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Abstract

In the field of IT security, protection against hardware manipulations is of particular
importance. The hardware, the system’s root of trust, is the cornerstone of system
integrity. Any manipulations at the hardware level will inevitably affect software security
at the OS or application level. With physical access to the system, an attacker can extract
secret keys and intellectual property, perform hardware modifications or even exchange
fundamental components. Therefore, preventing access to critical hardware components
is essential to any high assurance security module.

To prevent and recognize physical manipulation of Hardware Security Modules (HSMs),
creating a barrier that hampers accessibility to critical components is crucial. Many de-
signs for security enclosures have been proposed over the years that provide only partial
protection of the critical areas or require a battery for continuous monitoring.

Novel technology based on Physical Unclonable Functions (PUFs) provides large-scale
protection without needing a battery [ION+19, IOK+18] by surrounding the device with
a capacitive mesh of electrodes. These PUF-based security enclosures differ in their
measured capacitances, which are influenced by manufacturing variations.

Previous work on PUF-based enclosures demonstrated the reliable measurement of
the small capacitances in the femtofarad range [OIHS18] and confirmed the Gaussian
distribution of capacitances [ION+19, IOK+18]; thereby laying the groundwork for this
PUF-based technology.

This work focuses on improving the tamper-sensitivity of PUF-based capacitive secu-
rity enclosures and takes the next steps towards their operative deployment.

As a first step, I describe FORTRESS, the FORtified Tamper-Resistant Envelope
with an Embedded Security Sensor. FORTRESS is a prototype HSM with integrated
PUF-based security, a hardened operating system, and extended with complete post-
processing and supply chain capabilities.

This is followed by a security analysis of FORTRESS, where I discuss the three most
relevant hardware attacks. This includes micro-drilling of the capacitive enclosure, sur-
face probing of electrodes, and magnetic probing of critical connections. Through analy-
sis of these attacks, adequate countermeasures are proposed that strengthen the security
and design of FORTRESS.

To enhance the tamper-sensitivity, I discuss an extension of FORTRESS through a
tamper-sensitive error correction scheme based on the wiretap channel. It is crucial
for the scheme’s design to recognize an attack while still providing sufficient reliability
against environmental changes. This is achieved by modeling both effects as a wiretap
channel, implemented through a polar code construction. The proposed scheme achieves
a physical layer security of 100 bits for a PUF-secret length of 306 bits.
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Abstract

Finally, I describe potential threats to FORTRESS through fault injection attacks. I
first demonstrate how cryptographic algorithms are affected by fault injection, followed
by a vulnerability analysis through ARCHIE, an architecture-independent framework
for fault emulation. With ARCHIE, I target the critical sections of the FORTRESS
software and discuss risk mitigation through different countermeasures.
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Zusammenfassung

Im IT-Sicherheitsbereich hat der Schutz vor Hardware Manipulationen eine besondere
Stellung. Die Hardware als der Vertrauensanker des Systems, ist der Eckpfeiler der
Systemintegrität. Manipulationen auf der Hardwareebene beeinflussen unweigerlich die
Softwaresicherheit der Betriebssystem- oder Anwendungsschicht. Durch physischen Zu-
griff zum System, kann ein Angreifer geheime Schlüssel extrahieren, geistiges Eigentum
abgreifen, Hardwareveränderungen durchführen, oder sogar Komponenten austauschen.
Deshalb ist eine der grundlegenden Anforderungen an ein Hochsicherheitsmodul, kritis-
che Komponenten vor physischem Zugriff schützen.

Um die physische Manipulation von Hardware-Sicherheitsmodulen (HSMs) zu ver-
hindern und zu erkennen, ist eine Barriere, die den Zugang zu kritischen Kompo-
nenten verhindert, maßgeblich. Viele Designs für Sicherheitsfolien wurden über die Jahre
vorgeschlagen. Diese bieten entweder nur einen Teilschutz für kritische Bereiche, oder
erfordern eine Batterie für die kontinuierliche Überwachung.

Neue Technologien basierend auf Physical Unclonable Functions (PUFs), die das Sys-
tem mit einem kapazitiven Elektrodengitter umhüllen, ermöglichen einen großflächigen
Schutz, ohne die Notwendigkeit einer Batterie [ION+19, IOK+18]. Die Kapazitäten der
PUF-basierten Sicherheitsfolien unterscheiden sich voneinander, da sie durch Schwankun-
gen im Herstellungsprozess beeinflusst werden.

Voherige Arbeiten zu PUF-basierten Sicherheitsfolien zeigten die zuverlässige Messung
der Kapazitäten im Femtofarad-Bereich [OIHS18], und bestätigten die Gaußverteilung
der gemessenen Kapazitäten [IOK+18, ION+19]. Diese Arbeiten bilden die Grundlage
für PUF-basierte Folientechnologien.

Diese Arbeit schließt an die Vorarbeiten an, und fokussiert sich darauf die Sensitivität
der PUF-basierten Sicherheitsfolien gegenüber physischen Manipulationsversuchen zu
verbessern. Hierdurch werden die nächsten Schritte in Richtung des operativen Einsatzes
dieser Technologie unternommen.

Zunächst, beschreibe ich FORTRESS, einen Hardwaresicherheitsmodul-Prototyp mit
integrierter PUF-basierter Sicherheit, der durch ein gehärtetes Betriebssystem, eine
vollständige Datenverarbeitung, und Lieferkettenaspekte erweitert wurde.

Dem folgt eine Sicherheitsanalyse von FORTRESS, in der ich die drei relevantesten
Hardwareangriffe diskutiere. Dies beinhaltet Bohrangriffe auf die Sicherheitsfolie, Ober-
flächensondierung der Gitterelektroden, und magnetische Sondierung der kritischen Bus-
verbindungen. Die Angriffsanalyse ermöglicht die Bewertung geeigneter Gegenmaßnah-
men, die die Sicherheit und das Design von FORTRESS verbessern.

Um die Sensitivität gegenüber Manipulationen zu steigern, wird FORTRESS durch
einen manipulationssensitiven Fehlerkorrekturcode, basierend auf dem Wiretap Channel,
erweitert. Für das Codedesign ist es entscheidend einen Angriff zu erkennen, und zugle-
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Zusammenfassung

ich eine ausreichende Zuverlässigkeit gegenüber Umweltveränderungen sicherzustellen.
Dies wird durch die Modellierung als Wiretap Channel erreicht, der durch eine Polar
Code Konstruktion implementiert wird. Der vorgeschlagene Code erreicht eine physis-
che Sicherheit von 100 Bits für ein PUF-Geheimnis von 306 Bits Länge.

Zuletzt beschreibe ich die potentielle Bedrohung von FORTRESS durch gezielte Feh-
lereinbringung. Ich zeige, zunächst, wie kryptographische Algorithmen durch Fehler-
einbringung beeinflusst werden können. Dem folgt eine Vulnerabilitätsanalyse durch
ARCHIE, ein architekturunabhängiges Framework zur Emulation von Fehlern. Mit
ARCHIE untersuche ich die kritischen Bereiche der FORTRESS Software, und diskutiere
die Risikominderung durch unterschiedliche Gegenmaßnahmen.
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Chapter 1

Introduction

The field of IT security has significantly gained importance in recent years and consti-
tutes a rapidly growing market. In Germany alone, the expenses for IT security have
almost doubled in the last five years, from 3.7 billion euros in 2017 to an estimated 6.2
billion euros in 2021 [Bit21], with an estimated annual growth rate of 10.2% [Boc21].
The worldwide expenses for IT security in 2020 amount to 133.78 billion US dollars
[Gar21b], which constitutes 3.45% of all information technology expenses worldwide in
2020 [Gar22].

Many security concerns evolve around remote access and the exploitation of software
vulnerabilities. At the same time, hardware-related threats, such as fault or side-channel
attacks, reverse engineering, or especially manipulating components, are not as preva-
lent in public awareness. However, the worldwide expenses for IT security grouped by
market segments show that infrastructure protection is ranked second after expenses for
security services with 20.46 billion US dollars in 2020 [Gar21a]. Furthermore, a poll
with business members of the VDE — a German association for Electrical, Electronic,
and Information Technologies — and universities in Germany from 2019 showed that
67.6% of the respondents named human error or misconduct a threat, 31.4% feared
the compromise of extranet and cloud components, 28.6% named sabotage, and 28.6%
were afraid of compromise of smartphones and tablets in the production environment
[VDE19]. Hence, entrepreneurs are well aware of the physical threats to their devices
and systems.

Especially in high-security environments, protection against physical manipulation
of Critical Security Parameters (CSPs) is crucial. These CSPs are often stored and
managed in Hardware Security Modules (HSMs) that perform cryptographic operations.
As specified in Common Criteria (CC) standards [Fed08, Int22a, Int22b, Int22c, Int22f] or
Federal Information Processing Standards (FIPS) [Nat02, Nat19, BB19], HSMs require a
mechanism for physical protection against tampering. This protection through a physical
bound [Fed08, EL] comes in the form of coatings, covers, or enclosures to detect and
respond to a tamper event through an alarm and zeroization procedure [EL, Int12]. One
such example is the development of battery-backed enclosure technologies, which contain
a mesh of traces whose electrical resistance is continuously monitored to detect a tamper
event [OI18, GOR, Adv12].

Since the battery-backed solutions have several drawbacks, like a reduced lifetime or
a higher sensitivity to environmental changes, batteryless capacitive enclosures based on
PUFs have been developed recently. These enclosures make use of minuscule manufac-
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turing variations within the capacitances of the electrode mesh in order to generate a
key. If the enclosure is damaged, the PUF-key can not be reproduced, which triggers
anti-tamper mechanisms.

Previous work on PUF-based capacitive security enclosures demonstrated the reli-
able measurement of the small capacitances in the femtofarad range [OIHS18] and con-
firmed the Gaussian distribution of capacitances [IOK+18, ION+19] and, hence, laid
the groundwork for this PUF-based technology. The goal of this thesis is to investigate
the tamper-sensitivity of PUF-based security enclosures, thereby taking the next steps
towards their commercial deployment.

In Chapter 2, I give a general overview of tamper protection mechanisms and the
history of Hardware Security Modules. Then, I introduce Physical Unclonable Functions
emphasizing PUF-based tamper protection and previous work on security enclosures.

This is followed in Chapter 3 by introducing FORTRESS, a prototype HSM based on
the capacitive enclosure. This includes the design and assembly of FORTRESS and the
development of the Next Generation EKMS, implementing a complete key generation
and management, and incorporating supply chain aspects through a secure system life
cycle. The results of this chapter were published in the IEEE Proceedings of the 18th
Annual International Conference on Privacy, Security & Trust [GOFK21].

In Chapter 4, I discuss the most relevant physical attacks on FORTRESS. As I will
show, FORTRESS is vulnerable to magnetic probing and micro-drilling attacks. In order
to restore the enclosure’s tamper-sensitivity, I propose countermeasures against both of
the described attacks and a bypass attack published in 2019 by Obermaier [Obe19]. I
presented the results of Chapter 4 at the 2021 IEEE Physical Assurance and Inspection
of Electronics (PAINE) conference [GSHO21].

Post-processing of the PUF-response is a crucial step in the key generation process
that incorporates error correction codes to compensate for noise and environmental in-
fluences. However, drilling attacks destroy electrodes and alter the PUF-response, and
hence, the PUF-key. Therefore, the error correction code design has to ensure tamper-
sensitivity to attacks while incorporating reliability to environmental changes. I tackle
this issue in Chapter 5 by first analyzing the effects of environmental influences to
derive a model for the PUF. Subsequently, based on the PUF-model, q−ary polar codes
are constructed and verified in a Monte Carlo simulation. The proposed code construc-
tion achieves a physical layer security of 100 bits for a PUF-secret length of 306 bits.
The analysis and code construction were published in the IACR Transactions on Cryp-
tographic Hardware and Embedded Systems [GXKF22].

A further class of attacks is targeted in Chapter 6. Even an HSM physically pro-
tected by the capacitive PUF-based enclosure is still potentially vulnerable to radiation
fault attacks. In the first half of Chapter 6, I demonstrate how fault attacks can im-
pact implemented cryptographic algorithms and firmware execution. The insights of this
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demonstration were published at the 2020 IEEE 26th International Symposium on On-
Line Testing and Robust System Design (IOLTS) [GO20]. In the second half, I determine
vulnerable sections of the PUF post-processing software through ARCHIE, a framework
for automated fault injection. Finally, I discuss possible countermeasures that can be
incorporated into FORTRESS. ARCHIE, the architecture-independent framework for
fault evaluation, is published in the IEEE proceedings of the 2021 Workshop on Fault
Detection and Tolerance in Cryptography (FDTC) [HGA+21].

I summarize and conclude the outcome of my thesis in Chapter 7 and give an overview
of possible future developments.
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Chapter 2

Tamper Protection and Physical Unclonable
Functions

In this chapter, I discuss the requirements of tamper protection mechanisms and provide
an overview of their history. Furthermore, I introduce the term ”Physical Unclonable
Functions“ and motivate the need for PUF-based tamper protection.

2.1 Tamper Protection

As discussed in the introduction, tampering and physical manipulations severely threaten
security and privacy, leading to serious personal, financial, and economic damage. To
dive deeper into the field of tamper protection, I first discuss basic terms and definitions
before addressing the formal background and standardization.

According to the NIST SP 800, tampering is defined as an ”intentional but unautho-
rized act resulting in the modification of a system, components of systems, its intended
behavior, or data“ [Nat20]. The associated tamper event can either be answered pas-
sively or through active countermeasures. Tamper evidence describes the automatic de-
termination of a tamper event. The tamper response, however, constitutes an automatic
action after detecting the tamper event, for instance, the zeroization of all relevant CSPs
[Nat02]. Tamper-sensitivity entails sensing and counteracting a tamper event through a
corresponding system design.

When tampering with a device, the goal of an attacker is to obtain information on

� Intellectual Property (IP), such as design or manufacturing specifics, signals, and
data processing, or the firmware itself,

� Critical Security Parameters (CSPs), such as keys or other confidential data, which
can be extracted, e.g., by reading out the memory or manipulating the execution
of cryptographic algorithms,

� possible vulnerabilities in the hardware or software design; either to exploit them
for financial gain and disparate personal values or to gain visibility and credit.

This shows that physical access to the device, signals, and electronic components is
crucial for an attacker and thus, must be impeded through tamper protection measures.

Measures for tamper protection are not only demanded by the manufacturer or the
customer, but in some cases, they are even legally required. One such example is
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the directives effective in the European Union that regulate the tamper-evidence of
tachographs in road transport [Eur14] or the monitoring of emission limits in vehi-
cles [Eur09] and non-road machinery [Eur16a, Eur16b]. These directives generally state
that tamper protection measures are required but do not provide details on how to im-
plement them. Different industry standards give slightly more specific requirements for
their implementation [Int19, Int17, Int12, LLC09]. In the field of embedded security,
certification based on Common Criteria (CC) [Fed08, Int22a, Int22b, Int22c, Int22d,
Int22e, Int22f, JIW22, KS11, Fed11], or the Federal Information Processing Standard
(FIPS) [Nat02, BB19, Nat19, EL] is often required to sell security-related products, such
as smartcards, Trusted Platform Modules, or Hardware Security Modules.

According to the NIST Special Publication 800-57, a Hardware Security Module
(HSM) is defined as a “physical computing device that safeguards and manages cryp-
tographic keys and provides cryptographic processing. An HSM is or contains a cryp-
tographic module.” [BB19]. The international standard ISO/IEC 24759 defines a hard-
ware module as a module “whose cryptographic boundary is specified at a hardware
perimeter” [Int17]. Such perimeters or boundaries can be ”physical structures, such
as enclosures, potting, or encapsulation materials, connectors, and interfaces” [Int12].
These perimeters protect against unauthorized physical access, which could lead to a
modification or substitution of the module. According to FIPS 140-2, the penetration
of the enclosure has to be detected such that it results in the immediate zeroization of
all plaintext CSPs [Nat02]. Furthermore, the cryptographic module has to be protected
against compromise due to fluctuating environmental conditions.

HSMs are employed for managing keys or certificates to establish secure communica-
tion, verify transactions, or encrypt and authenticate critical data.

2.2 Historical Overview of Security Enclosures

Approaches protecting critical devices by additional physical measures have been devel-
oped for decades. Already in 1981, the United States government described the encapsu-
lation of objects in ”protective membranes“ or ”protective cocoons“ that — if penetrated
— provide a ”penalty“, for instance, in the form of shaped charges triggered by applying
an external voltage [Boa81]. This penalty can be anything from an explosion to a remote
alarm, destruction of circuitry, or obliteration of sensitive data. The National Security
Agency (NSA) declassified the corresponding document in 2008 [Boa81].

In 1984, Chaum discussed tamper-responding containers that follow a multi-layered
approach and incorporate active or passive sensors to detect a tamper event [Cha84].
Weingart and Chaum noted that, in 1986, Price had described potting of circuits to
hamper accessibility, where wires embedded in the potting served as intrusion sen-
sors [Wei87, Cha84].

In 1987, the IBM µABYSS was published, a co-processor system design encapsulated
by a package surrounded by a wire ”cocoon“ [Wei87, Whi87]. Upon a break-in event, the
four wire layers are damaged, which leads to an erasure of the protected data. The wire
cocoon is covered by a hard, opaque epoxy potting. A thin nichrome layer insulates the
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wires to prevent short or open circuits. If an attacker attempts to dissolve the potting,
the insulation layer of the wires will also dissolve, causing shorts and triggering the
alarm. To make the system more susceptible to heat, The potting material is filled with
aluminum or silica. Hence, thermal stress will cause the package to crack and break
wires. The IBM µABYSS continuously monitors the electrical resistance of the wire
cocoon to detect a tamper event.

In 1989, MacPherson filed a patent for security enclosures consisting of layers of flexible
material [Mac90]. Two layers, made of a semiconductive material that are separated by
an insulating layer cover the enclosure. Due to the thin insulating layer, piercing the
enclosure will force the semiconductive fibers into contact. MacPherson’s proposal is
also based on measurements of electrical resistance. MacPherson described a similar
idea in a further patent in 1993 [Mac93].

In 1992, Hubert filed a patent describing a device embedded in a piezo-electric mate-
rial, which generates an electric field upon an exerted force [Hub92]. This electric field
is monitored and triggers the destruction of the secure information stored on the device.

In 2005, Eren and Sandor presented capacitive sensors for tamper-resistant enclo-
sures [ES05]. The capacitive sensors printed onto a circuit board are arranged in a
serpentine structure. Placing an object in the vicinity of two adjacent electrodes alters
their capacitance due to fringing. Removing the enclosure also removes the object, which
leads to an alarm and an erasure of cryptographic keys. According to the authors, the
capacitive sensors conform with levels 3 and 4 of FIPS 140-2.

One year later, Fischer and Froschermeier filed a patent describing an electronic se-
curity module that contains a protected area covered by a circuit board on the top and
bottom side [FF06]. The printed circuit boards are contacted, and a resistance measure-
ment is performed. The resulting resistance is compared with stored values to detect an
intrusion into the security module.

In 2013, the GORE envelope [GOR, IMJFC13] was published, which protects the
IBM 4765 Crypto Coprocessor [OI18]. It consists of a meander mesh of electrodes whose
resistance is monitored against known base values [IMJFC13]. The four mesh layers
have a trace width of 300 µm. According to the authors, the HSM based on the IBM
4765 achieved compliance with FIPS 140-2 level 4 [Adv12].

Another cryptographic module based on resistance measurements is the HP Atalla
Cryptographic Subsystem (ACS) [OI18, Hew15]. The top and bottom of the ACS PCB
are protected by covers containing an electrode mesh. Additional sensors detect the
removal of the covers, which triggers the alarm and deletes all CSPs. Due to its coarse
electrode mesh, the ACS does not protect against drilling attacks with a diameter below
1 mm [OI18].

These proposals for security enclosures relied on resistance measurements, and the
electrode monitoring required a continuous power supply in the form of a battery. How-
ever, batteries make the HSM bulky and more susceptible to environmental changes.
Furthermore, the battery charge limits the lifetime of the HSM and requires mainte-
nance.

Little is known about the attack susceptibility of these HSMs since public informa-
tion on the technical details and vulnerabilities of certified security enclosure systems
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is not readily available. Furthermore, obfuscation and nondisclosure of implementation
details are encouraged by the certification process and awarded additional points in
the overall score [Int22f, JIW22, Fed08]. Obermaier and Immler disassembled several
battery-backed HSMs to counteract this lack of information and analyzed their compo-
nents and potential weaknesses [OI18]. They found the enclosure meshes to be relatively
coarse, allowing an attacker to circumvent the security mechanisms by drilling holes
with standard retail equipment. Conceptually, battery-backed enclosures are based on
the enclosure’s resistance. The static voltage at specific points in the mesh is measured
to determine if the resistance is within the expected range. Hence, an attacker could
bypass the electrode mesh by forcing an external voltage into the circuit. This leaves
portions of the mesh unprotected. Furthermore, the resistance-based approach allows
successively replacing an electrode part with a corresponding resistor. Attacks on soft-
ware components are unknown since no details on the implementation were published.
In Section 2.4 and Chapter 4, I discuss attacks on security enclosures in the context of
Physical Unclonable Functions.

Recently, batterless enclosures based on Physical Unclonable Functions (PUFs) have
been developed to overcome the drawbacks of battery-backed HSMs [IOK+18, ION+19].
I discuss PUF-based security enclosures in Chapter 3. However, to first provide a context
for PUF-based tamper protection, I give an overview of Physical Unclonable Functions
in the next section.

2.3 Physical Unclonable Functions

In this section, I introduce PUFs and give an overview of their historical development,
focusing on their application in tamper protection.

2.3.1 Physical Fingerprints

A Physical Unclonable Function (PUF) can be seen as an object’s fingerprint [Mae12]
that is based on minuscule variations in a physical structure, such as an integrated circuit.
The unique physical patterns occur during the manufacturing, whenever the precision
in the fabrication process is limited. These are, for instance, variations in the layer
thickness, surface roughness, doping, or height and width of electrodes and connectors.
Also, slight natural variations in the raw materials can lead to unique patterns and
structures in the fabricated device. However, the physical properties contributing to a
PUF have to be chosen such that they do not represent global manufacturing variations.

The minuscule varying patterns occur randomly and are, in general, unclonable.
Hence, they should neither be replicable physically nor mathematically through ma-
chine learning or statistical methods.

Furthermore, a PUF is a function that gives a response when provided with a chal-
lenge. Depending on its use case, the design of the PUF includes single or multiple
challenges. Furthermore, depending on the space of challenge-response pairs, PUFs are
classified into weak or strong PUFs. The ISO/IEC 20897 [Int20, Int22g] provides a stan-
dard for PUFs that categorizes them according to their use case, i.e., key generation,
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identification, or authentication. Single response PUFs basically represent a ”storage“
for a single CSP, while in the case of authentication, a large list of challenge-response
pairs is stored for attestation.

PUFs should fulfill different requirements [Int20], such as steadiness, randomness,
uniqueness, tamper-resistance, mathematical unclonability, and physical unclonability.
Steadiness is a measure of the reproducibility of the PUF-response, while uniqueness
describes the difference between two PUF instances. Mathematical unclonability refers
to simulating or learning the PUF.

Apart from these requirements, the PUF community has defined additional proper-
ties for evaluating a PUF [Mae12, Wil21, MGS13, HYKS10, MKP08]. Furthermore, an
analysis of entropy and possible correlations is necessary, and testing methods for True
Random Number Generators (TRNGs) can be included [Nat10, KS11, Fed11]. However,
these tests alone are insufficient since they only address the randomness of the PUF
while discarding its reliability and other PUF-properties. Furthermore, tests for TRNGs
are designed for a large input sequence; hence, multiple PUF-responses have to be con-
catenated to adjust the input data to custom TRNGs tests [Nat10, KS11, Fed11]. What
is more, evaluating a PUF requires a large number of physical devices, which often are
not available.

2.3.2 Historical Overview

The idea of using physical properties for security applications is not new.

In 1978, Brosow and Furugard addressed an object’s authentication against forgery
through random imperfections in the object’s base material [BF78]. Their patent de-
scribed that the random imperfections are converted to a binary code, which is stored
and later compared to the regenerated binary code to verify the object’s identity.

In 1986, Samyn proposed authenticating banknotes or credit cards comprised of ran-
domly conductive fibers [Sam86]. Microwaves scan a section of the fibers to obtain a
digitally coded signal.

Graybeal and McFate reported already in 1989 that Sandia National Laboratories
had experimented with unique reflected particle patterns that were installed on weapon
systems for verification purposes [GM89]. In 1992, Tolk extended the use of reflective
particle tags —verified through image comparison — to uniquely identify other critical
equipment [Tol92]. Tolk also provided guidelines on the system design.

In 1995, van Renesse built a prototype verification system, which he named 3 Di-
mensional Structure Authentication System (3DAS) [vR95]. 3DAS was composed of
randomly arranged 40 µm polymer fibers that could be mounted on an ID card or prod-
uct label. The recorded fiber patterns were read and verified through Light-Emitting
Diodes (LEDs).

In the following year, a patent filed by Denenberg et al. addressed the authentication
of art or jewelry through unique patterns at the microscopic level [DPDC93]. The object
is identified through visual analysis of its unique intrinsic features.

In 1998, another patent was published proposing multiple scattering of coherent ra-
diation in an inhomogeneous medium to detect intrusion into a tamper-proof pack-
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age [ADG96]. The tamper attempt is detected through a change of radiation intensity.
The response of the medium provides a unique identity key.

This approach was followed in 1999 by a prototype implementation for the physical
identification of documents [SS99]. The authors used the randomly varying physical
features of printed paper to verify documents, illuminating a portion of the paper to
identify the structural pattern of the paper texture.

The extraction of unique and repeatable information from integrated circuits was
demonstrated in 2000 by Lofstrom et al. [LDT00]. Due to a mismatch between transistors
stemming from randomness in silicon processing, the drain currents differ randomly for
each die, leading to a sequence of random voltages that can be used for integrated circuit
identification.

In 2001, Pappu et al. introduced the notion of Physical One-Way Functions (POWFs)
[Pap01, PRTG02]. They build an optical POWF based on laser speckle fluctuations
translating the microscopic changes in a 3D epoxy structure to a fixed-length key. The
epoxy structure is illuminated by a 632.8 nm HeNe laser and filtered, resulting in an op-
tical hash. The optical hash provides a discretely sampled image of the speckle intensity
representing a fixed-length key. The one-wayness of the physical function requires it to
be non-invertible through any algorithm [Pap01].

In 2002, Layman et al. filed a patent for electronic fingerprinting of integrated cir-
cuits [LCNR02]. They based the Integrated Circuit (IC) identification on the initial
state of certain memory cells. The startup value of memory cells is consistent at each
power-up. This is caused by manufacturing variations that lead to a mismatch between
the transistors of each memory cell. This idea is closely related to what later became
known as SRAM PUFs.

In the same year, Gassend et al. introduced the term Physical Random Function,
abbreviated as PUF — which stands for Physical Unclonable Function — to prevent
confusion with Pseudo-Random Functions [Gas03, GCvDD02]. They defined a Physi-
cal Random Function as a function mapping challenges to responses, which is easy to
evaluate and hard to characterize. According to Gassend et al., PUFs and POWFs are
similar and differ mainly in one aspect: control. A Controlled PUF is evaluated by an
algorithm that is physically bound to the PUF. The POWF presented by Pappu et al.
could be modified to fulfill that requirement by integrating the light source into the epoxy
structure instead of manually changing the position of the light source in correspondence
with the challenge. Furthermore, light sensors embedded on a chip would have to be
integrated into the epoxy structure surrounded by a reflecting material [Gas03].

Gassend et al. suggested constructing PUFs based on statistical variations in delays
of devices and wires [GCvDD02, GCvDD03]. They also proposed an architecture for a
delay-based PUF, which became known as the Arbiter PUF [LLG+04, LLG+05]. The
simple Arbiter PUF is based on the simultaneous excitation of two delay paths that
are configured through switch components. Both delay paths are racing against each
other, and an arbiter block at the output detects which rising edge arrives first. The
binary input challenge determines which path is to be taken. The total delay is the
sum of the individual component and wire delays, assuming an additive delay model.
The Arbiter PUF maps a multi-bit challenge input to a single-bit response output. Due
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to an exponentially large number of challenge-response pairs, the authors proposed the
Arbiter PUF to identify and authenticate ICs.

An error-correcting code is necessary to ensure the PUF’s reliability since external
factors lead to slight variations in the measured responses [GCvDD02]. In 2004, Dodis
et al. published the Fuzzy Extractor, a method to extract strong keys from noisy data,
which originated in the biometrics community. The repeated scans of biometric data,
such as human fingerprints, are prone to errors and deviations that must be corrected.
Hence, schemes like the Fuzzy Extractor are also suitable for the key generation from
noisy PUF-data. Even though an earlier scheme for error correction was already pub-
lished in 1999 [JW99], the Fuzzy Extractor triggered a new development in the PUF
community. The first known application of the Fuzzy Extractor to PUFs was published
by Škorić et al., who applied it to an optical PUF [ŠTO05].

In 2006, Tuyls et al. applied the Fuzzy Extractor to the Coating PUF, a capacitive
PUF protecting on-chip components [TSŠ+06]. The Coating PUF is formed by randomly
arranged particles in a protective coating. A tamper event destroys the original makeup
of the particle structure, which is detected by the capacitive measurement.

Another well-known Physical Unclonable Function, the Ring Oscillator PUF, was
proposed by Suh and Devadas for the low-cost authentication of individual ICs [SD07].
However, the extraction of unique properties from oscillating circuits had already been
proposed by Gassend et al. [GCvDD02]. The Ring Oscillator PUF consists of many ring
oscillators, each oscillating with a different frequency. The challenge selects different
ring oscillator pairs whose frequencies are compared to obtain the PUF-response.

In 2007, Guajardo et al. build a PUF based on SRAM cells [GKST07]. At power
up, each SRAM cell will yield a consistent startup value, which is, however, influenced
by manufacturing variation, hence, introducing randomness. Guajardo et al. derived a
PUF-secret from the SRAM PUF, and investigated its behavior under thermal influ-
ences. An idea similar to the SRAM PUF had already been described by Layman et al.
in 2002 [LCNR02]. More recent memory-based PUFs make use of small variations in
nanoelectronic devices to derive a PUF-secret [GRAS+16].

In the following years, further PUF constructions were proposed and implemented,
e.g., [SHO07, MTV08, SSK12, CCL+11, BNCF13, MBC16, HAP09], including the pub-
lication of large PUF datasets for well-known PUF constructions [WBG17, MCMS10,
HWGH18, SGC+21]. Apart from authentication, another use case for PUFs is tamper
protection, which I discuss in Subsection 2.3.4.

2.3.3 Attacks on Physical Unclonable Functions

Since the early days of Physical Unclonable Functions, it was known that multi-challenge
PUFs are generally susceptible to modeling attacks. However, with a large number of
emerging PUF constructions, mathematically cloning PUFs through machine learning
became increasingly interesting.
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Machine Learning Attacks

Already in 2002, in one of the initial publications on PUFs, Gassend et al. labeled
modeling attacks of the proposed delay-based PUFs as one of the most relevant at-
tacks [GCvDD02]. They argued that if an attacker knew the physical parameters defin-
ing the PUF, simulation and cloning the system would be feasible. Arbiter-based PUFs,
in particular, can be described by a linear model. Hence, the attacker can use machine
learning to build a software clone of the PUF circuit that could predict the responses
associated with a certain challenge [LLG+05].

In 2008, Majzoobi et al. demonstrated practically that said linearity of the system is
exploitable and that the delay-based PUFs could be broken [MKP08]. As a counter-
measure, they proposed introducing additional non-linearity, leading to the interleaved
XOR Arbiter PUF.

Two years later, Rührmair et al. showed that various types of Arbiter and Ring Oscil-
lator PUFs can be broken through machine learning given a subset of challenge-response
pairs [RSS+10]. However, they stated that the attacks were not feasible for an expo-
nentially large set of challenge-response pairs and single-challenge PUFs. The attacks
were replicated and further developed by Tobisch and Becker, proposing a more efficient
implementation [TB15].

In the following years, machine learning attacks on different types of multi-challenge
PUFs were extended towards increasing, and even exponential, challenge-response pairs
[RSS+13, Bec15b]. A further goal was to reduce the attack complexity [SNMC15]. Even
for PUF constructions that were considered difficult to model, e.g., the Bistable Ring
PUF [CCL+11] or the Interpose PUF [NSJ+18], machine learning attacks found a cor-
responding mapping from challenges to responses [SH14, XRHB15, GTFS16, CMH20].

Additionally, machine learning attacks have been theoretically analyzed and optimized
to reduce the time required to learn a PUF [GTS15, GTS16]. Even though new PUF
constructions and extensions to well-known PUF designs have been proposed, the future
of multi-challenge PUFs remains uncertain due to continuous progress within the field
of machine learning.

Side-Channel Analysis

Apart from machine learning attacks, the second class of relevant attacks for PUFs is
side-channel attacks. Side channels can leak information about the PUF and correspond-
ing CSPs through, for instance, the observed power consumption or electromagnetic ra-
diation of the PUF and its post-processing operations. Karakoyunlu and Sunar [KS10]
performed one of the first side-channel attacks in the context of PUFs. The authors pre-
sented two power side channel attacks aiming to extract the PUF-secret from a secure
sketch and fuzzy extractor implementation with BCH and Reed Solomon codes.

Merli et al. [MSSS11a] conducted one of the first electromagnetic (EM) side-channel
attacks on PUFs. They targeted a Field Programmable Gate Array (FPGA) imple-
mentation of Ring Oscillator PUFs with an 8-bit PUF-response. By measuring the EM
emission of the Ring Oscillator PUF, they obtained the PUF-response bits.
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In the same year, Merli et al. conducted a second EM side-channel attack on an FPGA
Fuzzy Extractor prototype [MSSS11b]. Their proof-of-concept implementation showed
that the EM side channel leaks information about the cryptographic key. In 2013, Merli
et al. targeted the error correction module of a secure sketch through differential power
analysis and helper data manipulation. [MSS13]. They were able to extract single bits of
the PUF-key. Tebelmann et al. later extended the attack by combining electromagnetic
side-channel analysis with the parallel manipulation of helper data and an advanced cor-
relation method. Through this, they extracted the complete key of a Fuzzy Commitment
scheme.

Rührmair et al. and Mahmoud et al. performed power and timing side-channel at-
tacks on Arbiter PUFs [RXS+14, MRMK13]. Since the side channel analysis alone was
insufficient to determine the Arbiter PUF outputs, they tailored the attack to machine
learning algorithms, decreasing the attack’s complexity.

Delvaux and Verbauwhede exploited a repeatability side-channel, where repeatability
refers to the PUF’s short-term reliability affected by noise, to successfully model an
Arbiter PUF without any additional machine learning algorithms [DV13]. Furthermore,
they proposed accelerating the attack by triggering evaluation faults through environ-
mental changes [DV14b].

Also, memory-based PUFs were shown to be susceptible to side-channel attacks. In
2015, Zeitouni et al. recovered the PUF-key by observing time-based and voltage-based
remanence decay of SRAM cells, through which they determined the startup pattern of
the SRAM PUF [ZOW+16]. In 2018, Anagnostopoulos et al. showed that temperature-
induced data remanence could be used to manipulate cryptographic keys produced by
SRAM PUFs [AAR+18].

Another type of side channel is Photonic Emission Analysis (PEA). Tajik et al. showed
that timing-based PUFs are vulnerable to photonic emission. This enabled them to mea-
sure specific PUF-delays and characterize different Arbiter PUFs [TDF+14, TDF+17].

A more recent attack performed by Tebelmann et al. showed that through power and
electromagnetic analysis, the response of a Loop PUF could be fully recovered [TDP20].
Other recent work focuses on EM-based side channel attacks on Ring Oscillator PUF
implementations [TPI19, SF19].

Since side channel analysis alone often does not suffice to determine all PUF-responses
accurately, a variety of hybrid attacks was proposed to overcome this drawback. Sev-
eral of these attacks were performed on Arbiter PUFs and their derivatives [RXS+14,
MRMK13, BK14, GKST15]. Becker and Kumar combined both a power side channel
and a fault attack with a machine learning algorithm to target delay-based PUF de-
signs [BK14]. They incorporated additional reliability information about the PUF to ob-
tain the PUF model. Ganji et al. combined photonic side channel analysis and a lattice-
based reduction technique to compromise the security of XOR Arbiter PUFs [GKST15].
Their approach does not require access to challenges or responses.
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Further Attacks

Besides creating a mathematical PUF model, PUFs can also be physically cloned. This
was shown for memory-based PUFs by Helfmeier et al., who physically cloned an SRAM
PUF by altering the circuitry with a Focused Ion Beam [HBNS13]. The cloned circuit
produced the same response as the original SRAM PUF. In the same year, Nedospasov et
al. read out the memory content of an SRAM PUF in a backside laser attack [NSHB13].

Nguyen et al. predicted the responses of a Ring Oscillator PUF corresponding to a
specific challenge through a cryptanalytic attack [NSCM15]. Their attack required access
to specific challenge-response pairs and helper data.

Many key generation schemes for PUFs require the generation of public helper data
(see Section 2.4). Exploiting helper data manipulation provides additional information
about the PUF [DGSV15, DV14a, TPS17]. Through helper data manipulation, Delvaux
and Verbauwhede attacked the key generation of a Ring Oscillator PUF. They demon-
strated that a partial to full key recovery is possible through helper data manipulation
and observation of failure rates [DV14c].

Besides PUF constructions and key generation schemes, challenge-response protocols
based on PUFs have been successfully attacked via quadratic attacks [RD12] and machine
learning [Bec15a].

As already discussed, multi-challenge PUFs, like, e.g., Arbiter PUFs, are susceptible to
machine learning attacks. Even though different new PUF constructions and extensions
of well-known designs have been proposed, the long-term security of multi-challenge
PUFs is threatened by new and improved machine learning attacks.

Single-challenge PUFs are not vulnerable to machine learning attacks; however, SRAM
PUFs, as proposed by Guajardo et al. [GKST07], can be physically cloned by duplicating
the circuitry through Focused Ion Beams or memory read out via laser attacks. Hence,
instead of integrating SRAM PUFs, in many current applications, replacement via a
One-Time-Programmable Memory might already be a good solution for storing CSPs.
However, memory-based PUFs could regain importance in the future due to increasingly
smaller chip sizes, which might lead to a reduction or even removal of large memory
spaces.

More promising applications of PUFs are constructions protecting against tampering
attempts. In the following, I discuss different PUFs applied in the context of tamper
protection.

2.3.4 PUF-Based Tamper Protection

Table 2.1 provides an historical overview of PUF-based tamper protection. One of the
first secure architectures incorporating a PUF is the AEGIS secure processor architec-
ture [SOD07, SOSD05]. AEGIS was proposed in 2005 by Suh et al. as a single chip
secure processor authenticated by a delay-based PUF. The authors considered opening
and tampering with the chip while running as ”prohibitively expensive“. However, anal-
ysis methods and hardware attacks have developed significantly, constituting a severe
threat to the AEGIS system.
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Table 2.1: Historical overview of PUF-based tamper protection.

Year PUFs in the Context of Tamper Protection

2005 AEGIS secure processor architecture [SOD07, SOSD05]

2006 Protective capacitive coating PUF [TSŠ+06]

2012 Optical PUF in the context of smartcards [EFK+12]

2014 Optical waveguide polymer PUF [SFIC14]

2015
Secure architecture based on the optical waveguide

polymer PUF [VNK+15]

2018 Capacitive PUF-based envelope (B-TREPID) [IOK+18]

2019 Capacitive PUF-based enclosure (COVER) [ION+19]

2020 Electromagnetic enclosure PUF [TZP20]

2021 Switched Capacitor PUF standard cell [ZHW+21]

2021 Anti-Tamper Radio [STZP21]

Another secure architecture proposed by Vai et al. [VNK+15] applied the optical
waveguide polymer PUF [SFIC14] as the protective cover of a PCB. Light from LEDs
is sent through a polymer waveguide covering the PCB’s top area. A change in the
detected light patterns indicates the occurrence of a tamper event. The secure architec-
ture prototype does not cover the PCB’s edges or the bottom area. Prior to the optical
waveguide polymer, Esbach et al. had already applied optical PUFs in the context of
smartcard security [EFK+12].

A further electromagnetic PUF in the context of tamper protection was proposed
by Tobisch et al. [TZP20]. Their approach is based on the manufacturing variations
of electromagnetic-sensitive sealing material. The channel state information between
different antennas is measured within the sealing. The wavelength of the radio channels
depends on the sealing material’s manufacturing variations, yielding a measurable PUF-
response. A similar approach by Staat et al. investigated radio wave propagation in an
enclosed system with a complex geometry [STZP21]. Their Anti-Tamper Radio (ATR)
monitors the wireless signal propagation within a metal case and triggers an alarm if
the radio signal response is altered. The ATR can detect 16 mm needle insertions with
a diameter of 100 µm.

For the protection of components on-chip, Tuyls et al. proposed a capacitive coating
PUF [TSŠ+06]. The protective coating containing randomly arranged particles is added
to the top area of an IC. A capacitive measurement of the coating determines whether
the particle structure is intact. A more recent approach published by Zhang et al. aims
at protecting electrical circuits through Switched Capacitor (SC) PUFs [ZHW+21]. The
authors integrated an anti-invasive attack protection into the SC PUF, from which they
generated a key. The protective element is implemented through metal meshes covering
the corresponding sensitive circuits. A probing attack alters the parasitic capacitance
between the metal meshes and changes the reproduced key.

PUF-based capacitive envelopes and enclosures have been developed in recent years
by Immler et al. [IOK+18, ION+19] to protect larger PCB areas or entire devices. The
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enclosures contain a mesh of overlapping electrodes forming small capacitors. Minuscule
capacitive differences due to manufacturing variations determine the PUF-response. The
destruction of the mesh through a tamper event alters the original capacitances and
hence, the PUF-response. In the following, I give an overview of previous work on
capacitive PUF-based security enclosures.

2.4 Capacitive PUF-Based Security Enclosures

This section provides an overview of previous work on capacitive PUF-based security
enclosures, including the overall enclosure system, post-processing of the PUF-response,
and previously conducted attacks.

2.4.1 The Capacitive Enclosure

The purpose of the capacitive PUF-based enclosure is to cover an entire device to protect
it from physical manipulations. Over time, two enclosure versions were developed: B-
TREPID [IOK+18] and COVER [ION+19], which are depicted in Figure 2.1. B-TREPID
is a protective envelope that is wrapped around the device within a casing, while COVER

B-TREPID COVER

+ +

Figure 2.1: Simplified schematic of B-TREPID (left) and COVER (right).
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Figure 2.2: The layer stack of the capacitive enclosure (B-TREPID).

is a non-flexible enclosure that covers the top and bottom layer of the PCB, leaving the
edges unprotected.

Both enclosures are built up of several layers. Figure Fig. 2.2 depicts the layer stack
for B-TREPID. Two layers of meander-shaped copper (Cu) electrodes (RX and TX)
are separated by an insulating layer of polyimide (PI), forming small capacitors. Since
alternating electric fields disrupt the capacitive measurement, a Cu-shielding was at-
tached to the top and bottom of the envelope [Obe19, IOK+18]. The electrode layers
are formed by sputtering Cu onto the PI substrate. In order to create the conductive
interconnection between the electrodes, vias are formed through laser ablation. This
requires the thickness of the Rx electrode layer to be increased to 7 µm through a semi-
additive galvanic process. The overall thickness of the envelope layer stack amounts to
approximately 0.25 mm.

The envelope consists of 16 TX (top) and 16 RX (bottom) electrodes with a width
and distance of 100 µm, as depicted in Figure 2.3. Due to their orthogonal arrange-
ment, the electrodes overlap and form small capacitors whose capacitance varies due to
manufacturing variations, hence, creating a PUF. Measuring one TX electrode against
one RX electrode results in 256 absolute capacitances that do, however, depend on
global manufacturing variations [Bri04, IHOS17]. Since this dependency makes them
unsuitable as a PUF-response, the absolute capacitances are subtracted to form 128 dif-
ferential capacitances in the range of [−73 fF, 73 fF] with a maximum entropy of 560 bits
[IOK+18]. These differential capacitances constitute the PUF-response and are obtained
from measuring two TX electrodes — forming a TX pair — against one Rx electrode.
The PUF-response serves as input for the key generation process from which a Key-
Encryption-Key (KEK) is derived. The advantage of a PUF-based solution is that the
KEK is not stored in the system but continuously reproduced from the envelope. Hence,
the system can be powered down without requiring a battery for continuous monitoring.

Due to the structure size of 100 µm, the envelope is designed to withstand drilling
attacks with a diameter of 250 to 300 µm. The electrode mesh is depicted in Figure 2.3.
Experiments have shown that these attacks destroy two traces of the electrode mesh,
affecting at least 32 of the 128 differential capacitances [ION+19]. This leads to a
destruction of 80 of the maximum 560 bits of entropy [ION+19, IOK+18].
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Polyimide

RX electrode100 μm100 μm

50 μm

TX electrode

Figure 2.3: Schematic cross section of the envelope’s mesh with RX and TX electrodes, and
polyimide layer.

To measure the 128 differential capacitances and perform an integrity check of the
electrodes, Obermaier developed a discrete measurement circuit [OIHS18, Obe19]. The
differential capacitance, in this case, is obtained by measuring the capacitance of two TX
electrodes against one RX electrode. Subtracting two absolute capacitances from one an-
other is highly error-prone and can not determine the minuscule differential capacitances
in the femtofarad range. Due to an antiphasic excitation signal, Obermaier performed
the subtraction ”within“ the enclosure, reaching high accuracy. It takes 390 µs on aver-
age to measure a single differential capacitance, also referred to as a ”node“. Measuring
the entire enclosure requires 50 ms.

However, due to the large size of the discrete measurement circuit, integrating it into
an HSM prototype becomes difficult. A smaller ASIC of approximately 5 mm × 5 mm
was developed to overcome this issue [FIU+18], which can be embedded into the enve-
lope. The time for the measurement is significantly reduced since the ASIC measures
16 differential capacitances — each between two RX electrodes and one TX electrode
— in eight parallel channels. The ASIC quickly detects attacks at runtime by period-
ically monitoring the electrodes. The ASIC provides several security features besides
the capacitive measurement and integrity check. Two redundant alarm signals, a dy-
namic Pulse Width Modulation (PWM) signal and a static high signal, impede external
manipulation. The PWM signal acts as a heartbeat, whose frequency is generated by
the ASIC’s Random Number Generator (RNG). Upon a tamper event, the static high
signal goes to low, and the PWM signal stops. A tamper event corresponds to shorted or
interrupted traces or out-of-bounds capacitances. The ASIC also has sensors for voltage
and temperature monitoring.

PUF-based security enclosures, and the ASIC for capacitive measurement, are the
foundation of FORTRESS, the FORtified Tamper-Resistant Envelope with an Embedded
Security Sensor, which I discuss in Chapter 3.

2.4.2 Post-Processing

In order to obtain a key from the analog PUF-response, several steps are necessary.
The ASIC’s Analog-to-Digital Converter (ADC) provides integers in the range [-16383,
+16383] that correspond to the 128 PUF values. The discrete measurement circuit maps
the full-scale range of [−134 fF,+134 fF] to integers in the interval [−10000,+10000],
where one point corresponds to a digital resolution of 13.4 aF. Previous measure-
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ments of the PUF-response reveal a Gaussian distribution of the differential capaci-
tances [IOK+18, ION+19].

Several steps are necessary before generating a key from the analog PUF-response.
These steps, as depicted in Figure 2.4, are as follows:

1. Shift of TX/RX groups (normalization)

2. Generation of quantization mapping

3. Generation of analog helper data

The first step after the capacitive measurement is the normalization of the PUF-
response. In the case of the ASIC, the differential capacitance is obtained from mea-
suring two RX traces (RX group) against all other TX traces. In contrast, the discrete
measurement circuit measures two TX electrodes (TX pair) against one RX electrode.
Global manufacturing variations in the electrode thickness lead to offsets in the raw
differential capacitances of some of the TX or RX groups. Hence, each group is shifted
by a particular value. In the first post-processing step, this global dependency is re-
moved by subtracting the offset and forcing the group’s mean to zero. By subtracting
each group’s mean separately, the overall PUF-distribution is also affected. In general,
I observed that the standard deviation of the PUF-distribution is reduced, as depicted
in Figure 2.4. The side effect of this group shift is that if an attack changes only a
single value, all other values in the group shift as well. This increased tamper-sensitivity
enhances the overall security [OIHS18]. I will refer to the first step as ”normalization“.

In the second step, the quantization intervals for the PUF-response are generated.
The number of bits per PUF-value depends on the measurement uncertainty. Due to
noise and aging effects, the points at the edge of an interval are prone to shift into the
neighboring interval. To reliably reproduce the PUF-key, so-called analog helper data¸
are generated in the third step. The analog helper data stored in Non-Volatile Memory
(NVM) represent the offsets from the interval centers that are subtracted from each
PUF-value. Since these data stem from the post-processing of the analog PUF-response,
they are referred to as analog helper data to distinguish them from the helper data
created during key generation.

After the quantization of the PUF-response and the application of analog helper data,
the PUF-key is generated or reproduced, respectively. Although the analog helper data

PUF-response

1O

PUF-response

Normalization

2O

Normalization

Quantization

3O

Quantization

Quantization

Analog helper data

Figure 2.4: Post-processing steps of the measured PUF-response, including TX/RX group shift
(normalization), quantization, and generation of analog helper data.
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reduce the quantization error, the PUF-response is still affected by noise and environ-
mental changes. Hence, during the key reproduction, error correction codes are applied
to enhance reliability.

2.4.3 Key Generation

After the described post-processing steps, a key is generated from the quantized PUF-
response. The PUF-secret is embedded into the secure key chain as the KEK. The
successful verification of the KEK leads to the decryption of the protected device. If the
KEK can not be verified correctly, the decryption fails, and an alarm is triggered, which
leads to the zeroization of all CSPs.

Various schemes have been proposed for generating (and reproducing) a key from
the PUF-response [DRS04, JW99, HYP15, MB17]. Since the PUF-response is noisy
and error-prone, these schemes combine the key generation with an error correction
code to ensure the correct reproduction of the key. The first key generation schemes
applied to Physical Unclonable Functions originated in the field of biometric authenti-
cation [DRS04, JW99], where keys are created from biometric features that are subject
to random noise.

The generation or reproduction of a key from the PUF-response includes several steps.
Figure 2.5 shows a high-level overview of the building blocks for the most common key
generation schemes. One of the main building blocks is an encoder and decoder to
correct errors ϵ from noise or environmental changes. During key generation — also
referred to as enrollment — most key generation schemes use so-called helper data W
to construct a codeword C from the PUF-response X. The corresponding Helper Data
Algorithm (HDA) maps the PUF-response to a codeword resulting in the helper data
W. The helper data are stored in an NVM on the device and hence, in general, must be
considered public. In general, information about the PUF-secret can be gained through
helper data manipulation attacks, where the attacker observes if the key K remains
correct after manipulating the helper data W [MSS13, DV14a, TPS17].

Generation Reproduction

HDA
+

encoder
PUF

TRNG

W

NVM

HDA

PUF

decoder hash K

R

X ′

C ′ SX

Figure 2.5: Exemplary key generation and reproduction. Optional blocks are depicted through
dashed lines.
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Some schemes also require an additional random number R from a TRNG [JW99,
DRS04]. Others use a portion of the PUF-response as a random number [HYP15]
or adjust the code construction such that the PUF-response corresponds to a code-
word [MB17]. Depending on the chosen scheme, the PUF-secret S either corresponds
to the random number R, the PUF-response X, or a portion of the PUF-response. For
the reproduction of the key K, the PUF-response X ′ = X + ϵ is measured, which, due
to environmental changes and noise, will differ from the original PUF-response X. The
PUF-response X ′ and the helper data W from NVM yield the codeword C ′ = C + ϵ,
which is decoded to the secret S. Depending on the scheme, an additional step is re-
quired after the decoding to ensure sufficient entropy of the PUF-key K and reduce
helper data leakage. In most cases, this is achieved through a hash function.

Alternative key generation schemes perform the encoding considering noise properties
of the PUF to ensure reliable reproduction [YD10, HMSS12, HWRL+13, YHD15]. Fur-
thermore, code concatenation can be applied to reduce the decoding complexity [For65a,
Hil16].

Various codes were proposed and applied in the context of PUFs to improve and op-
timize the error correction, with each approach pursuing a different design goal. Since
PUFs are often integrated into embedded devices as a root of trust, the size and perfor-
mance of the implemented codes are crucial parameters. Therefore, many implementa-
tions of error correction in the context of PUFs focused on optimizing hardware resources,
decoding complexity, and implementation overhead of Bose Chaudhuri Hocquenghem
(BCH), Reed Solomon, or Reed-Muller Codes [BGS+08, MVHV12, HKS20, MHK+19,
PMB+15]. In addition, the implementation overhead can be further reduced by including
reliability information about the PUF [MTV09a, MTV09b, MPB18, HOSB16].

Besides implementation efficiency, many publications focus on reducing secrecy leakage
in key derivation schemes either by removing bias in the PUF-response [MLSW16, BY19,
IHL+19] or by targeting helper data leakage [CW19, BY21]. An alternative approach
to tackle helper data leakage was published by Müelich and Bossert, who proposed a
novel secure sketch that does not require additional helper data [MB17]. A more recent
approach in the context of PUFs was presented by Chen et al., who applied polar codes
to SRAM PUFs in order to reduce the failure probability of the error correction code.

As I will show in more detail in Chapter 5, the capacitive PUF-based enclosure re-
quires an error correction scheme that ensures a high tamper-sensitivity while correcting
changes in the PUF-response due to environmental effects or noise. Limited Magni-
tude Codes (LMC) [JL12, IU19], which I discuss in more detail in Chapter 3, are a
straightforward method with sensitivity to large interval shifts that occur during an
attack, correcting only errors of a small magnitude. LMCs provide a simple approach
to limit the number of corrected errors to only small interval shifts. To include more
complex error patterns and model both environmental and attack effects, I present an
error correction scheme in Chapter 5, implementing a wiretap channel through q−ary
polar codes.
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2.4.4 Attacks on Security Enclosures

The capacitive enclosure system has been subjected to various attacks. Immler et
al. showed that X-ray inspection of the enclosure reveals the layout structure and de-
sign [ION+19]. Preventing these reverse-engineering attacks is hardly feasible. Hence it
has to, in general, be assumed that the attacker knows how the electrodes are arranged
within the enclosure. Since the device is not directly accessible, physical attacks on
security enclosures are of particular interest from a security perspective [Int15]. Unfor-
tunately, hardware security testing procedures following Common Criteria standards are
a well-kept secret, and the overall certification score often relies on hidden or obscure
countermeasures. To counteract the secrecy surrounding HSMs, Obermaier and Imm-
ler [OI18] analyzed several non-capacitive enclosure systems through partial or complete
disassembly. They determined the size of the enclosure mesh and the applied security
mechanisms. Hence, the security of an enclosure system should not rely on hidden coun-
termeasures or obfuscation since an attacker can purchase a decommissioned device and
reverse-engineer it.

A second class of attacks relates to bypassing the electrode mesh aiming to partially re-
move it and, thus, access conductive traces or pins to gain critical information. Battery-
backed enclosure systems verify that the protective mesh is intact by continuously mea-
suring the electrodes’ resistance [OI18]. However, since these enclosures are not based on
the intrinsic physical properties of the mesh, bypassing the electrode could be achieved
by successively replacing a portion of the electrode with a corresponding resistor. In
the case of the capacitive enclosure, a bypass attack is more complex, as shown by
Obermaier [Obe19]. Obermaier built a specific current probe to duplicate the small RX
currents during measurement. He attached fine wires to a severed RX electrode and read
out the RX current signal, which he redirected back into the enclosure. The attack was
not detected during capacitive measurement, which could potentially enable an attacker
to remove a portion of the enclosure. I discuss a countermeasure against the bypass
attack in Chapter 4.

One of the most critical threats is attacking the enclosure via mechanical drills or en-
ergy probes, such as lasers, aiming to gain access to critical components and connections.
The enclosure’s susceptibility to drilling depends on the electrode mesh size. In the case
of the capacitive enclosure, the electrode mesh was designed to withstand drilling at-
tacks with a diameter of 300 µm. Thus, with an electrode with and distance of 100 µm,
the drill destroys two electrodes, which affects 32 of the 128 differential capacitances
that constitute the PUF-response. However, micro-drilling attacks with diameters be-
low 300 µm are feasible and pose a potential threat to the enclosure system. I discuss
micro-drilling attacks and countermeasures in Chapter 4.

Apart from invasive and destructive attacks, there are also non-invasive attacks that
could potentially affect the security of the enclosure system. Non-invasive attacks based
on machine learning that aim at mathematically cloning the PUF are relevant for multi-
challenge PUFs [RSS+10, Bec15b, SH14]; however, they do not pose a threat to single-
challenge PUFs such as the enclosure. Sensor monitoring mostly mitigates side-channel
analysis, with one exception: In Chapter 4, I show that magnetic probing of the SPI-
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interface between the ASIC and the system’s main microcontroller leaks information
about the PUF-response. Glitching attacks, such as clock or voltage glitching, are coun-
teracted by the system design. Since the enclosure inhibits physical access to the clock,
clock glitching attacks are of low relevance to the enclosure system, as well as voltage
glitching attacks, which are prevented by large capacitors as part of the power supply
and voltage stabilizers. Faults induced through alternating electric fields are mitigated
through the envelope’s shielding. Even though magnetic fields permeate the enclosure,
they are unlikely to influence the capacitive measurement since they are counteracted by
the narrow excitation frequency and canceled out through the meander structure of the
enclosure mesh. However, particle radiation might permeate the enclosure and disturb
critical components or operations, which I discuss in Chapter 6.

2.4.5 New Contributions Presented in This Thesis

Within the scope of this thesis, I investigate the tamper-sensitive design of PUF-based
capacitive security enclosures and take further steps toward the operational deployment
of this PUF-based technology.

Previous work focused on improving the enclosure design while optimizing the ca-
pacitive measurement and provided a statistical analysis of the PUF-response [ION+19,
IOK+18, Obe19, OIHS18, Imm19]. In Chapter 3, I bring all these components together,
introducing FORTRESS, the FORtified Tamper-Resistant Envelope with an Embedded
Security Sensor. FORTRESS incorporates the ASIC embedded into the enclosure and
includes a full key generation tailored to the enclosure, considering all post-processing
steps. The hardened FORTRESS software was extended through a secure life cycle
covering critical parts of the supply chain.

The security of the enclosure system depends on its attack susceptibility. As discussed
in Subsection 2.4.4, drilling attacks and bypassing of electrodes belong to the most
critical physical attacks on the enclosure system. I focus on both attacks in Chapter 4
and propose countermeasures. Furthermore, I demonstrate a new attack on the enclosure
exploiting the side channel leakage of the SPI-interface connecting the ASIC and the
microcontroller. I show that the PUF-response can be read out through magnetic probing
and provide an analysis of how external electric and magnetic fields affect the enclosure
system.

The error correction for the enclosure has to reconcile two opposing goals. On the one
hand, it has to correct errors from environmental influences to achieve a reliable repro-
duction of the PUF-secret; on the other hand, it may not correct errors stemming from
an attack since this would compromise the enclosure’s tamper-sensitivity. However, most
error correction codes for PUFs do not focus on tamper-sensitivity. To limit the mag-
nitude of the corrected errors, Immler and Uppund proposed using Limited Magnitude
Codes (LMCs) for the enclosure [IU19, JL12]. LMCs limit the error correction to the
Least Significant Bits (LSBs), thus, only allowing changes in the PUF-response within
neighboring intervals. However, when applying LMCs, a suitable error magnitude has
to be chosen. Furthermore, these codes require a base change that restricts the choice
of possible error correction parameters. Nevertheless, using Limited Magnitude Codes
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is a simple approach to improve the tamper-sensitivity of the enclosure. To model more
complex error patterns and to enhance the tamper-sensitivity of the PUF-response, I
present a wiretap channel implementation for the capacitive enclosure in Chapter 5.

The enclosure prevents physical access to the protected device, which reduces the risk
of glitching attacks. Also, electromagnetic interference is unlikely to affect the capacitive
measurement due to the measurement principle and enclosure design. However, as I will
discuss in Chapter 6, particle radiation can permeate the enclosure and cause faults
that negatively affect critical operations. In Chapter 6, I first demonstrate the effects
of transient faults injected into critical operations through a realistic laser fault attack
on flash memory. Then, I show how searching for vulnerabilities in the firmware of
embedded devices can be facilitated through ARCHIE, an architecture-independent fault
emulation framework. With ARCHIE, I analyze the fault susceptibility of the enclosure
system and discuss possible countermeasures.
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Chapter 3

Fortified Tamper-Resistant Envelope with
an Embedded Security Sensor

Batteryless PUF-based security enclosures were developed to cover entire devices with a
protective envelope without the drawbacks of a continuous power supply. As discussed
in Section 2.4, previous work on capacitive PUF-based enclosures took the first steps
towards a proof-of-concept implementation by showing that the minuscule capacitances
in the femtofarad range can indeed be measured and that the measured PUF-response is
Gaussian distributed. This chapter aims to integrate the envelope and the ASIC into a
prototype HSM and develop it further into FORTRESS - the FORtified Tamper-Resistant
Envelope with an Embedded Security Sensor.

The assembly of FORTRESS comprises several steps. In Section 3.1, I focus on embed-
ding the ASIC into the capacitive envelope, which becomes directly accessible through a
digital interface. Furthermore, I discuss the components of the FORTRESS PCB. This
is followed in Section 3.2 by a discussion of the second generation EKMS, the software
of FORTRESS, with Operating System (OS) hardening, extended crypto-functionality,
and a secure life cycle covering essential supply chain aspects. In Section 3.3, I describe
a full key generation scheme that I tailored to the security objectives of the capacitive
enclosure and the PUF post-processing. I summarize the results of the FORTRESS
assembly in Section 3.4.

I presented the results in this chapter at the 18th Annual International Conference
on Privacy, Security & Trust (PST2021). Further details are published in the IEEE
Conference Proceedings [GOFK21].

3.1 The Assembly of FORTRESS

In this section, I give an overview of FORTRESS and present its basic components.

3.1.1 Overview

Figure 3.1 shows the FORTRESS PCB within a casing enveloped by the capacitive
enclosure. The envelope of 18.5 cm × 9 cm is wrapped around a PCB of 5 cm × 6 cm
together with a Flat Flexible Cable (FFC) for external communication. Furthermore, the
enclosure is covered by a protective potting material to hamper access to the envelope.
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The FORTRESS software, the so-called EKMS, runs on a microcontroller located on
the PCB. The EKMS is an intermediate firmware between the ASIC and the host system,
residing within the physical boundary of the envelope. The ASIC is mounted onto the
capacitive enclosure and provides a digital interface, reducing the envelope’s connector
size from 80 to 20 pins.

cable
connector

envelope
connector

embedded ASICmicrocontroller

Flexible Flat Cable

Figure 3.1: Schematic of the PCB within a casing, enveloped by the enclosure. For external
communication an FFC is wrapped around the casing together with the envelope.

3.1.2 Envelope Manufacturing and ASIC Mounting

The envelope is fabricated via lithographic patterns that allow the production of a com-
plex mesh of traces with 100 µm width. Due to the scalability of the manufacturing
process, even smaller structures are, in general, feasible. The first layer of the RX elec-
trodes is formed by sputtering copper onto the polyimide substrate. Subsequently, the
RX electrode layer’s thickness is increased to 7 µm in a semi-additive galvanic process.
This provides a defined stop interface creating the vias in the polyimide substrate for
laser ablation. The TX electrode layer is sputtered onto the backside of the polyimide
substrate, resulting in a layer thickness of approximately 600 nm. The electrode width
and distance amount to 100 µm. Additionally, the contact pads for the ASIC are fab-

plated bump ASIC chip metallization
chip passivation

envelope copper adhesive conductive particle

Figure 3.2: Result of ACA flip chip procedure (schematic), where the ASIC is mounted onto
the envelope.
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Figure 3.3: Result of ACA flip chip procedure, with a close up of the embedded ASIC. The
bare electrodes are visible since the Cu-shielding has not yet been attached.

ricated. The envelope manufacturing process enables thin layers and small structures,
which is an advantage over commonly available flexPCB technology with a layer thick-
ness of approximately 12.5 µm.

After the fabrication of both electrode layers, the ASIC is mounted onto the envelope
via Anisotropic-Conductive Adhesive (ACA) flip chip technology. In this process, the
electrical interconnection between the ASIC and the enclosure is created through con-
ductive particles dispersed in the adhesive. This is depicted in Figure 3.2. The ASIC is
permanently bonded onto the envelope by applying a force of 30 N over several tens of
seconds at a peak temperature of 220 ◦C.

Figure 3.3 depicts the enclosure with the embedded ASIC. In this case, the electrode
mesh is still visible since the copper shielding with the second polyimide layer has not
yet been attached to the envelope.

3.1.3 The FORTRESS Components

The envelope and the embedded ASIC were assembled and integrated into FORTRESS,
a PUF-based prototype HSM. FORTRESS is comprised of several components that are
depicted in Figure 3.4. The 5.5 cm×4.5 cm prototype PCB was designed specifically for
FORTRESS, with light and temperature sensors, a power supply, and connectors for
the envelope and external communication. The additional sensors enhance the security
of FORTRESS by monitoring external influences, and triggering an alarm if a certain
threshold is exceeded. An alarm is also triggered if the PUF-secret derived from the
capacitive measurement is not correctly reproduced due to, for instance, a drilling attack.
This leads to a zeroization of all CSPs. The modes of the FORTRESS system life cycle
are discussed in more detail in Section 3.2.
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Figure 3.4: The components of FORTRESS.

The main microcontroller runs the FORTRESS software, the Embedded Key Man-
agement System EKMS, which implements the key management, key generation, and
post-processing of the PUF-response. The EKMS is discussed in Section 3.2. It also or-
chestrates the measurement process and monitors all security sensors. The FORTRESS
PCB is placed into a printed casing, which can be enveloped by the capacitive enclosure
together with the 15-pin FFC for power and external communication. The ASIC and the
envelope are connected to the PCB via an SPI interface (included in the 20-pin envelope
connector).

The front side of the HSM, as depicted in Figure 3.5, includes the STM32F303 with
an ARM Cortex-M4F microcontroller for the EKMS, infrared LEDs, and photodiodes
for light detection during runtime, and a temperature sensor (NTC-thermistor). The
enclosure’s and external components’ connectors are placed on the PCB’s backside (see

Figure 3.5: Frontside of the FORTRESS PCB.
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Figure 3.6: Backside of the FORTRESS PCB.

Figure 3.6). Reed switches were added to the PCB to contactlessly reset the HSM when
placed into the casing.

To counteract blinding attacks, and thus, the opening of the casing, FORTRESS
is enhanced by frequently pulsing infrared LEDs detected by photodiodes placed on
both sides of the PCB. The alarm is triggered if the light intensity exceeds or drops
below a certain threshold. The same process is triggered if an extraordinarily high or
low temperature is measured, e.g., in case of a cold boot attack. Similarly, in case of
undervoltage detected by voltage sensors, or sudden power failure, all critical data are
deleted from volatile memory, and the system is securely shut down. This is enabled
through an energy storage of several hundred microfarads, which carries sufficient energy
for a spontaneous shutdown.

3.2 Second Generation EKMS

The second generation EKMS — the software of FORTRESS — orchestrates the mea-
surement process and the monitoring of sensors; it processes the raw PUF-response
and manages CSPs and their generation. Hence, the EKMS is a critical component of
FORTRESS, whose security functionality was significantly hardened, extended, and re-
fined. In this section, I give an overview of the EKMS architecture, key management, and
OS hardening. I introduce a secure system life cycle concept covering different aspects
of the supply chain, including transportation, in-field operation, and decommissioning.

3.2.1 Operating System Hardening

The first generation EKMS was based on a modified FreeRTOS 10 [OHHS18], which pro-
vides a relatively small and simplistic kernel, reducing the OS attack surface. FreeRTOS
supports Memory Protection Unit (MPU) access permissions and two privilege levels
(kernel and user space). Obermaier et al. extended the FreeRTOS by secure system
calls [OHHS18]. In the original implementation, a user space task can raise its privilege
level to execute the desired operation, thus allowing privilege escalation. Obermaier et
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al. implemented a preemption-compatible system call interface and handler taking over
privilege handling of the user space task during the system call.

The second generation EKMS was extended for ARM Cortex-M-based cores by the
following security features:

� Limited data access permission
In the previous version of the EKMS, all data (functions and variables) were ac-
cessible from both kernel and user space unless otherwise specified. This concept
was inverted, such that by default, data are specified as kernel-access-only. Hence,
shared data accessible from user space has to be explicitly marked. This reduces
the attack surface for, e.g., Return-Oriented Programming (ROP) and enhances
the security by default concept.

� Data execution prevention
In the original FreeRTOS implementation, the stack was executable, which enabled
attacks based on stack overflows. The write-xor-execute approach was adapted to
overcome this issue, allowing for a section to be either writable or executable. This
was achieved by setting the execute-never (NX) bit for the stack and variable data
regions.

� Floating Point Unit (FPU) context isolation
In the original EKMS, FPU registers were only saved and restored upon FPU usage,
which potentially leaked data into the subsequent task. This was counteracted by
implementing FPU flushing for kernel task switches, where FPU content is only
deleted if a transition from an FPU task to a non-FPU task occurs.

� Dedicated system call stack
In the previous EKMS implementation, system calls were executed in the context
of the invoking user space task. Thus, secret data accessed within a system call
could end up in the user space task stack and leak confidential information. As
a countermeasure, system calls dispatched the processing of high-security data to
another task with its own stack. However, this affected the overall performance
due to additional task switches. Therefore, in the second generation EKMS, a
dedicated stack for system calls is automatically allocated, inaccessible by the user
space task. The kernel was modified such that the stack pointer is switched when
entering or leaving a system call.

� Secure copy to / from user interface
The original FreeRTOS did not provide a kernel function for a secure write/read
from/to user space. A function similar to the copy to / from user() of the
Linux kernel was implemented to overcome this, which guarantees that any access
to non-user-accessible regions creates a fault.

Further details on FORTRESS’ OS hardening are published in the IEEE proceed-
ings [OHHS18, GOFK21].
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3.2.2 EKMS Architecture

FORTRESS consists of the envelope with embedded ASIC, the EKMS, and at least
one host device, as depicted in Figure 3.7. The EKMS is the intermediate software
between the ASIC and the host system. It controls the measurement and processing of
the PUF-response, the key management, monitors security sensors, and provides basic
cryptographic functionalities, such as encryption and decryption.

The second generation EKMS is depicted in Figure 3.8, which shows a division into the
user application and cryptographic core functionalities. An example of a user application
would be the decryption of the host device’s firmware. In this case, the user application
executes the task via the Crypto-API when triggered by the host system. The EKMS
Core verifies the PUF, manages the generated keys, and decrypts the firmware. If data
are sent over the Universal Asynchronous Receiver/Transmitter (UART)-interface, the
EKMS user application handles the received data via the Secured-Communications-API.
Hence, the host systems that reside within the envelope boundary can not access the
PUF-response or functions related to its processing.

The EKMS implements a keystore that triggers the generation, reproduction, and
deletion of CSPs that reside in NVM. Thus, the keystore manages all CSPs over the
entire key chain. It also manages the secure system life cycle, which I discuss in Subsec-
tion 3.2.3.

A key generation algorithm generates a KEK from the PUF-response. This KEK is
the root of the key hierarchy, as depicted in Figure 3.7. In the following, I will refer to
the generation of all CSPs, including the KEK, as enrollment, while the re-enrollment
describes the generation of only a new KEK. The re-enrollment process required the
extension of the key chain, which enabled the implementation of the secure life cycle,
including the compensation of aging effects. The repeated re-generation of the KEK
after startup is referred to as key reproduction.

The first generation EKMS [OHHS18] provided only a primitive key generation scheme
without full key management and re-enrollment capabilities. The KEK was directly used
to encrypt CSPs. Hence, a change of the KEK required the decryption and re-encryption
of all CSPs. In the second generation EKMS, an additional CSP-encryption-key (CEK)
was inserted into the key chain, which encrypts the CSPs. The KEK encrypts the CEK.
Hence, if the KEK changes, the CEK is re-encrypted instead of re-encrypting all CSPs.
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Figure 3.7: System architecture of the FORTRESS software, the second generation EKMS. The
key chain is depicted in blue color.
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Furthermore, during zeroization of the CSPs, it is sufficient to delete only the CEK
and hence, prevent any access to the CSPs. All keys and CSPs, apart from the KEK,
originate from an RNG. For the generation of the KEK, the measurement task triggers
the ASIC and measures the PUF-response, which is executed through the IC Driver
(icDrv) task.

The generated KEK is stored in SRAM and repeatedly reproduced at startup. It
decrypts the CEK and verifies CSP 0, which is a known plaintext. If the key chain is
compromised through an attack, CSP 0 is not correctly decrypted, which triggers the
alarm. During runtime, the PUF-key is repeatedly reproduced and compared to a hash
of the KEK. If the integrity check of the envelope or the key match fails, the alarm
and zeroization procedure are triggered, deleting the CEK, CSPs, and SRAM content.
Furthermore, the EKMS notifies the host system.

In the first generation EKMS, an AES ECB implementation was added as a proof-
of-concept. The extended EKMS provides additional cryptographic primitives, such as
128- and 256-bit AES in ECB and CBC mode for encryption and decryption, SHA256
for hashing, and ECC secp256k1 for signing.
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Figure 3.8: Layers of the FORTRESS software, the second generation EKMS, with EKMS Core
and Application.
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Since the EKMS is designed as a modular system, other cryptographic algorithms can
be easily integrated. This modularity extends to the measurement and layout designs
since the EKMS supports all measurement systems (discrete and ASIC) and enclosure
designs (FORTRESS, B-TREPID, COVER).

After assembly and functional tests of the FORTRESS HSM, the EKMS was run non-
stop over several months in order to test its stability and availability. These long-term
tests were conducted successfully without failures. Availability is a major factor for
productive operation since HSMs remain in the field for many years or even decades.

3.2.3 Secure System Life Cycle

Enabled by the re-enrollment capabilities, the second generation EKMS was extended
by a secure system life cycle, which is depicted in Figure 3.9. The life cycle incorporates
important parts of the supply chain, such as transportation, operation in the field,
and decommissioning. For the secure life cycle, I assume the trustworthiness of the
manufacturer.

Unprovisioned

After the fabrication, the HSM is unprovisioned. The manufacturer starts a system
check testing the envelope’s basic functionality and electrical integrity. If the test is
successful, the manufacturer triggers the enrollment process in the keystore and sets the
device into shipping mode. The transition between stages, i.e., modes, is implemented
through the keystore.

Shipping Mode

The shipping mode is crucial in the detection of manipulations that occur during trans-
portation. After delivery of the device, the user tests the device for possible manipu-
lations. This test requires two steps. In the first step, the device verifies the encryp-
tion procedure, the PUF, and the key chain, by successfully decrypting CSP 0 (Verify
Plain), a known plaintext. Hence, this first step is a form of self-verification. In the
second step, the user verifies that the correct device was delivered. This step is referred
to as user-verification. CSP 1 (Ident) — an elliptic curve key pair — was created in
the unprovisioned stage upon the initial enrollment. The public key is either provided
by the manufacturer through a second channel or read from the delivered device. To
verify the correct identity of the delivered device, the user signs data with the private
and then verifies its signature through the provided public key. To be more precise, the
user sends data to the device via its UART interface and accesses the EKMS Application
Programming Interface (API) to sign the data with the CSP-1 private key. The user
then verifies the signature via the CSP-1 public key to attest to the correct identity of
the shipped device.

If both tests are successful, the user triggers a second enrollment, which sets the
device into field mode. This mode transition deletes the CEK and CSPs and creates a
new CEK, CSP 0, and CSP 1. The enrollment also triggers the generation of a new KEK
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corresponding to the PUF-key. The definition of the PUF-secret, and hence, the KEK,
varies depending on the chosen key generation scheme. I chose the Fuzzy Commitment
scheme [JW99] for the implementation described in Section 3.3. In this case, the PUF-
secret corresponds to a random number generated by a TRNG, which is masked by the
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2. Perform enrollment     (generate new KEK, CEK, CSP-0, CSP-1)
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Figure 3.9: The secure system life cycle of FORTRESS, covering transportation, regular oper-
ation, and decommissioning.
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PUF-response. Thus, the enrollment triggers the generation of a sequence of random
numbers corresponding to a new secret that leads to a new KEK.

Field Mode

After verifying the successful delivery of the correct device, the HSM is set into field
mode. This mode is the common operational mode, where no further enrollment is
possible. However, since the aging of the envelope over time leads to slight changes
in the PUF-response, a limited amount of re-enrollments is allowed to generate a new
KEK. In contrast to reproduction, re-enrollment is not performed continuously but is
triggered on demand. Limiting the number of re-enrollments is necessary to counteract
helper data manipulation attacks [MSSS11b, DV14a, MSS13, TPS17].

Through helper data manipulation attacks, the attacker can gain knowledge about
the PUF-secret by observing the reproduction of the PUF-key while manipulating the
helper data. In 2011, Merli et al. conducted an EM side-channel attack on a fuzzy
extractor targeting the Toeplitz hash function [MSSS11b]. They showed that the PUF-
key could be derived from 2,000 traces. However, the additional randomization of helper
data did not significantly enhance the quality of the captured traces. An attack not
based on side-channel analysis was proposed by Delvaux and Verbauwhede, who targeted
Pattern Matching Key Generators (PMKG) [DV14a]. They demonstrated that through
statistical observation of the failure rate and helper data manipulation, the PUF-secret
could be retrieved with approximately 10,000 samples. Furthermore, Merli et al. [MSS13]
and Tebelmann et al. [TPS17] conducted power and EM side-channel attacks for a
concatenated code, where a repetition decoder is followed by a BCH decoder. Both
attacks, in total, require nBCH × 2nrep helper data manipulations, where nrep and nBCH

denote the code length of the repetition code, or BCH code, respectively. For nrep =
7 and nBCH = 127, the number of necessary manipulations amounts to 16256. To
counteract helper data manipulation attacks, the number of re-enrollments, and thus,
the generation of new helper data, has to be limited. In the following, I restrict the
re-enrollments in field mode to a maximum number of 1.

A further attack scenario is the step-wise partial removal of the envelope followed by
re-enrollment. Therefore, limiting the number of re-enrollments to a small single-digit
number is essential in counteracting these attacks.

The re-enrollment procedure is again processed by the keystore. The keystore decrypts
the CEK with the current KEK, generates a new KEK from the PUF-response and re-
encrypts the CEK. This process leaves the CEK and CSPs unchanged.

Quality indicators, such as confidence of the uncorrected PUF-response or the number
of corrected errors, are generated during the key reproduction. The confidence of the
PUF denotes how much the quantized (uncorrected) PUF-response deviates from the
interval center after applying all post-processing steps, as described in Section 2.4. These
health data provide additional information on the state of the PUF. An overall shift of
the PUF-response indicates changes related to aging. However, fast and large changes
within the PUF-response likely originate from an attack. These changes are considered
in the error correction, as discussed in Chapter 5.
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Decommissioned / End-of-Life

When the device has reached its end-of-life (EOL), the user triggers the transition into
decommissioned mode. In this mode, no further enrollments or re-enrollments are pos-
sible. What is more, switching into this mode triggers the zeroization procedure, where
all critical data are deleted. The transition into decommissioned mode also occurs when
a tamper event is detected. This irreversible mode transition can be triggered at any
point in the life cycle.

3.3 PUF-Key Generation

The first generation EKMS incorporated only a rudimentary key generation scheme
based on a binary decision, mapping PUF-values ≤ 0 to a binary 1 and values < 0 to 0.
This ”quantization“ into two intervals results in a considerable entropy loss. Further-
more, the handling of edge cases is not covered. This means that environmental changes
can easily shift the quantized differential capacitances, also referred to as differential
nodes, residing at the interval edges of the neighboring interval. This primitive key gen-
eration scheme served as a first proof-of-concept without considering post-processing,
error correction, or any security objectives.

To overcome the drawbacks of this method, I extended the EKMS with a full key
generation and reproduction scheme tailored to the enclosure’s security requirements.
This includes all steps, from the envelope measurement to the post-processing (see Sec-
tion 2.4) and the error correction.

The key generation is based on the Fuzzy Commitment scheme [JW99], where the
PUF-response masks the secret that originates from an RNG. Compared to other schemes
like the Fuzzy Extractor [DRS04], the Fuzzy Commitment does not define the PUF-
response as the secret. This enables the implementation of a secure system life cycle
since, during each triggered enrollment, a new random secret is generated, and thus, the
KEK changes significantly. Hence, the secret after provisioning differs from the secret
during regular operation of the HSM.

As noise and environmental effects lead to changes in the measured PUF-response,
the key generation scheme comprises an error correction algorithm. However, this er-
ror correction code typically does not distinguish between changes stemming from en-
vironmental effects and deliberate changes in the PUF-response originating from an
attack [ION+19, IOK+18, IHL+19].

To ensure reliable reproduction of the PUF-response under normal conditions while
discarding deliberate degradation of the PUF, I extended the key generation scheme
with Limited Magnitude Codes (LMCs) [JL12, IU19] that provide the required tamper-
sensitivity.

Previous measurements of the differential capacitances showed that drilling attacks
cause large offsets in the PUF-response, while temperature changes lead to smaller off-
sets [ION+19, IOK+18]. LMCs limit the error correction to a specific number of interval
shifts that may occur through external influences. This is implemented by correcting
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only the LSBs of each PUF-symbol, and hence, leaving the Most Significant Bits (MSBs)
unchanged, except for carries that can occur during the calculation.

Figure 3.10 shows the encoding and decoding steps for Limited Magnitude Codes
for exemplary LMC parameters q = 8, q′ = 4, and p = 16. The message y, which
corresponds to the PUF-secret, comprises 128 symbols of a q−ary alphabet, where q
also corresponds to the number of quantization intervals. The first step of the encoding
”reduces“ y to its LSBs. The number of selected LSBs per symbol depends on the LMC
parameter q′. The selected bits y mod (q′) are then grouped into p−ary symbols ϕ,
depending the field size p of the chosen Reed Solomon code. This grouping from q−ary
symbols to p−ary symbols requires a base change. For Limited Magnitude Codes, the
parameters are chosen such that q′ ≤ q ≤ p. Only certain parameter combinations may
be chosen to match the number of bits in both representations (q and p), . The encoder
then generates the parity P and codeword C = ϕ ∥ P for the corresponding input ϕ.
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Figure 3.10: Overview of Limited Magnitude encoding and decoding.
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After encoding, the helper data Wp, obtained from the base change of the parity P, are
stored in an NVM of the device. This terminates the encoding procedure.

For decoding the erroneous message y′ = y + ϵ, where ϵ is the corresponding error
vector, the helper data Wp are subject to a base change. The resulting parity symbols P
together with ϕ, the reduced message after base change, yield the erroneous codeword.
The decoding yields the corrected ϕ̃. The last step of the decoding comprises a base
change of ϕ̃ and an analysis of the resulting error vector, only keeping errors according to
the specified LMC parameters. This means that large changes over several neighboring
intervals are discarded from the error vector.

Measurements of the capacitive enclosure demonstrate that, due to global manufac-
turing variations, some RX and TX groups display larger offsets than others. Hence,
interleaving of PUF-symbols could be applied to reduce resulting burst errors. However,
since the reduction of burst errors reduces the tamper-sensitivity of the PUF, I omit
interleaving the PUF-symbols in my implementation. In the following, I describe the
generation and reproduction of the PUF-key, which is tailored to the capacitive envelope.

3.3.1 Enrollment

Figure 3.11 shows the enrollment and reproduction of the PUF-secret. During the enroll-
ment (or re-enrollment) stage, a new KEK is generated. After measuring the differential
capacitance, the PUF-response is normalized and quantized, as described in Section 2.4.
In the fuzzy commitment scheme [JW99], the secret R is a random number R obtained
from an RNG. In the final post-processing step during enrollment, as described in Sub-
section 2.4.2, the analog helper data W = R ⊕ X are generated from the quantized
PUF-response X and the secret R. They are stored in NVM. The PUF-response itself
is not corrected, but changes in X result in changes in R.

LMCs are based on Reed Solomon (RS) codes [RS60]; however, since only the LSBs of
the secret are corrected during reproduction, the secret R is reduced to R mod q′, where
q′ = 2m, and m is the number of LSBs to be corrected. This is followed by a base change,
where the reduced secret in PUF-representation is mapped to RS code representation.
Subsequently, the RS encoder calculates the parity from the reduced secret and stores
it in NVM together with the analog helper data.

For the proof-of-concept implementation, I chose q = 8 equidistant quantization in-
tervals, i.e., intervals of the same width, with q′ = 4, a message length of 32, and parity
of 24. All parameters are listed in Table 3.1. The 128 symbols of the secret are each
reduced to log2 q

′ LSBs. During the base change, they are rearranged such that the re-
duced secret length corresponds to log2 p times the message length 32 for the RS encoder
(128 × 2 = 32 × 8). Similarly, the base change for the parity is performed, matching
log2 p times 24 parity symbols to 64 times the log2 q bits of the PUF interval quantization
(24 × 8 = 64 × 3).

Concatenating the secret and the parity yields the codeword. After encoding, the
reverse base change from the RS representation to PUF-representation is performed,
and the parity is stored in NVM.
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Figure 3.11: Overview of key generation scheme, with enrollment (left) and reproduction
(right).

Through the higher order alphabet and quantization of the PUF-response, more errors
can be corrected compared to fully binary schemes. In total, 12 correctable symbols in
RS representation map to 48 PUF-symbols. One of the drawbacks of this scheme is that
the error correction parameters have to be chosen according to the base change. This
limits the number of possible configurations. The implementation for the enclosure was
based on a Gray code representation for the quantized PUF-response. Furthermore, in
the error analysis, only symmetric errors in the PUF-response were considered.

Upon boot up, the KEK is reproduced and verified by correctly decrypting CSP-0,
which is a known plaintext. The reproduced KEK, corresponding to the hashed secret,
is held in SRAM and, subsequently, compared to the continuously reproduced PUF-key
in order to verify the integrity of the enclosure. The advantage of additionally hashing
the secret — which is not comprised in the fuzzy commitment — is that even if the PUF
key only changes slightly, its hash will change significantly.

Additional enrollments, and re-enrollments, are crucial for the secure system life cycle.
However, their number has to be limited, as described in Subsection 3.2.3.
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Table 3.1: Key generation parameters.

Parameter Value

PUF symbols 128
Field size (p) 28

Message length (k) 32
Parity 24
Quantization intervals (q) 8
LMC parameter (q′) 4
Base change (secret) 128 × 2 = 32 × 8
Base change (parity) 24 × 8 = 64 × 3

3.3.2 Reproduction

The enrollment is only performed in the unprovisioned stage and after shipment, whereas
the key reproduction is performed repeatedly after boot up. The steps of the reproduc-
tion are depicted in Figure 3.11. First, the measured PUF-response that might have
changed due to an attack or environmental influences is processed and quantized. The
secret R∗ = X∗⊕W is derived from the stored analog helper data W and the quantized
PUF-response X∗. After the base change, the codeword, which is a concatenation of the
reduced secret R∗ and the stored parity, is decoded. For the RS decoder, I implemented
the Berlekamp Massey algorithm [Mas69, Ber68], Chien search [Chi64], and the Forney
algorithm [For65b]. The output of the decoder — after the base change — is the reduced
secret from which the KEK is obtained.

After boot up, the reproduced KEK decrypts the CEK, which decrypts further CSPs.
The correctly verified KEK in SRAM is compared against the subsequently reproduced
key. If the reproduced KEK differs from the correct key, the alarm and zeroization of
all CSPs are triggered. During the decoding, PUF health data are generated. One such
example is the confidence of the reproduced PUF-response, i.e., the average distance to
the interval center after subtracting the analog helper data. Moreover, the number of
corrected errors is stored as an additional parameter. The PUF health data serve as
additional quality indicators of the reproduced PUF-key.

The key generation and reproduction were successfully tested and executed for the im-
plementation test on the EKMS with the data sets obtained from the envelope [IOK+18].
This was followed by a successful key derivation from the FORTRESS envelope. I also
tested the implementation with previously published attack data [IOK+18, ION+19],
from which the correct key could not be reproduced. The tests demonstrate that the
proposed scheme is practically feasible, even on a resource-limited microcontroller.

3.4 Conclusion

In this chapter, I presented the assembly of all FORTRESS components into an exem-
plary PUF-based HSM. The FORTRESS software was extended by the second generation
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3.4 Conclusion

EKMS providing a hardened operating system, a secure life cycle, and a full key gen-
eration tailored to the enclosure. The secure life cycle incorporates the main aspects of
the supply chain, supported by the EKMS key management. The key generation was
extended through Limited Magnitude Codes, which are a simple method to model en-
vironmental influences considering errors based only on their magnitude. In Chapter 5,
I provide a detailed analysis of external influences and discuss an extension of the PUF
post-processing to model more complex error behavior.

In the future, the FORTRESS prototype could be further developed by reducing the
envelope’s layer stack size through different materials and hence, increasing its bendabil-
ity. In terms of the measurement system, the ASIC’s optimization towards size results
in reduced accuracy. Thus, future work should also focus on improving the ASIC’s
resolution of the PUF-response.

41





Chapter 4

Physical Attacks and Countermeasures

In this chapter, I analyze three of the most relevant attacks on the enclosure sys-
tem. Previously, Immler et al. investigated drilling attacks with a diameter of 250-
300 µm [IOK+18, ION+19]. I extend this analysis by considering micro-drilling of the
enclosure, bypassing of electrodes, and magnetic probing of critical bus systems. For each
of these attacks, I propose countermeasures to restore the envelope’s tamper-sensitivity.

4.1 Attack Resiliency of the Capacitive Enclosure

The capacitive enclosure was subjected to several threats, to test its attack resiliency.
Immler et al. showed that the X-ray inspection revealed the structure and location of
TX and RX electrodes [ION+19]. This is unavoidable since thick shieldings against
high-energy radiation can not be applied in all use cases. Hence, information leakage
about the envelope layout is considered an acceptable risk.

Invasive attacks such as complete or partial disassembly can be hampered by potting
and adhesives. Hence, in case of complete removal, wrapping and bending would further
damage the envelope. The partial removal of the shielding serves as a preparation
for probing attacks that aim at extracting data about the PUF. In 2019, Obermaier
extracted parts of the PUF-response by bypassing and reconnecting electrodes of the
capacitive mesh [Obe19]. To restore the tamper-sensitivity of the enclosure, I discuss
the impact of this attack and propose countermeasures in Section 4.3. In Section 4.4, I
demonstrate a magnetic probing attack targeting the communication between the ASIC
and microcontroller. I also discuss the effects of electric and magnetic fields through
Finite Element Analysis (FEA).

Apart from complete or partial removal, the attacker can also drill holes through the
enclosure to probe signals of the PCB. Immler et al. showed that drilling attacks with
a 300 µm diameter lead to significant entropy loss [IOK+18]. So far, drilling attacks
with a diameter below 300 µm have not been attempted. Since the electrode layout
was designed to withstand drilling attempts ≥ 300 µm, permeating the enclosure with
energy beams, such as lasers or Focused Ion Beams (FIBs), is theoretically possible.
To address this attack vector, I discuss micro-drilling attacks with diameters ≪ 300 µm
in Section 4.2. Figure 4.1 depicts the enclosure system targeted by the three physical
attacks discussed in this chapter.
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magnetic probing 
of SPI-interface
(Section 4.4)

micro-drilling 
of enclosure 
(Section 4.2)

bypass attack 
on electrode mesh 

(Section 4.3)

Figure 4.1: Overview of the envelope with embedded ASIC wrapped around the casing contain-
ing the PCB (see Figure 3.1). Three physical attacks are discussed in this chapter:
The micro-drilling attack (Section 4.2), the bypass attack (Section 4.3), and mag-
netic probing of the SPI-interface (Section 4.4).

I presented the results discussed in this Chapter at IEEE Physical Assurance and
Inspection of Electronics (PAINE) 2021. Further details are published in the IEEE
conference proceedings [GSHO21].

4.2 Micro-Drilling

In this section, I discuss micro-drilling attacks on the capacitive enclosure. The goal of
these attacks is to probe wires or pads of the PCB in order to eavesdrop and manipulate
critical signals.

4.2.1 Micro-Drilling Techniques

Immler et al. investigated drilling attacks on the envelope with a minimum diameter of
250-300 µm [IOK+18, ION+19]. However, attacks with smaller diameters have become
more and more feasible in recent years. Since the electrode width and distance between
traces of the same layer amounts to 100 µm, drilling attacks with 300 µm destroy two
neighboring electrodes, which is reliably detected through the capacitive measurement.
In current retailing, drills with a diameter of 250 µm are available that are still reliably
detected. Since holes ≪ 300 µm are feasible through energy probes such as lasers or
FIBs, their impact on the capacitive enclosure needs to be investigated.

Table 4.1 shows an overview of different drilling techniques, including attack diameters
and aspect ratios across different sources [HZJ17]. The aspect ratio is the ratio between
the depth of a hole and its diameter.
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4.2 Micro-Drilling

Table 4.1: Comparison of micro-drilling techniques covering aspect ratios and hole sizes
[HZJ17]).

Technology
Common

aspect ratio
Min.

aspect ratio
Common hole
size in µm

Min. hole
size in µm

Micro drilling 2 − 10 : 1 8 − 24 : 1 > 10 2.5

Laser 10 : 1 600 : 1 50 − 400 1

Electro Discharge 10 : 1 30 : 1 > 100 5

Electro Chemical 8 : 1 250 : 1 > 50 8

Electron Beam 10 : 1 25 : 1 8 − 200 50

Ultrasonic 10 : 1 31 : 1 100 − 500 5

For sophisticated attackers, drilling small and deep holes with very high aspect ratios
of more than 100:1 is feasible. In general, even higher aspect ratios of more than 250:1
are realistic with laser drilling or electro-chemical micro-drilling, which lead to holes
< 100 µm that are small enough not to perforate any electrodes. The impact of different
aspect ratios for micro-drilling is depicted in Figure 4.2.

In general, some technologies are more suitable for drilling attacks on the capacitive
enclosure. FIB attacks, for instance, are well-suited for attacking integrated circuits or
surface structures [HNT+13] but are less suited for drilling deep holes. This is due to
debris created from incoming ions removing atoms at the bottom of the drilled hole. If
the aspect ratio is large, the atoms agglomerate in the drilled hole without any possibility
of removal. Hence, deep holes with diameters of approximately 10 µm are generally not
feasible with a FIB.

When adding a metal casing around the PCB, the attacker is forced to drill wider holes
at the surface to reach the necessary depth required for probing the PCB. With a layer
stack of approximately 250 µm and an internal metal casing of 1 mm enclosing the host
system, micro-drilling with a typical aspect ratio of 10:1 requires an attack diameter of
more than 125 µm to drill a hole of 10 µm. If the casing thickness is increased to 2.25 mm,
the attacker is forced to increase the diameter to 300 µm, leading to the destruction of

RX

TX

RX

TX

RXA

TX

RXB

(a) (b) (c)

Figure 4.2: Schematic image for deep micro drilling with (a) low aspect ratios, (b) high aspect
ratios, and (c) countermeasure against tools with high aspect ratios.
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two electrodes. However, the area above the PCB connectors for external communication
is not protected from a metal casing.

4.2.2 Micro-Probing

After successfully drilling a deep hole piercing the envelope, the PCB is accessible for
micro-probing. In this section, I focus on deep insertion, as depicted in Figure 4.3. I
discuss surface probing in Section 4.3.

Probing tools are available as commercial wafer probing needles in different sizes. Mi-
cromanipulator needles to contact fine electrodes have a tip point radius ≥ 0.6 µm. [Ame,
Mic]. The probing needle tip wire has a length of 3.3-5 mm and a 76 µm diameter. It is
attached to a 30-35 mm long shank with a diameter of 250-500 µm.

The micromanipulator’s 250-500 µm diameter shank must be moved through the drilled
hole to probe internal wires and pads of the PCB more than 3 mm from the enclosure.
Holes of this size are easily and reliably detected during the capacitive measurement.

Even finer tungsten wires with a tip length of 3.3-5 mm and a diameter of 10-20 µm
[GGB] are commercially available for probing. With a tip shaft length of 5.1 mm and
22 µm diameter, reaching the PCB is feasible, assuming a casing thickness < 2 mm.

RX electrode100 μm

50 μm

TX electrode

(a) (b)

Figure 4.3: Schematic image for (a) surface probing (as discussed in Section 4.3) and (b) deep
insertion.

4.2.3 Countermeasures

To hamper drilling attempts with high aspect ratios and PCB probing, the thickness of
the case is a crucial parameter. The mechanical stability of the probing needles requires a
shaft of greater diameter than the tip. Hence, even if an attacker successfully perforates
the envelope with a small hole, the length of the tip might not suffice to reach the PCB.
To also protect the connectors for external communication, the casing holes above the
connectors can be significantly reduced in size, thereby enforcing larger surface drill
diameters.

Additionally, a temperature-resistant potting material, e.g., epoxy resin or silicone,
could seal the enclosure. Obermaier and Immler analyzed different HSM implementa-
tions and showed that a strong adhesion between the potting and the external envelope
layer is indeed possible [OI18]. Hence, the force of mechanical removal of the potting
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tears the envelope layers apart and destroys the PUF before the potting is detached from
the envelope. The potting additionally increases the surface drill diameters, thereby im-
peding micro-drilling attacks with small diameters.

Apart from these countermeasures, the enclosure itself could be modified. An addi-
tional RX electrode layer fills the 100 µm × 100 µm gaps of the electrode mesh. This
layer is depicted as RXB in Figure 4.2. Furthermore, the envelope’s feature size could
be further reduced from 100 µm to smaller sizes that are still feasible within the litho-
graphic process. This reduces the necessary surface drill diameter and raises the bar for
an attacker.

4.3 Bypass Attack

In this section, I discuss a surface probing attack previously performed by Obermaier
[Obe19] and propose a countermeasure impeding its successful execution. This is pre-
ceded by a summary of the measurement principle that yields the differential capaci-
tances.

4.3.1 Measurement Principle

The PUF-response is comprised of 128 differential capacitances in the two-digit femto-
farad range. The goal of the measurement, hence, is to obtain these minuscule capacitive
variations, i.e., the differential capacitance ∆C between two TX and one RX electrodes.
The key idea of the measurement principle is an ”in-enclosure“ current subtraction pro-
posed by Obermaier [Obe19]. Obermaier found that subtracting the measured absolute
capacitances to obtain the differential capacitance ∆C does not yield sufficient accuracy
and even described it as ”infeasible“ since the small differential capacitances submerged
in the system’s gain-mismatches, biases, and offsets. To solve this problem, Obermaier
developed a way to subtract the capacitances ”within the envelope“ instead of subtract-
ing the absolute capacitances after the measurement.

The balanced enclosure design ensures that two neighboring TX electrodes have the
same mutual capacitance Cm towards an RX electrode. The two neighboring TX elec-
trodes are excited via a sinusoidal voltage signal of amplitude VTX. A phase shift of
180◦ is applied to the signal of the even-numbered electrode, generating two currents j
of inverse signs — from two TX electrodes to one RX electrode — that are proportional
to the mutual capacitance Cm. The 180◦ phase shift leads to a mutual cancellation of
currents resulting in a complex electrode current

IRX = j · VTX · Cm + j · (−VTX) · (Cm + ∆C) = −j · VTX · ∆C (4.1)

directly proportional to the differential capacitance ∆C. This measurement is repeated
for all 8 TX pairs and all 16 RX electrodes.

In contrast, the ASIC currently employs an ”out-enclosure“ measurement concept
leading to a reduced accuracy of the differential capacitances, where two RX electrodes
are measured against one TX electrode [FIU+18]. The subtraction of capacitances,
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in this case, occurs after the absolute capacitive measurement. Since the ”in-enclosure“
measurement of the discrete measurement circuit provides more accurate results, a future
development goal for the ASIC is to deploy the above-described concept. In contrast to
the discrete measurement circuit, the ASIC can measure multiple electrodes in parallel.
This, together with the implementation of the improved measurement principle, would
increase the ASIC’s accuracy while reducing the measurement time. In the following,
I focus on the ”in-enclosure“ principle, which is currently only implemented for the
discrete measurement circuit.

4.3.2 Surface Probing Attack

In 2019, Obermaier proposed a probing attack severing and reconnecting one of the
RX traces. He intercepted the RX current signal, cloning and redirecting it into the
envelope. This modification was not detected in the measured PUF-response [Obe19].

The differential capacitances corresponding to the PUF-response stem from sub-nano-
ampere currents on the RX traces. During the measurement, the voltage on the elec-
trode is constant. Hence, the information about the PUF is contained within the sub-
nanoampere currents on the RX electrodes. Through access to the cloned RX current
signal, an attacker can, hence, derive information about the PUF-response. A schematic
of the attack is depicted in Figure 4.4.

Obermaier prepared his attack by removing an area of 5 mm×5 mm from the envelope’s
shielding close to the envelope’s connector. The vicinity to the connector is necessary
since only here the entire current, and thereby capacitance, of this trace is accessible.

Removing the shielding enabled him to attach fine shielded wires to one of the RX
traces to extract the RX current signal. Obermaier developed an RX-probe specifically
tailored to the capacitive envelope that duplicates, amplifies, and converts the RX cur-

RXIN RXOUT

RX-probe

RXDUPLICATE

Figure 4.4: Schematic of the bypass attack.
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rent signal and sends it back into the enclosure. The duplicated RX signal matched the
original signal, which led to the identical PUF-response. Neither the integrity check nor
the capacitive measurement detected the RX probe.

Since the attack can be performed for multiple RX electrodes, this severely impacts
the security provided by the enclosure. Hence, the attack requires countermeasures,
which I discuss in the following.

4.3.3 Countermeasure

The current probing attack affected the noise components of the original signal, shifting
the (unwanted) second harmonic in phase. However, the slight distortion in the RX
current did not alter the original PUF-response [Obe19]. Obermaier found that the
small phase changes could not reliably be associated with a specific cause. Furthermore,
reliably extracting the phase change is complex, and circuit modifications could easily
be circumvented. Hence, these minuscule phase changes are unsuitable for counteracting
surface probing attempts.

The countermeasure I propose can be integrated either into the measurement circuit or
the enclosure itself. The key idea of the differential capacitance measurement [OIHS18]
is an antiphasic, i.e., 180◦, excitation signal carried by the two TX electrodes measured
against one RX electrode. Since the equal parts of the absolute capacitance cancel
each other out, the resulting RX trace current is directly proportional to the differential
capacitance [OIHS18]. The differential capacitances corresponding to the PUF-response
are in the two-digit femtofarad range. Hence, the RX currents are equally small, i.e.,
in the sub-nanoampere range. The proposed countermeasure, depicted in Figure 4.5, is
based on this measurement concept. The basic idea is to hide the RX current within
a larger offset current by adding capacitors in the two-digit picofarad range at both
ends of each RX electrode, as depicted in Figure 4.5 for the RX1 electrode. Due to
the antiphasic excitation signals during the capacitive measurement, the values of both
added capacitors are automatically subtracted at the end of the RX electrode.

RX1

pF

RX2

TX1

TX2

RXDUPLICATED

RXOUT

RX1 RX2

TX1

TX2

fFΔ

Figure 4.5: Regular arrangement of RX and TX traces (left) and countermeasure against the
bypass attack (right).
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As both electrodes’ ends reside within the enclosure boundary and are not accessible
from the outside, the attacker can only target the RX current between both electrode
ends. Hence, the attacker will only extract the current from one of the additional
capacitors since the subtraction occurs at the end of the electrode. Furthermore, the
current of the additional capacitor is approximately a thousand times higher than that of
the PUF-response. Hence, this countermeasure hides the small differential capacitance
in the femtofarad range in a much larger capacitance in the picofarad range. This makes
the extraction of the PUF-response infeasible, even if the picofarad capacitance is known.

In total, this countermeasure requires 2 · 16 = 32 capacitors that are connected to
the antiphasic signal generator. These capacitors should be inaccessible and hence, can
be embedded into the measurement system or attached to the innermost layer of the
envelope as discrete Surface Mounted Device (SMD) components.

Matching both additional capacitors is crucial since these non-tamper-sensitive ca-
pacitances could otherwise influence the final PUF-response. For example, embedded
capacitors could be matched by symmetric design, while discrete capacitors could be
selected through preceding measurement. The calibration of both capacitors requires
an extension of the production process with an integrated selection process to avoid an
exact match of both capacitances.

4.4 Magnetic Probing Attack

The bypass attack presented in the previous section is based on probing the minus-
cule currents transported on the RX trace. Voltage probing of the electrode does not
yield additional information since the information of the PUF-data is contained in the
nanoampere currents. The measurement concept itself, hence, prevents any voltage
sensing.

There is, however, another side channel. As I will show in the following, the com-
munication between the ASIC and microcontroller is susceptible to magnetic probing.
Furthermore, I analyze the effects of electric and magnetic fields on the envelope through
Finite Element Analysis.

4.4.1 Simulation of Magnetic and Electric Fields

I conducted a Finite Element Analysis (FEA) on a section of the envelope with 4 RX and
4 TX traces, creating 16 overlaps in order to analyze the effects of electric and magnetic
fields on the enclosure. FEA is a method to numerically solve differential equations by
discretizing space and dividing it into smaller parts, the so-called finite elements.

Figure 4.6 shows the simulation result for the envelope segment depicting the electric
field originating from 4 Cu electrodes. For the simulation, I assumed that the enve-
lope was surrounded by air. The results show that the electric field lines terminate
perpendicular to the shielding. Hence, the electric field is not-detectable outside of the
enclosure.

Figure 4.7 depicts the simulation of the magnetic field. The results show that the
0.5 µm copper shielding does not inhibit the magnetic field. Since the magnetic field lines
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Figure 4.6: Electric field of the envelope during capacitive measurement.

expand into the air outside the envelope, they are likely to be detected by a suitable H-
probe. The FEA simulation also indicates that the magnetic field emitted from the Serial
Peripheral Interface (SPI) communication between the ASIC and the microcontroller
leaks information about the PUF-response. In the following, I investigate this further
by probing the magnetic field in the vicinity of the envelope.
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Figure 4.7: Magnetic field of the envelope during capacitive measurement.

4.4.2 Magnetic Probing

The ASIC communicates with the microcontroller via an SPI interface. To test the
susceptibility of this interface to magnetic probing, I targeted a write operation to an
ASIC configuration register. To simplify the experiment, I accessed the trigger signal
via an external General Purpose Input / Output (GPIO).
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The ASIC repeatedly measures the PUF-response every few milliseconds and stores it
in SRAM. An attacker that has physical access could, hence, record many traces for later
analysis. As I will show, the magnetic signal emitted from the SPI interface is visible to
the naked eye. This enables an attacker to adjust the oscilloscope trigger accordingly.

To prepare the setup for the attack, I attached the envelope and the PCB to the
table with adhesive tape and tested the signal strength of different magnetic field probes
by altering their position. In general, larger coils could detect the target signal more
reliably than smaller coils. I identified the Langer RF-R-50-1 as the best-suited H-field
probe with the largest signal strength.

To enforce realistic conditions, I added a second envelope on top of the target en-
closure. This corresponds to wrapping the envelope around the casing, which results
in two overlapping envelope layers covering the ASIC. The additional layer resulted in
a significantly decreased signal strength, which can be enhanced by removing a small
portion of the shielding. Since a small missing portion of the shielding is not detected in
the capacitive measurement (see Section 4.3), I removed an area of approximately 5 mm
× 5 mm of the envelope’s shielding, significantly increasing the signal strength. For the
removal, I protected the shielding outside of the 5 mm × 5 mm area with adhesive tape.
A drop of citric acid was placed on the area to be removed, together with a voltage of
3 V applied between the acid and the shielding. This dissolved the copper and revealed
the polyimide layer. Figure 4.8 shows the upper envelope with the removed shielding.
The galvanic removal resulted in a significantly enhanced signal strength.

The next step of the experiment is to determine if a single bit is distinguishable
when transmitted over the SPI interface. I tested this by writing the exemplary values
0x0209 and 0x0249, differing only in a single bit, to the configuration register of the
ASIC. Figure 4.9 depicts the payload (16-bit) of a single register write operation. The
amplitude (normalized voltage) of the signal is increased for 1 bits, and can be well-
distinguished from 0 bits with the naked eye without further statistical analysis.

uncovered
polyimide

Langer RF-R-50-1

second 
envelope

Figure 4.8: H-probe on top of uncovered polyimide. Through galvanic removal, I dissolved an
area of 5 mm × 5 mm from the Cu shielding.
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Figure 4.9: H-probe signals for the transmission of values 0x0209 (top) and 0x0249 (bottom)
over the SPI-interface (payload only). The threshold distinguishing binary 0 from
1 is depicted as a dashed black line.

To automatically distinguish 0 bits from 1 bits, the attacker can define a threshold
value for the full PUF-response, i.e., 128 differential capacitances. In general, the attack
can be performed on both registers and SRAM data transmitted over the SPI interface.
Furthermore, since the PUF-response is read out repeatedly, even additional signal noise
could be compensated by recording multiple traces.

4.4.3 Countermeasures

The H-probe attack shows that a non-invasive read-out of the PUF-response is possible,
which significantly weakens the security concept of the capacitive enclosure and requires
adequate countermeasures.

A simple solution would be adding an extra shielding against the magnetic field. The
shielding materials available, e.g., steel or mu-metal [Jil98], depend on the desired per-
meability. Replacing the envelope shielding with these materials is not feasible, whereas
substituting the casing material might reduce the measured magnetic field emitted from
components of the PCB. Nevertheless, a replacement of the casing will still not counter-
act the magnetic probing of the SPI interface.

A possible countermeasure is adjusting the ASIC’s output driver strength so that the
SPI communication edges are smoothened. However, optimizing the microcontroller’s
drive strength is more complex, if possible at all. Also, reducing the signal strength by
decreasing the SPI voltage level is insufficient to counteract the attack. As HSMs stay
in the field for a long time, e.g., > 10 years, future attack tools will likely detect even
smaller magnetic fields.
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An alternative approach is encrypting the communication between the microcontroller
and the ASIC and exchanging the corresponding keys via Elliptic Curve Diffie Hellman
Ephemeral (ECDHE) at each system boot. By choosing ECDHE, no prior exchange
or persistent storage of certificates or keys is necessary, and thus, the authentication
entirely occurs within the envelope’s boundary. Symmetric encryption algorithms, such
as the Advanced Encryption Standard (AES), without ECDHE key exchange requires the
plain encryption key to be stored on both the microcontroller and the ASIC beforehand.
This enables the attacker to record the encrypted PUF-response via magnetic probing
and to read out the encryption keys after removing the envelope. Through this, the
attacker can decrypt the PUF-response. Hence, a prior key exchange via ECDHE is
crucial for securing the SPI interface. However, this comes with higher demands placed
on the hardware and firmware of both the ASIC and the microcontroller. In general,
the implementation of cryptographic primitives like ECDHE still has to be hardened on
an algorithmic level against other side channels.

Another countermeasure is to remove the SPI interface entirely, in a future revision,
by integrating the ASIC’s functionality into the main microcontroller that is embedded
into the envelope. In this case, the only remaining interfaces are the communication
with the host system and the enclosure interface. Implementing additional encryption
for this interface is more realistic since it is less time-critical and provides additional
hardware capabilities. Furthermore, the SPI interface could be replaced by a differential
interface reducing the emanated magnetic field [TIA01, Col02]. Differential interfaces,
however, are not common in microcontrollers. Their integration into the ASIC is not
straightforward and would require additional development effort.

4.5 Conclusion

In this chapter, I extended the enclosure’s vulnerability analysis to three additional
physical attacks. As a first step, I considered micro-drilling attacks with a diameter
below 300 µm, investigating the suitability of various countermeasures. Subsequently, I
proposed a countermeasure to Obermaier’s surface probing attack, where he successfully
intercepted the electrode current signal. The countermeasure can either be integrated
into the envelope or the measurement circuitry. Finally, I investigated the envelope’s
susceptibility to electric and magnetic field probing. I demonstrated that the commu-
nication between the FORTRESS microcontroller and ASIC is vulnerable to magnetic
probing attacks. Furthermore, I discussed the suitability of different measures to coun-
teract the attack. The enclosure’s tamper-sensitivity is restored through the proposed
countermeasures, bringing it another step closer to its commercial deployment.
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Chapter 5

The Wiretap Channel for PUF-Based
Enclosures

In Chapter 3, I presented FORTRESS and its software, the EKMS, with full key man-
agement, post-processing, and key generation. To compensate for errors due to noise
and environmental effects while incorporating tamper-sensitivity, I implemented Limited
Magnitude Codes (LMCs), as described in Section 3.3. LMCs consider the LSBs of each
PUF-symbol, thereby correcting only shifts to neighboring intervals and ignoring large
offsets caused by an attack. However, one of their shortcomings is that they require a
base change, which limits the choice of possible error correction parameters. Neverthe-
less, Limited Magnitude Codes provide a simple method to correct errors due to noise
and environmental changes while incorporating tamper-sensitivity.

To consider more complex error patterns and changes in the PUF-distribution, I
present an implementation of the wiretap channel via q−ary polar codes. This im-
plementation provides a separate model for both environmental and attack effects while
optimizing the entropy obtained from the PUF-response. Through this, the key gener-
ation and error correction of the PUF-response are further refined and developed.

5.1 Related Work and Overview

An overview of previous work in the field of PUFs covering error correction codes, was
given in Section 2.4. In this section, I discuss wiretap code implementations for Physical
Unclonable Functions and outline the contributions of this chapter.

5.1.1 The Wiretap Channel for Physical Unclonable Functions

Wiretap codes incorporate another security aspect besides the mere error correction ca-
pability. They achieve security by introducing additional randomness [Wyn75]. This
makes them a promising candidate for PUFs. However, not all code classes are suitable
for implementing a wiretap channel. Previous wiretap channel implementations were
applied to binary silicon PUFs to hide secrecy leakage from unstable or biased PUF-
bits [HÖ17, BY19, BY21]. Hiller and Önalan used wiretap coset coding to add random-
ness to the helper data of silicon PUFs, where they considered code lengths ≤ 64. In
recent publications, this idea has been extended to binary polar codes [BY19, BY21].

55



Chapter 5 The Wiretap Channel for PUF-Based Enclosures

Compared to previous work, applying wiretap codes to capacitive PUF-based enclo-
sures comes with major differences in the attacker model and implementation. The goal
of applying wiretap codes to the enclosure is to enhance physical layer security instead
of debiasing. Previous work focused solely on leaky helper data, assuming an error-
induced PUF-response, while tamper-sensitivity was not considered. With the wiretap
code presented in this chapter, noise, environmental effects, and drilling attacks are
modeled separately, enabling fine-tuning the code construction to the desired security
level (see Section 5.3). Furthermore, previous wiretap codes operated entirely on binary
codes and silicon PUFs. As I have shown in Chapter 3, the enclosure’s PUF-response is
analog; hence, q−ary polar codes are a natural choice for extracting more entropy from
the PUF-response compared to the binary case.

5.1.2 Outline and Structure

In the following, I present a wiretap channel implementation for the capacitive enclosure
based on q−ary polar codes. As the first step in Section 5.2, I analyze how temperature
effects and drilling attacks affect the PUF-distribution and derive a system model of the
enclosure (see Subsection 5.2.1). With the system model as a starting point, I analyze
the impact of different choices of quantization and key generation schemes.

In Section 5.3, I discuss the construction of a wiretap channel with q−ary polar codes
based on the attacker model and the PUF-data analysis. For the derived PUF-secret
with a length of 306 bits, the constructed wiretap code reaches a physical layer security
of 100 bits, which is verified in a Monte Carlo simulation. Finally, I conclude this work
in Section 5.4.

I presented the results herein at the 2022 Conference on Cryptographic Hardware and
Embedded Systems (CHES). Further information is available in the IACR Transactions
on Cryptographic Hardware and Embedded Systems 2022 [GXKF22].

5.2 System Model

The construction of a wiretap code requires a realistic enclosure model, which is discussed
in this section. In Subsection 5.2.1, I analyze how the PUF-response and its distribution
are affected by temperature effects and drilling attacks with a diameter of 250-300 µm.
This analysis is based on measured PUF-data obtained from the COVER [ION+19] and
the post-processing steps discussed in Section 2.4. In Subsection 5.2.2, I calculate the
distortion and error for different choices of quantization, estimating the error probabil-
ity of the corresponding channel model. Furthermore, I demonstrate the unsuitability of
binary quantization for the construction of a wiretap code. This is followed in Subsec-
tion 5.2.3 by a discussion of different key generation schemes suitable for constructing a
wiretap channel.
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5.2.1 Analysis of the PUF-Response

The data for the following analysis was obtained from the COVER [ION+19] and mea-
sured with the discrete measurement circuit. As discussed in Section 4.3, the ”in-
enclosure“ measurement of the discrete circuit is more accurate than the subtraction
of absolute capacitances implemented in the ASIC. Since a future development goal is
to deploy the ”in-enclosure“ concept on the ASIC, I focus on the more accurate data
obtained from the discrete measurement circuit for the following analysis.

Two versions of the enclosure system have been developed: B-TREPID, which is
wrapped around the entire device, and the COVER, which covers the top and bottom
area of the PCB. Details of the enclosure design were discussed in Section 2.4. For B-
TREPID, data from 50 envelopes are available, while the data set for COVER is more
extensive, comprising 115 enclosures. Both designs behave similarly, resulting in Gaus-
sian distributed PUF-responses with capacitances in the femtofarad range. However,
the standard deviation for the COVER is greater compared to B-TREPID. Further-
more, the PUF-responses were measured with the discrete measurement circuit, which
— compared to the ASIC — is optimized in terms of accuracy rather than size.

During the analysis, the measured PUF data were subjected to all post-processing
steps described in Section 2.4. For the COVER, the resulting differential capacitances
are Gaussian distributed over the interval [−10000,+10000] with a standard deviation
of σ = 30 fF, which corresponds to 2241 points after the TX group shift (normaliza-
tion) [ION+19]. One point is equivalent to a digital resolution of 13.4 aF [Obe19]. Even
though the discrete measurement circuit is optimized through low-noise components
and filtering, the full setup with the enclosure attached still leads to a certain amount of
noise, which has to be compensated by the quantization and error correction code. The
measured noise — obtained from 200 consecutive measurements of the same enclosure
— is Gaussian with a standard deviation of 1.7 fF, corresponding to 129 points.

The PUF-response is influenced by external effects, such as changes in temperature,
humidity, or vibrations, which can alter the measured differential capacitances. Tem-
perature measurements of the raw PUF-response have been published by Immler et al.
for the COVER [ION+19], which are the basis for the following analysis. Internal mea-
surements of B-TREPID in a climatic chamber indicate that a high humidity leads to
temporary changes in the PUF-response, which are reversed after dehumidification of
the envelope. Furthermore, strong vibrations also alter the measured PUF-response.
This is attributed to the vibration-sensitive measurement circuit and can be overcome
by optimizing the circuit design. Another external influence is electromagnetic interfer-
ence. The enclosure design and the measurement circuit were adjusted accordingly to
prevent electromagnetic radiation from interfering with the capacitive measurement. A
Cu shielding added to the enclosure’s top and bottom layer counteracts electric fields, as
shown in Chapter 4. External magnetic fields that could influence the capacitive mea-
surement are counteracted by the narrow excitation frequency and canceled out by the
meander structure of the electrode mesh. Previous measurements of the PUF-response
cover temperature changes and drillings attacks [ION+19].
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Temperature Distribution

The enclosure is susceptible to thermal changes that have to be compensated by error
correction. Figure 5.1 depicts the thermal changes in the absolute capacitance — also
referred to as absolute nodes — of a COVER, ranging from −20 ◦C to 60 ◦C. The
256 absolute nodes, each obtained from measuring one TX electrode against one RX
electrode, behave similarly under thermal changes. Each line represents one absolute
node measured over time and under thermal changes. The absolute capacitances in
the picofarad range are mapped to approximately 2900 to 3700 points, where one point
corresponds to a digital resolution of 11.8 fF. However, the differential capacitances in the
femtofarad range are mapped to [−10000,+10000] points, with one point corresponding
to a digital resolution of 13.4 aF. In-enclosure subtraction of the absolute capacitances
yields the corresponding PUF-response, i.e., 128 differential capacitances depicted in
Figure 5.2a, where each line represents a single differential node. Figure 5.2c depicts
the differential capacitance for each PUF-node between −20 ◦C and 60 ◦C. The data
for each temperature was obtained over, on average, 100 measurements. Node numbers
0 to 15 denote the first TX group, i.e., electrodes TX1 and TX2 measured against
electrodes RX1 to RX16; node numbers 16 to 31 represent the second TX group, and
so forth. As shown in Figure 5.2c, certain PUF-nodes are more susceptible to thermal
changes. This is likely due to stress in the enclosure material. The COVER’s edges are
slightly bent, which causes tension and makes the corresponding nodes more susceptible
to environmental changes.

The post-processing steps described in Section 2.4 have a significant impact on the
(processed) differential capacitances forwarded to the key generation. The first process-
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Figure 5.1: 256 absolute nodes (each depicted by a different color) influenced by temperatures
in the range [−20 ◦C, 60 ◦C]. PUF-data taken from [ION+19].
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(a) Unprocessed differential capacitance under
thermal changes. Temperatures as in Fig-
ure 5.1. The PUF-data was taken from pre-
vious COVER measurements [ION+19].
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(b) Differential capacitance under temperature
change (as in Figure 5.1) after the first pro-
cessing step (normalization), shifting the TX
group mean.
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(c) Differential capacitance under temperature
changes. The data for each temperature was
obtained over, on average, 100 measurements.
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(d) (Normalized) differential capacitance under
temperature changes. The data for each tem-
perature was obtained over, on average, 100
measurements.

Figure 5.2: Analysis of the differential capacitance under temperature changes comparing the
raw (left) and normalized (right) PUF-response.

ing step, the normalization, removes global manufacturing variations by subtracting the
TX group mean. After normalization, outliers are shifted towards the center, and the
distribution is narrowed (see Figures 5.2b and 5.2d). The narrowing of the distribution
is also depicted in Figure 5.4.

Figures 5.3a and 5.3c show how thermal changes affect the nodes of the PUF-response
compared to a reference temperature of 20 ◦C. Certain PUF-nodes are more susceptible
to thermal changes, as depicted in Figure 5.3c. This could be caused by mechanical stress
where the COVER is bent. The maximal difference at 60 ◦C amounts to approximately
1500 points. Normalizing the PUF-response does not change the maximum difference,
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(a) Thermal changes of the unprocessed differ-
ential capacitance compared to the reference
measurement at 20 ◦C.
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(b) Thermal changes of the normalized differen-
tial capacitance compared to the reference
measurement at 20 ◦C.
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(c) Thermal changes of the unprocessed differen-
tial capacitance for each sensor node com-
pared to the reference measurement at 20 ◦C.
The data for each temperature was obtained
over, on average, 100 measurements.
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(d) Thermal changes of the normalized differen-
tial capacitance for each sensor node com-
pared to the reference measurement at 20 ◦C.
The data for each temperature was obtained
over, on average, 100 measurements.

Figure 5.3: Analysis of changes of the differential capacitance under temperature changes com-
paring the raw (left) and normalized (right) PUF-response for a reference temper-
ature of 20 ◦C.

as depicted in Figures 5.3b and 5.3d. Most node changes after normalization are in the
range of [−700,+700] points.

The PUF-distribution for temperatures between 0 ◦C and 60 ◦C is depicted in Fig-
ure 5.4. The data corresponding to each temperature was obtained by averaging approx-
imately 100 measurements. On the top, the histogram of the raw differential capacitance
is shown with Gaussian fits for all temperatures. The bottom depicts the differential ca-
pacitance after normalization, i.e., TX group shift. No plot was added for temperatures
below 0 ◦C since the distributions behave equivalently to their non-negative counter-
part. Hence, the distribution for T = −10 ◦C is almost identical to the Gaussian fit at
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Figure 5.4: Histograms of the differential capacitance under temperature changes before and
after normalization. Top: Distribution of the differential capacitance (with Gaus-
sian fit) for temperatures between 0 ◦C and 60 ◦C before normalization. Bottom:
Distribution of the differential capacitance (with Gaussian fit) for temperatures
between 0 ◦C and 60 ◦C after normalization. The data for each temperature was
obtained over, on average, 100 measurements.

T = 10 ◦C. In both cases, i.e., before and after normalization, the distribution broadens
as the temperature increases. However, through the TX group shifts, the distribution’s
standard deviation decreases (∆σ = 207 from 20 ◦C to 60 ◦C) after normalization. In
the unprocessed case, the increase in temperature shifts the PUF-distribution mean to
the right.

Depending on reliability requirements for the particular use case, the enclosure will
have to withstand large thermal changes in the field. For instance, the security policy
of HSMs such as the HP Atalla Ax160 PCI HSM [Hew] generates a tamper event for
temperatures outside the range [−20 ◦C, 100 ◦C]. Hence, the envelope or the COVER
protecting the HSM has to withstand thermal changes outside the range [−20 ◦C, 60 ◦C].
The histogram in Figure 5.4 shows that larger temperature changes are expected to lead
to greater offsets in the PUF-response, thus broadening the distribution even further.

61



Chapter 5 The Wiretap Channel for PUF-Based Enclosures

Attack Distribution

In Chapter 4, I gave an overview of the most relevant attacks in the context of the
capacitive enclosure. With the current feature size, B-TREPID and COVER withstand
drilling attacks with a diameter of 300 µm. Smaller holes are generally possible, but they
have to be counteracted by additional measures, such as adding a potting or increasing
the casing thickness. The post-processing and key generation alone can only recognize
drill diameters of 250-300 µm that destroy at least two neighboring electrodes. This is
depicted in Figure 5.5, which shows the change in differential capacitance before and
after normalization.

Due to the attack, the affected nodes in the raw PUF-response will change signif-
icantly, leading to large offsets where nodes are shifted outside the defined interval
[−10000,+10000]. Through normalization, these nodes are shifted back to the center
of the PUF-distribution, thereby reducing the offsets. In general, nodes outside of the
[−10000,+10000] full-scale range — highlighted in gray in Figure 5.5 — are subjected
to non-linear effects (clipping) during the capacitive measurement. However, depend-
ing on the enclosure sample and environmental influences, values outside the full-scale
range could occur even during a regular measurement. Hence, a simple check for nodes
outside the full-scale range is not sufficient to determine an attack. What is more,
with decreasing drill diameters, the resulting holes might lead to smaller changes in the
PUF-response.

A drilling attack affects the enclosure in two different ways. Firstly, the affected TX
groups are subjected to burst errors. This is depicted in Figure 5.5, e.g., for the third TX

0 16 32 48 64 80 96 112 128
Differential Sensor Node No.

-15000

-10000

-5000

0

5000

10000

15000

Ch
an

ge
 in

 D
iff

er
en

tia
l C

ap
ac

ita
nc

e after group shift
no group shift

Figure 5.5: Drilling attack with a diameter of 250 µm affecting two TX groups before and after
normalization. Values outside the full-scale range [−10000,+10000] (highlighted in
gray) are subject to non-linear effects.
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Figure 5.6: Effects of a drilling attack with 250 µm on the distribution of the PUF-response.
Top: Distribution of the raw differential capacitance (with Gaussian fit) before
and after the attack. Bottom: Distribution of the normalized PUF-response (with
Gaussian fit) before and after the attack.

group (nodes 32 to 47), the PUF-nodes are “muddled up” through the attack. Secondly,
the PUF-distribution is broadened through the drilling attack even after normalization.
This is shown in Figure 5.6, depicting the histograms of the raw (top) and normalized
(bottom) PUF-response before and after the attack. The unprocessed PUF-distribution
broadens significantly, leading to a change in standard deviation by 3295 points. The
goal of the normalization is to reduce offsets in the TX groups that leak information
about the PUF-response (see Section 2.4). The normalization, i.e., subtraction of the
newly calculated TX group offsets, is performed after each measurement. In general, this
approach — to a certain degree — reduces the large offsets stemming from an attack.
Alternatively, the initial offsets could be stored in NVM, which, however, leaks additional
information about the PUF-response. Nonetheless, even after normalization, the distri-
bution is still broadened compared to the untampered PUF-response since specific TX
groups are more affected than others by the attack. In this case, the difference in stan-
dard deviation is reduced to 787 points, which still significantly exceeds the distribution
broadening due to thermal changes.
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5.2.2 Quantization of the PUF-Response

In the previous section, I analyzed how the normalized PUF-response is affected by
thermal effects and drilling attacks. As described in Chapter 3, the next processing
step after normalization is the quantization of the PUF-response. The choice of the
quantization scheme has a major effect on the channel model and its error probability,
as I will show in the following.

Previous Work on Quantization

Before analyzing different choices of quantization for the PUF-based security enclosure,
I give an overview of previous work in the context of quantization. Quantization, in this
case, represents an additional post-processing step performed on the already discretized
PUF-response obtained after the ADC. The main goal of the quantization is to reduce
the effects of noise during regular measurement.

Previous work covering the quantization of the 128 differential capacitances compared
equidistant and equiprobable quantization intervals [IHKS16, IHL+19, IU19, ION+19].
Equidistant intervals distribute the discretized values unevenly, while in the case of
equiprobable quantization intervals, the quantized values are uniformly distributed. This
is depicted in Figure 5.7 for an exemplary distribution quantized into six intervals. In
general, both schemes leak information about the PUF-response. In the case of equidis-
tant quantization, information leakage is associated with varying symbol probabilities.
However, if equiprobable intervals are chosen, the analog helper data that shift the dis-
cretized nodes to the middle of the interval leak information about the location of the
nodes within the distribution.

Immler et al. focused on optimizing equidistant intervals through variable-length quan-
tization that they tailored to Varshamov-Tenengolts (VT) codes [IHL+19]. To optimize
the per-bit minimum entropy, the PUF-response is mapped to binary values of variable
length. However, one of the shortcomings of variable-length codes is increased error
propagation if critical symbols or bits are lost or change during the transmission. If
PUF-nodes change, the symbol length associated with the corresponding interval also
changes. This makes it difficult to determine the beginning and end of a symbol. There-
fore, synchronization correction is applied to counteract this, complicating the decoding
process [GN98, CRR98].

Figure 5.7: Equidistant (left) and equiprobable (right) quantization for six intervals.
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In general, the quantization of noisy sources and the search for an optimal scheme is
challenging [GN98]. In the following, I discuss the choice of different types of quantization
considering thermal changes and the effect of attacks on the PUF-response.

Binary Quantization and Wiretap Coding

When quantizing the PUF-response, two opposing goals have to be considered. First,
a greater number of intervals increases accuracy and hence, the entropy of the PUF-
key. However, secondly, if the number of quantization intervals is further increased,
the quantized PUF-response becomes more susceptible to noise and can not be reliably
reproduced. Hence, the quantization intervals have to be chosen such that the PUF-
response is reliably reproducible while maximizing the resulting entropy.

Depending on the quantization scheme, the choice of intervals also determines the
leakage of the PUF-response. In the case of equidistant quantization intervals, the vary-
ing symbol probabilities leak information about the PUF-response. On the other hand,
equiprobable intervals leak information about the location of the PUF-node through the
analog helper data. Hence, smaller shifts to the interval center indicate that the PUF-
node resides within the center of the distribution. In both cases, leaking information
about the PUF is unavoidable.

The quality of the chosen quantization can be estimated by calculating the distortion,
which describes how well the original variable x can be reproduced by its quantization
x̂ [GN98]. A simple and common distortion measure is the Mean Squared Error (MSE)
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Figure 5.8: Simulation results for the distortion obtained from 1000 noisy PUF-responses for 5
to 200 intervals. The results were obtained for different noise distributions σn = 65,
σn = 129, and σn = 258, and different types of quantization, i.e., equidistant (blue),
equiprobable (red), and k-means (green).
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d(x, x̂) = (x− x̂)2. For a sequence of length n, the MSE is defined as

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i) =
1

n

n∑
i=1
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Figure 5.8 shows the distortion simulated for a set of 1000 PUF-responses influenced

by different noise distributions for equidistant, equiprobable and k-means [kme20] quan-
tization with 5 to 200 intervals. k-means is a common quantization method used in signal
processing or machine learning. The noise is treated as additive Gaussian noise obtained
from 200 consecutive measurements of the same enclosure at the same temperature. The
noise standard deviation amounts to σn = 129 corresponding to 1.7 fF. The simulation
was performed for σn = 65, σn = 129, or σn = 258 to observe the effect of different noise
distributions. The distortion was calculated by considering PUF-responses of 128 sym-
bols ranging between [−10000,+10000] points. As depicted in Figure 5.8, after an initial
decrease, the distortion of k-means and equidistant quantization approaches a constant
value, which depends on the corresponding noise distribution. In case of equiprobable
quantization, the decrease is less steep.

Figure 5.8 shows that the distortion of k-means and equidistant quantization has
subsided at approximately 100 intervals. Hence, a quantization with 100 intervals will
likely yield a good reproduction quality of the original PUF-response and high entropy.
However, quantization with many intervals increases the number of errors to be corrected.

Figure 5.9 shows the number of interval shifts due to thermal changes and drilling
attacks, simulated for 1000 PUF-responses. The parameters for all simulations were
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Figure 5.9: Simulation results for the number of interval shifts within a PUF-response. For each
number of intervals, 1000 PUF-responses were simulated separately for T = 20 ◦C,
T = 60 ◦C and a drilling attack.
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Figure 5.10: Simulation results for the Bit Error Ratio (BER) and Gray Code mapping, com-
paring equidistant (blue), equiprobable (red) and k-means (green) quantization
for T = 20 ◦C and T = 60 ◦C to a drilling attack.

taken from the analysis in Subsection 5.2.1. This includes the distribution of the PUF-
response at T = 20◦ and T = 60◦, considering Gaussian noise and changes due to an
attack. Equidistant quantization has the lowest probability of interval shifts occurring.
Since the innermost intervals of equiprobable or k-means quantization are very narrow,
small shifts have a higher impact compared to equidistant intervals. The occurrence of
interval shifts, i.e., changes in the quantized PUF symbols, depends on the interval width.
The larger the size of the interval, the less likely an interval shift is about to occur. The
interval width, however, depends on the number of chosen intervals. Figure 5.9 shows
this linear relation, where the number of interval shifts increases — for both thermal
changes and drilling attacks — as the number of intervals grows.

A natural representation of the quantized PUF-response through a binary encoding is
a Gray code mapping, where the encoding minimizes the distance between intervals. The
Bit Error Ratio (BER), i.e., the ratio of erroneous bits within the PUF-response, for Gray
code mapping is depicted in Figure 5.10 simulated for a dataset of 1000 PUF-responses
at T = 20 ◦C, T = 60 ◦C, and for a drilling attack. Figure 5.10 shows that as the number
of intervals increases, distinguishing the BER of a PUF-response under thermal changes
from a PUF-response influenced by a drilling attack becomes increasingly difficult since
all curves approach the same BER. The Gray code maps each interval to a binary
number of log2(m) bits, where m is the number of intervals. The reason why with
an increasing amount of intervals, the difference in BER decreases is due to the Gray
code mapping. Within the neighboring two intervals, an interval change, i.e., a bit flip,
increases the Hamming distance by one. However, a shift of more than two intervals
does not necessarily lead to a further increase of the Hamming distance, as depicted
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Figure 5.11: Example of a 4-bit Gray code. Shifts of more than two intervals do not increase
the Hamming distance any further.

in Figure 5.11. This is unfavorable, especially for attacks that lead to large interval
changes.

In previous publications 40 equidistant intervals were chosen for the enclosure with
an interval width of 500 points [IHKS16, ION+19], corresponding to 3.9σn. The interval
width was chosen to entail 99.99% of the noise distribution.

Considering this recommendation and the above results for binary encoding, Figure 5.8
shows that for 40 intervals, a small distortion has not yet been reached. Furthermore,
the difference in the number of interval shifts for different external influences, as de-
picted in Figure 5.9, is still relatively small for 40 intervals. Even though the distortion
for equidistant and k-means quantization diminishes sufficiently at approximately 100
intervals, their BERs for 128 intervals can hardly be distinguished for different external
influences. I observed the same behavior for consecutive numbering and different types
of Gray codes, such as non-local or balanced Gray codes. .

These results show that binary encoding benefits the attacker when the number of in-
tervals increases. However, a small number of intervals comes at the expense of accuracy
and leads to entropy loss. Hence, in general, choosing a binary encoding for the quanti-
zation of the PUF-response is unfavorable for constructing a wiretap channel. Modeling
the PUF through a q−ary channel is more suitable for the enclosure since the PUF-
response is analog in nature. This ensures the distinction of both thermal influences and
attack effects.

Considering the PUF post-processing, as discussed in Section 2.4, the quantization
represents the final step. From the quantized PUF-response, the PUF-key is derived. In
the following, I give an overview of different key generation schemes and their suitability
for the PUF-based enclosure.

5.2.3 Key Derivation

Key generation schemes can include reliability data about the PUF (pointer-based
schemes) or derive a key without considering the properties of the PUF (linear schemes).
Pointer-based schemes [YD10, HMSS12, HWRL+13, YHD15] choose the most reliable
PUF-bits for key derivation while discarding the remainder of the PUF-response. In
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the context of the capacitive enclosure, this constitutes a major disadvantage. The dis-
carded PUF-nodes that are not considered in the codeword constitute ”blind spots“ that
an attacker can easily target.

Linear schemes do not include additional information about the PUF or discard PUF-
bits and hence, derive the key from the full PUF-response. One of the first key derivation
schemes, published by Juels and Wattenberg, is the Fuzzy Commitment [JW99]. It
was proposed in the context of biometrics for authentication of human fingerprints,
whose repeated scans are prone to errors. A version of the Fuzzy Commitment that was
extended by PUF post-processing as described in Chapter 3 is depicted in Figure 5.12.

As already discussed in Chapter 3, the key derivation process consists of two major
steps:

(i) The enrollment is the initial generation of the PUF-key and helper data at the
manufacturer. In the case of the Fuzzy Commitment, the secret S, which consti-
tutes a true random number R, is encoded as the codeword C. Post-processing the
raw PUF-response X yields the analog helper data W ′ that are stored in NVM.
The codeword C is masked by the quantized PUF-response X̂ = q(X), leading to
the helper data W that are also stored in NVM.

(ii) The reproduction is the continuous re-generation of the PUF-secret from the re-
peatedly measured PUF-response during regular operation. The PUF-response is
influenced by noise ϵn, thermal changes ϵt, and drilling attacks ϵa. After post-
processing, the quantized PUF-response X̂ ′, together with the stored helper data
W , generates the codeword, which, when decoded, results in the secret S.

Figure 5.12 shows that the repeated reproduction of the PUF-secret can be considered
a ”channel“. Hence, a faulty codeword is ”transmitted“ over a noisy channel. As dis-
cussed in Subsection 5.2.2, a binary channel is not favorable for modeling the capacitive
enclosure since it benefits the attacker. However, the Fuzzy Commitment can also be
implemented for q−ary alphabets, e.g., through Reed Solomon codes [CS16]. This is
extended to q−ary polar codes in Section 5.3.

The Fuzzy Extractor [DRS04] is a scheme similar to the Fuzzy Commitment. The
main difference is that in the Fuzzy Extractor scheme, the PUF-response X̂ constitutes
the secret S. This requires hashing of the secret to reduce helper data leakage.

Some schemes do not require the generation of a random number R, such as the
Syndrome Construction [DRS04, DORS08] or Systematic Low Leakage Coding (SLLC)
[HYP15]. In the Syndrome Construction, the PUF-response and the secret are equiva-
lent. Hence, just as in the Fuzzy Extractor, the secret is hashed to obtain the PUF-key.
The helper data W = X̂ HT are defined through the parity check matrix H. Recon-
structing the correct PUF-response consists of minimizing the error e in W = (X̂+e)HT.
The Syndrome Construction was implemented in the context of polar codes [CIW+17];
however, since this scheme does not include additional randomness, it is not well-suitable
for constructing a wiretap code. A wiretap channel scenario comprises two channels: The
main communication channel and the attacker channel. The introduction of additional
randomness is essential for constructing a wiretap code and ensures that the attacker
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Figure 5.12: Fuzzy commitment scheme with post-processing and quantization q(X) of the
PUF-response X.

channel is significantly worse than the main channel. Hence, a key generation scheme
has to be chosen that already considers an additional random number.

SLLC [HYP15] is another scheme that does not require an additional random number
R since it splits the PUF-response X = XS + XM into the secret XS and the mask XM.
SLLC can only be applied to systematic codes that separate information and redundancy.

A major issue with many schemes for key derivation is helper data leakage. To over-
come this issue, Müelich and Bossert [MB17] proposed a scheme based on the Secure
Sketch that does not require additional helper data. Müelich and Bossert constructed
the code such that the PUF-response corresponds to a codeword, omitting any helper
data in the codeword generation. A drawback of their scheme is its complexity.

For a wiretap channel in the context of the capacitive enclosure, the Fuzzy Commit-
ment, as depicted in Figure 5.12, is best suitable since:

(i) The PUF-secret is generated from a TRNG, enabling further enrollments and re-
enrollments that are crucial for a secure system life cycle, as described in Chapter 3.
Since the PUF-response only masks the secret, each enrollment generates a different
KEK.

(ii) The wiretap channel requires additional randomness. However, in schemes such
as the Syndrome Construction or SLLC, the helper data and secret depend solely
on the PUF-response without considering additional randomness. Hence, key gen-
eration schemes that already include additional randomness by default are best
suitable for constructing the wiretap code. It should be noted that randomness is
also a necessary requirement for the secure life cycle introduced in Section 3.2.

In this section, I discussed the effects of thermal changes and drilling attacks on the
PUF-response, followed by an investigation of quantization and key derivation. The
next step is the construction of an encoder and decoder for the wiretap channel, which
I discuss in the following section.
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5.3 Construction of the Wiretap Code

A major requirement of the error correction code is the distinction between environ-
mental changes and an attack. This distinction can be modeled through a wiretap
channel [Wyn75, OW85, CK78]. In this section, I describe an adaption of the wiretap
channel to the capacitive enclosure, which is implemented through polar codes.

5.3.1 The Wiretap Channel

The original wiretap channel, as published by Wyner [Wyn75], describes a wiretapper
eavesdropping on a discrete, memoryless channel. Wyner assumed that the wiretapper
eavesdrops on the transmission of the main channel via a second channel. The goal is to
construct the encoder and decoder such that the level of confusion on the wiretapper’s
side is as high as possible. In choosing the equivocation as a measure of this level of
confusion, Wyner found a trade-off between the transmission rate and the equivocation,
as seen by the wiretapper. He showed that approximately perfect secrecy could be
achieved for reliable transmission with a secrecy capacity Cs > 0. The wiretap code is
constructed to reliably transmit information on the main channel while hiding it on the
second channel accessed by the wiretapper.

In the case of the capacitive enclosure, separately modeling the effects of thermal
influences and drilling attacks is not feasible with a regular error correction code. To
describe the complex error patterns and burst errors, as discussed in Section 5.2, a
wiretap channel implemented based on polar codes is proposed in the following.

Figure 5.13 shows the wiretap channel adaptation for the capacitive enclosure. On
the main channel, the codeword C = X̂ ⊕W , affected by noise ϵ̂n and thermal changes
ϵ̂t, is “transmitted” with error probability p1, resulting in the secret S. On the second
channel, the PUF-response is additionally affected by drilling attacks ϵ̂a, resulting in the
error probability p2 and the secret S′.

Previous wiretap channel implementations targeted leakage in binary PUFs caused by
biased PUF-bits [HÖ17, BY19, BY21]. They chose their model such that the second

Key enrollment Key reproduction

ϵ̂a, p2

CencR ≡ S
ϵ̂n, ϵ̂t, p1

C + ϵ̂n + ϵ̂t

C + ϵ̂n + ϵ̂t + ϵ̂a

dec

dec

S

S′

noisy channels

Figure 5.13: The wiretap channel adapted to the capacitive enclosure considering measurement
noise ϵ̂n, thermal changes ϵ̂t, and drilling attacks ϵ̂a.
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channel transmitted the distorted helper data. This is irrelevant in the case of the
capacitive enclosure since the focus of the code construction is physical layer security.
As depicted in Figure 5.13, the wiretap channel separates the regular transmission of the
PUF-response on the main channel from an attack of the PUF-response on the second
channel. Another major difference compared to previous implementations is that the
code is designed for higher order alphabet PUFs since it is based on q−ary polar codes.

The attacker model itself was discussed in detail in Chapter 4, while the impact of fault
attacks on the enclosure system is discussed in Chapter 6. Small holes of approximately
10 µm require additional countermeasures and can not be mitigated by adjusting the
error correction code. Hence, the wiretap code construction discussed in the following
has to reliably detect holes with a diameter of 250-300 µm.

5.3.2 q−ary Polar Code

Stolte was the first to introduce polar codes and investigate their similarity to Reed-
Muller codes [Sto03]. A few years later, Arıkan reintroduced polar codes and showed
that they achieved the capacity of a discrete memoryless channel (DMC) under successive
cancellation (SC) decoding [Ari09]. This made the construction of capacity-achieving
codes feasible and hence, drew much attention to polar codes. Arıkan’s work was later
extended to binary extension fields, for which Yuan and Steiner introduced a kernel
construction [YS18]. In the context of the wiretap channel, polar code constructions
with symmetric component channels have been shown to achieve capacity [MV11].

Basing the construction of the wiretap code on a binary channel is insufficient for the
enclosure and benefits the attacker, as shown in Section 5.2. As the PUF-response is ana-
log, a q−ary model is a more natural choice allowing for an increased tamper-sensitivity
and higher extracted entropy. While previous polar code implementations [BY19, BY21]
focused solely on binary PUFs, the generalized q−ary polar code for the enclosure ex-
tracts a longer PUF-secret and more entropy.

Encoder and Decoder

The binary polar transform, as published by Arıkan [Ari09], relies on a process called
channel polarization that polarizes n independent, identical copies of a binary-input
DMC into better (noiseless) and worse (noisy) channels. This concept can be extended
to binary extension fields. Figure 5.14 shows the polar code kernel defined over a finite
field Fq, as published by Yuan and Steiner [YS18]. The encoded q−ary symbols (c1, c2)

P (y|c)

P (y|c)

·α

⊕u1

u2

c1

c2

y1

y2

Figure 5.14: Depiction of the 2 × 2 kernel over a q−ary field, where α ∈ Fq.
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relate to the q−ary source symbols (u1, u2) via the polarization matrix F2(α)

(c1, c2) = (u1, u2) ·
(

1 0
α 1

)
≜ (u1, u2) · F2(α) (5.1)

with the optimization parameter α [YS18]. The first channel with input u1 and output
(y1, y2) has a lower rate than the physical channel, defined by the channel law P (y|c). The
second channel with input u2 and output (y1, y2, u1) has a higher rate than the physical
channel [Ari09]. Figure 5.15 depicts the generalization for a code length n > 2. The
relation between the information symbols u = (u1, u2, u3, u4, . . . , un) and the codeword
c = (c1, c2, c3, c4, . . . , cn) is defined as

c = u · F2(α)⊗ log2 n (5.2)

with the log2 n−fold Kronecker product F2(α)⊗ log2 n of the polarization matrix F2(α)
with itself. The received codeword is the channel output y = (y1, y2, y3, y4, . . . , yn).

In his original work, Arıkan showed that in the limit n → ∞, the channel polariza-
tion results in channels with either capacity 1 (perfect) or 0 (useless), which was later
generalized to the q−ary case [PB12]. However, in practical applications with shorter
code lengths n, the channel polarization also results in mediocre channels. The code
construction, hence, aims at finding the best channels, and freezing the bad channels,
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Figure 5.15: Depiction of the polar encoder.
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Figure 5.16: Depiction of the polar decoder.

i.e., transmitting the frozen value 0 that does not contain any information. The frozen
positions are denoted by the set F .

The decoder, as depicted in Figure 5.16, receives the erroneous codeword vector y and
the frozen positions F to estimate the source vector û = (û1, û2, û3, û4, . . . , ûn). Arikan
originally proposed SC decoding, which allows for a recursive implementation and the
use of soft information. The soft information propagates from right to left. Check node
operations c̃i are depicted in Figure 5.16 through an XOR operation, and variable node
operations vi by a bullet point. After the propagation of the soft information, a hard
decision is made, which propagates from left to right, allowing for a successive decision
on the most likely transmitted bits.

Hard decisions, however, can lead to the propagation of miscorrected symbols. To
overcome this issue, Tal and Vardy proposed successive cancellation list (SCL) decod-
ing [TV11], which allows pursuing multiple choices of information positions after a hard
decision. For practical feasibility, however, the list size L is limited. The most unlikely
paths are discarded as soon as L paths have been stored. Tal and Vardy showed that
even a small list size of L = 2 already improves performance compared to SC decod-
ing [TV11].
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In the q−ary case, Yuan and Steiner modified the SCL decoding such that only paths
within a reliability threshold δ are pursued [YS18]. This allows for the pruning of non-full
lists and reduces the number of operations for transmissions over a good channel.

Code Construction

The code construction determines the polarized channels that are “good” for the regular
case — affected by noise and thermal changes — and “bad” for an attacker. Both types
of channels are estimated by the Monte-Carlo code construction [Ari09]. However, as
mentioned before, a full channel polarization is impossible due to the short code length
n. For symmetric channel components, Mahdavifar and Vardy proposed a polar code
construction achieving the secrecy capacity of the wiretap channel [MV11]. This con-
struction freezes polarized symbol channels that are “very bad” for both the legitimate
receiver and the eavesdropper. Information symbols are transmitted over polarized sym-
bol channels that are “good” for the legitimate receiver and “bad” for the eavesdropper.
The remainder of the polarized symbol channels that are “good” for both the legitimate
receiver and the eavesdropper is used to transmit random symbols.

The channel model for the code construction is based on the analysis in Section 5.2.
In an attack with a drill diameter of 250-300 µm, at least one TX and one RX electrode
are destroyed. The natural choice for the enclosure is to quantize the PUF-response
into q−ary symbols. Depending on the quantization intervals, the PUF-nodes subject to
thermal changes can fall into the neighboring intervals. This behavior can be modeled
through a q−ary channel with non-zero crossover probabilities pi,j . I simulated this
probability matrix with 100,000 PUF-responses considering all possible symbol changes
for the legitimate and the attacker channel. The simulation yields the probabilities for
each symbol changing into all other possible symbols, which serves as input for the code
construction. I modeled the PUF-response based on the system analysis in Section 5.2,
considering temperature changes, drilling attacks, and all post-processing steps, with
and without analog helper data. The 8× 16 differential PUF-nodes were quantized into
128 q−ary symbols. The q−ary polar code described in Subsection 5.3.2 is based on a
discrete-time memoryless additive Gaussian white noise (AGWN) channel that requires
independent and identically distributed input symbols [YS18]. Approaching this model,
8, 16, and 32 equiprobable intervals were chosen for quantizing the PUF-response to
obtain uniformly distributed symbols. For the code construction, a bias in the input
symbol distribution leads to additional leakage that has to be considered [CW19]. The
simulation showed that the channel of the legitimate receiver is not symmetric since the
P (yi|cj) = pi,j differ for i, j ∈ {0, 1, . . . , q − 1}.

For the code-offset construction, the polar code length amounts to n = 128, which
is independent of the number of quantization intervals q. The code is constructed
from a Monte Carlo simulation [Ari09]. The n PUF-symbols are encoded into an n-
symbol codeword, and noise is added according to the analysis in Section 5.2. For the
Monte Carlo simulation, SC and SCL decoding were performed. For SC decoding, the
received vector y is decoded via the soft information of the channel model. After a
hard decision, the decoder counts the occurrence of incorrect decisions to estimate the
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Table 5.1: Extract of Monte Carlo simulation results for the q−ary polar code construction ob-
tained with and without the consideration of analog helper data W ′. The codeword
consists of 128 symbols derived from 8 × 16 differential capacitances that are quan-
tized into 8, 16, and 32 equiprobable intervals. Each interval, hence, corresponds to
a dedicated q-ary symbol. The error correction reliability is indicated by the per-
symbol error probability d. ns denotes the number of reliable symbols after error
correction, of which the attacker can read nf symbols. The attacker entropy Hatt in
bits is a measure for the achievable security level, while Hsecret corresponds to the
bit-length of the PUF-secret.

Without W ′ With W ′

q d ns nf Hatt Hsecret d ns nf Hatt Hsecret

8

0.0010 73 11 60.8 219 0.0010 119 22 151.9 357
0.0005 71 11 55.6 213 0.0005 117 22 145.9 351
0.0001 65 11 40.2 195 0.0001 112 22 130.9 336

- 10−5 106 22 112.0 318
10−6 56 11 22.1 168 10−6 102 22 100.3 306

- < 10−6 101 22 98.0 303

16

0.0010 61 9 55.7 244 0.0010 82 17 92 328
0.0005 58 9 47.8 232 0.0005 79 17 80.8 316
0.0001 52 9 33.1 208 0.0001 74 17 63.9 296

- 10−5 68 17 45.6 272
10−6 45 9 15 180 10−6 64 17 34.9 256

- < 10−6 63 17 32.0 252

32

0.0010 68 11 111.4 340 0.0010 73 15 116.9 365
0.0005 66 11 102.5 330 0.0005 72 15 112.4 360
0.0001 62 11 89.1 310 0.0001 69 15 98.9 345

- 10−5 62 15 74.0 310
10−6 55 11 57.3 275 10−6 58 15 58.9 290

- < 10−6 56 15 49.9 280

probability of an incorrectly decoded symbol ûi given correct previous hard decisions
(û1, . . . , ûi−1) = (u1, . . . , ui−1). The Monte Carlo simulation is run for both the legit-
imate and the attacker channel. For both, the “very bad” channels are frozen, where
an erroneous decision is highly likely. Random symbols are transmitted over the “very
good” channels, while information symbols are transmitted over the remaining channels.
From the Monte Carlo simulation, the entropy for the attacker can be calculated: s bits
of entropy signify that the brute-force effort for an attacker amounts to 2s options for
the decoding. Hence, for the SCL decoder, the list size L should be at least L > 2s,
including the correct codeword.

Table 5.1 shows the results from the Monte Carlo code construction for q = 8, 16, and
32 intervals, with and without analog helper data W ′. The per-symbol error probability
d is a measure of the error correction reliability, which determines the number of reliable
symbols ns after error correction. Of ns reliable symbols, nf can be read by an attacker.
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Table 5.2: Simulation results for SC and SCL decoding at T=20 ◦C with and without analog
helper data W ′, for 8 and 32 intervals. nf of the ns correctly transmitted symbols are
readable by the attacker. The decoding results yield the probability of the wrongly
decoded PUF-secret (FER), the secret length Hsecret in bits, and the complexity of
an attack Hatt.

Decoder W ′ q FER ns nf Hsecret Hatt

SCD yes 8 4.0 × 10−6 102 22 306 100
SCL (L = 8) yes 8 1.0 × 10−6 102 22 306 100
SCD no 32 7.0 × 10−6 55 11 275 57
SCL (L = 8) no 32 3.3 × 10−6 55 11 275 57

Choosing a maximum per-symbol error probability d = 10−6, the parameter set with the
largest entropies Hatt and Hsecret in both columns (with and without analog helper data
W ′) is selected. The entropy of the attacker channel Hatt is calculated from the legitimate
symbol channels that have a probability for incorrect decoding below the threshold d,
which is a reliability measure of the legitimate channel. The attacker entropy Hatt is
related to the decoding complexity and the corresponding brute force effort considering
the overall error correction scheme to be known by the attacker. Thus, Hatt determines
the achievable security level of the code. In total, ns symbols, corresponding to the
code dimension k, are selected that are good for the legitimate channel. The ns symbols
contain an entropy of Hsecret = ns · log2(q) bits, corresponding to the bit length of the
PUF-secret.

nf of the ns reliable symbols are randomized since they are “good” for the eavesdrop-
per, which results in ns − nf symbols of a high error rate received by the attacker. The
physical layer security of the wiretap code is determined by the entropy of the attacker
channel Hatt = −

∑ns
i ps,i log2(ps,i), where ps,i denotes the symbol error rate after an at-

tack. The choice of the threshold d determines the security level since through a stricter
selection, the number of reliable bits ns is reduced, together with the complexity for an
attacker Hatt.

For selected code construction parameters in Table 5.1, another Monte Carlo simula-
tion was performed for SC and SCL decoding to obtain the Frame Error Rate (FER),
i.e., the probability of the wrongly decoded PUF-secret. Table 5.2 shows the simulation
results for T = 20 ◦C. For a FER of 10−6 and 8 intervals, the PUF-secret length is 306
bits, and for 32 intervals, 275 bits. The complexity for an attacker amounts to 100 bits
for 8 intervals, while for 32 intervals, the brute force effort reduces to 257.

Polar decoding requires storing certain parameters in NVM, such as the indices of
frozen bits. However, in case of a biased PUF-response, additional helper data can
leak information about the PUF-key [WFP19]. An attacker could use this additional
information to develop a strategy for guessing the key. The additional randomness of
the wiretap code construction, however, increases the effort of guessing the correct key
compared to a regular polar code implementation. Future work should investigate the
general polar code related helper data leakage.
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This polar code construction supports thermal changes in the range [+5 ◦C,+35 ◦C],
which corresponds to the operating temperatures of state-of-the-art network HSMs [TG,
Hew]. Hence, the herein presented code construction is a promising approach showing
that sufficient entropy can be extracted with q−ary polar codes while achieving a high
security level. It forms a basis for continued development, such as optimizing the PUF
post-processing towards larger temperature ranges. Furthermore, it enables the consid-
eration of additional environmental influences, such as changing humidity. The results
could have been further improved by discarding the normalization that weakens the
enclosure’s tamper-sensitivity. However, this entails accepting significant information
leakage about the PUF-response due to global manufacturing variations. Alternatively,
the repeated calculation of TX group offsets could be prevented by storing the initial
offsets in the enrollment phase as fixed helper data, which, however, leak information
about the PUF-response. Hence, future work should focus on developing alternative
methods to extract global manufacturing variations.

The suitability of binary polar codes for a low-cost implementation on a microcon-
troller was demonstrated by Kestel et al. [KFPW22]. The authors proposed a low-
area (binary) polar decoder for PUF applications that requires a space of 4.200 µm2

in a 22 nm technology. Compared to the binary case, the decoding complexity of
q−ary polar codes increases depending on the number of quantization levels. In the
binary case, SC decoding is performed in O(n log n), whereas SCL decoding requires
O(L · n log n) [TV11, BSPB15]. In the q−ary case, the check and variable node opera-
tions require an additional O(q log q) and O(q). Hence, with a reasonably small number
of intervals, the decoding can be performed on a common microcontroller. Future work
should evaluate q−ary polar codes in terms of code size and performance optimizations
to tailor them to the low-cost demands of Physical Unclonable Functions.

5.4 Conclusion

In this chapter, I presented a wiretap code for the capacitive PUF-based security enclo-
sure implemented via q−ary polar codes.

I provided a data analysis of how thermal changes and drilling attacks affect the
PUF-distribution and all post-processing steps. From this analysis, I derived a model of
the enclosure serving as the foundation of the code construction. The constructed polar
code incorporates the analog nature of the PUF-response through a q−ary channel model
and equiprobable quantization of the higher order alphabet. The wiretap code enabled
the selection of the best symbol channels for the legitimate receiver and minimized the
good channels for the attacker. Through this, a physical layer security of 100 bits was
achieved for a PUF-secret length of 306 bits, 8 intervals, and a temperature range of
[+5 ◦C,+35 ◦C].

Future work should tackle the influence of further environmental influences on the
enclosure, such as humidity or vibrations, and optimize the enclosure and code design
to larger temperature changes. Furthermore, the implementation should be optimized
for execution on a common microcontroller.
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Chapter 6

Resistance of FORTRESS Against Fault
Attacks

Chapter 4 focused on physical attacks in the context of the capacitive PUF-based security
enclosure. This chapter covers the software side of FORTRESS by analyzing the effects
of injected faults and discussing countermeasures to harden the system against fault
attacks.

Section 6.1 provides an overview of basic terms and different types of fault attacks,
with a focus on radiation faults. This is followed in Section 6.2 by an evaluation of how
faults can affect critical algorithms through the injection of data and instruction faults.

To analyze the software of FORTRESS, I present ARCHIE, a QEMU-based fault
injection framework for ARCHitecture-Independent Evaluation (ARCHIE) of faults, in
Section 6.3. With the help of ARCHIE, I analyze the software side of FORTRESS to
find weaknesses in the implementation in Section 6.4. This is followed in Section 6.5 by
a discussion of various countermeasures. Finally, I conclude my results in Section 6.6.

6.1 Fault Injection

In this section, I introduce basic terms in the context of fault injection. Furthermore, I
analyze different sources of faults considering their impact on the capacitive PUF-based
enclosure.

6.1.1 Basic Terms

Embedded devices are subject to faults that affect their correct operation. Faults are
defined as low-level changes in the physical state. Faults that propagate and affect the
internal state are referred to as errors [Nyb18]. A failure occurs if, through the influence
of the error, the system’s intended behavior is no longer fulfilled.

In safety applications, failures are caused by either hard or soft errors [Lav08]. Hard
failures originate from internal causes, e.g., defects in the circuit, while soft errors origi-
nate in external sources, e.g., particles affecting the stored and processed data.

Apart from accidental or random faults, for instance, through aging or environmental
effects, deliberate fault injection through an attacker can severely impact cryptographic
algorithms and leak CSPs.
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Faults in a security context stem from invasive, semi-invasive, or non-invasive attacks,
depending on the degree of hardware modifications during device preparation. Semi-
invasive attacks, like, for instance, Laser Fault Injection (LFI) or other energy beams,
were already discussed in Chapter 4. In general, the FORTRESS components within
the enclosure are non-accessible. Even if holes with a small aspect ratio are technically
feasible, countermeasures, such as increasing the casing thickness, adding a potting ma-
terial, or reducing the enclosure’s feature size hinder an attacker from probing critical
components on the PCB. Furthermore, semi-invasive techniques require the preparation
of the DuT through decapsulation or thinning of the substrate.

Non-invasive methods, such as electromagnetic pulses or deliberate temperature and
voltage changes, do not require changes to the DuT’s hardware. The envelope’ shield-
ing protects against alternating electric fields. Magnetic fields, however, permeate the
enclosure as demonstrated in Chapter 4 but are unlikely to influence the capacitive
measurement. They are counteracted by the narrow excitation frequency and canceled
out through the meander structure of the Tx and RX electrodes. Strong EM-fields,
in contrast, will most likely destroy the device and are unsuitable for repeated fault
injection.

The only externally accessible component is the power supply. Deliberate changes in
external temperature or voltage, leading to glitches, can be counteracted by sensor mon-
itoring. Furthermore, voltage glitching is hampered through the electronic components
of the power supply itself, such as large capacitors or voltage stabilizers. Faults induced
by clock glitching [KHEB14, RGP22] can be ruled out since the enclosure protects the
clock access.

There is, however, a non-invasive attack able to fault the enclosure system. Differ-
ent types of radiation can permeate the envelope and cause faults in critical electronic
components, as I will show in the following.

6.1.2 Faults Induced Through Radiation

Apart from glitching, physical fault injection attacks in the security context are often
based on Laser Fault Injection (LFI) or Electromagnetic Fault Injection (EMFI). Laser
Fault Injection requires the preparation of the DuT, which usually entails decapsula-
tion or grinding and polishing. Laser-based faults can severely impact the execution of
cryptographic algorithms, as I will show in Section 6.2. EMFI is a non-invasive method
that does not require decapsulation of the DuT. An electromagnetic pulse generates
variations in the magnetic fields surrounding the target device, which induces parasitic
currents that disrupt the DuT’s operation [DLM19]. However, the occurrence of faults
in EMFI is not fully understood. Models of how faults are generated are difficult to
verify since EMFI pollutes all measurements in the vicinity of several meters [DLM19].
Even though the fault causality is not fully clear, EMFI has been successful in attack-
ing cryptographic algorithms [SH07, DDRT12, DDR+12, RNR+15]. Radiation-based
energy probes could be the next step to combine the advantages of a focused laser beam
with the non-invasive approach of EMFI. However, using other energy probes and ra-
diation sources is also a financial topic since an EMFI setup is much more affordable
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than devices generating electron, neutron, proton, or γ radiation. However, in reliability
testing, ionizing radiation, such as neutron beams, has already been used to irradiate
test devices in Accelerated Life Testing (ALT) [VPK+15]. Hence, applying these meth-
ods to a security-focused analysis could be the next possible step. An attacker targeting
the capacitive PUF-based security enclosure could buy additional devices for reverse-
engineering and subsequently launch an attack through a particle beam or other types
of radiation. The question is if different radiation types can permeate the enclosure and
reach critical components. The following analysis aims to provide an answer to this
question.

The envelope layer stack has a thickness of 0.25 mm, with 8.5 µm copper, 150 µm
polyimide, and 100 µm adhesive tape 3M VHB9460. Depending on the attacker model,
the PCB components are protected by a metal or polymer casing with varying thickness.
Assuming that the enclosure size is scalable, the casing thickness and material can be
chosen so that the electronic components are shielded from different types of radiation.
However, the ASIC resides on top of the casing and is covered only by the enclosure.
Furthermore, to impede magnetic probing attacks, as conducted in Chapter 4, the design
goal is to integrate the functionality of the main FORTRESS microcontroller into the
ASIC. The ASIC, hence, is a potential weak point that could be reached by different
types of radiation that have been shown to cause errors in memory.

Particle radiation can lead to data corruption and damage in electronic circuits [LaB04,
Rau]. This was already known in 1979 and investigated by May and Woods, who showed
that α-particles penetrating the die surface could cause sufficient electron-hole pairs to
induce errors in dynamic RAM [MW79]. Uranium and thorium, which are present to a
certain degree in packaging materials, were found to be the source of α-particles caused
by radioactive decay. In 1997, Chou et al. investigated different causes of soft errors
in Dynamic Random Access Memory (DRAM) induced by α-particles (1997) [CCH97].
Electrically Erasable Programmable Read-Only Memory (EEPROM) can also be af-
fected by α- and γ-radiation. Carlo et al. exposed EEPROMs to a Co-60 gamma radia-
tion source and an Am-241 alpha radiation source [CSS+11]. They observed soft errors
induced by the α-particles, while a long exposure to γ-rays led to severe damage causing
device failure. As shown by Bagatin et al. [BGPFC12], flash memories are also suscepti-
ble to α-particle induced soft errors. The authors decapsulated the target devices with
an acid before the experiment to get access to flash memory. They showed that 5.4 MeV
α-particles induced raw bit errors in 50 nm NAND flash.

Also, protons and neutrons can cause soft errors. For example, in 1979, Wyatt
et al. exposed dynamic memory devices to protons with energies ranging from 18 to
130 MeV [WMT+79]. They observed that soft error types and error location in memory
depended on the beam energy. In a more recent experiment, Iwashita et al. determined
the energy-dependent soft-error rate in SRAM caused by neutrons with an energy of 1-
800 MeV [IFS+20]. The error rate gradually increased up to a neutron energy of 20 MeV.
The authors also reported errors even below an energy of 2.5 MeV. Cellere et al. investi-
gated neutron-induced soft errors in NAND and NOR flash memories [CPC+01]. They
showed that neutrons trigger bit errors, particularly in multi-level cells (MLCs), where
the number of bits per cell is higher than in single-level cell (SLC) devices. Also, de-
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vices with smaller feature sizes, in general, were more susceptible to neutron-induced bit
errors.

Electrons inducing soft errors in a 28 nm SoC were investigated by Yang et al. [YLZ+20].
The electrons caused soft errors in the device’s on-chip memory (OCM), D-Cache, reg-
ister, and BRAM blocks.

X- and γ-rays are also known to cause errors or even device failure. Hence, inspect-
ing semiconductor ICs with X-rays requires filtering and further precautions [Inf21].
Furthermore, γ-rays do not necessarily lead to the destruction of the device but can
induce soft errors. This was shown by Fetahović et al., who observed bit-flips in
Erasable Programmable Read-Only Memory (EPROM) and EEPROM caused by γ-
radiation [FPV13]. Dolićanin investigated the long-term effects of γ-rays on four differ-
ent NOR memory models [Dol12]. He showed that exposure to γ-rays for nine weeks led
to a bit error percentage of 17% to 32%, which denotes the number of bit errors relative
to the total memory size. A broader study on the susceptibility of flash memory to γ
radiation was conducted by Sharma et al. [SSF+16]. They targeted 250 nm NOR flash
and 48 nm NAND flash technologies achieving the highest byte error rate for 12 keV X-
ray irradiation. The authors performed experiments for different energies and exposure
times, finding that data corruption is highest for long exposure time and that NAND
flash memories were more susceptible to data corruption than the examined NOR flash
memories.

Since these different types of radiation can cause soft errors, the question arises
whether they would be able to reach the ASIC covered by the envelope layers. Table 6.1
shows the projected range for protons and α-particles, the CSDA range for β-particles,
and the HVL for X- and γ-rays. The absorber materials listed are copper, polyimide
(Kapton), and silicon.

The CSDA range approximates the average path length that a charged particle travels
as it slows down to rest [NIS22a]. However, the actual penetration depth differs from the
CSDA range. This is expressed in the projected range; hence, the average penetration
depth of a charged particle slowing down to rest.

For X- and γ-rays, the Half-Value Layer (HVL) represents the thickness of the absorber
material, where 50% of the incident energy has been attenuated [NIS22b]. The HVL is
inversely proportional to the attenuation coefficient µ, defined through

I = I0 · e−µt = I0 · e
−µ

ρ
x
, (6.1)

where µ is the attenuation coefficient, t the thickness of the material, I the radiation
intensity, and I0 the initial radiation intensity. For X-rays, the NIST database provides
the mass attenuation coefficient µ/ρ, with ρ the absorber density and the mass thickness
x = ρ · t.

From the mass attenuation coefficient µ/ρ, the HVL, i.e., where I/I0 = 0.5, can be
calculated as follows

t = − ln(0.5)
µ
ρ · ρ

. (6.2)

In general, the distinction between γ- and X-rays is not always clearly defined. This
is because classification within the electromagnetic spectrum varies, and both types of
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Table 6.1: Overview of different radiation types, their projected range (protons and α-
particles) [NIS22a], CSDA range (electrons) [NIS22a] and HVL (X- and γ-
rays) [NIS22b].

Radiation Energy
Projected/CSDA

Range, HVL

Protons

70 MeV
7.1 mm (Copper)
2.2 cm (Silicon)
3.0 cm (Kapton)

200 MeV
4.3 cm (Copper)
13.8 cm (Silicon)
19.2 cm (Kapton)

α-particles

2.0 MeV
3.6 µm (Copper)
7.2 µm (Silicon)
8.0 µm (Kapton)

10 MeV
26.5 µm (Copper)
69.1 µm (Silicon)
84.5 µm (Kapton)

β-particles

0.1 MeV
24.9 µm (Copper)
78.0 µm (Silicon)
0.1 mm (Kapton)

1.0 MeV
0.7 mm (Copper)
0.2 cm (Silicon)
0.3 cm (Kapton)

20 MeV
1.2 cm (Copper)
4.3 cm (Silicon)
6.9 cm (Kapton)

X- and γ-rays

0.01 MeV
3.6 µm (Copper)
87.5 µm (Silicon)

0.1 MeV
1.6 mm (Copper)
1.6 cm (Silicon)

1.0 MeV
1.3 cm (Copper)
4.7 cm (Silicon)

10 MeV
2.5 cm (Copper)
12.1 cm (Silicon)

radiation are either defined by their source of creation or by their photon energy. Hence,
for this analysis, X- and γ-rays are grouped in the same category.

Table 6.1 shows that all types of radiation could, in general, reach the ASIC that is
covered by the envelope with a thickness of 0.25 mm, including 8.5 µm copper, 150 µm
polyimide (Kapton), and 100 µm adhesive tape 3M VHB9460. In general, the penetration
depth within the absorber material also depends on the radiation energy. A further
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aspect that has to be considered is that the smaller the fabrication technology, the
greater the radiation’s effect on electronic components [CPG+19].

Faults induced through radiation are, hence, a potential threat to the enclosure system
and, specifically, the ASIC. In the following, I describe how transient faults can impact
the execution of cryptographic algorithms.

‘

6.2 Impact of Fault Injection on Cryptographic Algorithms

Faults can lead to changes in the control flow or manipulate calculation results that can
leak CSPs. To demonstrate the effects that faults have on cryptographic algorithms, I
herein present three experiments injecting transient faults into flash memory with data
and instructions manipulations.

6.2.1 Previous Work and Contributions

Attacks on microcontrollers can be categorized into non-invasive, invasive, and semi-
invasive attacks depending on the level of hardware alterations performed on the target
device. Semi-invasive attacks require the decapsulation of the microcontroller as attack
preparation but do not directly alter the hardware of the target device. A prominent
example in the semi-invasive attack category is Laser Fault Injection (LFI).

Traditionally, publications in the field of LFI primarily focus on faulting processor
registers or Static Random-Access Memory (SRAM) to manipulate data and, thus, break
algorithm implementations [CLMFT14, SBHS16, RSDT13].

So far, attacks on non-volatile memory have been vastly omitted in fault injection
research, with a few exceptions. UV light has been used for many years to disable secu-
rity fuses in EPROM [Sko12]. Furthermore, UV light attacks enable reverse-engineering
of address scrambling in smart card chips [FLM10]. Another exception is the work of
Obermaier and Tatschner [OT17], who permanently manipulated data in flash mem-
ory through UV-C light and mentioned that they observed transient faults on the same
device injected via a pulse laser. One of the first transient fault attacks against flash
memory read-out was performed by Skorobogatov, targeting the microcontroller’s back-
side [Sko10]. Skorobogatov considered optical fault injection via the front side as im-
practical for targets with a feature size ≤ 0.35 µm. However, in the following I, will show
that even a 180 nm feature-size flash memory is susceptible to front-side LFI.

In 2018, Colombier et al. performed LFI on the flash memory of a Cortex-M3 proces-
sor [CMD+18]. To analyze the targeted instructions, Colombier et al. surrounded them
with multiple NOP operations. A NOP instruction is usually implemented through
an ADD operation that can be altered through a laser pulse leading to a fault, which
leaves the target instruction unchanged. The use of NOPs in close vicinity to the target
instruction can, hence, falsify the attack analysis.

Colombier et al. mentioned that the characterization of laser parameters might take
months [CMD+18]. They also stated that pipeline behaviors and timing inconsistencies
hampered the fault analysis. In the following, I will discuss a calibration method based on
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Direct Memory Access (DMA) that resolves these difficulties. Furthermore, Colombier
et al. targeted instruction fetches while mentioning the difficulty of data faulting since
the data resides in SRAM. The fault attacks in this section show that data faulting is
indeed possible, which I demonstrate through a differential fault attack on AES targeting
the S-box access and the indirect faulting of registers by altering instructions.

Even though the Cortex-M3 operates at a frequency in the two-figure to the three-
figure range, Colombier et al. reduced the Cortex-M3 frequency to 7.4 MHz. Through this
frequency reduction, possible disturbances induced by the laser can not be assessed for
the practical use case. In the LFI experiments that I present in this section, the targeted
Cortex-M0 processor was run at its maximum frequency of 48 MHz while enabling the
cache/prefetch buffer. Through this, I analyze LFI attacks on flash memory under
realistic conditions. Apart from the aspects mentioned above, Colombier et al. also
significantly reduced the feature size such that as little chip area as possible was affected
by the laser spot. To demonstrate that LFI attacks are feasible irrespective of the DuT’s
feature size, the LFI experiments described in this section were conducted with coarse
laser settings and a rectangular spot size with dimensions of 40-60 µm, hence, covering
multiple flash cells.

Another group that targeted the flash memory of a microcontroller was Kumar et al.,
who performed an LFI attack on the ATmega128p [KBB+19]. Like Colombier et al.,
they surrounded the target instruction with multiple NOPs and reduced the spot size
to the single-digit micrometer range.

They also ran the ATmega at a reduced clock frequency of 13 MHz instead of the
maximum of 20 MHz. Kumar et al. stated that manual reverse engineering of executed
instructions was ”extremely time-consuming“. Furthermore, they suspected affecting
read-out circuitry shared between several bits. As I will show in the following, the effect
of the LFI attacks in this section can be directly attributed to the flash cells instead of
the read-out logic.

In the following section, I show how fault injection threatens the execution of cryp-
tographic algorithms. This is demonstrated in a front-side attack on an ARM Cortex-
M0 targeting instruction and data fetches from flash memory via LFI and transient
faults. The repeatable and reliable results were obtained by calibrating the laser and
adjusting its position and spot size. I show that the DuT was attacked under realis-
tic conditions, e.g., at the maximum clock frequency, with Phase-Locked Loop (PLL)
and caching/prefetch enabled and compiler optimizations. Furthermore, I explain the
attack background and discuss why the 180 nm flash memory is still reliably faulted
even with extreme mismatches between structure and laser spot size. I presented
the attacks described in this section at the 26th IEEE International Symposium on
On-Line Testing and Robust System Design. The results are published in the corre-
sponding IEEE Proceedings [GO20]. Supplementary material is available at https:

//github.com/Fraunhofer-AISEC/laserflash.
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6.2.2 Background

Transient fault injection into flash memory is a topic that has only been sparsely covered
so far. To understand the mechanism behind transient faults in more detail, I address
the attack background in the following. However, it should be noted that even though
the proposed model explains the observed behavior, further influences and different fault
mechanisms can not be ruled out.

Flash Memory Cell

Microcontrollers equipped with flash memory usually contain NOR memory, which has
a relatively short read-access time and is more reliable than NAND flash. A single
cell of NOR flash memory comprises a floating gate transistor, which is depicted in
Figure 6.1. It can basically be seen as a metal–oxide–semiconductor field-effect transistor
(MOSFET) with an additional floating gate. The cell can either store the value 1
or 0, depending on the number of charge carriers on the floating gate (FG). Without
additional charge carriers and an active control gate (G), the current flow from the drain
(D) to source (S) translates to a binary 1. Whereas, with a charged floating gate, no
current between source and drain will be measured, resulting in a binary 0. When data
or instructions in flash memory are read out, the read word is addressed through the
corresponding bit and word lines. The bit lines (BL) act as source and drain electrodes,
while the word lines (WL) are attached to the control gate.

According to the observed behavior of the target chip, the injected faults into NOR
flash are expected to be unidirectional, i.e., bits can only be flipped in one direction, e.g.,
they are flipped to 1. This can only be assumed if the faults are injected into the actual
flash memory cells. If, however, the faults are injected into the read-out circuitry as
suggested by Kumar et al. [KBB+19], an asymmetric channel model, i.e., unidirectional
errors, can no longer be assumed.

G

FG

SDi=0

G

FG

SDi>0

Figure 6.1: Binary 0 (charged cell) on the left and reading of a NOR flash cell, with a binary
1 (uncharged cell) on the right.

Transient Faults

There are different ways to manufacture NOR flash. The flash cell assembly of the target
device is depicted in Figure 6.2.

In a word line, several words can be stored. The i-th bits of all words are stored close
to each other. For example, in Figure 6.2, the last bits of all words are stored in the
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BL 1BL 0 BL 2

Bit 31
of all words

Bit 30
of all words

WL 0

WL 1

WL 2

BL 1BL 0 BL 2

01

Figure 6.2: Reading out a data word in NOR flash. Addressing the read out of a binary 1
(31st bit) and binary 0 (30th bit) via (BL0, WL0). All bit lines BL0 are read out
in parallel.

leftmost part of the flash memory. The next-to-last bits of all words can be found going
from left to right, followed by the next group of bits and so forth.

All leftmost bit lines (BL0) are read in parallel to obtain the leftmost word in the first
word line. The neighboring bit line (BL1) is pulled to GND to read a bit of BL0 and
hence, acts as source electrode potential for the respective floating gate transistor. This
way, space can be saved; however, not all words can be read out simultaneously.

When shooting laser light onto flash memory, the change can be temporary, perma-
nent, or there can be no impact at all that is detectable. Which of these three options
actually occurs depends on the wavelength and intensity of the laser beam. I observed
transient faults in the conducted attacks. These transient faults could be timed to a
specific word read-out.

During the execution of a program, data or instructions are fetched. In the following,
I assume that the relevant bits are stored in the uppermost word line. Figure 6.3 shows
the read-out of the memory cell associated with BL0 and WL0. With no current between
source and drain, the 30th bit associated with BL0 and WL0 corresponds to a binary 0
during regular read-out. However, suppose the flash cells are targeted with a laser beam
of sufficient energy (highlighted green box in Figure 6.3) during the read-out of a word.
In that case, the memory cell’s value is temporarily changed since a laser beam with
sufficient energy creates electron-hole pairs in the targeted memory cells. This induces
a current from the source to drain, flowing through the gate transistor depicted by the
highlighted cells at the bottom of Figure 6.3. Hence, the original 0 will temporarily
change to a binary 1, implying that the bit line is pulled to GND.
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BL 1BL 0 BL 2

Bit 31
of all words

Bit 30
of all words

WL 0

WL 1

WL 2

BL 1BL 0 BL 2

0

1

1

Figure 6.3: Targeting BL0 through laser fault injection. The laser beam (highlighted green
box) induces a temporal change in the targeted bit line, faulting the upper memory
cell to 1 by pulling the bit line to GND.

The advantage of this setup is that only the corresponding bit line has to be hit to
change specific bits of a word. The attack affects all word lines and hence, does not
have to be spatially finetuned to target a specific word line. This allows for successful
temporal manipulation of flash memory cells with coarse laser settings and simplifies the
laser adjustment, which makes the attack quite powerful.

In practice, when shedding light on flash memory, it is difficult to determine how much
energy is absorbed by the material. Furthermore, in most cases, the laser will not hit
the bare flash cells since, after chip decapsulation, small structures will remain on top
of the cells. Hence, in practice, more energy will be necessary to trigger the formation
of electron-hole pairs in the flash cells.

6.2.3 Experimental Setup

The experimental setup for the performed attacks and the details for the attack execution
are described in the following.

Overview of Performed Experiments

Transient fault injection, which was discussed above, enables the execution of several
experiments:

Calibration via bus master data transaction:
For efficient experimentation, the laser position, spot size, and timing are adjusted to
obtain the desired number and position of faulted bits. I will refer to this process as
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calibration. The laser calibration can be performed on any bus master of the microcon-
troller that has flash memory access. The large advantage of this calibration procedure
is that the CPU is not involved, which enables accurate timing. By reading out the
flash memory and checking which bits have been affected by the current laser position,
the reproducibility of the results can be ensured. Furthermore, the calibration method
provides insight into the duration of injected faults.

Manipulation of data fetch:
I demonstrate the possibilities of transient fault injection through a data fetch manipula-
tion, for which I implemented the AES diagonal fault attack (fault model M0) described
by Saha et al. [SMRC09]. The manipulation occurs with enabled prefetching and at the
maximum specified CPU clock frequency. The attack is, therefore, quite powerful, as it
works reliably irrespective of the CPU behavior.

Manipulation of instructions:
Transient fault injection can also be applied to instructions. For the demonstration of
the above-described principle, mov (register and immediate) and branch instructions are
manipulated via transient faults. Moreover, another instruction manipulation is shown
by successfully skipping the last AES round. Both attacks were reliably reproduced.

Overview of Fault Injection Setup

Figure 6.4 shows the experimental setup for the injection of transient faults. The laser
source is a QuikLaze-50 ST2 pulse laser equipped with a Mitutoyo microscope. The
DuT (left side) and the attack board (right side) are both STM32F051R8T6 Discovery
Boards with an ARM Cortex-M0. The internal chip of the DuT was exposed through
chemical etching. The attack board resets the DuT and provides the external clock. A
Raspberry Pi orchestrates the attack and collects the results via a UART interface. It
also controls the overall timing of the laser pulse injection, while the attack board takes
care of the low-level timing and triggering.

As a preparation step, the upper layers of the microcontroller were removed via chem-
ical etching and exposure to high-power laser light [OT17]. The flash memory layout,
as depicted in Figure 6.5, was reverse engineered by Obermaier and Tatschner. They
successively covered it with different masks, analyzing the effects of UV-light exposure
on the microcontroller [OT17]. The total flash memory size amounts to 64 KiB, 512
word lines, and 1024 bit lines.

Apart from the firmware flash region, flash memory is also reserved for settings and
calibration, which is likely implemented via additional word lines. This leads to an extra
3 KiB for system memory and additional word lines for option bytes. The overall number
of word lines amounts to 537. The reverse engineering also revealed an estimate of the
width of a bit column. In fact, 32 bits correspond to approximately 23µm. This is a
typical flash memory layout, as other reverse engineering efforts have shown [CSW17].
The feasibility of the attack, hence, is not limited to a specific microcontroller.
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Figure 6.4: The experimental setup for laser fault injection, with the DuT on the left, the
Trigger Control board on the right, and the QuikLaze-50 ST2 equipped with a
Mitutoyo microscope.
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Figure 6.5: Flash memory layout of the DuT with 1024 bit lines and 512 word lines.

Furthermore, fetching a word implies obtaining two stored 16-bit instructions in the
ARM Thumb instruction set. Hence, a single laser pulse may affect only one of the
instructions.
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Attack Execution

The QuikLaze-50 ST2 laser has three possible wavelengths: infrared (IR) (1064 nm),
green (532 nm), and ultraviolet (UV) (355 nm). Transient faults were caused by the
green laser in a front side attack with a pulse energy of approximately 0.4 mJ. Tests
with other samples of the same DuT gave insight into suitable energy settings. A pulse
energy of approximately 0.4 mJ seemed to be the lower limit for the successful injection
of transient faults. Lower pulse energies led to no faults at all, while a significant increase
in the pulse energy destroyed the microcontroller’s memory cells. The pulse duration
was set to 10 ns. These parameter settings allowed for thousands of experiments without
permanent damage to the flash memory region.

The laser’s rectangular shutter was adjusted by setting its width to 50 % and the height
to a value between 30 % and 40 %, corresponding to a laser spot size of 58µm × 42µm,
which was measured by removing flash material from a second microcontroller with a
high power laser pulse. This means that the shutter setting affected 2-3 bits of an 32-
bit word, where one bit of a word corresponds to approximately 23µm. During the
measurement of the spot size, the laser pulse distribution was found to be irregular,
as the structure of the remaining material was also irregular. Nevertheless, even with
these very coarse laser settings, all experiment outcomes were reliably and accurately
reproduced. This is a significant advantage over other setups with, for instance, small
spot sizes [KBB+19, CMD+18], as an approximate laser placement is already sufficient
to fault the bit line.

Previous attack setups were run at a reduced clock frequency, with prefetch buffer and
optimization disabled [KBB+19, CMD+18]. All of the following attacks were conducted
with enabled prefetch buffer and compiler optimizations -O2 to provide realistic attack
conditions. What is more, the DuT was run at the maximum clock frequency of 48 MHz
generated by the DuT’s PLL. Furthermore, the code can either be partially run from
SRAM or fully run from flash memory.

6.2.4 Calibration Method

One of the main difficulties of LFI experiments is the adjustment of laser settings.
Colombier et al. mentioned that this process could even take months [CMD+18]. In
the following, I will show a simple and fast method to calibrate the laser setup and
adjust the laser position, timing, and spot size, to determine the number and position
of affected flash bits. Apart from this, the calibration method allows determining the
temporal duration of the injected faults.

In previous LFI setups [KBB+19, CMD+18], tedious reverse engineering of the injected
faults was necessary, for instance, by analyzing all possible register changes. However,
even then, determining the exact location and number of flipped bits is difficult. The
number of bit-flips, in general, is unknown since it is hard to tell whether bits that
are already 1 were affected by the laser pulse. Furthermore, since certain instructions
produce the same result [SO19], for instance, r1 = r2 + r3 and r1 = r3 + r2, reverse
engineering will not necessarily determine which instruction has been faulted.
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To overcome these drawbacks, I propose a simple and effective calibration method that
I describe in the following. This method is based on the fact that access to flash memory
does not exclusively occur via the CPU, but that other bus masters, like DMA, can also
access the flash memory [STM22b]. By copying data to SRAM via DMA while adjusting
the laser settings, each bit can be observed directly to check whether it was affected by
the laser pulse. This drastically reduces the number of required test patterns since a
zero-only pattern is sufficient to check the sensitivity of every bit. Another advantage of
the calibration is that it can be performed on non-executable parts of the flash memory,
such as interrupt tables. Furthermore, the calibration via the bus master allows for a
precise evaluation of temporal and spatial effects of the laser pulse since, in contrast to
accesses via the CPU, DMA transfers have fixed timing.

In total, the proposed calibration method has many advantages over the usual reverse-
engineering approach:

� Any desired pattern and each bit is tested directly.

� The affected instructions are determined from the calibration data.

� One test pattern in flash memory is sufficient, i.e., multiple tests are no longer
necessary.

� This method works on all parts of the flash memory that are accessible to the bus
master.

� The timing effects of the laser pulse are well visible due to the high timing reliability
of this low-level method.

It should be noted that this method is only used for calibration pre-attack, while during
the experiment, the flash memory is accessed directly by the CPU. To exclude any
influence by the processor, the WFI instruction of the Cortex-M0 stops the CPU during
calibration.

The basic idea behind the calibration is simple and easily implementable: Repeatedly
copy the 32-bit word 0x00000000 from flash memory to SRAM. The content copied to
SRAM shows the affected bits in flash memory. The reason for this is attributed to the
flash memory layout (Figure 6.5). A word in flash memory spans its entire width; hence,
if one bit column is hit, all read-out words will be affected. The offset of the affected
address is equivalent to the temporal component of the laser trigger. This method allows
easily calibrating the laser spot, position, and power to a specific fault pattern of single
or multiple neighboring bit-flips while analyzing the temporal component.

The analysis of the temporal component not only helps set the trigger but also provides
valuable insight into possible smearing effects in the case of transient faults. Smearing,
in this case, refers to multiple DMA transactions that are affected by one laser pulse, as
depicted by the red curve in Figure 6.6, since it can, in general, not be ruled out that the
recombination of charge carriers could take several DMA transactions. Only an analysis
of the temporal component can exclude such effects that could falsify the attack results.
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Figure 6.6: Calibration of the QuikLaze-50 ST2 via DMA transactions from flash memory to
SRAM. The injected single- and multi-bit faults are temporarily limited to two clock
cycles (WS and Data). The hypothetical duration of charge carrier recombination
is depicted by the blue and red curve.

The minority carrier lifetimes in direct semiconductors, such as silicon, can be in
the µs range [Sch97]. Since the laser pulse and clock period are in the ns range, the
recombination of electron-hole pairs could take several clock cycles, which could affect
multiple transactions (data or instruction) from flash memory. This means that it is,
in general, not clear whether adding additional energy to semiconductor structures will
lead to smearing effects.

An analysis of the temporal component through the calibration method provides in-
sight into how many data transactions are affected by the laser pulse. One DMA trans-
action on the ARM Cortex-M0 — copying one word from flash memory to SRAM — can
be modeled by six clock cycles, as depicted in Figure 6.6. The DMA arbiter selects the
DMA channel associated with the corresponding memory-to-memory transfer [STM22b].
This is followed by a read operation accessing the Data at Addr in flash memory, includ-
ing the latency (wait state) required to maintain the control signals of the flash memory
for the specified clock frequency. The Data are then written to the corresponding Addr

in SRAM. The flash access occurs in two out of the six clock cycles (Wait State and
Data Access), which are vulnerable to LFI. The copied data in SRAM revealed that a
fault is limited to a single DMA transaction, even at a clock frequency of 48 MHz. This
is depicted exemplarily by the blue curve in Figure 6.6. The analysis demonstrated that
even a single-bit is flipped precisely in one transaction. This shows that charge carrier
recombination indeed takes place within a single transaction and that even if multiple
flash accesses occur within a certain time frame, only a single data/instruction transac-
tion will be affected. Hence, the proposed calibration method not only easily determines
the spatial parameters of the experimental setup but also provides a deeper insight into
the temporal behavior of the target device.

The calibration enables a reliable and repeatable injection of transient faults into
flash memory, as I will show in three experiments: A data fetch manipulation with a
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differential fault attack on the AES and two instruction fetch manipulations that change
the execution of the AES and modify specific instructions.

6.2.5 Data Fetch Manipulation

The first attack demonstrating the effect of transient faults is a data fetch manipula-
tion on the Advanced Encryption Standard (AES). As mentioned before, the code was
adapted to run both in flash memory and partially in SRAM. To provide realistic condi-
tions, the TinyAES-128 was adjusted to run in the DuT’s SRAM. However, as a larger
constant, the S-box is stored in flash memory. The S-box lookup (SubBytes) in the 8th
round is the target of the differential fault attack [SMRC09], where a single injected fault
propagates through the AES-state. A set of equations describes this fault propagation
relating the faulty ciphertexts with the 10th round key. Since three equations contain
four key bytes, the underconstrained set of equations requires trying all possible key
bytes. A few faulty ciphertexts, and the correct ciphertext, are sufficient to determine
the secret AES key.

To provide even more realistic conditions, at system startup, the DuT runs a set of
test vectors to ensure the correct behavior of the AES implementation. This serves
as a protection against permanent changes in flash memory. The experiment results
showed that the injection of transient faults was unnoticed by the self-check routine.
In the experiment, the DuT obtained sample data for encryption with the TinyAES-
128 consisting of the key and plaintext from the first test vector of NIST SP 800-38A.
With the calibration method, the execution of the attack took only a few minutes,
injecting faults with one to four bit-flips into a single S-box lookup. From the faulty
ciphertexts, I calculated the secret AES key and, hence, broke the encryption. Further
information on the attack results is published at https://github.com/Fraunhofer-

AISEC/laserflash.

6.2.6 Instruction Fetch Manipulation

The calibration method allows for not only the manipulation of data fetches and trans-
actions but also the reliable and repeated manipulation of instruction fetches, as I will
show in the following via two experiments: An instruction manipulation of the AES and
the modification of specific instructions through injected transient faults.

AES Round Skip

The target of the first experiment is again the TinyAES-128 implementation of Sub-
section 6.2.5, however, with two distinctions. First, the AES implementation in this
experiment runs entirely from the DuT’s flash memory, and second the target of the
attack is not the S-box fetch but the manipulation of the AES loop counter. For this
experiment, the previous AES test vectors were used. However, setting the trigger tim-
ing to a specific word-fetch is difficult. The precise moment of an instruction fetch can
only be reduced to a certain interval since the prefetch buffer causes an offset, and bus
contention may introduce jitter. Thus, to affect the intended instruction, the moment
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Figure 6.7: Assembly code of the loop counter check for the second-last AES round, faulting the
loop’s upper limit r3 by replacing it with the pointer r7. The faulted instructions
are depicted in blue color.

of fault injection is gradually shifted over time. Even with these timing limitations, the
experiment still took only a few minutes. The experiments were performed on the ARM
Thumb instruction set, where one word-fetch contains two 16-bit instructions.

Through temporary instruction faulting, the code execution terminates in the 9th
AES round. The assembly code of the loop counter check is shown in Figure 6.7. The
pointer r9 represents the loop counter, with the loop’s upper limit r3 and the loop
counter increment r10. The pointer r7 is, in general, unrelated to the increment of the
loop counter. Through the calibration, the injected fault pattern is set to 0x00000020

and injected into the mov r10, r3 instruction. This replaces the loop’s upper limit
r3 with the (large) pointer r7. The fault propagates through the code, altering the
loop counter r9, which leads to premature termination of the AES execution. Knowing
the correct ciphertext, I derived the AES main key from the faulty ciphertext. This
instruction manipulation demonstrates that transient faults can easily break the AES
implementation even with self-check functions enabled.

Manipulation of Specific Instructions

Instructions can be faulted not only by manipulating immediate values and registers but
by modifying the instruction itself. I will show both instruction manipulations through
transient fault injection into the assembly code in Listing 6.1, which is executed in an
infinite loop.

The corresponding ARM Thumb instructions are added on the right. Since with each
word-fetch, two 16-bit instructions are read, only one of the instructions can be faulted
with a single laser pulse. Hence, only half of the operations are listed. The target
instructions are move-immediate-to-register (mov), addition (add), compare (cmp), and
branch-if-equal (beq) instructions, which are the basic building blocks of algorithms. The
registers are initialized by successive powers of two, which are added up and compared
to the expected sum. Altering the register initialization or summation leads to a failed
compare, which leaves the loop and dumps the register content.
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1 1:

2 movs r0 , #0 00100 000 00000000

3 movs r1 , #1

4 movs r2 , #2 00100 010 00000010

5 movs r3, #4

6 movs r4, #8 00100 100 00001000

7 movs r5, #16

8 movs r6, #64 00100 110 01000000

9 movs r7, #128

10 adds r0, r0 0001100 000 000 000

11 adds r0, r1

12 adds r0, r2 0001100 010 000 000

13 adds r0, r3

14 adds r0, r4 0001100 100 000 000

15 adds r0, r5

16 adds r0, r6 0001100 110 000 000

17 adds r0, r7

18 cmp r0 , 0xDF 00101 000 00001111

19 beq 1b

Listing 6.1: Targeted assembly code with the corresponding 16-bit ARM Thumb instructions.

The goal of the first experiment is to fault immediate values and registers. For this
purpose, the fault pattern is calibrated to 0x00000020. Targeting the mov instruction
alters the immediate value copied into the specified register. The

movs r2, #2 (00100 010 00000010)

instruction is changed to

movs r2, #34 (00100 010 00100010).

Another example is a change of add r0, r0, r1 to add r0, r4, r1. I observed
similar behavior for the cmp instruction. All manipulations via the calibrated transient
faults lead to a termination of the loop. By changing the shutter width and hence, the
spot size, I observed single and multi-bit faults.

For the second experiment, the fault pattern was set to 0x00000100 through the
calibration method. The target of the experiment was to manipulate the branch-if-equal
beq instruction itself. The (temporary) fault pattern modified the

beq 1b (1101 0000 11111101)

to

bne 1b (1101 0001 11111101),

executing the branch only if the compared values are not equal, which led to a termi-
nation of the loop. Further information and details of the attack result are available at
https://github.com/Fraunhofer-AISEC/laserflash.
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6.2.7 Attack Limitations and Summary

In this section, I demonstrated the reliable and repeated manipulation of data and
instructions via transient faults and a fast calibration method.

I discussed data and instruction manipulations targeting the AES execution and ex-
tracting its secret key. Furthermore, I demonstrated instruction manipulations by tar-
geting the instruction itself and faulting of registers and immediate values. All attacks
were performed under realistic conditions running at the maximum clock frequency and
enabling the prefetch buffer and compiler optimizations. I showed that transient faults
can circumvent the AES self-check routines and that even coarse laser settings lead to
reliable and repeatable results. This demonstrates the high future relevance of transient
fault injection into flash memory, even for decreasing structure sizes.

Various countermeasures against fault injection are discussed in Section 6.5. Apart
from these countermeasures, some other mechanisms and implementations pose an ob-
stacle to the attack execution. For example, obfuscation and scrambling complicate the
calibration of the laser, which impedes targeting specific bits in flash memory. How-
ever, obfuscation alone will not suffice to fully mitigate the risk since reverse engineering
efforts can reveal the particular obfuscation. Besides obfuscation and scrambling, mem-
ory encryption poses another obstacle to the attack execution. Although, depending
on the chosen cipher, certain algorithms might leak information about the targeted bit
positions. Furthermore, microcontrollers might apply wear leveling to balance the flash
memory usage. This hampers the identification of the correct laser position, which
affects the calibration procedure. If microcontrollers implement all or several of these
techniques, conducting laser fault injection attacks might be severely impeded. However,
many low-cost devices do not implement these mechanisms and are hence, expected to
be susceptible to transient fault injection.

This section demonstrated the reliable and repeated injection of transient faults into a
microcontroller’s flash memory under realistic conditions. In a front side attack, transient
instruction and data faults were injected with minimal preparation time due to efficient
laser calibration. Even though, the calibration method significantly reduced the time
for experiment preparation, the search for fault candidates, i.e., weaknesses in the target
firmware, required a cumbersome manual analysis of assembly instructions. To speed
up the process of finding possible fault candidates, automated tool-based testing can
be applied. However, the available fault injection tools only supported specific fault
types and architectures. Furthermore, many of these tools were not publicly available.
To overcome these drawbacks, in the following, I introduce ARCHIE, an architecture-
independent QEMU-based framework for the evaluation of faults, which I later on use
for an automated analysis of the EKMS implementation (Section 6.4).

6.3 A QEMU-Based Framework for Fault Emulation

As I showed in the previous section, injected faults can disturb the execution of cryp-
tographic algorithms and even leak CSPs. However, finding possible weaknesses in the
code, which I will refer to as fault candidates, can be quite time-consuming. Even if no
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black box testing occurs, hence, when the source code is available, the resulting binary is
affected by the compiler version and settings, leading to varying binary files and different
outcomes of the source code analysis. In general, the cumbersome manual examination
of the binary and assembly instructions is necessary to determine potential fault candi-
dates. The propagation of errors is difficult to predict, and even after a time-consuming
manual analysis of the assembly code, the most critical fault candidates might not even
be found. Since the calibration method, described in Section 6.2, greatly facilitated the
adjustment of the laser settings; indeed, most of the time during the LFI experiments
was spent on finding suitable fault targets.

However, the automated simulation of faults through a software tool could greatly fa-
cilitate the process of finding suitable fault candidates and hence, conducting LFI exper-
iments. In this section, I introduce ARCHitecture-Independent Evaluation (ARCHIE),
an ARCHitecture-Independent QEMU-based framework for fault Evaluation that pro-
vides:

� The automatic fault injection into the running binary,

� The possibility of parallelized execution,

� The simulation results in text file format,

� Open source availability,

� And most importantly, an easy implementation on different boards and architec-
tures.

I presented ARCHIE and the results discussed in this section at the 2021 Workshop on
Fault Detection and Tolerance in Cryptography (FDTC) together with my co-author Flo-
rian Hauschild. This work was published in the IEEE conference proceedings [HGA+21].

6.3.1 Previous Work

The amount of tools for fault simulation is vast. However, when I searched this large zoo
of tools and checked them against the above-listed requirements, I was left disappointed.
None of them fulfilled all requirements, let alone the ability to support different processor
architectures without considerable modifications to the tool itself. In the following, I
will discuss the results of this search and give an overview of different fault injection
categories, considering physical and virtual fault injection. Furthermore, since ARCHIE
is based on QEMU — an open source machine emulator and virtualizer — I also discuss
QEMU-based fault simulation tools.

Fault Injection Categories

Due to a large number of device architectures, fault types, and fault analysis objectives,
many fault injection and simulation tools have been published. For safety applications,
a high-level approach alone is not sufficient to determine whether the system remains
in a safe state. Safety-critical systems are influenced by arbitrary faults caused by
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environmental changes or natural radiation phenomena. However, in the field of security,
faults are injected on purpose through an attacker, either through physical access or
manipulation of software.

Depending on the abstraction layer, there are different possibilities of injecting faults
into the target device. These faults can either be injected physically or implemented in
hardware or software.

I already showed an example of physical fault injection in Section 6.2. Laser fault
injection requires much preparation, for instance, decapsulation of the target device and
the assembly and configuration of the attack setup. The system’s susceptibility to faults
is often determined by injecting faults in predefined patterns and analyzing the observed
outcome. However, this approach is quite time-consuming and can lead to unintended
faults — due to thermal drifts, jitter, or vibrations — or latch-ups that can even destroy
the target device [HHH08]. Furthermore, specific faults may be impossible to provoke
due to the limitations of setup parameters, such as laser focus or wavelength [SZK+18].
In general, the investigation method and sample preparation limit the types of injected
faults. Considering all of these aspects requires a lot of manual adjustments, which slows
down the experimentation. Counteracting this, for instance, through parallelization of
tests, requires additional hardware and preparation and hence, does not scale well.

Apart from physical fault injection, faults can also be injected into hardware at the
logic level. Hardware-based methods include, for instance, fault injection on the pin-
level [AAA+90, MRMS01]. In this case, probes or other hardware modules set the pins
of the DuT to faulty values. Another approach injects faults through on-chip debug-
ging techniques [FSK98, AVFK03, YAL+03, CMS98, FSMA99], using already built-in
logic in microcontrollers, and hence, not requiring additional hardware modules. An-
other hardware-based approach at a higher abstraction layer is fault injection at Register
Transfer Level (RTL). One exemplary implementation is ETISS-ML [MGDW+18], an in-
struction set simulator for soft errors. Moreover, Civera et al. speed up the fault injection
into VLSI circuits via FPGA-based emulation [CMR+01]. A security-based approach
for fixing design bugs and testing countermeasures on the circuit level was proposed
by Nyberg [Nyb18]. He focused on maximizing the configurability and performance of
FPGA-based fault emulation, modeling fault attacks in gate level netlists.

Model-based fault injection is implemented at the hardware level via VHDL mod-
els [JAR+94, STB97, GBGG03, GSBC+08], SCADE models [VBRE07], or Matlab /
Simulink models [SVET10, FMMJ21]. These approaches aim at improving system mod-
els in a safety context.

Apart from hardware-based approaches, there are also numerous fault injection tools
implemented in software. Many implementations focus on OS validation [Hil02, KKA95,
TI95, SVS+88, WTSS13], or the evaluation of OS applications [MRL02, MR00, LVY12,
WTLP14]. Some tools in this category are based on virtualization [SB02, PSC07].
Software fault injection into embedded systems can be directly implemented on the
DuT [BBC+14, ALMT17] or virtualized. In recent years, virtualized approaches have
become more frequent, such as ARMORY [HSP21], a fault injection tool for ARM-M
binaries based on an emulator for ARMv6-M and ARMv7-M architectures.
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In recent years, many tools based on virtualizers and emulators for fault injection into
embedded devices have been developed. Many of these tools are based on QEMU, which
I discuss in the following.

Fault Simulation Based on QEMU

Many more recent fault analysis tools use QEMU, which is an open-source emulator and
virtualizer that emulates the target device through dynamic binary translation [Bel05].
In contrast to physical fault injection, the advantage of simulating or emulating faults is
that many faults can be tested within a certain time frame without damaging hardware
or spending time preparing or adjusting an experimental setup.

One of the oldest fault simulation tools based on QEMU is called QEFI [CG12].
QEFI configures and triggers the fault injection into ARM CPU registers and RAM via
QEMU’s GNU Debugger (GDB) interface. The authors modified the source code to
implement the fault injection points. They attribute this drawback to a lack of hook
mechanisms in QEMU. Since QEFI comes with minimal log management, implementing
logging mechanisms is left to the user. QEFI is tailored to ARM processors.

Another QEMU-based tool that does not inject faults via GDB is XEMU [BBK+12].
Prior to the fault injection through mutation testing, XEMU analyzes the control flow
graph of the disassembled target device. The authors enhanced QEMU’s performance by
combining the execution with and without faults. For this modification, they extended
QEMU’s lifetime by saving a backup of the CPU and memory state, followed by a reset
of QEMU and subsequent fault injection. XEMU was tested on car motor management
software specifically for the ARM instruction set, saving the simulation results in a
metrics report.

Adelt et al. presented another QEMU-based framework tailored to the RISC-V archi-
tecture. The authors injected transient and permanent single n-bit-flips targeting CPU
registers and instructions. They also limited the number of possible fault variants to
reduce the simulation time.

Geissler et al. published a QEMU-based approach for soft errors targeting the x86
architecture [GKS14]. The fault location, type, and clock cycle define a fault that
is injected into the CPU registers. The authors tested their implementation for the
RTEMS OS.

In 2013, Li et al. introduced BitVaSim [LXW13, XX12], a QEMU-based tool for build-
in tests of PowerPC and ARM processors. However, according to the authors, to support
different fault modules, QEMU was “heavily” modified, impairing the maintainability
of the tool.

In the same year, Ferraretto and Pravadelli presented an approach combining RTL
fault modeling with fault injection in QEMU by modifying the Dynamic Binary Trans-
lation (DBT) [DGFFP13]. Their approach is tailored to an ARM instruction set. To
improve the emulator performance, Ferraretto and Pravadelli modified the DBT fetch-
ing mechanism and the Translation Block (TB) caching [FP15, FP16]. They injected
transient and permanent faults into CPU registers and tailored their implementation to
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ARM and x86 processors. In their implementation, Ferraretto and Pravadelli focused
on instruction faults without considering faults in flash memory or RAM.

Traditionally, many fault injection tools are implemented with an emphasis on safety.
An open-source QEMU-based approach that focuses on security was presented by Höller
et al. [HSK+14, HKR+15, HMR+15]. Their tool FIES injects permanent and transient
faults into RAM and CPU registers. FIES is tailored to ARM CPUs and does not cover
fault injection into flash memory. The authors modified QEMU in a similar fashion as in
the program execution statistics collection published by Chy lek [Chy09]. The faults are
configured via XML files, defining the fault types, number of injected faults, and target
components. FIES records the simulation results, such as accessed memory, register
addresses, and program counter.

A simpler QEMU-based tool was developed for the security verification of MCUboot
[Git20]. The fault analysis, in this case, is limited to instruction skips injected via the
GDB interface. QEMU has also been customized to the fault analysis of the Linux kernel
[JKNM19] and its applications [GDBF14]. Another use case is the investigation of faults
in the context of distributed systems [HKB+10].

The reader is referred to surveys and further literature to obtain additional information
about the large ”zoo“ of fault injection tools [KDN14, LT15, GBGG03, JH11, ACK+03,
KBBT15, PBR17, BP03, NCDM13].

The search of different fault injection tools showed that, despite promising approaches,
the implementations do not fulfill the requirements defined for ARCHIE. The reviewed
tools were designed for specific architectures, and adding new devices is problematic
since most QEMU-based tools were strongly modified. Most implementations were also
limited to a particular fault type, e.g., faulting only instructions or a specific memory
type, and hardly any tool was open source.

ARCHIE was developed for the fault emulation of embedded devices and provides
a simple interface for data analysis. Since QEMU was extended with only minimal
modification, new machines can be easily added to ARCHIE, which makes it architecture-
independent. Furthermore, ARCHIE enables the injection of different fault types, such as
transient and permanent data and instruction faults, into CPU registers, RAM, and flash
memory. ARCHIE is open source and available at https://github.com/Fraunhofer-

AISEC/archie.

6.3.2 The Architecture of ARCHIE

In the following, I provide an overview of ARCHIE’s essential components and their
interaction with one another. I also discuss the input configuration specified by the user
and the data processing.

QEMU is the foundation of ARCHIE, which enables emulating faults in embedded
devices (e.g., ARM or RISC-V) on a standard computer system (e.g., x86-64). QEMU is
independent of the operating system and supports 22 architectures. It also allows simu-
lating peripherals and makes adding new architectures relatively easy. The performance
of QEMU is based on its Tiny Code Generator (TCG), enabling the fast translation of
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guest to host instructions. The TCG groups instructions into TBs and caches them after
translation.

Until November 2019, QEMU did not provide an API for low-level guest space access,
making interfacing with the TCG difficult. This changed with QEMU 4.2, which was
released in November 2019. However, the API still did not provide access to the memory
and registers of the guest space. Our fault-injection plugin was added to overcome this
drawback, thereby extending the TCG plugin interface. This minimal extension enabled
memory and register read/write access. Through the fault-injection plugin, adding new
architectures became feasible. This architecture independence is the most important
aspect of ARCHIE since previous fault tools required heavy implementation adjustments
to add new architectures.

Input and Output Data

The input to ARCHIE is a binary firmware image of the DuT and fault and QEMU
configurations in JSON format. The location of the binary image is specified in the
QEMU configuration. The fault configuration describes a fault campaign, containing
multiple experiments, while one or multiple faults make up an experiment. Faults are
implemented through bit-flips in virtual memory, defined by the register number or
memory address of their occurrence. A fault is defined through seven parameters:

� The fault address, hence, a memory address or register, as defined by GDB num-
bering.

� The fault type, which in ARCHIE’s case, is an instruction, data, or register fault.

� The fault model specifies how the bits set in the ”fault mask“ will be altered. It is
defined as a bit-flip to 0, to 1, a toggle, or overwrite. The ”overwrite“ flag allows
replacing the instruction at the ”fault address“ with a NOP instruction.

� The fault lifespan defines the lifetime of transient faults through several instruc-
tions. A lifespan of 0 marks a permanent fault which remains active throughout
the experiment.

� The fault mask defines which bits at the ”fault address“ are to be replaced with
the specified ”fault model“.

� The trigger address after which the fault is injected.

� The number of times the trigger address is executed before fault injection is defined
as the trigger counter.

The simulation output is stored in an HDF5 file containing:

� The pre-golden run, hence, the instructions before the defined starting point of the
experiment.

� The golden run, i.e., the results without fault injection.
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� The fault experiments documenting only TB changes compared to the golden run.

The HDF5 file contains the TBs’ execution order and their content in the form of as-
sembly instructions. ARCHIE also logs the register and memory dumps and memory
accesses (read or write).

Basic Building Blocks

Figure 6.8 shows the building blocks of ARCHIE. Provided with the configuration files
and the firmware image, the Controller launches one or multiple Worker Tasks. Experi-
ments are distributed among the Worker Tasks and run independently. To emulate the
faults, each Worker Task starts an instance of QEMU and communicates with the fault
(injection) plugin via a UNIX FIFO. A more detailed view of the Worker Task’s inter-
action with QEMU is depicted in Figure 6.9. The Worker Task collects data from the
fault plugin, removes redundant data and artifacts, and compares the simulation results
to the golden run, i.e., the code execution without faults. Finally, the processed data
is forwarded to the Logger, which stores the output results in an HDF5 file. ARCHIE
allows the user to connect via the GDB interface to observe the fault propagation in
detail. However, this slows down the execution and should be avoided for larger data
sets.

After the initialization and start of a QEMU subprocess, the Worker Task activates
the logging of the guest’s control flow and memory accesses in parallel to the experi-
ment execution. Before the fault address is approached, the Worker Task switches to
single-stepping mode, where the Translation Blocks TBs — comprising one or several
DuT assembly instructions — are reduced to single instructions. This enables a fine-
grained injection of the fault. In the case of transient faults, the single-stepping mode
is disabled after the specified fault lifespan, while for permanent faults, single-stepping
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Figure 6.8: The components of ARCHIE, comprising the Controller, Worker Tasks, and Logger.
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Figure 6.9: The Worker Task and its interaction with QEMU.

is deactivated after the fault injection. The experiment execution terminates either at a
specified instruction or — if the control flow was diverted — after a maximum number of
instructions specified by the user. After the termination, the processed data is forwarded
to the Logger, which is the final step of the Worker Task.

A significant advantage of ARCHIE over previous QEMU-based fault emulation tools
is that ARCHIE simplifies the integration of different devices and architectures. If the
user wants to run tests for, e.g., both RISC-V and ARM, using ARCHIE is straightfor-
ward. After compiling the binary file and configuring QEMU, the user adjusts the cor-
responding fault addresses in the fault configuration and starts ARCHIE. Even though,
ARCHIE is easily extensible it is currently restricted to embedded devices with single-
core processors. Extending ARCHIE to multicore processors is a potential goal for future
improvement.

Multiple Worker Tasks

The fault emulation can be parallelized through multiple Worker Tasks. However,
ARCHIE inhibits the spawning of new Worker Tasks when the monitoring of memory
usage and the moving average runtime of Worker Tasks indicate a bottleneck.

A test campaign for the TinyAES implementation from Section 6.2 was run on different
host devices to determine the performance of ARCHIE and the impact of multiple Worker
Tasks. The focus of the test campaign was to inject single-bit faults into the TinyAES
implementation used for experimentation in Section 6.2. The test campaign comprises
the S-Box from Section 6.2 together with the last round skip. It serves as verification of
a successful ARCHIE installation [ARC21]. Reaching full fault coverage is not the aim
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of this test but rather injecting a sufficiently large number of faults to investigate the
behavior of multiple worker tasks.

In total, 24,794 faults were injected, with host systems ranging from standard laptops
to resource-extensive servers with 4 to 64 parallel Worker Tasks. The execution time
on the most resource-extensive server, a Dell Poweredge Rack Server with 32 Cores and
192 GB RAM, took 6 min 50 s. A LenovoP15v laptop with 6 cores, 32 GB RAM, and
12 worker tasks ran the test campaign in 24 min 32 s, while a Fujitsu TX140 S2 server
with 4 cores, 28 GB RAM, and, in total, 8 worker tasks finished the campaign after
33 minutes 12 s. However, even on the least resource-extensive device, a Lenovo T470s
with 2 cores and 20 GB RAM, the execution terminated in 80 min 19 s. This shows that
even a common laptop speeds up the fault analysis compared to manual inspection. In
general, the execution time will not scale linearly with the amount of spawned Worker
Tasks since the Logger acts as a bottleneck and hence, limits the data processing.

6.3.3 Simulation Results

Campaigns for two exemplary applications were performed as a test of ARCHIE’s capa-
bilities. The first experiment entails an analysis of the TinyAES implementation from
Section 6.2, including a differential fault attack on the AES and the AES round skip.
The second practical experiment tested the implementation of a secure bootloader, which
was verified in an LFI experiment on an Infineon XMC1400. All campaigns were run on
ARM and RISC-V architectures.

The following campaigns focused entirely on single-bit faults since multi-bit faults are
less likely to occur and significantly increase the computational effort of the campaign.
Chatzidimitriou et al. investigated several microprocessors and their susceptibility to
spatial multi-bits faults via the GeFIN fault injection framework to get an idea about
the occurrence of multi-bit faults [CPG+19]. They injected single and multi-bit faults
into microprocessors with fabrication technologies between 250 nm to 22 nm targeting
registers and cache. Smaller fabrication technologies are more susceptible to multi-bit
faults due to a higher density of memory cells. Chatzidimitriou et al. observed that
from 250 nm down to 90 nm, ≤ 6% of failures could be attributed to multi-bit faults,
which increased from 65 nm with 8% to 21% for 22 nm technologies. Hence, single-bit
faults were, in general, more likely to occur even for smaller fabrication technologies.
Furthermore, including multi-bit faults would increase the computational complexity
due to the large number of possible fault combinations. The overall goal of the following
campaigns is not a full fault coverage for the entire firmware but an analysis of code
sections that are of particular interest to the attacker and the corresponding attack
scenario.

Analysis of TinyAES

The first practical experiment is a differential fault attack on the AES S-box, described in
Section 6.2. In this case, transient faults were injected into the AES SubBytes function,
resulting in multiple faulty ciphertexts that led to the leakage of the secret key.
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The campaign was run for the STM32F051R8T6 Discovery board with an ARM
Cortex-M0 processor by injecting transient bit-flips from 0 to 1 into the S-box stored
in flash memory. For the identification of possible fault candidates, i.e., weaknesses in
the code, the emulated faulty ciphertexts were compared to the ciphertexts from the
practical experiment.

The simulation results showed that the faulty ciphertexts originated from one to four
(neighboring) bit-flips into flash memory. However, no fault candidates were found for
some faulty ciphertexts since they were possibly generated by modifying instructions
instead of data fetches from the S-box.

A second simulation was launched, where — for matters of simplicity — one-bit in-
struction faults were injected. In total, 588 different fault candidates were identified that
led to exploitable faulty ciphertexts. These results show that the fault occurrence and
propagation are better understood through a simulation tool than through error-prone
and cumbersome manual verification of the binary and assembly instructions.

The second practical experiment related to the AES was a control flow manipulation
of the TinyAES implementation described in Section 6.2. The experiment aimed to fault
the AES execution in the 9th round to enforce premature termination and calculate the
secret key.

Analyzing the assembly instructions manually to determine a possible fault candidate
for the practical experiment was cumbersome. Hence, a campaign was launched targeting
transient one-bit faults injected into flash memory to find additional fault candidates
that lead to a control flow manipulation. As depicted in Figure 6.10, ARCHIE found
23 additional faults leading to a premature termination of the AES algorithm in the
9th round. The black rectangle in Figure 6.10 marks the original fault from the LFI
experiment in Section 6.2, which was also found through the campaign. In total, the
alteration of ten different bytes in the vicinity of the loop control contained possible
fault candidates, including multiple fault possibilities for certain bytes. Finding them
through manual research would have been error-prone and time-consuming. In contrast

Addr. Opcode Instruction
0x08000930
0x08000932
0x08000934
0x08000936
0x08000938
0x0800093A
0x0800093C
0x0800093E
0x08000940
0x08000942

0100 1010 0000 1001
0010 0001 0000 0001
0000 0010 0000 1001
0110 0000 0001 0001
0100 0110 1001 1010
1001 1011 0000 0000
0100 0100 1001 0001
0100 0101 0100 1011
1101 0011 0000 0000
1110 0111 0111 0111

ldr r2, [pc, 36]
movs r1, 1
lsls r1, r1, 8
str 1, [r2]
mov r10, r3
ldr r3, [sp]
add r9, r10
cmp r3, r9
blo AESFINISHED
b ROUNDSTART

Figure 6.10: ARM Thumb assembly instructions for skipping the last AES round, as discussed
in Section 6.2. The potential fault candidates obtained with ARCHIE are depicted
in blue.
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to manual analysis, the simulation on a common laptop terminated after only a few
minutes.

Further Campaigns

The second practical use case to test ARCHIE’s capabilities was a secure bootloader
implementation. A cryptographic signature ensures that the correct software image is
loaded. To ensure long-term security in practice, this ”signature“ is often implemented
through symmetric cryptographic primitives, for instance, a Keyed-Hash Message Au-
thentication Code (HMAC) with SHA-256. The verification flag was stored in SRAM.

The main advantage of ARCHIE is that the fault emulation can be easily adjusted
to different devices and architectures while remaining its maintainability. A campaign
was launched to identify possible vulnerabilities, targeting different DuTs with ARM
and RISC-V architectures. ARCHIE was provided with an invalid software image, and
permanent one-bit faults were injected into the SRAM region of the bootloader. After
successful fault injection, the software image with the invalid signature was accepted
as verified. The signature verification was successfully faulted between the write of the
comparison result and its read-out to determine if the software image should be booted.
This vulnerability was verified on both systems (ARM and RISC-V).

The fault injection into the secure bootloader implementation was successfully repro-
duced in an LFI experiment with a 1064 nm Solid State Laser (single mode) targeting an
Infineon XMC1400 with an ARM Cortex-M0. The DuT was prepared through decapsu-
lation and additional thinning of the substrate. In a backside attack, the verification flag
for the bootloader stored in SRAM was successfully faulted. Hence, the vulnerability
was verified in the practical experiment.

One of ARCHIE’s merits is that different architectures can be easily added to the
fault emulation. All campaigns were run for an ARM Cortex-M0 and a 32-bit RV32IMC
processor to compare our simulation results for different architectures. For the secure
bootloader, the same vulnerability was discovered for both architectures. The simulation
results for the differential fault attack targeting the AES SubBytes function identified
632 possible one-bit faults leading to 526 unique exploitable ciphertexts for the RV32IMC
processor. For the ARM Cortex-M0, 588 different fault candidates were found.

Only two possible fault candidates for the RISC-V platform and the AES round skip
campaign were found compared to 24 exploitable faults for the ARM Cortex-M0. In the
RISC-V example, the relevant branch instruction is bne t6, t4, 0x80000190. Hence,
the program counter jumps to address 0x80000190, resuming regular operation if t6 ̸=
t4. For one-bit faults, the control flow is diverted only if the comparison fails, hence,
either if the instruction is changed to ble (branch if less than or equal) or if the second
operand is set to t6.

Hence, the discrepancies in the simulation results are attributed to differences in the
compiled code. This shows that different compiler versions and settings affect the po-
tential fault candidates. Thus, a source code analysis alone is not sufficient to determine
altered assembly instructions.
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6.3.4 Summary

The practical results from various use cases demonstrate that automated fault testing
significantly reduces the time to analyze the code compared to manual inspection and
yields significantly more fault candidates that were overlooked in the manual inspection
of the assembly instruction. With ARCHIE, transient and permanent faults were injected
into flash memory, RAM, and registers, covering data and instruction faults. Different
architectures are easily added through only minimal modifications of the TCG plugin
interface, hence, providing architecture independence. The results show that ARCHIE’s
execution time yields good performance even on a common laptop. ARCHIE is open-
source and freely available on GitHub at https://github.com/Fraunhofer-AISEC/

archie.

6.4 Analysis of the Embedded Key Management System

This section discusses vulnerable parts of the EKMS that can be compromised through
fault attacks. Furthermore, with the help of ARCHIE, I investigate whether the re-
enrollment capabilities of FORTRESS can be exploited such that the EKMS does not
detect partial removal or deliberate aging.

6.4.1 The Critical Layers of the EKMS

Figure 6.11 depicts the structure of the FORTRESS software, the second generation
EKMS discussed in Chapter 3. The FORTRESS operating system was hardened and
extended through a secure life cycle with re-enrollment capabilities. The EKMS includes
128- and 256-bit AES (ECB and CBC) for encryption, SHA256 for hashing, and ECC
secp256k1 [SEC09, SEC10] for signing. The EKMS is built modularly, such that it can
easily be extended through different cryptographic algorithms that are added to Crypto-
Func and made accessible through the Crypto-API. When adding new cryptographic
algorithms to the EKMS, the available hardware resources have to be considered.

The critical layers of the EKMS core with a greater susceptibility toward fault attacks
are highlighted in yellow in Figure 6.11. The Crypto-Functions rely on the implementa-
tion of cryptographic algorithms that are hardened against fault attacks and side-channel
analysis. Since this is a broad and universal topic, I will exclude it from further anal-
ysis. Hence, the hardened OS, drivers, measurement, and specific user applications are
excluded from further analysis.

As shown in Section 6.2, injected faults can leak secret keys and alter the control flow
of cryptographic algorithms. Assuming the injecting of faults through radiation without
disassembly of the enclosure, the attacker can derive information about the secret key
by collecting ciphertexts. A possible use case is FORTRESS serving as an HSM for
confidential communication, where data is encrypted and sent over the external UART
interface. An attacker could intercept the encrypted data and hence, gain access to
ciphertexts. Thus, the Crypto-Func layer has to be hardened against fault injection.
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Figure 6.11: Layers of the second generation EKMS (as depicted in Figure 3.8), with critical
layers highlighted in yellow.

The Keystore manages the key chain, verifies the CSPs for the secure system life cycle,
and checks the enrollment state. Hence, an attacker could target the re-enrollment
process, faulting the verification of the enrollment state. Through this, the attacker
could manipulate the maximum number of possible re-enrollments, potentially allowing
for the partial removal of the enclosure. Fault injection can support the partial removal
of the enclosure. An attacker could use the re-enrollment function in field mode to
first remove a very small portion of the enclosure and then trigger re-enrollment to
generate a new PUF-key that incorporates the minuscule alterations of the enclosure.
The partial removal can be, in general, accompanied by re-soldering, i.e., re-connecting
severed traces. In the next step, the attacker again removes a portion of the enclosure
— small enough to not be recognized through the measurement — and then re-triggers
re-enrollment to generate a new PUF-key. Through this, the attacker could gradually
generate a hole in the enclosure, large enough to insert probing needles to read out
critical signals of the PCB.

During re-enrollment, the original KEK, i.e., the hashed PUF-secret, is compared
against the newly created KEK. This comparison could be faulted, theoretically leading
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to the acceptance of a slightly modified PUF-key. In this case, the gradual partial removal
described above could be conducted without re-enrollment. However, since this attack
is a lot more challenging than provoking an additional re-enrollment, for the following
analysis, I focus on verifying the enrollment state implemented in the Keystore.

6.4.2 Attacking Re-Enrollment

As an exemplary code analysis, I investigate the fault susceptibility of the EKMS’ re-
enrollment extension.

The Keystore verifies and sets the correct enrollment state during each stage of the
secure life cycle. To account for changes in the PUF-response through aging effects, the
EKMS accepts one re-enrollment in field mode over the device’s lifetime. This number
was chosen to counteract possible helper data manipulation attacks, as described in
Section 3.2.

If additional re-enrollments are allowed, an attacker could gradually alter the PUF-
response, subsequently removing parts of the enclosure. An additional number of re-
enrollments could be achieved by altering the re-enrollment counter, which is the focus
of the following analysis. If this remains undetected by the EKMS, an attacker could
gradually remove small portions of the enclosure through re-enrollment and potentially
probe signals on the PCB.

In Section 6.1, I explained that the enclosure, in general, has to be considered suscep-
tible to radiation faults. Radiation faults, however, can lead to unidirectional bit-flips,
for instance, from 0 to 1. For the following analysis, I focus on single-bit faults since
multi-bit faults are less likely to occur even for small fabrication technologies [CPG+19].
Just as for the campaigns in Section 6.3, I focus on the EKMS code sections related to
the described attack scenario instead of analyzing the full FORTRESS software. I inject
all possible single-bit fault patterns into the code sections that are of particular interest
for the attack.

The target of the attack herein is to fault the verification of the correct enrollment
state; more precisely, I focus on the counter increment after each re-enrollment. This is
implemented in the keystoreCheckNextState function of the EKMS. The number of
possible re-enrollments in field mode is restricted to a maximum number of 1.

To emulate the injection of unidirectional faults in the EKMS enrollment verification
with ARCHIE, I set the configuration to permanent single 1-bit faults injected into
flash memory. I tested the emulation exemplarily for the STM32F0 Discovery board,
which has an ARM Cortex-M0 processor. Figure 6.12 depicts the assembly instructions
executed before the verification of the re-enrollment counter. At address 0x080000de,
the current re-enrollment counter is loaded (ldr r0, [r2, 0x34]) into register r0 and
checked against the specified maximum number of re-enrollments (cmp r0, 0). Hence,
if the counter is 0, a re-enrollment is allowed (beq REENROLLMENT). Before loading the
current re-enrollment counter, the EKMS checks if the system is in a valid state that
allows re-enrollment.

In total, I found 15 single-bit permanent faults leading to the acceptance of an enroll-
ment count that exceeds the maximum number of permitted re-enrollments. The faults
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Addr. Opcode Instruction
0x080000cc
0x080000ce
0x080000d0
0x080000d2
0x080000d4
0x080000d6
0x080000d8
0x080000da
0x080000dc
0x080000de
0x080000e0
0x080000e2

0100 0010 1000 0100
1101 0000 0000 1101
0100 1000 0001 1011
0100 0010 1000 0100
1101 0000 0000 1010
0100 0010 1010 1100
1101 0001 0000 0100
0100 0010 1010 0011
1101 0001 0010 0011
0110 1011 0101 0000
0010 1000 0000 0000
1101 0000 0001 1011

cmp r4, r0
beq STATECHECK
ldr r0, [STATE]
cmp r4, r0
beq STATECHECK
cmp r4, r5
bne INVALIDMODE
cmp r3, r4
bne SWITCHSTATE
ldr r0, [r2, 0x34]
cmp r0, 0
beq REENROLLMENT

Figure 6.12: Potential fault candidates targeting the re-enrollment counter check (address
0x080000e0).

range from instruction changes to altered registers and immediate values. Particularly,
changes from cmp to ldr operations as induced by faults during the state verification
are difficult to anticipate. In this case, instead of a cmp, a ldr instruction is executed
that influences the result of the re-enrollment counter verification.

This shows that even single-bit faults can lead to control flow deviations, which can
lead to additional re-enrollments that severely impact the overall security of the enclo-
sure. In the next section, I discuss possible countermeasures against the fault injection
attacks presented in this chapter.

6.5 Countermeasures Against Fault Attacks

This section focuses on countermeasures against fault attacks, discussing redundancy,
memory error correction, secure coding, and architectural changes.

6.5.1 Redundancy

To counteract fault attacks on block ciphers, redundant calculation or hardware redun-
dancy, such as duplication of functions, modules, or even CPUs, was proposed. Coun-
termeasures come in the form of time, information, or spatial redundancy. The most
common redundant countermeasure is recomputing the encryption and comparing the
calculation results [MSY06]. However, since this comes with a considerable performance
overhead, less time-consuming variations were proposed, such as duplicate calculation
using both clock edges [ML08] or recomputing with shifted operands [CML+11].

Information redundancy based on parity techniques aims at validating certain bits of
the input message after the computation, which usually comes with an increased hard-
ware overhead [BBK+03]. To reduce the overhead, Wu et al. limited the parity to one bit
per 128-bit output, which is verified in each round of the AES calculation [WKKG04].
Furthermore, parity implementations based on logic gates were proposed [MKRM10]. An
implementation-independent parity-based scheme for S-box protection was published by
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Mozaffari-Kermani and Reyhani-Masoleh [MKRM10, MKRM11]. However, countermea-
sures based on parity bits do not detect an even number of faults.

To overcome this drawback, a more robust scheme proving uniform fault coverage
was proposed, which, however, comes with a significant hardware overhead [KKT04,
KKT07]. Furthermore, cyclic redundancy check codes were proposed to counteract fault
analysis [YW06].

The calculation is followed by its inverse in a different approach by Karri et al.,
comparing the computation results [KWMK02]. This scheme was accelerated through
pipelining optimizations to decrease the performance overhead [SSHA08, RBMK10].

In 2018, Zhang et al. demonstrated that persistent fault attacks on block ciphers defeat
fault attack countermeasures, where the calculation was performed with two redundant
modules [ZLZ+18]. In this case, the fault was injected before the encryption stage, alter-
ing a stored constant of the algorithm through persistent faults. The authors obtained
multiple faulty ciphertexts and calculated the secret key. Pan et al. showed that even
masking attempts to counteract persistent fault attacks can be broken through fault
injection [PZRB19].

Another attack proposed by Saha et al. demonstrated that redundancy-based coun-
termeasures could be broken [SJB+18]. They combined laser fault injection with power
side-channel measurements, assuming a random fault model.

In the same year, Dobraunig et al. attacked the simple time redundancy of an AES
software implementation [DEK+18] via Statistical Ineffective Fault Analysis (SIFA).
SIFA can be seen as an intersection between Statistical Fault Analysis (SFA) [FJLT13]
and Ineffective Fault Analysis (IFA) [Cla07]. The authors exploited the non-uniform
distribution of fault-free ciphertexts stemming from faults in intermediate values that
were induced by clock glitching. Unlike IFA-based attacks, the proposed approach does
not rely on stuck-at-faults that are difficult to achieve in practice but only requires
ineffective faults that lead to a biased distribution.

These attacks show that countermeasures based on hardware redundancy do not pro-
vide sufficient security for block ciphers. Furthermore, redundancy-based measures
do not necessarily detect permanent faults in all rounds of the block cipher calcula-
tion [CML+11].

6.5.2 Error Detection

In the following, I focus on error detection in microcontrollers and discuss a flash-aware
error detection scheme counteracting permanent and transient fault injection into flash
memory. I presented the results herein at the 26th IEEE International Symposium on
On-Line Testing and Robust System Design (IOLTS) [GO20].

Error Detection in Microcontrollers

Error detection in microcontrollers is usually implemented through error correction
codes, which can correct one error and detect a maximum of two errors (SECDED).
In many cases, manufacturers apply Hamming codes to verify SRAM and flash integrity
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of microcontrollers, such as the MPC55xx [Tos15], STM32H7 [STM22a], or TMSx70
[Noh11]. Error correction codes are usually applied to enhance system reliability in
safety-critical or harsh environments, such as in aerospace applications, e.g., for the
GR712RC [Fro23]. However, the integration of error correction requires additional check
bits compared to simple error detection. In safety-critical devices, the focus is on cor-
recting errors to maintain system availability, while in high-security applications, error
correction weakens the detectability of an attack. Although error correction codes might
mark detected errors through flags, this does not prevent the code’s execution and ex-
ploitation by an attacker. Hence, the additional check bits of the error correction code
should be traded for a more robust error detection scheme.

Flash-Aware Error Detection Scheme

Fault injection into flash memory can occur either through the permanent erasure of bits,
for instance, via UV-C light [OT17], or through transient faults, as shown in Section 6.2.
Both attacks produce unidirectional faults; hence, bits are only flipped from 0 to 1. This
aspect has to be considered by the error detection scheme.

Unidirectional errors, where bits are solely flipped into one direction, were investigated
by Berger [Ber61] in 1961, who proposed sum codes for their detection. Sum codes detect
all unidirectional errors in an (n + m) bit wide codeword F without correcting them.
The codeword F is the concatenation [D C] of a data word D of n bits length, and
the m bit check word C, where m = ⌊log2n⌋ + 1. The check word is computed as
C =

∑n−1
i=0 (1 ⊕Di), where Di denotes bit i in the data word D. For the microcontroller

in Section 6.2, where bits are flipped from 0 to 1, this is equivalent to counting all zero-
bits in the data word D. Alternatively, a similar approach is to count all one-bits, and

invert the result, i.e., C ′ =
∑n−1

i=0 Di.

Eq. (6.3) shows an example for the codeword F = [D C], comprised of the 32-bit data
word D with ten zero-bits and the 6-bit check word C.

F = [D C] = [1110 0101 1111 1010 1100 1110 0111 0111︸ ︷︷ ︸
D

001010︸ ︷︷ ︸
C

] (6.3)

Sum codes enforce an identical lower and upper bound for D; hence, any injected fault
can be detected. Flipping any bit in D to 1 reduces the present number of zero-bits,
while any bit-flip to 1 in the check word C increases the expected number of zero-bits,
hence creating a mismatch. This mismatch also occurs if bits are simultaneously flipped
in D and C.

Depending on the flash architecture, the unidirectional errors can either be injected
zero-bits or injected one-bits. In the case of injected one-bits, the argumentation for
the upper and lower bound is mirrored, but the scheme is still valid. Furthermore, the
check word size scales well with O(log2(n)). Hence, doubling the length of the above
data word to 64 bits requires only one additional check bit.
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6.5.3 Secure Coding and Architectural Choices

Apart from the redundant execution of cryptographic algorithms and implementing a
suitable error detection scheme, a further countermeasure against fault attacks is the
application of secure coding principles.

Coding standards, such as MISRA C [MIS13], the CERT C Coding Standard [Sea08],
or the MITRE Common Weakness Enumeration [MIT22], provide basic guidelines to
enhance the safety and security of the written code by reducing arithmetic, memory
access, and design vulnerabilities. However, they are not necessarily sufficient to protect
against fault injection. Therefore, additional measures should be integrated into the
code to detect injected faults and trigger a tamper response, such as secure booleans,
the repeated verification of loop counters and branch conditions, or handling additional
checkpoints to verify the program flow.

Additionally, architectural changes could be beneficial to the security of FORTRESS.
Instead of further developing and hardening the EKMS, the functionality of FORTRESS
could be integrated into already existing secure elements [Ram21, STM19] that have un-
dergone extensive testing. Secure enclaves [ARM22, Gue16] can also provide benefits
through isolated execution or memory partition. However, secure enclaves are not phys-
ically isolated from other parts of the system. Hence, they, in general, are vulnerable to
hardware attacks [MOG+20, TMS+13] and thus require further hardening.

The goal in hardening a system against fault attacks should be to not rely on a single
countermeasure but to combine different countermeasures in a multi-layered approach.

6.6 Conclusion

In this chapter, I discussed the effects of fault attacks on the capacitive PUF-based
enclosure and cryptographic algorithms in particular.

In Section 6.1, I analyzed the susceptibility of FORTRESS to different types of fault
injection. I explained why, even though FORTRESS is enveloped by the enclosure, it is
still vulnerable to radiation faults.

In Section 6.2, I demonstrated how transient fault injection could severely impact
the execution of cryptographic algorithms and even lead to the leakage of secret keys.
I showed that even coarse laser settings lead to exploitable faults through data and
instruction fetch manipulations. The laser position, spot size, and timing were easily
adjusted through a simple calibration technique.

To reduce the effort of finding possible fault candidates, I introduced ARCHIE in
Section 6.3. ARCHIE, as an architecture-independent framework for fault evaluation,
enables the automated search for possible fault candidates on different processor archi-
tectures. I investigated the potential weaknesses of the FORTRESS software in Sec-
tion 6.4. This was followed in Section 6.5 by a discussion of countermeasures, including
a flash-aware error detection scheme.

In addition to the discussion in Chapter 4, I analyzed a further class of attacks tar-
geting the capacitive enclosure.
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6.6 Conclusion

Future work should focus on implementing additional countermeasures and extensive
testing of FORTRESS. Moreover, different trusted execution environments and secure
elements should be evaluated to determine whether they are suitable to extend or even
replace the existing EKMS.
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Chapter 7

Conclusion and Outlook

In this dissertation, I presented solutions to various open issues in the context of the
capacitive enclosure, focusing on tamper-sensitivity. This includes its integration into a
full HSM prototype (Chapter 3), the further development of its error correction (Chap-
ter 5), and an analysis of its behavior under physical attacks (Chapter 4) and fault
injection (Chapter 6).

7.1 Contributions

In Chapter 3, I described how the enclosure, the ASIC, and the EKMS are combined
and further developed into FORTRESS, a PUF-based prototype HSM. The FORTRESS
software — the second generation EKMS — includes:

� a hardened OS,

� a full key generation tailored to the capacitive enclosure, and

� a secure life cycle, incorporating supply chain aspects.

This was followed in Chapter 4 by an analysis of the three most relevant physical
attacks threatening the security and tamper-sensitivity of the capacitive enclosure. As
an extension to the previously investigated 300 µm drilling attacks, I discussed the fea-
sibility of micro-drilling attacks and evaluated different countermeasures. Furthermore,
I proposed a countermeasure to the bypassing attack published by Obermaier [Obe19]
that can be integrated into the measurement circuit or the enclosure itself. As a third at-
tack, I demonstrated that the communication between the FORTRESS microcontroller
and the ASIC could be intercepted via magnetic probing of the SPI interface. To restore
the tamper-sensitivity of FORTRESS, I evaluated various countermeasures.

In Chapter 5, I presented a wiretap code for the capacitive enclosure implemented via
q−ary polar codes. In a first step, I analyzed the PUF-distribution of the capacitive
enclosure and its behavior under thermal changes and drilling attacks. From this, I
derived an enclosure model, considering all post-processing steps. The proposed polar
code construction based on a higher order alphabet provides a separate model for the
legitimate and the attacker channel. It achieves a physical layer security of 100 bits for
a PUF-response of 306 bits length.
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To extend the attack analysis of Chapter 4, I investigated the effects of fault injection
on the capacitive enclosure, focusing on cryptographic algorithms in Chapter 6. I identi-
fied radiation faults as a possible threat and demonstrated how injected faults impact the
security of cryptographic algorithms. Through ARCHIE, an architecture-independent
framework for fault analysis, I showed that the cumbersome search for fault candidates
is simplified and sped up through automatic firmware analysis. With ARCHIE, I inves-
tigated critical sections of the EKMS and discussed possible countermeasures.

By proposing schemes and countermeasures as a solution to various security issues, I
improved the tamper-sensitivity of the capacitive PUF-based enclosure, thereby taking
the next steps toward its commercial deployment.

7.2 Future Work

Despite all the proposed solutions and progress made, there is still a prospect for further
development of the enclosure system.

The assembly of FORTRESS would be facilitated by increasing the flexibility of the
envelope. This could be achieved by reducing the layer stack thickness and testing
the suitability of different materials within the production process. This also entails
enlarging the masks within the lithographic process to achieve larger envelope sizes.
Furthermore, materials and concepts of wearable electronics could be applied to the
enclosure design to enhance flexibility.

The measurement IC integrated into the envelope is optimized in terms of size. Hence,
the ASIC’s resolution has to be improved to achieve an accuracy comparable to the
discrete measurement circuit. This could be achieved in further revisions of the ASIC,
tailoring the resolution to the specific femtofarad scale of the enclosure.

The most obvious measure to counteract magnetic probing attacks of the SPI com-
munication between the ASIC and the microcontroller is an elimination of the interface
itself. Hence, manufacturing a custom ASIC incorporating both the EKMS and IC func-
tionality should, therefore, be attempted. In general, a multi-layered approach aiming
at an in-depth defense is most promising to counteract physical attacks (Chapter 4) and,
in particular, fault attacks (Chapter 6). Thus, further proposed countermeasures should
be implemented and tested to harden the FORTRESS system.

Regarding the PUF post-processing, the wiretap code construction, discussed in Chap-
ter 5, should be optimized toward larger temperature scales. So far, mainly thermal
changes were analyzed and modeled. However, commercial deployment of FORTRESS
requires an investigation of various environmental effects and physical quantities, such
as humidity or vibrations. Therefore, the obtained measurement results should be in-
corporated into the polar code construction.

Advancing all these open issues sets the agenda for future work in the context of the
capacitive PUF-based security enclosure.
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