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c© Felix Krahmer

All Rights Reserved, 2009



To my family.

iii



Acknowledgements

First, I would like to thank my advisors Percy Deift and Sinan Güntürk for all

their time and support, for our frequent meetings and fruitful discussions. I always

appreciated their willingness and excitement to advise me jointly, to share their

different perspectives on a problem that is between their research areas, and to offer

their advice and help on issues that often reached far beyond the mathematical

content. I am indebted to both of them.

My thesis would not have been possible in this form without Nguyen T. Thao.

It was through the discussions with him that I was first exposed to the engineers’

perspective on Σ∆ modulation, which was crucial for relating my results to the

application. My recent interaction with Yonina Eldar also helped shaping my

understanding of the engineers’ point of view on the subject.
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Abstract

The central theme of this thesis is one-bit quantization of bandlimited signals

via Sigma-Delta modulation. In this commonly used analog-to-digital conversion

method, the signal of interest is represented by a ±1-valued sequence that is com-

puted recursively from regular samples of the signal via a difference equation.

The key feature of the method is that the low frequency content of the quantized

representation approximates the signal: The larger the oversampling rate λ with

respect to the Nyquist frequency, the higher the accuracy of the reconstruction

that is achievable.

It is known that exponential accuracy with an error decay rate O(2−rλ) for some

rate constant r > 0 is achievable via Sigma-Delta modulation with modulators of

increasing order. In this thesis, we first construct a family of schemes which gives

a better rate constant r than is known for oversampled one-bit quantization. The

construction builds on an idea by Güntürk and proceeds by solving an optimization

problem posed in his work. En route, the solution establishes a connection between

Sigma-Delta modulation and the theory of orthogonal polynomials.

Second, we prove stability results for Sigma-Delta modulators involving recur-

sion filters with rational transfer functions; stability is crucial to achieve satisfac-

tory approximation. Such modulators are commonly used in practice because the

associated analog circuits are of low complexity. Nevertheless, prior to this thesis,

a rigorous stability analysis for such modulators was not available. We construct

the first family of provably stable modulators of this type for all orders. Also, we

introduce a novel, generalized stability criterion for Sigma-Delta modulation.
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Introduction

In this thesis we study the design and analysis of analog-to-digital (A/D) con-

version schemes for audio signals. An A/D conversion scheme represents a given

input signal by a finite number of symbols chosen from a given finite alphabet. This

digital representation should be designed to capture the information of the signal

to any given desired degree of accuracy [14]. A/D conversion is of great impor-

tance in modern signal processing, as a digital signal representation has numerous

advantages compared to the original analog representation. First, analog signal

processing and communications only perform an approximation of the targeted

mathematical operations (including analog distortions and added noise), while

digital signal processing and communication perform exact operations. In wireless

communication, for example, techniques like orthogonal frequency-division multi-

plexing (OFDM) allow for different senders to transmit independent digital signals

over the same channel without data losses caused by interferences between the

different signals. The idea is that different senders use different frequency bands;

working with digital signals ensures that each signal remains in the assigned band.

Furthermore, many error prevention and error correction techniques based on re-

sults in coding theory only apply to digital signals. Second, digital signals allow

for easier and more accurate storage, as they can be equivalently represented by a

finite sequence of bits, i.e., a sequence that only assumes the values {0, 1}. Storing

bits is easy to implement, as only two possible values have to be distinguished – in

contrast to a continuum for analog signals. Now, while digital operations are exact

in the sense that they are (almost) exactly reproducible, the main source of error

lies in the discretization of the signals to be processed. For this reason, efficient

and accurate techniques for A/D and D/A conversion are of great importance.
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For the purposes of A/D-conversion, audio signals are usually modeled as

bounded bandlimited functions. For such functions, the well-known Shannon-

Nyquist sampling theorem applies, viz. a bandlimited function f can be recon-

structed exactly from its sample values yn = f
(
n
λ

)
as long as the sampling fre-

quency λ lies above the critical (Nyquist) rate λ0. At the level of circuit implemen-

tation, reconstruction is realized by a low-pass filter. A good digital representation

is a sequence (qn) of quantized values chosen from a finite set such that the same

low-pass filter yields a good approximation to f when applied to the qn’s [14].

In pulse code modulation (PCM), the signal is sampled at a fixed frequency

λ ≈ λ0, and qn corresponds to a truncated binary representation of xn. For better

accuracy, one increases the precision of the approximation of each sample value.

In oversampled coarse quantization, the set of admissible values for qn is fixed and

higher accuracy is achieved by increasing λ. A common special case occurs in one-

bit quantization schemes, which work with the admissible set {−1, 1}. Oversampled

coarse quantization is possible because the redundancy of the sequence of sample

values yn increases as λ is increased. However, it is still nontrivial to design a

procedure to find a sequence (qn) that guarantees accurate approximation when

λ→∞.

From the viewpoint of circuit engineering, oversampled coarse quantization

means low-cost analog hardware because increasing the sampling rate is cheaper

than refining the quantization. For this reason, oversampling data converters,

in particular, Sigma-Delta (Σ∆) modulators, have become more popular than

Nyquist-rate converters for low to medium-bandwidth signal classes, such as au-

dio signals [13]. Further advantages of oversampled coarse quantization include a

more even distribution of the bit significance [3]: In the binary representation of
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a real number, the first digits have higher significance than later digits. Thus bit

errors occurring in the first few digits of a quantized value in a PCM scheme result

in grave reconstruction errors, whereas bit errors in other digits do not. Many

results from coding theory are based on the assumption of a bit stream with equal

significance and hence do not apply here. In the one-bit quantization scheme,

on the other hand, the individual bits carry equal significance. In this case, bit

errors always have the same effect on the reconstruction error and coding theory

techniques apply directly.

This thesis is concerned with the approximation theory of oversampled coarse

quantization, in particular, one-bit quantization of bandlimited functions. Over-

sampled coarse quantization has frequently been discussed in the engineering liter-

ature (e.g., see [13]), and recently there have been a series of more mathematically

oriented papers on the subject (e.g., [4, 7, 8, 9, 1]).

In Chapter 1 of this thesis, we discuss both the engineering perspective and

the mathematical perspective on one-bit quantization: In Section 1.1, we motivate

the core concepts of digital signal processing from the engineering point of view

without dwelling on the precise mathematical formulations and use these ideas to

motivate Σ∆ modulation; in Section 1.2, we then embed these ideas into a more

precise mathematical framework.

In Chapter 2, we focus on the reconstruction error that arises in Σ∆ modu-

lation. Our analysis is based on the idea, first introduced in [4], to optimize the

bounds on the error decay by choosing different circuit architectures for different

sampling rates λ. This technique has also been employed in [7] to show that ex-

ponential accuracy in the oversampling ratio λ can be achieved by appropriate

one-bit Σ∆ modulation schemes. Prior to this thesis, the best achievable error
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decay rate for these schemes was O(2−rλ) with r ≈ 0.076. Chapter 2 improves the

best achievable rate further to r ≈ 0.102. It is known that any 1-bit quantization

scheme has to obey r < 1 [3, 7] (However, it is not known if this upper bound is

tight). Our method employed in this chapter draws from the theory of orthogonal

polynomials; in particular, it relates the filters used in our optimized construction

to the zero sets of Chebyshev polynomials of the second kind. For the convenience

of the reader, in Section 2.3 we collect some properties and identities for Chebyshev

polynomials which are used in the proofs of our results.

The Σ∆ modulators considered in Chapter 2 employ finite filters with polyno-

mial transfer functions. In practice, it is often preferred to employ Σ∆ modulators

with rational transfer functions such that the associated analog circuits are of min-

imal complexity. However, little was known about the rigorous error analysis for

this class of modulators. In Chapter 3, we provide such an error analysis showing

that superpolynomial error decay can be achieved using modulators in this class.

The results in Chapters 2 and 3 are based on a well-known stability criterion,

which works only for schemes that employ a particular, so-called greedy, quanti-

zation rule. In Chapter 4 we extend this stability criterion to apply to a more

general class of quantization rules. The resulting generalized criterion is then used

to make generalized inferences for schemes that employ the greedy rule.

4



Chapter 1

Two views on one-bit

quantization

1.1 The engineering perspective

In this section we motivate the mathematical constructs examined in the fol-

lowing chapters from the engineering perspective. We follow the standard texts

Signals and Systems by Oppenheim, Willsky and Nawab [15] and Discrete-Time

Signal Processing by Oppenheim, Schafer and Buck [14].

In this section we deliberately refrain from discussing the underlying spaces of

functions or distributions and the specific properties of the mathematical opera-

tions considered. Also we do not address problems which may arise in certain cases

from lacking smoothness or decay properties of the functions involved. In Section

1.2, we provide a precise mathematical formulation of the underlying concepts.

The audio signals to be quantized are modeled as bounded Ω-bandlimited func-

tions f , i.e., the Fourier transform of the signal f̂(ξ) =
∞∫
−∞

f(t)e−2πitdt is supported
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in a given interval
[
−Ω

2
, Ω

2

]
, and the amplitude of the function is less than some

constant µ. We consider the function and its Fourier transform as two different

representations of the same signal, where the variable t in the representation f(t)

is referred to as the time and the variable ξ in the representation f̂(ξ) is referred

to as the frequency.

An example of a Ω-bandlimited function for Ω = 1 is the function with the

time representation

f (ex)(t) =
3

4
+

1

4
sin(3x). (1.1)

Indeed, the corresponding frequency representation

f̂ (ex)(ξ) =
3

4
δ(0)(ξ) +

1

8i

[
δ(

3
2π )(ξ)− δ(−

3
2π )(ξ)

]
, (1.2)

where δ(b) denotes the Dirac delta function centered at b, is supported in
[
−1

2
, 1

2

]
.

This bandlimited function shall serve as an example to illustrate the following

concepts.

1.1.1 Sampling and reconstruction

Sampling lies at the core of all digital signal processing. The goal is to reduce

a continuous signal f to a discrete representation. Most commonly, the signal

is represented by its instantaneous values f(tn) at a discrete sequence of time

instances tn, n ∈ Z. We refer to the values f(tn) as the sampled values or just

samples of the signal. In this thesis, we focus on uniform sampling at rate λ, where

the time instances are chosen to be tn = n
λ
.

For example, sampling the signal f (ex) introduced above uniformly at rate λ =
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1.5 yields the samples

. . . ,
3

4
+

1

4
sin(−4),

3

4
+

1

4
sin(−2),

3

4
,
3

4
+

1

4
sin(2),

3

4
+

1

4
sin(4), . . . (1.3)

When listing the samples of a signal like in Equation (1.3), it is always understood

that it is also known which samples correspond to which time instances.

In signal processing, sampling a signal f is modeled as modulating f(t) with

a sum of unit impulses centered at each of the sampling time instances. The

advantage of such a representation is that the resulting distribution embeds better

in the formalism of analog signal processing than the sequence of sampled values:

As we will see, for example, the D/A converter can be interpreted as an analog

low-pass filter.

In such a representation, the summand corresponding to ti is obtained by mul-

tiplying the function f(t) by the Dirac delta function δ(ti). Accordingly, sampling

the function f at t0 results in the function

f(t)δ(t0) = f(t0)δ(t0) (1.4)

and periodic sampling at
{
tn = n

λ

}
n∈Z results in

fλ(t) = f(t)
∞∑

n=−∞

δ(
n
λ)(t) =

∞∑
n=−∞

f
(n
λ

)
δ(

n
λ) (t) . (1.5)

We call fλ the sampled function corresponding to a function f and the sampling rate

λ. Clearly, the sampled function carries the exact same information as the sequence

of sampled values with the associated time instances. The sampled function of the
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signal f (ex) corresponding to rate λ = 1.5 is given by

f
(ex)
1.5 (t) =

∞∑
n=−∞

(
3

4
+

1

4
sin(2n)

)
δ(

n
1.5) (t) . (1.6)

The sampled function fλ has the frequency representation

f̂λ(ξ) = f̂ ∗

(
∞∑

n=−∞

δ(
n
λ)

)∧
(ξ). (1.7)

This representation can be simplified by noting that the Fourier transform of the

impulse train

s(t) =
∞∑

n=−∞

δ(
n
λ) (t) (1.8)

is given by

ŝ(ξ) = λ
∞∑

k=−∞

δ(kλ) (ξ) . (1.9)

This well-known fact can be proved in the context of the theory of distributions (for

a justification from the engineering viewpoint see [15]). Here we will not provide a

proof. Instead, Section 1.2 will introduce a precise mathematical framework that

does not use delta functions; the corresponding statements will be proved there.

Using Equation (1.9), f̂λ(ξ) can be expressed as:

f̂λ(ξ) = f̂ ∗

(
λ

∞∑
k=−∞

δ(kλ)

)
(ξ) = λ

∞∑
k=−∞

f̂ (ξ − kλ) . (1.10)

Up to a constant, the frequency domain representation of the signal uniformly

sampled at rate λ is a superposition of infinitely many copies f̂ , shifted by integer
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multiples of λ. For f (ex) and a sampling rate λ = 1.5, we obtain

f̂
(ex)
1.5 (ξ) = 1.5

∞∑
k=−∞

3

4
δ(1.5k)(ξ) +

1

8i

[
δ(

3
2π

+1.5k)(ξ)− δ(−
3
2π

+1.5k)(ξ)
]

(1.11)

If an Ω-bandlimited signal is sampled at a rate λ > Ω, the summands f̂(·−kλ)

have disjoint supports. That is, the sampled function carries the complete informa-

tion of the signal, and the signal can be recovered mathematically by multiplying

the frequency domain representation of fs by a function ϕ̂ that satisfies

ϕ̂(ξ) =


0 for ξ > λ

2

1 for ξ < Ω
2

(1.12)

and dividing the result by λ to adjust the constant. In the time domain, this

reconstruction method is described by the formula

f =
1

λ
fλ ∗ ϕ.

= f
(n
λ

) ∞∑
n=−∞

f
(n
λ

)
δ(

n
λ) (t) ∗ ϕ

=
1

λ

∞∑
n=−∞

f
(n
λ

)
ϕ
(
t− n

λ

)
(1.13)

This formula is also known as the Shannon-Nyquist Sampling Theorem. For exam-

ple, as f (ex) is 1-bandlimited and λ = 1.5 > Ω = 1, the summand corresponding

to the index k in Equation (1.11) is supported in [1.5k − 0.5, 1.5k + 0.5]. As

these intervals do not overlap, we can choose ϕ as in Equation (1.12) such that

ϕ̂f̂
(ex)
1.5 = f̂ (ex).

As this procedure annihilates the high-frequency components of the function

9



while leaving the low-frequency content unchanged, it is realized in the circuit

implementation by a low-pass filter (for a detailed discussion on low-pass filters

see [15]). In practice, the function ϕ̂ corresponding to a low-pass filter will only be

approximately constant on the interval [−Ω
2
, Ω

2
], but for this thesis, we will assume

an ideal low-pass filter that exactly satisfies Relation (1.12). Such a low-pass filter

will allow exact reconstruction of a bandlimited signal from its samples.

If λ < Ω or if the signal is not bandlimited, then the supports of the shifted

copies of f̂ will in general not be disjoint. Hence, the different summands of f̂s

will interfere, a phenomenon referred to as aliasing. As a consequence, each f̂s

corresponds to more than one f̂ , and the sample cannot be uniquely recovered

from its samples. For example, if f (ex) is sampled at rate λ = 3
2π

, we obtain

f̂
(ex)
3
2π

(ξ) =
3

2π

∞∑
k=−∞

3

4
δ( 3

2π
k)(ξ) +

1

8i

[
δ(

3
2π

+ 3
2π
k)(ξ)− δ(−

3
2π

+ 3
2π
k)(ξ)

]
=

3

2π

∞∑
k=−∞

3

4
δ( 3

2π
k)(ξ). (1.14)

The same sampled function is obtained when the function g(t) ≡ 3
4

is sampled at

rate λ = 3
2π

, so no unique reconstruction of f (ex) is possible.

In particular, high-frequency noise affects the recovery of the low frequency

component, in which one is interested. For this reason, often a low-pass filter is

applied to the input signal. Such an anti-aliasing filter separates the signal from

high-frequency noise and in that way prevents aliasing effects.

Of course, in practice, only sampled values corresponding to a limited time

interval can be taken into account, whereas in the above argument, we assumed

that the samples are known for all tn. We will address this issue in the precise

mathematical framework of Section 1.2.2. There we will provide an argument that

10



under certain assumptions, the effect of this practical constraint is of primarily

local nature, i.e., after some adjustment interval, it will only lead to a small error.

Formally, one can also compute the frequency domain representation f̂λ by

taking the Fourier transform of the sum in Equation (1.5) term by term. One

obtains:

f̂λ(ξ) =
∞∑

n=−∞

f
(n
λ

)
e−2πiξn/λ. (1.15)

Although Equation (1.15) is only a formal identity, as the sum will not converge

in general, some properties of the Fourier transform (e.g., that convolution in the

time domain corresponds to multiplication of the series) will hold true for the

formal series. This motivates the definition of the z-transform, which is defined to

be the formal series in 1.15, where z = e2πiξ/λ. In mathematics, it is more common

to work with the generating function, which differs from the z-transform just by a

sign in the exponent.

Definition 1.1. For a sequence (xn)n∈Z, the generating function is the formal

series given by

X(z) =
∑
n∈Z

xnz
n (1.16)

We will usually denote the generating function of a sequence by the correspond-

ing capital letter.

The generating function of the sequence yn = sin(2n) of samples of the function

f (ex) is Y (z) =
∑
n∈Z

(
3
4

+ 1
4

sin(2n)
)
zn. Again, z is just a formal variable.

1.1.2 Filters in discrete signal processing

One-bit quantization schemes exploit the redundancy that arises in the se-

quence of sampled values for large sampling rates λ. Consequently, the choice of

11



each quantized output should depend on more than one sampled value. In order to

implement the associated quantization procedure in an analog circuit, one needs

to perform operations on the sequence of sampled values that combine samples

corresponding to different time instances. To describe these operations, we work

with a general ordered sequence yn := f
(
n
λ

)
, dropping the explicit reference to the

actual sampling time instances. Nevertheless, we will refer to the index n as the

“time instance” associated with the sequence element yn. Using such notation, one

has a well-defined notion of the “previous” and the “next” time instance.

A core concept in discrete signal processing is that of a delay. A delay element

in an analog circuit stores an input; it outputs at each time instance the input it

received at the previous time instance. Several delays can be combined to a linear

filter with k tabs. Applied to an input sequence (xn)n∈Z, it outputs at time n a

linear combination of the inputs xj corresponding to time instances n− k through

n − 1, where each xn−j is multiplied by a scalar coefficient hj, which does not

depend on the time n. Hence the output un is given by

un =
k∑
j=1

hjxn−k = (h ∗ x)n. (1.17)

Most of the time, we require causality, i.e., h0 = 0. This is particularly impor-

tant if the circuit involves a feedback loop, i.e., each input xj depends on the output

uj (or ul with l < j). In this case, the output u of a non-causal filter would be

self-referential, thus ill-defined. For example, consider the feedback filter described

by the recurrence relation

un = (h ∗ u)n. (1.18)

If h is the causal sequence given by h1 = 1, h2 = −2 and hj = 0 for all other j

12



including 0, then Equation (1.18) reads un = un−1 − 2un−2, which describes how

to compute an output from the previous filter outputs. However, if h is given by

h0 = 2, h1 = −1 and thus not causal, then the recurrence relation un = 2un−un−1

has un on both sides of the equation, and one of the inputs of the filter would be

its own output.

In both cases, un can be found from only a finite number of inputs, and we call

h a filter with finite impulse response (FIR). In terms of the generating functions,

Equation (1.17) corresponds to the multiplicative identity

U(z) = H(z)X(z). (1.19)

The function H(z) is referred to as the transfer function of the filter. The transfer

function of a linear filter with k tabs is a polynomial of degree k; if the filter is

causal, its constant term is zero. The transfer functions associated with the two

example filters h discussed above are given by H(z) = z − 2z2 for the causal and

H(z) = 2− z2 for the non-causal example.

A filter that corresponds to dividing the generating function of the input by

a polynomial A =
k∑
j=0

ajz
j of degree k is also easily implemented using delays.

Indeed, if the generating functions of the input yn and the output un satisfy

U(z) =
Y (z)

A(z)
, (1.20)

then for the time representations one has

yn = (a ∗ u)n =
k∑
j=0

ajun−j. (1.21)

13



Denoting δ(0) the Kronecker delta and normalizing a0 = 1, this equation can be

rewritten as

un = yn − (a− δ(0)) ∗ u. (1.22)

We have seen that operations of this form can be implemented using a combination

of delays. A notable difference between this scenario and the above situation is

that here, the input of the filter consists of the previous output, i.e., such a filter is

always a feedback filter. Also, the output un depends on the input xn, so the filter

is not causal in x. The lack of causality can be resolved by combining this filter

with an FIR filter as introduced above, i.e., considering a transfer function of the

form H(z) = B(z)
A(z)

with b0 = 0 and a0 = 1. One obtains the recurrence relation

a ∗ u = b ∗ x⇔ un = (b ∗ x)n + ((δ0 − a) ∗ u)n , (1.23)

and so the combined filter is causal in both xj and uj. Such a filter can be

implemented using a finite number of delays even in conjunction with a feedback

loop.

Note that H(z) is again the generating function of a causal sequence h (it can

be obtained by expanding H as a power series), but this sequence will not be finite.

We say that such a filter has infinite impulse response (IIR).

1.1.3 Quantization

While sampling as described above results in a discretization of the domain, in

order to get a true digital representation (i.e., a representation of the signal using

finitely many bits), one also needs to discretize the range.

At the core of such an operation is usually a quantizer Q that maps each
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component of the input sequence to its sign.

Q : x 7→ q : qn = sign(xn) (1.24)

Such an ideal quantizer will hardly appear in practice; in particular the sharp

cutoff for input values near 0 cannot be realized. Consequently, Daubechies and

Devore [4] rigorously showed how their quantization schemes are robust to errors

arising from this kind of issues. In this thesis, however, we will assume an ideal

quantizer exactly given by Equation (1.24) and leave the discussion of robustness

for future work.

While some previous mathematically oriented constructions of one-bit quan-

tization schemes [4] employed a nested sequence of such quantizers, the schemes

designed in this thesis will use only one quantizer, as it is common in the engineer-

ing literature (for example, [16, 17]) as well as in some mathematically oriented

papers on one-bit quantization (for example, [7]).

1.1.4 Noise shaping

In this section, we will show how quantizers of the form (1.24) can be used to

design a quantization procedure which efficiently represents a bandlimited signal

by a sequence of quantized values qn from a finite alphabet A. In the same way

that the signal can be reconstructed from its samples in Equation (1.13), applying

a low-pass filter to the sequence qn should allow for approximate recovery of the

signal. That is, the function

f̃λ(t) =
1

λ

∞∑
n=−∞

qnϕ
(
t− n

λ

)
(1.25)
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should approximate the signal f .

A natural starting point for the design and analysis of such quantization pro-

cedures is the sequence wn = yn − qn given by the individual differences between

the samples of a bandlimited function and the associated quantized values, often

considered to be the “noise” arising from the quantization procedure. If all wn

are small, the signal reconstructed from the quantized values will be close to the

original signal. In general, one can only achieve each wn to be small if one allows

for a very large alphabet A. This is the core idea of pulse code modulation as

explained in the introduction. In contrast, in this thesis, we will work with the

coarse alphabet A = {−1, 1}.

If the quantizer (1.24) is applied to each sample independently, however, the

result will not lead to a good approximation. For example, the function f (ex) con-

sidered above is positive; the resulting sequence qn of quantized values would just

consist of the value 1, which certainly does not sufficiently capture the informa-

tion. Thus a one-bit quantization procedure must take into account the samples

and quantized values corresponding to different time instances as well.

Furthermore, the quantized values should be determined using an on-line pro-

cedure: qn should not explicitly depend on yj or qj for j > n. Hence the goal must

be to base each qn partly on the previous values qj for j < n using a feedback loop.

Although one can never achieve that all the individual differences wn are small, one

can exploit the fact that a low-pass filter is used for the reconstruction. A high-pass

sequence, a sequence whose frequency representation is mostly supported for |ξ|

large, will be close to the kernel of such a reconstruction operation, so if w is a

high-pass sequence, one expects a small reconstruction error. Concretely, this is

achieved if ŵ has multiple zeros at ξ = 0: this ensures that ŵ is small in a neigh-
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borhood of ξ = 0, i.e., for the low frequency range. A zero of ŵ at ξ = 0, in turn,

corresponds to a zero of W at z = 1. Accordingly, the quantization procedure

should be designed such that the generating function of the noise arising from it

takes a particular “shape”, with multiple zeros at 1 and most of the mass away

from 1. This idea is referred to as noise shaping.

A common approach to noise shaping is Sigma-Delta (Σ∆) modulation (also

referred to as Σ∆ quantization) as described by Schreier et al. [17, 16, 13], for

example. The underlying idea is to apply an appropriate filter to the quantization

noise defined to be the difference between input and output of the quantizer and

feed the result back into the circuit. Figure 1.1 shows the block diagram of a

Σ∆ modulator as it is introduced in [17] together with the notation we will be

using (which is consistent, for example, with [7]). Here, Q is an ideal quantizer as

in Equation (1.24). Due to different conventions, the notation used in [17] differs

from ours by a sign. Accordingly, in our notation, the quantization noise is −v and

the filter used in the circuit has the coefficient sequence −h. In this framework,

designing a good Σ∆ modulator amounts to choosing h such that the resulting

circuit has good noise shaping properties.

Figure 1.1: Block diagram of a Σ∆ modulator (from [17]), together with the
associated notation used in this thesis

The quantization noise arising from the circuit given in Figure 1.1 evolves
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according to the recurrence relation

vn = (h ∗ v)n + yn − qn, (1.26)

where the quantized values qn are determined via the non-linear quantization rule

qn = sign((h ∗ v)n + yn). (1.27)

As this choice of qn minimizes |vn| at each time instance, we refer to Equation

(1.27) as the greedy quantization rule.

In this thesis, we use the term Σ∆ modulator also to refer to the dynamical

system arising from Recurrence Relation (1.26), together with some rule or proce-

dure (not necessarily (1.27)) that gives rise to the quantized sequence qn. While we

mostly work with the greedy quantization rule in this thesis, we also discuss per-

turbations of the greedy quantization rule as well as other linear quantization rules.

As mentioned above, the Σ∆ modulators designed by Daubechies and DeVore [4]

use a completely different quantization rule.

Recurrence Relation (1.26) translates to a condition for wn:

wn = qn − yn

= (h ∗ v)n − vn

= (h− δ0) ∗ v (1.28)

In terms of the generating functions, this leads to the condition

W (z) = (H(z)− 1)V (z) (1.29)
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Heuristically, we argue that if H(z) − 1 has multiple zeros at 1, then so does W ;

hence w is a high pass sequence for all inputs y. When H(z)− 1 has m zeros at 1,

we refer to the associated Σ∆ modulator as an m-th order modulator.

This heuristic argument can break down if the function V (z) has a pole at 1

or is not even defined in the neighborhood. In particular, the formal factorization

(1.29) is possible for all w if one allows vn to be unbounded. In the circuit, this

scenario corresponds to positive feedback: The quantization noise variable will

grow over time, and the output will be meaningless. Hence it is crucial that the

sequence vn remains bounded. If this is the case for all possible input signals, we

say that the associated Σ∆ modulator is stable.

Under the assumption of stability, the heuristic noise shaping arguments can

indeed be made rigorous. In Section 1.2.2, we rigorously derive error decay bounds

for stable Σ∆ modulators.

1.2 The mathematical perspective

In this section we embed the heuristic arguments of Section 1.1 into a rigorous

mathematical framework. We reintroduce several of the concepts mentioned in the

previous section, but this time in a precise mathematical setting.

1.2.1 General setup

We define the space of Ω-bandlimited functions to be

BΩ =

ν̌(ξ) =

∞∫
−∞

e2πixξdν

∣∣∣∣ ν is a Borel measure with supp (ν) ⊆
[
−Ω

2
,
Ω

2

]
(1.30)
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It is easy to see that all of the elements in BΩ are analytic functions. Further-

more, BΩ is contained in the space S ′ of tempered distributions (see, for example,

[10] for the details of its construction). Since the Fourier transform as an operator

on S ′ maps f = ν̌ ∈ BΩ to ν, the definition of BΩ is a precise formulation of the

intuitive notion from Section 1.1.

Furthermore, recall from Section 1.1 that our model assumption was that the

amplitude of the bandlimited function modeling the signal is bounded by some

constant µ. For a fixed µ ∈ R, the set of all such functions is:

BµΩ := BΩ ∩ {f ∈ L∞ : ‖f‖L∞ ≤ µ} (1.31)

For reasons of notational convenience we will normalize Ω = 1 from now on. The

corresponding results for other bandwidths Ω can always be obtained by a suitable

rescaling.

A precise version of the Shannon-Nyquist Sampling Theorem given in Equation

(1.13) for functions in B1 was proved in [6]:

Theorem 1.1 ([6]). Let f be in B1, λ0 > 1 and ϕ ∈ L1 such that

ϕ̂(ξ) =


1 if |ξ| < 1

0 if |ξ| > λ0

(1.32)

Then for all λ ≥ λ0, the following equality holds in the Cesàro mean for all t ∈ R:

f(t) =
1

λ

∑
n∈Z

f
(n
λ

)
ϕ
(
t− n

λ

)
(1.33)

In the sequel, we will assume that ϕ̂ is smooth so that ϕ is in the Schwartz space
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S and has very strong decay and smoothness properties. Then for f ∈ Bµ1 , the

series in Equation (1.33) converges absolutely, and one does not need to consider

the Cesàro mean in Theorem 1.1.

Property (1.32) captures the nature of a low-pass filter, as described in Section

1.1.1. Thus, Equation (1.33) is a mathematical restatement of the fact that f can

be reconstructed exactly by applying a low-pass filter to the sampled function.

Here, the filter is modeled by the low-pass operator:

Tϕλ : `∞(Z)→ L∞(R) Tϕλ (a) =
1

λ

∑
n∈Z

anϕ
(
t− n

λ

)
. (1.34)

To emphasize the role of the kernel ϕ, we sometimes use the notation

a~λ ϕ :=
∑
n∈Z

anϕ
(
t− n

λ

)
= λTϕλ a. (1.35)

This operation can be thought of as a generalized convolution, as suggested by the

following lemma:

Lemma 1.2. For all a ∈ `∞(Z), b ∈ `1(Z) and ϕ, ψ ∈ S, the following hold.

1. (a ∗ b)~λ ϕ = a~λ (b~λ ϕ),

2. a~λ (ϕ ∗ ψ) = (a~λ ϕ) ∗ ψ.

∗ denotes the usual convolution operation for sequences or functions.

Proof. For 1., we calculate

(a ∗ b)~λ ϕ(t) =
∑
n∈Z

(a ∗ b)nϕ
(
t− n

λ

)
=
∑
n∈Z

∑
k∈Z

akbn−kϕ
(
t− n

λ

)
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=
∑
k∈Z

ak
∑
n∈Z

bn−kϕ
(
t− n

λ

)
=
∑
k∈Z

ak
∑
l∈Z

blϕ

(
t− k

λ
− l

λ

)
=
∑
k∈Z

ak

(
b~λ ϕ

(
t− k

λ

))
= a~λ (b~λ ϕ)(t), (1.36)

and the second equality follows from

a~λ (ϕ ∗ ψ) =
1

λ

∑
n∈Z

an(ϕ ∗ ψ)
(
t− n

λ

)
=
∑
n∈Z

an

∫
R

ϕ
(
t− n

λ
− s
)
ψ(s)ds

=

∫
R

∑
n∈Z

anϕ
(
t− s− n

λ

)
ψ(s)ds = (a~λ ϕ) ∗ ψ. (1.37)

Changing the order of summation is justified because the samples of the function

ϕ form an `1-sequence: ϕ is in S, hence both Lipschitz and in L1.

1.2.2 Error decay for m-th order Σ∆ modulators

In this section, we discuss the extent to which the signal f̃λ, as reconstructed

from the quantized values in Equation (1.25), provides a good approximation to

the original signal. The instantaneous error at time t is given by the pointwise

difference:

f(t)− f̃λ(t) =
1

λ

∑
n∈Z

(yn − qn)ϕ
(
t− n

λ

)
. (1.38)

There are different approaches to quantifying the quality of the approximation as

expressed by this time-dependent error function. In this thesis, we seek to minimize

the supremum norm of the pointwise error. Other authors have also considered

the L2-norm [9] or the Lp-norm for general 1 < p <∞ [6].

The guiding principle for the analysis in this section shall be the heuristic
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considerations of Section 1.1.4. We first recall some concepts from that section:

• A Σ∆ modulator with input sequence yn is described by the recurrence re-

lation vn = (h ∗ v)n + yn − qn.

• A Σ∆ modulator corresponding to Recurrence Relation (1.26) is an m-th

order modulator if the transfer function H(z) associated with the filter h is

such that 1−H has m zeros at z = 1. That is, it should admit a factorization

1−H(z) = (1− z)mG(z). (1.39)

In order for Relation (1.26) to be well-defined, one needs in addition that h ∈ `1.

This constraint is not conveniently expressed in terms of the generating functions;

rather one rewrites Equation (1.39) in terms of the associated time representations

h and g. One obtains

δ(0) − h = (1,−1) ∗ · · · ∗ (1,−1) ∗ g, (1.40)

where g is such that its generating function is G and δ(0) denotes the Kronecker

delta. Now note that

[(1,−1) ∗ u]n = [∆u]n−2, (1.41)

where ∆ denotes the finite difference operator given by [∆u]n = un+1 − un. To

emphasize the convolutional nature of this operator, we sometimes write ∆ ∗ u

instead of ∆u, with the understanding that ∆ is the sequence given by ∆−1 = 1,

∆0 = −1 and ∆j = 0 for all other j.

The shift of indices in Equation (1.41) often results in different indexing for

statements about sequences compared to the corresponding statements about their

23



generating functions. When we are interested in the `1-norm, these index shifts

do not change the results. For this reason, we will sometimes just state the ma-

nipulations that we apply in our derivation up to a shift of indices, without being

more specific.

Expressing Equation (1.40) in terms of finite difference operators motivates the

following definition:

Definition 1.2. A Σ∆ modulator corresponding to a filter with coefficient se-

quence h is said to be an m-th order Σ∆ modulator if δ0 − h = ∆mg for some

g ∈ `1.

For the analysis of the dynamical system given by a Σ∆ modulator, Recurrence

Relation (1.26) must be considered together with an initial condition. Usually, one

works with the initial condition vk = 0 for k < 0. This corresponds to the practical

constraint that one only has access to the sampled values starting from some initial

time instance. Thus, rather than via Equation (1.38), we measure the pointwise

error by:

eλ(t) = f(t)− f̃(t) =
1

λ

∑
n∈N

(yn − qn)ϕ
(
t− n

λ

)
(1.42)

and seek to minimize ‖eλ‖L∞ . As in [7], we split this quantization error into two

parts:

First, we consider the error e1
λ arising when we apply the low-pass filter to only

the samples corresponding to positive times, yn = f
(
n
λ

)
for n ≥ 0. This procedure

results in the function

f̄(t) =
1

λ

∞∑
n=0

ynϕ
(
t− n

λ

)
. (1.43)

In order to be able to use the same formalism as above to represent the recon-

struction operation, we define, for a sequence a ∈ `∞(N), its extension ā ∈ `∞(Z)
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via

ān :=


an for n ≥ 0

0 for n < 0.

(1.44)

In order to rewrite Equation (1.43) in terms of the low-pass operator Tϕλ , we apply

this extension operation to the input sequence y:

f̄ = Tϕλ ȳ =
1

λ
ȳ ~λ ϕ. (1.45)

The error arising at time t in this first approximation is

e1
λ(t) =

∣∣f̄(t)− f(t)
∣∣ =

∣∣∣∣∣∣1λ
∑
n∈Z\N

f
(n
λ

)
ϕ
(
t− n

λ

)∣∣∣∣∣∣ . (1.46)

This error will be present independent of the employed quantization procedure. It

was shown in [7] that, uniformly in λ, one has

lim sup
t→∞

∣∣e1
λ(t)
∣∣ = 0. (1.47)

Combining this result with a similar estimate for the end point, one can control the

error arising from the fact that one has only access to the samples corresponding to

a finite-length interval [0, Tmax], if one disregards an adjustment period of length T

large enough at beginning and at the end of the sampling interval. For this reason

our analysis will in the following focus on the second component of the error.

The second component of the error arises when f̄ is constructed from the se-

quence of quantized values q ∈ {−1, 1}N. The reconstructed signal f̃λ can be
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expressed as the low-pass operator Tϕλ applied to the extension q̄ as above:

f̃λ = Tϕλ q̄ =
1

λ
q̄ ~λ ϕ. (1.48)

To find the error that arises in this second approximation step, we need to study

how the approximate reconstruction differs from f̄ . We need to bound the function

e2
λ = f̄ − f̃λ =

1

λ
(ȳ − q̄)~λ ϕ. (1.49)

Again, we are interested in bounding ‖e2
λ‖L∞ for sequences y that arise as

samples yn = f
(
n
λ

)
of a bandlimited signal f as above. To compare the error

bounds for different values of λ, one could work with the class of signals Y(f) ={
y = (yn)n∈N : yn = f

(
n
λ

)
for some λ

}
. It is difficult, however, to bound the error

in a way that accurately reflects the detailed nature of the signal f . Instead, we

note that for f ∈ BµΩ, one has Y(f) ⊂ Yµ defined by Yµ = {y = (yn)n∈N : ||y||`∞ ≤

µ}. All of the following considerations work for arbitrary sequences in Yµ.

As discussed in Section 1.1.4, stability is an important concept for the error

analysis of Σ∆ modulators. Thus it is crucial for the following analysis to give

a precise mathematical definition of what we mean by a stable Σ∆ modulator

when we work with a specified class of input sequences Y like for example Yµ. The

following definition is independent of the quantization rule, we only assume that

there is some procedure Q̃ that creates a sequence of quantized values q ∈ {−1, 1}N

from any input sequence y ∈ Y.

Definition 1.3. For a fixed causal coefficient sequence h ∈ `1, consider the Σ∆
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modulator given by the recurrence relation

vn = (h ∗ v)n + yn − qn, n ∈ N (1.50)

with the initial condition vn = 0 for n < 0 and some arbitrary quantization rule

q = Q̃(y). We say that the modulator is stable with respect to a given class Y of

input sequences, if for all y in Y, the sequence v defined recursively by Relation

(1.50) is bounded.

The following estimates, from [4] and [7], will provide a bound on ‖e2
λ‖L∞ .

The proof involves approximation theoretic results from [5]. As the estimates are

crucial for the results in this thesis, we include a self-contained presentation of the

proof based on these sources.

Theorem 1.3. For ϕ ∈ S and λ0 fixed as in Theorem 1.1, consider an m-th order

Σ∆ modulator and the corresponding sequences g and h as in Definition 1.2. If

the modulator is stable for all input sequences y ∈ Yµ, then the decay of the error

e2
λ can be bounded by

‖e2
λ‖L∞ ≤ ‖v‖`∞‖g‖`1‖ϕ‖L1λm0 π

mλ−m. (1.51)

Proof. From Recurrence Relation (1.50) and Lemma 1.2, we obtain:

eλ =
1

λ
(δ(0) − h) ∗ v ~λ ϕ =

1

λ
v ∗ (∆mg)~λ ϕ

=
1

λ
(v ∗ g ∗∆m)~λ ϕ =

1

λ
(v ∗ g)~λ (∆m ~λ ϕ) (1.52)

To establish a bound on expression (1.52), we need the following two lemmas.
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Lemma 1.4 ([5, 4]).

(∆m ~λ ϕ)
(
t− n

λ

)
=

1

λm−1

∞∫
−∞

ϕ(m)
(
t− n

λ
+ s
) (
χ[0,1]

)∗m
(λs) ds, (1.53)

where f ∗k denotes the k-fold convolution f ∗ f ∗ · · · ∗ f (k factors).

Proof. We proceed by induction inm. Form = 1, we obtain using the Fundamental

Theorem of Calculus

(∆~λ ϕ)
(
t− n

λ

)
= ϕ

(
t− n

λ
+

1

λ

)
− ϕ

(
t− n

λ

)
=

1/λ∫
0

ϕ′
(
t− n

λ
+ s
)
ds =

∞∫
−∞

ϕ′
(
t− n

λ
+ s
)
χ[0,1] (λs) ds, (1.54)

as desired.

For the induction step, calculate

(∆m ~λ ϕ)
(
t− n

λ

)
= ∆~λ

(
∆m−1 ~λ ϕ

) (
t− n

λ

)
=

1

λm−2

∞∫
−∞

(
ϕ(m−1)

(
t− n

λ
+ s+

1

λ

)
− ϕ(m−1)

(
t− n

λ
+ s
))(

χ[0,1]

)∗(m−1)
(λs) ds

=
1

λm−2

∞∫
−∞

s+ 1
λ∫

s

ϕ(m)
(
t− n

λ
+ u
)
du
(
χ[0,1]

)∗(m−1)
(λs) ds

=
1

λm−2

∞∫
−∞

∞∫
−∞

χ[0,1/λ](u− s)ϕ(m)
(
t− n

λ
+ u
)(
χ[0,1]

)∗(m−1)
(λs) ds du

=
1

λm−2

∞∫
−∞

ϕ(m)
(
t− n

λ
+ u
) ∞∫
−∞

χ[0,1](λu− v)
(
χ[0,1]

)∗(m−1)
(v)

dv

λ
du
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=
1

λm−1

∞∫
−∞

ϕ(m)
(
t− n

λ
+ u
) (
χ[0,1]

)∗(m)
(λu) du (1.55)

Lemma 1.5 (see for example [5]). For each integer m, the following equality holds

a.e. in t:

S(t) :=
∞∑

j=−∞

(
χ[0,1]

)∗m
(t− j) = 1 (1.56)

Proof. For m = 1, observe that for each t /∈ Z, χ[0,1](t − j) = 1 if and only if

j = btc and 0 otherwise. Hence,
∞∑

j=−∞

(
χ[0,1]

)
(t− j) = 1 a.e.

For m > 1, observe that each
(
χ[0,1]

)∗m
(t − j) has compact support, so for

each t, the sum S has only finitely many non-zero terms. We will now show that

S ′(t) = 0 in the sense of a distributional derivative. Calculate

S ′(t) =
∞∑

j=−∞

χ′[0,1] ∗
(
χ[0,1]

)∗(m−1)
(t− j)

=
∞∑

j=−∞

(
δ(0) − δ(1)

)
∗
(
χ[0,1]

)∗(m−1)
(t− j)

=
∞∑

j=−∞

((
χ[0,1]

)∗(m−1)
(t− j)−

(
χ[0,1]

)∗(m−1)
(t− j − 1)

)
(1.57)

= 0 (1.58)

As above, δ(x) denotes the Dirac delta function centered at x. In the last step,

we use that the expression in (1.57) is a telescoping sum. This shows that S is

constant a.e. To find the value of the constant, compute

1∫
0

S(t)dt =

1∫
0

∞∑
j=−∞

(
χ[0,1]

)∗m
(t− j)dt
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=
∞∑

j=−∞

1∫
0

(
χ[0,1]

)∗m
(t− j)dt

=
∞∑

j=−∞

−j+1∫
−j

(
χ[0,1]

)∗m
(u)du

=

∞∫
−∞

(
χ[0,1]

)∗m
(u)du

=

∞∫
−∞

∞∫
−∞

χ[0,1](s)
(
χ[0,1]

)∗(m−1)
(u− s)ds du

=

∞∫
−∞

χ[0,1](s)

∞∫
−∞

(
χ[0,1]

)∗(m−1)
(u− s)du ds

=

∞∫
−∞

χ[0,1](s)

∞∫
−∞

(
χ[0,1]

)∗(m−1)
(v)dv ds (1.59)

The last expression can be shown to equal 1 using an inductive argument with seed
∞∫
−∞

χ[0,1] = 1. This completes the proof, as 1 is the only constant that integrates

to 1 on [0, 1].

These two lemmas, together with the fact that
(
χ[0,1]

)∗m
as a convolution of

non-negative functions is non-negative, justify the estimate:

|e2
λ(t)| =

∣∣∣∣1λ(v ∗ g)~λ (∆m ~λ ϕ(t))

∣∣∣∣
=

1

λ

∣∣∣∣∣∑
n∈Z

(v ∗ g)n (∆m ~λ ϕ)
(
t− n

λ

)∣∣∣∣∣
≤ 1

λ
‖v‖`∞‖g‖`1

∥∥∥(∆m ~λ ϕ)
(
t− ·

λ

)∥∥∥
`1

=
1

λ
‖v‖`∞‖g‖`1

∥∥∥∥∥∥ 1

λm−1

∞∫
−∞

ϕ(m)
(
t− ·

λ
+ s
) (
χ[0,1]

)∗m
(λs) ds

∥∥∥∥∥∥
`1
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≤ ‖v‖`∞‖g‖`1
1

λm

∞∑
n=−∞

∣∣∣∣∣∣
∞∫

−∞

ϕ(m) (u)
(
χ[0,1]

)∗m
(λu− λt+ n) du

∣∣∣∣∣∣
= ‖v‖`∞‖g‖`1

1

λm

∞∫
−∞

∣∣ϕ(m) (u)
∣∣ ∞∑
n=−∞

(
χ[0,1]

)∗m
(λu− λt+ n) du

= ‖v‖`∞‖g‖`1
1

λm

∞∫
−∞

∣∣ϕ(m) (u)
∣∣ du

= ‖v‖`∞‖g‖`1
∥∥ϕ(m)

∥∥
L1 λ

−m (1.60)

By Bernstein’s inequality, one can bound
∥∥ϕ(m)

∥∥
`1
≤ λm0 π

m ‖ϕ‖`1 (see [12]), which

yields

|eλ(t)| ≤ ‖v‖`∞‖g‖`1λm0 πm ‖ϕ‖L1 λ
−m. (1.61)

Taking the supremum over t, this proves the theorem.

Remark: In the mathematical literature, the recurrence relation of a Σ∆ mod-

ulator is often given in canonical form

∆mun = yn − qn. (1.62)

Recurrence Relation (1.26) above can be rewritten in canonical form by defining

the new variable u := g ∗ v. Note that the qn’s are still determined from the

original variables vn using (1.27) or a similar quantizer. In particular, computing

qn from the uj’s may involve the uj’s for all j < n. Nevertheless, representing the

modulator in canonical form can be useful, as using these variables, the ‖g‖`1-term

in the error bound of Theorem 1.3 is absorbed in the variable u. Indeed, the filter
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used in Equation (1.62) is hcan = ∆m = ∆mδ(0), and one obtains the error bound

‖e2
λ‖L∞ ≤ ‖u‖`∞‖ϕ‖L1λm0 π

mλ−m. (1.63)

1.2.3 Superpolynomial error decay

The bounds given in Equation (1.61) can only establish polynomial error decay

for any given order. Stronger results (cf. [6]) establish better bounds on the error

decay for first order schemes, but numerical experiments suggest that for each

order, the decay is, nevertheless, polynomial. However, usually both the sampling

frequency and the feedback filter of a Σ∆ modulator are built-in parameters of

a circuit, and therefore we cannot let λ → ∞ in a circuit without changing its

architecture. So when we study the asymptotic error decay as λ → ∞, what we

mean is that, for each λ, we design some modulator Mλ with corresponding error

eλ(Mλ) and then seek asymptotic bounds for ‖eλ(Mλ)‖L∞ as λ→∞. In particular,

this procedure can involve choosing schemes of different order for different values

of λ. Higher order schemes will have a better asymptotic decay rate but typically

involve larger constants. In general, the larger the desired sampling rate λ, the

greater the order one should choose.

This approach was first systematically employed by Daubechies and DeVore

[4]. They constructed an infinite family of stable Σ∆ modulators, one modulator

Mm for each order m. Then, for each sampling frequency they determined an

appropriate order m(λ) such that ‖eλ
(
Mm(λ)

)
‖`∞ → 0 superpolynomially. They

achieved an error decay of order O
(
λ−γ log λ

)
for some constant γ. The work does

not use greedy or linear quantization rules of the type discussed in Sections 1.1.4

and 3.3, but a nested sequence of sign-functions.
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Güntürk [7] achieved the exponential error decay of O
(
2−0.076λ

)
by selecting

the scheme of appropriate order from an infinite family, as described in the first

paragraph. His work was the first to achieve exponential error decay for one-bit

quantization. Section 2.1 provides more details on the underlying construction,

based on so-called minimally supported filters. This result has been improved by

the author of this thesis to O
(
2−0.087λ

)
[11] (This result will not appear in this

thesis). Chapter 2 optimizes the error decay in the framework laid out in [7]. The

resulting bound for the asymptotic error decay rate is of order O
(
2−0.102λ

)
. This

is the best asymptotic error decay rate currently known for one-bit quantization

schemes.

It is known that for any 0 < µ < 1, exponential bounds of order O(2−rλ) are

the best possible error decay bounds, which hold uniformly for all input signals

f ∈ BµΩ [3, 7]. More precisely, one has, for any one-bit quantizer:

sup{‖e2
λ‖L∞ : f ∈ BµΩ} ≥ C2−λ, (1.64)

where C is a constant, which may depend on µ and Ω, but not λ. Thus no

exponential error bound with a rate constant r > 1 is possible. In [3], even the

case r = 1 is ruled out.

1.2.4 A basic stability criterion for greedy quantization

For all the previous consideration, stability of the Σ∆ modulator was implicitly

assumed. In the engineering literature, stability is often tested for a wide class

of input signals (see for example [17]). A rigorous error analysis, however, also

requires a rigorous stability analysis. For this, however, not many techniques are
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available.

Stability of Σ∆ modulators of order m = 1 is immediate (see for example

[6]). Yılmaz [19] provided an in-depth stability analysis for certain second order

modulators. Daubechies and Devore [4] showed stability for a family of schemes

of all orders (compare Section 1.2.3).

The following stability criterion provides a sufficient condition for the stability

of a Σ∆-scheme with the greedy quantization rule defined above. It is well-known

to the engineering community (see for example [17]), but it was believed to be too

restrictive and had not been used for a rigorous stability analysis until Güntürk’s

work [7].

Theorem 1.6. Consider a Σ∆ modulator given by the recurrence relation (1.26)

with the greedy quantization rule (1.27). If

‖h‖`1 ≤ 2− µ, (1.65)

then the modulator is stable for all inputs y ∈ Yµ.

Proof. We prove by induction in n that all |vn| ≤ 1. For n ≤ 0, |vn| = 0 ≤ 1

by definition. For n > 0, we use the notation ‖w‖(n)
`∞ := sup

j<n
|wj|. Assume that

‖v‖(n)
`∞ ≤ 1. Then

|vn| = |(h ∗ v)n + yn − sign (h ∗ v + yn)|

≤ max (1, |(h ∗ v)n + yn| − 1)

≤ max
(

1, ‖h‖`1 ‖v‖(n)
`∞ + µ− 1

)
(1.66)

≤ max (1, (2− µ) + µ− 1) = 1 (1.67)
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To obtain Line (1.66), we used that h is causal, i.e., hn = 0 for n ≤ 0. By induction,

Inequality (1.67) establishes the theorem.

Remark: For any Σ∆ modulator of order m ≥ 1, we have

∞∑
j=0

(δ(0) − h)j =
∞∑
j=0

∆
[(

∆m−1g
)]
j

= 0, (1.68)

as the second sum is telescoping. Hence ‖h‖`1 ≥ ‖δ(0)‖`1 = 1.

Recall from Theorem 1.3 that the constant in the error decay bound of a stable

m-th order Σ∆ modulator can be bounded in terms of ‖g‖`1 . Thus, to design a

modulator that yields the best error bounds, one needs to minimize ‖g‖`1 over

all stable schemes. Since stability can be guaranteed by the criterion given in

Theorem 1.6, this motivates, for each m, the following quantitative minimization

problem:

Minimize ‖g‖`1 subject to δ(0) − h = ∆mg, ‖h‖`1 ≤ 2− µ. (1.69)

As Theorem 1.6 gives but a sufficient condition for stability, solving this problem

is not equivalent to finding the Σ∆ modulators with the best error decay rate. As

we will see in Chapter 2, however, even a more restrictive framework will allow for

constructions that yield fast error decay.
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Chapter 2

Optimizing minimally supported

filters

2.1 An optimization problem for filters with

minimal support

The results in [7] were based on Minimization Problem (1.69), but they did

not provide a complete solution to the problem. Rather, the author introduced

a class of feasible filters h = h(m) which were effective in the sense that they led

to an exponential error of order O(2−rλ). These filters h(m) are sparse, i.e., they

contain only a few non-zero entries. Indeed, each h(m) has exactly m non-zero

entries, which is the minimal support size for which h(m) can satisfy the feasibility

conditions: The filter δ(0) − h(m) arises as the m-th order finite difference of the

vector g; therefore its entries have to satisfy m moment conditions. This implies

that the support size of h(m) is at least m. We make the following definition:

Definition 2.1. We say that a filter h = δ(0) − ∆mg, for a finitely supported g,
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has minimal support if |supp h| = m.

Here, we require g to be finitely supported, as this is a necessary condition to

ensure that both h has finite support and ‖g‖`1 < ∞. The goal of this chapter is

to find optimal filters within the class of filters with minimal support.

For filters h with minimal support, i.e.,

h =
m∑
j=1

djδ
(nj), (2.1)

the moment conditions lead to explicit formulae for the entries dj in terms of the

support {nj}mj=1 of h, where 1 ≤ n1 < n2 < · · · < nm [7]. Here the condition that

n1 ≥ 1 follows from the causality of h.

Indeed, one finds

dj =

m∏′

i=1

ni
ni − nj

. (2.2)

Here the notation
∏′, and analogously

∑′, indicate that the singular terms are

excluded from the product, or the sum respectively. By definition, if m = 1, one

has d1 = 1.

The condition ‖h‖`1 ≤ 2− µ then takes the form

m∑
j=1

m∏′

i=1

ni
|ni − nj|

≤ 2− µ. (2.3)

Furthermore, explicit computations lead to the identity

‖g‖`1 =

∏m
j=1 nj

m!
. (2.4)

37



In this notation, minimization problem (1.69) takes the form

Minimize

∏m
j=1 nj

m!
over

{n = (n1, . . . , nm) ∈ Nm : (2.3) holds and 1 ≤ n1 < · · · < nm} (2.5)

For µ = 1, problem (2.5) has a solution only for m = 1, and we find h = δ(1),

but for µ < 1, the problem has a nontrivial solution for all m. That is, we can find

nj, j = 1, . . . ,m, that satisfy (2.3). In particular, for nj(σ) = 1 + σ(j − 1), one

shows easily that

lim
σ→∞

m∑
j=1

m∏′

i=1

ni(σ)

|ni(σ)− nj(σ)|
= 1. (2.6)

So for every µ < 1, n(σ) satisfies constraint (2.3) for all σ large enough.

Furthermore, any minimizer n of problem (2.5) must satisfy n1 = 1. Indeed,

otherwise nj > 1 for all j and we can define ñ by ñj = nj − 1 ≥ 1 for all

j = 1, . . . ,m. Calculate

m∑
j=1

m∏′

i=1

ñi
|ñi − ñj|

=
m∑
j=1

m∏′

i=1

ni − 1

|ni − nj|
<

m∑
j=1

m∏′

i=1

ni
|ni − nj|

≤ 2− µ (2.7)

and ∏m
j=1 ñj

m!
<

∏m
j=1 nj

m!
. (2.8)

So n cannot be a minimizer.

Hence, we can fix n1 ≡ 1, which reduces problem (2.5) to minimizing

η(n) :=
m∏
j=2

nj (2.9)
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over the set {n = (n2, . . . , nm) ∈ Nm−1|1 < n2 < · · · < nm} under the constraint

m∑
j=1

m∏′

i=1

ni
|ni − nj|

≤ γ, (2.10)

where again n1 ≡ 1. The factor m! in the denominator has been absorbed into the

definition of η to simplify the notation. Furthermore, we have set γ = 2−µ, as the

considerations that follow make sense for arbitrary γ > 1 and not only for γ ≤ 2.

Notational Remark: All quantities in the derivations below depend on m. We

will suppress this dependence unless it is relevant in a particular argument.

2.2 The relaxed minimization problem for opti-

mal filters

The variables nj correspond to the positions of the nonzero entries in the vector

h, so they are constrained to positive integer values. We will first consider the

relaxed minimization problem without this constraint; this will eventually enable

us to draw conclusions about the original problem. Thus the variables nj ∈ N

will be replaced by relaxed variables xj ∈ R+. Furthermore, it turns out to be

convenient to replace the index set {1, . . . ,m} by {0, . . . ,m− 1}.

The relaxed minimization problem is specified as follows: Minimize

η(x) :=
m−1∏
j=1

xj (2.11)

over the set D = {x ∈ Rm−1|1 < x1 < x2 < · · · < xm−1} under the constraint
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f(x) :=
m−1∑
j=0

m−1∏′

i=0

xi
|xi − xj|

≤ γ, (2.12)

where x0 ≡ 1.

Observe that f is defined and smooth in the open domain D. The following

monotonicity property for f is important in making inferences from the relaxed

to the discrete minimization problem. Let r(x) be given by rj(x) =
xj
xj−1

, j =

1, . . . ,m− 1, and set F (r) = f(x) for x such that r = r(x).

Lemma 2.1. The function F (r) is strictly decreasing in each variable rj.

Proof. A simple calculation shows that

F (r) =
m−1∑
j=0

m−1∏′

i=0

xi
|xi − xj|

=
m−1∑
j=0

∏
i<j

1

ri+1ri+2 · · · rj − 1

∏
i>j

1

1− 1
rj+1rj+2···ri

, (2.13)

from which the monotonicity is immediate.

Definition 2.2. If x,y ∈ D and 1 ≤ y1
x1
≤ · · · ≤ ym

xm
, we say that y is subordinate

to x.

Clearly, y is subordinate to x if and only if rj(x) ≤ rj(y) for j = 1, . . . ,m− 1,

so Lemma 2.1 is equivalent to the following:

Corollary 2.2. If y is subordinate to x and x 6= y, then f(y) < f(x).

If x is a minimizer of the constraint optimization problem (2.11), (2.12), then

f(x) = γ. Indeed, for a proof by contradiction, assume that x is a minimizer and

f(x) < γ. Then for t ∈ [0, 1), we can define x̃j(t) = (1− t)xj + tx0. Since f ◦ x̃ is

continuous in t, and

f(x̃(0)) = f(x) < γ. (2.14)
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there exists t > 0 such that f (x̃(t)) < γ. However, the function

η (x̃(t)) =
m−1∏
j=0

((1− t)xj + tx0)) (2.15)

is decreasing in t, so

η (x̃(t)) < η (x) , (2.16)

and x cannot be a minimizer. Hence we can replace constraint (2.12) by the

equality

f(x) =
m−1∑
j=0

m−1∏′

i=0

xi
|xi − xj|

= γ. (2.17)

As we now show, this equation defines a smooth manifold within D. It is enough

to verify that ∇f 6= 0. Note first that

∂

∂xk

xk
|xk − xj|

= −xj
1

xk − xj
1

|xk − xj|
. (2.18)

Now calculate for j 6= k using this fact

∂

∂xk

m−1∏′

i=0

xi
|xi − xj|

=

m−1∏′

i=0
i 6=k

xi
|xi − xj|

(−xj 1

xk − xj
1

|xk − xj|

)

= −η(x)

xk

(−1)j

xk − xj
bj, (2.19)

where we set from now on

bj(x) =

m−1∏′

i=0

1

xi − xj
. (2.20)

Note that (−1)jbj(x) is always positive.
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Furthermore, for j = k,

∂

∂xk

m−1∏′

i=0

xi
|xi − xk|

= −
m−1∑′

l=0

η(x)

xk

(−1)k

xk − xl
bk(x). (2.21)

Hence

∂f

∂xk
= − 1

xk
η(x)

m−1∑′

j=0

1

xk − xj
(
(−1)kbk(x) + (−1)jbj(x)

)
. (2.22)

For k = m− 1, all terms in the sum are positive. Hence

∂f

∂xm−1

< 0 (2.23)

and so {x : f(x) = γ} is a manifold within D.

We now show that the infimum of η subject to (2.17) is attained in D. Let

η0 = inf
x∈D,f(x)=γ

η(x) and let x(n) ∈ D∩{f = γ} be chosen such that lim
n→∞

η(x(n)) =

η0. As before, we set x
(n)
0 ≡ 1.

We first show that x(n) is bounded. Define M := sup
n∈N

η
(
x(n)

)
. Then for each

n,

‖x(n)‖`∞ = |x(n)
m−1| ≤ η

(
x(n)

)
≤M, (2.24)

as, for each i, 1 ≤ x
(n)
i ≤ x

(n)
m−1. Since M <∞, it follows that x(n) is bounded. We

conclude that x(n) must have a convergent subsequence x(nk) → x(∞).

Now x(∞) cannot lie on the boundary of D. Indeed, for any 0 ≤ j 6= k ≤ m−1,

we have

γ = f(x(n)) ≥
m−1∏′

i=0

x
(n)
i

|x(n)
i − x

(n)
j |
≥ 1

Mm−2|x(n)
j − x

(n)
k |

, (2.25)
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which implies that |x(n)
j − x

(n)
k | ≥ 1

γMm−2 > 0. It follows that x(n) stays away from

the boundary of D, which implies that x(∞) ∈ D. Thus, problem (2.11), (2.17)

must have at least one minimizer xmin = x(∞) in D. Note that a priori, there can

be more than one minimizer.

As {x|f(x) = γ} is a manifold within D, every minimizer xmin = (x1, . . . , xm−1)

of the constrained optimization problem given by (2.11) and (2.17) solves the

associated Lagrange multiplier equations, i.e., there exists ν = ν(xmin) ∈ R such

that

ν∇η(xmin) +∇f(xmin) = 0, (2.26)

f(xmin) = γ. (2.27)

Combined with (2.22) and the relation ∂
∂yk
η(y) = 1

yk
η(y), the Lagrange multi-

plier equations (2.26), (2.27) take the explicit form

m−1∑′

j=0

1

xk − xj
(
(−1)kbk(xmin) + (−1)jbj(xmin)

)
= ν, (2.28)

f(xmin) = γ (2.29)

for k = 1, . . . ,m− 1 and x0 ≡ 0 as before.

Note that any critical point xcrit of the minimization problem for η on D solves

equations (2.28), (2.29) for some ν. In the Section 2.4, we will show that in fact

η has a unique critical point in D. Before that, we recall some results about

Chebyshev Polynomials, which are used in the proof.
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2.3 Some useful properties of Chebyshev poly-

nomials

Recall that the Chebyshev Polynomials of the first and second kind in x = cos θ

are given by

Tm(x) = cosmθ and Um(x) =
sin(m+ 1)θ

sin θ
, (2.30)

respectively. The Chebyshev polynomials have, in particular, the following prop-

erties (see [18], [2]):

• T ′m(x) = mUm−1(x),

• The zeros of Um−1 are zj = cos
(
m−j
m
π
)
, j = 1, . . . ,m− 1,

• For m > 0, the leading coefficient of Tm is 2m−1,

• The Chebyshev polynomials satisfy the following identities

Tm(cosh τ) = cosh(mτ), Um(cosh τ) =
sinh(mτ)

sinh τ
, (2.31)

• The Chebyshev polynomials satisfy the differential equation

(1− x)2T ′′m(x)− xT ′m(x) +m2Tm(x) = 0. (2.32)

We say that a polynomial p of degree m has the equi-oscillation property on

[−1, 1] (compare [2]) if it has m− 1 real critical points ζ1, . . . , ζm−1 which satisfy

ζ0 := −1 < ζ1 < · · · < ζm−1 < ζm := 1 (2.33)
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such that the associated values are alternating

p(ζj) = (−1)m−j (2.34)

for j = 0, . . . ,m.

Note that if a polynomial has the equi-oscillation property then its leading

coefficient is positive. The Chebyshev polynomials of the first kind Tm have the

equi-oscillation property for all m. Indeed, the first two properties given above

imply that the zj’s are the critical points of Tm, and a simple calculation shows

that Tm(zj) = (−1)m−j. The equi-oscillation property in fact characterizes the

Chebyshev polynomials of the first kind:

Proposition 2.3. If p(s) is a polynomial of degree m in s with the equi-oscillation

property on [−1, 1], then p = Tm.

Proof. The proof follows ideas used in [2] to establish that, up to a constant, the

Tm are the unique monic polynomials with minimal L∞ norm.

Let p(s) = aps
m + . . . and q(s) = aqs

m + . . . be two polynomials with the

equi-oscillation property. W.l.o.g. assume aq ≥ ap > 0. Let ζ1 < · · · < ζm−1 be

the critical points of p in [−1, 1] and set ζ0 = −1, ζm = 1.

Consider the polynomial r(s) = p(s)− ap
aq
q(s) of degree (m−1). Then r(ζm−j) ≥

0 for all even j, and r(ζm−j) ≤ 0 for all odd j. The proof that r ≡ 0 follows from

the following more general statement:

Claim: If t0 < t1 < · · · < tm ∈ R and a polynomial ρ of degree m− 1 satisfies

(−1)jρ(ζj) ≥ 0 for all j, then ρ ≡ 0.

Proof. The proof proceeds by induction in m. In the case m = 1, ρ(t0) ≥ 0 and

ρ(t1) ≤ 0 implies that r ≡ 0. For the induction step, assume that the claim holds
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true for m. Given a polynomial ρ of degree m with the property, it must have a

zero z with tm ≤ z ≤ tm+1. Define ρ̃(x) = r(x)
z−x . Note that ρ̃ is a polynomial of

degree m − 1. If z > tm, then ρ̃(tj)(−1)j ≥ 0 for 0 ≤ j ≤ m and hence ρ̃ ≡ 0 by

the induction hypothesis. If z = tm then ρ̃(tj)(−1)j ≥ 0 for 0 ≤ j ≤ m − 1, but

clearly one also has ρ̃(tm+1)(−1)m ≥ 0. Again by the induction hypothesis ρ̃ ≡ 0.

�

We conclude that r = p− ap
aq
q ≡ 0 by applying the claim to ρ = (−1)mr. Since

p(1) = q(1) = 1 implies that ap = aq, we see that p ≡ q.

The following lemma plays a useful role in solving the relaxed minimization

problem.

Lemma 2.4. Let zj, j = 1, . . . ,m − 1, be the critical points of the Chebyshev

polynomial of the first kind Tm, as above, and set z0 ≡ −1. Then

m−1∏
i=0
i 6=k

(zk − zi) =



m(−1)m−1

2m−1 for k = 0

m(−1)m−1−k

2m−1(1−zk)
for k > 0

(2.35)

Proof. Recall that Tm has leading coefficient 2m−1. We obtain

T ′m(z) = m2m−1

m−1∏
i=1

(z − zi), (2.36)

and

T ′′m(z) = m2m−1

m−1∑
j=1

m−1∏
i=1
i 6=j

(z − zi), (2.37)
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and hence for 1 ≤ k ≤ m− 1

T ′′m(zk) = m2m−1

m−1∏
i=1
i 6=k

(zk − zi)

=
m2m−1

1 + zk

m−1∏
i=0
i 6=k

(zk − zi). (2.38)

Thus for 1 ≤ k ≤ m− 1 one has T ′m(zk) = 0 and Tm(zk) = (−1)m−k, and so (2.32)

reads

(1− z2
k)
m2m−1

1 + zk

m−1∏
i=0
i 6=k

(zk − zi) +m2(−1)m−k = 0, (2.39)

or
m−1∏
i=0
i 6=k

(zk − zi) =
(−1)m−k−1m

2m−1(1− zk)
. (2.40)

On the other hand, as z0 = cos(π), we have using (2.30)

m−1∏
i=1

(z0 − zi) =
1

m2m−1
T ′m(z0) =

1

2m−1
Um(z0) =

1

2m−1
lim
θ→π

sin(mθ)

sin θ
=

(−1)m−1m

2m−1
.

(2.41)

2.4 Solution of the relaxed minimization prob-

lem

Theorem 2.5. The minimum value of η on the manifold {f = γ} in D is given

by

η = ηmin =
sinh(2mβ)

(2 sinh β)2m−1 cosh β
(2.42)
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where β = β(m, γ) is the unique positive solution of the equation

cosh ((2m− 1)β)

cosh β
= γ. (2.43)

The minimum value ηmin is attained at the unique point xmin = (x1, . . . , xm−1),

where

xj = 1 +
1

2 sinh2 β
(1 + zj) , j = 1, . . . ,m− 1. (2.44)

Here zj = cos
(
m−j
m
π
)
, j = 1, . . . ,m− 1, are the zeros of the Chebyshev polynomial

of the second kind of degree m− 1.

Proof. The minimization problem (2.11), (2.17) assumes its minimum in D, so

there must be at least one critical point xcrit = (x1, . . . , xm−1) with 1 < x1 < · · · <

xm−1.

To prove uniqueness, we will express the associated Lagrange multiplier prob-

lem as a nonlinear matrix equation and then show using a rank argument, which is

established by Proposition 2.6, that the equation can have only the solution given

by (2.44).

As in (2.28), xcrit = (x1, . . . , xm−1) must satisfy

m−1∑′

j=0

1

xk − xj
(
(−1)kbk(xcrit) + (−1)jbj(xcrit)

)
= ν(xcrit), (2.45)

for k = 1, . . . ,m and, again, bj(xcrit) =
m−1∏′
i=0

1
xi−xj .

In matrix notation, the statement reads

B(xcrit)v = ν(xcrit)e, (2.46)
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where e = (1, 1, . . . , 1)T ∈ Rm−1, v = (1,−1, 1,−1, . . . )T ∈ Rm and the matrix-

valued function B : Rm−1 → R(m−1)×m is given by

B(y) =



b0(y)
y1−y0

m−1∑′
j=0

b1(y)
y1−yj

b2(y)
y1−y2 · · · bm−1(y)

y1−ym−1

b0(y)
y2−y0

b1(y)
y2−y1

m−1∑′
j=0

b2(y)
y2−yj · · ·

bm−1(y)
y2−ym−1

...
...

...
. . .

...

b0(y)
ym−1−y0

b1(y)
ym−1−y1

b2(y)
ym−1−y2 · · ·

m−1∑′
j=0

bm−1(y)
ym−1−yj


, (2.47)

where y = (y1, . . . , ym−1) and as before y0 ≡ 1.

For given y = (y1, . . . , ym−1) let py(s) be a polynomial such that

p′y(s) =
m−1∏
j=1

(s− yj). (2.48)

For definiteness, we normalize py(0) = 0. Let Γ be a positively oriented circle in

C of radius R large enough to enclose all yj’s, including y0 ≡ 1. We now calculate

the integral

Ik =
1

2πi

∮
Γ

py(z)

(z − yk)(z − y0)p′y(z)
dz, k = 1, . . . ,m− 1 (2.49)

in two different ways.

Firstly, letting R→∞, we see that Ik = 1
m

. Secondly, we compute the integral

using the residues at yj, 0 ≤ j ≤ m− 1. For the residue Rj at yj, j 6= k, we obtain

Rj = (−1)m−1 bj(y)

yj − yk
p(yj). (2.50)
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At zk, we have a double root in the denominator of the integrand in (2.49), so

Rk =


py(z)

m−1∏
i=0
i 6=k

(z − yi)


′∣∣∣∣∣∣∣∣∣∣∣
z=yk

=
p′y(yk)

m−1∏
i=0
i 6=k

(yk − yi)
− py(yk)

m−1∑
j=0
j 6=k

m−1∏
i=0
i 6=j,k

(yk − yi)

m−1∏
i=0
i 6=k

(yk − yi)

2

= (−1)m−1

m−1∑′

j=0

bk(y)

yj − yk
py(yk) (2.51)

Summing the residues, we conclude that for k = 1, . . . ,m− 1:

(−1)m−1

m
=

m−1∑′

j=0

1

yj − yk
(bk(y)py(yk) + bj(y)py(yj)) (2.52)

or equivalently

B(y)py =
(−1)m

m
e, (2.53)

where py = (py(y0), py(y1), . . . , py(ym−1).

The normalization py(0) = 0 plays no role in the above calculation, and so

(2.53) also holds for py + e. Hence, the vector e lies in the kernel of B(y) for any

y. In Proposition 2.6, we will show that dim KerB(y) = 1, and hence KerB(y) is

spanned by e. In particular, this shows that ν(xcrit) 6= 0: Otherwise, v would be

collinear to e, which is impossible.

Specifying y = xcrit, one obtains

B(xcrit)pxcrit =
(−1)m

m
e, (2.54)
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and it follows that

B(xcrit) [m(−1)mν(xcrit)pxcrit ] = ν(xcrit)e. (2.55)

By (2.46), v also solves (2.55), and thus

v −m(−1)mν(xcrit)pxcrit = c e (2.56)

for some constant c.

Set

q(s) = m(−1)mν(xcrit)pxcrit(s) + c. (2.57)

Then q is a polynomial of degree m with critical points at the xj, j = 1, . . . ,m− 1

such that q(xj) = (−1)j, j = 1, . . . ,m − 1. As q cannot have any more critical

points and must be monotonic for x > xm−1, then ultimately, it will change sign

and there is a unique point xm > xm−1 such that q(xm) = −q(xm−1) = (−1)m.

Hence the polynomial u given by

u(s) = (−1)mq

(
xm − 1

2
(s+ 1) + 1

)
(2.58)

has the equi-oscillation property, and we conclude by Proposition 2.3 that u(s) =

Tm(s). That implies, that if zm, j = 1, . . . ,m− 1, are the extrema of Tm – i.e., the

zeros of the Chebyshev polynomials of the second kind of degree m− 1 – then the

extrema of q are given by

xj =
xm − 1

2
(1 + zj) + 1. (2.59)

51



Thus all critical points xcrit = (x1, . . . , xm−1) are given by

xj = xj(K) := 1 +K(1 + zj) (2.60)

for some constant K. It follows from Lemma 2.1 that f(x(K)) is strictly monotonic

in K, i.e., different values of K correspond to different values of γ. This proves

that η has a unique critical point on {f = γ} in D, and, in particular, that xmin

is unique and given by (2.44).

We now compute K = K(m, γ). The calculation uses several facts about

Chebyshev polynomials and their roots from Section 2.3. Let β = β(m, γ) > 0 be

defined through the relation

K =
1

2 sinh2 β
. (2.61)

Noting that zi = −zm−i, we obtain from Lemma 2.4

f(x) =
m−1∏
i=1

1 +K(1 + zi)

K |zi − z0|
+

m−1∑
j=1

m−1∏
i=0
i 6=j

1 +K(1 + zi)

K |zi − zj|

=
2m−1

m

m−1∏
i=1

1 +K(1 + zi)

K
+

m−1∑
j=1

2m−1(1− zj)
m

m−1∏
i=0
i 6=j

1 +K(1 + zi)

K

=

[
2m−1

m

m−1∏
i=1

(
1

K
+ 1− zm−i

)][
1 +

m−1∑
j=1

1 + zm−j
1 +K(1− zm−j)

]

=

[
2m−1

m

m−1∏
i=1

(
1

K
+ 1− zi

)][
1 +

1

K

m−1∑
j=1

1 + zj(
1 + 1

K

)
− zj

]
. (2.62)
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Now 1 + 1
K

= 1 + 2 sinh2(β) = cosh(2β) and

2m−1

m

m−1∏
i=1

(
1

K
+ 1− zi

)
=

1

m2
T ′m

(
1 +

1

K

)
=

1

m2
T ′m (cosh(2β)) =

sinh(2mβ)

m sinh(2β)
.

(2.63)

Furthermore, differentiating (2.31), we obtain for z = cosh(τ)

m−1∑
j=1

1

z − zj
=
T ′′m(z)

T ′m(z)
=
m coth(mτ)− coth(τ)

sinh τ
(2.64)

Hence

1 +
1

K

m−1∑
j=1

1 + zj(
1 + 1

K

)
− zj

= 1 + (cosh(2β)− 1)
m−1∑
j=1

−1 +
1 + cosh(2β)

cosh(2β)− zj

= 1 + (m− 1)(cosh(2β)− 1) + (cosh2(2β)− 1)
m−1∑
j=1

1

cosh(2β)− zj

= 1− (m− 1)(cosh(2β)− 1) + sinh2(2β)
m coth(2mβ)− coth(2β)

sinh 2β

= m (1− cosh(2β) + sinh(2β)coth(2mβ)) (2.65)

Combining (2.65) and (2.63) yields

γ = f(x) =
sinh(2mβ)− cosh(2β) sinh(2mβ) + sinh(2β) cosh(2mβ)

sinh(2β)

=
sinh(2mβ)− sinh((2m− 2)β)

2 sinh(β) cosh(β)

=
2 cosh((2m− 1)β) sinh(β)

2 sinh(β) cosh(β)

=
cosh((2m− 1)β)

cosh(β)
, (2.66)
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which proves (2.43). As cosh((2m−1)β)
cosh(β)

is strictly monotonic in β, β > 0 is uniquely

determined from γ. Of course, this fact also follows from the uniqueness of K

proved above.

Now finally, using (2.63), we write

ηmin =
m−1∏
i=0

(1 +K(1 + zi)) = Km−1

m−1∏
i=0

(
1

K
+ 1 + zi

)
=

sinh(2mβ)

(2 sinh(β))2m−1 cosh(β)

(2.67)

It remains to show that B(xcrit) has rank m−1. We will show, more generally,

that B(y) has rank m − 1 for an arbitrary y = (y1, . . . , ym−1), as long as yi 6= yj

for i 6= j in {0, 1, . . . ,m − 1}. As before we set y0 ≡ 1. The proof of Proposition

2.6 below goes through without this restriction on y0, but this more general fact

is of no consequence for the results in this paper.

Factor out bj(y) from the j-th column, j = 0, . . .m− 1 and extend the resulting

matrix to an m ×m square matrix B̃(y) by adding a row that is the negative of

the sum of all the other rows, as follows.

B̃(y) =



m−1∑′
l=0

1
y0−yl

1
y0−y1

1
y0−y2 · · · 1

y0−ym−1

1
y1−y0

m−1∑′
l=0

1
y1−yl

1
y1−y2 · · · 1

y1−ym−1

1
y2−y0

1
y2−y1

m−1∑′
l=0

1
y2−yl

· · · 1
y2−ym−1

...
...

...
. . .

...

1
ym−1−y0

1
ym−1−y1

1
ym−1−y2 · · ·

m−1∑′
l=0

1
ym−1−yl


(2.68)

Clearly, rank B̃(y) = rankB(y). We prove that B̃(y) has rank m− 1 by explicitly
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showing that B̃(y) is similar to the Jordan block

J =



0 1 0 · · ·

0 0 1 · · ·

0 0 0 · · ·
...

...
...

. . .


. (2.69)

Proposition 2.6. For m ≥ 2, B̃(y) has the Jordan decomposition

B̃(y) = P (y)JP (y)−1, (2.70)

where

P (y) =



b0(y) b0(y)(y0 − ym−1) · · · b0(y) (y0−ym−1)m−1

(m−1)!

b1(y) b1(y)(y1 − ym−1) · · · b1(y) (y1−ym−1)m−1

(m−1)!

b2(y) b2(y)(y2 − ym−1) · · · b2(y) (y2−ym−1)m−1

(m−1)!

...
...

. . .
...

bm−2(y) bm−2(y)(ym−2 − ym−1) · · · bm−2(y) (ym−2−ym−1)m−1

(m−1)!

bm−1(y) 0 · · · 0


.

(2.71)

Here the bj(y)’s are defined as in (2.20).

Proof. The matrix P (y) is of the formD1V D2, whereD1, D2 are invertible diagonal

matrices and V is a Vandermonde matrix. Hence, P (y) is invertible and the

proof of (2.70) is equivalent to showing that B̃(y)P (y) = P (y)J , that is, for

0 ≤ j, n ≤ m− 1,

55



m−1∑
k=0
k 6=j

bk(y)

yj − yk
(yk − ym−1)n

n!
+

m−1∑
l=0
l 6=j

bj(y)

yj − yl
(yj − ym−1)n

n!
= bj(y)

(yj − ym−1)n−1

(n− 1)!
,

(2.72)

where 1
(−1)!

= 0.

The proof is based on the counterclockwise integral defined for all t ∈ C

Jm,n(t) =
1

2πi

∮
Γ

(z − t)n
m−1∏
i=0

(z − yi)
dz, 0 ≤ n ≤ m− 1 (2.73)

over a circle Γ of radius R large enough that it encloses all yj’s. Letting R →∞,

we see that Jm,n = δ
(0)
n−(m−1) independent of t. On the other hand, note that the

residue at yk is (−1)m−1bk(y)(yk − t)n. Hence

δ
(0)
n−(m−1) = Jm,n = (−1)m−1

m−1∑
k=0

bk(y)(yk − t)n. (2.74)

Now

∂bk
∂yj

=



bk(y)
yk−yj

for j 6= k

m−1∑
l=0
l 6=j

bj(y)

yl−yj
for j = k

(2.75)

Hence, differentiating (2.74) with respect to yj, leads to the identity

m−1∑
k=0
k 6=j

bk(y)

yk − yj
(yk − t)n +

m−1∑
l=0
l 6=j

bj(y)

yl − yj
(yl − t)n + bl(y)n(yj − t)n−1 = 0, . (2.76)

Letting t→ ym−1, one obtains (2.72).
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2.5 Asymptotics for the relaxed and the discrete

minimization problem

In the following proposition, we evaluate the dependence on m of the solution

x = x(m) of the relaxed minimization problem. For any fixed j, we show that x
(m)
j

converges as m→∞, and we compute the limit.

Proposition 2.7. (a) For K = K(m, γ) as in (2.60)

2(m− 1)2

(cosh−1 γ)2
− 1 ≤ K ≤ 2m2

(cosh−1 γ)2
(2.77)

(b) Set σ := π2

(cosh−1(γ))
2 . Then for all m and all 1 ≤ j ≤ m− 1,

x
(m)
j ≤ 1 + σj2 (2.78)

(c) For any fixed j ≥ 1,

lim
m→∞

x
(m)
j = 1 + σj2 (2.79)

(d)

lim
m→∞

(
η(x(m))

)1/m

m2
=

1

cosh−1 γ
(2.80)

Proof. We first provide bounds on β defined in (2.43). For a lower bound, write

γ =
cosh(2m− 1)β)

cosh β
= cosh(2mβ)− sinh(2mβ) tanh β ≤ cosh(2mβ). (2.81)
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For an upper bound, we have

γ =
cosh(2m− 1)β)

cosh β
= cosh((2m− 2)β) + sinh((2m− 2)β) tanh β

≥ cosh((2m− 2)β). (2.82)

We obtain the bounds

1

2m
cosh−1 γ ≤ β ≤ 1

2m− 2
cosh−1 γ. (2.83)

This implies the upper bound for K

K =
1

2 sinh2 β
≤ 1

2β2
≤ 2m2

(cosh−1 γ)2
. (2.84)

For the lower bound on K, we have by an elementary estimate

K =
1

2 sinh2 β
≥ 1

2β2
− 1 ≥ 2(m− 1)2

(cosh−1 γ)2
− 1. (2.85)

This proves (a).

Also

x
(m)
j = 1 + 2K sin2

(
jπ

2m

)
≤ 1 +

4m2

(cosh−1 γ)2

(
jπ

2m

)2

= 1 + σj2, (2.86)

which proves (b).

From (2.77)

lim
m→∞

K(m, γ)

m2
=

2

(cosh−1 γ)2
, (2.87)
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and so

lim
m→∞

x
(m)
j = 1 +

2

(cosh−1 γ)2
lim
m→∞

2m2 sin2

(
jπ

2m

)
= 1 + σj2, (2.88)

which proves (c).

Finally, from (2.83) we see that

lim
m→∞

2mβ(m, γ) = cosh−1 γ, (2.89)

and hence from (2.42)

lim
m→∞

(η(x))1/m

m2
= lim

m→∞

1

m2

(
sinh(2mβ)

(2 sinh β)2m−1 cosh β

)1/m

= lim
m→∞

(
1

4m2 sinh2 β

)(
2 sin β sinh (2mβ)

cosh β

)1/m

= lim
m→∞

K(m, γ)

2m2
=

1

(cosh−1 γ)2
, (2.90)

which proves (d). This completes the proof of the Proposition.

The above results for the relaxed minimization problem allow us to draw con-

clusions for our original problem with the constraint that the filter locations n
(m)
j

are all integers.

With n
(m)
1 ≡ x

(m)
0 ≡ 1, we seek an integer sequence n(m) = (n

(m)
2 , . . . , n

(m)
m )

such that n(m) is subordinate in the sense of Definition 2.2 to x(m) :=

(1 +K(1 + zj))
m−1
j=1 , the solution of the relaxed minimization problem (2.11),

(2.12). By Corollary 2.2, f(n(m)) ≤ f(x(m)) ≤ γ, so n(m) satisfies (2.10). Note

that for the n
(m)
j ’s we use the original index set j = 1, . . . ,m of Section 2.1, while

for the x
(m)
j ’s we retain the labels j = 0, . . .m − 1. In this section, we work with
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the specific integer sequence n(m) = (n
(m)
2 , . . . , n

(m)
m ) defined recursively by

n
(m)
j+1 =

⌈
n

(m)
j

x
(m)
j

x
(m)
j−1

⌉
, j = 1, . . . ,m− 1, (2.91)

where n
(m)
1 ≡ x

(m)
0 ≡ 1 as above and dse denotes the smallest integer greater or

equal to s. This sequence is minimal amongst all integer sequences subordinate

to x(m) in the sense that if k = (k2, . . . , km) is any integer sequence such that

1 ≤ k2

x
(m)
1

≤ · · · ≤ km

x
(m)
m−1

, then kj ≥ n
(m)
j for all j = 2, . . . ,m. Indeed one has

k2 ≥ x
(m)
1 , which implies k2 ≥ dx(m)

1 e = n
(m)
2 , and assuming by induction kj ≥ n

(m)
j ,

one obtains

kj+1 = dkj+1e ≥

⌈
x

(m)
j

kj

x
(m)
j−1

⌉
≥

⌈
x

(m)
j

n
(m)
j

x
(m)
j−1

⌉
= n

(m)
j+1. (2.92)

Definition 2.3. A sequence of integer vectors k(m) = (k
(m)
2 , . . . , k

(m)
m ), of increasing

length m− 1, m = 2, 3 . . . , with f(k(m)) ≤ γ is said to be asymptotically optimal if

lim
m→∞

(
η
(
k(m)

)
η (x(m))

)1/m

= 1, (2.93)

where x(m) is the solution of (2.11), (2.12) as above.

The relevance of this definition will become clear after Theorem 2.10 below.

The following lemma will be used to assess the asymptotic optimality of n(m).

Lemma 2.8. w(m) = (w
(m)
1 , . . . , w

(m)
m−1) defined by

w
(m)
j = 1 + σj2, (2.94)
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for σ as in Proposition 2.7 (b), is subordinate to x(m).

Proof. By Definition 2.2, we need to show that for 0 ≤ j ≤ m − 2 and w
(0)
m ≡

x
(m)
0 ≡ 1,

w
(m)
j+1

x
(m)
j+1

≥
w

(m)
j

x
(m)
j

, (2.95)

that is

(1 + σ(j + 1)2)

(
1 + 2K sin2

(
jπ

2m

))
≥ (1 + σj2)

(
1 + 2K sin2

(
(j + 1)π

2m

))
,

(2.96)

or equivalently

[
σ(2j + 1)− 2K

(
sin2

(
(j + 1)π

2m

)
− sin2

(
jπ

2m

))]
+

[
2σK

(
(j + 1)2 sin2

(
jπ

2m

)
− j2 sin2

(
(j + 1)π

2m

))]
≥ 0. (2.97)

We show that both these summands are nonnegative.

By Proposition 2.7 (a), K ≤ 2m2σ
π2 , and so for the first summand, it is sufficient

to show that

(2j + 1)− 4m2

π2

(
sin2

(
(j + 1)π

2m

)
− sin2

(
jπ

2m

))
≥ 0. (2.98)

Indeed, by standard trigonometric identities

4m2

π2

(
sin2

(
(j + 1)π

2m

)
− sin2

(
jπ

2m

))
=

4m2

π2
sin

(
(2j + 1)π

2m

)
sin
( π

2m

)
≤ 2j + 1, (2.99)

which proves (2.98).
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On the other hand, the positivity of the second summand follows from the fact

that the function sin(y)
y

is decreasing on [0, π
2
]. This completes the proof of (2.97)

and hence the proof of the Lemma.

Theorem 2.9. If σ, defined in Proposition 2.7, is an integer, then the sequence

n(m), m = 2, 3, . . . , defined by (2.91), is both asymptotically optimal and subordi-

nate to x(m). If σ is not an integer, no sequence of integer vectors can have both

these properties.

Proof. If σ is not an integer, then lim
m→∞

x
(m)
1 = 1 + σ is not an integer, and so for

any sequence k(m) = (k
(m)
2 , . . . , k

(m)
m ), m = 2, 3, . . . , of integer vectors subordinate

to x(m),

lim sup
m→∞

(
η(k)

η(x)

)1/m

≥ lim sup
m→∞

k
(m)
2

x
(m)
1

≥ lim
m→∞

dx(m)
1 e
x

(m)
1

=
1 + dσe
1 + σ

> 1. (2.100)

Hence k(m) cannot be asymptotically optimal.

Now consider the case that σ is an integer. Then by Lemma 2.8, w(m) =

(w
(m)
1 , . . . , w

(m)
m−1) given by

w
(m)
j = 1 + σj2 (2.101)

is an integer sequence subordinate to x(m). It follows that for j = 1, . . . ,m−1, one

has x
(m)
j ≤ nj+1

(m) ≤ w
(m)
j , as n(m) is the minimal integer sequence subordinate to

x(m).

From Proposition 2.7 (a) we see that

2K

m2
≥ 4s

π2

(
1− C1

m

)
(2.102)

for some constant C1 < ∞. Together with the elementary fact that
(

sinx
x

)2 ≥
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1 − C2x
2 for a sufficiently large constant C2, this implies that for 1 ≤ j ≤ m2/3

and some constant C3 <∞

x
(m)
j = 1 + 2K sin2

(
jπ

2m

)
≥ 1 + σ

(
1− C1

m

)(
j2

(
1− C2

π2

4

j2

m2

))
≥ (1 + σj2)

(
1− C3

m2/3

)
. (2.103)

Then for 1 ≤ j ≤ m2/3 and some C4 <∞

nj+1
(m)

xj(m)
≤ wj

(m)

xj(m)
≤ 1

1− C3

m2/3

≤ 1 +
C4

m2/3
. (2.104)

Now

nj+1
(m)

xj(m)
=

1

xj(m)

⌈
n

(m)
j

x
(m)
j

x
(m)
j−1

⌉
≤ 1

xj(m)

(
n

(m)
j

x
(m)
j

x
(m)
j−1

+ 1

)
=
n

(m)
j

x
(m)
j−1

+
1

xj(m)
. (2.105)

Combining (2.102) together with the elementary lower bound sinx
x
≥ 2

π
for 0 ≤

x ≤ π
2
, we obtain x

(m)
j ≥ C5j

2, j ≥ 1, for some constant C5 > 0. By repeated

application of (2.105), one then obtains for m2/3 < j ≤ m− 1 and some constant

C6 <∞

n
(m)
j+1

x
(m)
j

≤
n

(m)
j

x
(m)
j−1

+
1

C5j2
≤ · · · ≤

n
(m)

bm2/3c + 1

x
(m)

bm2/3c

+

j∑
l=bm2/3c+1

1

C5l2
≤ 1 +

C4

m2/3
+

C6

m2/3

(2.106)

Thus there exists some constant C7 <∞, such that for all 1 ≤ j ≤ m− 1,

nj+1
(m)

xj(m)
≤ 1 +

C7

m2/3
. (2.107)
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We conclude that

1 ≤ η(n(m))

η(x(m))
=

m−1∏
j=1

n
(m)
j+1

xj(m)
≤
(

1 +
C7

m2/3

)m
, (2.108)

which implies that

lim
m→∞

(
η(n(m))

η(x(m))

)1/m

= 1, (2.109)

and hence n(m) is asymptotically optimal.

Figure 2.1 illustrates the fact that for σ non-integer, the resulting sequence

n(m) is not asymptotically optimal. As an example, we consider the case γ = 1.5,

corresponding to σ ≈ 10.66. It turns out that for m ≥ 18, one has n2 > w1, and

so the above argument breaks down. The plot in Figure 2.1 compares, for the

smallest such order m = 18, the case γ = 1.5 with the case corresponding to the

(next larger) integer value σ = 11, i.e., γ ≈ 1.48. The values of the nj’s arising in

these two cases differ by at most 1, so they are indistinguishable in the plot. Hence,

allowing for γ = 1.5 instead of γ = 1.48 leads to almost no reduction of η(n)1/m,

although it does lead to a significant reduction of η(x)1/m. This corresponds to

the fact that only in the latter case, one has asymptotic optimality.

Theorem 2.10. For all 1 < γ < 2 such that σ = π2

(cosh−1 γ)
2 is an integer,

all Σ∆ modulators corresponding to filters h(m) minimally supported at positions

1, n
(m)
2 , . . . , n

(m)
m are stable for all input sequences y with ‖y‖`∞ ≤ µ = 2− γ. Fur-

thermore, the family consisting of the Σ∆ modulators corresponding to the filters{
h(m)

}∞
m=2

for all orders m gives rise to exponential error decay: For any rate

constant r < r0 := π
e2σ ln 2

, there exists a constant C = C(r) such that

‖eλ‖L∞ ≤ C2−rλ. (2.110)
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Figure 2.1: The xj’s and nj’s as a function of j for m = 18 and γ = 1.5 or σ = 11,
respectively. For comparison, the wj’s for γ = 1.5 are included in the plot. The
second plot enlarges the dashed box in the first plot, showing that when γ = 1.5
and hence σ is not an integer, one has nj > wj for small j.
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Proof. Stability follows from the fact that n(m) is subordinate to x(m), which sat-

isfies the stability condition f(x(m)) ≤ γ.

Choose the reconstruction kernel ϕ such that the corresponding λ0 as in The-

orem 1.1 satisfies λ0 <
√

r0
r

. Now let g(m) be such that ∆mg(m) = δ(0) − h(m), as

in Definition 1.2. Then by Theorem 1.3, we have the error bound

‖eλ‖L∞ ≤ ‖g(m)‖`1‖v‖`∞‖ϕ‖L1πmλm0 λ
−m, (2.111)

where v solves (1.50).

Recall that our construction yields ‖v‖`∞ ≤ 1. Furthermore, by Theorem 2.9

and Proposition 2.7 (d), we have that

lim
m→∞

(
η(n(m))

)1/m

m2
=

1

(cosh−1 γ)2
(2.112)

and hence by (2.4)

‖g(m)‖`1 =
η(n(m))

m!
=

(
e

(cosh−1 γ)2

)m
mm (1 + o(1))m . (2.113)

Now consider m ≥ M(r) large enough to ensure that the (1 + o(1))-factor is

less than
√

r0
r

. Then

‖eλ‖L∞ ≤ ‖ϕ‖L1

(
πe

(cosh−1 γ)2

)m
mm

(r0

r

)m
λ−m = ‖ϕ‖L1

(eσ
π

)m
mm

(r0

r

)m
λ−m.

(2.114)

Now as explained in section 1.2.3, we choose, for each λ, the filter h(m) that leads to

the minimal error bound. Up to a constant, the bound given in Equation (2.114)

is of the form mmα−m for some α = α(λ) ∈ R. Now in [7] it is shown that there
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exists a uniform constant C ′ such that for all α ∈ R

min
m∈N

mmα−m ≤ C ′e−α/e. (2.115)

Minimizing not over all m ∈ N, but only over m ≥M(r) introduces an additional

constant, but for some constant C = C(r) we still obtain

‖eλ‖L∞ ≤ ‖ϕ‖L1 min
m≥M(r)

(eσ
π

)m
mm

(r0

r

)m
λ−m (2.116)

≤ C exp

(
− π

e2σ

r

r0

λ

)
= C2−rλ, (2.117)

which proves the theorem.

Remark: The smallest integer σ such that the stability constraint ‖h‖`1 ≤ γ is

satisfied for some γ < 2 is σ = 6. In this case, Theorem 2.10 yields exponential

error decay for rate constants r < r0 ≈ 0.102. This is the fastest error decay

currently known to be achievable for Σ∆ modulation. The previously best known

bound for the achievable rate constant was r0 ≈ 0.088 [11].
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Chapter 3

Stability analysis for MCR Σ∆

modulators

3.1 MCR modulators

The constructions presented in Chapter 2 employ filters h with finite impulse

response together with the greedy quantization rule. These filters, however, have

a large number of filter tabs. Indeed, Güntürk showed in [7] that the circuit

complexity of Σ∆ modulators based on FIR filters which satisfy Stability Criterion

(1.65) grows quadratically in the order m. More precisely, there exists a constant

C such that every FIR filter h = δ(0) −∆mg (for some g ∈ `1) satisfying Criterion

(1.65) has at least Cm2 filter tabs. Filters with many tabs result in higher hardware

cost and require a long sequence of delays which can lead to impaired accuracy.

For these reasons, engineers prefer to use filters with infinite impulse response that

do not require long delay sequences [16]. Ideally, the variables in an m-th order

Σ∆ modulator would be stored only for m time instances. For the corresponding
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generating function H(z) = B(z)
A(z)

, this amounts to choosing both A(z) and B(z) to

be polynomials of degree m. The resulting circuits are of minimal complexity with

rational transfer functions; we use the acronym MCR for these schemes.

As h defines an m-th order modulator, 1−H(z) = A(z)−B(z)
A(z)

should be divisible

by (1− z)m, which, together with the facts a0 = 0 and b0 = 1, imply that A(z)−

B(z) = (1− z)m and 1−H(z) = (1−z)m
A(z)

. Once again, we can write 1− h = ∆mg,

where, up to a shift, g has the generating function G = 1
A

. Thus G(z)A(z) = 1

and, again up to a shift, a ∗ g = δ(0) for the vector a that has A as its generating

function. We call g the convolutional inverse of a and write g = a−1. While the

convolutional inverse a−1 can always be defined through the power series expansion

of 1
A(z)

, nothing is known, a priori, about the decay properties or even boundedness

of the entries of such sequences. The following lemma provides a criterion to ensure

that g = a−1 and the corresponding h are in `1.

Lemma 3.1. If a sequence a has the generating function

A(z) =
m∏
j=1

(1− ξjz) (3.1)

for some ξ1, . . . , ξm ∈ C with |ξj| < 1 for all j, then a has a convolutional inverse

a−1 in `1.

Proof. Define

S(i)(z) :=
1

1− ξiz
=
∞∑
l=0

ξliz
l. (3.2)

Then S(i) is the generating function of the sequence s(i) ∈ `1 given by s
(j)
l = ξlj.

Now the `1-sequence s = s(1) ∗ · · · ∗ s(m) corresponds to the generating function

S =
m∏
j=1

S(i) = 1
A

. We conclude that since s ∗ a has the generating function
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S(z)A(z) = 1, one has s ∗ a = δ(0) and s ∈ `1 is the convolutional inverse of a.

We are now ready to make a precise definition for a MCR Σ∆ modulator:

Definition 3.1. We say that the Σ∆ modulator given by the difference equation

vn = h ∗ v + yn − qn (3.3)

together with the greedy quantization rule

qn = sign(h ∗ v + yn) (3.4)

is an MCR Σ∆ modulator (or just MCR modulator) if

δ(0) − h = ∆ma−1 (3.5)

for a finite vector a with generating function A(z) given by

A(z) =
m∏
j=1

(1− ξjz) (3.6)

for some ξ1, . . . , ξm ∈ C such that |ξj| < 1 for all 1 ≤ j ≤ m.

3.2 A criterion for the roots of the denominator

Even though MCR modulators and other modulators that employ similar in-

finite impulse response filters are commonly used in practice, there is hardly any

rigorous stability analysis available for such quantization schemes. In this section,

we show using an explicit construction that stable MCR Σ∆ modulators exist for
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all orders. We will work with the stability criterion given in theorem 1.6, i.e.,

we seek filters h with small `1-norm. In the framework of MCR modulators, this

amounts to optimizing the location of the ξj introduced in Definition 3.1. While

engineers observe the best error decay when the ξi appear in complex conjugate

pairs (compare [16]), it turns out that the scenario where all the roots are chosen

to be real can be generalized to arbitrary orders more easily.

Furthermore, it will be convenient to work with a different set of parameters.

Instead of {ξ1, . . . , ξm}, we will use the parameters {r1, . . . , rm−1, ξm}, where, for

j = 1, . . . ,m− 1, rj :=
1−ξj

1−ξj+1
and ξm is unchanged. Indeed, for k = 1, . . . ,m− 1,

one has

ξk = 1− (1− ξm)
m−1∏
j=k

rj, (3.7)

and so {r1, . . . rm−1, ξm} is an equivalent set of independent parameters.

Proposition 3.2. For 0 < rj < 1, j = 1, . . . ,m− 1 and 0 ≤ ξm < 1, let a be the

finite vector that has the generating function A(z) =
m∏
j=1

(1−ξjz). Here, for j < m,

the ξj’s and the rj’s are related as in Equation (3.7). Then for h := δ(0) −∆ma−1

as above, one has

‖h‖`1 ≤ 1 +
m−1∑
j=1

2m−j

1
rj
− 1

(3.8)

Proof. The generating function of δ(0) − h is given by

1−H(z) =
(1− z)m

m∏
j=1

(1− ξjz)
(3.9)

Thus we can write

δ(0) − h = η(ξ1) ∗ · · · ∗ η(ξm), (3.10)
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where

η(ξj) = ∆s(j) = ∆(1, ξj, ξ
2
j , . . . ) (3.11)

corresponds, up to a shift, to the generating function

E(ξj) =
1− z

1− ξjz
. (3.12)

Equivalently,

h = δ(0) − η(ξ1) ∗ · · · ∗ η(ξm)

= (δ(0) − η(ξ1)) ∗ η(ξ2) ∗ · · · ∗ η(ξm) + δ(0) − η(ξ2) ∗ · · · ∗ η(ξm)

= . . .

=
m∑
j=1

(δ(0) − η(ξj)) ∗ η(ξj+1) ∗ · · · ∗ η(ξm). (3.13)

From the identity

1− E(ξj) =
(1− ξjz)− (1− z)

1− ξjz
=
z(1− ξj)
1− ξjz

, (3.14)

we obtain that up to a shift

δ(0) − η(ξj) = (1− ξj)(0, 1, ξj, . . . ). (3.15)

In particular, all entries of δ(0) − η(ξj) are non-negative, and we see that

‖δ(0) − η(ξj)‖`1 = (1− ξj)
m∑
l=0

ξlj = 1 (3.16)
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and, as η
(ξj)
1 = 1, ‖η(ξj)‖`1 = 2.

Furthermore, for j < m,

(
1− E(ξj)(z)

)
E(ξj+1) =

z(1− ξj)
1− ξjz

1− z
1− ξj+1z

= (1− z)
(1− ξj)
ξj − ξj+1

[
1

1− ξjz
− 1

1− ξj+1z

]
, (3.17)

and correspondingly for the η(ξj)’s

(δ(0) − η(ξj)) ∗ η(ξj+1) =
(1− ξj)
ξj − ξj+1

∆
(
0, ξj − ξj+1, ξ

2
j − ξ2

j+1, . . .
)
. (3.18)

To find the `1-norm of σ(j) := ∆
(
0, ξj − ξj+1, ξ

2
j − ξ2

j+1, . . .
)
, we note that there is

a unique integer N such that

σ(j)
n ≥ 0 for n ≤ N

σ(j)
n < 0 for n > N.

Indeed,

σ(j)
n = [∆

(
0, ξj − ξj+1, ξ

2
j − ξ2

j+1, . . .
)
]n < 0

⇔− ξn−1
j (1− ξj) + ξn−1

j+1 (1− ξj+1) < 0

⇔n > ln(1− ξj+1)− ln(1− ξj)
ln(ξj)− ln(ξj+1)

+ 1

⇒N =

⌊
ln(1− ξj+1)− ln(1− ξj)

ln(ξj)− ln(ξj+1)

⌋
+ 1. (3.19)
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Hence we calculate:

∥∥σ(j)
∥∥
`1

=
N∑
n=0

σ(j)
n −

∞∑
n=N+1

σ(j)
n

=
N∑
n=0

[∆ (0, ξj − ξj+1, . . . )]n −
∞∑

n=N+1

[∆ (0, ξj − ξj+1, . . . )]n (3.20)

= 2ξNj − 2ξNj+1 < 2 (3.21)

For the last equality, we used that both sums in Equation (3.20) are telescoping.

We conclude that

‖(δ(0) − η(ξj)) ∗ η(ξj+1)‖`1 < 2
(1− ξj)
ξj − ξj+1

(3.22)

and

‖h‖`1 ≤
m∑
j=1

‖(δ(0) − η(ξj)) ∗ η(ξj+1) ∗ · · · ∗ η(ξm)‖`1

≤
m−1∑
j=1

‖(δ(0) − η(ξj)) ∗ η(ξj+1)‖`1‖η(ξj+2)‖`1 · · · ‖η(ξm)‖`1 + ‖δ(0) − η(ξm)‖`1

<
m−1∑
j=1

2
(1− ξj)
ξj − ξj+1

2m−j−1 + 1.

= 1 +
m−1∑
j=1

2m−j

1
rj
− 1

. (3.23)

Corollary 3.3. Under the same assumptions as in Proposition 3.2, one has

lim
r1,...,rm−1→0

‖h‖`1 = 1. (3.24)
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Proof. The result follows directly from (3.8) combined with the fact that ‖h‖`1 ≥ 1,

as noted in section 1.2.4.

Remark: In terms of the original parameters, letting all rj → 0 amounts to

letting all ξj except possibly ξm tend to 1 so that each ξj converges faster than

ξj+1.

Theorem 3.4. For each µ < 1, there exists an infinite family of MCR Σ∆ mod-

ulators that has the following properties:

• All the corresponding filters h satisfy ‖h‖`1 ≤ 2− µ.

• The error decay in λ that results from choosing, for each λ, the optimal

modulator from the family can be bounded by

‖eλ‖`∞ ≤ Cλ−κ
√

log λ (3.25)

for some constants C <∞, κ > 0.

Proof. Fix µ < 1. It follows from Proposition 3.3, that for each m, choosing

the rj’s, j = 1, . . . ,m − 1, small enough together with an arbitrary 0 ≤ ξm < 1

yields an MCR Σ∆ modulator M(m) such that the corresponding filter h satisfies

‖h‖`1 ≤ 2− µ. To estimate the error decay that the infinite family of modulators

{M(m)}∞m=1 yields, we bound

‖g‖`1 = ‖s(1) ∗ · · · ∗ s(m)‖`1 ≤
m∏
j=1

‖s(j)‖`1 =
m∏
j=1

1

1− ξj
. (3.26)
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With Relation (3.7), this implies

‖g‖`1 ≤
m−1∏
j=1

r−jj

(
1

1− ξm

)m
=: g∗. (3.27)

Our goal is now to minimize g∗ while ensuring that ‖h‖`1 ≤ 2− µ. A sufficient

condition for this constraint to hold is that the upper bound given in Proposition

3.2 is less or equal to 2 − µ. In this case, each denominator in Equation (3.8) is

greater or equal to 2
1−µ , or equivalently one has 1

rj
− 1 ≥ γ 1

rj
for all 1 ≤ j ≤ m− 1,

where γ := 2
3−µ . Then

‖h‖`1 ≤ 1 +
m−1∑
j=1

2m−j

1
rj
− 1
≤ 1 +

m−1∑
j=1

2m−j

γ
rj =: h∗. (3.28)

We will now minimize g∗ subject to the h∗ ≤ 2 − µ. From Equations (3.28)

and (3.27), one sees that leaving all rj fixed and letting ξm decrease causes g∗

to decrease while keeping the value of h∗ fixed. Hence, one should set ξm to the

minimal admissible value ξm = 0 and consider the following minimization problem:

Minimize g∗ =
m−1∏
j=1

r−jj

over {(r1, . . . , rm−1) ∈ (0, 1)m−1 : h∗ = 1 +
m−1∑
j=1

2m−j

γ
rj ≤ 2− µ}. (3.29)

We will now set up the associated Lagrange multiplier problem. Similarly to the

discussion in Chapter 2, one can show the existence of a minimizer rmin that does

not lie on the boundary and that yields equality in the constraint, h∗(rmin) =

2−µ. In contrast to the minimization problem discussed in that chapter, however,

Minimization Problem (3.29) does not describe the underlying problem precisely
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but is meant to heuristically determine some filter with good error decay. For this

reason, it is not important to show that the critical point obtained from solving the

Lagrange multiplier equations under the equality constraint h∗ = 2−µ is really the

absolute minimum, and we leave the details to the reader. To set up the Lagrange

multiplier equation, calculate for 1 ≤ j ≤ m− 1

∂

∂rj
g∗ = −jg

∗

rj
(3.30)

and

∂

∂rj
h∗ = −2m−j

γ
. (3.31)

Hence, the Lagrange multiplier formulation of Minimization Problem (3.29) reads

as follows:

For every critical point (r1, r2, . . . , rm−1) there exists ζ ∈ R such that for all

j = 1, . . . ,m− 1 one has

jg∗

rj
= ζ

2m−j

γ
. (3.32)

Setting ζ̃ = 2mζ
g∗

, we obtain

rj =
γj2j

ζ̃
. (3.33)

Substituting these values of rj into the constraint, we obtain

2− µ = h∗ = 1 +
m−1∑
j=1

2m−j

γ
rj = 1 +

m−1∑
j=1

j2m

ζ̃
= 1 +

m(m− 1)2m

ζ̃
, (3.34)

and consequently

ζ̃ =
m(m− 1)2m

1− µ
(3.35)
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as well as

rj =
γj(1− µ)

m(m− 1)2m−j
. (3.36)

Using the identity
m−1∑
j=1

j(m− j) = 1
6
m(m− 1)(m+ 1), this yields

g∗ =
m−1∏
j=1

r−jj

=
m−1∏
j=1

(
m(m− 1)2m−j

γj(1− µ)

)j

=

(
m(m− 1)

γ(1− µ)

) 1
2
m(m−1)

2
1
6
m(m−1)(m+1)

m−1∏
j=1

jj
. (3.37)

Hence, by Theorem 1.3 and using the fact that ‖v‖`∞ ≤ 1, we bound:

‖eλ‖L∞ ≤ ‖g‖`1‖ϕ‖L1πmλ−m

≤ g∗‖ϕ‖L1πmλ−m

=
(m(m− 1))

1
2
m(m−1) 2

1
6
m(m−1)(m+1)

γ
m−1∏
j=1

jj
πmλ−m (3.38)

Now for any ε > 0, lim
m→∞

2−εm
3 (m(m−1))

1
2m(m−1)

γ
m−1Q
j=1

jj
πm = 0, so the term 2

1
6
m3

domi-

nates and for any α > 1
6
, we can find a constant C <∞ such that for all m

‖eλ‖L∞ ≤ C2αm
3

λ−m. (3.39)

For each λ, minimize the expression on the right hand side over m, allowing for
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arbitrary real values of m. The minimizer can be easily computed to be

mmin =

√
1

3α
log2 λ (3.40)

yielding the minimum

2αm
3
minλ−mmin = λ−

2
3

√
1
3α

log2 λ. (3.41)

Now m is constraint to be an integer, but the correction term that arises from

choosing bmminc instead of mmin is also dominated and can be absorbed into the

constant C (for a similar argument with all of the details see [7]). We conclude

that

‖eλ‖L∞ ≤ Cλ−
2
3

√
1
3α

log2 λ, (3.42)

which proves the proposition.

Remark: While the error decay bound established by Theorem 3.4 is faster than

any inverse polynomial, it is considerably slower than the exponential error decay

bound established in chapter 2 or even the subexponential error decay established

in [4] for schemes in canonical form with non-standard quantizers. The value of

the schemes considered in this chapter lies mostly in the low complexity of the

underlying circuit architecture. This observation is in line with observations in

the engineering literature (see for example [16]) stating that the stability criterion

given in Theorem 1.6 is “conservative” in the sense that it is too strict to allow for

good error decay.
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3.3 Application to schemes with linear quantiza-

tion rules

For an m-th order MCR Σ∆ modulator, the quantizer can be expressed explic-

itly in terms of the canonical variables un = (g ∗ v)n as introduced in section 1.2.2.

Indeed, as g = a−1 and hence h = δ(0) −∆mg = a ∗ g −∆mg, we obtain

qn = sign([h ∗ v]n + yn)

= sign([(a−∆m) ∗ g ∗ v]n + yn)

= sign([(a−∆m) ∗ u]n + yn). (3.43)

So if a particular choice of a yields a stable MCR Σ∆ modulator, it follows that

for d = a−∆m, the Σ∆ modulator in canonical form

∆mun = yn − qn (3.44)

with the linear quantization rule

qn = sign([d ∗ u]n + yn) (3.45)

is also stable.

In this manner, every statement about the stability of MCR modulators is

equivalent to a statement about the stability of a corresponding scheme in its

canonical variables with a linear quantization rule. For example, Theorem 3.4 also

proves the existence of stable schemes in canonical form with a linear quantization

rule for all orders.
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Chapter 4

A novel stability criterion

In Chapters 2 and 3, we have shown stability for two families of Σ∆ modu-

lators by applying the stability criterion ‖h‖`1 ≤ 2 − µ in conjunction with the

greedy quantization rule. In contrast, in Section 4.1, we consider modulators with

quantization rules different from the greedy rule. We show that the stability cri-

terion is robust with respect to small `1-perturbations of the coefficients used for

the quantizer input. In the remainder of this chapter, we apply these results to

derive a generalized stability criterion for the greedy rule.

4.1 A stability criterion for approximately

greedy quantization rules

Theorem 4.1. For h, h̃ ∈ `1 causal sequences, consider the Σ∆ modulator given

by

vn = (h ∗ v)n + yn − q̃n, (4.1)
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q̃n = sign(h̃ ∗ v + yn) (4.2)

with the initial condition vn = 0 for n < 0. This modulator is stable for all input

sequences y ∈ Yµ if

‖h‖`1 + (1− µ)‖h− h̃‖`1 ≤ 2− µ. (4.3)

Proof. We prove by induction that |vn| ≤ V for all n where V < ∞ is some

constant yet to be determined. The seed is given by the initial condition. For

the induction step, recall the notation ‖w‖(n)
`∞ := sup

j<n
|wj|. In this notation, the

induction hypothesis reads ‖v‖(n)
`∞ ≤ V . To bound vn, we distinguish two cases.

If q̃n = qn := sign ((h ∗ v)n + yn), then

vn = (h ∗ v)n + yn − sign ((h ∗ v)n + yn) (4.4)

and

|vn| ≤ max (|(h ∗ v)n + yn| − 1, 1) ≤ max
(
‖h‖`1‖v‖(n), 1

)
+ µ− 1. (4.5)

In order to conclude that |vn| ≤ V , we need that

max (‖h‖`1V + µ− 1, 1) ≤ V, (4.6)

which can be rewritten as

1 ≤ V ≤ 1− µ
‖h‖`1 − 1

. (4.7)
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Conversely, if q̃n 6= qn, then either q̃n = −1 and

(h̃ ∗ v)n + yn ≤ 0 ≤ (h ∗ v)n + yn, (4.8)

or q̃n = 1 and

(h ∗ v)n + yn ≤ 0 ≤ (h̃ ∗ v)n + yn. (4.9)

In the first case, we obtain

0 ≤ (h ∗ v)n + yn ≤ [(h− h̃) ∗ v]n (4.10)

Combining (4.10) with the equality vn = (h ∗ v)n + yn − q̃n = (h ∗ v)n + yn + 1, we

obtain that vn ≥ 0 and

|vn| = vn ≤ [(h− h̃) ∗ v]n + 1 ≤ ‖h− h̃‖`1‖v‖(n)
`∞ + 1. (4.11)

In the second case (given by Inequality 4.9), the signs in the intermediate steps of

this estimate are reversed, but eventually one obtains the same bound.

In both cases, in order to conclude that |vn| ≤ V , we need that

‖h− h̃‖`1V + 1 ≤ V, (4.12)

or equivalently

V ≥ 1

1− ‖h− h̃‖`1
. (4.13)

Note that the right hand side of Inequality (4.13) is always greater than 1.

Thus a number V that simultaneously satisfies conditions (4.7) and (4.13) exists
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if and only if

1

1− ‖h− h̃‖`1
≤ 1− µ
‖h‖`1 − 1

, (4.14)

which can be rewritten as

‖h‖`1 + (1− µ)‖h− h̃‖`1 ≤ 2− µ. (4.15)

On the other hand, if condition (4.15) holds, then for V that satisfies (4.7) and

(4.13) we can conclude using condition (4.6 ) or condition (4.12) that |vn| ≤ V ,

which concludes the proof by induction.

4.2 General formulation of the stability criterion

The stability criterion of Theorem 4.1 applies to Σ∆ modulators which do not

employ the greedy quantization rule. In this section, we will show how after an

appropriate change of variables, the criterion also allows us to make inferences

about the stability of modulators which do employ the greedy quantization rule.

Theorem 4.2. For ḡ ∈ `1 that has a convolutional inverse ḡ−1 and h̄ such that

δ(0) − h̄ = ∆mḡ, the modulator given by

vn = (h̄ ∗ v)n + yn − qn, (4.16)

qn = sign
(
(h̄ ∗ v)n + yn

)
. (4.17)

is stable if there exists an auxiliary sequence g ∈ `1 such that h = δ(0) − ∆mg

satisfies

‖h‖`1 + (1− µ)(‖δ(0) − g ∗ g−1‖`1) ≤ 2− µ. (4.18)
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Proof. We will perform a change of variables v → ṽ such that equations (4.16) and

(4.17) take a form as in Theorem 4.1, i.e.,

ṽn = (h ∗ ṽ)n + yn − qn, (4.19)

qn = sign
(

(h̃ ∗ ṽ)n + yn

)
(4.20)

for some h̃ yet to be determined. For Equation (4.19) to be equivalent to Equation

(4.16), ṽ should be chosen such that

(
δ(0) − h

)
∗ ṽ =

(
δ(0) − h̄

)
∗ v, (4.21)

and so, as h = δ(0) −∆mg and h̄ = δ(0) −∆mḡ with g, ḡ both in `1,

ḡ ∗ v = g ∗ ṽ,

v = ḡ−1 ∗ g ∗ ṽ. (4.22)

Furthermore, for Equation (4.20) to be equivalent to Equation (4.17), h̃ should be

such that

h̃ ∗ ṽ = h̄ ∗ v =
(
δ(0) −∆mḡ

)
∗ ḡ−1 ∗ g ∗ ṽ =

(
ḡ−1 ∗ g −∆mg

)
∗ ṽ. (4.23)

We conclude that

h̃ = ḡ−1 ∗ g −∆mg = ḡ−1 ∗ g − δ(0) + h. (4.24)

Thus by Theorem 4.1 the modulator given by (4.19) and (4.20) is stable – i.e., ṽ
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is bounded – if

‖h‖`1 + (1− µ)‖δ(0) − g−1 ∗ g‖`1 ≤ 2− µ. (4.25)

Now, as g, ḡ ∈ `1, the sequence v = ḡ−1 ∗ g ∗ ṽ is bounded if and only ṽ is,

and Inequality (4.25) is also a condition for stability of the modulator given by

Equations (4.16) and (4.17). This completes the proof of the theorem.

4.3 Application to MCR Σ∆ modulators

Condition (4.18) in Theorem 4.2 implies that ‖h‖`1 < 2 − µ. Hence the mod-

ulator with the auxiliary variable h as its filter coefficient vector and the greedy

quantization rule will have better stability behavior than the modulator with co-

efficient vector h̄. Consequently, Theorem 4.2 is expected to be particularly useful

if additional constraints are imposed on the structure of h̄. These constraints need

not hold for the auxiliary vector h, and we can make inference from general sta-

ble modulators to those with the additional structure. Of particular interest are

MCR Σ∆ modulators, where ḡ−1 = a and consequently, Condition (4.18) takes

a particularly simple form. In this case, Theorem 4.2 is directly reformulated as

follows.

Theorem 4.3. The MCR Σ∆ modulator given by

vn = (h̄ ∗ v)n + yn − qn, (4.26)

qn = sign((h̄ ∗ v)n + yn) (4.27)
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with δ(0) − h̄ = ∆ma−1 for some a with polynomial generating function

A =
m∏
j=1

(1− ξjz) (4.28)

for complex numbers ξj with |ξj| < 1 is stable if there exists g ∈ `1 such that

h = δ(0) −∆mg satisfies

‖h‖`1 + (1− µ)‖δ(0) − a ∗ g‖`1 ≤ 2− µ. (4.29)

Remark: The basic stability criterion given in Theorem 1.6 is a special case

Theorems 4.2 and 4.3; one can choose g = ḡ or, when we work with an MCR

modulator, g = a−1. We do not know to which extent these results are true

generalizations of the basic criterion, i.e., how many (if any) modulators exist the

stability of which can be shown via Theorem 4.2 or Theorem 4.3, but not via the

basic criterion.
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