and thus

increase the mass fraction of necrotic tumour cells ωNt . At the same time, those drugs have adverse side effects and kill
host cells. This additionally increases the mass fraction of necrotic host cells ωNh. For the sake of simplicity, we assume
that the mass fraction of killed cells is directly proportional to the mass fraction of nanoparticles present in the IF at a
certain position. We introduce intraphase reaction terms that increase the mass fraction of necrotic tumour cells and
host cells according to

rNtkill ¼ γtkillω
NPl 1�ωNt

� �
, ð31Þ

rNhkill ¼ γhkillω
NPl 1�ωNh

� �
, ð32Þ

where, γtkill and γhkill characterise the strength of the drug.
As quantity of interest for the sensitivity analysis, we consider the mean of the necrotic fraction of tumour cells

given by

ωNt ¼

Z
ωNtdΩ

At , ð33Þ

where the tumour size is defined as At ¼
R
ℋ St�0:1ð ÞdΩ with the Heaviside function ℋ �ð Þ, and St denotes the satura-

tion of tumour cells.20 We define the tumour as the part of the domain where St >0:1. In the context of sensitivity
analysis, it is important to choose the quantity of interest carefully and to bear in mind that a parameter that is non-
influential under one particular investigated condition, for example, one particular quantity of interest, might be highly
influential under a new condition.8

3.2 | Set-up of numerical example

The set-up presented in the following is similar to the example in Reference 22. We therefore only present a summary,
and again refer the interested reader to the original publication for further details. The major addition to the original
example is the nanoparticle-mediated killing of tumour and host cells as described by Equations (31) and (32).

We investigate nanoparticle transport and subsequent killing of cells by nanoparticle-mediated drugs. The transport
of nanoparticles depends on the hydraulic conductivity of blood-vessel walls Lvp and the blood-vessel wall permeability
Pv (both influence the transport of nanoparticles into the IF), the diffusivity DNPl of nanoparticles in the IF, and the
lymphatic filtration coefficient Lp

S
V

� �ly
(influencing the transport of nanoparticles out of the IF). Subsequently, drugs

mediated by the nanoparticles kill tumour and host cells depending on the strength of the drug, characterised by γtkill
and γhkill. Note that the amount of killed cells largely depends on the amount of nanoparticles reaching a particular
region of the domain, and hence depends on the transport parameters.

The transport of nanoparticles, and thus the question of which regions nanoparticles reach and where drugs can kill
cells, essentially depends on the microenvironment of the tumour. Solid tumours exhibit typical features relevant in this
context: the majority of living tumour cells is located in the tumour periphery, whereas the tumour core mainly consists
of necrotic cells (see Figure 5A). In addition, Figure 5B shows that the volume fraction of the vasculature is consider-
ably lower in the tumour area because the growing tumour collapses blood-vessels. The inner core of the tumour even
contains no vessels at all. Finally, the interstitial pressure in the tumour is increased and can reach 6 mm Hg (see
Figure 5C). To sum up, the tumour has a necrotic core with collapsed blood vessels as well as an increased interstitial
pressure, which is a structure typical for solid tumours and which has also been observed in experiments.71–74

We analyse a domain of 1 mm�1 mm, but due to the symmetry of the problem, we only simulate one quarter of
the domain (500 μm�500 μm). The grown tumour has a radius of 440 μm as presented in Figure 5. We analyse a time
interval of 20min of nanoparticle transport and killing of cells based on examples by References 75,76. Assuming the
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intravenous infusion of nanoparticles, we prescribe a constant value of ωNPv ¼ 2:0�10�3 for the mass fraction of
nanoparticles in the vasculature.

Table 1 summarises the six uncertain input parameters included in the sensitivity analysis. We assume that all input
parameters are distributed uniformly within the given ranges, which are based on experimental data (see references in
Table 1). The uniform distribution is chosen because we lack more specific information about the input parameters:
given only the range of the input parameters (and no further information such as mean or variance), uniform distribu-
tions maximise the information entropy and hence minimise the introduced bias.80,81 Note that the killing coefficient of
host cells γhkill has no influence on our quantity of interest, the mean of the necrotic fraction of tumour cells—neither
directly nor indirectly through coupling terms. We nevertheless include the killing coefficient of host cells γhkill in the
sensitivity analysis to investigate how reliably we can identify a non-influential input parameter as such.

Figure 5D,E presents a result for the distribution of nanoparticles in the IF and for the mass fraction of necrotic
tumour cells: for this example, we used the mean values of the six uncertain input parameters given in Table 1. Most
nanoparticles accumulate at the edge of the tumour, while lymphatic drainage removes most particles outside the
tumour area, and roughly 50% of the tumour cells are necrotic.

The nanoparticle-mediated transport included in the multiphase tumour-growth model is implemented in our in-
house research code BACI.82 The sensitivity analysis methods, as presented above, are implemented in QUEENS.83

QUEENS is a general purpose framework for uncertainty quantification, physics-informed machine learning, Bayesian
optimisation, inverse problems and simulation analytics on distributed computer systems. We use GPy84 as a GP frame-
work and PyTorch85 to generate Sobol sequences.

FIGURE 5 Grown tumour in its microenvironment (A, B, C) with distribution of nanoparticles (D) and necrotic tumour cells (E).

(A) Volume fraction of living tumour cells εLTC ; (B) volume fraction of vasculature εv; (C) pressure pl in the IF; (D) mass fraction of

nanoparticles in the IF ωNPl; (E) mass fraction of necrotic tumour cells ωNt ; subfigures (D and E) as an example present the result for the

mean values of the uncertain input parameters
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3.3 | Predictive quality of the metamodel

Since we use a GP metamodel to estimate the Sobol indices, we first assess its predictive quality. To this end, we investi-
gate the quality of the metamodel predictions for two different covariance functions k X , X 0ð Þ used for the GP: we com-
pare a tensorised, squared, exponential covariance function to a tensorised 5/2-Matérn covariance function (with
ν¼ 5=2).13,86,87 A tensorised covariance function has the form k X , X 0ð Þ¼ k1 X1, X10ð Þ �k2 X2, X20ð Þ �… �kD XD, XD0ð Þ and
as such includes a set of hyperparameters θ¼ σfi, ℓi

� �
i¼1,…,D for all input space dimensions, which we optimise by

maximising the log marginal likelihood.
For this comparison, we consider different sizes of training sample sets N ¼ 10,15,20,25,30,40,60,80,100,150,200½ �,

which we generate based on Sobol sequences. Additionally, we generate a set T of NT ¼ 1,000 testing samples disjoint
of the training samples. Based on the training samples and the testing samples, we calculate the Nash–Sutcliffe effi-
ciency Q288 given by

Q2 ¼ 1�

P
X � T

mGP,N Xð Þ� f Xð Þð Þ2P
X � T

mGP,N Xð Þ� f
� �2 with f ¼ 1

NT

X
X � T

f Xð Þ, ð34Þ

similar to Reference 14. This is based on the predictive posterior mean mGP,N Xð Þ of the GP with optimised hyper-
parameters, and thus compares the mean prediction of the posterior GP to the actual output of the full model f . A
Nash–Sutcliffe efficiency close to 1 indicates good agreement and, hence, reliable predictions. Figure 6 shows good con-
vergence of the Nash–Sutcliffe efficiency for both covariance functions with values close to 1, even for smaller training
sample set sizes. If the number of training samples is restricted due to the computational cost, Reference 89 suggests an
algorithm to improve the metamodelling accuracy and efficiency based on sequential sampling.

Note that we use a set of testing samples here that is disjoint of our set of training samples; this means that we also
evaluate our full model NT times, which might be infeasible if the model is computationally more expensive. In those
cases, one can use cross-validation methods, such as those explained in Reference 13, where the training set itself is
split into two disjoint sets: one is actually used for training and the other for validation.

Both covariance functions yield a very similar predictive quality. In the following, we only use the tensorised,
squared, exponential covariance function because it is the default choice in most applications of GPs47 and, moreover,
because it is a universal covariance function.90

Remark 3. Randomness of metamodel training. In Figure 6 we notice a small kink in the Nash–Sutcliffe effi-
ciency for N ¼ 25 in the case of the Matérn covariance function. Therefore, we repeat the training of the GP
with other randomly chosen training sample sets for N ¼ 10,15,20,25,30½ � to check whether the original
training sets happen to perform exceptionally well. The grey detail plot in Figure 6 presents the results:
while the Nash–Sutcliffe efficiency is still above 0.90 in all cases, we notice that some training sample sets
result in slightly worse efficiencies than others for those smaller sample sizes. This is precisely the case for

TABLE 1 Probability distributions of uncertain input parameters

Symbol Parameter Range Units Source

Lv
p Hydraulic conductivity of blood-vessel walla 7:8; 125½ ��10�8 mm=Pa s 70

Pv Blood-vessel wall permeability 3:2; 128½ ��10�5 mm=s 77–79

DNPl Diffusivity of nanoparticles 0:26; 30:83½ � μm3=s 79

Lp S
V

� �ly Lymphatic filtration coefficient 0; 5:2½ ��10�4 Pa – 1s – 1 22

γtkill Killing coefficient of tumour cells 5; 10½ ��10�4 g=mm3s –

γhkill Killing coefficient of host cells 2; 7½ ��10�4 g=mm3s –

Note: We assume that all parameters are distributed uniformly within the given range.
aThe given values for the hydraulic conductivity of the blood-vessel wall correspond to a pore radius of r0 ¼ 50; 200½ � as used in Reference 22.
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the Matérn covariance function with N ¼ 25 in the main plot. Moreover, the two different covariance func-
tions lead to slightly different efficiencies. One possible reason for such behaviour may be the convergence
of the optimiser used to optimise the hyperparameters according to Equation (17). As with all gradient-
based optimisers, the optimisation may get stuck in a local minimum. To avoid ending the optimisation in a
local minimum, one can repeat the optimisation multiple times from random initial points,52 as provided by
the package GPy,84 for example, or use stochastic optimisation, such as Adam optimisation.91

Further, we take a closer look at the underlying GP, which is depicted in Figure 7 for 20 training samples. The pro-
jection of the GP into the input-space dimensions reveals a linear relation in most dimensions. We only see consider-
able nonlinearity for the blood-vessel wall permeability Pv. Those characteristics make it much easier to train the GP
based on a small number of training samples.

Remark 4. Projection of the D-dimensional Gaussian process. The projection mGPi Xið Þ of the D-dimensional
posterior mean mGP,N Xð Þ into the input space dimension Xi (as presented in Figure 7) is calculated as fol-
lows. First, we uniformly sample discrete values of the posterior mean mGP,N Xð Þ in the D-dimensional input
space. Second, we project those values over the input space dimension Xi. Third, the results are binned in
the Xi-direction, and we calculate the mean and confidence interval for each bin. Note that we only project
the posterior mean mGP,N Xð Þ and neglect the covariance function kN here.

Plotting the model output over a specific input in the form of scatterplots—as done with the training samples in
Figure 7—helps us gain a general understanding of the magnitude of the underlying sensitivity.10 Reference 6 offers a
compelling interpretation of scatterplots in relation to the first-order Sobol index: if the conditional expectation
X�i Y jXi½ �—here represented by the projection of the mean mGPi of the GP—has a large variation across Xi, the
corresponding input parameter has a high first-order Sobol index. Figure 7 reveals that the projection of the mean mGPi

is almost constant for the diffusivity of nanoparticles DNPl, the lymphatic filtration coefficient Lp S
V

� �ly
, and the killing

coefficient of host cells γhkill. In contrast, the variation of the projection of the mean mGPi is larger for the blood-vessel
wall Lv

p, the vascular permeability Pv, and the killing coefficient γtkill, and we therefore expect the output to be highly
sensitive to those parameters.

FIGURE 6 Nash–Sutcliffe efficiency Q2 for different training sample set sizes with a tensorised, squared, exponential covariance

function and a tensorised Matérn covariance function. N training samples were randomly generated for the main plot. For the detail plot, we

repeated the process five times with different training sample sets of sizes N ¼ 10,15,20,25,30½ �. For reference, the dashed lines in the detail

plot are identical to the dashed lines in the main plot
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3.4 | First-order Sobol index estimates

We now assess the convergence of the first-order Sobol index estimates for increasing numbers of training samples. To
calculate the mean S

i
based on Equation (21), we use NGP ¼ 500 metamodel realisations, and the number of Monte–

Carlo samples is set to M¼ 10,000. We do not include bootstrapping here. The uncertainties in the estimates will be
studied in the next section.

Figure 8 presents the results for training sample set sizes N ¼ 10, …, 200½ �. The result confirms what we expected
based on the scatterplots in the previous section: three parameters—namely the vascular permeability Pv, the killing
coefficient γtkill, and the hydraulic conductivity of the blood-vessel wall Lvp—have considerably higher first-order Sobol
indices than the remaining three parameters. Figure 8 also allows to assess the convergence of the Sobol indices for an
increasing number of training samples: even small sizes of training sample sets yield values close to the value based on
N ¼ 200. This is due to the high values of the respective Nash–Sutcliffe efficiency, as discussed in the previous section.
Those results are promising, in particular for models that are computationally very expensive, and thus do not allow a
large number of evaluations of the full model: the computational cost of the demonstrated approach is considerably
reduced compared to an analysis based directly on evaluations of the full model, as for example presented in References
92,93 for tumour-growth models.

FIGURE 7 Gaussian process for N ¼ 20 with a tensorised, squared, exponential covariance function. Projected mean mGPi Xið Þ, projected
95% confidence interval (CI) and training samples D for the mean of the necrotic fraction of tumour cells ωNt (the y-axis labels apply to both

figures)
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We assessed convergence visually based on Figure 8. In addition, Reference 94 presents a thorough definition of
convergence criteria for global sensitivity analysis results. Nevertheless, the computationally limiting factor is usually
the number of Monte–Carlo samples. Since we evaluate the Monte–Carlo samples on the GP metamodel, this limitation
is less critical in the presented workflow. If sampling the realisations of the metamodel for very large numbers of
Monte–Carlo samples becomes an issue, Reference 14 includes an efficient approach based on conditional GPs.

3.5 | Uncertainties of Sobol index estimation

We now go on to not only estimate the mean S
i
but also include the uncertainty related to the metamodel and to the

Monte–Carlo integration given by Equations (24) and (25). In addition to the first-order index Si, we also include the
total-order Sobol index STi. Again, we use different training sample set sizes N ¼ 10, …, 200½ � and a tensorised, squared,
exponential covariance function with hyperparameters optimised based on maximising the log marginal likelihood of
the GP. We draw NGP ¼ 500 realisations of the GP, B¼ 300 bootstrap samples, and M¼ 10,000 Monte–Carlo samples.
We calculate 95% confidence intervals on the basis of the variance related to the metamodel bσ2GP and the variance
related to Monte–Carlo integration bσ2MC.

Figure 9A presents the results for all six input parameters. Note the different scaling on the vertical axes. We first
take a look at the results for the indices themselves. Figure 9A again confirms that even for small numbers of training
samples, the estimates for first and the total-order Sobol indices rapidly converge. As mentioned above, we do not
expect any influence of the parameter γhkill on the quantity of interest. Figure 9A shows that we can identify this non-
influential parameter as such even for small numbers of training samples. The parameter DNPl also leads to Sobol indi-
ces close to zero for N <60. For larger training sample set sizes however we get a slightly higher total-order Sobol index,
which is nevertheless small. Hence, we can clearly separate the three most influential parameters from the three non-
influential parameters.

Moreover, the total-order index is higher than the first-order index, in particular for the hydraulic conductivity of
the blood-vessel wall Lv

p and the vessel wall permeability Pv. This leads to the conclusion that higher-order effects are
indeed present. We will therefore analyse the second-order Sobol indices in the next section. In addition, Table 2 sum-
marises the values for the first and the total-order indices for 200 training samples: the sum of all first-order Sobol indi-
ces is 0:967. Since this is close to one, we conclude that higher-order effects are present, but only play a minor role. The
largest part of the output variance is covered by the first-order indices.

FIGURE 8 Convergence of first-order Sobol index estimate for increasing training sample set size. We use M¼ 10,000 Monte–Carlo
samples and NGP ¼ 500 realisations of the Gaussian process
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We now focus on the uncertainties: we assess the uncertainty related to the GP metamodel and the total uncer-
tainty, where the latter includes both sources of uncertainty (related to Monte–Carlo integration and related to the
metamodel). For small training sample set sizes, we see considerable uncertainty related to the metamodel (depicted in
light blue/orange in Figure 9A).

FIGURE 9 First-order and total-order Sobol indices and 95% confidence intervals (CI) for an increasing number of training samples. We

use M¼ 10,000 Monte–Carlo samples, NGP ¼ 500 realisations of the Gaussian process, and B¼ 300 bootstrap samples. Subfigure (A) shows

Sobol indices with metamodel CI and the sum of metamodel and Monte–Carlo CI for the six input parameters separately. Monte–Carlo
abbreviates as MC. Subfigure (B) details the metamodel CI
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However, the uncertainty related to Monte–Carlo integration dominates for N >40. We therefore present the uncer-
tainty related to the metamodel in detail in Figure 9B: the uncertainty rapidly decreases as the number of training sam-
ples increases for both the first-order and the total-order index and becomes one order of magnitude smaller than the
uncertainty related to Monte–Carlo integration. Reference 18 also found the uncertainty related to the GP metamodel
to be much smaller than the uncertainty related to Monte–Carlo integration in their example. The total uncertainty
(depicted in grey) could be reduced even further by increasing the number of Monte–Carlo samples.

Based on these results, we conclude that including the uncertainty related to the metamodel is not absolutely neces-
sary in our example. However, the example presented in the outlook and the example presented by Reference 14 illus-
trate that this is not always the case: only taking into account the Monte–Carlo uncertainty might then underestimate
the confidence interval. In such cases, it is essential to consider the uncertainty related to the metamodel. Hence, this
largely depends on the model, the input parameters, and the quantity of interest, and no one-size-fits-all rule can be
given.

Nevertheless, even taking into account the metamodel and the Monte–Carlo uncertainty may incorrectly estimate
the confidence intervals: poor optimisation of the hyperparameters may result in underestimated or overestimated con-
fidence intervals. In such cases, one could additionally consider the uncertainty related to the estimation of the hyper-
parameters of the GP covariance function by using a full-Bayesian approach with hyperpriors.14

To sum up, the demonstrated workflow not only identifies parameters with a high first-order Sobol index (necessary
for factor prioritisation) but also parameters with a small total-order Sobol index (necessary for factor fixing). In both
cases, small numbers of training samples suffice in our example.

3.6 | Second-order Sobol index estimation

Since we concluded from the results in the previous sections that higher-order effects are indeed present in our exam-
ple, the goal now is to estimate the second-order Sobol indices, and thereby identify interaction effects between the
input parameters. The results in the previous section show that the uncertainty related to Monte–Carlo integration is
dominant, and the uncertainty related to the GP metamodel is much smaller. We therefore estimate the second-order
indices based on the predictive mean mGP,N Xð Þ of the GP and do not take into account the uncertainty related to the
metamodel. Thus, we estimate the second-order Sobol indices as

bSij ¼ 1
M

PM
m¼1

mGP,N B ið Þ
A

� �
m
mGP,N A jð Þ

B

� �
m
�mGP,N Að Þm mGP,N Bð Þm

V mGP,N A B½ �ð Þ½ � �bSi�bSj, ð35Þ

which includes estimating the first-order effects bSi and bSj also based on the mean of the GP only.
Using the same number of Monte–Carlo samples as before (M¼ 10,000), however, results in a 95% confidence inter-

val with the same order of magnitude as the indices themselves, and even leads to negative values for the Sobol indices

TABLE 2 First and total-order Sobol indices based on 200 training samples

Parameter Si STi

Lv
p 0.092 0.121

Pv 0.600 0.632

DNPl 0.001 0.004

Lp S
V

� �ly 0.009 0.011

γtkill 0.265 0.270

γhkill 0.000 0.000

Sum 0.967

Note: We use M¼ 10,000 Monte–Carlo samples, NGP ¼ 500 realisations of the Gaussian process, and B¼ 300 bootstrap samples.
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(as given in Table 3). Therefore, we increase the number of Monte–Carlo samples to M¼ 1,000,000 to obtain reasonably
small confidence intervals.

Table 3 and Figure 10 summarise the results for the second-order Sobol indices: the highest interaction is present
between Pv and Lvp, as we already expected based on the results presented in Figure 9. Summing up all first and second-
order Sobol indices results in 0:999. We thus (almost) completely apportioned the variance in the output to the input
parameters, including interaction effects.

The large number of Monte–Carlo samples necessary to estimate the second-order Sobol indices highlights the rele-
vance of metamodel-based estimation approaches. Evaluating the full model f several million times is computationally
prohibitive for most models. Without using a metamodel, estimating higher-order Sobol indices is thus impossible in
most cases.

4 | APPLICATION TO A MODEL OF ARTERIAL GROWTH AND
REMODELLING

In the previous sections, we assessed the performance of the current workflow as applied to a model of nanoparticle-
mediated drug delivery in more detail: even small numbers of training samples result in reliable estimates of the Sobol

TABLE 3 Second-order Sobol indices for M¼ 1,000,000 Monte–Carlo samples and B¼ 300 bootstrap samples

Parameter i Parameter j

M¼ 10,000 M¼ 1,000,000

Sij 95% CI Sij 95% CI

Lv
p Pv 0.0276 0.0198 0.0283 0.0021

Lv
p DNPl �0.0009 0.0136 0.0003 0.0016

Lv
p γtkill �0.0004 0.0142 0.0007 0.0017

Pv γtkill 0.0036 0.0312 0.0042 0.0030

Lp S
V

� �ly DNPl 0.0021 0.0037 0.0023 0.0004

Note: All other second-order indices are Sij <0:001.

FIGURE 10 Second-order Sobol indices bSij for M¼ 1,000,000 Monte–Carlo samples and B¼ 300 bootstrap samples. The blue circles

represent the first-order Sobol indices. The orange surrounds represent the total-order Sobol indices. The grey areas connecting the nodes

represent the second-order Sobol indices. All other second-order indices are bSij <0:001

WIRTHL ET AL. 21 of 28



indices and a small uncertainty related to the GP metamodel. To give an outlook, we now apply the workflow to
another complex biomechanical example, namely a homogenised, constrained mixture model of arterial growth and
remodelling.23–25

Reference 95 performed an exhaustive global sensitivity analysis, where they estimated the first and total-order
Sobol indices by evaluating the full model for all Monte–Carlo samples. This however entails a large computational bur-
den (>70,000 model evaluations). Therefore, the question arises as to whether we can reduce this computational cost
by using a GP metamodel and still get reliable Sobol index estimates, including reliable uncertainty estimates.

For this comparison, we investigate Case 2 of the original publication,95 where the maximum diameter of an
idealised cylindrical abdominal aorta was studied 15 years after spontaneous damage to elastin. In this case, the major-
ity of samples lead to minor dilatation of the vessel dmax < 3 cm. In contrast, a considerable number of samples do not
stabilise and keep enlarging, leading to aneurysms with a much larger diameter dmax > > 3 cm (see Figure 4B in Refer-
ence 95). We use the original results from Reference 95 and compare them to our results based on the metamodel
approach.

First, we take a look at the predictive quality of the GP metamodel. Once again, we use a tensorised, squared,
exponential covariance function and compare the results for different numbers of training samples,
N ¼ 40,60,80,100,150,200,300,500½ � in this case. As an example, Figure 11A presents the training samples for N ¼ 300
for two parameters. The results for the remaining parameters are included in the Supplement (see Figure A.1 in Supple-
ment). We see that the majority of samples result in a small dilatation in contrast to the fewer aneurysmatic samples
with a very large diameter of up to 8 cm. This bimodal structure of the data makes training the GP metamodel more dif-
ficult compared to our previous example. Accordingly, the Nash–Sutcliffe presented in Figure 11B is lower, particularly
for small numbers of training samples, that is, N <80.

Second, we calculate the first and total-order Sobol indices and respective uncertainties for different numbers of
training samples. To this end, we use M¼ 10,000 Monte–Carlo samples, NGP ¼ 500 realisations of the GP metamodel,
and B¼ 300 bootstrap samples. By way of example, we present the results for two parameters, the gain parameter kσ
and the initial volume fraction of elastin ϕel

t0 , in Figure 11C. Similar plots for the remaining eight parameters are
included in the Supplement (see Figure A.2 in Supplement). For the gain parameter kσ , the estimates based on the
metamodel converge to the reference values from Reference 95 for both the first and the total-order Sobol index. For
the initial volume fraction of elastin ϕel

t0 , the reference values for the Sobol indices are very small (0.01 or smaller). In
this case, exact estimates based on the metamodel approach are much harder to achieve: for N ≤ 300 training samples
the estimates only stabilise. Nevertheless, we can still reliably separate the three most influential parameters from the
non-influential parameters, even for small numbers of training samples (see Figure A.2 in Supplement). One further
detail should be mentioned as an example: the plot for ϕel

t0 reveals problems in estimating the first and total-order Sobol
indices for N ¼ 80 or 100. The Sobol indices and the uncertainties are all close to zero. Similar behaviour can be
observed for other parameters (see Figure A.2 in Supplement). For N <300, the GP has not yet converged, and hence
does not capture all features of the quantity of interest. Furthermore, we note that the uncertainty related to the meta-
model is much higher and in some cases even dominates the total uncertainty in this example, while the uncertainty
related to Monte–Carlo integration dominated the previous example. It is therefore important to include the uncer-
tainty related to the metamodel because considering only the uncertainty related to Monte–Carlo integration would
underestimate the total uncertainty in the Sobol index estimate.

Finally, the computation of higher-order indices was not feasible with the approach chosen in the original contribu-
tion.95 In contrast, the following will show that the metamodel-based approach enables their computation. As an exam-
ple, we again consider the gain parameter kσ: a closer look at Figure 11C reveals that the total-index is considerably
higher than the first-order index: STkσ �Skσ ¼ 0:34. This delta indicates interactions with other parameters, and thus
estimating the second-order indices is of particular interest for this example. Since we see in Figure 11C that the meta-
model contributes significantly to the total uncertainty, we include uncertainty estimates for the metamodel
(as opposed to relying solely on the predictive mean, as in the previous second-order estimates). The estimates indeed
show interaction with two parameters: the turnover time τ† and the constitutive parameter k2 (Skστ ¼ 0:19 and
Skσk2 ¼ 0:06). However, the sum of all second-order indices (Skσ j ¼ 0:25) still does not cover the delta between the first
and total-order index. Hence, we specifically estimate the third-order Sobol index for the three most influential parame-
ters, kσ , τ, and k2, resulting in considerable third-order interaction: Skστk2 ¼ 0:06. Detailed results for the second and
third-order indices, including confidence intervals, are included in the Supplement (see Figure A.3 in Supplement).

Thus, we are able to identify influential parameters for factor prioritisation based on the metamodel approach with
small numbers of training samples, and we can also separate the influential parameters from the non-influential ones.
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Hence, the metamodel-based approach provides the same results as the approach based directly on the full model in
the original publication.95 The computational cost, that is, the number of evaluations of the full model, however, is
much lower when using a metamodel. Additionally, we can quantify higher-order indices which is infeasible based on
evaluations of the full model.

FIGURE 11 Summary of results for arterial growth and remodelling. (A) Projected mean mGPi Xið Þ, projected 95% confidence interval

(CI) and training samples D for the diameter dmax (the y-axis labels apply to both figures). (B) Nash–Sutcliffe efficiency Q2 for different

training sample set sizes. (C) First-order and total-order Sobol indices and 95% confidence intervals (CI) for an increasing number of training

samples. Monte–Carlo abbreviates as MC
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5 | CONCLUSION

Since a global sensitivity analysis is computationally expensive, modellers often rely on local methods alone, which
may be inadequate.5 The use of a metamodel-based approach, however, allows a global variance-based sensitivity analy-
sis to be performed, even for computationally expensive biomechanical models with a moderate number of input space
dimensions at a manageable computational cost. The number of training samples required to obtain reliable estimates
for the Sobol indices depends largely on the problem set-up itself: our results demonstrate that we can identify the
most influential input parameters and separate them from non-influential parameters with small numbers of training
samples. However, quantifying the exact value of the Sobol indices requires more training samples. Moreover, the
approach is able to quantify the uncertainty related to the metamodel: including this uncertainty is important,
because considering only the uncertainty related to Monte–Carlo integration could underestimate the total uncer-
tainty in the Sobol index estimates. The metamodel-based approach also allows an estimation of higher-order Sobol
indices, and thus a quantification of interaction effects, which is not feasible without a metamodel due to the compu-
tational costs involved. While there is no one-size-fits-all rule, the approach is general and efficient enough to allow a
study of different aspects of sensitivity analysis, including a transparent declaration of the uncertainties involved in
the estimation process.

We demonstrated how a rigorous global sensitivity analysis can be applied to complex, computationally expensive
problems. A carefully performed sensitivity analysis is generally an integral part to ensure the high quality of any model
development.5 By demonstrating the workflow and its application for biomechanical problems, we contribute to closing
the gap between proposals of new sensitivity analysis methods and application papers.8 We hereby encourage sensitivity
analysis in general and the metamodel-based approach in particular in the biomechanics community. In the big picture
of model development, the presented workflow can be a building block towards inverse analysis, or it can be a valuable
tool to better understand the model itself.

NOMENCLATURE
Dimensions and corresponding indices:
NGP number of metamodel realisations, index k;
B number of bootstrap samples, index b;
D number of uncertain input parameters, index i;
M number of Monte–Carlo samples, index m;
N number of training samples.

Random quantities:
X training samples;
x �ℝD deterministic vector of input parameters;
X vector of D uncertain input parameters;
Xi uncertain input parameter (RV);
y�ℝ deterministic scalar output of interest;
Y uncertain output of interest (RV).

Sobol method related symbols:bS◇
estimate of Sobol index of any order ◇ ;

Si first-order Sobol index for the ith input parameter;
Sij second-order Sobol index for input parameters i and j;
STi total-order Sobol index for the ith input parameter.

Metamodel related symbols:
mGP,N Xð Þ predictive posterior mean of the Gaussian process with optimised hyperparameters trained on N training

samples;
f GP,N Xð Þ trained Gaussian process metamodel;
kN X , X 0ð Þ predictive posterior covariance kernel of the Gaussian process with optimised hyperparameters trained on

N training samples.
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ENDNOTES

* The error of the Monte–Carlo estimate for the expectation is proportional to
ffiffiffiffiffiffi
 g½ �

p ffiffiffiffi
M

p , with g denoting the integrand. If we assume  g½ � to be
fixed, we have to increase the number of Monte–Carlo samples M, and the error of the estimate thus decreases by 1ffiffiffiffi

M
p .30

† The turnover time was denoted by T in the original publication.95
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