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Abstract

T
HE radiation pressure force, combined with an optical cavity, offers a tool to manipulate
and control the mechanical motion of micro- and nanomechanical resonators. Bringing
its backaction effects together with mechanical resonators capable of hosting optically ac-

tive defects – like quantum emitters or spin qubits – which are susceptible to strain, could en-
able the realization of hybrid quantum devices. Some van der Waals materials, such as hexagonal
boron nitride (hBN) or tungsten diselenide (WSe2), fulfill these conditions. However, and until
this day, the backaction from the radiation pressure force has not been observed with mechani-
cal resonators made from van der Waals materials at optical wavelengths. Indeed, its effects were
hidden by other more prominent forces like photothermal ones.

In this work, we demonstrate radiation pressure backaction effects on an hBN mechanical res-
onator at room temperature and in the telecom optical regime (λ = 1550nm). The cavity op-
tomechanical platform we present consists of a high finesse optical Fabry-Pérot microcavity. It
is formed by two fiber mirrors facing each other and separated by a cavity length of 41µm. The
empty cavity has a finesse as large as F = 194000. We insert the mechanical resonator in the
middle of the cavity, forming a membrane-in-the-middle optomechanical system. The hBN me-
chanical resonator is mechanically exfoliated and dry-transferred onto a hole patterned on a low-
stress SiN stripe suitable to be inserted into the cavity. The hole serves as a circular frame for
the hBN resonators. Before demonstrating the dynamical backaction effects, we characterize the
mechanical response of the sample on a Michelson interferometer. We find that the mechanical
modes of the hBN resonator and the heavier SiN stripe hybridize. Furthermore, we characterize
the static optomechanical couplings of the system by placing the sample in the middle of the cav-
ity and studying the dependence of the cavity resonance as a function of the sample’s position.
Finally, and for the first time, we explore the optical spring effect and optomechanical damping
of an hBN mechanical resonator experimentally, reaching single-photon coupling strengths up to
g0/2π = 1000Hz. The cavity optomechanics platform presented in this work unlocks a tool that
will accelerate the research of emitter-optomechanics or spin-optomechanics with hBN and other
van der Waals materials.
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Zusammenfassung

D
IE Bewegung mikro- und nanomechanischer Resonatoren lässt sich mithilfe des Strah-
lungsdrucks eines Lichtfeldes manipulieren und steuern. In Resonatoren aus kristallinen
Materialien können Materialdefekte als Quantenemitter oder Spin Qubits fungieren. Da

viele dieser Defekte an die mechanische Spannung des Materials koppeln, würde eine Steuerung
solcher mechanischer Resonatoren mit Strahlungsdruckkräften eine Vielzahl hybrider Quanten-
bauelemente ermöglichen. Einige van der Waals Materialien, wie z.B. hexagonales Bornitrid (hBN)
oder Wolframdiselenid (WSe2), können geeignete Defekte für Quantenanwendungen beherber-
gen. Bis heute ist jedoch keine Kontrolle mechanischer Resonatoren aus van der Waals Materia-
lien mit Strahlungsdruckkräften gelungen, da in bisherigen Experimenten andere Einflüsse, z.B.
photothermische Kräfte, dominieren.

In dieser Arbeit zeigen wir Strahlungsdruckrückwirkungskräfte auf einen mechanischen Resona-
tor aus hBN bei Raumtemperatur bei der technisch relevanten Wellenlänge von λ= 1550nm. Die
von uns vorgestellte Kavitätsoptomechanik-Plattform besteht aus einer durch zwei Faserspiegel
gebildeten optischen Mikrokavität mit sehr hoher Finesse. Bei der leeren Kavität beträgt die Fi-
nesse F = 194000. Wir setzen einen mechanischen Resonator aus hBN in die Mitte dieser Kavität
ein, wodurch ein optomechanisches membrane-in-the-middle System ensteht. Den hBN Reso-
nator stellen wir her, indem hBN exfoliert und auf eine gelochte, spannungsarme SiN Membran
übertragen wird. Das Loch im SiN dient dabei als Rahmen für den hBN Resonator. Wir charak-
terisieren zunächst das mechanische Modenspektrum der Resonatoren mit einem Michelson-
Interferometer und stellen fest, dass die Moden des hBN Resonators und der viel schwereren
SiN Membran hybridisieren. Den so vorcharakterisierten Resonator platzieren wir anschließend
in der Mitte der optischen Kavität und bestimmen die statische optomechanische Kopplung des
Systems, die durch die Verschiebung der Resonanzfrequenz der optischen Kavität als Funktion
der Position der Membran gegeben ist. Abschließend demonstrieren wir erstmals den “optical
spring effect” und optomechanische Dämpfung an einem mechanischen hBN Resonator mit ei-
ner Einzelphotonenkopplungsstärke von bis zu g0/2π= 1000Hz. Die in dieser Arbeit vorgestellte
kavitäts-Optomechanik Plattform ermöglicht die Erforschung hybrider Quantenbauelemente, in
denen die Materialdefekte in hBN oder anderen van der Waals Materialien mit den mechanischen
Resonanzen und dadurch mit dem Lichtfeld wechselwirken.
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1
Introduction

I
MAGINE yourself lying on the grass in the English Garden in Munich on a sunny day. You will
soon feel warm enough to perhaps consider jumping into the river. This happens because
light is composed of electromagnetic waves that carry energy. Your body absorbs this energy,

which is then transformed into heat. What will be harder for you to realize, actually impossible, is
that the very same waves also carry momentum, exerting a force on you – pushing you! This force
is called radiation pressure force, and the reason we don’t feel it in our daily lives is because it is
extremely weak. To give you an idea, the magnitude of the force the rays of the Sun exert on us is
about 1µN, similar to the force exerted by the weight of a grain of salt.

But someone did realize that light could push: Johannes Kepler. He observed that one of the two
tails of a comet always points away from the Sun, and thus suggested in 1619 that the Sun’s light
could move the comet’s particles away [2]. James C. Maxwell, with his theory of electromagnetism,
developed the concept of light as being electromagnetic waves which carry momentum. In 1873,
in his "A treatise on Electricity and Magnetism" [3, p. 792-793], he stated for the first time that
the momentum transfer upon the reflection of light on a surface could lead to a radiation pres-
sure force. Adolpho Bartoli arrived independently to a similar conclusion using thermodynamics
principles in 1876 [4].

The first successful experimental demonstrations of radiation pressure came in 1900 by Peter N.
Lebedew [5] and in 1901 by Ernest F. Nichols and Gordon F. Hull [6, 7]. Their experiments were
done using a torsion balance and arc lamps as light sources, but the experimental errors were
large1 due in part to the weakness of the force, as well as to experimental difficulties. A techno-
logical revolution was necessary to increase the magnitude of the radiation pressure and hence its
observable effects. This revolution happened in the 1960s and was the invention of the laser [10].
Since then, radiation pressure has enabled many applications, from the ability to hold micro and
nanometer-size systems like bacteria [11] and DNA [12] with the use of optical tweezers, invented
by Arthur Ashkin in the 70s [13], to the propulsion of spacecrafts with solar sails [14].

Around the same time Ashkin was developing the optical tweezers, Vladimir B. Braginsky studied
the effects of radiation pressure when the electromagnetic radiation is confined within a hollow

1Initially, Nichols and Hull claimed an experimental error of only 1% with respect to Maxwell’s predictions [6, 7].
Around thirty years later, the experiments from Alice Golsen [8] and Mary Bell and S. E. Green [9] highlighted that the
experimental error from Nichols and Hull must have been around 10%.
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Chapter 1. Introduction

metal box used as a microwave cavity. He focused on the particular case when one of the walls
of the box is capable of moving around an equilibrium position, becoming then a mechanical
oscillator [15, 16]. In his pioneer work, he demonstrated that the finite life time of the cavity leads
to a retardation between the radiation pressure force and the actual position of the movable wall.
These time lag effects make the force capable of extracting or giving energy to the mechanical
resonator, in other words, capable of cooling or heating it. Interestingly, the cavity is at the same
time a powerful and precise measurement tool of the resonator’s motion. The field of research
studying the interaction mediated by the radiation pressure force of an electromagnetic cavity
and a mechanical resonator is called cavity optomechanics [17, 18]. This mature research field,
which has been studied over three decades, has many-fold applications, such as the detection of
weak signals like forces [19–22], masses [23] and accelerations [24]; the sensing of displacements
with an imprecision below the standard quantum limit [25–27]; the cool down of a mechanical
resonator to or close to its ground state [28, 29]; the manipulation of the quantum states of light
[30]; the investigation of quantum gravity effects [31, 32]; the development of gravitational waves
detectors [33–35]; or the realization of electro-opto-mechanical transducers [29, 36].

An approach to increase the optomechanical interaction is to reduce the mass of the mechanical
oscillators, and therefore make them more susceptible to experience the radiation pressure force.
The ultimate limit in reducing the mass of an oscillator is the atomic thickness. Indeed, there
has been increasing efforts in performing optomechanical experiments with carbon nanotubes
[37–40], nanowires [20] and van der Waals materials [41–44]. In this thesis we want to pursue this
direction and study radiation pressure backaction effects on mechanical resonators made out of
hexagonal boron nitride (hBN) – a type of van der Waals material – using a telecom cavity.

B N

Boron
vacancy

Figure 1.1: Illustration of the lattice structure of hexagonal boron nitride (hBN). Boron and nitrogen
atoms are represented as orange and blue circles, respectively. The atomic bonds are depicted as black
solid lines. The missing boron atom in the center illustrates a type of magnetically optically active defect, a
negatively charged boron vacancy center (V −

B ).

Figure 1.1 depicts the atomic structure of a monolayer of hBN viewed from atop. It is composed
of boron (B, orange circles) and nitrogen atoms (N, blue circles) arranged in a hexagonal lattice
in a similar way to graphene. From the mechanics point of view, this layered crystal is an inter-
esting material because of its large in-plane Young’s modulus of 392 GPa [45] and breaking strain
of 12.5 % [46]. These, together with the recent development of patterning methods [47, 48], have
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opened the door to the engineering of mechanical resonators with high quality factors and tun-
able frequencies. On top of that, hBN is transparent in the visible and infrared part of the optical
spectrum due to its wide bandgap of 6 eV [49], which makes it less prone to photothermal heating
than other van der Waals materials like graphene. Indeed, photothermal forces, rather than radi-
ation pressure, were responsible for the optomechanical backaction observed in other resonators
made from van der Waals materials in the optical regime, limiting their performance so far [50–
52].

But an even more interesting characteristic of this type of layered material is its large variety of
single-photon emitters. They span from the UV to the low infrared part of the spectrum [53, 54]
and are capable of operating at room temperature and even up to 800 K [55]. In addition, they
are tunable via strain or electric fields [56–59], which adds new means of control of the emitters’
properties. Over the past three years, several groups [60–62] have demonstrated optically detected
magnetic resonance in negatively charged boron vacancy defects (V −

B ), together with coherent
control of the spins [63, 64]. Such defects, illustrated as the missing boron atom in Figure 1.1, are
also sensitive to strain [65, 66], and consequently could be coupled to the mechanical motion. One
can envision a system composed of hBN where its mechanical motion interacts with the light field
via radiation pressure and at the same time with the defects through strain gradients, realizing
a hybrid quantum system [67–70]. A possible transduction scheme is illustrated in Figure 1.2a,
which has been successfully implemented to couple telecom photons to spin qubits made of NV
centers in diamond [71].

Defect
(charge/spin)

 Optical
electromagnetic field

(photons)

Mechanical
 oscillators
(phonons)

Cavity optomechanicsSpin/Charge
mechanics

This thesis

hBN

a b

Figure 1.2: Towards hybrid quantum systems with hBN. (a) Schematic illustration of a possible transduc-
tion scheme between between telecom photons and the defects in hBN resonators. (b) Illustration of our
experimental platform for cavity optomechanics with hBN resonators. The cavity is formed by two fiber
mirrors facing each other. In the middle of the optical mode (red) we place an hBN mechanical resonator
(blue).

In this work we focus on the right part of the transduction scheme and demonstrate the control
and modification of the mechanical motion of hBN resonators through cavity optomechanics.
Our experimental platform is illustrated in Figure 1.2b. It consists on a fiber-based optical micro-
cavity operated at λ = 1550nm with an hBN mechanical resonator placed in the middle of the
cavity, forming a membrane-in-the-middle optomechanical system [72].

This thesis is structured as follows. Chapter 2 introduces the theoretical foundations necessary
to understand the radiation pressure backaction effects for the particular case of a membrane-
in-the-middle optomechanical system. In Chapter 3 we present and describe the experimental
setup, which I constructed over the course of the first four years of my PhD. The first part contains
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Chapter 1. Introduction

the details on the production of the fiber mirrors, the cavity assembly and cavity characterization,
which is the core of the experiment. The second part is dedicated to the thermal and vibration
stability of the experiment and to the locking scheme used to stabilize the cavity length. Chapter 4
focuses on the fabrication and mechanical characterization of the hBN resonators. Due to the
geometrical constrains of the cavity, the hBN resonators have to be fabricated on top of a larger
SiN membrane, which is also a mechanical oscillator itself. The mechanical modes of the two
resonators hybridize, which we show at the end of Chapter 4. In Chapter 5, we present the full
cavity optomechanical system. We first explore the optomechanical couplings by mapping the
static properties of the radiation pressure interaction as a function of the position of the resonator
within the optical cavity. We conclude the chapter by demonstrating the effects of the retarded
radiation pressure force on the mechanical properties of the hBN mechanical resonator. Finally,
in Chapter 6, we summarize the main achievements of this work and we discuss some possible
improvements and directions for future experiments.

4



2
Cavity optomechanics

T
HIS thesis studies the interaction of an optical cavity with a mechanical membrane res-
onator, a cavity optomechanical system. Before diving into the experimental results, we
need to establish the common language and terminology that I will employ in the rest of

this thesis. This is the purpose of this chapter.

Three are the main theoretical concepts that I will summarize: the mechanical resonator, the opti-
cal cavity and finally their interaction when the mechanical resonator is incorporated in the mid-
dle of the cavity (cavity optomechanics). The three are well-established fields of research, and
are explained in extreme detail in many textbooks and research articles. To avoid repetitions, I
decided to introduce them here in the most pedagogical way I could find, keeping the necessary
level of completeness to faithfully cover the topics relevant to this thesis. If the reader is looking
for a careful and thorough mathematical treatment, here is the literature I found most instructive:
for the mathematical treatment of non-noisy and noisy signals in the time and frequency domain,
Refs. [73, 74]; the concept of harmonic oscillator and mechanical resonators, Refs. [75, 76]; the
basics on optical cavities and optical modes, Refs. [77, 78]; and the fundamentals on cavity op-
tomechanics, Refs. [17, 18].

2.1 Mathematical definitions

Let x(t ) be a time-dependent physical process, for example, the time varying amplitude of a guitar
string, or the electrical signal generated by a photodetector upon arrival of laser light. In the lab,
we could directly measure this time dependence by using, for instance, an oscilloscope. However,
sometimes it is more convenient to work with the frequency domain representation of the signal,
x(ω). The time and frequency domain are related by the Fourier theory. Here we use the conven-
tion adopted in the optomechanics community for the Fourier transform of the signal x(t ) [17,
79],

F [x(t )](ω) = x(ω) =
∫ ∞

−∞
x(t )e iωt d t , (2.1)

with ω= 2π f the angular frequency and i ∈ C the imaginary unit. Recall here that x(ω) has units
of x(t ) per Hertz. The inverse Fourier transform is then

F−1[x(ω)](t ) = x(t ) =
∫ ∞

−∞
x(ω)e−iωt dω

2π
. (2.2)

5



Chapter 2. Cavity optomechanics

Spectrum analyzers are in this case the devices used in laboratories to measure the Fourier trans-
form of x(t ), i.e. its frequency spectrum x(ω).

The beauty of working in the frequency domain is that the convolution integral of time domain
methods is replaced by a simple multiplication, making calculations often simpler. Let’s see when
this can become handy: imagine a linear system having one input and one output, where x(t ) is
the input signal and y(t ) the output. y(t ) could be, for instance, the displacement of a mechanical
resonator from its equilibrium position when experiencing a force x(t ). Assuming the system to
be time-invariant, then the two are related via the system’s impulse response h(t ) [80]

y(t ) =
∫ ∞

−∞
x(t )h(t − t ′)d t ′. (2.3)

This integral equation might look a little complicated. If we compute the Fourier transform, we
get

y(ω) = h(ω)x(ω), (2.4)

where we refer to h(ω) as the system’s frequency response. Equation 2.4 suggests that if we find a
way to measure y(ω) for a controlled and known input x(ω) we can compute h(ω), and from then
on predict any output of the system for a new, completely different type of input as long as we
can compute its Fourier transform x(ω). This is very useful, and devices like the Vector Network
Analyzer are constantly used in labs to measure h(ω).

But, what happens when we cannot compute the Fourier transform of x(t )? This is a very com-
mon problem as many processes are random in nature, like noisy signals, making it impossible1

to calculate x(ω). Actually, this is of crucial importance for this thesis, as most of the experiments
are carried out on mechanical resonators whose motion is driven by a fluctuating random force.
Therefore, one has to find another way to treat those signals in the frequency domain. We cir-
cumvent this problem mathematically2 by defining the power spectral density (PSD) Sxx (ω) of a
sample function x(t ) as the expected value of the Fourier transform [73]

Sxx (ω) = lim
T→∞

E [|xT (ω)|2]

2T
, (2.5)

where xT (ω) is the Fourier transform of x(t ) evaluated over the time interval −T < t < T (also
called gated Fourier transform3) . E [|xT (ω)|2] denotes the expected value of |xT (ω)|2, i.e. the aver-
age of |xT (ω)|2 over many independent experimental runs. One can think of the PSD as the noise
power density per unit of frequency.

It can be shown that the power spectral density follows a relation similar to Eq. 2.4 [73]:

Sy y (ω) = |h(ω)|2Sxx (ω). (2.6)

1The time function of a stationary random process is not absolutely integrable, and therefore is not Fourier trans-
formable [73].

2We assume an ergodic process (and therefore stationary), which means that the ensemble properties can be mea-
sured by time averaging long enough, and the statistical properties are time independent. We also assume a process of
finite intensity [73].

3The gated Fourier transform is equivalent to defining a new sample function xT (t ) such as xT (t ) = 0 if |t | > T and
xT (t ) = x(t ) otherwise [73].

6



2.2. Mechanical resonators

Once we know the power transfer function of our system |h(ω)|2, we can also predict how it will
behave under a noisy input with a given power spectral density. We remark that Sxx is defined for
both positive and negative frequencies and is commonly referred in the literature as double-sided
PSD. If x(t ) is real-valued, like most physical signals, then one can define the single-sided PSD
Sx (ω)

Sx (ω) = 2Sxx (ω), ω> 0, (2.7)

which is the one we will employ here.

Another useful property of a stationary random process is that the time average of the mean-

square value 〈x2(t )〉 is equal to the mean-square value of x(t ), x2(t ), and is related to the PSD in
the following way [73]:

〈x2(t )〉 = x2(t ) =
∫ ∞

0
Sx (ω)

dω

2π
. (2.8)

where we have introduced the notation for the mean-square value x2(t ) = E [x2(t )]. Equation 2.8
is very relevant for this work because it states that we can calculate the mean-square of a random
process by computing the area under the PSD, which is experimentally accessible.

2.2 Mechanical resonators

The heart of this thesis consists on fabricating mechanical resonators at the nanometer scale and
making them interact with light. Specifically, we use a set of two-dimensional resonators called
membranes. The every-day example would be the membranes from the acoustic drums. We say
that they are two-dimensional because the thickness of the membrane is orders of magnitude
smaller than its lateral dimension, i.e., these devices have a large aspect-ratio. In this section we
start by explaining the simplest resonator, the one-dimensional harmonic oscillator. We continue
studying how, even in the absence of any external active forces, the resonator’s motion is always
driven by the fluctuations of the environment. We finish by describing the real 2D motion of the
membranes and how we can map it into a set of individual harmonic oscillators, conveniently
simplifying our system.

2.2.1 One-dimensional damped harmonic oscillator

The harmonic oscillator is a physics model representing a system that, when displaced from its
equilibrium position, experiences a restoring force F (t ) proportional to the displacement z(t ),
following Hooke’s law F (t ) = −kz(t ). The simplest harmonic oscillator is a mass on a spring of
stiffness k (Fig. 2.1). Many phenomena in nature can be modeled as harmonic oscillators: bungee
jumping, the vibrations of a diving board, an electron rotating around the nucleus of an atom...
This makes the harmonic oscillator one of the most used toy models in physics.

Our mechanical resonators are very well represented as harmonic oscillators when vibrating with
small amplitudes and when the resonator’s mechanical modes are isolated4. If they would only
experience the restoring force, they would oscillate forever around the equilibrium position, since

4Isolated here means that the mechanical resonances are far apart such that there is no spectral overlap between
mechanical modes.
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Chapter 2. Cavity optomechanics

z(t)

Figure 2.1: Non-driven damped harmonic oscillator. Illustration of a non-driven damped harmonic os-
cillator represented as a mass (orange) on a spring (black). The oscillator is damped via radiation to the
substrate (red wavy arrows) and the random impacts of gas molecules, represented as green beads. The
right graph shows in gray the amplitude decay of the resonator z(t ) as a function of time once displaced
from its equilibrium position (Eq. 2.10 with Ω0 = 15radHz and Γ0 = 1radHz) . The red dashed line depicts
the exponential decay exp(−Γ0t/2).

there is no mechanism for them to loose energy. In reality, there is a plethora of damping mecha-
nisms – e.g. bending losses, radiation to the substrate5, and gas damping among others [76, 81] –
that dissipate the energy of the resonator [82].

Let z(t ) represent the time-dependent amplitude of the damped vibrational mode, m its effec-
tive mass, and Γ0 the energy decay rate (assumed frequency independent here6). The differential
equation of motion reads

mz̈(t )+Γ0 ż(t )+mΩ2
0z(t ) = F (t ), (2.9)

where we have included an external force F (t ) that drives the resonator and Ω0 = p
k/m the

resonator’s natural frequency. The effective mass accounts for having a continuum mechanical
structure instead of a point mass, and can be calculated by equating the kinetic energy of the me-
chanical structure to the potential energy that a point mass m would have [76]. For example, the
effective mass of the fundamental mode of a circular membrane is approximately a quarter of its
physical mass m0, m = 0.27m0 [75].

Let’s solve Eq. 2.9 first for the particular case when F (t ) = 0, i.e. the mode is undriven. We also
consider a vibrational mode whose resonance frequency is several orders of magnitude larger than
its amplitude decay rate,Ω0 ≫ Γ0/2 – the resonators we use in this work satisfy this condition, with
typically Ω0/Γ0 > 1000. In that case, one can solve Eq. 2.9 easily and obtain the vibrational mode’s
time dependent amplitude response

z(t ) = z0 exp

(
− Γ0t

2

)
cos

(
tΩ0

√
1−Γ2

0/(4Ω2
0)

)
, (2.10)

where z0 is the amplitude of the oscillations at t = 0. We can see that the system oscillates around
its equilibrium position, here set at 0, but its amplitude decays exponentially in time at a rate Γ0/2
(Fig. 2.1). In most of the literature, instead of the energy decay rate, one uses the dimensionless
quality factor Q. The latter can be approximated as Q =Ω0/Γ0 for Ω0 ≫ Γ0/2.

5Also commonly referred to as clamping losses [76].
6The frequency dependence, if there is any, of the different types of damping is diverse. The reader is referred to

Refs. [81, 82] for an extensive study.
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2.2. Mechanical resonators

Solving Eq. 2.9 for a specific driving force F (t ) is generally difficult in the time domain. However,
as explained in Section 2.1, we can use the Fourier transform to make these calculations easier,
obtaining

m
[
(Ω2

0 −ω2)+ iΓ0ω
]
z(ω) = F (ω). (2.11)

Following Eq. 2.4, the amplitude’s frequency response then reads

z(ω) = 1

m
[
(Ω2

0 −ω2)+ iΓ0ω
]F (ω) =χm(ω)F (ω). (2.12)

where we have introduced the mechanical susceptibility, χm(ω).

Finally, we introduce the concept of zero-point fluctuations zzpf of a quantum harmonic oscilla-
tor

zzpf =
√

ħ
2mΩ0

, (2.13)

which is the minimum amplitude of the resonator when it is at its lowest possible energy7, i.e. in
the quantum ground state [79].

2.2.2 Thermal noise

Even in the absence of any external active forces actuating the mechanical resonator (for exam-
ple, a piezo shaking the sample), it moves. This motion occurs because the resonator is coupled
through the dissipation mechanisms to, and in thermal equilibrium with the environment, which
is at a non-zero temperature Tbath. For example, in case of gas damping, the resonator looses en-
ergy due to the random collisions with the gas molecules. These random collisions also lead to a
fluctuating force Fth that drives the motion of the resonator. Any fluctuations associated with a
particular dissipation channel will lead to a force whose power spectral density is given by, using
the fluctuation-dissipation theorem [83]

SFth =
4kB Tbath

ω
Im

(
χm(ω)

)= 4mkB TbathΓ0, (2.14)

where kB is the Boltzmann constant. We highlight that the dissipation mechanism is hidden in
Im

(
χm(ω)

)= mΓ0ω, different damping processes will have different forms of Γ0 [82, 84]. Since we
have assumed Γ0 is frequency-independent, the thermal force is spectrally flat.

We have just found a way to express the power spectral density of the random force driving our
mechanical resonators. Recalling the definitions of power spectral densities, we can recover the
displacement power spectrum of a resonator driven by a thermal noise,

Sz (ω) = |χm(ω)|2SFth =
4kB TbathΓ0

m
((
Ω2

0 −ω2
)2 +Γ2

0ω
2
) . (2.15)

7Strictly speaking it is the root-mean square zero-point uncertainty of the mechanical ground state wave function.
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Chapter 2. Cavity optomechanics

If we look at a frequency range close to the resonance frequency (ω ∼Ω0) and assume Γ0 ≪Ω0,
Eq. 2.15 can be simplified to a Lorentzian with full width at half maximum (FWHM) Γ0

Sz (ω) ≃ kB TbathΓ0

mΩ2
0

((
ω−Ω0

)2 + (
Γ0/2

)2
) . (2.16)

We can make use of the equations derived in Section 2.1 and compute the mean-squared dis-
placement of the resonator

〈z2(t )〉 =
∫ ∞

0
Sz (ω)

dω

2π
= kB Tbath

mΩ2
0

. (2.17)

Its root-mean square (rms) displacement is then

zrms =
√

kB Tbath

mΩ2
0

, (2.18)

which represents the average amplitude of the oscillations of a mechanical resonator driven by
thermal noise.

2.2.3 Modal analysis of two-dimensional resonators

In the previous section we have assumed our resonators (or one of its degrees of freedom) can be
simplified as a harmonic oscillator: a point mass oscillating around its equilibrium position. But
real resonators, like a drum-head or a guitar string, are continuous bodies, with a volume, that can
move in many ways. If we are interested in the mode shapes and want to predict the resonance
frequencies, we need to solve the equation of motion for each particular geometry.

Membranes are two-dimensional mechanical resonators whose vibrational properties are domi-
nated by their in-plane tension N . This can occur either when the membrane is thin enough8 so
that the bending rigidity is negligible or when it has a very high in-plane tension. On the other
hand, when the bending rigidity dominates the mechanical behavior, we refer to the resonator as
plate.

Let’s consider an undamped membrane of thickness dm and arbitrary geometry. Its surface lies
in the xy plane and it has an in-plane tension given by N = σdm , where σ is the in-plane stress.
The membrane is oscillating along the z direction (shown on left side of Fig. 2.2), with a time-
dependent out of plane deflection represented by a function a(x, y, t ). The equation of motion of
a(x, y, t ) is given by the two-dimensional wave equation

∇2a − ρ

σ

∂2a

∂t 2 = 0, (2.19)

where ∇2 is the two-dimensional Laplacian operator and ρ the physical density of the membrane,
and where we have neglected the membrane’s bending rigidity [75]. Equation 2.19 is usually
solved by separating the spatial and time components, a(x, y, t ) = ∑

n un(x, y)zn(t ). In the lat-
ter we have reflected that the total deflection can be decomposed as a sum of an infinite number

8Thin enough means that the membrane’s thickness dm is way smaller than its lateral dimensions (dm ≪ Lx ,Ly ).
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2.2. Mechanical resonators

z
y

Figure 2.2: Mapping a two-dimensional motion into individual harmonic oscillators. Cross section of
a SiN membrane (orange) that is oscillating along the z axis with a mode profile u(y). The membrane is
damped by gas molecules (green beads) and the radiation to the substrate (red wavy arrows) with a total
damping rate Γ0. The point of maximum deflection is mapped into a harmonic oscillator with effective
mass m and PSD Sz . A position with u(y0) = 0.5 would be mapped into a harmonic oscillator of m′ = 4m
and hence have a PSD four times smaller.

of independent modes, where the mode shape information of each one resides in un(x, y) and
its time dependence in zn(t ). By selecting the coordinate system in a smart way and imposing
clamped boundary conditions [75], we can solve Eq. 2.19 for a variety of membrane geometries
and obtain the discrete resonance frequencies Ωn , mode shapes un(x, y) and time dependencies
zn(t ). The solution to the temporal part of Eq. 2.19 is the one of an undamped harmonic oscillator
zn(t ) = zn,max cos(Ωn t ), with zn,max the maximum amplitude.

In this thesis, we normalize the mode shapes un(x, y) so that the maximum of its absolute value
is unity. With this convention, the mode shapes un(x, y) are unitless, implying that zn(t ) has units
of distance and corresponds to the resonator’s real displacement [75]. That means, a mode with a
displacement of zmax at the point of maximum deflection, will have a deflection an(xmax, ymax, t ) =
zmax cos(Ωn t ). The amplitude an will be smaller by a factor of un(x0, y0) at any other point (x0, y0).
Interestingly, we can see that at each position the mode behaves like a harmonic oscillator – we
have reduced our 2D problem into a single degree of freedom. This normalization condition and
its implication for our measurements are illustrated in Figure 2.2.

We could complicate the situation a bit more and imagine that the membrane is damped and
driven by a thermal force. We would need to include those terms into Eq. 2.19. Due to the sep-
aration of variables, we will obtain the same solution for the mode shapes. In this case, the time
evolution z(t ) will be given by the one of a thermally driven damped harmonic oscillator, that we
derived in Section 2.2.1, and will have an associated PSD Sz (ω). However, even if zn(t ) is the same

11



Chapter 2. Cavity optomechanics

for all points on the membrane, one would expect Sz (ω) to depend on the membrane’s position
because the amplitude does. We therefore need some other quantity carrying the mode shape in-
formation within Sz (ω). For that, we introduce the definition of the effective mass at a particular
point (x0, y0):

m(x0, y0) =
∫
ρ(x, y, z)|un(x, y)|2 d xd yd z

|un(x0, y0)|2 . (2.20)

We can see that for a particular mode, the effective mass is the lowest at the point of maximum
deflection (|un(x, y)| = 1). This is due to the chosen normalization condition.

In the following we summarize the solution to the wave equation for the resonator geometries
relevant to this thesis: rectangular and circular membranes, and circular plates.

Rectangular membranes

The resonance frequency of the (m, n) modes of a rectangular membrane of lateral dimensions
Lx and Ly are given by

Ωmn/2π= 1

2

√√√√σ

ρ

[(
m

Lx

)2

+
(

n

Ly

)2]
, (2.21)

with m, n = 1, 2, 3... [75]. Their mode shapes are

umn(x, y) = sin
(mπx

Lx

)
sin

(nπy

Ly

)
, (2.22)

where we use the normalization condition so that |umn(x, y)| has a maximum value of unity. Fig-
ure 2.3a shows the first 3 modes of a rectangular membrane.

Circular membranes

The resonance frequency of the (m, n) modes of a circular membrane of radius r0 are given by

Ωmn/2π= αmn

2πr0

√
σ

ρ
, (2.23)

with m = 0, 1, 2, ... and n = 1, 2, ...[75]. The mode shapes in polar coordinates (s, φ) are

umn(s, φ) = Km cos
(
mφ

)
Jm

(
αmn s

r0

)
, (2.24)

where Km is a normalization constant selected so that the maximum of |umn(s, φ)| is unity, Jm de-
notes the mth Bessel function of the first kind andαmn is a number determined from the solutions
to Jm(αmn) = 0. Figure 2.3b depicts the first 6 different modes of a circular membrane. The values
of αmn can be found in Ref. [75].
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(0,1)(1,1)

(1,2)

(2,1)

(1,1)

(2,1)

(1,2)

(2,2)

(0,2)a b

Figure 2.3: Membrane mode shapes. (a) Rectangular membrane modes (Eq. 2.22). (b) Circular membrane
modes (Eq. 2.24). In both cases, the mode number (m, n) is specified on the top right corner of each mode
shape. Dark orange and dark purple depict areas with high amplitude but opposite phase.

Circular plates

The mechanical behavior of plates is governed by the bending rigidity. Equation 2.19 is no longer
valid and takes now the form

∇2(∇2a)− ρ

D

∂2a

∂t 2 = 0, (2.25)

where D = E d 3
m

12(1−ν2)
is the bending rigidity, E the Young’s modulus and ν the Poisson ratio[76].

The resonance frequencies are given by

Ωmn/2π= αmn

2πr 2
0

√
D

dmρ
, (2.26)

where the values of the mode dependent constants αmn can be found in Ref. [76].

2.3 Optical cavity

An optical cavity is a three-dimensional resonator containing electromagnetic waves in the optical
domain that reflect back and forth between the resonator’s walls. If the waves traveling inside the
cavity can be approximated as plane waves, the study of their propagation can be reduced from
a three- to a one-dimensional problem. In Section 2.3.1 we introduce the concept of transfer
matrices, a mathematical formalism used to derive the amplitude of plane waves propagating
through different media. This powerful tool allows us to understand the interference phenomena
occurring inside the cavity. In particular, in Section 2.3.2 we will use it to introduce the concept
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Chapter 2. Cavity optomechanics

of a Fabry-Pérot optical cavity and derive its resonance frequencies, together with the reflected,
transmitted and circulating optical fields.

2.3.1 Transfer matrix formalism

The transfer matrix (TM) method is a tool to derive the field amplitudes of an electromagnetic
plane wave traveling through an interface, a single medium or a set of them [85, 86]. Each medium
is considered to be a planar layer of finite thickness and perfectly-smooth infinite surface that lies
in the x y plane. Here, we will only consider the electric field and assume that it propagates along
the z direction, perpendicular to the layer’s or interface’s surface (case of normal incidence). Let’s

Propagation

n0
n0 n1

Interfacea b

z0 z1

Figure 2.4: Transfer matrix of plane waves through a layered system. (a) Propagation matrix P (δz) of
a plane wave of wave number k traveling a distance δz through a medium with refractive index n0. (b)
interface matrix D01 of plane wave crossing an interface between two media of different refractive index,
n0 and n1. The coefficients r01 and t01 are the Fresnel reflection and transmission amplitude coefficients.

start with the simplest case, a plane wave traveling along a single medium (Fig. 2.4a). The plane
wave E(z) at z0 will be given by a forward and backward traveling wave with field amplitudes E+

0
and E−

0 , respectively,

E(z0) = E0 = E+
0 e i kz0 +E−

0 e−i kz0 , (2.27)

where k = 2πn/λ is the wave number, n the medium’s complex refractive index and λ the wave-
length in vacuum. The imaginary part of the refractive index accounts for any optical losses in
the medium. From now on we will always assume the refractive index is complex unless stated
otherwise. The above expression results in a complex-valued electric field; the real electric field
at a particular time t and position z will be given by E(z, t ) = Re

[
E(z)e−iωt

]
. At another position

z1 = z0 +δz, the plane wave will be

E(z1) = E+
0 e i kz1 +E−

0 e−i kz1

= E+
0 e i kδz e i kz0 +E−

0 e−i kδz e−i kz0

:= E+
1 e i kz0 +E−

1 e−i kz0 = E1.

(2.28)

The amplitude of the fields at each position are linked through a matrix equation:(
E+

0
E−

0

)
=

(
e−i kδz 0

0 e i kδz

)(
E+

1
E−

1

)
= P (δz)

(
E+

1
E−

1

)
. (2.29)
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2.3. Optical cavity

where we have introduced P (δz), the propagation matrix for a distance δz.

We can do the same thing to relate the amplitudes of the fields upon reflection and transmission
through an interface (Fig. 2.4b). First, let’s remind ourselves the expressions of the Fresnel reflec-
tion ri j and transmission ti j amplitude coefficients for a wave propagating from the i th- to the
j th-medium [78]

ri j =
ni −n j

ni +n j
, ti j = 2ni

ni +n j
. (2.30)

Then, the field amplitudes in the left medium (n0), are related to the ones in the right medium
(n1) through

E+
1 = E+

0 t01 +E−
1 r10

E−
0 = E+

0 r01 +E−
1 t10,

(2.31)

which can be reformulated in matrix notation as9(
E+

0
E−

0

)
= 1

t01

(
1 r01

r01 1

)(
E+

1
E−

1

)
= D01

(
E+

1
E−

1

)
. (2.32)

In the last expression we have introduced the interface matrix D01 between layer 0 and 1. The in-
terface and propagation matrices are the two building blocks from the transfer matrix formalism.
For normal incidence, the transmission and reflection power coefficients are given by [78]

R01 = |r01|2, T01 = n1

n0
|t01|2. (2.33)

Now, we can construct the matrix M of a system composed of N layers, numbered from 0 to N −1,
where the first and last one are semi-infinite(

E+
0

E−
0

)
= D01P (δz1)D12...P (δzN−2)DN−2N−1

(
E+

N−1
E−

N−1

)
= M

(
E+

N−1
E−

N−1

)
. (2.34)

We recall that computing M is straightforward when we know the refractive indices and thick-
nesses of each of the layers. Then, one can compute each of the matrix elements from the transfer
matrix of the system M

M =
(

M00 M01

M10 M11

)
, (2.35)

from which one can extract the reflection and transmission amplitude coefficients of the com-
posed system,

r = E−
0

E+
0

∣∣∣∣
E−

N=0
= M10

M00
, t = E+

N−1

E+
0

∣∣∣∣
E−

N=0
= 1

M00
. (2.36)

The power coefficients are therefore

R= |r |2, T = nN−1

n0
|t |2, (2.37)

9Using r10 =−r01 and t01t10 − r01r10 = 1
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and satisfy the conservation of energy in case of a lossless system R+T = 1. If the system had
any losses L, then the conservation of energy would be R+ T +L = 1. Equation 2.35 can be
reformulated using Eq. 2.36, obtaining

M = 1

t

(
1 −r
r t 2 − r 2

)
. (2.38)

We can use this formalism to derive the reflection and transmission coefficients of a dielectric slab
or membrane of thickness dm and refractive index nm embedded in vacuum (n0 = 1) [87]. In this
case, they read

rm = (1−n2
m)sin(knmdm)

2i nm cos(knmdm)+ (n2
m +1)sin(knmdm)

, (2.39)

tm = 2i nm

2i nm cos(knmdm)+ (n2
m +1)sin(knmdm)

. (2.40)

Figure 2.5 shows the amplitude coefficients (Eq. 2.39 and Eq. 2.40) for a membrane made of hBN
for different membrane thicknesses and λ= 1550nm.

Figure 2.5: Amplitude coefficients of an hBN membrane versus membrane thickness dm. Magnitude
(blue) and phase (orange) of the reflection and transmission amplitude coefficients, rm = |rm |e iφr and tm =
|tm |e iφt , for an hBN membrane at λ= 1550nm. The refractive index from hBN is nm = 2.1 [88].

Another interesting example is the one of a distributed Bragg reflector (DBR). The derivation of the
coefficients rDBR and tDBR can be found in Appendix A. A DBR consists of N layer pairs sputtered
on a substrate with refractive index ns . Each layer has a thickness di = λni /4, with i = {1,2}. As-
suming the material sputtered first after the substrate is the one with the highest refractive index,
n1 > (n2, ns), the transfer matrix takes the form

M = (−1)N

i |tDBR|
(

1 −|rDBR|
|rDBR| −1

)
. (2.41)

2.3.2 Fabry-Pérot cavity

Resonance condition via Transfer matrix

A Fabry-Pérot cavity is an optical resonator composed of two reflective mirrors separated by a
distance Lcav, which is illustrated in Figure 2.6a. Here, we are going to assume that the mirrors
are highly-reflective DBRs, both with the same even number of layer pairs, sputtered on the same
substrate and with small, non-equal losses Li , which is the case that concerns this thesis. The
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losses at each mirror are related to the transmission and reflection power coefficients through
Li = 1−Ri −Ti . Then, we can derive cavity’s transfer matrix Mcav

Mcav = 1

i |tDBR,1|
(

1 −|rDBR,1|
|rDBR,1| −1

)(
e−iδ 0

0 e iδ

)
1

i |tDBR,2|
(

1 −|rDBR,2|
|rDBR,2| −1

)
, (2.42)

where we have introduced δ = kLcav. Changing the notation for convenience to ri = |rDBR,i| and
ti = |tDBR,i|, and using Eq. 2.36 we obtain the cavity reflection and transmission coefficients

rcav =
E−

0

E+
0

= r1 − r2e2iδ

−1+ r1r2e2iδ
, (2.43)

tcav =
E+

t

E+
0

= t1t2e iδ

−1+ r1r2e2iδ
. (2.44)

Once we have computed Mcav, we can reuse the transfer matrix formalism to calculate the ampli-
tude of the field circulating inside the cavity, also known as intracavity field. The field amplitudes
on the right side of the left mirror are related to the amplitudes after the output mirror(

E+
c

E−
c

)
=

(
e−iδ 0

0 e iδ

)
1

i t2

(
1 −r2

r2 −1

)(
E+

t
E−

t

)
, (2.45)

and through Eq. 2.42 we can express the amplitude of the field circulating inside the cavity E+
c as

a function the input field E+
0

E+
c

E+
0

∣∣∣∣
E−

t =0
= −i t1

−1+ r1r2e2iδ
. (2.46)

The fractional power of the transmitted, reflected and circulating fields are∣∣∣∣E−
0

E+
0

∣∣∣∣2

= r 2
1 + r 2

2 −2r1r2 cos(2kLcav)

1+ r 2
1 r 2

2 −2r1r2 cos(2kLcav)
, (2.47)

∣∣∣∣E+
t

E+
0

∣∣∣∣2

= t 2
1 t 2

2

1+ r 2
1 r 2

2 −2r1r2 cos(2kLcav)
, (2.48)

∣∣∣∣E+
c

E+
0

∣∣∣∣2

= t 2
1

1+ r 2
1 r 2

2 −2r1r2 cos(2kLcav)
. (2.49)

We have used the word fractional power because the actual power carried by a plane wave of
amplitude E across a surface A is P = ϵ0c|E |2 A/2 – where ϵ0 is the vacuum permittivity – but the
relative powers maintain the relations expressed above [78, 89].

What do these equations tell us? If we look at the behavior of either of the fields as a function of the
round-trip phase φrt = 2kLcav (Fig. 2.6), we observe a resonance behavior every time φrt satisfies
the condition

φrt = 2πq, q ∈N. (2.50)

We can explore this resonance condition in two ways. The first one is fixing the cavity length Lcav

and sweeping the frequency of the incoming optical field ω = 2πc/λ and therefore sweeping k.
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a b c

Figure 2.6: The Fabry-Pérot cavity. (a) Illustration of a Fabry-Pérot cavity and the electric fields involved.
(b) Circulating relative power as a function of the round-trip phase φrt. (c) Transmitted (blue) and reflected
(orange) relative power. Both (b) and (c) show two resonances with mode number q = 52 and q = 53.

In that case, we will observe that the resonances or cavity longitudinal modes are separated in
frequency space by the free spectral range

ωFSR = cπ

Lcav
, (2.51)

with resonance frequencies

ωq = q
cπ

Lcav
, (2.52)

where q is known as the cavity longitudinal mode number. Second, we can keep the laser fre-
quency fixed and change the cavity length instead. Now the resonant modes will appear at cavity
lengths that are multiples of half the laser wavelength:

Lq = q
λ

2
. (2.53)

The second thing we realize is that the resonances have a finite width. In frequency space, the
full width at half maximum κ is called the cavity linewidth, the rate at which the cavity energy –
and hence the number of photons inside the cavity – decays. We introduce the concept of cavity
finesse

F = ωFSR

κ
, (2.54)

which is related to the number of round-trips Nrt the photons do before leaving the cavity via
Nrt = F/π [90]. The other striking feature from Figure 2.6b is that the circulating power is en-
hanced with respect to the incoming one. The enhancement factor is given by the finesse |E+

c |2 =
T1F2/π2|E+

0 |2. The finesse is also related to the round-trip losses Ltot = T1+T2+L1+L2 via

F = 2π

Ltot
. (2.55)

Here, each mirror’s transmission contributes to Ltot because it is a channel through which pho-
tons leave the cavity.

We can use Eq. 2.54 and Eq. 2.55 to define the external couplings or the rate at which the photons
leave either of the mirrors, κi ,e =ωFSRTi /(2π), with i = {1,2}. With the former definition10, we can

10We can also define the internal loss rate as κ0 =ωFSR(L1 +L2)/(2π), such that κ= κ0 +κ1,e +κ2,e .
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reformulate Eqs. 2.47-2.49 under the assumption of highly reflective mirrors11 and for small cavity
detunings ∆ around resonance, ω=ωq +∆ with ∆≪ωFSR,∣∣∣∣E+

r

E+
0

∣∣∣∣2

≃ 1−
κ2

1,e

∆2 + (κ/2)2 ,

∣∣∣∣E+
t

E+
0

∣∣∣∣2

≃ κ1,eκ2,e

∆2 + (κ/2)2 and

∣∣∣∣E+
c

E+
0

∣∣∣∣2

≃ ωFSR

2π

κ1,e

∆2 + (κ/2)2 . (2.56)

In the latter, the equation of the circulating power has been scaled by a factor nvac/ns = 1/ns so
that the electric field amplitude matches the square root of the power, which is what is measured
in the experiments12. The other two field amplitudes already match the square root of the mea-
sured power. These equations represent a Lorentzian with full width at half maximum κ.

We can also extract the number of photons circulating inside the cavity from the transmitted
power Pt , which is what we usually measure with the photodetectors. First, we recall that the
number of photons circulating inside the cavity nc equals the total energy stored inside the cavity
Uc divided by the energy of a single photon, nc = Uc /ħωq . Second, the energy inside the cav-
ity is given by the circulating power Pc times the cavity round-trip time τrt = 2Lcav/c = 2π/ωFSR,
Uc = Pcτrt. And finally, realizing (Eq. 2.56) that the relative circulating and transmitted powers are
linked via

Pc = ωFSR

2πκ2,e
Pt , (2.57)

the circulating photon number is

nc = Pt

κ2,eħωq
. (2.58)

Optical modes in a concave cavity

So far we have only considered plane waves traveling in one direction, which was enough to ex-
plore the concept of optical resonance and to derive the longitudinal cavity modes. But these
longitudinal modes living inside the cavity have a spatially-dependent intensity profile, which de-
pends on the geometry of the cavity mirrors. The different spatial intensity profiles are called
transversal cavity modes. These modes are a solution to the Helmholtz wave equation with the
boundary conditions imposed by the mirrors. For our experiments, we use two concave mirrors,
a type of stable two-mirror resonator. In this particular case, the Gaussian-Hermite modes form a
complete set of solutions.

Each mode is characterized by three indices: the already introduced longitudinal mode number
q and the transverse mode numbers m and n. The longitudinal mode number is often omit-
ted in the literature, referring to the modes simply as TEMmn, where TEM stands for transverse-
electromagnetic. The electric field of the (q, m, n) mode Eq,m,n(r) at a position r = (x, y, z) is given
by [77]

E±
q,m,n(r) = ρq,m,n(r)e±iθq,m,n (r), (2.59)

where ρ(q,m,n)(r) is the amplitude

ρq,m,n(r) = Hm(
p

2x/w(z))Hn(
p

2y/w(z))√
π2m+n−1n!m!Lcav

e
−

r 2

w2(z) (2.60)

11If R∼ 1, we can neglect terms of order of O(T 2
i ). Then r1r2 =

√
1−Ltot ∼ 1−Ltot/2 and R1R2 ∼ 1−Ltot +L2

tot/4.
12This comes from the definition of the transmission power coefficient (Eq. 2.37).
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and θq,m,n(r)

θq,m,n(r) = kz − (m +n +1)ΨG (z)+ r 2

w2(z)

z

zR
+ (q −1)

π

2
(2.61)

the phase. The function Hm is the mth Hermite polynomial, w(z) the beam waist, zR the Rayleigh
range andΨG (z) the Gouy phase. The last four quantities depend solely on the radius of curvature
of the mirrors Ri with i ∈ [1,2] and the cavity length Lcav, so before giving their expressions we will
introduce for convenience the g parameter of each mirror, gi = 1−Lcav/Ri . The beam waist is
then given by

w(z) = w0

√
1+ (z/zR )2, with w2

0 = Lcavλ

π

√
g1g2(1− g1g2)

(g1 + g2 −2g1g2)2 , (2.62)

and the Raleigh range

zR = πw2
0

λ
, (2.63)

Finally the Gouy phase follows
ΨG (z) = arctan(z/zR ). (2.64)

The resonance condition for each mode reads

ωq,m,n = 2π
c

2Lcav

(
q + (m +n +1)

∆Ψtr
G

π

)
(2.65)

with ∆Ψtr
G = cos−1

(p
g1g2

)
the change of Gouy phase in a round-trip [77].

In this thesis, we mainly work with the fundamental transversal mode, the TEM00, which is a Gaus-
sian mode. In the following, we will always refer to this one just as cavity mode, unless specified
otherwise.

2.4 Membrane in the middle of a Fabry-Pérot cavity

In the previous section we have derived the resonance condition of an empty Fabry-Pérot (FP)
cavity via the transfer matrix formalism. We are going to use it here as well to understand the
radiation pressure force that the light inside the cavity exerts on a membrane placed in the middle
of it, and obtain the expression of the optomechanical couplings.

The standard membrane-in-the-middle (MIM) system consists of a Fabry-Pérot cavity of length
Lcav that is divided into two subcavities by placing a dielectric slab, referred as membrane, in
between the mirrors (Fig. 2.7). Now, the circulating field is split into two, one on the left side of the
membrane with forward and backward amplitudes E+

l and E−
l and another one on the right side,

with E+
r and E−

r , respectively. In the following, we are going to consider that the wavelength or
frequency of the laser is fixed and study the resonances of the MIM system by changing its cavity
length. For a membrane’s position z, the transfer matrix will read

MMIM = 1

i t1

(
1 −r1

r1 −1

)(
e−iδl 0

0 e iδl

)
1

tm

(
1 −rm

r t 2
m − r 2

m

)(
e−iδr 0

0 e iδr

)
1

i t2

(
1 −r2

r2 −1

)
, (2.66)
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0 z

Ll Lr

-Lcav/2 Lcav/2

Figure 2.7: The membrane-in-the-middle system. It consists of two mirrors (dark gray) separated by a
distance Lcav and a dielectric slab or membrane (orange) of thickness dm . The empty Fabry-Pérot appears
now divided in two sub-cavities, on the left and on the right of the membrane.

where ri , ti with i ∈ [1,2] are the reflection and transmission coefficients of the mirrors, and rm , tm

the ones of the membrane (Eq. 2.39 and Eq. 2.40 ). δl and δr denote the phase acquired by the field
at each side of the membrane, given by

δl = kLl = k
(
Lcav/2+ z −dm/2

)
, (2.67)

δr = kLr = k
(
Lcav/2− z −dm/2

)
. (2.68)

Let’s try to understand the effect of adding the dielectric slab to the cavity by looking at its trans-
mission T for different membrane reflection coefficients rm as a function of the cavity length and
membrane’s position (Fig. 2.8). For simplicity, we will assume that the membrane is lossless – the
case of a lossy membrane will be discussed at the end of this section. Setting rm = 0 (Fig. 2.8a)
creates the same effect as having an empty cavity. In that case, as we change the cavity length,
we observe a set of resonances in transmission separated by multiples of λ/2, as expected for a
Fabry-Pérot cavity. Since the membrane is completely transparent, the resonances do not depend
on the membrane’s position.

Figure 2.8b displays the system’s transmission for a membrane with |rm | = 0.48 (dm = 100nm, nm =
2). The resonance cavity lengths Lq (z) now oscillate with respect to the membrane’s position with
a periodicity of λ/2. The cavity length detuning for the mode number q , defined as

∆Lq (z) = Lq (z)−Lq , (2.69)

is always negative or close to zero ∆Lq < 0 for this membrane, where Lq denotes the empty reso-
nance cavity length. Intuitively, one can think that the membrane increases the optical path length
inside the cavity by nmdm , and therefore we need to shrink the cavity to compensate for that in-
crease and keep the cavity resonant13. The absolute change of cavity length will be maximized
when the membrane is placed at the antinode because the largest portion of the light intensity is
confined within the dielectric. The opposite effect occurs at the nodes, where the smallest portion
of the intensity lies in the membrane. This is depicted on the bottom illustrations in Figure 2.8,
which show the relative power |E |2 inside the cavity when the membrane sits in a node (orange
circle) and antinode (red circle) for the mode number q = 10. Because q is even in this case, the

13This is an intuitive picture. The exact expression for ∆Lq is given in the next section, and does not depend on the
product nm dm but on the phase and magnitude of the reflection coefficient rm .
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a b c

Figure 2.8: Transmission of a MIM system. Transmission coefficient T of a MIM system with mirror re-
flection coefficients r1 = r2 = 0.95 as a function of cavity length Lcav and membrane’s position z. (a) Empty
cavity (|rm | = 0). (b) Membrane with |rm | = 0.48. (c) Membrane with |rm | = 0.89. Lq is the resonant cavity
length with mode number q = 10 (Eq. 2.53). The blue and orange dashed lines are the resonance condition
for left and right subcavities, respectively (Eq. 2.67 and Eq. 2.68). The two bottom graphs depict the relative
power |E |2 = |E++E−|2 inside the cavity for the membrane placed at the node (orange circle) and antinode
(red circle) of the system in (b).

cavity presents a node at z = 0. For odd values of q , the cavity has an antinode at z = 0, which
explains why the resonance curves are shifted by λ/4 as a function of the membrane’s position for
even and odd mode numbers.

Now let’s consider the other extreme case, when the membrane reflectivity approaches 1. The
two subcavities are well separated by the highly reflective membrane, each of them satisfying the
resonance condition Ll ,r = qr,lλ/2, with Ll ,r given by the definitions in Eq. 2.67 and Eq. 2.68. Fig-
ure 2.8c shows the cavity transmission for |rm | = 0.89. The resonant cavity lengths for both sub-
cavities Ll ,r are depicted in the figure as well, as dark orange and light blue dashed lines, orange
for the right and blue for the left subcavities, respectively. We observe that the light is transmitted
through the cavity when the system is resonant for both subcavities. For example, when the mem-
brane sits in the middle (z = 0), if the MIM cavity is resonant for an even mode number q , both
cavities are also resonant with ql ,r = q/2, as can be seen on the intensity profile at the bottom left
in Figure 2.8. If we increase the membrane’s position (z > 0), the right subcavity shrinks, and to
bring the resonance back we need to increase the cavity length. Consequently, the orange line has
a positive slope in z. The opposite occurs to the left subcavity (blue line).

We remark that the cavity linewidth κ is also modulated by the presence of the membrane. Even
when the membrane does not introduce any losses, its presence still alters the fields distribution
inside the cavity and consequently the energy stored inside. The finesse, on the contrary, remains
constant for the case of a symmetric cavity (r1 = r2). Figure 2.9 shows the dependence of the cavity
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a b

Figure 2.9: Linewidth and finesse of a MIM system with symmetric mirrors. (a) The linewidth of the cavity
κ is modulated as the membrane changes its position z even for a lossless membrane (blue curve). Adding
losses to the membrane (Im(nm) = 2 ·10−3) increases the modulation (orange line). The data is normalized
to the minimum linewidth for the lossless case. (b) Cavity finesse as a function of sample position for
the same configurations as in (a). The finesse is normalized to the lossless membrane finesse, which is
constant.

linewidth and finesse for a membrane with and without losses.

Resonance condition and cavity frequency shift

The resonance condition of a MIM system can be obtained easily via the transfer matrix under the
assumption of highly reflective mirrors r1 = r2 ≃ 1 [91]. The fields on the left and on the right side
of the cavity are related through(

E+
l

E−
l

)
=

(
e−iδl 0

0 e iδl

)
1

tm

(
1 −rm

r t 2
m − r 2

m

)(
e−iδr 0

0 e iδr

)(
E+

r

E−
r

)
= M

(
E+

r

E−
r

)
. (2.70)

If r1 = r2 ≃ 1, then E−
l = −E+

l and E−
r = −E+

r , and we can express all in terms of E+
l and E+

r . This
leads to a relation between the matrix elements

(M00 −M01) = (M11 −M10), (2.71)

which is the resonance condition. Replacing their expressions, we obtain

|rm |cos(2kz) =−cos(Lcav −dm +φr ), (2.72)

where we have used rm = |rm |e iφr , tm = |tm |e iφt and that for a dielectric membrane t 2
m − r 2

m =
−e i 2φr [91]. We can expand the above expression around resonance Lcav = Lq +∆Lq (z), yield-
ing

∆Lq (z) = cos−1
(
(−1)q+1|rm |cos(2zk)

)−φr

k
, (2.73)

where we have used the approximation Lcav−dm ≃ Lcav. The last approximation is valid for all the
samples studied in this thesis, with a maximum membrane thickness of around 200 nm compared
to cavity lengths of around 40µm. The expression of ∆Lq shows that the offset with respect to
the empty cavity length Lq is basically given by the complex phase of the membrane reflection
coefficient φr .
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We can transform the cavity length change into a frequency detuning when∆Lq ≪ Lq using

∆cav(z) = qπc
( 1

Lq +∆Lq (z)
− 1

Lq

)
≃−qπc

∆Lq (z)

L2
q

, (2.74)

which can be understood as a change of cavity resonance frequency14,ωcav(z) =ωq +∆cav(z). The
frequency of the cavity therefore follows the same dependence as the length detuning but with
opposite sign. We can expand ωcav(z) as a function of its derivatives,

ωcav(z) =ωq + ∂ωcav

∂z
z + ∂2ωcav

∂z2 z2 +O(3). (2.75)

This brings us to the definition of the linear dispersive frequency shift, or simply linear dispersive
coupling15 G(z) := ∂ωcav/∂z. Using Eq. 2.73 and Eq. 2.74, the dispersive coupling of a MIM system
is

G(z) = qπc

L2
q

2|rm |sin(2kz)(−1)q+2√
1−|rm |2 cos2(2kz)

, (2.76)

and the quadratic dispersive coupling G (2)(z)

G (2)(z) := ∂2ωcav(z)

∂2z
= qπc

L2
q

4k(−1)q+2 |rm |(1−|rm |2)cos(2kz)(
1−|rm |2 cos2(2kz)

)3/2
. (2.77)

For a MIM system, the linear coupling vanishes at the nodes and antinodes, where the quadratic
coupling is the strongest, and the absolute value of the coupling reaches its maxima at sample
positions which are odd multiples of ±λ/8. The quadratic coupling is intrinsic to MIM systems
and offers new functionalities beyond the linear optomechanical systems [72, 87, 92, 93], and
has recently been used to generate non classical energy squeezing of macroscopic mechanical
oscillators [94] and to cool down levitated nanoparticles [95].

Looking at Eq. 2.76 and Eq. 2.77, there are two approaches to increase the couplings. The first one
is to increase the absolute value of the reflection coefficient of the membrane, which can be done
for example by designing membranes with an incorporated photonic crystal [96–98]. The second
is decreasing the cavity length, which is best achieved with fiber cavities. As we will see later, the
fiber mirrors can have a very small radius of curvature that, combined with their small mirror
diameters, make the construction of cavities with lengths down to tens of micrometers possible
[90, 99]. Figure 2.10 shows both linear and dispersive couplings for a MIM system with different
membrane and cavity length configurations.

14Strictly speaking, what is changing in the resonance condition is the cavity length because the frequency of the laser
is kept fixed. However, with Eq. 2.74 we convert a change of cavity length ∆Lq into an effective frequency change ∆cav.

15In the standard cavity optomechanics literature G is defined with a negative sign G(z) = −∂ωcav/∂z [17, 18]. The
sign arises because in the used toy model, a cavity with a movable mirror, an increase or the resonator’s position – or
cavity length – produces a decrease in the cavity resonance frequency. However, in the MIM system, the sign of the
coupling depends on the membrane position in a non trivial way through Eq. 2.76.
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a b

(10, 0.89)
(10, 0.48)
(20, 0.48)

(10, 0.89)
(10, 0.48)
(20, 0.48)

Figure 2.10: Linear and quadratic dispersive couplings. (a) Linear and (b) quadratic dispersive couplings
for different cavity mode numbers q and membrane reflectivity |rm |, and λ = 1500nm. Orange, blue and
green lines are generated with parameters (q, |rm |), (10, 0.89), (10, 0.48), (20, 0.48), respectively.

2.4.1 The static optical force

An object immersed in an electromagnetic field experiences a force F because electromagnetic
waves carry momentum. This force, acting on a surface A, exerts a light pressure or radiation
pressure on the object. In the MIM system, the plane waves travel all in the z direction, resulting
in a net force F also in the z direction that only depends on the field amplitudes at each side of the
membrane

F = P0

c

(∣∣∣∣E+
l

E+
0

∣∣∣∣2

+
∣∣∣∣E−

l

E+
0

∣∣∣∣2

−
∣∣∣∣E+

r

E+
0

∣∣∣∣2

−
∣∣∣∣E−

r

E+
0

∣∣∣∣2)
, (2.78)

with P0 being the incident light power on the cavity [89, 100]. To be able to predict and understand
the force, we need to look at the field distributions on the left and right side of the membrane.

Figure 2.12 shows the transmission T (Fig. 2.11a) and reflection R (Fig. 2.12b) of a MIM system
with |rm | = 0.48, r1 = r2 = 0.95 and q = 10 as a function of cavity length and membrane’s position.
The value of both coefficients on resonance is symmetric with respect to the membrane displace-
ment, T res(z) = T res(−z) and Rres(z) = Rres(−z), which is a consequence of having mirrors with
equal reflectivity. If we look at the maximum of the relative power of the fields on the left and right
side of the membrane, |Ei |2 = |E+

i +E−
i |2 with i = {l , r }, we observe a different behavior (Fig. 2.11c

and Fig. 2.11d). The intensity of the left circulating field is not symmetric with respect to the mem-
brane’s position. It is maximized when the membrane is moved to the right side of the node and
minimized when moved in the other direction, and reaches both extrema at displacements of the
membrane of z = +λ/8 and z = −λ/8, respectively. The right circulating power, on the contrary,
behaves symmetrically with respect to the membrane’s displacement, and it is maximized at the
nodes and antinodes and minimized for z = ±λ/8. We also recall that the maximum of the left
relative power is 85 and its minimum 9, whereas for the right relative power the values are 40 and
31, respectively. Therefore, the left power varies more strongly with respect to the membrane’s
position than the right power, because the right subcavity is pumped less efficiently due to the
presence of the membrane. Figure 2.11e shows the power distribution inside the cavity when the
membrane is at z = −λ/8 (orange circle in Fig. 2.12a) and at z = +λ/8 (red circle in Fig. 2.11a) to
illustrate the effect just discussed.

The consequence of this field distribution is a non-zero radiation pressure force for cavity lengths

25



Chapter 2. Cavity optomechanics

a b

d

e

c

Figure 2.11: Fields at each subcavity in a MIM system. (a) Transmission and (b) reflection coefficient
for r1 = r2 = 0.95, |rm | = 0.48 and q = 10 as a function of cavity length and membrane’s position z. (c)
Maximum of the relative power |El |2 in the left subcavity. (d) Same as (c) but in the right subcavity |Er |2.
(e) Field amplitudes inside the cavity at the left (orange circle in (a)) and right side of the node (red circle in
(a)).

and membrane’s positions close to the resonance condition (Fig. 2.12a). The sign and magnitude
of the force depend on the relative powers inside each subcavity, following Eq. 2.78. At the nodes
and antinodes the force vanishes (see the power distributions at the bottom graphs of Fig. 2.8). We
say that this force is a static optical force because we are assuming that the field inside the cavity
reacts instantaneously to a change of sample position or cavity length16.

Imagine now that the membrane is allowed to oscillate, like the one depicted in Figure 2.12c. The
optical force will have an optical potential V associated to it so that F = −∂V /∂z. This will be
added to the intrinsic mechanical potential of the resonator, contributing with an extra optical
spring kopt to the natural stiffness of the resonator,

kopt(z) =−∂F (z)

∂z
, (2.79)

shown in Figure 2.12b. One can also induce new local minima in the potential by using very high
optical powers, resulting in a bistable behavior of the optical resonator (see e.g. Refs. [100, 101] for
the early experiments). We highlight here that, in principle, we do not need the cavity to induce

16This is equivalent to change the membrane’s position in a adiabatic manner, i.e. slow enough compared to the time
constants of the system.
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a b

c

Figure 2.12: Radiation pressure force in a MIM system. (a) Radiation pressure force and (b) optical spring
for r1 = r2 = 0.95, |rm | = 0.48 and q = 10 as a function of cavity length and membrane’s position z (same
system as in Fig. 2.11). (c) Sketch of a membrane inside the cavity able to oscillate around its equilibrium
position.

a new optical potential, just the standing waves naturally living inside. For example, radiation
pressure forces have been used to confine membrane-like pendulums and modify optically their
spring constant by just using the standing waves created between an incoming plane wave and its
reflection [102].

2.4.2 The dynamical optical force

In the previous section we explained how the resonances of the optical cavity together with the
field amplitudes depend on the membrane’s position along the cavity axis z, leading to a static
radiation pressure force acting on the membrane. We assumed that the field inside the cavity
responds instantaneously to the displacement of the membrane or change of cavity length. This
holds true when the respective change happens at a speed slower than the cavity energy decay
rate, κ. Let’s go back to the oscillating membrane depicted in Figure 2.12c. When oscillating, the
membrane will change the optical resonance of the cavity, which acts back on the membrane by
changing the radiation pressure force. If the membrane’s oscillation frequency Ω0 is comparable
or larger than κ, the intensity cannot completely track the mechanical motion, leading to time lag
effects. The radiation pressure force is no longer static but depends on the membrane’s history at
a previous time, it is therefore a dynamical force. Because the force is non-conservative, the work
done on the mechanical oscillator upon an oscillation cycle is non-zero, resulting in a system
capable of extracting or giving energy to the oscillator. This has consequences on the mechanical
response of the resonator that we will discuss in the following.

The system’s dynamics is described by two coupled nonlinear differential equations describing
the optical field amplitude and resonator’s mechanical displacement. They can be linearized if we
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consider small membrane displacements only, and assume that the intracavity field is in a steady-
state with small fluctuations around it. Their derivation can be found in standard optomechanics
text books [17, 18]. The main consequence of the dynamical backaction is that the mechanical
susceptibility of the resonator, given by Eq. 2.12, is modified to

χOM(ω) = 1

m
[
Ω2

0 +δ(Ω2)−ω2 − iω
(
Γ0 +Γopt

)] . (2.80)

This leads to an optical spring, i.e. a modification of the natural frequency of the resonator due to
the radiation pressure Ω2

m =Ω2
0 +δ(Ω2) given by

δ(Ω2) = 2Ω0g 2
( Ω0 +∆

(Ω0 +∆)2 + (κ/2)2 − Ω0 −∆
(Ω0 −∆)2 + (κ/2)2

)
, (2.81)

where g = p
nc g0 denotes the optomechanical coupling strength, which is the product of the

square root of the number of circulating photons inside the cavity and the single-photon cou-
pling strength g0. The latter depends on the zero-point fluctuations zzpf =

√ħ/(2mΩ0) and the
dispersive linear coupling G through g0 = Gzzpf; it is a measure of the frequency shift of a single
photon caused by the smallest possible displacement of the resonator, zzpf. Here, ∆ is the laser
detuning: the frequency difference between the laser used to drive the cavity ωl and the cavity
resonance ωcav, ∆ = ωl −ωcav. We note that the circulating photon number nc is also a function
of the detuning and its dependence is given by Eq. 2.56 and Eq. 2.58. For small frequency shifts
δ(Ω2) ≪Ω0, Eq. 2.81 can be approximated to

Ωm ≃Ω0 + 1

2Ω0
δ(Ω2), (2.82)

where we have used that
p

1+x ≃ 1+x/2 if x ≪ 1.

The damping of the resonator is also modified to Γm = Γ0 +Γopt with Γopt being the optomechan-
ical damping rate

Γopt = 2g 2κ

2

( 1

(Ω0 +∆)2 + (κ/2)2 − 1

(Ω0 −∆)2 + (κ/2)2

)
. (2.83)

Figure 2.13 shows the optical spring effect and the optomechanical damping for a system with
parameters κ = 26Ω0, g0 =Ω0/1500, Q = 7600, and nmax

c = nc (∆ = 0) = 60000. One observes that
for negative detunings, i.e. a red detuned laser, the mechanical mode softens, whereas it stiffens
for positive detunings (blue detuned laser). For negative detunings, the cavity extracts thermal
energy from the resonator, increasing the mechanical linewidth. The opposite occurs for positive
detunings. This is equivalent to cooling or heating the resonator, with the new effective tempera-
ture Γeff given by

Teff = Tbath
Γ0

Γm
, (2.84)

where Tbath denotes the bath temperature [17]. When the overall mechanical linewidth Γm =
Γ0 +Γopt becomes negative (orange area in Fig. 2.13) an optomechanical instability arises: the
amplitude of the resonator grows exponentially until reaching a steady-state, where it oscillates at
a fixed amplitude. These oscillations are called self-sustained oscillations [17, 103].
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2.4. Membrane in the middle of a Fabry-Pérot cavity

Figure 2.13: Dynamical backaction. Optical spring effect (left) and optomechanical damping (right) for
an optomechanical system with κ = 26Ω0, g0 = Ω0/1500 and Q = 7600. The intracavity photon number
nc follows Eq. 2.58 with nmax

c = 60000. The orange area highlights the detunings for which the mechanical
resonator undergoes self-sustained oscillations.

Optomechanical backaction has many applications and a very rich set of physical phenomena
can arise depending on the explored parameter space (g0, κ, Γ0, Ω0, nc , ∆). One of most straight-
forward applications is the cool-down of mechanical resonators to their ground state, necessary
for quantum applications. A requirement for an optomechanical system to be able to perform
quantum experiments is having a quantum cooperativity, Cq = 4g 2/(κΩ0(nth+1/2)), larger than 1
[17]. In the last expression nth is the phonon thermal occupation number,

nth = kB Tbath

ħΩ0
. (2.85)

To have a large Cq it is therefore necessary to have low phonon occupation numbers. For gigahertz
resonators, the ground state is easily reachable with conventional dilution refrigerators capable
of reaching temperatures down to a few millikelvin. However, for megahertz or lower frequency
resonators extra means of cooling need to come into play [104, 105]. Optomechanical systems
can be cooled down to the ground state through radiation pressure backaction only when they are
operated in the resolved-sideband regimeΩ0 ≫ κ. In that case, the minimum phonon occupation
number is given by [17]

nph,min =
(
κ

4Ω0

)2

< 1. (2.86)

For the unresolved-sideband regime (Ω0 < κ), on the contrary, the minimum phonon number is
larger than one

nph,min = κ

4Ω0
≫ 1. (2.87)

One can, nevertheless, use other mechanisms to provide additional cooling, like active feedback
[106] or dissipative coupling [107, 108]. For both resolved-sideband and unresolved-sideband
regimes, the final phonon number nph,f due to the optomechanical backaction of a red detuned
laser is

nph,f =
Γ0nth +Γoptnph,min

Γm
, (2.88)

where one has to use the corresponding expression for nph,min [17]. Our experiments occur in
the unresolved-sideband regime and at room temperature. Additionally, the natural linewidth
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Γ0 of our resonators is comparable to the optomechanical linewidth Γ0 ∼ Γopt. In this particular
situation, one can neglect the second term in Eq. 2.88 so that the final phonon number can be
approximated to nph,f ≃ nthΓ0/Γm .

Another useful application from the radiation pressure backaction is the direct control of the me-
chanical properties of the resonator via light forces. The manipulation of the amplitude of the
resonator, and consequently the mechanical stress field, can be used to control other degrees of
freedom like spins, realizing hybrid quantum systems [68, 71]. This could have interesting tech-
nological applications like bridging the gap between telecom photons and spin-qubits.

Dissipative dynamical backaction

Any mechanism resulting in a change of the radiation pressure force with the membrane’s position
will exert a backaction on the resonator. In the dispersive case discussed so far, it is the difference
in photon number caused by the field distribution on both sides of the subcavities. Dissipative
mechanisms can also alter the photon number inside the cavity, which manifests as a modula-
tion of the cavity linewidth with the sample position κ= κ(z) [107]. The linewidth modulation in
a MIM system can originate from membrane absorption [109], membrane scattering due to sur-
face imperfections or membrane misalignment [110], or simply from the modulation of the input
couplings [91].

In equivalence with the dispersive case, we can define the dissipative linear and quadratic cou-
plings

Gκ(z) = ∂κ(z)

∂z
and G (2)

κ (z) = ∂2κ(z)

∂z2 . (2.89)

Figure 2.14 shows the dissipative couplings in a symmetric MIM system (r1 = r2 = 0.95) with q =
10 and λ = 1550nm for a membrane with absorption Im(nm) = 2 ·10−3 and without absorption,
the same settings as in Figure 2.9a. We recall that in a MIM system there is always a dissipative
coupling, even with a lossless membrane and no scattering, due to the field’s distribution inside
the subcavities (see Fig. 2.9), which is what we referred to as modulation of the input couplings.
Nevertheless, the dissipative coupling is negligible to the dispersive one in the case of a lossless
membrane (more than three orders of magnitude smaller), as can be seen comparing the blue
curve in Figure 2.14a with blue one in Figure 2.10a.

a b

Figure 2.14: Dissipative couplings. (a) Linear dissipative and (b) quadratic couplings for a membrane of
reflection |rm | = 0.48 without losses (blue) and with Im(nm) = 2 ·10−3 (orange), obtained numerically with
the transfer matrix method.
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Figure 2.15: Dissipative and dispersive dynamical backaction. Optical spring effect (left) and optome-
chanical damping (right) for the same system as in Figure 2.13 (κ = 26Ω0, g0 = Ω0/1500, Q = 7600,
nmax

c = 60000) with additional g0,κ = −g0/4 (blue line) and g0,κ = −g0/20 (green line). The orange area
highlights the detunings for which the mechanical resonator undergoes self-sustained oscillations.

In case of membrane absorption, the optical spring and optomechanical damping take the form

δ(Ω2) = 2Ω0g 2
( Ω0 +∆

(Ω0 +∆)2 + (κ/2)2 − Ω0 −∆
(Ω0 −∆)2 + (κ/2)2

)
+2Ω0g gκ

κ

2

( 1

(Ω0 +∆)2 + (κ/2)2 + 1

(Ω0 −∆)2 + (κ/2)2

)
, (2.90)

and

Γopt = 2g 2κ

2

( 1

(Ω0 +∆)2 + (κ/2)2 − 1

(Ω0 −∆)2 + (κ/2)2

)
−2g gκ

( Ω0 −∆
(Ω0 +∆)2 + (κ/2)2 + Ω0 +∆

(Ω0 −∆)2 + (κ/2)2

)
, (2.91)

where gκ = p
nc g0,κ [109]. In this case, g0,κ is the single-photon dissipative coupling strength

g0,κ = Gκzzpf. Figure 2.15 shows the dissipative couplings for the same system as in Figure 2.13
with an additional dissipative coupling of g0,κ =−g0/4 (blue line) and g0,κ =−g0/20 (green line).
The dissipative coupling adds an asymmetry with respect to ∆ = 0 not present in the purely dis-
persive case. For g0,κ < g0/20 the contribution to the optical spring and damping is almost not
distinguishable from the purely dispersive case (Fig. 2.13).
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3
Our 1550 nm setup for cavity

optomechanics

W
HEN I joined the Nanomechanics group at the University of Konstanz (now the Nano
and Quantum Sensors group at TUM), the cavity optomechanics team was working
with fiber-based Fabry-Pérot microcavities operating at a wavelength of 780 nm [111,

112]. The absorption of SiN membranes – the resonators we were using at that time – in the visible
range, together with the huge optomechanical couplings, made the optomechanical experiments
extremely difficult. Actually, we could not observe dynamical backaction effects at all due to the
nonlinearities of the system [112]. We therefore decided to switch to telecom wavelengths, also
benefiting from the advanced fiber technology and cheaper prices. This was the first goal of my
PhD project: the design and construction of a complete cavity-optomechanical setup operating
at λ= 1550nm. This chapter is fully dedicated to this work.

The cavity is the essence of any cavity optomechanics experiment. We use fiber-based Fabry-
Pérot cavities (FFPCs), formed between the end facets of two optical fibers that serve as the cavity
mirrors. Section 3.1 focuses on the production of the fiber mirrors, their characterization, and
the cavity assembly. Section 3.2 and Section 3.3 introduce the optical and electrical setup, re-
spectively, necessary to pump and characterize the cavities and perform the dynamical backac-
tion experiments. Section 3.4 presents the cavity characterization methods. In order to reduce
gas damping, our experiments are carried out in vacuum – the vacuum system is described in
Section 3.5. To perform optomechanical experiments in the membrane-in-the-middle configu-
ration, the sample has to be brought, as the name suggests, to the middle of the cavity. This is
done through a positioning system presented in Section 3.6. The thermal stability of the setup is
investigated in Section 3.7. After moving to Munich, we realized that the experiment was suffering
from mechanical noise originating from the acoustic noise present in the new lab. We designed
an acoustic shielding box to improve the mechanical stability of the setup; its performance is an-
alyzed in Section 3.8. Finally, in Section 3.9 we describe the locking scheme used to stabilize the
cavity length.
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3.1 The fiber based Fabry-Pérot cavity

Fiber-based Fabry-Pérot cavities were developed back in the early 2000s in the context of cavity
quantum electrodynamics [99, 113–116]. The trigger for this research was the need for short cav-
ities, capable of confining the electric field in a small volume while maintaining a high finesse.
The major breakthrough came in 2006 [99, 116], when laser ablation was used for the first time to
produce concave shapes at the fiber tips in a controlled manner.

Our aim is to perform cavity optomechanical experiments with low dimensional materials, such
as van der Waals materials or carbon nanotubes. To increase the dispersive coupling G , the easiest
and most straightforward option is to decrease the cavity length (Eq. 2.76). This is best achieved
with fiber-based cavities and it is the approach we decided to take. We also target fabricating cav-
ities with large finesse, because it boosts the circulating photon number – and consequently the
coupling strength g – and contributes to maintaining small cavity linewidths κ = ωFSR/F . Addi-
tionally, both a high finesse and small beam waists w0 are desirable if we ever want to combine our
setup with a single-photon or spin degree of freedom, since the atom-cavity cooperativity scales
as C ∝F/w2

0 [99].

3.1.1 Production of microscopic mirrors

Fiber preparation

The fibers employed in our lab are copper-coated single-mode (SM) and multimode (MM) fibers1.
We first prepare the work space by covering the table with aluminum foil to avoid dust contam-
ination. We cut the fibers into 140 cm-long segments and remove approximately 35 mm of the
coating of one of the two fiber ends with a copper etching solution2. The solution’s residues on
the fibers must be cleaned with DI water first and later with IPA. We cleave the uncoated fiber ends
with a Fujikura CT-101 cleaver to have a flat surface at the fiber end, only accepting cleaves with
angles3 below 1◦.

The fibers are loaded into an aluminum holder that was designed by Matthias Mader (LMU)
and fabricated at the workshop of the University of Konstanz. The holders have to be previ-
ously cleaned in three subsequent ultrasonic baths (DI water and soap, DI water, IPA) and baked
at 130 ◦C for 1 h. Each holder accommodates 11 fibers and every one of them has to protrude
the edge of the holder by the same amount (1 mm), since the mirror coating properties depend
strongly on the distance from the fibers to the target of the sputtering machine [117].

CO2 laser ablation

To be able to build stable cavities with lengths between 10µm to 100µm, we have to fabricate
mirrors with a radius of curvature (ROC) in the 40-400µm range. This parameter space opens the
possibility of creating cavities in the near-planar (Lcav ≪ R1, R2) and concentric (R1 = R2 = Lcav/2)
configurations [77], where R1 and R2 are the input and output mirror’s ROC. Near-planar cavities

1Art Photonics GmbH. Pure-silica SM, step index: 9/125 Cu. Ge-doped MM, graded index: 50/125 Cu.
236% solution of FeCl3, dissolving 38 g of solute in 65 mL of water.
3The cleave angle is measured by the fiber splicer (Fujikura FSM-100P).

34



3.1. The fiber based Fabry-Pérot cavity

are desirable to obtain cavities insensitive to length fluctuations, while concentric ones are better
when the aim is to reduce the cavity beam waist. On the other hand, to couple light in or out of
the cavity through one of its ports, the overlap between the cavity mode and the fiber mode has
to be maximized, which depends on the cavity length and mirror radius as well. Assuming both
modes are Gaussian modes, the coupling efficiency ϵ is given by [99, 118]

ϵ= 4(
w f

wm
+ wm

w f

)
+

(
πn f w f wm

λR

) , (3.1)

where w f is the fiber beam waist, n f = 1.46 its refractive index and R the mirror’s ROC. The Art
Photonics SM fibers that we use yield w f = 5.29µm. For our cavities, the output fiber is multi-
mode, ensuring a coupling efficiency close to unity independently of the mirror’s ROC. Figure 3.1a
shows the coupling efficiency for the case of symmetric cavities (R1 = R2) as a function of the cav-
ity length. The efficiency is nearly 1 for cavity lengths between 20µm and 60µm and mirrors with
ROCs larger than 150µm, which is the parameter range we aim for.

a b

R1=R2=Lcav/2

Figure 3.1: Mode matching efficiency and mirrors ROC. (a) Mode matching efficiency ϵ for a cavity with
symmetric radius of curvature (ROC), R1 = R2, as a function of the cavity length. The white area under the
line R1 = R2 = Lcav/2, highlighted with a white arrow, corresponds to unstable resonator configurations. (b)
ROCs vs mirror diameter of the processed SM and MM fibers.

After determining the mirror parameters, we place the holders into plastic boxes for dust protec-
tion and bring them to the CO2 laser ablation setup from Prof. Hunger’s group in the Karlsruhe
Institute of Technology (see Jonathan Körber’s bachelor thesis [119] for more details on the setup
and Refs. [99, 120] on the laser ablation technique). The fiber tips are shot with pulses of a du-
ration of t ∼100-200µs and powers in the range of 1 W to 10 W depending on the targeted ROC.
The number of pulses varies between 100 and 300. Afterwards, the fiber surface is reconstructed
using an optical profilometer incorporated in the setup. The indentations are fit to a 2D Gaussian
profile, whose full width at 1/e gives an estimate of the useful mirror diameter [99]. The radius
of curvature is determined by fitting a parabola to the center of the indentation. At a later stage,
we built an additional optical profilometer in our labs in Konstanz to be able to perform these
measurements onsite (see Section 3.1.2).

In June 2018, we manufactured a batch of telecom fiber mirrors comprising a total of 45 MM and
66 SM fibers. Figure 3.1b shows their ROCs as a function of the mirror diameters. The major-
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ity of the SM fibers have ROCs between 200 and 300µm, with diameters between 20 and 30µm;
the MM fibers mostly have diameters between 100 and 200µm. A smaller number of fibers are
processed with mirror ROCs in the range 40-60µm, suitable to build shorter cavities with smaller
beam waists.

Coating

A commercial high-reflective coating (LaserOptik GmbH) was deposited on the fiber tips via ion
beam sputtering. Each mirror is a distributed Bragg reflector (DBR) consisting of 18 pairs of Ta2O5

and SiO2 layers and a final layer of Ta2O5. Each layer has a thickness of λ/(4n), with n being
the layer’s refractive index and λ the wavelength in vacuum. The last layer of Ta2O5 is added
because it is the material with lowest losses, and consequently it should be the layer facing the
largest concentration of the electric field. The thickness of each layer is determined by the mir-
ror’s operational wavelength, which is λ= 1550nm in our case. Given the refractive indices of the
materials at that wavelength, nTa2O5 = 2.0856 and nSiO2 = 1.4694 [121], the expected thicknesses
are tTa2O5 = 185.8nm and tSiO2 = 263.7nm. The number of layer pairs, on the other hand, is a
consequence of the desired mirror’s transmission. The coating run is designed to produce mirrors
with a transmission of T = 10ppm to obtain a high finesse F > 100,000 (Eq. 2.55). Figure 3.2a
shows the DBR’s transmission as a function of the wavelength. The blue line was measured by
LaserOptik; the orange line shows our transfer matrix calculations for the given coating parame-
ters. The inset shows a close up to the DBR band centered at 1550 nm. Figure 3.2b and Fig. 3.2c
display the photograph of an uncoated and coated telecom fiber, respectively. The coating has a
calculated thickness of 8.3µm, and therefore the coated tip of the fiber is expected to have a larger
diameter, with upper limit of 141.6µm.

a b

c

Figure 3.2: Fiber mirrors. (a) Measured (blue) and calculated (orange) DBR transmission T as a function of
wavelength. The calculations were done using the transfer matrix formalism. (b) Uncoated telecom fiber.
(c) DBR coated telecom fiber. In both cases the scale bar is 100µm.

3.1.2 Mirror surface reconstruction

The relevant geometrical parameters of the laser-machined fiber tips are extracted by reconstruct-
ing their surfaces using an optical profilometer. The working principle is based on phase shifting
interferometry measurements [122]. The main component of our phase shifting interferometer is
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Figure 3.3: Phase shifting interferometry. (a) Sketch of the Mireau interferometry objective with incor-
porated beam splitter and fixed mirror. The fiber with the indentation is glued to a piezo element (orange
square) that moves the fiber in the z direction in steps. A first calibration of the piezo allows to map the z
movement with the intensity modulation I = A sin(4πz/λ+φ0)+B that is used at a later stage for the demod-
ulation (Eq. 3.5 and Eq. 3.6). After calibration, the z position is varied Nsteps-times and an interferometry
intensity profile (b) is recorded with the CCD camera at each position. (c) Wrapped and (d) unwrapped
phase for a close up around the center of the indentation. (e) Reconstructed height profile.

a Mireau interferometry objective (20x Nikon DI Interferometry Objective). This special objective
has a built-in beam splitter and reference mirror (Fig. 3.3a), so that the images formed on a CCD
camera chip present the standard fringe pattern from a Michelson interferometer (Fig. 3.3b). The
fringes are produced by the profile-dependent phase difference ϕ(x, y) that originates from the
difference in optical paths due to the surface profile z(x, y). In the ideal scenario of homogeneous
illumination and perfectly balanced arms of the Michelson interferometer, the intensity on the
camera chip will be

I (x, y) = Idc + Iac cos
(
ϕ(x, y)

)
. (3.2)

As in a Michelson interferometer, two points separated by consecutive bright fringes correspond
to a height difference of λ/2, which is a phase change of ∆ϕ(x, y) = 2π. One could in theory count
fringes and reconstruct the surface. Doing this, however, one cannot distinguish changes in in-
tensity due to spurious mechanisms not related to height differences, like inhomogeneous illumi-
nation, that result in a position dependent DC component of the intensity, Idc(x, y). To eliminate
them, one introduces a controlled phase element φ(z) that depends on the fiber position z, so
that now the intensity profile becomes

I (x, y, z) = Idc(x, y)+ Iac cos
(
ϕ(x, y)+φ(z)

)
, (3.3)

that can be expanded to

I (x, y, z) = Idc(x, y)+ Iac
[

cos
(
ϕ(x, y)

)
cos

(
φ(z)

)− sin
(
ϕ(x, y)

)
sin

(
φ(z)

)]
. (3.4)

The phaseφ(z) is shifted by changing the distance of the fiber surface to the objective, and at each
position z an intensity profile is recorded I (x, y, z). If the position of the fiber mirror is displaced
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by ∆z, then the change of controlled phase is ∆φ= 4π∆z/λ. By changing the position in steps of
∆z < λ/2 over several half-wavelengths, every pixel (x, y,) is scanned through several fringes, i.e.
the local intensity I (x, y) oscillates in a controlled manner with a λ/2 periodicity, but with a fixed
ϕ(x, y). One can fit Eq. 3.4 to cos(φ(z)) and sin(φ(z)), obtaining two quadrature signals which
allow us to extract the desired phase factor ϕ(x, y). This method is called, for obvious reasons,
phase shifting interferometry; we illustrate its working principle in Figure 3.3.

Let M be the number of scanned periods, and N the number of z steps per period, each quadra-
ture is obtained as [123]

X (x, y) =
M N−1∑

i=0
I (x, y, zi )cos(4πzi /λ) (3.5)

Y (x, y) =
M N−1∑

i=0
I (x, y, zi )sin(4πzi /λ), (3.6)

from which
ϕw (x, y) = tan−1(Y /X ) (3.7)

The result of Eq. 3.7 is a phaseϕw (x, y) going from −π to π. We need to unwrapϕw (x, y) to obtain
the accumulated phase, ϕ(x, y). To that end, ϕw (x, y) is fed to a phase-unwrapping algorithm
[122]. After that, the height profile is calculated as

z(x, y) = λϕ(x, y)

4π
. (3.8)

The initial version of the profilometer was designed and constructed by Alexandre Brieussel. The
fiber is mounted on a fiber holder that its glued on a piezo element; the piezo is used to change
the z position of the fiber. The piezo is connected to the DAC port of an Arduino DUE board that,
after passing through a home-build amplifier, can generate voltages between 5.5 V and 27.5 V, in
steps of minimum 5 mV. The sample is illuminated with a red LED (λ = 632nm). The setup was
upgraded by changing the old Thorlabs CCD camera to a Zelux Thorlabs camera, with a larger
CCD chip size. This, together with a larger focal length lens ( f = 200mm), increased the lateral
resolution of the setup from 360 nm/px up to 170 nm/px. A picture of the setup is shown Fig. 3.4a.
The original Matlab code, written by Alexandre Brieussel, was modified to incorporate the new
camera and corrected to produce the right phase profiles.

Our vertical resolution is limited by the phase-reconstruction analysis. To illustrate this, Fig-
ure 3.4b shows a cross-section of the surface profile (blue) and its derivative amplified by a factor
of 10 (orange) for the SM fiber mirror of cavity C9 (see Table 3.1). The surface presents small jumps
that are more appreciable when looking at its derivative. As measure of the resolution in the z di-
rection we can take the root mean square of the derivative of the profile, yielding a resolution of
55 nm. The jumps’ origin is unclear and was not studied because they do not affect the mirror’s
geometrical parameters, which are only influenced by features at larger length scales. The jumps
could originate from the unwrapping algorithm – right now the code uses the built-in unwrap
function from Matlab R2021a, but there are more sophisticated algorithms [124]. Additionally, the
cosine and sine factors in Eq. 3.5 and Eq. 3.6 are currently obtained by running a calibration prior
to acquiring all the interferometry images (see the caption in Figure 3.3). One could fit the same
function to each of the pixels instead to get a better extraction of the reconstructed phase.
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Figure 3.4: Optical profilometer components and performance. (a) Our phase shifting interferometer
consists of, from left to right: a home-built amplifier, a Thorlabs fiber holder glued to a piezo element, a
Mireau interferometry objective, a beam splitter (BS), a 200 nm focal length lens, a red LED, a Thorlabs
Zelux camera and an Arduino DUE board (not shown). (b) Cross section of the height profile (blue) of the
SM fiber mirror of cavity C9 (see Table 3.1), together with its derivative amplified by a factor of 10 (orange),
measured with our setup at TUM. (c) Cross section of the profile in (b) around its center. Dots are experi-
mental data and solid lines parabola fits. The blue data was measured at TUM and the orange data at KIT.

After the height profile is obtained, we fit the data to a 2D Gaussian with a linear background to
extract the mirror diameter [99]. Finally, we fit a 2D parabola in an area of 15× 15µm2 around
the center of the mirror, from which the radius of curvature and asymmetry are obtained4. We
re-measured few of the fibers fabricated and characterized at KIT with our optical profilometer
to compare their performance. The setup at KIT had a horizontal resolution of 41 nm/px. Both
analysis yield the same mirror depths and radii of curvature within 5 %. Figure 3.4c shows the
data around the center of the same mirror as in Figure 3.4b measured at KIT (data as orange dots,
parabola fit as red line) and re-measured at TUM (data as blue dots, parabola fit as blue line).
The setup at KIT yields a mean ROC of R = 205.8µm and ours R = 207.2µm for this particular
example.

3.1.3 Cavity assembly

To form a cavity we select two fiber mirrors: a single-mode one and a multimode one (Fig. 3.5a).
Each fiber is glued to a silicon v-groove (Fig. 3.5b, top) and each v-groove is glued to a shear piezo

4All mirrors have some degree of asymmetry due to the shooting process resulting in an elliptic parabola. The asym-
metric is defined as ϵ= Rx /Ry −1, with Rx,y the ROC in each direction.
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(PZT) (Fig. 3.5b, bottom). The piezos, when fed with a voltage, allow us to tune the distance be-
tween the fibers within the piezos’ range5. The piezos are fixed by UV-epoxy to a quartz block that
serves as a base for the the whole cavity (Fig. 3.5b, bottom). The v-groove from the MM fiber, with
the fiber glued on it, is the last element to be glued in the cavity assembly – it is glued to its piezo
with Stycast glue. All degrees of freedom between the fibers (x, y, z directions and angles) are fine-
tuned during the curing of the Stycast glue. Although it takes 24 h to cure, the alignment is done
during the first 12 h. Once it is cured, the cavity is a monolithic device (Fig. 3.5b, bottom): neither
the fibers nor any of the other cavity components can be removed or changed without damaging
other parts. This rigid design ensures a good mechanical and thermal stability compared to other
cavity designs where the fibers can be retracted at a later stage [20, 125]. Of course, the big ex-
pense is that it is complicated to insert the sample in between the fibers, which are separated by
only 40µm (less than half of the diameter of a hair!).

a b c
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LED holder

PZT
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Figure 3.5: Fiber-based microcavity. (a) Image of a single-mode (top) and multimode (bottom) fiber facing
each other separated by a distance Lcav ≃ 40µm. (b) Photograph of the final device. The two fibers are glued
to silicon v-grooves with Dymax UV-epoxy. Both v-grooves are glued to shear piezos: the SM fiber’s v-groove
with Dymax UV-epoxy and the MM fiber’s v-groove with Stycast (black glue). (c) The cavity is glued with
Dymax epoxy to an aluminum holder that is placed later inside the vacuum chamber.

The gluing and aligning process is explained in great detail in the PhD theses from Sebastian
Stapfner [111] and Felix Rochau [112], with the following modifications. The fast curing UV-
epoxy used to glue the single-mode fiber was changed from the old Dymax OP 4-20632 to Dymax
OP-24-REV-B (liquid) or Dymax OP-29 (viscous), both yielding good results. The reason for the
change was that Dymax stopped the fabrication of the OP 4-20632. We also changed the stereo
microscope (x4 magnification) used for fiber alignment to a higher magnification tube lens sys-
tem (magnification adjustable up to x37), providing a better optical access and easier alignment.
The tube lens belongs to the setup used to transfer the van der Waals materials and is described

5Scanning both piezos symmetrically with a ramp waveform of peak amplitude Vp = 10V that is amplified with a HV
amplifier produces a cavity length change of around ∆L ≃ 1.6µm (see Appendix B.1).
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in Section 4.2.

Finally, the cavity is mounted on an aluminum holder or frame as shown in Figure 3.5c. The
frame’s constraint is that the cavity must be located at a height matching the one of the sample
when placed on the positioning stages. We designed the holder with Louis Kukk’s assistance, who
produced it at the workshop of the University of Konstanz. It contains a LED holder looking like a
light pole that is used to provide extra illumination to the optical access of the setup. The latter is
necessary to monitor the insertion of the sample into the cavity.

3.2 Optical setup

All components of our optical setup, shown in Figure 3.6, are fiber based. The fibers from the
cavity are fusion-spliced to commercial fibers with a Fujikura FSM-100 splicer. The cavity’s SM
fiber is spliced to a Tholarbs SMF28 fiber and the cavity’s MM fiber to a graded-index Thorlabs
GI50D fiber. The rest of the fiber connections are done with standard FC/APC connectors.

The setup has three different light sources and respective light paths: the lock laser (λ= 1550nm),
the probe laser (λ = 1550nm) and a 1310 nm-SLED. Each wavelength is depicted with one color
in Figure 3.6, blue for 1550 nm and red for 1310 nm. In the following we describe each of the light
paths.

PZT

PZT

PDint

PDr

Lcav 

z
x

EOM

VOA

probe lock

SLED

VOA WDM

50/50

FPC

PDt

Vacuum
chamber

1550 nm 1550 nm

1310 nm

EOM: Electro-Optic intensity Modulator
VOA: Variable Optical Atenuator
FPC: Fiber Polarization Controller

WDM : Wavelength Division Multiplexer
PZT: PieZoelectric Transducer
50/50: 50/50 fiber coupler

PDt: Transmission PhotoDetector
PDr: Reflection PhotoDetector
PDint: Interferometry PhotoDetector

Figure 3.6: Optical setup. The lock laser is used to characterize the cavity. The cavity is locked to this laser
when performing dynamical backaction experiments. The probe laser is used to scan the laser frequency
across the cavity resonance when the cavity is locked to exert an optical force on the resonator. The SLED,
whose wavelength is outside the DBR coating band, is employed for interferometry measurements. The
fiber polarization controllers have a λ/4-λ/2-λ/4 configuration.

The lock laser is an ultra-low noise telecom fiber laser (NKT Koheras Basik E15) that we use as
main light source to perform all the cavity characterization measurements and the cavity-to-laser
locks. For this reason, we refer to this laser as lock laser, even for the cavity characterization mea-
surements where the cavity is not locked. The laser is operated at its maximum power, P = 40mW,
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Chapter 3. Our 1550 nm setup for cavity optomechanics

where it operates at its best noise performance6. Because we need to use very low input powers to
avoid nonlinear cavity effects (Pin < 30µW, cavity dependent), we use fiber-based optical variable
attenuators (VOA, Thorlabs V1550A, maximum attenuation of 25 dB) at different stages to reduce
the power. We employ an electro-optic analog intensity modulator (EOM, iXblue MXAN-LN-10)
to generate sidebands that are used for the heterodyne measurements and to generate the error
signal for the cavity lock (see Section 3.9). The fibers of the EOM are panda polarization main-
taining (PM) fibers. We place a fiber polarization controller (FPC) between the laser and the EOM
to match the laser’s polarization to the EOM’s. An additional FPC after the EOM allows us rotate
the linear polarization to match the target cavity polarization direction. The cavity polarization
mode splitting is introduced later in Section 3.4. Finally, the lock laser meets with the probe laser
by means of a 50/50 fiber optic coupler (Thorlabs, TN1550R5A2).

The probe laser is a tunable laser (Newport, Velocity TLB-6728) with a mode-hop free wide tuning
range of 50 nm (1520-1570 nm) and a fine-tuning range of 30 GHz. We use this laser for dynamical
backaction experiments, where we use the laser’s fine-tuning option to scan the probe laser’s fre-
quency across the cavity resonance. We use an additional VOA to attenuate the laser power and a
FPC to select the desired polarization. The laser is finally connected to the other port of the 50/50
fiber optic coupler.

One of the outputs of the 50/50 coupler is connected to port 1 of a fiber circulator (Thorlabs, 6015-
3-APC). Port 2 of the circulator is directly connected to the cavity SM fiber, sending the light from
both the probe and lock laser to the cavity. The cavity reflection is sent to a fast photodetector
(Thorlabs PDB435C-A, 350 MHz bandwidth) connected to port 3 of the circulator. We refer to this
photodetector as reflection photodetector, PDr. The light transmitted from the cavity is sent to
a 1310/1550 nm wavelength division multiplexer (WDM, Thorlabs WD1350A). The 1550 nm port
is connected to the transmission photodetector (PDt) that detects the cavity transmission at λ =
1550nm.

The other port of the WDM is connected to the light path from the 1310 nm-SLED. The SLED’s
wavelength is outside the mirror coating band – we therefore use it to perform interferometry
measurements when the sample is inserted. The light from the SLED is attenuated with a VOA
and then sent to port 1 of a 1310 nm circulator (Thorlabs CIR1310-APC). Port 2 is connected to the
1310 port of the WDM. The light reflected back from the cavity at 1310 nm goes again through the
WDM and is sent to a photodetector connected to port 3 of the 1310 circulator. We refer to this
detector as interferometer detector, PDint. The detectors used for transmission and interferometry
depend on the exact measurement and are described in the next section.

3.3 Electrical setup

Light is converted to electrical signals through photodetectors (PDs). Depending on the frequen-
cies and magnitude of the signals we aim to detect, we need to use PDs with different bandwidths
and gains, respectively.

The transmission detector needs to have large gains to be able to detect the small transmitted
powers, which are in the order of 1µW or smaller. When the transmission port is used to create

6This is specified by the supplier.
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the error signal for the lock, we need a detector with a high gain to provide a good signal but with
a large enough bandwidth to be able to resolve the demodulation sidebands (remember that gain
and bandwidth compete against each other [126]). For those cases, we use a home-built detector7

with an RF bandwidth of 30 MHz and RF and DC gain of −0.7 V/µW. The DC output has an offset
of 25 mV. For the cavity characterization and the measurements of the dispersive and dissipative
couplings, which do not require large bandwidths, we use a commercial variable gain photodetec-
tor (Femto OE200) with gains from 0.1 V/µW to 105 V/µW. The largest bandwidth for this detector
is 500 kHz. If for any reason the Femto detector is used to measure the 1310 nm signal, the selected
gain has to be scaled down by a factor 0.92 to account for the different responsivity at different
wavelengths.

The detector used for the 1310 nm signals is another home-built detector with the same specs
as the home-built one previously described. The reflection photodetector (Thorlabs PDB435C-A,
350 MHz bandwidth) has a DC and RF gain of 0.01 V/µW.

We perform mainly three types of measurements: the characterization of the cavity to extract
the relevant empty cavity parameters, the measurement of the static dispersive and dissipative
couplings, and the measurement of dynamical backaction, usually in that order for a given cavity.
The electronics involved in each of them depend on the required cavity length scan range and
whether the cavity length needs to be stabilized (locked) or not. In all cases, a ramp waveform
is generated by a Keysight arbitrary waveform generator (AWG, Keysight 33521B series) with a
frequency of 9 Hz and a peak voltage Vp (maximum of Vp = 10V). The corresponding peak-to-peak
voltage, when directly sent to one of the piezos without amplification, corresponds to a maximum
frequency detuning of∆max/2π=±26GHz (see Appendix B.1). The output of the AWG is sent to an
analog lock box (designed and built by Anton Scheich, chair of T. Hänsch at LMU, Munich), which
has an input range of ±14V. The lock box can attenuate the input signal and change its offset with
potentiometers, and has a maximum output of ±10V. We describe the specifics regarding each
measurement in the following paragraphs.

Cavity characterization

Figure 3.7a displays the electronic equipment involved in this measurement. For convenience,
some optical components are cut off through a fade, but they can be recovered from Figure 3.6.
The output of the lock box (PI, from proportional-integral controller) is sent directly to one of the
piezos. In principle the lock box is not necessary, because it basically mimics the output of the
AWG, but we keep it to avoid moving devices around. Since the cavity linewidths are in the mega-
hertz regime, the frequency detuning of∆max/2π=±26GHz provided by the piezo scan is enough
to scan through a cavity resonance. The other piezo is used to bring the cavity in resonance. It
is fed with a DC voltage generated by a UHFLI Zurich instruments lock-in amplifier8 (aux port,
±10V) that is amplified by a home-built HV amplifier. The amplifier has an input of ±10V, a gain

7The detector was originally designed by Stephan Manus (LMU), and has some modifications from Felix Rochau
and Alexandre Brieussel. It was built by the electronic workshop of the University of Konstanz. For more details on the
detector see Ref. [112].

8The UHFLI is a powerful device. As we will see later, we mainly use it to generate the error signal to stabilize the
cavity length. Still, its 600 MHz-bandwidth is not necessary for our experiments, but since it was available we use it
given all its functionalities.
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LP: Low Pass filter
PI: Proportional-Integral controller (lock box)
HV: High Voltage amplifier

SA : Spectrum Analyzer
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PDt: Transmission PhotoDetector
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Figure 3.7: Electrical setup. Electronics involved in (a) the cavity characterization measurement and (b)
in the dynamical backaction experiment. In both cases, the cavity is brought in resonance by feeding the
upper piezo with a HV-amplified DC voltage. The cavity length is scanned by sending a ramp waveform to
the lower piezo. In (a), we record the DC traces of the transmission, reflection and interferometry detectors
with oscilloscopes. In (b), the RF outputs of the reflection and interferometry detectors are connected
to spectrum analyzers to measure the mechanical response of the resonators. The DC component of all
detectors, although not shown, is monitored with oscilloscopes as well. The EOM modulates the lock laser
atωmod. We demodulate the transmission signal at the same frequency, which we use to stabilize the cavity
length through the lower piezo (see main text for details). The low pass filter has a cutoff frequency of 16 Hz
in both cases. For convenience, some optical components are cut off through a fade in both (a) and (b), but
they can be recovered from Figure 3.6.

of 40 V/V and a bandwidth of 20 kHz. Its output is protected with a low pass filter (cutoff frequency
of 16 Hz). The reflection and transmission of the cavity are recorded by the Thorlabs and Femto
detectors, respectively.

Dynamical backaction

Although the dynamical backaction experiments are the last measurements we usually perform,
its electrical components, shown in Figure 3.7b, are very similar to the cavity characterization
ones: they both require a similar piezo scan range. Consequently, we display them together in
the same figure. The cavity is brought on resonance with the amplified DC voltage sent to one of
the piezos as described in the previous subsection. We use the UHFLI Zurich instruments lock-in
amplifier to generate an RF signal at ωmod to produce sidebands on the lock laser. In this case, we
use the home-built photodetector with bandwidth of 30 MHz in transmission. The RF output from
the transmission PD is sent back to the lock-in and demodulated at ωmod. One of the quadratures
is sent through a lock-in’s aux port to the lock box and employed as error signal for the lock (similar
to a PDH technique but not quite the same, as explained in Section 3.9). The lock box has now two
inputs: the scan generated by the AWG and the error signal. By flipping a switch, the scan is
disconnected from the output of the lock box and the proportional-integral (PI) controller of the
lock box sends a control signal to the piezo, that stabilizes the cavity length to the set point of the
error signal. The P and I gains can be tuned with potentiometers.
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3.4. Fiber cavity characterization

The spectral response of the mechanical resonators is measured from the reflected light from the
cavity via the Thorlabs detector. The RF output of the detector is sent to the lock-in and demod-
ulated at ωmod to separate the contributions form the lock and probe lasers. The PSD of the de-
modulated signal is measured with a spectrum analyzer (Rhode & Schwarz FSVR7).

Static dispersive and dissipative couplings

The dispersive coupling of our samples lead to cavity detunings larger than 100 GHz, outside the
scan range of the AWG. To be able to resolve them, the output of the lock box is sent to the home-
built high voltage amplifier (gain of 40 V/V and a bandwidth of 20 kHz), shown in Figure 3.8. We
change the filter of its output to a cutoff frequency of 160 Hz to be able to resolve the scan, and
send it directly to both piezos, that are scanned symmetrically. The maximum frequency detuning
is ∆max/2π = ±4.5THz for a Vp = 10V scan, enough to resolve up to three free spectral ranges in
most of our cavities. The piezos show a nonlinear response – a polynomial of second order –
due to the large input voltages9. The piezo scan to frequency conversion is explained in detail in
Appendix B.1. The cavity reflection and transmission are measured with the Thorlabs and Femto
detectors, respectively.

LP: Low Pass filter
PI: Proportional-Integral controller (lock box)
HV: High Voltage amplifier
WDM: Wavelength Division Multiplexer

PZT: PieZoelectric Transducer
PDr: Reflection PhotoDetector
PDint: Interferometry PhotoDetector
PDt: Transmission PhotoDetector

PZT

PZT
PI

HV

Scope

PDint

PDr
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PDt

Vacuum chamber
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Scope

LP

Figure 3.8: Electrical setup for measuring the static couplings. Both piezos are driven symmetrically with
a ramp amplified with a high voltage amplifier. The low pass filter has a cutoff frequency of 160 Hz. The
transmission photodetector is the high gain Femto OE200. Some optical components are cut off through a
fade, but they can be recovered from Figure 3.6.

3.4 Fiber cavity characterization

The transmission, reflection and circulating fields (Eq. 2.56) of a Fabry-Pérot cavity are completely
determined by the cavity linewidth κ, free spectral range ωFSR – and therefore cavity length Lcav

9After amplification, a ramp amplitude of Vp = 10V is transformed into Vp = 400V. We always specify the ramp
waveform’s amplitude Vp in terms of the output of the AWG before it is amplified, because this is what we monitor and
change in the experiment. To obtain the voltage at the piezo one has to multiply Vp times the amplifier’s gain (40 V/V).
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– and external couplings, κ1,e and κ2,e . In a fiber-based Fabry-Pérot cavity, however, one needs
to also take into account the mode-filtering from the fiber core: the mode matching between the
fiber Gaussian mode and the one from the cavity (Eq. 3.1) [127]. Additionally, in most of our fiber
mirrors the center of the mirror does not necessarily match the center of the core of the fiber,
which reduces the mode matching even more. Figure 3.9a shows the center mismatch of one of
our fiber mirrors. Gallego and coauthors [127] did an extensive experimental and theoretical study
on fiber core filtering effect. For us, it is sufficient to know that the cavity’s response equations are
now changed into ∣∣∣∣E−

0

E+
0

∣∣∣∣2

=
∣∣∣∣β− κ1,eα

2

κ/2− i∆

∣∣∣∣2

, (3.9)

∣∣∣∣ Et

E+
0

∣∣∣∣2

= κ1,eκ2,e |α|2|α2|2
(κ/2)2 +∆2 . (3.10)

Let’s look first at the reflection using Figure 3.9b as reference. Two fields are relevant in this case,

z
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a

Figure 3.9: Fiber filtering. (a) Interferometry image of a mirror profile with the fiber core illuminated
(bright white circle in the middle). The image shows a typical offset between the mirror’s center and the
fiber core of 4µm. This particular fiber mirror was used as SM fiber for cavity C8 (Table 3.1), which has
|β|2 = 0.6. (b) Sketch illustrating the fiber filtering contribution to the reflected and transmitted fields in a
fiber-based microcavity. The gray shaded areas depict the fiber core for both SM (9µm-diameter) and MM
fiber (50µm-diameter). See the main text for a detailed explanation.

the one that is prompt reflected from the first mirror (red) and the one corresponding to the cir-
culating field inside the cavity that leaks out through the first mirror (purple). Each of them will
have a different mode matching efficiency with respect to the Gaussian mode from the fiber-core:
β accounts for the mode matching efficiency between the prompt reflection and the fiber, and α
between the field leaking from the cavity and the fiber. The part that is not mode matched is lost
in the cladding (wavy-arrows). On top of that, they do not necessarily have to be in phase, which
means that α and β are complex numbers. The value |β|2 receives the name of prompt reflection
and is the fraction of light power reflected from the cavity when it is far from resonance. When
we measure the reflection response in the lab, we cannot distinguish between κ1,e and α, so we
redefine the input coupling to κ∗1,e = κ1,eα

2; dropping the superscript asterisk for convenience, we
obtain ∣∣∣∣E−

0

E+
0

∣∣∣∣2

= |S11|2 =
∣∣∣∣β− κ1,e

κ/2− i∆

∣∣∣∣2

. (3.11)
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The filtering effect form the fiber core leads to an asymmetry in the reflection response that is not
present in standard Fabry-Pérot cavities, and a shifting of the minimum of the reflection com-
pared to the maximum of the transmission.

The transmission case (blue in Fig. 3.9b) is easier; α2 is the mode matching between the cavity
and transmission fiber modes. Similarly, we can define κ∗2,e = κ2,e |α2|2, leading to∣∣∣∣ Et

E+
0

∣∣∣∣2

= |S21|2 =
|κ1,e |κ2,e

(κ/2)2 +∆2 , (3.12)

where we have dropped the superscript asterisk again. In the last two expressions we have in-
troduced the scattering matrix notation for the transmission and reflection from the cavity, |S21|2
and |S11|2 , respectively. We note that with the new definition of the external couplings they are no
longer a measure of the mirrors’ transmission (see Section 2.3.2).

3.4.1 Power calibrations

To fit Eq. 3.11 and Eq. 3.12 and extract all cavity parameters we need to know the transmitted, re-
flected and input powers precisely. The gain of all photodetectors has to be very well characterized
and the losses of all fiber connections minimized. The fiber connectors are cleaned and inspected
with a fiber microscope. In general, the losses upon fiber splicing10 (≤ 0.01dB) are lower than the
ones in the FP/APC fiber connectors, which are around 0.25 dB. The transmission of each of the
fiber components (circulators, WDMs, fiber splitters) must also be characterized.

After these calibrations, we can calculate the transmitted power as Pt =Vt /(Gt Tt ), where Vt is the
voltage measured at the oscilloscope, Gt the gain of the transmission detector and Tt the product
of the transmission of each of the fiber components/connectors involved in the transmission light
path. The reflected power follows Pr =Vr /(Gr Tr ), similarly.

The input power of the cavity can be measured from the off-resonant cavity reflection if the prompt
reflection of the cavity |β|2 is known. In that case,

P0 = Vr

Gr T23|β|2
, (3.13)

with T23 being the circulator’s transmission from port 2 to 3. To measure the cavity prompt reflec-
tion we use a fiber retroreflector (Thorlabs, P5-SMF28ER-P01-1) with a known11 reflection power
coefficient of 0.97. The prompt reflection is then measured as

|β|2 = 0.97
V cav

r

V rr
r

. (3.14)

V cav
r denotes the measured voltage at the oscilloscope from the off-resonant cavity reflection and

V rr
r the one from the retroreflector.

3.4.2 Linewidth and external couplings

We bring the cavity on resonance by sending a DC voltage to one of the piezos; at the same time we
scan the cavity length by sending a ramp waveform to the other one (see Section 3.3). The time axis

10They are measured by the splicer. If any splice has losses larger than 0.01 dB we redo the splice.
11We cannot measure this value. We take the one provided in the spec sheet.
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Figure 3.10: Cavity characterization. Cavity reflection |S11|2 and transmission |S21|2 for the lower fre-
quency (a) and higher frequency (b) polarization mode of the cavity for an input power of P0 = 22µW. For
this cavity (C8, see Table 3.1), the polarization splitting and mean linewidth (of the two polarizations) are
ωpol/2π= 133.5MHz and κ/2π= 18.7MHz, respectively.

of the oscilloscope is transformed into frequency by modulating sidebands with the EOM. One can
calibrate the voltage to frequency conversion for a particular ramp peak-amplitude Vp and piezo,
so that the sidebands are no longer needed. For the 9 Hz ramp, we obtain a calibration factor12 of
−2.6 GHz/V, specified to ramp peak voltages Vp. The transformation between time and frequency
of the oscilloscope’s traces and the piezo scan calibration are carefully described in Appendix B.1.
Figure 3.10 shows the transmission |S21|2 and reflection |S11|2 of the two non-degenerate polar-
ization modes of the cavity, together with the theoretical fits using Eq. 3.11 and Eq. 3.12. The fit
results of all the cavities constructed during this work are presented in Section 3.4.4. The polar-
ization mode splitting originates from the fiber mirrors’ ellipticity [128, 129].

Nonlinear effects

If the cavity is pumped with sufficiently high optical powers, the expansion and contraction of
the mirrors changes the optical path length inside the cavity. This effect is proportional to the
circulating photon number nc and is therefore a nonlinearity of the Kerr type [130, 131]. In this
case, the circulating photon number is no longer given by a Lorentzian function (Eq. 2.56 and
Eq. 2.58). Instead, one has to find the solution to the nonlinear equation

nc

nin,crit

[
(Knc −∆)2 + (κ/2)2

]
= κ nin

nin,crit
, (3.15)

where K is the Kerr nonlinear coefficient, nin the input photon rate and nin,crit = κ2/(3
p

3|K|)
[131].

Let’s take a look at the behavior of the photon number as a function of the input power through
the ratio nin/nin,crit (Fig. 3.11a). For values of nin/nin,crit ≪ 1 (blue line), the circulating photon
number follows a Lorentzian function characteristic from a linear cavity. In this case, Eq. 3.15
has a unique solution. As we increase the input power, the maximum of the cavity resonance
is shifted towards negative detunings and the left side of the curve gets increasingly steep. This is
characteristic of systems with a negative Kerr nonlinearity (K< 0), which is the case of our cavities

12This value was measured for the piezo of the SM fiber of cavity C8 (see Table 3.1). A different piezo will have a
different value. The sign of the calibration factor depends on how the piezos are glued. For this cavity, the cavity length
increases for positive voltages, therefore the frequency decreases and the sign is negative.
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Figure 3.11: Cavity nonlinear response. (a) Normalized circulating photon number versus cavity detuning
for different values of the ratio nin/nin,crit. The curves are generated solving Eq. 3.15 using the parameters
K/2π = −240Hz/photon and κ/2π = 18MHz. The python code used to solve the nonlinear equation was
provided by Philipp Bredol. (b) Normalized nonlinear cavity transmission for different input powers. The
detuning is swept from negative to positive values, and is set to 0 at the point of maximum transmission.
The blue curve (P0 = 25µW) is slightly asymmetric around the cavity detuning. The orange line (P0 = 72µW)
shows a clear bistable behavior manifested as an infinitely steep transition from the lower to the higher
branch.

as we will see later. When nin/nin,crit = 1 (green line), the system reaches the critical point. If the
input power is further increased so that nin/nin,crit > 1 (orange curve), then Eq. 3.15 has three
solutions for a particular detuning range. From the three solutions, only two are stable, both of
them depicted as solid orange lines in the figure. Among them, one has a larger photon number
(top solid line) than the other (bottom solid line). We label them as high (H) and low (L) photon
number solution. The bistable regime is highlighted with a orange shaded area in Figure 3.11a
and the unstable solution is depicted as an orange dashed line. This leads to an optical bistability:
the behavior of the cavity depends on the direction in which we sweep the frequency detuning,
giving rise to a hysteresis of the photon number with respect to the detuning’s sweep direction [99,
132]. For example, if we start from negative detunings in the low photon number solution, when
the system reaches the bifurcation point (black lower cross), it jumps to the high photon number
solution. The jump is indicated with a black arrow that points upwards. On the contrary, if we start
sweeping from positive detunings, the system starts in the high photon number solution until it
reaches the other bifurcation point (higher black cross). Then, it falls down into the low photon
number solution. The latter is represented by a downwards pointing black arrow.

Figure 3.11b shows the normalized experimental cavity transmission for different input powers.
The detuning is swept from negative to positive values and set to zero at the point of maximum
transmission13. As the power is increased, the cavity response becomes more and more steep for
negative detunings: our cavity has a negative Kerr nonlinearity. The sign of the nonlinearity is
better understood if we start on the high photon number solution. First, we need to remember
that when we change the cavity detuning, what we are really doing is changing the cavity length
with the fiber mirrors’ piezos. If we start with a shorter cavity (positive detuning, higher photon
number solution), the photon number builds up as the cavity length is increased. This means that
the detuning is swept towards negative values. The mirrors’ expansion compensates the cavity
length increase from the mirrors’ piezos [99]. This effectively manifests as having a high photon

13We did not measure the relative detuning shift between the linear and nonlinear cavity response.
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number at longer cavity lengths, i.e. negative detunings, compared to what we would expect for
a linear cavity. We usually start observing a nonlinear behavior for input powers around 25µW,
manifested as a slight deviation from the expected Lorentzian trend (Fig. 3.11b, blue solid line).
We measure a bistable behavior for input powers beyond 35µW approximately. In the example
we show the extreme case for P0 = 72µW (Fig. 3.11b, orange line). Because the detuning is swept
from negative to positive values, the orange line sharply transitions between the low to the high
photon number solution at the bifurcation point.

If the readers are familiar with the nonlinear response of a mechanical resonator, they could won-
der: why does the nonlinear cavity response look like the amplitude response of a nonlinear me-
chanical oscillator [133] with a negative Duffing parameter? Indeed, both problems are equiv-
alent, but the difference is the starting point. For our case, Equation 3.15 is derived using the
Hamiltonian formulation and input output theory of a cavity with a Kerr nonlinearity [131]. The
Duffing model, on the contrary, starts directly from the equation of motion of a damped, driven
oscillator in a nonlinear potential. David Zöpfl demonstrates the equivalence of both approaches
in his PhD thesis [134].

3.4.3 Cavity length and free spectral range

When we build the cavity we estimate the cavity length from the images taken with a camera, using
the fiber diameter as length reference (considering the increased diameter due to the DBR coat-
ing). This is, however, just quick and underestimates the cavity length because it does not con-
sider the depth of the mirror indentation, DBR penetration depth, or any angle from the imaging
process.

ωFSR

TEM00
TEM00

Figure 3.12: Free spectral range. Cavity transmission as a function of laser wavelength. The separation
between the longitudinal modes reveals a free spectral range of 3.58 THz. The detector was saturated for
the TEM00 on the right of the graph and therefore the relative intensity between the fundamental and higher
order transversal modes carries no useful information.

To measure the cavity length and free spectral range precisely we ground both cavity piezos and
use the tunable option of the probe laser to scan over two free spectral ranges. We record the
cavity transmission and reflection while tuning the laser’s wavelength. We identify the FSRs by lo-
cating the TEM00 mode. In non-fiber based cavities, one can identify the transversal cavity modes
by imaging them. Because our cavity is fiber coupled, this is not possible. However, considering
that we obtain input coupling efficiencies > 90% for the SM fiber to cavity Gaussian modes (see
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Fig. 3.1a), and that for higher order cavity modes the couplings are more than three orders of mag-
nitude smaller14, it is safe to assume that the peaks with highest transmission belong to the TEM00.
From their separation we extract the free spectral range and cavity length. Figure 3.12 shows a typ-
ical transmission spectrum as a function of the laser wavelength. The TEM00 mode is pointed with
an arrow; the smaller peaks correspond to higher order transversal modes. In order to resolve the
higher order transversal modes, we had to crank up the detector gain, which means the detector is
saturated for the TEM00 on the right of the graph – for this reason the relative height between the
TEM00 and higher order modes has no useful information. The intensity variation between both
TEM00 is due to the wavelength dependent power variations of the tunable laser.

3.4.4 Summary of the fabricated cavities

Over the course of this PhD thesis I fabricated a total of nine fiber cavities. Their parameters are
presented in Table 3.1. The ones that we used for published work have the reference next to the
cavity name. We do not show cavities C1 and C2 because they are not well aligned and present
many higher order modes. C5 was unusable because the Stycast glue did not properly cure and
the cavity got misaligned afterwards. All cavities besides C3 and C8 were characterized during the
fabrication process, not under vacuum and not with vibration isolation. Their values may slightly
differ if they are characterized again under different measurement conditions.

Table 3.1: Experimental cavity parameters. The cavity with an asterisk broke and is no longer operational.
All measurements (except for C3 and C8) were done under atmospheric pressure and without acoustic
shielding. The prompt reflection is the mean value of both polarizations (they typically deviate by ∼ 3%).
The displayed finesse and |S21|2max are the highest of the two polarizations. Missing values are indicated
with a hyphen.

Cavity

name

ROC (µm)

SM, MM

κ/2π (MHz)

pol1, pol2

ωpol/2π

(MHz)

Lcav

(µm)

ωFSR/2π

(MHz)
F ·10−3 |β|2 |S21|2max

C3 [135] 191, 139 17, 19 74 43.8 3.42 200 0.6 0.012

C4* 278, 138 46, 48 250 38.2 3.94 85 0.6 0.014

C6 255, 60 68, 68 360 28.7 5.2 76 0.7 –

C7 274, 126 46, 46 86 76.4 1.96 43 0.5 –

C8 [1] 191, 136 18, 18 133 41.8 3.58 194 0.6 0.03

C9 206, 146 41, 40 88 40 3.75 91 0.45 0.007

3.5 Vacuum system

The cavity and mechanical resonators are kept inside a vacuum chamber to reduce gas damp-
ing. We designed the vacuum chamber and manufactured it in the workshop from the Univer-

14The couplings can be calculated numerically computing the overlap integral of the mode profiles at the mirror
surfaces [118]. After the cavity Gaussian mode, the cavity modes TEMmn with largest coupling are the ones with mode
number (m, n): (0, 4), (4, 0), (2, 2), which are degenerate in frequency.
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Figure 3.13: Vacuum chamber. Left: sketch to scale of the vacuum chamber (top view). The different
flange types are depicted within each vacuum tube; the symbol 2x indicates that there are two flanges of
that type stacked in the vertical direction. The purpose of each flange is written outside of it. Right: top
view photograph of the inside of the chamber with the cavity, positioners and sample included.

sity of Konstanz with the assistance from Louis Kukk. The geometrical constrains for the design
were:

• The chamber should be big enough to accommodate the sample’s positioners and the cavity
holder.

• It should contain two optical access ports to monitor the sample position at perpendicu-
lar directions. These ports’ position should match the height of the cavity and positioning
system.

• It should contain ports for the different optical, electrical and vacuum connections: the
fibers, an LED for illumination, an RF connection to drive the sample, the electrical connec-
tions of the positioners, the electrical connection of the cavity piezos, a vacuum penning
gauge, an ion pump and a turbopump.

All components from the vacuum chamber are made out of stainless steal. A sketch to scale of
the chamber, together with a photograph of its inside, are shown in Figure 3.13. The chamber
is pumped first with a turbo molecular pump (Pfeiffer vacuum, HiCube 80 Classic) for two days.
After reaching a pressure ≤ 8.5×10−6 mbar, we start the ion pump in parallel (Gamma Vacuum,
TiTan 75S). The two pumps run together until the pressure in the chamber is ≤ 1.9×10−6 mbar,
which usually takes from one to two days. After the base pressure is reached, we close the valve
from the turbopump and run them together for half a day. From there on, the turbopump can be
turned off, vented and disconnected. The lowest pressure we have measured at the chamber with
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the penning gauge15 (Leybold Penning PTR 90) is 7×10−7 mbar. The ultimate pressure of the ion
pump is 10−11 mbar, but we are most likely limited by leaks in the vacuum connectors – most of
them are O-rings – and in the electrical and fiber feedthroughs. Nevertheless, the vacuum is good
enough to run the ion pump continuously, which was not the case with the previous version of
the setup (the old cuvette-type vacuum setup suffered from many leaks and it was difficult to start
the ion pump at all) [111, 112].

Only with the turbopump we already reach pressures low enough16 so that gas damping is no
longer the main energy dissipation mechanism of our mechanical resonators. However, our ex-
periment suffers from the mechanical vibrations of the turbopump. Consequently, we only use
the turbopump to be able to reach a minimum pressure from which we can work with the ion
pump exclusively, which is vibration free in the frequency range of interest.

3.6 Position control

The sample is brought into the cavity with a stick-slip positioning system17 from Smaract GmbH.
It consists of three linear stages that move the sample in the x, y and z directions and two go-
niometers used to control the sample alignment with respect to the cavity mode axis. The x and
y stages have a travel of 30 mm and the z stage of 21 mm. The 5D-stage is driven with a MCS2
controller. The positioners can be used in the step mode (stick-slip movement, steps in the mi-
crometer range) or in the scan mode (sub-nanometer resolution). We use the step function to
bring the sample inside the cavity and to perform the angle alignments. The scan function, with
a range of 3µm, is used to map the static couplings by changing the sample position along the
cavity axis (z-axis).

Figure 3.14: Positioners graphical user interface. The GUI has two tabs, one for the step movement (left)
and another for the scans (right). Each axis’ step motion can also be controlled with keyboard shortcuts.

15The ion pump gauge, located inside the pump, gives smaller values than the penning. We always take the largest of
the two as reference.

16The Q factor of most micron-sized mechanical resonators is pressure independent below 10−4 mbar [136].
17The part numbers for the x, y and z stages and both goniometers are, respectively: SLS-5252-D-HV, SLS-5252-D-HV,

SLC-1730-D-HV, SGO-77.5r2-HV, SGO-60.5r2-HV.
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Chapter 3. Our 1550 nm setup for cavity optomechanics

Back in 2019 when we purchased the positioners, Smaract could only provide C-libraries to com-
municate with the MCS2 (most companies provide their libraries at least in C, Python and Lab-
View). Because I was not used to C, and I had already coded all the other lab instruments in
Python, I developed our own Python software to control the positioners using standard SCPI com-
mands and the application programming interface provided by Smaract. On top of that, the po-
sitioner’s GUI was not user friendly, so I created our own using Qt Designer and Python, which
became really handy, especially when inserting the sample. A snapshot of the GUI is shown in
Figure 3.14.

After some recent exchanges with the company, the new firmware version has indeed a Python
library. I would advise the reader, if planning to use these positioners, to switch to that one, which
should be more stable.

3.7 Thermal stability

Temperature drifts in the lab cause the positioners to expand and contract, resulting in a drift
of the sample’s position. They also lead to fluctuations of the mechanical resonator’s resonance
frequency, to cavity length changes, and to fluctuations of the laser’s wavelength. The last two are
particularly detrimental for our measurements, especially when we need to stabilize the cavity
length. They result in drifts of the cavity resonance condition, which, depending on the magnitude
of the drift, can or cannot be compensated by the feedback loop sent to the cavity piezos.

a b
Empty labPerson in the lab

Acoustic box

Figure 3.15: Thermal stability of the setup. (a) Drift of the cavity frequency (orange, left y axis) and lab
temperature (blue, right y axis) as a function of time. The measurement started the evening of July 1st, 2022.
(b) Histogram of the maximum daily temperature difference when there is someone in the lab (left, time
span of 26 days) and not (right, time span of 21 days). Blue bins are measurements of the lab temperature
and orange bins of the temperature inside the acoustic shielding box.

The cavity thermal stability can be estimated by monitoring the drift of the cavity resonance con-
dition as a function of time and correlate the drifts with the temperature in the lab. With this
method, however, we cannot distinguish between laser wavelength fluctuations and cavity length
fluctuations due to thermal expansion. Figure 3.15a shows such a measurement for cavity C8.
The orange dots represent the cavity frequency shift as a function of time; the blue line is the
temperature inside the lab at the Center for Nanotechnology and Nanomaterials (ZNN). For this
measurement the acoustic shielding box (see Section 3.8) was open, so that the walls of the vac-
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uum chamber are thermalized with the lab temperature. We observe a delayed response of the
cavity resonance frequency with respect to the lab temperature, which is expected because the
cavity and chamber walls are separated by vacuum. From the data, we extract an estimation18 of
the temperature drifts of 60 GHz/◦C.

We can perform similar measurements when we insert the sample inside the fiber cavity to study
the thermal drifts of the sample position. In this case, we use the 1330 nm-interferometer to count
interference fringes as a function of time (and therefore temperature). We measure a shift of the
sample position along the z direction of 1.2µm/◦C. Taking into account that we usually measure
at sample positions with a coupling G = 330MHz/nm, this translates into a cavity frequency shift
of around 400 GHz/◦C, an order of magnitude larger than the empty cavity temperature drift. It
becomes clear that our experiment is limited by thermal drifts of the sample and not the cav-
ity.

Figure 3.15b shows the maximum daily temperature difference in the laboratory (blue) and inside
the acoustic shielding box (orange) over 25 days for two situations: when there is a person inside
the lab (left) and when not (right). As soon as one enters the lab to measure, it starts to heat up.
The maximum temperature difference is 1.5 ◦C. The acoustic isolation box reduces the magnitude
of the change to half a degree. The temperature inside the isolation box can increase as much as
half a degree (Fig. 3.15b, orange bins) in a time span of 4.5 h. Assuming that increase is linear
(which it is not, it is faster at the beginning), this implies a frequency shift of around 50 MHz/s –
this is two times the cavity linewidth! Consequently, when we lock the cavity for the dynamical
backaction experiments, the lock point and the cavity transfer function change massively during
the measurement time – it’s impossible to measure. Luckily, the acoustic shielding delays the ther-
malization of the chamber with respect to the lab, which usually leaves us with a couple of hours
of measurement time before the experiment starts to heat up significantly. We recall that leaving
the lab to avoid the fast temperature increase is not an option with the current setup configura-
tion: the lock box is an analog device (see Section 3.3), so that one has to be in the lab to re-lock
or unlock depending on the measurement. On top of that, the cavity locks are very unstable with
the sample inserted. They are lost after 15 to 20 minutes in the best case due to the temperature
fluctuations of the lab itself (Fig. 3.15b, right).

Since we cannot change the lab’s air conditioning settings, the only possible solution is to feed
back on the sample position with the interferometer. We did not have time to implement it due to
time constrains, but the Smaract positioners allow it.

3.8 Vibration isolation

After moving the labs to the ZNN (TUM, Garching), we observed that the setup was suffering
from an unknown mechanical noise that we did not have in Konstanz. In both labs the vacuum
chamber was directly placed on top of a floating optical table.

Figure 3.16a shows in blue the cavity transmission as a function of cavity detuning with the sample
inserted and placed at a cavity node, where it is less sensitive to mechanical vibrations of the
sample. These vibrations lead to cavity fluctuations of about 20 GHz at the cavity node, making it

18For the estimation we use parts of the data where the lab temperature and frequency shift vary linearly with time.
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a b
165 Hz

330 Hz

Figure 3.16: Mechanical noise at the ZNN. (a) Fluctuations in the cavity resonance frequency at the cavity
node for a cavity without acoustic isolation (blue). The orange line shows the response of the same cavity
with the sample at the node when it is acoustically shielded. (b) Power spectral density (1 Hz bandwidth)
of the sample vibrations (blue, left y axis) measured with the 1330 nm-SLED and the lab’s acoustic noise
(orange, right y axis) measured with the microphone of a mobile phone (see main text for details).

impossible to lock the cavity. We identified the acoustic noise from the ZNN facilities as the source
of the mechanical noise. Figure 3.16b displays in blue the power spectral density (bandwidth of
1 Hz) of the sample vibrations measured with the cavity’s interferometer and in orange the lab’s
acoustic noise19. Both share two very pronounced peaks at 165 Hz and 330 Hz and a wider feature
around 165 Hz. To suppress the mechanical vibrations, we built an acoustic isolation box made by
hand (literally20). The box, shown in Figure 3.18a, is made out of plywood and composite foams
(two layers, 2 cm-thick each, density of 120 kg/m3).

HF2LI
outin

PD

Speaker

Figure 3.17: Positioners mechanical response. Left: We drive a UE Boom 2 speaker with a HF2LI Zurich
lock-in to mechanically excite the setup with the sample inside the cavity. We record the mechanical vibra-
tions of the sample with the interferometry photodetector. Right: Mechanical response of the setup with
(blue) and without (orange) acoustic isolation box for a drive amplitude of 50 Vrms and an interferometer
input power of 273µW. The gray line is the noise floor with acoustic isolation.

To measure the performance of the acoustic isolation box, we drive an Ultimate Ears Boom 2

19The acoustic noise was measured with the microphone of a Samsung SM-J710F phone and the FFT spectrum of the
Phyphox App. The measurements were done inside the lab and at the ZNN corridors (far away from vacuum pumps,
compressors, etc.). In the latter, the noise peaks at 165 Hz and 330 Hz had a larger magnitude.

20Upon arrival to TUM, we had no workshop associated and the guests’ waiting time for other workshops was larger
than three months. We had to build it ourselves instead.
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speaker (frequency range 90 Hz-20 kHz as specified from the company) with a Zurich Instruments
HF2LI lock-in (Fig. 3.17). The sound from the speakers excites the setup mechanically and we
record the interferometer signal from the cavity when the sample is placed at half an interferom-
etry fringe, the point of maximum sensitivity. We do this measurement placing the speakers on
top of the optical table without acoustic damping (vacuum chamber on top of the table directly,
orange data in Fig. 3.17) and with the whole setup inside the box (blue data in Fig. 3.17 ), which is
closed. We achieve a noise suppression factor of 20 and 74 for the 165 Hz and 330 Hz ZNN acoustic
noise’s frequencies, respectively. These measurements also give information about the position-
ers’ mechanical transfer function, which resonates in the range between 80 Hz and 500 Hz – the
mean noise suppression factor in this range is 5.5. The two resonances above 2 kHz are attributed
to the fibers or the fiber holder, which can be measured by taking the sample out and we using
the same principle to measure the empty cavity mechanical response. We highlight that we can-
not distinguish between the isolation from the air vibrations and from the vibrations transferred
through the optical table. Just by placing the chamber on top of the foam the mechanical noise got
already reduced significantly, without the need of closing the box completely. This is an indication
that part of the vibrations are also transferred through the optical table.

After the box installation, the cavity can easily be locked at the node and antinode. Figure 3.16a
shows in orange the cavity transmission with the sample at the node when the setup is acoustically
shielded. The improvement in the mechanical stability of the setup also manifests in the empty
cavity parameters as a reduction in the scattering of the cavity linewidth (Fig. 3.18b): the standard
deviation of the linewidth is reduced by a factor of 5 from σstd = 1.4MHz to σstd = 0.3MHz when
the box is closed. The mean value stays the same for both cases: µ= 18.5MHz.

a b

Figure 3.18: Acoustic isolation box. (a) Photographs of the acoustic isolation box. (b) Histogram of the
cavity linewidth (C8) for a total of 50 measurements. Blue (10 bins) and orange (20 bins) bins are mea-
sured with the acoustic box closed and open, respectively. The mean µ and standard deviation σstd of the
linewidth are µ= 18.5MHz and σstd = 1.4MHz when the box is open, and µ= 18.5MHz and σstd = 0.3MHz
when it is closed.
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3.9 Active cavity stabilization

The cavity is locked to an error signal generated in a similar fashion to the one from the standard
Pound-Drever-Hall (PDH) frequency stabilization technique [137]. In this section we derive the
mathematical expression of our error signal and discuss our locking-scheme. The first modifica-
tion to the standard PDH technique is that we do not use the cavity reflection but the transmission
to generate the error signal. The reason for this is that, when using the reflection, the phase mod-
ulation oscillates in time due to the standing waves present in the cavity reflection. This leads to
time drifts of the error signal.

The second difference is that we do not use an electro-optic phase modulator but an electro-optic
analog intensity modulator. Chapter 10 from Ref. [89] gives a good description of the difference
between the two. In an analog intensity EOM, the light beam is split into two arms (or waveguides)
by a beam splitter, and recombined before its output, like in a Mach-Zehnder interferometer. By
applying a DC voltage Vdc to the EOM, one can change the relative phase between both arms. The
DC voltage that generates a phase shift between the arms of π is called the half-wave voltage Vπ;
at that voltage the light from both arms destructively interferes with each other. By changing Vdc,
one can choose the working point of the interferometer fringe.

Adding an RF component of amplitude Vrf to the voltage at a frequency ωmod produces an ampli-
tude modulation. The laser’s electric field, El = E0/2e iωl t + c.c., after the EOM is then

E(t ) = E0

4
e iωl t

(
e iθ1(t ) +e iθ2(t )

)
+ c.c., (3.16)

where c.c. denotes the complex conjugate, and θ1(t ) and θ2(t ) the phase acquired at each arm,
which are given by [138]

θ1(t ) =βcos(ωmodt +π), θ2 =βcos(ωmodt )+φB . (3.17)

In the last expression we have introduced the bias voltage φB = πVdc/Vπ, the modulation depth
β= πVrf/Vπ, and a π phase difference between the arms that occurs when the RF drive is applied
to both of them simultaneously (like our EOM, which is a Y-based Mach-Zehnder interferometer).
We can use the Jacobi-Anger expansion to obtain

E(t ) = E0

4
e iωl t

[
J0(β)

(
1+e iφB

)+ ∞∑
q=1

i q Jq (β)
(
e i qπ+e iφB

)(
e i qωmodt +e−i qωmodt )]+ c.c., (3.18)

where Jq (β) is the q th-Bessel function of the first kind and we have employed that i−q = (−1)q i q

and J−q (β) = (−1)q Jq (β). The field transmitted through the EOM is composed of a carrier oscil-
lating at ωl and a series of sidebands at frequencies ωl ± qωmod, similar to the standard phase
modulation. We can re-write Eq. 3.18 as

E(t ) = e iωl t
[

Ec +
∞∑

q=1
Eq

(
e i qωmodt +e−i qωmodt )]+ c.c., (3.19)

where have introduced the carrier and sidebands amplitudes, Ec and Eq , respectively. The main
difference with respect to the phase modulation is hidden in the carrier’s and sideband’s ampli-
tude dependencies on the bias voltage: the amplitude ratio between sidebands and carrier is not
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only determined by the Bessel functions but by φB . One can, for instance, set the bias voltage
so that either the carrier is suppressed or the sidebands are, controlling their relative amplitudes.
This is convenient when we want to nicely resolve the sidebands when we use them as calibration
tones to convert scan voltages into frequency detunings.

The field transmitted through the cavity will be

Et (t ) = e iωl t
[

Ec H(∆)+
∞∑

q=1
Eq

(
H(∆+qωmod)e i qωmodt +H(∆−qωmod)e−i qωmodt )]+ c.c., (3.20)

with H(∆) the cavity transmission function and∆=ωl−ωcav. The transmission detector measures
the light intensity I ∝|Et |2; it will have a DC and a RF component I = Idc + Irf, where

Idc ∝|Ec H(∆)|2 +
∞∑

q=1

(
|Eq H(∆+qωmod)|2 +|Eq H(∆−qωmod)|2

)
(3.21)

and

Irf ∝
(
E∗

c H(∆)E1H(∆+ωmod)+Ec H(∆)E∗
1 H∗(∆−ωmod)

)
e iωmodt

+
(
Ec H(∆)E∗

1 H(∆+ωmod)∗+E∗
c H(∆)E1H(∆−ωmod)

)
e−iωmodt

+
∞∑

q=2

(
O(qωmodt )+O(−qωmodt )

)
. (3.22)

In the last expression we have neglected the terms oscillating at ωl or faster, because they are
filtered by the photodetector. Taking into account that the detector used for transmission mea-
surements has a bandwidth of 30 MHz and that we employ modulation frequencies ωmod in the
range 20 MHz to 30 MHz, we can neglect all terms oscillating with q ≥ 2, too. Finally, introducing
for convenience the factor K

K = E∗
c H(∆)E1H(∆+ωmod)+Ec H(∆)E∗

1 H∗(∆−ωmod), (3.23)

and expressing the complex exponential as sine and cosine, the RF intensity becomes

Irf ∝ 2Re(K )cos(ωmodt )+2Im(K )sin(ωmodt ). (3.24)

We can demodulate Irf at ωmod, obtaining the in-phase component X = 2Re(K ) and the quadra-
ture component Y = 2Im(K ).

In our experiment, the demodulation is done electronically by the UHFLI lock-in amplifier (we
also use its internal gains to amplify the error signal), which generates the modulation signal sent
to the EOM as well. We typically use values Vdc = 6.5V, Vrf = 0.75V, which translate21 into β= 0.6
and φB = 0.78π. Figure 3.19a shows the experimental and calculated (Eq. 3.24) in phase (dark and
light blue) and quadrature (orange and red) components forωmod/2π= 30MHz and cavity C8. We
always observe an asymmetry between the sidebands, but we have not investigated it.

21Experimentally, the DC voltage at which the beams are in phase V0 is not zero. This implies φB =π(Vdc −V0)/(Vπ−
V0). Similarly, β = πVrf/(Vπ −V0). For our EOM, V0 ≃ 2.2V and Vπ ≃ 7.7V. Both shift in time due to temperature
fluctuations and have to be measured.
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a b
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Figure 3.19: Cavity stabilization. (a) Quadrature measurements (orange, dark blue) with ωmod/2π =
30MHz for cavity C8. Red and light blue solid lines are calculated using Eq. 3.18 and Eq. 3.24 and scaled to
match in amplitude the experimental values. (b) Top: cavity transmission and error signal before locking
the cavity for ωmod/2π= 50MHz. Bottom: locked cavity transmission (blue) as a function of time. The gray
shaded area is the transmission’s standard deviation. The lock point is at∆l/2π=−70MHz and is pointed at
with an arrow in the top graph. These measurements were done with an empty cavity (no sample loaded).

In Figure 3.19b we display an example of a standard lock configuration with an empty cavity (C8).
The top graph shows in blue the normalized cavity transmission and in orange the error signal
before the lock takes place. In this particular measurement we used a modulation frequency of
50 MHz. We always use the Y-quadrature and lock at a laser detuning of around ∆l/2π = (ωl −
ωcav)/2π=−70MHz, i.e. the laser is red detuned with respect to the cavity. We choose this value
of ∆l as a compromise between having a good signal in reflection and a good transduction from
frequency fluctuations to voltages, and minimizing the backaction from the lock. The bottom
graph shows the normalized cavity transmission when the cavity is locked as a function of time.
The lock of the empty cavity is very stable and can last more than 3 h. As explained at the end of
Section 3.7, the lock stability is reduced to 15 to 20 minutes at best with the sample inserted due
to the thermal fluctuations in the lab.
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4
Fabrication and characterization of

suspended hBN resonators

T
HE second part of any cavity optomechanical system is the mechanical resonator. In our
experiments we employ circular membranes or plates made out of hBN – in this chapter,
we will use the terms drum and drum-head as synonyms for circular resonator. The short

cavity length and the fiber dimensions restrict the geometry of the samples that can be inserted
in the cavity, as illustrated in Figure 4.1. The hBN resonators need to be clamped to a substrate
capable of fitting in a gap of some tens of micrometers. For this purpose, we choose commercially
available low-stress SiN membranes (Norcada Inc.), which consist of a layer of SiN grown on top of
a 200µm-thick silicon chip. The reasons for our choice are three-fold. First, SiN membranes can
be patterned using standard photolithography techniques, which allows us to create the circular
frames for the drums (Fig. 4.1, patterned SiN in orange) – in this chapter we will refer to the circular
frames simply as holes. Second, their small thickness of few hundreds of nanometers makes it
possible to insert the sample in the cavity. Third, their window opening of 500µm× 500µm is
larger than the fiber diameter (125µm); this leaves some freedom in the positioning of the hBN
resonator within the cavity and permits probing the sample at different positions.

hBN

200 µm

Membrane window

SiN

Si

Membrane
window

5 mm

Figure 4.1: Sample geometrical constrains. Left: Sketch of the fiber cavity and sample. The short cavity
length of Lcav ∼ 40µm and fiber diameter of 125µm limit the possible geometries of the samples that can
be inserted in the cavity. SiN membranes (SiN in orange, Si frame in dark blue) overcome these constrains.
Right: Image of a 200 nm-thick low-stress SiN membrane chip sitting next to some lab tweezers. The mem-
brane window opening appears as a yellow square at the sample’s center.
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This chapter begins by explaining the fabrication of the SiN membranes used as mechanical sup-
port of the hBN drums (Section 4.1). Section 4.2 introduces the transfer process used to place
the hBN flakes on the circular frame patterned on the SiN membrane. To be able to insert the
sample inside the cavity, we need to cleave the SiN chips – this is described in Section 4.3. Once
the samples are fabricated, we characterize their mechanical properties in a Michelson interfero-
meter (Section 4.4). Because the samples consist of an hBN drum on top of a larger and heavier
SiN resonator, the modes of the mechanical resonators can hybridize. The chapter concludes with
a study of the hybridization between the hBN and SiN resonators (Section 4.5).

4.1 SiN membranes as frames for hBN circular resonators

The holes acting as frames for the hBN resonators are transferred onto the SiN membranes via
photolithography and reactive ion etching. Since the membranes provided by Norcada do not
require any cleaning before processing, the fabrication starts directly by applying an adhesion
promoter (HMDS) in vapor phase before spin coating the samples with a 850 nm-thick layer of
AZ MIR 701 14 cPs photoresist. After the spin coating, the samples are soft baked with a hotplate
at 90 ◦C for 60 s and subsequently exposed with a UV maskless aligner (Heidelberg MLA100) with
an exposure dose of 250 mJ/cm2. The resist is then developed for 60 s in AZ MIF 726 developer,
followed by 30 s of rinsing in deionized (DI) water (Fig. 4.2a). The samples are dried very gently
with an air gun, paying attention not to break the fragile SiN membrane. If there are any remaining
water residues on the sample, they are removed with an O2 plasma (Alpha Plasma Q150, 500 W,
90 Pa, 100 sccm, 3 min).
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Figure 4.2: Process flow for patterning low-stress SiN membranes. (a) A layer of AZ MIR 701 photoresist
is spin coated, exposed with UV light (250 mJ/cm2), and developed with AZ MIF 726. (b) RIE-ICP etching
using the resist as etch mask. (c) Resist removal in a NaOH 0.5 mol/L solution. (d) Final structure and
cleaning with an O2 plasma. (e) Brightfield microscopy image of a patterned 100 nm-thick low-stress SiN
membrane. Areas with only SiN appear as orange; areas with only Si appear as white/slight-green; areas
with SiN and Si appear as light blue; the black background depicts parts of the membrane window where
the SiN was removed. There are some resist residues remaining on the back side of the SiN membrane
(darker orange), which remain there sometimes even after plasma cleaning. The gray dashed line depicts
the direction along which the sample is cleaved at a later stage to be able to be inserted in the optical cavity.

The next step is the selective removal of SiN to create the holes where we stamp the van der Waals
materials. This is done with an inductively coupled plasma etching process (PlasmaPro 80 ICP
RIE) at a pressure of 5×10−3 mbar; the etching step uses a combination of two gases: 14 sccm of
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4.1. SiN membranes as frames for hBN circular resonators

CHF3 and 6 sccm of SF6 (Fig. 4.2b). This particular recipe etches both SiN and Si, with etch rates of
2.1 nm/s and 7.5 nm/s, respectively. The resist etch rate is approximately 5 nm/s. The resist is then
removed by dipping the sample in a 0.5 mol/L solution of NaOH for 3 min (Fig. 4.2c); the sample is
subsequently rinsed for 30 s in DI water and 30 s in isopropanol (IPA). We help the drying process
by blowing the sample with an air gun very gently. Finally, any resist left overs are removed with
an O2 plasma (Fig. 4.2d, 500 W, 90 Pa, 100 sccm, 4 min).

Figure 4.2e shows a brightfield microscopy image of a 100 nm-thick low-stress SiN membrane after
fabrication and O2 plasma cleaning. The transferred patter consists of a wide stripe of dimensions
282µm×500µm with two holes with a diameter of 40µm. We pattern the big stripe on the SiN
because the membrane has to be released from the Si frame so that it does not break afterwards
when the sample is cleaved (see Section 4.3). The cleave direction is highlighted as a gray dashed
line in Figure 4.2e. This particular sample still has some resist resides on the backside of the stripe
even after O2 plasma cleaning. We found that this usually happens if a thick layer of resist pen-
etrated on the backside of the membrane during the spin coating process. Leaving the sample
longer in the O2 plasma does not help in this case. Instead, one can place the sample in a Piranha
solution (H2SO4:H2O2, 3:1) for 4 to 8 minutes to remove the remaining resist residues. Afterwards,
the sample should be rinsed in two subsequent baths of DI water (1 min each) and finally 1 min in
IPA. We blow the sample with an air gun very gently to assist the drying process.

During this work we have tried different pattern designs. The diameter of the holes has to be
≥ 30µm to avoid clipping losses of the cavity mode at the edges of the holes (see Section 5.1.2).
The number of holes has to be also minimized. The reason for this is that, during the stamping
of the van der Waals materials, the PDMS stamp (see Section 4.2) tends to get stuck in any profile
irregularities, like the holes themselves, making the release of the stamp more difficult. We usually
have two holes at the end, one for the hBN flake and the second for reference measurements
like the design shown in Figure 4.2e. Moreover, adding extra holes to the design complicates the
mechanical mode spectrum of the SiN stripe itself, which deviates more from the ideal rectangular
geometry introduced in Section 2.2.3.

In the introduction to this chapter and in this section we have only discussed patterning low-
stress SiN membranes. Norcada offers high-stress (σ≃ 1GPa) stoichiometric Si3N4 membranes as
well. We have tried patterning Norcada high-stress membranes with photolithography and RIE-
ICP etching without success, in the cleanroom facilities from both the University of Konstanz and
from the ZNN (Garching, TUM). This is the reason why we work with the low-stress version. Mov-
ing to high-stress Si3N4 would have two main advantages for us. On the one hand, the resonance
frequency of the modes from the Si3N4 stripe will be pushed towards higher frequencies due to the
larger stress. This would be beneficial to avoid, up to a certain extent, the hybridization between
the mechanical modes of the hBN resonator and the ones from the stripe itself [139]. We will dis-
cuss the hybridization later in Section 4.5. On the other hand, we would benefit from its lower op-
tical absorption at telecom wavelengths [140]. Norcada offers these days high-stress membranes
with custom made patterns, which would possibly be the easiest solution. Alternatively, we could
fabricate our own custom patterned high-stress membranes following other established recipes
[97, 141, 142].
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4.2 Mechanical exfoliation and deterministic transfer of hBN

The hBN flakes are obtained by mechanically exfoliating bulk crystals and transferred to the pat-
terned SiN holes with the all-dry viscoelastic method [143]. The process steps are the following.
First, we exfoliate hBN from bulk crystals – grown by T. Taniguchi and K. Watanabe – with blue
Nitto tape (Fig. 4.3a). We cut a piece of polydimethilsiloxane (PDMS) of approximately 5x5mm2

and place it on top of a microscope slide, which serves as a mechanical support for the PDMS
stamp. The Nitto tape is gently pressed against the PDMS (Fig. 4.3b) and peeled off quickly. Part
of the hBN flakes are transferred to the PDMS stamp (Fig. 4.3c). We inspect the PDMS with hBN
flakes optically with a microscope, and identify flakes with areas large enough to cover the SiN
holes and with thicknesses between 10 nm and 200 nm. The thickness of the flakes can be es-
timated1 by their color contrast, but has to be measured at a later stage with an atomic force
microscope (AFM). The glass slide with PDMS on top is subsequently flipped upside down and
placed in a Thorlabs micropositioning stage (XYZ and two goniometers). The glass slide with the

a b c d e
hBN

PDMSNitto tape
SiN

180°
flipped

glass slide

Figure 4.3: Deterministic dry-transfer of van der Waals materials. (a) hBN is exfoliated from its bulk form
using blue Nitto tape. (b) The blue tape with hBN is brought in contact to a PDMS stamp previously placed
on a glass slide. (c) The Nitto tape is peeled off quickly, leaving hBN flakes behind on the PDMS. (d) The
glass slide is flipped upside down, with the PDMS facing toward the substrate. The PDMS stamp is aligned
with respect to the hole with the help of a micropositioning stage, and brought in contact with the substrate.
The process is monitored with a camera. (e) By slowly peeling off the PDMS, the hBN flake gets transferred
onto the substrate.

stamp is brought downwards toward the patterned substrate (Fig. 4.3d); this process is monitored
optically with a camera and a lens tube system2 that has an adjustable magnification of up to x37.
The position of the flake with respect to the hole is adjusted with the help of the positioning stage.
Once the alignment is finished, the two are slowly brought in contact. Sometimes big3 air bub-
bles remain between the flake and the substrate; by waiting long enough with the PDMS stamp
in contact one can get rid of most of them. Finally, the PDMS stamp is very slowly peeled off. If
the transfer is successful, the flake stays on the substrate, forming a suspended drum on the SiN
membrane (Fig. 4.3e).

The process that we just described is common to any type of substrate, like a patterned SiN mem-
brane or just a patterned Si chip. When working with SiN membranes, however, one has to pay
attention to a few extra things because one risks breaking the membrane. In general, it is desirable
to have some degree of tilt between the SiN sample and the PDMS stamp, so that the first point of
contact of the PDMS is far away from the SiN membrane window – this implies that the last point

1Performing a good thickness estimation requires some experience and hours of stamping. This task could be auto-
mated by studying the contrast to thickness relation under a fixed illumination setting.

2Edmund Optics, 12.5X High Precision Zoom Lens Kit.
3Big here means big enough so that they are resolved with the imaging system.

64



4.2. Mechanical exfoliation and deterministic transfer of hBN

Flakes in contact
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Figure 4.4: Deterministic dry-transfer of van der Waals materials. Photographs of the transfer process of
an hBN flake (blue) onto a 40µm-diameter hole patterned on a 200 nm-thick SiN membrane (yellow). Areas
were the PDMS is in contact with the substrate appear darker. The meniscus from the PDMS is highlighted
with an arrow.

the PDMS touches during the peeling off from the sample is also not the membrane, otherwise
the membrane would be pulled out and break. Figure 4.4a shows a photograph taken during the
stamping of the drum used in Ref. [1]. Parts that are in contact with the PDMS appear darker than
the ones that are not. The point of contact was towards the left side of the membrane. Figure 4.4b-
c are zooms into the membrane window at different points of the release of the PDMS. Parts of the
flakes that are in contact with the substrate appear as colorful, like the blue flake on the hole, and
those that are not appear as transparent. The speed at which the meniscus – the interface be-
tween the areas in contact and not in contact with the PDMS – advances can be controlled with
the z-positioning stage.

The mechanical transfer makes the SiN membranes and hBN flakes buckle (Fig. 4.5). At the end,
we press the flakes against the SiN membrane and later we pull them off with the PDMS stamp
– this leads to uneven tensioning and bulging of the hBN resonators, and can be detrimental to
the mechanical properties of the hBN drums [45, 144]. In particular, they cause a deviation of
the experimental mechanical mode shapes of the drum with respect to what is expected for ideal
circular membranes (see Fig. 2.3); this effect is investigated in Section 4.5.

Figure 4.5: Example of a dry transfer process. Photographs of the stamping process of three different
samples. During the peeling off of the PDMS, the SiN membrane and the flakes get dragged, causing the
hBN and SiN membrane to buckle and wrinkle.

We have mentioned before that we look for flakes with thicknesses between 10 nm and 200 nm.
The choice of this thickness range results as a compromise between having a large membrane
mechanical amplitude and enough dispersive coupling. On the one hand, the mechanical am-
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Chapter 4. Fabrication and characterization of suspended hBN resonators

Figure 4.6: Flake thickness and maximum dispersive optomechanical coupling. The blue line is gener-
ated using Eq. 2.76 with the following parameters: hBN refractive index at λ= 1550nm, n = 2.1 [88]; cavity
length, Lcav = 40µm and sample position, z =λ/8.

plitude is inversely proportional to the effective mass (Eq. 2.16), and consequently to the flake’s
thickness dm . The limit here is a mono layer flake. On the other hand, flakes thinner than 10 nm
present almost no dispersive coupling due to their small reflectivity (Fig. 2.5). The upper limit of
200 nm can easily be understood by looking at the behavior of maximum dispersive coupling4 as
a function of the flake’s thickness (Fig. 4.6). Because of the periodic behavior, it is pointless to use
flakes thicker than 200 nm, which suffer from lower mechanical amplitudes.

O2 plasma cleaning

Both the Nitto tape and the PDMS stamp leave polymer residues on the flakes, which can po-
tentially be detrimental for the optical properties of the cavity. Figure 4.7a shows AFM tapping
mode scans of an hBN flake stamped on a 200 nm-thick patterned low-stress SiN membrane be-
fore (left) and after (right) cleaning the sample with an O2 plasma (600 W, 90 Pa, 4 min, 100 sccm).
The RMS roughness of the hBN flake surface (yellow area) decreases from 2.6 nm to 880 pm after
the cleaning step. The height profile across the white lines are depicted in Figure 4.7b.

2 µm 2 µm

1 2

a b

2

1

63.1 (2) nm

66 (2) nm

Figure 4.7: O2 plasma cleaning. (a) Tapping mode AFM scan of an hBN sample prior to (left) and after
(right) O2 plasma cleaning (600 W, 90 Pa, 4 min, 100 sccm, Alpha Plasma Q150). (b) Height traces across
the white lines labeled with the number 1 and 2. The change of flake thickness reveals an etch rate for this
plasma settings of approximate 1.3nm/min.

The O2 plasma also etches the flakes; from this measurement we estimate a maximum etch rate of
1.3 nm/min. After this measurement we decided to reduce the plasma power to 300 W in order to
decrease the etching rate, but we have not measured its value. A thorough study of the influence

4This happens at membrane positions which are odd multiples of ±λ/8, see Section 2.4.
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4.3. Cleaving the sample

of the plasma on the flake’s thickness and its mechanical properties should be conducted in the
future.

Ralf Messmer carried out a detailed characterization of the PDMS residues on the samples [145];
following his work, we perform a two-step cleaning process. First, to remove the residues from
the Nitto tape we put the PDMS stamp with the exfoliated flakes on top into an O2 plasma (300 W,
90 Pa, 3 min, 100 sccm, Alpha Plasma Q150). Second, we treat the sample with another O2 plasma
step (300 W, 90 Pa, 3 min, 100 sccm, Alpha Plasma Q150) after the stamping process to remove
residues from the PDMS stamp itself.

4.3 Cleaving the sample

The samples have to be cleaved to be inserted in the cavity. To that end, we mount them on a
custom made holder (fabricated by Louis Kukk) that ensures that the patterned SiN membrane
is protected and not in contact with any other parts of the holder (Fig. 4.8a). We use a diamond
scribe to scratch across the entire backside of the SiN chip (Fig. 4.8b). By applying some pressure
on the sample, it breaks along the Si crystal direction (Fig. 4.8c). Finally, the SiN chip is glued to a
sample holder with conductive silver paste (Fig. 4.8d). The sample holder accommodates a piezo
element to be able to drive the sample if necessary. The newest version of the sample holder,
which is not the one shown in Figure 4.8d but in Figure 4.8e, is made of a PCB board. Both the
sample and top side of the piezo are connected to ground (GND), avoiding an electrical potential
difference between the sample and the fiber mirrors. The piezo is glued to both versions of the
sample holder with indium soldering paste5.
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Figure 4.8: Cleaving the SiN chips. (a) Top view of a SiN chip placed upside down inside the cleaving holder.
The patterned SiN (three stripes) can be seen upon zooming into the picture. (b) Same chip after scratching
its backside with a diamond scribe. (c) After cleaving, the sample presents a characteristic u-shape. If there
are remaining pieces of the Si frame they can, most of the time, be removed with the tip of the scribe. (d)
Sample glued to the sample holder. The piezo element appears as orange below the soldered cable. In the
image, the sample is not connected to ground but to the RF drive. (e) Newest version of the sample holder
without sample on it. It is made of a PCB board. The top side of the piezo and consequently the sample are
connected to ground (GND). Only the small part of the sample holder into which the backside of piezo is
glued is connected to the RF drive.

Jana Ochs (née Huber) and Felix Rochau compared the mechanical cleaving process to a laser cut-
ting method [146]. They found that the latter produces a lot of dirt with respect to the mechanical
approach. This is the reason why we use the cleaving process presented in this section.

5Indium corporation. Low temperature Pb-Free paste, alloy E1 (NCSMQ80).
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4.4 Mechanical characterization methods

The mechanical properties of the sample are characterized in a standard Michelson interfero-
meter, operated at room temperature and equipped with a He-Ne laser (λ= 632nm, 180µW). Fig-
ure 4.9a shows a sketch of the interferometer. The sample is mounted on a 3-axis positioning sys-
tem6 and placed inside a vacuum chamber to reduce gas damping (< 10-4 mbar). The interference
from the light reflected from the sample and the reference arm is detected via a fast photodetec-
tor (home-built photodetector7, bandwidth of 30 MHz) and sent to a spectrum analyzer (SA). We
actively stabilize the signal to the middle of the Michelson interferometer fringe by mounting the
reference arm mirror on a piezoelectric transducer (PZT) controlled with a proportional-integral
feedback loop (PI, same lock box as the ones described in Section 3.3). We send a ramp waveform
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Figure 4.9: Mechanical characterization of the samples. (a) Schematic of the Michelson interferometer
setup, with the following acronyms: spectrum analyzer (SA), polarizing beam splitter (PBS), beam splitter
(BS), proportional-integral controller (PI), photodetector (PD), piezoelectric transducer (PZT). (b) Signal
from the photodetector as a function of time while scanning the mirror’s position (blue) and actively sta-
bilizing to the middle of the fringe (red). The orange line is a fit to the photodetector signal using Eq. 4.1.
(c) Displacement power spectral density of the fundamental mode of the 200 nm-thick SiN stripe shown in
Figure 4.10a. See Figure 4.10a and Section 4.5 for more details on the sample’s geometrical parameters.

generated with a Agilent arbitrary waveform generator to the piezo element. The ramp has a peak
voltage of Vp = 10V and a frequency of 10 Hz. The voltage V (t ) measured by the photodetector, as
a function of the mirror position z(t ), is given by

V (t ) =Vdc +Vrf cos
(4πz(t )

λ
+φ0

)
; (4.1)

the displacement of the mirror with the ramp waveform scans the interferometer over 3-bright-
fringes of fringe amplitude Vrf = 180mV (Fig. 4.9b, blue line), which corresponds to a mirror dis-
placement ∆z = λ. If we lock the interferometer at the middle of the fringe, where the voltage
depends linearly on the mirror position, a small displacement of the sample δz(t ) – driven, for

6Attocube ECSx3030.
7The detector is described in Section 3.3. Reference [112] provides more information about it.
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4.5. hBN and SiN modes hybridization

instance, by the thermal noise (see Section 2.2.2)– will be translated into a small voltage around
the DC value V (t ) =Vdc +δV (t ), with

δV (t ) =Vrf
4πδz(t )

λ
. (4.2)

The expression above is valid as long as δV (t ) ≪ Vrf. This way of converting voltages into dis-
placement based on the fringe pattern of the Michelson interferometer has been used for decades
[147–150]. In particular, Ref. [148] describes it in a very pedagogical manner and proposes an easy
undergraduate experiment to understand its working principle.

Using Eq. 4.2 we can transform the voltage power spectral density SV (V2/Hz), measured by the
spectrum analyzer, into displacement power spectral density Sz (m2/Hz). This method, in contrast
to the thermomechanical calibration [75], does not require any knowledge about the resonator’s
effective mass or the environment’s temperature. Figure 4.9b displays the experimental signal
V (t ) as a function of time in blue; the orange line is a fit using Eq. 4.1; the red line is the reflection
signal when the interferometer is locked at half the fringe. From the fitting parameters we extract
the conversion efficiencyα=λ/(4πVr f ). The voltage PSDs measured at the spectrum analyzer are
transformed to displacement using8

Sz =α2SV . (4.3)

We fit Eq. 2.16 to the experimental Sz and extract the effective mass9 m, resonance frequency
Ω0, linewidth Γ0 and quality factor Q = Ω0/Γ0 of the detected mechanical modes. Figure 4.9c
depicts the displacement PSD (blue) of the fundamental mode of a low-stress SiN stripe together
with the Lorentzian fit (orange). The fit yields Ω0/2π = 137.2kHz, Γ0/2π = 38Hz, Q = 3600, m =
282ng.

The conversion efficiency for the measurements shown in Figure 4.9 is α = 0.29(5)µm/V, and is
limited by the fringe amplitude Vrf. A better optical alignment should lead to better efficiencies.
The minimum detectable signal, i.e. the sensitivity of the measurement η, is given by the noise
floor and yields for these measurements η= 0.003pm2/Hz.

4.5 hBN and SiN modes hybridization

This section is based on the Supporting Information of our publication:

I. Sánchez Arribas, T. Taniguchi, K. Watanabe, E. M. Weig, “Radiation pressure back-
action on a hexagonal boron nitride resonator”, Nano Lett. 23, 6301–6307 (2023), Ref. [1].
The published work has been explicitly written by the author. Therefore, the section partly
contains passages of the original publication.

Our samples consist, at the end of the day, of a circular hBN drum-head resonator suspended on a
larger and heavier SiN resonator. If the resonant modes of both resonators are close in frequency

8If the reader is planning to use this formula, check the output units from the spectrum analyzer and make sure to
transform from RMS to peak voltages if necessary.

9To extract the effective mass we assume the resonator is thermalized with the environment Tbath = 24.7◦C.
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Figure 4.10: The "resonator on a resonator". (a) Left: Microscopy image of 40µm-diameter hBN drum
(blue) resting on a 200 nm-thick low-stress SiN stripe (500×281µm2, yellow). A piece of the SiN stripe broke
during cleaving. The image has an enhanced phase contrast obtained by closing enough the microscope’s
condenser aperture. The latter reveals bulging or uneven tensioning of the circular hBN drum. Right: zoom
into the black rectangle of the left image without enhanced phase contrast, together with an AFM height
profile along the white line on the top-right corner of the micrograph. (b) Calculated resonance frequencies
for the hBN drum (blue, fundamental mode) and SiN stripe (orange, higher order modes up to m,n = 30).
See the main text for the parameters of the calculations.

and the mechanical modes are coupled together, they can hybridize [139, 151–153]. In our sys-
tem, the coupling mechanism is mediated by strain. Let’s have a look at the sample shown in
Figure 4.10a. The sample consists of a 40µm-diameter hBN drum suspended on a 200 nm-thick
low-stress SiN stripe of dimensions 500×281µm2; a part piece of the SiN stripe broke during the
cleaving of the sample. The flake has a thickness10 of dm = 68nm (inset in Fig. 4.10a, right). We
can predict the frequency of the fundamental mode of the hBN drum resonator through Eq. 2.26
, yielding11 Ω0/2π = 970kHz. We can measure the frequency of the fundamental mode of the
SiN stripe using the Michelson interferometer. The mode, displayed in the previous section in
Figure 4.9c, reveals Ω0/2π= 137.2kHz; approximating the geometry of the stripe to a perfect rect-
angle, we get an estimate of the stripe’s stress σ using Eq. 2.21, σ= 14MPa; with σ we can predict
the frequency of the higher modes. Figure 4.10b shows the calculated resonance frequencies for
the fundamental mode of the hBN drum (blue) and the higher order modes of the SiN stripe (or-
ange), up to (m, n) = (30, 30). The spectrum of frequencies of the SiN stripe is very dense, and
consequently one should expect the modes to hybridize.

We note here that we have used the equation of a rectangular membrane (Eq. 2.21) – and not a
plate – to predict the mode frequencies of the SiN stripe. We have therefore neglected its bending
rigidity, which may not seem justified given the small value of the estimated stress σ = 14MPa.
Nevertheless, we assume it behaves as a membrane due to the results Jana Ochs obtained in her
master thesis [146]. She studied the mechanical response of resonators very similar to ours. The
resonators were 500×30µm2-stripes patterned on a low-stress 200 nm-thick SiN membrane (Nor-
cada): only one lateral dimension differs from our resonators by approximately a factor of 10. The

10After the AFM measurement the flake was cleaned again with an O2 plasma. The latter etched the flake, which was
observed as a change of color contrast under the microscope. We did not re-measure its thickness, so that the value
dm = 68nm is an upper limit to the real thickness. More information on this is given in Section 5.1.3.

11For hBN we use ρ = 2100kg/m3 [154], E = 300GPa [145] and ν= 0.211 [155].
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SiN chip was cleaved in the same way as the one from this work. She measured a final stress of
σ= 90MPa, of the same order of magnitude than our estimation. She observed that the frequency
versus mode number dependence follows the linear trend characteristic of resonator whose mo-
tion is governed by the in-plane tension (Eq. 2.21), like a membrane or a string in the one dimen-
sional case [76]. If the bending stiffness cannot be neglected, the mode frequency shows on the
contrary a quadratic dependence on the mode number [76]. Given her results and the similarities
between both systems, we assume we can neglect the SiN stripe’s bending rigidity. The validity of
this assumption should be checked in the future by performing similar measurements.

Let’s have a look at the experimental mechanical spectra of our sample. Figure 4.11a displays the
thermomechanical motion’s power spectral density measured at different positions: the orange
and blue lines are measured on the hBN flake, outside and on the circular resonator, respectively
(orange and blue left triangles in the inset of Fig. 4.11a). Both measurements display a pronounced
resonance at 322.6 kHz attributed to the SiN stripe; the wider feature next to it, at 322.0 kHz, is
noise from the He-Ne laser. For frequencies above 1 MHz a plethora of peaks start arising on the
hBN resonator that are not present in the spectra measured on the SiN stripe. The right part of
Figure 4.11a shows the frequency range between 1.5 MHz and 1.6 MHz as an example.

322.6 kHz

1530.3 kHza b

c

c

b

Figure 4.11: Thermomechanical spectra. (a) Power spectral density (PSD) on the suspended flake (blue
line, measured at the blue triangle in the inset) and on the flake resting on the SiN stripe (orange line, orange
triangle in the inset). The arrows depict the modes used in (b) and (c). (b) Left: Maximum of the PSD in
dBm for the 1530.3 kHz mode as a function of spatial position measured with a bandwidth of 1 Hz. Right:
standard deviation (STD) of the reflection signal; for positions outside the circular drum the lock is lost and
the STD of the reflection is large. The black dashed lines represent the edges of the circular drum and are
estimated from the STD colormap. Due to hysteresis in the positioner’s scan directions the plot is distorted
and not to scale. (c) Same as (b) but for the mode at 322.6 kHz.

To gain more insight into the mode’s spatial dependence, we map the mode shapes of some of
these resonances. The mode shapes are obtained by recording the spectra while scanning the
sample position along the drum’s surface. At each position of the scan measurements we record
the PSD with the spectrum analyzer and the reflection signal with an oscilloscope. The travel
range of the reference arm mirror is not long enough to cover for changes in reflection when the
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sample is scanned over regions of different material. For this reason, every time the scans go over
a different material, i. e. outside the circular membrane, the lock is lost. Figure 4.11b shows the
maximum of the PSD in dBm of the mode at 1530.3 kHz measured with a 1 Hz bandwidth (left
colormap) and the standard deviation (STD) of the reflection signal (right colormap), for a 32×11
scan. The standard deviation of the reflection signal is used to draw the edges of the resonator
depicted as dashed black lines. The travel range of the scanning mode of our positioning system
is too small to cover the whole drum-head and we have to use the stepper function. The latter
suffers from a strong hysteresis, and consequently the colormap’s x and y axis are not to scale
and distorted; for spatial reference, the measured edges of the drum, drawn as guidelines to the
eye from the maps of the standard deviation, are depicted as black dashed lines superimposed to
the colormaps. The mode shape reveals that the mechanical mode is confined within the circu-
lar resonator, with a prominent lobe on the left side. Similar mode shapes have been observed
for exfoliated hBN resonators [45]. We attribute the deviation from the expectation for the fun-
damental mode an ideal circular resonator (see Section 2.2.3) to the uneven tensioning and/or
bulging of the resonator resulting from the transfer process. A closer look into the sample shows
indeed hints of bulging (Fig. 4.10a, left). Figure 4.11c displays the same measurements but for the
SiN mode at 322.6 kHz and a 15×15 scan. The peak amplitude of this mode remains constant over
the scanned area at 100±1 dBm. All this suggests that the modes appearing at frequencies larger
than 1 MHz, undetectable on the SiN stripe, originate purely from the hBN circular resonator or
result from hybridization between the modes intrinsic to the hBN drum-head and the SiN stripe
ones [139, 152, 153].

To further investigate the degree of hybridization, we measure the effective mass of all modes
starting from the fundamental mode of the SiN stripe at 137.2 kHz until 1.7 MHz. Any hybridiza-
tion between the heavy SiN stripe and the hBN drum will result in an increase of the effective mass
of the hBN resonator [139]. Figure 4.12a displays the effective mass as a function of resonance fre-
quency. The data points are obtained from fitting the response of the resonator driven by thermal
noise (Eq. 2.16) measured at different positions – now is a good moment to remember that the
effective mass is position dependent, as explained in Section 2.2.3 and in Figure 2.2. Blue mark-
ers depict measurements taken on the free-standing hBN resonator, whereas orange ones depict
measurements taken on the flake resting on the SiN stripe. Different marker shapes indicate mea-
surements taken at different locations. The orange line represents the theoretical effective mass
of an ideal rectangular SiN stripe of dimensions 500×281×0.2µm3, mth

SiN = 0.25m0 = 21.5ng, with
m0 the physical mass. This value sets a lower limit for the effective mass of pure SiN modes in
case of an ideal rectangular geometry. Similarly, using a mass density of 2100 kg/m3[154], we pre-
dict for the fundamental mode of the hBN drum mth

hBN = 0.26m0 = 46.7pg, shown as blue dashed
line in Figure 4.12a. This is the lower limit of the effective mass of the fundamental mode12 of an
ideal hBN drum. From our data we observe that the effective masses measured outside the cir-
cular drum (orange markers) stay close to the theoretical limit for SiN, which is what we expect
as no hybridization should occur. However, the modes measured on the free standing hBN res-
onator (blue data set) start to deviate from the SiN limit toward lower masses for frequencies above
1 MHz: this is a sign of mode hybridization. The effective mass in this case reaches a minimum
value of 520 pg at 1675.2 kHz. Since the spectrum of modes of the SiN is very dense above 400 kHz

12In contrast to a rectangular membrane, the effective mass of a circular membrane is mode dependent. The effective
mass at the point of maximum deflection decreases for higher order modes [75].
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a b

Figure 4.12: Effective mass and quality factor. (a) Experimentally determined effective mass versus res-
onance frequency. (b) Quality factor versus effective mass. Blue markers are resonances measured on
the hBN drum whereas orange markers depict resonances measured on the hBN on top of SiN. Different
marker shapes indicate measurements taken at different positions. Up, down, left, and right triangles indi-
cate measurements done in the upper, bottom, left and right side of the hBN drum. The cross depicts the
center. Dashed lines represent the theoretical effective masses for ideal circular hBN (blue) and rectangu-
lar SiN (orange) resonators at the point of maximum deflection (see Fig. 2.2). The black ovals highlight the
interval in which the dynamical backaction measurements from Chapter 5 take place.

and around the estimated fundamental frequency of the hBN drum (Fig. 4.10b), we expect some
degree of hybridization for all hBN modes. We were not able to identify the textbook modes of a
circular membrane in our sample and we attribute this to the large bulging originating from the
dry transfer (see Section 4.2 and Fig. 4.11a) [45, 144]. Nevertheless, we consider that the modes
with effective masses more than an order of magnitude smaller than the limit for the SiN resonator
have a very pronounced hBN drum-head character. Those are the modes we use to demonstrate
dynamical backaction on the hBN resonator in the following chapter.

Figure 4.12b shows the dependence of the quality factor with the effective mass. The modes with
an effective mass below 2 ng (black oval in Fig. 4.12b), with a strong circular resonator character,
have quality factors in the range Q ∈ [2000,6000]. This is in agreement with other measured Q
factors of large diameter drums made from van der Waals materials [156, 157]. These Q factors
may be influenced by the hybridization with the SiN modes though, which have Q factors in a
similar range.

We conclude this chapter by highlighting that the performance of our mechanical resonator is lim-
ited, on the one hand, by the hybridization between the modes from the low-stress SiN stripe and
the ones from the hBN resonator. This can be improved by using high-stress Si3N4 as a support
for the hBN drums, pushing the Si3N4 resonances to higher frequencies and allowing resolution
of the distinct mode shapes. On the other hand, the mechanical imperfections originating from
the dry transfer are also detrimental for the mechanical properties. This can be improved by using
more gentle transfer mechanisms like a wet transfer [139].

73





5
Cavity optomechanics with hBN

resonators

T
HE attempts to observe radiation pressure effects on hBN mechanical resonators are very
scarce. The first available platforms for hBN cavity optomechanics experiments are me-
chanically exfoliated hBN resonators coupled to the near-field of a microdisk cavity [158,

159]. Indeed, Shandilya and colleagues [158] were able to measure the thermal motion of an
hBN beam through its optomechanical interaction with a silicon microdisk cavity in the telecom
regime for the first time. However, no optomechanical backaction was observed.

In this chapter, we report the first experimental demonstration of radiation pressure backaction
with a hexagonal boron nitride resonator. The mechanical resonator is inserted in the middle
of our fiber-based microcavity (cavity C8 from Table 3.1), realizing a membrane-in-the-middle
optomechanical system. The chapter begins with the characterization of the dispersive and dissi-
pative couplings (Section 5.1), which is done by mapping the dependence of the properties of the
cavity resonance with respect to the resonator’s position along the cavity mode axis. In Section 5.2
we characterize the mechanical response of the resonator’s modes using the cavity as read-out
mechanism. Section 5.3 presents the dynamical backaction effects of the retarded radiation pres-
sure force on the mechanical resonator, which manifest as an optical spring and optomechanical
damping. For some mechanical modes we observe a reverse optical spring with respect to the
detuning of the laser exerting the optical force. These measurements, introduced in Section 5.4,
conclude this chapter.

Parts of this chapter are based on our publication:

I. Sánchez Arribas, T. Taniguchi, K. Watanabe, E. M. Weig, “Radiation pressure back-
action on a hexagonal boron nitride resonator”, Nano Lett. 23, 6301–6307 (2023), Ref. [1].
The published work has been explicitly written by the author. Therefore, the chapter partly
contains passages of the original publication.
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Chapter 5. Cavity optomechanics with hBN resonators

5.1 Static optomechanical couplings

The goal of this section is to determine the linear and quadratic dispersive and dissipative op-
tomechanical couplings of different samples. This is achieved by mapping the behavior of the
transmission of the cavity as a function of the membrane’s position, in the same way we derived
the expressions of the couplings in Section 2.4. Prior to the measurements we need to align the
sample with respect to the cavity mode. We do so by first aligning by eye the sample’s surface so
that it is perpendicular to the fiber axis. Then, we perform several transmission maps as a function
of the sample’s position and change the sample’s angle1 with respect to the fibers to maximize the
cavity’s transmitted power. We also change the sample’s angle to minimize the presence of higher
order optical modes [160].

In Section 5.1.1 we first describe the standard measurement routine. To that end, we employ a
standard 30 nm-thick SiN stripe without hBN or any patterned holes, a type of sample we have
been working with for years [112, 135]. The next step is to understand if the added etched holes on
the SiN stripe introduce any scattering losses or dispersive effects. We analyze this in Section 5.1.2.
Finally, our results on hBN membranes are presented in Section 5.1.3. All results presented in this
chapter are done with cavity C8.

5.1.1 Measurement description with a SiN test sample

Figure 5.1 summarizes the measurement routine. The sample’s position is changed N -times from
z0 to zN−1 (Fig. 5.1a). At each position we record a cavity transmission |S21|2 and a cavity reflec-
tion |S11|2 spectrum with the oscilloscope, with a large resolution of typically 106 samples, as a
function of the cavity length. The latter is scanned by sending the same ramp waveform to both
piezos and is transformed into frequency detuning∆ (Eq. 2.74) with the help of the sidebands gen-
erated by the EOM. We only use one laser, the lock laser, and its polarization is set to match the
cavity’s lower frequency polarization (|κ1,e |/2π= 1.34MHz, κ2,e /2π= 1.80MHz, κ/2π= 18.5MHz,
Fig. 3.10a). The electrical equipment involved in these measurements is described in detail in
Section 3.3. |S21|2 and |S11|2 are determined using the calibration procedure explained in Sec-
tion 3.4.1 with an extra step: due to the large frequency detuning scans (∆/2π> 25GHz), we need
to consider the finite sampling rate of the oscilloscope as well, which effectively behaves as hav-
ing a detector whose gain depends on the amplitude of the scan sent to the cavity piezos (see
Appendix B.2).

Figure 5.1b shows as an example a total of N = 350 transmission spectra as a function of the de-
tuning ∆ and sample’s position z, for a ramp waveform of frequency f = 9Hz and peak amplitude
Vp = 1.6V. The waveform is amplified with a high voltage amplifier (see Section 3.3). The sample
consists of a patterned2 30 nm-thick SiN stripe (Norcada NX5050X) and is cleaved following the
procedure described in Section 4.3. We set the position to z = 0 and the detuning to ∆ = 0 when
the sample is at a node of the cavity. The dashed line depicts the resonance frequency when the
cavity is empty. The cavity’s transmission follows the sinusoidal behavior with λ/2-periodicity ex-
pected for a membrane-in-the-middle experiment when the cavity piezos are scanned symmet-
rically. The λ/2-periodicity was introduced and explained in detail in Section 2.4. The sample’s

1We can change two angles with the positioning system. We always iterate over both of them.
2The stripe’s dimensions are 80×500µm2.
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Figure 5.1: Measurement routine. (a) The sample’s position is changed N -times from z0 until zN−1. At
each position we record a transmission and reflection spectrum as a function of the frequency detuning
∆. (b) Cavity transmission |S21|2 versus sample’s position z and frequency detuning ∆. The white dashed
line depicts the empty cavity resonance. (c) Example of three spectra (blue) taken at the node, z =λ/8 and
antinode. The orange solid lines are Lorentzian fits to the data. For this measurement we use an input
power of P0 = 17µW. The detuning is set to 0 at the center of the Lorentzian function for these plots.

position z is changed by sending a voltage to the z-axis of the positioners from 5 V to 55 V for this
particular example. The voltage sent to the positioners can be transformed into displacement
z either by using the fringe pattern of the 1310 nm-interferometer as reference or the sinusoidal
behavior of the cavity resonance transmission itself (Fig. 5.1b). The calibration from voltages to
position is explained in Appendix B.3.

To measure the dispersive and dissipative coupling, we fit a Lorentzian function to each transmis-
sion spectrum. The fit’s parameters are the cavity linewidth κ, the center of the Lorentzian and
its amplitude. Figure 5.1c depicts three examples at the most representative positions: the cavity
node, antinode and at the point of maximum dispersive coupling z = λ/8. The cavity response
(blue data) is well represented by a Lorentzian function (orange solid line) for sample’s positions
very close to the cavity node and antinode, where the dispersive coupling is the smallest and close
to 0. However, at z = λ/8 and positions far away from the cavity nodes and antinodes, any me-
chanical vibrations – coming from the sample, the positioning stage or the cavity mirrors – are
converted into cavity frequency fluctuations due to the large dispersive coupling. The frequency
fluctuations, which are larger than the cavity linewidth, lead to a broadened cavity frequency re-
sponse and overestimated cavity linewidth κ from the fits.

From the center of the Lorentzian we extract the detuning of the cavity resonance ∆cav as a func-
tion of the sample’s position, which is displayed in Figure 5.2a. In the measurements we set the
detuning to∆cav = 0 when the sample is placed at the cavity node, removing the offset with respect
to the empty cavity resonance introduced by the complex phase of the membrane’s reflection co-
efficient φr (Eq. 2.73 and Eq. 2.74). The missing points in Figure 5.2a are failed fits and occur at
positions either with a large dispersive coupling – where the signal is weak and very broad – or at
positions where there is scattering to higher order optical modes. To extract the linear dispersive
coupling G we perform a numerical derivative of the data (Fig. 5.2b, blue dots). The quadratic dis-
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Figure 5.2: Experimental optomechanical couplings. (a) Cavity detuning (dots) versus sample position z
along the cavity mode axis. The coordinate z = 0 corresponds to the sample sitting in an optical field node.
(b) Linear dispersive coupling G obtained by doing a numerical derivative of the data in (a). The orange
solid line is a spline used to smooth the data. (c) Quadratic dispersive coupling G (2) calculated from the
numerical derivative of the spline in (b). (d) Cavity linewidth (blue) and spline to the data (orange) as a
function of sample position. The two gray dashed lines highlight the positions z = ±λ/8. (e) Dissipative
coupling extracted from the numerical derivative of the spline in (d).

persive coupling G (2) (Fig. 5.2c) is obtained by smoothing the data from the linear coupling with a
spline (orange line in Fig. 5.2b) and doing a numerical derivative again.

Figure 5.2d shows the cavity linewidth κ extracted from the Lorentzian fits as a function of the
sample’s position. It presents local minima at the node and antinode and local maxima at odd
multiples of z =λ/8, the latter resulting from the linewidth broadening due to the frequency fluc-
tuations. We estimate the dissipative coupling Gκ by smoothing the experimental κ(z) with a
spline (orange line in Fig. 5.2d) and performing a numerical derivative. The results are presented
in Figure 5.2e. We recall that because the linewidth is overestimated so is the dissipative cou-
pling.

An alternative to extract the cavity linewidth is to use the value of the cavity transmission at res-
onance |S21|2max = |S21|2(∆ = 0). Because we know the cavity’s external couplings κ1,e and κ2,e

from the previously measured empty cavity response, and assuming they do not depend on the
sample’s position, we can use Eq. 3.12 to obtain

κs21 (z) = 2

√
|κ1,e |κ2,e

|S21|2max(z)
, (5.1)

where we name the linewidth asκs21 to emphasize that it is obtained from the cavity’s transmission
|S21|2 on resonance.

Figure 5.3a shows the linewidth calculated using Eq. 5.1. The linewidth presents again local min-
ima at the nodes and antinodes, and the values of κs21 coincide with the ones extracted from the
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a bλ/8-λ/8

Figure 5.3: Cavity linewidth and dispersive coupling from the cavity transmission. (a) Cavity linewidth
extracted using Eq. 5.1. The orange line is a spline to smooth the data. The blue solid line shows the transfer
matrix calculations with a SiN thickness of dm = 30nm, Re(n) = 2.1 and Im(n) = 1.4×10−4. The two gray
dashed lines highlight the positions z =±λ/8. (b) Dissipative linear coupling extracted from the smoothed
data (orange line) in (a).

Lorentzian fit (Fig. 5.2d) at those positions. However, they are significantly reduced for the other
sample positions and now the local maxima do not happen at odd multiples of λ/8 but slightly
closer to the antinode. We often observe the dips at the antinodes in most of the measurements
performed in this work with different samples and with cavity C8, and in those done by Felix
Rochau (Refs. [112, 135]) with cavity C3 and a symmetrical scan of the fiber mirrors3. A similar
dip was observed in the work by Sankey et al. [110] with a normal Fabry-Pérot cavity and stoi-
chiometric Si3N4 membrane operated at λ = 1064nm. The dips could originate from scattering
to higher order modes by a small misalignment of the membrane with respect to the cavity mode
axis. However, due to difficulties of aligning the membrane with respect to the cavity because of
the small cavity length, we have not investigated this effect.

We cross-check the measurements with the transfer matrix calculations, displayed as a light blue
solid line in Figure 5.3a (membrane thickness dm = 30nm, Re(n) = 2.1 and Im(n) = 1.4×10−4 at
λ= 1550nm). The employed imaginary part of the refractive index is an order of magnitude larger
than the value of Im(n) = 1.2×10−5 measured by Steinlechner and colleagues [161] on Norcada
low-stress SiN membranes at telecom wavelengths. Using their measured refractive index, we
expect a maximum linewidth modulation of κ/2π = 35MHz, a factor of 4 smaller than what we
observe. This suggests that the SiN’s absorption is not the main factor contributing to the large κ
and supports the hypothesis of scattering as main loss mechanism.

5.1.2 Clipping losses from the circular frame

In this section we study the scattering and clipping losses introduced by the circular holes etched
on the SiN that serve as frames for the hBN resonators. We fabricate a test sample (Fig. 5.4a)
consisting of a 200 nm-thick SiN stripe (Norcada NX5050D) with seven etched holes of decreasing
diameter (80µm, 65µm, 50µm, 40µm, 30µm, 20µm and 10µm).

Figure 5.4b shows the cavity detuning as a function of the sample’s position for the following di-
ameters: 80µm (green), 50µm (red), 40µm (orange) and 30µm (blue) – the color code matches
the one in the legend from Fig. 5.4c. For diameters ≤ 20µm the clipping losses are too large and

3All measurements in this work (C8) are done with a symmetrical scan of the fiber mirrors. Felix Rochau did mea-
surements with a non-symmetric scan and with a symmetric scan [112].
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the cavity mode is lost, so consequently there is no data to show. The detuning does not exhibit a
λ/2-periodicity for any of the holes, indicating an absence of dispersive coupling. The drift is due
to lab temperature changes4, and has a maximum value in absolute terms of |∆cav|/2π= 1.25GHz
for the 80µm-hole. In comparison, we note that a 30 nm-thick SiN stripe produces a maximum
detuning of 500 GHz (Fig. 5.2a). Because of the lack of dispersive optomechanical coupling, it is
sufficient to scan the cavity piezos without amplifying the signal from the waveform generator.
We use a scan waveform of amplitude Vp = 3V and input power of P0 = 18.5µW.

a c

b
80 µm

µ = 23.1
σstd = 3.1

µ = 18.8
σstd = 1.5

µ = 19.2
σstd = 2.1

µ = 19.2
σstd = 1.6

Figure 5.4: Clipping from the circular frames. (a) Microscope image of the sample used for the test. The
holes used for the measurement have a false-colored rim according to the legend in (c). (b) Normalized
cavity detuning as a function of sample position for different hole diameters (same color code as in (c)). The
maximum detuning of all measurements is |∆cav|/2π = 1.25GHz. The measurement consists of a total of
N = 100 z-steps. (c) Histogram of cavity linewidth of the measurements in (b) for different hole diameters.
The graphs include the mean value µ and standard deviation σstd of the histogram in units of MHz. The
measurements were done with the acoustic shielding box open.

Figure 5.4c depicts a histogram of the cavity linewidth of the z scans in Figure 5.4b for each of the
holes, which were performed without acoustic isolation. The mean µ and standard deviation σstd

of the linewidth are displayed in the graphs. The standard deviation from the holes with diam-
eters of 50µm and 80µm corresponds to that of the empty cavity without acoustic isolation (see
Fig. 3.18). It increases by a factor of 1.3 for the 40µm-hole, but the mean value remains within
the error of the measurement. However, σstd doubles the empty cavity value for the 30µm-hole,
and the mean is displaced towards larger linewidths, a clear indication of light scattering. Over-
all, these measurements set a lower limit to the minimum diameter of the hBN drums to 30µm,
although 40µm is preferable to avoid scattering effects.

4The measurements were done with the acoustic shielding box open. The detuning drift, when plotted versus time,
matches the lab temperature change in a similar way to the measurements shown in Figure 3.15a.
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5.1. Static optomechanical couplings

5.1.3 Results with hBN resonators

Figure 5.5 shows the static optomechanical couplings for the 68 nm-thick hBN circular resonator
characterized in Section 4.5. We point out that, after the AFM measurements, we performed an
extra O2 cleaning step after which the color contrast of the flake changed. This indicates that the
flake was etched by the O2 plasma (see Section 4.2), but we did not re-measure it with the AFM. We
nevertheless use the AFM-measured thickness of 68 nm as label to distinguish the flake from the
other ones measured in this work (Table 5.1). A microscope image of the flake is shown as an inset
in Figure 5.5. We observe a sinusoidal pattern of the detuning (blue dots, Fig. 5.5a) that reaches a
maximum of ∆cav/2π = 600GHz when the sample is placed at the cavity antinodes. G is directly
extracted from the measurement by performing a numerical derivative (blue dots, Fig. 5.5b) as
explained in Section 5.1.1. We observe a maximum of |G/2π|= 2.5GHz/nm. As expected for a
membrane-in-the-middle system, the quadratic dispersive coupling G (2) reaches a maximum at
the cavity nodes and antinodes [110, 160], of value |G (2)/2π|= 25MHz/nm2 for our system (blue
dots, Fig. 5.5c). The measurements are well reproduced by transfer matrix calculations (solid lines
in Fig. 5.5a-c), using as input parameters a flake thickness of 58 nm and a flake refractive index of
nhBN = 1.85. Assuming a smaller thickness value is justified by the already mentioned observation
that the flake was etched and is therefore thinner than the AFM value. The measurement is done
with a voltage ramp waveform sent to the piezos of amplitude Vp = 1.65V and input power P0 =
12µW.

a

b

c

d

e

100 µm

Figure 5.5: Static optomechanical couplings with a 68 nm-thick hBN membrane. (a) Cavity detuning
(dots) versus sample position z along the cavity mode axis. We use an input power of P0 = 12µW. The
coordinate z = 0 corresponds to the sample sitting in an optical field node. (b) Dispersive and (c) quadratic
dispersive coupling. The solid lines in (a), (b) and (c) are the result of transfer matrix calculations. (d) Cavity
linewidth modulation and (e) corresponding dissipative coupling.

Any absorption or scattering from the flake will manifest as a modulation of the cavity linewidth
κ, displayed in Figure 5.5d. hBN has a negligible absorption coefficient at telecom wavelengths
[88, 162], and therefore the large cavity linewidths we observe cannot be attributed to optical ab-
sorption from the flake itself. Performing the same measurements shown in Figure 5.5a on the

81



Chapter 5. Cavity optomechanics with hBN resonators

SiN stripe hosting the flake results in modulations of similar magnitude (see Fig. 5.6b) that cannot
be explained considering the absorption coefficient of SiN. This suggests that the losses in our
system are dominated by scattering to higher order modes caused by a sample misalignment with
respect to the cavity mode axis, and not by remaining impurities from the transfer process. The
hypothesis is also consistent with the dips observed at the antinodes and the small scale (z ≪ λ)
variations ofκs21 (z). The linewidth modulation translates into the dissipative coupling Gκ = ∂κ/∂z
(Fig. 5.5e). We highlight that dissipative coupling is more than three orders of magnitude smaller
than the dispersive coupling and is therefore negligible in our system.

Excluding residual effects from the surrounding SiN membrane

To rule out an effect of the SiN membrane on the static optomechanical couplings, we design our
sample with an additional empty hole of the same diameter (40µm) used for reference measure-
ments. Figure 5.6a , top panel, shows the cavity detuning∆cav as a function of the sample position
when the empty hole is centered with the cavity mode. There is no modulation of the detuning
with periodicity λ/2, indicating the absence of dispersive coupling. The constant drift is due to
thermal drifts of the cavity. The SiN frame slightly modulates the linewidth (Fig. 5.6a, bottom
panel), probably due to scattering of the mode at the edges, but remains very close to the empty
cavity linewidth of 18.5 MHz, with some scattering around that value. Due to the absence of op-
tomechanical coupling, the linewidth extracted from the Lorentzian fits κ matches the one from
the resonant transmission κs21 .

a b
Reference hole SiN membrane

100 µm 100 µm

Figure 5.6: Effects from the SiN membrane. (a) Cavity detuning ∆cav (top) and linewidth κ (bottom) when
the empty hole is placed at the cavity mode. The position is indicated with a white arrow in the microscope
image inset. The linewidth is extracted directly from the Lorentzian fits. (b) Same as (a) but with the SiN
membrane center at the cavity mode. Due to the frequency fluctuations coming from the optomechanical
coupling of the membrane, we extract the linewidth from the cavity transmission κs21 .

Figure 5.6b displays the detuning (top) and cavity linewidth (bottom) when the middle of the SiN
membrane is centered with the cavity mode. The detuning, now periodic at λ/2, has a maximum
value of∆cav/2π= 1520GHz. The cavity linewidth suffers a similar modulation as what is observed
with the hBN flake. Neither the small absorption coefficient expected for hBN nor the larger one
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for SiN accounts for the large modulation observed on both materials5. This was already discussed
in the previous subsection and in Section 5.1.1.

Summary of the experimental linear optomechanical couplings

Table 5.1 summarizes the optomechanical couplings of the different samples studied in this work.
We successfully fabricated a total of four hBN samples whose thickness dm , measured with an
AFM, is depicted in the second column. However, before placing the samples in the cavity, they
were cleaned with an O2 plasma that decreased their thickness, which manifested as a change of
contrast in the microscope. Therefore, the values indicated are a upper limit to the real thickness
the flakes had once inserted in the cavity. We estimate the flakes could be etched by around 10 nm
from the transfer matrix calculations. The thinnest flake did not produce any observable disper-
sive coupling, which is expected from its small reflectivity (see Fig. 4.6 and its discussion in the
main text).

Table 5.1: Linear optomechanical couplings. The thickness dm of the hBN samples is an upper limit to
the real value – the samples were etched after an O2 plasma cleaning step but their thickness was not re-
measured with the AFM. The thickness of the SiN membranes is the one specified by Norcada. The two
bottom rows, with an asterisk next to the material, were measured by Felix Rochau [112]. Missing values
are indicated with a hyphen.

Material
dm

(nm)
Cavity

λ

(nm)

∆max
cav /2π

(GHz)

Gmax/2π

(GHz/nm)

κs21 /2π (MHz)

min, max

Gmax
κ /2π

(MHz/nm)

hBN 177 C8 1550 1000 4 – –

hBN [1] 68 C8 1550 600 25 30, 160 1

hBN 24 C8 1550 123 0.5 19, 200 4

hBN 16 C8 1550 0 0 18.5, 28 0.02

SiN 200 C8 1550 1520 6 30, 150 0.5

SiN 100 C8 1550 970 4 – –

SiN 30 C8 1550 500 2.5 20, 150 0.5

Si3N4* [135] 30 C3 1550 240 1 20, 80 0.4

SiN* 30 – 780 1100 13.8 – –

5.2 Mechanical modes inside the cavity

Before experimentally showing the effects of the retarded radiation pressure force on the mechan-
ical properties of the resonators, we need to identify their mechanical resonances with the cavity.
We do so by measuring the effective mass of each of the mechanical modes, with the intention of
reproducing the results presented in Figure 4.12. For these measurements we use the 68 nm-thick

5For the 200 nm-thick SiN stripe we expect a maximum linewidth modulation of κ/2π = 60MHz if we consider the
membrane’s absorption Im(n) = 1.2×10−5 [161].

83



Chapter 5. Cavity optomechanics with hBN resonators

hBN drum-head whose mechanical properties and optomechanical couplings were characterized
in Section 4.5 and Section 5.1.3, respectively. The drum has a diameter of 40µm and rests on top
of a 200 nm-thick SiN stripe (Fig. 4.10). The hBN drum is placed so that it is centered with respect
to the cavity mode (inset in Fig. 5.5d).

We stabilize the cavity length to the lock laser as explained in Section 3.9 with the sample in-
serted∆z = 10nm away from the cavity node. This position corresponds to |G|/2π≃ 275MHz/nm
(Fig. 5.5). The lock detuning is ∆l/2π = (ωl −ωcav)/2π = −65MHz and we use a lock power of
Pl = 35.6µW. That corresponds to a number of photons circulating inside the cavity due to the
lock laser6 of around nl ≃ 14000. Once the cavity is locked, we send the light reflected from
the cavity to the spectrum analyzer and acquire the mechanical spectra. We measure the me-
chanical resonances between 137 kHz – the fundamental mode of the SiN stripe (Fig. 4.9c) – and
1700 kHz.

To extract the effective mass we need to transform the voltage PSD SV into displacement PSD
Sz . Let’s pause for a second and think how the transduction of the setup works. The sample’s
displacement fluctuations are transformed into cavity frequency fluctuations Sω through the op-
tomechanical interaction

Sω(ω) =G2Sz (ω), (5.2)

where we have assumed that the sample position is fixed at z and G =G(z). The spectrum of the
frequency fluctuations is transformed into a voltage spectrum through the transduction function
f (ω,∆l) of the lock scheme and the involved electronics [163]

SV (ω) = f (ω,∆l)Sω(ω). (5.3)

f (ω,∆l) depends on the lock detuning∆l through the frequency response of the error signal, which
at the same time depends on the lock laser’s power. In our measurements, we keep∆l and Pl fixed
and assume that f (ω,∆l) is constant over the frequency range at which we measure the mechani-
cal spectra. The displacement and voltage PSDs are finally related through

Sz (ω) = 1

G2 f (ω,∆l)
SV =αcalibSV . (5.4)

f (ω,∆l) can be extracted by using a calibration tone, for example modulating the laser with an
AOM (see e.g. Refs. [25, 72, 163]).

There are different unknowns in Eq. 5.4 depending of the type of optomechanical system. For
instance, in most optomechanical experiments that are not in the membrane-in-the-middle con-
figuration, there is no direct way to measure G . If the effective mass of the resonators is known,
one also knows the mechanical response Sz . This allows one to extract the optomechanical cou-
pling G by using directly the thermomechanical motion of the sample7, as for example used in
Ref. [25].

6For a mode with Ω0/2π = 1590kHz and g0/2π = 1kHz, we calculate (Eq. 2.81 and Eq. 2.83) that this lock setting
leads to an optical spring and optomechanical damping of (Ωm −Ω0)/2π=−380Hz and Γopt/2π= 10Hz, respectively.

7One can still do the same procedure if the effective mass is unknown, but instead of obtaining G one obtains g0,
where the effective mass is hidden in the dependency of g0 in the zero-point fluctuations zzpf. This is used in Ref. [163].
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Figure 5.7: Mechanical spectra measured with the locked cavity. (a) Displacement PSD of two mechan-
ical modes belonging to the SiN stripe. The one at 164 kHz (left), of known effective mass m = 2.3µg and
therefore Sz , is used to obtain αcalib. The orange solid line is a fit including two Lorentzian functions. (b)
Displacement PSD of a hybrid mechanical mode at 1592.5 kHz after calibration. From the Lorentzian fit
we extract m, Γ0 and Ω0. (c) Larger frequency range displaying the mechanical modes in the range where
the mechanical modes of the SiN and hBN hybridize. (d) Experimental effective mass vs. mechanical fre-
quency. The orange and blue dashed lines are the theoretical effective mass for an ideal rectangular SiN
and circular hBN mechanical resonator, respectively, at the point of maximum deflection (see Fig. 2.2). All
spectra are measured with the same lock settings (see main text) and same spectrum analyzer settings (1 Hz
bandwidth, 4000 points, 5 kHz frequency span).

We use a similar approach and employ the SiN mode atΩ0/2π= 164.0kHz of known effective mass
m = 2.3µg measured at the center of the hBN drum as reference for the calibration. The mode was
well characterized in the Michelson interferometer (Fig. 4.12) – because we know Sz and measure
SV we can estimate αcalib from their quotient. We choose this mode because it does not show
any optomechanical interaction with the cavity and consequently it is not affected by dynamical
backaction effects8. Figure 5.7a shows the mechanical spectrum of the Ω0/2π = 164.0kHz mode
measured with the locked cavity. The mode gives αcalib = 9pm2/mV2.

Figure 5.7b displays another mechanical mode at Ω0/2π = 1592.5kHz after using the calibration
factor to convert the voltage spectrum into displacement PSD. We fit Eq. 2.16 (orange solid line)
to extract the resonance frequency, linewidth and effective mass. Figure 5.7c displays a larger fre-
quency range showing many resonances, similar to what we measured previously in the Michel-
son interferometer . The effective masses are displayed in Figure 5.7d, and show a similar behav-
ior than the ones measured with the Michelson interferometer (Section 4.5). The blue and orange
dashed lines represent the theoretical effective mass of the fundamental mode of an ideal circular

8For each mode, the single-photon coupling strength g0 is "weighted" by the spatial overlap η between the cavity
mode intensity profile and mechanical mode profile, g0 = ηGzzpf. Different mechanical modes can therefore have
different couplings.
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hBN resonator and rectangular SiN resonator, respectively, at the point of maximum deflection.
At any other position one expects a larger effective mass (see Fig. 2.2). Again, this measurement
allows us to distinguish the modes with a strong hBN character by selecting those with effective
masses below 2 ng. The modes used to demonstrate radiation pressure backaction in the next sec-
tion are highlighted with a dark arrow. The difference between the effective masses shown here
with the ones from Figure 4.12 arise from the optomechanical interaction: because the cavity is
locked, the effective spring constant (or effective mass) is modified by the presence of the lock
laser. This can affect different modes at different magnitudes, given by the overlap of the mechan-
ical modes with the optical one.

We conclude noting that these measurements are always done at the center of the hBN drum.
Getting closer to the edges generates too many scattering losses and the cavity mode is lost. This,
together with the fact that the cavity lock is lost when we perform a step movement with the posi-
tioning system, makes us unable to map the mode shapes inside the cavity with the current setup
capabilities. In principle, we could use the 1330 nm-interferometer to perform those measure-
ments. Unfortunately, the signal to noise ratio is not enough to resolve most of the modes due to
the small fringe amplitudes (Vrf = 100mV) and the large wavelength (Eq. 4.2). Adding a second
laser operating at shorter wavelengths, also outside the coating band of the mirrors, could enable
interferometry measurements with a higher signal to noise ratio like in the Michelson setup.

5.3 Dynamical backaction

We observe the dynamical backaction effects of the radiation pressure force as a modification
of the natural frequency and mechanical linewidth of the resonator, in other words: the optical
spring effect and optomechanical damping (see Section 2.4.2). In the following, we present our
results measured on the 68 nm-thick hBN drum-head whose mechanical properties and optome-
chanical couplings were characterized in Section 4.5 and Section 5.2, and Section 5.1.3, respec-
tively.

5.3.1 Experiment description

The experiments are carried out in the following way. For each measurement, we place the sam-
ple at a position of known coupling G . This is achieved by placing the sample at the cavity node
znode, which is used as spatial reference, and displacing it by a certain amount ∆z. The coupling
at G(znode +∆z) is extracted from the measurements of the optomechanical couplings (Fig. 5.5).
We typically displace the sample by 10 nm to 20 nm from the cavity node, which correspond to
linear couplings G below 500 MHz/nm. Positions with larger couplings are inaccessible due to the
large frequency fluctuations caused by the mechanical noise of the setup (see Section 3.8). These
make the cavity locks very unstable. The next step is to stabilize the cavity length. This is done
by locking the cavity length to the frequency of the lock laser ωl. We typically use a lock detuning
∆l = ωl −ωcav of around ∆l/2π = −70MHz and a lock laser power of Pl = 35µW. Its polarization
is set to match the one from the higher frequency polarization mode of the cavity (Fig. 3.10b,
|κ1,e |/2π= 1.41MHz, κ2,e /2π= 1.42MHz, κ/2π= 18.9MHz), and it is modulated with the EOM at
ωmod/2π= 30MHz, producing two sidebands. We drive the EOM with the UHFLI with a signal of
Vrf = 0.75V and Vdc = 6.5V, which gives a sideband to lock power ratio of Psb/Pl = 0.25. The latter is
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Figure 5.8: Measurement routine to probe dynamical backaction effects. (a) Illustration of the laser tones
employed in the measurement as a function of their detuning ∆ with respect to the cavity resonance. The
lock laser is displayed as a blue arrow and has to sidebands separated by ωmod/2π = 30MHz. The probe
laser is illustrated in orange. The x-axis is to scale and the y-axis is normalized to the lock laser’s input
power. The cavity transmission response is illustrated in purple and not to scale. After locking the cavity,
the probe detuning is swept Nsteps-times across the cavity resonance. At each probe detuning, we record
a trace of the probe’s transmitted power Pt (b) with the oscilloscope and a mechanical spectrum (c) of the
reflection from the cavity with the spectrum analyzer (SA). From the mean of the probe’s transmission Pt

we extract the probe’s circulating photon number np. We fit each mechanical spectrum to a Lorentzian
response to extract Ωm and Γm (orange solid line in (c)).

calculated using Eq. 3.18. The electronics involved in the locking procedure and a detailed analysis
of the error signal used for the lock can be found in Section 3.3 and Section 3.9, respectively. We al-
ways record the cavity transmission, reflection, and error signal as a function of cavity detuning ∆
before locking the cavity, getting traces similar to the ones shown in Figure 3.19b. Using the mea-
sured response of the cavity’s transmission Pt = f (∆) = |S21|2(∆)Pl, we estimate the lock detuning
from the transmitted power after locking Pt,lock, solving the inverse problem ∆l = f −1(Pt,lock). The
circulating number of photons inside the cavity due to the lock laser is also estimated from Pt,lock

through equation Eq. 2.58.

Once the cavity length is stabilized, we use a second laser (the probe laser) to exert a radiation
pressure force. Its polarization is set to match the one from the lower frequency polarization mode
of the cavity (Fig. 3.10a) and has a light power in the order of Pp = 10µW. Using both lasers with
orthogonal cavity polarizations avoids interference effects. The probe detuning ∆p =ωp −ωcav is
swept Nsteps-times across the cavity resonance by sending a voltage to the piezo of the tunable
laser. It is transformed into frequency detuning following the calibration procedure described in
Appendix B.4. Figure 5.8a displays the laser tones and the cavity response in the frequency space
as a function of the cavity detuning ∆ = ω−ωcav. The cavity transmission response is depicted
in purple and calculated using the experimental parameters for the lower frequency polarization
mode: κ1,e /2π= 1.34MHz, κ2,e /2π= 1.80MHz, κ/2π= 18.5MHz. The lock laser and its sidebands
are shown as blue arrows, and the probe tone is represented in orange color.

At each probe detuning step we record the cavity transmission with the oscilloscope and a me-
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chanical spectrum from the reflection signal with the spectrum analyzer. For the latter we use
a bandwidth of 1 Hz and a total of 4000 points. The transmission detector measures the sum of
the transmitted power due to the lock – which is constant9 through the measurement and equal
to Pt,lock – and the one from the probe which depends on ∆p. To isolate the contribution of the
probe’s laser, we subtract the value Pt,lock from the experimental traces. Figure 5.8b shows as a
example the probe laser’s transmission for a particular probe detuning. We take the mean of
the probe transmitted power, which oscillates due to residual frequency fluctuations, and use
Eq. 2.58 to extract the circulating probe photon number np. Each mechanical spectrum is fit-
ted to a Lorentzian function to extract the resonance frequencyΩm and mechanical linewidth Γm

(Fig. 5.8c). For a typical measurement, we sweep the probe detuning 100 times (Nsteps = 100),
which takes around 4 minutes. For these measurements, because we are not interested in the
effective mass, we do not calibrate the measured PSDs in volts to displacement PSDs.

5.3.2 Optical spring and optomechanical damping

Figure 5.9 shows the optical spring effect (Fig. 5.9b) and optomechanical damping (Fig. 5.9c) of
the hBN hybrid mechanical mode with Ω0/2π = 1533.759(8)kHz. The sample is positioned so
that G/2π = 330MHz/nm, and we use a lock detuning of ∆l/2π = −77MHz. The probe and lock
input powers are Pp = 11µW and Pl = 35.4µW, respectively. The linewidth and quality factor are
Γ0/2π = 0.69(3)kHz and Q = 2200(80). The effective mass, measured in the previous section, is
m = 1.7(6)ng, yielding zzpf = 1.78(7)fm. With these numbers, we expect a single-photon coupling
strength of g0/2π= (G/2π)zzpf = 586Hz. We recall that the effective mass was measured with the
lock red detuned – that means that the real effective mass can be actually smaller. Consequently,
the calculated value g0/2π= 586Hz is a lower limit for the single-photon coupling strength.

The circulating probe photon number seems at first sight to follow the Lorentzian shape charac-
teristic from a linear cavity (Fig. 5.9a). A Lorentzian fit (solid line) reveals a loaded cavity linewidth
of κ/2π= 40.4(5)MHz and finesse of F = 88700. However, there is a hardly noticeable asymmetry
between both branches of the Lorentzian, being the left side (negative detunings) more steep than
the right one (positive detunings). This is an indication of a nonlinear response of the cavity (see
Fig. 3.11).

The backaction of the probe leads to a softening (stiffening) of the mechanical frequency for neg-
ative (positive) detunings, with a maximum frequency shift of |δΩ/2π|= 2kHz for negative de-
tunings. The natural frequency has a slight negative slope stemming from drifts in the lock that
originate from changes of the sample position due to slow temperature drifts in the laboratory.
The data shows an asymmetry around the probe detuning as well, which is not predicted by the
linear cavity optomechanics theory. Indeed, the mode shows a stronger softening than stiffen-
ing. The solid line is a fit to the optical spring using Eq. 2.81 together with a linear background.
For the fit, we fix the cavity linewidth to the value obtained from the Lorentzian fit to the probe
photon number, κ/2π= 40.4MHz, assume negligible dissipative coupling, feed the equation with
the experimentally measured probe photon number np and exclude the data on the heating side

9In reality, we have thermal drifts which cause small drifts of ∆l and consequently of the lock laser’s transmitted
power of around 1 nW in 4 min, but it is measurement dependent. In that case, the final transmission as function of
probe detuning Pt(∆p) is a Lorentzian function coming from the probe Pt,probe(∆p) on top of a linear background
originating from the lock drift Pt,lock . We fit a linear regression to the background to extract Pt,lock.
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(0<∆p/2π<40 MHz) due to the asymmetry in the optical spring. The only free parameter for the fit
is g0, and the best fit yields g0/2π= 710(10)Hz. This result is in good agreement with the indepen-
dently extracted lower limit of g0/2π= 586Hz.

a
b

c

Hybrid G/2π = 330 MHz/nm

Figure 5.9: Radiation pressure backaction. (a) Experimental probe photon number np versus probe de-
tuning ∆p. The solid line is a Lorentzian fit with linewidth κ/2π = 40.4MHz. (b) Optical spring effect and
theoretical regression (solid line) with best fit parameter g0/2π = 710Hz. The fit excludes the data on the
heating side (0<∆p/2π<40 MHz) due to the asymmetry in the optical spring. (c) Mechanical damping and
theory calculation (solid line) with the parameters from the fit in (b). The error bars for Ωm and Γm , gener-
ated from the fits to Eq. 2.15, are omitted because they are not appreciable in the figure.

The regression reproduces the data trend except for positive detunings. We discard the possi-
bility of an asymmetry induced by the dissipative coupling because of the small value of the
single-photon dissipative coupling strength, g0,κ/2π = (Gκ/2π)zzpf = 0.3Hz. As discussed in Sec-
tion 4.5, the sample presents many resonances in the frequency range of interest, resulting from
the hybridization between the dense SiN mechanical spectrum and the hBN resonator. These hy-
bridized modes, which are close in frequency and have similar mode shapes, will modulate the
intracavity field too. This can result in an intermode coupling which drives the other mechanical
modes [164]. Consequently, the system is no longer represented by a single optical mode inter-
acting with a single mechanical mode, which could explain the deviations from Eq. 2.81. Another
possible, and perhaps more accurate explanation given the slight asymmetry of the photon num-
ber (Fig. 5.9a), is the presence of nonlinear effects. We have shown in Section 3.4.2 that the cavity
response can become nonlinear for sufficiently high input powers due to the change of cavity
length caused by the thermal expansion of the mirrors. The cavity resonance frequency conse-
quently depends on the photon number, which is a nonlinearity of the Kerr type. The nonlinearity
can contribute to the backaction effects as well. Zoepfl and colleagues [131] have developed the
theory of Kerr backaction cooling and demonstrated the cooling of a cantilever resonator using
this mechanism. In their experiments they show the optical spring effect and optomechanical
damping of a cantilever coupled to superconducting cavity with a behavior very similar to ours:
the optical spring is asymmetric with respect to the cavity detuning, and less pronounced for blue
probe detunings; the optomechanical damping is stronger in the cooling side than in the heating
side. This behavior is characteristic for systems with a negative Kerr nonlinearity, and leads to a
more efficient cooling than the ideal linear systems. We will apply their theory to our data in the

89



Chapter 5. Cavity optomechanics with hBN resonators

next section.

Figure 5.9c shows the effective linewidth Γm (orange dots) as a function of the probe detuning.
The solid line is the result of Eq. 2.83 using the parameters obtained from the fit of the optical
spring. We observe a larger broadening (optomechanical cooling) than what is predicted by the
theory for negative detunings, whereas the narrowing (optomechanical heating) found for posi-
tive detunings is less pronounced compared to the theoretical model. This again matches with
the presence of a Kerr nonlinearity. In general, the experimental linewidths are broadened due to
unavoidable mechanical fluctuations of the positioner stack and the SiN stripe itself. They are also
the limiting factor of this experiment and the reason why we are unable to successfully lock the
cavity at sample positions with higher coupling G . The fluctuations translate into cavity length
noise, which directly affects the detuning and therefore turn into mechanical frequency noise.
This leads to the overall broadening of the mechanical linewidth.

Overall, these results are the first demonstration of radiation pressure backaction at optical wave-
lengths on a hexagonal boron nitride mechanical resonator and, to the best of our knowledge, on
a mechanical resonator made from a van der Waals material.

5.3.3 Power sweeps: hints of Kerr backaction cooling

Figure 5.10a shows the circulating probe photon number (top graph), optical spring (middle graph)
and optomechanical damping (bottom graph) for a hybrid mode withΩ0/2π= 1590.3(3)kHz. The
sample is positioned so that G/2π = 333MHz/nm, and we use Pp = 11µW, Pl = 34.5µW and a
lock detuning of ∆l/2π=−50MHz. The linewidth and quality factors are Γ0/2π= 572(20)Hz and
Q = 2700(100), respectively. The effective mass, measured in the previous section, is m = 1.2(1)ng,
yielding zzpf = 2.1fm. From these numbers, we calculate a value of g0/2π= 690Hz.

The photon number does not follow a Lorentzian trend, which can be an indication of a nonlinear
cavity response. Because we cannot fit a Lorentzian, and since the sample is placed at a similar
position than in the example from Figure 5.9, we take the linewidth’s value from that measure-
ment κ/2π= 41MHz. The detuning is set to zero at the point of maximum photon number. This
mode presents a larger coupling than the one at 1534 kHz, that manifests as a larger maximum fre-
quency shift of |δΩ/2π|= 3kHz for the red detuned case. The optical spring shows a similar probe
detuning dependence to the one from the mode in Figure 5.9. From the fit to the optical spring
formula (Eq. 2.81), we obtain g0/2π= 1007(10)Hz, which leads to zzpf = 3.0fm and m = 0.5ng, in
good agreement with the value previously calculated. The fit to the optical spring excludes the
data on the heating side (0<∆p/2π<40 MHz) due to its asymmetry.

We now cool the resonator by fixing the probe laser’s frequency to the red detuned value ∆p/2π=
−14.5MHz, highlighted as a gray dashed line in Figure 5.10a. To fix the probe detuning we first do
a probe detuning sweep and measure the response of the cavity, similar to the measurements
in Fig. 5.10a, top graph, but with smaller probe powers. This takes around 3 minutes. Then
we set the wavelength of the laser so that it matches the target value given the cavity response
and do the power sweep measurement. The cavity is locked at ∆l/2π = −40MHz and with Pl =
34.3µW. The lock laser’s circulating photon number is constant during the measurement and
around nl ≃ 20000. Figure 5.10b shows the optical spring (top graph) and mechanical linewidth
(bottom graph) as a function of the circulating probe photon number. The probe’s input power
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Figure 5.10: Dynamical backaction cooling. (a) Circulating probe photon number np (top graph), optical
spring (middle graph) and optomechanical damping (bottom graph) versus probe detuning∆p for a hybrid
mechanical mode at 1590 kHz. The solid line in the optical spring is a theory fit using the linear cavity
optomechanics theory (Eq. 2.81) excluding the data on the heating side (0<∆p/2π<40 MHz); the one in the
mechanical damping is the calculation from the theory (Eq. 2.83) using the parameters from the fit to the
optical spring. (b) Optical spring and mechanical damping for a fixed probe detuning (∆p/2π=−14.5MHz,
gray dashed line in (a)) and varying circulating probe photon number np. The top x-axis reflects the probe
input power Pp. The value Pp = 25µW is highlighted as a purple dashed line. The orange lines are linear
regressions to the data.

was changed from Pp = 7µW to Pp = 265µW.

Both Ωm and Γm depend linearly on the photon number for np < 150000, with slopes of different
sign, as predicted from the theory (Eq. 2.82 and Eq. 2.83). The mechanical mode softens and cools
down, which is the normal behavior for a red detuned probe. The frequency decreases by more
than 5 kHz and the linewidth increases by almost an order of magnitude. The orange solid lines
are linear fits, from which we can extract the single-photon coupling strength through Eq. 2.82
and Eq. 2.83 using the experimental values ∆p/2π = −14.5MHz and κ/2π = 41MHz. They yield
g0/2π = 1010Hz and g0/2π = 1075Hz for Ωm and Γm , respectively, both in very good agreement
with the independent measurement in Figure 5.10a using the probe laser’s detuning sweep.

For np > 150000, however, the data starts deviating from what we expect from the theory. In-
deed, the mechanical frequency starts increasing again with a quadratic dependence in np, and
the linewidth decreases. As explained in Section 3.4.2, the cavity starts presenting a clear nonlin-
ear behavior for input input powers P > 25µW. That is also the power value at which we start ob-
serving a deviation between the linear optomechanics theory and the data, highlighted as a purple
dashed line in Figure 5.10b. This is an indication that the behavior of the cavity maybe nonlinear,
giving rise to other optomechanical effects. Our cavities present a negative Kerr: looking at Fig-
ure 3.11b we observe that the response of the cavity gets steeper for negative detunings, which also
occurs for the photon number presented in Figure 5.10a. Figure 5.11 shows the measured optical
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spring and damping (blue dots). The solid lines are theoretical curves10 including the Kerr non-
linearity (Eq. S17 from Ref. [131]) with a value for the Kerr nonlinearity of K/2π=−240Hz/photon
and g0/2π = 900Hz. The photon number fed to the equation is calculated from a Lorentzian
with full width at half maximum κ/2π = 41MHz and amplitude of nmax

p (nmax
p = 105 orange line,

nmax
p = 2 · 105 green line). The theoretical curve with nmax

p = 105 reproduces the optical spring
very well. It underestimates, however, the linewidth for red detunings, but follows experimental
data trend. We note that we have fed to the equation a linear (Lorentzian) photon number; to
accurately describe the data one should use a nonlinear photon number dependency.

ba

Δp/2π=-14.5 Mhz Δp/2π=-14.5 Mhz

Figure 5.11: Dynamical backaction with a nonlinear cavity. (a) Experimental optical spring (blue dots)
verus probe detuning ∆p. The solid lines are calculated theoretical curves (Eq. S17 from Ref. [131]),
which include the nonlinear response of the cavity. The curves use a Kerr nonlinearity of K/2π =
−240 hertz/photon and g0/2π= 900Hz. The equations are fed with a probe photon number of Lorentzian
dependence (linear cavity) with κ/2π = 41MHz and amplitude nmax

p (nmax
p = 105 and nmax

p = 2 ·105 for the
orange and blue lines, respectively). (b) Experimental optomechanical damping (blue dots). The solid lines
follow the same as in (a). The gray dashed line indicates the value ∆p/2π=−14.5MHz.

The nonlinear response can also give us an explanation on the unexpected dependencies of the
optical spring and damping with the probe circulating photon number (Figure 5.10b). Let’s take
another look at Figure 5.11. The gray line highlights a fixed red detuning of ∆p/2π = −14.5MHz.
We can observe that, as we increase the photon number, the curves are displaced towards negative
detunings: the fixed probe detuning (gray dashed line in Fig. 5.11) is for the orange curve on the
left side of the optical spring minima whereas it is on the right side for a two-fold increase in the
photon number (green curve). If we had increased the photon number even further, the value
∆p/2π = −14.5MHz would correspond to a positive optical spring. Same occurs with the optical
damping. Consequently, both cooling and heating backaction shift to lower frequencies, which
could very well explain what we observe in Figure 5.10b, as we use powers exceeding the linear
regime of our cavity.

The asymmetry of the theoretical curves of the optical spring and optomechanical damping in-
cluding the Kerr nonlinearity (Fig. 5.11) also matches the one from the measurements presented
in the previous section (Fig. 5.9). However, in that case, the nonlinearity in the photon number
is way less pronounced for a similar input power and similar coupling G . The reasons behind
this are still unclear to the author. First, the measured nonlinear response differs from the ones

10The curves are not a fit to the data. The parameter space is large and it is important to know the shift of the nonlinear
cavity response with respect to the linear cavity, which we do not know. Nevertheless, it serves to illustrate the Kerr
backaction mechanism.
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predicted by the theory (Fig. 3.11): we observe11 an unexpected lower "bump" for a blue detuned
probe (Fig. 5.10a and see also our previous work [135]). This could be an indication that the origin
of the nonlinearity can be more complex than just the thermal effects explained in Section 3.4.2.
A possible explanation for the bump is that, given the large number of photons, the mechanical
oscillator jumps to another local minima of the mechanical potential modified by the optical po-
tential from the radiation pressure [17]. Whether the jump occurs or not depends on the position
history of the system, which is different for different measurements. Second, we remark that given
the high number of photons inside the cavity the intrinsic Kerr nonlinearity from hBN could also
come into play [130, 165].

The theory from Zoepfl and coauthors [131], on which I based this discussion, was published
while I was writing this thesis. More data sets and a more careful analysis of the cavity nonlinear
response should be done in the future to completely validate the results presented here. Never-
theless, we always observe an asymmetry in the optical spring and optomechanical damping of
the negative Kerr type for almost all mechanical modes analyzed in this work. If further analyses
validate the arguments exposed in this section, this would mean that we have cooled the mode of
the hBN mechanical resonator with a Kerr enhanced radiation pressure backaction.

We conclude this section analyzing the cooling of the mechanical resonator. Figure 5.12 displays
the resonator’s effective temperature (Eq. 2.84) as a function of the probe photon number. The
orange line is the fit used for the optical damping (Figure 5.10b). We cool down the resonator
from room temperature to approximately 30 K. We note that, since we cannot measure the me-
chanical linewidth without locking the cavity, the value taken for the natural linewidth is already
affected by the backaction of the red detuned lock. This implies that the measured effective tem-
peratures are an upper limit to the real value. Because our optomechanical system is deeply in the
unresolved sideband regime (Ω0 ≪ κ), the minimum attainable photon number using radiation
pressure backaction cooling with a linear cavity is nph,min = κ/(4Ω0) = 6.6. This value is far from
the final phonon number reached in the experiments nph,f ≃ nthΓ0/Γm = 8×105, with nth = 4×106.
The difference is basically given by the large natural linewidth of Γ0/2π= 572Hz, which is compa-
rable to the optomechanical damping Γopt,max/2π∼ 2000Hz (Eq. 2.88).

25 µW

Figure 5.12: Effective mode temperature. The data is calculated using the measurements of the optome-
chanical damping (Fig. 5.10b) and Eq. 2.84. The solid line is the same linear regression to the mechanical
damping in Fig. 5.10b. The purple dashed line highlights the input probe power of Pp = 25µW. Above that
value the data starts deviating form the linear optomechanical theory.

11This was observed with different SiN stripes and different hBN flakes and cavity C8. Felix Rochau also observed this
with high-stress Si3N4 stripes in cavity C3 with a completely different setup.
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5.4 Reverse optical spring

The dynamical backaction experiments presented in Section 5.3 for the mechanical modes at
1534 kHz and 1590 kHz were also done with most of the mechanical modes with enough signal
to noise ratio in the frequency range between 137 kHz and 3 MHz. We found a total of 5 modes
with resonance frequencies below 500 kHz (Ω0/2π = 255, 332, 354, 459 and 481kHz) that showed
a reverse optical spring. As an example, Figure 5.13a displays the optical spring and damping as
a function of the probe detuning for the mode at Ω0/2π= 354kHz, which has Γ0/2π= 44Hz. The
measurement parameters are G/2π= 480MHz,∆l/2π=−50MHz, Pl = 34µW and Pp = 15µW. The
photon number shows a Lorentzian response of linewidth κ/2π= 50MHz, 10 MHz larger than the
previous measurements because the sample is displaced further away from the cavity node at a
point of larger coupling G . The frequency of the resonator behaves opposite to what is expected
from the linear optomechanical backaction theory: the mode stiffens for a red detuned probe and
softens for a blue detuned one. The maximum frequency shift is around |δ(Ω)|/2π= 0.15kHz. The
mode’s mechanical linewidth increases with a red detuned probe as predicted by the theory, and
it is not altered (at least that we can resolve) for the blue detuned case. Nevertheless, extracting
the linewidth from this measurement is very difficult because the mode presents a low signal to
noise ratio of 5.

a SiN

Δp/2π=-20 Mhz

G/2π = 480 MHz/nm b

25 µW

25 µW

Figure 5.13: Reverse optical spring. (a) Circulating probe photon number np (top graph), optical spring
(middle graph) and optomechanical damping (bottom graph) versus probe detuning∆p for a SiN mechan-
ical mode at 353.5 kHz. The solid line in the probe photon number graph is a Lorentzian fit. (b) Optical
spring and mechanical damping for a fixed probe detuning (∆p/2π=−20MHz, gray dashed line in (a)) and
varying circulating probe photon number np. The top-x axis reflects the probe input power Pp. The value
Pp = 25µW is highlighted as a purple dashed line. The orange lines are linear regressions to the data.

To confirm our observations we perform a power sweep by fixing the probe detuning to the red
sideband side, ∆p/2π = −20MHz and the lock to ∆l/2π = −60MHz. Figure 5.13b shows the me-
chanical frequency and linewidth as a function of the probe photon number. Both depend lin-
early, with a positive slope, on the photon number. From the fit to the linewidth, which be-
haves according to the linear optomechanics theory, we extract a single-photon coupling rate of
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g0/2π= 671(1)Hz. This mode also does not present a change of the sign of the slope for np > 105

in contrast with the mode at 1590 kHz. We currently do not have an explanation for the mecha-
nism behind the reversed behavior of the optical spring with respect to the probe detuning, which
should be subject of future experiments.

In conclusion, we have demonstrated radiation pressure backaction on an hBN resonator at tele-
com wavelengths. We have shown that the measured optical spring and optomechanical damping
have an asymmetry that is not predicted by the linear cavity optomechanics theory. This asym-
metry can be reproduced theoretically if we include a negative Kerr nonlinearity in the system.
Additional experiments should be conducted to clarify the origin of the nonlinearity.
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6
Conclusion and outlook

I
N this thesis we present an experimental platform to perform radiation pressure backaction
experiments with micro- and nanomechanical resonators placed in the middle of an optical
cavity. In particular, we study membrane mechanical resonators made of hexagonal boron

nitride, a type of van der Waals material.

The first part of this work aims to introduce the reader into the insights of a membrane-in-the-
middle (MIM) cavity optomechanical system. The standard cavity optomechanics literature [17,
18] covers the optomechanical interaction but for the toy model of an optical cavity with a mov-
able mirror, which is effectively different to the MIM system. In the latter, the membrane splits
the optical cavity into two subcavities. The radiation pressure arises in the MIM case due to the
different optical field amplitudes at each side of the membrane. We explain the characteristics of
the MIM system by introducing the transfer matrix formalism, the mathematical tool we use to
compute the static optomechanical couplings.

In our experiment, the radiation pressure interaction is enabled thanks to a high-finesse optical
cavity. The cavity is composed of two fiber mirrors which were machined through CO2 laser abla-
tion and coated with a distributed Bragg reflector. We introduce the effects specific to fiber cavities
and explain carefully the cavity characterization methods. Throughout this work, I fabricated and
characterized a total of nine fiber cavities with cavity lengths between 20µm and 76µm, and an
empty cavity finesse up to F = 200000. One of the cavities was used to demonstrate dynamical
backaction in the ultrahigh-finesse regime [135], and another one to realize the first experimental
evidence of radiation pressure backaction with a mechanical resonator made of hexagonal boron
nitride [1].

Long lasting efforts were devoted to understand the limiting factors of our experiment. We found
that the main source of instability is the sample positioning system for two main reasons. First, the
short cavity lengths enable very large optomechanical couplings when the sample is inserted, with
a maximum of around Gmax/2π≃ 3GHz/nm. This is, of course, beneficial from the point of view
of the optomechanical interaction. However, it also means that we couple to tiniest mechanical
noise. We found that the positioning system’s mechanical response peaks at similar frequencies
than the acoustic noise from the ZNN facilities, which translates into cavity frequency fluctua-
tions larger than the cavity linewidth. With this noise it is impossible to stabilize the cavity length
even when the sample is placed at the cavity node – the point of minimum coupling. To overcome
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this limitation, we designed and characterized an acoustic isolation box protecting the setup from
the mechanical noise. With the vibration isolation in place, we are able to stabilize the cavity and
perform dynamical backaction experiments. Nevertheless, we are still limited to sample positions
with couplings below G/2π≃ 500MHz/nm. A possible solution is to move the experiment to an-
other building with lower mechanical noise – or with noise at frequencies where the positioners
do not resonate – together with the design of a better mechanical isolation system. Second, the
sample position drifts in time due to temperature changes in the lab, with a magnitude of about
1.2µm/◦C. This leads to cavity lock drifts when the sample is inserted. These are temperature de-
pendent. The best approach in this case is to use a feedback loop to stabilize the sample position.
The current positioning system allows this.

The hBN mechanical resonators are fabricated by dry-transferring mechanically exfoliated hBN
flakes on top of a low-stress SiN stripe resonator. We have characterized the mechanical spectra
from both resonators using a Michelson interferometer and mapped some of the spatial profiles.
The mode profiles from the hBN drum deviate from the what we would expect from an ideal circu-
lar membrane. We attribute this deviation to the dry-transfer technique: the pulling and pushing
from the PDMS stamp against the flake results in a bulging of the hBN membrane which is appre-
ciable under the microscope. This could explain the deviation from the ideal membrane behavior,
which has also been observed in other experiments with dry-transferred hBN resonators [45]. A
more gentle transfer technique, like a wet transfer, would be beneficial for the mechanical perfor-
mance of the resonators [139]. We have also found that the modes from hBN and SiN resonators
hybridize because they are close in resonance frequency and coupled through strain. We have
measured this hybridization as a shift of the effective mass of the resonators, following the work
from Ref. [139]. To avoid the hybridization one could change the low-stress SiN stripe to a high-
stress Si3N4. With the same stripe dimensions, and using the conservative1 value σ = 400MPa,
we expect the fundamental mode of the Si3N4 stripe to be at Ω0/2π= 730kHz. This would isolate
the fundamental mode of hBN from the sea of modes observed in Figure 4.11. Combined with
the wet transfer, one could take a step further and engineer the mode spectrum of the Si3N4 in
the same spirit as the phononic shielding [142] to push the frequencies even further away in the
spectrum.

The main achievement of this thesis is the demonstration of dynamical backaction on an hBN
mechanical resonator. We have measured the optical spring and optomechanical damping of
different mechanical modes, with single-photon coupling strengths as high as g0/2π = 1000Hz.
Both the optical spring and the optomechanical damping display an asymmetry with respect to
the probe’s laser detuning that is not explained by the linear cavity optomechanics theory. The
photon number displays a nonlinear response as well. A theoretical framework including a Kerr
nonlinearity is capable of reproducing the experimental trends we observe [131]. However, the
source of the nonlinearity is still unclear and more experiments should be carried out to clarify
its origin. These should include a thorough characterization of the thermal nonlinear response of
the cavity.

The membrane-in-the-middle optomechanical platform presented here offers the possibility to
study different types of mechanical resonators. In particular, to study resonators with incorpo-

1Norcada provides unpatterned high-stress membranes with σ = 1GPa. We do not know if the stress changes for
custom patterned membranes, so we take a conservative lower value for the calculations.

98



rated optically active defects, for which van der Waals materials are especially suited. Indeed, hBN
is not the only material that has defects which are sensitive to strain [57, 63, 166], so do other van
der Waals materials like WSe2 [167–169]. The multi-mode fiber at the output of the cavity allows
the incorporation of several wavelengths, enabling photoluminiscence experiments on-site. One
could even go a step further and carefully design the DBR coating of the fiber mirrors to operate at
different wavelength ranges. The latter could be used, for instance, to enhance the spontaneous
emission rate from the quantum emitters through the Purcell effect [170, 171]. All this will open
the door to new ways of studying the strain dependence of the optically active defects from hBN
with an additional control of the mechanical properties through light, and a new step forward
towards the realization of spin-optomechanics with van der Waals materials.
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A
Theoretical calculations

A.1 Transfer matrix of a DBR

We consider a DBR formed by N pairs of layers sputtered on a substrate with refractive index ns .
Layer 1 has a thickness of d1 = λn1/4 and layer 2 d2 = λn2/4. The propagation matrix for each
layer is (−i 0

0 i

)
. (A.1)

The transfer matrix of a layer pair, starting from layer 1,

MN=1 =
(−i 0

0 i

)
1

t12

(
1 −r12

r12 1

)(−i 0
0 i

)
1

t21
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1 −r21

r21 1

)
, (A.2)
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The N -layer matrix is therefore given by

MN = M N
N=1 =

1
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+
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−
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 . (A.4)

Usually, when the DBR is used within optical cavities, the side opposite to the substrate is the
one facing the region of highest electric field intensity, and therefore where the material losses are
more critical. For this reason, an additional layer of the material with lowest losses is added at the
end of the coating, which is Ta2O5 in this case. The final matrix is therefore,

M = Ds1M N
N=1

(−i 0
0 i

)
D1e , (A.5)
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with M10 being the interface between material 1 and the external medium of refractive index ne ,
which we assume to be vacuum (ne = 1). The complete matrix reads

M = i

2n1ns


−n2

1

(
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)N
−ne ns
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 . (A.6)

The reflection and transmission coefficients follow from Eq. 2.36

rDBR = −n2N+2
1 +ne nsn2N

2

n2N+2
1 +ne nsn2N

2

, (A.7)

tDBR = 2i (−1)N nsnN+1
1 nN

2

n2N+2
1 +ne nsn2N

2

. (A.8)

We recall that if n1 > (n2, ne , ns), and assuming lossless layers (negligible imaginary part of the
complex refractive index), then rDBR =−|rDBR| and tDBR = i (−1)N |tDBR|.

A.2 Different notations for the amplitude coefficients

There are different ways in the literature to define the transmission amplitude coefficient through
an interface (Fresnel coefficients). Most books and literature (Refs. [78, 85, 86, 89], to cite some)
take the one we used here: t01 = 2n0/(n0 +n1), which results in the real field amplitudes. In that
case, the transmission power coefficient Ti has to be scaled by the refractive index in both media
with respect to |t01|, Ti = n1|t01|2/n0, so that energy conservation holds, Ri +Ti = 1. One can
define the transmission amplitude coefficient in a way that it directly gives the right power values,
but a "scaled" field amplitude. This is the convention employed in Lasers from Siegman [77], who
defines

t01 =
2
p

n0n1

n0 +n1
. (A.9)

This results in field amplitudes which are "not real" but scaled by a refractive index factor. The
advantage of this method is that one can compute directly the power transmission coefficient as
Ti = |t01|2. The reflection coefficient is defined in the same way in both cases.
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B
Experimental calibrations

T
O perform some of our experiments, we have to change the sample’s position, the cavity
length or the probe laser’s frequency – or a combination of some of them at the same time.
This is done by sending electrical signals to the piezos composing the positioners stack,

the cavity piezos or the piezo controlling the laser’s internal cavity. It is therefore necessary to
understand how these electrical signals are transformed into displacement or, when it applies,
frequency detuning. This appendix summarizes the calibrations and procedures used to perform
those transformations. In the main text, we have also highlighted how important it is to know
the absolute transmission and reflected powers. The measurement of those quantities is also af-
fected by the finite sampling rate of the used oscilloscopes. This adds an extra calibration step to
our measurements of the optomechanical couplings (Section 5.1), which is also described in this
appendix.

B.1 Cavity’s piezo scan to frequency conversion

The voltage sent to the shear piezos hosting the fiber mirrors creates a shear strain in the piezo
material. The deformation of the piezo element basically translates into a displacement of their
top surfaces, where the fiber mirrors are glued. We scan the cavity length by sending a ramp wave-
form generated by an arbitrary waveform generator (AWG) to the piezos. The voltage sent to the
piezos is converted into frequency detuning – which is equivalent to cavity length change through
Eq. 2.74 – by modulating the lock laser with the EOM. Figure B.1a shows the cavity transmission
(blue) and ramp waveform (orange) traces recorded with the oscilloscope. The sidebands appear
at a time difference from the lock equal to ∆tmod, which corresponds to ωmod in the frequency
space. Another time difference ∆t will therefore correspond to a detuning ∆

∆= ωmod

∆tmod
∆t .

The equation above is used to transform the time axis into frequency detuning. ∆tmod depends
on the amplitude of the ramp voltage sent to the piezos: the larger the amplitude, the closer the
sidebands will be to the laser tone for a fixed value of ωmod because the change of cavity length is
larger. In our experiments we keep fixed the frequency f of the ramp waveform and only change
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ba

ωmod

Lock
laser

Probe
laser Δtmod

Figure B.1: Frequency calibration with EOM sidebands. (a) Oscilloscope time trace of the cavity transmis-
sion (blue) and ramp waveform sent to the piezos (orange). The lock laser has two sidebands, modulated
with the EOM, at ωmod/2π= 530MHz. (b) Close up around the lock laser’s peak. The transmission is fitted
to three Lorentzian functions (orange line).

its peak amplitude Vp. The maximum detuning for a particular Vp will therefore be:

∆(Vp) = ωmod

∆tmod(Vp)

T

2
,

where T = 1/ f is the ramp period. Measuring ∆(Vp) allows us to extract the voltage to frequency
conversion, so that we do not need to run a frequency calibration for every measurement. The
results of∆(Vp) are presented in the next two sections for two distinct cases. First, when the wave-
form is sent to just one piezo, which is relevant for the cavity characterization measurements and
dynamical backaction experiments, since we need a small detuning range. Second, when the
waveform is sent to both fiber piezos after amplification with the HV amplifier. The latter is rele-
vant when performing the measurement of the optomechanical couplings, where we need a larger
detuning range. We recall that the calibrations are piezo dependent, and consequently need to be
redone for each of them.

Figure B.2: Maximum frequency detuning vs. scan amplitude (peak voltage). Only the SM fiber mirror is
scanned and without HV amplification. The data is fit to a linear regression (orange line) yielding a voltage
to frequency conversion factor of −2.64(4) GHz/V.

B.1.1 Without high voltage amplification

Figure B.2 displays the maximum detuning as a function of the peak voltage Vp of the ramp wave-
form used to scan the piezo of the SM fiber of cavity C8. The waveform is not amplified with
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the HV amplifier. The voltage to frequency conversion is linear and gives a conversion factor of
−2.64(4) GHz/V. Consequently, we can scan up to ∆/2π≃−26GHz when we send a ramp voltage
with Vp = 10V to the piezo. The negative sign reflects the movement direction of the piezos. The
shear piezos from this cavity (C8) are glued so that for positive voltages the cavity length increases,
and therefore the frequency decreases, explaining the negative sign in the frequency detuning. We
cross-check the calibration every time we characterize the empty cavity response, which happens
every time we change the sample, and always get the same values within the error of the calibra-
tion.

B.1.2 With high voltage amplification

Figure B.3 depicts the maximum detuning as a function of the peak voltage Vp of the ramp wave-
form generated by the AWG. The ramp is used to scan the piezos of both the SM and MM fiber
from cavity C8. The waveform is in this case amplified with the HV amplifier (gain of 40 V/V, see
Section 3.3 for details), and sent symmetrically to both mirrors. The voltage to frequency conver-
sion is not linear anymore due to the high voltages, which reach values up to 400V. We fit two
polynomials of second order, one for Vp < 4V and another for Vp > 4V, which are displayed in the
figure. With the HV amplified signal, we get a maximum frequency detuning of ∆/2π ≃ −4.5THz
for Vp = 10V, large enough to scan more than two FSRs. We always specify the voltage Vp in terms
of the output of the AWG before amplification because this is what we monitor and change in the
experiment.

Figure B.3: Maximum frequency detuning vs. scan amplitude (peak voltage) with HV amplification. Both
fiber mirrors are scanned symmetrically and the ramp waveform is amplified with the HV amplifier. The
peak voltage Vp is the value at the output of the AWG before amplification. To obtain the voltage at the
piezo one has to multiply Vp times the gain of the HV amplifier (40 V/V). The data is fit to two polynomials
of second order, one for Vp < 4V (green line) and another for Vp > 4V (orange line). The polynomials are
shown in the graph’s label.

B.2 Oscilloscope finite sampling rate

Oscilloscopes have a finite sample rate. For large detuning scans, like the ones needed for the
optomechanical coupling measurements (Section 5.1), the sample rate is not large enough to be
able to resolve the complete height of the transmission peak. This effectively behaves as having
a detector whose gain depends on the magnitude of the piezo scan, in other words, the voltage
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sent to the piezos. We need to know this dependence to correctly extract the cavity linewidth from
the maximum transmission (Eq. 5.1). To that end, we measure the height of a transmission peak
as a function of the peak voltage of the ramp waveform sent to the piezos, with and without HV
amplification. We do this for different oscilloscope’s number of samples. The frequency of the
ramp waveform is the same in all cases and equal to 9 Hz.

Figure B.3a displays such a measurement when we scan only one fiber mirror and without HV
amplification, for 105 (orange, 100 kS) and 106 (blue, 1 MS) samples. There is a slight deviation
for peak voltages above Vp = 5V only in the 100 kS case . The normalized transmission reaches
a minimum value of 0.95 at Vp = 10V. The 1 MS case is not affected by the finite sampling rate.
Figure B.3b shows the same measurement but for the case when the ramp waveform is amplified
by the HV amplifier and sent to both fiber mirrors symmetrically. In this case, the finite sampling
rate affects the traces very strongly. Already at Vp = 0.2V the 100 kS trace decreases to 0.9 and it is
at half of its value for Vp = 1V. The 1 MS traces reach 0.9 at Vp ∼ 1.2V and 0.5 at Vp ∼ 5V. The gray
solid lines are splines to smooth the data in both graphs. We treat this effect as having a detector
whose gain depends on the amplitude of the scan, and use the splines to extract its value.

With HV amplif.bWithout HV amplif.a

Figure B.4: Normalized transmission vs. peak voltage for different oscilloscope’s number of samples. (a)
Situation where only one fiber mirror is scanned with the ramp waveform of amplitude Vp. The normalized
transmission is calculated by dividing the maximum of the cavity’s transmission peak by its value when it
is not affected by the oscilloscope’s finite sampling rate. (b) Same as (a) but both fiber mirrors are scanned
symmetrically with the waveform and with HV amplification.

B.3 Sample’s position

The sample’s position along the cavity axis (z direction) is changed by sending a DC voltage to the
Smaract positioners’ piezos involved in the z direction movement. We do not use the positioners’
step function but the scan one. The voltage is sent internally by the MCS2 controller – we do not
use an external voltage source – and can have values from 0 V to 100 V.

The z position of the sample depends consequently on the voltage z(V ). To find z(V ) we can either
use the fringes of the 1310 nm interferometer or the dependence of the cavity detuning ∆cav on
the sample’s position (Fig. 5.5a). Both of them are periodic on the sample’s position with a period
of λ/2 and can be fit to Eq. 4.1 to extract its Fourier component. Figure B.5a shows the cavity
detuning (blue dots) of the measurements in Figure 5.5a as an example. The distance between
the detuning’s oscillations is larger for voltages smaller than 50 V than for voltages larger than that
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value. This indicates that the piezos do not move linearly with respect to the applied voltage. We
fit the data to the function

∆cav(V ) = A sin

(
2π

(λ/2)
z(V )+φ0

)
+B , (B.1)

which is equivalent to Eq. 4.1. Here, A, B and φ0 are fit parameters. We tried different depen-
dencies of z(V ) on the voltage and found that a polynomial of second order gives the best re-
sult: z(V ) = c1V + c2V 2; c1 and c2 are consequently extracted from the fit as well. The regres-
sion is shown as an orange line in Figure B.5. From the fit we extract values for the coefficients,
c1 = 21.8(3)nm/V and c2 = 0.171(2)nm/V2. Figure B.5b displays the function z(V ) = c1V + c2V 2.
Overall, the positioners move around a maximum of 3µm.

ba

z(V) = c1V+c2V2

Figure B.5: Positioners’ voltage to displacement conversion. (a) Cavity frequency detuning (data from
Fig. 5.5a) versus positioners’ voltage in the z axis. The data is fitted to Eq. B.1 (orange line) to extract the
voltage dependency of the positioners’ z-movement z(V ). (b) Positioners’ displacement in the z direction
vs. voltage z(V ) = c1V + c2V 2, with the values for c1 and c2 extracted form the fit in (a).

B.4 Probe laser’s frequency detuning

We can tune the frequency ωp of the probe laser (Newport, Velocity TLB-6728) by sending a DC
voltage Vtlb to one of its internal piezo electric transducers, that changes the position of one of
the mirrors inside the laser’s head. The laser’s controller accepts DC voltages between −3 V and
3 V. To measure the voltage to frequency detuning conversion, we proceed as follows. We scan
the cavity length by sending a ramp waveform to the SM fiber and send the light from both the
probe and lock laser, and look at the cavity transmission. We observe a time trace similar to the
one in Figure B.3a, where we can clearly identify the lock laser’s and probe laser’s transmission
peak. Then, we sweep the DC voltage Vtlb N -times with voltages between −3 V and 3 V. The DC
voltage sent to the TLB laser is generated using a Stahl-Electronics BS14 voltage source. At each
voltage we record a time trace. During the data processing, we transform the time axis of the
scope traces to frequency by using the procedure described in Appendix B.1. Then, we use the
frequency of the lock laser as reference, which is fixed during the measurement, and measure the
shift in frequency of the probe laser∆ as a function of Vtlb with respect to its value when Vtlb = 0V,
∆(Vtlb) = ωp(Vtlb)−ωp(0). Figure B.6 shows the results of the measurement. The frequency de-
pends linearly on the DC voltage. We fit a linear regression yielding a voltage to frequency conver-
sion factor of −275(20) MHz/V. The data deviates slightly from the linear trend for voltages below
−2.8 V, but we always measure with voltages between −2.5 V and 2.5 V. This calibration is used to
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Figure B.6: Probe laser’s voltage to frequency detuning conversion. The data (blue dots) follow a linear
trend. The orange line is a linear fit which yields the voltage to frequency detuning conversion factor of
−275(20) MHz/V.

convert the DC voltage into probe frequency detuning ∆, in other words, to generate the x-axis
of the graphs in the dynamical backaction measurements (see Fig. 5.9 for example), without the
offset from the cavity resonance ωcav.
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