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Abstract
The electrification of urban bus fleets is a challenging task, especially for smaller public transport operators. The main chal-
lenge lies in the uncertainty about many technical aspects, like range of vehicles under different circumstances or charging
times, that are new for the operators. The purpose of this research is to introduce an approach to solve this problem by
incorporating all available data from an existing bus fleet and finding an optimal solution with discrete mathematical optimiza-
tion. Extensive data logging in the project enabled us to leverage tracking data from the whole bus network including trajec-
tories, powertrain data, and operational data. This enabled us to validate assumptions about the energy demand, waiting
times, and different traffic situations during the day. To get better insights into the requirements of an urban bus fleet, we
simulated the potential electric buses in detail and extracted other necessary data like actual dwell times. Based on the simu-
lation results and processed data, we implemented a linear programming model to search for a cost-optimal configuration of
vehicles and charging infrastructure. We tested the framework with a scenario in which we analyzed the solutions with differ-
ent numbers of diesel buses in the fleet. The application of our algorithm shows that it can produce optimal results in a short
amount of time, for a medium-sized city in Germany. We also demonstrate that the flexible and constraint-based formulation
of this approach allows it to be incorporated in the planning process of most public transport operators.

Keywords
big data analytics, public transportation optimization, public transportation, transportation and sustainability, electric and
hybrid-electric vehicles

Political regulations have led to rising pressure on public
transport providers to reduce local emissions by transi-
tioning their whole system from diesel-fueled buses to
emission-free vehicles. Clean vehicles in that sense have
complete, or at least partial, emission-free driving (hydro-
gen, battery-electric or hybrid). This is formulated by the
European Commission (EC) as the Green Vehicle
Directive, which imposes stepwise higher percentage rates
of emission-free engines. From 2026, 65% of newly pur-
chased heavy-duty vehicles must be operated emission
free (1). This is a big challenge for many public transport
operators (PTOs), especially smaller ones, since electric
buses have totally different technical requirements, and
their operation is limited by additional constraints. But
this also presents a great opportunity. Electric buses
could pioneer a new age of clean and efficient urban
transport and put cities on track toward sustainability
(2). Some big cities like Shenzhen, China, have adapted a
large proportion of their bus fleet to electric drives, but

other cities have been more hesitant. Better incentives
and higher planning reliability could help the adoption of
electric buses.

The amount of data collected about travel behavior of
people, from vehicles, and about the weather is growing
vastly and this trend is expected to accelerate even more
(3). Considering this, it seems natural to leverage this
data for new applications. We propose a framework for
accurately evaluating and optimizing the process of elec-
trifying a bus fleet with battery-electric vehicles. We
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collected and processed the required data from an urban
bus fleet and formulated a mathematical model to opti-
mize the choice of vehicles, and number and locations of
charging stations for the bus network. One main goal
was to make the model adjustable to custom constraints
to be relevant in real-world scenarios, easy to integrate
into the regular planning process undertaken by any
public transport operator (PTO). During the planning
phase the PTOs have various tasks in mind, for example
trying to maximize vehicle utilization and minimize labor
cost. They also need to know suitable spots for lunch
breaks and parking lots for the buses to create feasible
bus routes. Since it will be very challenging to create a
system that covers all possibilities, we decided to leave
the plan data (in the following referred to as rotation
plans) untouched and focus on finding optimal solutions
for the given bus routes, thus achieving higher applicabil-
ity. The proposed framework includes evaluating the
potential of electrification with different vehicles and
charging infrastructure as well as analyzing a stepwise
adoption of electric buses, allowing for some diesel buses
in the starting phase.

The rest of the paper will be structured as follows: lit-
erature review, methodology, case study, results, and
conclusion. The literature review serves as a quick glance
at past work in the field of electrifying urban buses and
formulates the strengths of our approach. In the metho-
dology part, we explain the general framework consisting
of the data collection, preprocessing, and the mathemati-
cal model itself. Then, a section describes the use case
area where the project is conducted. Results are shown
from using the framework on our use case. In the conclu-
sion, we summarize the findings and give an outlook on
future work.

Literature Review

The research on optimizing urban public bus transport
dates back to the early 1980s. It was first described as
the Urban Transit Route Network Design Problem
(UTRNDP) in Ceder and Wilson (4), which divided the
problem into five stages: route definition, frequency set-
ting, timetable creation, vehicle scheduling, and driver
scheduling. Since then, many approaches to solving those
problems have been published. We do not want to
include a comprehensive list, but some notable results
were made by Mandl (5) as early as 1980. He created
data sets which resemble cities in Switzerland, developed
heuristic approaches on them, and published the data
sets for comparison of future approaches. The more
recent work of Iliopoulou et al. (6) and Ahmed et al. (7),
who leveraged genetic algorithms to solve these prob-
lems, were among the first approaches that included elec-
tric buses. All those approaches included solving a

variation of the vehicle routing problem to come up with
optimal routes for the buses, which is an NP-hard
problem.

Many of the approaches cannot include the variety of
constraints which come up in real-world scenarios and,
since we assume that the PTOs have reasonably good
routes, we decided to focus on generating optimal solu-
tions for charging locations and battery sizes for a fixed
set of planned bus routes. Since we do not desire to
change the current state of the bus network that we
would like to electrify, we took another approach to the
problem, as we will describe later. We oriented our goals
more toward positioning of charging infrastructure and
sizing of the battery of buses. Uslu and Kaya (8) pro-
posed an approach for optimizing charging infrastruc-
ture for intercity electric bus networks. They setup a
solution for a charging infrastructure for any vehicle fleet
to use. Their optimization model was based on average
energy demand and the distances between cities. Kameda
and Mukai (9) and Sadeghi-Barzani et al. (10) used simi-
lar approaches to setup a cost-effective charging infra-
structure based on mobility data, with the goal of a cost-
efficient charging infrastructure within a city. Kunith
et al. (11) went a step further and generated a cost-
effective infrastructure setup for the specific bus network,
assuming a fixed battery size. The exclusion of the bat-
tery size from the optimization might prevent more cost-
effective solutions, based on smaller batteries or single
vehicles with higher battery capacity to reduce the num-
ber of charging stations. There are a few approaches that
combine the sizing of battery with the setup of charging
points. In Gao et al. (12) a solution for optimizing both
infrastructure and battery size, by considering fast charg-
ing and battery swapping based on standardized bus
cycles, was proposed.

De Filippo et al. (13) developed an agent-based simu-
lation, which considered energy consumption and charg-
ing times to evaluate feasibility of electric operations of a
bus network. This is an interesting approach but does
not help directly in generating optimal solutions for vehi-
cle and charger choice. For a cost-efficient implementa-
tion of an electric bus fleet, it is important to consider
the battery capacity and energy demand of the vehicles
as well as the sizing and location of charging stations.
Jefferies and Göhlich (14), Kunith et al. (18), and
Berthold (15) developed different approaches based on
mixed-integer linear programming (MILP) models.
Berthold (15) had some tracking data for single bus lines
available and used that to incorporate some real-world
data, whereas Kunith et al. (18) and Jefferies and
Göhlich (14) had to take some simplifying assumptions
to estimate the energy demand. For a more in-depth look
into the developments in that field, we recommend the
work of Jefferies and Göhlich (14), which gives a very
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good overview. The challenge is approached from many
different angles and with different scopes in mind. For
the reliable planning of electric vehicles, more data of
external factors is required. The topology and weather
conditions are the most obvious ones, but also the state
of the traffic flow affects the range of battery-electric
vehicles, as is shown for example in the research of
Kessler and Bogenberger (19), and Morlock et al. (20).

We developed our own mathematical model for jointly
optimizing sizing and location of charging infrastructure
as well as the battery size of the vehicles. The main goal
was to design the model in a way that incorporated the
vast amount of real-world tracking data into the system
and make it flexible enough to apply it to any existing
bus network. Such a system reduces the uncertainties
concerning the real-world application of the algorithm. It
also reduces the introduction barrier for most PTOs since
they could use their accustomed tools for planning bus
operations and checking for cost and feasibility of the
planned approach. Table 1 compares related research,
distinguishing between five types of data input.

Methodology

This section will give a detailed overview of the different
stages of our proposed framework. As shown in Figure
1, the process consists of various distinct steps: (1) collec-
tion of required data, (2) evaluating and preprocessing
the data for the optimization, and (3) definition of the
task as a mathematical optimization model which will
produce the needed result set. For a better understanding
of the interconnections between the different stages,
Table 2 showcases the required input and processing
steps for the optimization model. The first column

describes the step within the framework. The second col-
umn indicates the required input from previous stages,
and the last column describes the output of the respective
stage.

Data Sources

The input data consists of five categories: topological
data, tracking data, the street network, timetable data,
and the cost and technical data about the buses and
infrastructure. We obtained the topological data from
the NASA Earth Observation data set (21) via a Python
interface (https://pypi.org/project/elevation/). This gives
very accurate values with a resolution of 30m 3 30m.
For the street network, we used OSM maps (22), which
are fairly accurate for our studied area, especially for the
main roads used by urban buses.

Table 1. Comparison of related works

Research work
Charger
location

Battery
size

Simplified
energy
demand

Drive
cycle

energy
demand Topology

Passenger
load Temperature Traffic

Route
optimization

Data
input
type

Uslu and Kaya (8) x na x na na na na na na plan
Kameda and Mukai (9) x na na na na na na na na fcd
Sadeghi-Barzani et al. (10) x na na na na na na na na infra
Kunith et al. (11) x na na na na na na na na plan
Gao et al. (12) x x na x na na na na na cycle
De Filippo et al. (13) na na x na na na na na na plan
Jefferies and Göhlich (14) x x na na x na x na x plan
Berthold (15) x x na na na na x x na tracking
Kunith (16) x x na x na na x na x plan
Rogge (17) x x x na x na x na x plan
This paper x x na na x x x x na tracking

Note: We distinguish between five types of data input: plan (bus schedules), fcd (car/taxi movements in the study area), infra (information about power

supply infrastructure), cycle (standard driving cycles in the area), tracking (detailed tracking data for all or some of the buses in the study area);

na = not applicable.

Figure 1. System overview. Workflow from input,
preprocessing, optimization to the obtained results.
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To receive the tracking data, we equipped 50 of the 95
buses with telematic devices and were thus able to collect
all the required data. These data loggers are Linux-based
devices with our own logging software that transfers the
data in real-time to our server infrastructure. Since the
amount of data that needed to be obtained and interpreted
was very large, we decided to set up a scalable Apache
Kafka Cluster (23), which receives the data from the differ-
ent buses and interprets the raw byte stream into human-
readable values before storing them into a database. For
efficient querying of the data, we chose a PostgreSQL
Timescale database (24), which is optimized for large
amounts of time series data. Since some powertrain specific
data is sampled with 100Hz, we must process around 60 to
100GB of data, which results in more than 200million
data-points every day. To record all this data, we used the
FMS Fleet Managment System Standard Interface (https://
www.fms-standard.com/Bus/index.htm) interface of the
buses, which is a standardized protocol defined in HDEI-
BCEI-Task-Force (25) for accessing different values from
the vehicle. This enables us to use the same logging software
on all the different vehicles from the fleet. Therefore, we
have the values of the door-open/closed status as well as
ambient temperature and vehicle weight all the time for
every vehicle and can incorporate it into the energy calcula-
tion. To make sense of the recorded global positioning

system (GPS) tracks, we needed the plan data and to assign
each track to one of the bus routes. To incorporate the plan
data, we implemented the standardized interface from the
VDV (Verband Deutscher Verkehrsunternehmen), which
allows easy integration of the data from any bus operator
that uses this interface (26).

For the energetic simulation of the buses and charging
processes, we required technical data about the buses.
Some of the more general vehicle data was freely avail-
able online, whereas other values were only directly
obtainable through the manufacturer. Since our optimi-
zation goal was cost efficiency, we also needed the costs
of potential vehicles and chargers. For our purposes,
approximate values were enough, and we obtained them
from our project partner (Göttinger Verkehrsbetriebe),
the PTO for Göttingen. Because we wanted to optimize
with many possible vehicles, we had to estimate costs for
different battery sizes and charging powers. Those costs
only served as an example and the results in this study
should be taken as a proof of concept. For detailed
results, one would need to investigate the costs more spe-
cifically and provide them for the optimization.

Data Processing

The purpose of the preprocessing step is to make sense
of the vast amount of data and prepare it for the integer

Table 2. Information flow through the different stages of the optimization framework

Stage Input Result

1. Input data
1.1 FMS na 1.1.1 Vehicle weight

1.1.2 Open/close door status
1.1.3 Ambient temperature

1.2 GPS 1.2.1 Trajectories
1.3 Technical data na 1.3.1 Engine power, efficiency, .

1.3.2 Vehicle cost
1.3.3 Battery sizes
1.3.4 Charger powers
1.3.5 Charger costs

1.4 Operational data na 1.4.1 Timetables
1.5 Map data 1.5.1 Street network

1.5.2 Bus stop locations
1.5.3 Topology

2. Preprocessing
2.1 Enrichment 1.1.1, 1.1.2, 1.2.1, 1.4.1, 1.5.1, 1.5.2 2.1.1 Split trajectories at bus stops

2.1.2 Enrich trajectories with temperature and weight
2.1.3 Calculate 10th percentile of delay and dwell times

2.2 Energy model 1.3.1, 1.3.3, 1.3.4, 1.5.3, 2.1.1, 2.1.2 2.2.1 Energy demand for every subsection
3. Optimization 1.3.2, 1.3.5, 1.4.1, 2.2.1 3.1 Type of vehicles for every circulation

3.2 Locations of chargers
3.3 Charger type for every location
3.4 Usage of every charger

Note: FMS = Fleet Managment System; GPS = global positioning system; na = not applicable.

The types of input data have completely different characteristics: the FMS data is sampled with up to 100 Hz, which produces vast amounts of data; the

GPS values are sampled with 1 Hz and need to get matched to the FMS data by time; the rest of the input data (technical/operational data and map data)

need to be obtained once for every project.
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linear programming (ILP) model. Therefore, we imple-
mented a data pipeline that generates the necessary input
for the optimization algorithm. This generated input
data set consists of the route lists with the actual waiting
times, the energy demand for every subsection of the bus
network, a set of available bus types, and a set of avail-
able charger types. The route lists were generated from
the plan data in combination with the tracking data. The
plan data was used to obtain a list of consecutive bus
stops. One list of bus stops represents a rotation plan
that one bus must take for an entire day. Those lists were
also used to assign the recorded GPS tracks to a rotation
plan, by a custom-made algorithm. The first step is to
get the data for one bus for the whole day from the data-
base. To assign this track to one of the tracks from a
rotation plan we used the mentioned list of bus stops
with the schedule time and a time window of 5min too
early until 25min delay. If the bus visits all the bus stops
from the rotation plan within the given time windows,
we assign the GPS track to the rotation plan. This would
be an ideal way to identify the rotation plans in the GPS
data, but in reality the vehicles do not stick exactly to the
plan all the time. Sometimes they skip some of the bus
stops, which mostly is because of temporary detours to
avoid road construction sites, accidents, or other road
obstructions.

From those identified GPS tracks, we extracted the
actual waiting times at each bus stop. To obtain reliable
results, we used the proximity to the bus stop in combina-
tion with the speed and door status. Figure 2 depicts the
decision algorithm for how the dwell times get extracted.
The main decision criteria are speed and proximity to the
bus stops. The values show the speed in m/s, the color
shows the proximity to the bus stops, the first half of the
plot shows the distance to the starting bus stop, and the
second half of the plot the distance to the destination bus
stop. When the bus is not moving within 50m of the cor-
responding bus stops, we count this as dwell times. The
cutoff time for the dwell time is marked with a vertical
line in Figure 2. To validate our results, we compared this
with the opening and closing of the doors. The informa-
tion was obtained directly from the vehicle via the FMS-
Bus, which is a standard protocol defined in HDEI-
BCEI-Task-Force (25) for heavy-duty vehicles that pro-
vides several signals and sensory data from the vehicle.
This gives reliable results for the waiting times. Because
of varying traffic and in general the transit service varia-
bility, the dwell times depend heavily on the delay of the
buses. To account for that, we extracted the 10th percen-
tile to get the dwell times the buses have in more than
90% of the time. This ensures that the drivers should
have enough time to charge for the required duration.

The lists of bus stops were then enriched by the calcu-
lated waiting times. The energy demand is also a very

important aspect of the system. Since many other
approaches simply use average values for the energy
demand, they need to set large safety margins to ensure
that the bus reaches its destination. At Kempten
University of Applied Sciences, we developed a yet
unpublished energy model based on Matlab and
Simulink (27) which can simulate an electric bus based
on the data we collected from existing diesel buses. The
energy demand is then computed based on the trajectory
data, power demand of auxiliaries, which mainly con-
sisted of the HVAC (heating/ventilation/air-condition-
ing), and the total weight of the vehicle. The extensive
data collection enabled us to understand the operational
conditions very well and thus to calculate accurately the
energy demand to be expected. To be able to cover
extreme cases as well, we came up with a matrix of tem-
peratures and additional weight. Table 3 shows the esti-
mated relative impact on the overall energy demand.
Values for the temperature and required adjustments to
the temperature inside the bus, for the passengers to feel
comfortable, are taken from VDV (28). For every entry
of this matrix, we calculated the hypothetical energy
demand under strained conditions such as extreme
weather conditions or high travel demand, which conse-
quently allows validation of the robustness of the
solutions.

The last parts of the input data set are the available
bus types and charger types. These are difficult to gener-
ate automatically, since the technical details and costs are
changing at a fast pace. Therefore, these details should be
investigated for every project individually. We decided to
consider only the capital expenditures, as the operational

Figure 2. Example for the detection of an actual dwell time at a
specific bus stop. The horizontal lines are the cutting points where
we define the bus to be leaving, respectively arriving at the bus
stop.
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expenditures should roughly remain the same because we
did not change the timetables or number of vehicles; driv-
ers were therefore unaffected.

Optimization

The optimization problem is formulated as an ILP
model. This means, we formulated an optimization goal,
in our case minimal cost for buses and chargers.
Additionally, we need constraints to ensure that the
choice of vehicles and chargers results in a feasible solu-
tion for the PTO, in which all the bus routes can operate
for one day. The ILP model was implemented in Python
(29) using Google OR Tools (30). For fast and efficient

solving we chose the SCIP solver which, according to
benchmarks on their website (31), is one of the fastest
non-commercial solvers for MILPas well as mixed-
integer nonlinear programming (MINLP) (32). The
SCIP solver leverages a branch-and-bound algorithm
which divides the linear program (LP) in sub-problems,
which are easier to solve. It builds up a tree of sub-
optimization problems by limiting the domain of the dif-
ferent variables. If one branch has definitively worse
results than the found solutions, it can be discarded and
therefore speed up the solution process without missing
the optimal solution. Input variables are described in
Table 4 and binary optimization variables are described
in Table 5.

Table 3. Matrix for relative additional energy demand depending on HVAC and passenger numbers

Temperature

Passenger load

Empty Average Full

220�C + + + + + + + + + + + + + + +
210�C + + + + + + + + + + + +
0�C + + + + + + + + +
20�C o + + +
35�C + + + + + + + + + + + + + + +

Note: HVAC = heating/ventilation/air-conditioning.

Table 4. Input variables

Variable Description

s 2 N Number of bus stop
c 2 N Number of charger types
r 2 N Number of routes
b 2 N Number of bus types
t 2 N Number of time steps
bs 2 N Number of all bus stops
bsi i 2 ½r� Bus stops on route i
bi i 2 ½b� Concrete bus from bus types
bb�1 2 N Bus type of the diesel bus
bd 2 N Number of diesel buses
D=(di, j) 2 R

s3s Distances between bus stops
CC =(cci) 2 R

s3s Costs of charger types
CB=(cbi) 2 R

s3s Costs of bus types
RB=(rbi) 2 R

s3s Range of bus types
CP=(cpi) 2 R

s3s Power of charger types

Table 5. Binary optimization variables

Variable Description

A=(aij) 2 0, 1s3c 1 if charger type j is used on bus stop i, 0 otherwise
B=(bij) 2 0, 1b3r 1 if bus type i is used on route j, 0 otherwise
C =(gijkl) 2 0, 1r3s3c3t 1 if on route i, bus stop j, charger type k is used at timestep l, 0 otherwise
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The ILP Model is modeled to cover the entire bus net-
work for one day of the week, therefore assuming that
the buses’ depot can be used for recharging overnight.
The amount of energy required to charge all the buses by
the next morning can also be taken from the solution set.
From our investigations and meetings with the PTO, we
know that the buses’ batteries are only used in a state of
charge (SOC) ranging between 20% and 80%. According
to different studies and advice from the manufacturers in
their manuals, this increases the battery life (33–35). A
useful side effect from this is that the charging behavior
in this range can be assumed to be linear (36), which
reduces the complexity of our model. We assumed in our
model that all buses use overhead charging, and this is
the case for our project. Jefferies and Göhlich (14) also
evaluated charging technologies and concluded that plu-
gin chargers will not be feasible in practice, since it
requires a lot of manual work by the driver (14).
However, we will also investigate the possibilities of
inductive charging in the future. For the time required to
couple/decouple the charger, we assumed a value of 15 s
taken from Jefferies and Göhlich (14).
We assumed a total time of 30 s at a charging stop to
couple and decouple the buses from the chargers and to
account for minor unforeseen events, like people or cars
blocking the charging station temporarily. Based on this,
we divided the problem into 1-min slices. This means that
dwell times can only be considered for a charging event if
it is longer than 1 min. The trade-off here is granularity
versus computational complexity, since the number of
time steps in the simulation greatly affects the number of
variables in the model. In Equations 1–8, the ILP Model
is formulated, starting with the optimization goal and
then integrating all the constraints.

min
Xbs

i= 1

Xc

j= 1

(aij 3 CCj)+
Xb

i= 1

Xr

j= 1

(bij 3 CBi) ð1Þ

subject to:

Pbsm

j= 1

(dj, j�1)�
Pc

k = 1

Pt

o= 1

(gm, i, k, o 3 CPk)ł
Pb

l = 1

(blm 3 RBl),

8m 2 f0,., rg ð2Þ

Pi

j= 1

(dj�1, j)�
Pc

k = 1

Pt

o= 1

(gm, i, k, o 3 RCk)ø 0,

8m 2 f0,., rg, i 2 bsm ð3Þ

Pc

k = 1

Pr

m= 1

(gm, i, k, o)ł
Pc

k = 1

(ai, k),

8m 2 f0,., sg, o 2 f0,., tg ð4Þ

Xr

i= 1

(bbi)= 1 ð5Þ

optional constraints:

Xr

i= 1

(bbb�1, i)ł bd ð6Þ

ax, y = 1 ð7Þ

ax, y = 0 ð8Þ

Unless specified otherwise, every bus stop is a poten-
tial charging location, and every route could be served by
any of the available bus types. This forms the basis for
the definition of the optimization goal in Equation 1. aij

denotes if a charger of type j is needed at bus stop i; then
all those required chargers are multiplied by their respec-
tive cost and added up for the total charger cost. The sec-
ond half of the optimization goal calculates the total cost
for the buses by multiplying the decision variable bij,
which holds the chosen bus type for a given route, with
the cost of the bus type. To ensure that all buses can
operate their routes without exceeding the limit of the
battery, we introduced the route constraint in Equation
2. This sums up all the energy demands of subsections
between two bus stops dj�1, j and compares this in the
simplest case with the battery capacity of the chosen bus
for that route. If a charger was necessary to manage the
whole route, the charged energy is subtracted from the
required energy. This is computed at any bus stop that
has a charger available by multiplying the charging
power per minute with the number of minutes the bus
stays at the location (minus 1minute to compensate for
the coupling and decoupling of the charger). This may
still lead to undesired behavior, if a bus has a long wait-
ing time at the end of the trip but cannot reach that char-
ger. Therefore, we had to include this constraint for
every sub-tour. This means that for every route, we get
exactly the same number of route constraints as the route
has bus stops. This also ensures that we never go below
the defined lower bound of 20% SOC. In analogy to this,
Equation 3 ensures that the bus cannot charge more than
the 80% SOC, by ensuring that the energy demand can
never go below 0 for any given route. The charger capac-
ity constraint formulated in Equation 4, ensures that
there is never more than one bus charging at a charger at
any given time. This means we need to create a constraint
for every bus stop and every time step in the simulation
time to ensure this. Furthermore, it is important to
restrict the model, to ensure that the number of buses per
route is exactly one, as defined in Equation 5. All those
constraints were generated by our program based on the
provided input data, which enables us to apply the opti-
mization algorithm to new bus networks with minimal
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manual work, since it would be almost infeasible to for-
mulate all the constraints manually for all the bus routes
and sub-routes to the different bus stops. From there on,
we implemented some optional constraints that can help
the PTO in finding an optimal solution for their use case,
the first one being a constraint that allows a fixed number
of non-electric vehicles in Equation 6. Since those non-
electric vehicles have no range limitation that is relevant
to the PTO’s regular operations, they do not need char-
gers on their routes and usually have slightly lower costs
than the electric buses. We also introduced constraints for
placing a charger (Equation 7) at a specific location,
which might be useful if that charger already exists in the
city. Another constraint prohibits specific bus stops from
being used for charging (Equation 8). In urban areas it is
common that only a few selected bus stops qualify for a
charging station, because of spatial limitation, electrical
limitations, or opposition from the citizens.

Solution Interpretation

This section describes the output of the ILP model as
well as the enrichment and processing for easier interpre-
tation. The model outputs all values for tensors A, B,
and C, which hold all the optimization variables. All the
values in A hold the number of chargers and the respec-
tive type of charger needed for the found optima. B
holds the respective vehicles needed for serving the public
transport needs. C is a 4-dimensional sparse tensor which
holds all values of when and which charger is used in the
found solution, thus it is possible to calculate the energy
demand at each node. In a helper variable, we stored the
value of the max usage of the battery in percent and of
the battery capacity that is left at the end of the day, to
estimate overnight charging demand.

These optimization variables hold all the information
needed to set up the new bus and charger configuration.
In our scenario there are more than 30,000 variables, but
this number heavily depends on the number of input
vehicle types and charger types. Even if only the vari-
ables that are used in the solution are considered, it can
be hard to grasp the solution. Therefore, we created dif-
ferent visualizations. In Figure 3, a 3D bar chart shows
all the possible charger locations as points on the map
and all chargers with their usage in minutes over the
course of one day. This makes it easier to compare dif-
ferent solutions and maybe restrict the algorithm to a
subset of the charger locations to get a more stable solu-
tion output.

Case Study

To understand the scope of the project better, we will
briefly present the studied city and some boundary

conditions. This study is carried out as accompanying
research of a national project to help cities and public
transport providers to make the best decisions while
switching to battery-electric vehicles. The studied area is
the city of Göttingen, which, as can be seen in Figure 4,
has a topology that is strongly varying in altitude. The
difference in altitude ranges from 150m above sea level

Figure 3. Visualization of charger usage for one solution. A bar
represents a charger, the squares represent bus stops and
therefore potential charger locations. The time of charging at this
bus stop, during a whole day (in minutes) over all vehicles, is
visualized by the height of the bar.

Figure 4. Topology of Göttingen with a public transport bus lines
overlay. Almost all lines have substantial differences in altitude.
Source: Graphic was created from excerpts of de-de.topographic-map.com/

and the GöVB bus lines.
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to almost 300m in the outer parts of the bus network.
The local PTO serves customers on 20 lines during the
day and eight lines at night with varying frequency
between every 15 to every 60min. This adds up to a
weekly mileage of around 26,000km. To optimize vehicle
usage and working hours of the drivers, each line does
not get served by one vehicle all day, as this would cause
unnecessary dwell times at each end point of a bus line.
Instead, all the lines are combined to create rotation
plans which ensure optimal usage of the vehicles while
considering all regulations on working hours and
‘‘proper’’ lunch break spots, where drivers can get some-
thing to eat and rest before their next shift. These regula-
tions were one of the main reasons why we decided to
leave the network and frequency-setting problem (4)
untouched and concentrate on the optimization of charg-
ing infrastructure and vehicle choice.

Besides reducing complexity, this should also give
more applicable solutions in the real world, since the PTO
can check their current plan data without any changes. If
they decide to optimize the routes for electric vehicles,
those newly created plans can serve as a basis for further
optimization steps. In Göttingen, there are 125 rotation
plans defined to serve the public transport demand. The
length of each rotation differs from 50 to 353kilometers
per day. Although there are buses on the market able to
serve all these without recharging, it is not evident if
employing these would make for the best scenario for the
PTO because battery size is still the most expensive part
of battery-electric buses. With the wide variety of possible
chargers and buses, it is clear that careful planning is
needed to get the best possible outcome. The PTO in our
project currently has 90 combustion engine vehicles and
10 hybrid vehicles in use. We equipped 50 of those vehi-
cles with data loggers which track all necessary data and
sent it via mobile communication to our servers. Proper
coverage of all rotation plans could be ensured without
collecting data from every bus, since the vehicles serve dif-
ferent rotations every day.

Results

The main goal of this section is to showcase the usage and
flexibility of our framework. We constructed a scenario
where the goal was to analyze the impact of stepwise elec-
trification with different operational strategies in mind.
Afterward, we evaluated the robustness and computation
time for different inputs, to judge the applicability to other
real-world scenarios including larger bus networks.

Gradual Electrification

In this scenario we wanted to analyze the effect of an
allowed number of diesel buses on the general solution.
The experiment is divided into three categories.

1. Mixed Fleet (MF): The algorithm searches for an
optimal solution with all available vehicles and
chargers defined in the input data set.

2. Depot Charger (DC): Which is commonly defined
as an operating strategy where the vehicles do not
charge during the day, but only overnight at the
depot. This implies low charging powers and high
battery capacity. For the implementation of this
category, we created three different scenarios
where we provide only one charger type with a
charging power of 150kW. For the three scenar-
ios, we varied the battery capacity of the vehicles
in a range that seemed realistic for applications at
the time (2021): 350, 380, and 410kWh.

3. Opportunity Charging (OC): In contrast to the
DC strategies, OC strategies rely on high charg-
ing powers on the route, to reduce the required
battery capacity in the vehicles. For this category,
we also made three scenarios but this time with a
fixed battery capacity of 170kWh and varied the
charging power of the chargers between 300kW
(implemented in our project), 450 kW, and
600kW. At the time of investigation, these were
the chargers with the highest available charging
power.

We computed results for all these scenarios with the
number of allowed diesel buses changing gradually from
0 to 10 to see how this affected the overall configuration
of the algorithm. The results of this experiment are sum-
marized in Figure 5.

As expected, the first category gives the most cost-
effective solutions, as it can choose from all vehicle types
and charger types. Some interesting findings are that with
the given vehicles and routes, a complete DC scenario
electrification of the fleet is not possible. Even with the
biggest battery size, at least two diesel buses are required
to avoid any on-route charging and therefore enable pure
DC strategies. Although the buses with small batteries
are considerably cheaper than the ones from the DC sce-
narios, the OC strategies are more expensive without die-
sel bus support but benefit significantly from a few diesel
buses. Plus, at around four to six allowed diesel buses,
the OC strategies become cheaper because they can also
reduce the number of required chargers.

Robustness

A key factor of the algorithm is the reliability of the solu-
tions. This is usually examined by a robustness analysis.
The idea behind this is to find out if only small changes
of input parameters would render the found solution
infeasible. This is very unlikely as the way the problem is
set up still allows enough safety margins for extreme
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cases. Since the battery is only used between 20% and
80% SOC, it would be possible to drive further if neces-
sary. However, to preserve the longevity of the battery,
this is not recommended. Taking this into consideration,
we decided against a classical robustness analysis and
instead took a closer look at the different solutions and
how they influence the actual implementation. The most
important factor in this is the locations of the chargers,
as this should be a more long-term investment compared
to the battery sizes in the vehicles. In our described
experiment, we found out that for different levels of elec-
trification (number of allowed diesel buses) the algorithm
can suggest different charging locations, which is detri-
mental to the adoption by a PTO. Therefore, we imple-
mented a view in which we can visualize the chargers and
their usage on a map to analyze the solutions as in Figure
3. Then manual restrictions of the options can be applied,
and the optimization starts over. This can result in very
stable solutions with minimal change in the overall cost.
To have a more seamless workflow within the planning
of a gradual electrification of the bus network we added
a workflow in which the algorithm starts with a high
number of allowed diesel buses and saves the charging
infrastructure. Then the number of allowed diesel buses
gets decreased, and the previous charging infrastructure
gets fixed with the constraint in Equation 7. Therefore,
the results for the gradual electrification are incremental
and do not vary in the placement of chargers.

Computation Time

This section gives an overview of the applicability to
larger networks according to computation time. Since
this is not a process that needs to be calculated often, a
long computation time is acceptable within reason. The
experiments were conducted on a server virtual machine
with limited resources (4 CPU cores, 16GB RAM) and
can, therefore, give closely comparable results between
the different runs. We found the number of input vehi-
cles and chargers to have great impact on the perfor-
mance, especially when the different performance or cost
values are close together. This supposedly stems from
the inner workings of the solver. It uses a branch-and-
bound approach which tries to eliminate bad solutions
early on. This becomes harder with the rising number of
similar input values and can be observed in the relation
between computation time and the number of branch-
and-bound nodes. We observed that the ILP model can,
with the whole bus network, actually be solved to optim-
ality in just a few seconds when the number of bus types
and charger types are low. The branching algorithm can
also eliminate very expensive vehicles or chargers early
on when they cannot provide the optimal solution. But if
we introduce many different input parameters with mini-
mal difference between the values, the algorithm starts to
build up a large decision tree and the computation can
take several days (number of vehicle types .10, number

Figure 5. Comparison of total cost of fleet and infrastructure with different operational strategies and different amounts of allowed
diesel buses. The x-axis shows the number of diesel buses used in the optimization. The first category is shown in yellow where the lines
belong to the left y-axis and show the cost of the solution, while the different markers in the same color (belonging to the right y-axis)
denote the number of chargers required in that result. Green shows the OC scenarios, whereas blue represents the DC scenarios.
Note: mf = mixed fleet; oc = opportunity charging; dc = depot charger.
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of charger types .10). We were able to partially circum-
vent this by starting off with four to five vehicle types
and the same amount of charger types. After an optimal
solution was found, we changed the input vehicles and
chargers to values closer to the optimal amount and
started over. This could potentially also be done by
implementing a custom branching logic within the SCIP
solver, which we would like to investigate in future work.

Conclusion

This paper presents a general framework for optimizing
the transition of an entire existing urban bus network to
electric vehicles. In previous studies using LP models,
only parts of an urban bus network were analyzed; we
could show that this approach also works for a complete,
medium-sized city. Large amounts of data were lever-
aged to get a better understanding of the whole system
before trying to find an optimal solution. The big-data
approach is a great advantage for this project, since it
gives us the opportunity to validate many assumptions
about the detailed energy demand, the timeliness of the
buses, and therefore potential charging times and other
operational details. This gives more reliable results than
standardized values for energy consumption like the
standardized on-road test cacles (SORT) driving cycles
(37), especially for areas with high deviation in altitude.
The experiments conducted on the obtained data show
that for a medium-sized German city we can produce
optimal solution with low computation time. We could
demonstrate that this approach can be incorporated in
the planning process of most PTOs, because the algo-
rithm starts off with an existing bus network and allows
for flexible integration of constraints like feasible charger
locations or the number of acceptable diesel buses.

Currently, we are working on further data analyses of
the bus data, to include more detailed energy demands
for different times of the day, since it would be beneficial
for the planners to have a concise overview of the opera-
tional conditions of the urban bus network. Aside from
that, we are currently developing a traffic simulation
environment based on Simlation of Urban MObility
(SUMO), which should enable the verification of our
algorithm for new bus routes, where we do not have any
tracking data. This simulation incorporates a detailed
traffic model, a street network, and the actual buses that
drive according to the rotation plans.

In the future, the model will be extended to evaluate
different technologies like inductive charging at bus
stops, traffic lights, or during driving. This could enable
completely new operating strategies. We also plan on
tweaking the optimizer itself, in particular the branching
rules to be able to find optimal solutions with greater
number of input parameters in a reasonable amount of
time.
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