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Gut Microbiome Analysis for Personalized Nutrition: The
State of Science
Marie-Christine Simon,* Christian Sina, Paola G. Ferrario, Hannelore Daniel,*
the Working Group “Personalized Nutrition” of the German Nutrition Society

Whereas most concepts of personalized nutrition (PN) in the past, included
genotyping, recent years have brought new approaches that include
microbiome analysis to optimize recommendations for diet and lifestyle
changes. The new approach, offered by companies, that microbiome analysis
provides a real benefit to either more concise recommendations or for
increased compliance to PN, is largely lacking scientific validation. Although
the microbiome field shows enormous proliferation, it has some major flaws
that make its use in the public health domain currently critical. Starting with
the quality and representative character of the stool samples, its processing
and analysis as well as assembly of metagenome data and the interpretation.
Moreover, there is still no consensus of what constitutes a “normal/healthy”
microbiome, nor what features characterize a dysbiotic microbiome. And,
based on hundreds of individual parameters and environmental factors, the
intestinal microbiome shows a huge variability and consequently changing
one factor—such as food intake—is likely to have a limited impact in
achieving optimized health. The present review intends to summarize the
state of consolidated knowledge on human gut microbiome in the context of
diet and disease, its key features, and its influencing factors as well as its
“add-on” quality for PN offers.
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1. Prolog

The ecosystem in the intestine was called
intestinal flora till the beginning of the
new millennium with the appearance of
the term microbiome in recognition of
its metagenomic dimension. The oldest
publication found in PubMed with ref-
erence to intestinal flora dates to 1914[1]

and first publications describing the use
of probiotics in humans appeared in
1920.[2] A very productive period of flora-
research started in the mid-1950s with
studies linking cancers to altered bacte-
rial spectra and by assessing the role of
dietary components, bile acids, and other
factors in the genesis particularly of col-
orectal cancer. First studies determining
the concentrations of short chain fatty
acids as the prime fermentation prod-
ucts in colon appeared also some 50 years
ago[1], while studies that for the first time
estimated the density of bacteria excreted
with the stool in humans were published
in the mid-1970s.[3,4] This early research
also led to the identification of more than

100 different bacterial species by classical anaerobic culturing
techniques.[3] By use of agents that alter the intestinal motility it
was also shown that the intestinal transit time affects the density
of bacteria in stool samples.[5] This observation was only recently
confirmed with the rediscovery of the intestinal transit time as
one of the most important determinants of stool microbiome
composition.[6,7] This is just one example of the many ground-
breaking findings from the heydays of research on the intestinal
flora that are often neglected. For almost two decades—despite
enormous scientific progress—the intestinal flora was almost for-
gotten; only seldomly a reference was given to it as an impor-
tant biosphere in the health-disease trajectory. That has changed
drastically and these days it is hard to keep up with new micro-
biome science delivered every day. We here review the scientific
basis of the diet-microbiome interdependence and the concepts
of personalized nutrition that build on or integrate microbiome
profiling.

2. Host-Specific Parameters Affecting the
Microbiome

Studies on the role of host genetics in defining the diversity of
the fecalmicrobiome have been conducted at the population level
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and in twin cohorts.With both approaches, inheritance of gutmi-
crobiome signatures was found to be low—ranging between 2%
and 9%—of the variance in genera.[8,9] In a study with >18,300
participants from 24 cohorts, microbiome analysis of fecal sam-
ples revealed an impressive variability across the cohorts with
only nine genera out of more than 400 consistently detected in
all samples.[10] Some 30 genetic host loci were identified as as-
sociated with microbiome diversity but only one locus, encoding
the intestinal lactase (LCT), reached study-wide significance and
associated particularly with the abundance of Bifidobacteria in
stool.[10] Taken together, the geneticmake-up of the host seems to
have a rather low impact on microbiome composition, but other
phenotypic parameters show stronger and more consistent ef-
fects and those are sex, age, and BMI that all rank highest among
the identified variables of gut microbiome diversity in popula-
tion studies.[10,11] Besides these easy to obtain anthropometric
data, many other phenotypic differences appear to relate to mi-
crobiome diversity as well. That includes simple measures of gut
function with the frequency and timing of stool passing[12] or the
consistency and color of the stool[10] as described by the Bristol
Stool Scale (BSS), but those are not often determined in cohort
studies.
Other host-specific variables identified in large cohorts as sig-

nificantly contributing to microbiome diversity are diet, medica-
tion, occupational status, ethnicity, birth mode, socio-economic
status, or geographical location.[13] For assessment of dietary fac-
tors as determinants of stool microbiome diversity, 24 h recall or
food frequency questionnaires are used. Although thesemethods
are prone to under-/misreporting and may not deliver the infor-
mation at a level that one would like to have, they are the basis
of almost all population studies that assess diet effects. In mi-
crobiome studies with reported food intake dozens of individual
food items among many other variables associated with micro-
biome diversity have been identified.However, each of these indi-
vidual dietary parameters has onlyminimal influence. In a cohort
of 1135 participants (Netherlands/Belgium) a total of 126 factors
significantly associated with microbiome diversity and thereof
around 60 food/diet items were found, but those 126 factors al-
together explained only 18.7% of the variance.[10] In a population
study with 3400 participants 72 determinants significantly asso-
ciated withmicrobiome diversity were found and among them 10
were food/dietary factors, each one individually explaining 0.2 to
max. 2% of the observed diversity (Shannon diversity).[11] When
taken together, all studies conducted on the human gut micro-
biome and its determinants currently explain around only 15–
20% of the inherent variance.[14] As a yet undefined but seem-
ingly accepted measure of a “healthy microbiome” serves cur-
rently a large diversity of species in a stool sample. This diversity
varies considerably between samples from “industrialized” and
“non-industrialized” societies, including pre-historic samples.[15]

That leaves space for speculation and interpretation but even
here, very basic aspects seldomly get addressed. This includes
the fact that for example stool volumes and frequencies are quite
different[12] between low income and high income populations[16]

and samples from “non-industrialized” or rural domains almost
all contain numerous parasites as demonstrated in various stud-
ies and parasitic infections have been proven to increase species
diversity.[17,18] Thatmay put in question of whether a higher diver-
sity is indeed the best parameter or the prime target.[19] The lack

of an accepted definition of a “healthy microbiome”[14] addresses
of course what guidance can be provided to humans or patients to
affect the microbiome for improving or maintaining health and
well-being and that applies to recommendations at population
level or in the context of personalized nutrition strategies.

3. Microbiome Analysis from Stool
Samples—Approaches and Drawbacks

Over the years, methods and algorithms for the analysis of gut
microbiota have been developed and are constantly improved,
yet they are still prone to errors. A major problem is that there
is no standardized procedure for analysis,[20] and there are of-
ten major differences in profiles when the same sample is ana-
lyzed in different laboratories.[21] Thus, results from studies are
hardly comparable. Furthermore, analytics often lack proper con-
trols to detect false positive or false negative read-outs.[22] When
analyzing stool samples for microbiota composition, many in-
dividual steps are required and each one is prone to errors. At
the experimental level, a proper study design, careful sample col-
lection, and handling and preparation for sequencing are most
critical for outcome. During subsequent computer analysis, dif-
ficulties can arise in quality control, in assembly of sequences,
and their taxonomic or functional assignment. Any error at any
of these individual steps affects subsequent analysis and thus the
overall result.[20,21] Figure 1 summarizes the critical steps in the
workflow at which data obtained may be affected by the corre-
sponding procedure or, technique/method. In summary, a lack
of a time- and cost-efficient standardized method contributes to
limited comparability of results from different studies. Controls
should be used in all steps of the analysis, if possible, to reduce
potential biases. However, there are still no simple solutions for
this at all stages of the analysis.
Usually, the dataset generated delivers only relative abun-

dance of the bacteria, i.e., the ratio of the detected bacterial
species/genera to each other. This approach however ignores
the absolute number of bacteria and thus interpretation of these
data could potentially bemisleading.[23] For example, an interven-
tion that doubles bacterial species A and leaves bacterial species
B unchanged may have the same effect on the relative ratio of
species to each other as an intervention that reduces bacterial
species B by half and leaves bacterial species A unchanged. In
absolute terms, however, the outcome would be different.[23,24]

Relative abundance therefore makes it difficult to identify the
bacteria that are truly affected by an intervention or disease
state[25] but it also limits interpretation, for example in associa-
tion studies with metabolite concentrations.[26] Analysis of rela-
tive abundance does also not take into account the different bac-
terial load in stool samples between subjects that can vary up to
10-fold.[26] Furthermore, insufficient sequencing depth can lead
to zero/non-detectable relative abundance.[23] In bioinformatics
analysis, this depth is also a major confounder when calculating
distance or dissimilarity indices.[24]

There are already some methods that can be used to detect ab-
solute bacterial load. These include fluorescence spectroscopy,
flow cytometry, spike-in with internal reference material, 16S-
qPCR (quantitative polymerase chain reaction), 16S-qRT-PCR
(reverse transcription qPCR), and ddPCR (droplet digital PCR).
However, all methods have advantages and disadvantages.[23] The
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Figure 1. Workflow of human microbiome research. Many individual steps are required for the analysis of stool samples for microbiota composition.
Each step is prone to errors, however a proper study design, careful sample collection, handling, and preparation for sequencing are most critical for a
valid outcome. During subsequent computer analysis, difficulties can arise in quality control, in assembly of sequences and their taxonomic or functional
assignment. Any error at any of these individual steps affects the overall outcome. ASV, amplicon sequence variant; OTU, operational taxonomic units.

selection of the appropriate method depends on the question to
be answered, such as of whether a differentiation between living
and dead cells is required or whether there is a need for absolute
quantification of specific taxa for diagnostic purposes. Absolute
quantification of low biomass bacterial samples as well quantifi-
cation when analyzing large number of samples are hurdles.[23]

It should also be considered that the quantification method ap-
pliedmay lead to different quantitative bacterial profiles and thus
bias the results.[25] Taken together, absolute quantification ap-
pears necessary, when microbiome analysis is used as a diagnos-
tic tool, but currently available methods are all time-consuming
and laborious[23] and may—dependent on method—lead to dif-
ferent results.[25]

Specific difficulties for data interpretation arise when assign-
ing biological pathways to the detected bacteria. This is generally
done based on the homology to reference genes with previously
characterized functions.[27] The reconstruction is often used to
further classify the data in a biological context for a meaningful
interpretation.[28] Yet, this is still a challenge since it is difficult to
define all metabolic pathways encoded by a genome bec different
pathways can have the same biological function, overlap, or in-
terfere with each other. In addition, a single protein can perform
different functions, or a protein could be assigned to homologous
proteins with different functions.[27] However, new approaches
are being constantly developed in this area as well.[27,28]

4. What is a Healthy Microbiome?

Already in the early days of gut flora research it was suspected
that gut microorganisms are involved in host health.[29] Mean-
while it has been shown for a large number of diseases that
there are compositional differences in the microbiota compared
to healthy individuals and these may translate as well into func-
tional differences.[30] Observed changes inmicrobiome composi-
tion are frequently described as “dysbiosis”, suggesting that there
is either an expansion in the density of harmful microorgan-

isms, a reduction of microbes considered as beneficial and/or
an overall decrease of microbial diversity.[31] Moreover, it is pos-
tulated that novel probiotics or prebiotics provide new treatment
options to correct such disturbed ecosystems.[32] Althoughwidely
used in the scientific and public domain, there is no consen-
sus on what constitutes a “healthy” microbiome and which de-
viations define a dysbiosis.[14] The human microbiome project
which started in 2007was not able to define a “healthy coremicro-
biome” by collecting data from average healthy individuals with
microbial species, their genes and their derived metabolites. And
even 15 years and thousands of publications later a “healthy mi-
crobiome” cannot be defined.[31] The Microbiome is are shaped
by a combination of genetic, environmental, and lifestyle factors
starting with themode of birth and constantly changing through-
out life.[33] This dynamic complicates the identification of essen-
tial microbial components relevant for host health and health-
dependent alterations of microbiome composition. There is in
general not sufficient knowledge about the relationship between
gut microorganisms and host health beyond the observed associ-
ations. Moreover, in humans it is still difficult to assess whether
a possible microbiome shift is the cause, or the consequence of
a disease and it has been stated that the concept of a “healthy”
microbiome is a prescientific assumption at the current state of
research.[31,34]

5. Personalized Nutrition Concepts Based on or
Including Microbiome Information

In parallel to the concept of “precision medicine” that includes
microbiome analysis,[35] there is increasing interest in mi-
crobiome signatures for predicting individual responses to
food. The individual microbiome can metabolize identical food
components differently and thereby induce different metabolic
responses in the host.[36] For example, it has been shown that
obese individuals with low microbial gene richness (low micro-
biota diversity) in their initial fecal microbiota showed a greater
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microbiota response in terms of gene richness to an energy
restricted high protein diet compared to obese individuals rep-
resented by high microbial gene richness in the pre-treatment
microbiota.[37]

Although the concept of enterotypes, i.e., the hypothesis that
all humans can be divided into only a few distinct groups based
on their coremicrobiome, is open to discussion,[38,39] there are in-
teresting data in this context that show a correlation between en-
terotypes and diet. In specific, interindividual differences in food
responses related to the microbiome have also been described at
the enterotype level.
Among others, it was shown that the Prevotella enterotype as-

sociated with the intake of complex carbohydrates and had lower
glucose levels under a fiber-rich dietary intervention than indi-
viduals with a Western diet and a Bacteroides enterotype.[40] Low
fasting glucose levels are generally considered as a good indica-
tor of metabolic health and it is thus not surprising that a higher
Prevotella:Bacteroides (P:B) ratio was associated with significantly
higher weight loss under a high-fiber diet (mean difference: 5.1
kg (95% CI, 1.7;8.6, p = 0.003).[41] A validation study confirmed
the observation that overweight study participants with an ele-
vated P:B ratio lost more weight on average than subjects with a
low P:B ratio during a 24-week low-calorie, high-fiber diet. In ad-
dition, this study also revealed evidence of the predictive quality
of microbiome diagnostics for the outcome of a prebiotic diet.[41]

Subsequently, through deeper sequencing approaches, the Pre-
votella enterotype was shown to consist of at least four distinct
clades with substantial functional diversity and differences in-
cluding the ability to degrade whole-grain fiber.[42] Also, the bac-
terial species Eubacterium ruminantium andClostridium felsineum
appear to have a role in the response of a prebiotic nutritional in-
tervention in the context of a weight loss diet,[43] although mean-
ingful prospective studies on the diagnostic value of a species-
specific approach are still largely lacking.
In the context of individual responses to food and different mi-

crobiome signatures, the study by Zeevi et al. received much at-
tention as the group predicted individual postprandial glucose
responses to different food items by machine learning based on
multidimensional data.[44] What is remarkable about this study is
on the one hand the high number of subjects (800 subjects in the
main cohort and 100 subjects in the validation cohort) and the
large amount and variety of data collected. Continuous glucose
monitoring (CGM) was used to record the postprandial glucose
response of over 45,000meals, including standardized testmeals.
A comprehensive food database with nutritional values was also
integrated into the used study app. The glycemic response of each
meal was calculated by combining reported mealtime with CGM
data and computing the incremental area under the glucose curve
for a 2 h time period after themeal. In addition tomedical history
and anthropometry, 16sRNA andmetagenomics analysis of stool
and other blood tests (including HbA1c% and HDL cholesterol)
were performed. The results showed not only a high variability
of the interindividual postprandial glucose responses to identi-
cal test meals among the participants, but also a relatively low
accuracy of the prediction of the postprandial response by sole
consideration of the number of calories or the carbohydrate por-
tion of a meal with Pearson correlation coefficients of r = 0.33
and r = 0.38, respectively.

The prediction improved considerably after applying a ma-
chine learning glycemic response algorithm based on the data
collected, including 16sRNA microbiome data. This increased
the goodness of prediction of postprandial glucose response by a
factor 2 for the correlation coefficient r (r = 0.68 main cohort and
r = 0.7 validation cohort) and by a factor 4 for R squared, which
was of similar quality as the prediction result of dietary counsel-
ing by experienced dieticians in a direct comparison.[44] Analo-
gously, the glycemic response prediction algorithm was applied
in a study investigating the effect of a prediction-based diet ver-
sus aMediterranean diet. For this purpose, 225 subjects with pre-
diabetes received either personalized dietary recommendations
based on a glycemic response prediction algorithm or standard-
ized dietary recommendations in the sense of a Mediterranean
diet over a period of 6 months. The results showed not only a
reduction in the spike frequency of continuously monitored glu-
cose levels above 140 mg dL−1, which was considered metaboli-
cally unfavorable, but also a small but statistically significant re-
duction in the HbA1c% value.[45] This approach proved to be less
successful in a recently published study in which 200 volunteers
with obesity and abnormal glucose metabolism underwent a 6-
month weight-loss program. Participants were randomized into
an arm that followed a classical low-fat diet whereas the other
personalized diet group used CGM in combination with an App
based on the predictive algorithm developed by Popp et al.[46] Vol-
unteers in both groups lost weight but there was no significant
difference in body weight reduction between groups.
Howmuch themicrobiome contributes to an individual’s post-

prandial glucose response was also studied by Berry et al.[47]

in a similarly complex study design including CGM and app-
based food diary by employing 1000 individuals including >400
monozygotic and dizygotic twin pairs. In addition to postprandial
glucose response also individual postprandial triglyceride (TG)
concentration in response to test meals was recorded. The re-
sults of this study also showed large interindividual differences
for both postprandial glucose response and serum TG levels after
identical test meals. The contribution of various influencing vari-
ables (given in%of all) such as ofmeal composition, nature of the
previousmeal, genetics, andmicrobiome was analyzed as well. It
was finally shown that the microbiome contributed significant to
the different responses in postprandial lipemia, but not in post-
prandial glycemia. Nevertheless, a machine learning algorithm
based on 16sRNA data was able to predict the glycemic responses
to food intake relatively accurately.[47] A developed prediction al-
gorithm for postprandial triglycerides appeared not as accurate
as the glycemic response-prediction algorithm (r = 0.47 vs r =
0.77). The fact that the microbiome analysis in this study did not
reveal a significant advantage in the glycemic response predic-
tion should not lead to the conclusion that the microbiome has
noweight in themachine learning approach. It should be empha-
sized that the prediction algorithms published by Zeevi et al.[44]

and Berry et al.[47] are all based on the integration 16sRNA data
and those are often limited in their overall quality (see above).
While Pearson’s r, or R squared (squaring the value obtained

for Pearson’s r) are widely used in PN context as an indicator
of model fit,[48] the predictive capability of a statistical model
should be further explored in test datasets by cross-validation
techniques for possible overfitting and validity. Finally, Zeevi
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et al.[44] and Berry et al.[47] also showed repeatability of the post-
prandial glucose response after consumptions of the same foods.
This means that although having other variables in the model,
it should also be possible to relate the foods consumed to their
effect on glycemia simply by combining information on the
food (meal content and meal timing) with the postprandial glu-
cose response. Whether the determination of microbiome sig-
natures is indeed superior for proper prediction of the individu-
al´s glycemic response cannot be answered, but it has been ques-
tioned as a real improvement over conventional methods in de-
tecting hyperglycaemia and for personalized nutrition advice as
superior to standard dietary advice to manage high postprandial
glucose response.[49]

6. Discussion

With the almost explosive developments inmicrobiome research,
the intestine, and the role of the diet in intestinal and overall
health has gained attention in the academic world and the pub-
lic domain not seen in decades. In addition, in many diseases
changes in the bacterial composition based on 16sRNA profiling
have been found in stool samples and themicrobiota is becoming
a target for intervention or even treatment of diseases.[50–52] De-
spite the fact that individual bacterial strains or phyla have been
identified as either detrimental or protective for intestinal dis-
eases or overall health, due to the analytical constraints the vast
majority of studies on microbiome composition lack quantitative
information on the species identified. Quantitative information
however is a dogma in clinical laboratorymeasurements andwith
defined threshold levels also for medical intervention. The cur-
rent state of microbiome analysis, however, provides almost ex-
clusively relative abundance data (see above) and those cannot
hold up to the standards of clinical analysis required otherwise.
Despite all current limitations in microbiome analysis and

quality assurance there is a growing number of commercial of-
fers in the direct to customer service environment. Offers in-
clude either dietary/lifestyle recommendations or even products
with some level of individualization as for example a muesli or
a micronutrient supplement. In particular the studies by Zeevi
et al.[44] and Berry et al.[47] brought a number of new commercial
services to the markets in which microbiome analysis is com-
bined with glucose sensors as a new health-management ap-
proach. What makes such offers attractive is that interstitial glu-
cose can be monitored continuously via Bluetooth-coupled de-
vices and any change in carbohydrate intake towards products
with low glycemic load or low glycemic index provides an imme-
diate positive feed-back to the individual and that is likely a key
factor for high compliance.
Most traditional PN offers provide advice or products based

on statistical or epidemiological evidence and communicate rel-
ative disease risks and those are usually all long-term. Volun-
teers usually seek short-term measures of success for any di-
etary/lifestyle intervention and to have a reduced disease-risk in
the future is not themostmotivating parameter. That is one of the
reasons that weight loss—easily measured with proper response
in decent time—is the most valued parameter in PN offers for
customers.[52] Recording continuously interstitial glucose levels
is particularly attractive by the ease to measure with the mod-
ern minimal invasive devices and upcoming new non-invasive

sensors will make it likely a commodity build into smart elec-
tronic companions.[53] While the importance of balanced glucose
metabolism in the context of metabolic diseases such as obesity
and type 2 diabetes mellitus is widely accepted, the relevance of a
personalized glucocentric nutrition for other disease entities with
complex pathophysiology, such as neurodegenerative diseases or
cancers, needs to be shown. Similarly, scientific data have yet to
demonstrate whether a glucose centered PN leads to better health
maintenance in primarily healthy individuals and whether the
continuous glucose monitoring is useful beyond high-risk popu-
lations or pre-diseased individuals.
One important question however is, of whether there is an un-

derlying biological logic in the association of microbiome signa-
tures in stool samples and blood/interstitial postprandial glucose
levels. A recent landmark study by the group of S. Berry[7] sheds
light on a likely causal interrelationship. In more than 800 partic-
ipants gut transit time was measured using a blue dye and data
obtained predicted microbiome composition in volunteers with
a high correlation coefficient (r = 0.98) and associated as well
with relative abundance of distinct bacterial species. But tran-
sit time also correlated with visceral fat mass and postprandial
glucose and triglyceride responses (r = 0.67). That transit time
and microbial diversity but also bacterial mass in feces is inter-
connected, is also known[5,54] and stool water content and tran-
sit are also closely related and associate thus with microbiome
composition.[55] Gastrointestinal transit time is controlled by the
enteric nervous system of the gut and the gut intrinsic hormone
system receives numerous input signals from G-protein-coupled
receptors and other sensors to adjust transit time to digestive and
absorptive capacity. This is schematically displayed in Figure 2
in the context of a carbohydrate-rich meal with the physiologi-
cal responses of the gut and peripheral organs connected mainly
via the incretins GIP (gastric insulinotrophic peptide), GLP-1
(glucagon-like peptide 1) and PYY (Peptide YY). These hormones
critically control gastrointestinal motility and glucose-dependent
insulin secretion and thus glycemic responses to carbohydrate
intake. But they simultaneously also affect microbiome compo-
sition via the different substrate load that passes from ileum into
colon for utilization by bacteria. The highest density of GLP-1 and
PYY producing cells is found in ileum and colon and the amount
of non-absorbed food/calories reaching the terminal ileum elicits
the so-called ileal break[56] that causes mainly via GLP-1 and PYY
a slow-down of gastric emptying and transit through the small
intestine and thus a reduction of substrate load for fermentation
and growth of bacteria in colon.
That gastrointestinal transit time is a determinant in post-

prandial glucose responses has been demonstrated by use to
prokinetic agents and compounds that reduce motility[57], which
simultaneously alter the bacterial mass in feces[5] and change
the substrate load for fermentation as shown in ileostomy
patients.[58] What also needs to be considered is that high
blood glucose changes gastric emptying of liquid or solid food
and reduces for example bile acid output by altered bladder
contraction.[59] Changes in the motility of the gastrointestinal
tract leading to changes transit time are well known to occur in
obesity as well as a variety of diseases including diabetes and
others.[60,61] Observed changes in microbiome composition in
patients suffering from such diseases could thus have impaired
gut motility as a common denominator with the consequence of
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Figure 2. Schematic representation of the physiological responses to a carbohydrate-richmeal in the gut and peripheral tissues and how gastric emptying
and small intestinal transit time are controlled via the ileal break with secretion of gastrointestinal peptide hormones that affect simultaneously both,
postprandial glycemic responses and stoolmicrobiome quantity and quality. This interplay provides a plausible biological link for the observed association
of microbiome and individual glycemic responses that form the basis for some novel approaches in PN. PN, personalized nutrition.

changes in microbiome composition. At this point it becomes
obvious that assessing normal gastrointestinal physiology and
the differences between individuals is central to understanding
the effects of diets and other environmental factors but also of
diseases on microbiota quantity and quality. Unfortunately, not
many studies collect data on gut functions such as transit time,[6]

amount and appearance of feces, or number of defecations per
day or week.[12,62] Each of those variables has been associated in-
dependently with distinct microbiome signatures.
Given the huge variance in fecal microbiome patterns and

an even great variance in the same individual with day-by-day
variation,[63] the question of the validity of an analysis—usually
based on a single sample—arises. Moreover, based on lack of a
definition of what constitutes a “healthy microbiome,” interpre-
tation of data obtained from a stool sample requires caution and
communication should emphasize that the findings may not be
representative for the individual. In the framework of PN, micro-
biome analysis from a single undefined stool sample is thus sci-
entifically not valid enough to base on the relative abundance data
concise recommendation for alterations towards a “healthier”mi-
crobiome. Moreover, there are currently no dietary interventions
that have proven to cause major changes in the microbiota—and
even extreme diets[64] or proper doses of fermentable fibers were
shown to have only marginal effects.[26,65] Generated changes
are usually limited to very few species/phyla of bacteria[66] and
whether those translate into a health-promoting and lasting ben-
eficial effect needs to be demonstrated.
Taken together, the approaches that combine microbiome

analysis with continuous glucose monitoring via sensors have

likely as underlying causal factor in the association of glycemic
responses and microbiome diversity an individual gastrointesti-
nal motility signature. The microbiome in its composition may
thus serve as a reporter of an individual´s gastrointestinal phe-
notype that also may determine or contribute to the phenotypic
responses to a meal and in postprandial glycemia. Recording
glycemic alterations over extended periods with the new devies
is easy and can provide immediate success when dietary changes
translate into diminished glucose levels. Although recognizing
the important role of flattened glucose profiles and lower fasting
levels for metabolic risk groups or pre-diseased individuals these
parameters are not the surrogate of overall health. Whether PN
offers that include or are solely based onmicrobiome data can im-
prove consumer compliance to change in long-term the individu-
al´s eating behavior and health trajectory, awaits scientific proof.
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