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A B S T R A C T

We investigate various spatiotemporal phenomena during the oscil-
latory electrodissolution of silicon in a fluoride-containing electrolyte
using electrochemical measurements, combined with a spatially re-
solved ellipsometric imaging set-up.

The work is divided into two parts. First we examine the behaviour
of p-doped working electrodes, which display spatially homogenous
oscillations. We show that there are two distinct types of periodic
oscillations which are separated in the parameter plane by a region of
more complex oscillations. Within the region of complex oscillations,
there exist two bistable branches, each connected to one of the two limit
cycles, and each following a distinct path towards chaos. We suggested
that the complex oscillations arise due to an intrinsic coupling of the
two limit cycles via a shared variable and identified the magnitude of
the resistance, inserted into the external circuit, to play an important
role for this coupling.

In the second part we turn our focus towards n-doped working
electrodes for which spatial symmetry breaking can be observed. We
present the different spatiotemporal patterns typically found in the
system and connect them with the respective limit cycle to which they
belong. We subsequently investigate the role of the two main coupling
parameters, the external resistance and the illumination intensity,
on the spatial coherence and temporal complexity of dynamics. We
confirm once more, that, apart from the homogenising linear global
coupling, the external resistor causes an intrinsic coupling between
the two limit cycles, resulting in complex and even chaotic temporal
behaviour. We also demonstrate that the reduction of the illumination
intensity causes pattern formation and decreases the spatial coherence
of the dynamics.

iv



A C K N O W L E D G M E N T S

I want to thank Prof. Dr. Katharina Krischer for her supervision and
for giving me the opportunity to write my dissertation in her group.

I also want to thank Dr. Konrad Schönleber for his mentoring and
for always being available to give helpful advice.

In particular, I want to express my gratitude to Dr. Maximilian
Patzauer for our many fruitful discussions on our shared experimental
setup and our respective research. But also for the non-work related
discussions and activities which have always been a lot of fun.

Special thanks also go to Dr. Sindre Haugland for the many interest-
ing discussions and for his patience in providing me with insights into
his research. This enabled us to discover parallels between my meas-
urements and his theoretical work, which allowed me to contribute
some experimental findings to his impressive research.

I also want to thank Dr. Felix Kemeth for his support and patience
in helping me in the beginning of my programming efforts.

I want to express my gratitude to Yukiteru Murakami for his help
with the calibration of the illumination setup as part of his master’s
thesis, which I supervised during this doctoral project.

My thanks also goes to Juliane Wiehl for her many interesting
work-related and unrelated consultations.

I would like to thank Dr. Malo Duportal, for sharing his interesting
insights into the physical properties of oxides. His inspiring motivation
to solve scientific riddles helped to uncover some of the hitherto
unknown physiochemical properties in our system, which might be of
great help for future projects on this topic. Apart from that it was a
lot of fun to share the office with him.

I also want to thank Siegfried Schreier for his help in setting up a
"Laser box" to increase the safety of my experimental setup.

In addition want to thank Seungjae Lee for sharing his office with
me and always taking his time to patiently discuss theoretical concepts.

The balance between fruitful collaboration and and off-topic but
welcome distractions was to a large part the spirit of this group which
made the work here especially enjoyable. Therefore I want to thank
the entire group.

In addition I want to thank Denice for her support and patience,
especially during the last part of this project. And finally I want to
thank my Mother for always supporting me in my decisions and
always being there for me. It was especially the support from Denice
and my Mother which helped me to pursue my goals.

v



C O N T E N T S

1 Emergence of Complexity 1

2 The Experimental Set-up 6

2.1 Electrochemical set-up 6

2.1.1 Electrical Configuration 6

2.1.2 Working Electrode 7

2.1.3 Cell 7

2.1.4 Electrolyte 8

2.2 Ellipsometric imaging 8

2.3 Data Treatment 10

2.3.1 Correction and Smoothing of Ellipsometric Im-
ages 10

2.3.2 Data Analysis 10

2.4 Illumination 11

2.4.1 Illumination Set-up 11

2.4.2 Spatial Light Modulator 12

3 The Oscillatory Electrodissolution of p-doped Silicon 17

3.1 Revisiting the System 18

3.1.1 The Steady State without Coupling 18

3.1.2 Oscillations and Bistability 19

3.1.3 Linear Global Coupling in Reaction Diffusion
Systems 22

3.2 The U-R Parameterplane of p-doped Silicon 23

3.3 On the Rise and Fall of the Low Amplitude Oscilla-
tions 26

3.4 On the High Amplitude Route to Chaos 33

3.5 Bichaoticity, a bistability of complex oscillations 35

3.6 Conclusion 42

4 The Oscillatory Electrodissolution of n-doped Silicon 43

4.1 Revisiting the System 44

4.2 The different spatiotemporal patterns 51

4.2.1 LAOs and their patterns 52

4.2.2 HAOs and their Patterns 55

4.2.3 The Mixed States 65

4.3 The Patterns in Parameterspace 74

4.3.1 The Coupling Types and Spatial Complexity 76

4.3.2 The Effect of the External Resistor on the Cur-
rent 81

4.4 Discussion 88

4.4.1 The Coupling Parameters 88

4.4.2 Type II HAPAs and LAPAs 89

4.5 Conclusion 90

5 Summary and Outlook 93

vi



contents vii

Bibliography 97



1
E M E R G E N C E O F C O M P L E X I T Y

Mankind has always tried to predict or even control the outcome of
certain events. In the ancient Greece it were thinkers and philosophers
like Thales of Miletus or Pythagoras of Samos who tried to foresee the
movement of the stars and laid the foundation of mathematics and
astronomy. But a good explanation for the movement of an object and
the mathematical tools to describe its trajectory were missing until
Newton set a milestone for the research on dynamics in the middle of
the 17th century. He invented differential equations and derived his
laws of motion and gravitation which allowed him to explain Kepler’s
laws of planetary motion and especially solving the two body problem
[62, 92, 100] .

This was a huge success and, one thought, one had the mathematical
tools and theoretical framework to find the solutions for ever more
complex problems. But unfortunately, as it turned out, larger systems
often display a complexity which cannot be described by a theory
which relies on linear superposition. If we stay at the description of
planetary motion for example, just adding a third body to the two
body system, hence considering the three body problem, turned out
to be impossible to be solved analytically [92]. The three body system
represents nicely the majority of systems found in nature, as it shows
nonlinear effects which make it impossible to find analytical solutions
for the trajectories of their variables.

It was Poincaré who demonstrated at the end of the 19th century
that, in order to describe this kind of systems, one needs to find the
answer to different questions than usually asked. Instead of asking
for a solution of the system at all times he would rather ask where
the system would end up after infinite time has passed [92]. More
specifically he developed a geometrical approach which allowed him
to figure out if a solution of the system is stable or not, i.e. whether the
trajectory of a system converges towards the solution or diverges. This
helped him to find answers to important questions of the three body
problem and laid the foundation of the studies of nonlinear dynamics
[21, 73].

The nonlinear dynamics approach to study a system is often to find
its long time behaviour. One starts to search for steady states in a
system, which are so-called fixed points in phase space. The phase
space is spanned by all the variables which are essential to describe the
dynamics of the system and is thus the space in which any trajectory
of the system is embedded. However, the long time behaviour of a
system is not necessary a steady state, hence a fixed point in the phase

1



emergence of complexity 2

space, but can be of different dimension and geometrical shape. The
long time behaviour of a system for a given set of parameters lives on
an invariant subset of the phase space which is called attractor, as a
trajectory would converge towards it. Hence an attractor is stable, in
contrast to repellers which are unstable, and thus a trajectory would
diverge from them. Among others, the long time behaviour of a system
can be periodic, which is displayed as a so called limit cycle in phase
space [72, 92]. If there is more than one incommensurable frequency
there are quasiperiodic attractors which live on the surface of tori, but
also strange attractors exist, which show locally exponential separation
of close by trajectories and thus render the motion chaotic.

Often in nonlinear systems we have the case that for a given set of
parameters there is not only one stable state, i.e. one attractor on which
the system settles but two or more attractors, hence the system is bi-
or multi-stable. On which attractor the system will end up, strongly
depends on the initial conditions [71]. Such bi- or multistabilities can
have all kinds of different configurations. The simplest one is the
coexistence of two or more stable fixed points, i.e. steady states, which
can be found in systems described by evolution equations with three
or more roots [92]. Another one is the bistability between a steady
state and an oscillatory state as can be found in the dynamics of a
Josephson junction [52]. Among others there is also the possibility of
two oscillatory states being stable for the same parameters. A system
with two coexistent stable limit cycles is referred to as birhythmic
[28] and in the case of two coexisting strange attractors one speaks of
bichaoticity [87].

Birhythmicity and multi-rhythmicity has caught a lot of attention
and has been proven to be important in many biological systems [38].
It has most commonly been reported in theoretical studies, such as
in studies on the electrical activity of periodically stimulated cardiac
cells [40, 69, 104] or on nerve cells, which are regulated through
mutual inhibition [15, 19, 99], but also experimental studies have
reported birhythmic behaviour for example on the light-entrainable
and methamphetamin-sensitive circadian oscillators [68].

But birhythmicity is not limited to biological systems. The first time
it was reported in 1976, when it was discussed in a model for a con-
tinuous stirred tank reactor with consecutive exothermic reactions [27].
The first experimental finding of birhythmicity has been reported in a
Q-switched gas Laser in 1982 [6]. The first finding in a experimental
chemical system has been in a system of two chemical oscillators
which are coupled through a common species [4, 5]. Another example
is the exothermic oxidation of hydrogen in a continuously stirred tank
reactor [14, 43]. Other birhythmic experimental systems include elec-
tronic oscillators [16], the Belousov–Zhabotinsky reaction in a stirred
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flow reactor, [48, 54, 77] and acetaldehyde oxidation in a continuously
stirred tank reactor [39].

In theoretical studies of normal form type equations birhythmicity
has been found in studies on septic van der Pol oscillators [8, 103]
and model equations describing an energy harvesting system [17].
Models of two-frequency oscillators were demonstrated to support
chimera states [76]. The same is true for bistable phase models [105].
In spatially extended systems, birhythmicity has so far only been
investigated in theoretical works. Stich et al. [89, 90] investigated a
reaction-diffusion system close to a supercritical pitchfork-Hopf bi-
furcation near the onset of birhythmicity. They constructed this system
by coupling the complex Ginzburg-Landau equation (CGLE), which
can be seen as the normal form for an oscillatory reaction-diffusion
system close to the Hopf bifurcation [34], to an equation describing
an imperfect pitchfork bifurcation. They found self-organised target
patterns to be a generic kind of spatiotemporal patterns in the pres-
ence of birhythmicity. Shortly after, they presented a more detailed
investigation of the emergence of wave sinks and sources in the CGLE
with a controlled local shift in the oscillation frequency [91]. Later
it was shown that a birhythmic medium can also exhibit turbulent
dynamics and even chimera states for certain parameters [13, 35].

The experimental system in the centre of this Thesis, i.e. the oscillatory
electrodissolution of silicon (Si), is a system exhibiting birhythmicity
and spatiotemporal dynamics. It constitutes a reaction-diffusion sys-
tem and thus, the theoretical studies of reaction-diffusions systems
modelled by the CGLE also have a certain significance for our work.
The electrodissolution of silicon electrodes in a fluoride containing
electrolyte can be split in two processes. In a first step Si is electro-
chemically oxidised in one of the following two processes [55, 96,
97].

Si + 2H2O + γh+ −→ Si(OH)2 + 2H+ + (2− γ)e− (1.1)

Si(OH)2 −→ SiO2 + H2

or

Si + 4H2O + γh+ −→ Si(OH)4 + 4H+ + (4− γ)e− (1.2)

Si(OH)4 −→ SiO2 + 2H2O

where γ is the number of valence band holes involved in the electro-
chemical oxidation step. Eq.1.1 presents the divalent case and Eq.1.2
presents the tetravalent case. Note that the respective second steps of
Eq.1.1 and 1.2 are purely chemical.

Subsequently, the formed SiO2 is etched by a fluoride species in a
purely chemical reaction according to one of the following equations
[22].
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SiO2 + 6HF −→ SiF2−
6 + 2H2O + 2H+ (1.3)

SiO2 + 3HF−
2 + H+ −→ SiF2−

6 + 2H2O (1.4)

SiO2 + 2HF + 2HF−
2 −→ SiF2−

6 + 2H2O (1.5)

The etch rate is mainly determined by two parameters. The primary
fluoride species present at the Si surface and its concentration [44].
The former is controlled by the pH value [88] which we control via the
concentration of sulfuric acid and the latter depends on the concentra-
tion of NH4F in the electrolyte. According to [22] in our electrolyte
the etching is dominated by Eq.1.3. The formation of the oxide and
its etching are two competing processes which lead to the oscilla-
tions. The oscillation mechanism itself, however is not understood.
Our experiment combines electrochemical dissolution measurements
on a silicon working electrode with spatiotemporally resolved in-situ
ellipsometric measurements, which can detect relative changes of the
optical pathway through the thin oxide layer. The oxide layer is formed
at the surface of the working electrode [57]. The oscillatory character
of the system is known since the late 1950s [96] and has since then
been the subject to various investigations [22–26, 31, 32, 53, 74, 109].
The oscillatory Si system shows a multitude of dynamical phenomena
reaching from simple periodic oscillations to quasiperiodic and chaotic
oscillations [26, 63, 83, 85]. It displays bi- and multistabilities which
even include birhythmicity [102]. With the ellipsometric set-up our
group could even show that the ellipsometric signal of illuminated
n-doped silicon working electrodes exhibits spatiotemporal symmetry
breaking, i.e. spatiotemporal pattern formation [56]. These spatiotem-
poral patterns include spatial clustering, turbulence and even chimera
states [56, 57, 86].

As it was found that the oscillations in the silicon system emerge
from a Hopf bifurcation [58, 85] and as the CGLE can be viewed as the
normal form of a reaction-diffusion system close to a Hopf bifurcation,
our group did numerical experiments on a modified version of the
CGLE, the MCGLE, and could reproduce the experimentally observed
antiphase and subharmonic cluster states as well as turbulence and
even chimera states [80, 81]. The modification accounted for a peculiar
phenomenon observed in the experiments. The global variables exhibit
periodic oscillations, despite the irregular spatiotemporal dynamics
displayed on the working electrode. The modification of the CGLE
consisted of a global coupling term and showed that global nonlinear
coupling gives rise to a new route to chimera states [80, 81].

These findings substantiate that the silicon system is not only inter-
esting as to find the origin of the oscillations but it has also proven
to be a great experimental model system for the complex behaviour
of spatially extended oscillatory media. Up to the beginning of this
doctoral thesis project our group has reported a large variety of inter-
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esting dynamical phenomena which have been each for itself carefully
investigated. What has been missing is an overview of how these
dynamics are related to one another and how they are related to the
external coupling parameters of our experiment. This thesis aims to,
at least partly, give an answer to these questions.

In this thesis we will show that a multitude of the different dynam-
ical phenomena found during the electrodissolution of silicon are a
result of an inherent birhythmicity in the system. We will show that
depending on the kind and strength of the applied external coupling,
also the two oscillation mechanisms in the system may be coupled in
different ways. The couplings are a linear global coupling introduced
by an external resistor and in the case of n-doped silicon, a nonlinear
nonlocal coupling through the motion of valence band holes, intro-
duced by the illumination. The coupling between the two oscillation
mechanisms can lead to all kinds of deviations from simple periodic
homogeneous oscillations, including period doubling, motion on a
2-torus, chaotic oscillations as well as spatial antiphase clustering or
the spatial coexistence of the two oscillators in a frequency locked
configuration. It is to the best of our knowledge the first experimental
investigation of a spatially extended experimental system displaying
birhythmicity.

The thesis is structured as follows:
In chapter 2 we introduce the experimental system. We describe the

electrochemical set-up followed by a description of the ellipsometric
imaging set-up and the treatment of the data collected. Finally, a
detailed description of the set-up and the handling of the illumination
is given which is realised by an liquid crystal on silicon spatial light
modulator, implemented as part of this thesis project.

Chapter 3 deals with the dynamics of p-doped silicon which is
purely homogeneous. We investigate the emergence of non-periodic
homogenous oscillations, which we will relate to the inherent bi-
rhythmicity in the system, more specifically the coupling of the two
oscillation mechanisms to each other.

In chapter 4 we investigate the electrodissolution of n-doped silicon,
where the oscillations in the global current are accompanied by spatial
pattern formation. Here, we focus on the impact of birhythmicity on
the pattern formation and the role of the two coupling parameters, i.e.
magnitude of the external resistance of the external resistor and the
illumination intensity.

In chapter 5 we summarise the results, draw conclusions and give
an outlook.



2
T H E E X P E R I M E N TA L S E T- U P

This thesis investigates the electrodissolution of silicon in a fluoride
containing electrolyte. We especially focus on the effect of different
types of coupling on the dynamics of the current and the optical path-
way through the silicon-oxide layer, which is formed at the surface
of a silicon working electrode (WE) under anodic potentials. There-
fore an electrochemical set-up in combination with an ellipsometric
imaging set-up is employed and, for the case of measurements with
n-doped Si, complimented with an illumination system. Note that
the electrochemical cell and the ellipsommetric imaging set-up was
implemented by Iljana Miethe [56, 57]. Small modifications of the
set-up were later performed by Konrad Schönleber [85], Andreas
Heinrich [41], Elmar Miterreiter [59] and Maximilian Patzauer [64].
Some of the data treatment in this thesis was done using Matlab code
code written by Konrad Schönleber in combination with a matlab gui
created by Carla Zensen [107]. An illumination set-up which allows
for controlled spatially heterogeneous illumination by employing a
spatial light modulator (SLM) was implemented in the framework
of this thesis. In this chapter, the different parts of the experiment
are described in detail. First we start with the electrochemical set-up,
which includes the electrode preparation, the electrochemical cell and
the electrolyte. We continue by an introduction of the ellipsometric
imaging system followed by a description of the data recording hard-
ware and data treatment. Finally, we explain the illumination set-up
and its operation.

2.1 electrochemical set-up

In this section we will describe the electrochemical set-up in more
detail. We start with the electrical configuration followed by a descrip-
tion of the working electrode preparation and the custom made three
electrode electrochemical cell and finally the electrolyte.

2.1.1 Electrical Configuration

For the measurements with p-doped WEs we mainly used a FHI-2740

potentiostat (electronic laboratory of the Fritz- Haber-Institut, Berlin,
Germany) to control the voltage between working electrode WE and
reference electrode (REF). Later, we switched to a Biologic SP-300 po-
tentiostat with which mainly experiments with n-doped silicon were
performed. To stabilise the oscillations, often an external electrical
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2.1 electrochemical set-up 7

resistor in series with the WE needs to be introduced between poten-
tiostat and the WE. As mentioned above, we also want to investigate
the effect of different types of couplings on the dynamics of the sys-
tem. The resistor introduces one of these couplings as it introduces
a potential drop, which is proportional to the global current, that, in
turn, results in an effective electrode potential Uel according to

Uel = Uapp − RextAj (2.1)

where Uapp is the applied potential, Rext the external resistance, A
the active WE area and j the current density. We use a variable resistor,
which can be adjusted manually.

2.1.2 Working Electrode

As working electrodes (WE) we use (111) single crystal silicon samples
with a polished surface. We use either n-doped or p-doped silicon
with a resistivity of 1-10Ωcm or 5-25Ωcm, respectively. A back contact
is realised by evaporating 200 nm of aluminium onto the unpolished
side. Subsequently the back contact is thermally annealed to assure
an ohmic contact. For the p-doped wafer this is done by baking the
wafer at 400

◦C and 5 · 10−5 bar. The n-doped waver is baked at 200
◦C

and 1 atm. Furthermore, to remove any organic residue on the active
electrode surface and to ensure a well defined initial oxide layer we
plasma oxidise the electrodes.
For the experiment, the working electrode is placed on a custom
made polytetrafluorethylen (PTFE) sample holder which allows it to
electrically contact the WE from the back with a wire and conductive
silver paste. We seal the sample with red silicone rubber (Scrintex
901, Ralicks GmbH), letting an area of 15-25 mm2 uncovered as active
electrode area. After the silicone has dried, the WE is cleaned by first
rinsing it with Acetone (Merck, p.a.) and subsequently immersing
it first in acetone for 10 min, followed by methanol (5 min), ethanol
(5 min) and finally ultra pure water (18.2 MΩcm) (5 min). All the
organic cleaning solvents used are AnalaR NORMAPUR GRADE
(VWR Chemicals). All glassware is cleaned by rinsing it thoroughly
with ultra pure water.

2.1.3 Cell

An on top sketch of the custom made electrochemical cell is depicted
in Fig.2.1. It is constructed as cylinder, with the WE placed in its centre,
facing a sapphire window. The window allows for an illumination of
the WE, which is needed in the case of n-doped silicon. The counter
electrode (CE) is a circular shaped platinum (99.999%, Chempur) wire
placed between the window and the working electrode. The circular
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Gas inlet

Gas on top

Gas outlet WE

70°

REF

CE

Window Window

Window

Figure 2.1: On top sketch of the cell configuration

shape of the CE ensures a homogeneous electric field at the WE and
makes homogeneous illumination of the WE through the window
possible. The two windows on the side are for the light beam of the
ellipsometric imaging set-up. They are placed such that the light has
an incident angle of roughly 70

◦ onto the optical axis of the WE. The
reference electrode (REF) is placed slightly behind the WE as depicted
in Fig.2.1.

2.1.4 Electrolyte

If not stated otherwise, we use 500 ml of an aqueous electrolyte contain-
ing 142 mM sulphuric acid (H2SO4) and 60 mM ammonium fluoride
(NH4F). To diminish oxygen in the electrolyte and ensure reprodu-
cible initial conditions the electrolyte is purged with argon 5.0 through
a glas frit. For the experiment, the gas flow through the electrolyte
and the glas frit is removed and replaced by a gas inlet which keeps
an argon atmosphere on top of the electrolyte to avoid diffusion of
oxygen into the electrolyte. All the chemicals used for preparing the
electrolyte are Suprapur grade (Merck)

2.2 ellipsometric imaging

The electrochemical measurements are combined with an ellipsomet-
rical imaging set-up to detect inhomogeneities and changes of the
optical path length through the electrolyte|silicon oxide|silicon inter-
face at the WE surface. These changes are in part due to a changing
silicon oxide layer thickness, but we also detect changes in the refract-
ive index. However, in the framework of this thesis we are especially
interested in the dynamical behaviour of the system, hence we inter-
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pret the ellipsometric signal as some representative dynamical variable
rather than as specific physical property.

Fig.2.2 depicts the ellipsometric imaging set-up. As light source
we use a LED (Linos, HILED, 470 nm). Its emited light first passes a
collimator lens followed by a Glan Thompson Prism after which it is
linearly polarised. Subsequently, it passes a λ/4-plate resulting in a
elliptical polarised beam as the phase of the p-polarised gets shifted
by Π/2 with respect to the s-polarised component. As the elliptically
polarised light traverses the transparent SiO2 film, the ratio of the p-
and the s-polarised component changes according to the optical path
length through the film. To maximise the contrast, the incident angle
between the light beam and the WE was chosen to be 70

◦ which is
close to the Brewster angle of water and silicon [56]. Note that the WE
surface is photo sensitive and especially in the case of n-doped silicon,
long exposures to the LED light without performing measurements
should be avoided as it changes the WE surface and thus the initial
conditions.

The LED light is reflected at the surface of the WE and consecutively
passes an imaging lens. The imaging lens maps the signal onto the
detector of the CCD camera (JAI CV-A50). Between the imaging lens
and the detector, the light passes a Glan Thompson Prism which acts as
analyser. The analyser gives an intensity signal, which is proportional
to the projection of the ratio of the p- and s-polarised component of
the beam onto its polarisation plane. The camera signal is digitised
using a frame grabber card (PCI-1405, National Instruments).

The oscillation amplitude is sufficiently small compared the total
value of the signal, such that a linear correlation between optical path-
way change and signal response can be assumed during oscillations.

Figure 2.2: On top sketch of the ellipsometric imaging set-up

The frame rate of the CCD camera was 30 Hz. During the measure-
ments the spatial average of the ellipsometric signal ξ was calculated
from the single frames and sampled 10 times per second. The spa-
tially resolved signal was averaged over 30 frames and saved with a
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rate of 1 Hz. Throughout this thesis, ξ is given as percentage of an
saturation threshold up to which the the CCD responds linearly to the
ellipsometric signal. The spatially resolved ellipsometric data displays
spatial heterogeneities of the ellipsometric signal in arbitrary units.

2.3 data treatment

2.3.1 Correction and Smoothing of Ellipsometric Images

For the spatially resolved ellipsometric data we face the problem
that there are slight intensity variations across the WE, which come
from the light source or might be introduced in the beam path. In
addition to this, the contrast correlates positively with the absolute
intensity of the system, which means that darker spots will show
smaller amplitudes than brighter spots in an actual homogenous
process at the WE. Therefore we corrected the data as follows:

ξ(⃗x, t) =

(
ξraw(⃗x, t) −Am(ξraw(⃗x, t))

)
ξref(⃗x, t0)

(2.2)

where ξ(⃗x, t) is the corrected signal at position x⃗ and time t and
ξraw(⃗x, t) is the signal at the respective position and time. Am(ξraw(⃗x, t))
is the moving temporal average of the raw signal at x⃗ and t and
ξref(⃗x, t0) is a reference frame which we usually took at the OCP
in the beginning of the measurement day. As moving average we
used a Savitzky-Golay filter with a second degree polynomial and a
1001 point window. The subtraction of the moving average results in
an oscillation around zero and the division by the reference frame
enhances the signal at dark spots and reduces the signal at the bright
spot which results in an overall more homogeneous image.

In addition to the above correction of the spatially resolved ellipso-
metric images, we also applied a spatial smoothing by averaging over
a region of 5x5 pixels.

2.3.2 Data Analysis

For some considerations it is necessary to define a local phase and
local amplitude of the ellipsometric signal. Therefore, we took the
analytical signal Q(⃗x, t) of the local ellipsometric signal ξ(⃗x, t), which
is defined as follows

Q(⃗x, t) = ξ(⃗x, t) − iH(ξ(⃗x, t)) (2.3)

where H(ξ(⃗x, t)) is the Hilbert transform of ξ(⃗x, t). Now the phase
Φ(⃗x, t) is defined as the angle between the positive real axis and Q(⃗x, t)
and the amplitude A(⃗x, t) is the absolute value of the analytical signal
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[33, 70]. If necessary, we smoothed the signal in time direction by
applying a Savitzky-Golay filter with a second degree polynomial and
a 15 point window.

2.4 illumination

Valence band holes act as main charge carrier in the oxidation steps.
In particular, the first oxidation step has to involve the capture of
a valence band hole (as opposed to the injection of an electron into
the conduction band). Consequently, in the case of n-doped Si the
WE must be adequately illuminated to generate enough holes for the
oxidation steps. As light source we use a helium-neon laser (HeNe
Laser 632.8 nm, 15 mW, Polarized, Thorlabs). Originally, the illumina-
tion was set up such that it was approximately homogeneous over the
WE surface and its intensity could be controlled by a linear polariser
according to Malu’s law [64]. Part of this Thesis was to implement an
illumination set-up which allows for finely resolved spatially hetero-
geneous illumination patterns. This is realised with a liquid crystal on
silicon spatial light modulator (LCOS-SLM) (LCOS-SLM X10468-06,
792 600 pixels, Hamamatsu Photonics). The experimental details of
the implementation of the SLM as well as the optical set-up will be
discussed in the following.

2.4.1 Illumination Set-up

The illumination set-up is depicted in Fig.2.3. As light source we
use a helium-neon laser (HeNe Laser 632.8 nm, 15 mW, Polarized,
Thorlabs). The beam first passes a gray filter, which is used for a coarse
adjustment of the intensity range, followed by a Glan-Thompson prism
to assure the alignment between the polarisation of the laser light and
the orientation of the liquid crystals in the SLM. Subsequently the
beam is expanded by a factor of ten such that it covers the whole active
SLM area. If the SLM is operated in the hologram mode, a lens is
needed to map the image onto the image plane. In this case we use the
combination of a Fresnel lens, digitally loaded onto the SLM and two
physical lenses as depicted in Fig.2.3 to separate the focal point of the
light reflected at the inactive part of the SLM from the one reflected at
the active part. By placing a pin directly into the focal point of the first
physical lens, the light from the inactive part of the SLM, the so-called
zeroth order beam, can be filtered out of the beam path [108]. In that
way only the part of the beam which is actively controlled by the SLM
passes the lens system and a clear image is mapped onto the WE. The
size of the image as well as the position of the image plane depends
on the one hand on the focal lengths of the two physical lenses as well
as the focal length of the virtual Fresnel lens loaded onto the SLM. On
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the other hand it depends on the distances between the lenses and can
be calculated using optical transfer matrices as follows:

D3L3D2L2D1L1

x1

θ1

 =

xim

θim

 (2.4)

Di =

1 di

0 1

 and Li =

 1 0

−1/fi 1

 (2.5)

with the optical transfer matrix of space Di which relates to a distance
di between two optical elements and the transfer matrix Li which
corresponds to a thin lens with a focal length of fi [37]. x1 is the initial
distance between the optical axis of the lens and the ray upon entering
the first lens and θ1 is the initial angle between the ray and the optical
axis. xim is the distance between the ray and the centre in the image
plane and θim is the angle between the ray and the optical axis in
the image plane. Note that this set-up can be arbitrarily extended by
optical elements. However, for each new element which is added at
the end of the beam path, the respective optical transfer matrix needs
to be multiplied from the left to Eq.2.4. Note also, for the calculation,
the focal length f1 of the first lens, i.e. the Fresnel lens loaded onto
the SLM is multiplied by -1 as the beam is reflected at the SLM. In
addition the incident angle θ1 was assumed to be zero. This is justified
as we only searched for the rough values of f1, d1, d2 and d3 which
satisfied some experimental boundaries. The fine adjustment of these
parameters was then done experimentally.

Between the last lens and the WE, a 7:3 beam splitter cube is placed,
such that 30% of the illumination is send to another 7:3 beam split-
ter cube which deflects the weaker part of the beam onto a CMOS
(DCC3260M, Thorlabs) camera and the stronger one onto a power
meter (PM16-120, 400-1100 nm, Thorlabs). Note that the optical path
lengths between the lens and CMOS and the lens and the power meter
is the same as the one between lens and WE, including the cell win-
dows and the electrolyte. We use the power meter and the camera to
characterise the illumination pattern and intensity on the electrode.
Experimentally we found that the intensity which reaches the WE is
3.21 times as high as the intensity which reaches the measurement
diode [60].

2.4.2 Spatial Light Modulator

To investigate the influence of the charge carrier concentration on the
dynamics during the electrodissolution of n-doped Si, it proved helpful
to be able to control the intensity and shape of the illumination. This
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Figure 2.3: On top sketch of the illumination set-up

is realised with a LCOS-SLM. As the name implies the device consists
of a two-dimensional array of liquid crystal cells on a reflective silicon
substrate. The anisotropic optical properties of the liquid crystals can
be exploited by changing their orientation upon a change of the electric
field in the cells. A change of the orientation of the crystals introduces
a shift in the phase of a coherent light beam passing the crystal layer.
The SLM used in this thesis allows for a pixel wise shift of the phase
between 0 and 2π with an 8-bit resolution.

The SLM comes with a software that has a build in iterative fourier
transform algorithm (IFTA) [1] which creates holograms of any grey
scale input image. This hologram is loaded onto the SLM such that,
as the phase of the coherent light beam is shifted upon reflection, the
original input image is created at an infinite distance from the SLM.
An imaging lens introduced behind the SLM maps the original image
onto the image plane of the lens.

There are some important points that need to be paid attention to
when operating the SLM. One is that the SLM does not really control
the illumination intensity but rather the contrast between different
pixels. If we increase the intensity at a certain position, the intensity
elsewhere is decreased. The overall illumination intensity in the image
plane stays approximately constant for different input images. As the
image size in our setup is much larger than the WE, we create a certain
illumination pattern with a well defined local illumination intensity
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by creating the desired contrast pattern on the WE area and ’dumping’
excess intensity on pixels at the edge of the image, which will not
contribute to the WE illumination. If we increase the illumination
intensity on the WE, the illumination in the ’dump’ area becomes
darker. If we just want to adjust the intensity of an homogeneous area,
the size of the dump area will control the intensity resolution of the
grey values in the illuminated area. If we want to locally increase the
illumination intensity on the WE but hold the remaining WE illumin-
ated constant at the initial value, we need an area of the same size as
the one changed on the WE which is in turn darkened in the ’dump’
area at the edge of the illumination intensity.

Figure 2.4: Examples of input images and their respective output images.
a) is the input image for an homogeneously illuminated WE
and b) is the output of a) measured by the CMOS and plotted
with a logarithmic intensity scale. c) is the input image for an
heterogeneously illuminated WE, where the region marked as B
is equally illuminated as the one in a) and A is higher illuminated.
D1 and D2 mark two regions in the dump area. d) depicts the
output image of c), plotted with a logarithmic intensity scale. Note
that the output images are too large for the CMOS to capture the
WE illumination and the dump area together.

Fig.2.4 depicts the desired input image and the output image recor-
ded with the CMOS of two images created for a measurement series
in which the intensity of 1/3 of the illuminated area is increased while
the remaining 2/3 of the illuminated area are kept constant. Fig.2.4 a)
and b) belong to an image which illuminates the WE homogeneously.
Fig.2.4 a) is the desired input image which was created as 8bit grey
scale bitmap image. One can see the grey area in the middle, which is
intended to illuminate the WE. At the lower edge one can see a bright
bar which serves as the dump area. Usually, for the intensity control
of a homogeneously illuminated area one does not need to split the
’dump’ area, however in this case, as we want to create heterogeneous
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patterns in the measurement series we need the additional degree of
freedom. In Fig.2.4 b) one can see the output image recorded by the
CMOS in the image plane of the lens system. Note that we applied
a logarithmic scaling to the grey values of the image to enhance the
contrast between dark areas. Note that the output image is larger than
the CMOS detector and thus the bright lower edge of the input imager
is cut off.

In Fig.2.4 c) and d) we see the input image and the resulting output
image, of an illumination pattern where the rightmost 1/3 of the
illuminated area is brighter than the remaining part. In Fig.2.4 d) we
can see that the bottom of the ’dump’ area is much darker than in a).
For a better understanding of the intensity control we mark the 1/3 of
the illuminated region where the intensity is increased as A, the 2/3

which are kept at a constant intensity as B and the two parts of the
’dump’ area as D1 and D2. For the areas F of the different regions the
following holds:

FB = FD1
(2.6)

FA = FD2
(2.7)

While the grey values G of the regions A and B can be chosen freely,
the respective grey values in the ’dump’ have to be set as follows:

GD1
= 255 (2.8)

GD2
= 255−GA (2.9)

To keep the remaining 2/3 constant we set the grey value in D2 to
GD2

by subtracting GA from 255. This works with any shape as long
as the respective areas are of the same size. For a coarse adjustment of
the range of the intensity we use grey filters between the laser and the
Glan-Thompson prism as depicted in Fig.2.3.

We chose the active WE area such that its illumination fits completely
onto the active detector area of the power meter, and, correspondingly
calculate the illumination density on the WE iWE

ill is given by:

iWE
ill = 3.21 ·

IDiode
ill
Fill

, (2.10)

where IDiode
ill is the overall intensity measured by the diode and Fill

is the area of the illuminated rectangle in the image plane of the
illumination set-up. The factor 3.21 was determined experimentally
and translates the intensity measured on the diode to the intensity on
the WE. Fill is measured with the CMOS as we know the area of each
pixel is 34.3µm2. We use the built-in ruler function in the Thorlabs
software of the CMOS to measure the number of pixels along the
length and the height of the illuminated area and multiply this with
the pixel area.
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In the case of a heterogeneous illumination like the one depicted
in Fig.2.4 d) the intensity of the differently illuminated parts is de-
termined as follows. As a reference for the illumination density we
take a homogeneous illumination pattern. We can measure the overall
intensity of the illuminated area with the measurement diode and
we know its area. We also know that the brighter part is 1/3 of the
illuminated area and we assured that the illumination density in B
stays approximately constant. Hence the illumination density in the
bright part on the WE iWE

Ahet
is:

iWE
Ahet

= 3.21 · (IDiode
het −

2

3
· IDiode

hom ) · 3

Fill
, (2.11)

where IDiode
het is the overall intensity of the heterogeneous image

on the measurement diode and IDiode
hom is the overall intensity of the

homogenous image on the measurement diode. Note that the shape
and active areas of the WE vary each measurement day. Hence also
the illuminated area needs to be adjusted for each new WE and thus
the illumination intensities for given grey values also vary each day.
This means that the actual output intensity of an input image has to
be measured again for each measurement day. Hence suitable input
images should be created and chosen after the experiment is set-up
and before the measurement series begins. Note that the WE is photo-
sensitive. Exposure to illumination without an applied voltage should
be avoided as it changes the surface and thus the initial conditions.
In the case of n-doped silicon no voltage should be applied without
sufficient illumination intensity on the WE as this also changes the
surface and thus the initial conditions.



3
T H E O S C I L L AT O RY E L E C T R O D I S S O L U T I O N O F
P - D O P E D S I L I C O N

In this chapter we give an overview over the dynamical behaviour dur-
ing the oscillatory electrodissolution of p-doped silicon. Self-sustained
oscillations during the electrodissolution of silicon in fluoride contain-
ing electrolytes were first reported by Turner in the 1950ies [96]. Since
then, they have been object of intensive research [23, 26, 31, 32, 53,
75, 109]. In our group we investigate the oscillatory behaviour from
a nonlinear dynamics point of view. This means we investigate the
long time behaviour of the dynamics and its dependence on certain
parameters. Following this ansatz, many very interesting dynamical
phenomena have been discovered. In [84] Schönleber identified two
different types of oscillations which can be found in the system, which
he coined low amplitude oscillations (LAOs) and high amplitude
oscillations (HAOs). However, in contrary to what will be discussed
later, he conjectured the HAOs to evolve from the LAOs and share the
same underlying feedback mechanism. In addition to the LAOs and
the HAOs a multitude of more complex and non-periodic oscillations
have been reported [63, 83, 94].

One of the most surprising findings with this set-up, however, was
the possibility of pattern formation during the oscillatory electrodissol-
ution of an illuminated n-doped silicon electrode [57, 58]. Although
the dynamical behaviour of p-doped silicon is in many ways found
to be quite similar to the n-doped case, Miethe et al. showed that for
p-doped silicon the current oscillations are accompanied by spatially
homogeneous oscillations of the ellipsometric signal [58].

The overall aim of this study is to investigate the influence of coup-
ling on the dynamics of the system, especially in relation to the conjec-
tured birhythmicity in the system. Hence, we will in this chapter, lay
special focus on the resistance of the external resistor, as it controls
the magnitude of a linear global coupling and, as we will discuss
later, seems to have an additional effect on the reaction. The case of
p-doped Si WEs give us the opportunity to investigate the influence
of the coupling induced by the external resistor separately from the
nonlinear nonlocal coupling involved in the n-doped case, which will
be discussed in the next chapter. Hence, it is possible to identify which
dynamical features can emerge from the influence of the external
resistor alone. This led to our decision to focus first on the dynam-
ics during the electrodissolution of p-doped silicon, which will be
presented in this chapter.

17
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First, to introduce the system, the already known state of knowledge
is revisited, followed by a detailed characterisation of the different
dynamic regimes and bifurcations between them. Finally, the new
findings are discussed and brought into context with the previous
knowledge in the last part of this chapter.

The results presented in this chapter have partly been published in
[95].

3.1 revisiting the system

In this section a brief introduction to the p-doped silicon system is
given to equip the reader with sufficient insights for the results part.
Therefore we first introduce the steady state behaviour without any
external resistor, followed by a short introduction of the oscillations.

3.1.1 The Steady State without Coupling

Often the first approach in electrochemistry, when studying a new
system, is to look at a cylcic voltammogram (CV), where the applied
voltage is swept between two points at a constant scan rate while the
current response is measured. This provides some information on
which processes and effects are most prominent for certain applied
voltages. For a sufficiently slow scan rate the CV can be assumed to
approximately map the system steady state [64]. This is roughly the
case for the CV depicted in Fig.3.1, where the applied voltage was
scanned between 0.00 V vs. SHE and 8.65 V vs. SHE with a scan rate
of 2 mV/s.

Following the graph from 0 V vs. SHE towards higher voltages, the
current increases quite fast in the beginning, until it reaches a local
maximum at roughly 0.6 V vs. SHE. After this comparable small peak
in the CV, the current rises again for increasing voltage, until it reaches
its maximum of roughly 0.65 mA/cm2 at a voltage of approximately
2 V vs. SHE. After that the current settles on a plateau at roughly 3 V
vs. SHE. The current on this plateau remains approximately constant
up to potentials of about 7 V vs SHE from where it grows with the
potential.
The small first peak is associated with the formation of pores [36,
50], whereas the voltage region after it and to the left side of the
large peak is referred to as the electropolishing region [18, 29]. In this
region the formation of SiO2 is slower than its chemical etching, hence
no passivating oxide layer can form and the current increases with
the applied voltage. As the current reaches its maximum an oxide
layer has formed which passivates the electrode and hence limits the
current. As the oxide thickness increases with potential the current is
further decreased until it reaches the plateau where the current dens-
ity is solely determined by the chemical etch rate of SiO2 and thus
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Figure 3.1: Cyclic voltammogramm of p-doped silicon with a scan rate of
2 mV/s

voltage independent. The voltage region where the current decreases
with increasing potential is henceforth referred to as the negative
differential resistance (NDR) branch. Note that systems with NDR are
notorious for showing interesting dynamical features like bistability
and oscillations [46].
As the current increases again for applied voltages higher than 7 V vs.
SHE, it is believed that morphologic changes in the oxide lead to a
decreased passivating effect for such high voltages [65, 83, 109].

3.1.2 Oscillations and Bistability

The onset of the above described current plateau is also the onset of
the oscillatory behaviour, manifesting itself either in an oscillatory
transient to the steady state, which thus turned into a focus, or in
sustained oscillations [65]. In 2012 Schönleber et al. were the first to
suggest that the system exhibits two different types of oscillations and
coined them low amplitude oscillations (LAOs) and high amplitude
oscillations (HAOs) [84]. Inserting an external resistor into the external
circuit, the stable focus is destabilised at a critical resistance in a Hopf
bifurcation, resulting in stable LAOs [26, 85]. Note that in a certain
voltage region sustained oscillations have also been found without an
external resistor [65]. Fig.3.2 depicts one exemplary time series of each
oscillation type, where Fig.3.2a) shows the LAOs, a rather sinusoidal
type of oscillations and Fig.3.2b) the HAOs which seem to have a more
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relaxational character and in addition a much higher amplitude than
the LAOs. In this chapter we will point out that we belief that they
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Figure 3.2: Time series of current density oscillations with RextA=6 kΩcm2

measured under potentiostatic conditions. a) LAOs at 4.98 V vs.
SHE and b) HAOs at 6.85 V vs. SHE. Figure taken from [95]

arise from two different limit cycles leading to inherent birhythmicity.
In this thesis we will show how this inherent birhythmicity influences
and characterises the oscillatory behaviour of the system.

Whether the system attains one of the two limit cycles or attains a
steady state strongly depends on the initial conditions, for a certain set
of parameters. Patzauer was the first to report a bistability between the
node on the electropolishing branch and oscillations that had so far
not been found at those parameters [63]. This bistability was further
characterised in [94] and is best understood when revisiting which
effect an external resistor in series with the WE has on the system. As
described in Chapter 2, an external resistance Rext between the poten-
tiostat and the WE introduces a linear global coupling which reduces
the effective potential drop Uel at the WE|electrolyte interface for any
increase in current according to 2.1. Or, in other words, it introduces
a linear load line into the CV, with a negative slope proportional to
the resistance of the external resistor. The intersections of this load
line with the system steady state in the absence of the resistor are
the system solutions and the load line’s intersection with the abscissa
gives the parameter, i.e. the applied voltage Uapp, corresponding to
these solutions. To visualise what this means Fig.3.3 depicts a CV
with an applied external resistance of 6 kΩcm2. The forward scan
is coloured black and the backward scan red. Superimposed in grey
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is the CV from Fig.3.1 on which a virtual linear load of 6 kΩcm2 is
added according to 2.1.
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Figure 3.3: Cyclic voltammogramm of p-doped silicon with a scan rate of
1 mV/s and an external resistor of 6kΩcm2 . Black is the for-
ward scan, red is the backward scan. Superimposed in grey, a
CV (2 mV/s) measured without external resistor, with an added
virtual linear load of 6kΩcm2.

Following the black curve from low to high potentials it first rises
almost linearly, until a critical potential marked as sn1 is reached where
the current suddenly drops down and the system exhibits oscillations.
The amplitude of the oscillations increases with increasing applied
potential.
On the way back to lower voltages the red curve follows basically the
same behaviour as in the forward scan, except that at the sn1 point it
stays in the oscillatory regime until the sn2 point where it suddenly
leaves the oscillatory branch and abruptly moves to the non oscillatory
branch where the scan started from.

Note that on the forward scan the current follows the superimposed
grey curve exactly until the sn1 point which also coincides with the
turning point of the superimposed curve. At the sn1 point the grey
curve turns and heads towards smaller voltages and currents, until
it reaches a second turning point which coincides with the sn2 point.
On the lower branch of the grey curve towards higher voltages the
current of the CV under load oscillates around the CV under virtual
load.
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Note that opposed to the subtraction of the linear load from the
applied voltage of a measurement with applied external resistance,
which yields the effective potential drop Uel at the WE, the addition
of a virtual load to the curve does not have any physical meaning.
However, it visualises nicely how the fixed points change their po-
sition with respect to Uapp as an external resistor is inserted. The
solution of the system, i.e. the current response, is shifted towards
higher applied voltages. This effect increases with the current such
that the system is effectively tilted in a way that the electropolishing
branch shifts above the NDR branch, rendering the latter unstable.
Hence the grey curve represents fixed points of the system and also
visualises the unstable NDR branch between the sn1 and sn2 points.
With this in mind it becomes apparent that the sn1 and sn2 points
mark saddle node bifurcations. Note that the focus on the plateau is
destabilised and a limit cycle is created by the applied external res-
istor. In the potential range where autonomous oscillations exist also
without external resistor, an external resistor increases the oscillation
amplitude drastically. Hence the scan does not follow the plateau of
the superimposed grey curve, but oscillates around it.

In addition to the LAOs and the HAOs a multitude of more complex
and non-periodic oscillations have been reported [63, 83, 94]. In [94] a
bistability between a possible Ruelle-Takens-Newhouse scenario and
a period doubling cascade has been conjectured.

3.1.3 Linear Global Coupling in Reaction Diffusion Systems

The external resistor introduces a linear global coupling and acts
on the effective potential drop across the WE|electrolyte interface
according to Eq.2.1. Hence, the governing equation for a reaction
diffusion system with a linear global coupling can be expressed by the
following equation.

∂u⃗

∂t
= f(u⃗, v⃗) + ϵ1∇⃗2u⃗+ κ(Rext)(⟨u⃗⟩− u⃗)

∂v⃗

∂t
= g(u⃗, v⃗) + ϵ2∇⃗2v⃗ (3.1)

with the variables u⃗ and v⃗, the diffusion constants ϵ1 and ϵ2, the
coupling constant κ, the reaction functions f and g and the spatial
average of u⃗, ⟨u⃗⟩. Both equations contain a reaction term and a diffu-
sion term, and the first equation has an additional term for the global
linear coupling. When looking at Eq.3.1 it becomes clear that, for the
homogenous case, the spatial derivatives as well as the coupling term
becomes zero and only the reaction terms remain. We know that the
external resistance introduces a global linear coupling but also has an
important effect on the dynamics of the electrodissolution on p-doped
silicon, which is homogeneous. Thus we can conclude, that at least
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one of the reaction terms also depends on the external resistance Rext.
Hence, in the p-doped case the governing equations probably rather
look like

∂u⃗

∂t
= f(u⃗, v⃗, Rext)

∂v⃗

∂t
= g(u⃗, v⃗) (3.2)

Note that Eq.3.1 and Eq.3.2 are just generalised examples of reaction
diffusion systems, shown to demonstrate the difference between ho-
mogenous and heterogeneous cases and to point out that Rext affects
both, the homogenous dynamics and the strength of the global coup-
ling. The equations are not an expression for the dynamics of the
silicon system, as they lack at least one essential variable, which will
be discussed later in this chapter.

3.2 the u-r parameterplane of p-doped silicon

The following section aims to provide the aforementioned big picture
by adding up the results and findings gained in the scope of this
thesis with the previously existing knowledge. As already mentioned,
no illumination is necessary to drive the oxidation reaction in the
case of p-doped silicon. In the following measurements we always
used the same electrolyte which was always equally stirred, we had no
temperature control and tried to keep the active WE area constant. This
leaves us with the external resistance and the applied voltage as our
only bifurcation parameters. Fig.3.4 depicts which types of dynamics
are found for which sets of parameters in the Uapp-RextA-parameter
plane.

The figure shows a coloured area which marks the region where
stable oscillations can be found. This region is, almost completely,
encircled by a dashed orange line which represents a Hopf bifurcation.
If we start looking at low applied voltages we see that the region
of stable oscillations starts in a relatively narrow interval at roughly
4 V vs. SHE, between 1 kΩcm2 and 2 kΩcm2, and widens in RextA
direction with increasing applied voltage until it reaches roughly
19 kΩcm2 for the highest applied potentials of around 8.65 V vs. SHE.

On the left side, i.e. the low resistance side, the onset of the oscilla-
tions changes towards smaller external resistances when increasing the
potential from the lower boundary until it reaches 0 kΩcm2 at 4.65 V
vs. SHE. It stays at 0 kΩcm2 until 6 V vs. SHE. The voltage range of
zero external resistance oscillations is obviously also the region where
no Hopf bifurcation is observed on the low resistance side. Above
this potential range, the critical Rext needed to find stable oscillations
increases slightly with the potential, until it reaches 1 kΩcm2 for the
highest investigated voltages.
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Figure 3.4: Investigated Uapp-RextA parameter plane. Orange dashed curve is
the Hopf bifurcation, purple dashed are saddle node bifurcations.
Green area marks HAOs region, yellow area marks LAOs region
and the yellow and green striped area is where multiperiodic and
aperiodic oscillations arise. The different dynamics are marked
with: (+) stable nodes, (*) stable foci, (•) LAOs, ■ HAOs and (⋆)
multiperiodic and aperiodic oscillations. Figure taken from [95]
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The coloured area is divided into three different parts. The outer
part in yellow marks the region where LAOs are found and the inner
green part is where HAOs are found. The low external resistance
border of the green area is independent of Uapp at a constant value
of RextA, whereas the RextA values at the right border of the green
region increase with Uapp. Between the yellow and green areas is a
region which is green and yellow striped. In the striped region one
finds exclusively more complex and non-periodic oscillations.

The measurement points mark the dynamical features measured
at the respective parameters. LAOs are marked as discs, HAOs are
marked as squares and oscillations which are not simple periodic are
marked as stars. Stable nodes are marked as asterisks and stable foci
as plusses. Note that for some parameters in the green area it is also
possible to find non simple-periodic oscillations besides the HAOs.

There is a dashed purple line which marks the saddle node bifurc-
ation sn2 from Fig.3.3 on the high RextA side of the oscillations, for
slightly higher RextA values than at the Hopf bifurcation. In addition,
there is a second dashed purple line marking the saddle node bifurca-
tion sn1 from Fig.3.3. These two saddle node bifurcations seem to start,
at the same parameters for lower potentials. The sn1, has a steeper
slope and therefore crosses every region of the coloured area instead
of passing it like the sn2 does. The area between the two saddle node
bifurcation curves is the region of the bistability between the node on
the electropolishing branch and the oscillatory region.

Note that it is only possible for the system to attain the oscillatory
branch of this bistability if there is an initial oxide layer formed on the
WE [83], e.g. if the system comes from any of the oscillatory states left
of sn1 in Fig.3.4.
Overall Fig.3.4 shows that the LAOs emerge from a Hopf bifurcation
and encircle the oscillatory parameter region from the low voltage side.
For Uapp larger than 6.5 V vs. SHE there is a parameter region where
HAOs can be found. For the HAOs a minimal external RextA value is
needed which seems to be independent of Uapp. However the maximal
RextA value for which HAOs can be found increases with Uapp. The
drop of the effective potential seems to induce the transition at the
higher RextA values, as ever higher potentials are necessary to stay
in the HAOs’ region for increasing RextA values. The reason for the
seemingly complete independence of the onset of HAOs from Uapp at
the low resistor side remains unclear. The LAOs and the HAOs region
are separated by a region where merely more complex or non-periodic
oscillations exist. It is noticable that these more complex oscillation
types coexist with HAOs but not with LAOs.
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3.3 on the rise and fall of the low amplitude oscilla-
tions

Previous findings characterise especially the oscillations found below
2 kΩcm2 and above 5.65 V vs. SHE as LAOs [84]. The oscillations
in the yellow region between the two saddle node bifurcations in
Fig.3.4 were assumed to be of a different kind [63, 83, 94]. This was
because they are found for significantly different parameters as the
previously known LAOs and have a much lower amplitude and a
higher frequency. In the following we will explain why we belief that
these oscillations are also LAOs. For both, the previously known LAOs
and these oscillations, it has been shown that close to the onset of the
oscillations the squared amplitude of the current is linearly dependent
on the resistance indicating that they arise in a Hopf bifurcation [63,
83], with the resistance acting as bifurcation parameter.

In a measurement series indicated by the the LAOs at 5.15 V vs.
SHE in Fig.3.4 we could show that the LAOs regime extends into
the bistable region between the two saddle node bifurcations and
that the oscillations at the high resistance border of the oscillatory
region are connected with the LAOs region via the lower voltage
areas of the oscillatory regime. Thus we conclude that they are both
the same type of oscillations and henceforth call both LAOs. To gain
more insight into the system’s behaviour in the bistable region close
to the sn2 saddle node bifurcation a careful parameter scan has been
performed at the low voltage border of the oscillations at 6 kΩcm2.
For the system to attain oscillatory states in the bistable region, it
is necessary to have an initial oxide layer on the WE, therefore we
started by applying a voltage of 6.90 V vs. SHE. After some periods
we switched the potential to 4.90 V vs. SHE, where LAOs are expected,
kept the applied potential constant until the oscillations stabilised
and recorded the time series. Then we changed to a lower applied
potential by sweeping it at a rate of 1 mV/s to the desired value, we
waited for the system to settle, recorded the time series and proceeded.
During the whole process the external resistance was kept constant at
6 kΩcm2.
Fig.3.5 a) shows a projection of those measurements into the phase
plane spanned by the spatial average of the ellipsometric signal ξ and
the current density j. The black lines depict attractors of the system and
the red line is a transient recorded after a potential variation. The plot
shows one comparably large closed cycle which was measured with
an applied voltage of 4.90 V vs. SHE, a smaller limit cycle measured at
4.84 V vs. SHE and a stable focus measured at 4.82 V vs. SHE. Note
that the intersections of the two limit cycles and during the transient
indicate strongly, that there exists at least one more essential variable
besides the ellipsometric signal ξ and the current density j.
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Figure 3.5: a) LAOs and stable focus in the ξ-j phase plane. The red curve
marks the transient after the potential variation. The black curves
are attractors. The large cycle was measured at 4.90 V vs. SHE,
the small one at 4.84 V vs. SHE and the stable focus at 4.82 V vs.
SHE. b) The squared amplitude A2 of the current density LAOs
plotted against the applied potential. a) and b) measured with
RextA=6 kΩcm2. Figure taken from [95]
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In Fig.3.5 a) it can be seen that the applied voltage acts as bifurcation
parameter and destabilises a focus, resulting in LAOs which grow in
amplitude with the potential.
In Fig.3.5 b) the squared amplitude of the current density is plotted
against the applied potential and marked as squares. The line is a
linear fit through the first four measurement points. It can be seen
that close to the bifurcation the squared amplitude of the oscillations
grows approximately linearly with the applied potential indicating
that the focus is destabilised in a supercritical Hopf bifurcation. Hence
we can confirm that the LAOs are at the onset of the oscillatory region
when coming from low voltages in the U-R parameter plane. They
emerge from a supercritical Hopf bifurcation, for which both the ap-
plied potential and the resistor may act as bifurcation parameter and
thus encircles the oscillations in the U-R parameter plane except for
the range of zero external resistor oscillations. Note that the region
where the stable focus exists close to the sn2 saddle node bifurcation
is extremely narrow and thus experimentally difficult to reach. If the
parameter variations are not performed sufficiently slow, one will
push the system across both, the Hopf bifurcation and the saddle
node bifurcation, such that it will attain the stationary node on the
electropolishing branch.

Between the HAOs and the LAOs is a parameter region in which only
non simple-periodic oscillations in a multitude of different shapes can
be found. It is already speculated, that within this region there is a
bistability between an attractor undergoing a possible Ruelle-Takens-
Newhouse scenario, and one that traverses a period doubling cascade
[94].

The Ruelle-Takens-Newhouse scenario describes a route into de-
terministic chaos [61, 78], where three sequential Hopf bifurcations
first create a stable limit cycle then a 2-torus and finally render the
dynamics chaotic by creating a 3-torus which is always unstable [3].

In the period doubling cascade, also known as Feigenbaum scenario,
the system undergoes an infinite sequence of so called period doubling
bifurcations, each doubling the number of periods needed to close
the limit cycle [30]. The repeated doubling of the limit cycle period
fills the phase space with unstable solutions until they are so close
together that chaotic windows emerge.

In the following we revisit these two scenarios and investigate their
emergence in more detail. We will show that the 2-torus arises due
to a periodic forcing of the LAOs by the HAOs which is induced as
the two oscillation mechanisms are coupled via the external resistor.
We will discuss that the torus breakdown is probable not the result of
a tertiary Hopf bifurcation and therefore the system does not follow
the Ruelle-Takens-Newhouse scenario. It is much more likely that
the 2-torus breaks down as the coupling strength between the two
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oscillation mechanisms exceeds a certain limit and the surface of the
2-torus loses its smoothness which results in a strange attractor [2, 7].

To elucidate the origin of the torus, we started from the LAOs
at 6 kΩcm2 and varied Uapp towards more anodic potentials. We
proceeded in the same manner as above, i.e. we scanned the potential
with 1 mV/s to the desired value, waited for the transient to fade and
recorded the time series and continued. The resistor was kept constant
during the whole process.
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Figure 3.6: Table of time series (I), normalised frequency spectrum (II) and
Poincaré section at a) 5.54 V vs. SHE, b) 5.69 V vs. SHE and c)
5.95 V vs. SHE all measured with RextA=6 kΩcm2 [95]. Figure
taken from [95].

Fig.3.6 a), b) and c) shows exemplary states which arise upon an
increase of the potential. The first column depicts the time series, the
second column the frequency spectrum, normalised to the magnitude
of the main frequency and the third column the Poincaré section of
the respective state. To construct the Poincaré sections we first chose a
suitable current density value j0 and measured the times tk at which
the falling branch of the current density oscillations took this value,
i.e. j(t=tk)=j0. Our new variables V1 and V2 were then defined by

V1(tk) = j(tk − 3T/4) and V2(tk) = j(tk − T/4) (3.3)

where T is the oscillation period corresponding to the dominant fre-
quency of the normalised frequency spectrum. A Poincaré section
maps the intersections of the dynamics in an n-dimensional space
with an n-1-dimensional subspace and thereby reduces the dimension-
ality. This means for example that a limit cycle in a 3 dimensional
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phase space mapped on a plane will be a fixed point, a 2-torus will be
mapped as an invariant circle and a strange attractor will be mapped
on some submanifold, often of complex shape.
Column I of Fig.3.6 a) depicts the time series of simple periodic LAOs
measured at 5.54 V vs SHE and an applied external resistor of 6 kΩcm2.
Their shape is relatively sinusoidal and the amplitude is roughly
0.2 mA/cm2 and constant. In column II the normalised frequency
spectrum of the time series shows two distinct peaks with almost
no background. The larger peak at roughly 45 mHz corresponds to
the oscillation frequency and the second peak at roughly 90 mHz is
the first harmonic of the main frequency. In the Poincaré section the
dynamic is mapped on a fixed point which is expected for a stable
limit cycle.

Fig.3.6 b) shows a state that was recorded after the potential was
increased to 5.69 V vs. SHE. The time series in column I shows a dis-
tinct modulation of the oscillations. The minimum amplitude is still
roughly 0.2 mA/cm2 but the maximum increased slightly to roughly
0.3 mA/cm2. In addition to the modulation of the oscillations, there
are small outliers which arise on the rising and falling branch of some
peaks. When looking at the normalised frequency spectrum in column
II one sees that the main peak and its first harmonic shifts towards
smaller frequencies compared to the one in Fig.3.6 a). In addition to
the main peak and its harmonic, a number of other peaks, of which
the most prominent lies close to 50 mHz, emerge in the spectrum.
The position of the peak below 10 mHz is in the same order of mag-
nitude as the frequency of the envelope, observed in the time series
of Fig.3.6 b). In the Poincaré section in column III one sees that this
dynamic is mapped onto a circular shaped invariant limit set.
The behaviour in the time series of Fig.3.6 b) reminds one of beat
oscillations which would result from a second frequency appearing
in the dynamics. In the case of beat oscillations, the frequency of
the envelope usually corresponds to the difference of the two main
frequencies of the system. The peak slightly below 10 mHz which
seems to correspond to the frequency of the envelope together with
the main frequency slightly above 40 mHz indicates strongly that the
signal close to 50 mHz corresponds to a second oscillations frequency
in the system causing the modulation of the oscillations. Other peaks
arise at linear combinations of the two main frequencies. The conjec-
tured second frequency seems then to be confirmed by the circular
invariant limit set in the Poincaré section which corresponds to mo-
tion on a 2-torus. Fig.3.7 depicts the squared average radius ⟨r⟩2 of
the circular limit sets plotted against the applied potential. The good
linear fit through those points indicates a linear dependence of ⟨r⟩2
on the bifurcation parameter Uapp which is the universal behaviour
of limit cycles close to Hopf bifurcations. Hence we conclude that,
as we increase Uapp from 5.54 V vs. SHE to 5.69V vs. SHE with an
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Figure 3.7: The squared average radius ⟨r⟩2 of the circular shaped invariant

limit sets in the Poincaré sections plotted vs. Uapp. The line is a
linear fit through the points. [95]

external resistor of 6 kΩcm2, the system undergoes a secondary Hopf
bifurcation after which it exhibits motion on a 2-torus. Note that ⟨r⟩2
is calculated according to

⟨r⟩2 = ⟨∥x⃗i − ⟨⃗x⟩∥⟩2, (3.4)

where the average radius ⟨r⟩ is the average distance of the points x⃗i
in the Poincaré section to the average of all points ⟨⃗x⟩ of the Poincaré
section.

The applied potential was then further increased to 5.95 V vs. SHE.
The corresponding time series is plotted in Fig.3.6 c). The amplitude
of the oscillations is larger compared to the one from Fig.3.6 b) and
the outliers are more distinct and seemingly less regular. Omitting the
outliers, the minimal amplitude is still roughly 2 mA/cm2, however
the maximal amplitude seem to have increased further. Overall, on
first sight the behaviour resembles the one from Fig.3.6 b), i.e. modu-
lated oscillations with slight irregularities. However on a closer look,
it becomes apparent that the irregularities are more pronounced than
in the time series above. Looking at the second column of 3.6 c) we see
that the background of the normalised frequency spectrum is drastic-
ally increased. The main frequency is now slightly below 40 mHz
which is still close to the one of the two spectra above but now the
spectrum also shows a high background. This background is dense
and has a continuous character which makes it almost impossible to
identify single peaks. The points in the Poincaré section in the third
column seem to be randomly scattered.
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We thus conclude that even though the time series of 3.6 c) is remin-
iscent of the beat oscillations, it is different in that the irregularities are
more prominent. The normalised frequency spectrum of this state is
characterised by a large background, which can point towards chaotic
motion. Another indication for deterministic chaos is the random
cluster of points this attractor is mapped to in the Poincaré section.
Note that due to the experimental character and especially the large
time scale it is difficult to prove that the system exhibits determin-
istic chaos. However, since it is known that a torus breakdown often
creates a strange attractor, together with the large background in the
normalised frequency spectrum and the breakdown of the circle in
the Poincaré section in 3.6 c) we conclude that the system ends up
exhibiting chaotic motion.

Note that that motion on a 2-torus will often be the result of an
oscillator with a certain frequency being periodically forced with
another frequency. This can be realised by coupling two oscillators
with different frequencies. What kind of dynamics arise from such a
configuration depends on the coupling strength and the ratio of their
frequencies. If the coupling strength is zero and the ratio of the two
frequencies is rational, the motion would live on the surface of a torus
but would be periodic. However the Lebesgue’s measure of all rational
frequency ratios is zero. As the coupling strength is increased also the
parameter range of periodic solutions increases. Around the rational
ratios of the frequencies are parameter regions for which the motion
will be periodic although the ratio of the frequencies would deviate
from a rational value. These regions are called Arnold tongues. The
width of the Arnold tongues increases with the coupling strength, un-
til, at a certain value of the coupling strength, the Lebesgue’s measure
of the solutions outside the Arnold tongue will be zero. Note that the
trajectory of the non-rational solutions will fill the surface of the torus
densely after an infinite period of time but will never close, hence the
motion is quasiperiodic and we call the attractor a 2-torus. [7]

It can be concluded that the LAOs emerge from a Hopf bifurcation
and as the potential is further increased the system undergoes a
secondary Hopf bifurcation resulting in motion on a 2-torus. Later we
will show that the 2-torus arises due to the LAOs being intrinsically
coupled to the HAOs. Upon further increase of the applied potential,
the strength of this coupling seems to increase as well. A probable
scenario is then, that, as the potential is further increased, the coupling
strength exceeds a certain limit. As it exceeds this limit, the 2-torus
eventually breaks down and the system attains a strange attractor.
Often the torus breakdown is accompanied by a loss of smoothness of
its surface [2, 7].

The shift towards smaller frequencies for higher potentials is be-
lieved to be related to an increase in oxide thickness, as we also observe
an increase of the temporal average of ξ. However, the connections
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between potential, oxide layer thickness and frequency are not well
understood so far. Apart from the emergence of a secondary frequency,
the quasiperiodic and chaotic oscillations seem to be strongly related
to the LAOs, since at least the basic physical mechanism does not
seem to change. It rather looks as if there is some impact on the LAOs
which creates the modulation and as this impact grows, it creates a
strange attractor. Note that as the potential is further increased, the
system abruptly changes its behaviour and attains a state belonging
to a period doubling cascade which will be discussed in the following
section.

3.4 on the high amplitude route to chaos

After we just showed how the complex behaviour which arises from
simple periodic LAOs still seems to be strongly related to the LAOs, we
will now put our focus on HAOs. In this paragraph we will investigate
the response of the system as we move from simple periodic HAOs,
like the one depicted in Fig.3.2 b) at 6 kΩcm2, towards lower potentials.
We will show that, the system traverses a period doubling cascade
as we pass through the striped region of Fig.3.4 until even a period
doubled torus can be found. Period doubling cascades in the 1/2

Arnold tongue above critical values of the coupling strength and even
period doubled tori have been reported in [49, 79, 98]. Note that the
measurement series on the HAOs was conducted with an external
resistor corresponding to a resistance of 6 kΩcm2 and the potential
variations were conducted in the same manner as for the measurement
series on the LAO branch discussed above.

Fig.3.8 shows a time series of the current density measured at
6.05 V vs. SHE. The maxima alternate between high current values
and lower values. The same holds for the minima. This time series is
representative for the states found when entering the striped region
of Fig.3.4 from the simple periodic HAOs. For this type of oscillations
it is often easier to employ next-maximum maps to further elucidate
the attractor. In next maximum maps the maxima of a time series are
plotted against their respective preceding maxima. In this way, one can
read the exact value and relative order in which the maxima appear,
and thus one gets a clearer picture of the attractor than when looking
at time series.

Fig.3.9 depicts the next-maximum map of a selection of states found
upon the reduction of Uapp, starting from a simple periodic HAO
state, shown as the dark blue point which was measured at 6.85 V
vs SHE. At 6.55 V vs. SHE marked by the two turquoise points is a
period two (P2) state, at 6.35 V vs. SHE the pink points arrange on two
bands, suggesting that they belong to a chaotic two band attractor (C2).
Further reducing Uapp to 6.15 V vs. SHE results in oscillations which
show four points in the next-maximum map, hence a period-four (P4)
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Figure 3.8: Time series of a state from the period doubling cascade measured

at Uapp = 6.05V vs. SHE with RextA=6 kΩcm2.
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Figure 3.9: Next-maximum-maps of different states in the period doubling
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is coloured in cyan, the chaotic two-band attractor in pink, the
P4-state in orange a second P2-state in olive and the P2-torus is
coloured in brown. RextA=6kΩcm2 [95]
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state. At 5.95 V vs. SHE, there are again only two points in the next
maximum map marked in olive green. At the end of this cascade, at
5.74 V vs. SHE, there is an attractor which resembles a P2 behaviour
but when zooming in it shows that each of the clusters forms an
invariant circular limit set and thus this state constitutes a period two
torus (P2-Torus). The higher periodic solutions arise from traversing a
period doubling cascade [94, 95]. Fig.3.9 shows nicely that the higher
periodic and chaotic states evolve from the simple periodic HAOs.

So far we have shown that we can find two different types of
oscillations, the LAOs and the HAOs, in separated regions of the
Uapp-Rext parameter plane. Between these parameter regions, there is
a region in which we find complex oscillations. Some of the complex
oscillations can be related to LAOs and others emerge from HAOs.
The fact that these complex oscillations arise where the LA and HA
limit cycles approach each other in parameter space, hints towards an
intrinsic coupling of the two limit cycles which results in the complex
behaviour.

3.5 bichaoticity, a bistability of complex oscillations

Above we have already identified two different oscillations types in
the system, the LAOs and the HAOs, and investigated their emer-
gence and decay. Both types of oscillations undergo different types of
scenarios in which their motion changes from simple periodic to more
complex and finally to chaotic motion. We claim those more complex
dynamics still to be strongly related to their respective simple periodic
limit cycle they emerge from, due to their similar shape and beha-
viour. Another interesting feature is that those two scenarios overlap
in parameter space, i.e. they are bistable.

To characterize this hysteresis we conducted a finely resolved para-
meter scan analogously to the above described procedure, i.e. scan-
ning from one potential value to the other with a rate of 1 mV/s,
waiting for the transient to settle and then recording the time series.
The external resistor was held constant at 6 kΩcm2. We started from
simple periodic LAOs at 5.40 V vs. SHE and scanned towards higher
voltages. Whenever the system underwent a qualitative change in its
behaviour, we changed the scan direction to measure the hysteresis.
Fig.3.10 shows the average current density of the time series recorded
in this process. The discs mark oscillations attributed to LAOs and the
squares mark oscillations related to the HAOs. The black points are
measurements on the forward scan, i.e. where we scanned from lower
to higher voltages and the red points are recorded on the backward
scan. The arrows also indicate the scan direction.

Starting from the simple periodic LAOs at 5.40 V vs. SHE the
average current density decreases with increasing applied potential in
the whole LAOs region. The slope of the decrease is relatively steep for
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Figure 3.10: The average current density of the oscillations plotted vs Uapp.
(•) mark LAOs and (■) mark HAOs. Black points are measured
after the potential was increased and red points were measured
after the potential was decreased. Figure taken from [95].

smaller voltages between 5.40 V vs. SHE and rouhgly 5.65 V vs. SHE.
Upon the change from 6.05 V vs. SHE to 6.15 V vs. SHE the dynamic
changes drastically as the system attains a state on the HAO branch
which has a higher average current density.

After the system has attained a state on the HAO branch, we start
to reduce the applied potential again. The average current density
does not change significantly when we do so. Rather, it seems inde-
pendent from the applied voltage and is only slightly increasing with
decreasing potential. Especially between 6.10 V vs. SHE and 5.90 V vs.
SHE the average current density seems to be constant. When chan-
ging the applied potential from 5.74 V vs. SHE to 5.65 V vs. SHE the
HAOs branch becomes unstable and the system attains an attractor
on the LAO branch. This means that the potential interval, in which a
bistability between the two oscillatory branches is found, lies between
6.15 V vs. SHE and 5.74 V vs. SHE for 6 kΩcm2.

In Fig.3.10, the average current density splits up into two branches,
where the branch with higher average current density can be associ-
ated with dynamics we claim to be related to HAOs and on the lower
branch the system exhibits the dynamics we correlate with LAOs.
This underpins further what we already claimed above, i.e. that the
2-torus and the strange attractor which the system attains after the
torus breakdown are in fact closely related to the LAOs, whereas the
states in the Feigenbaum scenario are closely related to the HAOs.
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Note that the region of the bistability lies in the interval of complex
dynamics , i.e. the striped region in Fig.3.4. Analogous to birhytmicity,
in which two periodic limit cycles are stable at the same parameters,
the coexistence of two strange attractors is called bichaoticity. In the
presented case we have two different routes into chaos which are
bistable.

But how does this bichaoticity emerge? To discuss this question
we recall that we can find two different limit cycles in the dynamic
of the system. Hence one could say that the system is inherently bi-
rhythmic. From all the examples of birhythmicity which have so far
been found one could, in a way, distinguish between two different
types of birhythmic systems. Fig.3.11 illustrates this thought by ex-
emplary sketches of the phase portraits of the two types. Fig.3.11 a)

Figure 3.11: Phase portraits of two qualitatively different cases of birhythmi-
city. In a) two bistable limit cycles (black) separated by an un-
stable one (dashed red) in a 2D phase space. The red dot is an
unstable focus and the arrows indicate the vector field. In b) two
limit cycles arbitrarily oriented in a 3D phase space.

depicts the simpler case of birhythmicity in two dimensions, i.e. the
two stable limit cycles separated by an unstable one, living in the
same phase plane. The red point in the centre is an unstable focus
and the dashed red circle represents the unstable limit cycle. The grey
arrows indicate the vector field. This type of birhythmicity can for
example emerge from a saddle node bifurcation of periodic orbits. An
example of a system which exhibits this case of birhythmicity in two
dimensions is the septic van der Pol oscillator [103]. In general, limit
cycles live in at least two dimensions, which means that they need at
least two oscillatory variables. Hence two limit cycles in a 2d system
share both oscillatory variables, as it is depicted in Fig.3.11 a). In 2d
systems the motion cannot become chaotic, as chaos can only emerge
in at least 3d systems.

Fig.3.11 b) depicts the second type of birhythmicity, which needs
at least three dimensions, here indicated by the three axis along the
variables v1,v2 and v3. The two closed curves depict two limit cycles
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which are oriented arbitrary in the three dimensional phase space. The
arbitrary orientation in phase space accounts for the possibility that
oscillations can also involve more than two oscillatory variables. Thus,
in the three dimensional case, depicted in Fig.3.11 b), the two limit
cycles share at least one and maximal three oscillatory variables. One
example of such a system, i.e. a system where the two limit cycle do
not share all oscillatory variables, are two chemical oscillators coupled
via one shared species [4, 5]. Between the two limit cycles there has
to be a separatrix, which is the invariant manifold that separates the
basins of attraction of the two limit cycles. We suggest now, that if the
parameters are varied such that the two limit cycles approach each
other in phase space, they also approach the separatrix. Eventually,
the limit cycles come so close to each other, such that the vector field
in their vicinity is, as a consequence of the continuity condition at the
separatrix, influenced by the respective other limit cycle. We suggest
that this could perturb the trajectory on the limit cycles and render the
motion more complex or even chaotic. In this way the motion on the
observed limit cycle could be influenced by the other stable limit cycle
even before the observed one becomes unstable. In nonlinear dynamic
one would say that in the vicinity of the separatrix the limit cycle is
influenced by the "ghost" of the other limit cycle.

Note that in such a scenario hysteretic behaviour could arise, as one
limit cycle might influence the other one in a different manner than
the other way around. The two different types of complex behaviour
detected in our experiments, which are even bistable for some para-
meters, is what makes this system so unique compared to previously
reported birhythmic systems. In literature the interaction between the
two oscillations led to complex or compound oscillations but not to
a hysteresis. In small parameter regions, periodic oscillations were
reported to coexist with complex ones, but a bistability of complex
oscillations was not detected [4, 5, 28, 43].

We suggest that the complex oscillations in the dynamics of our ex-
periment, as well as the bichaotic behaviour emerge as a consequence
of an intrinsic coupling of the two coexisting limit cycles, as described
above. The two limit cycles in our case are the LAOs and the HAOs
which are simple periodic but separated by a region of the Uapp-Rext

parameter plane where only complex dynamics as well as hysteretic
behaviour, i.e. bichaoticity, is found. The chaotic motion displayed by
the system also shows that we have at least three essential variables,
as this is a necessity for chaos to emerge. Another hint which suggests
that the dynamics live in a phase space of dimension higher than two,
are the intersections of the transients in the phase plane plot depicted
in Fig.3.5. Hence the bichaotic behaviour emerges as a result of an
intrinsic birhythmicity, i.e. the bistability of the LAOs and the HAOs
limit cycle in phase space. However, the birhythmicity manifests itself
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as complex oscillations and bichaoticity due to an intrinsic coupling
of the two limit cycles.

Unfortunately it is difficult to prove this type of intrinsic entrainment
but we can in a first step check for plausibility by naively comparing
the frequencies in the normalised frequency spectra of the coexisting
states. Fig.3.12 shows exemplary two normalised frequency spectra
of two time series, both recorded at 5.84 V vs. SHE. Fig.3.12 a) was
initialised on the LAOs branch and Fig.3.12 b) on the HAOs branch.
Both frequency spectra are normalised to their respective maximum.
Fig.3.12 a) shows a normalised frequency spectrum of a state on the
LAOs branch, which resembles the one in Fig.3.6 b). There are three fre-
quencies highlighted with colours. The main frequency f1 at (40.10 ±
0.69) mHz in red, the second largest frequency f2 at (45.58 ± 0.69) mHz
in green and the envelope frequency fe at (6.91 ± 0.69) mHz in blue.
The main frequency f1 represents the maximum of the normalised
frequency spectrum and thus the main frequency of the time series.
As we know from the discussion of Fig.3.6 b), the small peak at fre-
quencies below 10 mHz is the frequency of the envelope. Above we
concluded that the second highest frequency f2 is a good candidate
for the second frequency of the 2-torus since the envelope frequency is
usually the difference between the poloidal and the toroidal frequency,
and f2−f1 is in the same range as fe. In the example of Fig.3.12 a) the
difference f2−f1 = (5.48 ± 1.38) mHz which lies within the uncertainty
of fe and makes it plausible for f2 to actually be the second frequency.

Fig.3.12 b) depicts the normalised frequency spectrum of a P2 state
on the HAO branch also measured at 5.84 V vs SHE. There are four
distinct signals which consist of the main frequency fHA, one frequency
at exactly 0.5 fHA, which arises due to the doubled period, and higher
harmonics at 1.5 fHA and 2 fHA. The background is negligible. The main
frequency fHA is marked in green and lies at (46.03 ± 0.80) mHz which
lies within the uncertainty of f2 from Fig.3.12 a). Also the difference
between fHA and the main frequency from Fig.3.12 a) f1, i.e. fHA - f1
lies within the uncertainty of the envelope frequency fe from Fig.3.12 a).
This shows that it is definitely in the realm of possibilities that f2 is not
only the second frequency of the 2-torus but might also be strongly
correlated to the main frequency fHA of the coexisting P2 state from
the HAO branch.

Table3.1 shows the frequencies of two more pairs of coexisting states
measured at 5.95 V vs. SHE and 6.05 V vs. SHE. The frequencies are
extracted from their respective normalised frequency spectra analog-
ously to the above described states at 5.84 V vs. SHE. The frequencies
of all the pairs of coexisting attractors from Table3.1 fit similarly to the
hypotheses of the 2-torus arising from a perturbation of the LAOs by
the respective coexisting P2 HAO attractor, as the secondary frequency
of the 2-torus and the main frequency of the HAOs attractor seem to
coincide for each pair. However it should be noted that the relative
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uncertainties of the frequencies are large, especially for fe. Also simply
comparing the frequencies of two coexisting states to see whether they
have influence on each other or not is, from a non-linear dynamic
point of view, a bit naive. The interaction due to perturbations in the
flow field might be much more complex than just summing up the
dynamics. Nevertheless the 2-torus is an attractor defined by its two
independent frequencies, we have an inherent birhythmicity in the
system and the frequency of the coexisting attractor, i.e. the P2 on the
HAO branch, fits well to this narrative.
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Figure 3.12: Two normalised frequency spectra of time series measured at
5.84 V vs. SHE a) initialised on the LAOs branch and b) initialised
on the HAOs branch. In a) the dominant frequency f1 is coloured
red the frequency with the second largest signal f2 green and
the frequency of the envelope fe is coloured blue. In b) the main
frequency fHA is coloured green.

We thus conclude that the LAOs and the HAOs influence each
other via an intrinsic coupling. For the two oscillator, the intrinsic
coupling results in two qualitatively different scenarios. As the LAOs
are influenced by the HAOs limit cycle, a 2-torus emerges and as
the strength of the influence exceeds a certain threshold the torus
breaks down, possibly due to the loss of smoothness as the surfaces is
stretched and folded back on itself [2, 7]. The dynamics on the HAO
branch traverse a period doubling scenario.
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Type Uapp f1 f2 fe fHA

[V vs.
SHE]

[mHz] [mHz] [mHz] [mHz]

LA 5.84 40.10

±0.69

45.58

±0.69

6.91

±0.69

HA 5.84 46.03

±0.80

LA 5.95 38.24

±0.71

43.91

±0.71

7.08

±0.71

HA 5.95 46.58

±1.37

LA 6.05 37.54

±0.86

42.66

±0.86

6.83

±0.86

HA 6.05 45.55

±1.09

Table 3.1: Table of frequencies in different states all measured with an ex-
ternal resistor yielding 6 kΩcm2. The leftmost column classifies
the attractor of the states the second column gives the applied
potentials and the rest frequencies from the normalised frequency
spectra following the notation of Fig3.12

Figure 3.13: Sketch of a bifurcation diagram where a variable v is plotted vs.
a parameter µ in a scenario where a hysteresis is confined by
two saddle node bifurcations

A hysteresis like the one depicted in Fig.3.10 reminds of a common
scenario where the hysteresis of two steady states is confined by two
saddle node bifurcations. The scenario is also known for birhythmicity,
where two limit cycles are created in a saddle node bifurcation of
limit cycles, which might result in two stable limit cycles separated
by an unstable one as depicted in Fig.3.11 a). We have sketched this
scenario schematically in Fig.3.13. Here v is a variable which is plotted
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against a parameter µ. The black curves imply stable branches whereas
the dashed red curve depicts an unstable branch. At each transition
between stable and unstable branch is a saddle node bifurcation. In an
experiment one can only measure the stable branches. Nevertheless if
the hysteresis is confined by two saddle node bifurcations one knows
that there has to be an additional unstable attractor of the same kind.
In the case of the above presented bichaoticity it would be interesting
two find out, if we see a similar scenario. One could speculate whether
the torus bifurcation of the period-2 oscillation close to the existence
boundary of the HAOs branch, is part of some kind of saddle node
bifurcation where the saddle type limit sets originates from the LAOs
branch. Due to the nature of the intrinsic coupling, i.e. the perturbation
of a stable limit cycle by the ghost of the coexisting limit cycle, the
question arises if the two limit cycles might also be separated by a
unstable limit cycle or if the separatrix is more complex. As discussed
above, with regard to Fig.3.11 b) we expect the separatrix to be much
more complex than an unstable limit cycle, like it would be the case
in Fig.3.11 b).

3.6 conclusion

In this chapter we presented a detailed overview of the dynamics in
the RextA-Uapp parameter plane of the oscillatory electrodissolution of
p-Si. We showed that the oscillatory region is, from the low voltage
side, engulfed by LAOs which emerge from a Hopf bifurcation. For
higher external resistances and potentials, a second type of oscillations
exist, the so-called HAOs. The HAOs and the LAOs are separated by
a region of complex and chaotic oscillations. In addition we presented
the two saddle node bifurcation between which we find oscillations
which are bistable with the stable node on the electropolishing branch
in the CV.

We showed that in the region of the more complex oscillations
a bistability between oscillations related to LAOs and oscillations
related to HAOs exists. We could demonstrate that the 2-torus in the
system emerges from the simple periodic LAOs and that it breaks as
a strange attractor is created if one moves closer to the HAOs region
in the parameter region. We showed that when coming from simple
periodic HAOs and changing the parameters such that one enters
the parameter regime of complex oscillations the system traverses a
period doubling cascade. We exposed the HAOs oscillations to be the
simple periodic oscillations of this period doubling cascade.

We showed that the two different routes into chaos are bistable.
Hence we could show that the system is bichaotic. We argued that the
complex behaviour as well as the bichaoticity is a result of an intrinsic
coupling of the two limit cycles, as they approach each other in phase
space upon parameter variations.
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T H E O S C I L L AT O RY E L E C T R O D I S S O L U T I O N O F
N - D O P E D S I L I C O N

In this chapter we investigate the dynamics of n-doped silicon which
is known to have an additional level of complexity, compared to the
p-doped case, as it displays a multitude of different spatiotemporal
patterns. The possibility of pattern formation during the oscillatory
electrodissolution of n-doped Si has first been reported by Miethe et al.
[57, 58]. In further studies on n-doped silicon WEs many interesting
patterns have been reported like anti-phase clusters, subclustering
and even completely selforganised chimera states as well as frequency
clusters [65, 66, 86]. Although these phenomena have been carefully
investigated, they have not been brought into context with the para-
meter space or different kind of couplings. In the n-doped case it
is possible to induce other modes of coupling than in the p-doped
case, as the amount of photo-generated valence band holes can be
controlled via the illumination intensity. This makes it possible to
control the strength of a nonlinear nonlocal coupling in the system by
reducing the illumination intensity such that the production rate of
the photo generated charge carriers is lowered to the same order of
magnitude as their consumption rate in the oxidation process. This
results in lateral variations of the hole concentration in the space
charge layer and thus in the potential landscape, which can lead to
pattern formation on the WE [67]. This additional parameter makes it
possible to adjust birhythmic behaviour between two periodic limit
cycles, and hence, proofs our assumption made in the previous chapter,
where we suggested the whole system to be inherently birhythmic.
This true form of birhythmicity was shown by Wiehl et al. [102]. In
this chapter, as we turn our attention towards n-doped silicon, we
show that in this case the dynamical behaviour of the system is also
characterised by the inherent birhythmicity and that its behaviour is
in many ways comparable to the p-doped case. We also show that the
nonlinear nonlocal coupling, introduced by a reduced illumination,
can lead to a spatial symmetry breaking. In addition we demonstrate
that each spatiotemporal phenomenon can be related to either LAOs,
HAOs or the interaction of both. We present all the different kinds
of patterns encountered in the investigated parameter range, before
we will discuss the influence of the illumination intensity and the
external resistance on the dynamics. We will show that reducing the
illumination leads to spatially less coherent states and that the external
resistance has a homogenising effect on the spatial dynamics but also
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has similar effects on the temporal dynamics as it has in the case of
p-doped Si demonstrated in chapter 3.

4.1 revisiting the system

In this section, a brief introduction to the n-doped silicon system is
given to equip the reader with sufficient insights for the results part.
Under high illumination the system with n-doped silicon has merely
quantitative differences to the one of p-doped silicon as WE, mainly
due to the shift of the electrochemical potential [51, 65]. However,
as the illumination intensity is lowered, some qualitative differences
arise. These are linked to the response of the system to the limitation
of charge carriers. We will demonstrate the role of the illumination
intensity with the help of differently illuminated potential scans and
revisit especially recent findings of Patzauer and Wiehl [64, 102] con-
cerning the role of the illumination intensity for the birhythmicity in
the system, which will help the reader to comprehend the results of
this thesis.

Fig.4.1 shows four current-potential curves measured under differ-
ent illumination intensities, all conducted with a scan rate of 20 mV/s.
The black curve is a CV measured with a high illumination intensity of
12.3 mW/cm2. The coloured curves are forward scans, where the po-
tential was swept up to 8.65 V vs. SHE and then held constant. The red
curve shows a scan with an illumination intensity of 1.26 mW/cm2,
the yellow curve was measured with an illumination intensity of
1.16 mW/cm2 and the purple curve with an illumination intensity
of 0.78 mW/cm2. The measurements were performed by Yukiteru
Murakami whose Master thesis [60] was supervised in the scope of
this work.

The highly illuminated CV, depicted by the black curve in Fig.4.1, is
exemplary for scan rates of 20 mV/s and looks, except for a potential
shift of roughly 300 mV towards more cathodic potentials, identical
to the ones of p-doped silicon electrodes. The explanation for the
peaks and the plateau is thus analogously to the one given above (cf.
Fig.3.1). The hysteresis is due to the higher scan rate. This results
in a higher difference of the average current between forward and
backward scan as the system does not have the time to settle to a
quasi-steady state. Once a stable oxide layer has formed, the oscillatory
character of the system can also be observed in Fig.3.1 however the
amplitude of the oscillations are much smaller than for the black curve
in Fig.4.1 measured at a higher scan rate. With a higher scan rate
the displacement between the system stable state for a given applied
potential and its actual state becomes larger. Hence the perturbation
of the attractor is larger with a larger scan rate, which will result in
a larger response and thus a larger oscillation amplitude. This holds
especially for the backward scan as the equilibrium, upon reduction
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Figure 4.1: Potential scans of n-doped silicon with a scan rate of 20 mV/s. All
scans started at 0.65 V vs. SHE. The scan depicted in black was
performed under an illumination intensity of 12.3 mW/cm2 up to
an applied voltage of 6.65 V vs. SHE and back. During the other
scans the potential was ramped up to 8.65 V vs SHE. The scan
depicted in red was conducted under an illumination intensity
of 1.26 mW/cm2, the one in yellow under 1.16 mW/cm2 and the
purple one under 0.78 mW/cm2.
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of the potential, is found by a reduction of the oxide thickness [83]
and thus the process is determined by the constant etch rate which is
slow compared to electrically driven processes.

All of the potential sweeps performed under limited illumination
of the WE, i.e. the red, yellow and purple curve first follow roughly
the electropolishing branch of the CV until they run into a current
density limit which is determined by the illumination intensity. This
is a result of the limited number of photo-generated holes, which are
needed for the oxidation process. The system then stays on this high
current density plateau, even at potentials where a system with an
excess of photo-generated valence band holes would attain much lower
current densities and develop an oscillatory character. We suggest that
this is because the system under low illumination never leaves the
electropolishing branch, as the current, i.e. the oxidation reaction rate,
is not large enough to form a stable oxide layer. Once the current
limit in the scans with limited illumination intensity is reached, the
current density stays almost constant over the plateau’s potential
range, except for a minuscule linear increase of the current with the
applied potential. Only for a sufficiently high illuminated WE the
amount of available charge carriers is sufficient for the reaction rate
to exceed a threshold and form enough oxide such that the system
attains the low current plateau of the CV. The latter can be observed
for the scan with an illumination intensity 1.26 mW/cm2, for which
the current drops down into the oscillatory regime at an potential
of 4.40 V vs. SHE. Note that the slight linear increase of the current
density on the plateau in the electropolishing regime is due to a
higher internal quantum efficiency for higher applied potentials. The
internal quantum efficiency is the ratio of the photo-generated charge
carriers which contribute to the current density. By increasing Uapp,
the amount of recombinations of electron-hole-pairs in the bulk is
reduced as the charge carriers are driven with higher force to the
surface and thus their concentration in the bulk is reduced. These
findings are extensively discussed in [60]. The two outliers, at roughly
4 V vs. SHE for the red curve and at roughly 7 V vs. SHE for the
yellow curve are artefacts which result from a short interruption of
the illumination.

The reduction of the illumination intensity to a point where the
current on the electropolishing branch is limited can in a certain way be
viewed as the application of an infinitely large resistor which becomes
active at the respective threshold current density. Once the system has
overcome the threshold for the formation of a stable oxide layer, it will
show a similar bistability between the node on the electropolishing
branch and the oxide covered oscillatory branch as the bistability that
was demonstrated for p-doped silicon, which is shown in the previous
chapter, in the CV under load in Fig.3.3. If we recall Fig.3.3 which
shows that the introduction of a resistor introduces a linear load-line
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with a negative slope proportional to the resistance, it becomes clear
how an infinite resistance will lead to a horizontal load-line and thus a
cut-off of the current, as we observe it for the low illuminated potential
scans in Fig.4.1. Note that a drastic reduction of the illumination
intensity when the system is on the oxide covered current plateau
will eventually lead to a dissolution of the stable oxide layer and the
system will attain some state on the electropolishing branch with a
current corresponding to the amount of photo generated valence band
holes.

Now that we have a general idea on how the illlumination intensity
on the WE can affect the current and therefore the oxidation rate,
we can revisit some findings of Patzauer and Wiehl [64, 102] where
they have demonstrated a birhythmicity between LAOs and HAOs,
which can be found for lower illuminations. Fig.4.2 shows an LAO and
an HAO limit cycle in the ξ-j phase plane, both measured at 5.65 V
vs. SHE with RextA=1.00 kΩ/cm2 and an illumination intensity of
1.36 mW/cm2. The red cycle is an LAO and the black cycle an HAO.
The LAOs have been initialised by switching on the illumination and
jumping from open circuit potential (OCP) to 5.65 V vs. SHE, whereas
the HAOs have been initialised by first illuminating with a higher
intensity of 2.79mW/cm2 as the potential was switched from OCP to
5.65 V vs. SHE. After two periods of the resulting transient oscillations
the illumination intensity was reduced to 1.36mW/cm2 which stabil-
ised the HAOs limit cycle depicted in Fig.4.2 by the black curve and
cut off its maximum current. Note that since both measurements have
been conducted in the same series, the ellipsometric signal of both
measurements are well comparable. The trajectories in Fig.4.2 move
counter-clockwise. The median of the ellipsometric signal of the LAOs
lies distinctly above the one of the HAOs.

As we follow the current of the HAOs from its minimum towards
its maximum, i.e. from left to right on the lower part of the limit
cycle, we see that it will run into a relatively sharp maximum before it
drops down to a plateau at 0.53 mA/cm2. The plateau is due to the
limitation of the current through the reduced illumination intensity,
i.e. the current maximum of the HAOs is cut off by the lack of charge
carriers. Would the illumination intensity be further decreased the
plateau current would be decreased as well, until it falls below a
critical current for which the oxide layer will be dissolved and the
system attains a state on the electropolishing branch [42]. We have
seen in Chapter 3 that the HAOs can only be found if a certain RextA
value is exceeded. In the case of n-doped silicon the current limit
which the HAOs run into seems to take the resistor’s role stabilising
the HAOs. We thus interpret the sudden lack of charge carriers as an
infinite resistance which becomes active for a certain threshold current
density which depends on the illumination intensity and stabilises
the HAOs. The interpretation of this goes analogously to the idea of
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Figure 4.2: A LAOs (red) and an HAOs (black) limit cycle in the phase plane
spanned by the current density, j, and the spatial average of
the ellipsometric signal, ξ. Both states were measured with a n-
doped WE at 5.65 V vs. SHE, RextA=1 kΩcm2 and an illumination
intensity of 1.36 mW/cm2. The arrows indicate the direction of
the trajectory.
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the horizontal load line due to an infinite resistor which we brought
up in the discussion of the illumination limited potential scans in
Fig.4.1. However so far we argued that if both limit cycles approach
each other in phase space, they will couple with each other which
will result in deviations from periodic behaviour. But this is not the
case for the coexistence of the two limit cycles in Fig.4.2. This is why
we believe that limiting the current has the stabilising effect for the
HAOs, analogously to the effect of an adequate external resistance but
without the effect of coupling the two limit cycles like it is the case in
section 3.5. This leads to a "classical birhythmicity", i.e. the coexistence
of two periodic oscillations.

Reducing the illumination when the system is on an LAO will result
in a spatial symmetry breaking on the WE which leads to lower global
current instead of cutting off the current maximum, as it is observed
for HAOs. Note that pattern formation at low illumination intensities
is also observed during HAOs, but in the case of HAOs the current
maximum is cut off by a sufficiently reduced illumination intensity.
The reason why the LAOs rather undergo a spatial symmetry breaking
than running into the current limit but the HAOs just run into it is
not clear yet. We just mentioned that the HAOs can be stabilised even
for low RextA values by reducing the illumination intensity such the
current oscillations are cut off. Fig.4.3 illustrates what this means for
the parameter space as it exemplary depicts the RextA-Uapp parameter
plane for an illumination intensity of 1.2 mW/cm2. The measurements
depicted in Fig.4.3 were initialised by jumping from an HAOs state
with an illumination intensity of 1.2 mW/cm2 to the respective applied
potential and external resistance. If the system bifurcates and starts
exhibiting oscillations associated with the LA limit cycle we count
them as LAO state. If the system settled on the HA limit cycle we
additionally checked for bistability by perturbing the system with a
relatively high illumination intensity above 2.5 mW/cm2, such that
the current maximum during the oscillations was not cut off any more.
If the system continues with HAO dynamics, we counted the state as
HAO state, but if the system attained an LAO state under the high
illumination, we jumped back to the low illumination intensity of
1.2 mW/cm2. If the system then stayed on the LAO state, we are in the
coexistance region of the parameter space but if the system bifurcates
back to HAO behaviour, only HAOs are stable for these parameters.
Note that for the parameter space depicted in Fig.4.3 we only dis-
tinguished between HAO states and LAO states. This means we did
neither distinguish between spatially homogenous and heterogeneous
dynamics nor between periodic and complex oscillations as a detailed
analysis of these phenomena will follow later in this chapter.

The figure shows a coloured area which marks the region where
stable oscillations can be found. The oscillatory region starts at 3.65 V
vs. SHE and an RextA value of 1 kΩcm2 and widens for larger applied
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Figure 4.3: Parameter plane of n-doped silicon spanned by the applied
voltage and the product of the external resistance and the active
WE area at an illumination intensity of 1.2 mW/cm2. In the red
arean LAO states can be found in the green arean HAO states
can be found and in the red and green striped area both can be
found. The filled circles mark LAO states and the squares mark
HAO states. The ’X’ mark stable fixed points.

voltages, similar to the parameter plane for p-doped WEs depicted in
Fig.3.4. The red coloured area is the parameter region where stable
LAOs are found and the green coloured area is the region where stable
HAOs are found. The red and green striped area indicates parameter
regions in which both oscillation types can be initialised. The dots
indicate measured LAOs and the squares are measured HAOs. The
crosses indicate stable fixed points. Analogously to the p-doped case,
the LAOs region encircles the oscillatory regime from the low voltage
side. The main difference between the n-doped case with reduced
illumination and the p-doped case is, that the HAOs can be found all
the way down to zero applied external resistance. This is attributed to
the reduced illumination which cuts off the maximum current during
the HAOs which seems to have a stabilising effect on the HA limit
cycle similar to the external resistance.

In this section we introduced the illumination intensity as para-
meter. We demonstrated its differences and analogies to the external
resistor. The reduction of the illumination intensity, hence the limita-
tion of charge carriers available for the oxidation process, allows for a
bistability between the electropolishing branch and the oxide covered
oscillatory branch. In addition, the lack of charge carriers seems to
stabilise HAOs. In Chapter 3 we saw similar phenomena and attrib-
uted them to the effect of the external resistor. Here we argue that the



4.2 the different spatiotemporal patterns 51

current limit due to the reduced number of charge carriers acts like an
infinitely large resistance and thus has similar effects on the dynamics
as the external resistance. However limiting the illumination does not
trigger the coupling between the two coexisting limit cycles as the
resistor does. Otherwise we would expect deviations from periodic
motion due to the intrinsic coupling as described in Chapter 3. Thus,
in the n-doped case we find periodic coexisting HAOs and LAOs for
sufficiently low RextA values and illumination intensities.

In addition the illumination intensity plays an important role for the
degree of synchrony on the WE as lowering it may result in pattern
formation. This aspect will be thoroughly discussed in the following.

4.2 the different spatiotemporal patterns

In this section we will give an overview of the different kinds of spati-
otemporal dynamics which can be found during the electrodissolution
of n-doped silicon. Of all the parameters we control during the experi-
ment, the two which have the most influence on the homogeneity of
the WE are the external resistor and the illumination intensity. Apart
from its role in the intrinsic coupling of the two limit cycles creating
temporal complexity, the resistor, which introduces a global linear
coupling, has an homogenising effect on the spatial dynamics. A re-
duction of the illumination, hence a reduction of the charge carriers
available for the oxidation reaction, on the other hand, introduces a
nonlinear, nonlocal coupling, which seems to be a necessary require-
ment for spatial symmetry breaking. To understand how the nonlinear
and nonlocal character of the coupling introduced by an adequate
reduction of the illumination intensity comes about, we consider the
following. If the illumination intensity is sufficiently low, such that
the generation rate G of valence band holes is in the same order of
magnitude as the reaction rate I, spatial fluctuations in the potential
drop φ along the space charge layer and in the charge carrier density
nh at the WE surface lead to changes in the local current density.
In addition these fluctuations lead to lateral motion of valence band
holes, which are driven by gradients in their concentration as well
as in the electrical field. Eq.4.1 gives an expression for this lateral
movement which was derived by Patzauer et al. [67].

∂nh

∂t
= G− R+

bhkBT

e
∆nh + bhdiv(nhgradφ), (4.1)

with the combined recombination and reaction rates R, the hole mobil-
ity bh, the Boltzmann constant kb the temperature T and the element-
ary charge e. It now becomes clear, that Eq.4.1 is a reaction-diffusion
equation with an additional nonlinear term. Thus the coupling which
depends on both nh and φ, is nonlinear. The nonlocal character is due
to the relation between φ and nh via Poisson’s equation. Nevertheless,
the dynamics found on n-doped WEs are also characterised by the
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inherent birhythmicity of the system, which means all spatial features
can either be linked to HAOs, LAOs or are a result of the interaction
of both. Consequently the framework of this sections is set to first
present typical features found for the spatiotemporal dynamics related
to LAOs followed by features observed in states related to HAOs. In
the end we will investigate some mixed dynamics. Finally we will
discuss where in the parameter space the different patterns are found.

4.2.1 LAOs and their patterns

Under high illumination the n-doped silicon system is very similar to
the p-doped silicon system and only spatially homogeneous oscilla-
tions can be found. This means that under high illumination we can
find the simple periodic as well as the more complex states presen-
ted in section 3.3. However, as the illumination intensity is reduced
a spatial symmetry breaking in the ellipsometric signal can be ob-
served. The characteristic patterns of the states arising during LAOs
are wavefronts, irregular in period, direction and shape, which lead to
spatiotemporal chaotic dynamics on the WE.

Fig.4.4 depicts a typical state that can be found if the illumination
intensity is sufficiently reduced. This state was initialised by first
switching the potential from OCP to 6.65 V vs. SHE with an illumin-
ation intensity of 2.72 mW/cm2 and an external resistor yielding a
RextA value of 3.00 kΩcm2. After two oscillation periods the applied
voltage was decreased to 4.65 V vs. SHE which lead to homogeneous
LAOs. Once the LAOs were stable the illumination intensity was re-
duced to 1.1 mW/cm2 and the RextA value increased to 5.00 kΩcm2.
At 4126 s the potential was increased to 5.25 V vs. SHE and after the
transient had settled the state depicted in Fig.4.4 was recorded.

The colours give the intensity of the ellipsometric signal in arbitrary
units, note that Fig.4.4 a) and b) share the same colour map which is
indicated by the colour bar on the right side of the figure. Fig.4.4 a)
is a snapshot of the electrode at t=4945 s. It is noticeable that regions
of highest signal intensity in that snapshot form curved bands which
appear to be irregular. On the left side there is a region of rather low
signal encircled by a band of high intensity which ends at the left
edge of the WE and on the opposite side there is an indication of a
similar shape. The lower part of the electrode shows a rather straight
and bright band followed by a very dark region at the lower edge of
the WE. The magenta coloured line which reaches from the high left
corner to the low right corner indicates the 1-dimensional cut along
which the time series is depicted in Fig.4.4 b).

We now turn our focus towards the 1D spatiotemporal cut in
Fig.4.4 b). The y-axis are the pixels along the cut and the x-axis is
the time. Note that the upper side of the cut corresponds to the top
left corner of the electrode. At t=4945 s is a magenta coloured dashed
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Figure 4.4: LAOs patterns (LAPAs) measured with an n-doped WE at
Uapp=5.25 V vs. SHE RextA=5 kΩcm2 and an illumination intens-
ity of 1.10mW/cm2. a) depicts a snapshot of the WE taken at
4945 s and b) is the 1D spatiotemporal cut along the magenta
coloured line in a). The top of the cut is the top left corner of the
WE and the bottom is the lower right corner. The red dashed line
in the cut marks the time of the snapshot.
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Figure 4.5: Time series of the global signals of the state depicted in Fig.4.4.
In a) the current density and in b) the spatial average of the ellip-
sometric signal are shown. Uapp=5.25 V vs. SHE, RextA=5 kΩcm2,
illumination intensity of 1.10mW/cm2

line which indicates when the snapshot of Fig.4.4 a) is taken. It can
be seen that the pattern is changing along the time axis and is thus
not stationary. In addition, wave-like dynamics can be identified in
the time series of the 1d-cut. Direction and shape of these wave fronts
change irregularly and point towards changes in velocity or direction
of the fronts. The spatial and temporal irregularities lead to spatiotem-
poral chaos. We have already shown that the LAOs emerge from a
Hopf bifurcation. The spatiotemporal data of Fig.4.4 suggests that
upon reduction of the illumination intensity the system undergoes a
Benjamin-Feir instability which leads to spatial symmetry breaking,
i.e. pattern formation. Note that the Benjamin-Feir instability is a well
known scenario for pattern formation in reaction-diffusion systems
close to a Hopf bifurcation.

Fig.4.5 depicts the time series of the current density in a) and the
time series of the spatial average of the ellipsometric signal in b). Note
that the time series shows complex behaviour which can be related to
the spatial symmetry breaking.

Henceforth we will call this type of pattern LAOs pattern (LAPA).
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4.2.2 HAOs and their Patterns

During the HAOs one can observe two types of spatially heterogen-
eous oscillations. The first type is observed during measurements with
a low external resistor and high applied voltages and can be described
as spatiotemporal chaos. For HAOs with a higher external resistance,
the electrode splits up in two or more clusters which then seem to
exhibit dynamics reminiscent of those in a period doubling cascade.

Fig.4.6 depicts the time series of the current density j and the
spatial average of the ellipsometric signal ξ of an HAO state, which
we show as an example of the first type of spatiotemporal pattern
during HAOs with low external resistance. The state is initialised by
switching from the OCP to 8.15 V vs. SHE with an applied resistor
of 1.00 kΩcm2 and a homogeneous illumination of the WE with an
intensity of 3.04 mW/cm2. After 60 s the illumination was reduced to
1.75 mW/cm2 and subsequently increased to 1.86 mW/cm2 after 492 s
and finally to 1.99 mW/cm2 after 847 s.

In the time series of the current density, depicted in Fig.4.6 a), it can
be seen, that the maxima of the current density oscillations are cut
off due to the low illumination intensity. As we have discussed above,
cutting off the maximum of the current oscillations is the only way to
stabilise HAOs for such low resistances. The cut off current oscillations
are typically only found for HAOs, and are thus, the main reason we
identified this state as an HAO state. The resulting current plateaus
are all on the same level and have a spike at the end of the plateau,
which is different to the HAOs depicted in Fig.4.2, where the spike
appears prior to the current plateau like a current overshoot after the
steep increase. The amplitude of the spike of the oscillations depicted
in Fig.4.6 varies from period to period. Except for the variations of the
current spike at the end of the current plateau the oscillations appear
to be regular. The oscillations of the spatial average of the ellipsometric
signal, depicted in Fig.4.6 b), are also approximately periodic but have
slightly deviating maxima and minima.

Now we want to investigate the local behaviour of this state. Fig.4.7 a)
shows a snapshot of the WE and Fig.4.7 b) the 1D spatiotemporal cut
along the magenta coloured line in Fig.4.7 a). Fig.4.7 c) depicts the time
series of the amplitude along the cut and d) is the phase. Amplitude
and phase were obtained as described in section 2.3.2.

The snapshot clearly shows inhomogeneities over the entire WE.
The signal appears irregular and somewhat cloudy, where most of the
ellipsometric signal attains values within a narrow range, except for
some isolated isles which appear two to three times brighter than the
rest of the WE. In the cut in Fig.4.7 b) one can see the relatively strong
variations of the local ellipsometric signal. It seems as if especially the
local maximum values of the ellipsometric oscillations differ strongly.
The overall oscillation period along the cut seems to stay more or less
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Figure 4.6: Time series of the current density in a) and the spatial aver-
age of ξ in b) of the state exhibiting the Type I HAOs patterns
(Type I HAPAs) depicted in Fig.4.7. The state is measured at
Uapp=8.15 V vs. SHE, RextA=1 kΩcm2 and an illumination intens-
ity of 1.99mW/cm2.

constant during the observed time range, although there seem to be
spatiotemporal deviations of the period as well. These observations be-
come even clearer as we take a look at the time series of the amplitude
and phase signal along the cut in Fig.4.7 c) and d), respectively. In the
amplitude signal one clearly observes distinct variations along the
cut, not only in the maxima but also in the minima of the amplitude
oscillations. Note that the amplitude of harmonic oscillations would
be constant in time, but due to the relaxational character of the HAOs,
one also observes periodic behaviour of the amplitude. But in the
case at hand we observe spatial variations along the cut of the amp-
litude signal in addition to the periodic behaviour. Also the positions
and intensities of the bright spots vary from period to period. The
time series of the phase in Fig.4.7 d) confirms clearly that the overall
period stays approximately constant along the cut, as all points on
the cut exhibit roughly 12 oscillations in the investigated time range.
Nevertheless, also the phase seems to display spatiotemporal chaotic
behaviour. To further investigate these irregularities we take a look at
the two white lines, drawn into the time series of the 1D-cut of the
phase, between 1150 s and 1200 s. Both lines connect the two points
of equal phase, i.e. both lines span one oscillation period of the local
dynamics. We observe that the top line is much longer than the line
below. The same two lines are also drawn into the time series of the
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Figure 4.7: Type I HAPAs measured with a n-doped WE at Uapp=8.15 V
vs. SHE RextA=1 kΩcm2 and an illumination intensity of
1.99mW/cm2. a) depicts a snapshot of the WE taken at 1290 s and
b) depicts the 1D spatiotemporal cut along the magenta coloured
line in a). The top of the cut is the top left corner of the WE and
the bottom is the lower right corner. The red dashed line in the
cut marks the time of the snapshot c) is the amplitude along the
1D spatiotemporal cut. d) is the phase in the 1D spatiotemporal
cut in radians. The white lines in the cut, each, covers one period
at its positions.
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1D-cuts along the amplitude and the ellipsometric signal. In the time
series of the 1D-cut of the amplitude we can see that the position
where the local oscillation period is long coincides with a particular
high maximum of the amplitude oscillation. The position where the
period is short, on the other hand, coincides with a particular low
amplitude maximum. This behaviour, where large amplitude maxima
lead to a longer local oscillation period as low amplitudes seems to be
displayed throughout the entire time series of the 1D-cut. Furthermore
we observe that wherever the maximum of the amplitude oscillation
is particularly large in one period, the maximum of the consecutive
period is particularly low. The latter observations also explains why
the phase velocity distribution along the cut seems to be approxim-
ately flat, if averaged over the observed time frame, i.e. why all the
pixels along the cut exhibit roughly 12 oscillation periods during the
investigated time frame.

We suggest that the observed spatiotemporal behaviour is best char-
acterised as amplitude turbulence similar to the amplitude chimeras
reported by Zakharova et al. [106]. The main similarity to the amp-
litude chimeras is that the spatiotemporal behaviour is characterised
by local amplitude variations with a flat local distribution of the aver-
age phase velocity. In [106] the oscillators with low amplitude have,
averaged over one period, the same phase velocity as the ones with
a high amplitude. In our case, the instantaneous phase velocity of
oscillators with a high a instantaneous amplitude is lower then the
one for low amplitudes. However, long term phase displacements
between the pixels are suppressed by the peculiar phenomenon, that
the local time series show a low amplitude maximum in an oscillation
period consecutive to one with a high maximum amplitude. Hence,
the condition of a flat spatial distribution of the average phase velocity
is, in our case, only true if the average is taken over several periods.
From here on we will refer to this behaviour as Type I HAOs pattern
(Type I HAPA).

A different type of spatiotemporal patterns can be found for HAO
states with a large external resistance. Note that we started scanning
the parameter space with very slow CVs to get a better overview of
the system’s general behaviour, as some of the dynamical phenomena
can only be found in a narrow parameter region and could be eas-
ily skipped if the parameter space is investigated at discrete values
under constant conditions. In addition, the dynamics showed them-
self to be highly sensitive towards the sample’s measurement history,
which lead to a higher reproducibility of the slow CVs compared to
discretely sampling the parameter space. Many of the phenomena
which occurred during the scans could also be observed under steady
conditions, however not all parameter regions have been revisited in
potentiostatic measurements, and thus some of the states, like the
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ones shown in the following, have so far only been measured during
potential sweeps.

Fig.4.8 a) depicts the time series of the current density and b) of the
spatial average of the ellipsometric signal, measured during a slow CV
with a scan rate of 0.3 mV/s, an external resistor of 6.00 kΩcm2 and
an illumination intensity of 0.95 mW/cm2. The CV started from an
LAO state at relatively low applied voltages, from where the potential
was swept towards higher potentials and then back again towards low
potentials. Eventually the system would undergo a transition from an
LAO state to an HAO state in the forward scan and a transition back
to an LAO state in the backward scan. The parameters for which these
transitions occur together with the types of transition will be discussed
later in this chapter. Fig.4.8 depicts an HAO state which was measured
right after the the transition from an LAO state in the forward scan
of the CV. Due to the low illumination intensity, the maxima of the
current density oscillations depicted in Fig.4.8 a) are cut off and show
the typical current plateau similar to the ones in Fig.4.6. The difference
is that in Fig.4.8 a) the large current spikes are in the beginning of the
current plateau, whereas in the state depicted in Fig.4.6 they are at the
end of the plateau. The current plateaus and the current minima seem
to be constant whereas the height of the spikes and the width of the
plateaus show period-two behaviour. The oscillations of ξ, depicted
in Fig.4.8 b) display also a distinct period-two behaviour where the
large maximum of ξ follows a large spike in the current density. Now
we turn our focus on the spatial features of this state. The snapshot
of the WE depicted in Fig.4.9 a) shows a region on the left side of the
WE where the local signal is much higher than on the rest of the WE
surface. In the cut in Fig.4.9 b) one can see that the electrode has split
into two clusters which both seem to exhibit period-two behaviour
at first, where the large maximum of the one cluster coincides with
the small maximum of the other cluster. However the period-two
behaviour in the lower half of the cut seems to fade after some time.
Also the region where we observe a distinct period 2 behaviour shrinks
in time. To get more insight on the local dynamics the local time series
of two points along the cut are plotted in Fig.4.10. Fig.4.10 a) depicts
the time series of the ellipsometric signal in (x,y) = (185, 213) and
Fig.4.10 b) depicts the one in (x,y) = (45, 213). The time series in
Fig.4.10 a) shows a distinct period-two behaviour and has a similar
shape as the one of the spatial average of ξ, depicted in Fig.4.8 b).
The time series in Fig.4.10 b) shows a period-two behaviour in the
beginning, which is by far not as distinct as in Fig.4.10 a) and fades
after nine periods. This confirms the observation made above, that
the period 2 behaviour is displayed especially in the top part of the
cut. It is not really clear whether the state where both cluster perform
period-two oscillations would be stable or transient under constant
parameters. The state depicted in Fig.4.9 is characterised by a cluster
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Figure 4.8: Time series of the current density in a) and the spatial average
of ξ in b) of the state exhibiting type II HAOs patterns (Type
II HAPAs) depicted in Fig.4.9. Measured with a n-doped WE
at U=6.70-7.05 V vs., SHE RextA=6 kΩcm2 and an illumination
intensity of 0.95 mW/cm2.

formation on the WE and a period-two behaviour of parts of the WE
and of the global signals, i.e. the spatial average. Apart from some
transient behaviour which can probably be related to the potential
sweep, the spatiotemporal behaviour appears to be periodic.

In contrary to this rather uniform spatial behaviour shown in Fig.4.9,
we take a look at a similar state, which displays less spatially uniform
behaviour. The state was measured during a slow CV with an external
resistor yielding RextA=6 kΩcm2 and an illumination intensity of the
WE of 1.2 mW/cm2. This time the state was found immediately prior
to the transition from an HAO state to an LAO state during the back-
ward scan. Fig.4.11 a) depicts the time series of the current density
and b) the time series of the spatial average of ξ. The maxima of the
oscillations in the current density are slightly cut off due to the low
illumination frequency, but not as pronounced as in previously presen-
ted states. The current minima are alternating between high and low
values which gives the current oscillations a period-two character. The
time series of the spatial average of ξ also shows period-two behaviour.
The overall dynamics in the time series of the global signals seem to
be uniform. Let us now turn our focus to the spatiotemporal dynamics
on the WE. The snapshot of the WE in Fig.4.12 a) shows nicely how
the electrode splits up into two parts. One can see that the majority of
the left side of the WE shows a relatively high signal compared to the
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Figure 4.9: Type II HAPAs measured with a n-doped WE at U=6.70-
7.05 V vs., SHE RextA=6 kΩcm2 and an illumination intensity
of 0.95 mW/cm2. a) depicts a snapshot of the WE taken at 6720 s
and b) depicts the 1D spatiotemporal cut along the magenta col-
oured line in a). The top of the cut is the right side of the WE and
the bottom is the left side. The red dashed line in the cut marks
the time of the snapshot.

Figure 4.10: Local time series of ξ of the Type II HAPA state depicted in
Fig.4.9 at two different pixels of the 1D spatiotemporal cut.
a) time series of X = 185 and b) at x = 45. Uapp = 6.70 −
7.05V vs. SHE RextA=6 kΩcm2 and an illumination intensity of
0.95 mW/cm2.
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Figure 4.11: The time series of the global signals from the Type II HAPA state
depicted in Fig.4.12. In a) is the current density and b) is the
spatial average of ξ. Measured with a n-doped WE at U=6.60-
5.55 V vs., SHE RextA=6 kΩcm2 and an illumination intensity of
1.2 mW/cm2.

right side of the electrode. When looking at Fig.4.12 b), one observes
that both cluster on the electrode exhibit non-periodic oscillations. The
local maxima and minima of the ellipsometric signal vary strongly and
it appears as if one cluster often has a large maximum when the other
cluster has a low maximum. Fig.4.13 shows the local time series of the
ellipsometric signal of two points along the cut. Fig.4.13 a) shows the
local time series at (x,y) = (185, 215) and Fig.4.13 b) the time series
at (x,y) = (45, 215). Both oscillations appear non-periodic but have a
period four character. Upon a close look at a) one recognises that the
oscillations follow a pattern in which every second maximum is lower
than its consecutive maximum but the second and third maxima are
both larger than the fourth and fifth maxima, the forth and the fifth
maxima are in turn smaller than the sixth and seventh maxima and
so on. This means that the oscillation of the local signal is not truly
alternating between high and low maxima, like it would be the case of
a state in the period doubling cascade, but it is rather that groups of
two maxima are alternating in height. Furthermore the first maximum
within these groups is always smaller than the second one. The direct
comparison between the time series in a) with the one in b) shows
that the one depicted in b) displays qualitatively the same behaviour
as the one depicted in a). However it appears that whenever a) is in an
episode of two large maxima b) is often exhibiting two small maxima.
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Figure 4.12: Type II HAPAs measured with a n-doped WE at U=6.60-
5.55 V vs., SHE RextA=6 kΩcm2 and an illumination intensity of
1.2 mW/cm2. a) depicts a snapshot of the WE taken at 20110 s
and b) depicts the 1D spatiotemporal cut along the magenta
coloured line in a). The top of the cut is the right side of the WE
and the bottom is the left side. The red dashed line in the cut
marks the time of the snapshot.
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This shows that only the modulation of the oscillations of the two
cluster are in a kind of antiphase configuration, however, both cluster
will be in a maximum at the same time.

Figure 4.13: Local time series of ξ of the Type II HAPA state depicted in
Fig.4.12 at two different pixels of the 1D spatiotemporal cut.
a) time series of X = 185 and b) at x = 45. Uapp = 6.60 −
5.55V vs. SHE RextA=6 kΩcm2 and an illumination intensity of
1.2 mW/cm2.

The state depicted in Fig.4.9 and the one in Fig.4.12 have in common
that in both cases the global signals, i.e. the current density and the
spatial average of ξ exhibit period-two oscillations and that in both
cases the WE splits up into two cluster. As the cut off of the current
maximum is a typical feature of the HAOs, we will classify this type
of pattern as an HAO state. Henceforth we will denote this type of
HAOs pattern Type II HAOs pattern (Type II HAPA). The differences
between the two examples presented for the Type II HAPAs will
be discussed later in this chapter, where the different states will be
contextualised within the parameter space. For now we claim that the
period-two character displayed by the Type II HAPAs has its origin
in the intrinsic coupling between the HA limit cycle and the LA limit
cycle, as these states arise close to the transitions from an LAO state
to an HAO state or vice versa. Note that Type II HAPAs are especially
found for higher external resistances opposed to the Type I HAPA
which is found for low resistances. Hence, another strong indication
that the applied external resistor is strongly related to the intrinsic
coupling between LAO limit cycle and the HAO limit cycle.
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4.2.3 The Mixed States

In the previous part we presented spatiotemporal heterogeneities
which we think are related to dynamics either primary dominated
by the LAO mechanism as in Fig.4.4, or the HAO meachanism as in
Fig.4.7, Fig.4.9 and Fig.4.12. In the following part, we will show some
states displaying features of both types of oscillations.

Fig.4.14 shows a state which was initialised by switching the poten-
tial from OCP to 7.18 V vs. SHE while the WE was illuminated with
an intensity of 2.28 mW/cm2 and an external resistor was inserted
yielding RextA=3.00 kΩcm2. This resulted in a homogeneous but non-
periodic type of LAOs. After t =689 s the illumination was reduced to
1.21 mW/cm2 and the system attained the state depicted in Fig.4.14.

The snapshot illustrated in Fig.4.14 a) was taken at t=2425 s. The
upper left corner has a higher signal than the right part of the WE.
This brighter part seems to be separated from the darker part by two
curved bands, where the left one is a local minimum and the right one
a maximum.

The spatiotemporal dynamics in Fig.4.14 b) exhibits initially rather
coherent oscillations with comparably high amplitudes. The oscillation
frequency increases abruptly after the first three oscillations and the
maximum value of the oscillations decreases. After about four of this
faster oscillations a nucleus of a second oscillation phase with larger
period forms at the top left corner of the WE. This can be seen in a
discontinuity in phase in Fig.4.14 b). In the following, this nucleus
spreads, oscillation by oscillation, further into the WE. The amplitude
of the oscillations in the nucleus are smaller, the maxima are less
defined and they seem to drift apart in time, i.e. they tend towards
lower frequencies. The oscillations outside this nucleus seem to be
unaffected by the dynamics spreading from the top left corner of the
WE. Only in some intermediate region, some wave like transition
between the two phases manifests itself in the time series of the
1D-cut. As the state which spreads over the WE covers about half
of the active area, a checker board pattern emerges in the 1D-cut
with isles of relatively high intensity. This checker board pattern in
the 1D-cut corresponds to adjacent bands on the WE which are in
antiphase configuration, as can be observed in Fig.4.14 a). Once the
state has spread over the whole WE the checker board pattern starts
homogenising until the system jumps back to the homogeneous state
with the higher frequency. After a few periods, a new nucleus of the
slow oscillations forms again and the whole process repeats. This
cycle between the two states is stable and repeats itself over several
thousand seconds.



4.2 the different spatiotemporal patterns 66

The process of a nucleus emerging on an oscillating background
and spreading over the WE under the formation of checker board
patterns in the time series of the 1D-cut is reminiscent of the stepwise
phase dependent transition from HAOs to LAOs whose frequencies
are locked in a 1:2 ratio [102]. In each period of the HAOs, the LAOs
phase spreads a little further into the HAOs region. As this process
occurs in each period of the HAOs and as the frequencies of the two
phases are locked in a 1:2 ratio, the checker board pattern emerges
in the time series of the 1D-cut. On the WE the checkerboard pat-
tern manifest itself as a series of bands spreading over the WE, in
antiphase configuration, oscillating with half the frequency of the
HAOs. Hence we identify the homogeneous oscillations with the high
frequency as HAOs and the parts which spread from a nucleus as
LAOs. It seems that the transitions back to the HAOs are preceded by
a homogenisation process during the LAOs.

Figure 4.14: Double metastable (DOMES) pattern measured with an n-doped
WE at U=7.18 V vs. SHE, RextA=3 kΩcm2 and an illumination
intensity of 1.21mW/cm2. a) depicts a snapshot of the WE taken
at 2425 s and b) depicts the 1D spatiotemporal cut along the
magenta coloured line in a). The top of the cut is the lower right
corner of the WE and the bottom is the top left corner. The red
dashed line in the cut marks the time of the snapshot.

Fig.4.15 depicts the time series of the current density in a) and the
one of the spatial average of ξ in b). The current oscillations show,
during the time when only HAOs are present on the WE, some of
the typical features of the HAOs, which are a cut off maximum and a
relatively high amplitude. As the phase of LAOs forms on the WE and
spreads, the amplitude of the current oscillations decreases, until the
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dynamics suddenly switch back to HAOs and the amplitude of the
current oscillations increases drastically. The time series of ξ displays
a similar behaviour.
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Figure 4.15: Time series of the global signals during the DOMES pattern
depicted in Fig.4.14. a) the current density and b) the spa-
tial average of ξ. Measured with an n-doped WE at Uapp =

7.18V vs. SHE, RextA=3 kΩcm2 and an illumination intensity of
1.21mW/cm2.

This self-organised repeating transitions between the two states is
peculiar, as one would expect for a bistable system, that either one of
the two states is metastable and the other one is globally stable, or
both are equally stable. In the first case, the system should settle in
the globally stable state and in the latter case, when the system is at
its equistability point, one would naively expect that neither of the
two states spread over the electrode as both are equally stable. That is
why we think that the state depicted in Fig.4.14 is a double metastable
state, which means that the HAO state and the LAO state are both
metastable for the given parameters. To further elaborate on what this
means and how such a state could arise, we take a look at Fig.4.16,
where we have sketched different configurations of nullclines of a
bistable two dimensional reaction-diffusion system with the two vari-
ables u and v in Fig.4.16 a) and b), and the potential landscape of the
mechanical analogue for v = v1 and v = v2 in c) and d), respectively.
Fig.4.16 a) shows the z-shaped nullcline of the variable u which has a
fast time scale compared to v. The two green lines are two different
possible cases for the nullclines of v. Both are constant in v, one at
v = v1 and the other at v = v2. P1 and P2 mark the two fixed points
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Figure 4.16: In a) and b) two exemplary sketches of different configuration
of intersecting nullclines in the phase plane spanned by the
variables u and v. a) depicts two cases for the position of a
vertical v-nullcline intersecting the z-shaped u-nullcline. In the
first case at v = v1 and the second case at v = v2. Each case
is on one side of the system with respect to equistability point
(dashed line). b) depicts the case for a non-vertical v-nullcline
intersecting the u-nullcline such that the two stable fixed points,
P1 and P2, are each on one side with respect to the equistability
point (dashed line). c) and d) depicts two exemplary sketches of
the potential landscape of the mechanical analogue for the case
of a vertical v-nullcline at v = v1 and v = v2, respectively.
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for each position of the v-nullcline. A red point is globally stable in
the respective configuration and a blue one is metastable. For a better
visualisation of this concept we take a look at the potential landscapes
in Fig.4.16 c) and d). Fig.4.16 depicts the case at v = v1. Here the
two minima of E are stable fixed points whereas the maximum is
the unstable fixed point. It can be seen that less energy is needed to
perturb the system such that it moves out of the basin of attraction
of the metastable fixed point at small u than it is needed to leave the
basin of attraction of the globally stable fixed point for large u. In the
other case, as the vertical v-nullcline is located at v = v2 in Fig.4.16 a),
the potential landscape has changed to the one depicted in Fig.4.16 d).
Now P2, i.e. the stable fixed point at large u, is the metastable fixed
point and P1 is the globally stable one. Note that the qualitative dif-
ference of these two cases is the relative position of the v-nullcline
to the equistability point. The equistability point is indicated by the
dashed line in Fig.4.16 a) and is the point where the potentials of
the two fixed points would be on the same level, and thus equally
stable. The nullclines drawn in Fig.4.16 b) draw another picture. Here
the v-nullcline is not constant in v, but has a slope and crosses the
equistability point in a way that both stable fixed points are metastable.
As the system attains P1 at v = v1, the analogous potential landscape
is that of Fig.4.16 c). If the system is then adequately perturbed, it
would move fast to the upper branch of the u-nullcline and from there
it would move slowly towards P2. As it attains the state at P2, the
analogous potential landscape is that depicted in Fig.4.16 d), and thus
P2 is also metastable. Hence, we call this state a double-metastable
state (DOMES). Double metastable states have also found in numerical
investigations of spiral waves during the CO oxidation on Pt, where
in a bistable parameter region two different front solutions could be
found, both unstable to a supercritical nucleus [9]. However in this
case we seem to have two metastable oscillatory states, which has, to
the best of our knowledge, not been reported so far.

The next state we want to present is the coexistence of an LAO state
and an HAO which are spatially separated on the WE. Fig.4.17 depicts
a state in which a part of the WE seems to exhibit LAOs locked to
half the frequency of the HAOs which are active on the other part of
the WE. This state has never been completely stabilised, however the
transients are so slow that the spatial coexistence of the LAO and the
HAO state persists for several thousand seconds.

To adjust this state, we first let the system attain HAOs at 6.65 V
vs. SHE with an external resistor yielding RextA=4.77 kΩcm2 and
an illumination intensity of 2.79 mW/cm2. After 500 s the illumin-
ation was reduced to 1.21 mW/cm2 and the resistance lowered to
RextA=1.00 kΩcm2. Subsequently the applied voltage was reduced to
5.65 V vs. SHE. Now the system exhibits homogenous HAOs. We then
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perturbed this state with a heterogeneous illumination for 60 s , such
that the rightmost 1/3 of the WE is illuminated with an illumination
intensity of 3.62 mW/cm2 while keeping the remaining two thirds of
the WE illuminated with 1.2 mW/cm2. After 60 s of heterogeneous
illumination we switched back to a homogeneous illumination of
1.2 mW/cm2.

Fig.4.17 a) shows a snapshot of the WE taken at t=4500 s. It can
be seen that the electrode is seperated into two regions. The one in
the upper right corner shows a relatively low signal at the time of
the snapshot and the other region a rather medium signal. The two
regions are separated by a bright band.

Fig.4.17 b) depicts the 1D spatiotemporal cut of the measurement,
beginning when the heterogeneous illumination was introduced. The
black dashed line marks the moment when the illumination was
switched back to homogeneous 1.2 mW/cm2. One can see, that the
local increase of the illumination induced heterogeneities in the top
half of the cut, which persist even as the illumination is switched back
to homogeneous 1.2 mW/cm2. In the beginning these heterogeneities
will arrange themselves to a synchronised region which oscillates
slower but with a higher amplitude than the initial HAO state. The
lower border of this region then moves towards the top while the
region also grows and spreads towards the top edge. Once it reaches
the top edge of the electrode at roughly t=4300 s, the lower border of
the region will slowly start spreading. At roughly t=7000 s the LAOs
region develops some heterogeneities reminiscent of LAPAs and at
about t=8000 s the spreading of the slower oscillations accelerates until
the whole electrode is covered by the slow oscillating phase before it
globally switches back to the initial state. Quickly after the transition
to the initial HAO state, a nucleus of the slow oscillations forms again,
only this time it is in the bottom of the cut.

To further elucidate the dynamics, Fig.4.17 c) depicts a magnification
of the 1D spatiotemporal cut between t=4500 s and t=6000 s. In the
zoom one clearly recognises the two described regimes. The two differ-
ent dynamics are phase locked at their border. The main frequency of
the oscillations in the top part seems to be 1/2 of the one in the bottom
part. The oscillations in the top regime with the higher amplitude is
simple periodic, however its maxima become narrower towards the
border of the two states. In addition the region loses homogeneity as
the oscillations at the top edge of the cut evolve a wavefront character
at roughly 4800 s. The wavefront propagates from the top of the cut
towards the centre of the slow oscillating region, from where on the
rest of the region is approximately homogeneous. The wave character
at the top of the cut becomes more pronounced with time. The lower
part of the cut exhibits Type II HAPAs, with a main frequency twice
as high as the one in the upper region. The region of Type II HAPAs
has split into three clusters, each exhibiting period-two oscillations.
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Figure 4.17: Spatial coexistence (SPACO) pattern measured with an n-doped
WE after heterogeneously illuminating the rightmost 1/3 of the
WE at an illumination intensity of 3.62 mW/cm2 for 60 s while
keeping the other 2/3 under a constant illumination intensity
of 1.1 mW/cm2. The applied voltage was Uapp=5.65 V vs. SHE,
and the product of the external resistor and the WE area yiel-
ded RextA=5 kΩcm2. After the perturbation, the illumination
intensity was kept constant and homogeneous at 1.1 mW/cm2.
a) is the snapshot of the WE taken at 4500 s, the magenta col-
oured line marks the 1D spatiotemporal cut depicted in b). The
dashed black line in b) marks the point from which the perturb-
ation stopped and the illumination was homogeneous and the
magenta coloured dashed line marks the time of the snap shot.
c) is the zoom into the spatiotemporal cut between 4500 s and
6000 s. d) is the zoom into the spatiotemporal cut between 7000 s
and 8500 s.
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Fig.4.17 d) depicts a zoom into the time range of the time series of
the 1D spatiotemporal cut, when the spreading of the LAO region
suddenly accelerates and spreads over the entire WE. In the cut one
can see that episodes of antiphase clusters and LAPAs seem to appear
in the LAOs region, in the upper part of the cut. The other region of
the WE still displays Type II HAPAs, however, it seems that the period-
two character, or in other words the difference between the small and
the large maximum, is less pronounced than it is in Fig.4.17 c). This
seems to be especially true at the point when the acceleration of the
border between the two regimes start, which is marked by the black
dashed line. In order to take a closer look at the local dynamics in
the Type II HAPA region, we have plotted the time series of pixel 40

of the 1D spatiotemporal cut in Fig.4.18. Fig.4.18 a) covers the same
time range as in Fig.4.17 c) and Fig.4.18 b) the same as in Fig.4.17 d).
The time series in Fig.4.18 a) shows a relatively uniform period-two
oscillation. The difference between the large maxima and the small
ones is comparable high. In the local time series depicted in Fig.4.18 b)
the oscillations are not as uniform as in a), but change in time. In
the beginning, the period-two character is still quite pronounced, but
the difference between the large and the small maxima is less than
in Fig.4.18 a). By the time marked by the red dashed line, which is
the same time as the black dashed line in Fig.4.17 d), the period-two
character is only slightly visible and continues to decrease until the
dynamics undergo a transition to an LAO state. When looking at the
1D time series of the spatiotemporal cut in Fig.4.17 b), one notices
that the overall behaviour is reminiscent to DOMES state depicted
in Fig.4.14, as there is a part of the electrode in an LAO state which
spreads over the entire WE. The most prominent difference is clearly
the long period of time in which the front between the LAO region
and the Type II HAPA region is almost stationary in Fig.4.17 compared
to the case of the DOMES where the LAO regions spread over the
electrode within a comparable short amount of time. It is noteworthy
that the HAOs region in the DOMES state does not show any kind
of period-two behaviour or cluster formation and that the period-two
behaviour in Fig.4.17 is distinctly less pronounced when the LAOs
region spreads fast, compared to the time the border appears to be
stationary. This could suggest that the state of spatial coexistence is
stabilised by the coupling between the two phases, which seems to
lock the LAOs to half of the main frequency of the HAOs and induces
a period-two behaviour in the region exhibiting an HAO state. And
as the period-two behaviour in the region exhibiting Type II HAPAs
becomes less pronounced the region exhibiting LAOs starts spreading.

Stich et al. found, in numerical studies on a birhythmic reaction-
diffusion medium, self organised pacemakers in the form of two
spatially separated coexisting oscillatory regions, where each region
attains a different limit cycle. In his case the size of the core of the
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region with a higher frequency could be destabilised by phase slips,
which occur if the frequency difference between the two regions is
increased above a critical value [90]. Maybe in the case depicted in
Fig.4.17, the period-two behaviour of the region displaying an HAO
state and the 1:2 locking of the LAOs to the main freuency of the
HAOs reduces the frequency difference sufficiently, such that the front
can be stabilised. The fact that in our case it is the slowly oscillating
region which spreads throughout the system might point towards a
negative dispersion relation, which is discussed in [91]. Nevertheless
one must be careful to compare our results to the ones in [90], as Stich
et al. investigated a reaction-diffusion system with local coupling,
whereas we have a global and a nonlocal coupling. Furthermore the
investigations of the self-organised pacemakers by Stich et al. have
been in the Benjamin-Feir stable regime, whereas in our case we
expect to be in the Benjamin-Feir unstable regime, at least for the
LAPAs. Fig.4.19 depicts the time series of the current density and

Figure 4.18: Local time series of ξ of the state depicted in Fig.4.17 at (x,y) =
(80, 346) which is pixel 40 in the 1D-cut for two different time
intervals of Fig.4.17 c) and d). Measured with an n-doped WE
at Uapp =5.65 V vs. SHE, RextA=5 kΩcm2 and an illumination
intensity of 1.1mW/cm2.

the spatial average of the ellipsometric signal during the same time
interval as in Fig.4.17 c). In the time series of the current density in
Fig.4.19 a) the oscillations show clear period-two behaviour, where
the current maxima, which follow the low current minima show the
typical behaviour of cut off HAOs, with the sharp overshoot in the
beginning of the current plateau. The consecutive maxima, on the
other Hand, do not seem to be affected by the illumination limit as
they exceed the current of the plateau and seem to be of normal shape
as it does not display any signs of a sharp current limit. The time
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series of the spatial average of ξ, depicted in Fig.4.19 b) also displays a
clear period-two behaviour. The low minima of ξ coincide with the
spikes of the current in the maxima of the periods with the typical
HAOs characteristics.
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Figure 4.19: Time series of the global signals during the SPACO pattern depic-
ted in Fig.4.17. a) the current density and b) the spatial average
of ξ. Measured with an n-doped WE at Uapp =5.65 V vs. SHE,
RextA=5 kΩcm2 and an illumination intensity of 1.1mW/cm2.

In general the state depicted in Fig.4.17 c) is a very interesting state
as it displays the spatial coexistence of LAO and HAO dynamics
on one WE. Henceforth we refer to this state as ’spatial coexistence’
(SPACO) state.

4.3 the patterns in parameterspace

In the last section we presented an example of each of the different
types of spatiotemporal dynamics found in the investigated parameter
regime during the electrodissolution of n-doped silicon. In this section
we will try to relate the different types of spatiotemporal phenomena
to the applied parameters to get a better understanding of the system
and especially the effect of the different couplings on the dynamics.
Thereby we keep in mind that we suspect the external resistor to
couple the two limit cycles with each other and thus creating complex
temporal behaviour but at the same time having a homogenising effect
on the spatial dynamics. We also remember that reducing the illumin-
ation intensity below a certain value is necessary for spatial symmetry
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breaking to occur. As mentioned above we explored the parameter
space using different techniques of initialisation and many different
parameter sets. Slow potential scans for different combinations of illu-
mination intensities and RextA values turned out to give most insights
into the dynamics and their relation to a given set of parameters. By
scanning up and down between 4.65 V vs. SHE and 8.15 V vs. SHE, we
could detect the LAOs, the HAOs and the transitions from one type
of oscillations to another as well as a possible hysteretic behaviour
for several different sets of parameters. The slow scan rate of either
0.3 mV/s or 0.1 mV/s ensured that the experiments were conducted
close to quasi-stationary conditions such that we screened, at least
qualitatively, a complete picture of the dynamics.

1.0 kΩcm2
3.0 kΩcm2

6.0 kΩcm2

2.25 mW/cm2 Type I HAPA - - -

1.20 mW/cm2 LAPA
DOMES
SPACO

LAPA
SPACO
Type II HAPA

0.95 mW/cm2 LAPA
Type II HAPA

LAPA
Type II HAPA

Table 4.1: The different patterns encountered during the different scans. Note
that the scan with an illumination intensity of 1.2 mW/cm2 and
RextA=3 kΩcm2 was scanned with 0.1 mV/s whereas all the oth-
ers were scanned at 0.3 mV/s. The scan at 2.25 mW/cm2 and
RextA=1 kΩcm2 was scanned from 8.15 V vs. SHE down to 4.65 V
vs. SHE and was initialised in an HAOs state, whereas all the other
scans started at 4.65 V vs. SHE in an LAOs state and were scanned
up to 8.15 V vs. SHE and back down.

In Table 4.1 we listed the different types of patterns encountered
during the different scans. So far no scans have been conducted for
the parameter sets of the empty cells. For the measurements in the
first row with the highest illumination of 2.25 mW/cm2 the variety
of the different spatial phenomena is the smallest. The measurement
measured with an external resistor of 6.0 kΩcm2 shows exclusively
homogeneous dynamics and the one measured with an external res-
istor of 1.0 kΩcm2 shows only the Type I HAPA and the checkerboard
pattern The latter is transient behaviour observed during and right
after the transition from an HAOs state to an LAOs state and, thus,
it is qualitatively different from the other patterns which are stable
states. The Type I HAPAs can be observed during cut off HAOs with
no or low applied external resistance and high applied voltages.

The two measurements in the second row of Table 4.1 , measured
at an intermediate illumination intensity of 1.20 mW/cm2 show the
most variety of spatiotemporal phenomena as they show all the above
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presented spatiotemporal features except for the Type I HAPAs. How-
ever the scan measured with an RextA value of 3 kΩcm2 is the only
low illuminated scan which did not exhibit Type II HAPAs. Note that
these two scans are the only ones which displayed the patterns of
mixed dynamics, i.e. the SPACOs and the DOMESs, where the scan
with an resistance of 3.0 kΩcm2 showed both types and the one with
the higher resistance of 6.0 kΩcm2 only showed the SPACO state.

The scans in the last row measured at the lowest illumination
intensity of 0.95 mW/cm2 and resistances yielding 3.0 kΩcm2 and
6.0 kΩcm2 show the typical patterns emerging from the two oscilla-
tion types , i.e. the LAPAs and Type II HAPAs.

Table 4.1 gives a nice overview on which patterns can be found
for which sets of parameters but it does not illustrate our claims
concerning the effect of the two types of couplings, i.e. the linear
global coupling introduced by the external resistor and the nonlinear
nonlocal coupling introduced by the limitation of the amount of photo
generated charge carriers. The latter is thought to decrease spatial
coherence, whereas the global coupling introduced by the external
resistor on the one hand has an homogenising effect on the dynamics
but on the other hand introduces a temporal complexity by coupling
the two existing oscillation mechanisms, i.e. the LAO and HAO, to
each other as discussed in chapter 3.

4.3.1 The Coupling Types and Spatial Complexity

Let us first investigate the effect of the two parameters on the spatial
synchrony of the phase. A good way to do that is to look at Kuramoto’s
order parameter S which is defined as follows [47]:

S(t) =

∣∣∣∣∣ 1N
N∑

n=1

eiΦn(t)

∣∣∣∣∣ (4.2)

Here, N is the number of oscillators in the system, in our case all the
pixels which map the active WE area, and Φn(t) is the phase of the
nth oscillator. Note that the phase is obtained from the analytic signal
as described in section 2.3.2. We determined the order parameter S

for measurements during which the voltage was slowly scanned to
detect spatial inhomogeneities. The type of these inhomogeneities
could then be identified by looking at the video material and the 1D
spatiotemporal cuts. S is a good measure for the synchrony of the
phase dynamics and has proven to work best as a measure for the
coherence of LAO states, i.e. the LAPAs, which are dominated by wave
dynamics. In the case of Type I HAPAs which display inhomogeneities
in the amplitude but have rather coherent phases the above defined
order parameter is not the right tool to measure spatial coherence. But
since in this measurement series, the Type I HAPA was only observed
with an external resistor yielding a RextA value of 1.0 kΩcm2, we will
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restrict our discussion of the coherence to the phase dynamics, and
thus to S. For a detailed analysis of the synchrony of clusters, which is
the case for the Type II HAPAs, one would use the Daido-Kuramoto
order parameter instead of Kuramoto’s phase order parameter. Never-
theless, although Kuramoto’s phase order parameter is certainly not
the optimal tool for a quantitative analysis on the spatial behaviour
of Type II HAPAs, it is definitely sufficient to detect the patterns
which can then be further analysed separately. In this context, we use
the order parameter to discuss the coherence of the phase dynam-
ics on the WE and to point out the parameter values at which the
individual attractors, transitions and patterns exist in the scan, in a
hopefully clearer manner than walking the reader through hundreds
of thousands of seconds of spatiotemporal cuts.

In order to illustrate the parameter dependence of the coherence of
the dynamics, we plotted the order parameter of some of the scans of
Table 4.1 in Fig.4.20. The plots are arranged such that the ones on the
right side, in column II, are measured with large external resistor with
6 kΩcm2 and the one on the left side, in column I, with only 3 kΩcm2.
The highest illumination was applied during the scan depicted in row
a) and the lowest illumination during the one depicted in row c). All
the scans, for which the order parameters are depicted in Fig.4.20 were
initialised at low applied potentials in an LAO state. The potential was
then slowly swept to a relatively high applied potential in the forward
scan, during which a transition from an LAO state to an HAO state
occurred. On the backward scan the system eventually goes back to
an LAO state. Usually we observed a hystereses between LAO and
HAO states, which means there are potential ranges in which the LAO
and HAO states are bistable. We highlighted these bistable regions in
red. Hence, the borders of the potential ranges for which the system
is bistable also mark the transitions between the different types of
dynamics. The high potential border is at the potential at which the
dynamics change from an LAO state to an HAO state during the
forward scan and vice versa.

A first rough comparison of the three curves in column II shows
that, overall, the highest order parameter is reached during the scan
depicted in a) II, which is constant at 1, as no pattern formation can be
observed for these parameters. As we reduce the illumination intensity,
the synchrony of the WE is reduced as well, which can be seen at
the decreasing minimal values of the the order parameters depicted
in b) II and c) II. Comparing the order parameter in b) I, which was
measured with a lower external resistance of 3 kΩcm2, with the one
measured with the higher resistance in b) II, one sees that the overall
order parameter is less noisy and higher for the one with the larger
external resistance. The increased coherence observed for the larger
external resistance is due to the homogenising effect of the linear
global coupling introduced by the resistor.
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Figure 4.20: Kuramoto’s phase order parameters of oscillations during slow
CVs. The scan in column I was conducted with an external res-
istance of 3 kΩcm2 and the scans in column II with 6 kΩcm2.
In row a) the WE was illuminated with 2.25 mW/cm2, in b)
the WEs were illuminated with 1.20 mW/cm2 and in c) with
0.95 mW/cm2. The red areas mark the regions for which the sys-
tem displayed a hysteresis. The order parameters were smoothed
using a Savitzky-Golay filter with a 2nd degree polynomial and
a 301 point window.
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We now take a closer look at the curves in in Fig.4.20 column II
and connect the features in the order parameters with the different
dynamical states and spatiotemporal patterns presented above. We
start with the scan in Fig.4.20 c) II, which is the one with the lowest
illumination. In the beginning of the scan the order parameter starts
at a relatively high value, slightly above 0.8, as the system attained
an LAO state during which some LAPAs begin to form. As we follow
the curve towards slightly higher potentials we observe a significant
decrease of the order parameter together with an increase of its noise.
Here we have fully developed unordered LAPAs similiar to those
presented in Fig.4.4. The order parameter stays low and noisy until
it suddenly increases to a high value around 0.9, as the dynamics
changes to the HAPA II state depicted in Fig.4.9. As the scan proceeds
to higher potentials the Type II HAPA disappears and the system
performs homogenous HAOs which lead to a constant order parameter
at roughly 1. On the backward scan the order parameter drops down
to values between 0.8 and 0.9 in the bistable region, as again Type II
HAPA form on the WE. A further decrease of the potential leads to
a transition from Type II HAPA to LAPA, which manifests itself in a
sudden decrease of the order parameter and increase of its fluctuations.
For the low potentials at the end of the scan, the LAPA state becomes
more coherent again, which leads to an increase in the order parameter.

We now take a look at the order parameter depicted in Fig.4.20 b) II.
In the beginning of the scan the order parameter is close to 1 with
almost no fluctuations, indicating homogenous LAOs. As the potential
is increased the order parameter decreases slightly and becomes a
little noisy. Here, the dynamic on the WE desynchronises slightly as
some LAPAs start to form in the bistable region of the scan. At the
high potential border of the bistable regime the dynamics change from
LAPA to SPACO. The transition from the SPACO state to homogenous
HAOs is rather slow in this case, and it seems as if the transition does
not occur until the backward scan, which can be seen by the slowly
growing order parameter. However, we defined the local minimum
of the order parameter in the SPACO state as the transition point
to the HAOs, as it marks the point for which the area of the LAO
region on the WE starts to shrink in favour for the HAO region. It
seems as this is the point where the LAO phase becomes unstable and
disappears slowly. As the order parameter reaches one, the system
exhibits homogenous HAOs. On the backward scan, within the low
potential region of the bistable regime where the order parameter
decreases, we find the Type II HAPA state depicted in Fig.4.12. After
this Type II HAPA pattern disappears, the dynamics change from
homogenous HAOs to LAOS. During the scan depicted in Fig.4.20 a) II
the oscillations were spatially homogenous, thus, the order parameter
is constant at 1.
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The order parameter of the scan depicted in Fig.4.20 b) I was meas-
ured with the same illumination intensity as the one in Fig.4.20 b) II,
but with a smaller resistance. It begins at roughly 0.8, as the WE
exhibits LAPAs. Upon an increase of the potential the order para-
meter decreases slightly, until it reaches the bistable regime. Within
the bistable regime, suddenly, large spikes to values of almost 1 arise
followed by large drops of the order parameter to values of around
0.6. This behaviour associated with DOMES dynamics similar to the
ones depicted in Fig.4.14. Note that the high spikes depict moments of
very high synchrony in the system and are related to the phase of the
DOMES state in which the system abruptly jumps to homogeneous
HAOs, right after the LAO state sufficiently synchronised, and before
a new nucleus of the LAOs state has formed. At the end of the bistable
region in the forward scan one recognizes two almost identical fea-
tures consisting of a spike in the order parameter which reaches up
to values above 0.9 followed by a gradual decrease towards roughly
0.6 and then again a sudden spike up to 0.9 and a subsequent gradual
decrease towards approximately 0.5 before the order parameter ab-
ruptly jumps up to a value close to 1. These features are related to
SPACO states similar to the one depicted in Fig.4.17. The spike in the
order parameter is, analogously to the above described synchronous
phase in the DOMES, associated with periods of coherent HAOs. The
subsequent decrease of the order parameter is related to a nucleus of
LAOs, which forms and spreads over the WE. However in contrast
to the DOMES state, the spreading of the LAOS during SPACOs hap-
pens much slower, thus we see the gradual decrease in the smoothed
order parameter. Subsequent to the SPACO state, the system attains a
homogenous HAO state, which is associated with the large value of
the order parameter. It continues to exhibit homogenous HAOs in the
backward scan, until the dynamics changes back to LAPAs at the low
potential border of the bistable potential range. Towards the end of
the scan the WE becomes more homogeneous, until it exhibits homo-
genous LAOs, which can be seen as the order parameter approaches
1.

The comparison of the order parameters in Fig.4.20, shows that
we have homogenous oscillations if the WE is sufficiently high illu-
minated, and that the spatial synchrony decreases with decreasing
illumination intensity. It also demonstrates the homogenising effect of
the linear global coupling introduced by the external resistor, as can
be seen by the overall higher order parameter for the scan with higher
external resistance in Fig.4.20 b) II compared to the one with smaller
external resistance in Fig.4.20 b) I.
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4.3.2 The Effect of the External Resistor on the Current

Fig.4.21 depicts two spectrograms of the currents during two scans
measured with an illumination intensity high enough, such that no
stable spatiotemporal pattern formed on the WE, except for Type I
HAPAs. One scan was measured at 1.0 kΩcm2 and one at 6 kΩcm2.
Note that for the scan with the low applied resistance of 1.0 kΩcm2

we inverted the scan direction and scanned from 8.15 V vs. SHE to
4.65 V vs. SHE and back. This was done since the system would
not bifurcate from the LAOs into the HAOs for the given range of
parameters. Hence we first initialised the HAOs and scanned from
there into the LAOs region. For these parameters the only pattern
the system displays are the Type I HAPA presented in Fig.4.7 and
the checkerboard pattern. The latter is usually observed during the
transition from an HAOs state to an LAOs state if the oscillation
maxima of the HAOs are cut off by the reduced illumination. At
this illumination intensity the scan with 1 kΩcm2 was the only one
showing spatial symmetry breaking. We highlighted the changes
from HAO to LAO dynamics and vice versa with vertical red lines.
In addition we labelled the bistable regions of the scan, as well as
the potential regions where only HAOs or LAOs could be found,
respectively.

Fig.4.21 a) shows a spectrogram of the scan with low external resist-
ance, which was initialised in Type I HAPAs at high potentials, which
soon vanish in favour for spatially homogenous HAOs. It can be seen
that the main frequency of the HAO state, which is the bright yellow
band, starts roughly at 20 mHz and increases almost linearly to ap-
proximately 30 mHz at 6.25 V vs. SHE. The spectrum has relatively low
background and except for the second harmonic it has no other active
frequency bands which indicates that the system exhibits periodic
oscillations. At roughly 6.25 V vs. SHE the oscillations change from
HAOs to LAOs, which can be seen in the spectrogram, as the main
frequency abruptly jumps to half its value. That it drops to half its
previous frequency becomes especially clear as we look at the second
harmonic of the LAOs, which seems to be a continuation of the main
frequency of the HAO. In addition to the second harmonic of the
LAOs the spectrogram also shows their third and later in the scan also
their forth harmonic. As we approach the minimum potential of the
scan, i.e. the turning point of the CV, the main frequency approaches
its maximum. After the turning point the frequency is symmetric to
the forward scan up to the potential, highlighted by the red line, at
which the dynamics changed from HAOs to LAOs in the forward
scan. On the backward scan the system stays on the LAO limit cycle
with the lower frequency, thus exhibiting a hysteresis. We labelled the
potential range of the hysteresis as ’bistable’. By the end of the scan,
a non-periodic episode emerges in the current signal. A part of the
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time series of the current density during this episode is depicted in
Fig.4.22. In the spectrogram this non-periodic behaviour shows itself
as a drastic increase of the background. As a result the main frequency
and the higher harmonics are not clearly visible any more. Apart from
this non-periodic episode at the end, the system displays periodic
behaviour throughout the scan, which brings us directly to the other
spectrogram, measured with a comparably high external resistance,
which shows all kinds of complex behaviour.

Fig.4.21 b) depicts the spectrogram of the current during the scan
with high illumination intensity and a high external resistance of
6.0 kΩcm2. During the entire scan, no spatial symmetry breaking was
observed. Note that this CV started at 4.65 V vs. SHE exhibiting LAOs.
At the beginning of the scan we see basically just one active frequency
band without much noise or background which is an indication for
periodic oscillations. The main frequency starts above 40 mHz and
drops comparably fast down to almost 30 mHz, where the spectro-
gram develops a strong background such that one cannot identify a
main frequency. In the potential range where the background is high,
the current oscillations deviate from periodic LAOs and become more
complex. A part of the time series during this complex behaviour is
exemplary depicted in Fig.4.23. Despite the high background in the
spectrogram, one can recognise some lines which follow roughly the
slope of the main frequency the LAOs had before becoming complex.
This makes it seem as if the overall frequency of the oscillations is
still decreasing with increasing potential. The second red line from
the left highlights the potential at which the dynamics change from a
non-periodic LAO state into periodic HAOs, which can be seen at the
transition from the blurry region in the spectrogram to a region with
a distinct main frequency and relatively low background. The two rel-
atively thick vertical stripes in the HAOs region are artefacts resulting
from a brief interruption of the data recording. The main frequency of
the HAOs also decreases with increasing potential. At higher applied
voltages also the second harmonic of the HAOs becomes visible. On
the backward scan as the applied potential decreases the oscillation
frequency increases and is at first symmetric to the forward scan. This
symmetry is broken as the dynamics do not change into an LAO
state at the third red line from the left, which highlights the potential
at which the system changed from an LAO to an HAO state in the
forward scan. Hence, also in this scan the system shows hysteretic
behaviour. In the bistable region during the backward scan, the HAOs
seem to show a period-two behaviour as depicted in Fig.4.24, which
leads to the emergence of the subharmonic frequency in the spectro-
gram. Close to the end of the CV the subharmonic frequency vanishes
and the main frequency drops from approximately 40 mHz to some
value slightly below 40 mHz as the dynamics change from the HAO
state to periodic LAOs.
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Figure 4.21: Spectrograms of the current during voltage scans with a scan
rate of 0.3 mV/s and an illumination intensity of 2.25 mW/cm2.
In a) HAOs were initialised and the voltage was scanned from
8.15 V vs. SHE to 4.65 V vs. SHE and back up, with an applied
resistance yielding 1 kΩcm2. In b) LAOs were initialised and the
voltage was scanned from 4.65 V vs. SHE up to 8.15 V vs. SHE
and back with an external resistor yielding 6 kΩcm2. The red
lines mark the potentials under which the qualitative behaviour
of the system changed from an LAO into an HAO state or vice
versa.
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Figure 4.22: Current density of LAO state in bistable region during forward
scan. Spectrogram of the scan depicted in Fig.4.21 a) Illumination
intensity 2.25 mW/cm2, RextA=1 kΩcm2, Uapp =5.70-5.82 V vs.
SHE.

Note that the non-periodic LAO state depicted in Fig.4.23, as well as
the period-two HAO state depicted in Fig.4.24, are both reminiscent of
the complex states presented in chapter 3. Both were measured during
the scan with the large external resistance, depicted in Fig.4.21 b).
Similar to the bistability we presented in the case of p-doped Si
WEs, the complex dynamics emerge in the potential range of the
hysteresis. The potential range for which the system shows a bistability
of complex temporal behaviour, separates the ranges in which we find
only periodic LAOs from the one where we only find periodic HAOs.
We find period-two behaviour when we enter the bistable region from
the HAOs and a seemingly chaotic LAO state if we enter the bistable
region from the LAOs side. We therefore believe, that the bistability
detected during the scan in Fig.4.21 b) is of the same nature as the one
presented in chapter 3. Hence, this is another strong indication that
the oscillatory electrodissolution of n-doped Si and p-doped Si exhibit
similar dynamics, if the n-doped WE is illuminated with a sufficiently
high intensity. In the case of the scan in Fig.4.21 a), where we initialised
an HAO state with an external resistance of only 1 kΩcm2 the maxima
of the current density oscillations during this state were cut off, despite
the high illumination intensity. This can be seen in Fig.4.6, as this was
the state measured at the starting point of the CV from Fig.4.21 a).
The cut off current oscillations made it possible to stabilise the HAO
state for such a low external resistance and gave us the opportunity to
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further investigate the effect of the external resistor on the behaviour of
the dynamics. As during both of the scans no patterns were observed
which influenced the current signal, all the features can be related
to the global behaviour of the system. The low background in the
spectrogram, as well as the lack of subharmonics shows, that the
dynamics during the scan with the low external resistance is for most
parts periodic. This means that the system attains either the LAO limit
cycle or the HAO limit cycle and undergoes unperturbed, periodic
oscillations. Only in the end of the scan the dynamics in the LAO state
deviate from periodic behaviour, which might indicate that a bistable
parameter region where the dynamics display complex oscillations can
be reached for very high potentials, despite a low external resistance.
To clarify if this is true one would need to do more measurement at
even higher potentials than 8.15 V vs. SHE.

As we compare both spectrograms, we obtain the impression that
the external resistance introduces a complexity in the time series of the
current density in a similar way as we have observed it in chapter 3 for
p-Si electrodes. We believe that the complex behaviour of the global
signals, such as the current density, is due to an intrinsic coupling
of the two coexisting limit cycles. Furthermore, it seems that the
external resistance plays an important role for this type of coupling.
However the non-periodic episode in the end of the scan depicted in
Fig.4.21 a) could suggest that for large enough applied potentials a
mutual influence of the two limit cycles on each other can be triggered,
even for small external resistors. These results point, similarly to the
results from chapter 3, towards an effect of the external resistor on the
reaction term of the system. As we have merely homogenous dynamics
during the scan depicted in Fig.4.21 b) and during most of the scan
depicted in Fig.4.21 a), for which we can consider the homogenising
coupling term, introduced by the external resistor according to Eq. 3.1,
to be zero. Instead the external resistor seems to have an effect on the
reaction term of the system like we have implied in Eq. 3.2.

We think that the main frequency of the oscillations depends on or
is at least largely influenced by the thickness of the oxide layer. It is
interesting that independently of the measurement or the attractor, the
main frequency decreases with increasing anodic polarisation. To show
the possible correlation between frequency and oxide layer thickness
we first take a look at the correlation of the oxide layer thickness
and the applied voltage. Fig.4.25 shows the spatial average of the
ellipsometric signal for an n-doped Si WE during a CV between 0.65 V
vs. SHE and 6.65 V vs. SHE conducted with a scan rate of 20 mV/s
and zero external resistance. The arrows indicate the scan direction.

Note that changes in the ellipsometric signal measure relative
changes of the optical pathway which include changes of the physical
pathway as well as changes of the refractive index. In the beginning
of the scan, in the voltage range of the electropolishing branch, the
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Figure 4.23: Current density of an LAO state in the bistable region during a
forward scan. Measured from Uapp =5.70 V vs. SHE to 5.82 V vs.
SHE. Spectrogram of the scan depicted in Fig.4.21 b). Illumina-
tion intensity 2.25 mW/cm2, RextA=6 kΩcm2
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Figure 4.24: Current density of HAO state in bistable region during backward
scan. Spectrogram of the scan depicted in Fig.4.21 b). Illumina-
tion intensity 2.25 mW/cm2, RextA=6 kΩcm2, Uapp =5.82-5.70 V
vs. SHE.
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Figure 4.25: The spatial average of the ellipsometric signal vs. Uapp during a
CV measured at a scan rate of 20 mV/s with no external resistor.

ellipsometric signal increases slightly, although a stable oxide layer
has not yet formed under these conditions. Hence the increase of the
ellipsometric signal is probably induced by changes of the refractive
index. Note that short living oxide nuclei might have an impact on
the refractive index in this voltage range [20]. The consecutive region,
between roughly 1.6 V vs. SHE and 2.5 V vs. SHE, in which the el-
lipsometric signal increases fast coincides with the NDR branch and
can thus be related to the formation and growth of an oxide layer.
The increase of the ellipsometric signal for higher applied voltages
suggests strongly that the oxide layer thickness increases with the
applied voltage, which is also in line with findings in the literature
[10–12, 74, 82, 93].

Therefore we think that the decrease of the frequency with in-
creasing applied voltage together with the increase of the oxide layer
thickness with the applied voltage might hint towards a dependence
of the oscillation frequency on the oxide layer thickness. Note that
the frequencies in the spectrogram of the scan with 6 kΩcm2 depicted
in Fig.4.21 b) are overall higher than in the spectrogram of the scan
measured with 3 kΩcm2. Since the potential drop at the WE surface
decreases with increasing external resistance, the oxide layer thickness
at a given applied potential will also be smaller for a larger external
resistance. Hence, that the overall frequencies in Fig.4.21 b) are higher
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than in Fig.4.21 a) is in line with the hypotheses that the frequency
decreases with increasing oxide layer thickness.

Again we have shown a lot of evidences that the external resistor
introduces a coupling between the two oscillation mechanisms and
thereby introduces the temporal complexity to the system. We have
seen that for a spatial symmetry breaking the illumination intensity
must be reduced below a certain threshold. This threshold depends
also on the applied voltage and the external resistance. Below the
illumination threshold for pattern formation, a lower illumination
intensity results in less coherent behaviour. The external resistance
has a homogenising effect on the spatial dynamics but is also crucial
for the Type II HAPAs to occur, as they are strongly connected to the
higher periodic HAOs which are a result of the coupling induced by
the external resistance. It also became clear that the nonlinear coupling
induced by the reduced illumination can have an enhancing effect on
the coupling mechanism introduced by the linear global coupling due
to the external resistor. We could see this especially for the two scans
with an external resistance of 3 kΩcm2, where the higher periodic
HAOs, i.e. the Type II HAPAs, could only be observed for the lower
illuminated case. This shows that the influences of the low illumination
and the external resistance cannot be clearly separated. In addition we
showed a probable connection between the oxide layer thickness and
the oscillation frequency.

4.4 discussion

4.4.1 The Coupling Parameters

Apart from the spatial heterogeneities it could be shown that the sys-
tem will exhibit similar behaviour in the RextA-Uapp parameter plane
as in the p-doped case presented in chapter 3. The main difference to
the p-doped case is, that, in the n-doped case, HAOs which are cut
off due to a reduced illumination intensity, will reach much further
into the low resistance side of the parameter plane. This also seems to
enable birhythmicity as opposed to the bichaoticity observed with p-Si.
As the generation rate of charge carriers becomes of the same order of
magnitude as their consumption, the effective reaction resistance of the
space charge layer increases and the potential drop across the space
charge layer becomes significant for the local dynamics. As the amount
of charge carries in the space charge layer is low, lateral motion of
the charge carrier density becomes possible and depends on the local
charge carrier concentration and the local potential drop across the
space charge layer. The latter, in turn, depends on the potential drop
across the external resistor, and thus, the global current, as well as the
potential drop through the oxide layer [64, 67]. We have demonstrated,
that the reduction of the illumination intensity not only enables the
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formation of spatiotemporal patterns, but also that the coherence of
these patterns decreases with decreasing illumination intensity. This
effect is especially noticeable for LAPAs. The increased reaction res-
istance in the space charge layer might also play a significant role for
the stabilisation of the HAOs at zero external resistances, as it might
compensate for the lack of external resistance. Note that we showed
in chapter 3 that a sufficient external resistance seems to be crucial for
the stabilisation of HAOs.

An external resistor in series with the WE introduces a linear global
coupling to the system, which acts homogenising on the dynamics. In
addition it seems to have some significant influence on the reaction
current. We could show that a sufficiently large external resistance
leads to complex oscillations in the global signal. Since the coupling
term of the linear global coupling is zero in the homogeneous case,
and we see this behaviour also in the homogeneous case we conclude
that there is some additional effect of the external resistor on the
electrochemical reaction.

4.4.2 Type II HAPAs and LAPAs

Spatial symmetry breaking can be observed for both types of oscilla-
tions, i.e. the LAOs and the HAOs, however each type of oscillations
displays its own characteristic type of spatiotemporal behaviour. LAOs
develop LAPAs which are dominated by wave fronts moving across
the electrode leading to a low degree of synchrony of the phase. For
the LAPAs phase coherence increases with increasing applied external
resistor which has an homogenising effect on the dynamics [64, 65,
101, 102].

The HAPAs are the patterns characteristic for the HAOs and can
be divided into two types. The Type I HAPA is characterised by
irregular heterogeneities in the amplitude but a rather coherent overall
phase and is found especially for low applied external resistances
and high voltages. The Type II HAPA also exhibits modulations of
the amplitude, however they are found for higher resistances and the
modulations arise as clusters in an antiphase configuration.

We introduced the TYPE II HAPAs as typical patterns which are
formed in the HAO branch of the system for sufficiently low illu-
mination and a sufficiently large external resistor. We characterised
the patterns as cluster states, with a kind of period-two behaviour
in the global signals. Especially with larger external resistors, cluster
formation seems to be the most prominent spatial feature during
HAOs states. The clustering only appears in, or close to the bistable
region. In section 4.3.2 we explained that we believe that the hystereses
measured during the slow potential scans with n-doped Si is qualitat-
ively of the same nature like the bistability of the complex oscillations
presented in chapter 3. With this in mind we want to take a closer look
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on where we have measured the Type II HAPA states from Fig.4.9 and
Fig.4.12. The state depicted in Fig.4.9 has been measured right after
the transition from the LAPAs to the HAO branch on the forward
scan for which the Kuramoto phase order parameter is plotted in
Fig.4.20 c) II. The state depicted in Fig.4.12, was measured towards
the end of the bistable region in the backward scan of the CV for
which the order parameter is depicted in Fig.4.20 b) II. The latter state
shows more complexity, which can especially be seen at the period
four behaviour in the local time series depicted in Fig.4.13. The trend
that a rather simple period-two behaviour can be found on the HAO
branch close to the onset of the bistable regime and that more complex
HAO states can be detected within the bistable potential range close to
the transition to LAO attractors is in line with the findings in chapter 3.
It seems possible, that the complexity of the states in the n-doped case,
especially in their global signals, is also introduced by the intrinsic
coupling of the two limit cycles, like it is in the case of p-doped Si.
The difference in the n-doped case at lower illuminations is that due
to the nonlinear nonlocal coupling, pattern formation is possible. The
reason why the HAO states especially tend to form antiphase pattern,
might be the relaxational character of the HAOs. In [45], Kiss et al.,
predicted a strongest mutual entrainment of relaxational oscillators to
be in antiphase configuration. They based their prediction on phase
response curves, measured during the oscillatory electrodissolution
of a single nickel electrode. Subsequently they confirmed their res-
ults experimentally with an ensemble of 64 coupled nickel electrodes,
which formed two clusters in antiphase configuration for the para-
meters under which the oscillations have relaxational character. It
seems likely that, in our system, the complexity, i.e. the deviation from
simple periodic HAOs, is in the first place introduced by the intrinsic
coupling of the two limit cycles, but the cluster formation is especially
influenced by the relaxational character of the oscillations themselves.

No interaction between the limit cycles like described in 3.5 is
necessary for the LAPAs to emerge, as they can also be found far from
the onset of the bistable regime. We suggest the LAPAs to emerge as
the system enters a parameter region for which it is Benjamin-Feir
unstable.

4.5 conclusion

We started this chapter by a presentation of the effect of the nonlinear
nonlocal coupling, i.e. the reduction of the illumination intensity,
on the behaviour of the system. We pointed out its similarities and
differences to the linear global coupling by presenting illumination
limited current-potential curves. We also showed that the structure of
the emergence of the attractors within the Uapp-Rext-parameter plane
under reduced illumination is similar to the one for p-doped silicon
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depicted in Fig.3.4, except that HAOs can also be stabilised down to
zero external resistance in the n-doped case.

We continued to present the different kinds of patterns that we
observed in the investigated parameter range. We pointed out that
the spatiotemporal behaviour can also be classified as evolving either
from LAOs or HAOs.

We presented the typical spatiotemporal behaviour during LAOs
under reduced illumination as spatiotemporal chaos with travelling
wave-like features on the WE and coined this state LAPA.

The typical pattern during HAOs with low applied external res-
istance and reduced illumination is a state dominated by amplitude
turbulence with an approximately constant phase velocity, if averaged
over several oscillations, but a distinct dependence of the local phase
on the local amplitude. We called these patterns Type I HAPA. For
larger applied external resistances we found HAOs with a higher
periodicity in the global signals, which form clusters in antiphase
correlation on the WE. We named these states Type II HAPA.

In addition to the pattern found while the system is dominated by
one of the two oscillation types we presented also mixed dynamics. In
the DOMES state the system alternates between an LAOs state and
an HAOs state. This state showed the typical transition from HAOs
to LAOs where a region exhibiting LAOs spreads further and further
across the WE. This transition shows a characteristic checker board
pattern in a 1D-cut. When the LAOs spread over the whole WE, the
dynamics on the electrode starts synchronising before eventually it
jumps back to HAOs. Then a new LAOs nucleus forms on the WE
and the circle repeats. Hence, both, the LAO and the HAO states are
metastable.

The SPACO state is a state where a region exhibiting a Type II HAPA
coexist with a region displaying homogenous LAOs which are locked
to half the main frequency of the region in the HAO state.

In the second part of this chapter we connected the different spati-
otemporal phenomena with the control of the experimental paramet-
ers. Therefore we looked at slow voltage scans with different external
resistances under different illumination intensities. We used the Kur-
amoto phase order parameter to show that the spatially synchrony
overall decreases with decreasing illumination intensity. This effect
is related to the nonlinear nonlocal coupling introduced by a lack of
charge carriers in the space charge layer. We could also show that
in the case of LAPAs and Type I HAPAs it increases with increasing
external resistance. This is due to the homogenising effect of the linear
global coupling introduced by the external resistor. In the case of
the HAO dynamics we also showed that although the homogenising
effect of the external resistor impedes Type I HAPAs, for the Type II
HAPAs an adequate external resistance is needed to induce a temporal
complexity in the dynamics which seems to be the pre-condition for
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this pattern. However, the cluster formation in this state is attributed
to the relaxational character of the HAOs.

In the end of the chapter we used the spectrograms of a scan
with an external resistance of 1 kΩcm2 and a scan with 6 kΩcm2

to further underpin the fact that the external resistor induces the
temporal complexity into the system by coupling the two coexisting
limit cycles with each other. This was unveiled by an overall simple
periodic behaviour during the scan with lower external resistance
and a relatively complex spectrum of the scan with larger external
resistance. During the latter more or less the same dynamics as in
chapter 3 were found. In the spectrogram this was displayed by a
subharmonic frequency in the HAOs region and a high background
during the LAOs, both in the coexistence region.

In addition we pointed out a possible inverse relation between the
oxide layer thickness and the oscillation frequency.



5
S U M M A RY A N D O U T L O O K

The goal of this thesis was to elucidate various facets of birhythmicity
in the oscillatory electrodissolution of silicon, as an example of a
spatially extended reaction-diffusion type system. This is, to the best
of our knowledge, the first experimental investigation of an spatially
extended birhythmic system.

Our efforts can be split in two parts. In the first part we investigated
p-doped silicon where we have the external resistance as only coupling
parameter. In the second part we investigated n-doped silicon WEs
where, apart from the linear global coupling via the resistor, we can
also control the strength of a nonlocal nonlinear coupling via the
reduction of the illumination intensity which can lead to pattern
formation, as observed in the spatially resolved ellipsometric signal.

In the first part, we focused on the dynamics found during the
electrodissolution of p-doped silicon. The external resistance Rext in-
troduces a linear global coupling, however, the coupling term of a
linear global coupling becomes zero for spatially homogenous dynam-
ics, as it is always the case for p-doped Si. Nevertheless, the external
resistor has large influence on the dynamics of the system. We thus
could demonstrate that in addition to the linear global coupling, it has
to have an influence on the reaction term of the system.

We showed that the system displays two types of oscillations with
different underlying mechanisms, so-called LAOs and HAOs. In the
Uapp-RextA parameter plane the regions of the two distinct oscillations
is separated by a region where two bistable branches, each displaying
complex and even chaotic dynamics, can be found. The complex
dynamics in each of the two branches can be related to one of the two
oscillation types. The chaotic motions suggests that the dynamics live
in an, at least, 3-dimensional phase space, as more than two essential
variables are needed for chaotic oscillations.

We suggest that the bichaotic regime in parameter space arises
as a result of an inherent birhythmicity in the system. As the two
coexisting limit cycles come sufficiently close to each other in phase
space, they influence each other via an intrinsic coupling through a
shared oscillation variable. Later in this thesis we could show that
RextA seems to be the crucial quantity for the inherent coupling of
the two limit cycles as the complex temporal dynamics only arise in
the presence of a sufficiently large resistance inserted in the external
circuit. We thus conclude that the shared variable involved in the
intrinsic coupling, which renders the oscillations more complex, is the
potential drop Uel across the WE. This type of inherent birhythmicity,
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which leads, via an intrinsic coupling, to two different, but coexisting
routes into chaotic motion, is to the best to our knowledge unique
compared to other birhythmic systems.

In the second part we focused on n-doped silicon where the WE
needs to be illuminated to generate holes in the valence band which
drive the oxidation process. We showed that the different spatiotem-
poral dynamics can be related to one of the two oscillation types found
in the system. The LAOs exhibit patterns characterised by travelling
wavefronts on the WE, irregular in shape, velocity and direction, thus,
resulting in spatiotemporal chaos. We coined these patterns LAPAs.
These patterns seem to result from a Benjamin-Feir instability.

The HAOs show two different types of patterns. The Type I HAPAs
which are especially found for low external resistances and high
applied potentials, can be described as an irregular and somewhat
cloudy non-stationary modulation of the amplitude, i.e. amplitude tur-
bulence. For higher applied external resistances, clusters in antiphase
configuration will form on the WE. We call this state Type II HAPA.

The third group of spatio temporal pattern exhibits spatial features
related to both types of oscillations. The first one is a double meta-
stable state, where the dynamics on the WE repeatedly undergo the
transition from HAOs to LAOs and then from LAOs to HAOs. This is
a process, which typically takes several oscillations as the LAO state
slowly spreads across the WE. This process may be accompanied by
checkerboard patterns in the 1D-cut, which are often observed during
the transition from LAOs to HAOs under reduced illumination. Char-
acteristic for the double metastable state is that once the LAO state
spread over the entire electrode the system globally relaxes back to the
HAO state. Subsequently, a new LAO nucleus forms and the whole
process repeats. We can rationalize this with the picture of the two
limit cycles lying on the opposite side of an equistability point, when
looking at the nullclines, analogously to the case of two metastable
steady states. So far this is, to the best of our knowledge, the first case
in which a system switches selforganized between the two limit cycles
of a birhythmic system.

Another state displaying dynamics of both types of oscillations is a
state, where the WE splits up into two regions, one displaying a Type
II HAPA and the other one homogeneous LAOs, locked to half of the
dominant frequency of the Type II HAPA region. We suggest that the
period-two behaviour in the HAO region and the locking of the LAOs
to this dynamics might stabilise the front between the two states.

We found that the resistance seems to be merely responsible for in-
troducing the temporal complexity to the oscillations by coupling the
two limit cycles with each other, like we have already demonstrated
for p-doped WEs. Otherwise, the linear global coupling it induces,
has an homogenizing effect on the patterns. In contrast, reducing
the illumination intensity down to the point where the valence band
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holes available for the oxidation step are limited might induce pattern
formation. We showed that the coherence on the WE decreases with
decreasing illumination intensity. Overall it seems that the two limit
cycles are intrinsically coupled via the external resistance which has a
strong influence on their temporal behaviour and periodicity. How-
ever an adequate reduction of the valence band holes introduces an
additional degree of freedom which allows a lateral redistribution of
the charge carriers in the space charge layer and thus the potential
landscape, which in turn has an effect on the local dynamics. This in-
troduces a nonlinear nonlocal coupling, which seems to be responsible
for the spatial symmetry breaking.

To further elucidate the interaction between the two limit cycles, and
thus the coupling introduced by the external resistance, it might be
helpful to conduct phase response measurements during zero external
resistance oscillations as well as simple periodic LAOs and HAOs,
such that the response of the system towards potential perturbations
in each phase can be better understood. In a next step, experiments
could be conducted which introduce a periodic forcing via the applied
potential to see in what way the system deviates from periodic motion
and if states similar to the complex dynamics presented for p-doped
silicon can be enforced. This should be done under homogenous
conditions, probably with p-doped WEs. Since the pattern formation
seems to arise from a spatial symmetry breaking of the potential
landscape at the Si surface, a deep understanding of the behaviour
of the system towards potential perturbations should be helpful to
understand the processes which lead to the different kinds of patterns.

We already know that the HAOs do not seem to react sensitively
towards potential perturbations but the LAOs do [64, 102]. Similar
behaviour has been demonstrated in phase response measurements
during the electrodissolution of Nickel electrodes, where the system
was particularly unresponsive in the linear deactivation region of
the relaxation oscillations [45]. The authors could show, that it is
especially the relaxational character of the oscillations, which leads
to antiphase clusters. This is in line with our experimental results, as
antiphase clusters are merely found in HAO states. In addition the
phase response curves during homogenous HAOs should be measured
to see if similar conclusions as in [45] can be drawn. If this would be
the case, a result of this would be, that the amount of clusters found
on the WE should depend on the extent of the relaxational character.
It is likely that the relaxational character of HAOs measured with
electrolytes with a much slower etch rate is more distinct, as relaxation
oscillations arise due to a separation of the time scales of the processes
involved in the oscillation mechanism. Thus, it could be investigated
if the amount of clusters can be controlled via the composition of the
electrolyte.
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To further elucidate the nonlinear nonlocal coupling, one could use
n-doped Si WE with different doping levels, which should have an
affect on the diffusion length of the charge carriers in the semicon-
ductor. Thus, conclusions on the range of the nonlocal coupling and
the resulting types and dimensions of the different patterns could be
drawn.
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