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Abstract

Achieving the global energy goal of limiting global warming to 1.5◦ C and the massive
expansion of renewables needed to get there would require integration of more renew-
able energy resources from not just large scale producers but also small and medium
scale electricity producers. This has resulted in distributed energy resources, where end
consumers within the power grid are becoming active prosumers thereby being able to
produce or consume electricity at will to or from the grid, respectively. However, these
distributed energy resources added high level of complexity to the reliability and sta-
bility of the power grid making it difficult to be managed by the traditional top-down
approach because of the complexity and variable nature of renewable energy resources.
There is also a need for coordination to manage the huge spatiotemporal fluctuations
that would occur in such an energy system. Local energy markets as a solution to these
daunting challenges propose the use of bottom-up market approach to manage electricity
trading in the power grid. This dissertation presents different comprehensive analysis,
evaluations, models, and bidding strategies for local energy markets based on distributed
ledger technologies, to guide policy makers and interested companies willing to apply it
as a puzzle piece for a successful transformation of the energy system towards carbon
neutrality.
The dissertation starts with a survey analysis to determine the quantifying factors

for participating in local energy markets based on distributed ledger technologies. The
survey which received 261 responses showed that the major factors for participating in
a local energy market based on distributed ledger technologies are security of supply,
interest or willingness to support renewable energy integration, transparency, and trust.
Additionally, a simulation-based analysis was conducted to determine the necessary con-
ditions for most beneficial local energy markets. The results from the simulations show
that the market is most beneficial for the consumers and prosumers within the commu-
nity for a small or medium community with prosumer to consumer ratio between 0.3 to
0.5. Also, using accurate bidding and offering strategies creates more benefits for the
local community compared to increasing the share of renewables within the community.
An advanced clustering algorithm was developed for clustering consumers and pro-

sumers in local energy markets based on their bidding or offering preferences to ensure
that energy is exchanged efficiently between consumers and prosumers within the local
community. In a market where prosumers and consumers may desire a certain quality of
energy or wish to exchange energy with a certain group, a decentralized market platform
was developed. The model provides prosumers with the flexibility of choice of energy
and trading group. Also, different reinforcement learning intelligent bidding and offering
strategies were developed and evaluated. The results show that the most beneficial local
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Abstract

markets are obtained when the intelligent agents make their bidding or offering towards
a common goal.
Finally, two approaches which are the proof-of-concept and hybrid blockchain-based

local energy market frameworks were developed. The challenges of the proof-of-concept
blockchain-based local energy market framework which includes scalability, high oper-
ation cost and transparency were solved by the hybrid blockchain-based local energy
market framework. The hybrid blockchain-based local energy market framework com-
bines the on-chain features of blockchain and side-chain features of trusted execution
environment to form an economically feasible market platform. The hybrid blockchain-
based local energy market framework also provides integrity, high security, and low
operation cost which makes it suitable for local energy market operation.
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Zusammenfassung

Auch im Energiesektor muss das Ziel, die globale Erwärmung auf 1,5 °C zu begren-
zen, erreicht werden. Um den hierfür erforderlichen massiven Ausbau der erneuerbaren
Energien voranzutreiben, muss mehr Energie aus erneuerbaren Quellen nicht nur von
großen, sondern auch von kleinen und mittleren Stromerzeugern in das Energiesys-
tem integriert werden. Aus diesem Erfordernis sind dezentrale Energieressourcen ent-
standen, mit deren Hilfe Endverbraucher zu aktiven Prosumern innerhalb des Stromnet-
zes werden, indem sie nach Belieben Strom in das Netz einspeisen bzw. aus dem Netz
verbrauchen. Jedoch wird es aufgrund der Variabilität dezentraler, erneuerbarer En-
ergiequellen deutlich komplexer das Stromnetz zuverlässig und stabil zu halten. Dies
kann nicht durch den traditionellen Top-down-Ansatz bewältigt werden. Auch die
enormen räumlichen und zeitlichen Schwankungen, die in einem solchen Energiesystem
auftreten, müssen koordiniert werden. Mit lokalen Energiemärkten und der Anwen-
dung eines Bottom-up-Marktansatzes zur Steuerung des Stromhandels im Netz wird
eine Lösung für diese gewaltigen Herausforderungen vorgeschlagen. Diese Dissertation
stellt auf der Grundlage von Distributed-Ledger-Technologien (DLT) verschiedene um-
fassende Analysen, Bewertungen, Modelle und Strategien für lokale Energiemärkte vor.
Damit werden politischen Entscheidungsträgern und interessierten Unternehmen Puz-
zleteile für eine erfolgreiche Transformation zu einem klimaneutralen Energiesystems zur
Verfügung gestellt.
Die Dissertation beginnt mit einer Umfrageanalyse, in der die quantifizierenden Fak-

toren für die Teilnahme an DLT-basierten, lokalen Energiemärkten bestimmt werden.
Die Umfrage, die 261 Antworten erhielt, zeigt, dass die Hauptfaktoren für die Teilnahme
an einem DLT-basierten, lokalen Energiemarkt Versorgungssicherheit, Interesse oder
Bereitschaft zur Unterstützung der Integration erneuerbarer Energien, Transparenz und
Vertrauen sind. Darüber hinaus wurde eine simulationsbasierte Analyse durchgeführt,
um die notwendigen Bedingungen für einen funktionierenden lokalen Energiemarkt zu
ermitteln. Die Ergebnisse der Simulationen zeigen, dass der Markt für die Verbraucher
und Prosumer innerhalb der Gemeinschaft für eine kleine oder mittlere Gemeinschaft
mit einem Verhältnis von Prosumern zu Verbrauchern zwischen 0,3 und 0,5 am vorteil-
haftesten reagiert. Darüber hinaus schafft die Verwendung genauer Gebots- oder Ange-
botsstrategien mehr Vorteile für die lokale Gemeinschaft als die Erhöhung des Anteils
erneuerbarer Energien innerhalb der Gemeinschaft.
Um sicherzustellen, dass Energie effizient zwischen den Teilnehmern der lokalen Gemein-

schaft ausgetauscht wird, wurde ein fortschrittlicher Clustering-Algorithmus entwickelt,
der die Verbraucher und Prosumer des lokalen Energiemarktes auf der Grundlage ihrer
Gebots- oder Angebotspräferenzen clustert. Für eine Marktsituation, in der Prosumer
und Verbraucher eine bestimmte Energiequalität wünschen oder Energie mit einer bes-
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Zusammenfassung

timmten Gruppe austauschen möchten, wurde eine dezentrale Marktplattform entwick-
elt. Das Modell ermöglicht Prosumern Flexibilität bei der Wahl der Energie- und Han-
delsgruppe. Außerdem wurden verschiedene intelligente Gebots- und Angebotsstrategien
für Reinforcement Learning entwickelt und evaluiert. Die Ergebnisse zeigen, dass sich
der lokale Markt am vorteilhaftesten entwickelt, wenn die intelligenten Agenten mit ihren
Geboten oder Angeboten auf ein gemeinsames Ziel ausgerichtet sind.
Schließlich wurden zwei Ansätze umgesetzt, zum einen ein Proof-of-Concept und zum

anderen ein hybrides Blockchain-basiertes Gerüst für lokale Energiemärkte. Die Heraus-
forderungen des Proof-of-Concept sowie durch die Blockchain im lokalen Energiemarkt,
welche Skalierbarkeit, hohe Betriebskosten und Transparenz umfassen, wurden durch das
hybride Blockchain-basierte lokale Energiemarkt-Framework gelöst. Diese Lösung kom-
biniert die On-Chain-Funktionen der Blockchain und die Side-Chain-Funktionen einer
vertrauenswürdigen Ausführungsumgebung, um die Marktplattform wirtschaftlich zu
gestalten. Das hybride Blockchain-basierte lokale Energiemarkt-Framework bietet In-
tegrität, hohe Sicherheit und niedrige Betriebskosten, wodurch es sich für den Betrieb
eines lokalen Energiemarktes als geeignet erweist.
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Preface

This PhD dissertation was prepared at the School of Engineering and Design, Technical
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The dissertation is presented as a cumulative dissertation with five chapters and ap-

pended with nine (six journal and three conference papers) scientific papers. Eight
(five journal and three conference papers) of the papers have been peer-reviewed and
published. The last journal paper is currently at the second stage of the review process.

vii



Just to remind you that “Nobody owns life, but anyone who can pick up a frying pan
owns death”, by William S. Burroughs. This page is for my late father, Late Mr. Ogbani
Okwuibe, died 11.02.2000.

viii



Acknowledgements

This dissertation would not have been successful without the support of numerous people
who have been part of my journey throughout my PhD.
I would like to express my profound gratitude to my supervisors Prof. Dr. Thomas

Hamacher and Prof. Dr. Jens Strüker for the opportunity to work under their guidance
and for providing all the required resources for the PhD. I am very grateful for the
freedom given to me to investigate this new research area without any form of limitations
and the freedom to discuss my findings in different scientific journals and conferences.
I am also forever grateful to Dr.-Ing. Peter Tzscheutschler and Dr. Thomas Brenner

for mentoring me throughout this challenging time. I lack words to express how both
of you have encouraged me throughout this process, creating time for meetings, reading
through all my draft manuscript and engaging me with creative criticism. Thank you
so much for all you did for me and remain blessed. I am also thankful to all my co-
authors whom I have collaborated with in different scientific papers for their support
and contributions throughout our collaborations.
I thank the management of OLI Systems GmbH for providing the financial support and

an enabling ground to conduct this PhD. I am most grateful to the two Chief executive
officers; Dr. Ole Langniß and Mr. Peter Vogel. I would also like to thank my colleagues
at OLI who supported me in my dissertation in one way or the other. I am grateful to
Dr. Birgit Haller, Mr Felix Förster, Mr. Mukund Wadhwa and Mr. Muhammad Yahya.
Finally, I am most grateful to my family and friends for their support, advice, encour-

agement, and prayers throughout this challenging time. My mother Mrs Eunice Maduka
Ogbani-Okwuibe is always there to encourage me with her prayers to focus on my goal
and keep to track with my PhD work. I am also grateful to the man that has played the
role of a father in my life in the person of Engr. Sir Charles Ogbonnaya Okorie. I thank
you for sponsoring my trip to overseas to achieve my dream of obtaining a postgraduate
degree from a world class university like TUM. God bless you so much for the sacrifice
you made in my life. And to my siblings; Chigoba, Okechukwu, Onyejere, Chinwendu
and Onyedikachi, thank you all for your cares and show of love throughout this time to
your youngest brother. To my friend Friday Chijioke Adams, thank you so much for
always being there and for checking up on me throughout this time. Thank you Barr.
Ezinwanne Raymond for the excellent proofread.

ix



Contents

Abstract iii

Zusammenfassung v

Preface vii

Acknowledgements ix

Contents x

List of Publications xii

Acronyms xiv

1 Introduction 1
1.1 Motivation & Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Definition and evolution of local energy markets . . . . . . . . . . 4
1.1.2 Local energy markets components . . . . . . . . . . . . . . . . . . 5
1.1.3 Evolution and definition of distributed ledger technologies . . . . . 6

1.2 Research objectives and research questions . . . . . . . . . . . . . . . . . . 8
1.3 Dissertation and publication structure . . . . . . . . . . . . . . . . . . . . 9

2 Analysis of local energy markets 12
2.1 Survey and community based analysis . . . . . . . . . . . . . . . . . . . . 12
2.2 Key performance indicator simulation based analysis . . . . . . . . . . . . 36

3 Local energy market models and bidding strategies 50
3.1 Local energy market models . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Hierarchical local energy market models . . . . . . . . . . . . . . . 50
3.1.2 Advanced clustering based on preference vectors . . . . . . . . . . 76
3.1.3 Decentralized local energy market model . . . . . . . . . . . . . . . 99

3.2 Local energy market bidding/offering strategies . . . . . . . . . . . . . . . 107
3.2.1 Q-learning bidding/offering strategy . . . . . . . . . . . . . . . . . 107
3.2.2 Q-learning and SARSA bidding/offering strategies . . . . . . . . . 116

4 DLT as an enabling factor for local energy market 137
4.1 Blockchain enabling a fully distributed local energy markets . . . . . . . . 138
4.2 Hybrid blockchain based local energy market . . . . . . . . . . . . . . . . 148

x



CONTENTS

5 Conclusion & Outlook 165
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

List of Figures 169

List of Tables 170

Bibliography 171

xi



List of Publications

Appended publications

This dissertation is based on the following appended publications listed as follows:

1. G. C. Okwuibe, T. Brenner, P. Tzscheutschler and T. Hamacher. Survey and
analysis of local energy markets based on distributed ledger technologies. IEEE
Access, 11: 23771-23791 , 2023. doi: 10.1109/ACCESS.2023.3254508 .

2. G. C. Okwuibe, M. Wadhwa, T. Brenner, P. Tzscheutschler and T. Hamacher.
Analysis of key performance indicators for local electricity markets’ design. IEEE
Canadian Journal of Electrical and Computer Engineering, 44(4):411-422, Fall
2021. doi: 10.1109/ICJECE.2021.3091718 .

3. G. C. Okwuibe, A. S. Gazafroudi, S. Hambridge, C. Dietrich, A. Trbovich,
M. Shafie-khah, P. Tzscheutschler and T. Hamacher. Evaluation of hierarchical,
multi-agent, community-based, local energy markets based on key performance in-
dicators. Energies, 15(10): 3575, 2022. URL:https://doi.org/10.3390/en15103575
.

4. G. C. Okwuibe, A. S. Gazafroudi, E. Mengelkamp, S. Hambridge, P. Tzscheutschler
and T. Hamacher. Advanced clustering approach for peer-to-peer local energy mar-
kets considering prosumer’s preference vectors. IEEE Access, 11: 33607-33627,
2023. doi: 10.1109/ACCESS.2023.3264233 .

5. G. C. Okwuibe, K. Vinogradova, S. Klingner and Z. Han. Pooling platform:
A Decentralized Local Energy Market Platform Based on Clustered Prosumer’s
Preferences. In 2023 International Conference on Future Energy Solutions (FES),
Vaasa, Finland, 2023, pp. 1-6, doi: 10.1109/FES57669.2023.10182867.

6. G. C. Okwuibe, M. Wadhwa, T. Brenner, P. Tzscheutschler and T. Hamacher.
Intelligent bidding strategies in local electricity markets: A simulation-based anal-
ysis. In 2020 IEEE Electric Power and Energy Conference (EPEC), pages 1-7.
IEEE, 2020. doi: 10.1109/EPEC48502.2020.9320067.

7. G. C. Okwuibe, J. Bhalodia, A. S. Gazafroudi, T. Brenner, P. Tzscheutschler
and T. Hamacher. Intelligent bidding strategies for prosumers in local energy
markets based on reinforcement learning. IEEE Access, 10: 113275-113293, 2022.
doi: 10.1109/ACCESS.2022.3217497 .

xii



List of Publications

8. G. C. Okwuibe, M. Zade, P. Tzscheutschler, T. Hamacher and U. Wagner. A
blockchain-based double-sided auction peer-to-peer electricity market framework.
In 2020 IEEE Electric Power and Energy Conference (EPEC), pages 1-8. IEEE
2020. doi: 10.1109/EPEC48502.2020.9320030.

9. G. C. Okwuibe, T. Brenner, M. Yahya, P. Tzscheutschler and T. Hamacher.
Design and Evaluation of Architectural Framework for a Secured Local Energy
Market Model Based on Distributed Ledger Technologies. Submitted to IET En-
ergy Systems Integration, (under review), 2023.

Other relevant publications

Other relevant publications contributed by the author which are not part of the dis-
sertation but serve as preliminary studies to the dissertation are listed as follows:

1. G. C. Okwuibe, Z. Li, T. Brenner, and O. Langniss. A blockchain based electric
vehicle smart charging system with flexibility. IFAC-PapersOnLine, 53(2):13557-
13561, 2020. The 21st World Congress of the international Federation of Automatic
Control (IFAC-V 2020), Berlin, 2020. URL:https://www.sciencedirect.com/science
/article/pii/S2405896320311241.

2. M. Wadhwa, G. C. Okwuibe, T. Brenner, P. Tzscheutschler and T. Hamacher.
Key performance indicator based design guidelines for local electricity markets. In
2020 IEEE Electric Power and Energy Conference (EPEC), pages 1-6. IEEE 2020.
doi: 10.1109/EPEC48502.2020.9320047.

3. A. S. Gazafroudi, G. C. Okwuibe, S. Hambridge, C. Dietrich, A. Trbovich, P.
Tzscheutschler, T. Hamacher and M. Shafie-khah. Mathematical model for agent-
based local energy exchange engine (D3A). In 2021 International Conference on
Smart Energy Systems and Technologies (SEST), pages 1-6. IEEE 2021. doi:
10.1109/SEST50973.2021.9543262.

4. Andreas Zeiselmair, Miguel Guse, Muhammad Yahya, Felix Förster, Godwin Ok-
wuibe, and Birgit Haller. Decentralizing smart energy markets - tamper-proof
documentation of flexibility market processes. In Blockchain Autumn School, Mit-
tweida, 2020.

xiii



Acronyms

CHP Combined Heat and Power.

DERs Distributed Energy Resources.
DLT Distributed Ledger Technologies.

EEG Renewable Energy Sources Act.
EU European.
EV Electric Vehicle.

G2V Grid to Vehicle.
GDPR General Data Protection Regulation.

LEM Local Energy Market.

MDP Markov Decision Process.

P2P Peer-to-peer.
PoA Proof-of-authority.
PoB Proof-of-burn.
PoC Proof-of-capacity.
PoS Proof-of-stake.
PoW Proof-of-work.
PV Photovoltaic.

RES Renewable Energy Sources.

SARSA State Action Reward State Action.
SGAM Smart Grid Architecture Model.

TEE Trusted Execution Environment.
TUM Technical University of Munich.

V2G Vehicle to Grid.
V2V Vehicle to Vehicle.
VAT Value-Added-Tax.
VRES Variable Renewable Energy Sources.

xiv



1 Introduction

1.1 Motivation & Background

Favourable policies, social acceptance, and dropping of the cost of Photovoltaic (PV) per
kWh installed in orders of magnitudes in the last decades have led to increasing share
of electricity generated from Renewable Energy Sources (RES) in developed countries
such as Germany [1, 2, 3, 4, 5, 6]. These policies intend to align with the renewable
expansion within the electric power sector to limit global warming to 1.5◦ C [3, 2].
Consequently, the total share of renewable generation in Germany has increased from
about 8% in 2002 to 44% in 2022 (Fig.1.1) [4]. The German government has also planned
to achieve at least 65% (this target was changed to 80% by the Bundestag and Bundesrat
in July, 2022) share of its electricity generated from RES by the year 2030 and further
ensure that the whole power sector become carbon-neutral before 2050 [3, 2]. To achieve
this, the country is extending its total Variable Renewable Energy Sources (VRES)
capacity to 330 GW by 2030 (560 GW by 2040) [3, 2]. VRES such as wind and solar
are not usually available all the time and in most times, they produce more energy than
consumers demand and/or the grid capacity could transport at a time which results
in grid congestion. VRES’s are usually forecasted but not fully controlled like thermal
power plants [1]. Hence, reserves are operated to offset the difference between the actual
VRES generation and the forecast which could lead to congestion [7, 8, 9].
This administrative process that is used by network operators to manage network

congestion that arise from VRES in order to ensure a stable and reliable grid is known
as congestion management [14, 15, 16, 17]. Congestion management is cost intensive and
increases with an increase in share of VRES in the electricity network as shown in Fig.
1.1. In Germany, the cost of congestion management in 2017 was 1.5 billion euro which
is 6.2% of the total grid cost [10]. The major reason for congestion in Germany is the
“north-south/ east-west” gap in Germany. This means that the major VRES sources
are primarily in the north and east and the demand is mostly in the west and south and
transmission capacity of high power lines is not sufficient for transporting the electricity
at excess production time. Another factor is the monetary incentive structure for pro-
viding flexibility, there is no cheaper incentives available in the current framework than
redispatch. The congestion management cost is passed to the end consumers through
grid charges [18]. Table 1.1 displays the sample calculation of increase in grid fees in
congestion situation according to [10]. Fig. 1.2 shows the composition of average elec-
tricity price in ct./kWh for a German household using up to 3,500 kWh per year from
2006 to 2022 [18]. From Fig. 1.2, the average electricity price has increased steadily
from 2006 when the price was 19.46 ct/kW to 32.16 ct./kWh in 2021. This increase is
reflected mainly with the renewable surcharge, the grid fee and Value-Added-Tax (VAT).
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Figure 1.1: Congestion management cost and renewable share of public electricity generation
in Germany [10, 11, 12, 1, 4, 13]. Note: The congestion management data available
for year 2022 is for the first and second quarter only.

The renewable surcharge was used to offset the difference between the wholesale electric-
ity acquisition/sales price and fixed feed-in tariff price guaranteed by law to renewable
power producers in order to encourage feeding of more renewable to the grid [18]. The
renewable surcharge increased from 0.88 ct./kWh in 2006 to 6.5 ct./kWh in 2021 while
the grid fee increased from 6.93 ct./kWh in 2006 to 8.08 ct./kWh in 2022. This shows
that the resultant effect of increase in share of VRES that created additional congestion
management cost (Fig.1.1) is the increase in average electricity price of the consumer
mainly reflected by increase in the grid fee and renewable surcharge (Fig. 1.2). Hence,
with the Germany target of becoming carbon-neutral by 2050, there will be a conse-
quential increase in congestion management cost which will result from managing the
complex power grid due to too many VRES in the power grid. The resultant effect will
be hike in the price of electricity if the above trend (Fig. 1.2) is maintained. Hence,
the need to create a market platform to enable local consumers and small scale local
electricity producers/consumers to trade energy within their locality and ensure that
electricity is consumed closer to where it is produced and thereby avoiding the hike in
congestion management cost.

In order to deliver the European (EU)’s Paris agreement which was set out to avoid
the adverse effect of the climate change by limiting global warming to below 2◦C and
pursuing further efforts to limit it to 1.5◦C [19, 20], in 2016, the EU clean energy package
was introduced and adopted in 2019 by the EU commission [21]. The EU clean energy
package enable consumers to participate actively in the electricity market through energy
communities by generating electricity and then consuming, sharing or selling it among

2
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Table 1.1: Sample calculation of increase in grid fees in congestion situations [10].

S/N Quantity of electricity Additional network Increase in network
affected by grid fee in bottleneck charges in bottleneck

congestion situations situations

1 5 % (26 TWh) 5.55 ct./kWh 133 %
2 10 % (52 TWh) 2.89 ct./kWh 66 %
3 15 % (78TWh) 1.92 ct./kWh 44 %
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Figure 1.2: Composition of average power price in ct./kWh for a German household using 3,500
kWh per year, 2006 - 2022 [18].

themselves [22, 23, 24]. Thereby, enabling end consumers to be actively involved in the
electricity market and have decision over their electricity production/consumption [25,
26]. Local Energy Market (LEM) provides an opportunity to enable local consumers and
small scale electricity producer/consumers known as prosumers to be actively involved
in local electricity trading and exchange energy with each other thereby making benefits
from their electric devices [27, 28, 29, 30]. Thus, ensuring that energy is consumed closer
to where it is produced and reducing congestion in the local grid thereby creating local
energy balances between producers, prosumers and consumers at the distribution level
[27, 28, 31, 32]. The security of supply of an LEM is ensured through connections of
the local distribution grid to a superimposed electricity grid which is the upstream grid
[27, 33, 34].

In 2022, because of the Russian-Ukraine war, the gas price increased in Germany
resulting in doubling of the sales/acquisition cost of household electricity from 7.93
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ct./kWh in 2021 to 20.64 ct./kWh in 2022 which results in increasing the electricity price
from 32.16 ct./kWh to 40.07 ct./kWh, respectively [18, 35] (Fig. 1.2). The renewable
surcharge was reduced to 0 ct./kWh by the second half of 2022 to cushion the effect
of this hike in the electricity acquisition/sales price [18]. This shows the importance of
investing in renewable energy resources and the need for LEM for proper coordination
of energy flows between producers, prosumers and consumers in the local distribution
grid. Furthermore, the growing importance of LEMs is due to the fact that the energy
transition/carbon neutrality also requires a transition of the heating sector and mobility
which will be incorporated into the electricity domain and were not previously (e.g
oil/gas heaters being replaced by heat pumps and internal combustion engine cars being
replaced by Electric Vehicle (EV)s ) - and a lot of this occurs at the distribution grid
level. The unit sale of electric vehicle in Germany has increased from 24.6 thousand in
2016 to 715.8 thousand in 2022 and is expected to reach 1629.7 thousand in 2027 [36, 37].
In the same way, the sale of heat pumps in Germany has increased from 57 thousand in
2015 to 154 thousand in 2021 [38]. Consequently, LEM is needed to properly coordinate
the energy flow for these new devices and ensure that they do not result in higher grid
congestion.

1.1.1 Definition and evolution of local energy markets

LEM is a community market platform for trading locally generated (renewable) en-
ergy among producers, prosumers, and consumers in the same or adjacent distribution
network and within a geographic and social neighborhood [27, 39, 30]. According to
Khorasany et al. [40] LEM is a micro-market concept which is based in a residential
area that enables prosumers, consumers and producers within a community or neigh-
bourhood to exchange energy among themselves. Siano et al. [41] defined LEM as a
“sub-market, where participants can be aggregated for flexibility purposes such as con-
straints management, portfolio optimization and system balancing in order to balance
demand and supply”. The key factors identified in all these definitions are market plat-
form, participants/prosumers/end consumers, and neighbourhood/community/locality.
Thus most LEM definitions revolves around these three factors. The products that can
be traded in an LEM include electricity (kWh), flexibility or heat [42, 43, 44, 45, 46].
Two products can be traded simultaneously such as flexibility and electricity [47, 48], or
heat and electricity [49, 50].

The early mention of LEMs in literature and research works is dated to more than two
decades ago [51, 52, 34, 53]. However, LEMs started gaining more attention of researchers
from the 2000’s [53, 54, 55, 56, 57, 34, 58, 59]. Most of the early research works in LEM
are focused on the concept development and design of LEM [54, 55, 56, 59]. Research in
LEM has extended this stage to discussion on market designs, bidding strategies, market
mechanisms, business model development, risk analysis, security and privacy, and policy
recommendations [60, 25, 29, 26, 61, 62, 63]. Notwithstanding the numerous attention
already given to LEM by researchers, there is still no regulation for applying LEM in
most countries. However, there are few LEM projects already implemented and ongoing
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in different countries such as Allgäu microgrid [64], LAMP [65], Brooklyn microgrid [66],
etc [67].

1.1.2 Local energy markets components

Mengelkamp et al. [66] in their work derived seven market components for developing
a microgrid energy market which includes microgrid setup, upstream grid connection,
information system (e.g. market platform), market mechanism (market model), pric-
ing mechanism (clearing mechanism), energy management trading system (e.g. bidding
strategy), and regulation. Based on these previously developed components of microgrid
energy markets and requirements of an LEM developed by [65] using the Smart Grid
Architecture Model (SGAM) [68], this dissertation will focus on the basic components
of an LEM which includes the market platform, market model, clearing mechanism and
bidding/offering strategy. The market platform is the information system infrastruc-
ture that is responsible for running the market model. The market platform can be
centralized, decentralized or distributed.
A centralized platform is a platform that is based on a trusted third party-agent

which is responsible for running the market model in their platform [69]. A decentral-
ized platform is a platform that is made of different sub-systems which interacts and
communicates with each others. Moreover, a distributed platform is a platform that
uses distributed ledger and is spread across multiple entities which are responsible for
operating the platform and used to promote transparency [69]. Fig. 1.3 displays an
example to differentiate centralized, decentralized and distributed market platform. In
summary, an attack on a node of a market platform will result in total failure of the
whole system for a centralized platform. However, for a decentralized platform, it will
result in failure of some part of the system. But for a distributed platform, the system
will not be affected by an attack on a single node.

A.) Centralized C.) DistributedB.) Decentralized

Figure 1.3: Centralized, decentralized and distributed market platforms [70, 71].
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The market model is used to provide efficient bidding/offering format, payment/set-
tlement rule, and allocation of traded energy by matching the bids and offers of the
prosumers [50]. The market model is implemented on the market platform [66]. Hence,
based on their implementation, market model can be classified as centralized, decentral-
ized and distributed market models. Table 1.2 compares centralized, decentralized and
distributed market models. The clearing mechanism is used to allocate the traded energy
and the price for each allocated traded energy, which will be paid by the buyer or the
price the seller will receive [66]. The bidding/offering strategy is an algorithm used by
consumer/prosumer agents to determine the price (€ ct./kWh) the consumer/prosumer
is willing to pay/receive for energy consumed/produced from/to the local community.
Fig. 1.4 displays the schematic of an LEM.

Table 1.2: Comparison of centralized, decentralized and distributed market models [72, 73, 69,
74, 70].

S/N Properties Centralized Decentralized Distributed

1 Flexibility/scalability Low High Very high
2 Transparency Low High Very high
3 Reliability Low High Very high
4 Customer centricity Low High High
5 Maintenance cost Low High Very high
6 Computational cost High Low Relatively high
7 Resilience to attacks Low High Very high
8 Transactions per second Medium High Low
9 Security Low High Very high
10 Privacy Medium Low Very low

1.1.3 Evolution and definition of distributed ledger technologies

The concept of Distributed Ledger Technologies (DLT) is dated back to the early stage of
the Roman Empire and Chinese Qing Dynasty where complex and sophisticated record
keeping techniques, supplemented with heavy communication systems are used by banks
to ensure accurate record keeping in the form of distributed ledger [75, 76, 77]. In 1991,
the first document was published in this field by Stuart Haber and W. Scott Stornetta
on “How to time-stamp a digital document” [78]. This became important as there
was no clear history of origin in digital documents; one copy is just as good as the
“original” and in principle indistinguishable. In 1997, Tim May proposed a digital
money that uses ‘remailers’ system to forward messages while preserving anonymity
between partners node [79]. Later in 2002, David Mazierers and Dennis Shaha in their
work titled “Building secure file systems out of Byzantine storage” proposed a method
to detect tampering attacks and stale data to build a trusted file system on an untrusted
server [80].
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Market matching platform

Data

DSO/

Utility

Power flows

Figure 1.4: Schematic of local energy market components.

The major breakthrough was in 2005 when Nick Szabo proposed a new blockchain-
based currency called BitGold which attempts to decentralize currency and shift control
from a central entity to multiple entities [81]. This new currency was “based on com-
puting a string of bits from a string of challenge bits, using functions called variously
“client puzzle function,” “proof of work function,” or “secure benchmark function”” [81].
However, this proposed currency was unable to solve the double-spending problem of
electronic transactions, which can result from digital currency users duplicating trans-
actions and therefore spending the same digital currency more than once.
The most outstanding breakthrough was in 2008, when Satoshi Nakomoto published

the Bitcoin whitepaper [82]. This work brought the concept Peer-to-peer (P2P) trans-
actions using trustless network and Proof-of-work (PoW) consensus mechanism by the
participating nodes to approve transactions before they are entered into the network.
In 2014, Buterin introduced the concept of smart contract into blockchain by propos-
ing Ethereum network [83]. Thus Ethereum has a turing completeness which Bitcoin
did not, making it much more versatile than Bitcoin, opening up the avenue for other
applications to run on it than value transfer. This eventually attracted researchers and
many industries to the concept of blockchain and how to use smart contract features
for their applications. Many other blockchain networks have been founded since then
and more are still coming [84, 85, 86, 87, 88, 89, 90]. Also, other DLT concepts such as
Tangle and hashgraph have been discussed and implemented since then [89, 91]. In the
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same way, other consensus mechanism such as Proof-of-authority (PoA), Proof-of-stake
(PoS), Proof-of-burn (PoB), and Proof-of-capacity (PoC) are now being used [89, 90].
According to [89], DLT is a “spreadsheet that is used for recording transactions and

transcribing accounting information such that the transactions are accessible and stored
at each node of the network and has an intrinsic feature for enforcing consensus among
its users before a transaction is written in the network”. Thus, the basic concept concept
of DLT is storage of data or transaction in a network where all members have access
to the network and ensuring that all members in the network converge to the same
state before a new data is entered in the network. DLT is a general protocol used for
recording data in a distributed and secure manner while facilitating the maintenance of
digital ledgers in the networks of untrusted parties [92, 93, 94]

1.2 Research objectives and research questions

The need to encourage more renewable energy sources integration into the electricity mix
cannot be over emphasized as this will go a long way in reducing the global warming.
However, due to the challenges accompanying this renewable generated electricity as
a result of its temporal fluctuations and spatial inhomogeneity, hence, there lies the
need to create a local market to ensure that electricity is consumed closer to where it
is generated. Furthermore, the demand side is also becoming more volatile and flexible,
and new assets are being added (primarily EVs and heat pumps) leading to sectoral
coupling at the distribution grid level. Thereby, creating local balances of electricity at
the distribution grid level.
Also, LEM provides opportunity for local traders such as consumers, prosumers and

small scale producers to be involved in electricity trading, thereby making benefits from
their electricity devices. This further helps to retain the local economy. The electricity
from PV systems accounted for 9.9% of total generation in Germany and PV systems
under the size of 10 kWp account for 64% of the total PV installations in Germany as of
2021 [95]. Fig. 1.5 displays the solar PV that will be out of the feed-in tariff from 2021
[96]. Small PV is important because it is installed close to the consuming assets, often
even on the same (the lowest) grid level. This is why their participation in an LEM is
key. Furthermore for post-EEG assets (and some other), LEMs can be very attractive
from an economic point of view, especially in the current situation in Germany where
feed-in tariff is only for a period of 20 years. Thus, LEM has the capacity of providing
a market for trading electricity from small scale producers during the post-Renewable
Energy Sources Act (EEG) time and ensuring that the percentage share of renewable
energy sources in the electricity mix is not reduced.
In summary, the objective of this dissertation is to analyze the benefits of LEM and

identify the most beneficial market model for this type of market while using the added
values of blockchain technologies. By doing this, the following research questions will be
answered.
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Figure 1.5: Solar PV capacity dropping out of German feed-in tariff scheme from 2021 onwards
[96].

1. What are the quantifying factors for participation on local electricity markets
based on distributed ledger technologies and the necessary conditions for the most
beneficial LEM?

2. Which market models and clearing mechanisms are most suitable for local elec-
tricity markets?

3. Which trading strategies are most suitable for effective performance of local elec-
tricity markets?

4. Is it economically reasonable to use blockchain for local energy trading? If yes,
what conditions must be fulfilled?

Fig. 1.6 displays the research questions and how they are connected in the stages of
research. The analysis was performed first to identify the features that will be used for
the model development. Then, the models were developed using the results from the
analysis. Finally, the models were implemented in the platform and evaluated.

1.3 Dissertation and publication structure

This dissertation is structured as follows.
Chapter 2 presents an analysis of different LEMs. In section 2.1, a survey and commu-

nity based analysis are presented to determine the quantifying factors for participation
in a blockchain based LEM. Additional, a community based simulations analysis was
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Figure 1.6: Research questions based on the developed models.

performed to determine the impact of different community sizes on the technical and
economic benefits of consumers and prosumers in an LEM. In section 2.2, a simulation
based analysis was conducted to determine the key performance indicators for partici-
pation in an LEM and the impact of bidding strategies in the performance of an LEM.
Chapter 3 presents the different developed market models and bidding strategies. In

section 3.1, the market models are presented. Section 3.1.1 evaluates and discusses a
multi layer LEM market model. Section 3.1.2 presents the advanced clustering LEM
model based on prosumers preference vectors. The decentralized LEM model based on
prosumer preferences is presented in section 3.1.3. In section 3.2, the bidding strate-
gies are discussed and analyzed. Section 3.2.1 presents and discusses the developed
Q-learning bidding strategy for LEM while section 3.2.2 presents a new Q-learning and
State Action Reward State Action (SARSA) bidding strategies and a comparison be-
tween both.
Chapter 4 presents different distributed LEM models that were developed that run on

a blockchain platform. In section 4.1, a fully distributed LEM model implemented on
a blockchain platform is discussed. Section 4.2 presents a hybrid market platform that
combines on-chain blockchain network and side-chain Trusted Execution Environment
(TEE) features for implementing a transparent, secured and verifiable LEM model.
Chapter 5 answers the research questions already presented in section 1.2, concludes

the dissertation with policy recommendations for implementing LEMs in Germany and
presents recommendations for future research in the field.
Fig. 1.7 displays a schematic of the dissertation. The work presented in this disser-

tation is distributed across nine publications in total. Each publication is dedicated to
answering a research question or a significant part of it as presented earlier in Section 1.2.
Therefore, there are research questions answered in more than one publications. Fig.
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1.8 displays the publications included in the dissertation. Fig. 1.8 uses the structure of
Fig. 1.6 to show the research question answered by each publication.

3

RQ#1:

Core   models PlatformAnalysis

RQ#2:

RQ#3:

RQ#4:Survey and 

market-based 

simulation

Market-based 

simulation

-Hierarchical LEM model

-Advanced clustering model

-Decentralized LEM model

-Q-learning bidding strategy

-SARSA and Q-learning bidding 

strategy

Blockchain-

enabled LEM

Actors ProsumerConsumer Chapter

2.1

2.2 3.2

3.1

4

Figure 1.7: Schematic of dissertation. Light blue circles means the corresponding sections.
Each section focuses on answering the research question on top.
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Scientific context

The concept of LEM focuses on creating a market that brings together local consumers,
prosumers and small scale producers together to exchange energy with each other on
the same platform. Hence, the performance of such a market depends on the social
behaviours of the consumers, prosumers and producers, the quantity of electricity pro-
duced/consumed within the community, the number of participants, the participants’
bidding strategy and ratio of producers to consumers in the community. These factors
and their effects on LEM performance are analyzed within this work.
The features of DLT, such as transparency, high security, consensus mechanism,

immutability, distributed storage, and anonymity are widely discussed in literature
[97, 98, 99, 100, 101, 89, 102, 103, 90] and many LEM models are already proposed
in literature that utilize these features for LEM application [104, 105, 94, 66, 65, 69,
106, 46, 107, 108, 109, 41, 110, 73]. However, there is still no literature that considers
the social behaviours of the local energy traders (consumers, prosumers and small-scale
producers) to know which features of DLT is most important to them and to what level
the stakeholders desire each features. In the same way, there is a wide variety of articles
proposing different models for LEM application [44, 111, 60, 29, 112, 113, 114, 115, 48].
But only a few of these articles consider the social behaviours of the local energy traders
in their model design [116, 44].
Efficient development of an LEM based on DLT requires an understanding of the

features of DLT that are most important for a local energy trader and the factors that
will make a consumer, prosumers and producers to participate in such kind of market. In
addition, it is also important to know the community size and prosumers-to-consumers
ratio that will result in optimum performance of such LEM since only but few lietratures
have conducted a similar analysis [117]. The analysis in this chapter is developed in
two scientific papers. The first paper [118] is a survey based analysis with community
simulation and the second paper [119] is based on key performance indicator analysis.

2.1 Survey and community based analysis

Contribution
The paper of this section presents a survey and analysis of local energy markets based
on distributed ledger technologies [118]. The analysis was conducted in two stages. The
first stage is a survey of the quantifying factors for participation in an LEM based on
DLT. For this, an online survey was developed and the link shared to consumers and
prosumers through LinkedIn, Slack, E-Mails and Xing. The survey was online for over
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three months and received a total of 261 responses. The responses were filtered down
to 232 due to incomplete responses. The responses were analyzed and visualized. The
survey results illustrate that the major factor that can make local consumers/prosumers
to participate in a blockchain based LEM is their willingness to support renewable energy
integration, transparency and trust offered by a blockchain network.

In the second stage, a community based analysis was conducted to determine the nec-
essary conditions for the most beneficial LEM. For this, a community based simulation
set-up as shown in Fig. 2.1 was developed using Grid Singularity framework [120]. The
simulation was verified using a combination of load and production profiles from Ger-
man households [121], standard load profiles [122, 123], Renewables Ninja [124, 125] and
LoadProfileGenerator [126, 127]. The market is a 15-minutes time step market where
prosumers and consumers bid/offer energy every 15-minutes and the market is cleared
afterwards. Energy not traded within the community is traded with the external grid
which is the upstream grid. The simulation is varied by changing the community size
from a total of 10 to 120 participants in 238 simulation scenarios. The different simula-
tion scenarios are further obtained by varying the community production to consumption
ratio and the number of consumers and prosumers in the community. By varying the
number of prosumers and consumers, different community sizes such as small, medium
and large communities are obtained. The results of the simulation showed that small
and medium communities with prosumers-to-consumers ratio between 0.3 to 0.5 create
more economic and technical benefits such as self sufficiency and self consumption for
local consumers/prosumers compared to large communities.

Community

Agent

Data

Grid

Agent

Figure 2.1: Schematic of community based LEM simulation set-up, after [118].
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ABSTRACT Local energy markets (LEMs) provide opportunity to handle the challenges arising from the
lower grid level while using the traditional top-down approach to manage distributed generated renewable
energy resources. Blockchain-based local energy markets (LEMs) have been introduced in recent years
as a way to enable local consumers/prosumers to trade their energy locally in a distributed and highly
secured manner in an LEM. However, there are still some challenges regarding the main factors that can
drive local consumers/prosumers to participate in a blockchain-based LEM, optimal community size, and
prosumer to consumer ratio for an efficient LEM. Also, there is still no information on how the quantifying
factors for participation on a blockchain-based LEM can affect the performance of an LEM. This paper
presents a survey and simulation based analysis of quantifying factors for participation in a blockchain-
based LEM. The survey was distributed among local consumers/prosumers and a total of 261 responses were
received from the responders. The results from the responders were analyzed using a Python code based
statistical analysis model. The simulation based analysis was conducted using a community based LEM
model and evaluated using data received from a combination of German household profiles and standard
load profiles. The survey results showed that the major drive for local consumers/prosumers to participate
on blockchain-based LEM is their willingness to support renewable energy integration, transparency, and
trust offered by a blockchain network. On the other hand, the simulation based analysis showed that small
and medium communities with prosumers to consumer ratios between 0.3 to 0.5 create more economic and
technical benefits for local consumers/prosumers compared to large communities. The community based
simulation results weremodelled together with the survey results to determine how the individual quantifying
factors for participating in a blockchain-based LEM can affect the performance of an LEM.

INDEX TERMS Blockchain, decentralized energy system, survey analysis, local energy market, multi agent
system.

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
Local energy markets (LEMs) were introduced in the last few
decades as a result of the challenges arising from increas-
ing distributed renewable energy resources and to enable
small-scale producers, prosumers, and consumers to become
involved in the electricity market [1]. LEM has also achieved

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhigang Liu .

quite a loud interest in countries such as Germanywhere there
is high support for renewable energy integration because of
the ability of LEM to support local renewable energy integra-
tion and create more savings for distributed energy resources
owners [2]. In recent times, distributed ledger technologies
(DLTs) are reshaping the conventional ideas of business
transactions and have caught the interest of researchers on
how the different DLT features can be applied to the energy
sector and LEMs in particular [3]. DLT is an information
systems that use protocols to record, validate, update, and
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access record of transactions across a decentralized network
of computers nodes and has intrinsic mechanisms of enforc-
ing consensus among the nodes [4], [5]. The features of DLT
that made it attractive in different industrial sectors including
energy sector are decentralized database structure, consensus
mechanism, immutability, transparency, anonymity, and high
security [6], [7]. Recent research works has shown that DLT
has the potentials to enable prosumers and consumers within
a community to trade energy in a secure manner [8], [9].
Because of its data structure, consensus mechanism, and
high data security, blockchain has achieved high popularity,
applied in many use case, and usually discussed in most lit-
erature and research works compared to other DLT concepts
such as Tangle and Hashgraph [4].

B. LITERATURE REVIEW
Among all the features of DLT, decentralized database struc-
ture is majorly utilized in the development of LEM plat-
form [9], [10], [11]. Hence, most research works in the field
of blockchain-based LEM are focused on decentralizing the
data structure of the LEMplatform. Reference [10] developed
a full blockchain-based decentralized platform for peer-to-
peer(P2P) energy trading in a day-ahead market. The concept
of Merkle Patricia Tries is used in its real or modified form
to develop an immutable blockchain platform for LEM [12].
Reference [13] proposed an immutable blockchain-based
framework for negotiating an auction based P2P energy
trading for a local community. The concept of consensus
mechanism is widely discussed in literature and imminent
in most DLT platforms, and blockchain-based LEM plat-
forms [6]. The authors of [14] proposed a blockchain-based
double sided auction LEM that enforces consensus among
prosumers and consumers every time slot before the mar-
ket is matched. Transparency is a blockchain feature that is
usually discussed and implemented in LEM research works
directly ensuring that all transaction data are visible to the
participants. However, in real LEM projects, because of the
regulations and data protection law, transparency is usu-
ally implemented in form of hashing [15]. Reference [16]
proposed a blockchain-based solution to increase the trans-
parency and integrity of P2P market platform. Immutability
as a feature of blockchain is its ability to retain information
without tampering with data in its platform. This feature
always raise questions on the sustainability of blockchain for
its application because of the large amount of gas required
for complex calculations/transactions. The authors of [17]
proposed a Cosmos sidechain network for trading energy
in an LEM and showed that the platform is sustainable by
applying it in a real case scenario of a small community in
Switzerland. Notwithstanding the large knowledge already
gained for blockchain application in LEM, researchers are
still exploring the different blockchain features and the
best way to apply them in LEM trading, hence, blockchain
application for LEM is now growing beyound the maturity
stage [18], [19].

On the other hand, the technical and economic analysis
of LEM plays an important role on the deployment of LEM
based on DLT. This is because, the knowledge of the eco-
nomic and technical benefits that will arise from the market is
required for a broad adoption in productive environments. For
this reason, there are still few literature discussing and analyz-
ing the technical and economic benefits of LEM. The authors
of [20] analyzed the performance indicators for participation
in LEMs and showed that bidding strategies have more effect
on the performance of an LEM compared to adding more
distributed energy resources into the local community. Refer-
ence [21] analyzed and discussed a decentralized P2P market
and a centralized order book LEM with zero-intelligence and
intelligent bidding strategies and showed that P2P markets
with intelligent agents seem most advantageous compared to
others. Reference [22] analyzed the effect of microgrid size
and prosumer-consumer ratios to local self-consumption and
self-sufficiency of a community. A multi and single layer
LEM models were developed by [23] and evaluated using
different LEM economic and technical performance indica-
tors such as self-sufficiency, self consumption ratio and share
of market savings to show the applicability of LEM. Refer-
ence [24] used data from system logs, surveys, and interviews
to analyze interaction, acceptance, and participation of pro-
sumers in a P2P LEM. The analysis of their results showed
that P2P LEM has the capability to increase the salience of
renewable energies and thus promote load-shifting activities.
The outcome of the results from analysis, user behaviour and
designs of LEM has stirred up different business models and
pilot projects in the field of blockchain-based LEM [25], [26].

Notwithstanding different research works already pub-
lished in the field of blockchain-based LEM and different
pilot LEM projects, in overall, only a small fraction of all
LEM projects have been developed with blockchain tech-
nologies. The few projects already developed in the field of
blockchain-based LEM are the Brooklyn microgrid [27], the
Landau project [28] and the Allgäu microgrid [29].

C. CONTRIBUTIONS AND ORGANISATION
The literature contains several studies proposing different
structures and models for blockchain-based LEMs, however,
there is still a gap in literature determining or analyzing
the major factors that can make a prosumer or consumer
participate in an LEM trading, the optimal community size,
production-to-consumption ratio, and prosumer-to-consumer
ratio for an efficient LEM. Furthermore, there still exist no
literature discussing how the quantifying factors for partic-
ipating in a blockchain-based LEM can affect the perfor-
mance of an LEM. Hence, this work is aiming to determine
the quantifying factors for participation on local electricity
markets based on distributed ledger technologies and the
necessary conditions for most beneficial LEM. We use two
step methods of survey and community based simulation
analysis. In the first step, a survey was distributed to pro-
sumers/consumers and energy experts requesting answers
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from them on their willingness and their main driving fac-
tors to participate in an LEM and in an LEM based on
blockchain technology. The survey received 261 responses
and the results were evaluated using statistical analysis. In the
second method, a single layer community based LEM model
was developed and simulated for varying community sizes
and prosumer to consumer ratios. The simulation model was
evaluated using key performance indicators such as self-
sufficiency, self-consumption ratio, share of market savings,
share of consumer savings and share of prosumer savings.
The prosumers and consumers also known as local electricity
traders (LETs) are classified as household consumers, com-
mercial consumers, household prosumers, and commercial
prosumers. The main contributions of the paper can be sum-
marized as follows:

• We develop and distribute a survey to investigate
on quantifying factors to participate in LEM and
blockchain-based LEM.

• The results from the survey were analyzed to deter-
mine the driving factors to participate on LEM and
blockchain-based LEM.

• We conduct a simulation for a single layer LEM model
with varying community sizes and prosumer to con-
sumer ratios.

• We analyse the benefits of electricity trading in a single
layer LEMsmodel with the use of key performance indi-
cators such as self-sufficiency, self-consumption, and
share of market savings.

• We modelled the quantifying factors for participanting
in a blockchain-based LEM determined from survey
together with the simulation results to determine how
the different quantifying factors can affect the individual
LEM performance indicators for a community based
LEM.

The remaining sections of this work are structured as
follows. The developed survey and analysis methods are
described in Section II. The survey and simulation results are
analyzed in Sections III-A and III-B, respectively. Finally, the
paper is concluded in Section V.

II. ANALYSIS METHOD
In order to analyze the acceptability, willingness, interests,
motivation, technical, and economic indicators that may
enable prosumers to participate in a blockchain-based LEM,
the analysis method is classified into survey and simulation
based analysis.

A. SURVEY BASED ANALYSIS
For this method, a survey was conducted and shared among
German households to illustrate their willingness, interest
and social behaviour towards a blockchain-based LEM. Our
approach is based on a similar work in this field by [2],
however, we create an extensive study to analyze the different
factors individually and their relation to LEM application
with blockchain. Appendix A-A shows the survey questions.

TABLE 1. Age range of survey responders.

TABLE 2. Net income salary range of survey responders.

The questions were developed and displayed online using
SurveyMonkey and the web link to the questions distributed
to responders. Fig. 13 displays a screen shoot of part of
the survey questions on SurveyMonket website. The link
to the questions was distributed using different online plat-
forms such as LinkedIn, Slack channels, Xing and Emails.
With Emails, it was sent directly to 400 customers of e-
regio, a German electricity retail company using their contact
Email. The survey takes approximately 12 minutes to com-
plete it. The survey was opened online on SurveyMonkey
website from 15th August until 20th December 2021 and it
received a total of 261 responses. However, the responses
were filtered down to 232 due to incomplete answers. Table 1
and 2 display the age and net income range of the responders,
respectively. From the survey response response, 40.5% of
the responders live in rented apartments/buildings, 57.8% live
in their own house/apartments while 1.6% did not specify
where they live.

B. SIMULATION BASED ANALYSIS
The simulation based analysis is based on the works of [20]
and [23]. A single layer local electricity market as devel-
oped by [23] is simulated for varying community sizes,
number of prosumers to total participants (nPP) ratio, and
annual production-to-consumption ratio (PtC). Fig. 1 [23]
displays the single layer local electricity market model where
prosumers and consumers trade electricity within the local
energy markets, electricity not traded within the LEM is
traded with the upstream grid by the community agent.

Each household is represent by an agent which is respon-
sible for making the bidding/offering of the household elec-
tricity every time slot, on behalf of the consumer or prosumer.
At every market slot (t − 1), the consumer agent (i) posts
a bid containing the quantity of electricity (qbi,t ) in kWh the
consumer wants to buy and the maximum price (pbi,t ) the
consumer is willing to pay per kWh of electricity for the next
time slot (t), as shown in Eq. (1), to the community market
platform.

bi,t = {qbi,t , p
b
i,t }, ∀t. (1)

In the same way, at t − 1, the prosumer agent (j) posts
an offer containing the quantity of electricity (qsj,t ) in kWh
the prosumer wants to sell and the minimum price (psj,t ) the
prosumer is willing to receive per kWh of electricity for the
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FIGURE 1. Single layer local energy market framework.

next time slot (t), as shown in Eq. (2), to the same community
market platform.

sj,t = {qsj,t , p
s
j,t }, ∀t. (2)

Eqs. (3) and (4) represents all the bids and offers posted to
the market platform at time t − 1 for energy exchange that
will happen at time t . K and N are the total number of bids
and offers, respectively.

Bt = {b1,t , . . . , bK,t }, ∀t. (3)

St = {s1,t , . . . , sN ,t }, ∀t. (4)

Themarket ismatched at the end of the time slot (t−1). The
clearing mechanism is a two sided pay-as-bid market clearing
mechanismwith discriminative pricing. The community local
grid fee (g) which is the fee the buyer pays for buying elec-
tricity from the LEM is first subtracted from the maximum
price (pbi,t ) the buyer is willing to pay to determine the bid
price (pb∗i,t ) as shown in Eq. (5). The minimum price (psj,t ) the
seller is willing to receive is the offer price.

pb∗i,t = pbi,t − g, ∀i, t. (5)

The bids and offers are arranged in descending and ascend-
ing orders of bid and offer prices, respectively. Then, the
bids and offers are matched one after the other until the
intersection of the bidding and offering prices which after,
the offer price is higher than the bidding price as shown in
Fig. 2. The matched price (pmi,j,t ) is the average of the bidding
and offering prices. This is the price the seller j will receive
for each kWh of its energy matched in the LEM with buyer
i. This can also be referred to as the sold price. The matched
price is represented in Eq. (6),

pmi,j,t =
pb∗i,t + psj,t

2
, ∀i, j, t. (6)

The bought price (pbi,j,t ) is the price the buyer i pays per kWh
of electricity bought from the LEM from seller j. This is the
sum of the matched price and the grid fees (g) as presented in
(7),

pbi,j,t = pmi,j,t + g, ∀i, j, t. (7)

FIGURE 2. Two sided clearing mechanism with discriminative pricing.

At the end of the market clearing, electricity not traded
within the LEM is bought/sold from/to the upstream grid
using the grid price/feed-in tariff price. The trading strat-
egy is a random trading strategy where the participants
randomly select a bid/offer price within the range of the
feed-in tariff price of 11.0 ct/kWh to the grid electricity
price of 32.0 ct/kWh. The grid electricity price is capped
at 32.0 ct/kWh because of the average cost of household
electricity in Germany for the year 2021 [30]. The buyers’ bid
price include the metering and local grid fee of 0.33 ct/kWh
and 4.0 ct/kWh, respectively. This sets the lowest price elec-
tricity can be exchanged between buyers and sellers within
the LEM at a buying price of 15.33 ct/kWh.

The simulation is varied by changing the community size
from a total of 10 to 120 participants in 238 simulation scenar-
ios. The different simulation scenarios are further obtained by
varying the PtC ratio of the LEM participants. Table 3 shows
the various community types, the number of participants
per community type, the community classification, and the
number of simulation per community type. For the large
communities, the simulation scenarios are obtained by vary-
ing the nPP ratio from 0.1 to 0.9 with a step of 0.1 and varying
the PtC ratio from 0.2 to 1.4 with a step of 0.2. However, for
the medium and small communities, the simulation scenarios
are obtained by varying the nPP ratio from 0.3 to 0.6 with a
step of 0.1 and varying the PtC ratio from 0.2 to 1.4 with a step
of 0.2. From Table 3, the number of participants is the total
number of consumers and prosumers within the community.
Each prosumer or consumer within the community is referred
to as local electricity trader (LET).

The simulation data are load profiles obtained from com-
bination of profiles from [31], LoadProfileGenerator [32],
[33], and standard load profiles [34], [35]. Table 4 displays
how the different commercial and industrial participants such
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TABLE 3. Simulation set-up for different community types.

TABLE 4. Arrangement of industrial and commercial LETs in the different
community types.

as office building, bakery and small manufacturing firm are
added to the different community types. The standard load
profiles from Stromnetz Berlin for the year 2021 are used
for commercial and industrial profiles [34]. The range of the
annual consumption of the commercial profiles is between
25,000 kWh and 30,000 kWh, while for the industrial pro-
files, it is between 49,000 kWh and 54,500 kWh. To ensure
that each LET is unique, a random error in the range of
5–20% was added to each time step of every commercial
and industrial profile. The PV production profiles are profiles
from Renewables Ninja [36], [37] using the Stuttgart region
as the geographic location of the community. The losses of
the PV systems were varied between 5% and 15% with a tilt
angle of 35◦. To ensure that all the seasons of the year are
contained within the simulation, the simulation was done for
the month of January, April, July and October.

III. RESULTS AND DISCUSSIONS
A. SURVEY ANALYSIS
In this section, the results from the survey described in
Section II-A are presented and analyzed according to the
environmental and energy policy, willingness and interest in
LEM, affinity for and trust in new technology and importance
of blockchain features.

1) ENVIRONMENTAL PROTECTION AND ENERGY POLICY
Fig. 3 displays the level of willingness of the participants to
support environmental protection, security of supply and eco-
nomic value for energy sources. From Fig. 3a, the participants
attributed high level of importance on the three elements of
energy policy which are security of supply, economy and
ecology. However, security of supply is of strong importance
to the participants followed by economy before ecological
advantage/value. This means that the future LEM participants
are mostly interested in ensuring that the source of supply
is secured and thereby having energy available at all times.
After this is provided, then, making financial benefits from

FIGURE 3. Level of willingness to support environmental protection,
security of supply and economic value for energy sources.

their LEM is of importance to them before supporting their
environment.

Fig. 3b displays the level of willingness of the participants
to pay more for their renewable energy resources. From the
diagram, 56.0% of the participants are interested in paying
more for their renewable, 18.0% are not interested and 25.3%
are interested in paying more may be in the future (MiF).
This is evidence that majority of the participants whom are
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FIGURE 4. Interest in LEM and willingness to join LEM pilot projects.

mostly within the age of 30 to 55 years are willing to paymore
money to ensure that they have more renewable source of
energy. Fig. 3c displays the preferable energy sources of the
participants. From the diagram, it is evidence that majority of
the participants which are more than 70.0% prefer renewable
energy as their source of energy.

2) WILLINGNESS AND INTEREST IN LEM
Fig. 4 displays the level of willingness and interest of the
participants to join LEM and LEM pilot projects. The dia-
gram in Fig. 4a shows that 54.6% of the participants are
very interested in joining LEM, 28.1% are neutral to joining
LEM and 17.4% are not interested in joining LEM. On the
other hand, no one (0.0%) is already part of LEM (APLEM).
This means that majority of the participants are interested in
joining LEM. Fig. 4b shows the level of willingness of the
participants to join an LEM pilot project. From the diagram,
it can be seen 28.0% of the participants are interested in
joining pilot projects, 16.2% are not interested in joining pilot
projects while 55.7% are interested in joining pilot projects
may be in the future (MiF). This is evidence that even though
most participants are willing to join LEM, a majority is not
yet ready to join.

Fig. 5 displays the results of why the participants would
like to join LEM and it also shows which trading partner they

would prefer. From Fig. 5a, 38.3%would like to participate in
an LEM in other to promote renewable (Promote Ren.) energy
resources, 13.2% are willing to join for monetary benefits,
23.0% are willing to join because they want to be part of
energy community (PEC), 18.7% do not want to participate
(IDWP) in LEM and 6.8% have their personal reasons of
wanting to join LEM. From the diagram, it is evidence that
the major drive for prosumers and consumers to join LEM
is to promote renewable energy trading and to be part of
energy community. Only a few percentage of the participants
wish to join LEM because of the monetary benefits. Fig. 5b
displays the preferable trading partners of the participants.
From 5b, 10.2% of the participants are willing to trade with
their direct neighbour, 5.5% are willing to trade with people
living within their block, 19.1% are willing to trade with
people living within their village/city and 57.0% does not
mind (IDM) who their trading partner is. 8.1% of the partici-
pants have different choice of trading partners such as friends
and family members. The diagram shows that majority of
the participants do not care who their trading partners are
or should be but only care about the type of energy they
consume.

3) AFFINITY FOR AND TRUST IN NEW TECHNOLOGY
The blockchain solution for LEMcomeswith new technology
such as energy software applications, smart metering devices,
and intelligent batteries. Hence, there is a need to access the
participants willingness, interest, and trust for new technol-
ogy that will follow the deployment of a blockchain-based
LEM. Fig. 6a displays the level of importance of new technol-
ogy (INT) to the participants. From the diagram, while 40.5%
of the participants show that new technology is important to
them, only 21.4% ranked new technology to be extremely
important to them. This shows that new technology is not very
important to the participants. Fig. 6b displays the level of trust
on new technology (TINT) in an LEM by the participants.
From the diagram, majority of the participants are neutral
to new technology and only shows a low level of trust to
new technology. This shows that before the deployment of
blockchain-based LEM model, there is a need to engage the
participants in order to let them know the importance of
new technology and to increase their level of trust for new
technology.

4) IMPORTANCE OF BLOCKCHAIN FEATURES
Blockchain comes along with new features such as alternative
method of payment (cryptocurrency), immutability (Immu.),
anonymity (Anon.), transparency (Trans.), decentralization
(Decen.) and trust. The section evaluates the importance of
these blockchain features to LEM participants. Fig. 7a dis-
plays the results of the participants’ willingness to use an
alternative payment method for trading their energy.The par-
ticipants are open to blockchain technology in a similar way
as they are open to new technologies in general as obtained
in Fig. 6. Thus, it is evidence that majority of the participants
are neutral towards using alternative mode of payments. This
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FIGURE 5. Reason to join LEM and preferable trading partner.

FIGURE 6. Level of interest and trust for new technology in LEM.

also means that to deploy blockchain-based LEM to the par-
ticipants, there is a need to inform them and create awareness
for them about the importance and benefits of alternative
means of payments. Fig. 7b displays the level of importance
attributed to the features of blockchain by the participants.
The diagram shows that the participants attribute more impor-
tance to blockchain features such as trust, transparency and
immutability than to anonymity and decentralization. Hence,
in the design of LEM, it will be important to focus on uti-
lizing these major features that form the bedrock of the will-
ingness to participate in LEM trading based on blockchain
technology.

B. COMMUNITY BASED SIMULATION ANALYSIS
In this section, the community based simulation results of
Section II-B are presented and analyzed. First, the technical
and economic performance indicators of the large communi-
ties are presented and discussed. Afterwards, the indicators
are compared with the different community sizes. Finally,
the energy exchange within and outside the communities is
compared and analyzed.

1) ANALYSIS OF TECHNICAL PERFORMANCE INDICATORS
OF LARGE COMMUNITIES
Fig. 8 displays the self sufficiency (SS) and self consumption
(SC) ratios of the large communities for varying PtC and
nPP ratios. From Figs. 8a and 8c, it can be seen that the
SS of communities A and B show similar characteristics for
varying nPP and PtC ratio. The SS of community A ranges
from 20.3% at nPP and PtC ratios of 0.1 and 0.2, respectively
to 48.3% where the nPP and PtC ratios are 0.9 and 1.4,
respectively. In the same way, SS of community B ranges
from 19.7% at nPP and PtC ratios of 0.3 and 0.2, respec-
tively to 47.6% where the nPP and PtC ratios are 0.3 and
1.4, respectively. Therefore, on average, community A shows
better SS compared to community B. This is because the
higher number of LETs in community A creates opportunity
for trading more energy within the local community instead
of buying from the upstream grid. Also, for communities A
and B, increasing the PtC ratio increases the SS for commu-
nity A and B. This is because increasing PtC ration means
adding more renewable generated energy within the commu-
nity which in turn helps to increase local consumption and
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FIGURE 7. Importance of blockchain features for LEM.

thereby increasing the community SS. On the other hand,
the nPP has little impact on the communities which can be
noticed in community B. From community B (Fig. 8c), nPP
ratio within the range of 0.3 to 0.6 offers higher SS to the
local community compared to others. This is illustrated in
Fig. 8c, the SS increase from [19.7, 25.0] % at PtC ratio equal
to 0.2 to [46.0, 47.6] % at PtC ratio equal to 1.4. Hence, the
SS becomes higher as the nPP ratio moves close to 0.4. This is
evidence that the nPP ratio has an impact on the performance
of LEM.

Figs. 8b and 8d display the SC of communities A and
B, respectively. Similar to SS, the SC of communities A
and B show similar characteristics for varying nPP and PtC
ratio. The SC of community A ranges from 34.1% at nPP
and PtC ratios of 0.5 and 1.4, respectively, to 99.3% where
the PtC ratio is 0.2. Similarly, the SC of community B
ranges from 5.4% at nPP and PtC ratios of 1.4 and 0.8,
respectively, to 99.9% where the nPP and PtC ratios are
0.4 and 0.2, respectively. Hence, increasing the PtC ratio
decreases the community SC ratio for communities A and B.
This is because, increasing the PtC ratio means adding more
renewable to the local community, therefore, there is a higher
likelihood that at high PtC ratio, all the energy generated
within the local community will not be consumed thereby
decreasing the SC ratio of the local community compared
to when a lower renewable energy is generated. Therefore,
the self SC rate increases with decreasing availability of
renewable energy within the community. The nPP ratio has
little impact on community A. This is because, the higher
number of LETs in community A reduce the effect of varying
the nPP ratio. As it can be seen in community B (Fig. 8d),
nPP ratio within the range of 0.3 to 0.6 leads to a higher
SC ratio of the community. This is evidence that reducing
the community size reveals the impact of the nPP ratio to
the LEM.

2) ANALYSIS OF ECONOMIC PERFORMANCE INDICATORS
FOR LARGE COMMUNITY
Fig. 9 displays the share of market savings (SMS) of commu-
nities A and B and the share of individual savings (SIS) of
household consumer 1 (C1) and household prosumer 1 (P1)
for participating in communities A and B. The community
SMS is the share of savings made by the LETs for trading
within the LEM compared to when there is no LEM [23].
On the other hand, the share of individual savings is the
percentage savings made by the individual LET for trading
within the LEM compared to when there is no LEM [23].
Figs. 9a and 9b display the SMS of the communities A and
B, respectively. From the diagrams, the SMS of the two
communities show similar behaviours for varying PtC and
nPP ratios. The SMS of community A ranges from 8.9% at
nPP and PtC ratios of 0.1 and 0.2, respectively, to 59.9%
where the nPP and PtC ratios are 0.2 and 1.4, respectively.
Similarly, the SMS of community B ranges from 9.0% at
nPP and PtC ratios of 0.2 and 0.2, respectively, to 58.9%
where the nPP and PtC ratios are 0.3 and 1.4, respectively.
Hence, increasing the PtC ratio of a community increases
the SMS of the community. Increasing the PtC ratio of a
community means adding additional renewable resources to
the community. Adding more renewable generated resources
to the community creates more financial benefits to the local
community. On the other hand, varying the nPP ratio only has
little impact on the local communities. In community A, for
PtC equals 0.2, varying nPP from 0.1 to 0.9 only changed the
SMS from 8.9% to 12.1%. Similarly, for community B, for
PtC equals 0.2, varying nPP from 0.1 to 0.9 only changed the
SMS from 9.0% to 12.2%. For both communities ( Figs. 9a
and 9b) a higher SMS is witnessed at high PtC ratio with nPP
ratio between 0.2 to 0.6.

Figs. 9c and 9d display the SIS of C1 in communities
A and B, respectively for varying PtC and nPP ratios. The
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FIGURE 8. Community self sufficiency and self consumption ratio for varying PtC and nPP ratio.

two communities show the same trends for SIS of C1 with
varying PtC and nPP ratios. However, in community A, the
average SIS of C1 is 13.2% which is a bit higher than the
average SIS of C1 in community B which is at 13.0%. This is
because the LETs in community A is higher than community
B thereby creating additional opportunities for C1 to buy their
energy. For both diagrams, increasing the PtC ratio increases
the SIS of C1. This is because C1 is a consumer, thereby
increasing PtC ratio creates opportunity for the consumer to
buy more renewable from the community thereby increasing
his/her share of savings. In the same way, increasing the
nPP ratio increases the SIS of C1. Increasing nPP means
adding more prosumers to the community. Since C1 is a
consumer, adding more prosumers to the community even at
constant PtC ratio creates more opportunities for the C1 to
have variable options on whom to buy energy from thereby
increasing their financial benefits from the LEM.

Figs. 9e and 9f display the SIS of P1 in communities A and
B, respectively, for varying PtC and nPP ratios. Similar to SIS
of C1, the two communities show similar features for varying
PtC and nPP ratios. However, unlike C1, in community A, the
average SIS of P1 is 388.2% which is lower than the average
SIS of P1 in community B which is at 394.5%. This can be
because of the higher number of prosumers in community A

which make the community A LEM more compaetitive for
P1 compared to community B where there are less prosumers
and thus provides opportunity for P1 to trade most of their
produced energy. Also, the range SIS of P1 (Figs. 9e and 9f)
which is [260.5, 580.6] % is higher than the range of SIS
of C1 (Figs. 9c and 9d) which is [8.0, 15.1] % because of
the investment made by the prosumer by purchasing PV for
trading in the LEM. Figs. 9e and 9f show a decrease in SIS of
P1 for increasing PtC and nPP ratios. For example, at constant
nPP of 0.2, for community A, increasing the PtC ratio from
0.2 to 1.4 decreases the SIS of P1 from 580.6% to 314.7%.
Similarly, for community B, increasing the PtC ratio from
0.2 to 1.4 decreases the SIS of P1 from 579.9% to 317.1%.
Increasing the PtC ratio decreases the SIS of P1 because,
increasing PtC ratio means increasing the PV production of
the community without increasing the PV generation of P1.
This eventually creates competition for P1 as most other
LETs within the community will produce electricity thereby
potentially reducing trading opportunities of P1 and in overall
the financial benefits of P1 from the LEM. In the same way,
increasing the nPP ratio means adding more prosumers to
the community without increasing the number of consumers.
This eventually will create more competition for P1 thereby
reducing its benefits from the markets.
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FIGURE 9. Economic indicators for varying PtC and nPP ratio.

Fig. 14 in Appendix C displays the SIS of a commercial
consumer (C4) and commercial prosumer (P5). Overall, the
SIS of both LETs show similar trends to the household
consumer and prosumer. However, on an average, the SIS
of the commercial consumer (C4) is higher compared to
the household consumer(C1) while the SIS of the household
prosumer(P1) is higher compared to the commercial pro-
sumer (P5) for the same PtC and nPP ratios. This is because,
an LEM creates opportunity for a commercial consumer to
buy electricity at a cheaper price within their neighbourhood

thereby reducing his/her electricity cost. Since the energy
consumption of a commercial consumer is higher than that
of a household consumer, the commercial consumer will
benefits more from the market since he/she would buy more
energy from the LEM. However, for a commercial prosumer
participating in the same LEM with a household prosumer,
the probability that the household will sell their energy pro-
duction is higher compared to a commercial consumer who
has more energy to sell. Hence, the household prosumer will
have higher SIS compared to a commercial prosumers who
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need to sell a lot of energy to equate their investment before
he/she can make an equal SIS. This notwithstanding, the
savings of the commercial consumer may be higher than the
household consumer.

3) COMPARISON OF TECHNICAL INDICATORS BASED ON
COMMUNITY SIZES
To further understand the effect of community size on the
LEM performance indicators, the experiments were repeated
for varying PtC ratio from 0.2 to 1.4 and nPP ratio from 0.3 to
0.6 for communities A to F as described in Tables 3 and 4.
Fig. 10 displays the SS of the different communities for
varying PtC and nPP ratios. The graphs of Fig. 10 display
similar characteristics for increasing PtC ratio. Thus the SS
of all communities at the different nPP rations increase from
19.0% at PtC ratio equal to 0.2 to about 50.0% at PtC equal to
1.4. Thus, at low PtC ratio, there is low renewable production
within the communities thereby making the LETs to depend
on upstream grid for their energy demand and thus having
low SS. From Figs. 10a and 10b, the community SS increases
swiftly with increasing PtC ratio. Also, small and medium
communities show better SS compared to large communities.
Thus at PtC equals to 0.2, the SS of the small/medium com-
munity is about 25% where as the SS of the large community
is at about 20%. At all PtC ratios, the SS of small and
medium communities are usually higher than that of the large
community even until the maximum PtC where the SS of
the small community is about 50%. At the same time, the
SS of the large community is about 46%. Thus, for a small
or medium community, with the nPP equals to 0.3 or 0.4,
it is easy for the LETs to exchange energy at optimal level
ensuring that all energy produced within the community is
consumed within the community. This is compared to a large
community where the exchange may be difficult to manage
resulting in exchanging energy with the upstream grid. For
Figs. 10c and 10d, the community SS of all communities
show similar behaviours to Figs. 10a and 10b and within the
same range of between 19 to 50 %.

Fig. 15 in Appendix C displays the community Self con-
sumption (SC) ratio for varying community sizes, PtC and
nPP ratios. Similar to the SS, the SC ratio graphs of Fig. 15
show similar variation for varying PtC ratio. The SC with
nPP equal 0.3, 0.4 and 0.5 varies from 100% at low PtC
ratios to about 34% at high PtC ratios. For nPP equals to 0.6,
the SC varies from 100% at low PtC ratios to about 8.4%
at high PtC ratios. Hence, increasing the PtC ratio decrease
the community SC ratio. This is because, at lower PtC ratio,
the energy production within the local community is low
and therefore, there is higher tendency that majority of the
energy will be consumed within the community thereby not
selling to external grid. Increasing the PtC ratio increases the
locally produced energy and thereby reducing the probability
that all the energy will be traded within the community and
hence, reducing the SC ratio of the community by selling
the energy produced within the community to the upstream
grid. For varying nPP ratios, the graphs with nPP equal to

0.5 and 0.6 show better performance of the community SC
ratio with community D showing the best performance at nPP
equals 0.6. Community D is a medium community, therefore,
organizing trade within such community where the LETs
are not too much and where there is sufficient energy to be
traded by the participants can result in higher community
performance of the SC.

4) COMPARISON OF ECONOMIC INDICATORS BASED ON
COMMUNITY SIZES
Figure 11 displays the community SMS for varying com-
munity sizes, PtC and nPP ratios. For all nPP ratios, the
community SMS of the different communities increases with
increase in PtC ratio. For all nPP ratios, the SMS of the small
and medium communities varies within the range of 18 to
80 % for varying PtC ratios of from 0.2 to 1.4. On the other
hand, the SMS of large communities varies within the range
of 13 to 60 % for varying PtC ratios of from 0.2 to 1.4.
Hence, for all nPP ratios, the medium and small communities
show better performance for SMS compared to the large
communities. This is evidence that the medium and small
communities provide more economic benefits to the LETs
because of the efficient organization of trade at this commu-
nity size which resulted in more economic benefits compared
to large communities. At nPP equals 0.4, all the medium and
small communities have their best SMS performance apart
from community E which has its best performance at nPP
equal 0.5. For example, the SMS of community E at nPP
equals to 0.4 varies from 20 % at PtC equals to 0.2 to 80%
when the PtC ratio is 1.4. However, with nPP equals to.5, the
SMS varies from 27% when the PtC ratio is 0.2 and reached
the maximum SMS which is 80% when the PtC is 1.2.

Fig. 16 in Appendix C displays the SIS of C1 for varying
community sizes, PtC and nPP ratios. The SIS of C1 show
similar behaviour for all the communities and for all nPP
ratios. The SIS show close range of values for increasing PtC
ratios in the different communities. The range of SIS of C1
is from 8.5 % at a PtC ratio of 0.2 to 14.8 % at a PtC ratio
of 1.4. The SIS of C1 achieves its optimum in community E
when the nPP ratio is 0.5 with SIS varying from 12.5 % at
a PtC of 0.2 to 14.8 % at a PtC of 1.4. Figs. 17, 18 and 19
of Appendix C display the graph of the SIS for P1, C4 and
P5, respectively for varying community sizes, PtC and nPP
ratios.

5) COMPARISON OF ENERGY EXCHANGE
Fig. 12 displays the energy exchange within and outside the
local community for varying community sizes and nPP ratios.
Because of the advantages of medium and small communities
in the previous simulations, this section analyses the energy
exchange of the medium and small communities for nPP ratio
equals 0.3, 0.4 and 0.5. The internal traded energy is the
energy traded between the LETs for the whole simulation
time within the LEM. The energy import/export is the energy
imported/exported from/to the upstream grid. From Figs. 12b
and 12c, it is evidence that the external energy exchange
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FIGURE 10. Community self-sufficiency for varying PtC and nPP ratio, and community sizes.

FIGURE 11. Community SMS for varying PtC and nPP ratio, and community sizes.
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FIGURE 12. Energy exchange within and outside the local community for
varying nPP ratios.

with the upstream grid is relatively unaffected by the nPP
ratio. Hence, the energy import is about 120 MWh, 85MWh,
40MWh and 17MWh for C, D, E, and F communities
respectively. The nPP ratio affects mainly the internal energy
exchange between the LETs as shown in Fig. 12a. From
Fig. 12a, for all community types, nPP equals to 0.4 shows
the maximum internal traded energy with an internal traded
energy of about 40MWh in community C.

IV. EFFECTS OF LEM QUANTIFYING FACTORS ON
PERFORMANCE INDICATORS
In this section, the quantifying factors for participation in
an LEM based on DLT determined from the survey analysis

are used to evaluate how they can affect the performance
indicators of an LEM based on the simulation analysis. The
quantifying factors are analyzed on how they can affect the
performance indicators of LEM are the willingness to pay
more for renewable energy, interest in LEM and willingness
to join an LEM pilot project, willingness to join LEM based
on full DLT, and willingness to join LEM based on Hybrid
DLT.

A. WILLINGNESS TO PAY MORE FOR RENEWABLE
ENERGY
The willingness to pay more for renewable energy (WPMR)
is the consumers’/prosumers’ willingness to pay a certain
premium to buy renewable energy generated by produc-
ers/prosumers within their community. The survey results
show that up to 56.7% of the participants are willing to pay a
premium to have their energy sourced from renewable energy
production. Reference [38] showed that by considering con-
sumers/prosumers WPMR in a check and curtail combined
with highest-to-lowest and periodic double auction clearing
mechanism (CC-H2L-PDA), the traded energy of an LEM
will be increased by 36.4% compared to a standard periodic
market clearing mechanism. In a check and curtail LEM
clearing, the market checks unsatisfied bids and curtails them
before initiating another market clearing [38]. Furthermore,
considering WPMR in a CC-H2L-PDA increases the trade
price of the LEM by 12.0%. This paper will assume that
these results are suitable to be used in our model since it
was studied in a German case scenario and this data will be
used to formulate the effect of willingness to pay a premium
on the different performance indicators of the simulation
analysis.

1) SELF-SUFFICIENCY AND SELF-CONSUMPTION RATIO
The market self-sufficiency (SS) and self-consumption (SC)
ratios have similar characteristics at constant PtC ratio and
will have similar effect on increasing the energy traded. In a
community where 56.7% of the LEM participants are willing
to pay a premium to buy renewable generated energy as
received from the survey, and considering the result of the
effect (36.4% increase) of WPMR on the traded energy quan-
tity already established in literature [38], the overall increase
in SS and SC due to WPMR will be around 20% at constant
PtC ratio.

2) SHARE OF MARKET SAVINGS
The share of market savings (SMS) is already established as
the resultant savings of the market participants in an LEM
compared to when there is no LEM. In a market where
consumers are willing to pay more for the same amount
of electricity if it is coming from renewables, the resultant
effect will not change the SMS of the LEM. This is because,
the premium that is paid by the consumers is received by
the prosumers without changing the market savings. Hence,
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WPMR has no effect on the SMS of the LEM at a constant
PtC ratio.

3) SHARE OF INDIVIDUAL SAVINGS - CONSUMERS
An increase in the average trade price of LEM at constant
PtC ratio decreases the average consumer savings. The con-
sumer’s share of individual savings (SIS) is proportional to
the average consumer savings, increasing the LEM average
trade price decreases the consumers SIS. By considering the
effect of WPMR on the LEM trade price, we derive the
equations shown in Appendix B to show the effect of WPMR
on the consumers SIS. Hence, by considering the consumers
WPMR, the consumers’ SIS reduces according to Eq. (10).

4) SHARE OF INDIVIDUAL SAVINGS - PROSUMERS
An increase in the average trade price of LEM at a constant
PtC ratio increases the average prosumer savings. The pro-
sumer’s share of individual savings (SIS) is proportional to
the average prosumer savings, increasing the LEM average
trade price increase the prosumers SIS. The equations derived
in Appendix B show the effect of WPMR on the prosumers
SIS. Hence, by considering the consumers WPMR, the pro-
sumers SIS increases according to Eq. (12).

B. INTEREST IN LEM AND WILLINGNESS TO JOIN LEM
PILOT PROJECT
The survey results show that only 28.1% of the participants
are interested to join an LEM pilot project. This shows that
in the current maturity of LEM added with limited awareness
to local consumers, it is difficult to form an LEM of large
community at the start of an LEM pilot project. Therefore,
it is difficult to start a medium or large LEM community at the
current stage of LEM. With a high percentage of responders
willing to join in the future, the optimal values of an LEMper-
formance indicators obtained from the simulation results can
only be witnessed after some years from now. In summary,
all the simulation performance indicators are affected equally
by the willingness to join LEM pilot project. However, while
values of performance indicators are zero at the start of pilot
projects for the medium and large communities, it is expected
that after some years from now, the full results obtained from
the simulations can be achieved for all the community types.

C. WILLINGNESS TO JOIN LEM BASED ON FULL DLT
Developing LEM based on a full DLT features require devel-
opment of a platform for trading local energy that has the
capability to offer all the features of DLT including using
cryptocurrency for the payment of traded energy. LEMpartic-
ipants are required to be completely involved in such market
to make it a viable one because they need to be able to manage
their cryptocurrency by themselves. From the results of the
survey (Figs. 6 and 7), while 31 % of the participants are
neutral to utilizing LEM with full DLT features, 33 % will
not like to participate in such a market. If applied to the
community simulation, it means that not all members of the
community will be willing to participate in such a market

thereby reducing the performance of such a market. Hence,
with the current survey results, we conclude it that with the
current maturity stage of DLT, if a fully DLT based LEM
is implemented, that all LEM performance indicators will
reduce by at least 42% compared to the expected results from
the community simulation.

D. WILLINGNESS TO JOIN LEM BASED ON HYBRID DLT
LEM based on hybrid DLT is an LEM that combines selected
DLT features to implement a trading platform for consumers
and prosumers. The survey results of Fig. 7b shows that most
participants are interested in having selected features of DLT
such as trust and transparency in their LEM platform. Hence,
this will affect the level of participation in such market if
implemented and finally, increase the performance indicator
of such a market compared to an LEM based on a full DLT
features. The expected out come of Fig. 7b is that an LEM
based on hybrid DLT features will only reduce the expected
value of all the LEM performance indicators by 17%.

E. COMBINED QUANTIFYING FACTORS
The identified quantifying factors are combined in two dif-
ferent ways to evaluate the resultant effect on the LEM
performance indicators. The first scenario is the start of
a pilot project of an LEM based on full DLT where pro-
sumers and consumers are willing to pay premium for
renewable energy (SPP+LEMDLT+WPMR). The second
scenario is 5 years after the start of a pilot project of
an LEM based on hybrid DLT where prosumers and con-
sumers are willing to pay premium for renewable energy
(FASPP+LEMHDLTT+WPMR). The effect of the com-
bined quantifying factors on the performance indicators is the
resultant effect based on the combined factors.

Table 5 displays the summary of the effects of the quan-
tifying factors on the performance indicators for selected
communities (Comm.) of the simulation results, PtC and nPP
ratios equal to 0.8 and 0.4, respectively. In Table 5, value
means the original results determined from the simulation for
the performance indicator. Other columns show the value of
the performance indicator when the prosumers are willing to
paymore for renewable energy (WPMR), at the start of a pilot
project (SPP), five years after start of a pilot project (FASPP),
for LEM fully based on DLT (LEMDLT), for LEM based
on hybrid DLT (LEMHDLT), SPP+LEMDLT+WPMR sce-
nario (Comb.1) and FASPP+LEMHDLTT+WPMR sce-
nario (Comb.2). The complete results and input data are
explained in details and made open source which is acces-
sible from [39]. The best performance for all indicators is
witnessed at the Comb.2 scenario. The maximum SS for data
shown in Table 5 is 44.7% witnessed in community E. In the
same way, the maximum SC and SMS are 66.9% and 36.1%
resulting from communities B and D, respectively.

V. CONCLUSION
This paper presents an analysis of the quantifying factors for
participation in a blockchain-based LEM. The methods used
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TABLE 5. SS, SC and SMS for different LEM quantifying factors and varying community sizes with PtC ratio = 0.8 and nPP ratio = 0.4.

in this work were a survey analysis which was distributed
online among household consumers and prosumers, and a
community-based simulation of single layer LEM model
with varying community sizes and prosumers to consumers
ratios. The survey received a total of 261 responses and the
results analysis show that consumers and prosumers are more
interested in security of their supply, followed by economic
value that may arise from their consumption/supply before
ecological benefits. Also, the major reason for most con-
sumers and prosumers to participate in an LEM is to promote
renewable energy and the consumers/prosumers are willing
to pay more for renewable energy supply. While majority
of prosumers/consumers are willing to join LEM, most of
them are only willing to join pilot projects in the future. This
shows that most prosumers/consumers still do not trust new
technology. Also, themajor blockchain features that can drive
local electricity traders (LETs) into LEM are trust and trans-
parency. The community-based simulation analysis showed
that varying the annual production to consumption ratio has
more effect on the economic and technical benefits of LEM
compared to varying number of prosumers to total partic-
ipants (nPP) ratios. Also, medium and small communities
with nPP ratio between 0.3 to 0.5 create more economic and
technical benefits to LETs compared to large communities.

Finally, modelling the quantifying factors for participating
in a blockchain-based LEM with the community-based sim-
ulation results show that an optimal LEM based on DLT can
be achieved in the future in a community scenario where the
participants are willing to pay more to consume local renew-
able generated electricity and with a hybrid blockchain-based
LEM. In future work, a hybrid blockchain-based local energy
market framework will be developed based on the identified
blockchain features that attract consumers and prosumers to
trade in a blokchain based LEM such as transparency and
trust. Our model will be further extended to use intelligent

agents to determine the behaviours of the LEM performance
indicators outside the simulation range based on the input and
the results of the simulation.

APPENDIX A
SURVEY QUESTIONS AND SCREEN SHOOT
A. SURVEY QUESTIONS
1) ENVIRONMENTAL PROTECTION/ ENERGY
1. Where do you see yourself in this triangle? Please evaluate
the answers with a scale from 1-5 from the less important to
the most important aspect?

a. Security
b. Economy
c. Ecology
Remark:
1-not important,
2-less important
3-neutral
4-important
5-very important
2. Will you pay more for your electricity consumption only

to increase the usage of RES?
a. Yes
b. Maybe in the future
c. No 3. Please evaluate the answers with a scale from 1-5

from the less important to the most important aspect? Would
you prefer that the energy you consume is generated by:

a. Sustainable
b. Non-sustainable
c. Not-interested
Remark:
1-not important
2-less important
3-neutral
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4-important
5-very important

2) LOCAL ENERGY MARKET
*Video explanation of LEM (LO3 Energy Presents
Allgäu Microgrid at AÜW (Deutsch) - YouTube )
https://www.youtube.com/watch?v = dPhfKGQEdxY

1. During the time that your PV system is producing sur-
plus, would you sign up to participate by trading the surplus
energy in a local energy market?

a. I am part of LEM
b. Yes, very interested
c. Neutral
d. Not interested
2. Where do you/ would you prefer to share or trade your

energy?
a. Direct neighbors
b. Block/suburb
c. Village/city
d. It doesn’t matter
e. Other
3. Would you participate in LEM if you could:
a. Promote renewable energy systems
b. Part of Energy share Community
c. monetary winning from energy trading
d. I don’t want to participate
e. Other reasons
4. Would you be interested in joining a pilot community

project?
a. Yes
b. No c. Maybe in the future

3) ROLE OF TECHNOLOGY IN ENERGY SECTOR
1. How important is it for you to know in real time your load
consumption and/or production?

a. Very important
b. Important
c. Neutral
d. Less important
e. Not important
2. I trust the energy-apps, smart meter and intelligent bat-

teries?
a. Strongly disagree
b. Disagree
c. Neutral
d. Agree
e. Strongly agree

4) FUTURE ENERGY
According to (https://www.ewl.wiwi.uni-due.de/forschung
/forschungsprojekte-ewl/esys-energiesysteme-der-zukunft/)
This is what the future could look like in 2050: Generating
electricity primarily from wind and sun. Cars fill up with
electricity or hydrogen. Due to the increasing use of renew-
able energies, electricity is no longer produced in large power
plants, but also in smaller generation units. Private individuals

FIGURE 13. A Part of survey question displayed on SurveyMonkey
website.

and companies feed electricity into the grid with their own
systems. The citizens see the development as an opportunity
to actively help the energy transition.

1. Are you willing to use an alternative way of paying or to
be paid for energy trading?

a. Strongly agree
b. Agree
c. Neutral
d. Disagree
e. Strongly disagree
Alternative- Coupons, Vouchers. For a better understand-

ing check this video: How It Works | GrassrootsEconomics
2. How important are these features of energy trading in

local energy market for you:
1-not important
2-less important
3-neutral
4-important
5-very important
immutability 1 2 3 4 5
anonymity 1 2 3 4 5
transparency 1 2 3 4 5
decentralization 1 2 3 4 5
trust 1 2 3 4 5

5) GENERAL QUESTIONS
1. What‘s your age?

a. Below 30
b. 30- 55
c. Above 55
2. The yearly net incomes:
a. Below 35.000 e
b. 35.000-50.000 e
c. Above 50.000 e
3. Where do you live?:
a. Rented house/ apartment
b. Own house
c. Other
4. Are you aware of your monthly consumption?
5. Which operator or energy trader would you prefer to get

your energy from?
a. Local council
b. Local community energy group
c. Energy supplier/ retailer
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FIGURE 14. Economic indicators for varying PtC and nPP ratio in large communities.

FIGURE 15. Community self-consumption ratio for varying PtC and nPP ratio, and community sizes.
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FIGURE 16. C1 SIS for varying PtC and nPP ratio, and community sizes.

FIGURE 17. P1 SIS for varying PtC and nPP ratio, and community sizes.
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FIGURE 18. C4 SIS for varying PtC and nPP ratio, and community sizes.

FIGURE 19. P5 SIS for varying PtC and nPP ratio, and community sizes.
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B. SCREEN SHOOT OF PART OF SURVEY QUESTION
DISPLAYED ONLINE
Fig. 13.

APPENDIX B
DERIVED EQUATIONS FOR DETERMINING THE SIS

γ =
rwpmr − rpda

rpda
(8)

SISb,pda ≈
pg − rwpmr

pg
(9)

SISb,wpmr ≈
rwpmr
rpda

SISs,pda − γ × β (10)

SISs,pda ≈
rwpmr − pfit

pfit
(11)

SISs,wpmr ≈
rwpmr
rpda

SISs,pda + γ × β (12)

NOMENCLATURE
β Percentage of LEM participants from the

survey willing to pay premium to buy more
renewable energy.

γ Weighted average ratio of increase in trade
price for a market with WPMR compared to
standard PDA.

pfit Electricity sell price to grid in kWh.
pg Electricity buy price from grid in kWh.
rpda Average trade price for a standard PDAmar-

ket.
rwpmr Average trade price for WPMR market.
SISb,pda Consumers SIS in a standard PDA market.
SISb,wpmr Consumers SIS in a market that permits

WPMR.
SISs,pda Prosumers SIS in a standard PDA market.
SISs,wpmr Prosumers SIS in a market that permits

WPMR.

APPENDIX C
FURTHER SIMULATION BASED ANALYSIS RESULTS
See Figures 14, 15, 16, 17, 18, and 19.
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2 Analysis of local energy markets

2.2 Key performance indicator simulation based analysis

Contribution
The paper of this section presents a key performance indicator analysis of various lo-
cal energy market designs [119]. The analysis was conducted to determine the effect of
the quantity of electricity produced/consumed within the community, the participants
bidding strategy and pricing scenario on the performance of the LEM. The pricing sce-
narios are defined as “EEG” and “post-EEG” scenarios. The research started with a
preliminary work which was published at the 2020 IEEE Electric Power and Energy
Conference (EPEC) [128] and further extended to a journal paper [119]. In this paper,
a community based simulation set-up was developed using Grid Singularity framework
[120]. Within the framework, prosumers and consumers are enabled to trade energy with
each other in a 15-minutes time step. The market cleared after every 15-minutes and
energy not traded within the community is traded with the external grid which is the
upstream grid. The simulation is varied by changing the annual production to consump-
tion ratio within the community. Also, “residential households only” community was
simulated and compared with a community with a combination of residential, commer-
cial and industrial buildings. The evaluation was conducted for standard load profiles
[126, 127, 122, 123] and real household profiles in different simulation scenarios. The
real household profiles are load and PV profiles received from households and commer-
cial buildings in Southern Germany for the month of August 2020. The major findings
among other results revealed that the bidding strategy has more effect on the perfor-
mance of an LEM compared to production-to-consumption ratio. Also, changing from
the EEG to the post-EEG scenario creates additional market welfare to the consumers
and prosumers within the LEM.
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Analysis of Key Performance Indicators for
Local Electricity Markets’ Design

Analyse des indicateurs clés de performance pour la
conception des marchés locaux de l’électricité

Godwin C. Okwuibe , Member, IEEE, Mukund Wadhwa , Thomas Brenner,
Peter Tzscheutschler , and Thomas Hamacher

Abstract— Local electricity markets (LEMs) are investigated as a solution to provide consumers and prosumers
the opportunity to have control over their electricity-related choices and make savings on their energy bills. This
work analyzes market design factors, such as the number of update intervals per trading slot, the production-
to-consumption (PtC) ratio, and pricing scenarios that influence the performance of an LEM. The decentralized
autonomous area agent (D3A) has been used for running LEM simulations under the German regulatory
framework. The results of the simulations compared using self-sufficiency, the share of market savings, and
the average buying rate revealed that the performance of an LEM is highly dependent on the market design
factors. Also, bidding strategy affects the performance of an LEM compared to the share of the local generation.
The results imply that LEM can provide better incentives for both prosumers and consumers by providing
them with the opportunity to trade their excess generation at prices higher than the feed-in tariff and lower
their regular electricity tariff, respectively. With only a 20% reduction in average buying rate, it is also evident
that LEMs provide a great opportunity for keeping smaller PV systems active after their 20 years of fixed
remuneration under a state-sponsored incentive scheme in Germany.

Résumé— Les marchés locaux d’électricité (LEMs) sont étudiés comme une solution pour offrir aux
consommateurs et aux prosommateurs la possibilité de contrôler leurs choix en matière d’électricité et de
réaliser des économies sur leurs factures d’énergie. Ce travail analyse les facteurs de conception du marché,
tels que le nombre d’intervalles de mise à jour par créneau d’échange, le ratio production-consommation
(PtC) et les scénarios de tarification qui influencent la performance d’un LEM. L’agent de zone autonome
décentralisé (D3A) a été utilisé pour exécuter des simulations de LEM dans le cadre réglementaire allemand.
Les résultats des simulations comparées en utilisant l’autosuffisance, la part des économies de marché, et le
taux d’achat moyen ont révélé que la performance d’un LEM dépend fortement des facteurs de conception
du marché. En outre, la stratégie d’appel d’offres affecte la performance d’un LEM par rapport à la part
de la production locale. Les résultats impliquent qu’un LEM peut fournir de meilleures incitations à la fois
pour les prosommateurs et les consommateurs en leur donnant respectivement l’opportunité d’échanger leur
production excédentaire à des prix supérieurs au tarif de rachat et inférieurs à leur tarif d’électricité ordinaire.
Avec une réduction de seulement 20 % du tarif d’achat moyen, il est également évident que les LEMs offrent
une excellente opportunité de maintenir les petits systèmes PV actifs après leurs 20 ans de rémunération fixe
dans le cadre d’un programme d’incitation parrainé par l’État en Allemagne.

Index Terms— Bid, energy trading, trading price, trading agent, trading strategy.

I. INTRODUCTION

OVER the last two decades, Germany has been setting
an example on how a country can move from fossil
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fuel-based energy sources to low greenhouse gas emission
sources. Energy transition (German: Energiewende) was ini-
tially supported by providing financial incentives in form
of feed-in tariffs and preferential grid access to renewable
energy (RE) sources under the Renewable Energy Source
Act [German: Erneuerbare-Energien-Gesetz (EEG)] [1]. This
financial support resulted in the growth of the share of RE in
the electricity mix from 8.6% in 2002 to 50.5% in 2020 [2].
However, the significant increase in RE in the electricity mix
has created some problems on its own. The power generation
from variable RE (VRE) sources, such as wind and solar,
accounts for the majority share of RE in the electricity mix.
High shares of VREs require measures to be taken by the grid
operators for stabilizing the grid [3]. The cost of stabilizing
the grid and feed-in tariff payments to RE plant operators is
passed on to the end consumer in form of network charge
and EEG surcharge. In addition, other surcharges and levies
are also added in order to ensure that the RE plant operation

2694-1783 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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remains profitable. With the growth of VREs, the total cost of
electricity paid by the end customer has been rising compared
to neighboring countries, such as France [5], which has similar
household energy consumption, but did not heavily invest in
RE, such as Germany.

Consequently, the average price of electricity for a
residential household has increased from 13.94 EUR ct./kWh
in 2000 to 31.71 EUR ct./kWh in 2020, with only 23.4% as the
retail price [6]. The EEG support scheme for a low-capacity
(≤100 kWp) RE power plant is valid for a period of 20 years.
As a result, the first RE power plants installed under the
scheme in 2000 will drop out of the financial support scheme
in 2021. At the time of writing this work, no state-supported
alternatives are available for the RE power plants that will
stop receiving financial support via fixed feed-in tariff [7].
Therefore, continuing the operation of the smaller installations
might not be a viable option. In addition, investment in energy
assets, such as rooftop PV installations, heat pumps, and
E-vehicles, requires high capital costs. These options are only
available for consumers with significant disposable income.
The current alternative to support the energy transition is by
opting for a regular ecological energy tariff from the retailer.
Also, with the plans of phasing out nuclear and coal-fired
power plants by 2022 and 2038, respectively [9], there is
an even greater need to increase the power generation from
the RE sources (RESs). Part of the solution is increasing
the localized generation and ensuring that the consumption
happens close to the generation by using a local electricity
market (LEM).

The LEM approach is gaining attention and support from
researchers and businesses as a potential solution to increase
the end customer participation in the electricity value chain.
It provides an alternative approach to the traditional top-down
hierarchy of power generation where large power plants
generate electricity and transport it to the end customers
via long-distance transmission and distribution infrastructures.
LEMs also provide local electricity traders (LETs) with the
opportunity to select their electricity sources or buyers, trade
their small electricity volume, and decide the price that they
are willing to pay or receive per unit (kWh). Recent research
works in the area of LEM concentrate on the analysis of the
participatory factors, regulation requirements, market design
factors, and economic benefits of LEMs [10]–[12].

However, there is still no consensus on the market model to
best utilize the benefits of LEM. To this end, we try to answer
the following research questions.

1) What are the necessary conditions for the best and most
beneficial LEM?

2) What are the policy recommendations for using PV
power plants during the post-EEG time?

To answer these questions, we propose a framework for
local electricity trading among households in a community.
The effectiveness of the proposed model was evaluated using
standard and real household profiles simulated over a year
and one month, respectively. The markets were organized in
different simulation scenarios to show the effects of the design
factors. Technical and economic performances of the different
simulated markets were compared using indicators, such as

self-sufficiency (SS), the share of market savings (SMS),
the share of individual savings (SIS), and the average buying
rate. This work is an extension of the research done in [13].

The remaining parts of this work are structured as follows.
Section II discusses the previous works and literature in the
area of LEM. Section III describes the design approach and
defines the evaluation parameters. The simulation model and
data used are described in Section IV. Section V discusses the
simulation results in detail, while Section VI concludes this
article, giving information on how to further explore the topic.

II. RELATED WORK

The initial mention of LEMs in research was over two
decades ago [14], [15]. However, research on LEMs increased
significantly in the last decade with studies in the area
of the concept, methodology, trading design, trading agent,
transactional object, and participants [16]. However, most
research work in LEM focuses on case study analysis,
whereas the in-depth understanding of LEMs is only explored
recently [16]. Long et al. [17] in their work proposed three
peer-to-peer (P2P) energy trading mechanisms, namely, bill
sharing, mid-market ratio, and auction-based pricing strategy,
in a community microgrid with a common grid contact point.
The simulation results showed that, with moderate PV gen-
eration, P2P energy trading can result in the reduction of the
community energy bill by 30%. In their further work [18],
the authors implemented a battery-controlled optimized model
using an energy sharing coordinator for coordinating energy
trading in a common point grid-connected community micro-
grid. Comparing the model with conventional grid trading
results in a 30% reduction of cost for community local energy
traders, 20% increase in community SS, 10%–30% increase
in community self-consumption, reduction in customers elec-
tricity bills, and increase in annual income of the prosumers.
This eventually shows that LEM has the ability to yield
economic benefits for end electricity consumers. However,
Mengelkamp et al. [11] in their survey work show that val-
uation of green products, technology affinity, and community
identity are the most important factors for participation in
LEM. The research further concludes that community mem-
bers are willing to pay more to use RESs.

The role of trading design in a market is to provide
efficient allocation of the goods being traded between the
participants [19]. In the case of LEMs, the possibilities
for trading mechanisms vary significantly based on product
traded (retail electricity, flexibility, balancing energy, and
so on) and the goals of the different actors involved [16].
Mengelkamp et al. [16] in their review of existing literature
on LEMs found several designs, such as trading via an aggre-
gator, auction mechanism, direct trading mechanism between
agents, real-time pricing mechanism, traditional electricity
market design adopted for local market context, and intermar-
ket/microgrid trading. In their review, they found the auction
mechanism and direct trading mechanism between agents as
the most commonly used methods.

According to [20], market designs for community LEM
can be classified into full P2P, community-based, and hybrid
P2P markets. In full P2P markets, the community traders
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are allowed to choose their electricity trading partner. How-
ever, in a community-based LEM, a defined market clearing
mechanism is used to match bids (buy orders) and asks (sell
orders) of buyers and sellers, respectively. A hybrid P2P
market is a combination of full P2P and community-based
markets. Hybrid P2P trading shows better performance and
is more scalable [20]. Furthermore, the optimal economic
and technical benefits of LEM require intelligent bidding
strategies in a P2P LEM market clearing mechanism [21]–[23].
Several social, institutional, and economic issues faced in the
traditional top-down power systems approach can be addressed
by using a P2P federated power plant model. This can be
done by coordinating distributed energy resources (DERs) in a
community to act as virtual power plants [24]. The behavior of
end costumers can be affected using game theory bidding strat-
egy in a P2P trading model (ELECBAY) for grid-connected
low-voltage (LV) distribution network [25]. Zhou et al. [26]
use the economic and technical performance index to evaluate
three market clearing mechanisms, namely, supply–demand
ratio, bill sharing, and mid-market ratio from [17] and [27].
The simulation results show that P2P trading has the ability to
add economic and technical values for residential electricity
traders in Great Britain. Also, the supply–demand ratio clear-
ing mechanism shows a better performance indicator compared
to the other three clearing mechanisms. Further discussions on
LEM design can be found on [28]–[31], while most recent
research on market design is focusing on using machine
learning models to coordinate LEM [32], [33].

Furthermore, LEM is gradually moving from laboratory
experimental research to proof-of-concept projects [34]. The
advent of blockchain attracted more research works [35]–[37]
and projects in LEM as its believed that blockchain technolo-
gies can unlock most benefits of LEM [38], [39]. In this work,
key performance indicators (KPIs) for evaluating an LEM are
used to analyze the market factors for designing an LEM.

III. LOCAL ELECTRICITY MARKET

Within this section, the market architecture, event sequence,
clearing mechanism, energy trading, and evaluation parame-
ters are described. Only the function layer of an LEM as
described under the smart grid architecture model (SGAM)
to evaluate the market trading infrastructure is used for the
LEM design [40].

A. Market Architecture

Fig. 1 illustrates the actors, software components, hardware
components, and information flow of the proposed LEM
framework. The physical actors of the LEM are LETs (con-
sumers and prosumers), aggregators, retailers, and distribution
systems’ operators (DSOs). The virtual actors are LET’s trad-
ing agents and exchange engine. The hardware components
are the smart meter gateway (SMGW) and the household
energy management system (HEMS). LETs are end consumers
and prosumers in the electricity network living together in
a locality that wishes to trade electricity among themselves.
For a prosumer or consumer to participate in local electricity
trading, they need to make a contractual agreement with the

Fig. 1. Local energy market framework.

aggregator to show their willingness to join the energy trading
community. If not already installed, the prosumer or consumer
household/building needs to be equipped with SMGW and
HEMS. The SMGW is used to measure and communicate
the real-time production/consumption of the prosumer or con-
sumer. HEMS is used to predict the future (next 15 min)
energy requirements of the prosumer/consumer household.
The LET trading agent is a Python-based program that decides
the trading price for the LET and is responsible for posting the
ask or bid to the exchange engine. Exchange engine is an
open-source back-end code-base decentralized autonomous
area agent (D3A) developed by grid singularity [41]. The
exchange engine is used to match bids and asks in real time
using an agreed market clearing mechanism. Retailers are
responsible for providing/consuming the deficit/excess energy
requirements of their customers. Retailers have an agreement
with DSO to provide the net requirements of their customers.
Furthermore, DSO is responsible for maintaining the grid. The
aggregator is a separate entity responsible for connecting the
prosumers and consumers to the LEM and providing them with
their trading agent. They are also responsible for the settlement
and transfer of funds from one actor to the other.

B. Event Sequence and Clearing Mechanism

1) Event Sequence: Fig. 2 shows the event sequence of
the proposed LEM for a period of 30 min. LET agents post
their bids and asks the LEM within the 15-min interval before
the start of the 15-min energy exchange interval. The LEM
trading interval is known as the slot length. Section III-B2
describes the clearing mechanism. Orders not matched until
the end of the slot length are matched to the retailer selected
by the LET. Exchange of the traded energy among the LETs
happens during the 15-min interval (16th–30th minutes) from
the end of the bidding and clearing period. At the end of
the energy exchange interval, funds are transferred from the
account of the electricity consumers (LETs) to the producers
(LETs or retailers). Grid fee applicable on the traded energy
is transferred from the buyer’s account, i.e., consumer account
to the DSO.

2) Clearing Mechanism: In an LEM, the double-sided pay-
as-bid clearing mechanism offers more advantages compared
to the order book market clearing mechanism [21]. The
advantages are higher self-consumption, a higher percent-
age of traded electricity, and lower overall trade price [21].
These advantages of double-sided pay-as-bid over merit order
clearing mechanism with gate closure form the bedrock
for choosing a continuous double-sided pay-as-bid for the
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Fig. 2. LEM event sequence.

proposed model. The first 15-min time of Fig. 2 illustrates a
double-sided pay-as-bid clearing mechanism. Since the mech-
anism is a continuous clearing, bids and asks are matched
immediately, and a bid price is higher than an ask price. The
price paid by the consumer after matching is the consumer’s
bid price. During the trading period, LET’s agents can also
update their bid/ask price if unmatched or partially matched.
The update interval is the time after which an LET can update
their bids/asks if unmatched or partially matched. The number
of intervals is defined as the number of times an LET can
update its bid/ask if unmatched or partially matched within the
slot length. For a market with slot length, Ls (min), and update
interval, Li (min), the number of intervals, Ni , is defined as

Ni = Ls

Li
. (1)

Fig. 2 shows a market with 5-min update intervals; there-
fore, the total number of intervals is 3. This means that the
house agents (e.g., H1, H2, H3, and H4) can only update their
bids/asks three times within a trading period. Within the first
update interval (0–5 min), since H1 ask arrived before H4,
H3 was matched to H1 to trade 5 kWh of electricity at H3’s
bid price (17ct./kWh). Since H3 was fully matched at the first
interval, the H3 agent did not update their bid for the second
and third intervals. However, H1’s ask was partially matched.
The unmatched bids of H2 and H4 were updated by their
agents and sent to the clearing platform. For the second update
interval, the updated price of the remaining bids is less than all
the ask prices, and therefore, no matching can take place. The
orders were updated by the agents again for the last update
interval. Within the last update interval, all the bid prices are
higher than the asks prices. However, H4 ask arrived before
H1, and therefore, H2 is matched to trade 3 kWh with H4 at
15 ct./kWh. Afterward, H2 is matched to trade its remaining
1 kWh at 15 ct./kWh with H1. Since this is the last update
interval, the remaining 2 kWh of H1 is traded with the retailer
at the end of the update interval. Trading with the retailers is
always less beneficial compared to the LET’s trading among
each other. Retailers’ buy and sell prices form the lower and
upper boundary of the trading price and usually the last option
for the LETs. The retailers’ buy price is the feed-in tariff.

C. Energy Trading in a Local Grid

To determine the energy and monetary balance of a house-
hold, we consider a local community consisting of N LETs in

the local grid further referred to as agents. The constraints of
the power lines are not considered. The feed-in of RE into the
grid is assumed to be reimbursed by the retailer. For an LET i
who owns a PV in their household, at time step t , the load and
the generation in their PV system happening in time step t +1
are represented as E L

i,t [kWh] and E P V
i,t [kWh], respectively.

Energy inflow and outflow are taken as positive and negative,
respectively. The net energy to be traded by the LET i at time
step t is defined as

E Net
i,t [kWh] = E L

i,t + E P V
i,t . (2)

A negative value of E Net
i,t [kWh] means that the LET i is

producing energy at time step t , while a positive value of
E Net

i,t [kWh] means that the LET i is consuming energy at
time step t . Therefore, a prosumer with a roof-top PV in their
household can act as a consumer and a producer depending
on their net energy at time step t .

1) Status Quo: Within this scenario, the local agent i can
only fulfill their net energy requirements E Net

i,t [kWh] by
trading with the retailer. The energy traded between the agent
i and the retailer u is assumed to be at a constant selling
and buying rate of r S

i,u and r B
i,u [ct./kWh], respectively, for all

the time steps t . r S
i,u is taken as the fixed feed-in tariff of r f

i
received for supplying energy into the public grid, while r B

i,u
combines retailer’s opportunity cost of ropp

u , value-added-tax
(VAT) of x vat %, and other applicable taxes, surcharges, and
levies of r tax . The equations for r S

i,u and r B
i,u can be defined as

r S
i,u[ct ./kWh] = r f

i (3)

r B
i,u[ct ./kWh] = (

ropp,B
u + r tax

)(
1 + x vat/100

)
. (4)

Consequently, the energy and monetary balance under the
status quo for agent i is represented as

E Net
i,t [kWh] = Eext

i,t = Eext,in
i,t + Eext,out

i,t (5)

�S
i,t [ct .] = Eext,in

i,t r B
u + Eext,out

i,t r S
u . (6)

Here, Eext
i,t [kWh] and �S

i,t [ct.] are the sum of externally
traded energy (i.e., outside the established LEM boundary)
and the monetary balance, respectively, at the end of trading
slot t . Under status quo, the established boundary is an agent’s
point of connection to the external grid. For an LET i , Eext,in

i,t
[kWh] and Eext,out

i,t [kWh] represent the external inflows and
outflows of energy at time step t .
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2) With LEM: For this scenario, a virtual layer of LEM
is added to the local community. The external boundary is
considered to be the single connection point of LEM with
the rest of the local grid. After determining their net energy
requirements E Net

i,t [kWh], the LETs post their asks or bids
to the LEM platform for the next time step t + 1. The ask
contains the excess energy production E Net

i,t [kWh], and the
price r S

i [ct./kWh] that highlight the opportunity cost of ropp,S
i

LET i is willing to accept. This bid contains the energy
demand E Net

i,t [kWh], and the price r B
i [ct./kWh] the LET i is

willing to pay per kWh of electricity. Similar to status quo,
r B

i is calculated as a combination of opportunity cost LET i
is willing to pay ropp,B

i , VAT of x vat %, and other applicable
taxes, surcharges, and levies of r tax . The equations for r S

i and
r B

i can be defined as

r S
i [ct ./kWh] = ropp,S

i (7)

r B
i [ct ./kWh] = (

ropp,B
i + r tax

)(
1 + x vat/100

)
. (8)

The market is assumed to match viable bids and asks while
taking the additional taxes and levies into account. The viable
bids and asks are matched within the platform using the pay-
as-bid mechanism. Assume a match between LET i and LET
j to trade Etrade

i, j,t [kWh] at the rate of r trade
i, j,t [ct./kWh] since

the trade rate in a pay-as-bid mechanism is the buyer’s bid,
which includes the taxes and levies that are applicable on
the trade. Therefore, the trade rates for buyers and sellers
would be different and can be defined as buyer’s trade rate
r trade,B

i, j,t [ct./kWh] and seller’s trade rate r trade,S
i, j,t [ct./kWh]. The

equations for r trade,B
i, j,t and r trade,S

i, j,t can be defined as

r trade,B
i, j,t [ct ./kWh] = r trade

i, j,t (9)

r trade,S
i, j,t [ct ./kWh] = r trade

j,i,t

1 + x vat/100
− r tax . (10)

Consequently, Etrade
i, j,t can be further divided into

buying trade, i.e., Etrade,B
i, j,t [kWh] and selling trade,

i.e., Etrade,S
i, j,t [kWh] between LETs i and j . The residual

generation Eext,out
i,t [kWh] and load Eext,in

i,t [kWh] not traded
within the LEM are fulfilled by the retailer at a selling and
buying rate of r S

i,u and r B
i,u [ct./kWh], respectively. As a result,

the energy E Net
i,t [kWh] and the monetary balance �L E M

i,t [ct.]
of the LET i at time step t are shown in (11) and (12),
respectively

E Net
i,t = �N

j

(
Etrade,B

i, j,t + Etrade,S
i, j,t

) + Eext,in
i,t + Eext,out

i,t (11)

�L E M
i,t = �N

j

(
Etrade,B

i, j,t r trade,B
i, j,t + Etrade,S

i, j,t r trade,S
i, j,t

)

+Eext,in
i,t r B

u + Eext,out
i,t r S

u . (12)

D. Parameters for Evaluating an LEM

The KPIs provide the opportunity to evaluate the effect
or the importance of the factors used in the design of an
LEM. The KPIs used in this work are the percentage of SS,
SIS, average buying rate, and SMS. The model described in
Section III-C is used to derive the mathematical formulations
for the KPIs of an LEM that operates for a period of T .

1) Self-Sufficiency: SS of an LEM is the percentage of the
local generation that is used to fulfill the energy requirements
of the LEM without using any external sources [42]. Mathe-
matically, it is the ratio of the sum of internal traded energy
within the LEM and self-consumption of the individual house-
holds to the total load demand of the LEM. Mathematically,
it is represented as

SS =
∑N ∑T (

Etrade
i, j,t + |E L

i,t − Eext,in
i,t |)

∑N ∑T E L
i,t

× 100. (13)

2) Share of Individual Savings: SIS is the share of the
revenue made by individual LETs for trading within the
LEM to trading without an LEM [22]. Mathematically, it is
represented as

SI S =
∑T

t

(
�S

i,t − �L E M
i,t

)
∑T

t �S
i,t

× 100. (14)

3) Share of Market Savings: SMS is the sum of the total
revenue made by all LETs for trading within the LEM com-
pared to the status quo. Mathematically, it is represented as

SM S =
∑T

t

∑N
i

(
�S

i,t − �L E M
i,t

)
∑T

t

∑N
i �S

i,t

× 100. (15)

4) Average Buying Rate: The average buying rate is the
average price of the total electricity traded among LETs N
over a period T , in an LEM. ABR gives the local traders an
indication of the extent the market is favoring buyers or sellers.
Mathematically, it is represented as

AB R[ct ./kWh] =
∑T

t

∑N
i

(
Etrade

i, j,t r trade
i, j,t

)
∑T

t

∑N
i Etrade

i, j,t

. (16)

IV. SIMULATIONS

In order to analyze the effect of different LEM design
factors, simulations of the designs were conducted using the
back-end code base of the D3A framework. Retailers act
as a backup to the LEMs to provide the residual energy
requirements not fulfilled within the LEM. Furthermore, flex-
ible, storage devices, and physical restrictions (electrical and
thermal) of the local grid were not considered. An intraday
market in a continuous double-sided auction pay-as-bid market
clearing mechanism, where LETs can post their orders 15 min
before delivery time, was used. Since the consumption and
production profiles are provided to the platform as input data,
settlement or balancing market is not required after market
clearing. Each LET uses a zero intelligent bidding strategy
where a random price is selected within a price range to bid
for electricity within the local market platform.

Table I displays the components of the electricity pricing
structure for households and commercial (with yearly con-
sumption lower than 100 MWh) customers in Germany for
the year 2020 [6]. As shown in table, electricity price is
a combination of opportunity cost, network charges, various
taxes, levies, and surcharges. Currently, there is no regulation
available for establishing the pricing structure of an LEM in
Germany. However, a regulatory niche under Energy Industry
Act [German: Energiewirtschaftsgesetz (EnWG)] known as
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TABLE I

COMPONENTS OF ELECTRICITY PRICE IN GERMANY FOR 2020

TABLE II

EEG MINIMUM AND MAXIMUM TRADING PRICES FOR LEM

“Customer Systems” (German: Kundenanlage) can be used to
formulate the pricing structure for trading electricity among
participants in an LEM under current regulations [43]. As an
LEM can be legally defined as a Customer System, all levies
and certain taxes applicable to household electricity prices
are avoided. If an LEM is considered to be established in
a physical microgrid setting, the fees that can be avoided
are grid fees and electricity tax. Network charges are not
applicable as small VRE generators do not legally qualify as an
energy supplier and, therefore, cannot raise the grid-usage fee.
As all the levies applicable to the price of electricity arise due
to grid-related issues, they are also not applicable. Accord-
ing to 12b of Electricity Tax Act [German: Stromsteuer-
Durchführungsverordnung (StromStV)], the electricity tax is
only applicable to electricity produced by generators with a
nominal power of over 2 MW [44]. As the generators in the
LEM are all considerably smaller than the limit, electricity
taxes are also avoided.

Tables II and III show the detailed cost of electricity in an
LEM and minimum and maximum trading prices for different
seller–buyer pairs for EEG and post-EEG time, respectively.
The price components of trading electricity within an LEM
consist of the opportunity cost of the electricity seller, metering
fee, EEG surcharge, and 19% VAT. Within the EEG scenarios,
the minimum opportunity cost for sellers is based on the fixed
feed-in tariff received by the residential (H) and commer-
cial (G) prosumers.

The different simulation scenarios were obtained by varying
the number of intervals (Ni ), the production-to-consumption
(PtC) ratio, and the electricity pricing type. Ni was varied
from 1 to 5 for the different PtC categories. Two pricing
types, namely, “EEG scenarios” and “post-EEG scenarios”
were investigated. EEG scenarios consider that LETs with
rooftop PV on their household are eligible for the fixed feed-in
tariff under EEG. However, this would require a change in the

TABLE III

POST-EEG MINIMUM AND MAXIMUM TRADING PRICES FOR LEM

current regulation “Doppelvermarktungsverbot,” which does
not allow additional markets on top of the EEG scheme.
Post-EEG scenarios assume that the PV owner has already
received 20 years of remuneration under EEG and, conse-
quently, has to shut down their PV systems if they are unable to
sell their excess electricity within the LEM. Depending on the
simulation data, the simulations were categorized into standard
and real profile simulations. Standard profile simulations are
simulations performed using household and commercial load
and PV profiles from standard load and PV profiles. Real
profile simulations are simulations performed using house-
hold and commercial load and PV profiles received from
household and commercial buildings installed with SMGW
and IR sensor-based reader combined with digital meters
for measuring and communicating the metering data to the
back-end database, respectively.

A. Standard Profile

The LEMs for this category were simulated for a year with
306 LETs made of 252 households, 18 office buildings, and
36 small manufacturing facilities, in 36 scenarios created by
changing the combination of participants and the PtC ratio.
The LETs for this category were classified into two simu-
lation classes, namely, Class-1 and Class-2. Class-1 includes
scenarios with residential households made of four prosumers
and six consumers in different PtC ratios. Class-2 includes
scenarios with four residential households, a bakery, an office
building with PV, and a small manufacturing facility with
PV in different PtC ratios. The PtC ratios are categorized
into low (class-1 [0.2, 0.4] and class-2 [0.4, 0.6]), medium
(class-1 (0.4, 0.6] and class-2 (0.6, 0.8]), and high (class-1
(0.6, 0.8] and class-2 (0.8, 1.0]). The household load con-
sumption profile used for the simulation was generated using
LoadProfileGenerator [45], [46] and standard load profile for
the year 2019 from VDEW [47], [48]. The factors considered
while generating the profiles were the number of people
living in the household, their working schedule, types of
household appliances used, and weather conditions for the
Stuttgart region. The standard G1, G3, and G5 load profiles
from StromNetz Berlin for the year 2019 [47] were used for
the commercial load profiles. Consumption time series for
all participants were scaled to 10 MWh/year for comparison.
The annual consumption for the residential households was
chosen to stay between 1600 to 5500 kWh while, for the office
buildings and manufacturing facilities, between 27 000 and
52 000 kWh, respectively. In order to use unique consump-
tion profiles for every household and commercial building,
the standard load profiles were modified by adding an error
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Fig. 3. SS for EEG scenarios with standard profiles.

of 5%–30% randomly for each time step of every profile.
The PV generation profiles were generated based on analysis
from [49] using Renewables Ninja [50] for the region of
Stuttgart. The PV systems’ losses were varied between 5%
and 15%, the tilt of all the PV systems were taken as 35◦, and
the profiles are scaled to fit the different PtC categories.

B. Real Household and Commercial Profiles

For this simulation category, 414 LETs made of 150 house-
holds and 264 commercial buildings were combined in 30 sce-
narios created by changing the combination of participants and
the PtC ratio. The PtC were classified into very low [0.4, 0.5),
low [0.5, 0.6), medium [0.6, 0.8], high (0.8, 1.0], and very
high (1.0, 1.4). The load and PV profiles were collected from
households and commercial buildings in Southern Germany
for the month of August 2020. Standard load profiles were
added to the profiles to fit the different PtC categories.
In addition, the data from one of the large PV farms were
scaled down by 1000, 300, 150, and 96 to achieve the low,
medium, high, and very high (High**) PtC ratios, respectively.
The very low (**Low) PtC category scenarios are where the
large PV farm generation is zero.

V. RESULTS AND DISCUSSION

Within this section, the results of the simulations introduced
in Section IV are discussed and visualized.

A. Standard Profiles

1) Number of Intervals and Ratio of Production to
Consumption:

a) Self-sufficiency: Fig. 3 displays the changes in SS
as Ni increases from 1 to 5 and the PtC ratio from low
to high for class-1 and class-2. For low PtC ratio, as Ni

increases from 1 to 5, SS for class-1 and class-2 increases from
25.4% to 28.4% and 36.1% to 37.6%, respectively. However,
the increase in SS as Ni increases from 1 to 3 is higher than
from 3 to 5. Increasing Ni of the LETs provides the oppor-
tunity for more bids and asks to match and, thereby, increase
the volume of energy traded and, consequently, increases the
SS of the LEM. However, the effect reduces with the change

Fig. 4. SMS for EEG scenarios with standard profiles.

of Ni from 3 to 5. This is because the LETs are already able
to utilize the majority of the energy generated in the LEM,
and the market is approaching its limit of SS without smart
appliances or storage options.

Furthermore, for Ni equals five, as PtC increases from low
to high, SS for class-1 and class-2 increases from 28.4% to
39.3% and 37.6% to 48.1%, respectively. For the same number
of LETs, higher PtC leads to higher SS. Consequently, a higher
volume of energy generation in the LEM leads to a bigger
share of LEM’s consumption being satisfied within the market.
Hence, this brings about a large share of energy being traded
in the market and, as a result, increases in SS. However, as the
PtC increases, the SS of the LEM peaks and levels off. This
is due to the misalignment of generation and consumption
patterns. As the generation from rooftop PV is dependent on
solar irradiation, it cannot supply during the night. Therefore,
increasing the size of the PV generation cannot cover all the
energy demands of the market.

b) Share of market savings: Fig. 4 shows the variation in
SMS as Ni increases from 1 to 5 and the PtC ratio from low
to high for class-1 and class-2. For low PtC ratio, increasing
Ni from 1 to 5 increases the SMS for class-1 and class-2 from
2.3% to 3.4% and 2.8% to 3.6%, respectively. Similar to SS,
the increase in SMS as Ni increases from 1 to 3 is higher than
from 3 to 5. This is also due to the fact that LETs have already
bought the majority of the energy generated in the LEM, and
the market is approaching its maximum limit of SMS without
flexibility options. For Ni equals five, as PtC increases from
low to high, SMS for class-1 and class-2 increases from 3.4%
to 8.2% and 3.6% to 8.5%, respectively. Also, for the same
number of LETs, higher PtC leads to higher SMS. Hence,
it is also evident that higher PtC results in a bigger share
of LEM’s consumption being satisfied within the market. This
brings about a large share of energy being traded in the market
and consequently, an increase in SMS. The reverse is the case
for a low PtC.

2) EEG and Post-EEG Scenarios:
a) Self-sufficiency: The SS for EEG and post-EEG pric-

ing scenarios with class-1 and class-2 LETs under different
PtC categories was calculated and analyzed. Changing from
EEG to post-EEG pricing scenario brings about a slight
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Fig. 5. SMS for EEG and post-EEG scenarios with standard profiles.

Fig. 6. Average buying rate for EEG and post-EEG scenarios with standard
profiles.

average increase in about 0.17% on the SS of the LEM. This
change is insignificant because there is no new generation
added to the LEM and the trading strategy of all the par-
ticipants did not change.

b) Share of market savings: The SMS for EEG and
post-EEG pricing scenarios with class-1 and class-2 LETs
under different PtC categories is shown in Fig. 5. Changing the
pricing scenario from EEG to post-EEG increases the SMS.
The average increase in the SMS is about 6.3%.

c) Average buying rate: Fig. 6 shows the average buying
rates for EEG and post-EEG pricing scenarios with class-1 and
class-2 LETs under different PtC categories. Varying the price
from EEG to post-EEG scenario decreases the average buying
rate by 5 EUR ct./kWh. This reduction is 20% of the average
buying rate for the EEG scenario.

Removal of the fixed feed-in tariff in the post-EEG scenario
provides the prosumers with no other option than to sell their
excess generation in the LEM at any available cost. Therefore,
it increases the probability of the buyers having a successful
bid at a lower price. The lower cost of electricity leads to
higher savings for consumers in the post-EEG scenario, which,
in turn, results in an overall increase in SMS. Prosumers are
still able to get compensated for their excess generation, which
would ultimately save them money enough to compensate for

Fig. 7. SS for EEG scenarios with real household and commercial profiles.

their opportunity cost compared to the status quo where they
are not able to sell their excess generation.

B. Real Household and Commercial Profiles

1) Number of Intervals and Ratio of Production to
Consumption:

a) Self-sufficiency: Shown in Fig. 7 is the variation in SS
as Ni changes from 1 to 5 and the PtC ratio from very low
to very high for real household and commercial profiles. For
a very low PtC ratio, as Ni varies from 1 to 5, SS increases
from 18.3% to 39.0%. Similar to the standard load profile,
there is a higher increase in SS for changing Ni from 1 to
3 compared to increasing Ni from 3 to 5. Increasing Ni means
using a more accurate bidding strategy and, hence, an increase
in traded volume results in an increase in SS. Furthermore, for
the same number of LETs, increasing the PtC ratio results
in an increase in the volume of energy to be traded and,
consequently, an increase in SS. Changing the bid strategy
to a more accurate strategy results in a higher increase in SS
compared to increasing the PtC ratio. This is because a more
accurate strategy results in matching most bids and asks within
the LEM, while higher PtC ratio results in providing more
energy to be traded within the LEM, which, if the strategy is
not accurate, will not be traded. The SS of the real household
and commercial profiles is higher compared to the standard
profile of the same simulation setup and bid strategy. This is
because the PV production of the month of August is higher
compared to the average annual PV production. However,
varying the PtC ratio and bid strategies results in a similar
change in SS for both standard and real profiles.

b) Share of market savings: Fig. 8 shows the variation
in the SMS by varying Ni from 1 to 5 and the PtC ratio
from very low to very high for real household and commercial
profiles. For a very low PtC ratio, increasing Ni from 1 to 5
results in an increase in the SMS from 3.1% to 10.6%. Also,
similar to standard profiles, increasing Ni from 1 to 3 results
in higher SMS compared to increasing it from 3 to 5. This
is also because the LETs have already bought most of the
available generated energy within the LEM using an accurate
strategy and, therefore, approaching the maximum SMS at
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Fig. 8. SMS for EEG scenarios with real household and commercial profiles.

Fig. 9. SIS for household and commercial consumers.

which flexibility and storage options are required to increase
the SMS. Also, increasing the PtC ratio results in an increase in
the SMS of the local community. Furthermore, the SMS of the
real households and commercial profiles is higher compared
to the standard profile of the same simulation setup and bid
strategy. This is also due to the fact that the PV production
of the month of August is higher compared to the average
annual PV production. However, varying the PtC ratio and
bid strategies results in a similar variation of SMS for both
standard and real profiles.

c) Share of individual savings—consumers: Fig. 9 shows
the variation in the SIS by varying Ni from 1 to 5 and the PtC
ratio from very low to very high for real household and com-
mercial consumer profiles. Similar to SS and SMS, increasing
the PtC ratio and Ni increases the SIS of both household
and commercial consumers. Also, increasing Ni results in
a higher increase in SIS compared to increasing PtC ratio.
For each bidding strategy and PtC ratio, household consumers
show a higher SIS compared to commercial consumers. This
is because the bidding range of the household consumers is
higher compared to the commercial consumers for each trading
strategy. Also, since the retail price of electricity, as shown
in Table I, is lower for commercial consumers compared

Fig. 10. SIS for household and commercial prosumers.

to household consumers, it is more profitable for household
consumers to trade on an LEM compared to commercial con-
sumers and, hence, the higher SIS of the household consumers.

d) Share of individual savings—prosumers: Fig. 10
shows the variation in the SIS by varying Ni from 1 to 5 and
the PtC ratio from very low to very high for real household
and commercial prosumer profiles. In overall, increasing Ni

results in an increase in SIS for both prosumers; however,
increasing the PtC ratio results in a decrease in the SIS
for both prosumers. Increasing Ni results in an increase
in the bidding accuracy and, hence, creates the opportunity
for the prosumers to sell their energy at a higher price,
which, in turn, results in higher SIS. On the other hand,
increasing the PtC ratio decreases the SIS of the prosumers
because the individual excess energy of the prosumer did
not increase; however, the opportunity for the consumers to
trade with other producers increases. Hence, increasing the
PtC ratio decreases the trading opportunity of the prosumers
and, hence, leads to a reduction in the SIS of the individual
prosumers. Similar to the SIS of the consumers, for each
bidding strategy and PtC ratio, household prosumers show
a higher SIS compared to commercial prosumers. This is as
a result of the higher opportunity cost and bidding range of
the household prosumers compared to commercial prosumers,
as shown in Tables I and II, respectively.

2) EEG and Post-EEG Scenarios:
a) Self-sufficiency: Fig. 11 shows the SS for EEG and

post-EEG pricing scenarios with real profiles. Changing the
pricing scenarios from EEG to post-EEG results in an average
increase in the SS of about 1.1%. This change is because of
the increase in the bidding range of the post-EEG scenarios.
However, similar to the standard profiles, the change in SS is
small because there is no new generation added to the LEMs
and the trading strategy is constant.

b) Share of market savings: The SMS for EEG and
post-EEG pricing scenarios under different PtC ratios with
real household and commercial profiles using Ni equals 5 is
shown in Fig. 12. Similar to the standard profile, changing
from EEG to post-EEG pricing scenario increases the SMS
by an average of about 6.5%. This change is also a result
of the increase in the bidding range in the post-EEG scenario.
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Fig. 11. SS for EEG and post-EEG scenarios with real household and
consumption profiles.

Fig. 12. SMS for EEG and post-EEG scenarios.

Fig. 13. Average buying rate for EEG and post-EEG scenarios.

Increasing the bidding range results in a more accurate bidding
strategy, which, in turn, results in higher SMS.

c) Average buying rate: Fig. 13 shows the average buy-
ing rates for EEG and post-EEG pricing scenarios with Ni

equals 5, under different PtC categories of real household and
commercial profiles. Changing from EEG to post-EEG sce-
nario decreases the average buying rate by 4.2 EUR ct./kWh.
This reduction is 18% of the average buying rate for the

EEG scenario and close to the 20% obtained for the standard
profiles.

During the post-EEG scenario, prosumers sell their excess
energy at available cost providing an opportunity for the
consumers to buy energy at a lower cost compared to EEG
scenarios for both standard and real household profiles. This
higher bidding range results in an overall increase in SMS,
a slight increase in SS, and a reduced average buying rate.
The increase in SMS and SS witnessed with the real household
profile compared to the standard profile is because the month
of August has higher PV production compared to the average
annual PV production in Southern Germany.

VI. CONCLUSION AND OUTLOOK

Apart from increasing the community SS, LEMs offer more
financial benefits to the LETs compared to trading with the
retailers. This work verified the usability and effectiveness of
an LEM by conducting an analysis of LEMs under the current
regulatory framework and incentive schemes in Germany.
Multiple microgrid configurations were simulated using a
continuous double-sided pay-as-bid market auction in the
D3A simulation framework with a multiround zero intelligent
bidding strategy. The followings form the key findings of the
research.

1) Positive (increasing number of update intervals) varia-
tion of the number of update intervals per trading slot
results in an increased bidding accuracy, which further
brings about an increase in SS and SMS of the LEM.

2) Increasing the share of the local generation (i.e., High
PtC) in the LEM creates high liquidity in the market.
Thus, the traded volumes increase, while a decrease in
the average buying rate is observed.

3) Increasing the share of generation of an LEM also leads
to an increase in the SMS.

4) Changing from EEG to post-EEG regulations creates
additional market welfare to the LETs.

5) The greater effect of the number of update intervals
compared to the share of local generation shows that
bidding strategy has more effect on the performance of
an LEM compared to the share of local generation within
the LEM.

6) Increasing the number of update intervals in a multi-
round auction LEM beyond three advances the SS only
a little. This is because the LEM is approaching its
maximum SS at which it requires flexibility or storage
device in the form of power-to-heat, electric vehicles,
or stationary storage devices to further increase the SS.

LEM has the ability to create valuable financial support for
prosumers after the fixed feed-in tariff under EEG expires and,
hence, can enable them to retain their electricity production
and, consequently, maintain the share of RE within the grid.
Furthermore, LEMs provide better financial incentives for the
end customer to invest in energy assets compared to the
existing state-sponsored incentive schemes. Therefore, LEMs
can be a bigger driving force to increase small-scale RE
generation and other energy assets. In addition, LEMs can
provide the disfranchised energy end customer a better way to
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contribute to the energy transition. This, in turn, contributes
in reaching the decarbonization goal within the electricity
sector and further reduces the dependency on feed-in tariff.
For efficient and effective running of LEM without putting
charges on end consumers who do not participate in LEM,
there should be a regulatory framework responsible for sharing
of taxes and levies among LEM participants only. In addition,
the German regulatory system needs to extend its framework
to include pathways for the creation of LEMs and define the
roles and responsibilities of the different actors required for
its efficient working.

To further extend this work, future research will focus on
simulating LEM scenarios with grid constraints being consid-
ered. In addition, the research will also focus on determining
the optimal scenario for participation in markets based on
LEM. The KPIs also need to be further extended to incorporate
factors, such as market power. Furthermore, hardware-in-
the-loop laboratory environment testing will be conducted
before the final stage, which will be validating the results in
a field test.
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3 Local energy market models and bidding
strategies

3.1 Local energy market models

Scientific context
LEM market model is used to provide the market bidding/offering format, algorithm
for allocation of traded energy between prosumers and consumers, payment/settlement
rule, market cycle and event sequence of the LEM [50, 66]. Developing an efficient LEM
requires an efficient market model design. The literature contains several studies that
propose different market models for LEM design [111, 60, 29, 112, 113, 114, 115, 48,
45, 129]. Notwithstanding several studies and market models proposed in the literature,
LEM is yet to be adopted in practice by many countries.
In this section, three papers are presented. The first paper presents a hierarchical

model for the organisation of agent-based local energy markets [130]. The model was
implemented and evaluated using the framework developed by Grid Singularity [120]
and the LEM key performance indicators already developed in [119], respectively. In
the second paper [131], an advanced clustering approach was developed for P2P energy
trading of electricity between consumers and prosumers in an LEM. The first two papers
are examples of centralized market models and show similar advantages. The third
paper[132] presents a decentralized LEM platform for trading energy in an LEM based
on the prosumers’ and consumers’ preferences.

3.1.1 Hierarchical local energy market models

Contribution
The paper of this section presents a mathematical model and an evaluation of hierarchical
multi-agent local energy market model developed using Grid Singularity exchange [120].
The research started with a preliminary study [133], conducted and published as a
conference paper at the 2021 International Conference on Smart Energy Systems and
Technologies (SEST) before the final study which was published as a journal paper. Fig.
3.1 displays the schematic of the hierarchical model proposed in the paper. In this model,
consumers and prosumers form sub-communities and trade energy with each other within
the sub-communities. Energy not traded within a sub-community is forwarded to a
higher community in the hierarchy by the sub-community agents. In this way, energy is
traded from one hierarchy to another until the last hierarchy which is the up stream grid.
Hence, energy not traded within the large community is traded with the upstream grid.
The model was evaluated by comparing a single- and multi-layer hierarchical models.
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3 Local energy market models and bidding strategies

The single and multi-layer LEM models were verified using combination of load and
production profiles from German households [121], standard load profiles [122, 123],
Renewables Ninja [124, 125] and LoadProfileGenerator [126, 127] in a 15-minutes time
step market. The results from the simulations showed that the multi-layer hierarchical
model creates additional economic and technical benefits for household prosumers as
compared to trading within the single-layer hierarchical LEM. However, the single-layer
LEM model appears to be more beneficial for industrial prosumers.

Load

Load

ProducerProducer

ESS

ESS

ESS

Community 
LMO 2LMO 1

SUB-COMMUNITY 1 SUB-COMMUNITY 2

Exporting EnergyImporting Energy

Grid Agent
LMO Agent

Figure 3.1: Schematic of hierarchical multi-agent model developed using Grid Singularity ex-
change [120]. Figure adopted from [130].
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Abstract: In recent years, local energy markets (LEMs) have been introduced to empower end-
customers within energy communities at the distribution level of the power system, in order to
be able to trade their energy locally in a competitive and fair environment. However, there is still
some challenge with regard to the most efficient approach in organising the LEMs for the electricity
exchange between consumers and prosumers while ensuring that they are responsible for their
electricity-related choices, and concerning which LEM model is suitable for which prosumer or
consumer type. This paper presents a hierarchical model for the organisation of agent-based local
energy markets. According to the proposed model, prosumers and consumers are enabled to transact
electricity within the local energy community and with the grid in a coordinated manner to ensure
technical and economic benefits for the LEM’s agents. The model is implemented in a software tool
called Grid Singularity Exchange (GSyE), and it is verified in a real German energy community case
study. The simulation results demonstrate that trading electricity within the LEM offers economic
and technical benefits compared to transacting with the up-stream grid. This can further lead to
the decarbonization of the power system sector. Furthermore, we propose two models for LEMs
consisting of multi-layer and single-layer hierarchical agent-based structures. According to our study,
the multi-layer hierarchical model is more profitable for household prosumers as compared to trading
within the single-layer hierarchical LEM. However, the single-layer LEM is more be beneficial for
industrial prosumers.

Keywords: bidding strategy; decentralized energy system; grid singularity exchange; local energy
market; multi agent system; peer-to-peer

1. Introduction
1.1. Motivation and Literature Review

Electricity markets aim to manage the increasingly complex power system and ensure
that all the electricity generated within the electricity grid is accounted and paid for by the
consumers. In recent years, the fast growth of distributed energy resources (DER), while
supporting the energy transition, also added a high level of complexity in maintaining
the power grid’s reliability and stability. This daunting challenge cannot be resolved by
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the conventional top-down, centralized energy management approach due to the system
complexity and variable nature of renewable generation [1]. As a solution, local energy
markets (LEMs) have been introduced as new trading structures for the exchange of energy
between prosumers and consumers at the distribution level of the power system, thus
keeping the system cost and customer electricity prices relatively feasible and ensuring
that electricity is consumed close to where it is produced. Authors in [2] defined LEMs as
platforms for trading among prosumers and consumers within a geographic and social
neighbourhood, in which the security of supply is ensured by superimposing the LEM into
the up-stream grid. In addition, LEMs provide an enabling platform for energy participants
to trade their services such as electricity, flexibility, and heat at the distribution level in a
competitive and economically efficient way [3]. In the literature, several structures have
been proposed for energy trading and sharing in LEMs, such as the peer-to-peer (P2P),
community-based or pool market, and hybrid frameworks [4–7], which are explained in
the following.

In the P2P framework, a prosumer has the opportunity to choose the energy product
by assigning attributes of the actors whom they are willing to sell their energy production
to or buy their demand from. In a situation where prosumers are unable to provide the
attributes of their proposed trading partners, they are randomly matched [8]. Additionally,
the concept of federated power plants based on self-organised P2P incentives for organising
the DER through a bottom-up grid approach was proposed by [9]. The proposed concept
promised to reduce the economic, social, and institutional challenges facing the traditional
top-down power system approach. Authors of [10] proposed a multi-agent architecture for
P2P electricity trading within micro-grids (MGs) that is based on blockchain technology.
In [11], the authors proposed a P2P energy market platform based on a multi-class energy
management system for coordinating energy trading between prosumers, distribution grid
and in the wholesale market. The multi-class model added financial, social, philanthropic,
and environmental values by accounting for the individual prosumer’s preferences for
their generated electricity. The P2P electricity trading platform for matching producer and
consumer agents based on a two-sided market matching theory was proposed by [12]. The
proposed platform was profitable and most suitable for aggregators managing prosumers
with different degrees of willingness to buy or sell electricity. The authors of [13] proposed
an agent-based simulation framework and evaluation index to compare the performance of
P2P sharing market mechanisms.

On the other hand, a community-based local trading framework is generally defined
as a centralized platform responsible for matching energy producers and consumers in the
LEM with the use of an agreed market matching mechanism [5]. Optimization models (such
as linear programming, mixed-integer linear programming, nonlinear programming, and
mixed-integer nonlinear programming), mathematical methods (such as simplex method,
branch-and-bound technique, quadratic programming, interior-point method, game theory,
point estimate method, and fuzzy logic), and heuristic methods (e.g., particle swarm
optimization algorithm and genetic algorithm) are used in the literature to organise trades
in a community-based LEM [14–17]. The authors of [18] proposed an iterative algorithm for
energy transactions between distribution network operators and the LEM’s participants in
order to provide additional profit to all participants. The authors of [19] implemented the
uniform pricing, pay-as-bid, generalized second-price, and Vickrey–Clark–Groves clearing
methods and evaluated the benefits and the efficiencies of the mechanisms. In [20], the
authors suggested that the bidding strategy of the LEM participants have more impact on
the performance of community-based LEMs as compared to increasing the production-to-
consumption ratio of the local community. In [21], the authors proposed the advantages of a
hierarchical approach for energy and flexibility trading in the LEM considering distribution
network constraints and the offering/bidding strategies of prosumers.

According to [7], a hybrid LEM is a type of market that combines the attributes of
both P2P and community-based trading frameworks. In their work, the authors of [5]
derived the mathematical formulation of a hybrid market framework as a combination of
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the P2P and community-based market frameworks. A hybrid market framework based
on a decentralized blockchain was proposed by [22] for exchanging energy among local
electricity traders within a distribution grid. Decentralized energy management offers a
wide range of options for prosumers to exchange their electricity product/demand and can
also provide a higher level of transparency. Apart from the proposed LEM models found
in the literature, there are also software tools supporting the operation and implementation
of LEMs. Most of these tools are still in the research and development stage but are
approaching market readiness [4,5,23].

1.2. Contributions and Organisation

Whilst there are several studies proposing different structures and models for LEMs,
there is still a gap in the literature concerning the organisation of community-based LEMs
by prosumers and consumers. This includes questions on which LEM models are suitable
for different consumer and prosumer types and an analysis of the models’ behaviour using
varied market-clearing mechanisms. Consequently, in this paper, we focus on the following
research question: which market structure and clearing mechanisms are most suitable for
local electricity markets? In order to answer this, we propose mathematical models for the
multi-layer and single-layer hierarchical organisation of agent-based local energy markets
implemented on an interface and open-source code base of the Grid Singularity Exchange
(GSyE, previously termed D3A) in order to model, simulate, and optimize energy trading in
local communities. Furthermore, we evaluate the model using key performance indicators
such as self-sufficiency, self-consumption ratio, share of market savings, and share of
individual savings to analyse the model that is suitable for different types of consumers and
prosumers. The prosumers and consumers are classified as household consumers, industrial
consumers, commercial consumers, household prosumers, commercial prosumers, and
industrial prosumers. Notably, this paper is an extended version of [24], where authors
compared different market clearing mechanisms such as the one-sided pay-as-offer, the
two-sided pay-as-bid, and the two-sided pay-as-clear market clearing mechanisms, and
then showed the advantages of each clearing mechanism in a single-layer local electricity
market. All in all, the main contributions of the paper can be summarized as follows:

• We propose a mathematical model for the hierarchical organisation of agent-based
local energy markets.

• We implement the proposed hierarchical model in the Grid Singularity Exchange as an
open-source code base software tool and show how it can be used for local electricity
exchange.

• We analyse the benefits of electricity trading in hierarchical local energy markets with
the use of key performance indicators for different market structures, market-clearing
mechanisms, and different consumer and prosumer types.

The remaining sections of this work are structured as follows. The proposed LEM
architecture, exchange agent, and bidding strategies are described in Section 2. The LEM
data, community setup, and price components are discussed in Section 3. Section 4 presents
the results of our case studies and discusses the findings in details. Finally, the paper is
concluded in Section 5.

2. Proposed Hierarchical, Community-Based Local Energy Market Structure

In this section, the proposed community-based LEM structure, its actors, the mathe-
matical model as well as the offering/bidding and matching strategies are explained. In
our proposed model, the smart grid architecture’s function layer is used to evaluate the
market trading infrastructure of the proposed LEM design based on [25]. Furthermore, the
distribution grid constraints are not considered in our proposed LEM structure because of
the lack of real data for the studied local energy community.



Energies 2022, 15, 3575 4 of 23

2.1. Agents

The agents of the proposed LEM design can be classified into physical and virtual
agents. The physical agents can be the distribution system operator (DSO) and the LEM’s
participants consisting of consumers, prosumers, and producers. The virtual agents include
the exchange agent. Moreover, the LEM consists of external agents, the so-called retailer
and grid agent, to enable transactions between the local community and the up-stream
grid in case the LEM participants cannot transact electricity with the local community. The
functions of the LEM’s agents are explained in the following:

• The Local Market Operator (LMO) determines the market clearing (one-sided pay-
as-offer, two-sided pay-as-bid, and two sided pay-as-clear) mechanism of the LEM
and provides access to the LEM’s individual participants. The LMO is responsible for
maintaining the LEM exchange agent. The LMO is also in charge of providing market
clearing results and market statistics to the DSO, retailer, and the LEM participants.

• LEM participants, also known as local electricity traders (LETs), are local agents
who own loads, distributed energy resources, and energy storage systems that are
empowered to transact in the LEM.

• The DSO is in charge of maintaining the distribution grid and ensuring grid stability.
Moreover, the DSO expresses the state of the distribution grid (e.g., grid-connected
and islanded modes based on the interaction between the distribution network and
the up-stream grid) as well as assigns static and dynamic grid charges per kWh
for electricity traded between LEM participants. Moreover, the grid charges are
the cost of maintaining the distribution grid, which is paid per kWh of electricity
transacted within the local community; this is incorporated in the process of clearing
bids and offers.

• Retailers have a contract with LETs to provide them with continuous energy if they
are unable to trade electricity with the LEM.

• The grid agent or the up-stream grid agent acts as an external agent of the LEM, and
the local community is able to trade electricity with that in the case of extra local
production or consumption. Moreover, the grid agent is modelled as an infinite bus
on the distribution grid.

• The exchange agent is an open-source code based on Python and other programming
tools; it was developed by Grid Singularity and is called the Grid Singularity Ex-
change [26]. The exchange agent is responsible for receiving bids and offers, matching
the orders, and sending the matched results to LETs, retailers, and the DSO. In the
exchange agent, physical agents are defined as those who serve as digital twins for elec-
tricity assets such as PVs, electrical loads, and energy storage systems. In addition to
electricity asset agents, there are grid and virtual organisation-based agents, including
the household, block, sub-community, and community agents in the hierarchy. Thus,
the virtual community agents are responsible for energy transactions and forwarding
unmatched bids and offers from a lower level to a higher level in the hierarchy. Finally,
the grid agent provides the LEM with the external retail electricity price for allowing
energy transaction with the up-stream grid.

2.2. Hierarchical Structure for Electricity Trading in the LEM

Figure 1 shows a simple hierarchical structure of agents within the multi-agent frame-
work. To describe the mathematical model for the physical and virtual agents, we consider
load, PV, and storage devices in a local community k that participate in local electricity trad-
ing. The load, PV, and storage agents can be represented by (Lk), (Pk), and (Ek), respectively.
IfHk represents the agent of the community k, then we have the following:

{Pk ∪ Lk ∪ Ek} ⊂ Hk. (1)
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If community k is a sub-community of community i with a set of other sub-communities,
and the total number of sub-communities of community i is N, then we have:

{H1 ∪H2 ∪ · · · ∪ HN} ⊂ Ai, (2)

where Ai represents the agent of community i, andH1,H2, . . . ,HN represent the agents of
sub-communities 1 to N, respectively. Furthermore, if community i is a sub-community of
community j, and there exist other sub-communities within community j and an energy
storage device belonging to community j, the total number of sub-communities belonging
to community j is M, and the ESS agent of the community j storage system is represented
by (Ej). Then, we have the following:

{Ej ∪A1 ∪A2 ∪ · · · ∪ AM} ⊂ Rj, (3)

whereRj is the agent of community i. Finally, from (3), a community agent is defined as
a virtual agent that can consist of other agents of communities or sub-communities, and
agents representing physical assets within the community. This way, the community agent
creates a hierarchical organisation of agents belonging to its own local area. Section 2.3
describes the setup of the hierarchical model, and how bids and offers are forwarded by
the community agents.

Figure 1. Multi-agent framework and hierarchical structure of LEMs based on the GSyE.

2.3. Hierarchical Bids and Offers Forwarding

In this paper, the analysed market clearing mechanisms in the exchange agent are the
two-sided pay-as-bid (TPB) and the two-sided pay-as-clear (TPC) mechanisms. The LEM
serving as a case study is a real-time market, set to 15 min time slots. Agents submit their
bids and offers within the 15 min interval before the energy exchange time. Each time slot,
Tslot, is divided into 15 s tick lengths, Ttick, as represented by (4):

Ntick =
Tslot

Ttick , (4)

where Ntick is the number of ticks per time slot. Depending on the type of market clearing
mechanism, the tick length is the time before market clearing is triggered within the
platform. According to the proposed LEM design, physical agents first submit their bids
and offers directly to a local community in the first hierarchy. The first local community
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hierarchy level of the studied model is a block, the next level is a zone, and the final
level is a community called the higher community. Assuming that the area of the first
local community hierarchy is i, the set of bids in the community i from different physical
agents at tick t is represented by Bi,t, and the set of offers of physical agents from the same
community at tick t is represented by Si,t. As the market has Ntick number of ticks, physical
agents are able to submit their bids and offers at any tick. The set of bids submitted to
community i at tick t is represented by the following:

Bi,t = {bi,1,t, bi,2,t, . . . , bi,n,t}, ∀t < Ntick, (5)

where n is the total number of bids (physical agents) in community i at tick t. In other
words, physical agent n is allowed to submit only one bid to the local community at tick
t. bi,n,t is bid n of the bids in community i at tick t. Each bid (bi,n,t) contains the quantity
of energy (qb

i,n,t) that the agent wishes to buy and the maximum price (pb
i,n,t) per kWh of

electricity that the agent is willing to pay for, as shown in (6):

bi,n,t = (qb
i,n,t, pb

i,n,t), ∀t < Ntick, (6)

In the same way, the set of offers submitted to community i at tick t is represented by
the following:

Si,t = {si,1,t, si,2,t, . . . , si,m,t}, ∀t < Ntick, (7)

where m is the total number of offers (physical agents) in community i at tick t. Physical
agent m is allowed to submit only one offer to the local community at tick t. si,m,t is the
offer m in community i at tick t. Each offer contains the quantity of energy (qs

i,m,t) that the
agent wishes to sell and the minimum price (ps

i,m,t) per kWh of electricity that the agent is
willing to receive, as represented by (8):

si,m,t = (qs
i,m,t, ps

i,m,t), ∀t < Ntick. (8)

The set of all bids and offers submitted to community i at tick t is the union of the set
of bids and offers from (5) and (7), respectively. This is presented by the following equation:

{Bi,t ∪ Si,t} = {(qb
i,1,t, pb

i,1,t), (q
s
i,1,t, ps

i,1,t), (q
b
i,2,t, pb

i,2,t), (q
s
i,2,t, ps

i,2,t), . . . ,

(qb
i,n,t, pb

i,n,t), (q
s
i,m,t, ps

i,m,t)}
(9)

Thus, Equation (9) can be simplified into (10).

{Bi,t ∪ Si,t} = {Oi,1,t, Oi,2,t, . . . , Oi,(m+n),t}, (10)

where Oi,(m+n),t is defined as the (m + n)th order submitted to community i at tick t.
This order can be a bid or an offer to buy or sell a defined quantity of energy at a maxi-
mum/minimum price limit in ct/kWh. The LEM is cleared at the end of every tick. Hence,
the matched bids and offers at the end of tick t is represented in the following equation:

{Bi,tΠSi,t} = {Oi,1,t, Oi,2,t, . . . , Oi,y,t}, y ≤ n, m, (11)

where Oi,y,t is the yth match order at tick t containing the match quantity (q
i,y,t

), price (p
i,y,t

),

identity of buyer (Ib), and identity of seller (Is), as represented by (12):

Oi,y,t = (q
i,y,t

, p
i,y,t

, Ib, Is), y ≤ n, m. (12)
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At same time, the unmatched bids and offers are represented by the set containing the
difference between all submitted orders and the matched orders, as expressed in (13):

{Bi,t ∪ Si,t} = {(Bi,t ∪ Si,t)− (Bi,tΠSi,t)} (13)

Equation (14) expresses the unmatched orders for d number of orders.

{Bi,t ∪ Si,t} = {Oi,1,t, Oi,2,t, . . . , Oi,d,t}, d ≤ (n + m)− y. (14)

Similar to Equation (9), for an f number of unmatched bids and an h number of
unmatched offers, Equation (14) can be re-expressed in terms of bid and offer quantities
and prices, as presented in (15):

{Bi,t ∪ Si,t} = {(qb
i,1,t, pb

i,1,t), (q
s
i,1,t, ps

i,1,t), (q
b
i,2,t, pb

i,2,t), (q
s
i,2,t, ps

i,2,t), . . . ,

(qb
i, f ,t, pb

i, f ,t), (q
s
i,h,t, ps

i,h,t)}, d = f + h.
(15)

Suppose community i is a sub-community of community j. The market is modelled
such that the agent of community i (Ai) will forward the unmatched bids and offers of
community i to community j after two ticks. Similar to (9), the bids and offers of community
j for n and m numbers of bids and offers, respectively, at the (t + 2)th tick is given by the
following equation:

{Bj,(t+2) ∪ Sj,(t+2)} = {(qb
j,1,(t+2), pb

j,1,(t+2)), (q
s
j,1,(t+2), ps

j,1,(t+2)), (q
b
j,2,(t+2), pb

j,2,(t+2)),

(qs
j,2,(t+2), ps

j,2,(t+2)), . . . , (qb
j,n,(t+2), pb

j,n,(t+2)), (q
s
j,m,(t+2), ps

j,m,(t+2))}, ∀(t + 2) < Ntick.
(16)

Since community j is a large community with many other sub-communities, (16)
can be expressed in terms of the orders from different sub-communities. If there are w
sub-communities in community j, (16) can be expressed as follows:

{Bj,(t+2) ∪ Sj,(t+2)} = {(B1,(t+2) ∪ S1,(t+2)), (B2,(t+2) ∪ S2,(t+2)), . . . , (Bw,(t+2) ∪ Sw,(t+2))} (17)

where (Bw,(t+2) ∪ Sw,(t+2)) is a set containing the bids and offers submitted to community
j by the agent of community w, Aw at tick (t + 2). Since i is a sub-community within
community j, we have the following equation:

{Bi,(t+2) ∪ Si,(t+2)} ⊂ {(B1,(t+2) ∪ S1,(t+2)), (B2,(t+2) ∪ S2,(t+2)), . . . , (Bw,(t+2) ∪ Sw,(t+2))}. (18)

Hence, the orders submitted to community j by virtual agent (Ai), which represent
the sub-community i that exists in community j at the (t + 2)th tick is as follows:

{Bi,(t+2) ∪ Si,(t+2)} = {(qb
i,1,t, pb

i,1,t − Gj), (qs
i,1,t, ps

i,1,t), (q
b
i,2,t, pb

i,2,t − Gj), (qs
i,2,t, ps

i,2,t), . . . ,

(qb
i, f ,t, pb

i, f ,t − Gj), (qs
i,h,t, ps

i,h,t)},
(19)

where Gj is the grid fee for local community j at the simulation time slot. Comparing
Equations (15), (16), and (19), we obtain the following:

{Bi,t ∪ Si,t} ⊂ {Bj,(t+2) ∪ Sj,(t+2)}, ∀Li ⊂ Lj. (20)

In this way, bids and offers are forwarded from a lower community or area hierarchy
to a higher one. This forwarding of bids from lower to higher hierarchies happens as far
as t < Ntick and for all lower communities whose local area (Li) is contained in the local
area of the higher community (Lj). At t = Ntick, the remaining electricity quantity is traded
with the up-stream grid at the grid price. Hence, for our case study, where we have three
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community hierarchies (blocks, zones, and higher communities), the reason for the 15 s
tick length is to ensure that even the bids/offers submitted at the last minute of the 15 min
market slot is forwarded in order to reach the up-stream grid agent if not traded within
the LEM.

2.4. Trading Strategies for Physical Agents

The update interval is defined as how often an agent updates its bid and offer prices
using the interval trading strategy. In the exchange agent, an interval-based trading strategy
is defined for each physical agent, which is described in the following section.

2.4.1. EL Agents

The consumer defines the minimum and maximum rate at which they are willing to
buy electricity. Equation (21) defines the algorithm for the load interval bidding strategy.

∆rb =
(rb, f − rb,i)

(Ts − Ti)
× Ti, (21)

The final and initial buying rate are rs, f and rs,i, respectively. Ts and Ti represent the
slot length and the update interval. The EL agent tries to buy electricity first at the lowest
rate defined by the consumer. After a defined simulation update interval, the buying rate is
increased by ∆rb if the trade is unsuccessful or partially successful. As represented in (21),
the buy price is increased continuously after every update interval until all the electricity
demands are provided, or until the defined maximum rate is reached, as shown in Figure 2a.
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Figure 2. Trading strategy for (a) Load, (b) PV, and (c) battery agent.

2.4.2. EP Agents

Just as the EL agent, the initial and final trade rates are defined for the EP agents.
However, the EP agents first try to sell their electricity at the maximum rate. This maximum
rate is known as the initial selling rate. After every update interval, the selling rate is
reduced by ∆rs based on Equation (22) if the energy quantity produced by the EP is not
matched or just partially matched.

∆rs =
(rs,i − rs, f )

(Ts − Ti)
× Ti, (22)

where rs,i and rs, f represent the initial and final selling rates of the EP, respectively. The
reduction in the EP’s selling rate continues until all the EP electricity generation is sold or
the defined minimum rate is reached, as shown in Figure 2b.

2.4.3. ESS Agents

The ESS agent trading strategy is a combination of the EL and EP trading strategies,
with a defined boundary for the entire range of electricity rates, as shown in Figure 2c.
Hence, the ESS agent trading rate is split into the upper and lower price ranges. The upper
and lower price ranges are the selling and buying price ranges, respectively. ESS agents
submit two orders to the exchange at each market slot that contain a bid and an offer. The
bid price is determined using the lower price range and the load bidding strategy after
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each update interval. Simultaneously, the offer price is determined using the upper price
range. This simple strategy is used by the ESS to buy energy at a cheaper rate and sell
to the community at a higher one. However, in the local community, the cost of buying
electricity from the ESS is always cheaper compared to buying it from the up-stream grid.

2.5. Performance Indicators

LEM performance indicators are parameters used to access the performance of an
LEM. The LEM key performance indicators we used to evaluate our model are the share
of individual savings, community self-sufficiency, and the self-consumption ratio. An
additional performance indicator, known as the P2P closeness index, was also used to
analyse our model. The performance indicators are defined as follows:

Share of individual savings: The share of individual savings (SIS) is the percentage of
savings made by an individual prosumer or consumer for trading in the LEM as compared
to trading without the LEM [20]. SIS is presented in (23), where Πj,t and Π∗j,t are the net
costs for trading electricity without and with the LEM, respectively, for agent j at time t.

SISj =
∑t(Πj,t −Π∗j,t)

∑t Πj,t
× 100, (23)

Community self-sufficiency: Community self-sufficiency (SS) is the percentage of
electricity demanded by the local community agents that is produced within the community,
as defined in [27]. The community SS is expressed by (24), where Ej,i,t is the amount of
energy traded between EP agent j and EL agent i at time t.

SS =
∑j(j 6=i),i,t(Ej,i,t + |Ljt − Pep

jt |)
∑j,t Ljt

× 100 (24)

Community share of market savings: Community share of market savings (SMS) is
the sum of the shares of individual savings made by each local agent for trading within the
LEM as compared to trading without the LEM [27]. The community SMS is represented
in (25).

SMS =
∑j,t(Πj,t −Π∗j,t)

∑j,t Πj,t
× 100, (25)

P2P closeness index: The P2P closeness index is defined for the first time in this paper
and provides information on how the total electricity exchanged within a community is
geographically close, from the source of production to the point of consumption. It gives
information on how close the electricity consumer is to the producer within a commu-
nity where both actors exchange electricity. Equation (26) represents the P2P closeness
index (CI):

CI =
∑j(j 6=i),i,t Ej,i,t × R f

∑j(j 6=i),i,t Ej,i,t
× 100, (26)

where R f is the trade index and is in the range of [0, 1] (0 ≤ R f ≤ 1), depending on how
far the prosumer is from the consumer. This means that the closer the prosumer is to
the consumer, the higher the trade index. Table 1 displays the trade index for different
combinations of the buyers and sellers’ geographic location.
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Table 1. Trade index for different prosumer–consumer combinations.

Location of Buyer and Seller Trade Index

Same block 0.8
Different blocks but same zone 0.6

Different zones but same community 0.4
Different communities 0.2

3. Simulation Setup

In this paper, several simulation scenarios are considered through different market
clearing mechanisms by varying the community production-to-consumption ratio (PtC)
and the number of hierarchies per local electricity market setup. To assess the performance
of the hierarchical market model, we analysed the impact of different market models on
an LEM. In this way, single-layer and multi-layer, hierarchical, agent-based local energy
markets are studied utilising market key performance indicators to determine the most
beneficial model for the LEM. The data and price components of the different simulation
scenarios are described in the following sections.

3.1. Data Description

The LEM was simulated during a period of one week, with 120 LETs consisting of
68 household consumers, 4 commercial consumers, 7 commercial prosumers, 6 industrial
prosumers, and 35 household prosumers in 28 simulation scenarios created by changing
the combination of market clearing mechanisms, the number of hierarchy levels, and the
annual PtC ratio. The load profile was a combination of profiles from [28], LoadProfile-
Generator [29,30], and standard load profiles [31,32]. The varying factors, while using the
LoadProfileGenerator software, were the number of occupants in each apartment, the work
schedule of the occupants, types of household appliances, and age group of the occupants.
The Stuttgart region was used for all the profiles. The commercial and industrial profiles
used are standard load profiles from StromNetz Berlin for the year 2019 [31]. The annual
consumption of the commercial profiles was between 25,000 kWh and 30,000 kWh, while
for the industrial profiles, it was between 49,000 kWh and 54,500 kWh. A random error
in the range of 5–30% was added to each time step of every commercial and industrial
profile to ensure the uniqueness of the data for each LET. The PV production profiles were
based on Ref. [33] using Renewables Ninja [34] for the Stuttgart region. The losses of the
PV systems were varied between 5% and 15%. All the profiles were generated with a tilt
angle of 35◦ of the PV. In the setup file, 14 households and one commercial prosumer were
equipped with battery storage, with capacities ranging between 7.5 kWh and 13.5 kWh
and maximum absolute power between 3.5 kW and 5.25 kW. Additionally, two community
storage systems with a capacity of 140 kWh and 120 kWh and a maximum power of 40 kW
were included in the local community. All storage systems had a minimum allowed state
of charge of 10%.

3.2. Price Components

Two community configurations, namely single and multi-layer, hierarchical, agent-
based local communities, were evaluated using different market clearing mechanisms.
For both community models, the large community (higher community) was classified
into sub-communities called zones. The zones were further classified into blocks. Table 2
shows the hierarchical arrangement of the large community, sub-communities, zones, and
blocks. The prosumer and consumer types consist of household (HH), commercial (CM),
and industrial (IND) types. The HHS and CMS are household and commercial prosumers
with storage systems, respectively. In addition, the households were randomly assigned
to different blocks, and the blocks were randomly assigned to different zones. Moreover,
blocks were considered as households in the same building, and none of the blocks had
more than one commercial prosumer. Since industrial prosumers and consumers have
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higher capacities, they were also classified separately under the zones. Thus, none of the
blocks had any industrial consumers/prosumers. As zones contain LETs that are close to
each other, local grid fees for trades within a zone were half of the community local grid fee.
Consequently, blocks contained LETs that belong to a building block (e.g., an apartment)
and could trade electricity without using the external grid. For trades within a block (blk),
consumers only paid for the metering fees and VAT in addition to the energy cost.

The price component for both LEM models is shown in Table 3. The price components
for trading within the local community include the energy price of the electricity producer,
metering fee, local grid fee, and a 19% value-added tax (VAT) [35]. The energy price is the
amount of money (cents/kWh) that a producer will receive for feeding electricity into the
LEM. The metering and the local grid fees are surcharges paid for maintaining the metering
infrastructure and the local distribution grid, respectively. The value-added tax (VAT) is
the 19% paid for buying electricity from the local community. This is usually 19% of the
sum of the energy price, metering, local, and up-stream grid fees. An additional surcharge
known as the up-stream fee is added if the electricity is traded with the up-stream grid.

Table 2. Hierarchical arrangement of local traders.

Community No. of Pros [Type] No. of Cons [Type] Sub-Communities Community Storage

Blk-1 3 [HH] 4 [HH] - -
Blk-2 2 [HH] 4 [HH] - -
Blk-3 4 [HH] 5 [HH] - -
Blk-4 - 4 [HH] - -
Blk-5 1 [HH], 1 [HHS] 3 [HH] - -
Blk-6 1 [HH], 1 [HHS], 1 [CMS] 4 [HH] - -
Blk-7 2 [HHS] 3 [HH] - -
Blk-8 1 [HH], 1[HHS] 4 [HH] - -
Blk-9 2 [HHS] 4 [HH] - -
Blk-10 2 [HH] 3 [HH] - -
Blk-11 2 [HH] 3 [HH] - -
Blk-12 2 [HH], 1 [CM] 4 [HH] - -
Blk-13 2 [HH] 4 [HH] - -
Blk-14 2 [HHS] 3 [HH] - -
Blk-15 2 [HHS] 3 [HH] - -
Blk-16 1 [HH], 2 [HHS] 4 [HH] - -
Blk-17 1 [HHS] 4 [HH] - -
Blk-18 - 4 [HH] - -

Zone-A 2 [CM] 1 [CM] [Blk-1, Blk-4] 1
Zone-B 2 [CM] - [Blk-5, Blk-9] 1
Zone-C 1 [CM] 2 [CM] [Blk-10, Blk-13] -
Zone-D 2 [IND] 1 [CM] [Blk-14, Blk-18] -
Zone-E 4 [IND] - - -

Community - - [Zone-A, Zone-E] -

Table 3. Price components for hierarchical community and with the up-stream grid.

Components Block Zonal Community Up-Stream Grid
Trades Trades Trades Trades

Energy price (ct/kWh) [0 24.50] [0 23.50] [0 22.50] [0 17.75]
Metering fee (ct/kWh) 0.32 0.32 0.32 0.32
Local grid fee (ct/kWh) - 1.61 3.33 3.33

Up-stream grid fee (ct/kWh) - - - 4.75
Value-added-tax (VAT) (ct/kWh) [0.06 4.72] [0.37 4.83] [0.85 4.96] [1.60 5.35]

Total (ct/kWh) [0.38 29.54] [2.30 30.26] [4.50 31.11] [10.00 31.50]



Energies 2022, 15, 3575 12 of 23

The total energy price was capped at 31.5 cents/kWh, which was based on the average
electricity cost in Germany [36]. For the single-layer community model, there were no
sub-community agents, and therefore the local agents (device agents) were able to trade
electricity directly in the local community based on the market clearing mechanism, as
shown in Figure 3. The higher-community agent was responsible for coordinating this
market, and the electricity not traded within the community was bought/sold from/to
the external up-stream grid agent by the higher-community agent. However, for the
multi-layer community model, each sub-community had its own sub-community agent
responsible for coordinating the trade within the sub-community, as shown in Figure 4.
Electricity not traded within the sub-community was forwarded to the higher hierarchy by
the sub-community agent.

Figure 3. Single-layer, hierarchical, agent-based LEM.
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Figure 4. Hierarchical community as a multi-layer, hierarchical, agent-based LEM.

4. Results and Discussion
4.1. Energy Exchange per Community Block

In this section, the impact of different market models on local electricity trading
is assessed. Figure 5a shows the energy exchange for selected community blocks with
single-layer and multi-layer community setups using the two-sided, pay-as-bid market
clearing mechanism. Internal trade is the energy traded between the device agents within
a sub-community block. Total import is the total energy imported to a sub-community
from the higher sub-communities, communities, and the up-stream grid. The sum of the
energy exported to the higher sub-communities, communities, and up-stream grid from a
sub-community is the total export of the sub-community. Comparing the higher and lower
graphs of Figure 5a, it is evident that for all community blocks, internal trade is higher for
the multi-layer as compared to the single-layer community. Furthermore, the total import
and total export of the blocks are higher for the single-layer community as compared to
the multi-layer community. Since the multi-layer community organises the market in a
greater hierarchical form than the single-layer model, it ensures that local agents first trade
electricity at the lowest sub-community level and forward only untraded energy to the
higher communities. This results in higher levels of internal trade and in lower total import
and total export for the multi-layer community as compared to the single-layer community.
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Figure 5. Energy exchange per (a) block, (b) zone, and higher community for the single-layer (lower
graph) and multi-layer (upper graph) models.

4.2. Energy Exchange per Community Zone and Higher Community

Figure 5b displays the energy exchange of all the zones and higher communities with
the single-layer and multi-layer community setups using the two-sided, pay-as-bid market
clearing mechanism. The internal trade of a zone is the energy traded between the blocks
and the device agents within a zone at the zonal level. In the same way, the internal trade
of the higher community is the energy traded between the blocks, zones, and device agents
within the higher community at the higher-community level. The total import of a zone is
the total energy imported to the zone from the higher community and the up-stream grid.
The total import of the higher community is the total energy imported to higher community
from the up-stream grid. Moreover, the total export of a zone is the total energy exported to
the higher community and the up-stream grid from the zone. The total export of the higher
community is the total energy exported to the up-stream grid from the higher community.
It is important to mention that all zones (from Zone-A to Zone-E) are sub-communities of
the higher community.

The internal trade of all zones are higher for the multi-layer community compared
to the single-layer community. Moreover, the total export and total import of each zone
for the multi-layer community are lower compared to those of the single-layer community.
Thus, it is evident that the multi-layer community coordinates the market trades better than
the single-layer community. Furthermore, the total import of the higher community for the
single-layer and the multi-layer communities is the same. This shows that both models only
import energy that cannot be produced within the higher community from the up-stream
grid. However, the internal trades of the higher community for the single-layer community
is greater compared to the multi-layer community. Since the single-layer community is
not coordinated, most of its trades take place at the higher-community level. This further
results in higher internal trades and total export for the higher community within the
single-layer community as compared to those of the multi-layer community.

Figure 6 shows further information on the electricity exchange for selected blocks
and all the zones, including the higher community of the single-layer community. The
external trades (external import and external export) of a community or sub-community
are energy traded from the higher communities within the hierarchy and not from the
up-stream grid. The external trades of the sub-community blocks and zones are higher
compared to the internal trades. Hence, most of the trades for the single-layer community
take place externally because the trades are not coordinated and thus happen randomly.
The external trade of the higher community is zero because the higher community is the
highest hierarchy of the LEM. Hence, any trade which is not made within the higher
community is exchanged with the up-stream grid. Furthermore, the total import of the
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higher community is equal to its import from the grid (Imp4mGrid), and the total export of
the higher community is equal to its export to the grid (Exp2grid).
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Figure 6. Energy exchange per block (upper graph) and zone (lower graph) for a single-layer
community.

4.3. Comparison of Single-Layer and Multi-Layer, Hierarchical Local Energy Market Models

In this section, the market models for singe-layer and multi-layer hierarchical LEMs
are compared in terms of the share of individual savings, share of market savings, commu-
nity self-sufficiency, self-consumption ratio, and average trade rate with varying market
clearing mechanisms.

4.3.1. Share of Individual Savings

Figure 7a shows the SIS for selected households (C50, C36, C17, and C0) and commer-
cial (C10, C13, C12, and C9) consumers for different market models. The SLEM + TPB is
defined as a market model with a single-layer hierarchical model for local energy trading
based on the two-sided, pay-as-bid (TPB) market clearing mechanism. In the same way,
the MLEM + TPC represents a market model with a multi-layer hierarchical structure of
the local transaction based on the two-sided, pay-as-clear (TPC) market clearing mecha-
nism. The single-layer and multi-layer market models are described in Section 3.2. From
Figure 7a, it is evident that the multi-layer model creates more SIS for both household and
commercial consumers of the TPC and TPB market clearing mechanisms as compared to
the single-layer model. This is because the multi-layer community provides an opportunity
for the consumers to buy their electricity from prosumers in their neighbourhood at a
cheaper price and thus avoid a certain percentage of grid fees, which provides opportunity
for the consumers to save more as compared to trading with prosumers outside their
neighbourhood. However, the SIS of the commercial consumers is higher compared to
that of the household consumers. Since the commercial consumers trade a higher amount
of electricity as compared to household consumers, their SIS is higher than that of the
household consumers.
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Figure 7. Share of individual savings for selected (a) consumers and (b) prosumers.

The SIS for selected industrial prosumers (P15, P11, and P19), household prosumers
(P32, P21, and P41), and commercial prosumers (P6 and P35) is displayed in Figure 7b for
different market models. As seen in Figure 7b, changing from the single to the multi-layer
community model increases the SIS of commercial and household prosumers. Similar to the
case of consumers, trading with the multi-layer community provides the opportunity for
the household and commercial prosumers to sell their electricity at a more beneficial price,
which in turn creates additional SIS for the prosumers. On the other hand, changing from
the single-layer to the mutli-layer LEM model decrease the SIS of the industrial prosumers
(P15, P11, and P19), as shown in Figure 7b. This is because the industrial prosumers are not
located within blocks, and most industrial prosumers are located in a separate zone due to
their large capacity; hence, they are unable to take advantage of the multi-layer community.
In other words, they are unable to benefit from selling their electricity at a rate that is better
for consumers who are located in another zone. Furthermore, with a single-layer LEM
model, all the local electricity traders compete directly with each other to trade electricity
at the same hierarchical level. This provides the industrial prosumers with the opportunity
to trade more of their electricity with consumers and prosumers who are not located within
their zone at a more beneficial rate. This external electricity bought/sold from/to outside
of the industrial prosumers’ zone (Zone-E) but not from the upstream-grid is known as
external import/export (Figure 6). Thus, unlike the household and industrial prosumers,
a single-layer LEM model is more beneficial to industrial prosumers as compared to the
multi-layer LEM model.

4.3.2. Community Self-Sufficiency

Figure 8a displays the community SS for increasing the production-to-consumption
(PtC) ratio of the community under the four different market models. While the SS increases
with an increasing PtC ratio, the market model types do not impact the community SS
because the quantity of electricity imported from the up-stream grid is the same for the
four models described, as seen in Figure 5b. This is because the cost of trading with the
up-stream grid is higher for all the models. Hence, trading with the up-stream grid is the
last option for the local agents since they have the same trading strategy.



Energies 2022, 15, 3575 17 of 23

Energies 2022, 1, 0 17 of 22

0.2 0.4 0.6 0.8 1.0 1.2 1.4
PtC ratio

30

40

50

60

70

80

Se
lf-

su
ffi

cie
nc

y 
(%

)
SLEM+TPB
SLEM+TPC
MLEM+TPB
MLEM+TPC

(a)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
PtC ratio

40

50

60

70

80

90

100

Se
lf-

co
ns

um
pt

io
n 

(%
)

SLEM+TPB
SLEM+TPC
MLEM+TPB
MLEM+TPC

(b)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
PtC ratio

20

25

30

35

40

45

50

SM
S 

(%
)

SLEM+TPB
SLEM+TPC
MLEM+TPB
MLEM+TPC

(c)
Figure 8. (a) Community self-sufficiency, (b) self-consumption, and (c) share of market savings for
varying PtC ratios.

4.3.3. Community Self-Consumption

The variation in the self-consumption (SC) ratio of communities with varying PtC
ratios is shown in Figure 8b. The SC is constant with the increase of the PtC ratio from 0.2
to 0.4 for all the models, as shown Figure 8b. However, increasing the PtC ratio results in
a decrease in the SC of the community for all the models with a PtC ≥ 0.4. Furthermore,
the reduction rate of the SC is higher for the single-layer market models (SLEM + TPB and
SLEM + TPC) as compared to the multi-layer LEM models. In other words, increasing the
PtC ratio means producing more electricity within the local grid. Since less (low PtC ratio)
electricity is produced within the community with a PtC ratio less than 0.4, all the electricity
produced within the community is consumed inside the community. This results in a
constant 100% SC ratio, with PtC ratios from 0.2 to 0.4. Moreover, increasing the PtC ratio
to higher than 0.4 causes some of the electricity produced within the local community to be
exported to the up-stream grid. However, the export quantity is higher for the single-layer
communities as compared to the multi-layer communities, as illustrated in Figure 5b. The
increase in the export quantity to the up-stream grid resulting from uncoordinated single-
layer communities is in line with the decrease in the SC ratio of single-layer communities
compared to the increasing PtC ratio of multi-layer communities.

4.3.4. Community Share of Market Savings

Figure 8c displays the community SMS with varying PtC ratios for the different market
models. Increasing the PtC ratio increases the community SMS for all the models. However,
the multi-layer community model creates an additional SMS compared to single-layer
communities with an increasing PtC ratio. This is due to the fact that using the multi-layer
community model reduces the quantity of electricity exported to the up-stream grid as
a result of the multi-layer community coordination strategy. This provides additional
revenue to the local market players, which then increases the SMS of the community.

Figure 8. (a) Community self-sufficiency, (b) self-consumption, and (c) share of market savings for
varying PtC ratios.

4.3.3. Community Self-Consumption

The variation in the self-consumption (SC) ratio of communities with varying PtC
ratios is shown in Figure 8b. The SC is constant with the increase of the PtC ratio from 0.2
to 0.4 for all the models, as shown Figure 8b. However, increasing the PtC ratio results in
a decrease in the SC of the community for all the models with a PtC ≥ 0.4. Furthermore,
the reduction rate of the SC is higher for the single-layer market models (SLEM + TPB and
SLEM + TPC) as compared to the multi-layer LEM models. In other words, increasing the
PtC ratio means producing more electricity within the local grid. Since less (low PtC ratio)
electricity is produced within the community with a PtC ratio less than 0.4, all the electricity
produced within the community is consumed inside the community. This results in a
constant 100% SC ratio, with PtC ratios from 0.2 to 0.4. Moreover, increasing the PtC ratio
to higher than 0.4 causes some of the electricity produced within the local community to be
exported to the up-stream grid. However, the export quantity is higher for the single-layer
communities as compared to the multi-layer communities, as illustrated in Figure 5b. The
increase in the export quantity to the up-stream grid resulting from uncoordinated single-
layer communities is in line with the decrease in the SC ratio of single-layer communities
compared to the increasing PtC ratio of multi-layer communities.

4.3.4. Community Share of Market Savings

Figure 8c displays the community SMS with varying PtC ratios for the different market
models. Increasing the PtC ratio increases the community SMS for all the models. However,
the multi-layer community model creates an additional SMS compared to single-layer
communities with an increasing PtC ratio. This is due to the fact that using the multi-layer
community model reduces the quantity of electricity exported to the up-stream grid as
a result of the multi-layer community coordination strategy. This provides additional
revenue to the local market players, which then increases the SMS of the community.
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4.3.5. Community Average Trade Price

The average trade price of the TPB market clearing mechanism with the single and
multi-layer LEM models of a community is shown in Figure 9. For both models, the average
trade price is between 5.5 and 31.5 ct/kWh. During the day, the average trade price is
from 15 to 5.5 ct/kWh, while the average trade price is between 23.5 and 31.5 ct/kWh
during the night. The lower average electricity price during the day is because of the high
trade volume that results from the renewable energy generated during the day within the
community. Additionally, the average trade price of the multi-layer community during
the day is higher than the average trade price of the single-layer community. Furthermore,
there are more benefits for the local community when the absolute value of the difference
between the average trade price and the median trade price is less. Hence, the higher
average trade price of the multi-layer community during the day is an evidence that it is
more beneficial to trade electricity with the multi-layer community compared to trading
with the single-layer community.
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Figure 9. Community average trade price with the TPB clearing mechanism for one week.

4.3.6. P2P Closeness Index

Figure 10 illustrates the P2P closeness index for the four market models evaluated.
It demonstrates how the P2P closeness is not affected by the LEM clearing mechanism.
However, the market model has an impact on the closeness index of the LEM. The multi-
layer community creates an additional closeness index as compared to the single-layer
community because of its ability to coordinate the LEM; it also ensures that the energy
generated within the LEM is consumed by consumers that are closer to the producers.
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Figure 10. P2P closeness index for different market models.

4.4. Comparison of Sub-Community Average Trade Price

Figure 11 displays the average trade price for all the sub-communities and communi-
ties with the mutli-layer community model and the TPB clearing mechanism.
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Figure 11. Community (sub-community) average trade price of Zone-A, Zone-B, Zone-C and Zone-D
in multi-layer community model for a single day.

For all the communities (sub-communities), the average trade price of the lowest
sub-communities (blocks) are closer to the average of the minimum and maximum trade
prices. Furthermore, the average trade prices of the zones are between the average trade
price of the blocks and that of the higher community. This shows that it is more beneficial to
trade electricity at the lowest sub-community hierarchy within an LEM than trading within
the higher community (sub-community) hierarchy. Hence, the higher the community
hierarchical is from a device agent, the less beneficial it is for the agent to trade electricity
within the community level. The average trade price of zone-B decreases to a level below the
community trade price during the day time because of the large community and household
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storage systems in zone-B. Since there is no intelligent trading strategy for moving energy
stored in the storage systems to when less electricity is generated in the LEM, this results in
a drastic reduction of the average trade price for Zone-B.

4.5. Time Complexity

Table 4 shows the average computational time per market slot while running the
simulation on a PC with 16.0 GB of RAM installed, an Intel (R) Core(TM) i7 2.90 GHz
processor, and an Ubuntu operating system. Comparing the models reveals that the single-
layer communities take about twice the time required by the multi-layer community to
complete their computation for each market slot. Additionally, the TPB market clearing
mechanism requires more time to complete their computation as compared to the TPC
clearing mechanism. Hence, notwithstanding all other advantages of the multi-layer
community over the single-layer community models, multi-layer community models still
take less computational time per time slot as compared to single-layer community models.
This technical benefit of multi-layer community models and other economic benefits they
have over single-layer community models makes it advantageous to adopt a multi-layer
community model for LEM implementation, especially for household and commercial
consumers and prosumers.

Table 4. Average computational time per time slot for in different local market models.

Market Model Average Computation Time per Slot (s)

SLEM + TPB 185.41
SLEM + TPC 181.55
MLEM + TPB 83.36
MLEM + TPC 81.55

4.6. Discussion

The proposed hierarchical, agent-based model framework organises bids and offers
based on the location of the agents and considering local grid fees. The device agents
compete with each other directly from the house level until the up-stream grid level,
thereby ensuring a competitive and efficient market. Bids/offers which are not matched
at sub-community levels are forwarded to higher sub-communities or communities that
consider grid fees. This approach does not require a third part such as an aggregator to
exchange its electricity with the up-stream grid as the local agents organise their electricity
by themselves. In some of hierarchical models developed in the literature, there is only the
presence of an aggregator responsible for aggregating the trade from different microgrids
and buying/selling the deficit/excess from the up-stream grids [37,38]. However, in our
proposed model, the device agents are responsible for making their bids/offers and even for
interacting with the up-stream grid without a third party. This creates competitive markets
among the local device agents as they are responsible for their bids/offers. Furthermore, the
major advantage of our proposed model is to save more for the local electricity traders and
give them more power to have control over their local generation and demands. However,
the local participants also have to take up the risk or losses that may come up from such
markets. The local market trader may incur some loss from the market if they do not use
intelligent agents for the bidding/offering. Additionally, comparing our key findings in
this paper with a previous work [20] that has similar data and bidding/offering strategy,
our proposed model shows better performance indicators, especially with the SMS and
the SS.

5. Conclusions

This paper presents a mathematical model for a hierarchical, agent-based local electric-
ity market framework. The proposed model shows how bid/offers are forwarded from one
community to others within a hierarchy considering grid fees. The model was implemented
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on the open-source Grid Singularity Exchange to show its applicability in local electricity
exchange. The simulations were performed in a German case study, analysing multiple
scenarios to compare different market-clearing mechanisms and market models for the
LEM. The simulation results revealed that by comparing the multi-layer and single-layer
hierarchical models for LEMs, the multi-layer model is able to coordinate trades within the
LEM and ensure that electricity is consumed closer to where it is generated. Furthermore,
the multi-layer LEM community model reduces the total energy export from the LEM to the
up-stream grid, increases the internal energy exchange in the LEM, increases the individual
savings of the households, and increases the self-consumption and market savings of the
local community as compared to the single-layer LEM community model. Moreover, the
multi-layer community models resulted in a closer P2P index, lower average trade rate,
and decreased the computational time of the LEM. However, for an industrial prosumer
wishing to participate in LEM trading for individual economic benefits, the single-layer
community model is more profitable as compared to the multi-layer LEM models.

It is worth noting that the distribution network constraints and the administrative
costs were not considered in this paper, which will be addressed in our future research. We
will also explore the administrative cost in comparison with simpler systems, additional
local market-clearing mechanisms based on user attributes, clustering algorithms, and
intelligent bidding strategies for local electricity trading.
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3 Local energy market models and bidding strategies

3.1.2 Advanced clustering based on preference vectors

Contribution
The paper [131] in this section presents a clustering approach for P2P trading of energy
in an LEM based on prosumers’ and consumers’ preference vectors. Fig. 3.2 displays
the schematic of the proposed advanced clustering model presented in the paper. The
model considers the heterogeneous characteristics of the prosumers’ bidding and offer-
ing vectors. The heterogeneous characteristics are defined as the geographic location of
the consumption device, location on the local community, bid/offer price and bid/offer
quantity. The model combined k-means and hierarchical clustering to develop a clus-
tering algorithm that depends on the weight of the vectors and not on the distance
for developing the cluster metrics. In this way, the model is developed to ensure that
prosumers with the same heterogeneous characteristics form clusters by themselves and
trade energy with each other. The model was also verified with a combination of load
and production profiles from German households [121], standard load profiles [122, 123],
Renewables Ninja [124, 125] and LoadProfileGenerator [126, 127] in a 15-minutes time
step market. The results from the simulations showed that the model was able to lever-
age the preference opportunity and ensure that electricity is consumed closer to where
it is produced in a P2P trading manner.

Data flow

Submitted bids

Submitted offersSellers

Buyers

Selected cluster of offers

Selected cluster of bids

P2P Matching

P2P Transaction

Figure 3.2: Schematic of proposed advanced clustering model, after [131].
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ABSTRACT Local energy markets (LEMs) are utilized in a bottom-up power systems approach for reducing
the complexity of the traditional, centralized power system and to enable better integration of decentralized
renewable energy resources (RES). Peer-to-peer (P2P) energy trading creates opportunities for prosumers
to trade their RES with other prosumers in the LEM. Although several scenarios were proposed in the
literature for modelling P2P energy trading, there is still a gap in the literature considering the heterogeneous
characteristics of prosumers’ bidding preferences during P2P matching in the LEM. In this paper, we present
heterogeneous characteristics of bidding preferences for prosumers considering energy quantity, bid/offer
price, geographic location, location of agents on the local community and cluster welfare. Moreover, this
paper proposes an advanced clustering model for P2P matching in the energy community considering the
heterogeneous characteristics of bidding preferences for prosumers. For evaluating our proposed model
performance, twoGerman real case scenarios of a small and large communities were studied. The simulations
results show that using price preference, as the criterion for clustering, offers more technical and economic
benefits to energy communities compared to other clustering scenarios. On the other hand, clustering
scenarios based on location of prosumers ensure that energy is traded among prosumers who are closer
to each other.

INDEX TERMS Energy community, advanced clustering, local energy market, matching mechanism, peer-
to-peer trading.

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
The transition from a fossil fuel-based centralized power sys-
tem to amore sustainable, low-emissions and renewable-based
system supported by the fast growth of distributed energy
resources (DER) add higher complexity to the power sys-
tem network [1]. Thus, because of the variability of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Salvatore Favuzza .

distributed energy resources, maintaining the reliability and
stability of the the power system grid becomes more chal-
lenging and complex with the decentralization of assets.
Local energy markets (LEMs) are introduced within the
past two decades as a means to sustain grid balances at the
distribution level and ensure that electricity is consumed
closer to where it is produced [2], [3]. LEMs are platforms
for trading locally sourced DERs among prosumers and
consumers within a geographic and social neighborhood
at the distribution level in a competitive and economic
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efficient way [4], [5]. Notwithstanding the numerous research
already conducted in the field of the LEM, predominant
market mechanisms have not yet been developed and the
LEM business model is still unclear [1]. Consequent to the
numerous advantages it promised, including the opportunity
for prosumers to decide whom to buy/sell their electricity
from/to, peer-to-peer (P2P) energy trading has been proposed
for local electricity trading by many researchers [6], [7].

B. LITERATURE REVIEW
P2P energy trading is a transactional structure which is based
on prosumers and consumers directly or indirectly negoti-
ating their electricity requirements to exchange electricity
among each other [8]. Inmost countries, the electricitymarket
is based on time series. Therefore, the consumers and pro-
sumers are required to consistently bid/offer and negotiate
their trade(s) every time slot to achieve a full P2P trading with
direct negotiation between consumers and prosumers. This
is time consuming and inefficient. Thus, modelling agents
and P2P matching algorithms considering prosumers’ energy
requirements, choices, preferences and price are developed.

In terms of negotiation, P2P energy trading can be clas-
sified into mediated and non-mediated P2P negotiations [9].
In a mediated P2P negotiation, a neutral mediator expedites
the mediation of the trade between the consumers and the
prosumers [10]. This can be based on a many-to-one P2P
negotiation between prosumers with an aggregator [11] or
a virtual agent as a mediator [12]. Authors of [13] pre-
sented a many-to-one P2P energy trading where the distri-
butions system operator mediates between prosumers and
consumers and uses a double auction mechanism to decide
the P2P winners of the auction. In a non-mediated or full
P2P trading, prosumers and consumers directly negotiate
with each other for electricity trading. This can be a one-
to-one negotiation between a buyer and seller or many-to-
many negotiation between all prosumers and consumers [10].
Ref. [14] proposed a one-to-one full P2P trading model
based on bilateral trading coefficients. The authors of [15]
proposed a many-to-many P2P energy trading model for
local energy and flexibility trading based on decentralized
negotiation.

Moreover, P2P energy trading can be classified based on
the matching or decision approaches. Different approaches
used for P2P energy trading are based on game-theory, algo-
rithms, optimization models and reinforcement learning [7].
Ref. [16] proposed Stackelberg game-based energy sharing
framework for P2P energy trading within in a multi-sharing
region. Ref. [17] proposed a P2P multi-energy market mech-
anism for electricity and heat trading based on cooperative
behaviors between the peers in an LEM. Authors of [18]
in their work proposed a model based on Nash bargaining
fair sharing of trading benefits for P2P energy trading in
interconnected LEMs. Ref. [19] proposed a two-tier P2P
trading model based on dual decomposition and distributed
consensus mechanism for a double layer hierarchical LEM.

The authors of [20] proposed a P2P model, based on P2P
coordination for energy. In recent research works, reinforce-
ment learning is used for P2P model. Ref. [21] proposed
a multi-agent deep reinforcement learning model based on
the combination of the multi-agent deep deterministic policy
gradient algorithm and technique of parameter sharing for
P2P energy trading. Their simulation study show that the
proposed model reduced daily electricity cost and demand
peak.

Additionally, recent researches in the field of LEM focused
on prosumers preference vectors. In order to consider and
satisfy LEM participants’ willingness, Ref. [22] proposed a
new auction-based LEM model that takes into account the
participants’ preferences and willingness to pay more for a
certain energy quality. The model promised to increase the
coverage of local demand and local supply compared to the
conventional periodic double auction mechanism. Authors
of [14] proposed LEM model which provide opportunity
for the prosumers to select their preferred trading partners
in a P2P LEM platform. The work of Ref. [21] is based
on grouping prosumers into different multiple clusters based
on the type of their distributed energy resources(DERs).
Ref. [23] proposed a two stage preference based merit-order
market mechanism for valuation between green, local, and
energy source. The model showed that different DERs supply
prosumers according to their willingness to pay and market
situation.

Clustering as an unsupervised learning algorithm is used
in most studies to identify similarities between set of large
data and group the large data into sets of smaller data
with similar properties. Clustering is recently used in P2P
energy trading to identify similarities in different groups of
microgrid, and for coordinating trades in LEM [24]. This
further results to proper decentralization of energy markets
and access to renewable energy resources [24]. Ref. [25]
proposed a virtual LEM that clusters prosumers daily based
on their load profiles. Ref. [26] in their work proposed a game
theoretic approach for clustering microgrids using particle
swarm optimization in a P2P energy trading system. The
concept of adaptive segmentation for P2P market clearing
was proposed by Ref. [27]. The model use balanced k-means
clustering algorithm to cluster energy players into differ-
ent segments to negotiate energy trading separately among
themselves.

The concept of clustering has been used mainly in power
markets for classifying loads and forecasting the future elec-
tricity demands of the users within a cluster [28]. Ref. [29]
used the known traditional K-means clustering to cluster
electricity customers demand in order to make a forecast
of the future customers load demand. Ref. [30] used the
K-means and Fuzzy C-means clustering algorithms to model
the electricity price time series patterns for forecasting future
electricity price. Ref. [31] developed a semi-supervised auto-
matic clustering algorithm based on a self-adapting metric
learning process for determining the household electricity
consumers demand patterns.
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C. CONTRIBUTION AND ORGANIZATION
The literature contains several studies proposing different
models for LEMs, P2P trading approaches, and prosumers
preference vectors for LEM design. However, there is still
a gap in literature concerning models considering the het-
erogeneous characteristics (i. e. preferences) of prosumers
within the bids/offers during P2P matching. In this paper,
we develop a non-mediated P2P matching model based on
advanced clustering model that simultaneously takes into
account the geographic location, location on the local com-
munity, bid/offer price, bid/offer quantity, and cluster welfare
for prosumers in the energy community. The literature [32],
[33], [34] contains several studies on clustering and applica-
tion of clustering in energy systems, however, this is the first
of its kind where clusters are built with developed weights
instead of the distance or values of the sets. Hence, in this
model, the developer can decide on a set of variables within
the multi set that is of more importance to him or her and
decide to manually give more weight to this variable before
the start of clustering. By doing so, themodel will perform the
clustering while considering that a certain variable is of more
importance to the model compared to others and therefore
perform according to this instruction. The model was imple-
mented on an interface and open source code-base of the Grid
Singularity Exchange to simulate, and optimize energy trad-
ing in local communities [35]. Furthermore, we evaluate the
model using performance indicators such as self-sufficiency,
self-consumption ratio, share of market savings and traded
energy quantity. Our model can be used for any multi set
functions where the user wishes to cluster multi variables
while attributing more importance to some variable com-
pared to others. Thus the application of the developed novel
clustering algorithm extends beyond LEM but also to other
applications where similar multi sets need to be classified.
The main contributions of the paper are summarized in the
following:

• Proposing an advanced clustering algorithm for group-
ing of heterogeneous characteristics of bidding pref-
erences for prosumers considering energy quantity,
geographic location, location on the community and
bid/offer price.

• Presenting novel P2P matching in energy communities
based on our proposed advanced clustering algorithm.

• Implementation of the proposed model in a real case
German community.

• Assessing the performance of our proposed P2P model
based on performance indicators for the LEM.

The remaining sections of this work are structured as follows.
Section II introduces clustering and the proposed advanced
clustering algorithm. The proposed LEM model is described
in Section III and sample discussion of the proposed model
with example presented in Section IV. The community set-
up, data and price components are presented in Section V.
Section VI discusses the results of our case studies and
the findings in details. Finally, the paper is concluded
in Section VII.

II. PROPOSED CLUSTERING ALGORITHM
A. INTRODUCTION TO CLUSTERING
Clustering is an unsupervised learning algorithm with the
objective of extracting underlying information of data sam-
ples and using the information to split the data into different
groups so-called clusters [36]. Clustering is usually used for
analyzing market research, pattern recognition, data analy-
sis, image processing and categorizing genes with similar
functionalities [37]. K-means clustering is one of the most
popular clustering algorithms used in data mining because
of its simplicity and computational efficiency [36], [38].
In K-mean clustering, the Euclidean1 is used as a means
to measure data that are nearby each other and as a
means for determining the centroid for group of unlabelled
data [38]. Hence, K-means clustering uses a local search to
group the data sample by first; randomly selecting k points
{µ1, . . . , µk} as the corresponding initial centers for k clus-
ters, then optimizing them iteratively until the objective func-
tion (Eq. 3) is minimized [39]. Supposed we have a multi-set
of d-dimensional vector, X, then,

X = {x1, x2, . . . , xp}, (1)

where p is number of observations and xp is the p-th obser-
vation. The objective of K-means clustering is to clus-
ter the p observations into k multi-sets of homogeneous
clusters by minimizing the objective function represented
by Eq. (3) [39], [40].

S = {s1, . . . , sk}, (2)

J =

k∑

i=1

∑

xj∈Si

||xj − µi||
2
2, (3)

Here, the number of clusters should be less than or equal
to the number of observations (k ≤ p). Moreover, xj is the
j-th observation belonging to si as i-th cluster. It is notice-
able that in K-means clustering algorithm, the number of
clusters must be defined initially. Hierarchical clustering is
another popular clustering algorithm used recently in data
mining. Hierarchical clustering algorithm consist of nested
partitions in which homogeneous observations are grouped
by recursively clustering only two observations at a time [41].
Unlike K-means clustering algorithm that has fixed number
of clusters, the number of clusters in hierarchical clustering
changes in every iteration cycle [42]. Hierarchical clustering
is classified into agglomerative and divisive clustering algo-
rithms which can simply be explained as bottom-up and top-
down approaches of the clustering, respectively [42]. In an
agglomerative clustering approach, the algorithm begins with
a singleton observation by pairing similar clusters at each
iteration. This process is repeated every iteration until all
observations are included into a single cluster or a defined
criterion is met [41]. On the other hand, in divisive cluster-
ing approach, clustering begins with one big cluster obser-

1Euclidean in this context is the study of solid geometry based on the work
of Euclid and the corresponding elementary geometry.
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vation and breaks down into clusters consisting of smaller
observations in a hierarchical top-down manner. Thus, for
p number of observations grouped into q sets of clusters,
{c1, c2, . . . , cq}, using hierarchical clustering, it is given that

{cj ⊂ ci} | {ci ⊂ cj} | {ci ∩ cj} = ∅, ∀i ̸= j, (4)

hence, it is either one of clusters i and j is a subset of the other
one hierarchically, or a disjoint of it [43].

In hierarchical clustering, different linkage criteria such
as single linkage, complete linkage, unweighted pair group
method average, the weighted pair group method average,
the unweighted pair group method centroid, the weighted
pair group method centroid, and the ward linkage are used
to measure the distance between two clusters [44]. For the
single linkage, the similarity between two clusters depends
on the closest pair of members in the two clusters. Therefore,
the closeness of the pairs in terms of distance are considered.
However, for complete linkage, the similarity between two
clusters depends on the farthest pair of members in the two
clusters. Therefore, farther pairs are grouped first. For the
unweighted pair group method average, the average distance
between all individual clusters is calculated and clusters with
the least average distance are joined to form the next hier-
archy [44], [45]. For a weighted pair group method average,
the hierarchical clustering are formed by joining to nearby
clusters, the distance between the new formed cluster and
any other cluster is the arithmetic mean of the average dis-
tances between members of the formed cluster and any other
cluster [34]. The unweighted pair group method centroid is
similar to unweighted pair group method average, however,
for unweighted pair group method centroid, the proximity
between two clusters is the proximity between their geometric
centroids. Also, the weighted pair group method centroid is
similar to weighted pair group method average, however, for
weighted pair group method centroid, the proximity between
two clusters is the proximity between their geometric cen-
troids [33], [34]. For the wards linkage, two clusters are
joined to form a hierarchy once they minimize the increase
of sum of square error [34], [44], [45]. For instance in [32],
the the unweighted pair average distance and ward linkage
methods were used for grouping the clusters. In [33], the
single linkage criterio was used. In [34], the single linkage,
complete linkage, unweighted pair group method average,
the weighted pair group method average, the unweighted
pair group method centroid, the weighted pair group method
centroid, and the ward linkage were used and compared.

B. ADVANCED CLUSTERING ALGORITHM
In this section, a novel advanced clustering algorithm is pro-
posed. Theoretically, the proposed advance clustering algo-
rithm is derived by combining k-means and agglomerative
clustering algorithms. In this way, two different multi-sets, X
andW, of d-dimensional vectors each withN andM number

of observations, are given in Eqs. (5) and (6), respectively.

X = {x1, x2, . . . , xN } (5)

W = {w1,w2, . . . ,wM} (6)

1) STAGE I: INITIAL CLUSTERING
First, the sets from (5) and (6) are clustered into K and U
number of homogeneous sets, by minimizing (7) and (8),
respectively.

J x =

K∑

k=1

∑

xy∈cxk

||xy − µk ||
2
2, (7)

Subject to:
K ≤ N ,

Jw =

U∑

u=1

∑

wg∈cwu

||wg − µu||
2
2, (8)

Subject to:
U ≤ M.

Here, xy and wg are the y-th and g-th sets from the obser-
vations X and W, belonging to the k-th and u-th clusters,
cxk and cwu , respectively. Hence, µk and µu are the initial
cluster points for sets X and W as given in (5) and (6),
respectively. Eq. (9) and (10) represent the solutions for (7)
and (8), respectively.

Cx = {cx1, c
x
2, . . . , c

x
k}, (9)

Cw = {cw1 , cw2 , . . . , cwu }, (10)

where c1x to ck x and c1w to cuw represent the selected homo-
geneous clusters for sets X and W, respectively.

2) STAGE II: HIERARCHICAL CLUSTERING BASED ON
LINKAGE CRITERIA
The homogeneous clusters from (9) and (10) are further clus-
tered by determining the individual heterogeneous features
of the clusters elements and pairing them one after the other,
hierarchically. This is achieved by solving the optimization
problem given in (11).

(cxk∗ , cwu∗ ) = argmax
∑

cxk∈C
x ,cwu ∈Cw

ωk,u(cxk , c
w
u ) (11)

where cxk∗ and cwu∗ are clusters selected from Cx and Cw,
respectively, as solution of (11). Moreover, ωk,u is the
chosen metric which is derived based on the properties of
the d-dimensional observation sets X and W. To solve the
optimization problem, Eq. (11) is reduced to Eq. (12) to
compute the weighted linkage ω∗, and (12), and (11) are
solved iteratively until (9) and (10) are reduced to a single
cluster.

ω∗
= max{ωk,u(cxk , c

w
u ) : cxk ∈ Cx , cwu ∈ Cw} (12)

The pseudocode of our proposed advanced clustering is
represented in Algorithm 1. The output R1,R2, . . .RN ∗ is
the result of matching two clusters cxk∗ and cwu∗ obtained as
solution to Eq. (11).
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Algorithm 1 Advanced Clustering Algorithm
Require: X ={x1, x2, . . . , xN }, W ={w1,w2, . . . ,wM}.
Output:{R1,R2, . . .RN ∗}
Solve: Eq. (7) and Eq. (8), to obtain Cx ={cx1, c

x
2, . . . c

x
k} and

Cw ={cw1 ,ww2 , . . . cwu }

while (size(Cx x Cw) >1) do
Determine: ω∗ from Eq. (12)
Solve: Eq. (11) with solution from Eq. (12)
Merge: Merge clusters of Eq. (9) and (10) based on
solution from Eq. (11)

end while

III. PROPOSED P2P MARKET MODEL
In this Section, our proposed P2P market model is presented.
In the first step, each prosumer submits its offers and bids
at each time slot to the energy community framework as
shown in Fig. 1. Then, prosumers are clustered based on
the proposed advanced clustering algorithm. P2P matching
among prosumers occurs and the cluster weight matrix is
updated. This process is repeated in the next time slot until
end of the market as shown in Fig. 2. The motivation of
clustering prosumers and consumers in P2P energy trading
is to reduce mismatch during P2P matching, create cluster
of markets where the members of the clusters have similar
features and further reduce imbalance in the local community.
By clustering prosumers, we reduce the big local market
into smaller groups of markets. The participants in each of
these smaller groups have similar features/properties, thereby
creating opportunity for more bids and offers to be matched
in the group levels which will lead to efficient LEM. Also,
by creating clusters of members with the similar load pro-
files, the market reduce imbalance in the local community
and ensure that more energy is matched at local level and
that grid instability is reduced. Moreover, by creating clusters
with similar bidding/offering strategies, the model ensure that
there is no mismatch during the market clearing of bids and
offers. Because of the establishment of previous works [6],
[46], [47] in this area that P2P market for LEM trading offers
economic and technical benefits to the LEM participants
compared to merit order clearing mechanism, we use the P2P
trading for our model. Also, P2P trading gives opportunity
for consumers and prosumers to say how much they are
willing to pay/receive per kW of their electricity thereby
engaging both producers and consumers in the market which
is the major idea of LEM unlike the merit order where only
the producers gives their cost price and market is matched
based on this. Also, P2P energy trading provides opportunity
for more energy to be traded within the local community
compared to merit order clearing mechanism.

A. STAGE I: BIDDING AND OFFERING BY PROSUMERS
For the proposed LEM model, the prosumers submit their
bids and offers as a set of prosumers’ preferences at each
time slot to the local electricity market framework. Eq. (13)

represents the bid of buyer i at time slot t .

bi,t = [pbi,t , q
b
i,t , l

g
i , l

d
i ], ∀i, t, (13)

where, bi,t represents the bidding vector of buyer i at time t
which contains energy quantity (qbi,t ), bid price (pbi,t ), geo-
graphic location (lgi ) of the buyer i in terms of latitude and
longitude, and the location (ldi ) of the buyer i in energy
community. The location of the buyer, which is a prosumer
in the energy community, is the area location consisting of
the building block, street, zone and/or district location of
the buyer. Hence, while lgi represents the distance location
of the buyer, ldi represents the particular community the
buyer belongs out of the energy communities located inside
the LEM. Similar to Eq. (13), Eq. (14) represents the offer of
seller j at time slot t .

sj,t = [psj,t , q
s
j,t , l

g
j , l

d
j ], ∀j, t, (14)

where, sj,t represents the offering vector of seller j which
contains the energy quantity (qsj,t ), the offer price (psj,t ), the
geographic location (lgj ) of the seller, and the location (ldj )
of the seller on the energy community. Similar to buyers,
lgi represents the distance location of the seller, and ldi rep-
resents the particular community the seller belongs out of
the energy communities located inside the LEM. Thus, the
bidding/offering vectors submitted by buyers /sellers to the
LEM frame work at time slot t are represented by (15) and
(16), respectively.

Bt = {b1,t , b2,t , . . . , bN ,t }, ∀t, (15)

St = {s1,t , s2,t , . . . , sM,t }, ∀t, (16)

where Bt and St represent bidding and offering vectors,
respectively. Moreover, N andM express number of buyers
and sellers, respectively.

B. STAGE II: ADVANCED CLUSTERING OF BIDS AND
OFFERS
1) STEP I: INITIAL CLUSTERING
After bidding and offering vectors are submitted to the
LEM framework, they are clustered based on the pro-
posed advanced clustering algorithm. This way, similar to
K-means clustering algorithm, bidding and offering vectors
are defined as multi-sets and are clustered independently
based on the defined criterion by minimizing Eqs. (17)
and (18), respectively:

Jbt =

K∑

k=1

∑

bf ,t∈cbk,t

||bf ,t − µk,t ||
2
2, (17)

Subject to:
K ≤ N .

J st =

U∑

u=1

∑

sg,t∈csu,t

||sg,t − µu,t ||
2
2, (18)

Subject to:
U ≤ M.
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FIGURE 1. Proposed (a) LEM design and (b) P2P market model.

FIGURE 2. Flowchart of the proposed P2P market model.

According to Eqs. (17) and (18), K and U are the number
of clusters for the bids and offers, respectively. The number
of defined bidding clusters K, must be less than or equal
to the total number of bids at time step t . Also, the number of
the defined offering clusters U , must be less than or equal to
the total numbers of offers at time step t . Besides, bf ,t and sg,t

are the f -th bid and g-th offer, belonging to the k-th and u-th
clusters, cbk,t and c

s
u,t , respectively. Moreover, µk and µu are

the initial cluster points for bids and offers, respectively. The
initial cluster points are selected randomly and minimization
of Eqs. (17) and (18) is performed iteratively until the optimal
cluster points are determined. Thus, for initial k-th cluster of
bids and u-th cluster of offers, it is given:

cbk,t = {bk1,t , . . . , b
k
nk ,t }, ∀t, (19)

csu,t = {su1,t , . . . , s
u
mu,t }, ∀t, (20)

where nk is the number of bids belonging to k-th cluster of
bids, cbk,t , which have similar homogeneous features based
on the clustering criterion at time step t . Similarly, mu is
the number of offers belonging to u-th cluster of offers, csu,t ,
which have similar homogeneous features based on the clus-
tering criterion at time step t . In our proposedmodel, different
criterion are defined for clustering bids and offers based
on the elements of bids and offers submitted by prosumers,
as represented by Eqs. (13) and (14), respectively, and cluster
welfare. For a buyer i in cbk,t and seller j in csu,t at time
slot t , with bid and offer as represented by Eqs. (13) and (14),
respectively, the welfare (π) of the pair is represented
in Eq. (21),

π =





(pbi,t − psj,t ) × qsj,t : q
b
i,t = qsj,t

(pbi,t − psj,t ) × qsj,t : q
b
i,t > qsj,t

(pbi,t − psj,t ) × qbi,t : qbi,t < qsj,t





, pbi,t ≥psj,t , ∀i, j, t.

(21)

For pairs with pbi,t < psj,t , the welfare is not considered since
there will not be matching of such pairs even after clustering.
The social welfare of the clusters in Eqs. (19) and (20) termed
cluster welfare is represented in Eq. (22). Hence, for our
model, cluster welfare means social welfare of the clusters
and not the social welfare of the local community. Hence,
hierarchical clustering with cluster welfare as the chosen
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metric criterion means clustering pairs with higher π∗ using
the hierarchical clustering algorithm/method in the next step.

π∗ =

nk∑

i=1

mu∑

j=1

πi,j, (22)

Additionally, Eqs. (23) and (24) represent the the set of all
initial clusters for bids and offers:

Cbt = {cb1,t , . . . , c
b
k,t }, ∀t, (23)

Cst = {cs1,t , . . . , c
s
u,t }, ∀t, (24)

where c1,t b to ck,t b and c1,t s to cu,t s represent the selected
homogeneous initial clusters of bids and offers at time
step t resulting from Eqs. (17) and (18), respectively.
Eqs. (25) and (26) show that the selected initial clusters in
Eqs. (23) and (24) are from the bids and offering vec-
tors of buyers and seller represented in Eqs. (15) and (16),
respectively.

Bt = {cb1,t ∪ . . . ∪ cbk,t }, ∀t, (25)

St = {cs1,t ∪ . . . ∪ csu,t }, ∀t. (26)

2) STEP II: HIERARCHICAL CLUSTERING BASED ON LINKAGE
CRITERIA
After initial clusters obtained by Eqs. (23) and (24), bids and
offers are clustered hierarchically. Thus, initial clusters are
inputs for the hierarchical clustering stage and its optimiza-
tion problem represented by (27):

(cbk∗,t , c
s
u∗,t ) = argmax

∑

cbk,t∈C
b
t ,c

s
u,t∈C

s
t

ωk,u,t (cbk,t , c
s
u,t ), ∀t, (27)

where cbk∗,t and c
s
u∗,t are clusters selected from Cbt and Cst ,

respectively. Moreover, ωk,u,t is the chosen metric and is
defined as the weight for clustering pair of bidding cluster k
and offering cluster u into a single cluster at time slot t .
Accordingly, � is defined as a chosen weight matrix as
represented in Eq. (28).

�k×u,t =




ω1,1,t . . . ω1,u,t
...

. . .
...

ωk,1,t . . . ωk,u,t


 , ∀t. (28)

For reducing the computational burden, Eq. (27) can be
restated as given in (29) and (30):

ω∗
t = max{ωk,u,t (cbk,t , c

s
u,t ) : cbk,t ∈ Cbt , c

s
u,t ∈ Cst }, ∀t,

(29)

(cbk∗,t , c
s
u∗,t ) = arg(ω∗

t ), ∀t, (30)

where ω∗
t is the linkage criteria and is defined as the maxi-

mum value of the weighted linkage from the chosen weight
matrix represented in Eq. (28). From (28), the chosen metric
criteria, ωk∗,u∗,t , is defined as sum of the average weights
of bidding and offering elements including bid and offer
prices, energy quantity, location of the prosumers on the local

community for bids and offers clusters combination of cbk∗,t
and csu∗,t , respectively, which are given in (31):

ωk∗,u∗,t = ω
p
k∗,u∗,t + ω

q
k∗,u∗,t + ωl

k∗,u∗ . (31)

From (31), ω
p
k∗,u∗,t is the average price weight for possible

matching bidding cluster, cbk∗,t , and offering cluster, csu∗,t ,

as represented in the price weight matrix of (32) and given
in (38).

ω
p
k∗,u∗,t =




wp1,1,t . . . wp
1,mu∗ ,t

...
. . .

...

wp
nk∗ ,1,t

. . . wp
nk∗ ,mu∗ ,t


 , ∀t, (32)

where nk
∗

and mu
∗

are number of bids and offers in bidding
cluster, cbk∗,t , and offering cluster, csu∗,t , respectively. More-
over, wpi,j,t is the price weight for matching bid bi,t belonging
to k∗-th bidding cluster and offer sj,t belonging to u∗-th
offering cluster at time slot t as represented by (33),

wpi,j,t =





2: pbi,t = psj,t
1: pbi,t > psj,t
-1: else



 , ∀i, j, t. (33)

From Eq. (33), a bid and an offer pair with equal bidding and
offering price has the maximum weight which is 2, because,
this pair provide the maximum satisfaction to both prosumers
considering their bid and offer preference price. This pair
also provide the maximum welfare for the both pairs while
considering the bid/offer price of the prosumers. Therefore,
giving the maximum price weight to prosumers with the
same bid/offer price will ensure that more energy is traded
within the community. For a bidding price greater than the
offering price, the price weight is 1, because, this bid and
offer pair provide less price preference satisfactions to both
prosumers compared to the former. For a bidding price less
than the offering price, the price weight is−1 because the bid
and offer pair does not satisfy the sellers requirements and
validation requirements and consequently, this bid and offer
pair cannot match. This negative weight reduce the possibility
of matching the bid and offer pair with sellers offer price
greater than the buyers bid price.

Moreover, ω
q
k∗,u∗,t andωl

k∗,u∗ represent weights of average
energy quantity and location for possible matching of bidding
cluster, cbk∗,t , and offering cluster, c

s
u∗,t , as represented by (34)

and (36), respectively.

ω
q
k∗,u∗,t =




wq1,1,t . . . wq
1,mu∗ ,t

...
. . .

...

wq
nk∗ ,1,t

. . . wq
nk∗ ,mu∗ ,t


 , ∀t, (34)

where wqi,j,t represents the energy quantity weight of a buyer i
and seller j belonging to clusters cbk∗,t and c

s
u∗,t , respectively,

as given by (35):

wqi,j,t =

{
2: qbi,t = qsj,t
1: else

}
, ∀i, j, t. (35)
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From Eq. (35), bid and offer pair with equal bidding and
offering energy quantity has the maximumweight which is 2,
because, this pair provides the maximum energy quantity
preference satisfaction to both prosumers considering their
bid and offer energy quantity. Thus, there is high proba-
bility that the buyer and seller will trade all their energy
requirements with each other without requesting for another
prosumer to take care of their energy requirements that is
not satisfied by their pair. For pair with bidding energy
quantity greater than the offering energy quantity or offering
energy quantity greater than the bidding energy quantity, the
price weight is 1, because, this bid and offer pair provide
less energy quantity preference satisfactions to one of the
prosumers unlike the former that provide maximum energy
quantity preference satisfaction to both prosumers. Also, the
prosumer with higher energy quantity requirements will still
be paired in the next iteration meaning that all the energy
requirements cannot be satisfied with the pair and hence, the
reason for lesser energy quantity weight.

Additionally, Eq. (37) represents the location weight (wli,j)
of a buyer agent i and seller agent j belonging to clusters cbk∗,t
and csu∗,t , respectively.

ωl
k∗,u∗ =




wl1,1 . . . wl
1,mu∗

...
. . .

...

wl
nk∗ ,1

. . . wl
nk∗ ,mu∗


 , (36)

wli,j =





4: {li ∪ lj} ⊂ lb

3: {li ∪ lj} ⊂ le

2: {li ∪ lj} ⊂ lz

1: {li ∪ lj} ⊂ lc

0: else





, (37)

where lb, le, lz and lc represent apartment block, estate, zone
and local community, respectively. In other words, Eq. (37)
expresses that the closer the seller and buyer are on the local
community, the higher their location weight.

Thus, the average weight for all bidding/offering elements
is determined by Eq. (38):

ω
(.)
k∗,u∗ =

1
nk∗

× mu∗

nk
∗

∑

i=1

mu
∗

∑

j=1

w(.)
i,j, (38)

where w(.)
i,j can be weight for price (p), energy quantity (q)

and location (l). In this way, the average weights calculated
by Eq. (38) will be the inputs of (31).

3) STEP III: P2P MATCHING OF CLUSTERED BIDS AND
OFFERS
After prosumers are clustered in bid and offer clusters sep-
arately, P2P matching occur among prosumers which their
bids and offers belong to the selected clusters. This way,
considering cbk∗,t and c

s
u∗,t are selected as optimum bidding

and offering clusters from Eq. (30) which are represented by

Eqs. (39) and (40), respectively.

cbk∗,t = (bk1,t , . . . , b
k
nk∗ ,t

), ∀t, (39)

csu∗,t = (su1,t , . . . , s
u
mu∗ ,t

), ∀t, (40)

where cbk∗,t contains n
k∗

number of bids and csu∗,t contains n
u∗

number of offers at time t . Besides, bid i and offer j are vectors
consisting of their corresponding bidding and offering ele-
ments as represented by Eqs. (13) and (14). Thus, prosumer i
as a potential buyer and prosumer j as a potential seller are
eligible to negotiate with each other directly for making P2P
transaction because they belong to clusters cbk∗,t and csu∗,t ,
respectively. Hence, the matching among prosumers i and j
can occur if Eqs. (41) and (42) as P2P validation criteria are
satisfied.

pbi,t ≥ psj,t + gli,j,t , ∀i, j, t, (41)

(ldi ⊂ l) ∧ (ldj ⊂ l) = 1, ∀i, j, (42)

where gli,j,t represents grid fee of P2P energy transaction
among prosumers i and j in the local community l where lj
and li exist. In other words, the grid fee is amount of money
in cent/kWh which the paired prosumers i and j pay for using
the local grid for energy exchange in the energy community
l. Eq. (43) represents the community grid fees,

gli,j,t =





gl
b

t : {li ∪ lj} ⊂ lb

gl
e

t : {li ∪ lj} ⊂ le

gl
z

t : {li ∪ lj} ⊂ lz

gl
c

t : {li ∪ lj} ⊂ lc

gl
u

t : else





, ∀i, j, t, (43)

where gl
b

t , g
le
t , g

lz
t , g

lc
t and gl

u

t represent grid fees for apartment
blocks, estates, zones, local community and the upstream
grid, respectively. Each grid fee is the combination of meter-
ing fee (gm), local grid fee (gi,j,t ), upstream grid fee (gut ) and
19% value-added-tax (VAT) as represented in Eq. (44)

gl
∗

t =gm+gi,j,t+gut +0.19×(pp2pi,j,t+g
m
+gi,j,t+gut ); ∀i, t,

(44)

If Eqs. (41) and (42) are satisfied among prosumers i and j,
the selected pair of bid i and offer j are matched. Thus, qi,j,t
and pp2pi,j,t represent matched P2P energy quantity and price
between buyer i and seller j at time slot t which are given in
(45) and (46), respectively.

qi,j,t =

{
qbi,t : qsj,t > qbi,t
qsj,t : else

}
, ∀i, j, t, (45)

pp2pi,j,t =
psj,t + pbi,t

2
, ∀i, j, t, (46)

pbi,j,t = pp2pi,j,t +
gli,j,t
2

, ∀i, j, t, (47)

psj,i,t = pp2pi,j,t −
gli,j,t
2

, ∀i, j, t, (48)
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where pbi,j,t is the bought price for buyer i to trade P2P energy
with seller j, and psi,j,t is the sold price for seller j to trade P2P
energy with buyer i at time slot t as represent by Eqs. (47)
and (48), respectively. After P2P matching between seller i
and buyer j, the bid and offer are updated by subtracting
the matched energy quantity from the submitted bid/offer
quantity as represented in (49) and (50), respectively.

qb
′

i,t = qbi,t − qi,j,t ; ∀i, t, (49)

qs
′

j,t = qsj,t − qi,j,t ; ∀j, t, (50)

where qb
′

i,t and q
s′
j,t is the deficit/excess bid and offer energy

quantity for buyer i and seller j respectively, after P2P match-
ing between them. In case, the selected bid and offer does
not satisfy constraints (41) and (42), another bid and offer
pair (bi∗,t and sj∗,t ) are selected according to (51) and (52),
respectively.

bi∗,t = [pbi∗,t , q
b
i∗,t , l

g
i∗ , l

d
i∗ ]; {bi∗,t ⊂ cbk∗,t , i

∗
̸= i}, ∀t,

(51)

sj∗,t = [psj∗,t , q
s
j∗,t , l

g
j∗ , l

d
j∗ ]; {sj∗,t ⊂ csu∗,t , j

∗
̸= j}, ∀t.

(52)

Eqs. (51) and (52) imply that bids and offers paired earlier
cannot be paired again in the same time slot, t . The proposed
matching process from Eqs. (39) to (52) is repeated until all
the bids and offers are selected.

4) STEP IV: UPDATING THE CHOSEN WEIGHT MATRIX
After matching bidding and offering clusters cbk∗,t and c

s
u∗,t ,

respectively, according to Section III-B3, the chosen weight
matrix will be updated. In this way, if all energy quantity of
both bid i and offer j are fully matched, the chosen weight
matrix is updated as given in Eq. (53) by deleting the cor-
responding bid’s column and offer’s row stated in Eq. (28).
In other words, Eq. (28) is reduced to Eq. (53) by deleting
matched bidding cluster, cbk∗,t , and offering cluster, c

s
u∗,t , from

Eqs. (23) and (24), before solving (27) in the next iteration.

�k×u,t =




ω1,1,t . . . ω1,u−1,t
...

. . .
...

ωk−1,1,t . . . ωk−1,u−1,t


 , ∀t. (53)

However, if only the offered energy quantity of the cluster
csu∗,t is fully cleared while the bid energy quantity of cbk∗,t is
not cleared completely, then Eq. (28) is updated to (54) by
deleting the corresponding offer’s row stated in Eq. (28).

�k×u,t =




ω1,1,t . . . ω1,u−1,t
...

. . .
...

ωk,1,t . . . ωk,u−1,t


 , ∀t. (54)

On the other hand, if only the energy quantity of the
bid cluster cbk∗,t is cleared completely, Eq. (28) is updated
to Eq. (55) by deleting the corresponding bid’s column stated

in Eq. (28).

�k×u,t =




ω1,1,t . . . ω1,u,t
...

. . .
...

ωk−1,1,t . . . ωk−1,u,t


 , ∀t. (55)

Finally, if there are unmatched energy quantities of bid and
offer within both (cbk∗,t and c

s
u∗,t ) clusters, the size of Eq. (28)

remains unchanged. However, matched bids and offers are
deleted leaving unmatched ones. Then the chosen weight
matrix from Eq. (28) is computed again based on Eqs. (32),
(34) and (36), and used to solve Eqs. (29) and (27). The pro-
cess is repeated until the chosen weight matrix, represented
in Eq. (28), forms a single matrix in which the input clusters
cannot satisfy the matching criterion described in Eqs. (41)
and (42), or all the bids and offers are fully matched. All
deficit/excess bids and offers which are not cleared in the
local energy market, will be traded with the utility using
the upstream-grid price. The pseudocode and flowchart of
our proposed advanced clustering approach for a single time
slot t is shown in Algorithm 2 and Fig. 3, respectively. From
Algorithm 2, R1,R2, . . .RN ∗ is the output of the algorithm
which is the result of matching two clusters cbk∗,t and c

s
u∗,t

based on Eqs. (39) to (52).

Algorithm 2 Advanced Clustering Algorithm
Require: Bt ={b1,t , b2,t , . . . , bN ,t}, St

={s1,t , s2,t , . . . , sM,t}. ▷ Bids and offers
Ensure: Mcriterion = True ▷ All bids and offers contain no

zero or empty set
Output:{Rb,s1 ,Rb,s2 , . . .Rb,sN ∗}
Solve: Eq. (17) and Eq. (18), to obtain Cb

t ={cb1,t , . . . , c
b
k,t}

and Cs
t ={c

s
1,t , . . . , c

s
u,t}

while (Mcriterion = True | (size(Cb
t x Cs

t ) >1)) do
Calculate: Eq. (28)
Determine: ω∗ and (cbk∗,t , c

s
u∗,t ) from Eqs. (29) and

(30), respectively.
Matching: Match the clusters (cbk∗,t , c

s
u∗,t ) based on

Eq. (39) to (52).
if : All (cbk∗,t & csu∗,t ) are matched then

Reduce Eq. (28) to Eq. (53);
else if : All (csu∗,t ) are matched then

Reduce Eq. (28) to Eq. (54);
else if : All (cbk∗,t ) are matched then

Reduce Eq. (28) to Eq. (55);
else:

Delete individual matched bids and offers;
end if

end while

IV. PROPOSED P2P MARKET MODEL DISCUSSION
In this Section, our proposed P2P market model is described
with a simple example to illustrate how bids and offers are
clustered and matched according to prosumers’ preferences.
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FIGURE 3. Flowchart of the proposed advanced clustering model.

Table 1 displays the sample of prosumers’ bids and offers
containing the prosumers preference vector for a single time
step. The preference vector contains the prosumer’s identifi-
cation (ID), bid/offer price, energy quantity, geographic loca-
tion and location of the prosumer on the energy community.
The geographic location is the location of the prosumer in
terms of latitude (La) and longitude (Lo). On the other hand,
location of the prosumer in the energy community contains
the its zone, estate and building block. According to Table 1,
there are two zones consisting of zone A (ZA) and zone B
(ZB). Moreover, there are three estates namely yellow (YE),
ash (AS), and orange (OR), and six building blocks B1 to
B6. In this way, as shown in first row of Table 1, ZA-YE-B1
means that the prosumer 1 belong to zone A, yellow estate
and B1.

Fig. 4 displays the clustering and matching of the sample
bids and offers of Table 1 based on the proposed P2P market
model using advanced clustering algorithm. The bids and
offers are arranged according to the bidding/offering price
and energy quantity as shown on the lowest level of Fig. 4.
The bids are b1 to b5, and the offers are s1 to s4. In the next
level, bids and offers are clustered based on the initial cluster-
ing algorithm described in Section III-B1 with cluster welfare

as the clustering criterion. The number of clusters for bids and
offers are set as two for each of them. The initial clusters is
shown on the second level from the bottom layer of Fig. 4. For
the bids, the initial clusters are represented by cb1 and c

b
2, while

the initial clusters of offers are represented by cs1 and cs2.
Afterward, first two optimal clusters are selected from the
four initial clusters by solving Eq. (27). In this sample, the
first selected optimal clusters are cs1 and cb2. This way, bids
and offers within these selected clusters arematched using the
matching algorithm described in Section III-B3 and forms a
single cluster cs2,1 after matching. During matching, the first
negotiation is between prosumers b4 and s4 because of their
close price and energy quantity preference. Consequently,
2.85kWh is traded between both prosumers at 23.75 ct./kWh.
Hence, b4 is fully matched while s4 is partially matched with
a left over of 0.16kWh. In the same way, b5 and s3 negotiate
to exchange 3.12kWh at 24.15ct./kWh. This results in s3 been
fully matched and b5 been partially matched with a left over
of 0.08kWh. Then, b5 and s4 negotiate to trade their left over.
This results in 0.08kWh been traded among b5 and s4 at
25.5 ct./kWh. Hence, b5 is now fully matched while s4 is
partially matched with a left over of 0.08kWh. Consequently,
the formed single cluster contains two offers s2 and s4. While
s4 is partially matched, s2 is not matched at all. Here, cs2,1 rep-
resents a combined cluster of bidding cluster cb2 represented
by first subscript 2, and offering cluster cs1 represented by
second subscript 1 and they both formed an offering cluster
represented by superscript s. The fist hierarchy now contains
three clusters namely cs2,1, c

s
2 and cb1. For the next iteration,

two clusters are selected from three clusters in the first hier-
archy by solving Eq. (27) and are termed second selected
optimal clusters. The second selected optimal clusters are
cs2,1 and cb1. Bids and offers within these selected clusters
are matched using the same matching algorithm described
in Section III-B3 and forms a single cluster cb1,(2,1) after
matching. cb1,(2,1) contains only one bid, b1, which is partially
matched. At this stage, only two clusters consisting of cs2
and cb1,(2,1) are left and form the second hierarchy. These two
clusters are selected and matched to form the single cluster
cs(1,(2,1)),2 which contains a single offer s1 that is partially
matched. In this way, the final cluster, cs(1,(2,1)),2, will trade
with the upstream grid using the upstream grid price as it was
not able to match in the local community.

Thus, our model considers similarities based on bid-
ding/offering prices and load profiles. This way, two pro-
sumers in an LEM with similar profiles will be able to trade
P2P energy with each other. If the bidding price of the buyer
is less than the offering price of the seller, there will be no
matching notwithstanding the similarities in the load profiles.
This shows the importance of bidding/offering price in an
LEM. Bidding/offering price just likes prosumer profiles has
effect in LEM trading which if not considered will lead
to mismatch in trading and further result in trading with
the upstream grid thereby making the market uneconomical
and even cause grid instability. As our trading time step
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TABLE 1. Prosumers bid/offer preferences.

FIGURE 4. Clustering of bids/offers based on our proposed advanced
clustering.

(15 minutes) is very short, uncertainty was not considered as
it does not have high impact on the LEM. In the LEM, pro-
sumers are allowed to take strategic actions that will benefit
them and the market. However, they are not allowed to take
actions that will result in inequality.

Clustering brings together prosumers into pools of their
fellow prosumers where they all posses similar characteris-
tics. This results in reducing mismatch in the LEM as clusters
contain pairs with similar bidding/offering preferences which
is used for the P2P matching. Clustering further ensures that
more energy is traded at the local levels and creates more
local economy for energy community. Hence, considering
heterogeneous characteristics of prosumers is relevant to the

economic goal of social welfare which is mainly creating
additional savings for the local participants. This additional
savings results in increase in the share of market savings of
the local prosumers participating in the local energy trad-
ing. Moreover, clustering is based on considering the social
welfare of clusters as defined in Eqs. (21) and (22) and not
the social welfare of the local community. In comparison to
existing clustering algorithms, the proposed clustering algo-
rithm provides opportunity for the LEM operator managing
the local market to give more importance to certain pro-
sumers preferences that is more importance to the prosumers.
Furthermore, the algorithm converges faster in lesser time
when compared to the traditional clustering algorithms like
K-means clustering.

V. SIMULATION SET-UP
A. SIMULATION FRAMEWORK
The proposed LEM advanced clustering model is developed
as a Python code and implemented by integrating with the
open-source Grid Singularity Exchange (GSy-E) [35], [48],
[49] and bidding agent application programming interface
(API) as represented in Fig. 5. Each consumer and prosumer
is represented by a bidding/offering agent which communi-
cates their bids and offers/bids, respectively, to the exchange
engine. The exchange engine is responsible for (i) receiving
the bids/offers from the bidding/offering agents of the pro-
sumers, (ii) storing them in the ordered book, and (iii) sending
them for onward clearing by the matching API. The matching
API is responsible for matching the bids/offers among pro-
sumer agents using the proposed advanced clustering model
developed in this work. All unmatched bids and offers are
transacted with the up-stream grid agent using the upstream
grid price. In other words, any offer and bid of prosumers
which is not matched with other prosumers in the energy
community is traded with the up-stream grid. In our simula-
tion model, each prosumer communicates their bids or offers
individually to the exchange engine every 15 minutes time
slot before the energy exchange time. Afterward, the results
from the matching API is sent back to individual prosumers.

B. COMMUNITY SET-UP AND DATA
The proposed P2P LEM approach is verified in two simula-
tion case studies for a period of one day. Case study I is a
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FIGURE 5. Flowchart of simulation framework for proposed model.

community with 25 prosumers consisting of 15 households
with only consumption devices and 10 households with con-
sumption and production devices. Case study II is a commu-
nity with 120 prosumers consisting of 68 households con-
sumers, 4 commercial consumers, 7 commercial prosumers,
6 industrial prosumers and 35 household prosumers. For both
case studies, the load profiles are combinations of profiles
from [50], LoadProfileGenerator [51], [52] and standard load
profiles [53], [54]. These two case studies are chosen to show
an in-depth and clear analysis of the advantage/benefits of
our proposed model using case study I and further prove its
application in a real-case LEM using case study II. Besides,
the PV production profiles are from Renewables Ninja [55],
[56] using Stuttgart region as a community. The PV system
losses are also varied between 5% and 15%with a constant tilt
angle of 35◦. For prosumers with storage systems, the storage
capacities are between 7.5 kWh to 13.5 kWh with maximum
absolute power between 3.5 kW to 5.25 kW. Additionally,
two community storage systems of capacities 140 kWh and
120 kWh, with maximum power of 40 kW are included in
the local community of case study II. The minimum allowed
state of charge for all storage systems is 10%. The profiles are
randomly fitted into a community (Scharnhausen) in Stuttgart
region as shown in Fig. 6(a) and (b) for case studies I and II,
respectively, using the OpenStreet map and QGIS. In this
study, prosumers in the same building like P1, C1 and P2,
are considered to be in the same block. Moreover, prosumers
in the same neighbourhood (street) like P1, P4 and C2 are
considered to be in the same estate, and prosumers in the same

post code (e.g P1, C6, C9 and P3) are considered to be on the
same zone.

The price components of the simulation case studies are
presented in Table 2. The price components of the local
electricity market consist of energy price of the electric-
ity producer, metering fee, local grid fee and 19% Value-
Added-Tax (VAT) [57]. The energy price is the minimum
amount of money (cents/kWh) a seller prosumer is willing
to receive per kWh of electricity produced and traded with
other prosumers. Themetering fee is the surcharge paid by the
consumer for maintaining the metering infrastructure while
the local grid fees are for maintaining the local distribution
grid infrastructure. The VAT is the tax paid for transacting
electricity between prosumers. It is noted that the VAT is 19%
of the sum of energy price, metering, local and up-stream
grid fees. Additionally, the up-stream grid fee is added if
the electricity is traded with the up-stream grid. Because of
the average cost of electricity in Germany, the maximum
cost of electricity which is the cost of buying electricity
from the grid is capped at 31.5 cents/kWh [58]. Moreover,
the minimum cost of electricity is 11.00 ct/kWh which is
the feed-in tariff of PV. Hence, consumers (also prosumers
during bidding) set their preferred bid price between 11.38 to
29.54 ct/kWh, that is the range of total cost for buying energy
within a block. However, prosumers (during offering) set their
preferred offering price between 11 to 24.5 ct/kWh. This is
the range of energy price for selling energy within a block as
shown in Table 2. The range of energy price is between the
feed-in tariff price and the maximum price that prosumers
can sell their energy within the community. Each prosumer
within the LEM has an agent which is a software code that
submit their bidding/offering vectors on their behalf to the
LEM framework. The bidding price is chosen randomly by
the agent within the range provided by the prosumer while the
energy quantity is selected from the consumption/production
profile of the prosumer. The agents on behalf of the prosumers
and consumers can only send one bid or offer per time slot.
Furthermore, electricity which is not traded within the LEM
is exchanged with the up-stream grid at the grid price which
is less profitable compared to trading within the LEM.

VI. RESULTS AND DISCUSSION
A. CASE STUDY I
The analysis and discussion of the simulations results for case
study I are presented in this section.

1) GENERAL ANALYSIS OF SIMULATION RESULTS
To analyze the traded electricity volume and the electricity
exchanged with the upstream grid, the geographic location
and location of the agent in the local community are used as
criteria for initial cluster grouping and hierarchical clustering
chosen metric, respectively. The simulation is analyzed and
presented in this subsection.

Fig. 7 shows the net electricity demand for (a) consumers,
(b) prosumers and (c) the prosumers’ electricity supply for
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FIGURE 6. Geospatial information for (a) case study I and (b) II.

TABLE 2. Price components for sub-communities and with the up-stream grid.

the simulation period. As shown in Figs. 7a and 7b, the peak
demand happens in the morning (around 6:00am) and late
evening (around 8:00pm). This is typical of households as
most people always prepare for their daily activities in the
morning and consequently will need to use their electricity
appliances. Moreover, at late in the evening, most people will
be cooking their dinner, listening to local news, etc. Conse-
quently, the peak electricity demand is obvious. The early
morning peak electricity demand of the prosumer households
is not noticeable in Fig. 7b. This is because the simulation
is conducted for a summer day, and most of the prosumers’
electricity demand in the morning of the simulation day is
covered by the PV production and hence cutting off the
morning peak demand of the prosumers. In addition, the
households show an almost constant electricity demand from
about 11:30pm until 5:00am. This is because most electricity

consumers at this time are asleep and therefore only use their
constant electricity demand appliances such as refrigerators.
FromFig. 7c, net electricity supply starts early in themorning
at around 5:30am with peak generation between 10:00am to
12:30pm, ending at around 4:00pm. This is a typical summer
day, prior to and after this specified time, electricity generated
by the prosumers is used to satisfy the internal demand of the
prosumer households.

Fig. 8 displays the electricity traded within the LEM
for selected (a) consumers (b) prosumers and (c) energy
exchange with the upstream grid for the simulation period.
As shown in Fig. 8, it is evident that electricity trading
happens within the LEMmainly during the net PV production
time. Since the batteries are not internally controlled, the
prosumers that own batteries sell their charged electricity
a few time steps after the PV generation within the LEM
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FIGURE 7. Power demand for (a) Consumers (b) Prosumers and (c) Prosumers’ supply.

has stopped. The stacked area of the prosumers’ (Fig. 8b)
traded energy is bigger compared to the stacked area of the
consumers’ (Fig. 8a) traded energy. This is because pro-
sumers can act as consumers in some time steps. At this
instance, the traded energy between prosumers is recorded
for both prosumers (i.e. prosumers that produce the energy
and those that also consume the energy) thereby increas-
ing the area of Fig. 8b compared to Fig. 8a where two
consumers cannot exchange energy. Fig. 8c displays the
energy imported/exported from/to the upstream grid to/from
the LEM. From Fig. 8c, there is no energy export to the
upstream grid from 12:00am until about 6:00am and from
about 4:00pm until 12:00am. This is because there is no net
PV production at this period. The major electricity import
from the upstream grid also happens at this period. Since
all prosumers within the LEM may not have the same price
preference, some prosumers may not be able to bid the price
that will enable them buy electricity from the LEM. At same
time, some prosumers many not be able to offer the price
that will enable them sell all their electricity at the LEM.
This is the cause of the simultaneous imports and exports
witnessed at some periods around 6:00am until about 4:00pm
in in Fig. 8c. Comparing Figs. 8c and 7a, it is evident that the
peak demand witnessed in Fig. 7a at around 6:30am which is
cut off by the LEM (as shown in Fig. 8c) from 10kW to about
4kW showing about 60% cut off. The peak import (Fig. 8c)
witnessed from around 9:00pm is because of the high demand
from both consumers and prosumers at late evening and there
is no PV production at this time to reduce it.

2) ANALYSIS OF CLUSTERING SCENARIOS
The analysis and discussion of the simulation results for the
different clustering scenarios are presented in this section.

a: CONSTANT CLUSTERING CRITERIA FOR INITIAL CLUSTER
AND HIERARCHICAL CLUSTER CHOSEN METRIC
In this subsection, we analyze the simulation for the constant
clustering scenarios. The same approach is used for both
initial cluster grouping and hierarchical clustering chosen
metric. In this way, four scenarios are introduced based on
location, offering/bidding price, energy quantity, and cluster

welfare. These scenarios are analyzed in terms of how they
affect electricity trading, and the economic and technical
benefits of the LEM. Fig. 9 shows (a) the traded energy,
(b) average trade rate and (c) number of trade per slot for four
clustering scenarios. According to our study, the four clus-
tering scenarios show similar behaviour for traded energy,
average trade rate and number of trades per slot. In the
proposed scenarios, from 12:00am until about 5:00am,
the energy traded within the LEM is zero and consequently,
the average trade rate and the number of trades per slot are
31.5ct/kWh and 0, respectively. At this time, there is no PV
generation and all the electricity is bought from the upstream
grid at a higher price. In the morning, the PVs start generating
and consequently, the traded volume and the number of trades
per slot increase gradually which further results in gradual
decrease in the average trade rate. During the day, as the PVs
are generating electricity, higher volume of energy is traded
within the LEM resulting in higher value of number of trades
per slot and lower value of the average trade rate. On the
other hand, during the evening around 8:00pm, as the sun sets,
the traded volume and the number of trades per slot reduce
gradually to zero. The average trade rate increases in the same
way to 31.5ct/kWh.

Fig. 10 displays the internal traded energy within the LEM,
total energy import and export from/to the upstream grid for
all clustering scenarios. The internal traded energy is the total
energy traded between consumers and prosumers within the
LEM. The energy imported/exported from/to the upstream
grid are known as external energy exchange. As shown in
Fig. 10, the price clustering scenario shows the best perfor-
mance for the internal and external energy exchange com-
pared to other clustering scenarios with location showing
the least. This is evident with the high internal and lower
external energy exchange of the price clustering scenario and
the lower internal and higher external energy exchange of the
location clustering scenario. Higher internal energy exchange
means that more energy is traded within the LEM and hence,
more benefits is expected to be created by this higher trade.
On the other hand, higher external energy exchange means
that most of the trades happens between the prosumers and
the upstream grid, this is expected to create less benefits to the
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FIGURE 8. Electricity traded within the LEM for selected (a) Consumers, (b) Prosumers and (c) exchange with upstream grid.

FIGURE 9. Comparison of (a) traded energy (b) average trade rate and (c)number of trades per slot for constant criteria for initial cluster grouping and
chosen metric.

FIGURE 10. Comparison of internal and external energy exchanged for
constant clustering criteria scenarios.

LEM. The least performance of location clustering scenario
compared to the price clustering scenario is because, although
some consumers and prosumers may be close to each other
and may be clustered to trade electricity, but they will not
trade if the bidding price is less than the offering price. This
way, clustering prosumers and consumers who have the same
price preference range will result in higher matching of bids
and offers within the LEM, thereby creating more internal
energy trade and less energy exchangewith the upstream grid.
The self-sufficiency (SS), self consumption ratio (SC) and
the share of market savings (SMS) for the four clustering
scenarios are shown in Fig. 11. The SMS is the share of

profit made by the local consumers and prosumers for trading
within the LEM compared to when there is no LEM [59].
The SS, SC and SM of the four scenarios share a close range
with each other. However, for all the performance indicators
(SS, SC and SMS), the price based clustering scenario has the
best performance and location has the least. This is because,
the price based clustering scenario provides more internal
traded energy and less external traded energy compared to
other clustering scenarios. Higher internal traded energy and
lower external energy exchange results in higher performance
of the LEM as the LEM does not depend much on the
upstream grid for its energy production/consumption. Hence,
clustering prosumers and consumers, who have the same
price preference range will be more beneficial to the LEM
as most trades will match in this cluster scenario, thereby
increasing the LEM’S performance indicators.

Figs. 12 (a) and (b) show box plots of the net cost of
trading electricity for consumers and prosumers, respectively,
in twelve clustering scenarios (L1 to L12). For the consumers,
Fig. 12a, the mean cost for all the clustering scenarios is
between 2.6 to 2.8 ct./kWh. It is evident that the consumers
are household consumers as this cost is within the range of
the daily electricity cost for a households in Germany and
this correspond to the household data used for the simulation
of this case scenario. The minimum cost is 1.5 ct./kWh and
all the clustering scenarios show the same minimum cost.
However, the maximum cost varies for the different scenarios
with L1, L3,L4, L6, L9 and L10 showing a lesser maximum
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FIGURE 11. Comparison of SS, SC and SMS for constant clustering criteria
scenarios.

TABLE 3. Varied clustering scenarios.

cost value compared to L3, L5, L7, L8, L11 and L12 clus-
tering scenarios. For the prosumers, Fig. 12b, the mean cost
is between −1.8 to −1.6 ct./kWh for all the clustering sce-
narios. Negative mean cost means that the prosumers gained
some monetary value for exchanging their electricity with the
consumers. The maximum net cost of the prosumers is higher
for L3, L4, and L8 compared to other clustering scenarios.
On the other hand, the minimum net cost is lower for L4, L5,
L6 and L7 compared to other clustering scenarios. L6, L7 and
L9 show the best performance because of their lower mean,
maximum, and minimum net cost.

Fig. 13 shows the internal traded energy within the LEM,
total energy import and export from/to the upstream grid in
twelve clustering scenarios (L1 to L12). As seen in Fig. 13,
L4, L5 and L6 scenarios present the best performance for
the internal and external energy exchange compared to other
clustering scenarios with L1, L2 and L10 having the worst
performance. This is evident with the high internal and lower
external energy exchange of the L4, L5 and L6 clustering
scenarios and the lower internal and higher external energy
exchange of the L1, L2 and L10 clustering scenarios. L4,
L5 and L6 have similar cluster criterion for initial cluster
grouping which is the offering/bidding price. This similarity
shows why the three scenarios perform better than the others
in terms of energy exchange within the LEM and upstream
grid. It is also evident that clustering prosumers and con-
sumers who have the same price range based on initial cluster

FIGURE 12. Net cost for (a) Consumers and (b) Prosumers based on
variable clustering criteria scenarios.

grouping will result in higher matching of bids and offers
within the LEM which create more internal energy trade and
less energy exchange with the upstream grid.

Fig. 14 shows the SS, SC and SMS for the clustering
scenarios L1 to L12. The SS, SC and SMS of the twelve sce-
narios L1 to L12 show close range value to each other. How-
ever, for all the performance indicators, the price based initial
cluster criterion’s (L4, L5 and L6) clustering scenarios show
the outstanding performance compared to other scenarios.
The most outstanding clustering scenario is the L6 scenario
which is based on initial grouping of bids and offers based on
bids/offer price and advanced grouping based on location and
cluster welfare. L6 has the highest SS, SC and SM compared
to other clustering scenarios. This is because, the price based
initial cluster grouping scenario providesmore internal traded
energy and less external traded energy compared to other
clustering scenarios. Furthermore, the location and cluster
welfare based criteria for chosen metric ensures that electric-
ity is traded close to where they are consumed and further
create additional welfare to the community. This provides
additional SMS to the LEM.
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FIGURE 13. Comparison of internal and external energy exchanged for
variable clustering criteria scenarios.

FIGURE 14. Comparison of SS, SC and SMS for variable clustering criteria
scenarios.

b: P2P ENERGY TRADE
Fig. 15 shows the P2P energy trade between consumers and
prosumers for the L6 clustering approach. Since the pro-
sumers can act as consumers in some time slots, and con-
sequently buy energy from other prosumers, the prosumers
are further added to the horizontal axis. Comparing Fig. 15
with Fig. 6a shows that P2P energy is traded within the
LEM according to the closest cluster that can be formed
from Fig. 6a. Regions on Fig. 15 where higher quantity of
energy is exchanged represent a particular region or cluster
of household in Fig. 6a where households are close to each
other. An example is the upper most center of Fig. 15 where
higher quantity of energy is exchanged between P8, P9 and
P10 as prosumers (producing) and; C13, C14 and C15 as
consumers. This is evident in Fig. 6a where P8, P9, P10, C13,
C14 andC15 are located in the same estate known asAS-EST.
The higher quantity of energy exchanged between P2 and

P13 is because they belong to the same block, therefore, the
cluster model matches them easily and ensure that electricity
is traded close to where it is produced. In the same way, the
higher quantity of energy exchanged between P10 and C15
is also because they are located in the same block, therefore,
exchanging energy among themwill create additional welfare
to the LEM.

B. CASE STUDY II
In this Section, we analyze the performance of the L6 cluster-
ing scenario with 120 households as described in Section V-B
and varying number of clusters for initial cluster grouping and
compare it with P2P matching where there is no clustering.

1) ENERGY EXCHANGE FOR VARYING NUMBER OF
CLUSTERS
Fig. 16 displays the internal and external energy exchange
for varying number of clusters. The external energy exchange
are the energy export and import to/from the upstream grid.
As shown in Fig. 16, the total energy exchange, that is the
sum of the internal and external energy exchange, is con-
stant for all the simulation scenarios. This is evident that the
total energy requirements of the local community is constant
throughout the simulations. Furthermore, the P2P match-
ing model without advanced clustering scenario has higher
external and lower internal energy exchange compared to all
other scenarios. Higher external and lower internal energy
exchange results in LEM depending totally on the upstream
grid and impacts the LEM participants negatively. Moreover,
increasing the number of clusters for initial cluster group-
ing increases the internal energy exchange and reduces the
external energy exchange of the LEM. For the case scenario
studied in this work, the simulation achieved its optimum
when the number of clusters is four, therefore, increasing
the numbers of clusters beyond four has no impact on the
performance of the LEM. Based on the L6 advanced cluster-
ing approach, the number of initial cluster groups where the
LEM reaches its optimum depends on the individual bidding
strategies and location of the LEM participants on the local
grid.

2) ECONOMIC AND TECHNICAL BENEFITS FOR VARYING
NUMBER OF CLUSTERS
Fig. 17 displays the SS, SC and SMS for varying number
of initial cluster groups. The P2P matching model without
advanced clustering scenario has lower SS, SC and SMS com-
pared to all other scenarios. This is because, the P2Pmatching
model without clustering scenario has more external energy
exchange and lower internal energy exchange compared to
all other scenarios, making the LEM less beneficial to the
local markets participants. Also, increasing the number of
clusters for initial cluster groups increases the SS, SC and
the SMS of the local community. This is because, increasing
the number of clusters for initial cluster groups reduces the
external energy and increases the internal energy exchange
of the LEM and thereby creating additional benefits to the
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FIGURE 15. P2P energy trade for L6 clustering approach.

FIGURE 16. Comparison of energy exchange for variable number of
clusters.

local community. The optimum SS, SC and SMS is achieved
when the number of initial cluster groups is four. This is the
same for internal and external energy exchange of the LEM.
This is evidence that the technical and economic benefits of
the local community depend on the energy exchange between
the community and the upstream grid.

3) TIME COMPLEXITY
The proposed clustering algorithm takes less than 1 seconds
to solve a given problem in an Ubuntu operating system
computer. This means running the model only, without a
market framework such as GSy-exchange. Running it with a
market framework takes more time as simulation data needs
to be stored and read from different files. Table 4 shows the
average simulation computational time per slot to complete
the matching in the GSy-exchange matching API for varying
number of clusters. The P2P matching mechanism without
clustering has the least computational time per slot compared
to all other scenarios. This is because the P2P matching
mechanism without clustering is a simple random matching
and has no clustering model. With the smallest number of

FIGURE 17. Comparison of SS, SC and SMS for variable number of
clusters.

TABLE 4. Average computational time per time slot for varying number of
clusters.

clusters which is 2, the run time is 22.55 seconds per slot
for a community of 120 prosumers. Increasing the number
of initial cluster groups increases the computational time.
This is because increasing the number of clusters will require
more time for k-means clustering to determine the individual
cluster centroids, additionally, it will require more time for
advanced clustering to build up the hierarchical model as
there will be a greater number of branches from the initial
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cluster groups. Also, comparing the average computational
time of our model with that of a multi-layer LEM model
proposed in [48], where a similar community was simulated
with the Grid Singularity platform shows that our proposed
model has the capability of reducing the average computa-
tional time by half when the number of clusters is less than 5.
However, with large number of clusters, it may takemore time
for the algorithm to complete its calculation and matching.
For our simulation case scenario, our model achieved its
optimum when the number of clusters is four as discussed
in Sections VI-B1 and VI-B2, this is evidence that the model
is computational efficient when compared to previous works
already published in the same area.

VII. CONCLUSION
In this paper, an advanced clustering algorithm was proposed
for P2P matching in the energy community considering the
heterogeneous characteristics of bidding preferences for pro-
sumers consisting of geographic location, location on the
local community, bid/offer price, bid/offer quantity, and clus-
ter welfare. The proposed model was tested in a German
real-case scenario and simulated for 120 German households.
The simulations results show that the model was able to
leverage the preference opportunity to ensure that electricity
was traded and consumed closer to where it is produced in a
P2P trading structure. Thereby, reducing the peak demand of
the local community, increasing the traded energy at the local
community, and reducing the energy exchange of the local
community and the upstream grid. Also, the model benefit
the local prosumers as it can help to increase the share of
market saving, self consumption and self sufficiency of the
prosumers. By ensuring that energy is traded closer to where
is is produced, the model further increase the local economy
of the local prosumers.

Furthermore, in the proposed advanced clustering model,
using price preference as the criterion for initial cluster group-
ing, and location of the prosumers in the community and clus-
ter welfare as the criteria for the chosenweightmetric, offered
more technical and economic benefits to the local community
compared to other clustering scenarios. Also, comparing our
proposed model with a P2P model without clustering shows
that the computational time of both models are closer in
range and hence our model can be easily adopted without
increasing the market computational time. In future work,
we will investigate how reinforcement learning can be used
by the prosumers to intelligently decide their bidding/offering
preference and how the model will be implemented in a dis-
tributed blockchain platform to ensure efficient preservation
of prosumers’ privacy and conformation to data protection
laws.
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3.1.3 Decentralized local energy market model

Contribution
The paper [132] in this section presents a decentralized LEM model for trading energy in
a local community based on the consumers’ and prosumers’ preference. Fig. 3.3 displays
the schematic of the decentralized P2P LEM model proposed in this paper. The model
enables prosumers and consumers to form energy pools based on their energy or price
preferences. Thus prosumers and consumers define their pool requirements and members
that are willing to join a pool notify the pool members of their willingness to join the
pool. A consumer or prosumer can join as many pool as they wish within the market.
At the beginning of every market time step, the consumers and prosumers post their
energy preference to each of the pools. Therefore, a prosumer has the opportunity to
buy different energy qualities and quantities from different pools. The market at the
pool level is cleared in a P2P manner. Members of each pool have the privilege to see
the energy requirements of their pool members. This is to enable decentralized clearing.
Therefore, each prosumer and consumer clears the market at their node and submit
their results to members of their pool for verification. The model was also verified
with a combination of load and production profiles from German households [121] and
Renewables Ninja [124, 125] in a 15-minutes time step market. The results from the
simulations show that the model is able to satisfy the individual energy preference of
the consumers within the LEM up to 60%.

Data flow

Submitted orders - Pool ASellers

Buyers

P2P Matching

P2P Matching

Central LEM 

P2P Transaction

Submitted orders - Pool B

Figure 3.3: Schematic of proposed decentralized P2P LEM model, after [132].
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Abstract—Local energy markets (LEMs) have been introduced in
the last few decades as a bottom-up approach solution to create a
competitive market for prosumers/consumers to trade their energy
and have control over their energy sources. However, there is still a
gap in research for prosumers/consumers willing to exchange energy
at defined price- and energy-preferences. In this work, we propose an
open-source LEM model for matching prosumers and consumers with
the same energy and price policy in a decentralized LEM. Our model
was verified of its applicability by simulating it with the data from a
German community. The simulation results showed that the model was
able to satisfy the energy preferences of the consumers and prosumers
in the local community to an average of more than 60%. Moreover,
the model also demonstrated improved performance in terms of self-
sufficiency and self-consumption ratio to the community compared to
trading with the central LEM.

Index Terms—Market mechanism, decentralized energy system,
local energy market, multi agent system, peer-to-peer, prosumer
preference.

I. INTRODUCTION

A. Motivation & Background

Electricity markets were introduced in the past decades to ensure
that all electricity fed into the grid is accounted for and that
the complex power system is managed properly. The traditional
method of managing this complex power system is the top-down
approach where power flows unidirectionally. That is from large
power plants generators to transmission, distribution and, finally, to
the consumers. On the other hand, the money flows in the opposite
direction - from the consumers to distributors, transmission, and
finally, to the generators. The added value, decentralized nature,
and technicalities associated with the new distributed renewable
energy resources increased the complexity of the traditional power
systems and raised new challenges for maintaining the reliability
and stability of the power grid with the traditional top-down
approach [1]. Local energy markets (LEMs) were introduced in the
past two decades to enable proper coordination and management
of the distributed renewable energy resources using a bottom-up
approach [2]. LEMs provide an opportunity for prosumers to trade
their electricity at the distribution level and have control over their
electricity choices [3].

B. Relevant Literature

LEM models can be classified as centralized, decentralized and
distributed market models [4]. A centralized market model is a
model that relies on a trusted third party acting as an intermediate
agent and responsible for making transactions between prosumers
in an LEM [5]. The decentralized market model is developed to
overcome the challenges of centralized market models such as:
single point of failure, low transparency, risk of transaction manip-
ulation, and cyber-attacks [4]. Distributed market models are LEM
models that are based on distributed ledger technologies. Ref. [6]

proposed centralized auction-based local energy market models that
considers users’ preference of paying a premium for heterogeneous
energy properties such as a renewable energy source. The authors
of [7] proposed a multi-layer LEM framework for energy trading
in a centralized LEM. The model was evaluated using market
performance indicators such as self-sufficiency, self-consumption,
and share of market savings. Ref. [8] proposed a peer-to-peer (P2P)
LEM model based on a multi-class energy management system for
local prosumers in a community. Ref. [9] in their work proposed
a P2P electricity trading mechanism based on a two-sided LEM
model that enables aggregators to match consumer and producer
agents energy requirements. Ref. [10] proposed a decentralized
market mechanism for matching prosumers in a LEM that considers
prosumers’ preference for green energy trading, trading partners’
reputation, and location in the distribution grid during P2P matching
of prosumers. In [11], an agent-based simulation framework was
presented to compare the P2P sharing market mechanisms of
prosumers in a local community. [12] proposed a distributed multi-
agent LEM model based on blockchain for P2P electricity trading
in a local community.

C. Contribution and organization

The literature contains several studies proposing different LEM
models for prosumers; however, there is still a gap in the literature
proposing a market model for prosumers willing to trade electricity
based on generally accepted price and energy policy. In this paper,
we propose an LEM model for matching prosumers with the
same energy and price policy preferences in a decentralized LEM.
Our model is developed as an open-source code, accessible from
[13], and can be used by local communities and researchers to
model, simulate, and optimize energy trading among prosumers
in a community. The model was evaluated for its applicability
by a simulation with a real German case scenario. The remaining
sections of this work are structured as follows. The proposed LEM
model is described in Section II. The data, community setup, and
trading strategies of the case study are presented in Section III.
Section IV presents the results and discusses the findings in detail.
Finally, the paper is concluded in Section V.

II. POOLING PLATFORM

In this Section, we present a decentralized P2P electricity trading
platform (Pooling platform) with heterogeneous user preferences.
First, the process of pool creation is described, followed by the
bidding and offering by prosumers to the pools. Afterwards, the bids
and offers are matched in a P2P manner and the matching results
are verified by all prosumers. The unmatched bids and offers at
the pool level are submitted to the central LEM platform for final
matching. The goal of the pooling platform is not for economic
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benefits but to satisfy user preferences. Hence, the central LEM
platform is used to match untraded energy requirements at the pool
level in a competitive market to create more economic benefits to
the users. The general framework of the proposed market model is
as shown in Fig. 1.

Data flow

Submitted orders - Pool ASellers

Buyers

P2P Matching

P2P Matching

Central LEM 

P2P Transaction

Submitted orders - Pool B

Fig. 1. Proposed decentralized P2P market model.

A. Pool creation

In this paper, the term prosumer refers to a household owner
who consumes/produces energy from/to the local community. A
pool is a cluster of prosumers who have similar heterogeneous bid-
ding/offering characteristics and wish to exchange energy together
with a pre-defined price policy. A pool is created by a prosumer
through an application by giving the characteristics of the pool
according to Eqn. 1,

ck = [Ik, αk, pk,mk, [β1,k,t, .., βm,k,t]],∀k, t. (1)

Ik is the pool identity that is used to identify the pool. αk

is the energy selling price at the pool as a percentage of the
predicted electricity market price. This is known as the dynamic
price policy. The market price is referred to as the price from the
retailers which is the last option of the prosumers when they cannot
buy/sell from/to the LEM. pk is the pool fixed price policy. This
is the energy sell price at the pool if there is no defined dynamic
price policy for the pool. mk is the number of prosumers within
the pool. [β1,k,t, .., βm,k,t] is the individual characteristics of the
prosumers within pool k. The individual prosumer characteristics
of a prosumer i are given in Eqn. 2. The electricity trading time
step is denoted as t.

βi,k,t = [li, γi,k,t, ϵi,k,t],∀i, k, t. (2)

From Eqn. 2, li is the location of the prosumer i in the local
community in terms of the zone where the prosumer device is
located. γi,k,t is the prosumer preference coefficient which is the
percentage of electricity that prosumer i will like to exchange in
pool k at time t. ϵi,k,t is the prosumer type which signifies if
the prosumer is buying/selling electricity from/to pool k at time
step t. Whenever a new pool is created in the LEM, all prosumers
participating in the LEM are notified of the new pool and the pool
objective. The pool objective is usually defined by the member that
created the pool. No prosumer is allowed to know the members
of a pool that they do not belong to. A prosumer that wishes
to join a new pool must send a join request to the members of
the pool. The members within a pool have the right to see the
individual characteristics such as the location of the prosumer,
load/PV capacity, and the type of a prosumer that wants to join
their pool. At this joining stage, the prosumers must state their
role. That is, if they are joining as a consumer, producer, or both.
A successful join requires the admissions of all pool members.

Prosumers can join as many pools as they wish and are allowed to
join in the LEM. The total pools in the LEM are represented by
Eqn. 3. K is the number of pools in the LEM.

c = {c1,t, ..., cK,t},∀t. (3)
B. Bidding/offering by prosumers

The future electricity market clearing price is predicted by
a central client application and this price is communicated to
the individual prosumer’s pooling platform. In the same way, a
prosumer client application at the prosumer household level is used
to predict the future energy requirements of the prosumer. The
future energy requirements of the prosumer is the quantity of energy
that the prosumer wants to buy/sell in the future market time step.

At time step (t− 1), every prosumer pool receives the predicted
market clearing price (p

′
t) and energy requirements(qb,si,t ) of the

prosumer i for the next time step t from the centralized and
prosumer’s client application, respectively, as presented in Eqn. 4.

bi,t = [p
′
t, q

b,s
i,t , ϵi,t],∀i, t. (4)

Also, the pooling configurations presented in Eqn. 1 of the individ-
ual pools that every prosumer belongs to are sent to the prosumer’s
pooling platform from the prosumer’s community platform, as
represented in Eqn. 5.

ci = {c1,t, ..., cN ,t},∀t. (5)

N from Eqn. 5 is the total number of pools the prosumer i belongs
to. The prosumer role ϵi,t and energy requirements qb,si,t are sent to
all prosumers, with whom that prosumer i is in the same pool with.
In this way, all prosumers that belong to the same pools exchange
their energy role and energy requirements which will be used for
decentralized P2P matching at the pool’s level.

C. Decentralized P2P matching & match verification

From Eqn. 4, buying and selling prosumers are represented as
Eqns. 6 and 7, respectively.

bi,t = [p
′
(t+1), q

b
i,t],∀i, t. (6)

sj,t = [p
′
(t+1), q

s
j,t],∀j, t. (7)

where qbi,t and qsj,t are the bidding and offering quantity of buyer
i and seller j, respectively. All bidding and offering prosumers in
pool k are defined according to Eqns. 8 and 9, respectively.

Bk,t = {b1,t, ..., bn,t},∀k, t. (8)

Sk,t = {s1,t, ..., su,t},∀k, t. (9)

n and u are the total number of buyers and sellers, respectively, in
pool k at time step t. The matching of prosumer i willing to buy
an energy quantity qbi,t and prosumer j willing to sell an energy
quantity qsj,t at time step t, in pool k happens in three steps.

1) Step I: Select prosumers with lowest grid fees: The grid fees
(ωi,j) between buyer i and seller j, is the fee the buyer pays for
using the local grid to buy energy from the pooling platform. This
depends on the zone location of the buyer and seller.

Ωn×u,k,t =



ω1,1,t . . . ω1,u,t

...
. . .

...
ωn,1,t . . . ωn,u,t


 ,∀k, t. (10)

Eqn. 10 is the grid fees matrix considering the buyers and sellers
within pool k. The buyers and sellers with the lowest grid fees are
selected according to Eqn. 11.

(Bn∗
k,t, S

u∗
k,t) = argmin

∑
Ωn×u,k,t,∀k, t, (11)
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n∗ and u∗ are the total number of buyers and sellers with the
lowest grid fees within pool k. Hence, the buyers and sellers with
the lowest grid fees are represented according to Eqns. 12 and 13,
respectively.

Bn∗
k,t = {b1,t, ..., bn∗,t},∀k, t. (12)

Su∗
k,t = {s1,t, ..., su∗,t},∀k, t. (13)

2) Step II: Match prosumers with equal buy/sell quantity: In this
step, prosumers with equal buying and selling energy quantity are
matched. The sold price which is the price received by the seller is
the pool dynamic price, αk. For a pool where there is no dynamic
price policy, the selling price is the pool price, pk. The bought price
which is the price paid by the buyer is the sum of the sold price
and the grid fees as given in Eqn. 14.

pb
′

i,t = αk + ωi,j ,∀i, j, t. (14)

The P2P matched quantity (qb
′

i,t) of prosumer i and j is the sell
quantity of prosumer j as given in Eqn. 15.

qp2pi,j,t = qsj,t,∀i, j, t. (15)

The unmatched buyers and sellers from Eqns. 12 and 13 are updated
according to Eqns. 16 and 17, respectively and matched based on
Section II-C3.

Bn⊕
k,t = {b1,t, ..., bn⊕,t},∀k, t. (16)

Su⊕
k,t = {s1,t, ..., su⊕,t},∀k, t. (17)

n⊕ and u⊕ are the numbers of unmatched buyers and sellers,
respectively after the matching of prosumers with equal energy
quantity.

3) Step III: Fair energy sharing: The leftover energy within
the pool is shared among the prosumers considering their energy
requirements in a fair and peer-to-peer (P2P) manner. The total
leftover energy demand and supply within the pools are calculated
according to Eqns. 18 and 19 and compared.

Qn⊕
k,t =

n⊕∑
qbi,t,∀k, t. (18)

Qu⊕
k,t =

u⊕∑
qsj,t, ,∀k, t. (19)

If Qn⊕
k,t ≥ Qu⊕

k,t , the prosumers i and j are matched in a P2P manner
using Eqn. 20.

qp2pi,j,t =
qsj,t × qbi,t∑n⊕

qbi,t
,∀i, j, t. (20)

qp2pi,j,t is the quantity of energy the buyer i bought from seller j. In
this way, all prosumers in Eqns. 16 and 17 are matched one after
the other.

On the other hand, if Qn⊕
k,t < Qu⊕

k,t , the prosumers i and j are
matched in a P2P manner using Eqn. 21.

qp2pi,j,t =
qsj,t × qbi,t∑u⊕

qsj,t
,∀i, j, t. (21)

All prosumers in Eqns. 16 and 17 are matched one after the other
using this method. Steps I, II, and III are repeated until all the bids

and offers within the pool k are matched. The matching process
is repeated by all prosumer’s pooling platforms for all the pools
the prosumer belongs to. After matching, the matched transactions
are sent by all prosumers to other prosumers that they are matched
with in a P2P manner for verification. Each prosumer verifies the
individual transactions from their peers before the transactions are
considered valid. For any P2P matching that the seller and buyer
do not have the same results individually, the transaction will be
called invalid and hence canceled. All unmatched results from this
stage are forwarded to the central LEM for matching using a two-
sided uniform pricing market clearing mechanism [1]. The sequence
diagram of the proposed decentralized clearing is shown in Fig. 2

Poolingplatform A

initizialize pools

wait (for 3.)

run matching

wait (for 6.)

verify matched
transactions

2.

5.

7.

8.

Prosumer A

Poolingplatform B

initizialize pools

run matching

verify matched
transactions

2.

4.

5.

7.

8.

Prosumer B

POST(role, tradable energy)

POST(role, tradable energy)

wait (for 3.)

POST(matched transaction)

POST(matched transaction)

wait (for 6.)

Send unmatched energy
and list of matched transactions

Send unmatched energy
and list of matched transactions

1.

4.

3.

3.

6.

6.

9.9.

1.

Receive predicted market price,
tradable energy and pooling config

Receive predicted market price,
tradable energy and pooling config

Fig. 2. Sequence diagram for the proposed decentralized LEM model

III. CASE STUDY

The proposed model is verified in a simulation case study of
20 prosumers. Those 20 prosumers consist of 15 households with
production and consumption devices and 5 households with only
consumption devices. The simulation data are from [14], which is
a one-year long 15-minutes time resolution data from a German
community. The first three days of September were used for the
simulation. To investigate the effect of the consumers-to-prosumers
ratio and the production-to-consumption ratio in such a model, the
community was classified into three types according to consumers-
to-prosumers ratio. The experimented ratios of consumers to pro-
sumers are 15:5 (15C5P), 10:10 (10C10P) and 5:15 (5C15P). For
15C5P and 10C10P, 10-prosumer and 5-prosumers, respectively,
from the data were turned to active consumers for such simulation
scenarios.

In addition, we further investigate three LEM model set-ups
namely market-only (mOnly), pooling-only (pOnly) and mar-
ket+pooling (P&M). Market-only is the type of LEM set-up where
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the prosumers/consumers post their offer/bid directly to the central
LEM and the market is cleared using the double-sided uniform
pricing market mechanism [1]. For the pooling-only LEM set-up,
the prosumers/consumers offer/bid to the pooling platform only.
For the market+pooling model, the prosumer/consumer offer/bid
to the pooling platform and the central LEM. The excess/deficit
from the prosumers/consumers in all the model types is traded
with the upstream grid at feed-in tariff/upstream grid sell price.
The feed-in tariff price is 11.00 ct/kWh. Table I summarizes the
pool types, energy source, price and number of prosumers for the
experimented pools. The four experimented pools are the green
energy pool (GEP), altruistic sharing pool (ASP), family pool1
(FP1) and family pool2 (FP2). The electricity prices in all the pools
are defined as a percent of the upstream grid sell price, which
for simplicity was set to 33ct/kWh. The GEP is the pool where
consumers agree to pay more in order to buy renewable energy.
This is in accordance with the study by [15], which shows that
most local consumers/prosumers are willing to pay more to buy
renewable energy. The ASP pool is the pools where consumers
and prosumers trade energy at a cheaper price than they would
pay if they buy from the upstream grid. The family pools are
the pools where family members exchange energy at 0 ct/kWh.
Four different user preferences were randomly generated for each
user for the pOnly and P & M experiment. This results in 27
simulation scenarios. Fig. 3 displays the first randomly generated
user preference for consumers and prosumers for the different pools
and central LEM. The user preference is the percentage energy a
prosumer or consumer wishes to buy or sell from the different pools
and central LEM.

TABLE I: Pool types and configurations.
S/N Pool Pool Name Energy Source Price (%) Prosumers

1 Pool1 GEP Only green 120 20
2 Pool2 ASP Gray 60 20
3 Pool3 FP1 Gray & green 0 4
4 Pool4 FP2 Gray & green 0 4
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Fig. 3. User preferences in terms of energy allocation to different pools
and the market.

IV. RESULTS AND DISCUSSIONS

A. General characteristics

Fig. 4 shows the one day average energy supply/demand of the
prosumers and consumers in different community configurations
for the 3 days of the simulation. A major characteristics of all the
communities is having excess production during the day time and
more consumption during the night time. This is because more
of the energy production is from PV systems which produces
electricity mainly during the day when there is sunlight. On the

other hand, Fig. 4a has more production during the day, followed
by Fig. 4b before Fig. 4c which has the least production. This is
because of the higher production in Fig. 4a followed by Fig. 4b
which results from the higher number of consumers in the two
community configurations (5C15P and 10C10P) compared to Fig.
4c. The average peak production is 40.5kWh, 20.3kWh and 8.5kWh
for 5C15P, 10C10P and 15C5P community configurations. The
peak demand is the same for all configurations which is 25.3kWh
and happened around 8:00 to 9:00 pm when all the prosumers are
at home and using their consumption devices.

0 20 40 60 80
Time step (15mins)

30

20

10

0

10

20

30

40

50

En
er

gy
 (k

W
h)

Consumers 5 - Prosumers 15

C1
C2
C3

C4
C5
P1

P2
P3
P4

P5
P6
P7

P8
P9
P10

P11
P12
P13

P14
P15

(a)

0 20 40 60 80
Time step (15mins)

30

20

10

0

10

20

30

40

50

En
er

gy
 (k

W
h)

Consumers 10 - Prosumers 10

C1
C2
C3

C4
C5
C6

C7
C8
C9

C10
P1
P2

P3
P4
P5

P6
P7
P8

P9
P10

(b)

0 20 40 60 80
Time step (15mins)

30

20

10

0

10

20

30

40

50
En

er
gy

 (k
W

h)
Consumers 15 - Prosumers 5

C1
C2
C3

C4
C5
C6

C7
C8
C9

C10
C11
C12

C13
C14
C15

P1
P2
P3

P4
P5

(c)
Fig. 4. Prosumers/consumers average energy supply (positive) and demand
(negative) for variable community configurations.

Fig. 5 displays a one-day average of the performance metrics
for the 10C10P community configuration with pOnly LEM model
for the 3 days of simulation. Fig. 5a displays the average self-
sufficiency (SS) which raise steadily at about 6:00 am from 0
% to above 90% and decrease steadily from at about 3:00pm to
6:00 pm from 92% to 0%, respectively. This shows that the local
community is mostly self-sufficient during the day and depends
mainly on the upstream grid for their energy at night. This is also
because most of the energy production at the local community is
from the PV. Hence, most of the energy is traded during the day
in the platform resulting in most energy demand of the community
during the day being provided by the PV. The 10% average self-
sufficiency witnessed at 12:00am are from the storage systems.

Fig. 5b displays the average daily self-consumption (SC) ratio of
the community. The SC spiked up at about 6:00 am from 0 to 80%.
Afterwards, it reduced to less than 30% and kept fluctuating during
the day until the next spike to 75% which happened at about 3:00
pm. After this, it decreased to 0% at about 6:00 pm. The spikes
in SC witnessed early in the morning and in the early evening
are because of the lower quantity of PV production during these
times which is traded and consumed in the community. During the
afternoon, much PV energy is produced and therefore, not all of it
is traded within the community. The excess PV production which
is traded with the upstream grid results in reduced SC witnessed
during the day. Fig. 5c displays the average share of market savings
(SMS) of the local community. The share of market savings is
the percentage of savings made by the community using the LEM
compared to when there is no LEM [7]. The SMS of the local
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community is positive for producing prosumers from about 7:00
am to 5:30pm. This is because, at this time, most of the PV
production is traded at the community at a price higher than the
upstream electricity sell price thereby creating more savings for
the producers. At high PV production hours (from 11:00 am to
2:00pm), the producers trade excess of their production with the
upstream grid at a feed-in tariff price of 11.00 ct/kWh thereby
reducing their SMS. The maximum SMS is 147% witnessed at
about 4:15pm. The SMS for the consumers is negative for most time
steps because, most of the energy traded within the community is
from the green energy pool (GEP) where energy is traded at a higher
price thereby making the market uneconomical for consumers in
most time intervals.
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Fig. 5. Performance metrics (self-consumption, self-sufficiency, and share
of market savings) throughout the day.

B. Analysis of different pooling configurations

Fig. 6 displays the average SMS for varying pools configurations
for 10C10C community configuration and pOnly scenario for the
3 days of simulation. Figs. 6a, 6b, 6c and 6d displays the SMS
for the green energy pool (GEP-pool1), altruistic sharing pool
(ASP-pool2), family pool1 (FP1-pool3) and family pool2 (FP2-
pool4), respectively. From Figs. 6a and 6b, the SMS for producing
prosumers is positive during the day for the GEP and ASP pools.
The average producing prosumers SMS of the GEP during the day
is 145% which is higher than the average producing prosumers
SMS of the ASP, that is 15%. This is because, for the GEP,
energy is traded at 120% compared to ASP where energy is traded
at 60% of the upstream grid price thereby creating additional
savings for the producing prosumers during the day time. Also,
the SMS of consumers in GEP (Fig. 6a) is negative because the
energy trade price is higher than the price of electricity from the
upstream grid. The ASP and family pools favour (positive SMS)
the consumers because energy is traded at a price less than the
upstream selling price. Moreover, the ASP is also favourable for
producing prosumers, because, the price at which the energy is sold
at this pool is still higher than the feed-in tariff price. The family
pools are the most favourable for the consumers because they buy
energy at 0 ct/kWh from their family members thereby achieving
SMS of almost 98% during the day. The reverse is the case for the
producing prosumers.

Fig. 7 displays the total P2P traded energy between prosumers
and consumers at the different pool configurations for the 10C10P
community configuration and pooling only scenario. Figs. 7a, 7b,
7c and 7d displays the P2P traded energy for GEP, ASP, FP1 and
FP2, respectively. From the diagrams, the GEP and ASP pools
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Fig. 6. SMS for varying pool configurations

have more transactions compared to FP1 and FP2 pools because
there are more consumers and prosumers in the pools (GEP and
ASP) compared to the family pools. Figs. 7a and 7b shows that
there is no transaction between consumer to consumer. Also, the
prosumer to prosumer transactions are small compared to consumer
to prosumer transactions. The maximum P2P traded energy in the
GEP is 28kWh and is traded between P9 and C1. In the ASP pool,
the maximum traded P2P energy is 19.5kWh and is between P7
and P10. The maximum traded energy in FP1 and FP2 are 16.5
kWh and 7.2 kWh, respectively.
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Fig. 7. P2P energy traded between prosumers and consumers for different
pooling configurations.
C. Analysis of different market configurations

Fig. 8 display the average percentage satisfaction of the pro-
sumers and consumers for the different community configurations.
The prosumers and consumers have more of their energy require-
ments satisfied during the day (from 6:00am until 6:00pm) because,
most energy production within the community is from the PV which
can only produce energy during the day. The average percentage
satisfaction of all the prosumers and consumers in C5P15, C10P10,
and C15P5 community configurations during the day are 45%, 62%
and 72%, respectively. Comparing Figs. 8a, 8b and 8c shows that
the prosumers and consumers preferences are more satisfied in the
C15P5 community configurations. This is notwithstanding that less
energy is produced with the C15P5 configurations compared to
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other community configurations as shown in Fig. 4. This shows
that more of the prosumers and consumers preferences are satisfied
in a community where the prosumers have more opportunity to
trade their energy compared to a community where the consumers
have more opportunity to trade their energy. This is because, the
prosumers are responsible for producing energy in the community,
hence, creating opportunity for consumers and prosumers to trade
more of their energy and thus satisfying the energy requirements
of the community.
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Fig. 8. Percentage satisfaction of user preferences throughout the day for
different community setups.

Fig. 9 displays the community average SS and SC for the dif-
ferent simulation scenarios and community set-ups. From Fig. 9a,
the SS is higher with 5C15P community configurations compared
to the 10C10P and 15C5P. This is because the 5C15P commu-
nity has more PV production thereby giving the prosumers and
consumers the opportunity to be more self-sufficient compared to
other communities. The pOnly and P&M simulation scenarios show
higher SS compared to mOnly in all the community configurations.
This shows that the pooling platform provides opportunity for
the community to be more self-sufficient and not depend on the
upstream grid for all their energy demand. The maximum SS is
42% which occurs with the P&M scenario in the 5C15P community
configuration. From Fig. 9b unlike the SS, the SC is higher
with 15C5P community configurations compared to the 10C10P
and 5C15P. This is because the 15C5P community has less PV
production thereby giving the prosumers the opportunity to trade
all their energy production within the community. The pOnly and
P&M simulation scenarios show higher SC compared to mOnly in
all the community configurations. This also shows that the pooling
platform provides opportunity for the community to consume all
their energy within their community. The maximum SC is 35%
which occurs with the P&M scenario in the 15C5P community
configuration.
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Fig. 9. SS and SC for varying community configurations and simulation
scenarios.

V. CONCLUSIONS

In this paper, an open source model named pooling platform for
matching prosumers with the same energy and price policy in a
decentralized LEM was proposed and evaluated of its application
in a German case scenario. The simulation results showed that the
model was able to satisfy the energy preferences of the consumers
and prosumers in the local community to 60% on an average.
Also, by using the pooling platform, prosumers and consumers
were enabled to trade energy at their preferred price which lead
to increasing the self sufficiency and self consumption of the local
community to additional 10% and 15%, respectively.

ACKNOWLEDGMENT

The authors acknowledge the efforts of our anonymous reviewers
and the German Federal Ministry for Economic Affairs and Energy
(BMWi) for sponsoring this work under BEST project with grant
number 03EI4017D

REFERENCES

[1] A. S. Gazafroudi, G. C. Okwuibe, S. Hambridge, C. Dietrich, A. Trbovich,
P. Tzscheutschler, T. Hamacher, and M. Shafie-khah, “Mathematical model
for agent-based local energy exchange engine (d3a),” in 2021 International
Conference on Smart Energy Systems and Technologies (SEST), 2021, pp. 1–
6.

[2] E. Mengelkamp, J. Diesing, and C. Weinhardt, “Tracing local energy markets:
A literature review,” it - Information Technology, vol. 61, no. 2-3, pp.
101–110, 2019. [Online]. Available: https://doi.org/10.1515/itit-2019-0016

[3] P. Siano, G. De Marco, A. Rolán, and V. Loia, “A survey and evaluation
of the potentials of distributed ledger technology for peer-to-peer transactive
energy exchanges in local energy markets,” IEEE Syst. J., vol. 13, no. 3, pp.
3454–3466, 2019.

[4] M. Mahmoudian Esfahani, “A hierarchical blockchain-based electricity market
framework for energy transactions in a security-constrained cluster of micro-
grids,” International Journal of Electrical Power & Energy Systems, vol. 139,
p. 108011, 2022.

[5] T. Sousa, T. Soares, P. Pinson, F. Moret, T. Baroche, and E. Sorin, “Peer-to-
peer and community-based markets: A comprehensive review,” Renewable and
Sustainable Energy Reviews, vol. 104, pp. 367–378, 2019.

[6] M. Zade, S. D. Lumpp, P. Tzscheutschler, and U. Wagner, “Satisfying
user preferences in community-based local energy markets — auction-based
clearing approaches,” Applied Energy, vol. 306, p. 118004, 2022.

[7] G. C. Okwuibe, A. S. Gazafroudi, S. Hambridge, C. Dietrich, A. Trbovich,
M. Shafie-khah, P. Tzscheutschler, and T. Hamacher, “Evaluation of
hierarchical, multi-agent, community-based, local energy markets based on
key performance indicators,” Energies, vol. 15, no. 10, 2022. [Online].
Available: https://www.mdpi.com/1996-1073/15/10/3575

[8] T. Morstyn and M. D. McCulloch, “Multiclass energy management for peer-
to-peer energy trading driven by prosumer preferences,” IEEE Trans. Power
Syst., vol. 34, no. 5, pp. 4005–4014, 2018.

[9] F. Teotia, P. Mathuria, and R. Bhakar, “Peer-to-peer local electricity market
platform pricing strategies for prosumers,” IET Gen. Trans. Dist., vol. 14,
no. 20, pp. 4388–4397, 2020.

[10] S. Talari, M. Khorasany, R. Razzaghi, W. Ketter, and A. S. Gazafroudi,
“Mechanism design for decentralized peer-to-peer energy trading considering
heterogeneous preferences,” Sus. Cities and Soc., vol. 87, p. 104182, 2022.

[11] Y. Zhou, J. Wu, and C. Long, “Evaluation of peer-to-peer energy sharing
mechanisms based on a multiagent simulation framework,” Applied Energy,
vol. 222, pp. 993–1022, 2018.

[12] A. S. Gazafroudi, Y. Mezquita, M. Shafie-khah, J. Prieto, and J. M. Corchado,
“Islanded microgrid management based on blockchain communication,” in
Blockchain-based Smart Grids. Elsevier, 2020, pp. 181–193.

[13] BEST Energy. (2023) BEST PoolingPlatform. Accessed: 2023-01-10.
[Online]. Available: https://github.com/BESTenergytrade/Pooling-Platform-
paper

[14] G. C. Okwuibe, J. Bhalodia, A. S. Gazafroudi, T. Brenner, P. Tzscheutschler,
and T. Hamacher, “Intelligent bidding strategies for prosumers in local energy
markets based on reinforcement learning,” IEEE Access, vol. 10, pp. 113 275–
113 293, 2022.
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3 Local energy market models and bidding strategies

3.2 Local energy market bidding/offering strategies

Scientific context
LEM is a time series market where prosumers and consumers are expected to post their
bids/offers every 15 minutes to the market platform. Most prosumers and consumers
may not be able to know the best price to bid/offer for their electricity requirements and
it is not technically feasible to do this by hand. Hence, this responsibility requires an
intelligent agent that is responsible for making complex and dynamic decisions involved
in LEM trading by determining the optimal price the prosumer/consumer should offer-
/bid per kWh of their electricity produced or consumed. The reinforcement learning
approach which has its foundation from the Markov Decision Process (MDP) is used
to model agents so that they are able to make decision or take actions based on their
experience from past events or based on trial and error [135, 136, 137, 138, 139]. This
shows that reinforcement learning has the capability to be used to develop strategic
bidding agents for local prosumers and consumers participating in an LEM. Thus, the
agent can learn from past events of the market by comparing their bid/offer price at
a particular time with the median clearing price of the LEM or energy bought by a
user in comparison with the total energy traded within the LEM. Therefore, the papers
presented in this section show the different ways reinforcement learning could be used
for modelling the agents bidding strategy in an LEM.
In this section, two papers are presented. The first paper [140] presents a comparison of

the zero-intelligent and intelligent bidding strategy in an LEM. Both bidding strategies
were analyzed for their application in an LEM during the “EEG” and “post-EEG”
scenario. In the second paper [141], two reinforcement learning bidding strategies based
on Q-learning and SARSA were developed and used for bidding/offering in a local energy
market framework.

3.2.1 Q-learning bidding/offering strategy

Contribution
The paper [140] in this section presents a simulation analysis of bidding strategies for
LEM design. In the first stage, a zero-intelligent bidding strategy was developed. For
this strategy, the agent randomly selects a bid/offer price from a selected price range. In
the second stage, a Q-learning intelligent bidding strategy was developed and evaluated
with regards to its applicability in an LEM. Both models were evaluated for varying
number of prosumers to consumers ratio and for varying production to consumption
ratios. The pricing scenarios evaluated are the “EEG” and “post-EEG” scenario.
The models were also verified with a combination of load and production profiles

from standard load profiles [122, 123], LoadProfileGenerator [126, 127] and Renewables
Ninja [124, 125] in a 15-minutes time step market using the Grid Singularity exchange
engine [120]. The simulation results showed that the intelligent bidding/offering strategy
created added benefits for the local participants compared to trading with the zero-
intelligent trading strategy.
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Abstract—The integration of PV-generated electricity from
households and commercial buildings into the electricity mix offers
opportunity to reduce the greenhouse gas emissions released in
the Earth’s atmosphere. The rising quantity of these distributed
energy resources (DER) and their fluctuating energy production
makes it challenging for the grid operators to manage the grids.
This in turn leads to an increase in retail electricity prices due to
the rising grid fee. Local electricity markets (LEMs) have proven
to be an effective and efficient tool to manage the local generated
electricity and ensure that electricity is traded and consumed close
to its point of production. The market design factors influencing
the performance of an LEM are analysed using a decentralized
autonomous area agent (D3A) simulation framework. The mar-
ket design factors investigated are prosumers-to-consumers ratio
(nPC), pricing scenarios and bidding strategies. The results were
compared using performance indicators such as self sufficiency,
share of individual savings (SIS) of the participants, share of
market savings (SMS) and average buying rate. The simulation
results show that the performance of an LEM on addition of
new participant depends upon the type of participants added to
the market. Furthermore, using intelligent bidding strategy like
Q-learning increases the self sufficiency of the local community
close to their threshold value without the addition of flexibility or
storage options.

Index Terms—energy trading, bid, trading agent, bidding strat-
egy, intelligent agent

I. INTRODUCTION

The German electricity sector is a highly complex and
heavily regulated system which involves a lot of actors such
as generators, retailers, speculators, grid operators, and reg-
ulatory bodies. Different types of markets have been created
for efficient and fair trading of electricity [1]. According to
Cramton [2], trying to create a perfect market with independent
participants is an unrealistic idea as the participants cannot

*Godwin Okwuibe is with Oli Systems GmbH and a doctoral student at the
Chair of Renewable and Sustainable Energy Systems, TU Munich, Germany.

be expected to bid their original marginal cost. The main
aim of every market participant is to maximize their profits.
It is this profit maximization behavior by individual market
participants that leads to efficient outcomes for the whole
market. Therefore, it can be concluded that the bidding behavior
of every participant in a real-life would reflect the principle
of profit maximization. The strategies available for market
participants in an auction setting can be categorised into zero
intelligence (ZI) and intelligent agent (IA) strategy [3]. ZI
strategy involves the agent bidding random bids or offers in
the market while IA strategy involves using approaches such as
estimating market-clearing, game theory or analysis of market
behavior from historical data [4]. ZI strategy provides the
minimum possible gains made by the market participant due to
absence of rationality while IA strategy serves to reach the goal
set by the agent for profit maximization. Learning algorithms
such as genetic algorithms, Model-based adaption algorithms,
Erev-Roth reinforcement learning, Q-Learning, and learning
classifier systems are commonly used for creating optimization
models for IA strategies [5].

Creation of LEMs has been explored as a solution to help
integrate high shares of renewable energy (RE) into the power
generation system and increase the involvement of end cus-
tomers in the power distribution systems [6]. Thus, LEMs also
fulfil one of the objectives stated in EU Clean Energy for all
Europeans Directive (2016) by providing higher participation
of the end consumers in the energy transition process [7].
LEMs create an alternative approach to the classical top-down
hierarchy of power distribution by maximizing the utilization
of DER in the vicinity of the consumption. Since small and
medium scale PV systems are connected to the low voltage
grid and a significant portion of the total PV installations are
owned by private individuals, it is the main source of local
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generation in projects and research related to LEMs [6], [8].
Trading in LEM can take place between a producer (i.e. a
participant that wishes to sell electricity) and consumer (i.e
a participant that wishes to buy electricity) or a prosumer and
consumer. A prosumer is as a consumer who also owns a source
of electricity generation such as rooftop PV and therefore can
act as a producer or a consumer in the market depending upon
the condition at the given moment [9]. The role of a retailer
can be limited to backup electricity provider or active electricity
trader where it competes with the local generation sources to
sell its electricity.

A lot of research have been conducted on the analysis of
local market design factors, cost saving potential for prosumers
and consumers, and regulatory requirements for creating LEMs
[10] - [12]. Mengelkamp et al. [13] compared the market perfor-
mance by using Modified Erev-Roth reinforcement learning as
the IA bidding strategy and ZI strategy for an LEM participants.
However, further research is required into other bidding strate-
gies and the effects of market design factors on the performance
of an LEM. Within this work, a Q-learning based IA strategy is
investigated in this work along with the effects on performance
of the market on addition of new participants. The remainder
of this paper is structured as follows. Section II and III explains
the design approach and simulation model, respectively. Section
IV discusses the results in detail. Finally, Section V concludes
the paper giving information on how to further explore the
topic.

II. METHODOLOGY

This section describes the current day trading of energy
at the local level (status quo) as well as in the presence of
an LEM layer. LEMs performance evaluating parameters and
the Q-learning based bidding strategy methodology are also
described. This work is an extension of “in press” [14] research,
hence, the design methodology and simulations set-ups are
similar. Also, the simulation data are from the same source.
The market clearing mechanism is explained in Section III.

A. Trading in the local grid

To determine the monetary and energy inflow and outflow
within a local populace, we consider a neighbourhood encom-
passing of N local electricity traders (LETs) within the low-
voltage grid. Retailers compensate the LETs with small-scale
generators (e.g. rooftop PV system) for the electricity feed-in to
the grid and satisfy the remaining electricity needs of the LETs
at a constant rate of rBu and rSu , respectively. The anticipated
net energy traded by an LET i at time step t is the algebraic
sum of the forecast load consumption EL

i,t and PV generation
EPV

i,t at slot t+ 1:

ENet
i,t = EL

i,t + EPV
i,t (1)

Status quo. Status quo is the current scenario where an LET
i can only satisfy its net energy ENet

i,t requirements by trading
with a retailer. Therefore, the energy and monetary balance

for such LET i is given as:

ENet
i,t = Eext

i,t = Eext,in
i,t + Eext,out

i,t (2)

ΠS
i,t = Eext,in

i,t rSu + Eext,out
i,t rBu . (3)

Eext
i,t and ΠS

i,t is the sum of traded energy between LEM
and retailers, and the monetary net balance at the end of
trading slot t, respectively. Eext,in

i,t and Eext,out
i,t represents the

external inflows and outflows of energy respectively, within the
household of an LET i at time step t.
With LEM. In other to enable LETs to simultaneously trade
electricity among themselves and with the retailers, a layer
of an LEM is integrated into the local community trading
platform based on the smart grid architecture model (SGAM)
as described by [15]. The LETs post their offers (bids and asks)
for the next time step (t+1) to the local market with ENet

i,t as
the energy demand and the price determined from the bidding
strategy. The offers are matched using the accepted market
clearing mechanism. For LETs i and j matched to trade Etrade

i,j,t

energy at the rate of ri,j,t and time t. The excess generation
Eext,out

i,t from the local community not sold within the LEM are
sold to the retailer at rSu rate. Similarly, the community residual
load Eext,in

i,t not provided by the prosumers and producers are
fulfilled by the retailer at a constant buying rate of rBu . For an
LET i within this trading scenario, the energy and monetary
balance, at time step t now becomes:

ENet
i,t = ΣN

j Etrade
i,j,t + (Eext,in

i,t + Eext,out
i,t ) (4)

ΠLEM
i,t = ΣN

j (Etrade
i,j,t ri,j,t)+ (Eext,in

i,t rBu )+ (Eext,out
i,t rSu ) (5)

B. Parameters for evaluating LEM

Percentage of self sufficiency, share of individual savings,
average buying rate, and SMS are the key performance indica-
tors (KPIs) used to evaluate and compare the performance of
different LEM designs. For an LEM with a total trading time
of (T), the KPIs are expressed as follows.
Self-Sufficiency Ratio. This is the percentage of electricity
demand within a local community or neighbourhood that is
provided internally by the participants within the local com-
munity [10]. It is expressed as:

SS =

∑N ∑T |EPV
i,t − Eext,out

i,t |
∑N ∑T

EL
i,t

× 100 (6)

Share of Individual Savings. SIS is a union of the cost of
a commodity and the benefit of the commodity measured by
willingness to pay for it [17]. In context of LEMs, it is defined
as the savings made by individual LEM participants compared
to their status quo. Mathematically, it is represented as:

SIS =

∑T
t (Π

S
i,t −ΠLEM

i,t )
∑T

t ΠS
i,t

× 100 (7)
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Share of Market Savings. SMS is the sum of SIS made by
the local electricity traders by trading among themselves in an
LEM compared to trading without LEM. This is given as:

SMS =

∑T
t

∑N
i (ΠS

i,t −ΠLEM
i,t )

∑T
t

∑N
i ΠS

i,t

× 100 (8)

Average Buying Rate. The average buying rate is given as:

ABR =

∑T
t

∑N
j

∑N
i ri,j,t

2K
(9)

where K is the total number of trades taking place within the
LEM at time T .

C. Q-learning based Intelligent Bidding Strategy

Reinforcement learning based IA strategies are usually used
to develop bid strategies in electricity markets. Markov De-
cision Process (MDP) is the bedrock for the development of
reinforcement learning-based bidding strategies. According to
Tijsma et al. [18], the five MDP factors which can be used to
describe LEM participants using IA strategy are the unique set
of states, actions, transition function, reward function and the
discount factor. The unique set of n states S = {s1, s2, ..., sn}
where st ∈ S is a tuple made of future traded energy and
solar irradiation at time step t. The unique set of m actions
A = {a1, a2, ..., am} represents all possible bids or asks (at)
a participant can select at time step t. The probability relating
the current state-action pair (s, a) to the next state s′ is the
transition function T (s, a, s′). The average reward participants
receives while transiting from state s to state s′ with action a
is R(s, a, s′). The discount factor (0 ≤ γ ≤ 1) is the basics
for appropriating value to current rewards compared to future
rewards.

The optimal policy of reinforcement learning is developed
from the reward the participants received from past experiences
for every state-action pair. For a Q-learning based IA strategy,
increasing the state-action usage pair results in a proportional
increase in the rate of convergence of the participant to an
optimal Q-function. For a Q-function at time step t and state
st, action at is chosen. If the reward received is rt, the Q-
value of a state-action pair at time step t + 1, Qt+1(st, at) is
represented as:

Qt+1(st, at) =Qt(st, at) + α[rt + γmax
a

Qt(st+1, a)

−Qt(st, at)]
(10)

The learning rate and discount factor are α and γ, respectively,
where 0 ≤ α, γ ≤ 1.

For efficient and modular design added with the diverse
factors affecting production and consumption trading, the bid-
ding strategies for PV and load are developed differently. To
allow a convenient usage of the strategy, market data that
are easily accessible are used for the design. The following
subsections describe the steps used for creating our Q-learning
based strategy for an LEM.

1) States creation: To ensure that all viable occurrences of
past experiences are taken care of, historical data form the
bedrock of unique figures used for creating states. Tuples of
unique solar irradiation and excess PV production data are used
for creating states for the production strategy. On the other
hand, tuples of unique solar irradiation and the participants
consumption profile are used for creating consumption strategy.
LEM participants receive information on potential activities of
the market from solar irradiation which link the production
and consumption, and act as determinant for operation of the
market. In order to ensure improved accuracy, 100 unique states
are created for each individual device participating in the LEM
trading. Each individual device determines the solar irradiation
and future traded energy at every time step t and use the data
to select the nearest state depicting the occurrence in the next
time step t+ 1.

2) Exploration or exploitation factor: Household device use
the exploration factor to choose between selecting a random
action or action with the best historical record. The ε-greedy
exploration method is utilized for both consumption and pro-
duction strategy where the exploration rate is 0 ≤ ε ≤ 1.
Given a random value x = [0,1], the household device chooses
a random action if x ≤ ε, else, action with the highest Q-
value. Consequently, increasing the exploration factor brings
about higher orders (bids and ask). The current Q-value ”(10)”
is updated using the reward from the previous action of the
Q-value. The limit to which newly received data predominates
the historical data is calculated using the learning rate α. The
importance of future rewards is determined using the discount
factor γ and is assumed to have no effect on current reward.

3) Reward function (r): The trading objective of the partici-
pants are achieved using the reward function and it provides the
fundamentals used to compare the value of actions taken under
different states. As a result, the reward function is the sum of
monetary value of the orders and percentage of absolute total
traded energy. The monetary value is the percentage of profit
or losses made by selecting an accurate or inaccurate order,
respectively. The reward function of a participant at time step
t can be represented as:

rt = λ
|ri,j,t − ru|Etrade

i,j,t

|ru − ropt|ENet
i,t

+ μ
Etrade

i,j,t

ENet
i,t

(11)

λ+ μ = 1 (λ, μ ≥ 0)

From ”(11)”, ru and ropt represent the retailer’s and most opti-
mal trade rate, respectively. A value is assigned to two distinct
factors λ and μ based on the trade choice of the participant.
Higher λ value means greater preference to economic profit
compared to local energy, however, the reverse is the case for
μ. The range of reward is between -1 and 1 and the initial value
of Q-function Q0 is 1.

III. SIMULATIONS

The simulations were conducted using the Decentralized
Autonomous Area Agent (D3A) framework back end code
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[19]. Energy requirements not provided within the LEM are
fulfilled by retailers who act as back up to the LEM, and
flexible load and storage options were not considered. The
market mechanism used is pay-as-bid in a double-sided auction
intra-day market. Local electricity traders (LETs) can only post
their bids and asks within the 15 minutes interval before the
actual energy delivery time. Furthermore, the energy demand
and PV production forecasts were assumed to be accurate and
hence, no settlement was required after the market clearing
was concluded. The markets were simulated for a year with
372 LETs made of 228 households, 48 bakeries, 48 office
buildings and 48 small manufacturing facilities, in 48 mi-
crogrid scenarios. The base scenarios are combination of 4
residential households, a bakery, an office building with PV
and a small manufacturing facility with PV. The base scenarios
has a prosumers-to-consumer ratio (nPC) of 0.4. Two bidding
strategies namely zero intelligent (ZI) and intelligent agent (IA)
were investigated.

The production-to-consumption (PtC) ratio are categorized
into low ([0.4, 0.6]), medium ((0.6, 0.8]) and high ((0.8, 1.0]).
Two pricing types investigated are the ”EEG scenario” and
”post EEG scenarios”. For a residential (H) or commercial (G)
electricity consumer, Table I and II show the comprehensive
cost of electricity derived from components of electricity price
in Germany for the year 2019 when an LEM is integrated
into the local community trading platform for EEG and post
EEG time, respectively “in press” [14]. The total of the trading
components that make up the price is the minimum and
maximum trading rates for different seller-buyer pairs. For both
EEG and post EEG time, trade between G-H has the same price
as trade between H-H.

TABLE I
EEG MINIMUM AND MAXIMUM TRADING RATE FOR LEM

Components H-H H-G G-G
Opportunity cost 12/18 12/18 11/18

Metering fee 0.32 0.32 0.32
EEG surcharge 6.756 6.756 6.756

Value-added-tax (VAT) 3.62/4.76 - -
Total (Euro ct./kWh) 21.35/29.83 19.08/25.07 18.07/25.07

TABLE II
POST EEG MINIMUM AND MAXIMUM TRADING RATE FOR LEM

Components H-H H-G G-G
Opportunity cost 0/18 0/18 0/18

Metering fee 0.32 0.32 0.32
EEG surcharge 6.756 6.756 6.756

Value-added-tax (VAT) 1.34/4.76 - -
Total (Euro ct./kWh) 8.42/29.83 7.07/25.07 7.07/25.07

The simulations were performed by varying the nPC and
bidding strategies. The addition of a consumer to the base
scenario reduces the nPC of the LEM while the addition of
a prosumer increases the nPC of the LEM. For each PtC

category, the nPC is varied by adding more prosumers and/or
consumers to the base scenarios. ZI with five update intervals
bidding strategy whereby a random price is selected within
a price range was used by the LETs to bid for electricity in
the market for these scenarios. The IA bidding strategy based
on Q-learning developed in Section II-C was simulated using
the base scenarios and compared with the ZI with five update
intervals. All the experiments were conducted for both the EEG
(EG) and post-EEG (PE) pricing scenarios.

IV. RESULTS AND DISCUSSION

A. Prosumers to consumers ratio

1) Share of individual savings: Fig. 1 displays the change in
SIS of a prosumer and consumer while varying the nPC of the
LEM for EG and PE pricing scenarios with ZI bidding strategy.
Increasing the nPC by the addition of a prosumer results in
an increase in the PtC ratio. For a consumer, escalating the
nPC slightly results in an increase in the SIS of the consumer.
However, for a prosumer, increasing the nPC decreases the SIS
of the prosumer. For a consumer, decreasing the nPC results in
a decrease in the consumer’s SIS. However, for a prosumer,
decreasing the nPC increases the SIS of the prosumer. In-
creasing the nPC of the LEM leads to an increase in both the
number of potential trading partners for the consumer, and the
competition among the prosumers to sell to the same number
of consumers. Therefore, increasing nPC increases the share
of energy traded by the consumers, which increases their SIS
compared to the base scenario. In the other hand, increasing
nPC decreases the share of energy sold by the prosumers,
which in turn decreases their SIS compared to the base scenario.
The reverse is the case for decreasing nPC. The impact of an
additional (decreasing or increasing nPC) participant is much
higher on prosumers than on consumers. As the prosumers are
smaller in number compared to the consumers, the addition
of any kind of participant leads to a substantial change in the
volume of energy traded. The resulting trends for varying nPC
is the same for both EG and PE pricing scenarios only that
the consumers have more benefits of buying at a lower average
buying rate. This results in an overall higher SIS for the PE
compared to EG for the consumers.

2) Self Sufficiency: Fig. 2 shows the change in self suffi-
ciency of the local community while varying the nPC of the
LEM for EG and PE pricing scenarios with ZI bidding strategy.
Generally, for all PtC categories, increasing the nPC results in
an increase in the self sufficiency of the local community for
both EG and PE pricing scenarios. Varying the nPC at Low
PtC results in a larger change in the self sufficiency compared
to High PtC. Advancing the value of nPC increases the trade
volume of the LEM. This is due to a higher possibility of
trading by the addition of a prosumer as consumers are more
in number. The self sufficiency saturates under 50% even when
the PtC ratio reaches to 0.94. This is due to PV generation
only being available during the presence of daylight. Hence,
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Fig. 1. Share of individual savings for varying nPC and PtC with ZI strategy

the generation from PV cannot supply during the absence of
sunlight. Therefore, without unlocking the flexibility options
in the form of smart appliances and energy storage options,
the self sufficiency of the market cannot exceed the certain
threshold even if the generation is enlarged. Finally, the self
sufficiency is the same for EG and PE pricing scenarios because
the same quantity of energy is sold at both sceanrios.

Fig. 2. Self sufficiency for varying nPC and PtC with ZI strategy

3) Share of market savings: Fig. 3 shows the change in
SMS of the local community while varying the nPC of the
LEM for EG and PE pricing scenarios with ZI bidding strategy.
Decreasing the nPC of the base scenarios increases the SMS
of the LEM for all the PtC categories. This is the same for
both pricing scenarios. Furthermore, increasing the nPC from
the base scenarios under Low PtC increases the SMS for both
EG and PE scenarios. For high PtC and EG scenario, increasing
nPC of the base scenario has only a slight increase on the SMS
of the LEM. However, increasing the nPC of the base scenario
under PE pricing scenario with high PtC, the SMS decreases
from 13.7% to 13.4%.

Decreasing the nPC (addition of a residential consumer with
high consumption) increases the energy being traded in the
market which would otherwise be sold to the retailer in case of
EG scenario, or would not have been produced in PE scenario.
Therefore, under Low PtC, decreasing the nPC leads to a
13.4% increase in the energy traded. However, for high PtC, the
addition of a small residential consumer leads to an increase
of 3.2% in the energy traded. Therefore, the addition of a
consumer has a more drastic increase in Low PtC compared
to high PtC for SMS. In the PE scenario, the minimum
opportunity cost for selling generation is reduced to zero and
the consumers make higher profits with every trade. Thus, the
overall SMS is increasing. The prosumer added has a significant
portion of its excess generation produced during working hours
and therefore, it can sell it to commercial consumers which
have a high consumption at the same time. Under Low PtC,
the generation already happening in the LEM is quite low.
Therefore, the additional prosumer increases the energy traded
in the market. The additional prosumer only increases the share
of energy traded and the competition for selling to the same
number of consumers. Consequently, the SMS increases due to
significant increase in the share of energy traded in Low PtC
and slightly reduces due to negligible increase in the share of
energy traded in High PtC.

Fig. 3. Share of market savings for varying nPC and PtC with ZI strategy

4) Average Buying Rate: Fig. 4 shows the change in average
buying rate (ABR) of the local community while varying the
nPC of the LEM for EEG and post-EEG pricing scenarios
with ZI bidding strategy. The ABR is relatively constant below
25.0 EUR ct./kWh across all the simulations for EG pricing
scenario. However, for PE pricing scenario, increasing the nPC
decreases the ABR in all PtC category. However, decreasing
nPC increases the ABR in all PtC categories. Increasing nPC
(addition of a prosumer) increases the supply of energy to
the market, leading to lower competition among the buyers
and hence, reducing the buying rate. Whereas, decreasing nPC
(addition of a consumer) increases the total consumption to be
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fulfilled, leading to more competition among the buyers for the
same amount of generation and hence, increasing the buying
rate. These trends can be seen more prominently in the PE
scenario as the range of possible bids is larger. Hence, the
changes in the competition inside the market are more evident.

Fig. 4. Average Buying rate for varying nPC and PtC with ZI strategy

B. Bidding strategy

1) Self Sufficiency: Fig. 5 shows the changes in self suffi-
ciency for different PtC categories and pricing scenarios with
ZI and IA bidding strategy. An average increase of 1.1% in self
sufficiency of the LEM is witnessed by using an IA strategy
for all pricing scenarios as well as PtC categories. The share
of the generation that remained unsold due to the mismatch of
bids and offers is reduced from 3.1% to 0.1% on an average.
Also, using Q-learning algorithm increases the probability of
matching the bids and offers and hence, the self sufficiency
reaches close to the maximum possible value for the market
without the addition of flexibility or storage options.

2) Share of market savings: Fig. 6 shows the changes in the
SMS for different PtC categories and pricing scenarios with
ZI and IA bidding strategy. An average increase of 5.1% in
SMS is witnessed by using intelligent bidding strategy for all
pricing scenarios as well as PtC categories. The increase in
the SMS is different across all the pricing scenarios and PtC
categories. The increase in the SMS is the steepest at High PtC.
This is due to a higher volume of energy being traded in the
market under High PtC which helps the Q-learning algorithm to
understand the market situation better and optimize the bids or
offers better. Thus, it leads to higher profits for the participants
and an increase in overall SMS.

3) Average Buying Rate: Fig. 7 shows the changes in the
average buying rate for different PtC categories and pricing
scenarios with ZI and IA bidding strategy. An average decrease
of 5.3% is witnessed for the average buying rate of the LEM
by using intelligent bidding strategy across all pricing scenarios
as well as PtC categories except for EG scenario in Low PtC.

Fig. 5. Self sufficiency for varying bidding strategy

Fig. 6. Share of market savings for varying bidding strategy

For the IA strategy, factors that can influence the price on the
market such as nPC, PtC ratio, and the pricing scenario were
considered. The bidding was done in a manner to simulate
human behavior and the true cost of electricity reflected as a
result. Therefore, in situations of scarcity of generation, the
consumers would be bidding higher than the average price in
order to make a trade. Hence,the profit margin of the prosumers
increases. However, in situations of an excess of generation
in the market, the prices will drop as the prosumers would
be competing to sell their generation. Consequently, the profit
margin of the consumers increases.

V. CONCLUSION AND OUTLOOK

Within this work, simulation and analysis of LEMs using
a multi-round auction with ZI and IA bidding strategy on
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Fig. 7. Average Buying rate for varying bidding strategy

a D3A simulation framework are presented. Simulations of
different local community markets configurations verified the
opportunities and the importance of an LEM. The SIS of a
participant in an LEM depends upon the number of competitors
and the volume of energy available to be traded. The trends
of SIS for prosumers and consumers are always reverse for
increasing or decreasing nPC. The degree to which decrease or
increase in nPC effects prosumers and consumers depends upon
several market design factors such as the patterns of generation
and consumption of participants, PtC, and the pricing scenario.
In summary, LEMs can be beneficial to both prosumers and
consumers, to fully exploit the potential of local energy re-
sources in an efficient way without adding flexibility or storage
options, a participant will need to integrate an IA bidding
strategy in their household. The profit made by LETs from
LEM can incentives them to keep their PV system running
during PE time and thereby retaining the renewable energy
capacity within the grid.

In future research, more bidding strategies such as Erev-Roth
learning, long short term memory and convolution neural net-
work will be investigated within this framework. Furthermore,
the simulation will be extended to compare different market
mechanisms and further validate the findings. The best-suited
market mechanism will be implemented using a Hardware-in-
the-Loop laboratory environment testing before the final stage
which will be validating the results in a field test. A field test is
planned with assets from our project partner WIRCON within
the German SINTEG project “C/sells”.
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3.2.2 Q-learning and SARSA bidding/offering strategies

Contribution
The paper [141] in this section presents the modelling and evaluation of two reinforcement
learning based bidding strategies for LEM design. The two intelligent bidding strategies
are based on Q-learning and SARSA. The models were verified in different scenarios
known as the classical, standalone and shared reward scenarios. For the classical bidding
strategies, the agents are modelled to ensure that they take action that results in more
benefits for the respective prosumer/consumer that own the agent. For the standalone
scenario, only the prosumers or consumers have intelligent agents in the community.
Hence, for this scenario, if the consumers have intelligent agents, the prosumers make
an offer with a linear bidding agent. On the other hand, if prosumers have intelligent
agents, the consumers bid with linear strategy. In this way, the effect of using the
agents in a community where other participants have no intelligent agents was verified.
The “shared reward” is a scenario where all the agents work towards a common goal
of making benefits for the community. The model was also verified with a combination
of load and production profiles from German households [121] and Renewables Ninja
[124, 125] in a 15-minutes time step market. The results from the simulations show that
when all the community member agents work towards a common goal, that it creates
added economic and technical benefits to the community compared to when they work
towards their own common individual benefits.

Environment

Agent

Reward State

Action

LEM Matching platform

SARSA or 
Q-learning

Profit
Solar irradiation,
trade volume, market 
trade rate.

Bid price

Figure 3.4: Schematic of proposed reinforcement learning bidding strategies for LEM, after
[141]

.
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ABSTRACT Local energy markets (LEMs) are proposed in recent years as a way to enable local prosumers
and community to trade their electricity and have control over their electrical related resources by ensuring
that electricity is traded closer to where it is produced. However, literature is still scarce with themost optimal
and effective trading strategies for LEM design. In this work, we propose two reinforcement learning based
intelligent bidding strategies for prosumers and consumers trading within an LEM. Our proposed models
were evaluated of their performance by testing them in a German real case scenario. The simulation results
show that intelligent bidding strategies create additional self sufficiency and market savings to the local
community compared to the baseline strategy where the agents make their trading decision randomly without
an intelligent agent. Moreover, modelling the intelligent agents to perform towards a common goal creates
more share of individual savings for the prosumers and consumers compared to the classical intelligent
bidding strategies employed in this work.

INDEX TERMS Bidding strategy, energy community, local energy markets, Markov decision process, peer-
to-peer, reinforcement learning.

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
Local energymarkets (LEMs)were introduced in recent years
as a means to curb the challenges resulting from increasing
share of variable distributed energy resources at the distribu-
tion grid level and thus creating an avenue to get small-scale
producers, prosumers and consumers involved in the elec-
tricity market [1]. By transacting electricity closer to where
it is produced, producers, prosumers and consumers create
additional benefits for each other compared to transacting
electricity to a far distance prosumers/consumers or with the
upstream grid [2]. However, residential and most commercial
prosumers/consumers are lay users and have little or no

The associate editor coordinating the review of this manuscript and

approving it for publication was Oussama Habachi .

knowledge of the electricity markets. Therefore, they may
not be able to decide the appropriate bidding/offering price
for their energy demand/supply considering the dynamics
and complexity involved [3]. On the other hand, the local
electricity market is a time series market platform. Hence,
consumers and prosumers are required to consistently post
their bid/offer containing their desired energy quantity and
price every time slot [4]. This is inefficient and time consum-
ing and thus, the need for an intelligent bidding/offering agent
responsible for making the complex and dynamic decision
involved in LEM trading. The agent is also responsible for
selecting appropriate price for prosumers/consumers to make
benefits from their electricity assets and automatically post-
ing the bids/offers on behalf of consumer/prosumers who own
the agent [3], [4]. Consequently, researchers have proposed
different bidding strategies for LEM design [5], [6].
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B. LITERATURE REVIEW
According to Ref. [7], LEM bidding strategies can be clas-
sified either as zero-intelligence or intelligent agent bidding
strategies. Zero-intelligence agents randomly select their
bid/offer price within the limit range of the maximum selling
and minimum buying price, which is usually the upstream
grid and feed-in tariff price, respectively. Intelligent agents
bidding strategy usually derive their trading price based
on some optimization model, algorithms, game theoretic
approach and/or learning experience. The authors of [8],
proposed a linear bidding/offering strategy for LEM that
allows agents to linearly decrease/increase their bid/offer
price, respectively, in an LEM time slot. This strategy allows
prosumer agents to send multiple bids/offers in a single
time slot thereby increasing their chance of being matched
in the LEM without increasing the computational power
requirements of the agents. Ref. [9] proposed an optimization
based prediction-integration strategy called surrogate market
prediction model based on Extreme Learning Machine. The
model was used to learn the relationship between prosumer
bidding actions and market responses from historical trans-
action data and the outcome was used for bidding/offering in
a peer-to-peer(P2P) LEM.

The effective metrics and criteria for evaluating the per-
formance of an LEM bidding strategy was introduced by
Ref. [5]. Furthermore, the authors modelled the behaviors
of both risk-neutral and risk-averse agents selling energy
to the LEM taking into account the expected profit and
risk criteria to obtain an optimal multi-step energy quantity-
price bidding strategies of risk-neutral and risk-averse agents.
PV is considered a major source of energy during the day
for most intra community and inter community energy trad-
ing. Thus, considering the uncertainties in solar irradiance
and temperature can result in an optimal P2P LEM bidding
strategy [6], [10]. Ref. [6] proposed a dual bidding strategy
for multi-hierarchical P2P energy trading in an LEM con-
sidering uncertainties in solar irradiance and temperature.
By considering the uncertainty of renewable energy resources
such as solar, wind and consumer demands in an LEM, the
authors of [10] proposed a bi-level optimization model for
prosumers to appropriately take advantage of their distributed
energy resources in an LEM. The optimal bidding curve
which described the cost-minimizing buying/selling strategy
of prosumers was used to guarantee the optimality of bidding
decisions and to reduce the computation and communication
overhead of bidding agents by [11]. Ref. [12] proposed a
two-stage bidding strategy for P2P LEM design. The first
stage considered the supply-demand relationship for two-step
price predictor with the aim to promote the usage of local
renewable energy within the LEM. In the second stage, a trad-
ing preference based simultaneous game-theoretic approach
was introduced and used to optimize the market equilibrium
and social welfare of the P2P LEM. In [13], an optimal
bidding/offering strategy was proposed for prosumers in an
LEM to improve their savings and further increase the overall
social welfare of the local community.

Before the introduction of LEM in the last two-decades and
in recent years, reinforcement learning is used by electricity
producers for making decision on their offering price in a
competitive electricity market. In [14], a modified contin-
uous action reinforcement learning automata algorithm was
proposed to help power suppliers bid with the limited infor-
mation in an electricity market. Ref. [15] proposed an expe-
rience weighted attraction reinforcement learning algorithm
for bidding in an electricity markets. The authors of [16] used
a deep deterministic policy gradient reinforcement learning
algorithm to develop a bidding agent for a uniform pricing
electricity market. Ref. [17] developed a fuzzy Q-learning
method and used it to model the electricity producer strategic
bidding behavior in a competitive and computational elec-
tricity market. In [18], the deep deterministic policy gradient
method was combined with a prioritized experience replay
strategy and used to model the strategic bidding decisions in
a deregulated electricity markets. In the same way, Ref. [19]
combined reinforcement learning with belief learning that
converts experience-weighted attraction in a learning model
for describing and improving individual learning behavior for
effective bidding in a double auction electricity markets.

Similar to the main electricity markets and as a result
of its numerous advantages, reinforcement learning is cur-
rently gaining the interest of researchers on how it can be
utilized for decision making in an LEM. By solving the deep
reinforcement learning technology with experience replay
mechanism, Ref. [20] modified the deep Q-learning for local
energy trading algorithm from deep Q-network to facilitate
the decision-making process of local energy prosumers with
an intelligent system and further promote prosumers’ will-
ingness to participate in the LEM trading. Ref. [21] proposed
an intelligent bidding strategy based on an adaptive rein-
forcement learning model for prosumers within a local grid.
In Ref. [22], a deep learning based on data-driven approach
was developed and used to model the transaction behaviour
of prosumers and consumers based on public information
in a two-stage P2P local electricity market. A Q-learning
based intelligent bidding strategy was proposed by [23]
for prosumers in a competitive two-sided pay-as-bid LEM.
To further integrate electric vehicle trading in an LEM, [24]
proposed a data analytics and deep reinforcement learning
based bidding strategy for electric vehicle aggregators in
an LEM.

C. CONTRIBUTION & ORGANIZATION
Currently, the literature contains only few studies propos-
ing intelligent bidding strategies for LEM design. Moreover,
there is still a gap in literature proposing and comparing
different reinforcement learning models for LEM bidding
strategies and further suggesting the most optimal strategy
for the different local energy participants types. In this paper,
by answering the research question, which trading strate-
gies are most suitable for effective performance of local
energy markets? We propose two novel reinforcement learn-
ing based intelligent bidding strategies for prosumers and
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consumers in an LEM. The proposed models use informa-
tion/data initially acquired from the LEM and the partici-
pants to formulate the most optimal bidding/offering prices
for consumers and prosumers within an LEM for them to
make optimal benefits from their consumption’s/productions.
The models were implemented on an interface and open
source code-base of the Grid Singularity bidding application
programming interface [25]. Furthermore, we evaluate the
models using performance indicators such as self-sufficiency,
share of market savings and traded energy quantity of the
prosumers/consumers in the LEM. The main contributions of
the paper are summarized below:

• Proposing two novel reinforcement based intelligent
bidding strategies for prosumers and consumers in an
LEM.

• Implementation of the proposed intelligent bidding strat-
egy models in a real case German community.

• Assessing the performance of the proposed bidding
strategies using LEM and reinforcement learning perfor-
mance indicators.

The remaining sections of this work are structured as follows.
Section II introduces reinforcement learning taxonomy and
the proposed reinforcement learning algorithms. The pro-
posed reinforcement learning bidding strategies are described
in Section III. The simulation case study, community set-up
and simulation data are presented in Section IV. Section V
presents the simulation results, while SectionVI discusses the
findings, insights and improvements of the models. Finally,
the paper is concluded in Section VII.

II. REINFORCEMENT LEARNING
A. REINFORCEMENT LEARNING TAXONOMY
Reinforcement learning (RL) is a branch of machine learn-
ing that uses trial-and-error strategy to learn from previous
actions to make future decisions [26]. The reward strategy
which gives positive reward to successful events/actions and
negative rewards to unsuccessful events/actions is used by the
agents to improve its learning and decision making [27]. The
term ‘‘value function’’ refers to prediction of future benefits
based on the present condition or state [28]. By compar-
ing the outcome of each decision made by the agents, the
agents get experience on how to perform better on future
actions of the model based on its prior experience with the
environment. In RL, this experience-based decision making
process which helps the agents to maximize their reward for
each action taken against the environment is referred to as
a policy [26]. The Markov Decision Process (MDP), is a
probabilistic model based on sequential decision making and
provides the mathematical foundation for RL process [29].
TheMDPproperty claims that ‘‘the probability of the future is
independent of the past given the present’’ [29]. However, the
optimal action of an agent is usually obtained when the agent
evaluate not just the immediate reward but also the long-term
quality of the action(s). Because of the high accuracy when
given more data, the action-value function is preferable in

the long term RL model [30]. This is why an action-value
function is more suitable for intelligent agent-based bidding
strategies for LEM.

RL algorithm can be classified based on their access to the
model as model based and model-free algorithm [31]. Model-
based RL algorithm is a type of RL in which the agent is
privileged to know all possible state transition probabilities
and rewards [32]. This type of RL is heavily influenced by
control theory, and the objective is to obtain the optimum
behaviours using a control function. The major draw back
of this RL method is that since they have access to all
potential state-actions, storing all the probabilities becomes
impractical as the number of states and actions increases
exponentially [32]. Model-free RL is a type of RL model
that develops its own optimum strategy based on its own
experience with its surroundings, state-action pairings, and
their associated rewards [33]. Model-free algorithms are clas-
sified into policy iteration and value iteration [31]. For policy
iteration model-free algorithm, the agent directly learns the
policy function that translates state to action using policy
optimization approaches [32]. Thus the policy is decided
without the use of a value function. The policies here can
be either deterministic or stochastic [32]. Value iteration
model-free RL algorithm gains knowledge of the action-value
function, calculates the expected discounted rewards received
for taking a particular action and determines how beneficial it
is to behave in a specific state [31]. Thus, a scalar value called
Q-value is assigned to an action based on its state and the ideal
results are obtained when the action with the highest Q-value
is chosen. Value iteration algorithm can be further classified
into off-policy and on-policy algorithms. Off-policy RL algo-
rithms use greedy policy and learns the best policy and acts
based on a different policy [34]. The updated policy differs
from the behaviour policy. The Q-learning algorithm is an
example of an off-policy algorithm. On the other hand, for
the on-policy strategy, the actor captures the best policy and
applies it to its actions [34]. The major difference between
off-policy and on-policy is that for on-policy, the policy for
updating and acting is the same, while it is different for off-
policy. On-policy tries to evaluate the same policy that is used
to make decisions [34]. State Action Reward State Action
(SARSA) algorithm is an example of on-policy algorithm.

B. REINFORCEMENT LEARNING ALGORITHMS
1) OFF-POLICY ALGORITHM - Q-LEARNING
In Q-learning, the ‘Q’ stands for quality which refers to the
usefulness of a certain action in obtaining a future reward
which can be determined by the Q-value. Q-learning seeks
to determine the best policy while pursuing a separate explo-
ration strategy [35]. This class of algorithms updates the state
or state-action values by calculating the difference between
current and past estimations [33]. Eq. (1) is the general
Q-learning function which states that the Q-value depends on
the state-action combination [32].

Q : S ×A→ R (1)
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where S is the state of the agent, A is the different actions
that are available for the agent to take and R is the rewards
the agents can receive for taking different actions. Eq. (2)
represent the different states of an agent.

St = {[sx11,t , s
x2
1,t , . . . , s

xm
1,t ], . . . , [s

x1
n,t , s

x2
n,t , . . . , s

xm
n,t ]} (2)

where s1 to sn are the different states and x1 to xm are the state
variables. The different state variables combine to form one
sate s. n and m are the number of states and state variables,
respectively. Therefore, at a time step t , the state of an agent
is represented in Eq. (3),

st = sx1t , s
x2
t , . . . , s

xm
t . (3)

The different actions an agent can take at any time step is
represented by (4).

A = a1,t , . . . , au,t (4)

where u is the number of actions. The available rewards for
an agent at a time step is represented in Eq. (5),

R = (−∞,∞). (5)

Initializing Q-table: A Q-table is a matrix with the
structure of [states, actions] used for Q-learning process as
represented in Eq. (6).

Qs×a,t =

q1,1,t . . . q1,u,t...
. . .

...

qn,1,t . . . qn,u,t

 ,∀t. (6)

Q-table is first initialized with either 0 or 1 and updated every
time step. It is the reference table for agents, which it uses to
determine the optimal course of action taken.

Taking action: In order to interact with the environment,
the agent needs to select an action. The agent chooses an
action based on the maximum value in the Q-table or on a
random basis [32]. The epsilon (ε) greedy approach is used
by an agent to achieve a balance between exploration (chosen
random action) or exploitation (chosen action with maximum
Q-value) and to interact with its environment in either of the
two ways throughout the experiment [36]. Eq. (7) represents
that the total experiment time step is the sum of exploration
and exploitation time represented as tε and t1−ε , respectively,

T =
∑

tε +
∑

t1−ε . (7)

Eq. (8) represents how the agents select its action during time
of exploration and exploitation. FromEq. (8), au,tε and au,t1−ε
represents actions selected by the agent during exploration
and exploitation, respectively,

au,t =
{

au,tε : ε = 1
au,t1−ε : ε = 0

}
,∀t. (8)

Eq. (9) represents that during exploration, the agent takes a
random action by randomly selecting any action from the
available actions at the time step. On the other hand, Eq. (10)

represents that during exploitation, the agent takes action by
selecting the action with the maximum Q-value,

au,tε = rand .{a1,t , . . . , au,t }, (9)

au,t1−ε = argmax
∑

Qs×a,t . (10)

Updating Q-table: Q-values of Eq. (6) are updated every
time step based on Bellman’s equation as represented in
Eq. (11) [32], [37].

Qt (st , at ) =
∑[

r(t+1) + γ max
a′

Qt
(
s(t+1), a(t+1)

)]
(11)

where, st and at are the current state and action, s(t+1) and
a(t+1) are the next state and action, respectively. rt+1 is the
expected reward. γ is the discount factor and represents
the amount of value the agent place on the future benefits. The
discount rate ranges from 0 to 1 (0 ≤ γ ≤ 1). With a higher
discount rate, the agent places a higher premium on future
returns. Bellman’s equation is used to calculate the value of
a state and to estimate how beneficial it is to be in that state.
The ideal state is the state that produces the optimal Q-value.
Q-learning algorithms are based on the Bellman’s equation
used as the basic value of iteration update, based on the
weighted average of the old and new Q-values and is defined
according to Eq. (12) [37].

Q(t+1) (st , at)← Qt (st , at)+ α[
rt + γ max

a
Qt
(
s(t+1), at

)
− Qt (st , at)

]
(12)

where α is the learning rate and indicates the learning
pace of the agent. This parameter gives information on
how the agents’ estimations should be updated considering
the mistakes. The learning rate ranges between 0 and 1.
A high learning rate adapts aggressively, which may result
in variable — rather than converging — training outcomes.
A low learning rate adapts slowly, which means that it will
take longer time to converge. The terms in Eq. (12) are
defined as follows:
• (1- α) Qt (st , at ) is the current Q-value weighted by the
learning rate.

• α rt is the reward obtained in state st by taking action at ,
weighted by learning rate.

αγ max
a
Qt
(
s(t+1), a

)
(13)

• Eq. (13) is the maximum reward to be obtained from the
next state s(t+1).

rt + γ max
a
Qt
(
s(t+1), a

)
(14)

• The term given in Eq. (14) which is derived from
Eq. (12) is called the temporal difference target through
which the estimated Q-value is adjusted.

The temporal difference is an estimate of the optimum
Q-value which the agent strives to get and this varies as
the agent is trained and the Q-value matrix updated. The
Q-value of the agent’s current state and action is updated by
subtracting the previous Q-value and then adding the learned
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value. The learned value is a function of the reward for taking
the current action in the current state and the discounted
maximum reward from the subsequent state in which the
present action is performed.

2) ON POLICY ALGORITHM : SARSA
SARSA is an on-policy reinforcement learning algorithm in
which an action, A, is taken in the current state, S, and the
agent receives a reward, R. The agent then moves to the next
state, S’, and performs action, A’ in S’. As a result, the name
SARSA is derived from the tuple (S, A, R, S’, A’). SARSA
is referred to as an on-policy algorithm because it adjusts
the policy in response to actions and is part of temporal
difference learning [36]. The algorithm’s learning process is
similar to Q-learning described in Section II-B1. The first
step is to initialize the Q-table. Secondly, an action similar to
that of Q-learning with its ε-greedy strategy is taken. Lastly,
the Q-table is updated and this is where there is distinction
between SARSA and Q-learning. Eq. (15) is used to update
the Q-value for SARSA.

Q(t+1) (st , at)← Qt (st , at)+ α[
r(t+1) + γQt

(
s(t+1), a(t+1)

)
− Qt (st , at)

] ]
(15)

The update equation of SARSA, Eq. (15) shows that the
goal value in this case is dependent on the action the agent
will take in the following state, st+1. Since this update is
dependent on the next action at+1, which is determined by
the current policy, this algorithm is termed on-policy [37].
While training the agent and the corresponding Q-value (and
policy) is updated, the new policy may generate a different
action for next time step a(t+1) for the same state s(t+1). It is
not possible to improve the estimations by drawing on prior
experiences. Hence, the algorithm utilizes each experience
just once to update the Q-values and then discard it [34].

III. PROPOSED REINFORCEMENT LEARNING
BIDDING STRATEGIES
In this Section, the proposed reinforcement bidding strategies
is presented. Fig. 1 and 2 represents the process diagram and
the flowchart, respectively, of the proposed bidding strate-
gies. First, the state, actions and reward function are defined.
Then, the Q-learning algorithm bidding strategy is introduced
followed by SARSA bidding strategy.

A. STATE, ACTION AND REWARD DEFINITION
1) STATE
The state of the agent at any time t , is define by Eq. (16).

St = {[st1,t , s
p
1,t , s

v
1,t , s

ρ
1,t ], . . . , [s

t
n,t , s

p
n,t , s

v
n,t , s

ρ
n,t ]} (16)

where the state variable t is the hour of the day where the
trading occurs and this is split into 24 variables .i.e t ={ 0,
1, . . . , 23}. p is the average market trade rate in cent/kWh
for the previous market time step. The average trade rate has
a range from feed-in tariff price (p⊥) to the electricity buy
price (pb) from the upstream grid. In order to reduce the size

of the Q-table for its optimal performance, the range of the
state variable p is divided into six equal buckets as presented
in Eq. (17)

p = {p⊥,
(4× p⊥ + pb)

5
, . . . , pb}. (17)

v is the average trade volume which is the average volume of
the electricity traded internally within the local community
without the help of the upstream grid in the last time step. The
average trade volume is also divided into six buckets in order
to have discrete data and to reduce the size of the Q-table as
represented in Eq. (18)

vt = {v1,t , v2,t , . . . , v6,t }. (18)

ρ is the solar irradiation which gives information on the
average solar radiation received per unit area of the simula-
tion area. This state variable is divided into nine buckets to
better refelect the different solar radiation intervals as given
in Eq. (19)

ρt = {ρ1,t , ρ2,t , . . . , ρ9,t }. (19)

Hence, at any time step t , the state of the agent is described
as a tuple containing four state variables t, p, v and ρ.

2) ACTION
This is a discrete set of potential bids/offers prices available
to a consumer or prosumer. This varies from the lowest (p⊥)
to the highest price (pb) allowed with the LEM. The range of
bid/offer price is discretize into sixteen potential actions as
represented in Eq. (20)

A = {p⊥, (14× p
⊥
+ pb)

15
, . . . , pb} (20)

In RL, the agent learns what to do by itself and translate
situations to actions to maximize a numerical reward sig-
nal [26]. The agent is not instructed on which actions to take;
instead, through trial and error, it decides which action gives
the maximum reward. For our model, ε greedy policy is used
to handle the exploration/exploitation dilemma by applying
simple strategy for balancing exploration and exploitation
by randomly selecting between the two. For this, a random
number λ is selected and the value compared with the given
value of ε as represented in Eq. (21),

au,t =
{

au,tε : λ < ε

au,t1−ε : λ > ε

}
,∀t. (21)

Hence, from Eq. (21), a random action (exploration) is
selected if λ < ε, while action leading to the maximum
reward (exploitation) is selected if λ > ε. The developed RL
algorithm is a single agent RL method which contains a com-
bined and evolved policy for both consumers and producers.
Both consumers and prosumers take distinct actions as they
have a different pricing strategy. However, their states and
reward functions are identical. As a result, each actor uses a
different Q-table inside a single RL agent, where one actor is
not aware of the presence of the other actor.
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FIGURE 1. Proposed bidding strategies based on Q-learning and SARSA.

FIGURE 2. Learning process flowchart for Q-learning and SARSA.

3) REWARD FUNCTION
The reward function is used to compare the value of actions
taken by the agent at different states. To encourage prosumer
behaviour that results in greater consistency with their trading
goals the reward function of our model is a mix of the
monetary value of the bid/offer and how early trade occurs
in a market time step. For this, the market model based on the
work of Ref. [8] which allow prosumers and consumers to
submit multiple bids and offers at a time step. Hence, each
market time step is further divided into market ticks t∗t as
represented in Eq. (22).

t∗t = {t
∗

1,t , t
∗

2,t , . . . , t
∗
k,t }, (22)

where k is the number of ticks in a time step t . The trade
rate of prosumer agent i, at a time step is compared with the
markets median trade rate at the same time step to obtain the
monetary value of reward function. The median is used to

prevent outliers from having impact if the mean was used as
the measure. The monetary reward function of consumers is
represented in Eq. (23).

rb,$t =


0.7× (̂pt − pbi,t )/(p

b
− p̂t ): pbi,t > p̂t

0: pbi,t = p̂t
0.7× (̂pt − pbi,t )/(̂pt − p

⊥): pbi,t < p̂t

 ,∀t,
(23)

where p̂t is the median trade rate at time step t and pbi,t is
the trade rate of consumer agent i, at the same time step.
Eq. (23) shows that if a consumer’s trade rate is lower than the
community’s median rate p̂t , the consumer’s agent receives
a positive reward since he/she (the consumer) paid less than
the other members of the community and outperformed them.
When a consumer’s trade rate exceeds the market’s median
rate, the consumer’s agent earns a negative reward. Eq. (24)
represents the prosumer (producing) reward function.

rs,$t =


0.7× (psj,t − p̂t )/(p

b
− p̂t ): psj,t > p̂t

0: psj,t = p̂t
0.7× (psj,t − p̂t )/(̂pt − p

⊥): psj,t < p̂t

 ,∀t,
(24)

where psi,t is the trade rate of prosumer (producing) agent j,
at time step t . Eq. (24) shows that if a prosumer’s trade rate
while producing is lower than the community’s median rate
p̂t , the prosumer agent receives a negative reward since he/she
(the prosumer) get less money compared to the other mem-
bers of the community. When a prosumer’s trade rate while
producing exceeds the market’s median rate, the agent earns
a positive reward because the prosumer gets more money
compared to other community members. The tick at which
the trade takes place is compared to the total number of ticks
per time slot to get the accuracy reward function. This is used
to know how accurate and efficient the agent is in making
their bids/offers at a time step. The degree of accuracy reward
function is represented in Eq. (25).

rµt = 0.3× (t∗k,t − t
∗

K,t ), (25)
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whereK is the time tick at which trade took place. This means
that the greater the disparity from the total number of ticks
per time step, the greater the reward. This parameter does
not result in a negative reward; rather, it results in a positive
reward that is either increased or decreased. Eqs. (24) and (25)
shows that the model places 70% value on monetary reward
while the remaining 30% is on accuracy. The general reward
function is the sum of the monetary and accuracy reward
function. Eqs. (26) and (27) represent the total reward func-
tion for a consumer and prosumer (producing), respectively,

rbt = rb,$t + r
µ
t , (26)

rst = rs,$t + r
µ
t . (27)

B. Q-LEARNING STRATEGY
1) STAGE I: INITIALIZE ALGORITHM
a: STEP I: INITIALIZE Q-TABLE
For the Q-learning algorithm, the defined state and actions
acts as inputs to the Q-table. The defined state contains four
state variablesmade of 24 time variables, 6 average trade vari-
ables, 6 average trade volume variable, and 9 solar irradiation
variable. Consequently, we have a total of 7776 (24 × 6 ×
6 × 9) defined states for the Q-table. Eq. (28) represents the
initialization of Q-table with ones for the 7776 defined states
and 16 available action according to Eq. (20) at time step t .
The Q-table is defined separately for consumers and produc-
ing prosumers because of their different trading interests,

Qs×a,t =

 11,1,t . . . 11,16,t
...

. . .
...

17776,1,t . . . 17776,16,t

 ,∀t. (28)

b: STEP II: SELECT INITIAL ACTION
At the first time step t = 0, a random action is selected by the
agent from Eq. (20) at tick t∗k∗,t . The action is a bid or offer
price (pbi,t,k∗ or p

s
j,t,k∗ ) depending on if the agent is a consumer

or producer agent, respectively and p⊥ < pbi,t,k∗ , p
s
j,t,k∗ <

pb. If the agent was unable to make a trade at time tick k∗,
another action is selected by the agent in the next time tick
(k∗+1), following Eq. (29) or (30) for a buyer or seller agent,
respectively.

abu,tε =
{
pbi,t,(k∗+1): k∗ + 1 < k

pb: k∗ + 1 = k

}
,∀t, (29)

Subject to:
pbi,t,(k∗) < pbi,t,(k∗+1) < pb

asu,tε =
{
psj,t,(k∗+1): k∗ + 1 < k

p⊥: k∗ + 1 = k

}
,∀t, (30)

Subject to:
psj,t,k∗ > psj,t,(k∗+1) > p⊥.

Here, abu,tε and asu,tε are the random actions taken by a
buyer and seller agents, respectively. Eqs. (29) and (30) show
that the agents buy/sell from/to the upstream grid at the last
market tick k using the upstream grid buying/selling price

pb/p⊥ if they are unable to buy from the local community.
Assuming that trade took place at K time tick, then, pbi,t,K
and psj,t,K are the trade price for buyer and seller agents, i
and j, respectively. Since this is the first market time step,
there is no previous market results to define the current state,
therefore, there is no need calculating the reward and updating
the Q-table. However, the process of calculating reward and
updating the Q-table after every action is done every time step
except the first time step which is the initialization time step.

2) STAGE II: REWARD CALCULATION, TAKING ACTION, AND
Q-TABLE UPDATE
a: STEP I: REWARD CALCULATION
At the next time step, t + 1, the result of the previous
market time step containing the average market trade rate
p, average trade volume v, the median trade rate p̂t and the
agent trade price is used to calculate the reward functions
as represented in Eqs. (31) and (32) for the buyer and seller
agents, respectively.

rb
′,$

t =


0.7× (̂pt − pbi,t,K)/(p

b
− p̂t ): pbi,t,K > p̂t

0: pbi,t,K = p̂t
0.7× (̂pt − pbi,t,K)/(̂pt − p

⊥): pbi,t,K < p̂t

,∀t,
(31)

rs
′,$
t =


0.7× (psj,t,K − p̂t )/(p

b
− p̂t ): psj,t,K > p̂t

0: psj,t,K = p̂t
0.7× (psj,t,K − p̂t )/(̂pt − p

⊥): psj,t,K < p̂t

 ,∀t,
(32)

Consequently, Eqs.(26) and (27) is updated as Eqs. (33)
and (34), respectively.

rb
′

t = rb
′,$

t + rµt , (33)

rs
′

t = rs
′,$
t + rµt . (34)

b: STEP II: TAKING ACTION
In order to balance the exploration/exploitation challenges,
the ε greedy strategy is used for taking action. Eq. (35) is
used to select an action by first selecting a random number λ,

au,t+1 =
{

au,(t+1)ε : λ < ε

au,(t+1)1−ε : λ > ε

}
,∀t. (35)

If λ < ε, a random (exploration) action is taken by applying
Eq. (29) or (30) for a buyer or seller agent, respectively.
On the other hand, if λ > ε, the action with the maximum
Q-value is selected by applying Eq. (36).

au,(t+1)1−ε = argmax
∑

Qs×a,t . (36)

c: STEP III: UPDATING Q-TABLE
In the same way, the Q-value is updated for both buyers
and sellers agents as represented in Eqs. (37) and (38),
respectively.

Q(t+1)

(
st , abu,tε

)
← Qt

(
st , abu,tε

)
+ α
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FIGURE 3. Flowchart for Q-learning algorithm.

[
rb
′

t + γ max
a
Qt
(
s(t+1), abu,tε

)
− Qt

(
st , abu,tε

)]
,

(37)

Q(t+1)
(
st , asu,tε

)
← Qt

(
st , asu,tε

)
+ α[

rs
′

t + γ max
a
Qt
(
s(t+1), asu,tε

)
− Qt

(
st , asu,tε

)]
,

(38)

Here, abu,tε and a
s
u,tε are the actions for the previous time step,

t for buyer and seller agent, respectively and does not mean
that the initial action is used for all time steps. Eqs. (37)
and (38) are used to update the Q-table as represented in
Eq. (39).

Qs×a,t =

 q1,1,t . . . q1,16,t
...

. . .
...

q7776,1,t . . . q7776,16,t

 ,∀t. (39)

Stage II is repeated every time step until end of
the experiment. The pseudocode and flowchart of the
proposed Q-learning bidding strategy is represented in
Algorithm 1 -Appendix A and Fig. 3, respectively.

C. SARSA STRATEGY
The methodology for the SARSA bidding/offering strategy is
similar to the Q-learning strategy. The discrepancy between
the two models is that in the SARSA strategy the Q-value
is updated based on the temporal difference using SARSA
update equation as represented in Eqs. (40) and (41) for
buyer and seller agent, respectively. This is equally reflected
on the flowchart of Fig. 3. The pseudocode of the pro-
posed SARSA bidding strategy is represented in Algorithm 2

in Appendix A.

Q(t+1)

(
st , abu,tε

)
← Qt

(
st , abu,tε

)
+ α[

rb
′

t + γ max
a
Qt
(
s(t+1), au,(t+1)

)
− Qt

(
st , abu,tε

)]
,

(40)

Q(t+1)
(
st , asu,tε

)
← Qt

(
st , asu,tε

)
+ α[

rs
′

t + γ max
a
Qt
(
s(t+1), au,(t+1)

)
− Qt

(
st , asu,tε

)]
,

(41)

IV. SIMULATION CASE STUDY
A. SIMULATION FRAMEWORK AND DATA
The proposed LEM reinforcement bidding strategy model
was developed as a Python code and implemented in the
bidding agent application programming interface (API) of
the open-source Grid Singularity Exchange (GSy-E) [8],
[38]. The bidding agent API is used for creating the bids
and offers and posting them to the exchange engine. The
exchange matches the bids and offers using a two-sided pay-
as-bid clearing mechanism and send the results with market
information back to the bidding agents [38]. Bids and offers
not matched at the local community are traded with the
upstream grid. In our simulation model, each prosumer agent
communicates its bids or offers individually to the exchange
engine every 15 minute time slot before the energy exchange
time. Each 15-minute time slot has 4 ticks, therefore, pro-
sumer agents are able to update their bids/offers three times
within a market slot. At the fourth market tick, the agent
bids/offers the upstream grid price/feed-in tariff price for PV,
respectively. The model is verified in a simulation case study
of a community with 43 participants consisting of 26 house-
holds with only consumption devices and 17 households
with consumption and production devices. Load profiles used
are taken from [39]. Moreover, the PV production profiles
are generation data from Renewables Ninja [40], [41] using
Stuttgart region as a community and scaled down from hourly
resolution to 15-minutes slot. To ensure that all PV of the
same capacity do not produce exactly the same quantity
of electricity, the PV system losses are varied between 5%
and 15% with a constant tilt angle of 35◦. Because of the
cost of household electricity in Germany, the cost of buying
electricity from the upstream grid is capped at 31.5 ct/kWh
while the sell price to upstream grid is 11.00 ct/kWh which
is the PV feed-in tariff price [42].

B. ASSUMPTIONS AND SIMULATION METHODS
In order to analyze the behaviour of the individual agents and
to verify the implication of the agents working towards the
same goal or benefits, the developed Q-learning and SARSA
algorithms are verified in three different forms namely ‘‘clas-
sical’’, ‘‘standalone actor’’ and ‘‘shared rewards algorithms’’
The performance of the different reinforcement learning algo-
rithms are compared to the baseline to establish a lower
limit on the performance and complexity of the subsequent
models. A random bidding agent is used as a baseline model
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TABLE 1. Simulation parameters.

TABLE 2. Parameter for classical Q-learning and SARSA algorithms.

TABLE 3. Parameter details for the Q-learning and SARSA standalone
actor algorithms in training environment.

in this research to compare it with the intelligent agent mod-
els. The agent randomly makes bids or offers based on the
amount of energy required or available. The random strategy
for generation (producer) begins with an arbitrary price and
steadily decreases as the number of ticks increase. However,
the consumer agent strategy steadily increases until a match is
discovered. For a classical Q-learning and SARSA algorithm,
the model is the traditional Q-learning and SARSA algorithm
described in Section III. Table 1 displays the simulation
parameters for training and testing of the simulations. T is the
total simulation 15-minutes time steps and Epi. is the number
of episodes.

Table 2 shows the simulation parameters for the classical
Q-learning and SARSA algorithms for training and testing
of the simulations. The standalone actor algorithm is used
to get a better understanding of individual prosumers and
consumers agents. Hence, for this algorithm, consumers trade
using the intelligent bidding strategy while the prosumers use
the baseline strategy and vice versa. This algorithm helps iso-
late each actor’s policy and get a more refined knowledge into
single actor’s profits. Furthermore, it is evident that when two
intelligent agents trade as a single entity, a difference between
each of their profits is anticipated, unlike when just a single
agent trades with an unintelligent agent. It is expected that
in the first case that the model strikes a balance between the
two, but in the latter, the model considers the relevance of just
one actor. Here, the purpose is to experiment and analyse both
scenarios. Table 3 shows the parameter details for training of
Q-learning and SARSA standalone actor algorithms.

The goal of the shared reward case is to develop a
model that will simultaneously benefit both prosumers and

TABLE 4. Parameter details for the Q-learning and SARSA shared rewards
algorithm.

consumers since using the classical SARSA and Q-learning
algorithms was unable to do that. Additionally, for our model,
the consumer and prosumer actors do not communicate
with one another and are unaware of each other’s existence.
To solve this, we define an element of cooperation between
the actors for them to communicate information not directly
but by working towards a certain goal. Consequently, the
classical algorithms are modified to develop a shared-reward
concept that allows agents to learn dynamically and coor-
dinate with one another to motivate them to cooperate on
the global reward aim, that is, to benefit the entire local
community. Thus, the global reward is the sum of the indi-
vidual prosumers and consumers agents rewards within the
community. All agents now work towards maximizing this
global reward. Table 4 shows the parameter details for shared
reward algorithm.

C. PARAMETER TUNING
After development of the SARSA and Q-learning model,
parameter tuning was performed to determine the value of
the input parameters that leads to optimal rewards. The three
parameters used for the SARSA and Q-learning model are
the learning rate (α), exploration/exploitation rate (ε) and dis-
count factor (γ ). The value of each of these parameters range
from 0 to 1. The parameter tuning procedure is divided into
3 stages. First, sensitivity analysis was used to analyze the
entire range of values of the parameters to determine the few
optimal values of the parameters. In the second stage, the ini-
tial parameter tuning is carried out by using the optimal values
selected from sensitivity analysis to repeat the simulations
and the results compared to determine the parameters that
outperforms the other. The optimal values from the second
stage are then used to perform the final tuning simulations
and the results compared. The best results are then determined
as the optimal parameters of the model. As Q-learning and
SARSA showed similar features, the parameter tuning was
performed only for the SARSA algorithm.

V. RESULTS
In this Section, the simulation results are presented and
discussed briefly. The first paragraph presents the general
simulation analysis, afterwards, the results are analysed based
on LEM performance indicators. Lastly, the simulations is
analysed to determine the optimal parameters for the bidding
agents.
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FIGURE 4. Selected consumers internal traded energy for (a) baseline, (b) classical Q-learning and (c) classical SARSA strategies.

FIGURE 5. Selected prosumers internal traded energy for (a) baseline, (b) classical q-learning and (c) classical SARSA strategy.

A. GENERAL SIMULATION ANALYSIS
The results of the simulation are analyzed based on the
quantity of energy traded between the prosumers and con-
sumers, energy imported from the upstream grid to the com-
munity and energy exported from the local community to the
upstream grid. Fig. 4 displays the internal traded energy of
five selected consumers for the (4a) baseline, (4b) classical
q-learning and (4c) classical SARSA strategies of a selected
day with the training environment. The internal traded energy
of the consumers is the energy bought by the consumers
from prosumers within the local community. From Fig. 4,
for all the scenarios, energy is traded majorly during the day.
This is evident because the major source of energy within
the community is PV and therefore, energy is generated
and traded within the community mainly during the day.
Furthermore, for the five selected consumers, the consumers
trade more energy within the local community in the classical
Q-learning and SARSA strategy compared to the baseline
strategy. It is evident that the intelligent strategies (Q-learning
and SARSA) provide opportunity for consumers to trade
more energy within the local community compared to the
baseline strategy.

Fig. 5 displays the internal traded energy of five selected
prosumers for the (5a) baseline, (5b) classical q-learning
and (5c) classical SARSA strategies of a selected day with
the training environment. The internal traded energy of the
prosumers is the energy sold/bought by the prosumers to/from
consumers/prosumers within the local community. Similar to
the consumers, as shown in Fig. 5, for all the scenarios, energy
is traded majorly during the day because, the major source

of energy within the community is PV. Therefore, energy is
generated and traded within the community mainly during
the day. Furthermore, for the five selected prosumers, the
prosumers trade more energy within the local community
in the classical Q-learning and SARSA strategy compared
to the baseline strategy. This provides further evidence to
support that the intelligent strategies create more opportunity
for prosumers to trade energy within the local community
compared to the baseline strategy.

Fig. 6 displays the community (6a) traded energy, (6b)
energy import from the upstream grid and (6c) energy export
to the upstream grid using the baseline, classical SARSA,
shared Q-learning, shared SARSA, standalone Q-learning,
and standalone SARSA strategies for a single day in the train-
ing environment. From Fig. 6a, the prosumers and consumers
trade less energy using the baseline strategy compared to
other strategies. This is because the internal traded energy
of the baseline strategy is less compared to other strategies.
Also, using the baseline strategy, the consumers and pro-
sumers import more energy from the upstream grid compared
to other strategies as shown in Fig. 6b. Furthermore, the pro-
sumers export more energy to the upstream grid while using
the baseline strategy compared to other strategy - Fig 6c.

B. ANALYSIS OF SIMULATION BASED ON
PERFORMANCE INDICATORS
Fig. 7 and 8 display the average and cumulative reward,
respectively, of consumers and prosumers actors for the clas-
sical, standalone and shared reward strategies for the entire
training period. Fig. 7 displays the average reward over the
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FIGURE 6. Community (a) traded energy (b) energy import and (c) export from/to the upstream grid.

FIGURE 7. Average reward for (a) classical (b) standalone and (c) shared reward strategy.

FIGURE 8. Cumulative average reward for (a) classical (b) standalone and (c) shared reward strategy.

entire episodes while Fig. 8 displays the cumulative reward
over the entire 15-mins time step. The higher the average
reward, the better the algorithm. Fig. 7a and Fig. 8b show that
for the classical strategies, prosumers gather more rewards
compared to the prosumers. At the same time, SARSA
strategy gather more rewards compared to the Q-learning
strategy. This shows that SARSA strategy has the capabil-
ity of producing more benefits to the LEM compared to
the Q-learning strategy while using the classical algorithm.
Also, the classical algorithms has the capability of yielding
more benefits for the prosumers compared to the consumers.
From Fig. 7b and 8b, similar to the classical algorithms
(Fig. 7a), the prosumers gather more rewards compared to
consumers for the standalone strategies. However, the con-
sumers gather more rewards using the Q-learning algorithm
compared to the SARSA algorithm. On the other hand,
prosumers gather more reward using the SARSA algorithm

compared to the Q-learning algorithm. For the shared reward,
the prosumers and consumers agents work towards a common
goal of increasing their global reward. Therefore, the rewards
of Fig. 7c and 8c are the global average and cumulative
rewards, respectively. The Q-learning algorithm gathers more
rewards compared to the SARSA algorithm. It is evident that
Q-learning can provide more benefits to both consumers and
prosumers while helping them to achieve a common goal.
Generally comparing the classical, standalone, and shared
reward strategies rewards show that the agents gathers most
rewards with the standalone strategy and least reward with the
shared reward strategy.

Table 5 presents the varied bidding strategies verified
using the LEM performance indicators and their accompa-
nying symbols. The performance indicators used are self
sufficiency, market revenue, individual average consumer
savings, individual average prosumer savings and average
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TABLE 5. Varied strategies.

FIGURE 9. Performance indicators ((a) Self-sufficiency, (b) share of
market savings, (c) share of consumer savings, and (d) share of prosumer
savings) for varying scenarios in training environment.

trade rate. Fig. 9 and 10 display the self-sufficiency (SS),
share of market savings (SMS), share of consumers sav-
ings (SCS), and share of prosumers savings for the differ-
ent strategies L0 to L9, in training and testing environment,
respectively. SMS is the percentage of savings made by
the prosumers and consumers for trading within the LEM
compared to without LEM. In the same way, the share
of consumer/prosumer savings is the percentage of savings
made by the consumer/prosumer for trading within the LEM
compared to without LEM. The standalone strategies are
not experimented with the testing environment because it
is not obtainable in practice to keep some group of agents
intelligent in a community while others are not. Therefore,
the standalone strategies is used to verify the individual capa-
bilities of the agents. For the training environment (Fig. 9),
the community SS is higher with the classical and standalone
strategies. This can be explained as consequent upon the
rewards gathered by the classical and standalone strategy
during trainingwhich is higher compared to the shared reward
strategy. The maximum SS is obtained with the L4 strategy.
For this strategy, the prosumers use intelligent strategy based
on SARSA while the consumers use the baseline strategy.
Since trading energy within the community is more beneficial
compared to the upstream grid, this strategy ensures that
the prosumers trade all their energy within the community
thereby making the community to be sufficient. This further
results in higher SMS of the local community and share of
prosumer savings. The baseline strategy (L0) shows the least
SS, SMS, SCS as well as share of prosumer savings. This
is because the agents are not intelligent and do not bid/offer
strategically to make the optimum benefit from the LEM. The

FIGURE 10. Performance indicators ((a) Self-sufficiency, (b) share of
market savings, (c) share of consumer savings, and (d) share of prosumer
savings) for varying scenarios in testing environment.

shared reward strategies (L7 to L9) have the least value of SS,
SMS, SCS and share of prosumer savings compared to other
intelligent strategies. This is highlighted by the least rewards
collected by the shared reward strategies during training.

From Fig. 10, the SS and SMS of the shared reward
strategies (L7 to L9) is higher compared to other strategies.
It is evident that the shared strategy require more training
time for the prosumers and consumers agents to determine
their optimal trading strategy. Furthermore, trading towards
a common community goal (global reward) results in higher
SS and SMS of the community. However, the SCS of L7 to
L9 is lower compared to other intelligent strategies. On the
other hand, the share of prosumer savings is higher with L7 to
L9 compared to the other strategies. Since the consumers and
prosumers agents of the L7 to L9 strategies work towards a
common goal of increasing the global reward, however, the
offering/bidding strategy that results in more global reward
benefits the prosumers compared to the consumers. This
is because the prosumers own the PV’s and batteries and
thereby invested into the market, therefore, trading more of
the energy from the PV in the LEM creates more benefits to
the prosumers.

Fig. 11 shows the comparison of the different LEM
strategies using LEM performance indicator in the training
environment. At this stage, a new strategy termed the hybrid
(H1) strategy is introduced. The Hybrid strategy is similar
to the classical strategies. Hence, it is a combination of the
Q-learning and SARSA classical algorithm strategies. For
the hybrid strategy, the prosumers agents are modelled using
the classical SARSA strategy while the consumers are mod-
elled using the classical Q-learning strategy. From Fig. 11,
the H1 strategy shows better SMS and SS compared to other
strategies. However, the SCS of the H1 strategy is lower
compared to the L1 and L2 strategies. By integrating the
features of the SARSA and Q-learning strategies, the H1
strategy was able to leverage the features of the two strategies
to create technical and economic benefits for the LEM.

Fig. 12 shows the comparison of the different LEM strate-
gies using LEM performance indicator in the testing environ-
ment. Unlike the training environment, the L7 to L9 strategies
show better SS, SMS and SCS compared to the L1 and
L2 strategies. However, the H1 strategy still shows higher
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FIGURE 11. Comparison of performance indicators for varying simulation
scenarios in training environment.

FIGURE 12. Comparison of performance indicators for varying simulation
scenarios in testing environment.

SS and SMS compared to the L7 to L9. This is evident
that utilizing SARSA strategy with prosumer agents while
using Q-learning strategy for consumer agents creates more
benefits to the local community compared to other strategies
tested in this work.

C. PARAMETER TUNING
Appendix B-A (Table. 6, Fig. 13, and Fig. 14) contains the
results of the sensitivity analysis of α, ε and γ parameter
tuning. Four optimal values of α, ε and γ were selected
from the sensitivity analysis and used for initial parameter
tuning. The results of the initial parameter tuning is presented
in Appendix B-B (Table. 7, Fig. 15, and Fig. 16). After
the initial parameter tuning, two best values of α, ε and γ
are then selected and used for the final parameter tuning.
The results of the final parameter tuning are presented in
Appendix B-C (Table. 8, Fig. 17, Table. 9, and Fig. 18) and
a detailed discussion of the parameter tuning is presented in
Section VI-D.

VI. DISCUSSION
The Section presents discussion about findings, insights and
improvements of the model.

A. CLASSICAL MODELS COMPARISON
Firstly, the baseline model is used as a reference to assess
the LEM performance indicators such as self sufficiency(SS),
share of market savings (SMS), share of consumer savings
(SCS), and share of prosumers savings. The baseline model
and reinforcement learning (RL) algorithms are trained and
compared, followed by testing of the RL algorithms. In gen-
eral, the baseline model has satisfactory results of the LEM
performance indicators with a SS of 44.75%, SMS of 56.99%
and average trade rate of 23.63 ct./kWh. The SS and SMS
increase significantly while the average trade rate decreased
by deploying RL algorithm bidding strategy in the local
community. The RL agent learns to bid/offer according to
the current state which completely describes the observation
needed to bid/offer. In the training environment, in compar-
ison to the baseline model, average SS and SMS of the RL
models increased from 44.75% to 61.20% and 56.99% to
156.65%, respectively, while the average trade rate of elec-
tricity is lowered from 23.63 ct./kWh to 22.01 ct./kWh. The
SS and SMS in a testing environment compared to the training
environment increase from 61.20% to 62.0% and 156.65%
to 161.61%, respectively. However, the major changes is
witnessed with the average trade rate which reduced from
22.01 ct./kWh to 19.75 ct./kWh. A lower community aver-
age trade rate is beneficial to the consumers and provides
opportunity for them to buy locally produced electricity. This
further results in additional technical and economic benefits
of the community witnessed with the increase in SS and SMS,
respectively. Comparing the increase in the share of savings
of prosumers and consumers from baseline model to intelli-
gent agents models reveals that the share of prosumers sav-
ings increase significantly higher than the consumers share
of savings. Thus, the prosumers are the major contributors of
the community SMS. This can be attributed to the investment
made by the prosumers to the market by providing the PV and
battery which are the source of power in the local community.

The RL rewards are the second criteria used for anal-
ysis and comparison of the model performance. However,
throughout the comparison and evaluation, it is observed that
the change in the RL rewards is higher compared to the
changes in LEM performance indicators and so RL rewards
are used as the deciding factors in most cases. Here, the ZI
model is out of comparison because of lack of an agent.
The consumers and prosumers act as a separate entity in a
single agent model and so it is necessary to analyse their
rewards differently. The average and cumulative rewards are
negative in the training environment and can be attributed to
be resulting from the high exploration rate (ε) used during
the simulation. As the agent tries to explore new actions,
it is possible that there are very few actions that result in
positive rewards and so the agent is not able to compensate
for the wrong actions received during the training process.
This changes in the testing environment where no explo-
ration is used, and the agent only chooses the action that
leads to higher and positive rewards. Another observation to
note is that the average reward per episode for consumer is

VOLUME 10, 2022 113287



G. C. Okwuibe et al.: Intelligent Bidding Strategies for Prosumers in LEMs Based on RL

higher than the average reward for the prosumer. This could
be because the trades (demand) needed for the consumers
are higher than the trades (supply) of the prosumers. In the
training environment, the rewards collected by the SARSA
algorithm is higher than Q-learning for both consumers and
prosumers. In the testing environment, this is not the case.
SARSA algorithm collects higher rewards for the consumer
actor whereas Q-learning algorithm gains higher rewards for
the prosumer. This means that one single-agent model does
not work equally for both actors.

B. STANDALONE ACTORS
The standalone actor models are developed to isolate the
behaviour of each actor and analyse their behaviour sepa-
rately as the only intelligent agent in the system. Four models
are developed in the training environment for this purpose.
The two prosumer models have higher SS and SMS com-
pared to the two consumer models. The average trade rate is
higher for the prosumer models and lower for the consumer
models showing the presence of only a single actor rather
than two. The results of SS, average trade rate and SMS for
the consumer models are close to the classical SARSA and
Q-learningmodels, whichmeans that the classical RLmodels
are more influenced by the consumers rather than prosumers.
The prosumer models are beneficial for the welfare of the
community as it results in higher SS and SMS compared
to the consumer models. The standalone consumer model
is responsible for the lower average trade rate whereas the
standalone prosumer model helps to increase the economic
benefits.

The rewards gathered by the consumer and prosumer actors
in the training environment are negative. The Q-learning
algorithm provides opportunity to collect higher rewards
compared to SARSA for the consumer models. However, for
the prosumer models, the SARSA algorithm collect higher
rewards compared to Q-learning model. It is important to
note that the standalone actor models converged faster over
time than the classical RL models. The average rewards
gained by the prosumer models for the standalone algorithms
are also comparatively higher than the prosumer rewards in
classical RL models. This suggests that the standalone pro-
sumer model performs better than the classical single-agent
RL models in some criteria. This is because two entities in
a single agent model might hinder each other’s progress and
can perform better as a standalone actor.

C. SHARED REWARDS CONCEPT
Shared rewards concept is implemented in SARSA and
Q-learning models to analyze the possibility of prosumers
and consumers to pursue the same goal in a single experi-
ment. Two SARSA models with different learning rate and
one Q-learning model are developed to analyse the shared
rewards concept. The values of LEM performance indicators
are lower in the training environment than the testing envi-
ronment. The training was done for one year of simulation
that includes both winter and summer season. That is one of

the reasons why the SS and SMS is lower, as there is less
solar production. The values of the LEM KPIs are higher in
the SARSA algorithm rather than Q-learning algorithm with
hardly noticeable difference which can results in the observed
lower performance indicators. On the other hand, the RL
rewards have a different outcome. For both the training and
testing environment, Q-learning has constantly gained higher
rewards than the SARSAmodels. Thus, there is no consistent
model outperforming the other in both criteria. The graph of
the global average rewards in the training environment is still
increasing by the end of the training period which suggests
that the algorithm might not have converged yet and would
perform better if the training time was increased. However,
because of the huge training time and lack of data, the training
is only performed for 1 year. The lack of convergence can
also be seen from the global average rewards in the testing
environment which are negative. The LEM performance indi-
cators in the testing environment show better performance
compared to the testing environment of the classical RL
models. The individual share of savings of both consumers
and prosumers are substantially increased. The higher values
of the LEM performance indicators of the shared reward
models is evident that the shared reward models outperforms
the classical models. However, the performance in the RL
rewards is not as expected because of the insufficient training
time. If the model was given enough training time for it to
learn the cooperation between the agents, the shared reward
model will outperform the classical RL models in terms of
the obtained rewards.

D. PARAMETER TUNING
The three steps used are sensitivity analysis, initial parameter
tuning and then, final parameter tuning. Starting with the
sensitivity analysis, the change in the learning rate (α) does
not result in significant change of the performance indicators.
The lower values of α such as 0.1, 0.2, and 0.3 along with
some higher values such as 0.7, result in comparatively higher
LEM performance indicators. However, the RL reward crite-
rion shows values of the learning rate such as 0.4 and 0.9 can
help the algorithm collect more rewards compared to other
values. Therefore, one optimum value from each criterion and
one default and also most common learning rate are selected
for the initial parameter tuning. The only parameter that has a
linear relationship with the LEM performance indicator is the
exploration rate (ε). The lower the values, the better the result.
However, there are some outliers to this relationship in the RL
rewards criteria. For example, ε equal to 0.6 and 0.7 collects
higher rewards than 0.5 which is true for the consumer and
prosumer rewards because of the exploration vs exploitation
trade-off. Thus, the equal probability for both exploitation
and exploration is not beneficial for the algorithm. To verify
this anomaly further, ε equal to 0.2, 0.5 and 0.9 were chosen
to compare further. The discount factor (γ ) shows the most
non-linear behaviour out of the three parameters. There is no
rule of thumb on choosing γ , on the other hand, the value of
0.9 or 0.99 helps the algorithm converge faster. Considering
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FIGURE 13. Sensitivity analysis of consumers rewards for (a) α, (b) ε and (c) γ .

FIGURE 14. Sensitivity analysis of prosumers rewards for (a) α, (b) ε and (c) γ .

FIGURE 15. Initial parameter tuning of consumers rewards for (a) α, (b) ε and (c) γ .

FIGURE 16. Initial parameter tuning of prosumers rewards for (a) α, (b) ε and (c) γ .

the LEM performance indicators, comparatively lower values
of γ such as 0.1, 0.3 and 0.4 are better whereas for the
RL rewards, higher values of gamma such as 0.5, 0.7 and
0.9 shows better performance. The value of the discount
factor is usually higher compared to the learning rate and so

three values, 0.3, 0.4 and 0.9 are used to further provide the
comparison in the next step.

From the result of the initial parameter tuning for α, the
default rate of 0.1 lead to the worst performance in the
RL rewards criteria. Nevertheless, the LEM performance
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FIGURE 17. Final parameter tuning of rewards for (a) consumers and
(b) prosumers in training environment.

FIGURE 18. Final parameter tuning of rewards for (a) consumers and
(b) prosumers in testing environment.

indicators for α equal to 0.1 and 0.4 were almost comparable.
The initial parameter tuning of ε has the similar outcomes to
its sensitivity analysis. ε = 0.5 has lower rewards compared
to ε = 0.9. Given that the relationship of epsilon is quite
straightforward with the evaluation criteria, only one value
of epsilon 0.6 is used for the final comparison. The initial
parameter tuning of gamma showed that there is no corre-
lation between gamma and any of the KPIs. The two best
values of 0.4 and 0.9 are selected from the criteria for the final

Algorithm 1 Q-Learning Algorithm Bidding/Offering Strat-
egy
Require: St , α, ε, γ . F Initialize parameters and states
Initialize:Qs×a,t according to Eq. (28)
Initial action: according to Eq. 29 & 30

while (Epi > 0) do
Calculate reward: according to Eq. (34) | 33
Take action: according to Eq. 36 & 35
Update Q-table: Q(t+1)

(
st , abu,tε

)
← Qt

(
st , abu,tε

)
+α

[
rb
′

t + γ maxa Qt
(
s(t+1), abu,tε

)
−Qt

(
st , abu,tε

)] ]
F For buyers

Q(t+1)
(
st , asu,tε

)
← Qt

(
st , asu,tε

)
+α

[
rs
′

t + γ maxaQt
(
s(t+1), asu,tε

)
−Qt

(
st , asu,tε

)] ]
F For sellers

Update Eq. 39
end while

tuning. Hence, it is certain from here, that, the values of α, ε,
and γ do not follow the common and default values used for
them. Therefore, the behaviour of each value and parameter
to the algorithm is challenging to interpret. Another important
and common observation is that the best values of α, ε, and
γ for the consumer and prosumer models are in most cases
different from each other which also explains the reason for
the development of standalone actor algorithms.

The final parameter tuning consists of two α and γ values
and one ε value to determine the final optimal values. The
results obtained from the training and testing environment
are different from each other. Learning rate (α) of 0.7 and
γ of 0.4 has the highest value in terms of LEM performance
indicators and the RL rewards in the training environment.
However, for the testing environment, the model with the
best LEM performance indicators has α = 0.4 and γ =
0.9. However, this is not the same for rewards collected by
consumers. The model with the best rewards collected by
consumer has α= 0.7 and γ = 0.4. Therefore, the model with
the most optimal bidding/offering strategy is the single-agent
SARSA model with α = 0.4, ε = 0.6, and γ = 0.9.

VII. CONCLUSION
In this paper, two novel reinforcement learning based intel-
ligent bidding strategies, Q-learning and SARSA, were pro-
posed for effective trading of distributed energy resources for
prosumers and consumers in an LEM. The proposed models
were tested in a German real case scenario and simulated
for 45 German households. The simulations results show that
the intelligent bidding strategies create additional technical
and economic benefits to the local consumers and prosumers
compared to the baseline strategy. Furthermore, the proposed
models reveal that when the intelligent agents within the local
community work towards a common goal, in this case shared
reward strategy, the model create additional benefits for the
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TABLE 6. Comparison of participant revenue for sensitivity analysis.

Algorithm 2 SARSA Algorithm Bidding/Offering Strategy
Require: St , α, ε, γ . F Initialize parameters and states
Initialize:Qs×a,t according to Eq. (28)
Initial action: according to Eq. 29 & 30

while (Epi > 0) do
Calculate reward: according to Eq. (34) | 33
Take action: according to Eq. 36 & 35
Update Q-table: Q(t+1)

(
st , abu,tε

)
← Qt

(
st , abu,tε

)
+α

[
rb
′

t + γ maxa Qt
(
s(t+1), au,(t+1)

)
−Qt

(
st , abu,tε

)] ]
F For buyers

Q(t+1)
(
st , asu,tε

)
← Qt

(
st , asu,tε

)
+α

[
rs
′

t + γ maxa Qt
(
s(t+1), au,(t+1)

)
−Qt

(
st , asu,tε

)] ]
F For sellers

Update Eq. 39
end while

TABLE 7. Comparison of participant revenue for initial parameter tuning.

community compared to the classical strategies. The most
optimal strategy is the hybrid strategy which is a combination
of the classical Q-learning and SARSA strategies. In future
work, we will investigate other artificial intelligent models
such as deep learning and how they can be modelled for LEM
trading and how the model will be implemented in a dis-
tributed blockchain platform to ensure efficient preservation
of prosumers’ privacy and conformation to data protection
laws.

APPENDIX A ALGORITHMS PSEUODO CODES
See Algorithm 1 and Algorithm 2.

APPENDIX B FURTHER SIMULATION RESULTS
A. TABLES AND FIGURES FOR SENSITIVITY ANALYSIS
See Table 6, Figures 13 and 14.

TABLE 8. Comparison of participant revenue for final parameter tuning
(training env).

TABLE 9. Comparison of participant revenue for final parameter tuning
(testing env).

B. TABLES AND FIGURES FOR INITIAL
PARAMETER TUNING
See Table 7, and Figures 15 and 16.

C. TABLES AND FIGURES FOR FINAL PARAMETER TUNING
See Tables 8 - 9 and Figures 17 - 18.
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4 DLT as an enabling factor for local
energy market

Scientific context
An LEM market model is implemented in a platform and therefore needs a secured and
tamper proof platform that will ensure that the data of LEM participants are highly
secured, tamper proof, reliable, and execute transactions in a transparent manner while
conforming to General Data Protection Regulation (GDPR) [142, 66]. Blockchain as a
concept of DLT has several features which include distributed data structure, consensus
mechanism, cryptographic signature, immutability, transparency, trust, and enhanced
security that made it outstanding for application in LEM market model [102, 143, 144,
145, 146, 147]. Hence, blockchain provides an opportunity for LEM participants to post
their transaction data to the market framework in a transparent, secured and tamper
proof manner. The immutability feature of blockchain makes it impossible to tamper
with data/transaction stored in the network as data/transactions are linked from one
block to another using cryptographic hashes. For a person to falsify a data or transaction
in the network, the person must be ready to start from the first block known as the genesis
block which is almost impossible. Data stored in a public blockchain network are open to
everyone that is willing to see it and thus the first challenge of blockchain since such kind
of platform that deals with information about users need to conform with the GDPR.
Although, these information are completely stored in pseudo-anonymous manner as one
can only see the public key of the users and transactions belonging to a certain public
key. This means that once you know the public key belonging to a particular user, you
can easily read the users data such as electricity consumption from the network.
Also, another challenge facing the application of blockchain in LEM is scalability and

high gas cost. Blockchain is less scalable and therefore has limited capability to handle
large models/algorithms/computations in a short time. For example, running a simple
merit order market clearing mechanism will require about 19 million gas which means
extension of the block size which is limited at 8 million gas on any network that is running
on the Ethereum virtual machine, such as the Energy Web Chain. Gas is the fee you pay
to conduct a transaction in a public Ethereum network [142]. In this section, two papers
are presented. The first paper [143] implemented a blockcain-based LEM framework and
evaluated the applicability and challenges for a German case scenario. To the best of our
knowledge, as at the time of the publication, this is one of the early papers that deals
with the proof of concept of blockchain application for LEM. The second paper [148]
focuses on solving the enumerated challenges of blockchain-based LEM which include
scalability, transparency and conformity with GDPR, and high gas cost by applying a
hybrid approach incorporated TEE.
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4.1 Blockchain enabling a fully distributed local energy markets

Contribution
In this section, a proof of concept of blockchain-based LEM framework is presented. The
paper [143] presents a blockchain-based double sided auction peer-to-peer local electric-
ity market framework. As a proof of concept, four open-source smart contracts based
on Ethereum blockchain network were developed and evaluated of their applicability to
enable a fully distributed local energy trading [149]. The smart contracts implement
the market model, LEM clearing mechanisms, token exchange, and token auction. The
developed smart contracts were deployed to the Ethereum-based private blockchain net-
work of the Chair of Energy Economy and Application Technology, Technical University
of Munich (TUM), to verify their applicability. A hardware-in-the-loop simulation was
performed with Raspberry Pis acting as blockchain light node that communicates bid-
s/offers of the consumers/prosumers to the blockchain network at every time slot.
The framework was verified with a combination of load [121] and PV [150] profiles.

The consumers/prosumers agents running on the different Raspberry Pis post the con-
sumers’/prosumers’ bids/offers every minutes. This was to evaluate the reliability of the
blockchain network to handle data communicated to the framework every minute. The
market was cleared hourly and token exchanged from the different consumers/prosumers
account based on their consumed/produced electricity. The results of the simulations
show that blockchain is not scalable to handle the transaction timely even with the two
simple clearing mechanisms implemented known as uniform market clearing price and
discriminative pricing. Furthermore, because of the cost of communicating, storing and
transacting hourly bids/offers in the blockchain network that cost 67,369 gas which is
equivalent to 270.2 ETH at the time of the publication, it is economically unfeasible to
run the whole market model in a blockchain network, given the current maturity stage
of blockchain.

138



4 DLT as an enabling factor for local energy market

Publication #8: A Blockchain-based Double-sided Auction
Peer-to-peer Electricity Market Framework

Authors: Godwin C. Okwuibe, Michel Zade, Peter Tzscheutschler, Thomas Hamacher,
and Ulrich Wagner.

Publication medium: 2020 IEEE Electric Power and Energy Conference (EPEC)

Copyright: © 2020 IEEE. Reprinted, with permission, from [143].

Digital object identifier: 10.1109/EPEC48502.2020.9320030

Authors contributions

Godwin C. Okwuibe 70% Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Software, Visualization,
Validation, Writing - Original draft, Writing - review
and editing.

Michel Zade 15% Conceptualization, Data curation, Formal analysis,
Methodology, Validation, Writing - review and edit-
ing.

Peter Tzscheutschler 5% Methodology, Validation, Writing - review and edit-
ing.

Thomas Hamacher 5% Supervision, Writing - review and editing.

Ulrich Wagner 5% Supervision, Writing - review and editing.

139



A Blockchain-based Double-sided Auction
Peer-to-peer Electricity Market Framework*

Godwin C. Okwuibe*, Member, IEEE
Energy Markets Division

Oli Systems GmbH
Stuttgart, Germany

godwin.okwuibe@tum.de

Michel Zade
Chair of Energy Economy and

Application Technology
Technical University of Munich

Munich, Germany
michel.zade@tum.de

Peter Tzscheutschler
Chair of Energy Economy and

Application Technology
Technical University of Munich

Munich, Germany
ptzscheu@tum.de

Thomas Hamacher
Chair of Renewable and Sustainable Energy Systems

Technical University of Munich
Munich, Germany

thomas.hamacher@tum.de

Ulrich Wagner
Chair of Energy Economy and Application Technology

Technical University of Munich
Munich, Germany
uwagner@tum.de

Abstract—The framework presented provides an open-source,
blockchain-based, peer-to-peer energy market platform which can
be used for testing different setups or for creating a microgrid
peer-to-peer trading platform. The framework offers the following
possibilities:

• variations of the trading horizon, metering intervals;
• simulations within a fraction of the real time;
• variations of the number of participants;
• multiple operated microgrids within one smart contract;
• clearing mechanisms with discriminative prices or a market

clearing price;
• functionality to log data exchanged with the blockchain; pro-

duction and consumption data of each participant, electricity
exchanged within the microgrid and the main grid, token
balances of all participants,

• variation of the price ranges.
Index Terms—peer-to-peer, blockchain, smart contract, energy

trading, token (TEC)

I. INTRODUCTION

In 2000, the Renewable Energy Sources Act (EEG 2000)
came into force in Germany to encourage citizens to build
renewable power plants with a capacity of up to 100 kW. To
stimulate the construction of new power plants, a guaranteed
feed-in tariff for 20 years has been implemented (see EEG
2000, §9 section 1). In 2020, the first power plants will
drop out of the feed-in tariffs and an increasing number of
renewable power plant owners will be responsible for the
commercialization of their excess energy. Peer-to-peer (P2P)
electricity markets offer an opportunity to trade renewable
electricity in post-EEG times and within communities, close
to their place of production. As such, potentially costly grid
infrastructure expansions can be reduced.

*Godwin Okwuibe is with Oli Systems GmbH and a doctoral student at the
Chair of Renewable and Sustainable Energy Systems, TU Munich, Germany.

One general goal of a P2P market is the creation of trading
relationships between a large number of distributed sellers and
buyers [1]. Many definitions of P2P energy trading exist in
several literature [2] - [7]; however, we will focus on selected
definitions relevant to current electricity use case. According to
Pouttu et al. [5], P2P energy trading is a platform that provides
information about energy trading among buyers and sellers and
matches their offers using the agreed or accepted regulations.
This platform ensures that the quantity of energy matched is
delivered to the buyer and that the price tagged for that quantity
of energy is paid to the seller. The electricity producers are
usually within the neighborhood or locality of the consumers,
leading to reduced losses and overall cost [2]. Furthermore, P2P
energy trading ensures that local funds remain within the local
economy and provides prosumers/generators the opportunity to
maximize their profits from electricity trading and have control
over their distributed energy resources (DER) [2] - [3]. Some
mechanisms proposed for P2P electricity trading are auction-
based pricing strategy [2], [8], demand response approaches [9]
and energy sharing models with price-based demand [10].

The electric energy demand and production in a microgrid
show the patterns of a multi buyer and seller, respectively.
Double-sided auction (DSA) market provides multiple buyers
and sellers with the opportunity to trade their commodities
simultaneously [11]. A DSA provides an efficient market for
the allocation of energy based on quotes of sellers and buyers in
a microgrid [12]. Sellers and buyers submit asks (sell orders),
which set the minimum price they can receive, and bids (buy
orders), which offer the maximum price they are willing to
pay for the commodities [11] - [14]. The auctioneer collects
the orders, sorts them and matches them if a buyer’s bid price
exceeds a seller’s ask price [15]. Typically, a seller who has
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several quantities for sale may match different buyers, same
with a buyer who wishes to buy several quantities [14].

Blockchain (BC) technology is a decentralized networking
infrastructure that allows the execution and inspection of trans-
actions in a decentralized and transparent manner. [16] and
[17] describe BC as a P2P platform that uses a distributed and
decentralized storage, initiates transactions and transmits them
using a decentralized consensus algorithm while recording all
transaction data in a tamper proof manner. Data is stored in
blocks, created by means of consensus algorithm [17] and are
protected by distributed sharing mechanisms and cryptographic
signatures [18]. Smart contracts (SC) are applications (executed
on the Ethereum Virtual Machine (EVM)) used to enforce
agreement between parties or participating accounts and are
executed only when the predefined constraints are satisfied [19].
BC technology uses SC, distributed ledgers, and decentralized
consensus to enable decentralized markets, thereby solving the
problem of conflict of interest [20].

In recent years, different research and projects have been
conducted on P2P energy trading [6], [21] - [23]. The dis-
tinction between the model proposed in this work and the
existing platforms is that the proposed model uses the novel BC
technology for energy trading in a forward (intra-day) market
on a rolling time horizon and promise a highly secured and
tamper proof platform. DSA energy trading mechanism is used
to calculate a market clearing for renewable electricity on a BC
platform. The proposed model is open source [24].

II. PEER-TO-PEER ENERGY MARKET

Prosumers that participate in the P2P electricity trading need
to submit their ask ahead of the exchange period. The ask
states the quantity of electricity they can produce, the minimum
price per unit they wish to receive and the time of electricity
production. Also, consumers who wish to buy electricity at
a cheap price from prosumers within their microgrid need to
submit bid ahead of the electricity exchange period. The bid
states the quantity of electricity they need, the maximum price
per unit they are willing to offer and the consumption time.
At the end of the electricity auction, the market is cleared,
and prosumers receive token (TUM Energy Coin (TEC)) paid
by consumers for the energy they input to the microgrid. This
TEC can be exchanged for fiat currency on the token market.
Within this work, an energy-only market is modelled. Hence,
network congestions and contingencies are not considered.
The upcoming subsections will explain how this is achieved,
describing the software architecture, event sequence, major
functionalities and the implemented logic.

A. Market Architecture

Fig. 1 illustrates the involved actors, SC’s, BC-nodes and
software components necessary for the P2P electricity market.
A Raspberry Pi operating a Parity Ethereum client (BC-node)
and using Python software is installed on the smart meter
gateway (SMGW) to form a SMGW-BC-node. Each consumer

and prosumer (local electricity traders) owns a SMGW-BC-
node for measuring consumed or produced electricity and
communicating the data to the BC network. Furthermore, the
local electricity traders (LETs) make use of a home energy
management system (HEMS) to forecast future energy de-
mand/production, receive user price input, optimize operations
and communicate them to the BC network. The public electric-
ity for this work is taken as a single entity called utility. The
utility and LETs own a user application (APP) which they use
to communicate with the BC network for selling of acquired
TEC in exchange for fiat currency. The SC operator (SCO)
on the other hand uses an APP to create new user accounts,
transfer initial tokens to their accounts and update the SC
during operation.

For the award and subtraction of TEC for energy exchange,
transfer of TEC for fiat currency exchange, as well as TEC and
energy market auctioning, four smart contracts were developed
to ensure a modular structure. The scripting language for these
contracts is Solidity, written on an Integrated Development
Environment (IDE) known as Remix. Remix is also used to
deploy the contract to the BC network. The contracts and their
functions are explained in detail below.

• ERC20: This is the basic smart contract that all other
contracts inherit. It initiates tokens (TEC) and manages
their transfer from one address to the other. Once the TEC
is created, it is assigned to the SCO.

• Double-Sided Auction: This is the contract that receives
the various TEC bids and asks, sorts and matches the
orders, before displaying them for payment confirmation.
This contract inherits the ERC20 contract, checks the
balance of users before approving and matching orders.

• Peer-to-peer Energy: This contract is responsible for re-
ceiving energy bids and asks, creating virtual microgrids
and participant accounts, matching energy bids and asks,
and settlement of TEC for energy sent to the microgrid.
The SMGW-BC-node interacts with this contract by send-
ing the energy produced or consumed to the contract via
the Python script on the Raspberry Pi.

• Clearing: This contract serves two important functions:
first, it is used to temporarily store TEC after TEC or
energy market clearing, before transferring it to either the
TEC buyer or the energy producer; second, it is used to
trigger the clearing of energy and the TEC market.

B. Event Sequence

Fig. 2 provides an example of the P2P electricity auction and
the exchange process for time interval t0 to t2, indicating the
time that different events or transactions take place in the BC
network. HEMS installed in the LETs households forecast the
quantity of electricity the household can consume or produce
in each time slot, in the next electricity exchange period (t1
to t2) (up to the next day (24 hours)). LETs can place and
update their orders from 24 hours (t0) until 1 minute before
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Fig. 1: Peer-to-peer market software structure

(t1 - 1) the electricity exchange period. Afterwards, they are
obliged to follow the market clearing results by producing or
consuming the quantity of energy allocated to them during
market clearing. If the participants cannot produce/consume
electricity according to the market clearing results, they must
take counteractions themselves. Fig. 2 provides an example
of a prosumer willing to sell 6kWh of electricity from t1
to t2, at 20 cent/kWh. Within the bid and ask interval, a
consumer willing to buy 8kWh of electricity at 24 cent/kWh
during the same energy exchange period (t1 to t2) also places
a buy order. The market clearing mechanism is explained in
Section II-C. Exchange of electricity takes place from t1 to t2
minutes. At the end of the electricity exchange period (t2), the
contract confirms that the prosumer fulfilled the agreement by
producing the required amount of electricity. This process is
known as token settlement (Section II-E) and prosumers that
fulfill the agreement are rewarded with the equivalent ask token
previously deducted from the consumer and temporarily stored
at the Clearing account.

C. Energy Market Clearing Mechanism

Two market clearing mechanisms, market clearing price
(MCP) and discriminative price (DP) were realized in the P2P
Energy SC. This section illustrates the clearing mechanism
of the DSA DP mechanism developed on the P2P Energy
SC as depicted in the flow chart of Fig. 3. The bids, bi,nB
= (pi,B, qi,B, ti,B) which consist of the maximum price (pi,B)
each participant is willing to offer per kWh of electricity, the
quantity of electricity (qi,B) in kWh each participant needs
and the consumption time (ti,B) are received in an array.
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Fig. 2: Event sequence of the peer-to-peer energy market

Simultaneously, asks, bk,nA= (pk,S, qk,S, tk,S) which consist of
the minimum price (pk,S) per kWh of electricity the participants
are willing to receive, the quantity (qk,S) of electricity each
participant is willing to sell and delivery time (tk,S) are also
received in an array.

Afterwards, the contract waits for a trigger from any of
the participating smart meters within the microgrid to clear
the energy market. Upon a trigger from the smart meters to
the Clearing contract to clear the energy market, the Clearing
contract checks if there is consensus within all participating
smart meters in the microgrid. The clear energy market trigger
is sent by all smart meters every minute; however, until there
is above 51% consensus, the market will not be cleared. Once
there is an up to 51% consensus to clear the energy market,
the market is cleared as follows: Firstly, the bids and asks
are arranged according to the consumption and delivery time,
respectively, into different number of arrays for all the time
slots in the next 24 hours. The total time slots tn = [0, 1, 2, ...,
Tn-1] is equal for the bids and asks. Tn = 1440/(slot length),
where the slot length is the time (minutes) of each slot and
this is the energy trading time. Hence, for a 1 hour energy
trading time, Tn = 24. Secondly, for each time slot, the bids
are sorted in descending buy price order such that the price
of bi,nB ≥ bi+1,nB and the asks in ascending sell price order
such that the price of bk,nA ≤ bk+1,nA. Thirdly, two integers
“j” and “r” are initialized and set equal to zero for counting
the matched row for the buy and sell orders, respectively. These
integers are compared with the array length of the buy (nB) and
sell (nA) orders, respectively, to find out if there exist orders to
be matched. If nB is equal to j or nA equal to r, the program
will end. This means that all orders have been matched or there
are no order to match.

Fourthly, if nB is not equal to j and nA not equal to r, the
first orders (r=j= 0) from the two sorted arrays are picked and
their prices compared. If the sell price (p0,S) of this first sell
order (b0,nA) is greater than the buy price (p0,B) of the first buy
order (b0,nB) in the sorted array, the process will end; otherwise
the quantities for the two orders will be compared. The two
quantities are compared in three different case forms:

• Sell quantity (SQ) = buy quantity (BQ): For this case, the
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matched quantity is the SQ. The integers “r” and “j” are
increased by one each. This means that the next matching
should be selected from the subsequent rows of both seller
and buyer offers.

• SQ < BQ: For this case, the matched quantity is the SQ.
The integer “r” is increased by one. This means that the
next matching should be selected from the subsequent row
of seller offers and the current row of buyer offers as the
quantities in the present row are not exhausted.

• SQ > BQ: For this case, the matched quantity is the BQ.
The integer “j” is increased by one. This means that the
next matching should be selected from subsequent row
of buyer offers and current row of seller offers as the
quantities in the present row are not exhausted.

For all three cases, the matched price is the average of the
prices (cent/kWh) offered by the matched buyer and seller. The
TEC equivalent of the matched price and quantity is calculated
and transferred from the account of the buyer to the Clearing
contract account, where it is stored temporarily. The same
amount of TEC is approved for the seller by the Clearing
account and can only be transferred to the electricity seller
account during token settlement, if they supply the ask quantity
of electricity. This process is repeated until either the sell price
is greater than the buy price or all the offers in the ordered
book are exhausted. For an easy onward process during token
settlement, the quantity of electricity bought (BQty) or sold
(SQty) by a LET during energy market clearing is recorded on
the LET’s account. If a buyer is matched with two or more
sellers, all the quantities bought are summed together as BQty.
However, for a seller matched with different buyers, the SQty
are not summed together; rather, they are put in an array with
the corresponding sell price and stored on the seller’s account.
Also, the number of participants a seller is matched is recorded
as sellcount and is used during energy token settlement.
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Fig. 3: Double-sided auction DP market clearing mechanism

D. Energy Exchange

Every minute, LETs communicate their consumed or pro-
duced energy measured from the SMGW to the BC network
through their SMGW-BC-node. When this data is received on
the network, the SC checks if its time for token settlement, and
when this is not the case, the process will end and the transac-
tion saved. Upon token settlement time, the participants smart
meter node initialize transfer of token for energy produced
or consumed, sign the market consensus and reset the energy
exchange time. Signing of the market consensus indicates the
acceptance by the participants to clear the energy market.
Furthermore, the produced or consumed energy is added to
the owners account and to the microgrid account.

E. Token Settlement

Consumers and prosumers participating in the P2P energy
trading pay or get rewarded for energy consumed from or
inputted to the microgrid, respectively. This section describes
how this is achieved through the P2P Energy SC in the BC
network and how LETs that do not follow the market clearing
results in real-time are penalized. First, the consumed energy
(CE) token settlement is described, followed by an explanation
of the produced energy token settlement process.

1) Consumed Energy Settlement: During CE token settle-
ment, the SC determines if the energy bought by the participant
during the last energy market clearing is equal to zero, equal to
CE, greater than CE or less than CE and makes the settlement
for each case scenario as follows.

• BQty = 0: The TEC equivalent of the CE is transferred
from the consumers account to the public utility account
using the public utility sell price, which is costlier.

• BQty = CE: The bought quantity and CE are reset to zero.
• BQty > CE: The TEC equivalent of the excess (BQty

- CE) energy the consumer bought and never consumed
is calculated using the public utility buy price which is
less than the original buy price. This serves as punishment
for buying more than it can consume. The public utility
transfers this TEC equivalent to the consumer during
the next settlement. Furthermore, the quantity of energy
bought and consumed are set equal to zero.

• BQty < CE: The TEC equivalent of the quantity (CE
- BQty) consumed, which the consumer was unable to
buy from the energy market is transferred from the user’s
account to the public utility account, using the costlier
public utility sell price. Following this, the quantity of
energy bought and consumed are set equal to zero and the
whole process is then returned.

Through the described method, consumers and prosumers pay
for electricity they consume from the microgrid at the time
interval (t2 - t1), during energy exchange.

2) Produced Energy Settlement: Produced energy token
settlement occurs immediately after CE token settlement. The
process of produced energy token settlement is done only for
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prosumers, who were matched during the last Tn energy market
clearing to produce energy or prosumers that produce electicity
within their microgrid during the current time slot. The quantity
of energy a prosumer produced is evaluated in a loop for all
the consumers and/or prosumers the prosumer was matched
during the last energy market clearing to produce energy using
the following two case scenarios.

• Produced energy ≥ SQty: The SQty is subtracted from
the produced energy and the TEC equivalent of SQty
is transferred from the Clearing contract account to the
prosumers account.

• Produced energy < SQty: The TEC equivalent of produced
energy is transferred from the Clearing contract account
to the prosumers account. Also, the TEC equivalent of
the prosumer deficit (SQty - Produced energy) energy
is transferred from the prosumer’s account to the public
utility account, using the difference between the public
utility and the prosumer sell price. This is to penalize the
prosumer for not producing the matched energy; as this
energy was supplied by the public utility.

These steps are repeated for the number of times (sellcount) a
producer was matched during the last Tn energy market clearing
to produce energy. At the end of the loop, the prosumer is also
evaluated to find out if the produced energy is greater than
zero. This is a situation where prosumers produce more than
they were matched during the last Tn energy market clearing. If
this is true, the TEC equivalent of the excess produced energy
is calculated using the public utility buy price. The public
utility transfers this TEC equivalent to the prosumer during
the next token settlement. After this, the process will end. By
this, energy producers acquire some amount of token called
TEC for the energy they input to the microgrid. TEC can be
sold by energy prosumers whenever they want to receive fiat
currency.

III. SIMULATIONS

The four SC’s developed for this work were deployed at
the Ethereum proof of authority (POA) private BC network
of the Chair of Energy Economy and Application Technology,
Technical University of Munich (TUM). The developed model
was simulated for a day with seventy-two households in six
different microgrid scenarios. Table I displays the six different
microgrid scenarios of the simulations, the participants, the
clearing mechanisms (Clear. Mech.) used for each scenario,
and the auction bidding price range of the participants. The
reference scenario is a scenario where there is no auction;
thus, for this scenario, excess electricity produced by prosumers
(Pros.) is sold to the utility at 12 cent/kWh and all consumers
(Cons.) buy their electricity directly from the utility at 30
cent/kWh. Two different auction price range (PR) namely small
(SR) and wide range (WR) were tested for the simulation. For
SR, consumers start bidding for electricity from 15 cent/kWh
and increase their bid price by 1 cent/kWh after every market

clearing when they have not bought all the required electricity
for a future time. Also, for this price range, prosumers set their
initial electricity price at 20 cent/kWh and reduce their ask
price by 1 cent/kWh after every market clearing if they have not
finished selling all their forecast quantity. On the other hand,
for WR, consumers make their first bidding at 12 cent/kWh and
increase the bid subsequently by 1 cent/kWh if the bid was not
successful while prosumers start their ask at 30 cent/kWh and
reduce the price by 1 cent/kWh for the unsuccessful asks.

TABLE I: Microgrid Scenarios and Participants
Scenario Participants Clear. Mech. PR

Reference Varies No auction –
5P3C DS 5 Pros., 3 Cons. DP SR
3P5C DS 3 Pros., 5 Cons. DP SR
5P5C DS 5 Pros., 5 Cons. DP SR
5P5C MS 5 Pros., 5 Cons. MCP SR
5P5C MW 5 Pros., 5 Cons. MCP WR

The consumption input data for consumers and prosumers are
per minute resolution consumption data of PL1 (active power
line1) from HTW Berlin [25]. The prosumers PV production
data are from the Chair of Energy Economy and Application
Technology, TUM [26]. Two different Python scripts were de-
veloped for each household to represent a SMGW and HEMS.
The SMGW Python script was responsible for communicating
the consumption per minute to the BC network for a day. And
the HEMS Python script was responsible for making an energy
forecast of the energy that will be consumed in the future,
creating and, posting bids and asks to the BC network. All
consumers and prosumers were given an initial TEC worth 100
cents. A single Python script per microgrid scenario was also
developed for logging the output data from the BC network
every minute. The data logged per user are the user’s TEC
balance, produced energy, consumed energy, BQty and SQty
(prosumers only). The cost of deploying the SC to the network
and user transaction cost were also determined. The simulation
slot length is 1 hour, for a total of 24 slots. This means that the
market is cleared after every 1 hour for the 24 hour simulation
time.

IV. RESULTS AND DISCUSSION

Within this section, the results of the simulations introduced
in section III are visualized and discussed. Fig. 4 displays
the plots of produced/consumed energy (upper most graph
(Fig. 4a)), accumulated energy (middle graph (Fig. 4b)) and
TEC balance (bottom graph (Fig. 4c)) of Prosumer1 for the
reference scenario. Positive energy means consumption while
negative energy means feed-in. From Fig. 4a, Prosumer1 im-
ports energy from the microgrid from 12:00am (0 min) until
about 5:30am (330 min). Then it exports energy to the micro-
grid until about 4:40pm (1000 min) and afterwards, imports
energy from the microgrid. From Fig. 4b, the accumulated
energy increases linearly from 12:00am (0 min) until 5:45am
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(345 min). It then decreases linearly until 4:40pm (1000 min)
and increases afterwards. The TEC balance (Fig. 4c) decreases
in steps from 12:00am (0 min) until 4:00 am (240 min),
becomes almost constant until 6:55 am (415 min), increases in
steps until 5:48 pm (1068) and decreases in steps afterwards.
Comparing the three plots (Fig. 4 (a,b,c)), it is evident that
as Prosumer1 imports energy (energy consumption) from the
microgrid, its TEC balance decreases in steps while accumu-
lated energy increases linearly; however, as it exports energy
(energy production) to the microgrid, its TEC balance increases
in steps while the accumulated energy decreases. The period
(240 - 415 min) during which the prosumer balance (Fig. 4c) is
almost constant signifies that the prosumer produces almost all
its energy requirements by itself and does not exchange energy
with the microgrid. The trends of Fig. 4c show a total of 24
steps which is the total number of time slots and the number of
times the token settlement took place for the prosumer during
the simulation.

Fig. 4: Prosumer1 real time output data for reference scenario

Fig. 5 displays the real time plots of consumed energy
(upper most graph (Fig. 5a)), accumulated energy (middle
graph (Fig. 5b)) and TEC balance (bottom graph (Fig. 5c))
of Consumer1 for the reference scenario. From Fig. 5a, Con-
sumer1 consumes energy from the microgrid for the whole day;
peak load is witnessed from 9:04 am (544 min) until 11:50 am
(710 min). The accumulated energy increases almost linearly
from 12:00 am (0 min) until 9:04 am, increases in step until

11:50 am, then increases almost linearly afterwards. The TEC
balance of Consumer1 decrease in steps from 12:00 am until
10:00 am (600 min), then a steeper decrease is witnessed until
about 11:57 am (717 min) and decrease in steps afterwards
(see Fig. 5c). Comparing the three plots (Fig. 5 (a,b,c)),
it is evident that as the consumer consumes electricity, its
TEC balance decreases in steps while the accumulated energy
increases almost linearly. The step increase in accumulated
load is because of the peak load witnessed at same time.
Consequently, the steeper decreases in TEC balance witnessed
between 10:00 am and 11:57 am in Fig. 5c is because of the
peak load consumption that took place from 9:04 am until 11:50
am as shown in Fig. 5a. Since there is no auction, the consumer
is unable to buy energy from the market prior to consumption
time. Token settlement takes place every hour and results in the
reduction of TEC witnessed in the form of step function which
becomes steeper during peak load. Also, Fig. 5c show a total
of 24 steps, which is the total number of time slots and the
number of times token settlement took place for the consumer
during the simulation.

Fig. 5: Consumer1 real time output data for reference scenario

Fig. 6 displays the plots of real time TEC balance of Con-
sumer1 at the six different microgrid scenarios. The blue plot is
the reference scenario discussed on the previous paragraph and
shown in Fig. 5c. The diagram shows that all plots demonstrate
the same trend as the reference scenario from 0 mins until 184
min. This is the time interval where the bid and ask prices of
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the consumers and prosumers respectively, have not reached
the market equilibrium price and hence, they all buy and sell
their energies to the utility. At 185 mins, the bids and asks
for 5P3C DS, 3P5C DS, 5P5C DS, and 5P5C MS reached
the market equilibrium and this resulted market clearing and
further deduction of TEC equivalent to the matched quantity
of energy from the account of the consumers. However, since
the energy bought is for a future time (307 - 1158 mins), the
consumer continues to pay for its energy consumption to the
utility hourly until 307 mins. This is evidence in the two step
decrease in TEC balance of the consumer for the four scenarios
from 185 - 307 mins. The TEC balance of the consumer is
almost constant from 307 mins until 1158 mins for the four
scenarios. This is because the consumer has previously bought
energy for this time and does not need to pay again during
hourly token settlement. The TEC balance of the consumer
decreased in steps for the four scenarios from 1158 mins
afterwards. This is because prosumers did not produce energy
at this time interval and therefore, the consumers bought their
energy from the utility for all the scenarios. The step decrease
is similar for the four scenarios as the consumer buys energy
at the same price from the utility for the four scenarios. The
bids and asks for the 5P5C MW scenario reached the market
equilibrium at 550 mins. This was due to the wide price range
which results in delayed time to reach market equilibrium. The
market clearing took place at this time (550 mins) and further
deductions of the TEC equivalent of the matched energy from
the account of the consumer. Because of the energy bought
during the market clearing, the consumer TEC balance for this
scenario is constant from 550 mins until 1158 mins. The TEC
balance of the consumer decreases in steps for this scenario
from 1158 mins afterwards. This step decrease is because the
consumer buys its electricity from the utility for this time
interval and thereby pays for its electricity hourly just like the
reference scenario. Consequently, there is likelihood of profit
for a closer bidding range for a consumer. It is also evident
from the plots that it is more profitable for the consumers to
trade with prosumers on a P2P level than with the utility.

Fig. 6: Consumer1 balance at different microgrid scenarios

Fig. 7 displays the plots of real time TEC balance of
Prosumer1 at the six different microgrid scenarios. The plots
follow the same trend of step decrease as the reference scenario

from 0 mins until 427 mins. This is because the prosumer
buys energy from the utility for all scenarios within this time
interval, thereby paying for its energy hourly. The hourly token
settlement results to step decrease of TEC balance within this
interval. The TEC balance of the prosumer for all the scenarios
increases in steps from 427 mins until 1154 mins. This step
increase is higher for the scenarios where there is auction than
the reference scenario. This is because the prosumer trades with
the consumers directly in these scenarios and makes higher
profit than trading with the utility. The TEC balance of the
prosumer show a similar decrease in steps for all the scenarios
from 1154 mins afterwards. This is because, the prosumer
consumes electricity from the utility within this time interval
and pays for its consumption hourly during token settlement.
Consequently, it is more profitable for a prosumer to trade with
a consumer on a P2P level than trading with the utility.

Fig. 7: Prosumer1 Balance at different microgrid scenarios

The unit used to measure the cost required for a particular
transaction computation in a BC network is gas [27]. The
transaction cost for deploying the P2P Energy SC is 19,896,454
gas against the gas limit of transaction in public Ethereum
network of 8,000,000 gas. This makes it practically impossible
to deploy the SC in the public BC network without increasing
the gas limit of the network. Furthermore, communicating the
consumption/production data to the BC network per minute
has a transaction cost of 67,369 gas. This is equivalent to
270.2 ETH if deployed on Ethereum public BC network, using
the prevailing exchange rate from [28]. Consequently, it is
economically unfeasible to use the model for local energy
trading on the popular public BC network - Ethereum network.
This calls for a consortium public BC network with a lower
transaction cost for energy trading.

V. CONCLUSION AND OUTLOOK

Within this paper, a product architecture, event sequence, al-
gorithms for automated energy trading in smart contracts; using
HEMS and SMGW functionalities of prosumers, consumers
and utilities; are presented. Simulations for multiple microgrid
configurations have verified the usability and the effectiveness
of the P2P energy market on the blockchain network. The key
findings are listed below.

• It is more profitable for prosumers and consumers to trade
electricity with each other than trading with the utility.
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• A BC operator(s) or consortium of authorities are neces-
sary to trade energy on a P2P level on a BC (updating SC,
adding new participants, transferring initial tokens).

• It is currently economically unfeasible to use public
Ethereum BC network to trade electricity due to its high
gas cost.

• Closer bidding range increases the likelihood of profit in
a P2P energy market.

In future research, intelligent bidding systems will be devel-
oped and a more complex market with hundreds of households
investigated. The functionalities of the SC will be split to
allow a practicable and economically feasible contract, that can
be run on public BC network with basic functionalities like
consensus mechanism, encryption and storage ON-chain and
others like market clearing off-chain. A forecast model will be
developed for predicting future consumed/produced energy for
a household. A Hardware-in-the-Loop laboratory environment
testing will be conducted before the final stage which will be
validating the results in a field test. A field test is planned with
assets from our project partner WIRCON within the German
SINTEG project “C/sells”.
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4 DLT as an enabling factor for local energy market

4.2 Hybrid blockchain based local energy market

Contribution
The paper [148] presented in this section is focused on solving the scalability, trans-
parency and high gas cost challenges that arise from using public blockchain networks
for LEM applications. An open-source hybrid framework was developed, a framework
that combines the on-chain features of blockchain with the side-chain features of TEE to
provide a reliable, scalable, reduced operation cost, resilient, highly secured, and tam-
per resistant LEM model architecture that upholds transparent transactions while still
conforming to GDPR [151]. The developed framework runs the market model inside a
TEE enclave and proves the integrity of the enclave at all times to show that it is trust-
worthy by sending attestation of the enclave quarter-hourly to the blockchain network.
A Merkle root hash encryption is used to safeguard the bids and offers in the blockchain
network by ensuring the consumers/prosumers are able to generate a Merkle root proof
to show that their bids/offers are part of bids used for the market clearing without see-
ing the bids/offers of other participants. By doing this, the framework complies with
GDPR requirements while proving to the participants that they are not cheated and that
their data were not falsified. Fig. 4.1 shows the architecture of the developed model
framework.
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Figure 4.1: Schematic of the developed hybrid blockchain architecture for LEM, after [148].
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A one-year economic analysis of the model framework was conducted to evaluate the
economic feasibility of the model. Furthermore, a one year simulation result of energy
exchange was received from [118] for varying number of prosumers/consumers trading in
the local community. The number of participants (prosumers and consumers) were varied
from 10 to 10,000. The cost of maintenance, operations, updates, and management of
the model were calculated for the period of one year. Then, with a transaction cost of
2 ct./kWh, the total profits of the LEM operator and the prosumers/consumers for the
period of one year were calculated for varying number of participants. The results of the
economic analysis show that the framework is always profitable to the consumers and
prosumers, notwithstanding the number of prosumer/consumers in the LEM. However,
with a charge of 2ct./kWh, the market is profitable to the LEM operator when the
number of participants is more than 500 members. Hence, for an LEM operator to make
profit from the model framework with less than 500 participants, it is either the charge
per kWh is increased or the LEM operator will have to provide more production devices
in the community to ensure that more trade takes place in the community, thereby
increasing their total profit.
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Blockchain-based local energy markets have been proposed in recent years to provide a market platform for local prosumers and
consumers to exchange their energy in a secured, transparent and tamper proof manner. However, there are still some challenges
regarding the scalability of blockchain to handle high computational models/algorithms/contracts as this may result in extension of
the block size of the blockchain network and very high gas costs. Also, there is still problem of transparency as regards General
Data Protection Regulation because, the full visibility of data in the blockchain may collide with privacy in some settings. This
paper presents a framework that combines the on-chain features of blockchain with trusted execution environments to develop a
transparent, tamper resistant, low operation cost, scalable and resilient hybrid model architecture for local electricity trading. The
model architecture was simulated in German community case scenarios for varying number of prosumers and consumers to show
its applicability. The simulation results show that the model was able to solve the scalability problem of blockchain for local energy
market application as the market model is run in a trusted environment where the integrity of the model can be verified by the
participants.

Index Terms—Blockchain, trusted execution environment, local energy market, market models, market platform.

I. INTRODUCTION

A. Motivation and Background

Local energy markets (LEMs) have been introduced in
recent years as a solution to the high grid congestion manage-
ment cost caused by variable renewable energy resources in
the power system grid [1], [2]. Hence, by ensuring the energy
is consumed closer to where it is produced, LEM provides
a market platform for trading locally produced energy at the
distribution grid level [3]. Thereby providing an opportunity
to utilize a bottom-up approach to solve the complex power
system problem of distributed generation [4], [5]. The LEM
market model usually implemented in the market platform is
used to furnish the market event sequence, trading format, and
matching process [6], [7]. An LEM market platform can be
either centralized, decentralized or distributed. A centralized
market platform is a platform that is based on a trusted third-
party that is responsible for hosting, updating, and maintaining
the market platform [8]. A decentralized market platform is
a type of platform that is made of different sub-platforms
responsible for data storage, update and record keeping in the
platform. A distributed market platform is a platform made
of synchronized nodes that utilize a distributed ledger for its
record keeping and consensus mechanism for writing data
into platform [8], [9]. In summary, for a centralized market
platform, an attack on a node of the platform will result in
complete failure of the whole platform. On the other hand,
for a decentralized market platform, an attack on a node will
result on the failure of some part of the platform. However,
for a distributed market platform, an attack on a single or even
several nodes will not affect the platform.

Manuscript received September 9, 2023; revised XX, 2023. Corresponding
author: G. C. Okwuibe (email: godwin.okwuibe@tum.de).

B. Introduction to Distributed Ledger Technology

Distributed ledger technology (DLT) is a variant of dis-
tributed computing that is used to validate, access, transcribe
and record transactions in a manner that it is transparent
[10], and easily accessible by each participating node spread
over different locations in the network and has the ability to
enforce consensus among the participating nodes [11], [12].
Data stored in a DLT network is also accessible to everyone
running the DLT client or through a block explorer. The
features of DLT include transparency, distributed consensus
[13], high security, immutability, pseudonymity [14], trust-
free, and decentralized storage [15]. The concept of blockchain
was introduced by Nakamoto in his paper titled ”Bitcoin: A
Peer-to-Peer Electronic Cash System” published in 2008 [16].
The paper presents a solution to double spending by proposing
electronic cash based on cryptographic signatures in a peer-to-
peer (P2P) network. The model propose a cryptographic linked
blocks data structure that utilize the proof-of-work consensus
mechanism [11]. A block contains transactions within the
network at a stipulated time and a reference of its predecessor
block in the form of hash [17]. This intrinsic features of
blockchain attracted different researchers to research on how
blockchain can be used for their field of study. Moreover,
this features also attracted researchers in the field of LEM
to investigate how blockchain could be used to develop the
LEM market platform.

C. Blockchain based LEM platform

After the introduction of smart contracts and the launch
of Ethereum blockchain project by Butterin in 2015 [18],
many researchers began to investigate on how blockchain
can be used in the energy sector. Ref. [19] proposed a de-
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centralized electricity transaction model based on blockchain
for exchanging digital certificate of power and expenditure.
A consortium blockchain was used by [20] in their work
to increase transaction security and privacy for localized
electricity trading among plug-in hybrid electric vehicles. Ref.
[21] proposed a model for peer-to-peer transactive microgrid
for exchanging electricity among prosumers that is based
on Ethereum blockchain model. This was also followed by
research on the application of blockchain for LEM as the
first notable blockcain based LEM project, the Brooklyn
microgrid was launched in 2016 [7]. Following this, numerous
research works have evolved introducing and describing how
blockchain can be used for LEM application. The major
drive for using blockchain for LEM application as discussed
by many researchers is usually the ability of blockchain to
provide a transparent and trustless platform to enable trading
of electricity at the local grid level without the need for a third
party. Ref. [22] proposed a framework for a blockchain based
doubled sided auction mechanism for P2P local electricity
trading market. A similar study by Ref. [23] investigated
the application of a blockchain-based LEM by using smart
contract to develop a merit order clearing mechanism imple-
ment in a private Ethereum network. Ref. [24] used the IBM
Hyperledger Fabric to implement their proposed strategies for
determining the trading preferences of prosumers participating
in local energy market.

Ref. [8] proposed a hierarchical blockchain-based local
electricity market framework for trading electricity in a mi-
crogrid. The concept of proof of energy as a modification
of proof of stake was proposed by Ref. [25] as a consensus
mechanism for trading energy in a P2P LEM. The proposed
model created added self-consumption, and further contributed
to reducing power losses in the local community. Ref. [26]
proposed a blockchain based solution for energy trading in a
local community based on the concept of ERC-1155 compliant
solution for use in an Ethereum blockchain network. The
proposed Ethereum prototype promised a reduced gas cost by
97% compared to the public Ethereum network. A blockchain
based decentralized local market was proposed by [27]. The
model was implemented using a Cosmos framework imple-
mented as a side-chain and used for implementation of the
developed market mechanism. To provide insight on the design
of the trading platform of a blockchain based LEM framework,
Ref. [28] proposed and described the general architecture and
elements needed to implement a blockchain-based LEM. The
seven functional layers architecture for designing a community
based LEM was proposed by [10]. The proposed layers were
evaluated of their applicability by comparing them to a case
study of the Brooklyn microgrid. Ref. [7] proposed the seven
market components for designing an efficient community
based LEM. The proposed components were also evaluated
using the Brooklyn microgrid as a reference.

The permissioned Hyperledger Fabric network was used by
Ref. [29] to proposed a framework for designing and evalu-
ating a realistic blockchain-based local energy markets. The
proposed model framework showed that changes in the data
model can affect the efficiency of the framework up to 90%.
ETradeChain which is a blockchain-based platform for local

energy trading was proposed by [30]. The platform is based
on Byzantine proof-of-stake consensus mechanism. Hence, the
coins (called Pcoin) used for transaction exchange is based
on energy generated by the participating prosumers. Ref.
[31] implemented a blockchain-based local energy market to
evaluate the impact of hardware and communication protocol
in such application. The model was based on Byzantine fault
tolerant blockcain network. The field test evaluation showed
that the model has lower/limited scalability (10 transaction per
second). The Ethereum blockchain network was used by Ref.
[32] to show the application of a community battery energy
storage system in a blockchain-enabled local energy market.
The results from the experiment show that the proposed model
is relatively expensive and the transactions are slow to execute.

Moreover, Ref. [33] proposed a system architecture for
implementing local energy markets in a blockchain infras-
tructure. The model was evaluated in a case study of the
Landau Microgrid. Ref. [34] demonstrated the implementation
a local energy market based on private Ethereum network in
37 households in Walenstadt, Switzerland. In the same way,
Ref. [35] demonstrated how blockchain can be used to enable
local prosumers to exchange energy in a secured manner. The
model was implemented by developing smart contracts used
for running the merit-order market clearing mechanism and
implementing it in the Allgäu microgrid. Notwithstanding the
research works already developed in the field of blockchain-
based LEM and few projects already conducted in this area,
blockchain is still not matured for application in LEM [36].
Zade et al. [37] compared a blockchain-based and a centralized
LEM using their derived basic LEM requirements such as
reliability, scalability, data security, tamper resistance, and
low operation cost. The findings of the research showed that
blockchain-based LEM is less reliable, has limited scalability,
difficult to implement, less stable, and does not fulfil the data
security requirements when compared to centralized LEM.
In terms of the operation cost, this depends on the type of
blockchain network. While it is significantly low in a private
blockchain network compared to a public blockchain, it is
also important to mention that the cost of running this private
blockchain network need to be considered before implemen-
tation and may need a third party maintenance. Also, with
the number of transactions expected to take place in an LEM,
scalability is important in LEMs to ensure that the market is
cleared within the market time slot without tampering with
the market results. Ref. [38] proposed a clustering model for
splitting LEM into different clusters to ensure that the market
is trackable in time while maintaining the integrity of the
market outcome. Table I summarizes the literature presented
highlighting clearly the advantages and challenges of each
proposed model.

D. Contribution and organization

The evolution of blockchain has lead to different studies
proposing the use of blockchain for LEM trading. However,
the limited reliability, scalability, difficulty in implementation,
less stability, and inability to fulfil data security requirements
of blockchain has lead to low adoption of blockchain for
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TABLE I: Summary of several proposed blockchain-based LEM models with their characteristics.
S/N Reference Blockchain platform/major characteristics Advantages Challenges

1 [7] Fully blockchain-based, Ethereum private blockchain Secured and transparent platform, Data is open to all participants,
network, proof-of-work consensus mechanism, distributed consensus platform. scalability challenges,

and double auction market mechanism. high gas cost and high operating cost.
2 [22] Fully blockchain-based, Ethereum private blockchain Secured and transparent platform, Data is open to all participants,

network, proof-of-authority consensus mechanism, relatively low operating cost scalability challenges, high gas
and double auction market mechanism. cost.

3 [23] Fully blockchain-based, Ethereum private blockchain Secured and transparent platform, Data is open to all participants,
network and two step merit-order scalability challenges

market mechanism.
4 [24] Fully blockchain-based, IBM Hyperledger Fabric Secured and Lack of transparency hinder

network, permissioned platform and confidential transactions transaction verification and
peer-to-peer strategies. scalability challenges.

5 [8] Hierarchical blockchain-based Secured and transparent, Higher energy cost,
framework. Not fully scalable

6 [25] Fully blockchain-based network, Increase self consumption limited decision
proof-of-energy (similar to making contribution

proof-of-stake) consensus mechanism. by participants, not scalable.
7 [26] Ethereum based prototype, Reduced gas, limited scalability

ERC-1155 compliant solution. increased transparency
8 [27] Cosmos side-chain, less hardware requirement limited decision making

proof-of-stake (POS) consensus mechanism. contribution by participants, not
scalable, require more memory.

9 [29] Fully blockchain-based, Hyperledger Fabric Secured and Lack of transparency hinder
network, permissioned platform and confidential transactions transaction verification and

closed-order book auction scalability challenges.
10 [30] Decentralized P2P network, Secured and scalability challenges

Byzantine POS consensus low computation overhead
double auction mechanism

11 [31] Fully blockchain-based, Tendermint protocol Secured transaction High computation data,
Byzantine Fault Tolerance, scalability challenges.

POS consensus mechanism, Peer-to-peer LEM
12 [32] Ethereum blockchain network, Secured transaction Relatively expensive,

peer-to-peer trading strategy scalability challenges.

LEM application. Hence, this work is aiming to determine
the required conditions for implementing an economically
feasible blockchain based LEM architecture model. We pro-
pose a hybrid blockchain based LEM model architecture by
leveraging the features and value propositions of trusted exe-
cution environment (TEE), and using them to create a model
solution to the enumerated limitations of blockchain for LEM
application. The proposed model was verified of its application
by simulating it in a German community case scenario of more
10,000 consumers and prosumers and further evaluated of its
suitability for LEM application by performing an economic
analysis of the use case scenario. Our proposed model is open-
source and available at [39]. The main contributions of the
paper can be summarized as follows:

• We propose a hybrid blockchain based architecture model
for LEM.

• The proposed framework proves to be highly secured and
scalable while maintaining privacy requirements of an
LEM.

• Simulating the proposed model for a German case sce-
nario to verify its applicability with more than 10,000
prosumers.

• Performing an economic analysis of the proposed model
to evaluate its economic feasibility and the necessary
conditions required for this.

The remaining sections of this work are structured as
follows. The proposed LEM architecture model is described in
Section II. The model is verified and evaluated in Sections III

and IV, respectively. Finally, Section V concludes the paper
and proposes how the work can be further extended in future.

II. PROPOSED ARCHITECTURE DESIGN OF A HYBRID
BLOCKCHAIN-BASED LEM

In this Section, the proposed hybrid blockchain-based LEM
is presented. In order to provide a highly secured, tamper-
proof, transparent and a trusted LEM model that satisfies
the LEM participants’ requirements as described in [40] and
[37], and still compliant with the General Data Protection
Regulation (GDPR), we propose a model that combines on-
chain mechanism and side-chain Trusted Execution Environ-
ment (TEE) for our LEM platform. Using only blockchain
for deploying the LEM model to provide tamper-proof and
secured data is gas intensive and will require extension of
the block size of the public blockchain in most cases [22],
[37]. Also, public blockchain is open and therefore data stored
on the blockchain is open to everyone willing to see it,
consequently, it is difficult to build it in such a way that
it has no issue for privacy protection especially with regard
to GDPR. Consequently, the TEE is considered important
because, it will provide a secured environment for running the
LEM model in a secured and tamper-proof manner while being
compliant with GDPR. TEE provides a hardware encrypted
environment for executing code and protecting it from external
attacks, and even prevents the system administrator and the
operating system from accessing sensible data. In general, a
TEE provides confidential code execution and can deliver a
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proof that it has not been tampered with. It can also handle
authentication with cryptographic signatures. Finally, remote
attestation can proof to a remote third party what code is
executed in a TEE making it most suitable and interesting
to use for LEM application [41], [42], [43].

A. General architecture description

The proposed architecture of the proposed hybrid
blockchain-based LEM model platform is presented in Fig. 1.
The framework is classified into four basic components namely
prosumer side components, on-chain components, side-chain
components, and LEM operator. The prosumer side compo-
nents are the user application (App) and bidding agent. The
user App is used by the consumer/prosumer to communicate
their trading preferences and verify bids/offers, tampering of
market mechanism and market results. The bidding agent is
a software code used to decide the bidding/offering price and
energy quantity at every market time step. The development
and working of the bidding agent is presented in [44]. The
on-chain component used is the Integritee parachain which
is a blockchain network responsible for storing the Merkle
root hash, verifying the remote attestation, and inserting the
attestation data into its public registry. The Integritee parachain
blockchain network is a second-layer blockchain network
built on Polkadot relay chain which enables transactions to
be performed in parallel [45], [46]. Polkadot relay chain
allows different blockchain networks to run on them thereby
increasing the scalability and flexibility of the blockchain
network [45].

The side-chain components are the enclave, chain relay
and encrypted storage. The enclave contains all the code that
needs the guarantees of the TEE such as confidentiality and
integrity, these include the enclave state transition function
(STF), the attestation service handler and the light client.
The STF contains all the business logic specific code. The
most important parts in this use case are the LEM clearing
mechanism, the Merkle proof generation component, and the
SHA256 library which the Merkle proof component uses.

The attestation service handler client is responsible for
formulating the attestation quote and communicating it with
Intel attestation service (Intel IAS) to verify that the integrity
of the TEE is not tampered with and that the TEE is genuine,
secured and running the expected code. The Intel IAS is
the service provided by Intel’s Software Guard Extensions
(SGX) in order to guarantee integrity, confidentiality and
security of Intel architecture from malicious software [43].
Chain relay is responsible for importing new blocks from
the Integritee parachain. The light client is used to read the
imported data to verify that the Merkle root was published on
the blockchain network. Encrypted storage is used for storing
the bids/offers and the market results. The LEM operator
is responsible for developing the market matching algorithm
that runs on the TEE enclave. The remote procedure call
(RPC) is the software communication used for this design
which allows a programme to use it to request a service from
another programme located on another computer on a network
without the need to understand the details of the network

[47]. In order to better describe the working of the model, we
explain the process of verification and attestation of the model
integrity as a use case scenario using a sequence diagram. The
verification/attestation process is classified as verification of
bids/offers, attestation of market mechanism/TEE enclave and
verification of results. These verification/attestation processes
are sequentially described in the following subsections.

B. Hash verification process - bid/offer verification

This process provides opportunity for a consumer/prosumer
participating in the LEM to verify if their bid/offer is part of
the bids/offers used for market clearing of the LEM within a
predefined previous market slot. Fig 2 displays the sequence
diagram for the bids/offers verification process. The actors are
the consumers/prosumers, TEE and the blockchain network,
which is the public Integritee parachain in this case. The
bidding agent and user application are used to represent the
consumers/prosumers in the network ecosystem. The con-
sumer/prosumer bidding agent creates the bids/offers (orders)
for a consumer/prosumer at a particular time slot. The order
contains user identification, market time slot, bidding/offering
energy quantity, price, and type. The order type is either bid
or offer which is used to show if the consumer/prosumer is
buying or selling the proposed quantity of energy, respectively.
All consumers/prosumers post their orders using transport
layer security (TLS) communication method through a secure
websocket (WSS). The TLS protocol facilitates an encrypted
communication channel and thus its certificate of the TEE
contains the TEE’s unique public key. So the client application
can check that this key matches the one that the TEE registered
on the blockchain to verify that it is talking to a genuine TEE.
The orders are then stored in the encrypted storage database.
At the end of bidding/offering for each time slot, individual
consumer/prosumer order is used to generate a hash called
leaf hash by passing it through the SHA256 function. The
leaf hashes through the process of Merkle root generation are
used to generate a single hash called the root hash. The root
hash for the time slot is then stored on the blockchain network.
This root hash can be seen by everyone since the blockchain is
public, however, cannot be interpreted or translated by humans
which implies that it is completely GDPR compliant.

The consumer/prosumer at any time after the end of bid-
ding/offering may wish to verify if their bid/offer was part
of the bids/offers used for market clearing at a defined time
slot. This can be done by the consumer/prosumer sending a
bid/offer verification request for a defined previous time slot to
the TEE enclave using their user application. The RPC request
is sent via the TLS communication protocol. Hence, it is
encrypted and secured from external attacks. The orders of the
specified previous time slot is retrieved from the database and
passed through SHA256 function to generate a leaf hash for
the individual consumers/prosumers orders. The leaf hashes
are then sent to the consumer/prosumer use application that
made the request through TLS communication protocol. The
first stage verification is carried by the user application client
by generating the hash of the consumer/prosumer order at
the defined time slot and comparing it with the received
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Fig. 1: Proposed hybrid blockchain-based LEM model architecture.

leaf hashes to know if its part of the hashes. If this is
successful, the user application client will request the root
hash of the orders at the defined time slot from the Integritee
parachain blockchain network. The application client then uses
the received leaf hashes to construct a Merkle root hash by
itself and then compare the constructed root hash with the root
hash it received from the blockchain network. If they are the
same, this is evidence that the consumer/prosumer bid/offer
is part of the bid/offer used for market clearing. In this way,
the consumer receives a confirmation that they are part of the
trade without seeing the orders from other participants.

C. Attestation of market mechanism/TEE enclave

Fig. 3 displays the sequence flow of the attestation of market
mechanism and TEE enclave. Step I describes the sequence
of matching algorithm development and storage in the open
source environment, and TEE enclave. In Step II, the user
verifies the stored mechanism and attest that the TEE enclave
has not being tampered with. The LEM operator is responsible
for developing the market matching algorithm. The algorithm

is uploaded to an open source code hosting platform (i.e.
GitHub) and made open to the LEM participants. The market
clearing mechanism, and its configuration is compiled with the
rest of the enclave code by GitHub into an enclave binary and
deployed to the TEE enclave. Upon start-up of the enclave, it
takes a measurement of itself, which is essentially the hash of
the business-logic, the enclave code and other security related
details, and publishes this via the remote attestation on the
Integritee Parachain. The time interval for performing remote
attestation is usually set before starting the enclave.

The attestation is performed by Intel IAS. The attestation
handler formulates a so-called enclave quote. The enclave
quote is data about the enclave that contains the TEE’s unique
identifier, security related hardware context, and hash of the
enclave binary. This data will be sent to Intel along with a
remote attestation request. Intel verifies the enclave quote and
returns a remote attestation, which proves that the TEE is
genuine, patched against the latest security vulnerables, and
that the expected code is running inside the TEE. The result
of the TEE attestation is sent back to the Integrity parachain by
Intel IAS through the enclave, and it’s stored on the blockchain
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network.
At any time in the future, a consumer/prosumer may wish to

verify if the algorithm in the enclave has being tampered with
and/or if the mechanism running in the enclave is the same
with the mechanism published in the open source environment.
The consumer/prosumer can achieve this by using their user
App to request for the mrenclave published by Github for the
latest version of the code on the open source environment.
In the same way, the user App will request for the latest
verified attestation result from the Integritee parachain which
contains the enclave measurement. By comparing the two
enclave measurements and verifying that they are the same, the
user is assured that the TEE enclave is not tampered with and
that the clearing algorithm running in the enclave is the same
with the algorithm in the open source environment. Hence,
this process helps to prove to an LEM participants that the
integrity of the market mechanism in a transparent manner.

D. Hash verification process- results verification

The sequence diagram for the market results verification
process is shown in Fig 4. The results verification process is
similar to bids/offers verification process described in Section
II-B. At the end of the bidding/offering interval for a defined
time slot, the market is cleared for the time slot using the
accepted market clearing mechanism developed by the LEM

operator. The consumer/prosumer authenticates themselves
with a cryptograhic signature of their private key. The enclave
then sends the individual consumer/prosumer result to the
consumer/prosumer only if the signature matches their the
public key of their account. As the communication is done
with TLS, it is encrypted so no data is leaked. The results are
further stored in the encrypted storage in the the TEE enclave
so that they can be used at a future time. To create opportunity
for a consumers/prosumers to verify their results at a future
time, the individual consumers/prosumers results are used to
create leaf hashes by running it with the SHA256 function.
The resulting leaf hashes are used to generate a Merkle root
hash. The resulting Merkle root hash is sent to the blockchain
network.

The consumer/prosumer at any time after the end of clearing
may wish to verify if their result was part of the market
results for the particular time slot. This can be done by the
consumer/prosumer sending a result verification request for
the time slot to the TEE enclave via a TLS call with their
user application. The market results of the specified previous
time slot is retrieved from the database and passed through
SHA256 function to generate a leaf hash for the individual
consumers/prosumers results. The leaf hashes are then sent
to the consumer/prosumer application that made the request
through encrypted TLS channel. The first stage verification is
carried by the user application client by generating the hash
of the consumer/prosumer result at the defined time slot and
comparing it with the received leaf hashes to know if it’s part
of the hashes. If this process is carried out successful, the
user application client will request the root hash of the results
at the defined time slot from the blockchain network. The
application client then uses the received results leaf hashes
to construct a root hash by itself and then compare the
constructed root hash with the root hash it received from the
blockchain network. If they are the same, this is an evidence
that the consumer/prosumer result is part of the market results
for the defined time slot.

III. VERIFICATION OF PROPOSED ARCHITECTURE

The designed LEM architecture was verified by imple-
menting a use case scenario of energy exchange in a local
community where random bids/offers are posted by agents
to the market, the bids/offers are matched within the TEE
and results posted back to the agents. Each bid/offer contains
the bidding/offering price, the quantity of energy required and
time slot of the energy exchange. The market time step is 15-
minutes time slot. The TEE was developed within a docker
container environment with XMG FUSION 15 XFU15L19
PC using Ubuntu 22.10 operating system (OS). Since the
verification is architecture evaluation, the simulation was per-
formed for one time slot. The number of orders posted per
time slot was increased from 10 until 10,000 as follows;
10, 50, 100, 500, 1000, 2500, 5000, 7500, 10000. Each
simulation was repeated 10 times to ensure and the average
result calculated. The 10 simulation samples is to ensure easy
comparability with a previous model by Ref. [37] that com-
pared a centralized and distributed framework for local energy
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market. The matching mechanism used for the evaluation is
two-sided merit order clearing mechanism with discriminative

pricing [22]. The bidding strategy is based on random bidding
strategy within the feed-in tariff and retail price range. Hence,
consumers and prosumers agents are allowed to randomly bid
between the range of the feed-in tariff and retail electricity
price range to ensure that all the agents are not behaving the
same way. This is also to ensure that the economic benefits
from the market is the minimum economic benefits that can
be obtained.

For each simulation, the orders arrival time, market clearing
time, orders hashing time, result hashing time and result arrival
time were measured. The orders arrival time is the time taken
by the TEE to receive the orders from the agents. The market
clearing time is the time taken by the enclave to match bids and
offers using the market clearing mechanism. Orders hashing
time is the time it takes the enclave to create leaf hashes
of orders and use them to generate root hash and post the
root hash to the Integritee parachain. In the same way, results
hashing time is the taken by the enclave to create leaf hashes
of results and use them to generate root hash and post the
root hash to the Integritee parachain. Result arrival time is
the time the agents receive the market clearing results from
the enclave after clearing. The cost for posting hashes to the
blockcahin network was measured. To simulate the verification
and attestation process of the users, Postman desktop App was
used as user App to verify the the working of this process.

IV. RESULTS, EVALUATION AND DISCUSSION

A. Time complexity analysis

The clearing time of the developed architecture model
was compared with the clearing time of running the market
mechanism without a TEE. Table II displays the average
market clearing time (CT) for varying number of bids/offers in
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the Ubuntu OS environment, TEE, and full blockchain (BC)
network. The results of CT in blockchain is from [37] and is
used to compare CT for Ubuntu OS environment and TEE for
the same number of bids/offers. CI is the confidence interval
limit of the mean clearing time for the proposed model in TEE.
CI is given in Eqn. 1, where x̄ is the mean value of the CT, s
is the standard deviation and n is the number of observation
which is 10. The CI shows the range of values of the clearing
time if the experiment is repeated in the same scenario. The
ratio of mean fully blockchain based clearing time to the pro-
posed hybrid blockchain clearing time represented as RBT is
used to show how efficient the proposed model is compared to
using fully blockchain-based model. From Table II, increasing
the number of bids/offers increase the computation time of the
LEM for running the market in both Ubuntu OS, TEE, and BC.
Although it takes lesser computational time to clear the market
in the Ubuntu OS compared to the TEE for varying number of
bids/offers. However, both computation times are still within
milliseconds and therefore it is computationally efficient for
running the market in both systems compared to running the
clearing mechanism in BC. Running similar market clearing
mechanism in BC takes more than 500 times more time as
required to run the same mechanism in TEE for the same
number of bids/offers. The least value of RBT is 500 and
this shows that the efficiency of the proposed model in terms
of clearing time is far higher than a fully blockchain-based
model. In general, the model architecture was able to handle
a market volume of up to 10,000 members and the market
was cleared within 40 milliseconds. This shows that developed
architecture is computationally efficient as the market results
are computed in milliseconds which is far less than the 15-
minutes market time step of the LEM. However, running the
clearing mechanism with more than 500 bids/offers in BC
becomes computationally inefficient as the required time is
more than 15-minutes which is the market time slot.

CI = x̄± x̄
s√
n

(1)

Table III displays a comparison of the computational time
for hashing (HT), market clearing time (CT) and overall time
(OT) in the TEE environment for varying number of orders.
The hashing time is the sum of the time it takes to generate
the individual leaf hashes of the bids/offers, create the Merkle
root hash from the leaf hash and post the root hash in the
blockchain network. This value range from 0.096 ms with 10
prosumers and consumers to 112.98 ms with 10,000 prosumers
and consumers. If the hashing time is compared with the
clearing time (CT) in the TEE environment, it is obvious that
it takes more time to create the leaf hashes and the Merkle root
hash than clearing the market. The overall time for clearing the
market and posting the Merkle root hash is within milliseconds
even with a market of up to 10,000 orders. This makes the
proposed architecture model to be computationally efficient
for application in LEM.

Table IV displays the overall clearing time of the hybrid
framework with higher number of orders. The orders were ran-
domly generated and used to evaluate the maximum scalability
of the framework. Interpolating the results of Table IV shows

that the maximum number of bids/offers the framework could
match within 15 minutes market slot is 900000. This shows
that there is more room for application of the framework in a
large community and wide regional area/market.

B. Attestation and hash verification process

Fig. 5 displays the screen-shot of the Ubuntu terminal
that runs the market model test scenario and the Integritee
blockchain interface which is a parachain in the Polkadot
ecosystem. The highlighted hash is to show that the mar-
ket transaction of the Merkle root hash sent through the
TEE via command line of the Ubuntu terminal arrives the
blockchain network. Also, shown on the right side is the
weight of the transaction, that is 2218474000 weight. The
weight is the bench-marked amount of execution time of a
transaction in nanoseconds on a reference hardware. Similar
to gas in Ethereum, it is the basis of the actual transaction
cost. The model architecture was able to communicate with
the blockchain network for the storage of its transaction and
attestation data.

The architecture model is evaluated in two stages. In the
first stage, we evaluate the model based on infrastructure re-
quirements and quantifying factors for participating in an LEM
based on distributed ledger technologies already discussed in
references [40] and [37]. In the second stage, we perform an
economic analysis of the developed architecture to evaluate if
its economically promising to implement the model.

C. Evaluation based on LEM infrastructure requirements
and performance indicators

The developed model is evaluated based on its reliability,
scalability, data security, tamper resistance, operation cost and
transparency.

1) Reliability
In the context of LEM, reliability is defined as the availabil-

ity of the LEM model to the LEM participants and accurate
processing of the market data [37]. Throughout the simulation,
the different components of the model architecture were avail-
able and all data were processed accurately. The market results
were processed in milliseconds and hence it was very difficult
to recognize failure of the system interactions. The time slot
of energy trading is usually 15-minutes and hence the model
satisfies the reliability requirements for an LEM application.
Since only two transactions containing the root hashes of the
orders and market result are communicated to the blockchain
per market slot, the communication to the blockchain network
was also efficient and failure free.

2) Scalability
Scalability in the context of LEM is the ability of the

market model to maintain a certain quality notwithstanding
the increase in the volume of orders or transactions in the
market [48]. The volume of the orders were increased for
the simulation from 10 until 100,000 units, however, the
computation time remains within less than one second and the
results were very accurate. This shows that the quality of the
model architecture was maintained notwithstanding that the
model was stressed with too many orders. Since the market
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TABLE II: Comparison of market clearing time in Ubuntu OS and TEE environment.
S/N No. of participants [-] CT in TEE [ms] CI [ms] CT in Ubuntu [ms] CT in BC [s] [37] RBT [-]

1 10 0.107 0.107 ±0.0019 0.002 < 102 < 581392.3
2 20 0.116 0.116 ±0.0046 0.002 < 102 < 581392.3
3 50 0.172 0.172 ±0.0042 0.003 102 581392.3
4 100 0.216 0.216 ±0.0053 0.003 2.5X102 1157407.4
5 500 0.763 0.763 ±0.0187 0.006 1.2X103 1572739.2
6 1000 1.430 1.430 ±0.0701 0.008 - -
7 2500 5.870 5.870 ±0.2876 0.016 - -
8 5000 17.320 17.320 ±1.2728 0.029 - -
9 7500 25.920 25.920 ±1.9047 0.040 - -

10 10000 40.310 40.310 ±2.9623 0.045 - -

Fig. 5: Computational time for hashing and clearing.

TABLE III: Computational time for generating Merkle root
hash and market clearing.

S/N No. of participants [-] CT [ms] HT [ms] OT[ms]
1 10 0.107 0.096 0.203
2 20 0.116 0.659 0.775
3 50 0.172 1.288 1.46
4 100 0.216 1.484 1.700
5 500 0.763 6.337 7.100
6 1000 1.43 14.480 15.91
7 2500 5.87 34.58 40.450
8 5000 17.32 82.25 99.570
9 7500 25.92 91.87 117.79

10 10000 40.31 112.98 153.29

TABLE IV: Overall computational time in TEE with higher
number of orders.

S/N No. of participants [-] OT
1 50000 1.87s
2 100000 5.53s
3 500000 4 min 15.26s
4 1000000 17 min 49.65s

time is 15-minutes per time slot, the architecture is scalable
enough to maintain the quality of an LEM and ensure that
market of a certain time slot is cleared before the next time
slot. The scalability of the market framework is limited to
900000 orders. Beyond this, it is not certain that the market
can be cleared within the 15 minutes market slot. With the
systems capability of clearing market of hundreds of thousands
of orders in less than six second, millions of transactions
will be handled within minutes if not seconds. Furthermore,
comparing the maximum number of transaction (based on
number of units of orders) the hybrid model can handle which
is 900000 to the maximum number of transaction that can
be handled using a fully blockchain-based model which is
500, the proposed model is at least 1800 times more scalable
than a fully blockchain-based model. Thus 900000 orders is
the maximum limit of the proposed approach considering 15-
minutes market time slot.
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3) Data security
Data communicated to the TEE enclave is encrypted and

non-human readable. Also, only hashes that are non-human
readable are stored on the blockchain network. During verifica-
tion of bids/offers and market results by prosumers/consumers,
only hashes are communicated to prosumer/consumers App
for verification. This means that it is not possible for pro-
sumers/consumers to have access to the data of their fellow
prosumers/consumers within the LEM. Hence, the model ar-
chitecture is highly secure of personal and sensitive data of the
participants and also GDPR compliant. Also, model running
on the TEE cannot be falsified. At any instant, participants can
request to know the state of the TEE enclave to know if the
model running in the enclave has been tampered with. This is
when the Intel attestation service will provide the participants
with the attestation history of the enclave to show the integrity
of the models and that it was/was not tampered with. This is
a special feature of the proposed hybrid model which made
it to be highly secured and can attest integrity of the models
running inside it through another service provider (Intel IAS).

4) Tamper resistance
Tamper resistance is the ability of any developed model

architecture or infrastructure integrated to a network to ensure
that its data cannot be manipulated, it’s trustworthy and can
detect any attempt to manipulate its data [49]. The enclave
ensures that not even the system administrator or its operating
system can manipulate the data or business logic in the en-
clave. Furthermore, the verification of orders and results, and
attestation process is used to detect any attempt to manipulate
the input or output data to/from the enclave. This shows that
the developed architecture is tamper resistant and can prevent
any foreseeable attempt to manipulate its data or business
logic.

5) Operation cost
The prosumers and consumers pays no operation cost for

posting their bids and offers to the LEM. The major operating
costs identified are the cost of storing root hashes (for orders
and results) and attestation results on the blockchain.The root
hashes and the attestation results are stored every time slot.
Currently the cost of storing root hashes and attestation data
per time slot is less than 1 Euro cent. This shows that the
operating cost of the model architecture is low and very
feasible for large scale operation. Hence, the model is cost
efficient.

6) Transparency
A transparent market model provides opportunity for market

participants to verify that they are not unfairly treated in the
market. Even though the market data is encrypted due to
GDPR and hence, participants are not allowed to see the data
of other participants. The model still provides opportunity for
the participants to verify that they are not cheated in the market
and that their data is not manipulated.

Table V displays the summary comparison of the proposed
hybrid model to a centralized and blockchain-based (BC) LEM
framework. The comparison is based on the identified features
of blockchain-based LEM and centralized LEM proposed in
Refs. [22], [37] and [8]. In terms of reliability, the proposed
model is more reliable compared to the blockchain-based

model proposed in [22] and [37]. The blockchain-based LEM
models are less reliable as they are not always continuously
available because the blockchain node frequently loss connec-
tion to the network. This is not the same with the proposed
model in this work. The time it takes to complete a transction
is our proposed model is far less than the time it takes to
complete a transaction in [22], [37] and [8]. This is seen as
our model handles thousands of transactions in milliseconds
unlike the model in [22] and [37] that takes minutes to handle
hundreds of transactions. The hierarchical blockchain-based
LEM model proposed in [8] is more scalable compared to [22]
and [37]. However, our model is far more scalable compared
to the hierarchical model of [8] as it was able to handle up to
900000 transactions within 15 minutes. The scalability of the
blockchain-based models are far less than than as they cannot
handle such number of transactions. Also, at all times, the
integrity of the proposed model can be attested and this is not
so with other blockchain models. Hence, our proposed model
has distinguished features (Table V) which made it outstanding
for LEM application.

TABLE V: Comparison of the proposed hybrid framework
with different LEM frameworks.

S/N LEM Centralized BC Proposed Hybrid
requirement LEM LEM model

1 Time complexity ++ - +
2 Reliability ++ - ++
3 Scalability + – ++
4 Transparency – ++ +
5 Data security – ++ ++
6 Operation cost ++ – ++
7 Tamper resistant – ++ ++
8 Integrity – + ++
9 Participants privacy - – ++

10 Transaction cost ++ – ++

D. Economic analysis for operation of proposed architecture

The economic analysis was conducted using data from
previous work in order to analyze and show that the pro-
posed model is economically feasible. Table VI displays the
economic analysis of the developed hybrid blockchain based
LEM architecture for a period of one year. The number of
participants is varied from 10 to 10000 participants. The
traded energy (TE) is the quantity of energy traded between
consumers and prosumers for the one year period in a 15-
minute market time slot. The data for traded energy quantity is
taken from previous work of community simulation analysis of
local energy market conducted for a German case scenario in
Ref. [40]. From Ref. [40], LEM participants are combination
of households consumers, household prosumers, commercial
consumers, consumers prosumers and industrial prosumers.
The portfolios of the participants are only load, PV and load,
and few participants with PV, load and storage. In the LEM
simulation, energy not traded within the LEM is exchanged
with the upstream grid through a retailer who participates in
the LEM to buy/sell excess/deficit generation/demand from/to
the prosumers/consumers. Furthermore, only the function layer
of LEM as described in the smart grid architecture model
(SGAM) [50] is used for the simulation and therefore the
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grid constrained is not considered. The expected market yield
(EMY) is the expected prosumers and consumers gain for
trading in an LEM compared to trading with the upstream
grid. Eqn. (2) describes the expected marketed yield. rb is the
average kWh cost of buying electricity from the upstream grid.
For this work, rb is equal to 35 ct./kWh which is the average
cost of buying electricity from the upstream grid in Germany
for the year 2022. rs is the feed-in tariff price which is placed
at 11ct./kWh for this work. g is the local grid fee which is
assumed to be 4ct./kWh for the experiment. Total transactions
per annum (TT/a) is the total number of transactions that
occur in the LEM within the one year period. Market clearing
happens every 15 minute market time slot and is modelled as
a single transaction. Hence, a total of 35040 transactions is
expected to happen per year.

EMY = (rb − rs − g)× TE (2)

Total transaction cost per annum (TTC/a) is the total cost
spent by the LEM operator for handling the transactions
with the developed market architecture. It is basically the
cost of storing the Merkle root hashes of market result and
bids/offers in the Integritee blockchain network every market
time slot summed over one year. Storing the Merkle root
hash of bids/offer or market result in the Integritee blockchain
network takes 2218474000 Weight. A weight is the unit
used to measure the time it takes to validate a block for
a certain transaction in a Subrate-based blockchain network
[51]. The cryptocurrency of Integritee blockchain network is
TEER and it cost 0.285 milliTEER to publish the bids/offer or
market result in the blockchain network. As the time of this
publication, one TEER is equivalent to 0.42 USD. Hence, it
will cost a total of about 8.39C yearly to publish the Merkle
root hashes on the blockchain network.

Attestation cost per annum (AC/a) is the cost of storing
the quarter-hourly attestation result in the blockchain network
over a period of one year. Storing the attestation result in the
Integritee blockchain network takes 1388799000 Weight and
this amounts to 1.2 milliTEER. Hence, it will cost a total of
17.66 C per year to store the attestation result every quarter
hour. Cloud operation charge per annum (COC/a) is the cost of
maintaining the cloud space that is running the TEE and other
side chains of the market architecture for a period of one year.
The cost of cloud space increase with increasing in storage
space. Since, increasing the number of LEM participants will
significantly increase the transaction data and thereby require
more storage space. Increasing the number of participants
significantly increase the COC/a. Hence, for [10, 50], [100,
1000], [2500], and [5000, 10,000] ranges of numbers of
participants, the COC/a are 1200, 1800, 2400, and 3600 C,
respectively. The personnel and maintenance cost (P&MC )
is the personnel cost of maintaining the software and doing
upgrade when necessary. This is basically the cost of hiring a
software engineer to perform annual upgrade of the software
when necessary. This is placed at constant cost of 12000C per
annum. Total operation cost per annum (TOC/a) is the sum of
the COC/a, AC/a, P&MC and TTC/a.

LEM operator charge (OC*) is the proposed charge per
kWh the LEM operator will receive from prosumers and
consumers for clearing the market. This is assumed to be
2 cent/kWh. Total charge per annum is the total expected
charge the LEM operator will receive from the prosumers
and consumers for the period of one year. It is the product
of LEM OC*[C/kWH], and TE [kWh]. The operation profit
is the expected profit the LEM operator will make from this
market by using the architecture in a period of one year. It
is the difference between the total charge/a and the TOC/a.
The expected participants profit per annum (EPP/a) is the
expected total profit the prosumers and consumers will make
for trading in the LEM for a period of one year. It is the
difference between the EMY/a and the total charge/a. The
EPP/participant is the expected profit a prosumer or consumer
is expected to get for participating in the LEM using the model
architecture.

From Table VI, the proposed model architecture is profitable
for prosumers willing to participate in the market notwith-
standing their number of prosumers in the community. This
is because the EPP/a and EPP/participant is positive for all
number of participants in the community. The average annual
participant profit for using the model is between 226 to 328
C. For an LEM operator who is willing to be managing the
market and handling updates and maintenance of the model
architecture, the market is profitable for the market operator
only with a community of up to 1000 members upwards given
a transaction charge of 0.02 C/kWh. Hence, this happens to
be the lower limit of the proposed model as implementing
the market for less than 1000 members may not yield enough
economic benefits for the market operator. Therefore, with a
smaller community, the LEM operator may need to increase
the charges per kWh of energy traded in the community to be
able to make profit. On the other hand, adding more energy
devices such as batteries and CHP to the community will help
to increase the amount of traded energy in the community and
consequently, the LEM operators’ profit. Also, the major cost
of operating the model architecture is the P&MC which is the
personnel cost of running the upgrades and maintenance of the
software architecture. This cost can be removed in the first few
years of the project where the model is to be adopted until the
number of participants in the community has grown to the
extent that upgrade and expansion are needed. In summary,
increasing the number of participants increase the amount of
profit for the LEM operator.

The major variable that can have uncertainty value in Table
VI is the traded energy quantity [TE]. This value can vary
according to the size and type of community, the matching
mechanism and the bidding strategy of the individual bidding
agents. The matching mechanism used for the LEM simulation
is two-sided merit order clearing mechanism with discrimi-
native pricing. This is to ensure that the expected minimum
economic benefits is calculated from the LEM. Since the work
of [52] has established that peer-to-peer clearing mechanism
match more energy within the LEM and create more economic
benefits compared to merit order clearing mechanism. Hence,
using peer-to-peer clearing mechanism for the proposed model
will create more economic benefits for the LEM participants
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TABLE VI: Economic analysis of hybrid blockchain based LEM architecture. [TE = Traded energy, EMY = expected market
yield, TT/a = Total transactions per annum, TTC/a = Total Total transaction cost per annum, AC/a = Attestation cost per
annum, COC/a = Cloud operation charge per annum, P&MC = Personnel and maintenance cost, TOC/a = Total operation cost
per annum ]

S/N No. of participants TE [kWh] EMY [C] TT/a [-] TTC/a [C] AC/a [C] COC/a[C] P&MC [C] TOC/a[C]
1 10 18222.99 3644.59 35040 8.39 17.66 1200 12,000 13,226.05
2 20 32641.56 6528.38 35040 8.39 17.66 1200 12,000 13,226.05
3 50 81074.22 16214.84 35040 8.39 17.66 1200 12,000 13,226.05
4 100 129028.41 25805.68 35040 8.39 17.66 1800 12,000 13,826.05
5 500 645400.12 129080.02 35040 8.39 17.66 1800 12,000 13,826.05
6 1000 1458021.03 291604.21 35040 8.39 17.66 1800 12,000 13,826.05
7 2500 3139261.22 627852.24 35040 8.39 17.66 2400 12,000 14,426.05
8 5000 6386906.30 1277381.26 35040 8.39 17.66 3600 12,000 15,626.05
9 7500 9695822.85 1939164.57 35040 8.39 17.66 3600 12,000 15,626.05

10 10000 13371232.03 2674246.41 35040 8.39 17.66 3600 12,000 15,626.05

Table VI continues. [OC* = Operator charge, EPP/a = Expected participants profit per annum]
S/N No. of participants LEM OC*[C/kWh] Total charge/a [C] Operation profit [C] EPP/a [C] EPP/participant [C]

1 10 0.02 364.46 -12,861.59 3,280.14 328.01
2 20 0.02 652.83 -12,573.22 5,875.49 293.77
3 50 0.02 1621.48 -11,604.56 14,593.36 291.87
4 100 0.02 2580.57 -11,245.47 23,225.11 232.25
5 500 0.02 12908.00 -918.05 116,172.02 232.34
6 1000 0.02 29160.42 15,334.37 262,443.79 262.44
7 2500 0.02 62785.22 48,359.18 565,067.02 226.03
8 5000 0.02 127738.13 112,112.08 1,149,643.13 229.93
9 7500 0.02 193916.46 178,290.41 1,745,248.11 232.70
10 10000 0.02 267424.64 251,798.60 2,406,821.77 240.68

and consequently, it is expected that this will yield a positive
effect on Table VI. On the other hand, using Multiple-unit
Double Auction (MUDA) [53] would reduce the economic
benefits of the LEM as splitting the market into different
market during matching will result in reducing the traded en-
ergy. Furthermore, it is expected that the bidding strategy has
impact on economic outcome of the market. Using intelligent
bidding strategy creates more economic benefits in an LEM
compared to using random or zero-intelligent bidding strategy
[52]. This is because intelligent bidding strategy enable the
agent to bid strategically and thereby exchange more energy
within the LEM resulting in an increase in traded energy.
Hence, it is expected that using intelligent bidding strategy
will affect Table VI positively. In summary, the LEM clearing
mechanism and agents bidding strategy can affect the outcome
of the economic analysis obtained in Table VI.

V. CONCLUSION

In this paper, a hybrid blockchain based architecture was
proposed for building and operating a local energy market.
The model is based on combining the on-chain features of
blockchain such as secured hashed data storage and side-
chain features of trusted execution environment (TEE) such
as confidential code execution, proof of integrity, and au-
thentication with cryptographic signatures. Furthermore, the
developed model was verified of its applicability by simulating
it in German community case scenario for varying number
of prosumers/consumers from 10 to 10,000 members. The
evaluation of the simulation results using the LEM infras-
tructure requirements show that the architecture model is
computationally efficient, reliable, scalable, has low operation
cost, tamper resistant and provides highly secured environment

for LEM data. Also, the model was able to comply with GDPR
while providing opportunity for the participants to verify that
their data is not manipulated in a transparent manner. A one
year economic analysis of the proposed model was performed
and the results shows that the model will be beneficial for
both LEM operators that will be responsible for managing and
updating the model architecture and prosumer/consumers that
will be exchanging their energy using the model architecture.
However, the model may not be beneficial to the LEM
operators if the number of participants is low (below 500
members) coupled with a low (below 2.0 ct/kWh) charge per
kWh of energy traded.

In future work, the framework will be implemented in a
field test case of a German community where energy will be
exchanged within the platform. This will happen within the
scope of the project BEST. Also, further research will focus
on proposing the regulatory requirements for establishing an
LEM. Due to the high scalability of the proposed framework,
future work will focus on trading multi-energy system product
such as flexibility and ancillary services.

ACKNOWLEDGMENT

The authors would like to thank Integritee AG for discus-
sions on this project, and the German Federal Ministry for
Economic Affairs and Energy (BMWK) for sponsoring this
work under BEST project with grant number 03EI4017D.

REFERENCES

[1] C. Weinhardt, E. Mengelkamp, W. Cramer, S. Hambridge, A. Hobert,
E. Kremers, W. Otter, P. Pinson, V. Tiefenbeck, and M. Zade, “How far
along are local energy markets in the dach+ region?” in Proceedings
of the Tenth ACM International Conference on Future Energy Systems.
New York, NY, USA: ACM, 2019, pp. 544–549.



JOURNAL OF IET ENERGY SYSTEMS INTEGRATION, VOL. XX, NO. XX, MONTH 2023 13

[2] T. Capper, A. Gorbatcheva, M. A. Mustafa, M. Bahloul, J. M. Schwid-
tal, R. Chitchyan, M. Andoni, V. Robu, M. Montakhabi, I. J. Scott,
C. Francis, T. Mbavarira, J. M. Espana, and L. Kiesling, “Peer-to-peer,
community self-consumption, and transactive energy: A systematic liter-
ature review of local energy market models,” Renewable and Sustainable
Energy Reviews, vol. 162, p. 112403, 2022.

[3] S. Bjarghov, M. Loschenbrand, A. U. N. Ibn Saif, R. Alonso Pedrero,
C. Pfeiffer, S. K. Khadem, M. Rabelhofer, F. Revheim, and H. Farah-
mand, “Developments and challenges in local electricity markets: A
comprehensive review,” IEEE Access, vol. 9, pp. 58 910–58 943, 2021.

[4] A. S. Gazafroudi, M. Khorasany, R. Razzaghi, H. Laaksonen, and
M. Shafie-Khah, “Hierarchical approach for coordinating energy and
flexibility trading in local energy markets,” Applied Energy, vol. 302, p.
117575, 2021.

[5] G. C. Okwuibe, A. S. Gazafroudi, S. Hambridge, C. Dietrich,
A. Trbovich, M. Shafie-khah, P. Tzscheutschler, and T. Hamacher,
“Evaluation of hierarchical, multi-agent, community-based, local
energy markets based on key performance indicators,” Energies,
vol. 15, no. 10, 2022. [Online]. Available: https://www.mdpi.com/1996-
1073/15/10/3575

[6] C. Block, D. Neumann, and C. Weinhardt, “A market mechanism for
energy allocation in micro-chp grids,” in Proceedings of the 41st Annual
Hawaii International Conference on System Sciences (HICSS 2008),
2008, pp. 172–172.
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5 Conclusion & Outlook

This dissertation presents studies on how consumers and prosumers can become active
participants in the electricity market through engaging in an LEM, that enables the ex-
change of energy within their local community. Different LEM market models including
centralized, decentralized and distributed models were developed and their applicability
to local community evaluated using the derived key performance indicators.

5.1 Conclusion

The articles in this dissertation starts with a survey analysis of the quantifying factors
that make consumers and prosumers participate in an LEM based on DLT. Then, a
community simulation followed by key performance indicator based analysis to deter-
mine the necessary conditions for optimal performance of an LEM was conducted. The
development of the market models started with deriving the mathematical models and
the evaluation of an open-source hierarchical multi-agent local energy market framework
developed by Grid Singularity [120]. An advanced clustering market model for match-
ing prosumers and consumers in a centralized LEM based on the consumers/prosumers
preference vectors was developed. This was followed by a decentralized LEM model
for matching consumers and prosumers in a local community based on the consumer-
s/prosumers pool preferences. Different consumers/prosumers bidding/offering strate-
gies based on reinforcement learning approaches for LEM were developed and evaluated
with regards to their applicability in an LEM. A proof of concept blockchain-based fully
distributed LEM framework was developed and its applicability in a local community
evaluated. From the findings of the blockchain-based fully distributed LEM framework,
a hybrid blockchain-based LEM framework was developed; that combine the on-chain
features of blockchain network and side-chain features of trusted execution environments
(TEEs) to overcome the main limitations of a fully distributed LEM framework and sat-
isfy all the requirements of LEM platform. Based on the findings from the research
articles, the research questions presented in Section 1.2 are answered as follows.

1. What are the quantifying factors for participation on local electricity
markets based on distributed ledger technologies and the necessary con-
ditions for most beneficial LEM?

The articles presented in Publications 1 and 2 focus on answering this research
question. The survey result of Publication 1 shows that the major drive or quan-
tifying factors for local consumers/prosumers to participate in a blockchain-based
LEM are their willingness to support renewable energy integration, transparency,
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and trust offered by a blockchain network. Furthermore, the result of the simula-
tion based analysis of Publication 1 shows that the most beneficial LEM is obtained
in small and medium communities with prosumers to consumer ratios between 0.3
to 0.5, as this type of LEM creates more economic and technical benefits for lo-
cal consumers/prosumers compared to large communities. The key performance
indicator analysis of Publication 2 shows that increasing the share of the local
generation in the LEM creates high liquidity in the market, which in turn leads
to an increase in the share of market savings of local community. However, bid-
ding strategy affects the performance of an LEM compared to the share of the
local generation. Therefore, for a consumer/prosumer/community that wishes to
make more benefits from the LEM, their priority should be having an intelligent
bidding/offering agent(s).

2. Which market models and clearing mechanisms are most suitable for
local electricity markets?

The articles presented in Publications 3-5 focus on this research question. Ac-
cording to the studies from Publications 3-5, in a community where a lesser time
computational market model is required, a hierarchical LEM model as presented
in Publication 3 is most suitable. From this study, the multi-layer hierarchical
model is more profitable for household consumers and prosumers compared to a
single-layer hierarchical LEM model. However, the single-layer LEM is more bene-
ficial for industrial prosumers. By coordinating the market in a multi-layer levels,
the multi-layer LEM community model reduces the total energy exchange between
the LEM and upstream grid, increases the internal energy exchange within the
LEM, individual savings of the consumers/prosumers, self-consumption and share
of market savings of the local community as compared to the single-layer LEM
model. In a community where the computational time and consumers/prosumers
trading preference are less important, an advanced clustering P2P market model
as presented in Publication 4 is most suitable. The results from the simulations
show that using price preference as the criterion for clustering offers more tech-
nical (i.e. self sufficiency and self consumption) and economic benefits to energy
communities compared to other clustering scenarios tested in the model. In a com-
munity where the trading preference (i.e where a consumer/prosumer is allowed
to select their choice of electricity quality and trading partner) is more important,
a decentralized LEM platform based on grouped prosumers’ preferences as pre-
sented in Publication 5 is most suitable. The results from the article show that
the developed decentralized LEM model was able to satisfy the energy preferences
of the consumers and prosumers in the local community to an average of more
than 60%. In summary, suitability of a market model depends mainly on what
the local community desire. Different models provide different benefits to the local
participants.

3. Which trading strategies are most suitable for effective performance of
local electricity markets?
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The two articles presented in Publications 6 and 7 addresses this research question.
Publication 6 shows that intelligent bidding/offering strategy is more effective and
creates added self-sufficiency and share of market savings to the local consumers
compared to a random bidding/offering strategy. In Publication 7, different intel-
ligent bidding/offering strategies based on reinforcement learning were developed
and compared with respect to their ability to provide added technical and economic
benefits to the LEM. The developed reinforcement learning strategies were based
on Q-learning and SARSA. The results of the simulations reveal that the most
effective performance of LEM is obtained when the intelligent agents within the
local community make their bidding/offering with a common goal. This is known
as the shared reward strategy, which creates additional benefits for the community
compared to the classical strategies. The most optimal strategy obtained from the
results is the hybrid strategy which is a combination of the classical Q-learning
and SARSA strategies. In this strategy, while trying to create additional benefits
for the local community, it also weighs the individual benefits of the prosumer that
own the agent.

4. Is it economically reasonable to use blockchain for local energy trading?
If yes, what conditions must be fulfilled?

The articles presented in Publications 8-9 answer the research question. From
the proof of concept results of Publication 8, it is economically unreasonable to
use a public blockchain network for LEM with the current state of maturity of
blockchain. This is mainly because of the high gas cost of most public blockchain
network and blockchain is less scalable. It can be argued that a private blockchain
network can be used to replace public blockchain in the implementation of LEM
trading. However, this may destroy the major reason of using blockchain for LEM
trading which is to show transparency and trust. To provide a blockchain-based
LEM model that satisfies all the LEM requirements, a hybrid blockchain-based
LEM model architecture as presented in Publication 9 is most suitable. The basic
conditions required to achieve this type of model architecture is combining the
on-chain features of blockchain with the side-chain features of systems like TEE,
which solves the on-chain challenges or limitations of blockchain. For consumers
and prosumers participating in this kind of market, this model architecture is
profitable to them notwithstanding the number of participants. However, for LEM
operators that will be responsible for managing the market, this model architecture
is profitable to them only when the number of consumer and prosumers are more
than 500 in a market with low internal traded energy and with a charge of 2.0
ct./kWh. Low internal traded energy can result from a community where the local
prosumers own only load and PV devices, thereby trading energy with each other
during the day where there is sunlight and buying from the upstream grid when
there is no sunlight. Hence, with more devices like batteries and Combined Heat
and Power (CHP), there would be more trades in the LEM resulting in more profit
for the LEM operator.
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5.2 Outlook

Policy recommendation
The analysis [119] conducted in this dissertation shows that LEM can create valuable
financial support for prosumers that own PV devices after the fixed feed-in tariff under
German EEG expires. This means that they can be able to retain their electricity
production during the post-EEG time and, consequently, maintain their contribution to
the share of renewable energy within the electricity grid. Since LEM provides better
financial incentives for prosumers to invest in energy assets compared to government
sponsored tariffs, it can stand as the major force to increase small-scale renewable energy
generation. Thus LEM has a major role to play in reaching the decarbonization goal
within the electricity sector. For efficient running of LEM, I further stress that there is
need for a regulatory framework that is responsible for the sharing of taxes and levies
among consumers and prosumers within the LEM only, without involving consumers that
do not trade in the LEM. Additionally, the German regulatory body needs to extend
its framework to include requirements for creating LEMs and further define the roles
and responsibilities of all the actors required for effective and efficient performance of
an LEM.

Future research
LEM is still at its growing stage and therefore there is still a lot of opportunities to
further extend the studies in this area. It is recommended that further research should
focus on proposing regulations for implementing LEM at the regional and community
levels. If the appropriate regulations are approved and implemented, it will allow firms
and commercial ventures to start implementing various research works and models al-
ready developed in the field of LEM. Thus, there is need to define adequate hardware
components and metering devices that will be used for this type of time series mar-
ket that happen every 15-minutes. This area of regulation and the needed hardware
infrastructure has not been addressed in this dissertation.
The role of EV in reducing CO2 especially in the mobility sector cannot be over

emphasized. There is still need to look into the role of EV in LEM trading for effective
performance of the market. Hence, we recommend the proposition of market models
to enable inclusion of EV in LEM trading for future research. This include enabling
Grid to Vehicle (G2V), Vehicle to Vehicle (V2V) and Vehicle to Grid (V2G) trading
all in the same LEM where household prosumers and consumers exchange their energy.
Flexible EVs that participate in such kind of market can also take advantage of the
market by trading their flexibility in a strategic way. It is also important to further
develop bidding strategies for this kind of market as the prosumers and consumers need
to be more strategic in taking advantage of buying electricity from the EVs as well as
for their owners to sell flexibility effectively.
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