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Abstract. We study the stability with respect to a broad class of perturba-
tions of gapped ground-state phases of quantum spin systems defined by
frustration-free Hamiltonians. The core result of this work is a proof using
the Bravyi–Hastings–Michalakis (BHM) strategy that under a condition
of local topological quantum order (LTQO), the bulk gap is stable under
perturbations that decay at long distances faster than a stretched expo-
nential. Compared to previous work, we expand the class of frustration-
free quantum spin models that can be handled to include models with
more general boundary conditions, and models with discrete symmetry
breaking. Detailed estimates allow us to formulate sufficient conditions
for the validity of positive lower bounds for the gap that are uniform in
the system size and that are explicit to some degree. We provide a survey
of the BHM strategy following the approach of Michalakis and Zwolak,
with alterations introduced to accommodate more general than just pe-
riodic boundary conditions and more general lattices. We express the
fundamental condition known as LTQO by means of an indistinguisha-
bility radius, which we introduce. Using the uniform finite-volume results,
we then proceed to study the thermodynamic limit. We first study the
case of a unique limiting ground state and then also consider models with
spontaneous breaking of a discrete symmetry. In the latter case, LTQO
cannot hold for all local observables. However, for perturbations that pre-
serve the symmetry, we show stability of the gap and the structure of the
broken symmetry phases. We prove that the GNS Hamiltonian associated
with each pure state has a non-zero spectral gap above the ground state.

Based upon work supported by the National Science Foundation under DMS-1813149, and
the DFG under EXC-2111-390814868.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-021-01086-5&domain=pdf
http://orcid.org/0000-0002-7835-3776
http://orcid.org/0000-0002-2501-9651
http://orcid.org/0000-0002-1161-5663


394 B. Nachtergaele et al. Ann. Henri Poincaré
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1. Introduction

1.1. Stability of the Ground-State Gap

The main object of study in this paper is the gap above the ground state of
Hamiltonians of the form

H(s) = H + sV,

where H is a finite-range frustration-free quantum spin Hamiltonian with a gap
above its ground state, and V is a perturbation described by an interaction Φ of
which the decay at long distances is upper bounded by a stretched exponential.
The goal is to prove a lower bound for the ground-state gap for H(s) for
sufficiently small s under a set of conditions on H and its ground states. The
existence of a positive lower bound for |s| < s0, for some s0 > 0, uniformly
in the system size, is referred to as stability of the ground-state gap. Good
introductions to the mathematics of quantum spin systems can be found in
[20,76,101].

A gap above the ground state in the spectrum of a quantum many-body
Hamiltonian is a signature property that has important implications for the
physics of the system described by that Hamiltonian. For example, it is well
known (and proven) that it quite generally implies exponential decay of correla-
tions in the ground state [49,79]. In one dimension, a non-vanishing gap for the
infinite system implies the split property [71], which in turn plays a crucial role
in definition of a topological index for symmetry-protected topological phases
[86–88]. More generally, the presence of a spectral gap features as an assump-
tion in the theories classifying topological phases of matter [26,27,73,75,85,90]
and the derivation of the quantum Hall effect and similar properties [5–7,50].

To prove existence of a gap and, in particular, to obtain a positive
lower bound uniform in the system size, is in general a hard problem. It was
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shown in [29,31] that the question whether an arbitrary translation-invariant,
frustration-free, nearest-neighbor two-dimensional quantum spin model has a
gap above the ground state or not, is undecidable in the technical sense. That
result, however, has only limited bearing on what we can learn mathematically
for specific classes of systems. There are a number of examples in the literature
of such systems for which the question has been settled [1,11,16,43,44,64–
66,91,92]. For one-dimensional frustration-free systems arguments to prove a
gap have been extended even further [2,23,39,59,61,62,70,77,84,98]. The sta-
bility results of Bravyi, Hastings, and Michalakis significantly amplify the class
of models for which one can prove a spectral gap uniform in the system size
[21,22,72]. In this work, we employ the Bravyi–Hastings–Michalakis (BHM)
strategy to expand the class of models for which a gap can be proved even
further.

Early results on the stability of the ground-state gap have typically been
framed as perturbation theory for the ground states of quantum spin systems.
These were usually focused on a specific model or a limited class of models
[19,33,34,40,54,69,105]. The growing interest in topologically ordered ground
states, however, raised the general stability as a crucial question for their
possible experimental observability and utilization as quantum memory. To
address stability, it is important to look for an approach that allows for the
widest possible class of perturbations. Mathematically, the perturbations are
described by an interaction involving arbitrary k-body terms and that belongs
to a suitable Banach space, the norm of which expresses interaction strength
and the decay at long distances.

The Toric Code model [55] was the first test case for proving this type of
stability in the presence of topological order. It has a unique frustration-free
ground state on the infinite lattice Z

2 [4], but finite systems have multiple
ground states and the ground-state degeneracy is strongly dependent on the
boundary conditions. For clarity, we point out here that the Toric Code model
on the infinite lattice has other ground states that are not frustration-free and
do not satisfy LTQO. These ground states describe single anyons and can be
classified in superselection sectors corresponding to the anyon types present
in the model, and the vacuum state given by the frustration-free ground state
[24].

The first proof of stability for the Toric Code model is by Bravyi, Hast-
ings, and Michalakis [21]. Klich addressed the same question in [58]. Bravyi
and Hastings followed up with a streamlined proof in [22]. Their proof applies
to the class of frustration-free commuting Hamiltonians satisfying a natural
topological order condition. The term ‘commuting’ here refers to the fact that
all terms in the Hamiltonian commute, which holds for the general class of
quantum double models defined by Kitaev [55,56], and also for the Levin-Wen
models [67].

To be able to cover more physically realistic models, it was important to
get rid of the restriction to commuting Hamiltonians. This was achieved by
Michalakis and Zwolak in [72]. In that work, the condition of Local topological
quantum order (LTQO) is introduced in essentially the same form we will use
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it here. Other more restrictive notions of stability were investigated in [28,
45,97,99]. In the latter, the LTQO condition is either automatically satisfied
or expressed in a different way by the assumptions for the particular class of
systems under consideration. In this work, we will focus on the BHM strategy
and we refine the LTQO condition to obtain extensions of the stability results
in two directions, namely, (i) finite systems with other than periodic boundary
conditions and (ii) systems in which discrete symmetry breaking occurs.

A generalization we do not pursue in the this paper is the inclusion of
models with unbounded on-site Hamiltonians of the type considered in [41,105]
and unbounded interactions as in [37]. Fröhlich and Pizzo introduced a method
that handles a class of unbounded one-dimensional lattice Hamiltonians with
ease as long as the unperturbed ground state is unique and given by a product
state. The latter restriction excludes non-trivial order, topological or otherwise,
and, naturally, any version of an LTQO condition is automatically satisfied. In
[36], Del Vecchio, Fröhlich, Pizzo, and Rossi prove analyticity of the ground-
state energy density for translation-invariant chains of the same class.

There also has been recent interest in stability for fermionic lattice sys-
tems. We outlined a BHM strategy for lattice fermions in [82], on which we plan
to elaborate in a separate paper [80]. Hastings sketched a related approach for
perturbations of quasi-free fermion systems in [48], which was elaborated upon
by Koma in [60]. Another stability result for gapped quasi-free lattice fermion
systems was proved in [35]. The applicability of these results to topologically
ordered systems with gapless boundary modes remains unclear, and we will
address this issue in [80].

We also mention that the stability question for irreversible dynamics with
an exponentially clustering invariant state has been addressed in [30].

Statements about the thermodynamic limit are highly relevant for the
classification of gapped ground-state phases, including symmetry protected
topologically order phases. For example, the topological indices introduced in
[86–88] are for infinite gapped systems. In this work, we study infinite systems
as limits of sequences of finite systems. In this familiar approach, as an in-
termediate step, one studies a sequence of finite systems for which estimates
uniform in the system size can be derived. This is described in more detail
in the summary given in the next section. It is worth noting that this does
not cover all cases of interest since our ability to carry this out depends on
the existence of a uniformly positive gap for finite systems, which depends on
knowing suitable boundary conditions for which there are no gapless boundary
states that may obscure the existence of a bulk gap. Such boundary conditions
are not known or even known to exist in all cases. They may, in fact, not exist
[102]. For this reason, we will present a direct approach to the bulk gap in the
infinite system that bypasses this difficulty in a forthcoming paper [81].

1.2. The Bravyi–Hastings–Michalakis Strategy and Main Results

In this section, we will sketch the general approach to proving stability of
spectral gaps for quantum spin systems introduced by Bravyi, Hastings, and
Michalakis in [21], and streamlined and extended in [22,72], to which we will
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henceforth refer to as the BHM strategy. In this general overview, we do not
spell out the technical assumptions in detail, but focus instead on the overall
structure of the main arguments and the qualitative role of the basic assump-
tions. This will also allow us to point out where the new contributions of this
work are located in the overall scheme and we hope it will be helpful to the
reader. We believe that the BHM strategy combined with the results in this
paper and future enhancements will continue to extend its reach. Precise defi-
nitions, assumptions, and statements of the results follow in later sections, see
Sect. 1.3 for an outline.

The class of quantum spin models under consideration is defined on a
lattice Γ, which we assume is a metric space that satisfies a regularity (finite-
dimensionality) condition expressed by requiring that the cardinality of balls
does not grow faster than a power of their radius. Often one can take Γ = Z

ν

with the lattice distance, as is done in the work of Bravyi, Hastings, and
Michalakis (BHM) [21,22,72]. The generalization to general regular Γ is mostly
straightforward and of significance only when we consider various boundary
conditions and study the thermodynamic limit. BHM only considers finite
systems with periodic boundary conditions.

The Hamiltonians can be written in terms of two interactions, η and Φ,
that map each finite subset X ⊂ Γ to a self-adjoint observable, η(X) and
Φ(X), that is supported in X. Formally,

H(s) =
∑

X

η(X) + sΦ(X), (1.1)

where s ∈ R is the perturbation parameter. The unperturbed model,
H(0) defined by η alone, is assumed to be finite-range, frustration-free, and
with a gap in the spectrum above the ground state, uniformly in the system
size and subject to suitable boundary conditions. Stability, the property we
want to prove means that there exists s0 > 0, such that for all s with |s| < s0,
H(s) has a gap above its ground state that is bounded below uniformly in the
system-size. See Sect. 2.3 for a detailed discussion.

Stability does not hold in general, of course. The BHM strategy assumes
two essential conditions, one on the unperturbed model H(0), and one on the
perturbation Φ. Due to the frustration-freeness, the ground-state space of the
unperturbed model defined on a finite volume is given by the kernel of the
Hamiltonian. This kernel need not be one-dimensional and its dimension may
grow unbounded as a function of system size. A stable gap above the ground
state implies that the ground-state splitting by arbitrary perturbations is ‘non-
essential.’ In particular, the distinct ground states should not be distinguished
by any of the local perturbation terms since otherwise their energies would split
in first order of perturbation theory. A suitable indistinguishability assumption
is introduced by BHM which they refer to as topological order conditions. It
is called local topological quantum order (LTQO) in [72], which is the version
we also use. To deal with more general boundary conditions, we found it useful
to formulate it in terms of an indistinguishability radius (see Definition 2.1).

The second condition needed to prove stability is that Φ is sufficiently
short-range. Roughly speaking, we require that the interaction strength decays
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at least as fast as a stretched exponential at long distances. Mathematically,
this can be expressed by introducing a suitable Banach space of allowed in-
teractions Φ. There is some freedom to choose η and Φ given H(s), and this
freedom is useful for some arguments. In particular, we will make use of the
notion of anchored interaction, for which an interaction term is zero if its sup-
port is not a finite ball. See Sect. 2.5 and Appendix A for a detailed discussion
of norms on interactions and a proof that certain useful choices for the inter-
actions have comparable norms. We note here that in [72] the main stability
result is claimed to hold for models on the lattice Z

ν , under perturbations that
decay as a power law with an exponent greater than ν + 2. We have not been
able to verify this claim and explained in [83, Section VI.E.1, page 62] why it
may be erroneous.

The essence of the BHM strategy is a combination of something novel
with something classical. The classical element is to use relative boundedness
of a perturbation with respect to the unperturbed Hamiltonian to show that
gaps in the spectrum remain open for small coupling constants. In [21,22],
a relative norm bound is used. We use a relative form bound as in [72]. See
Sect. 3.2 for a discussion of gaps and relative form bounds. The new ingredient
is the quasi-local ‘quasi-adiabatic’ evolution, which is an s-dependent unitary
transformation U(s), introduced and pioneered by Hastings [46,47,51]. We
studied this evolution in detail in [12], where we called it the spectral flow. It
has since been used in many other interesting applications [5–10,13–15,25,50].
Its two main features are that it is quasi-local and that it exactly transforms
the ground-state spaces of H(s) into each other. Quasi-locality is expressed
with a Lieb–Robinson bound, which holds for the spectral flow in the same
way as for physical dynamics generated by a short-range interaction [68].

The BHM strategy is to first apply the quasi-adiabatic evolution to H(s)
and then prove a relative bound for the transformed Hamiltonian, which of
course has the same spectrum as H(s). Concretely, one defines Φ̃(x, n, s), for
each site x ∈ Γ, such that

U∗(s)H(s)U(s) = H(0) +
∑

x,n≥1

Φ̃(x, n, s) + R(s) + E(s)1l, (1.2)

in which R(s) is a remainder term that vanishes in the thermodynamic
limit, E(s) is a good approximation of the perturbed ground-state energy,
and Φ̃(x, n, s) has the following properties: (i) Φ̃(x, n, s) is supported in the
ball centered at x with radius n; (ii) ‖Φ̃(x, n, s)‖ decays at least fast as as a
stretched exponential; (iii) Φ̃(x, n, s) vanishes on the ground states of H(0).
These properties are proved in Sects. 4 and 5, in which we use of the assump-
tions and the quasi-locality properties of U(s). We refer to [83] for a detailed
analysis of the latter.

As shown in Sect. 3.3 (Theorem 3.8) the properties of Φ̃, and some tech-
nical assumptions we skip over here, imply that the perturbation it defines
satisfies a relative form bound with respect to H(0) of the form

∣∣∣∣∣∣

∑

x,n≥1

〈ψ, Φ̃(x, n, s)ψ〉

∣∣∣∣∣∣
≤ |s|β〈ψ,H(0)ψ〉, ψ ∈ H, (1.3)
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where β is a constant that depends on the unperturbed model, a suitable norm
of the perturbing interaction Φ, and on a choice of γ ∈ (0, γ0), where γ0 is the
gap of the unperturbed system. Specifically, β does not depend on the finite
volume and s. As we explain in Sect. 3, this implies stability of the gap in the
spectrum above the ground state.

A topic not discussed in the work of Bravyi, Hastings, and Michalakis
is the thermodynamic limit. In preparation for studying the thermodynamic
limit, we investigate sequences of finite systems for which the estimates leading
to the constant β in (1.3) and the vanishing of the remainder term R(s) in (1.2)
hold uniformly for a sequence of finite systems in Sect. 6. The thermodynamic
limit is then discussed in Sect. 7. We show that under assumptions for which
the thermodynamic limit of the dynamics exists, the ground states of the
finite-volume systems converge to a unique pure ground state of the infinite
system and this state also satisfies LTQO for |s| < s0 (Theorem 7.2). The lower
bounds of the finite systems yields a lower bound for the gap in spectrum of
the GNS Hamiltonian above the ground state. This is shown in Theorem 7.4
and Corollary 7.5. The unitary evolution U(s) leads to a strongly continuous
co-cycle of automorphisms relating the ground states at different values of s
in the interval (−s0, s0). These are the automorphisms that implement the
notion of automorphic equivalence introduced in [12] and that appear in the
definition of gapped ground-state phase [26,27,83].

The gap of the GNS Hamiltonian is often referred to as the bulk gap. It
is interesting to note that the applicability of our results includes cases where
the gap for finite systems with open boundary conditions tends to 0 as the
system size tends to infinity, while the gap with periodic boundary conditions
is bounded below uniformly. Standard examples are given by the chiral edge
modes in a quantum Hall system and the topologically protected gapless edge
states of quantum spin Hall systems [52]. The connection between a bulk gap
and continuous (gapless) edge spectrum has been rigorously established in the
single-particle context in [17]. An experiment on a physical two-dimensional
topological insulator with a bulk gap with gapless edge modes is described in
[93]. A two-dimensional spin toy model with gapless boundary excitations that
are eliminated by periodic boundary conditions was analyzed in [11].

In [81], we extend the stability result for the bulk gap further by proving
the stability of the gap for the GNS Hamiltonian directly, regardless of the
behavior of the spectrum with particular boundary conditions on an edge.

The last question we address in this paper is the situation in the presence
of discrete symmetries. Spontaneous symmetry breaking in the ground states
is a common phenomenon and it is compatible with a non-vanishing gap above
the ground states, as well as topological order (the Goldstone theorem shows
that continuous symmetry breaking, however, is not compatible with a gap
[63]). In Sect. 8, we discuss in some detail how the BHM strategy can be
adapted to the situation with discrete symmetry breaking of three types: (S1)
local symmetries such as spin flip, discrete spin rotation, time-reversal etc; (S2)
breaking of lattice translations to a subgroup leading to periodic ground states;
(S3) other lattice symmetries such as reflections and lattice rotations. In each
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of these cases we show that, if the unperturbed model has the symmetry and
it is spontaneously broken in the ground states, then the spectral gap and the
symmetry breaking are stable under perturbations that possess the symmetry.
This is the content of Theorem 8.3. Examples of breaking of each of the three
types of discrete symmetry can be found in one-dimensional models with a
finite set if pure matrix product ground states. In Sect. 8.5, we show how the
assumptions for the general results are satisfied for this class of examples.

Next, we give a synopsis of the remaining sections and the two appendices
of this paper, including a concise summary of the main results.

1.3. Outline of Main Results and Section Summaries

We give a concise outline of the statements of the main results and proof
strategies.

The first goal of this paper is to prove a quantitative, finite-volume spec-
tral gap stability result for Hamiltonians with the form

H(s) = H + sV.

As indicated above, we assume the unperturbed model H is defined by an
interaction that is finite range, uniformly bounded, frustration free, and has
gapped ground states which satisfy an LTQO condition. Additionally, we as-
sume the interaction defining V has terms which decay at least as fast as a
stretched exponential. Briefly, in Sects. 3–5 we prove spectral gap stability via
the BHM strategy. More precisely, in Sects. 4 and 5 we perform a decompo-
sition of a unitarily equivalent Hamiltonian which enables the application of
general perturbation theory results proven in Sect. 3. In essence, these sections
provide rigorous verification of the finite-volume Claim 3.6, see also the com-
ments which follow this claim. Next, in Sect. 6, we describe classes of models
for which this gap stability result is seen to be uniform along increasing and
absorbing sequences of finite volumes. For these models, there is a well-defined
notion of the thermodynamic limit, and in Sect. 7, we extend gap stability to
the corresponding GNS Hamiltonian. Notably, to accomplish this we first prove
that LTQO is itself a stable property. Finally, in Sect. 8, we turn our attention
to models with discrete symmetry breaking and observe that the traditional
notion of LTQO does not hold. However, we show that if the unperturbed
model satisfies a symmetry breaking LTQO condition and if the perturbation
respects the broken symmetry, then an analogue of the uniform gap stability
result holds and it extends to the GNS Hamiltonian as well.

We now turn to a more in-depth section summary.
Section 2: We introduce the main elements of the mathematical setting
for quantum spin systems, the notion of interaction, and the property of
frustration-freeness in Sect. 2.2. Given the ground-state space of a system,
we define the indistinguishability radius, which is used to express local
topological quantum order, and discuss some examples. We review F -
norms on spaces of interactions, Lieb–Robinson bounds, and basic quasi-
local estimates. In Sect. 2.3, we give a precise definition of stability of the
spectral gap. Section 2.4 reviews the Hastings generator and the spectral
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flow, which is the essential tool of the BHM strategy. In Sect. 2.5, we
discuss how general interactions can be rewritten in anchored form, which
is often convenient and we discuss how this affects their norms.
Section 3: In Sect. 3.2, we prove a general Level Repulsion Principle
(Lemma 3.1), which can also be seen as a variational principle for gaps.
The proof of spectral gap stability uses relative form bounds and we
explain in some detail how this proceeds in the remainder of Sect. 3.2.
Section 3.3 gives a relative form bound for a special class of interactions
(Theorem 3.8). This requires a regularity assumption on the lattice and
the notion of separating partitions to deal with general (non-commuting)
Hamiltonians (Definition 3.7).
Section 4: In Sect. 4, we begin to implement the basic BHM strategy.
Rather than study the spectrum of the perturbed Hamiltonian H(s) di-
rectly, we consider the transformed Hamiltonian αs(H(s)) where αs(·)
is the spectral flow automorphism. The main goal of Sect. 4 is to begin
a decomposition of αs(H(s)) into a form suitable for an application of
the general perturbation theory results proven in Sect. 3, namely The-
orem 3.4. After introductory preliminaries in Sect. 4.1, this main goal
is accomplished by proving two results: Proposition 4.2 in Sect. 4.2 and
Theorem 4.8 in Sect. 4.3.1. As detailed in Sect. 4.3.2, the bulk of the work
in this section involves an appropriate choice of local decompositions and
a familiarity with quasi-locality estimates; the foundations of which we
considered in [83].
Section 5: In Sect. 5, we complete the decomposition procedure we began
in Sect. 4. It is here that the structure of the unperturbed ground-state
space, and in particular, our assumptions on local topological quantum
order play a crucial role. The main content is a proof of Theorem 5.1
and Theorem 5.3. Theorem 5.1 establishes estimates on the remainder
terms that arise from the decomposition of the transformed Hamiltonian,
whereas Theorem 5.3 demonstrates that the remaining anchored inter-
action terms satisfy the necessary constraints so that the general form
bound estimate, see Theorem 3.8 in Sect. 3.3, is applicable.
Section 6: In Sect. 6, we set the stage for considerations of the thermody-
namic limit. In fact, we consider assumptions for models, defined on an
increasing and absorbing sequence of finite volumes, which are sufficiently
uniform so that the stability estimates hold uniformly in these finite vol-
umes. We characterize uniformity of the models with Definition 6.5 which
we refer to as perturbation models. We characterize uniformity of the es-
timates for these models by Assumption 6.7 which defines uniform per-
turbation models. The main results of this section are Theorem 6.8 and
Corollary 6.9 which both demonstrate forms of stability for uniform per-
turbation models. In Sect. 6.3.1, we discuss some common cases where one
can verify that our model assumptions hold, and in Sect. 6.3.2, we discuss
cases where these stability arguments simplify, for example, in situations
where the models of interest have periodic boundary conditions.
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Section 7: We consider spectral gap stability in the thermodynamic limit
for uniform perturbation models for which limiting dynamics exists and
the ground states are everywhere indistinguishable (see Definition 7.1).
We show in Theorem 7.2 and Corollary 7.3 that the perturbed models are
also everywhere indistinguishable, and that their ground states converge
to a unique, pure infinite volume ground state. We establish a criterion for
which finite volume ground-state indistinguishability implies a spectral
gap of the associated GNS Hamiltonian in Theorem 7.4 and Corollary 7.5.
Section 8: We introduce two indistinguishability radii that can be used
to prove stability for several cases of discrete symmetry breaking. For
uniform finite volume stability, it is sufficient to consider the G-symmetric
radius (see Definition 8.1). To recover the stability of the GNS gap, one
needs the stronger G-broken radius from Assumption 8.2. We discuss in
detail how to adjust the BHM strategy to prove stability for a model
with a broken gauge symmetry which is proved in Theorem 8.3, and
explain how to modify this argument to hold for cases of broken lattice
symmetries in Sect. 8.4. We conclude with Sect. 8.5 where we provide a
class of examples with symmetry broken MPS ground states for which
our methods apply.
Appendix A: In Appendix A, we provide some basic quasi-locality esti-
mates with particular emphasis on models defined by anchored interac-
tions. More general results of this type are described in detail in [83]. The
main result is Theorem A.2, see also Corollary A.3, which establishes a
bound in F -norm on a quasi-locally transformed anchored interaction.
Results of this specific type enter the analysis of Sect. 4.
Appendix B: We prove a lower bound on the indistinguishability radius
for models with a unique infinite volume MPS ground state in Sect. B.1.
We then consider models with N -distinct MPS ground states and show
that the conditions from Assumption 8.2 for stability in the case of sym-
metry breaking hold.

2. General Framework and Auxiliary Results

2.1. Introduction

Our aim in this paper is to present the current status of stability results for
quantum spin systems in considerable generality. This is not to say that all
results are stated under the most general conditions available to date. Attempt-
ing to do that would produce and unreadable text and require an excessive
amount of definitions and notations. Our emphasis is on general ideas that
work for large classes of systems and we illustrate the application of these
ideas by presenting detailed arguments that cover the known results and, in
fact, allow us to provide a number of generalizations and new results that can
be obtained using the same principles.

In support of this goal, we describe in this section the more or less stan-
dard mathematical framework for studying quantum spin systems and discuss
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the basic notions that feature in the stability properties of the spectral gap
above the ground state(s). Some definitions generalize what has appeared in
the literature so far and in some cases we found it useful to discuss relation-
ships between different ways basic properties may be expressed. This is a bit
more material than is strictly needed to read the rest of the paper, but we
hope some readers will find it useful.

2.2. Quantum Spin Systems

In this work, we study quantum spin models defined on a fairly general class
of discrete metric spaces (the ‘lattice’) in terms of a broad class of interactions
(which define the dynamics), a setting we now describe. While the interactions
defining both the initial system and the perturbation are static, the method
of choice to study the spectrum of these Hamiltonians relies on auxiliary dy-
namics generated by a time-dependent generator (the Hastings generator of
the so-called spectral flow). Therefore, we consider both time-independent and
time-dependent interactions in our setup.

We consider quantum spin systems defined on a countable metric space
(Γ, d) that is ν-regular, meaning there is a non-negative integer ν and constant
κ > 0 such that for any x ∈ Γ,

|bx(n)| ≤ κnν , (2.1)

where bx(n) = {y ∈ Γ : d(x, y) ≤ n}. If Γ is a regular lattice, (2.1) holds with
ν the lattice dimension. At every site x ∈ Γ, we associate a finite-dimensional
Hilbert space Hx = C

nx , and denote by B(Hx) the algebra of all bounded
linear operators. We use P0(Γ) to denote the set of all finite subsets of Γ,
and for each Λ ∈ P0(Γ) we define the state space and algebra of observables,
respectively, by

HΛ =
⊗

x∈Λ

Hx, AΛ :=
⊗

x∈Λ

B(Hx) = B(HΛ). (2.2)

Some results will in fact hold more generally for systems with infinite-dimensional
state spaces and we will point this out where applicable.

For any two finite subsets Λ0 ⊂ Λ, there is a natural embedding AΛ0 ↪→
AΛ via A 	→ A ⊗ 1lΛ\Λ0 for all A ∈ AΛ0 . With respect to this identification,
the algebra of local observables is defined by the inductive limit

Aloc
Γ =

⋃

X∈P0(Γ)

AX , (2.3)

and the C∗-algebra of quasi-local observables, denoted AΓ, is given by the norm
completion of Aloc

Γ .
A quantum spin model is defined in terms of an interaction Φ. In the

time-independent case, this is a map Φ : P0(Γ) → Aloc
Γ such that Φ(X)∗ =

Φ(X) ∈ AX . The local Hamiltonian associated to any Λ ∈ P0(Γ) is the sum
of all interaction terms supported on Λ, i.e.,

HΛ =
∑

X⊆Λ

Φ(X). (2.4)
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An interaction Φ is uniformly bounded if

sup
X∈P0(Γ)

‖Φ(X)‖ <∞, (2.5)

and finite range if there exists R > 0 such that Φ(X) = 0 for any finite X with
diam(X) > R. The smallest such R for which this holds is called the range of
the interaction. We will also consider interactions Φ that are frustration-free
and have local topological quantum order (LTQO). These are both properties on
the ground states associated with the finite volume Hamiltonians. We describe
these properties in detail as they will be key assumptions for the main results
of this work.

2.2.1. Frustration-Free Interactions. A frustration-free interaction is one where
the ground states of any finite volume Hamiltonian HΛ simultaneously min-
imize the energy of all interaction terms Φ(X), X ⊆ Λ. Said differently, up
to shifting each interaction term, Φ(X), by its ground-state energy, we say
that an interaction Φ : P0(Γ) → Aloc

Γ is frustration-free if the following two
properties hold:

i. Φ(X) ≥ 0 for all X ∈ P0(Γ).
ii. min spec(HΛ) = 0 for all Λ ∈ P0(Γ).

It follows immediately from the definition that the ground-state space of HΛ

is GΛ := ker(HΛ), and that ψ ∈ GΛ if and only if Φ(X)ψ = 0 for all X ⊆ Λ,
i.e.,

GΛ =
⋂

X⊆Λ

ker(Φ(X)). (2.6)

Let PΛ denote the orthogonal projection onto GΛ for any Λ ∈ P0(Γ). By
identifying HΛ0 	→ HΛ0 ⊗ 1lΛ\Λ0 ∈ AΛ for Λ0 ⊆ Λ, the above equation implies
that GΛ ⊆ GΛ0 . As a consequence, the associated ground-state projections
satisfy

PΛPΛ0 = PΛ0PΛ = PΛ. (2.7)
This ground-state projection property is a key feature of frustration-free in-
teractions and will frequently be used in our analysis.

2.2.2. Local Topological Quantum Order. A characteristic feature of topolog-
ical order is the degeneracy of the ground state accompanied by the property
that observables localized away from the boundary of the volume do not (or
barely) distinguish between different ground states. In the absence of a bound-
ary (for example finite volumes considered with periodic boundary conditions,
say a torus), observables with support that is small with respect to the size
of topologically non-trivial closed paths in the volume similarly cannot dis-
tinguish between different ground states. It is this feature that makes such
systems candidates to serve as robust quantum memory: you can store infor-
mation by selecting a particular ground state without the danger that local
perturbations will erase that information. The robustness of this property re-
quires that there is a gap in the spectrum above the ground state that does
not vanish with increasing system size. In fact, the local indistinguishability
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of the ground states itself implies that local perturbations to the Hamilton-
ian will not affect the ground-state energy, at least not up to high orders in
perturbation theory.

This motivates the notion of local topological quantum order (LTQO),
which describes this property of local indistinguishability of the ground states
in a quantitative way. LTQO is a central condition for the stability results we
present in this paper. The term LTQO was coined by Michalakis and Zwolak
in [72] but essentially the same property was first considered by Bravyi, Hast-
ings, and Michalakis in [21]. In these and other subsequent works, the authors
only consider Hamiltonians with periodic boundary conditions and define their
topological order condition specifically for this situation. There are situations
in which it is necessary or preferable to consider the ground-state problem for
models with other boundary conditions. Therefore, in this paper we introduce
a more general LTQO condition built on the notion of an indistinguishability
radius.

As before, for any finite volume Λ ∈ P0(Γ), we denote by PΛ the orthog-
onal projection onto the ground-state space of HΛ =

∑
X⊆Λ Φ(X), and denote

by ωΛ : AΛ → C the ground-state functional

ωΛ(A) = Tr[PΛA]/Tr[PΛ]. (2.8)

We define the indistinguishability radius of a site x ∈ Λ in terms of balls with
respect to Λ. To differentiate these from the balls in Γ, we use the notation
bΛ
x (n) = {y ∈ Λ : d(x, y) ≤ n}. Since bΛ

x (n) = bx(n) ∩ Λ, we necessarily have
|bΛ

x (n)| ≤ κnν for all Λ ∈ P0(Γ) and ν-regular Γ.

Definition 2.1. (Indistinguishability radius) Let Ω : R → [0,∞) be a non-
increasing function. The indistinguishability radius of HΛ at x ∈ Λ, denoted
rΩ
x (Λ) is the largest integer rΩ

x (Λ) ≤ diam(Λ) such that for all integers 0 ≤
k ≤ n ≤ rΩ

x (Λ) and all observables A ∈ AbΛx (k),

‖PbΛx (n)APbΛx (n) − ωΛ(A)PbΛx (n)‖ ≤ |bΛ
x (k)|‖A‖Ω(n− k). (2.9)

Loosely speaking, a system is said to have the LTQO property if, for fixed
x ∈ Γ, the indistinguishability radius rΩ

x (Λ)→∞ as the system size increases
and the distance of x to the boundary of Λ diverges.

Several comments are in order. First, the set of indistinguishability radii
is a property of the ground-state space of the model and they obviously de-
pend on the choice of the function Ω. There is no a priori obvious optimal
choice. Both Ω and the radii, rΩ

x , that appear in crucial estimates are derived
from computing a good upper bound on the left-hand side of (2.9) for the
system under consideration. Typically, one wants limn→∞ Ω(n) = 0. The rate
of this convergence is related to the vanishing dependence of local expecta-
tions on boundary conditions, see (2.9). Therefore, as a second comment, we
note that the indistinguishability radius rΩ

x (Λ) depends not only on the vol-
ume Λ but possibly also the choice of boundary conditions for the system.
Finally, (2.9) shows that given any A ∈ Abx(k) and k << n ≤ rΩ

x (Λ), the
matrix PbΛx (n)APbΛx (n) is approximately a multiple of PbΛx (n). This property,
generally referred to as LTQO, does not require that the model is defined by
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a frustration-free interaction. In the case of frustration-free models, however,
we have the following proposition, first proved in [72], which will be used when
we apply LTQO further on.

Proposition 2.2. Let HΛ be a frustration-free Hamiltonian Ω : R → [0, ∞) be
a non-increasing function, and x ∈ Λ. Then, for any 0 < k ≤ n ≤ rΩ

x (Λ) and
A ∈ AbΛx (k) one has

∣∣‖APbΛx (n)‖ − ‖APΛ‖
∣∣ ≤ ‖A‖

√
2|bΛ

x (k)|Ω(n− k). (2.10)

Proof. Since |a− b|2 ≤ |a2 − b2| for any a, b ≥ 0, first note that
∣∣‖APbΛx (n)‖ − ‖APΛ‖

∣∣2 ≤
∣∣‖APbΛx (n)‖2 − ‖APΛ‖2

∣∣

≤
∣∣‖PbΛx (n)A

∗APbΛx (n)‖ − ωΛ(A∗A)
∣∣+ |‖PΛA∗APΛ‖ − ωΛ(A∗A)| . (2.11)

The result follows from individually bounding the terms on the RHS of (2.11).
For any k ≤ n ≤ rΩ

x (Λ), (2.9) holds, and we can estimate the first term of
(2.11) as follows:
∣∣‖PbΛx (n)A

∗APbΛx (n)‖ − ωΛ(A∗A)
∣∣ =

∣∣‖PbΛx (n)A
∗APbΛx (n)‖ − ωΛ(A∗A)‖PbΛx (n)‖

∣∣

≤ ‖PbΛx (n)A
∗APbΛx (n) − ωΛ(A∗A)PbΛx (n)‖

≤ |bΛ
x (k)|‖A‖2Ω(n− k). (2.12)

For the second term of (2.11), using the same argument as above we have

|‖PΛA∗APΛ‖ − ωΛ(A∗A)| ≤ ‖PΛA∗APΛ − ωΛ(A∗A)PΛ‖.
To simplify notation, let r = rΩ

x (Λ). It follows from the frustration-free prop-
erty (2.7) that PΛ = PΛPbΛx (r) = PbΛx (r)PΛ, and therefore

‖PΛA∗APΛ − ω(A∗A)PΛ‖ ≤ ‖PbΛx (r)A
∗APbΛx (r) − ω(A∗A)PbΛx (r)‖

≤ |bx(k)|‖A‖2Ω(r − k), (2.13)

where we have again applied (2.9). Since Ω is non-increasing and n ≤ r, the
bound in (2.10) readily follows. �

To illustrate the notion of indistinguishability radius, we now give some
examples of systems where there is a natural choice for Ω and for which good
estimates of the indistinguishability radii can be given.

i. LTQO by itself does not imply non-trivial topological order. Clearly, a
system with a unique ground state that is not sensitive to boundary effects
will have large indistinguishability radii but there will be no topological
order of any kind. For example, consider a model with finite volume
Hamiltonians HΛ that have a unique ground state given by a product
vector

⊗
x∈Λ φx, where φx is independent of Λ. Then, one can take Ω ≡ 0

and rΩ
x (Λ) = diam(Λ).

ii. Frustration-free spin chains with a unique translation-invariant matrix
product ground state (e.g., the AKLT chain [2]) give an interesting class
of examples that includes interesting cases of symmetry-protected topo-
logical order [26,89,100]. As is shown in Appendix B, Ω can be taken to
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be of the form Ω(r) = Ce−r/ξ, where ξ can be taken to be the correlation
length of the MPS state. The indistinguishability radii depend on the
boundary conditions as follows. If Λ = [a, b] ⊂ Z is a finite interval with
open boundary conditions, one can show

rΩ
x (Λ) ≥ min(|x− a|, |b− x|)− c,

for a suitable constant c, which depends on the model but not on Λ. For
the model on a ring of N sites, i.e., Λ = Z/(NZ), with periodic or twisted
periodic boundary conditions, we have, with the same Ω,

rΩ
x (Λ) ≥ �N/2�.

iii. The Toric Code model, the simplest example of the quantum double
models introduced by Kitaev [55,57], was the system that inspired the
original LTQO-type conditions introduced in [21,22]. It can be defined
on a square lattice (Γ = Z

2), with qubits on each edge (Hx = C
2 for

all x in the edge lattice, which is also a square lattice). The interactions
are four-body terms associated with elementary squares (plaquettes) and
stars (four edges meeting in a site). These interaction terms mutually
commute, a situation often describe as a commuting Hamiltonian.

For this model, one can take Ω to be the step function of the form

Ω(r) =

{
2 if r ≤ 2
0 if r > 2

Again, precise estimates for the indistinguishability radii depend on the
choice of boundary conditions. For the model defined on a torus Λ =
Z

2/(N1Z×N2Z), one can show

rΩ
x (Λ) ≥ min(N1, N2)− 2.

In this case, the indistinguishability radius, which does not depend on
x, is essentially the code distance, meaning, the number of bits one has
to modify to make an unrecoverable error. The case of general quantum
double models was worked out in [32].

iv. Levin-Wen models [67] are another interesting class of two-dimensional
models with commuting Hamiltonians (in the sense of the previous ex-
ample). Their LTQO properties are similar to those of the Toric Code
model and have been analyzed in [94].
It is easy to see that if a model has two or more ground states that can

be distinguished by a local observable A, as is the case for the Ising model,
the indistinguishability radius rΩ

x (Λ) will be bounded or even vanish for any
choice of Ω that tends to zero at infinity. In Sect. 8 we will consider spectral
gap stability for models with discrete symmetry breaking. There we show that
by using a symmetry restricted notion of the indistinguishability radius, which
only requires (2.9) for observables that satisfy a symmetry condition, one can
also prove stability of the spectral gap in models with multiple (distinguish-
able) ground states.
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2.2.3. Decay of Interactions, Lieb–Robinson Bounds, and Quasi-locality. Lieb–
Robinson bounds for the Heisenberg dynamics of time (in)dependent interac-
tions will play a key role in these stability results. In this section, we briefly
review this topic. We first introduce the framework for time-independent in-
teractions, and then discuss time-dependent interactions. We conclude with a
statement of Lieb–Robinson bounds and a brief summary of quasi-local maps.

Lieb–Robinson bounds provide an upper bound for the speed of propaga-
tion of dynamically evolved observable through a quantum lattice system. This
estimate is closely tied to the locality of the interaction in question, which we
quantify using so-called F -functions. Given a countable metric space (Γ, d),
an F-function F : [0,∞) → (0,∞) is a non-increasing function that satisfies
the following two properties:

(i) F is uniformly-integrable, i.e.,

‖F‖ = sup
x∈Γ

∑

y∈Γ

F (d(x, y)) <∞. (2.14)

(ii) F has a finite convolution coefficient,

CF := sup
x, y∈Γ

∑

z∈Γ

F (d(x, z))F (d(z, y))
F (d(x, y))

<∞. (2.15)

For a ν-regular metric space (Γ, d), any function of the form

F (r) =
1

(1 + r)ζ
for ζ > ν + 1 (2.16)

is an F -function with CF ≤ 2ζ+1‖F‖. If Γ = Z
ν , one can take any ζ > ν. Given

an F -function F and any non-negative, non-decreasing, sub-additive function
g : [0,∞)→ [0,∞), i.e., g(r + s) ≤ g(r) + g(s), the function

Fg(r) = e−g(r)F (r) (2.17)

is also an F -function with ‖Fg‖ ≤ ‖F‖ and CFg
≤ CF . We refer to such

functions as weighted F -functions. The special case of

F (r) =
e−arθ

(1 + r)ζ
, with a > 0, 0 < θ ≤ 1, and ζ > ν + 1 (2.18)

are a particularly useful class of F -functions that will be frequently referenced
in this work.

We use F -functions to define decay classes of interactions in terms of
F -norms. Given an F -function F and an interaction Φ : P0(Γ)→ Aloc

Γ , we say
that Φ ∈ BF if its F -norm is finite, i.e.

‖Φ‖F := sup
x, y∈Γ

1
F (d(x, y))

∑

X∈P0(Γ)
x, y∈X

‖Φ(X)‖ <∞. (2.19)

For example, if Φ is a uniformly bounded, finite range interaction on a ν-
regular metric space, one can easily check ‖Φ‖F < ∞ for any exponentially
decaying F -function F (r) = e−ar(1 + r)−ζ with ζ > ν + 1 and a > 0.
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From (2.19), it is useful to observe that for any x, y ∈ Γ,
∑

X∈P0(Γ)
x, y∈X

‖Φ(X)‖ ≤ ‖Φ‖F F (d(x, y)), (2.20)

and in particular, ‖Φ(X)‖ ≤ ‖Φ‖F F (diam(X)) for any X ∈ P0(Γ) and Φ ∈
BF .

In certain contexts, it becomes natural to consider the decay of an in-
teraction term Φ(X) weighted against the size of its support, |X|. In this
situation, the m-th moment F -norm of the interaction is relevant. Given an
integer m ≥ 0 this is defined to be

‖Φ‖m,F = sup
x, y∈Γ

1
F (d(x, y))

∑

X∈P0(Γ)
x, y∈X

|X|m‖Φ(X)‖, (2.21)

and we write Φ ∈ Bm
F when ‖Φ‖m,F <∞. With this notation, it is clear that

‖Φ‖0,F = ‖Φ‖F .
In our analysis, we also need to consider decay classes of continuous time-

dependent interactions. Given an interval I ⊆ R (possibly infinite), we consider
time-dependent interactions Φ : P0(Γ)× I → Aloc

Γ for which
(i) Φ(X, t)∗ = Φ(X, t) ∈ AX for each t ∈ I and X ∈ P0(Γ).
(ii) Φ(X, t) is continuous in t for all X ∈ P0(Γ).

We note that there is no ambiguity in the notion of continuity above (i.e.,
weak, strong, norm) since dim(HX) < ∞ for every X ∈ P0(Γ). The local
Hamiltonians for a time-dependent interaction are defined analogously to the
time-independent case, specifically

HΛ(t) =
∑

X⊆Λ

Φ(X, t), for all Λ ∈ P0(Γ) and t ∈ I. (2.22)

Furthermore, given an F -function F , we say that a time-dependent interaction
Φ belongs to BF (I) if

‖Φ‖F (t) := sup
x, y∈Γ

1
F (d(x, y))

∑

X∈P0(Γ)
x, y∈X

‖Φ(X, t)‖ <∞ (2.23)

and is locally bounded as a function of t. In this case, t → ‖Φ‖F (t) is mea-
surable (as it is the supremum of a countable family of measurable functions)
and hence locally integrable. As in the time-independent case, (2.23) implies
that for all t ∈ I and x, y ∈ Γ,

∑

X∈P0(Γ)
x, y∈X

‖Φ(X, t)‖ ≤ ‖Φ‖F (t)F (d(x, y)). (2.24)

The m-th moment F -norm, ‖Φ‖m,F (t), and decay class Bm
F (I) for a time-

dependent interaction are defined analogously, i.e., by substituting ‖Φ(X, t)‖
for ‖Φ(X)‖ in (2.21).

One can use the F -norm of an interaction to bound the speed of propa-
gation of observables evolved under the Heisenberg dynamics. Given a finite
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volume Λ ∈ P0(Γ) and any t, s ∈ I, the Heisenberg dynamics τΛ
t,s : AΛ → AΛ

associated with a time-dependent interaction Φ is given by

τΛ
t,s(A) = UΛ(t, s)∗AUΛ(t, s) (2.25)

where UΛ(t, s) is the solution to

d

dt
UΛ(t, s) = −iHΛ(t)UΛ(t, s), UΛ(s, s) = 1l. (2.26)

In the case of a time-independent interaction, the Heisenberg dynamics is
defined analogously by replacing HΛ(t) with HΛ in (2.26) above.

In the situation that Φ ∈ BF (I) for an F -function F on (Γ, d), one can
prove the following well-known quasi-locality estimate on τΛ

t,s. A proof of this
result can be found, e.g., in [83].

Theorem 2.3. (Lieb–Robinson Bounds) Let Φ ∈ BF (I). Then for any Λ ∈
P0(Γ) and t, s ∈ I, the Heisenberg dynamics τΛ

t,s satisfies the following bound:
for any A ∈ AX and B ∈ AY with X ∩ Y = ∅ and X ∪ Y ⊆ Λ,

‖[τΛ
t,s(A), B]‖ ≤ 2‖A‖‖B‖

CF

(
e
2CF

∫ t+
t− ‖Φ‖F (r)dr − 1

) ∑

x∈X

∑

y∈Y

F (d(x, y)).

(2.27)
where t− = min{t, s} and t+ = max{t, s}.

In the case that Φ is time-independent, Theorem 2.3 holds with |t −
s|‖Φ‖F replacing the integral on the RHS of (2.27). For a weighted F -function
Fg(r) = e−g(r)F (r) and Φ ∈ BFg

(I) such that vΦ := 2CFg
supt∈I ‖Φ‖Fg

(t) <
∞, one can use the uniform integrability of F to show

‖[τΛ
t,s(A), B]‖ ≤ 2‖A‖‖B‖

CFg

|X|‖F‖evΦ|t−s|−g(d(X,Y )), (2.28)

which is decreasing in the distance between X and Y . Here, the quantity vΦ

is known as the Lieb–Robinson velocity, or, more appropriately, a bound on
it. It is important to note that the norm bounds in both (2.27) and (2.28) are
independent of the volume Λ. The uniformity of these bounds in the system
size plays a key role in our analysis.

We will also consider other maps with Lieb–Robinson type estimates,
which we refer to as quasi-local maps. For any Λ ∈ P0(Γ), we say that a map
KΛ : AΛ → AΛ is quasi-local if there is an integer q ≥ 0, and non-increasing
function G : [0,∞)→ (0,∞), with limx→∞ G(x) = 0, so that the norm bound

‖[KΛ(A), B]‖ ≤ ‖A‖‖B‖|X|qG(d(X,Y )), (2.29)

holds for any A ∈ AX and B ∈ AY with X, Y ⊂ Λ. As in the case of the
Heisenberg dynamics, it is often the case that there is a family of quasi-local
maps {KΛ : Λ ∈ P0(Γ)} for which q and G can be chosen uniform in Λ, a key
property in applications. An example of such a map is the spectral flow which
we introduce in 2.4. For a detailed, general analysis of quasi-local maps, see
[83, Section 5].
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2.3. Stability of the Spectral Gap

The main focus of this work is spectral gap stability of a quantum spin model
under local perturbations, for which the spectrum of the local Hamiltonian
is the set of all eigenvalues for any fixed finite volume Λ ∈ P0(Γ). We will
consider Hamiltonians that depend differentiably on a parameter s, and as
such the eigenvalues can be written as continuous functions of the parameter.
Without loss of generality, we assume the parameter range is s ∈ [0, 1]. Given
such a differentiable family of Hamiltonians, HΛ(s), we consider a partition of
the spectrum of HΛ(s) into two disjoint sets ΣΛ

1 (s) and ΣΛ
2 (s) of the form

ΣΛ
1 (s) = spec(HΛ(s)) ∩ I(s), ΣΛ

2 (s) = spec(HΛ(s))\ΣΛ
1 (s), (2.30)

where I(s) ⊂ R is a closed interval with end points that depend smoothly on
s.

As mentioned above, it is well known from perturbation theory (see [53,
Section 2.1]) that the eigenvalues of the Hermitian matrix HΛ(s) are given
by a family of continuous functions {λΛ

i (·) | i = 1, . . . ,dim(HΛ)} for which
λΛ

1 (s) ≤ λΛ
2 (s) ≤ · · · , for all s ∈ [0, 1]. We are mainly interested the behavior

of the gap above the ground state in spec(HΛ(s)), which we define as follows.
Choosing the partition of the form (2.30) given by

ΣΛ
1 (s) =

{
λΛ

i (s) ∈ spec(HΛ(s)) : λΛ
i (0) = λΛ

1 (0)
}

ΣΛ
2 (s) =

{
λΛ

i (s) ∈ spec(HΛ(s)) : λΛ
i (0) > λΛ

1 (0)
}

,
(2.31)

we define the ground-state gap, gap(HΛ(s)) by:

gap(HΛ(s)) = dist(ΣΛ
1 (s), ΣΛ

2 (s)), (2.32)

where dist(X,Y ) = inf{|x − y| : x ∈ X, y ∈ Y } for any two non-empty
sets X, Y ⊂ R. In the cases of particular interest to us, HΛ(0) is a finite-
volume Hamiltonian of a frustration-free interaction, which by definition has
λ1(0) = inf specHΛ(0) = 0 and hence Σ1(0) = {0}. From the continuity of the
eigenvalues, it is clear that for any fixed Λ and 0 < γ < gap(HΛ),

sΛ
γ := sup{s′ ∈ [0, 1] : gap(HΛ(s)) ≥ γ for all 0 ≤ s ≤ s′} > 0. (2.33)

Our goal will be to obtain a useful lower bound for sΛ
γ . Without loss of gen-

erality we may assume that sΛ
γ < 1 (as sΛ

γ = 1 is a useful lower bound). A
visualization of sΛ

γ is given in Fig. 1.
A sequence of finite volumes Λn ⊂ Γ is said to be absorbing (for Γ),

denoted Λn → Γ, if for all x ∈ Γ, there exists an n such that x ∈ Λm for
all m ≥ n. We often also assume the sequence of finite volumes is increasing,
i.e., Λn ⊂ Λn+1 for all n, and denote by Λn ↑ Γ a sequence of increasing and
absorbing volumes.

We say that a frustration-free interaction is gapped, if there exists a se-
quence of finite volumes Λn ↑ Γ such that

γ0 = inf
n≥1

gap(HΛn
) > 0. (2.34)
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Figure 1. The spectral gap of HΛ(s) above the ground-state
energy (allowing for eigenvalue splitting) is at least γ for all
0 ≤ s ≤ sΛ

γ

In the situation that there is a sequence of uniformly gapped unperturbed
Hamiltonians in the sense of (2.34), we say that the spectral gap is stable if
for any 0 < γ < γ0

sγ := inf
n≥1

sΛn
γ > 0, (2.35)

that is, if there is sγ > 0 such that infn gap(HΛn
(s)) ≥ γ for all 0 ≤ s ≤ sγ .

We analyze the stability of the ground-state gap in the presence of small,
local perturbations. Given two time-independent interactions η,Φ : P0(Γ) →
Aloc

Γ , we consider local Hamiltonians of the form

HΛ(s) = HΛ + sVΛp , (2.36)

where

HΛ =
∑

X⊆Λ

η(X), VΛp =
∑

X⊆Λ
X∩Λp �=∅

Φ(X).

Here, η is the background (or initial) interaction, Φ is the perturbation, and
Λp ⊆ Λ is the perturbation region. Any subset of Λ may be chosen as the
perturbation region. In our application, the perturbation region will consist
of all points x ∈ Λ with a sufficient indistinguishability radius. This will be
described in more detail in Sect. 5. The most traditional choice of perturbation
region is Λp = Λ, for which VΛ ∈ AΛ is a local Hamiltonian of the form
defined in (2.4). In Sect. 6, we provide sufficient conditions on the unperturbed
interaction η so that for any Φ ∈ BF with F as in (2.18), there are two
sequences of finite volumes Λp

n ⊆ Λn with Λp
n ↑ Γ so that (2.35) is satisfied.
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2.4. The Spectral Flow

Much like the Heisenberg dynamics, see (2.25), the spectral flow is a family of
automorphisms of the observable algebra AΛ. Consider the family of Hamilto-
nians {HΛ(s)}s∈[0,1] given by (2.36). For each 0 ≤ s ≤ 1 and all t ∈ R, denote
by τ

(s)
t : AΛ → AΛ the Heisenberg dynamics associated with HΛ(s), i.e.,

τ
(s)
t (A) := eitHΛ(s)Ae−itHΛ(s). (2.37)

To define the spectral flow, we first introduce its generator. For any ξ > 0,
define Dξ : [0, 1]→ AΛ by

Dξ(s) =
∫

R

τ
(s)
t (VΛp)Wξ(t) dt for all 0 ≤ s ≤ 1, (2.38)

where VΛp is the perturbation, see (2.36), and Wξ ∈ L1(R) is the real-valued
weight function defined, e.g., in [83][Section VI.B]. The parameter ξ is akin
to a correlation length in that it governs the rate of decay of the function
Wξ: Wξ(t) = ξ−1W1(ξt), and W1(t) vanishes as e−c|t|/(log |t|)2 , for large |t|,
and some c > 0. The support of the Fourier transform of Wξ is contained in
the interval [−ξ, ξ], which is of crucial importance for the properties of the
dynamics generated by Dξ(s) discussed below. It is straight-forward to check
that for any ξ > 0, Dξ is pointwise self-adjoint (i.e., Dξ(s)∗ = Dξ(s) for all
s ∈ [0, 1]) and continuous in s. As such, there is a unique family of unitaries
given by the solutions of

d
ds

U ξ(s) = −iDξ(s)Uξ(s) with Uξ(0) = 1l. (2.39)

In terms of these unitaries, a family of automorphisms of AΛ is defined by
setting

αξ
s(A) = Uξ(s)∗AU ξ(s) for all A ∈ AΛ and 0 ≤ s ≤ 1. (2.40)

Given a choice of ξ, we refer to the family of automorphisms {αξ
s}s∈[0,1] as the

spectral flow automorphisms. This is due to the following property that these
automorphisms satisfy: Let spec(HΛ(s)) = ΣΛ

1 (s) ∪ ΣΛ
2 (s) be as in (2.31) and

for all 0 ≤ s ≤ 1 denote by P (s) the spectral projection associated to HΛ(s)
onto ΣΛ

1 (s). Fix 0 < γ < gap(HΛ(0)). It is proven, e.g., in [83, Theorem 6.3],
that for any 0 < ξ ≤ γ the spectral flow automorphisms satisfy

αξ
s(P (s)) = P (0) for all 0 ≤ s ≤ sΛ

γ . (2.41)

As such, properties of the ground-state projections of HΛ(0) extend to the
spectral projection of αs(HΛ(s)) associated with Σ1(s).

To ease notation, we will work with the fixed family of spectral flows
determined by the choice ξ = γ, and denote it simply by {αs}s∈[0,1]. An
important point, to which we will return in Sect. 4, is that if the family of
Hamiltonians {HΛ(s)}s∈[0,1] given by (2.36) has sufficiently decay, (e.g., Φ ∈
BF with F as in (2.18)), then these spectral flow automorphisms satisfy an
explicit quasi-locality estimate of the form (2.29). At the heart of the spectral
stability argument are three crucial properties of the spectral flow.
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Claim 2.4 (Properties of the spectral flow). The spectral flow has the following
properties:

i. The spectral flow is a family of automorphisms implemented by unitaries,
see (2.39). As such, spec(αs(H)) = spec(H) for any Hamiltonian H ∈
AΛ and so one may analyze αs(H) to establish spectral gap estimates for
H.

ii. The spectral flow maps the spectral projection corresponding to the per-
turbed system back to the spectral projection corresponding to the unper-
turbed systems, see (2.41).

iii. Given sufficient decay of the perturbation Φ, the spectral flow αs from
(2.40) is quasi-local.

The properties described in this claim, as well as others, were proven in detail
in Section 6 of [83].

2.5. Anchored Interactions

2.5.1. Anchored Interactions. For combinatorial reasons, it becomes cumber-
some to work with interactions and perturbations as they are defined in Sect. 2.2.
For this reason, we find it convenient to work with anchored interactions, which
allow one to rewrite the local Hamiltonians HΛ in the form (2.43) below. We
define the notion of anchored interaction here and provide one method for
transforming an interaction into an anchored interaction and vice-versa. The
vital property of the anchoring procedure we introduce is that it preserves the
decay properties of the original interaction, assuming it decays sufficiently fast.
The procedure we discuss also has the convenient property that it preserves
the local ground-state spaces for balls. These properties imply that we can for-
mulate our results equivalently and without loss of generality either in terms
of the usual notion of interactions or using anchored interactions. Anchored
interactions can be time-dependent in complete analogy with the definitions
and results for time-dependent interactions defined on arbitrary finite subsets.

Definition 2.5. Given a countable metric space (Γ, d), an algebra of local ob-
servables Aloc

Γ , and a subset Λ ⊆ Γ, we say that a mapping Φ : Λ×Z≥0 → Aloc
Λ

is a anchored interaction on Λ if Φ(x, n) = Φ(x, n)∗ ∈ AbΛx (n) for all (x, n) ∈
Λ× Z≥0.

For fixed x ∈ Λ, we often use ‖Φ(x, n)‖, as a function of n, to express the
decay of the interaction strength with distance. In that situation it is natural
to require the following property:

Φ(x, n) �= 0 =⇒ there is a pair of sites y, z ∈ bΛ
x (n) with d(y, z) > n− 1.

(2.42)
We will show that for a given Hamiltonian we can always find an anchored
interaction with this property. Note that we only require diam(bΛ

x (n)) > n− 1
and not supp(Φ(x, n)) = bΛ

x (n). We say the term Φ(x, n) is anchored at the site
x, hence the terminology. Depending on Λ, it is possible that bΛ

x (n) = bΛ
y (m) for

two distinct sites x, y ∈ Λ. For an anchored interaction, the anchoring site can
hold significance, and so we allow for the possibility that Φ(x, n) �= Φ(y,m).
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This is not possible for an interaction as defined in Sect. 2.2 as this is a function
of X ∈ P0(Γ). We impose the second condition on an anchored interaction for
two reasons. First, it justifies associating the ball bΛ

x (n) to the interaction term
Φ(x, n). Second, if Λ is finite, then Φ(x, n) = 0 for all n > diam(Λ) and so Φ
is nonzero for only a finite number of pairs (x, n) ∈ Λ× Z.

Given any finite volume Λ ⊆ Γ, and an interaction Φ : P0(Γ) → Aloc
Γ it

is always possible rewrite the local Hamiltonian HΛ, see (2.4), as

HΛ =
∑

x∈Λ

∑

n≥0

ΦΛ(x, n) (2.43)

where ΦΛ : Λ × Z≥0 → AΛ is an anchored interaction on Λ. In the next sec-
tion, we introduce one procedure for transforming a general interaction Φ into
an equivalent anchored interaction. This is not the only procedure one could
use. For the results on stability, one only needs that the resulting anchored
interaction satisfies an anchored F -norm similar to that in Proposition 2.8.

One may also consider time-dependent anchored interactions, which are
defined as follows:

Definition 2.6. Given a countable metric space (Γ, d), an algebra of local ob-
servables Aloc

Γ , an interval I ⊆ R (possibly infinite), and a subset Λ ⊆ Γ, we
say that mapping Φ : Λ × Z≥0 × I → Aloc

Λ is a anchored interaction on Λ if
the following three conditions hold:

i. Φ(x, n, t)∗ = Φ(x, n, t) ∈ AbΛx (n) for all triplets (x, n, t).
ii. For all (x, n) ∈ Λ× Z≥0, the mapping t 	→ Φ(x, n, t) is continuous.

For time-dependent anchored interactions, it may again be convenient to
require (2.42), i.e., if

Φ(x, n, t) �= 0 =⇒ d(y, z) > n− 1 for some y, z ∈ bΛ
x (n). (2.44)

2.5.2. An Anchoring Procedure. As our main interest is perturbed Hamiltoni-
ans of the form (2.36), we define a anchoring process that will respect Hamilto-
nians defined in terms of a perturbation region. Let Φ : P0(Γ)→ Aloc

Γ be an in-
teraction and fix (possibly infinite) volumes Λp ⊆ Λ ⊆ Γ. With respect to these
volumes, we define an anchored interaction on Λ, denoted ΦΛp : Λ×Z≥0 → Aloc

Λ

so that

ΦΛp(x, n) = 0 if x ∈ Λ \ Λp.

We further show that if Λ is finite, the local Hamiltonian HΛ,Λp defined by

HΛ,Λp :=
∑

X⊆Λ
X∩Λp �=∅

Φ(X) (2.45)

can be rewritten in terms of this anchored interaction as

HΛ,Λp =
∑

x∈Λp

n≥0

ΦΛp(x, n). (2.46)

Here, note that (2.45) is of the same form as the perturbation in (2.36). And,
of course, (2.45) agrees with (2.4) if Λp = Λ, an essential requirement.
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We will also use anchored versions of the a priori (unperturbed) Hamil-
tonian which is given by a finite-range, uniformly bounded, frustration-free
interaction η. The anchoring procedure we introduce benefits from preserving
the finite-range and uniform boundedness conditions as well as leaving the
local ground-state spaces invariant.

To define our anchoring procedure, let us first denote by S(Λp) the set
of all finite volumes that intersect the perturbation region, i.e.,

S(Λp) = {X ∈ P0(Λ) : X ∩ Λp �= ∅}.

We further partition this set by S(Λp) =
⋃

n≥0 Sn(Λp) where, for all n ≥ 1,

Sn(Λp)={X ∈ S(Λp) : ∃x ∈ Λp s.t. X ⊂ bΛ
x (n) and ∀x ∈ Λp,X �⊂ bΛ

x (n− 1)}.
(2.47)

Setting S0 = {{x} | x ∈ Λp} for n = 0, it is clear that {Sn(Λp) | n ≥ 0}
is a partition of S(Λp). Therefore, we define the radius of X by r(X) = n if
X ∈ Sn(Λp), and the multiplicity of X as:

m(X) = #
{
x ∈ Λp|X ⊂ bΛ

x (r(X))
}

. (2.48)

Note that m(X) ≥ 1 for all X ∈ S(Λp), that m(X) is always finite even if Λp is
infinite, and that r(X)− 1 < diam(X) ≤ 2r(X). The radius and multiplicity,
in general, depend on Λ and Λp. This, however, will not play an important
role in our analysis.

Then, for x ∈ Λp, we define ΦΛp(x, n) ∈ AbΛx (n) by

ΦΛp(x, n) =
∑

X∈Sn(Λp):

X⊂bΛx (n)

1
m(X)

Φ(X), (2.49)

with the convention that ΦΛp(x, n) = 0 for empty sums. We set ΦΛp(x, n) =
0 for all x ∈ Λ \ Λp. It is straightforward to see that ΦΛp is an anchored
interaction in the sense of Definition 2.5. Moreover, (2.42) holds. In fact, when
ΦΛp(x, n) �= 0, there is X ∈ Sn(Λp) with X ⊂ bΛ

x (n) and Φ(X) �= 0. For this
X ∈ Sn(Λp), one sees that there exists y, z ∈ X ⊂ bΛ

x (n) with d(y, z) > n− 1.
We now show that using this anchoring procedure, any finite-volume

Hamiltonian HΛ,Λp of the form given in (2.45) for Λp ⊆ Λ ∈ P0(Γ) can be
rewritten as described in (2.46). Given the definitions of S(Λp) and Sn(Λp),
and (2.49), the Hamiltonian HΛ,Λp may be rewritten as

HΛ,Λp =
∑

X∈S(Λp)

Φ(X) =
∑

n≥0

∑

X∈Sn(Λp)

Φ(X). (2.50)

Using the definition of m(X), we have
∑

X∈Sn(Λp)

Φ(X) =
∑

X∈Sn(Λp)

1
m(X)

∑

x∈Λp

X⊂bΛx (n)

Φ(X) =
∑

x∈Λp

ΦΛp(x, n), (2.51)

Combining (2.50) and (2.51), we obtain the desired property (2.46).
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Next, we analyze the effects of our anchoring procedure on the initial
interaction and its associated local Hamiltonians, see (2.36) and the subse-
quent discussion. Consider a finite-range, uniformly bounded, frustration-free
interaction η and define the anchored interaction ηΛ as in (2.49) for any (pos-
sibly infinite) Λ ⊂ Γ. Here, we note that in (2.49) one uses Λp = Λ as the
background interaction is defined extensively.

The range of η is defined as the smallest R ≥ 0 such that η(X) = 0
for all X with diam(X) > R. For any anchored interaction ΦΛp , we define
the maximal radius as the smallest integer RΛp ≥ 0 such that ΦΛp(x, n) = 0,
for all x ∈ Λp and n > RΛp . Since ηΛ is obtained from η by the anchoring
procedure defined above, we have the following relationship: RΛ − 1 ≤ R ≤
2RΛ. Moreover, the anchored interaction preserves the uniform norm. Namely,
letting ‖η‖ := supX∈P0(Γ) ‖η(X)‖ denote the uniform bound on the original
interaction, for any x ∈ Λ and 0 ≤ n ≤ RΛ,

‖ηΛ(x, n)‖ ≤ ‖η‖2|bx(n)| ≤ ‖η‖2κRν
Λ

where we apply ν-regularity to bound the number of terms in the summation
from (2.49). As a consequence of these properties, we may group the anchored
terms into a single site-anchored operator

hx :=
RΛ∑

n=0

ηΛ(x, n) ∈ Abx(RΛ) with ‖h‖ := sup
x∈Λ
‖hx‖ <∞. (2.52)

In the case that Λ is finite, the associated local Hamiltonian is equal to HΛ =∑
x∈Λ hx, which is nontrivially used in our analysis in Sects. 4–6.

Given the importance of ground-state projections in this work, one may
wonder if our anchoring procedure effects the ground-state spaces of the local
Hamiltonians. The natural definitions of the local Hamiltonians HΛ0 , Λ0 ∈
P0(Λ), are as follows:

Hη
Λ0

=
∑

X⊂Λ0

η(X), HηΛ
Λ0

=
∑

x∈Λ,n≥0
bΛx (n)⊂Λ0

ηΛ(x, n). (2.53)

For the anchoring procedure introduced, we claim that

ker Hη
bΛy (m)

= ker HηΛ
bΛy (m)

(2.54)

for all y ∈ Λ,m ≥ 0. To establish this, it suffices to notice the following two
properties, which are easy to verify from the above definitions:

(i) if X ⊂ bΛ
y (m) and η(X) �= 0, then

HηΛ
bΛy (m)

≥
∑

n≤m

ηΛ(y, n) ≥ m(X)−1η(X),

(ii) HηΛ
bΛy (m)

≤ Hη
bΛy (m)

for all y ∈ Λ and m ≥ 0.

While the ground-state equality in (2.54) is convenient, it is not strictly
necessary for the arguments in this work as we will always work with the
ground-state projections for the local Hamiltonians defined by the original
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(i.e., unanchored) interaction. In particular, the results of this work still hold
for any anchoring procedure as long as for any bΛ

y (m) ∈ P0(Λ),

ker(Hη
bΛy (m)

) ⊆ ker(HηΛ
bΛy (m)

).

2.5.3. Decay Properties of Anchored Interactions. As we mentioned before,
the purpose of working with an anchored interaction is to simplify certain
combinatorial arguments. If an anchored interaction is defined with respect to
an interaction Φ : P0(Γ) → Aloc

Γ , e.g., as defined in (2.49), we will want the
anchored interaction to inherent properties possessed by Φ, including decay
properties. Therefore, we introduce an anchored version of the F -norm from
(2.19), from which we will be able to verify similar decay estimates.

Definition 2.7. Let (Γ, d) be a countable metric space, and ΦΛ : Λ×Z≥0 → Aloc
Γ

be an anchored interaction. For any integer m ≥ 0, we say that ΦΛ has a finite
m-th moment anchored F -norm with respect to an F -function F and write
ΦΛ ∈ Bm

F if

‖ΦΛ‖m,F := sup
x,y∈Λ

1
F (d(x, y))

∑

n≥0, z∈Λ:
x,y∈bΛz (n)

|bΛ
z (n)|m‖ΦΛ(z, n)‖ <∞. (2.55)

For m = 0, we simply say that ΦΛ has a finite anchored F -norm and denote
this by ‖ΦΛ‖F .

We note that while we use the same notation, Bm
F , for the decay classes

of interactions and anchored interactions, the correct interpretation should be
clear from context and so there should be no confusion. In Proposition 2.8, we
show that given an interaction Φ ∈ Bm

F and the anchored interaction ΦΛp as in
(2.49), then ΦΛp will have a finite m-th anchored F -norm as long as F decays
sufficiently fast.

Proposition 2.8. Let Γ be a ν-regular metric space, Φ ∈ Bm
F for an F -function

F , and Λp ⊆ Λ ⊆ Γ. Fix any integer m ≥ 0. Then, for any x, y ∈ Λ the
anchored interaction defined in (2.49) satisfies

∑

n≥0, z∈Λp:
x,y∈bΛz (n)

|bΛ
z (n)|m‖ΦΛp(z, n)‖ ≤ 2νκm+2‖Φ‖F

∑

n≥�d(x,y)/2�
n(m+2)νF (n− 1).

(2.56)

It is important to note that while the anchored interaction depends on Λ
and Λp, the bound on the RHS of (2.56) is independent of both volumes. In
the situation that there is an F -function F̃ for which

∑

n≥�r/2�
n(m+2)νF (n− 1) ≤ F̃ (r) for r ∈ [0,∞),

the above result shows that ‖ΦΛp‖m,F̃ <∞.
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Proof. Fix x, y ∈ Λ. Then a simple bound using (2.49) and ν-regularity gives
∑

n≥0

∑

z∈Λp

x,y∈bΛz (n)

|bΛ
z (n)|m‖ΦΛp(z, n)‖≤κm

∑

n≥0

nmν
∑

z∈Λp

x,y∈bΛz (n)

∑

X∈Sn(Λp)

X⊆bΛz (n)

1
m(X)

‖Φ(X)‖.

(2.57)
Note that since x, y ∈ bz(n),

d(x, y) ≤ d(x, z) + d(y, z) ≤ 2n

and so the sum over n can be optimized to n ≥ �d(x, y)/2�.
Consider the (inner) double summation from the RHS of (2.57), for which

the following change of variables is valid:
∑

z∈Λp

x,y∈bΛz (n)

∑

X∈Sn(Λp)

X⊆bΛz (n)

=
∑

z∈Λp

x,y∈bΛz (n)

∑

X∈Sn(Λp)

IndX⊆bΛz (n) =
∑

X∈Sn(Λp)

∑

z∈Λp:

x,y∈bΛz (n)∧X⊆bΛz (n)

where Ind(·) is the indicator function. Notice that the constraints x, y ∈ bΛ
z (n)

and X ⊆ bΛ
z (n) immediately imply that

X ⊂ bΛ
x (2n) ∩ bΛ

y (2n).

Combining these observations, we find
∑

z∈Λp

x,y∈bΛz (n)

∑

X∈Sn(Λp)

X⊆bΛz (n)

1
m(X)

‖Φ(X)‖

=
∑

X∈Sn(Λp):

X⊂bΛx (2n)∩bΛy (2n)

∑

z∈Λp:

x,y∈bΛz (n)∧X⊆bΛz (n)

1
m(X)

‖Φ(X)‖. (2.58)

From the definition of m(X), see (2.48), we see that the inner sum above is
bounded from about by ‖Φ(X)‖, i.e.,

∑

z∈Λp:

x,y∈bΛz (n)∧X⊆bΛz (n)

1
m(X)

‖Φ(X)‖ ≤ ‖Φ(X)‖.

Since diam(X) > n−1 for any X ∈ Sn(Λp) and Φ ∈ BF one can further bound
as follows:

∑

X∈Sn(Λp)
X⊆bx(2n)∩by(2n)

‖Φ(X)‖ ≤
∑

w1, w2∈bx(2n)
n−1<d(w1,w2)≤n

∑

X⊆Λ
w1, w2∈X

‖Φ(X)‖

≤ ‖Φ‖F
∑

w1, w2∈bx(2n)
n−1<d(w1,w2)≤n

F (d(w1, w2))

≤ κ22ν‖Φ‖F n2νF (n− 1). (2.59)

In the final estimate above, we have use ν-regularity and the fact that w2 ∈
bw1(n). The result follows from inserting (2.59) and n ≥ �d(x, y)/2� into (2.57).

�
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We conclude by discussing how to define an interaction Φ : P0(Λ)→ Aloc
Λ

from an anchored interaction ΦΛ : Λ × Z≥0 → Aloc
Λ and show that a finite

anchored F -norm ‖ΦΛ‖F is sufficient for proving that Φ ∈ BF . This implies
that the finite volume Hamiltonians associated with an anchored interaction
satisfy a Lieb–Robinson bound if it has a finite anchored F -norm.

To define Φ, for any X ∈ P0(Λ) we set

Φ(X) =
∑

(x,n)∈Λ×Z≥0

bΛx (n)=X

ΦΛ(x, n), (2.60)

with convention that empty sums are taken to be zero. For this interaction,
we have the following result:

Proposition 2.9. Let ΦΛ : Λ×Z≥0 → Aloc
Λ be an anchored interaction for which

‖ΦΛ‖m,F <∞ for an F -function F . Then Φ ∈ Bm
F where Φ : P0(Λ)→ Aloc

Λ is
the interaction defined in (2.60). In particular, ‖Φ‖m,F ≤ ‖ΦΛ‖m,F .

Proof. Fix any x, y ∈ Λ. Recall that ΦΛ(x, n) ∈ AbΛx (n) Since ΦΛ is an anchored
interaction. Using (2.60) and applying the triangle inequality, one finds

∑

X⊆Λ:
x,y∈X

|X|m‖Φ(X)‖ ≤
∑

X⊆Λ:
x,y∈X

∑

(z,n)∈Λ×Z≥0:

bΛz (n)=X

|bΛ
z (n)|m‖ΦΛ(z, n)‖

=
∑

(z,n)∈Λ×Z≥0:

x,y∈bΛz (n)

|bΛ
z (n)|m‖ΦΛ(z, n)‖

≤ ‖ΦΛ‖m,F F (d(x, y)), (2.61)

which implies ‖Φ‖m,F ≤ ‖ΦΛ‖m,F as claimed. �

There are two important insights one can draw from this result.
First, notice that if there is at most one nonzero term in the summation

of (2.60), then the anchored interaction is actually an interaction. In this case,
the first inequality of (2.61) is actually an equality and so the anchored F -norm
and interaction F -norm are the same. This justifies using the same notation for
both types of F -norms. We almost exclusively work with anchored interactions
and anchored F -norms. However, it will always be clear from context which
type of F -norm we are using.

Second, in the situation that Λ is finite, the local Hamiltonian defined by
ΦΛ satisfies

HΛ :=
∑

(x,n)∈Λ×Z≥0

ΦΛ(x, n) =
∑

X⊆Λ

Φ(X)

where Φ is as defined in (2.60). If ‖ΦΛ‖F < ∞, then Proposition 2.9 implies
that the Heisenberg dynamics τΛ

t,s associated to HΛ satisfies the Lieb–Robinson
bound from Theorem 2.3. Moreover, we can use the anchored F -norm, ‖ΦΛ‖F ,
to bound the Lieb–Robinson velocity, specifically

vΦ ≤ 2CF ‖ΦΛ‖F . (2.62)
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3. On Perturbation Theory for Frustration-Free Hamiltonians

3.1. Introduction

The main goal of this work is to present an approach for proving persistence
of the ground-state gap for frustration-free models under a broad class of
extensive perturbations. This approach, originally due to Bravyi, Hastings,
and Michalakis (BHM) [21], has some elements in common with other methods
that have appeared in the literature, including the recent work of Fröhlich
and Pizzo [38,41], but also older work by Albanese [3], Kennedy and Tasaki
[54], and Yarotsky [105]. Specifically, the aim in all these works is to prove
a relative form bound in one way or another. In this section, we discuss the
general implications of relative form bounds on spectral gaps and also identify
a situation for which a form bound can be proved in a straightforward manner.

The strength of the BHM approach stems from applying a relative form
bound after a unitary transformation that brings the problem into a form
where the results of this section can be applied. The next several sections are
devoted to the analysis necessary to establish this. At first sight, the Lie–
Schwinger block diagonalization approach of Fröhlich and Pizzo does some-
thing similar in that it also rests on the construction of a suitable similarity
transformation [41]. An important difference, however, is that in the latter
work the transformation itself is constructed perturbatively by a power series
for which one needs to prove a positive radius of convergence. This is not the
case with the approach here. The transformation we use is well-defined for the
full parameter range for which a non-vanishing ground-state gap exists.

The method of Fröhlich and Pizzo has so far only been applied to ini-
tial Hamiltonians that are on-site and have a unique product ground state.
These are strong limitations but, due to the availability of a convergent power
series, it also has the advantage of yielding analyticity of the ground-state en-
ergy density as a function of the perturbation parameters within the radius of
convergence [36].

We now first prove some general results about relatively bounded pertur-
bations and then look specifically at quantum lattice systems.

3.2. General Perturbation Theory with Form Bounds

In this section, we determine spectral gap estimates for perturbations of a
gapped, self-adjoint operator, H on a (possibly infinite-dimensional) Hilbert
space in the situation that the perturbation is form bounded by H. The results
we present in this section hold for both bounded and unbounded operators,
and so we present the results in a general context. At the end of the section,
we discuss how to apply the results to the gapped quantum spin systems of
interest.

The first lemma can be regarded as a variational principle for spectral
gaps. In the statement, we use the convention

inf ∅ = +∞, sup ∅ = −∞. (3.1)

Lemma 3.1 (Level repulsion principle). Let H be a complex Hilbert space and
H a densely defined self-adjoint operator on H with domain D. Let K be a
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closed linear subspace of H such that K∩D is dense in K and K⊥∩D is dense
in K⊥. Define a, b ∈ R ∪ {±∞} as follows

a = sup{〈ψ,Hψ〉 | ψ ∈ K ∩ D, ‖ψ‖ = 1},
b = inf{〈ψ,Hψ〉 | ψ ∈ K⊥ ∩ D, ‖ψ‖ = 1}. (3.2)

Then, if a < b,
(a, b) ∩ spec(H) = ∅. (3.3)

Proof. For K = {0} or K = H, (3.3) is trivially satisfied given (3.1). The cases
where either a = ∞ or b = −∞ are also trivial. Therefore, we may assume
that both a and b are finite and a < b.

We show that H − λ1l has a bounded inverse for all λ ∈ (a, b). Replacing
H by H ′ = H − λ1l in (3.2) changes the constants a and b to a′ := a− λ < 0
and b′ := b − λ > 0, and hence showing that 0 �∈ specH ′. In other words,
without loss of generality, we may assume that a < 0 and b > 0, and then
show that 0 �∈ spec(H) or, equivalently, that H has a bounded inverse.

We first consider the case that H is bounded, and hence D = H. Let
P be the orthogonal projection onto K and define Q = 1l − P . Denote by
PHP : K → K and QHQ : K⊥ → K⊥ the bounded, self-adjoint restrictions of
H to K and K⊥, respectively. The definitions of a and b imply that PHP ≤ aP
and QHQ ≥ bQ. Since a < 0 and b > 0, we find that PHP is negative definite
with a bounded inverse (PHP )−1 ∈ B(K), and QHQ is positive definite with
a bounded inverse (QHQ)−1 ∈ B(K⊥). Therefore, there are positive A ∈ B(K)
and B ∈ B(K⊥) such that (PHP )−1 = −A2 and (QHQ)−1 = B2.

Consider the representation of H as a block-operator acting on H =
K ⊕K⊥. One finds that

H =
[
PHP PHQ
QHP QHQ

]
=
[
A−1 0
0 B−1

] [
−1l X
X∗ 1l

] [
A−1 0
0 B−1

]
(3.4)

where we have used that A and B both have (bounded) inverses and denoted
by X : K⊥ → K be the operator X = A(PHQ)B. Let Y denote the middle
matrix operator above, which is clearly bounded and self-adjoint. One checks
that

Y 2 =
[
1l + XX∗ 0

0 1l + X∗X

]
,

and thus Y 2 ≥ 1l. This shows that the interval (−1, 1) is contained in the
resolvent set of Y . As such, Y −1 is bounded with norm at most 1. In this case,
we can invert (3.4) and obtain

H−1 =
[
A 0
0 B

] [
−1l X
X∗ 1l

]−1 [
A 0
0 B

]
, (3.5)

which is bounded as it is the product of bounded operators; in fact, ‖H−1‖ ≤
max(|a|−1, b−1). This concludes the proof for the case of bounded H.

The general case of unbounded H can be handled by considering a se-
quence (Hn)n≥1 of bounded self-adjoint operators converging to H in the
strong resolvent sense. Let Pn, n ≥ 1, denote the spectral projections of H
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corresponding to [−n, n], and define Hn = PnHPn. In this case, Hn is bounded
and Hn → H in the strong resolvent sense (see [18] and also [103, Satz 9.21]).
The constants an and bn defined by

an = sup{〈ψ,Hnψ〉 | ψ ∈ K ∩ D, ‖ψ‖ = 1},
bn = inf{〈ψ,Hnψ〉 | ψ ∈ K⊥ ∩ D, ‖ψ‖ = 1} (3.6)

satisfy a = limn an and b = limn bn. Applying the result for bounded operators,
we conclude that (an, bn) ∩ spec(Hn) = ∅ for all n ∈ N. By strong resolvent
convergence, see e.g., [96, Theorem VIII.24 (a)], for each λ ∈ spec(H), there
is λn ∈ spec(Hn) with λn → λ. This implies that (a, b) ∩ spec(H) = ∅ as
desired. �

Lemma 3.1 is optimal in the sense that it identifies a spectral gap exactly
if K is the spectral subspace of H associated with the spectrum below the gap.
If K is not an invariant subspace of H, then the quantity b−a, if positive, is a
lower bound for the gap. In that case, the lemma shows that the ‘off-diagonal’
terms PHQ + QHP can only push the two parts of spectrum further part.
This can be regarded as a generalization of the level repulsion observed for
a pair of eigenvalues of a diagonal Hermitian matrix when one considers the
effect of non-vanishing off-diagonal matrix elements.

Lemma 3.2 (Relatively Bounded Perturbations). Let H be a complex Hilbert
space and H a densely defined self-adjoint operator on H with domain D.
Suppose V is a self-adjoint operator on H with D ⊂ domV , and suppose there
exist constants α ≥ 0 and β ∈ [0, 1), such that

|〈ψ, V ψ〉| ≤ α‖ψ‖2 + β〈ψ,Hψ〉, for all ψ ∈ D. (3.7)

Then,

(1− β) inf spec(H)− α ≤ inf spec(H + V ) and
sup spec(H + V ) ≤ (1 + β) sup spec(H) + α. (3.8)

If, in addition, a < b ∈ R are such that (a, b) ∩ spec(H) = ∅, then

((1 + β)a + α, (1− β)b− α) ∩ spec(H + V ) = ∅. (3.9)

Proof. If β = 0, then ‖V ‖ ≤ α and the statements in the lemma follow from
standard perturbation theory for bounded perturbations [53]. Thus, we assume
that β > 0. In this case, (3.7) implies that H is bounded below by −αβ−1, and
in particular, H +V is self-adjoint on D [95, Theorem X.17]. The estimates in
(3.8) follow directly from the relative boundedness expressed by (3.7) as

(1− β) 〈ψ,Hψ〉 −α‖ψ‖2 ≤ 〈ψ, (H + V )ψ〉 ≤ (1 + β) 〈ψ,Hψ〉+ α‖ψ‖2 (3.10)

for all ψ ∈ D.
To prove (3.9), first consider the case of bounded H and V , and let P be

the spectral projection of H corresponding to the interval [−αβ−1, a]. Applying
(3.10)

〈ψ, (H + V )ψ〉 ≤ (1 + β)〈ψ,Hψ〉+ α‖ψ‖2

≤ [(1 + β)a + α]‖ψ‖2, ψ ∈ PH (3.11)
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〈ψ, (H + V )ψ〉 ≥ (1− β)〈ψ,Hψ〉 − α‖ψ‖2

≥ [(1− β)b− α]‖ψ‖2, ψ ∈ (1l− P )H. (3.12)

As the conditions on the domain of H and the perturbation V in Lemma 3.1
are satisfied with K = ranP , the spectral subspace of H corresponding to
[−αβ−1, a], the gap from (3.9) now follows by taking the sup and inf, respec-
tively, of (3.11)–(3.12) and applying Lemma 3.1.

To treat the general case in which H and V may be unbounded, let Pn

be the spectral projection of H corresponding to the interval [−αβ−1, a + n],
for all n ≥ 1. Then, Hn = PnHPn is bounded on Hn = PnH, and (3.7) implies
that Vn = PnV Pn is bounded too. Hn and Vn satisfy (3.7) with the same
constants α and β. We also have (a, b) ∩ spec(Hn) = ∅ if this condition holds
for H. Therefore, the argument in the previous paragraph shows that

((1 + β)a + α, (1− β)b− α) ∩ spec(Hn + Vn) = ∅, for all n ≥ 1. (3.13)

Since the sequence (Hn + Vn)n≥1 converges to H + V in the strong resolvent
sense, an application of [96, Theorem VIII.24 (a)] shows that

((1 + β)a + α, (1− β)b− α) ∩ spec(H + V ) = ∅.
�

As can be seen from the previous proof, the estimate of the gap may be
optimized by proving form bounds separately on each of the spectral subspaces.
This is the content of the following corollary.

Corollary 3.3. Let H be a complex Hilbert space and H a densely defined self-
adjoint operator on H with domain D such that (a, b) ∩ spec(H) = ∅. Suppose
that V is a self-adjoint operator on H with D ⊂ domV for which there are
constants α′, α′′ ≥ 0 and β ∈ [0, 1) such that

| 〈ψ, V ψ〉 | ≤ α′‖ψ‖2 + β 〈ψ,Hψ〉 , ψ ∈ PH ∩D
| 〈ψ, V ψ〉 | ≤ α′′‖ψ‖2 + β 〈ψ,Hψ〉 , ψ ∈ (1l− P )H ∩D

where P is the spectral projection of H associated to (−∞, a]. Then,

((1 + β)a + α′, (1− β)b− α′′) ∩ spec(H + V ) = ∅. (3.14)

Proof. The proof follows just as the proof of Lemma 3.2 from replacing α with
α′, resp. α′′, in (3.11), resp. (3.12). �

We now turn to the situation of interest: the stability of the spectral gap
of a Hamiltonian, H, that is gapped above the ground-state energy. In this case,
we will consider perturbed Hamiltonians of the form H(s) = H + V (s) where
s ∈ R. We will always assume that V (s) : H → H is self-adjoint with domH ⊆
domV (s) for all s. Generally, we will also assume that the perturbation is
strongly differentiable in s. However, this is not necessary for the next result
and so we will not assume this here.

Theorem 3.4. Let H ≥ 0 be a self-adjoint operator on a dense domain D for
which 0 ∈ spec(H) and (0, γ) ∩ spec(H) = ∅ for some γ > 0, and denote by
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P the ground-state projection of H. Suppose that H(s), s ∈ R, is a family of
perturbed Hamiltonians of the form

H(s) = H + V (s) + A(s) + C(s)1l, (3.15)

for which there are constants α, α′, α′′, β > 0 so that for all s ∈ R the following
hold:

(i) C(s) ∈ R

(ii) A(s)∗ = A(s) ∈ B(H) with ‖A(s)‖ ≤ sα, ‖PA(s)P‖ ≤ sα′, and
‖(1l− P )A(s)(1l− P )‖ ≤ sα′′.

(iii) V (s)∗ = V (s) with D ⊆ domV (s) and | 〈ψ, V (s)ψ〉 | ≤ sβ 〈ψ,Hψ〉 for all
ψ ∈ D.

Then, for all 0 ≤ s < β−1, spec(H(s)) = Σ1(s) ∪ Σ2(s) where

Σ1(s) ⊆ [C(s)− sα,C(s) + sα′], Σ2(s) ⊆ [C(s) + (1− sβ)γ − sα′′, ∞).

Note that the conditions imply A(0) = V (0) = 0. As such, the result is
trivial for s = 0 as H(0) is just a constant shift of H by C(0). In many appli-
cations, we will have that all quantities A(s), V (s), and C(s) are continuous
in s and, moreover, C(s)→ 0 as s→ 0.

Proof. Suppose that H(s) has the form described above and fix 0 ≤ s < β−1.
Without loss of generality, we may assume C(s) = 0. As (0, γ) ∩ spec(H) = ∅
and

〈ψ, V (s) + A(s)ψ〉 ≤ sβ 〈ψ,Hψ〉+ sα′‖ψ‖2, ψ ∈ PH ∩D (3.16)

〈ψ, V (s) + A(s)ψ〉 ≤ sβ 〈ψ,Hψ〉+ sα′′‖ψ‖2, ψ ∈ (1l− P )H ∩D (3.17)

Corollary 3.3 implies

(sα′, (1− sβ)γ − sα′′) ∩ spec(H(s)) = ∅. (3.18)

Trivially, (−n, 0) ∩ spec(H) = ∅ for all n ∈ N and for all ψ ∈ D
| 〈ψ, V (s) + A(s)ψ〉 | ≤ sβ 〈ψ,Hψ〉+ sα‖ψ‖2.

Applying Lemma 3.2 shows that

(−∞,−sα) ∩ spec(H(s)) = ∅. (3.19)

Combining (3.18) and (3.19), it immediately follows that spec(H(s)) = Σ1(s)∪
Σ2(s) where

Σ1(s) = spec(H(s)) ∩ [C(s)− sα,C(s) + sα′]
Σ2(s) = spec(H(s)) ∩ [C(s) + (1− sβ)γ − sα′′, ∞).

�

In the above result, we derive stability of the spectral gap above the
ground-state energy assuming that the Hamiltonian H(s) has a decomposi-
tion of the form (3.15) that satisfies conditions (i)–(iii) of Theorem 3.4. In our
application, the decomposition of this kind that we find depends extensively on
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properties of the ground-state projections. However, whenever such a decom-
position exists, Lemma 3.2 implies stability of all higher gaps (a, b)∩ spec(H),
not just the ground-state gap. This is summarized in the following corollary.

Corollary 3.5 (Higher-order gaps). Suppose that H(s), s ∈ R, has a decompo-
sition of the form (3.15) satisfying the assumptions of Theorem 3.4, and that
(a, b) ∩ spec(H) = ∅ where 0 < a < b. Then, for all 0 ≤ s < β−1,

((1 + sβ)a + sα, (1− sβ)b− sα) ∩ spec(H(s)) = ∅. (3.20)

where α is as in Theorem 3.4.

Proof. The proof of this result runs just as that of Theorem 3.4 with the alter-
ation that P is the spectral projection associated with (−∞, a]. By replacing
both α′ and α′′ with α in (3.16)–(3.17), one finds that (3.20) again follows
from applying Lemma 3.2. �

In general, it is far from obvious when a Hamiltonian H(s) has a decom-
position of the form (3.15). In the time-honored quantum mechanics tradition,
considering H̃(s) = U(s)∗H(s)U(s) with a cleverly chosen unitary transforma-
tion U(s), can be very helpful. We will use the unitary transformations given
by the spectral flow, see (2.38)–(2.40). While the main focus of this paper
is spectral gap stability of quantum spin systems, the spectral flow automor-
phism is well defined and its key property, i.e., (2.41), holds in a more general
context, see [83]. As a consequence, the approach presented in this paper can
be applied to more general systems.

3.2.1. Using the Spectral Flow for Spectral Gap Stability. Recall that given
a quantum spin system on a ν-regular metric space (Γ, d) with quasi-local
algebra AΓ, we consider a family of finite volume Hamiltonians of the form

HΛ(s) = HΛ + sVΛp , s ∈ R

with Λp ⊆ Λ ∈ P0(Γ) as defined in (2.36). We denote by γΛ the spectral gap
of HΛ above the ground-state energy (which we normalize to be zero), and
define ΣΛ

1 (s) and ΣΛ
2 (s) as before, see (2.31). For any 0 < γ < γΛ, the goal is

to find a lower bound for

sΛ
γ =sup{s′ ∈ [0, 1] : gap(HΛ(s)) = dist(ΣΛ

1 (s),ΣΛ
2 (s)) ≥ γ for all 0 ≤ s ≤ s′}.

(3.21)
This will be achieved by applying Theorem 3.4 to the Hamiltonian H̃Λ(s) =
αs(HΛ(s)) where αs : AΛ → AΛ is the spectral flow, defined as in (2.38)–(2.40)
with ξ = γ. The advantage of considering H̃Λ(s) is that its spectral projection
P̃ (s) associated to ΣΛ

1 (s) is constant for all 0 ≤ s ≤ sΛ
γ . Specifically, if P (s) is

the spectral projection of HΛ(s) associated with ΣΛ
1 (s), then by (2.41)

P̃ (s) = αs(P (s)) = P (0), for all 0 ≤ s ≤ sΛ(γ).

If the model defined by HΛ is frustration-free and the ground states sat-
isfy an LTQO condition (i.e., are sufficiently indistinguishable) as described in
Sect. 5, then we can construct a decomposition of the form (3.15) from Theo-
rem 3.4 for any interaction Φ defining the perturbation VΛp which has a finite
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F -norm for an F -function of sufficient decay. Specifically, we will construct the
following type of decomposition:

Claim 3.6 (Decomposition of the equivalent Hamiltonian). Under appropriate
assumptions on the ground states of HΛ, and with sufficient decay on Φ, one
can write

αs(HΛ(s)) = HΛ + VΛ(s) + ΔΛ(s) + EΛ(s) + CΛ(s)1l (3.22)

with the following properties:
(i) P (0)ΔΛ(s)P (0) = ΔΛ(s), and there is a constant δΛ > 0 so that ‖ΔΛ(s)‖ ≤

sδΛ.
(ii) There is a constant εΛ > 0 so that ‖EΛ(s)‖ ≤ sεΛ.
(iii) There is a constant βΛ > 0 so that | 〈ψ, VΛ(s)ψ〉 | ≤ sβΛ 〈ψ,HΛψ〉 for all

ψ ∈ HΛ.

The conditions above imply that VΛ(0) = ΔΛ(0) = EΛ(0) = 0. For our
definition of CΛ(s) in Sect. 5, see specifically (5.9), one can verify that CΛ(s)→
0 as s → 0. In any case, Theorem 3.4 applies with A(s) = ΔΛ(s) + EΛ(s),
α = α′ = (δΛ + εΛ) and α′′ = εΛ, to give

ΣΛ
1 (s) ⊆ [C(s)− s(δΛ + εΛ), C(s) + s(δΛ + εΛ)],

ΣΛ
2 (s) ⊆ [C(s) + (1− sβΛ)γΛ − sεΛ,∞).

These inclusions imply

gap(HΛ(s)) := dist(ΣΛ
1 (s),ΣΛ

2 (s)) ≥ γΛ − s(βΛγΛ + δΛ + 2εΛ), (3.23)

from which the following lower bound holds:

sΛ
γ ≥

γΛ − γ

βΛγΛ + δΛ + 2εΛ
. (3.24)

Using a similar estimate combined with Corollary 3.5, we can also obtain a
lower bound on the range of s for which higher order gaps remain open.

It is important to note that, in general, the constants βΛ, δΛ, and εΛ
appearing in the lower bound for sΛ

γ depend on the finite volume Λ. Our
proof of stability of the spectral gap will require an increasing and absorbing
sequence of finite volumes Λn ↑ Γ such that

γ0 = inf
n≥1

gap(HΛn
) = inf

n≥1
γΛn

> 0.

In this case, we have defined stability of the spectral gap by the property that

inf
n≥1

sΛn
γ > 0 for all 0 < γ < γ0.

This form of stability implies that the quantum spin model has a non-vanishing
gap in the thermodynamic limit whenever the perturbation parameter is suffi-
ciently small (see Sects. 6 and 7 for details). For our proof of stability, we will
also require that our increasing and absorbing sequence of finite volumes can
be associated with a suitable choice of perturbation regions Λp

n ↑ Γ, and that
given any ε, δ > 0, there is N ≥ 1 sufficiently large so that δΛn

< δ and εΛn
< ε

for all n ≥ N . Moreover, we must also show that supn βΛn
≤ β <∞. This will
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be the task in the next couple of sections. But first, we identify a condition on
the perturbation for which a relative form bound is straightforward to derive.

3.3. A Class of Form Bounded Interactions

In this section, we consider a class of perturbations of frustration-free models
for which a relative form bound can be derived quite simply. The unperturbed
model is defined on HΛ =

⊗
x∈ΛHx, where Hx are arbitrary, not necessar-

ily finite-dimensional complex Hilbert spaces. The unperturbed Hamiltonian
HΛ ≥ 0 is assumed to be frustration-free but not necessarily bounded. As
detailed below, the perturbation VΛ will be assumed to be given in terms of
a bounded anchored interaction. We will show that if the interaction terms
of the perturbation annihilate the ground states of HΛ, one can calculate a
constant β > 0 such that

| 〈ψ, VΛψ〉 | ≤ β 〈ψ,HΛψ〉 for all ψ ∈ dom(HΛ). (3.25)

In this section, we study a system defined on a finite set Λ equipped with
a metric d. Often, and in later sections, Λ will be a finite subset of a ν-regular
metric space (Γ, d), and Γ is thought of as infinite, but this does not play a
role here.

To state the result, we will use two families of subsets of Λ. The first are
the balls, which are labeled by x ∈ Λ and n ≥ 0:

bΛ
x (n) = {y ∈ Λ | d(x, y) ≤ n}.

The second family is also labeled by x ∈ Λ and n ≥ 0, and we denote those sets
by Λ(x, n). We require bΛ

x (n) ⊂ Λ(x, n), for all x ∈ Λ and n ≥ 0. For example,
the Λ(x, n) could be balls for another metric. In some situations, we may take
Λ(x, n) = bΛ

x (n). The balls are used to describe the decay of the perturbations
and to define the indistinguishability radius needed for the LTQO condition,
see (2.9), while the gap of the local Hamiltonians HΛ(x,n) will feature promi-
nently in the relative form bound we derive. The indistinguishability radius
and LTQO on the one hand and the local ground-state gaps on the other, in
principle, are two unrelated aspects of the models we study. Therefore, good
choices for these two families of finite sets need not be the same. The balls with
respect to a natural choice of metric for expressing the indistinguishability ra-
dius, may not be the most convenient shape of finite volumes for estimating
the local gaps. Therefore, we maintain the freedom to chose Λ(x, n) distinct
from the balls bΛ

x (n).
There will be a further property we require of the sets Λ(x, n). We

formulate it here for the case where � := diam(Λ) is finite, but the defini-
tion and discussion carries over to the infinite situation without change. Let
S = {Λ(x, n) ⊂ Λ | x ∈ Λ, 1 ≤ n ≤ �}. In the following definition c and ζ are
positive constants.

Definition 3.7 (Family of partitions of (c, ζ)-polynomial growth separating S).
T = {Tn | 1 ≤ n ≤ �} is a family of partitions of (c, ζ)-polynomial growth
separating S if for each n, Tn = {T i

n : i ∈ In} is a partition of Λ with
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|In| ≤ cnζ and such that

Λ(x, n) ∩ Λ(y, n) = ∅ for all x, y ∈ T i
n with x �= y. (3.26)

The canonical choice of Λ(x, 0) := {x} and T0 = {Λ(x, 0) : x ∈ Λ} allows
for these notions to be extended to n = 0, but this will not play an important
role in our arguments. Moreover, in application, such partitions Tn may only
be required for values n larger than some threshold R, see, e.g., Theorem 3.8.

The collection of volumes S that can be separated by a family of parti-
tions of polynomial growth enters the proof of Theorem 3.8 through a combi-
natorial argument. It is because of this argument that working with anchored
interactions is convenient.

Example (Separating partition on Z
ν). Consider Γ = Z

ν with, e.g., the �∞-
metric, and let Λ = [−L,L]ν , L ≥ 1. Take S to be the collection of balls, i.e.,
Λ(x, n) = bΛ

x (n) for all relevant x and n. We construct a family of partitions
T = {Tn : 1 ≤ n ≤ 2L + 1} which is of (3ν , ν)-polynomial growth and
separates S. To define the n-th partition, first set In = [0, 2n + 1)ν . Clearly,
this set satisfies the polynomial condition as

|In| = (2n + 1)ν ≤ (3n)ν .

We then define the n-th parition Tn = {T x
n : x ∈ In} of Λ by

T x
n = {z ∈ Λ : zi ≡ xi mod (2n + 1), i = 1, . . . , ν}.

Fix x ∈ In. By construction, d(y, z) ≥ 2n+1 for any two distinct sites y, z ∈ T x
n

and so bΛ
y (n) ∩ bΛ

z (n) = ∅. Thus, Tn separates S as desired.

The local Hamiltonians HΛ0 , for any Λ0 ⊂ Λ, are defined in terms of
a finite-range, frustration-free interaction η : P0(Λ) → Aloc

Λ . As mentioned
before, Λ is a fixed finite set here. Let PΛ0 be the orthogonal projection onto
the ground-state space, ker(HΛ0), where

HΛ0 =
∑

X⊂Λ0

η(X). (3.27)

Recall that the frustration-free property guarantees that if Λ0 ⊂ Λ1, then

PΛ0PΛ1 = PΛ1PΛ0 = PΛ1 . (3.28)

Let R ≥ 0 denote the range of the interaction η and assume R ≤ � :=
diam(Λ). In general, R should be thought of ‘small’ relative to � = diam(Λ).
Given a collection of finite volumes S = {Λ(x, n)}, we define the local gaps,
γ(n), 1 ≤ n ≤ �, by

γ(n) = inf
x∈Λ

gap(HΛ(x,n)). (3.29)

In concrete situations of interest, we usually have HΛ(x,n) �= 0, for all x ∈ Λ
and n ≥ R. To deal with the situations where some HΛ(x,n) = 0, we define
gap(0) =∞.
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Given S with a family of separating partitions of (c, ζ)-growth as defined
in Definition 3.7, Theorem 3.8 provides conditions on which a self-adjoint op-
erator Φ ∈ AΛ written as

VΛ =
∑

x∈Λ

�∑

n=R

Φ(x, n), Φ(x, n)∗ = Φ(x, n) ∈ AbΛx (n) (3.30)

can be form-bounded by HΛ with an explicit constant β, as in (3.25). Note
that in (3.30) we have grouped terms together so that the summation starts
with n = R; compare, e.g., with more general anchored interactions as in
(2.43). We do this as there are many cases of interest for which HbΛx (n) = 0
(i.e., PbΛx (n) = 1l) for n < R. Thus, given (3.31), we choose to use the range R
as the lower bound in (3.30). However, this is not strictly necessary as long as
(3.31) holds.

Theorem 3.8. Let HΛ be a frustration-free Hamiltonian (not necessarily bounded),
and S be a collection of sub-volumes of Λ with positive local gaps γ(n) > 0 for
n ≥ R. Assume there exists a family of partitions, T = {Tn : R ≤ n ≤ �},
of (c, ζ)-polynomial growth that separates S. Suppose VΛ ∈ AΛ is as in (3.30)
and satisfies

Φ(x, n)PbΛx (n) = PbΛx (n)Φ(x, n) = 0, x ∈ Λ, R ≤ n ≤ �. (3.31)

Then, for all ψ ∈ domHΛ,

|〈ψ, VΛ ψ〉| ≤ β 〈ψ,HΛ ψ〉 (3.32)

where, given G(n) = maxx∈Λ ‖Φ(x, n)‖:

β = c

�∑

n=R

nζG(n)
γ(n)

. (3.33)

Note that in the case that γ > 0 is a local uniform gap for S, that

β ≤ c

γ

�∑

n=R

nζG(n). (3.34)

The proof of Theorem 3.8, which follows the argument of [72, Proposi-
tion 2], uses the collection of finite volumes S as well as the associated family
of partitions of polynomial growth, T , separating S to define self-adjoint op-
erators Qi

n and Φi
n as follows. For each n with R ≤ n ≤ �, let PΛ(x,n) be

the orthogonal projection onto the ground-state space of HΛ(x,n), and define
QΛ(x,n) = 1l − PΛ(x,n). Denoting by Tn = {T i

n : i ∈ In} the n-th separating
partition, for each i ∈ In we define self-adjoint operators

Hi
n =

∑

x∈T i
n

HΛ(x,n), Qi
n =

∑

x∈T i
n

QΛ(x,n), V i
n =

∑

x∈T i
n

Φ(x, n). (3.35)

Since the partition part T i
n has the separating property, i.e. Λ(x, n)∩Λ(y, n) =

∅ for all distinct pairs x, y ∈ T i
n, we see that each of these operators is a sum
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of commuting terms, i.e., for all x, y ∈ T i
n

[HΛ(x,n),HΛ(y,n)] = 0, [QΛ(x,n), QΛ(y,n)] = 0, [Φ(x, n),Φ(y, n)] = 0.
(3.36)

Moreover, since each HΛ(x,n) is non-negative, the separating property of T i
n

also implies that Hi
n ≤ HΛ. Therefore, since the local gaps necessarily satisfy

γ(n)QΛ(x,n) ≤ HΛ(x,n), the following operator inequalities hold:

γ(n)
∑

i∈In

Qi
n ≤

∑

i∈In

Hi
n ≤ |In|HΛ ≤ cnζHΛ. (3.37)

The proof below uses these facts to determine the claimed form bound.

Proof of Theorem 3.8. As above, fix R ≤ n ≤ �, and for each i ∈ In denote by
Ci the collection of configurations associated to the part T i

n ∈ Tn, i.e.

Ci = {0, 1}T i
n =

{
(σx)x∈T i

n
: σx ∈ {0, 1}

}
. (3.38)

For any σ = (σx) ∈ Ci, define the quantity

S(σ) =
∏

x∈T i
n

[
σx(1l− PΛ(x,n)) + (1− σx)PΛ(x,n)

]
. (3.39)

By the separating property, i.e., (3.26), it follows that [PΛ(x,n), PΛ(y,n)] =
0 for all x, y ∈ T i

n. As a consequence, the set {S(σ) : σ ∈ Ci} forms a mutually
orthogonal family of orthogonal projections that sum to the identity, i.e.

S(σ) = S(σ)∗, S(σ)S(σ′) = δσ, σ′S(σ). and
∑

σ∈Ci

S(σ) = 1l, (3.40)

Let V i
n be as in (3.35). We first show that for any i ∈ In and each ψ ∈ HΛ,

|〈ψ, V i
nψ〉| ≤ G(n)〈ψ, Si

nψ〉 (3.41)

where Si
n ∈ AΛ is defined by

Si
n =

∑

σ∈Ci

|σ|S(σ) with |σ| =
∑

x∈T i
n

σx. (3.42)

Since bΛ
x (n) ⊆ Λ(x, n), the frustration-free property (3.28) implies

PΛ(x,n) = PbΛx (n)PΛ(x,n) = PΛ(x,n)PbΛx (n).

Considering (3.26) and (3.31), the above implies

[Φ(x, n), PΛ(y,n)] = 0 for all x, y ∈ T i
n. (3.43)

As a consequence, [V i
n, S(σ)] = 0 for all σ ∈ Ci, and so

S(σ)V i
nS(σ′) = δσ, σ′

∑

x∈T i
n:

σx=1

S(σ)Φ(x, n)S(σ) (3.44)

for all σ, σ′ ∈ Ci where we have used both (3.40) and (3.31). The bound

‖S(σ)V i
nS(σ)‖ ≤ |σ|G(n) (3.45)
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readily follows. Given this and (3.40), the estimate

|〈ψ, V i
nψ〉| ≤

∑

σ,σ′∈Ci

|〈ψ, S(σ)V i
nS(σ′)ψ〉|

≤
∑

σ∈Ci

‖S(σ)V i
nS(σ)‖〈ψ, S(σ)ψ〉

≤ G(n)〈ψ, Si
nψ〉 (3.46)

holds for any ψ ∈ HΛ as claimed in (3.41).
Now, let Qi

n be as in (3.35). We claim that for any i ∈ In and each
ψ ∈ HΛ,

〈ψ, Si
nψ〉 = 〈ψ,Qi

nψ〉, (3.47)

Since VΛ =
∑�

n=R

∑
i∈In

V i
n, (3.41) and (3.47) would imply

|〈ψ, VΛψ〉| ≤
�∑

n=R

G(n)
∑

i∈In

〈ψ, Si
nψ〉 ≤

�∑

n=R

G(n)
∑

i∈In

〈ψ,Qi
nψ〉, (3.48)

and (3.32) would follow from (3.37). Thus, to complete the proof we need only
verify (3.47).

To prove (3.47), first note that from the separating property of T i
n, and

the fact that PΛ(x,n) is the orthogonal projection onto the kernel of HΛ(x,n),
one has

[QΛ(x,n), PΛ(y,n)] = 0 ∀ x, y ∈ T i
n ⇒ [QΛ(x,n), S(σ)] = 0 ∀ σ ∈ Ci.

(3.49)
From this, we conclude that for all σ, σ′ ∈ Ci,

S(σ)QΛ(x,n)S(σ′) = δσ,σ′QΛ(x,n)S(σ) = δσ,σ′(1l− PΛ(x,n))S(σ) = δσ,σ′σxS(σ).
(3.50)

The following identities are then straightforward:

〈ψ,Qi
nψ〉 =

∑

x∈T i
n

∑

σ,σ′∈Ci

〈ψ, S(σ)QΛ(x,n)S(σ′)ψ〉

=
∑

σ∈Ci

∑

x∈T i
n

σx〈ψ, S(σ)ψ〉

= 〈ψ, Si
nψ〉 (3.51)

as claimed in (3.47). �

Note that the proof provides a form bound of VΛ by
∑

x∈Λ,n≥R QΛ(x,n),
which in general is stronger than (3.32).

4. Initial Steps and Quasi-locality

4.1. Introduction

In this section, we start the analysis of the transformed quantum spin Hamilto-
nians as a first step toward the establishing the properties outlined in Claim 3.6.
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In general, we will use the set-up and notations introduced in Sect. 2. Con-
cretely, as in Sect. 2.3, we consider local Hamiltonians of the form

HΛ(s) = HΛ + sVΛp with 0 ≤ s ≤ 1. (4.1)

Here and throughout this section Λ is a fixed finite subset of a ν-regular metric
space (Γ, d). Balls are defined with respect to Λ: bΛ

x (n) = {y ∈ Λ : d(x, y) ≤ n}
for x ∈ Λ and n ≥ 0. We will refer to HΛ(0) = HΛ as the initial Hamiltonian.
The perturbation, VΛp , is defined with reference to a perturbation region Λp ⊆
Λ. As discussed in Sect. 2.5, we will further assume that both HΛ and VΛp have
been written in anchored form, and in particular, we take

HΛ =
∑

x∈Λ

hx and VΛp =
∑

x∈Λp

∑

n≥R

Φ(x, n). (4.2)

We will assume that the initial Hamiltonian has an interaction radius bounded
by some R ≥ 0, meaning h∗

x = hx ∈ AbΛx (R) for all x ∈ Λ. Later we will
also assume that the initial Hamiltonian is generated by a frustration-free
interaction, however, it is not needed for this section. For convenience, we
will always assume that inf specHΛ = 0. The perturbation VΛp is an anchored
interaction on Λ as in Definition 2.5: Φ(x, n)∗ = Φ(x, n) ∈ AbΛx (n). Note that,
in general, by redefining Φ(x,R) we can assume without loss of generality that
Φ(x, n) = 0 if n < R, as we have above. The anchored forms of HΛ and VΛp

may have been derived by the procedure described in Sect. 2.5.2, but this is
not necessary for the analysis which follows. For notational convenience we
will write

H(s) = H + sV (4.3)
for this family of Hamiltonians satisfying the assumptions detailed above.

Our analysis investigates the ground-state gap, gap(H(s)), as defined in
(2.32). It is convenient to set

γΛ = gap(H(0)) = gap(H). (4.4)

Then, for any 0 < γ < γΛ, recall the quantity sΛ
γ is as defined in (2.33):

sΛ
γ = sup{s′ ∈ [0, 1] : gap(H(s)) ≥ γ for all 0 ≤ s ≤ s′}. (4.5)

If sΛ
γ < 1, then gap(H(sΛ

γ )) = γ. In other words, adding sΛ
γ V to H reduces the

gap from γΛ to γ.
The first step toward the results in Claim 3.6 is to define an anchored

interaction Φ(1) such that the Hamiltonian transformed by the spectral flow
satisfies

αs(H(s)) = H + V (1)(s) with V (1)(s) =
∑

x∈Λ

Φ(1)
x (s) and

Φ(1)
x (s) =

∑

n≥R

Φ(1)(x, n, s). (4.6)

Moreover, the following two properties hold. First, with P (0) the spectral
projection onto the ground-state space of H(0) = H, we have

[Φ(1)
x (s), P (0)] = 0 for all x ∈ Λ and 0 ≤ s ≤ sΛ

γ . (4.7)
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Second, the anchored terms described in (4.6) satisfy the estimate

‖Φ(1)(x, n, s)‖ ≤ sG(1)(n) for all x ∈ Λ, n ≥ R, and 0 ≤ s ≤ 1. (4.8)

Here G(1)(n) vanishes as n→∞ at a certain rate, specified by a decay class, a
notion we define in Definition 4.5. These two properties are proved in Propo-
sition 4.2 and Theorem 4.8, respectively.

We will express the decay assumptions on the perturbation using a par-
ticular form of F -function on (Γ, d). Let F0 : [0,∞)→ (0,∞) be an F -function
on (Γ, d). By ν-regularity, we can take F0 as in (2.16), but it is not necessary
to assume this explicit form here. In any case, we will call this F0 the base
F -function. As in Sect. 2.2.3, given any g : [0,∞) → [0,∞) which is non-
decreasing and sub-additive, the function F : [0,∞)→ (0,∞) defined by

F (r) = e−g(r)F0(r) for any r ≥ 0 (4.9)

is also an F -function on (Γ, d). We will further assume that the weight e−g

decays at least as fast as a stretched exponential, i.e., there is some a > 0 and
0 < θ ≤ 1 for which

g(r) ≥ arθ for all r ≥ 0. (4.10)

For ease of later reference, we summarize the basic assumptions on the
initial (unperturbed) Hamiltonian H and the perturbation V , see (4.3), in the
following.

Assumption 4.1 (Assumptions on H and V ). For a quantum spin system de-
fined on a finite (Λ, d) we impose the following conditions.

(i) H is described by a finite-range, frustration-free interaction in anchored
form of maximal radius R ≥ 0 as follows:

H =
∑

x∈Λ

hx with h∗
x = hx ∈ AbΛx (R). (4.11)

(ii) The perturbation is given in terms of Λp ⊂ Λ and Φ(x, n)∗ = Φ(x, n) ∈
AbΛx (n) for R ≤ n ≤ diam(Λ), i.e.

V =
∑

x∈Λp

∑

n≥R

Φ(x, n), (4.12)

and there is a weighted F -function F as in (4.9) for g of the form (4.10),
and a constant ‖Φ‖1,F such that

∑

x∈Λp

∑

n≥R:
y,z∈bΛx (n)

|bΛ
x (n)|‖Φ(x, n)‖ ≤ ‖Φ‖1,F F (d(y, z)), for all y, z ∈ Λ, (4.13)

and
‖Φ(x,m)‖ ≤ ‖Φ‖1,F F (max(0,m− 1)), m ≥ R. (4.14)

We note that for an anchored interaction satisfying (2.42), for example
the ones derived for a general interaction as in Sect. 2.5.2, (4.14) follows from
(4.13).



436 B. Nachtergaele et al. Ann. Henri Poincaré

4.2. Application of the Spectral Flow

An essential tool for our analysis here is the spectral flow discussed in Sect. 2.3.
Consider a fixed value 0 < γ < γΛ. For each 0 ≤ s ≤ 1, we denote by αs the
spectral flow automorphism of AΛ as defined in (2.40). Here we have taken
ξ = γ and we suppress this in our notation. A crucial property is that for
s ∈ [0, sΛ

γ ], that is when gap(H(s)) ≥ γ, we have α(P (s)) = P (0), where P (s)
is the spectral projection of H(s) corresponding to Σ1(s) as defined in (2.31)
with Σ1(0) = {0}.

For each fixed s ∈ [0, 1], we have the Heisenberg dynamics associated to
(4.3):

τ
(s)
t (A) = eitH(s)Ae−itH(s), for A ∈ AΛ and t ∈ R. (4.15)

We also consider the family of linear maps {Fs}s∈[0,1] with Fs : AΛ → AΛ

given by

Fs(A) =
∫

R

τ
(s)
t (A)wγ(t) dt for all A ∈ AΛ and 0 ≤ s ≤ 1. (4.16)

Here wγ is the real-valued function in L1(R) defined in (6.32) of Section VI.B
in [83], and we will refer to {Fs}s∈[0,1] as the family of integral operators with
weight function wγ . As in the case of the spectral flow, we have suppressed the
dependence of this family on the value of γ > 0 to ease notation. One readily
checks that:

(i) Since H(s) generates the Heisenberg dynamics τ
(s)
t ,

Fs(H(s)) = H(s) for all 0 ≤ s ≤ 1. (4.17)

(ii) With this particular choice of weight function wγ ,

[Fs(A), P (s)] = 0 for all A ∈ AΛ and each 0 ≤ s ≤ sΛ
γ . (4.18)

Equation (4.18) follows from the fact that the Fourier transform of wγ has
support in [−γ, γ], which immediately implies (1l− P (s))Fs(A)P (s) = 0. See,
e.g., [47] or [83, Lemma 6.8 ].

Consider now the difference

αs(H(s))−H = αs(Fs(H(s)))−F0(H) for all 0 ≤ s ≤ 1, (4.19)

where we have used (4.17) to insert the corresponding integral operators which
leave their generating Hamiltonians invariant. Using H(s) = H + sV , this
difference can be rewritten as

αs(H(s))−H = (αs − id)(Fs(H)) + (Fs −F0)(H) + sαs(Fs(V ))
= K1

s(H) +K2
s(H) +K3

s(V ), (4.20)

where we introduced three families of linear maps {Ki
s}s∈[0,1], with Ki

s : AΛ →
AΛ for each 0 ≤ s ≤ 1 and i = 1, 2, 3, given by

K1
s = (αs − id) ◦ Fs, K2

s = Fs −F0, and K3
s = sαs ◦ Fs. (4.21)

With an eye toward our goal of applying Theorem 3.4, we summarize
(4.20) differently,

αs(H(s)) = H + V (1)(s) for all 0 ≤ s ≤ 1, (4.22)
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where we have set V (1)(s) = K1
s(H) + K2

s(H) + K3
s(V ). By expanding as in

(4.6) we further write

V (1)(s) =
∑

x∈Λ

Φ(1)
x (s) with

Φ(1)
x (s) = K1

s(hx) +K2
s(hx) + χΛp(x) ·

∑

n≥R

K3
s(Φ(x, n)). (4.23)

Here χΛp is the characteristic function of the perturbation region Λp ⊆ Λ, see
(4.2).

Proposition 4.2. With assumptions and notation as above, for all x ∈ Λ,

[Φ(1)
x (s), P (0)] = 0 for all 0 ≤ s ≤ sΛ

γ , (4.24)

where P (0) is the spectral projection onto the ground-state space of H(0) = H
and sΛ

γ is as in (4.5).

Proof. Note that for each x ∈ Λ and any 0 ≤ s ≤ 1, one has

K1
s(hx)+K2

s(hx) = (αs− id)(Fs(hx))+(Fs−F0)(hx) = (αs◦Fs)(hx)−F0(hx).
(4.25)

Thus for x and s as above,

Φ(1)
x (s) = (αs ◦ Fs)(hx)−F0(hx) + sχΛp(x)

∑

n≥R

(αs ◦ Fs)(Φ(x, n)). (4.26)

We now use (4.18). In fact, the case of s = 0 implies that [F0(hx), P (0)] = 0.
Moreover,

[(αs ◦ Fs)(A), P (0)] = αs ([Fs(A), P (s)]) = 0 for all A ∈ AΛ

whenever 0 ≤ s ≤ sΛ
γ , (4.27)

where we have also used (2.41). Given (4.26), we now conclude that
[Φ(1)

x (s), P (0)] = 0 for all x ∈ Λ and 0 ≤ s ≤ sΛ
γ . This completes the

proof. �

4.3. Application of Quasi-locality and Local Decompositions

In this section, we review the notions of quasi-locality and local decompo-
sitions. For the interested reader, more details on this can be found in [83,
Section IV].

A linear map K : AΛ → AΛ is said to satisfy a quasi-locality bound of
order q ≥ 0 if there is a non-increasing function G : [0,∞) → [0,∞) with
limr→∞ G(r) = 0 for which given any sets X,Y ⊂ Λ and observables A ∈ AX

and B ∈ AY , the bound

‖[K(A), B]‖ ≤ |X|q‖A‖‖B‖G(d(X,Y )) (4.28)

holds. Any linear map K satisfying (4.28) will be referred to as quasi-local. As is
well-known, Lieb–Robinson bounds are useful in demonstrating quasi-locality
of the Heisenberg dynamics associated to sufficiently short-range interactions.
For the analysis at hand, we will need explicit quasi-locality bounds for other
maps as well; for example, the spectral flow automorphism, as introduced
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in Sect. 2.3, and various weighted integral operators, see e.g., (4.16). Before
describing these particular estimates, let us continue with some generalities.

One important fact about quasi-local maps is that they can be approx-
imated by strictly local maps with errors quantified in terms of their decay
function, i.e., the function G in (4.28) above. To make this precise, we recall
the notion of localizing maps and local decompositions. For any X ⊆ Λ, de-
note by Π̃Λ

X the normalized partial trace over HΛ\X , i.e., the unique linear
map Π̃Λ

X : AΛ → AX for which

Π̃Λ
X(A⊗B) = Tr[B]A for all A ∈ AX and B ∈ AΛ\X , (4.29)

where Tr[B] denotes the normalized trace of B as an operator on the finite
dimensional HΛ\X . If X = Λ, then the above map is understood to act as the
identity, i.e., Π̃Λ

Λ(A) = A for all A ∈ AΛ. We will denote by ΠΛ
X the map from

AΛ to AΛ defined by A 	→ Π̃Λ
X(A)⊗ 1lΛ\X . We refer to these maps {ΠΛ

X}X⊂Λ

as localizing, or strictly local, maps on AΛ. The choice of notation stems from
a more general discussion of localizing maps for quantum lattice systems, see
[83, Section IV]. As we are only considering quantum spin systems here, the
normalized partial trace is a simple realization of these more general maps.

Given these localizing maps, it is also convenient to introduce the corre-
sponding local decompositions. Let x ∈ Λ, n ≥ 0, and for any m ≥ n define a
map ΔΛ

x,n;m : AΛ → AΛ by setting

ΔΛ
x,n;m =

{
ΠΛ

bΛx (n) if m = n,

ΠΛ
bΛx (m) −ΠΛ

bΛx (m−1) if m > n.
(4.30)

Note that each ΔΛ
x,n;m has range contained in AbΛx (m), regarded as a sub-

algebra of AΛ. Moreover, one has that
M∑

m=n

ΔΛ
x,n;m(A) = ΠΛ

bΛx (M)(A) for each M ≥ n and all A ∈ AΛ. (4.31)

Since Λ is finite, for each x ∈ Λ, there is M sufficiently large so that bΛ
x (M) = Λ.

In this case, for any integer n, we have that

A =
∑

m≥n

ΔΛ
x,n;m(A) for all A ∈ AΛ (4.32)

and the sum on the RHS above is finite.
A more general version of the following lemma is given in [83, Lemma 5.1].

It provides a simple estimate for strictly local approximations of quasi-local
maps.

Lemma 4.3. Let K : AΛ → AΛ be a quasi-local map satisfying (4.28). For any
x ∈ Λ, n ≥ 0, A ∈ AbΛx (n), and each m ≥ n, one has that

‖K(A)−ΠΛ
bΛx (m)(K(A))‖ ≤ 2|bΛ

x (n)|q‖A‖G(m− n) (4.33)

and as a result

‖ΔΛ
x,n;m(K(A))‖ ≤ 4|bΛ

x (n)|q‖A‖G(m− n− 1) for all m > n. (4.34)
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4.3.1. First Estimates. The goal of this section is to prove Theorem 4.8. We
begin by stating a crucial technical estimate that we will prove in Sect. 4.3.2.

Lemma 4.4. Under Assumption 4.1, the three families of maps {Ki
s}s∈[0,1],

i = 1, 2, 3, as defined in (4.21), satisfy the following locally bounded and quasi-
local estimates:

(i) Locally bounded: There are numbers Bi ≥ 0 and pi ≥ 0 for which: given
any X ⊂ Λ,

‖Ki
s(A)‖ ≤ s ·Bi|X|pi‖A‖ for any A ∈ AX , (4.35)

In fact, p1 = 2, p2 = 1, and p3 = 0.
(ii) Quasi-local: There are numbers qi ≥ 0 and non-increasing functions Gi :

[0,∞)→ [0,∞) for which: given X,Y ⊂ Λ and observables A ∈ AX and
B ∈ AY ,

‖[Ki
s(A), B]‖ ≤ s · |X|qi‖A‖‖B‖Gi(d(X,Y )). (4.36)

In fact, limr→∞ Gi(r) = 0 and q1 = 2, q2 = 2, and q3 = 1.

Lemma 4.4 demonstrates that the three families of maps introduced in
(4.21) are locally bounded and quasi-local with estimates that are uniform in
s ∈ [0, 1]. As will be established in the next section, our quasi-locality bounds
yield explicit decay functions Gi, for i = 1, 2, 3. Rather than compiling all the
various estimates we obtain, we prefer to describe a class of decay functions
which captures, in principle, the worst case scenario in all these bounds. To
this end, for any ξ > 0, introduce a function fξ : [0,∞)→ (0,∞) by setting

fξ(r) =

⎧
⎨

⎩

e2

4 if 0 ≤ r ≤ ξ−1e2,

ξr
(ln(ξr))2 if r > ξ−1e2.

(4.37)

In what follows, we will frequently make reference to the following decay class:

Definition 4.5. Let η, ξ, and θ be positive numbers. We will say that a function
G : [0,∞) → (0,∞) is of decay class (η, ξ, θ) if for every 0 < η′ < η, there
are positive numbers C1, C2, a, and d, with C1 ≥ C2e

−η′fξ(adθ), for which the
estimate

G(r) ≤
{

C1 if 0 ≤ r ≤ d

C2e
−η′fξ(arθ) if r > d

(4.38)

holds for all r ≥ 0. Here, fξ is as in (4.37) above.

Remark 4.6. Our estimates will frequently use basic properties of these decay
classes. First, note that each of these decay classes is closed under addition
and multiplication by non-negative scalars. Next, if G is in a particular decay
class, then for any p > 0 and c > 0, the functions

G1(r) = (1 + r)pG(r) and moreover G2(r) =
∑

n≥�cr�
npG(n) (4.39)

are both in the same decay class, as one easily checks.
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Remark 4.7. The proof of Lemma 4.4 actually establishes that each of the
functions Gi is of a particular decay class. More precisely, let η > 0 be the
number in (4.57) below. Take ξ = γ/2v to be the ratio of γ, the fixed number
(strictly less than γΛ) which is used in the definition of the spectral flow, and
2v where v is an estimate on the Lieb–Robinson velocity for the dynamics cor-
responding to the family of Hamiltonians H(s) under investigation, see (4.53)
and (4.54). Finally, let θ be as in (4.10). The proof of Lemma 4.4 demonstrates
that each Gi is of decay class (η, γ

2v , θ). In particular, if γ, v, and ‖Φ‖1,F sat-
isfy volume-independent estimates, then these decay functions may be chosen
independent of the volume.

We can now state the main result of this section.

Theorem 4.8. Under Assumption 4.1, the transformed Hamiltonian, see (4.22),
can be written as

αs(H(s)) = H + V (1)(s) with V (1)(s) =
∑

x∈Λ

∑

m≥R

Φ(1)(x,m, s) (4.40)

for all 0 ≤ s ≤ 1. Here the terms above satisfy

Φ(1)(x,m, s)∗ = Φ(1)(x,m, s) ∈ AbΛx (m) for all x ∈ Λ, m ≥ R, and 0 ≤ s ≤ 1,
(4.41)

and for x, m, and s as above, the bound

‖Φ(1)(x,m, s)‖ ≤ s ·G(1)(m) (4.42)

holds for some function G(1) : [0,∞) → (0,∞) in the decay class (η, γ
2v , θ).

Here, the parameters in this triple are as in Remark 4.7.

Remark 4.9. (i) As will be clear from the proof below, a choice for the de-
cay function G(1) can be made explicit in terms of various, previously
introduced decay functions. More importantly, when γ, v, and ‖Φ‖1,F

satisfy volume-independent estimates, G(1) may be chosen in a volume-
independent manner as well.

(ii) We note that, technically, no gap assumption is used in the proof of The-
orem 4.8. In fact, if the spectral flow used to transform the Hamiltonian,
see (4.40), is defined with respect to any ξ > 0, as in (2.40), then Theo-
rem 4.8 still holds and the resulting decay function G(1) is in the decay
class (η, ξ

2v , θ).

Proof. Recall from Sect. 4.2, see (4.20)–(4.23), that for all 0 ≤ s ≤ 1

αs(H(s)) = H + V (1)(s) with V (1)(s) =
∑

x∈Λ

Φ(1)
x (s), (4.43)

where

Φ(1)
x (s) = K1

s(hx) +K2
s(hx) + χΛp(x) ·

∑

n≥R

K3
s(Φ(x, n)). (4.44)

For i = 1, 2, 3, the families of maps {Ki
s}s∈[0,1] are as in (4.21), and χΛp is

the characteristic function of Λp ⊆ Λ. From Lemma 4.4, each of the maps Ki
s
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is locally bounded and quasi-local. In this case, the terms on the right-hand-
side of (4.44) can be approximated by strictly local terms with error estimates
controlled using Lemma 4.3 as follows:

Φ(1)
x (s) =

∑

m≥R

Φ(1)(x,m, s) (4.45)

where we used the local decompositions from (4.30) to define

Φ(1)(x,m, s) = ΔΛ
x,R;m(K1

s(hx)) + ΔΛ
x,R;m(K2

s(hx)) + χΛp(x)

·
m∑

n=R

ΔΛ
x,n;m(K3

s(Φ(x, n))). (4.46)

We need only estimate these terms as in (4.42).
First, consider the case of m = R. One has that

‖Φ(1)(x, R, s)‖ ≤ ‖ΠΛ
bΛx (R)(K1

s(hx))‖ + ‖ΠΛ
bΛx (R)(K2

s(hx))‖ + ‖ΠΛ
bΛx (R)(K3

s(Φ(x, R)))‖

≤ s‖hx‖
2∑

i=1

Bi|bΛ
x (R)|pi + s‖Φ(x, R)‖B3|bΛ

x (R)|p3 (4.47)

where we have used the form of the local decompositions, see (4.30), and
Lemma 4.4(i). Since Λ is finite, each of maxx∈Λ ‖hx‖, maxx∈Λ ‖Φ(x,R)‖, and
maxx∈Λ |bΛ

x (R)| are as well, and it is clear that an estimate of the form (4.42)
holds.

For m > R, we estimate as follows:

‖Φ(1)(x,m, s)‖ ≤ ‖ΔΛ
x,R;m(K1

s(hx))‖+ ‖ΔΛ
x,R;m(K2

s(hx))‖

+
m∑

n=R

‖ΔΛ
x,n;m(K3

s(Φ(x, n)))‖

≤ 4s

(
‖hx‖

2∑

i=1

|bΛ
x (R)|qiGi(m−R− 1)

+
m−1∑

n=R

|bΛ
x (n)|q3‖Φ(x, n)‖G3(m− n− 1)

)

+sB3|bΛ
x (m)|p3‖Φ(x,m)‖ (4.48)

where we have used Lemma 4.4(ii) as input for the bounds on the local de-
compositions proven in Lemma 4.3.The first two terms on the right-hand-side
of (4.48) clearly decay in m, and moreover, the final term, which corresponds
to n = m in (4.46) and arises from local bounds as in (4.47), may be fur-
ther estimated using (4.14). We need only extract decay from the terms with
R ≤ n ≤ m− 1. Since G3 is non-increasing and q3 = 1, we find that

�m/2�−1∑

n=R

|bΛ
x (n)|q3‖Φ(x, n)‖G3(m− n− 1) ≤ ‖Φ‖1,F F (R− 1)G3(m/2) (4.49)
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whereas
m−1∑

n=�m/2�
|bΛ

x (n)|q3‖Φ(x, n)‖G3(m−n−1) ≤ G3(0)‖Φ‖1,F F (�m/2�−1) (4.50)

both using (4.14) to control the interaction terms.
To summarize, we have shown that for m > R,

‖Φ(1)(x,m, s)‖ ≤ s

(
4max

x∈Λ
‖hx‖

) 2∑

i=1

|bx(R)|qiGi(m−R− 1)

+s‖Φ‖1,F [4F (R− 1)G3(m/2) + 4G3(0)F (�m/2� − 1)
+B3κ

p3mp3νF (m− 1)] (4.51)

As indicated in Remark 4.7, each function Gi, for i = 1, 2, 3, is in the decay
class (η, γ

2v , θ), and the function F decays even faster. Using Remark 4.6, we
conclude that the bound above is also in this decay class, and this completes
the proof. �

Remark 4.10. If the initial perturbation V is a anchored interaction, as in
Definition 2.6, satisfying (2.42) then by arguing as in Appendix A, it is clear
that V (1)(s) is a s-dependent anchored interaction that satisfies (2.44). In fact,
one easily checks that s 	→ Φ(1)(x,m, s) is continuous for each choice of (x,m),
and this result also follows from the more general discussion found in [83,
Section IV.B.1].

We end this section with an estimate of the global terms Φ(1)
x anchored

at sites x outside the original perturbation region Λp.

Lemma 4.11. Under Assumption 4.1, consider the transformed Hamiltonian
αs(H(s)), as in (4.22).

Let N ≥ R and take (η, γ
2v , θ) as in Remark 4.7.

Then there is a function G : [0,∞)→ (0,∞) of decay class (η, γ
2v , θ) for

which the global term Φ(1)
x (s) as in (4.23) satisfies

‖Φ(1)
x (s)‖ ≤ 2s‖hx‖ ·G(N) (4.52)

for all x ∈ Λ with d(x,Λp) ≥ N and 0 ≤ s ≤ 1.

We prove this lemma at the end of the next section.

4.3.2. Technical Details of the Quasi-local Estimates. In this section, we will
prove the technical estimates claimed in Lemma 4.4 as well as Lemma 4.11
which will be useful for arguments in Sect. 5.

The estimates which form the core of Lemma 4.4 are proven using various
bounds on the composition of quasi-local maps as established in [83, Section
V.C]. As input, we must first quantify quasi-local bounds on the Heisenberg
dynamics, various integral operators, and the spectral flow. We turn to this
topic first.

Under Assumption 4.1, it is well-known that the Heisenberg dynamics
associated to the Hamiltonians H(s), see (4.3), satisfies a quasi-locality bound.
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In fact, an application of Theorem 2.3, here we first use Proposition 2.9, shows
that for X,Y ⊂ Λ with X ∩ Y = ∅ and any A ∈ AX and B ∈ AY , one has
that

‖[τ (s)
t (A), B]‖ ≤ 2‖F0‖

CF
|X|‖A‖‖B‖ev|t|−g(d(X,Y )), (4.53)

see e.g., (2.28). For the sake of uniform estimates, note that v is no larger than

v ≤ 2CF

(
κRν

F (R)
·max

x∈Λ
‖hx‖+ ‖Φ‖1,F

)
. (4.54)

To be clear, if H is obtained from a uniformly bounded interaction and (4.13)
holds with Λp = Λ = Γ, then this bound on v is uniform with respect to
s ∈ [0, 1] and all finite volumes Λ ⊂ Γ.

Let us now turn to estimates for two families of integral operators. For
each ξ > 0, define two families of linear maps {Fξ

s }s∈[0,1] and {Gξ
s}s∈[0,1], with

Fξ
s ,Gξ

s : AΛ → AΛ, given by

Fξ
s (A) =

∫

R

τ
(s)
t (A)wξ(t) dt and Gξ

s (A) =
∫

R

τ
(s)
t (A)Wξ(t) dt (4.55)

for all A ∈ AΛ and 0 ≤ s ≤ 1. As above, τ
(s)
t is the Heisenberg dynamics

associated to H(s) and here wξ,Wξ ∈ L1(R) are the real-valued weight func-
tions defined in [83, Section VI.B]. Both of these families of maps are bounded
uniformly in s. In fact, one has that

‖Fξ
s (A)‖ ≤ ‖A‖ and ‖Gξ

s (A)‖ ≤ ‖Wξ‖1‖A‖ for all A ∈ AΛ and 0 ≤ s ≤ 1,
(4.56)

where we have used that wξ is L1-normalized.
An important consequence of the results proven in [83, Section VI], see

specifically Lemma 6.5, Lemma 6.10, and Lemma 6.11, is that the integral
operators defined above in (4.55) satisfy quasi-locality estimates that are uni-
form with respect to 0 ≤ s ≤ 1. The following lemma summarizes the above-
mentioned results proven in [83]. Before we state it, recall that in (4.37) we
introduced a sub-additive, non-decreasing function fξ : [0,∞) → (0,∞) for
any ξ > 0. Moreover, let η > 0 be the number defined by setting

η

(
1 +

∞∑

n=2

1
n ln(n)2

)
= 1. (4.57)

One readily checks that η ∈ (2/7, 1).

Lemma 4.12. For each ξ > 0, let {Fξ
s }s∈[0,1] and {Gξ

s}s∈[0,1] denote the families
of integral operators introduced in (4.55) above. If the corresponding Heisenberg
dynamics satisfies (4.53), then with η > 0 as in (4.57): given any 0 < ε < 1
and all X,Y ⊂ Λ the bound

sup
0≤s≤1

‖[Kξ
s(A), B]‖ ≤ 2‖A‖‖B‖|X|Gε

K(d(X,Y )) (4.58)
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holds for all A ∈ AX , B ∈ AY , and K ∈ {F ,G}. There is a number d∗
ε > 0

for which one may take

Gε
F (d) =

{
1 if 0 ≤ d ≤ d∗

ε

min
{

1, c
(

Cξ
v + 27

7 e4fξε
(g(d))2

)
e−ηfξε (g(d))

}
otherwise,

(4.59)
and

Gε
G(d) =

{
‖Wξ‖1 if 0 ≤ d ≤ d∗

ε

min
{
‖Wξ‖1,

(
C
2v + 243

49ξη ce4fξε
(g(d))3

)
e−ηfξε (g(d))

}
otherwise.

(4.60)
In fact, one may take d∗

ε to be the smallest value of d for which

max

[
9,

√
ηξε

ε

]
≤ ln(ξεg(d)) where ξε =

(1− ε)ξ
v

. (4.61)

Here v and g are as in (4.53) and we set C = 2‖F0‖
CF

. In addition, c is related
to the L1-normalization of wξ, see [83, Section VI.B].

For this proof of stability, decay functions, such as those in (4.59) and
(4.60) above, will frequently enter. Rather than tracking the precise details
of all of these bounds, we find it convenient use the notion of decay class
introduced in Definition 4.5 to characterize the worst case estimate these
bounds produce. With this in mind, we re-state a more pragmatic version
of Lemma 4.12.

Lemma 4.13. Under Assumption 4.1, take 0 < γ < γΛ where γΛ denotes the
initial spectral gap as in (4.4). Denote by {Fs}s∈[0,1] and {Gs}s∈[0,1] the families
of integral operators defined as in (4.55) with ξ = γ in both cases. For each
K ∈ {F ,G}, there is a function GK of decay class (η, γ

2v , θ) for which given
any X,Y ⊂ Λ,

sup
0≤s≤1

‖[Ks(A), B]‖ ≤ 2‖A‖‖B‖|X|GK(d(X,Y )) (4.62)

for all A ∈ AX and B ∈ AY .

Proof. This lemma is just a special case of Lemma 4.12 where we have taken
ξ = γ. Although the assumption that γ is related to the size of the initial
spectral gap is not used in this estimate, this is the specific value of ξ which
will be used in all our applications, e.g., it is for this value that Proposition 4.2
holds. Moreover, we have taken ε = 1/2 to be concrete, but this is not crucial.
Finally, the particular parameters of the decay class are: η > 2/7 is as in (4.57),
v may be taken as in (4.54), and θ is from the stretched exponential decay of
the weight, see (4.10). �

Remark 4.14. As is clear from Lemma 4.12, the decay functions, denoted by
GK in Lemma 4.13, depend only on γ and v. In particular, if γ and v are
assumed to be volume independent, then so too are these decay functions.
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The final step before proving Lemma 4.4 is to recall the quasi-locality
estimates for the spectral flow established in [83, Section VI.E.2]. As before,
take 0 < γ < γΛ and denote the generator of the spectral flow by

D(s) =
∫

R

τ
(s)
t (V )Wγ(t) dt = Gs(V ) for all 0 ≤ s ≤ 1. (4.63)

Recalling (2.38) and (4.55), we have taken ξ = γ and suppressed the depen-
dence of the maps D and G on γ. Note that we have written the above generator
D as the composition of a strictly local interaction, i.e., V , with a quasi-local
map, i.e., Gs. A proof of quasi-locality estimates for the dynamics generated by
such a quasi-locally transformed interaction is the content of [83, Section V.D].
For the convenience of the reader, we briefly review these proofs, specifically
in the context of anchored interactions, in Appendix A. The basic idea is that
local decompositions, see (4.30), can be used to re-write the generator D(s) as

D(s) =
∑

x∈Λp

∑

m≥R

Ψ(x,m, s) (4.64)

where for each x ∈ Λp, m ≥ R, and 0 ≤ s ≤ 1, we have set

Ψ(x,m, s) =
m∑

n=R

ΔΛ
x,n;m(Gs(Φ(x, n))). (4.65)

For the desired quasi-locality bounds, we will need estimates on the above
interaction terms. Here we use results proven in Appendix A. First, recall that
the family of maps {Gs}s∈[0,1] satisfies a uniform (in s) local bounded, see
(4.56), as well as a uniform quasi-local estimate of order one, see Lemma 4.13.
Next, recall that V satisfies (4.13). Together, these estimates imply that The-
orem A.2 holds pointwise in s, and moreover, since the corresponding decay
functions GG and F are both in the decay class (η, γ

2v , θ), we have further sat-
isfied the assumptions of Corollary A.3. We conclude that for every 0 < μ < η,
there is an F -function Fμ

Ψ on (Γ, d) for which
∑

x∈Λp

∑

m≥R:
y,z∈bx(m)

‖Ψ(x,m, s)‖ ≤ Fμ
Ψ(d(y, z)) (4.66)

and we stress this bound is uniform with respect to 0 ≤ s ≤ 1. Moreover,
for any ζ > ν + 1 there are positive numbers C1, C2, a, and d, with C1 ≥
C2e

−μfγ/2v(adθ), for which one may take Fμ
Ψ with the form Fμ

Ψ = FΨ,0 · F dec
Ψ,μ

where:

FΨ,0(r) =
1

(1 + r)ζ
and F dec

Ψ,μ(r) =
{

C1 if 0 ≤ r ≤ d,

C2e
−μfγ/2v(arθ) if r > d.

(4.67)

Remark 4.15. With an eye toward future statements of uniformity, note that
Theorem A.2 and Corollary A.3 together demonstrate that the choice of decay
functions Fμ

Ψ appearing in (4.66) above can be made explicit in terms of the
decay function F associated to V and the decay function GG as introduced in
Lemma 4.13. In cases where γ and v can be estimated uniformly in the finite
volume, in particular a volume-independent analogue of (4.13) is assumed,
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then the choices of decay functions in (4.66) and (4.67) may be taken volume-
independent as well.

As a consequence of (4.66), we obtain quasi-local estimates for the spec-
tral flow from Lieb–Robinson bounds. More precisely, as is discussed in Sect. 2.3,
see (2.39) and (2.40), the map D(s) is the generator of the spectral flow au-
tomorphism αs. In this case, an application of Theorem 2.3 (combined again
with Proposition 2.9) shows that for any 0 < μ < η and any X,Y ⊂ Λ with
X ∩ Y = ∅, the quasi-local estimate

‖[αs(A), B]‖ ≤ 2‖A‖‖B‖
C

(
e2sC − 1

) ∑

x∈X

∑

y∈Y

Fμ
Ψ(d(x, y)) (4.68)

holds for all A ∈ AX , B ∈ AY , and 0 ≤ s ≤ 1. Here, to ease notation, we have
denoted by C = CF μ

Ψ
the convolution constant associated to the F -function

Fμ
Ψ.

We can now present to proof of Lemma 4.4.

Proof of Lemma 4.4:. We will treat each family of maps separately.
Estimates for {K1

s}s∈[0,1]: Recall that for each 0 ≤ s ≤ 1, the map K1
s :

AΛ → AΛ is defined by

K1
s(A) = [(αs − id) ◦ Fs](A) for all A ∈ AΛ. (4.69)

For this family of maps, we will use [83, Lemma 5.10] to obtain both the local
bound and the quasi-local estimate. To apply Lemma 5.10, we need a priori
estimates for the maps being composed.

Let us first consider Fs. A local bound of order zero for Fs was established
in (4.56). Moreover, the bound (4.62) in Lemma 4.13 demonstrates a quasi-
locality estimate for Fs of order 1. In the latter bound, Lemma 4.13 also
establishes that the decay function GF is in the decay class (η, γ

2v , θ), see
Definition 4.5 for more details. As the notation suggests, we stress that both
of these estimates hold uniformly with respect to 0 ≤ s ≤ 1.

Let us now consider αs − id. Here it will be crucial that the pre-factors
in the estimates for αs − id are linear in s. To see this, we proceed as follows.
Note that for each A ∈ AΛ and 0 ≤ s ≤ 1, the equality

(αs − id)(A) = αs(A)−A =
∫ s

0

d
dr

αr(A) dr = i

∫ s

0

αr([D(r), A]) dr, (4.70)

holds. For any 0 < μ < η and each A ∈ AX , the bound

‖(αs − id)(A)‖ ≤ 2‖A‖
∑

z∈Λp

∑

m≥R:
bΛz (m)∩X �=∅

∫ s

0

‖Ψ(z,m, r)‖dr

≤ 2‖A‖
∑

x∈X

∑

w∈Λp

∫ s

0

∑

z∈Λp

∑

m≥R:
x,w∈bΛz (m)

‖Ψ(z,m, r)‖dr

≤ 2s‖A‖‖Fμ
Ψ‖|X| (4.71)
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follows from (4.64) and (4.66). In this case, the local bound claimed in (4.35)
now follows from [83, Lemma 5.10(i)]. Here we have used that the local bound
for αs− id is of order one for all 0 ≤ s ≤ 1, and moreover, each moment of the
decay function GF is finite. One may take p1 = 2.

For the quasi-local estimate on αs − id, with a linear pre-factor in s, we
argue as follows. It is clear that for any X,Y ⊂ Λ, the bound

‖[(αs − id)(A), B]‖ ≤ 2‖(αs − id)(A)‖‖B‖ (4.72)

holds for all A ∈ AX and B ∈ AY . For any 0 < μ < η, we have the local
bound (4.71) and moreover, if X ∩ Y = ∅, then

‖[(αs − id)(A), B]‖ = ‖[αs(A), B]‖ ≤ 4se2C‖FΨ,0‖|X|‖A‖‖B‖F dec
Ψ,μ(d(X,Y ))

(4.73)
where for the final inequality above, we have used (4.68), the mean value
theorem, and the factorized form of the F -function Fμ

Ψ, see (4.67). In this
case, the estimate claimed in (4.36) now follows from [83, Lemma 5.10(ii)].
One may take q1 = 2. For sufficiently large r, the resulting decay function G1

has the form

G1(r) ∼ (r/2)νF dec
Ψ,μ(r/2) +

∞∑

n=�r/2�
(1 + n)νGF (n). (4.74)

Here ∼ indicates that we have ignored certain r-independent pre-factors. These
include factors from the local bounds on αs − id and Fs, factors from the
quasi-local bounds on αs − id and Fs, and factors of κ from the ν-regularity
assumption. One can, however, make an explicit choice for the resulting decay
function using the statement of [83, Lemma 5.10]. In any case, we conclude
that G1 is of decay class (η, γ

2v , θ), see e.g., comments in Remark 4.6.
Estimates for {K2

s}s∈[0,1]: Recall that for each 0 ≤ s ≤ 1, the map K2
s :

AΛ → AΛ is defined by

K2
s(A) = Fs(A)−F0(A) for all A ∈ AΛ. (4.75)

To estimate, we find it useful to observe that K2
s can be re-written as a com-

position. Recall that the mapping δV : AΛ → AΛ defined by

δV (A) = i[V,A] for all A ∈ AΛ (4.76)

is called the derivation associated to V . In terms of this mapping, note that

K2
s(A) = Fs(A)−F0(A) =

∫

R

(
τ

(s)
t (A)− τ

(0)
t (A)

)
wγ(t) dt

=
∫

R

∫ t

0

d
dr

τ (s)
r ◦ τ

(0)
t−r(A) dr wγ(t) dt

=
∫

R

∫ t

0

iτ (s)
r

(
[H(s)−H(0), τ (0)

t−r(A)]
)

dr wγ(t) dt

= s(Gs ◦ δV )(A). (4.77)
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In the last line above, we used that the distributional derivative of Wγ satisfies

d
dt

Wγ(t) = −wγ(t) + δ0(t) (4.78)

as is discussed in [83, Section VI.B].
We are now in a position to apply [83, Lemma 5.8]. As before, we first

collect the relevant a priori bounds on the maps being composed. For Gs, (4.56)
establishes a local bound of order zero, while (4.62) in Lemma 4.13 provides a
quasi-locality estimate of order one. Again, the corresponding decay function
GG is in the decay class (η, γ

2v , θ) and both of these estimates hold uniformly
with respect to 0 ≤ s ≤ 1.

The assumed norm bound on V , see (4.13), guarantees that the corre-
sponding derivation δV is locally bounded and quasi-local. More precisely, the
local bound of order one

‖δV (A)‖ ≤ 2‖Φ‖1,F ‖F‖|X|‖A‖ for all A ∈ AX with X ⊂ Λ, (4.79)

holds, and whenever X,Y ⊂ Λ with X ∩ Y = ∅, one has that

‖[δV (A), B]‖ ≤ 4‖Φ‖1,F ‖F0‖|X|‖A‖‖B‖e−g(d(X,Y )) (4.80)

for any A ∈ AX and B ∈ AY . More details on these calculations can be
found in [83, Section V.B, Example 5.4]. Note that the weight e−g decays
at the stretched exponential rate governed by (4.10) which is faster than the
previously indicated decay classes.

Applying [83, Lemma 5.8 (i)], we find a local bound of the form (4.35)
with p2 = 1. Using [83, Lemma 5.8 (ii)], a quasi-locality bound of the form
(4.36) holds with q2 = 2. The corresponding decay function G2 is, for suffi-
ciently large values of r, given by

G2(r) ∼ (r/2)νGG(r/2) + e−g(r/2) (4.81)

where we have again ignored certain pre-factors. Since GG is of decay class
(η, γ

2v , θ), so too is G2.
Estimates for {K3

s}s∈[0,1]: Recall that for each 0 ≤ s ≤ 1, the map K3
s :

AΛ → AΛ is defined by

K3
s(A) = s(αs ◦ Fs)(A) for all A ∈ AΛ. (4.82)

It is clear that, for each 0 ≤ s ≤ 1, both αs and Fs are of norm one. As such, a
local bound of the form (4.35) holds for K3

s , and one may take p3 = 0. Quasi-
locality bounds of order one for αs and Fs have already been discussed, see
(4.68) and (4.62) respectively. An application of [83, Lemma 5.8 (ii)] demon-
strates a quasi-locality estimate for K3

s . One may take q3 = 1 and a corre-
sponding decay function G3 is, for sufficiently large values of r, given by

G3(r) ∼ (r/2)νF dec
Ψ,μ(r/2) + GF (r/2) (4.83)

As before, we conclude that G3 is of decay class (η, γ
2v , θ). �

Finally, we include the proof of Lemma 4.11.
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Proof of Lemma 4.11:. Let N ≥ R and take x ∈ Λ with N ≤ d(x,Λp). By
(4.23), we have that

Φ(1)
x (s) = K1

s(hx) +K2
s(hx) for all 0 ≤ s ≤ 1. (4.84)

We will estimate the norm of the terms on the right-hand-side of (4.84) sepa-
rately. Recall that

K1
s(hx) = (αs − id)(Fs(hx)). (4.85)

Let us denote by A = ΠΛ
bΛx (�N/2�)(Fs(hx)). In this case, it is clear that

‖K1
s(hx)‖ ≤ ‖(αs − id)(A)‖+ ‖(αs − id)(Fs(hx)−A)‖. (4.86)

Arguing as in (4.70) - (4.71), we find that

‖(αs − id)(A)‖ ≤ 2‖hx‖
∑

y∈bΛx (�N/2�)

∑

w∈Λp

∫ s

0

∑

z∈Λp

∑

m≥R:
y,w∈bΛz (m)

‖Ψ(z,m, r)‖dr

(4.87)
Here we have used that ‖A‖ ≤ ‖hx‖. Given this, we conclude from (4.66) that

‖(αs − id)(A)‖ ≤ 2s‖hx‖
∑

y∈bx(�N/2�)

∑

w∈Λp

Fμ
Ψ(d(y, w))

≤ 2sκ‖hx‖‖FΨ,0‖(N/2)νF dec
Ψ,μ(N/2) (4.88)

where in the final bound we used that d(y, w) ≥ N/2 for each choice of y and
w as above. In fact,

N ≤ d(x,Λp) ≤ d(x,w) ≤ d(x, y) + d(y, w) ≤ �N/2�+ d(y, w)

This term has decay as claimed in (4.52).
Using the telescoping property of the local decompositions, see (4.31) and

(4.32), one sees that

Fs(hx)−A = (id−ΠΛ
bΛx (�N/2�))(Fs(hx)) =

∑

m≥�N/2�+1

ΔΛ
x,R;m(Fs(hx)). (4.89)

The norm bound

‖(αs − id)(Fs(hx)−A)‖ ≤
∑

m≥�N/2�+1

‖(αs − id)(ΔΛ
x,R;m(Fs(hx)))‖

≤ 2s‖Fμ
Ψ‖

∑

m≥�N/2�+1

|bΛ
x (m)|‖ΔΛ

x,R;m(Fs(hx))‖

≤ 16s‖Fμ
Ψ‖‖hx‖|bΛ

x (R)|
∑

m≥�N/2�+1

|bΛ
x (m)|GF (m−R− 1)

(4.90)

follows from the local bound proven in (4.71) and an application of (4.34) from
Lemma 4.3 which applies given the result of Lemma 4.13. This term also has
decay as claimed in (4.52).

Lastly, we note that using (4.77) and (4.56), the bound

‖K2
s(hx)‖ = s‖(Gs ◦ δV )(hx)‖ ≤ s‖Wγ‖1‖δV (hx)‖ (4.91)
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is clear. Moreover, the estimate

‖δV (hx)‖ ≤
∑

z∈Λp

∑

n≥R:
bΛz (n)∩bΛx (R) �=∅

‖[Φ(z, n), hx]‖

≤ 2‖hx‖
∑

y∈bΛx (R)

∑

w∈Λp

∑

z∈Λp

∑

n≥R:
w,y∈bΛz (n)

‖Φ(z, n)‖

≤ 2‖hx‖‖Φ‖1,F

∑

y∈bx(R)

∑

w∈Λp

F (d(y, w))

≤ 2‖hx‖‖Φ‖1,F ‖F0‖|bΛ
x (R)|e−g(N−R) (4.92)

follows from (4.13) and the form of the corresponding weighted F -function.
Note also that

N ≤ d(x,Λp) ≤ d(x,w) ≤ d(x, y) + d(y, w) ≤ R + d(y, w)

We have shown that

‖Φ(1)
x (s)‖ ≤ ‖K1

s(hx)‖+ ‖K2
s(hx)‖

≤ 2s‖hx‖
(

κ‖FΨ,0‖(N/2)νF dec
Ψ,μ(N/2)

+8‖Fμ
Ψ‖|bΛ

x (R)|
∑

m≥�N/2�
|bΛ

x (m + 1)|GF (m−R)

)

+2s‖Wγ‖1‖hx‖‖Φ‖1,F ‖F0‖|bΛ
x (R)|e−g(N−R) (4.93)

Since all functions of N can be appropriately estimated, this completes the
proof. �

5. Local Topological Quantum Order and Conditions for
Relative Boundedness

For the finite-volume family of Hamiltonians H(s) = H +sV ∈ AΛ, as in (4.3),
we showed in Theorem 4.8 that the unitarily equivalent family αs(H(s)) can
be re-written as

αs(H(s)) = H + V (1)(s) with V (1)(s) =
∑

x∈Λ,m≥R

Φ(1)(x,m, s), (5.1)

with ‖Φ(1)(x,m, s)‖ ≤ sG(1)(m) for a function G(1) of decay class (η, γ
2v , θ).

The goal of this section is to complete the decomposition described in Sect. 3.2.1
and show that αs(H(s)) can be further re-written as

αs(H(s)) = H + V (2)(s) + Δ(s) + E(s) + C(s)1l (5.2)

with terms satisfying the properties described in Claim 3.6, see Theorems 5.1
and 5.3. To do this we need to assume an additional property of the ground
states of the initial Hamiltonian H. This property, which is referred to as
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Λp(K)

Λ

Λp

Figure 2. The perturbation region Λp and effective pertur-
bation region Λp(K). Sites in Λ \Λp(K) have a fixed distance
from the perturbation region. Sites in Λp(K) have indistin-
guishability radii with a fixed lower bound

local topological quantum order (LTQO), is expressed in terms of the indis-
tinguishability radius we introduced in Sect. 2.2.2.

The idea is that the ground states are indistinguishable by perturbations
acting in a region where ‘LTQO holds,’ which typically excludes the boundary
of Λ. This is motivations the following definition of the perturbation region,
Λp ⊆ Λ. Fix a non-increasing function Ω : R → [0,∞) and let rΩ

x be the
corresponding indistinguishability radius associated to x ∈ Λ, see Definition
2.1. Let K,L ≥ 0 with K ≥ R, the bound on the interaction radius of the
initial Hamiltonian H, which we furthermore assume to be frustration free.
Then, define a perturbation region Λp = Λp(K,L) by setting

Λp = {x ∈ Λ : rΩ
y ≥ L + K for all y ∈ bΛ

x (K)}. (5.3)

The estimates proven in this section will depend on K, L, and various decay
functions. When considering the thermodynamic limit, appropriate choices for
L and K will, in particular, depend on the rate at which these functions decay;
more on this in Sect. 6. Let us further introduce

Λp(K) = {x ∈ Λ : d(x,Λp) ≤ K} (5.4)

which we refer to as the effective perturbation region. Given (5.3) and (5.4),
all sites in this effective perturbation region are guaranteed to have an indis-
tinguishability radius of at least L + K:

L + K ≤ rΩ
x for all x ∈ Λp(K). (5.5)

We use this effective perturbation region to partition the global terms of
V (1)(s), see (4.23), into a main term and a remainder term as follows:

V (1)(s) = V
(1)
eff (s) + E(s), (5.6)
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with

V
(1)
eff (s) =

∑

x∈Λp(K)

Φ(1)
x (s) (5.7)

E(s) =
∑

x∈Λ\Λp(K)

Φ(1)
x (s). (5.8)

Let ω denote the ground-state functional associated to the initial Hamiltonian
H, see (2.8), and set

C(s) = ω
(
V

(1)
eff (s)

)
(5.9)

to be the ground-state expectation of V
(1)
eff (s). Given (5.7) and (5.9), an appli-

cation of Theorem 4.8 shows that, in finite volume, C(s)→ 0 as s→ 0. In any
case, we can now write

V (1)(s) = V (2)(s) + Δ(s) + E(s) + C(s)1l, (5.10)

where we have set

V (2)(s) = (1l− PΛ)
(
V

(1)
eff (s)− C(s)1l

)
(1l− PΛ) (5.11)

and
Δ(s) = PΛ

(
V

(1)
eff (s)− C(s)1l

)
PΛ. (5.12)

Note that (5.10) with V (2)(s) and Δ(s) as defined in (5.11) and (7.5), holds
for all 0 ≤ s ≤ sΛ

γ by Proposition 4.2. The off-diagonal terms vanish as all the

global terms Φ(1)
x (s) commute with the ground state projection PΛ associated

to H; note that in the notation of Sect. 4, H = H(0) and PΛ = P (0). Thus,
we have established the desired form of (5.2).

We now show that the terms in (5.2) satisfy the properties described in
Claim 3.6. It is easiest to estimate the remainder terms Δ(s) and E(s) and
so we do this first. Before we do so, we introduce the following quantity as it
appears in a number of our estimates. Set

C(K,L) = 2
∑

m≥K+1

G(1)(m) + κ

⎛

⎝
∑

m≥0

mνG(1)(m)

⎞

⎠Ω(L) (5.13)

where G(1) is the decay function obtained in the proof of Theorem 4.8, κ
and ν are from (2.1), and Ω is the non-increasing function used to define the
indistinguishability radius. In applications, this quantity will be small for large
values of K and L. The following result makes explicit that properties (i) and
(ii) of Claim 3.6 hold for the decomposition (5.2) just obtained.

Theorem 5.1. Under Assumption 4.1, fix a non-increasing function Ω : R →
[0,∞) and define E(s) and Δ(s), as in (5.8) and (7.5) respectively, for all
0 ≤ s ≤ 1.

(i) For all s, one has that PΛΔ(s)PΛ = Δ(s) and ‖Δ(s)‖ ≤ sδ where one
may take

δ = |Λp(K)|C(K,L) (5.14)
and C(K,L) is as in (5.13) above.
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(ii) For all s, ‖E(s)‖ ≤ sε where one may take

ε = 2

⎛

⎝
∑

x∈Λ\Λp(K)

‖hx‖

⎞

⎠G(K) (5.15)

and G is the decay function obtained in the proof of Lemma 4.11.

Proof. We first prove (ii). Using (5.8), it is clear that

‖E(s)‖ ≤
∑

x∈Λ\Λp(K)

‖Φ(1)
x (s)‖ ≤ 2s

⎛

⎝
∑

x∈Λ\Λp(K)

‖hx‖

⎞

⎠G(K) (5.16)

where the final inequality above follows from (5.4) and an application of
Lemma 4.11.

Now, consider (i). The claim that PΛΔ(s)PΛ = Δ(s) for all 0 ≤ s ≤ 1
is immediate given (7.5). To prove (5.14), it is convenient to introduce some
additional notation. Recall (5.7) and (5.9). Linearity guarantees that we may
write

V
(1)
eff (s)−C(s)1l =

∑

x∈Λp(K)

Φ(1)
x,ω(s) where Φ(1)

x,ω(s) = Φ(1)
x (s)−ω

(
Φ(1)

x (s)
)

1l.

(5.17)
Moreover, in terms of the decomposition established in the proof of Theo-
rem 4.8, see specifically (4.45), we may further write

Φ(1)
x,ω(s) =

∑

m≥R

Φ(1)
x,ω,m(s) where

Φ(1)
x,ω,m(s) = Φ(1)(x,m, s)− ω

(
Φ(1)(x,m, s)

)
1l. (5.18)

Now, using (7.5) and (5.17), the triangle inequality yields

‖Δ(s)‖ ≤
∑

x∈Λp(K)

‖PΛΦ(1)
x,ω(s)PΛ‖. (5.19)

For each fixed x ∈ Λp(K), using (5.18), we may further estimate

‖PΛΦ(1)
x,ω(s)PΛ‖ ≤

∑

m≥R

‖PΛΦ(1)
x,ω,m(s)PΛ‖

=
K∑

m=R

‖PΛΦ(1)
x,ω,m(s)PΛ‖+

∑

m>K

‖PΛΦ(1)
x,ω,m(s)PΛ‖. (5.20)

With the final term above, we use the bound (4.42) proven in Theorem 4.8,
i.e.

∑

m>K

‖PΛΦ(1)
x,ω,m(s)PΛ‖ ≤ 2

∑

m>K

‖Φ(1)(x,m, s)‖ ≤ 2s
∑

m>K

G(1)(m) (5.21)

For the remaining term, we use the frustration-free property of the ground
state, which implies that for each x ∈ Λp(K), we have

PΛ = PΛPbx(L+K) = Pbx(L+K)PΛ. (5.22)
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Using the bound (2.9) from Definition 2.1, as well as (5.5), we find that for
x ∈ Λp(K) and R ≤ m ≤ K,

‖PΛΦ(1)
x,ω,m(s)PΛ‖

≤ ‖Pbx(L+K)Φ(1)(x,m, s)Pbx(L+K) − ω(Φ(1)(x,m, s))Pbx(L+K)‖
≤ |bΛ

x (m)|‖Φ(1)(x,m, s)‖Ω(L + K −m). (5.23)

Combining (5.20), (5.21), and (5.23), we obtain that for each x ∈ Λp(K)

‖PΛΦ(1)
x,ω(s)PΛ‖ ≤ s

⎛

⎝2
∑

m≥K+1

G(1)(m) + Ω(L)
∑

m≥R

|bΛ
x (m)|G(1)(m)

⎞

⎠ ,

(5.24)
where we have again applied (4.42) from Theorem 4.8; now to the right-hand-
side of (5.23). Recalling (5.13), the bound claimed in (5.14) follows from (5.19),
(5.24), and ν-regularity, i.e. (2.1). �

The remainder of the section is devoted to proving property (iii) in
Claim 3.6. To establish this form bound, we will show that the term V (2)(s),
see (5.11) above, can be written as an s-dependent, anchored interaction which
satisfies the assumptions of Theorem 3.8. That is the content of Theorem 5.3.
First, we prove the following lemma. For its statement, recall the notation
established in the proof of Theorem 5.1; namely (5.17) and (5.18)

Lemma 5.2. Under the assumptions of Lemma 4.4, fix a non-increasing func-
tion Ω : R→ [0,∞). Let x ∈ Λp(K). For all 0 ≤ s ≤ sΛ

γ and any m ≤ n ≤ rΩ
x ,

we have

∥∥∥∥∥

m∑

k=R

Φ(1)
x,ω,k(s)PbΛx (n)

∥∥∥∥∥

≤ s

⎡

⎣2
∑

k≥m+1

G(1)(k) +

⎛

⎝√8κ
∑

k≥0

G(1)(k)

⎞

⎠√
mνΩ(n−m)

⎤

⎦

+s

⎡

⎣2
∑

k≥K+1

G(1)(k) + κ

⎛

⎝
∑

k≥0

kνG(1)(k)

⎞

⎠Ω(L)

⎤

⎦ . (5.25)

As we did with the statement of Theorem 5.1, see specifically (5.13), it
is convenient to label the some of the terms above as they frequently appear
below. For any 0 ≤ m ≤ n, set

D(m,n) = 2
∑

k≥m+1

G(1)(k) +

⎛

⎝√8κ
∑

k≥0

G(1)(k)

⎞

⎠√
mνΩ(n−m). (5.26)

The quantity above behaves similarly to C(K,L) in the sense that D(m,n)
should be small if m and n−m are all sufficiently large.
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Proof. Fix x ∈ Λp(K) and consider the observable Am =
∑m

k=R Φ(1)
x,ω,k(s) ∈

AbΛx (m). Since m ≤ n ≤ rΩ
x , an application of Proposition 2.2 shows that

‖AmPbΛx (n)‖ ≤ ‖AmPΛ‖+ ‖Am‖
√

2|bΛ
x (m)|Ω(n−m). (5.27)

Going back to (5.18), we have that

Φ(1)
x,ω(s) =

∑

k≥R

Φ(1)
x,ω,k(s) = Am +

∑

k≥m+1

Φ(1)
x,ω,k(s) (5.28)

and therefore,

‖AmPΛ‖ ≤
∥∥∥Φ(1)

x,ω(s)PΛ

∥∥∥+ 2
∑

k≥m+1

‖Φ(1)(x, k, s)‖. (5.29)

Using Proposition 4.2, the first term above may be re-written as in the LHS of
(5.24) and estimated by sC(K,L). The bound claimed in (5.25) now follows
from the naive bound

‖Am‖ ≤
m∑

k=R

‖Φ(1)
x,ω,k(s)‖ ≤ 2

m∑

k=R

‖Φ(1)(x, k, s)‖ (5.30)

and two applications of (4.42) from Theorem 4.8; once for the final term on
the RHS of (5.29) and once for final estimate in (5.30). �

Finally, to allow for some additional flexibility in the application of the
estimates below, we divide the terms in certain sums according to a function
f with specified properties. This function should be regarded as an additional
free parameter in this set-up. To keep track of terms, we find is convenient to
introduce the quantity �x = �x(Λ) defined for each x ∈ Λ by setting

�x = min{n ∈ Z≥0 : bΛ
x (n) = Λ}. (5.31)

Theorem 5.3. Let f : [0,∞) → [0,∞) be any differentiable function with
f(0) = 0 and 0 < f ′(t) < 1 for all t ≥ 0. Under Assumption 4.1, one can
write

V (2)(s) =
∑

x∈Λp(K)

�x∑

n=R

Φ(2)(x, n, s)

with terms satisfying: for all x ∈ Λp(K), n ≥ R, and 0 ≤ s ≤ sΛ
γ , the following

holds
(i) Φ(2)(x, n, s)∗ = Φ(2)(x, n, s) ∈ AbΛx (n)

(ii) PbΛx (n)Φ(2)(x, n, s) = Φ(2)(x, n, s)PbΛx (n) = 0
(iii) ‖Φ(2)(x, n, s)‖ ≤ 2sG(2)(n), where

G(2)(n)=

{
G(1)(f(n)) +D(�f(n)� − 1, n − 1) + C(K,L) R ≤ n < L+K
∑

k≥f(L+K) G
(1)(k)+D(�f(L+K)�−1, L+K−1)+C(K,L) n≥L+K

(5.32)

and the quantities C(K,L) and D(m,n) are as in (5.13) and (5.26) re-
spectively.
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Proof of Theorem 5.3. Recall that V (2)(s) is as defined in (5.11). To obtain
the terms Φ(2)(x, n, s), satisfying the conditions of Theorem 5.3, we use the
notation introduced in the proof of Theorem 5.1 to expand. By inserting (5.17),
we have that

V (2)(s) =
∑

x∈Λp(K)

(1l− PΛ)Φ(1)
x,ω(s)(1l− PΛ)

and moreover, with (5.18) we have that for each x ∈ Λp(K),

(1l− PΛ)Φ(1)
x,ω(s)(1l− PΛ) =

�x∑

m=R

(1l− PΛ)Φ(1)
x,ω,m(s)(1l− PΛ). (5.33)

In the argument below, it will be convenient to write Φ(2)(x, n, s) as the sum
of two terms

Φ(2)(x, n, s) = Θ1(x, n, s) + Θ2(x, n, s)

each of which will separately satisfy the conditions of Theorem 5.3.
First, to any x ∈ Λp(K), set

Θ1(x, �x, s) =
∑

m≥f(L+K)

(1l− PΛ)Φ(1)
x,ω,m(s)(1l− PΛ). (5.34)

Since bΛ
x (�x) = Λ, such terms clearly satisfy conditions (i) and (ii) above.

Moreover, an application of Theorem 4.8 shows that

‖Θ1(x, �x, s)‖ ≤ 2
∑

m≥f(L+K)

‖Φ(1)(x,m, s)‖ ≤ 2s
∑

m≥f(L+K)

G(1)(m). (5.35)

Only those terms in (5.33) with R ≤ m < f(L+K) remain to be analyzed.
For these, let us introduce the following sequence of operators:

Ej =

⎧
⎨

⎩

1l− PbΛx (R) j = R
PbΛx (j−1) − PbΛx (j) R + 1 ≤ j ≤ �x

PΛ j = �x + 1.
(5.36)

One readily checks that each Ej is an orthogonal projection, and moreover,

EjEk = δj,kEk with 1l =
�x+1∑

j=R

Ej . (5.37)

In words, this family of projections is mutually orthogonal and sums to the
identity. It is also useful to observe that partial sums telescope, i.e.

1l− PbΛx (n) =
n∑

j=R

Ej for all R ≤ n ≤ �x. (5.38)
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Now, for R ≤ m < f(L + K), set mf = �f−1(m)�. Using (5.38), a short
calculation shows

(1l− PΛ)Φ(1)
x,ω,m(s)(1l− PΛ)

=
�x∑

j,k=R

EjΦ(1)
x,ω,m(s)Ek

= (1l− PbΛx (mf ))Φ(1)
x,ω,m(s)(1l− PbΛx (mf )) +

∑

f−1(m)<j≤�x

Aj,m, (5.39)

where, for all j > f−1(m), we define

Aj,m = EjΦ(1)
x,ω,m(s)(1l− PbΛx (j−1)) + (1l− PbΛx (j))Φ(1)

x,ω,m(s)Ej . (5.40)

From the expression (5.39), we will extract two types of terms: Θ1-terms
and Θ2-terms. Let us first continue defining the Θ1-terms. Note that for each
integer m with R < m < f(L + K),

(m− 1)f < mf < L + K.

This follows from our assumptions on f and, e.g., an application of the mean-
value theorem. As such, each choice of mf corresponds to a unique integer m
and so the term

Θ1(x,mf , s) = (1l− PbΛx (mf ))Φ(1)
x,ω,m(s)(1l− PbΛx (mf )) (5.41)

is well-defined. Note further that we are only considering values of mf <
L + K ≤ rΩ

x ≤ �x, and so there is no overlap with (5.34). For these terms in
(5.41), conditions (i) and (ii) are clear. In fact, since f(m) < m and hence m <
f−1(m), we have that m ≤ �f−1(m)� = mf , and thus Θ1(x,mf , s) ∈ AbΛx (mf ).
To obtain a norm bound, note that since mf ≤ f−1(m) and f is increasing,
we have f(mf ) ≤ m. In this case, again Theorem 4.8 shows that

‖Θ1(x,mf , s)‖ ≤ 2‖Φ(1)(x,m, s)‖ ≤ 2sG(1)(f(mf )). (5.42)

Setting Θ1(x,m, s) = 0 for any integer values not considered above, we have
shown that the Θ1-terms satisfy the conditions of Theorem 5.3 with the norm
estimate

‖Θ1(x, n, s)‖ ≤ 2s ·
{

G(1)(f(n)) R ≤ n < L + K∑
m≥f(L+K) G(1)(m) n ≥ L + K

(5.43)

Going back to (5.33), let us summarize the progress: for each x ∈ Λp(K), we
have written

(1l− PΛ)Φ(1)
x,ω(s)(1l− PΛ) =

�x∑

n=R

Θ1(x, n, s) +
∑

R≤m<f(L+K)

∑

f−1(m)<j≤�x

Aj,m.

(5.44)
We will re-organize the final sum above and label these as Θ2-terms.

For defining the Θ2-terms, it will be convenient to note that the operators
Aj,m, see (5.40), satisfy the following for each R + 1 ≤ j ≤ �x:

(i) A∗
j,m = Aj,m ∈ AbΛx (j) for all m with f−1(m) < j.
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(ii) Aj,mPbΛx (j) = 0 for all m with f−1(m) < j.
(iii) For any n with f−1(n) < j, Lemma 5.2 becomes relevant as

∥∥∥∥∥

n∑

m=R

Aj,m

∥∥∥∥∥ ≤ 2

∥∥∥∥∥

n∑

m=R

Φ(1)
x,ω,mEj

∥∥∥∥∥ ≤ 2

∥∥∥∥∥

n∑

m=R

Φ(1)
x,ω,mPbΛx (j−1)

∥∥∥∥∥ . (5.45)

Here, the final inequality follows from using (2.7) to write Ej = PbΛx (j−1)Ej .

We now define the Θ2-terms. To do so, we interchange the double sum
from (5.44) and isolate those terms for which Lemma 5.2 applies. Namely, note
that

∑

R≤m<f(L+K)

∑

f−1(m)<j≤�x

Aj,m =
∑

R≤m<f(L+K)

∑

f−1(m)<j<L+K

Aj,m

+
∑

R≤m<f(L+K)

∑

L+K≤j≤�x

Aj,m.

For the second collection of terms above, one has that
∑

R≤m<f(L+K)

∑

L+K≤j≤�x

Aj,m =
∑

L+K≤j≤�x

∑

R≤m<f(L+K)

Aj,m, (5.46)

and so we set

Θ2(x, j, s) =
∑

R≤m<f(L+K)

Aj,m for all L + K ≤ j ≤ �x. (5.47)

Based on the observations above, it is clear that these terms satisfy conditions
(i) and (ii). Moreover,

‖Θ2(x, j, s)‖ ≤ 2

∥∥∥∥∥∥

�f(L+K)�−1∑

m=R

Φ(1)
x,ω,mPbΛx (j−1)

∥∥∥∥∥∥

≤ 2

∥∥∥∥∥∥

�f(L+K)�−1∑

k=R

Φ(1)
x,ω,mPbΛx (L+K−1)

∥∥∥∥∥∥
. (5.48)

Here, for the final inequality we have used PbΛx (j−1) = PbΛx (L+K−1)PbΛx (j−1).
Applying Lemma 5.2, for L + K ≤ j ≤ �x we obtain the following uniform
estimate:

‖Θ2(x, j, s)‖ ≤ 2s [D(�f(L + K)� − 1, L + K − 1) + C(K,L)] (5.49)

where C(K,L) and D(m,n) are as defined in (5.13) and (5.26) respectively.
For the remaining terms, observe that

∑

R≤m<f(L+K)

∑

f−1(m)<j<L+K

Aj,m =
∑

f−1(R)<j<L+K

∑

R≤m<f(j)

Aj,m

and thus if we set

Θ2(x, j, s) =
∑

R≤m<f(j)

Aj,m for f−1(R) < j < L + K, (5.50)
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then, as before, these terms satisfy conditions (i) and (ii), and

‖Θ2(x, j, s)‖ ≤ 2

∥∥∥∥∥∥

�f(j)�−1∑

m=R

Φ(1)
x,ω,mPbΛx (j−1)

∥∥∥∥∥∥
≤ 2s [D(�f(j)� − 1, j − 1) + C(K,L)] . (5.51)

Once again, we define Θ2(x, j, s) = 0 for any values of j not considered above.
Finally, set Φ(2)(x, n, s) = Θ1(x, n, s) + Θ2(x, n, s). By construction, it is

clear that these Φ(2)-terms satisfy the conditions of Theorem 5.3, and more-
over, combining the decay bounds from (5.43), (5.49), and (5.51) we find that

‖Φ(2)(x, n, s)‖ ≤ 2sG(2)(n)

as desired. �

In summary, the results of Sects. 3, 4, and 5 can be combined to state, for
any γ ∈ (0, γΛ), a lower bound for the range of the perturbation strength sΛ

γ

so that the spectral gap above the ground states(s) is at least γ, for the system
defined on a finite-volume Λ; recall that a more detailed statement is provided
in Claim 3.6, in particular, see (3.24). It is not a priori obvious when this lower
bound is non-trivial. The next section is devoted to deriving conditions under
which the lower bound is uniformly positive along an increasing and absorbing
sequence {Λn}n≥1 of finite volumes. We call such sequences uniform sequences.
Then, in Sect. 7, we show that the GNS Hamiltonian of the limiting infinite
system has a spectral gap above its ground state energy.

6. Uniform Sequences and the Thermodynamic Limit

6.1. Introduction

So far, we have determined conditions under which we can estimate the spectral
gaps of a continuous family of quantum spin Hamiltonians on a fixed finite
volume. Often we are interested in a uniform lower bound for the spectral gap
for a collection of finite volume families of arbitrarily large size so that we
can derive stability properties of the infinite systems. In this section, we focus
on formulating conditions on families of models labeled by finite sets Λ that
imply such uniform estimates. We leave the discussion of the thermodynamic
limit itself to Sect. 7. We focus on conditions that let us establish a uniform
lower bound for the spectral gap above the ground state along a sequence
of finite systems of increasing size as this is also the foundation for studying
higher gaps, see e.g., Corollary 3.5. We will refer to such sequences as uniform
sequences.

Each finite volume Hamiltonian is defined in terms of one or more in-
teractions, such as the maps η and Φ in Sect. 5. These interactions will for
the most part not depend on n except for necessary modifications generally
designated as boundary conditions. Boundary conditions can be expressed in a
number of different ways and we discuss two common cases: 1) open boundary
conditions, and 2) boundary conditions arising from modifying the metric on
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Λn. The typical situation we have in mind for the second case is periodic or
twisted periodic boundary conditions; for example, when a finite rectangle in
Z

2 is embedded on a torus. More generally, it is often of interest to define the
model on a sequence of triangulations (or other discretizations) of a compact
manifold.

In the latter case we assume one can extend the interaction to include
‘boundary’ terms in the natural way. More precisely, these are the situations
where there is no boundary and we will refer to this case as geometric boundary
conditions. There are other ways to define boundary conditions, which may
involve n-dependence of both the interaction and the metric. These can be
handled by small modifications of the discussion below.

6.2. Uniform Sequences of Finite Systems

The goal of this section is to describe conditions on a model which allow for the
results obtained in Sects. 4 and 5 to hold uniformly along a sequence of finite-
volumes. Our discussion of uniformity covers both common cases of boundary
conditions discussed above.

Uniform Sequences of Finite Volumes: Most interesting quantum spin
models are defined over a metric space (Γ, d) for which Γ has infinite cardi-
nality. To apply the results of Sects. 4 and 5, we must first restrict the model
to an appropriate choice of finite subsets. Let {Λn}n≥1 be an increasing and
absorbing sequence of finite subsets of Γ. To allow for possible boundary con-
ditions, we will further regard each finite subset as a metric space on its own,
i.e., for each n ≥ 1, associate a metric space (Λn, dn) to Λn with a metric
dn satisfying: for each x, y ∈ Γ, there is n(x, y) ≥ 1 sufficiently large so that
dn(x, y) = d(x, y) for all n ≥ n(x, y). By allowing n-dependence of the metric,
we are really including cases where Λn does not have a natural embedding in
Γ but, strictly speaking, it can always be considered as a subset.

Finally, we also assume that these metrics are uniformly ν-regular, i.e.,
there are positive numbers κ and ν for which given n ≥ 1, m ≥ 1, and x ∈ Λn,

|bΛn
x (m)| ≤ κmν where bΛn

x (m) = {y ∈ Λn | dn(x, y) ≤ m}.
We will use diamn(X) to represent the diameter of a set X ⊆ Λn with respect
to the metric dn. We will refer to any sequence {Λn}n≥1 of finite subsets of
Γ satisfying the conditions described above as a uniform sequence of finite
volumes.

Uniformity in the Initial Hamiltonian: We will assume that the initial,
unperturbed Hamiltonian can be associated with a finite-range, uniformly
bounded, frustration-free interaction η. To make this association precise, let
{Λn}n≥1 be a uniform sequence of finite volumes. For each n ≥ 1, we assume
that there is a (non-negative) frustration-free interaction ηn on Λn and write

HΛn
=

∑

X⊆Λn

ηn(X). (6.1)

We assume that the sequence {ηn}n≥1 approximates η in the sense that for
each X ∈ P0(Γ), there is n(X) ≥ 1 for which ηn(X) = η(X) for all n ≥ n(X).
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We further assume that the sequence {ηn}n≥1 has a uniform finite range, in
that there is a number R′ ≥ 0 for which ηn(X) = 0 whenever diamn(X) > R′,
and is uniformly bounded in the sense that

sup
n≥1
‖ηn‖∞ <∞ where ‖ηn‖∞ = sup

X⊆Λn

‖ηn(X)‖ . (6.2)

Lastly, we assume that there is a uniform gap above the ground-state energy
meaning that

γ0 = inf
n≥1

gap(HΛn
) > 0. (6.3)

We will refer to any sequence {HΛn
}n≥1 of Hamiltonians generated by a uni-

form sequence of finite volumes and a corresponding sequence of interactions
{ηn}n≥1 satisfying the constraints above as a uniformly gapped sequence of
initial Hamiltonians.

Example. The situation dn = d �Λn
and ηn = η for each n ≥ 1 corresponds to

traditional open boundary conditions. By modifying the metric on each finite
volume Λn, models with periodic boundary conditions can also be accom-
modated as above. In fact, this construction allows for models with various
boundary conditions such as when dn = d �Λn

but η is modified along the
boundary, i.e., ηn = η + η∂Λn

.

Remark 6.1. Given a uniformly gapped sequence of initial Hamiltonians
{HΛn

}n≥1, the anchoring procedure described in Sect. 2.5.2 applies. In this
case, for each n ≥ 1, one may write

HΛn
=

∑

x∈Λn

h(n)
x (6.4)

with h
(n)
x ≥ 0 and h

(n)
x ∈ AbΛn

x (R) for all x ∈ Λn. Here R ≥ 0 is the maximal
radius associated with this anchoring. This R is independent of n and satisfies
R ≤ R′ + 1. Moreover, as discussed in Sect. 2.5.2, one has that

‖h‖ = sup
n≥1
‖h(n)‖∞ <∞ where ‖h(n)‖∞ = sup

x∈Λn

‖h(n)
x ‖. (6.5)

Remark 6.2. Let Ω : R → [0,∞) be a non-increasing function. Given a uni-
formly gapped sequence of initial Hamiltonians {HΛn

}n≥1 and two sequences
of non-negative numbers {Kn}n≥1, with Kn ≥ R, and {Ln}n≥1, one can define
LTQO regions:

Λp
n = {x ∈ Λn : rΩ

y (Λn) ≥ Kn + Ln for all y ∈ bΛn
x (Kn)}, (6.6)

compare with (5.3), on which our stability argument allows for perturbations.
Note that here the quantity rΩ

y (Λn) represents the indistinguishability radius
of HΛn

at y ∈ Λn, see Definition 2.1. One analogously defines effective pertur-
bation regions

Λp
n(Kn) = {x ∈ Λn : dn(x,Λp

n) ≤ Kn}, (6.7)
compare with (5.4). We note that, for all n ≥ 1, both of these subsets of Λn

are defined with respect to the same fixed non-increasing function Ω. As we
will see, the notion that a model (one for which a choice of Ω has already
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been made) satisfies our stability bounds uniformly requires an appropriate
choice of the sequences {Kn}n≥1 and {Ln}n≥1. Such a choice, however, is not
independent of the perturbation; more on that soon.

Uniformity in the Separating Partitions: In Sect. 3.3, see specifically The-
orem 3.8, we made use of separating partitions, and we here briefly remark on
how this notion can also be made uniform. Let {Λn}n≥1 be a uniform sequence
of finite volumes. For each n ≥ 1, denote by �n = �diamnΛn�. Choose S(n) to
be a collection of subsets of Λn satisfying

S(n) = {Λn(x,m) | x ∈ Λn, R ≤ m ≤ �n} , with bΛn
x (m) ⊂ Λn(x,m). (6.8)

For brevity, we say that any such sequence {S(n)}n≥1 is a sequence of subsets
associated to {Λn}n≥1 which contains balls. Corresponding to such a sequence
{S(n)}n≥1, we will require that there exists a sequence {T (n)}n≥1 of families of
separating partitions which satisfies a polynomial growth bound independent
of n. More precisely, we will assume that there are positive numbers c and ζ
for which given any n ≥ 1, there is a family T (n) of partitions of Λn which
separates S(n) and is of (c, ζ)-polynomial growth in the sense of Definition 3.7.
This means, if we write T (n) = {T (n)

m | 1 ≤ m ≤ �n} and denote each partition
of Λn by T (n)

m = {T (n)
m,i | i ∈ I

(n)
m }, then

(i) Separation: Λn(x,m) ∩ Λn(y,m) = ∅ for any distinct pair x, y ∈ T
(n)
m,i.

(ii) Uniform polynomial growth: |I(n)
m | ≤ cmζ for all n,m.

In this case, we say that {T (n)}n≥1 is a sequence of families of partitions which
separates {S(n)}n≥1 and satisfies a uniform polynomial growth bound.

Remark 6.3. Generally, the existence of such families of partitions with uni-
form polynomial growth is not hard to establish. Typically, one knows the
existence of such sets on Γ. In fact, if there is a collection of finite volumes

S = {Γ(x,m) ∈ P0(Γ) | x ∈ Γ, m ≥ R}, with bΓn
x (m) ⊂ Γn(x,m). (6.9)

and a corresponding family T = {Tm | m ≥ R} of partitions Tm of Γ with
Tm = {Tm,i | i ∈ Im} satisfying:

(i) |Im| ≤ cmζ ;
(ii) for x �= y ∈ T i

m, Γ(x,m) ∩ Γ(y,m) = ∅,
then, along any uniform sequence {Λn}n≥1, an obvious choice for S(n) and
T (n) is obtained through intersection, namely

Λn(x,m) = Γ(x,m) ∩ Λn and T (n)
m = {Tm,i ∩ Λn | i ∈ Im}. (6.10)

Moreover, using ν-regularity, one can show that the set of balls Γ(x,m) =
bx(m) always corresponds to a family of partitions T which separates these
balls and is of (κ, ν)-polynomial growth.

Remark 6.4. Let {Λn}n≥1 be a uniform sequence of finite volumes, {S(n)}n≥1

be any sequence of subsets associated to {Λn}n≥1 which contains balls, and
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{HΛn
}n≥1 be a uniformly gapped sequence of initial Hamiltonians. For each

n ≥ 1 and any R ≤ m ≤ �n, a local gap is defined by setting

γn(m) = inf
{

gap(HΛn(x,m)) | Λn(x,m) ∈ S(n)
}

(6.11)

where the corresponding local Hamiltonians are given by

HΛn(x,m) =
∑

X⊆Λn(x,m)

ηn(X). (6.12)

Since Λn = Λn(x, �n) ∈ S(n) for any n ≥ 1 and x ∈ Λn, the infimum of these
local gaps produces a lower bound on γ0, as in (6.3).

Example. The freedom of choosing appropriate sub-volumes S(n) can be useful
for optimizing the lower bound on γ0. Consider the one-species PVBS model
on Γ = Z

ν as analyzed, e.g., in [16]. This is an example of a model where local
gaps are sensitive to the boundary geometry. In fact, for a particular choice
of parameters, the spectral gap for the Hamiltonians associated with balls
bΛn
x (m) closes as n→∞, but the corresponding gaps remain non-vanishing on

volumes Λn(x,m) ⊃ bΛn
x (m) with slightly slanted boundaries, see [16].

Uniformity in the Perturbations: Here we discuss a class of perturbations
to which our stability results will apply. Let F0 be an F -function on (Γ, d).
This base F -function depends only on Γ, and one may take it as in (2.16). Let
θ ∈ (0, 1]. The class of perturbations we consider are determined by a weighted
F -function F (r) = e−g(r)F0(r) with a weight e−g for which there is some a > 0
such that

g(r) = arθ for all r ≥ 0. (6.13)
Let F denote such a weighted F -function and {Λn}n≥1 a uniform sequence of
finite volumes. We say that a sequence of interactions {Φn}n≥1, with each Φn

an anchored interaction on Λn, decays like F uniformly along {Λn}n≥1 if there
is a non-negative number ‖Φ‖1,F for which

‖Φn(x,m)‖ ≤ ‖Φ‖1,F F (max(0,m− 1))
for all n ≥ 1, x ∈ Λn, R ≤ m ≤ �n, (6.14)

and moreover, supn≥1 ‖Φn‖1,F ≤ ‖Φ‖1,F where

‖Φn‖1,F = sup
x,y∈Λn

1
F (dn(x, y))

∑

z∈Λn

∑

R≤m≤�n:

x,y∈bΛn
z (m)

|bΛn
z (m)|‖Φn(z,m)‖. (6.15)

Here, to be consistent with the notation of Sects. 4 and 5, we organize the
terms in the anchored interactions to start with m = R, the maximal radius
associated with the initial Hamiltonians as discussed in Remark 6.1.

In the case of open boundary conditions, for any anchored interaction
Φ ∈ B1

F (Γ) one may take

‖Φ‖1,F = sup
x,y∈Γ

1
F (d(x, y))

∑

z∈Γ

∑

m≥R:
x,y∈bz(m)

|bz(m)|‖Φ(z,m)‖. (6.16)
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The previous discussions motivate the following definition of a class of
perturbation models. For these we can then formulate the uniformity assump-
tions in Assumption 6.7 that are sufficient to prove stability in Theorem 6.8.

Definition 6.5 (Perturbation models). Consider a quantum spin system defined
on a ν-regular metric space (Γ, d). A perturbation model on (Γ, d) consists of
the following:

(i) A uniform sequence of finite volumes {Λn}n≥1.
(ii) A sequence {S(n)}n≥1 of subsets of {Λn}n≥1 containing balls and a cor-

responding sequence {T (n)}n≥1 of families of partitions which separates
{S(n)}n≥1 and satisfies a uniform polynomial growth bound.

(iii) A uniformly gapped sequence of frustration-free Hamiltonians {HΛn
}n≥1.

(iv) A non-increasing function Ω : R → [0,∞) with limr→∞ Ω(r) = 0 that
defines the indistinguishability radii, rΩ

x (Λn), for each initial Hamiltonian
HΛn

, and two sequences of non-negative numbers {Kn}n≥1 and {Ln}n≥1,
which define the perturbation regions Λp

n as in (6.6).
(v) A weighted F -function F on (Γ, d) with weight satisfying (6.13) for some

θ ∈ (0, 1], and a sequence of anchored interactions {Φn}n≥1 which decays
like F uniformly along {Λn}n≥1.

For each perturbation model and any 0 ≤ s ≤ 1, a sequence of perturbed
Hamiltonians is given by

HΛn
(s) = HΛn

+ sVΛp
n

where VΛp
n

=
∑

x∈Λp
n

∑

m≥R:
bx(m)⊆Λn

Φn(x,m). (6.17)

Remark 6.6. Consider a perturbation model on (Γ, d) in the sense of Defini-
tion 6.5. For each n ≥ 1, the results of Sects. 4 and 5 apply to the perturbed
Hamiltonians HΛn

(s) as in (6.17) above. In fact, if ‖Φ‖1,F is the value es-
timating the corresponding sequence of perturbations {Φn}n≥1, as in (6.14)
and (6.15), then a bound on the Lieb–Robinson velocity associated to the
Heisenberg dynamics generated by HΛn

(s) is

v = 2CF

(
κRν

F (R)
‖h‖+ ‖Φ‖1,F

)
(6.18)

compare with (4.54). Here ‖h‖ is the uniform estimate on the initial Hamil-
tonians, see comments in Remark 6.1, and we stress that this value of v is
uniform in n ≥ 1 and 0 ≤ s ≤ 1. In fact, regarding the sequence of initial
Hamiltonians {HΛn

}n≥1 and the weighted F -function F fixed, this value of
v is further uniform with respect to any sequence of perturbations {Φ′

n}n≥1

satisfying ‖Φ′‖1,F ≤ ‖Φ‖1,F .

In order for a perturbation model as defined above to have a stable spec-
tral gap we will further need to assume uniform boundedness of certain esti-
mates. To turn this property into an assumption for models, let us first recall
some notation from Sect. 5.

Consider a perturbation model as in Definition 6.5. Take γ > 0 with
γ < γ0, the uniform ground state gap, see (6.3), of our sequence of initial
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Hamiltonians. One checks that, for each n ≥ 1, the Hamiltonian HΛn
and per-

turbation VΛp
n
, see e.g. Remark 6.6, satisfy the conditions of Assumption 4.1.

In this case, Theorem 5.1 applies, and the numbers

δn = |Λp
n(Kn)|C(Kn, Ln) (6.19)

compare with (5.14), and

εn = 2

⎛

⎝
∑

x∈Λn\Λp
n(Kn)

‖hx‖

⎞

⎠G(Kn) (6.20)

compare with (5.15), are relevant for our stability analysis. The quantity
C(Kn, Ln), which appears in (6.19) above, is as defined in (5.13). This quan-
tity is defined with respect to a decay function which is obtained by applying
Theorem 4.8 in the finite volume Λn. Given the uniformity imposed by Def-
inition 6.5, there is a single choice which works in all finite volumes, and we
continue to denote this particular decay function by G(1). To be clear, this
function G(1) depends on the choice of γ in that it depends on estimates for
the spectral flow αΛn

s (·) which is defined for ξ = γ as in Sect. 2.4. Moreover,
G(1) also depends on the weighted F -function F , and the sequence of perturba-
tions {Φn}n≥1 through ‖Φ‖1,F . As previously observed, given F and a value of
‖Φ‖1,F , this decay function G(1) holds uniformly for all sequences of anchored
interactions {Φ′

n}n≥1 satisfying ‖Φ′‖1,F ≤ ‖Φ‖1,F . Arguing similarly, there is
a single choice of decay function corresponding to the proof of Lemma 4.11
which holds uniformly in the sense described above. We call this function G,
and it is the function which we use in (6.20).

For the same perturbation model, let us also fix, independent of n, a
differentiable function f : [0,∞)→ [0,∞) with f(0) = 0 and 0 < f ′(t) < 1 for
all t ≥ 0. Given this, one further checks that Theorem 5.3 applies in each finite
volume Λn and determines an anchored interaction V

(2)
n (s) for all 0 ≤ s ≤ sΛn

γ .
Recall that sΛn

γ > 0 is as in (2.33). Given the conclusions of Theorem 5.3, it

is clear that HΛn
, S(n), and V

(2)
n (s) satisfy the conditions of Theorem 3.8 for

each n ≥ 1 and all 0 ≤ s ≤ sΛn
γ . As a result, each V

(2)
n (s) is form bounded by

HΛn
with a pre-factor given by

βn = 2c

�n∑

m=R

mζG
(2)
n (m)

γn(m)
. (6.21)

Recall that the family of partitions of Λn which separates S(n) is uniformly of
(c, ζ)-polynomial growth, and γn(m) is the local gap defined in (6.11). More-
over, G

(2)
n is the decay function obtained in the application of Theorem 5.3;

namely, setting Mn = Kn + Ln

G(2)
n (m)

=

{
G(1)(f(m)) + D(�f(m)� − 1, m − 1) + C(Kn, Ln) R ≤ m < Mn∑

k≥f(Mn) G(1)(k) + D(�f(Mn)� − 1, Mn − 1) + C(Kn, Ln) m ≥ Mn.

(6.22)
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Assumption 6.7 (Uniform perturbation model). We say that a perturbation
model, as in Definition 6.5, is a uniform perturbation model if:

(i) The quantities δn and εn from (6.19)–(6.20) are uniformly bounded from
above, i.e.

δ = sup
n≥1

δn <∞ and ε = sup
n≥1

εn <∞. (6.23)

(ii) There exists a function f as above for which βn from (6.21) satisfies

β = sup
n≥1

βn <∞. (6.24)

We now state our main result on stability for perturbation models as in
Definition 6.5. Recall that stability of the spectral gap, as described at the end
of Sect. 3.2.1, is the property that

sγ = inf
n≥1

sΛn
γ > 0 for all 0 < γ < γ0. (6.25)

Theorem 6.8. Every uniform perturbation model has a stable spectral gap.

Proof. Consider any uniform perturbation model, i.e., a model as in Defini-
tion 6.5 that satisfies Assumption 6.7, and let 0 < γ < γ0, where γ0 is uniform
ground-state gap from (6.3). Gathering our results, we have shown that for
any n ≥ 1 and all 0 ≤ s ≤ sΛn

γ the decomposition:

αΛn
s (HΛn

(s)) = HΛn
+ V (2)

n (s) + Δn(s) + En(s) + Cn(s)1l (6.26)

holds; we refer to the beginning of Sect. 5 for a review of the relevant notation.
Moreover, we have checked that the properties listed in Claim 3.6 are satisfied
with the parameters (δΛ, εΛ, βΛ) replaced by (δn, εn, βn). In fact, by estimating
with the corresponding supremums, for these uniform perturbation models,
the same parameters may be replaced by (δ, ε, β). Similar to the discussion
after Claim 3.6, a finite volume application of Theorem 3.4 yields that for all
0 ≤ s < min{β−1, sΛn

γ },

ΣΛn
1 (s) ⊆ [Cn(s)− s(δ + ε), Cn(s) + s(δ + ε)] and

ΣΛn
2 (s) ⊆ [Cn(s) + (1− sβ)γ0 − sε,∞). (6.27)

Note that in each application of Theorem 3.4 above we use γ0 for γ in the
statement of the theorem. This demonstrates that

diam(ΣΛn
1 (s)) ≤ 2s(δ + ε) (6.28)

and moreover,
gap(HΛn

(s)) = dist
(
ΣΛn

1 (s),ΣΛn
2 (s)

)
≥ γ0 − s(γ0β + δ + 2ε). (6.29)

From (6.29), it is clear that gap(HΛn
(s)) ≥ γ holds whenever s is small enough

so that
γ0 − s(γ0β + δ + 2ε) ≥ γ ⇐⇒ s ≤ γ0 − γ

γ0β + δ + 2ε
. (6.30)

In this case,

sγ = inf
n≥1

sΛn
γ ≥ γ0 − γ

γ0β + δ + 2ε
> 0, (6.31)

and thus the model is stable. �
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For many applications, one is primarily interested in establishing stability
for large finite volumes. In such cases, it suffices to replace the supremums
considered in Assumption 6.7 with limit superiors, and the corresponding gap
estimates likely improve.

Another common situation concerns uniform perturbation models for
which the quantities δn and εn, see (6.19) and (6.20), become vanishingly
small, i.e.

lim
n→∞(δn + εn) = 0. (6.32)

In this situation, for any 0 ≤ s ≤ sγ , the diameter of the ground-state splitting
diam(ΣΛn

1 (s)), see (6.28), tends to zero as n → ∞. It is for this case we will
be able to show spectral gap stability in the thermodynamic limit. This is the
topic of Sect. 7, see specifically Corollary 7.5. For convenience of later reference,
we state this as a corollary.

Corollary 6.9. Consider a uniform perturbation model for which (6.32) holds.
In this case, for each 0 < γ < γ0, there is sγ > 0 for which we have γ′

n(s) and
ε′
n(s) such that

spec
(
HΛn

(s)− EΛn
(s)1l

)
⊆ [0, ε′

n(s)]∪ [γ′
n(s) + ε′

n(s),∞) for all 0 ≤ s ≤ sγ ,
(6.33)

where EΛn
(s) = min spec (HΛn

(s)) and

lim inf
n→∞ γ′

n(s) ≥ γ while lim
n→∞ ε′

n(s) = 0. (6.34)

The previous results also provide estimates on the convergence rates for
γ′

n(s) and ε′
n(s).

In many applications, various simplifications arise naturally. We here
briefly describe these general results in the context of a common family of
systems. Consider models for which:

i. Γ ⊂ Z
ν , ν ≥ 1, with the standard lattice distance, or Γ is a Delone set

in R
ν (typical for models of quasi-crystals), and Λ is a finite subset of Γ.

All these are ν-regular metric spaces.
ii. The unperturbed Hamiltonians HΛ =

∑
x∈Λ hx is frustration-free and of

interaction radius R: hx ∈ Abx(R), ‖hx‖ ≤ 1, for all x ∈ Λ. For X ⊂ Λ,
HX =

∑
x∈X hx has a ground-state gap of at least γ0 > 0.

iii. Given a function G(r) = Ce−arθ

, with C, a, θ > 0, the LTQO property
and sufficient conditions on the perturbations can be stated as follows.
Fix a perturbation region Λp ⊂ Λ and considers a model of the form

HΛ(s) = HΛ + s
∑

x∈Λp

Φ(x, n)

with self-adjoint Φ(x, n) ∈ Abx(n) and ‖Φ(x, n)‖ ≤ ‖Φ‖G(n) for all
x ∈ Γ, n ≥ R. The LTQO condition is expressed in terms of the indistin-
guishability radius rG

x (Λ). There are constants K and L which, in many
cases, can both be chosen as some small fractional power of diam(Λ), for
which the following property is satisfied: for all x ∈ Λ with d(x,Λp) ≤ K,
we have rG

x (Λ) ≥ K + L. This setup covers many finite systems with
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open boundary conditions (specific frustration-free boundary terms can
be included in the definition of hx). It also covers the case where Λ = Γ is
given as an embedding of a finite subset of a lattice on a closed manifold,
such as a torus in the case of periodic boundary conditions. In this situ-
ation one expects rG

x (Λ) ∼ diam(Λ), for all x, and one can take Λp = Λ.
For example this is the case for the Quantum Double models considered
in [21,22,72].
For models satisfying conditions i-iii above and any γ ∈ (0, γ0), our esti-

mates imply the existence of volume-independent, finite numbers Ci, i = 1, 2, 3,
such that with

β =
C1‖Φ‖

γ0
, ε = C2|Λ|G(K1/2), δ = C3|Λ|G(L1/2)

the estimate

gap(HΛ(s)) ≥ γ0 − s(γ0β + δ + 2ε)

holds for all s ∈ [0, sΛ
γ ) and therefore,

sΛ
γ ≥

γ0 − γ

βγ0 + δ + 2ε
.

For models where K and L are allowed to be chosen as fractional powers of
diam(Λ), these estimates are non-trivial.

6.3. Applications

In Definition 6.5 and Assumption 6.7 we formulated general conditions under
which we proved stability of the spectral gap uniform in the volume. Most
items in these conditions are part of the standard setting and straightforward
to verify: a suitable sequence of finite volumes, a uniformly gapped sequence
of initial Hamiltonians, and a class of perturbations that are sufficiently short
range. Following the philosophy of Bravyi–Hastings–Michalakis, we also intro-
duced a decaying function Ω to give a quantitative expression of the LTQO
property through our definition of the indistinguishability radius (2.9). Phys-
ically, this property expresses the local indistinguishability of the different
ground states of the finite-volume Hamiltonians. Verifying a sufficient quan-
titative version of the LTQO condition is, however, less straightforward. In
particular, it is clear from the discussion preceding Assumption 6.7 that doing
this involves a combination of a number of characteristics of the models all at
once. In this section, we discuss what this usually comes down to in practice
in both settings of boundary conditions expressed by boundary terms, and
geometric boundary conditions.

6.3.1. Verifying Assumptions. In this section, we briefly discuss Assumption 6.7
and identify certain situations under which it clearly holds. Throughout, we
assume Γ is infinite. First, observe that if Assumption 6.7 (ii) holds, then the
sequences {Kn}n≥1 and {Ln}n≥1 must satisfy Kn →∞ and Ln →∞. In fact,
their sum, Kn + Ln, cannot be bounded because the function G

(2)
n , see (6.22),

is eventually equal to a non-zero constant whereas the truncated moment in
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(6.21) grows as �n = �diamn(Λn)� → ∞. Therefore, from the structure of G
(2)
n ,

it is clear that both these sequences must be unbounded. For this reason, As-
sumption 6.7 implies that any point x which is eventually in all LTQO regions,
i.e., x ∈

⋂∞
n=m Λp

n, for some m, must satisfy limn→∞ rΩ
x (Λn) =∞.

One concludes that in the general formulation we have given, the ap-
proach is not particularly well-suited when Γ has a boundary, as this is where
LTQO can often fail. Note, however, that in one dimension the method can be
adapted to yield useful results [74]. A similar modification could also handle
other cases of systems with a finite boundary.

One can check that Assumption 6.7 (i) holds whenever

sup
n≥1

�ν
n [C(Kn, Ln) + G(Kn)] <∞. (6.35)

In fact, since ν-regularity guarantees that |Λn| ≤ κ�ν
n, one has that

δn ≤ κ�ν
nC(Kn, Ln) and εn ≤ 2κ‖h‖�ν

nG(Kn). (6.36)

Similarly, if
lim sup

n→∞
�ν
n [C(Kn, Ln) + G(Kn)] = 0, (6.37)

then (6.32) holds.
Under the additional assumption that the local gaps associated to the

unperturbed Hamiltonians decay no faster than a power law, we can formulate
a similar statement about Assumption 6.7 (ii). More precisely, recall that for
each n ≥ 1 and all R ≤ m ≤ �n, we defined finite-volume, local gaps γn(m) in
(6.11). We will say that these local gaps decay no faster than a power law if
there are numbers C > 0 and k ≥ 0 for which, given any n ≥ 1,

γn(m) ≥ C

mk
for all R ≤ m ≤ �n. (6.38)

The situation k = 0 corresponds to the case of uniformly bounded local gaps,
and can be checked in some applications. Given (6.38), one derives from (6.21)
the bound

βn ≤
2c

C

�n∑

m=R

mζ+kG(2)
n (m) (6.39)

From this we conclude that when the local gaps decay no faster than a power
law, as in (6.38), Assumption 6.7 (ii) is satisfied when

∞∑

m=R

mζ+k
(
G(1)(f(m)) + D(�f(m)� − 1,m− 1)

)
<∞

and sup
n≥1

�ζ+k+1
n G(2)

n (Kn + Ln) <∞. (6.40)

Since we only considered perturbation models satisfying Definition 6.5(v),
the functions G and G(1) which frequently enter above are both of decay class
(η, γ

2v , θ), see Definition 4.5. In this case, all moments of these functions are
necessarily finite. As a result, verifying conditions (6.35) and (6.40) above
primarily entails checking that one has adequate decay of Ω, coupled with
appropriate growth of the sequences {Kn}n≥1 and {Ln}n≥1.
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Finally, let us remark that if one assumes at least power law bounds
for the decay of Ω and the growth of {Kn}n≥1 and {Ln}n≥1, a sufficient
condition for stability can be given in terms of an inequality for the exponents.
Specifically, suppose there are α1, α2 ∈ (0, 1) such that the sequences {Kn}n≥1

and {Ln}n≥1 satisfy

Kn ≥ ��α1
n � and Ln ≥ ��α2

n � for each n ≥ 1, (6.41)

where �n = �diamn(Λn)�. Then, Assumption 6.7 holds if Ω(r) is O(r−q) with
q sufficiently large. Assumption 6.7 (i) holds if q ≥ α−1

2 ν. Recalling (5.13), we
find that (6.35) holds whenever

�ν
nΩ(�α2

n ) <∞. (6.42)

Here we have used that both G and G(1) are in decay class (η, γ
2v , θ). Also one

sees that (6.32) holds if q > α−1
2 ν. Furthermore, it suffices to take f(x) = ax

for some a ∈ (0, 1) and Assumption 6.7 (ii) holds if

q ≥ α−1 (2(1 + ζ + k) + αν) (6.43)

where we have set α = min(α1, α2) and α = max(α1, α2). One checks that
(6.43) implies Assumption 6.7 (i), and so for any such value of q, Assump-
tion 6.7 holds with (6.32). To see that (6.43) is sufficient, note that (6.40)
holds whenever both

∞∑

m=R

mζ+k+ν/2
√

Ω((1− a)m− 1) <∞ (6.44)

and
sup
n≥1

�ζ+k+1
n

(
Ω(�α2

n ) + (�′
n)ν/2

√
Ω((1− a)�′

n − 1)
)

<∞ (6.45)

hold. Here we have set �′
n = �α1

n +�α2
n and used (5.26). These claims are readily

checked.

6.3.2. The Case of Geometric Boundary Conditions. In [21,22] and [72] only
sequences of finite systems defined on boxes in Z

ν with periodic boundary
conditions are considered. Periodic boundary conditions are a special case of
what we have called geometric boundary conditions induced by embedding
finite subsets of lattices in a compact manifold (without a boundary). An-
other example are twisted embeddings on a torus, which is a natural setting
to address Lieb-Schultz-Mattis type questions [104]. All these situations are
described by an increasing and absorbing sequence of finite Λn ⊂ Γ that are
equipped with a metric dn that pointwise converges to the metric d on Γ.

The detailed estimates of Sect. 5 are more than is required to handle this
situation and allow us to identify specific classes of interactions for which we
can prove simpler and more useful bounds.

We consider here a perturbation model as in Definition 6.5. For typical
examples such as, e.g. the Toric Code Model, there is a natural choice of decay
function Ω for which the corresponding indistinguishability radius rΩ

x (Λn), see
(2.9), is proportional to the size of the smallest topologically non-trivial closed
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path in Λn that contains x. In such case, the following assumption is typically
known, or readily checked.

Assumption 6.10. For a given perturbation model, there is an increasing se-
quence {rn}n≥1 of positive numbers with

rΩ
x (Λn) ≥ rn for all n ≥ 1 and x ∈ Λn. (6.46)

Due to assumptions we will make later we will also require rn → ∞.
Given Assumption 6.10, our arguments simplify, and we here briefly describe
these changes.

Consider a perturbation model such that Assumption 6.10 holds. In such
a case, it is convenient to take Kn = Ln = rn/2 in Definition 6.5. With this
choice, both the perturbation region, see (6.6), and the effective perturbation
region, see (6.7), are extensive; in fact, Λp

n = Λp
n(rn/2) = Λn for all n ≥ 1. As

a result, the quantity εn, see (6.20), satisfies εn = 0. The analogue of a uniform
perturbation model, i.e. Assumption 6.7, in this case is as follows.

Assumption 6.11. We say that a perturbation model satisfying Assumption 6.10
is uniform if:

i. One has that δ = supn≥1 δn <∞.
ii. There is a non-negative function f with f(0) = 0 and 0 < f ′(t) < 1 for

all t ≥ 0 such that

β = sup
n≥1

βn <∞ where βn =
�n∑

m=R

mζ

γn(m)
G(2)

n (m). (6.47)

Arguing as before, the following is clear.

Theorem 6.12. Every perturbation model satisfying Assumption 6.11 has a sta-
ble spectral gap.

In fact, if such a model additionally satisfies limn→∞ δn = 0, then the
analogue of Corollary 6.9 holds as well. Of course, one can replace the sup’s
in Assumption 6.11 by lim sup’s to obtain asymptotic (instead of uniform)
statements.

7. Infinite Systems and Automorphic Equivalence of Gapped
Phases

7.1. Introduction

In the previous sections we studied perturbations of systems defined on a
finite set Λ with one or more frustration-free ground states and a spectral
gap. Theorem 6.8, Corollary 6.9, and Theorem 6.12 specify conditions under
which we have a uniform positive lower bound for the spectral gap of a family
of perturbed Hamiltonians defined on a sequence of finite volumes Λn ↑ Γ
. We are now interested in applying these results to analyze the gap of the
corresponding infinite model.
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The main goal of this section is to prove a lower bound for the spectral
gap of the GNS Hamiltonians of the perturbed models in the thermodynamic
limit. Such a bound would follow directly from strong resolvent convergence of
the finite-volume perturbed Hamiltonians represented as operators acting on
the GNS Hilbert space. Since the perturbations can spoil the frustration-free
property of the Hamiltonians, though, it is not clear one can expect strong
resolvent convergence in general. Therefore, in this section we develop a more
direct approach to obtain bounds on the spectral gap in the thermodynamic
limit, see Theorem 7.4. In particular, we show that under the assumption of
uniform LTQO, see Assumption 6.10, there is a unique gapped ground state
in the thermodynamic limit. We will also show that the perturbed models for
which the stability result applies also have indistinguishable ground states.
That is, LTQO is a stable property itself. The frustration-free ground states of
the Toric Code model and, more generally, Kitaev’s quantum double models,
satisfy the conditions of this section. These models and their perturbations
have a translation invariant gapped pure ground state on Z

2. As noted be-
fore, the Toric Code model has other infinite-volume ground states that are
not frustration-free and which do not satisfy LTQO. The same holds for all
of Kitaev’s Quantum Double models. They have a gap above their degenerate
ground states but this gap is not stable under small perturbations. This has
been shown explicitly for a class of perturbations of the Toric Code model in
[78]. The one-dimensional AKLT model also satisfies the conditions of this sec-
tion, as do all one-dimensional models that are given by a parent Hamiltonian
of a translation invariant Matrix Product State (see, in particular, Theorem
B.2).

7.2. Description of the Infinite System

We consider uniform perturbation models on an infinite set Γ, see Definition 6.5
and Assumption 6.7. As a consequence, the spectral gap of the associated
sequence of finite-volume perturbed Hamiltonians

HΛn
(s) = HΛn

+ sVΛp
n

with Λn ↑ Γ (7.1)

is stable in the sense of Theorem 6.8, meaning that

sγ = inf
n≥1

sΛn
γ > 0 for all 0 < γ < γ0

where sΛn
γ is as in (2.33) and γ0 is the uniform lower-bound on the non-

vanishing spectral gap above the ground-state energy of the initial Hamiltoni-
ans. For each n ≥ 1, sΛn

γ is a bounded non-increasing function of γ and, hence,
so is sγ . Therefore, the following limit exists:

s0 := lim
γ→0

sγ . (7.2)

By our definitions and assumptions, we can assume that s0 ∈ (0, 1], and for
all s ∈ [0, s0) there exists γ ∈ (0, γ0) such that s ∈ [0, sγ), meaning that
gap(HΛn

(s)) ≥ γ for all n. Said differently, for all s ∈ [0, s0), infn gap(HΛn
(s)) >

0.
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So far, we have not required that a uniform perturbation model converges
in any sense as n → ∞. We only imposed that for each n the perturbation
satisfied conditions that allowed us to prove that the gap above the ground
state remains open uniformly in n. For a limiting perturbed infinite system
to exist, we now add the assumption that the perturbing interactions Φn as
described in Definition 6.5(v) converge locally in F -norm for the given F -
function to an interaction Φ ∈ BF on Γ. For static interactions which is the
case we consider here, this notion of convergence simply means that for all
Λ ∈ P0(Γ),

lim
n→∞ ‖(Φ− Φn) �Λ ‖F → 0, (7.3)

where Φ �Λ denotes the restriction of the interaction to Λ. This holds, for
example, if the perturbations are eventually constant: there exists Φ ∈ BF

such that for all finite X there is an N so that Φn(X) = Φ(X) for all n ≥ N .
It was shown in [83, Theorem 3.8] that (7.3) implies that the thermo-

dynamic limit of the dynamics corresponding to Φn exists and equals the
dynamics generated by Φ. This implies that there exists strongly continuous
dynamics {τs

t }t∈R and {αs}s∈R on AΓ, defined by

τs
t (A) = lim

n→∞ τs,Λn

t (A), αs(A) = lim
n→∞ αΛn

s (A), for all A ∈ Aloc
Γ . (7.4)

In the case of αs we left implicit the choice of the parameter ξ > 0, which
is kept fixed in this limit. The convergence is uniform on any compact range
of t and s and, as a consequence, the limit is strongly continuous in these
parameters (see [83] for proofs of these statements). It follows that {τ s

t }t∈R is
generated by a closed derivation δs for which Aloc

Γ is a core [20]. Moreover, it
is the limit of the finite-volume generators:

δs(A) = lim
n→∞[HΛn

(s), A], A ∈ Aloc
Γ . (7.5)

In order to express and study stability of the spectral gap in the thermo-
dynamic limit, we will consider the GNS representation of an infinite-volume
ground state obtained as the thermodynamic limit of finite-volume ground
states. As we will show, the set up considered in this section implies that such
a limiting state is pure and unique. In the next section we will discuss some
important situations in which it is not unique.

Let τ := {τt = eitδ}t∈R be a strongly continuous dynamics on the C∗-
algebra AΓ, with a generator δ as in (7.5), and let (πω,Hω,Ωω) denote the
GNS representation of a τ -invariant state ω. Then, by standard arguments
(see, e.g., [20] or [76]) the derivation is implemented by a self-adjoint operator,
Hω, with dense domain domHω ⊂ Hω for which

πω(δ(A)) = [Hω, πω(A)], for all A ∈ Aloc
Γ . (7.6)

One has that Aloc
Γ is a core for δ (as a densely defined closed operator) and

π(Aloc
Γ )Ωω is a core for Hω. The spectrum of Hω is then what we refer to as

the spectrum of the infinite system. This is sometimes referred to as the bulk
spectrum. Our main goal is to establish a spectral gap above the ground state
of such a GNS Hamiltonian, Hω.
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It is easy to see that ω is τ -invariant if and only if ω(δ(A)) = 0 for all
A ∈ Aloc

Γ . We recall that a state ω is called a ground state for δ if

ω(A∗δ(A)) ≥ 0, for all A ∈ Aloc
Γ . (7.7)

A simple argument shows that ω(δ(A)) = 0 for all A ∈ Aloc
Γ if and only if

ω(A∗δ(A)) ∈ R for all A ∈ Aloc
Γ . Hence, any ground state for δ is necessarily a

τ -invariant state.
The GNS Hamiltonian for any ground state ω is non-negative and the

cyclic vector Ωω satisfies HωΩω = 0, i.e., min spec(Hω) = 0. As a consequence,
if there is a γ > 0 for which

〈πω(A)Ωω,Hω πω(A)Ωω〉 = ω(A∗δ(A)) ≥ γω(A∗A) = γ‖πω(A)Ωω‖2 (7.8)

for all A ∈ Aloc
Γ such that ω(A) = 0, then the ground state of Hω is unique

and, moreover,

gap(Hω) := sup{δ ≥ 0 : spec(Hω) ∩ (0, δ) = ∅} ≥ γ.

Thus, we say that ω is a unique gapped ground state if (7.8) is satisfied
We now return to the situation of interest: uniform perturbation models

with perturbations that converge locally in F -norm. In Sect. 7.3 we study the
limiting infinite volume state for each 0 ≤ s < s0, and analyze the spectral
gap of these states in Sect. 7.4

7.3. Stability of LTQO and the Existence of a Pure Infinite Volume State

Recall that the regions Λp
n for a perturbation model are defined using the

indistinguishability radius, see Definition 6.5(iv). Since the initial interactions
are frustration-free, the indistinguishability radius implies that the ground-
state space of each unperturbed Hamiltonian satisfies the following estimate:
for each n ≥ 1, x ∈ Λn, 0 ≤ k ≤ rΩ

x (Λn), and A ∈ AbΛn
x (k),

‖PΛn
(0)APΛn

(0)− ω
(n)
0 (A)PΛn

(0)‖ ≤ |bΛn
x (k)|‖A‖Ω(rΩ

x (Λn)− k) (7.9)

where PΛn
(0) is the ground-state projection associated to HΛn

and ω
(n)
0 is the

corresponding ground state functional, see (7.11). As discussed in Sect. 2.2.2
and demonstrated in Sects. 5–6, this LTQO property is crucial for stability of
the gap. When studying the thermodynamic limit, one is often interested in
the perturbation regions becoming extensive, i.e., Γp = Γ where

Γp =
{

x ∈ Γ | ∃ m ≥ 1 s.t. x ∈
⋂

n≥mΛp
n

}
.

As discussed in Sect. 6.3.1, when Γ is infinite the conditions of a uniform per-
turbation model guarantee that rΩ

x (Λn) → ∞ for any x ∈ Γp. This motivates
us to consider uniform perturbation models that are indistinguishable every-
where in the following sense:

Definition 7.1. We say a perturbation model with decay function Ω as in Def-
inition 6.5(iv) is everywhere indistinguishable if for all x ∈ Γ,

rΩ
x (Λn)→∞ as n→∞. (7.10)
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From the definition of indistinguishability radius it follows immediately
that for all x, y ∈ Λn, rΩ

x (Λn) ≥ rΩ
y (Λn) − d(x, y) and, hence, |rΩ

x (Λn) −
rΩ
y (Λn)| ≤ d(x, y). Therefore, (7.10) holds for all x ∈ Γ if and only if it holds

for some x ∈ Γ.
Clearly, any everywhere indistinguishable uniform perturbation model

has an LTQO estimate as in (7.9) which becomes vanishingly small in the
thermodynamic limit for any x ∈ Γ. One of the main goals of this section is
to show that for all 0 ≤ s < s0 the perturbed model has a similarly vanishing
LTQO estimate and, moreover, the finite volume states

ω(n)
s (A) =

TrPΛn
(s)A

TrPΛn
(s)

for A ∈ AΛn
(7.11)

converge to a pure infinite volume state ωs on AΓ. Here, we recall that PΛn
(s)

is the spectral projection of HΛn
(s) onto ΣΛn

1 (s) as defined in (2.31). We prove
the stability of the LTQO estimate and existence of the limiting infinite volume
state in Theorem 7.2, and show that the state is pure in Corollary 7.3.

The finite and infinite volume spectral flow automorphisms play a key
role in the proof of Theorem 7.2. As discussed, e.g., in Sect. 6.2, for any 0 <
γ < γ0 there exists a function of decay class (η, γ

2v , θ), which we denote here
by Gγ

α, that can be used in the quasi-locality estimates for the finite volume
spectral flows α

(n)
s uniformly in n ≥ 1 and 0 ≤ s ≤ sγ . This decay function

may also be used in the quasi-locality estimates for the limiting spectral flow
automorphisms αs for the same range of s. We use such a function in the
statement of Theorem 7.2.

Theorem 7.2. For an everywhere indistinguishable uniform perturbation model
with a sequence Φn that converges locally in F -norm in BF (see (7.3)), the
pointwise limit

ωs(A) = lim
n→∞ ω(n)

s (A), A ∈ Aloc
Γ (7.12)

exists and defines a state on AΓ for every 0 ≤ s < s0. Moreover, for any
0 < γ < γ0 such that s ≤ sγ and any local observable A ∈ Abx(k) with x ∈ Γ
and k ≥ 0, one has that for any m ≥ 0 and all n ≥ 1 sufficiently large

‖PΛn
(s)APΛn

(s)− ω(n)
s (A)PΛn

(s)‖
≤ |bx(k)|‖A‖

(
Ω(rΩ

x (Λn)− k −m) + 4Gγ
α(m)

)
. (7.13)

We remark that (7.13) is an LTQO property for ω
(n)
s . In fact, our esti-

mates will show

|ω(n)
s (A)− ωs(A)| ≤ |bx(k)|‖A‖

(
2Ω(rΩ

x (Λn)− k −m) + 6Gγ
α(m)

)
(7.14)

where the quantities are as in (7.13). Therefore, one can replace ω
(n)
s with ωs in

(7.13) and a similar bound holds with an appropriate change to the estimates
on the right-hand-side.

Proof. Fix s ∈ [0, s0) and let γ > 0 be such that s ≤ sγ , which is guaranteed to
exist by (7.2). We begin by considering the finite volume state ω

(n)
s . Denote by

α
(n)
s the spectral flow automorphism associated with HΛn

(s) and ξ = γ as in
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(2.40). Since α
(n)
s (PΛn

(s)) = PΛn
(0), see (2.41), we can rewrite the perturbed

finite volume states in terms of the initial state via

ω(n)
s = ω

(n)
0 ◦ α(n)

s . (7.15)

The results of this theorem for values s > 0 follow from establishing the anal-
ogous properties for ω

(n)
0 and the uniform quasi-locality of α

(n)
s . In particular,

for sufficiently large n, quasi-locality is used to approximate observables of the
form α

(n)
s (A) by an n-independent local operator. We first discuss this in more

detail.
Consider an observable A ∈ AbΛn

x (k) for n ≥ 1, x ∈ Λn and k ≥ 0. For

each m ≥ 0, denote by A
(n)
m (s) ∈ AbΛn

x (k+m) the strictly local approximation

of α
(n)
s (A) given by

A(n)
m (s) = ΠΛn

bΛn
x (k+m)

(α(n)
s (A)) (7.16)

where we use the localizing maps introduced in Sect. 4.3, see (4.29) and the sub-
sequent discussion. Recall that the spectral flow automorphisms α

(n)
s converge

strongly to αs on AΓ. Using the consistency relation ΠΛ
X(A)⊗1lΛ′\Λ = ΠΛ′

X (A)
for any A ∈ AΛ and X ⊂ Λ ⊂ Λ′, we find that for n′ ≥ n sufficiently large

∥∥∥A(n)
m (s)−A(n′)

m (s)
∥∥∥ =

∥∥∥ΠΛn′
bx(k+m)

(
α(n)

s (A)− α(n′)
s (A)

)∥∥∥

≤
∥∥∥α(n)

s (A)− α(n′)
s (A)

∥∥∥ . (7.17)

Thus, strong continuity implies that {A(n)
m (s)}n≥1 is uniformly Cauchy and

therefore converges, i.e.

lim
n→∞ A(n)

m (s) = Am(s) (7.18)

for some Am(s) ∈ Abx(k+m). As a consequence, for each A ∈ Abx(k) there is
an N so that for all n ≥ N ,

‖α(n)
s (A)−Am(s)‖ ≤ ‖α(n)

s (A)−A(n)
m (s)‖+ ‖A(n)

m (s)−Am(s)‖
≤ 3|bΛn

x (k)|‖A‖Gγ
α(m). (7.19)

Here, we have use (7.18), that s ≤ sγ , and applied Lemma 4.3. Said differently,
given m ≥ 0, the same local operator Am(s) ∈ Abx(k+m) can be used to
approximate the transformed operator α

(n)
s (A) for all n sufficiently large.

We now prove (7.12) for s = 0. Fix x ∈ Γ, k ≥ 0, and A ∈ Abx(k).
Note bx(k) ⊂ Λn for all n sufficiently large. Moreover, Definition 7.1 implies
k ≤ min{rΩ

x (Λn), rΩ
x (Λn′)} for n′ ≥ n sufficiently large. In this case, using

(7.9) and the frustration-free property of the initial ground-state projectors,
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i.e., PΛn
(0)PΛn′ (0) = PΛn′ (0), we find

|ω(n)
0 (A)− ω

(n′)
0 (A)| = ‖

(
ω

(n)
0 (A)− ω

(n′)
0 (A)

)
PΛn′ (0)‖

≤ ‖ω(n)
0 (A)PΛn′ (0)− PΛn′ (0)APΛn′ (0)‖

+‖PΛn′ (0)APΛn′ (0)− ω
(n′)
0 (A)PΛn′ (0)‖

≤ 2|bx(k)|‖A‖Ω(min{rΩ
x (Λn), rΩ

x (Λn′)} − k).
(7.20)

Here we have used that Ω is non-increasing. Since we assumed rΩ
x (Λn) → ∞,

it follows that ω
(n)
0 (A) converges for all A ∈ Aloc

Γ .
Now, consider 0 < s ≤ sγ for some 0 < γ < γ0. For each n ≥ 1, let α

(n)
s be

the spectral flow automorphism with ξ = γ. We use (7.15) and (7.19) to obtain
similar estimates for the perturbed models. Given the parameters above, for
each choice of m ≥ 0 the quantity l = min{rΩ

x (Λn), rΩ
x (Λn′)} − k −m ≥ 0 for

sufficiently large n ≤ n′. In this case, for A ∈ Abx(k) as above, an application
of (7.19) shows

|ω(n)
s (A)− ω(n′)

s (A)| = |ω(n)
0 (α(n)

s (A))− ω
(n′)
0 (α(n′)

s (A))|
≤ |ω(n)

0 (Am(s))− ω
(n′)
0 (Am(s))|+ 6|bx(k)|‖A‖Gγ

α(m).
(7.21)

Combining this with (7.20), we have

|ω(n)
s (A)− ω(n′)

s (A)| ≤ |bx(k)|‖A‖(2Ω(l) + 6Gγ
α(m)), (7.22)

from which it is clear that the limit in (7.12) exists.
To prove (7.13), we argue similarly. Recall that PΛn

(0) = α
(n)
s (PΛn

(s)).
Using that α

(n)
s is an automorphism and (7.15), we find that with l = rΩ

x (Λn)−
k −m

‖PΛn
(s)APΛn

(s)− ω(n)
s (A)PΛn

(s)‖
= ‖PΛn

(0)α(n)
s (A)PΛn

(0)− ω
(n)
0 (α(n)

s (A))PΛn
(0)‖

≤ ‖PΛn
(0)A(n)

m (s)PΛn
(0)− ω

(n)
0 (A(n)

m (s))PΛn
(0)‖

+ 2‖α(n)
s (A)−A(n)

m (s)‖
≤ |bx(k)|‖A‖(Ω(l) + 4Gγ

α(m)). (7.23)

For the last inequality, we have again used (7.9) and applied Lemma 4.3. �

We now turn to showing that the states ωs are pure for each 0 ≤ s < s0.
In fact, we use LTQO to show that these states are unique in the sense that
any sequence of finite-volume states defined by density matrices ρn contained
in the range of the spectral projections PΛn

(s) necessarily converge to ωs.

Corollary 7.3. Consider an everywhere indistinguishable uniform perturbation
model with a sequence Φn that converges locally in F -norm in BF (see (7.3)),
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and fix 0 ≤ s < s0. For any sequence of density matrices ρn = PΛn
(s)ρn ∈ AΛn

the limit
lim

n→∞ TrρnA = ωs(A) (7.24)

holds for all A ∈ Aloc
Γ , and ωs is a pure state on AΓ for each 0 ≤ s < s0.

Proof. Note that if PΛn
(s)ρn = ρn for all n ≥ 1, then

TrρnA = TrρnPΛn
(s)APΛn

(s)

= ω(n)
s (A) + Trρn[PΛn

(s)APΛn
(s)− ω(n)

s (A)PΛn
(s)],

and so the first claim follows from (7.12) and (7.13).
To see that ωs is pure, we use the thermodynamic limit of the spectral

flow to relate it to ω0 via

ωs(A) = ω0(αs(A)), (7.25)

and prove that ω0 is pure.
Assume η is a state that is majorized by ω0, i.e. η(A∗A) ≤ cω0(A∗A) for

some c ≥ 1. Since ω0 is the ground state of a frustration-free system, it follows
that ω0(HΛn

) = 0 for all n. Restricting η to AΛn
produces a state implemented

by a density matrix ηn. By the majorizing assumption and the frustration-free
property, this matrix satisfies ηn = PΛn

(0)ηn.
Therefore, applying (7.24) with s = 0, one finds the states defined by ηn

necessarily converge to ω0. Hence η = ω0, and ω0 is a pure state. Since αs is
an automorphism, (7.25) implies that ωs is also pure. �

7.4. Spectral Gap Stability of the GNS Hamiltonian

We will now provide conditions under which the state ωs, whose existence
is guaranteed by Theorem 7.2, is a gapped ground state with respect to the
dynamics δs from (7.5). Since we will apply similar arguments to systems with
discrete symmetries in the next section, we first prove a more general result.

Theorem 7.4. Let Λn ↑ Γ and assume that Hn = H∗
n ∈ AΛn

is a sequence of
Hamiltonians for which there is a derivation δ on AΓ with

δ(A) = lim
n→∞[Hn, A] (7.26)

for all A ∈ Aloc
Γ . Set En = min spec(Hn) and suppose there are sequences of

non-negative numbers {γn}n≥1 and {εn}n≥1 so that:

(i) εn → 0 as n→∞,
(ii) lim supn γn > 0,
(iii) The spectral projection Pn of Hn − En1l onto [0, εn] satisfies

(1l− Pn)(Hn − En1l) ≥ γn(1l− Pn). (7.27)

Then, for any state ω on AΓ, if there exists a sequence Qn ∈ AΛn
of nonzero

orthogonal projections Qn ≤ Pn such that

lim
n→∞ ‖PnAQn − ω(A)Qn‖ = 0 for all A ∈ Aloc

Γ , (7.28)
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then ω is a unique gapped ground state for δ. In particular, for any A ∈ Aloc
Γ

with ω(A) = 0,

ω(A∗δ(A)) ≥
(

lim sup
n

γn

)
ω(A∗A). (7.29)

Proof. Without loss of generality, we will assume that En = 0 for all n ≥ 1.
We begin with two observations. First, we claim that for all A ∈ Aloc

Γ ,

lim
n→∞ TrρnA = ω(A) (7.30)

for any sequence {ρn}n≥1 of density matrices with Qnρn = ρn ∈ AΛn
for all

n ≥ 1. Here we argue as in Corollary 7.3. In fact, since Qn ≤ Pn, each of these
density matrices satisfies ρn = ρnQn = QnρnPn. In this case, for any A ∈ Aloc

Γ

and n ≥ 1 sufficiently large,

TrρnA− ω(A) = Trρn[PnAQn − ω(A)Qn].

By (7.28), the above tends to zero, and thus we have (7.30).
Next, we prove that ω is invariant under the dynamics eitδ by showing

that ω(δ(A)) = 0 for all A ∈ Aloc
Γ . To see this, note that

ω(δ(A)) = lim
n→∞ Trρn[Hn, A] = 0 for all A ∈ Aloc

Γ . (7.31)

Here the second equality above follows as ρn = ρnPn, εn → 0, and

|Trρn[Hn, A]| = |Trρn[HnPn, A]| ≤ 2εn‖A‖ (7.32)

where for the inequality we used that Pn is the spectral projection of Hn onto
[0, εn]. We approximate to see that the first equality in (7.31) is true. For any
m ≤ n and each A ∈ Aloc

Γ ,

|ω(δ(A))− Trρn[Hn, A]|
≤ |ω(δ(A))− ω([Hm, A])|+ |ω([Hm, A])− Trρn[Hm, A]|

+ |Trρn([Hm, A]− [Hn, A])|. (7.33)

The existence of δ(A) guarantees that for n ≥ m ≥ 1 sufficiently large enough,
both the first and last term above can be made arbitrarily small. For any such
m, the second term above can be made small, using (7.30), and a possibly
larger choice of n ≥ 1. This completes the proof of (7.31).

We now show that ω is a ground state for δ. Arguing as above, we find
that for any A ∈ Aloc

Γ ,

ω(A∗δ(A)) = lim
n→∞ TrρnA∗[Hn, A] (7.34)

and in addition, the estimate

|TrρnA∗AHn| ≤ εn‖A‖2 (7.35)

holds. Since Hn ≥ 0, we also have that

TrρnA∗[Hn, A] + TrρnA∗AHn = TrρnA∗HnA ≥ 0. (7.36)
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The fact that ω is invariant under the dynamics implies ω(A∗δ(A)) ∈ R for all
local A, and so for any n ≥ 1,

ω(A∗δ(A)) ≥ ω(A∗δ(A))− TrρnA∗HnA

≥ −|ω(A∗δ(A))− TrρnA∗[Hn, A]| − |TrρnA∗AHn|.
where we used (7.36) for the final estimate above. From (7.34) and (7.35), we
conclude that ω satisfies (7.7) and hence is a ground state for δ.

To argue that ω is a gapped ground state for δ, we establish (7.29). Note
that since ω is a ground state of δ, we conclude from (7.34) that

ω(A∗δ(A)) = lim
n→∞ |TrρnA∗[Hn, A]| (7.37)

for all A ∈ Aloc
Γ . Now, since (1l− Pn)ρn = 0, we may re-write

TrρnA∗[Hn, A] = TrρnA∗Hn(1l− Pn)A + TrρnA∗[HnPn, A]. (7.38)

The first term above is non-negative. In particular, an application of (7.27)
shows that

TrρnA∗Hn(1l− Pn)A ≥ γnTrρnA∗(1l− Pn)A ≥ 0.

For the second term in (7.38), we find that

|TrρnA∗[HnPn, A]| ≤ ‖A∗[HnPn, A]‖ ≤ 2εn‖A‖2.
As a result, we have the following the lower bound

|TrρnA∗[Hn, A]| ≥ γnTrρnA∗(1l− Pn)A− 2εn‖A‖2. (7.39)

Now, let A ∈ Aloc
Γ and suppose that ω(A) = 0. Observe that for such an

observable, (7.28) implies that

TrρnA∗PnA = TrρnA∗[PnAQn − ω(A)Qn]→ 0. (7.40)

Since εn → 0 and Tr(ρnA∗A)→ ω(A∗A), we conclude from (7.39) that

lim sup
n
|Tr(ρnA∗[Hn, A])| ≥ lim sup

n
γnTr(ρnA∗A) =

(
lim sup

n
γn

)
ω(A∗A),

(7.41)
and this completes the proof. �

The previous theorem implies that the uniform lower bound obtained for
uniform sequences of finite systems in Sect. 6 carries over to the gap for the
GNS Hamiltonian Hωs

of the corresponding thermodynamic limit. Since we
are interested in infinite volume ground states, we require that the splitting
of the lower part of the spectrum ΣΛn

1 (s) tends to a single point in the sense
that diam(ΣΛn

1 (s)) → 0 as n → ∞. This is the case if (6.32) holds since
diam(ΣΛn

1 (s)) ≤ 2s(δn + εn). We finish this section with a precise statement
of this fact for the perturbation models we have been considering.

Corollary 7.5. Assume that (6.32) holds for a everywhere indistinguishable
uniform perturbation model for which the perturbations converge locally in F -
norm. Then, for any 0 < γ < γ0 and each 0 ≤ s ≤ sγ , the GNS Hamiltonian
associated with the pure state ωs from Theorem 7.2 has a simple ground-state
eigenvalue 0 with a spectral gap above it bounded below by γ.
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Proof. Consider such a perturbation model, and fix 0 ≤ s ≤ sγ for some
positive γ < γ0. Since this model satisfies Assumption 6.7 and Definition 7.1,
the results of Theorem 7.2 and Corollary 7.3 hold. In particular, the state ωs

on AΓ from Theorem 7.2 is pure. Since this model satisfies (6.32), Corollary 6.9
also holds, and so there are non-negative sequences {ε′

n(s)}n≥1 and {γ′
n(s)}n≥1

for which
(i) ε′

n(s)→ 0 as n→∞,
(ii) lim supn γ′

n(s) ≥ γ,
(iii) For all n ≥ 1,

spec(HΛn
(s)− En(s)1l) ⊂ [0, ε′

n(s)] ∪ [ε′
n(s) + γ′

n(s),∞).

This shows that the conditions of Theorem 7.4 hold where we take Qn = Pn =
PΛn

(s) and observe that (7.28) holds by (7.13), (7.12), and Assumption 7.1.
Our claims about the gap for the corresponding GNS Hamiltonian now follow
from (7.29) and the comments following (7.8). �

8. Symmetry Restricted Stability and the Thermodynamic
Limit of the Ground States with Discrete Symmetry
Breaking

8.1. Discrete Symmetries

In many interesting systems, the interactions have symmetries. When con-
sidering the thermodynamic limit we need to allow for the possibility that
symmetries of the model are spontaneously broken. In the case of a continuous
symmetry, such as the spin rotations about an axis, the Goldstone theorem [63]
implies that, under quite general conditions, there is no gap in the spectrum
above the ground state in the thermodynamic limit. Therefore, in our context
of gapped ground states, only discrete symmetries need to be considered.

An important consequence of the results in this section is the stability of
the gapped portion of the ground-state phase diagram of a variety of quantum
lattice models, which includes many special cases studied previously in the
literature [3,19,33,42,54,99,105].

We now proceed to setting up the class of models with discrete symme-
try breaking for which we prove stability of the symmetry breaking and the
ground-state gap. We find a compromise between generality and an effort to
state the assumptions succinctly and transparently. Instead of attempting to
describe the most general situation, we will focus on three types of discrete
symmetry breaking (described below) that cover a large number of models
considered in the literature. We start with unperturbed models defined on an
increasing and absorbing sequence of finite volumes Λn, n ≥ 1, that have a
symmetry described by a finite set of automorphisms σg labeled by g ∈ G.
These automorphism act on AΛn

and they are n-dependent in that sense.
Local topological quantum order expresses the indistinguishability of the

ground states by local observables, which is made precise by our notion of the
indistinguishability radius. If a spontaneous symmetry breaking occurs that
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can be detected by a local order parameter, then clearly one cannot expect
LTQO to hold for all local observables. However, if the perturbation respects
the symmetry, then stability can be again verified using a modified notion
of LTQO. We introduce two indistinguishability radii that take into account
the model symmetry: the G-symmetric indistinguishability radius (see Defini-
tion 8.1) and the G-broken indistinguishability radius (see Assumption 8.2).
We show that the uniform finite-volume stability results from Sect. 6 hold when
perturbing at sites with a sufficiently large G-symmetric indistinguishability
radius. In this case, though, it is not clear if the uniform gap stability extends
to the infinite system. To this end, we show that a sufficiently large lower
bound on the G-broken indistinguishability radius guarantees a non-vanishing
spectral gap for the GNS Hamiltonian.

Let us now describe three types of symmetry breaking to which our ar-
guments apply. In short, they are (i) a finite group of local gauge symmetries,
(ii) partial breaking of translation invariance to an infinite subgroup (periodic
states), and (iii) finite lattice symmetries in translation invariant systems (re-
flections and rotations). In each case stability for the uniform sequence of finite
systems follows from a ground-state indistinguishability condition for a sub-
algebra of the local observables generated by the symmetry, which we denote
by Aloc,G

Γ . The superscript G refers to the symmetry as it is represented in
the system and not just the abstract symmetry group. In each case G labels a
finite set of automorphisms that commute with the infinite system’s initial dy-
namics as well as the perturbed dynamics. When AΓ carries a representation
of Zd by translations, we denote these automorphisms by ρa, a ∈ Z

d.
For each type of symmetry breaking, the automorphisms and algebra

Aloc,G
Γ are as follows:

(S1) Local Gauge Symmetry: G is a finite group and for each x ∈ Γ there is
a representation of G by automorphisms σx

g , g ∈ G, on A{x} for which
σg =

⊗
x∈Γ σx

g denotes the corresponding automorphism on AΓ. In this
case, the gauge symmetry is broken in the ground states and Aloc,G

Γ is
the G-invariant elements of Aloc

Γ :

Aloc,G
Γ = {A ∈ Aloc

Γ | σg(A) = A, ∀ g ∈ G}. (8.1)

(S2) Translation-Invariant: The infinite system has a d-dimensional transla-
tion invariance represented by automorphisms ρa, a ∈ Z

d, and this sym-
metry is broken in the set of ground states to the subgroup (N1Z) ×
· · · × (NdZ) for integers N1, . . . , Nd > 1. In this situation we take G =
ZN1 × · · ·×ZNd

where we identify ZNi
as a set with {0, . . . , Ni− 1} ⊂ Z.

We consider the subset of Aloc
Γ consisting of observables that reflect this

symmetry (but are not invariant):

Aloc,G
Γ =

{
∑

a∈G

ρa(A) | A ∈ Aloc
Γ

}
. (8.2)

(S3) Finite Group of Lattice Symmetries: G is a finite group of symmetries
of Γ acting on AΓ as automorphisms σr, r ∈ G, and we assume that
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the system also has a translation symmetry, acting by automorphisms
{ρa | a ∈ Z

d}, that remains unbroken in the ground states of the initial
dynamics. In this situation, define

Aloc,G
Γ = {A ∈ Aloc

Γ | ∀ r ∈ G, ∃ ar ∈ Z
d s.t. σr(A) = ρar

(A)}. (8.3)

Key for the analysis below will be how the automorphisms in each of
these cases behave under composition with the localizing operators ΠΛ

X from
Sect. 4, see (4.29). For (S1), the action of σg on AΛ is given by conjugating
with UΛ(g) =

⊗
x∈Λ Ux(g) where Ux(g) is a unitary that implements σx

g . As a
consequence, each σg commutes with the partial trace trΛ\X : AΛ → AX , and
hence also with the localizing operators:

σg ◦ΠΛ
X = ΠΛ

X ◦ σg. (8.4)

For both (S2) and (S3), we will assume periodic boundary conditions on Λ and
therefore each of the automorphisms ρa and σr has a well-defined restriction
onto AΛ. In this case, one does not have commutativity but rather a covariant
relation:

ρa ◦ΠΛ
X = ΠΛ

X+a ◦ ρa, σr ◦ΠΛ
X = ΠΛ

r(X) ◦ σr (8.5)

for all a ∈ Z
d and r ∈ G.

The differences between (8.4)–(8.5) as well as the various choices for
Aloc,G

Γ cause a small change in the arguments for stability below. We provide
the full argument for the case (S1) in Sects. 8.2–8.3 and discuss the necessary
alterations for cases (S2) and (S3) in Sect. 8.4.

8.2. Symmetry Restricted Indistinguishability and Stability of the Spectral
Gap

For the case (S1), we consider the same set-up as in Sect. 7.3 with a few modifi-
cations due to the gauge symmetry G. Once again there is a sequence (Λn, dn)
of increasing and absorbing finite subsets of (Γ, d) for which the unperturbed
Hamiltonians HΛn

are frustration-free, uniformly finite-range (with range R),
and uniformly bounded. Moreover, we assume that the interaction is gauge
symmetric, and so

HΛn
=

∑

X⊆Λn

ηn(X)

where ηn(X) ∈ Aloc,G
Γ . As before, we assume a non-vanishing spectral gap:

γ0 = inf
n≥1

gap(HΛn
) > 0.

The perturbations are given by interactions Φn which take values in
Aloc,G

Γ and have a finite F -norm as in Definition 6.5(v). To ensure that the
conditions of Sect. 7.2 are satisfied, and in particular (7.3), we assume both
ηn and Φn eventually become constant for any finite X ⊂ Γ, i.e. there are
interactions η and Φ so that ηn(X) = η(X) and Φn(X) = Φ(X) for n suffi-
ciently large. In particular, this implies that the perturbations converge locally
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in F -norm, and so Sect. 7 is relevant. The perturbed Hamiltonians are then
given by

HΛn
(s) = HΛn

+ s
∑

X⊆Λn

X∩Λp
n �=∅

Φn(X) (8.6)

where the perturbation regions Λp
n are chosen similarly to (6.6) for an indistin-

guishability radius that reflects the symmetry of the model. We will consider
two possible candidates for this radius. First, we consider

Λp
n = {x ∈ Λn : rΩ,G

y (Λn) ≥ Kn + Ln for all y ∈ bΛn
x (Kn)} (8.7)

where Kn, Ln are chosen appropriately and rΩ,G
y (Λn) is the G-symmetric in-

distinguishability radius:

Definition 8.1 (G-symmetric indistinguishability radius). Let Ω : R → [0,∞)
be a non-increasing function. The G-symmetric indistinguishability radius of
HΛ at x ∈ Λ, is the largest integer rΩ,G

x (Λ) ≤ diam(Λ) such that for all integers
0 ≤ k ≤ n ≤ rΩ,G

x (Λ) and all observables A ∈ AbΛx (k) ∩ Aloc,G
Γ ,

‖PbΛx (n)APbΛx (n) − ωΛ(A)PbΛx (n)‖ ≤ |bΛ
x (k)|‖A‖Ω(n− k) (8.8)

where ωΛ(A) = Tr(APΛ)/Tr(PΛ).

With perturbation regions defined using the G-symmetric indistinguisha-
bility radius, the main difficulty in adapting the framework from the previous
sections is showing the results from Sect. 5 still hold as we no longer assume in-
distinguishability for all observables. The key observation is that in the proofs
of Theorem 5.1 and Theorem 5.3, the indistinguishability condition is only
applied to the anchored observables Φ(1)(x,m, s) constructed in Sect. 4, see
(4.46). Hence, these results are also valid for a Hamiltonian HΛn

(s) as in (8.6)–
(8.7) as long as the corresponding operators Φ(1)

n (x,m, s) belong to Aloc,G
Γ .

We first note that since Aloc,G
Γ is an algebra, the anchoring procedure pro-

vided in Sect. 2.5.1 also produces terms that again belong to the algebra, and
so one can assume an anchored form for HΛn

(s) comprised of terms belonging
to Aloc,G

Γ . With the usual decay assumptions on the perturbation, it is clear
that the results of Sect. 4 still apply to HΛn

(s). Considering the definitions of
the spectral flow, see (2.38)–(2.40), and the integral operator F (n)

s , see (4.16),
the symmetry assumptions on HΛn

(s) guarantee that both of these quasi-local
maps commute with the automorphisms σg, g ∈ G. Since Φ(1)

n (x,m, s) is de-
fined in terms of compositions of these quasi-local maps and the localizing
maps acting on the interaction terms (see (4.46)) for the gauge symmetry case
(S1) it follows from (8.4) that Φ(1)

n (x,m, s) ∈ Aloc,G
Γ as desired. For the cases

(S2) and (S3), (8.4) does not hold and the argument needs to be modified.
This is main difference between the different symmetry cases, and is the topic
of Sect. 8.4.

If the sequence HΛn
(s) ∈ Aloc,G

Γ constructed as in (8.6)–(8.7) is a uniform
perturbation model, i.e., satisfies Assumption 6.7, then it is clear that the
spectral gaps are stable in the sense of Theorem 6.8. In particular, for each
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0 < γ < γ0 there is an sγ > 0 so that the finite volume gaps are uniformly
bounded as follows:

inf
n

gap(HΛn
(s)) ≥ γ, 0 ≤ s ≤ sγ .

If additionally δn, εn → 0, see (6.32), then Corollary 6.9 holds and one can
consider the stability of the ground-state gap in the thermodynamic limit as
in Sect. 7.

For the thermodynamic limit, we additionally assume that the model is
everywhere G-indistinguishable in the sense that

rΩ,G
x (Λn)→∞ as n→∞, (8.9)

for all x ∈ Γ. Under the assumption of (8.9) many of the results from Sect. 7 are
obtained for observables A ∈ Aloc,G

Γ with virtually no modification. Using the
G-symmetric indistinguishability radius, the two statements of Theorem 7.2
still hold for A ∈ Aloc,G

Γ as well as the convergence from Corollary 7.3, i.e.

ωs(A) = lim
n→∞ ω(n)

s (A) = lim
n→∞

TrPΛn
(s)A

TrPΛn
(s)

= lim
n→∞ TrρnA, (8.10)

for A ∈ Aloc,G
Γ and all density matrices ρn = ρnPΛn

(s) ∈ AΛn
. The latter can

be extended to a unique G-symmetric state on AΓ by

ωs(A) = ωs(AG), AG :=
1
|G|

∑

g∈G

σg(A). (8.11)

One can consider the spectral gap for the GNS Hamiltonian associ-
ated with the state ωs. However, not all results from Sect. 7 hold when us-
ing G-symmetric indistinguishability radius. Spontaneous breaking of the G-
symmetry means that ωs is not a pure state. While the main inequality (7.29)
from Theorem 7.4 holds for A ∈ Aloc,G

Γ , since this algebra is not dense in
AΓ it is not immediately clear what this implies for the spectral gap of the
GNS Hamiltonian associated to ωs. To address this, we impose more detailed
assumptions suitable to cover the symmetry broken situation.

8.3. Symmetry Breaking and Its Stability

The goal of this section is to prove that in the case of a G-broken LTQO
condition, see Assumption 8.2, the simplex of infinite volume ground states is
preserved for sufficiently small s and, moreover, the GNS Hamiltonian associ-
ated with each pure ground state has a nonzero spectral gap. We will assume
a sequence of finite volume Hamiltonians of the form (8.6) with respect to per-
turbation regions defined using the G-broken indistinguishability radius rather
than the G-symmetric indistinguishability radius (see (8.16)). As we will show,
the latter radius is necessarily bounded from below by the former, and so the
discussion from the previous section still applies when using the G-broken
indistinguishability radius to define the perturbation regions.

Let Ss denote the set of all states on AΓ that can be obtained as weak
limits of states on AΛn

given by density matrices ρn satisfying PΛn
(s)ρn = ρn.

Recall that the perturbations converge locally in F -norm. In the situation that
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Theorem 6.8 holds, the family of infinite volume spectral flows αs : AΓ → AΓ

are a strongly continuous co-cycle of automorphisms, and moreover for 0 ≤
s ≤ sγ :

Ss = {ω ◦ αs | ω ∈ S0}, (8.12)
see, e.g., [83, Theorem 7.4]. We assume that S0 is a simplex with the pure,
(gauge) symmetry-broken ground states as its extreme points. If we denote
the set of pure states of Ss by Es, then the relation (8.12) implies that Ss is
also a simplex of the same dimension as

Es = {ω ◦ αs | ω ∈ E0}. (8.13)

Hence, the structure of the symmetry-broken ground states is preserved.
It is left to consider the spectral gap of the GNS Hamiltonians associated

with ω ∈ E0. Assume that E0 = {ω1, . . . , ωN} for mutually disjoint ωi, meaning
that their GNS representations are inequivalent. To prove a lower bound on
the spectral gap of the GNS Hamiltonian associated with each ωi

s := ωi ◦ αs,
we assume the following G-broken local topological order condition on the
unperturbed Hamiltonians.

Assumption 8.2. We say that a model with local Hamiltonians HΛn
satisfies

local topological quantum order with N G-broken phases (with decay func-
tion Ω) if G through composition with σg acts transitively on E0, and there
are N non-zero orthogonal projections P 1

bΛn
x (m)

, . . . , PN
bΛn

x (m)
onto subspaces of

ker HbΛn
x (m) such that the following properties hold:

(i) There is a constant C such that for all m ≥ R
∥∥∥∥∥PbΛn

x (m) −
N∑

i=1

P i
bΛn

x (m)

∥∥∥∥∥ ≤ CΩ(m); (8.14)

(ii) There is a one-to-one correspondence between the projections P i
Λn

and
the pure states ωi via:

ωi(A) = lim
n→∞

TrP i
Λn

A

TrP i
Λn

, (8.15)

(iii) The G-broken indistinguishability radius diverges for each x ∈ Γ. That
is, rΩ,E0

x (Λn) → ∞ where rΩ,E0
x (Λn) ≤ diamn(Λn) is the largest integer

so that for all 0 ≤ k ≤ m ≤ rΩ,E0
x (Λn) and for all local observables

A ∈ AbΛn
x (k)

∥∥∥P i
bΛn

x (m)
AP j

bΛn
x (m)

− δijω
i(A)P i

bΛn
x (m)

∥∥∥ ≤ |bΛn
x (k)|‖A‖Ω(m− k). (8.16)

Before stating the main result, we show that transitivity of the group
action implies that the G-broken indistinguishability radius is a lower bound
on the G-symmetric indistinguishability radius. From the action of G on E0,
it is clear that the state

ω0(A) =
1
N

N∑

i=1

ωi(A), A ∈ AΓ (8.17)
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is G-symmetric. In general, ω(A) = ω(AG) for any symmetric state ω ∈ S0

where AG is as in (8.11). Since such a state is a convex combinations of ωi ∈ E0,
transitivity then guarantees that ω0 is the unique G-symmetric state as for all
i = 1, . . . , N ,

ωi(AG) =
1
|G|

∑

g∈G

ω1(σgig(A)) = ω1(AG) (8.18)

where gi ∈ G is such that ωi = ω1 ◦ σgi
. More generally, transitivity implies

that for all i

ω0(A) = ωi(A), A ∈ Aloc,G
Γ . (8.19)

Here, we use (8.17), (8.18) and that ω0 is G-symmetric. This argument could
be simplified using the invariance of A ∈ Aloc,G

Γ under σg, g ∈ G. However,
the more general justification above also holds for the cases (S2) and (S3)
considered in Sect. 8.4.

Now, given (8.19), Assumption 8.2 implies (8.8). Specifically, there is
C ′ > 0 so that for any 0 ≤ k ≤ m ≤ rΩ,E0

x (Λn) and A ∈ AbΛn
x (k) ∩ A

loc,G
Γ

‖PbΛn
x (m)APbΛn

x (m) − ω0(A)PbΛn
x (m)‖ ≤ C ′|bΛn

x (k)|‖A‖Ω(m− k). (8.20)

Since ωΛn
(A) = Tr(PΛn

A)/Tr(PΛn
) is a G-symmetric state on AΛn

, the point-
wise limit ωΛn

→ ω0 holds as ω0 is the unique G-symmetric state in S0.
Therefore, (8.20) implies

rΩ,E0
x (Λn) ≤ rC′Ω,G

x (Λn)

for n sufficiently large.
The main result of this section proves stability for a sequence of Hamilto-

nians HΛn
(s) as in (8.6) with perturbation regions defined using the G-broken

indistinguishability radius:

Λp
n = {x ∈ Λn : rΩ,E0

y (Λn) ≥ Kn + Ln for all y ∈ bΛn
x (Kn)}. (8.21)

In particular, we require this sequence forms a uniform gauge symmetry-
breaking perturbation model by which we mean:

(i) Both the initial interaction and perturbation take values in the algebra
Aloc,G

Γ .
(ii) It is a uniform perturbation model as in Definition 6.5 and Assump-

tion 6.7 with perturbation regions as in (8.21).

Theorem 8.3. Assume that S0 is a simplex with pure, gauge symmetry broken
extreme points, and that HΛn

(s), n ≥ 1 is a uniform gauge symmetry-breaking
perturbation model for which (6.32) and Assumption 8.2 hold. Fix 0 < γ < γ0.
Then for any 0 ≤ s ≤ sγ the following properties hold:

(i) The orthogonal projections P i
Λn

(s) for which α
(n)
s (P i

Λn
(s)) = P i

Λn
sat-

isfy:
∥∥∥∥∥PΛn

(s)−
N∑

i=1

P i
Λn

(s)

∥∥∥∥∥ ≤ CΩ(diamn(Λn)); (8.22)
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where C is as in (8.14). Moreover, defining ωi
s = ωi ◦ αs one has

ωi
s(A) = lim

n→∞
TrP i

Λn
(s)A

TrP i
Λn

(s)
(8.23)

and for all x, k,m, A ∈ Abx(k) and sufficiently large n:
∥∥∥P i

Λn
(s)AP j

Λn
(s)− δijω

i
s(A)P i

Λn
(s)

∥∥∥

≤ |bx(k)|‖A‖
(
Ω(rΩ,E0

x (Λn)− k −m) + 5Gα(m)
)
. (8.24)

(ii) The set of limiting ground states Ss is an N -dimensional simplex
satisfying (8.12) and the GNS-Hamiltonian for each of its extreme points ωi

s ∈
Es has a positive spectral gap γs above a unique ground state that satisfies

γs ≥ lim sup
n

γ(HΛn
(s)) ≥ γ. (8.25)

Proof. For (i), (8.22) is immediate from (8.14) since α
(n)
s is norm preserving,

and (8.23) follows from (8.15) and the strong convergence α
(n)
s → αs. The

LTQO property in (8.24) follows from (8.16) and is proven using a similar
argument as in Sect. 7, see specifically (7.23), and that for sufficiently large n,

‖ωi(αs(A)− α(n)
s (A))‖ ≤ |bx(k)|‖A‖Gγ

α(m).

For (ii), note that the assumptions of Corollary 6.9 guarantee that Theo-
rem 6.8 holds, and so the phase structure is preserved as discussed above, see
(8.12) and (8.13). Since the set of ground states Ss is a simplex, its extreme
points are disjoint states, i.e., their GNS representations are inequivalent. This
implies that the the GNS Hamiltonian Hωi

s
in each of these representations

has a non-degenerate ground state.
It remains to show that the finite-volume lower bounds for the spectral

gap carry through in the thermodynamic limit. This follows from an appli-
cation of Theorem 7.4 with Pn = PΛn

(s), and Qn = P i
Λn

(s), i = 1, . . . , N .
For this application we use Corollary 6.9 to verify (7.27), and (8.24) to prove
(7.28). For 0 ≤ s ≤ sγ , (7.29) implies that Hωi

s
has spectral gap above it

bounded by lim supn γ(HΛn
(s)) ≥ γ. �

8.4. Modifications to Handle the Cases (S2) and (S3)

In this section, we consider how to modify the arguments in Sects. 8.2–8.3
so that they apply to models with symmetry breaking of the type (S2) or
(S3). The main challenge here is to prove that the anchored interaction terms
constructed in Sect. 4 belong to the algebra Aloc,G

Γ so that the G-symmetric in-
distinguishability condition can be used to establish the results from Sect. 5. In
each case, we first outline the assumptions on the lattice and interactions, and
then move to discussing the necessary modifications. We begin by considering
the case (S3) as it is most similar to the gauge invariant case (S1).
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8.4.1. The Case (S3). As outlined above, we consider that Γ is a lattice with
two actions: one by Z

d via translations, and the other by a finite group of
lattice symmetries G (such as reflections and rotations). We require that the
metric d on Γ respects these symmetries in the sense that for any x, y ∈ Γ

d(x, y) = d(r(x), r(y)) = d(x + a, y + a) (8.26)

for all r ∈ G and a ∈ Z
d. This is typically satisfied, e.g., by the lattice graph

distance. These symmetries are realized on the local algebra Aloc
Γ through

automorphisms σr and ρa whose action on Aloc,G
Γ is compatible with the lattice

symmetries in the following sense: if A ∈ Aloc,G
Γ and supp(A) = X, then

σr(A) = ρa(A) ⇐⇒ r(X) = X + a. (8.27)

The analogous result holds in the case that we consider these automorphisms
acting on a finite volume with periodic boundary conditions given that we
identify points a, a′ ∈ Z

d that are equivalent under the periodicity.
For the finite volume systems, as always we assume an increasing and

absorbing sequence of finite volumes (Λn, dn) and associated finite volume
Hamiltonians HΛn

(s) ∈ AΛn
as in (8.6) where ηn is frustration-free, uniformly

finite range, and uniformly bounded. In addition, we require that both the
initial interaction and perturbation are translation invariant and take values
in Aloc,G

Γ . Note that the assumption of translation invariance implies Λp
n = Λn.

To model the group actions on Λn and AΛn
, we also impose periodic boundary

conditions and assume that the finite volume metrics dn also satisfy (8.26).
To prove that the observables constructed in Sect. 4 belong to Aloc,G

Γ ,
one only needs to show that (for a finite volume Λ with periodic boundary
conditions)

ΠΛ
bΛx (m)(K(A)) ∈ AbΛx (m) ∩ Aloc,G

Γ (8.28)

for all m ≥ k where A ∈ AbΛx (k)∩Aloc,G
Γ , and K : AΛ → AΛ is a quasi-local map

that commutes with the symmetry automorphism. Once this is established one
can proceed in the same way as in the gauge invariant case (S1).

The assumption on the metric (8.26) guarantees that for any X ⊆ Λ,
(r(X))(m) = r(X(m)) and (X + a)(m) = X(m) + a for all m > 0, r ∈ G and
a ∈ Z

d. As a result

r(X) = X + ar =⇒ r(X(m)) = X(m) + ar. (8.29)

If A ∈ AX ∩ Aloc,G
Γ , then by definition of Aloc,G

Γ , for any r ∈ G there is
an ar ∈ Z

d for which A = ρ−ar
(σr(A)). Since K commutes with the symmetry

actions, it follows that K(A) = ρ−ar
(σr(K(A))). Combining the covariance

relation (8.5) with (8.27) and (8.29) then shows that for all r ∈ G

ΠΛ
X(m)(K(A)) = ρ−ar

◦ σr ◦ΠΛ
X(m)(K(A)) ∈ Aloc,G

Γ .

The claim in (8.28) then follows from verifying (8.29) applies to X = bΛ
x (k).

This can be seen by using (8.26) to show that for each r ∈ G there is ar ∈ Z
d

for which r(bΛ
x (k)) = bΛ

x (k) + a.
The above shows that models with (S3) symmetry breaking will satisfy

spectral stability as described in Theorem 8.3 if they satisfy Assumption 8.2
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and the uniform perturbation model criterion from Sect. 6. Since the transla-
tion invariance implies that Λp

n = Λn, Sect. 6.3.2 becomes relevant. In particu-
lar, the uniform perturbation model criterion will be satisfied if rΩ,E0

x (Λn) ≥ rn

for all x ∈ Λn for a sequence rn →∞ sufficiently fast so that Assumption 6.11
holds with δn → 0.

8.4.2. The Case (S2). We again consider a lattice Γ endowed with an action
of Zd by translations and assume that the metric respects this action. For the
local Hamiltonians HΛn

(s) we assume the same construction as in the case
(S3) with one alteration: it is not required that the initial interaction or the
perturbation take values in Aloc,G

Γ . Note that the periodic boundary conditions
and translation invariance again imply Λp

n = Λn for all n, and so the results
from Sect. 6.3.2 are relevant here as they were in the case (S3). Also, one
can assume the anchored representation of the local Hamiltonians are again
translation invariant as the anchoring procedure from Sect. 2.5 preserves this
property.

Contrasted to the other two cases, the terms Φ(1)(x,m, s) ∈ AbΛx (m) con-
structed in Sect. 4 for a fixed finite volume Λ usually do not belong to the
algebra Aloc,G

Γ , see (4.46). Thus, the approach for the other two cases does not
work here and an alternate argument is needed.

Due to the covariance property (8.5) along with the assumptions of peri-
odic boundary conditions and translation invariance, the anchored terms are
again translation invariant, that is

ρa(Φ(1)(x,m, s)) = Φ(1)(x + a,m, s) (8.30)

for all a ∈ Z
d, x ∈ Λ, m ≥ R, and 0 ≤ s ≤ sΛ

γ . Using this, we will recombine
the anchored terms to produce elements of Aloc,G

Γ for which the conclusions of
Proposition 4.2 and Theorem 4.8 still hold. This is sufficient for applying the
results of Sects. 5 and 6 as well as the theory developed in this section.

Recall that G = ZN1 × · · · × ZNd
is the set of translations generating

Aloc,G
Γ , and denote by RG := maxa∈G |a|. Then, for m ≥ R define

Φ(1)
G (x,m + RG, s) =

1
|G|

∑

a∈G

Φ(1)(x + a,m, s). (8.31)

Applying (8.30) one trivially finds that Φ(1)
G (x,m+RG, s) ∈ AbΛx (m+RG)∩Aloc,G

Γ

as desired. It is clear that these terms are self-adjoint, and due to periodic
boundary conditions:

V (1)(s) :=
∑

x∈Λ

∑

m≥R

Φ(1)(x,m, s) =
∑

x∈Λ

∑

m≥R+RG

Φ(1)
G (x,m, s). (8.32)

Furthermore, applying Theorem 4.8 to Φ(1)(x,m, s) shows that for m ≥ R+RG

‖Φ(1)
G (x,m, s)‖ ≤ sG(1)

sym(m) (8.33)

where G
(1)
sym(m) = G(1)(m − RG) is also of decay class (η, γ

2v , θ). Hence, the
conclusions of Theorem 4.8 also hold for the averaged terms Φ(1)

G (x,m, s).
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To verify the conclusions of Proposition 4.2, for each x ∈ Λ we introduce
the G-averaged global operators

Φ(1)
x,G(s) :=

∑

m≥R+RG

Φ(1)
G (x,m, s) =

1
|G|

∑

a∈G

Φ(1)
x+a(s),

where we use (8.31) for the second equality. If we denote by PΛ the ground-state
projection onto the unperturbed Hamiltonian, then applying Proposition 4.2
to each Φ(1)

x+a(s), shows that

[PΛ,Φ(1)
x,G(s)] =

1
|G|

∑

a∈G

[PΛ,Φ(1)
x+a(s)] = 0 (8.34)

for all 0 ≤ s ≤ sΛ
γ as desired.

From (8.32)–(8.34), it is clear that one can continue through the argu-
ments of Sects. 5–6 using the G-averaged local and global terms along with the
decay function G

(1)
sym. Since these terms belong to the algebra Aloc,G

Γ , the G-
symmetric indistinguishability condition holds and the results from this section
can again be applied with no modifications.

8.5. A Class of One-Dimensional Examples with Discrete Symmetry Breaking

In this section we discuss a class of frustration-free quantum spin chains
(Γ = Z) with discrete symmetry breaking for which the conditions for sta-
bility with symmetry breaking as discussed in the previous section can be
explicitly verified.

Suppose ω is a pure, translation invariant matrix product state of a quan-
tum spin chain with a n-dimensional single-site Hilbert space. It is well-known,
see [39], that there exists a positive integer R, and a frustration-free interac-
tion, 0 ≤ hω ∈ A[0,R] such that ω is the unique zero-energy ground state on
the whole chain for the model with local Hamiltonians

Hω
Λ =

∑

x∈Z

[x,x+R]⊂Λ

hω
x , (8.35)

where hω
x ∈ A[x,x+r] is a translated copy of hω. Let us denote by Pω

Λ the
orthogonal projection onto kerHω

Λ . Then, there exists λ ∈ [0, 1), and a con-
stant C such that for all A ∈ A[a,b] and [a, b] ⊂ [l, r] we have ground-state
indistinguishability with an exponential rate:

‖P[l,r]AP[l,r] − ω(A)P[l,r]‖ ≤ C‖A‖(λa−l + λr−b). (8.36)

The explicit details of this argument can be found in Theorem B.2. Thus,
it is clear that rΩ

x (Λ) ≥ d(x, ∂Λ) for Ω(n) = 2Cλn. In particular, given a
perturbation model for initial Hamiltonians and Ω(r) as above, it is necessarily
a uniform perturbation model. Moreover, the conditions of Corollary 6.9 hold
with perturbation regions Λp

n ↑ Z, and hence the results from Sect. 7 apply.
Next, consider N distinct pure, translation invariant matrix product

states ω1, . . . , ωN of a quantum spin chain. It was proved in [77, page 570, Theo-
rem 1] that there exists a finite-range frustration-free interaction 0 ≤ h ∈ A[0,R]

for which the set of zero-energy ground states of the infinite chains is exactly
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given by the convex hull of S0 := {ω1, . . . , ωN}. In the same paper, it was
also proved that h can be taken such that the orthogonal projection onto the
ground-state space is given by P[a,b] =

∨N
i=1 Pωi

[a,b] where Pωi

[a,b] is the orthogonal
projection onto ker(Hωi

[a,b]), and that there is a uniform positive lower bound
on the spectral gaps:

γ0 := inf
[a,b]∈P0(Z)

gap(H[a,b]) > 0.

For models with this construction, one necessarily has that (8.14)–(8.16)
from Assumption 8.2 are satisfied. First, (8.15) holds trivially with P i

[a,b] =
Pωi

[a,b]. Second, as the matrix product states are distinct, there is λ ∈ [0, 1) and
C > 0 so that∥∥∥Pωi

[a−n,b+n]AP
ωj

[a−n,b+n] − δijωi(A)Pωi

[a−n,b+n]

∥∥∥ ≤ C‖A‖λn. (8.37)

For i = j this is clear from (8.36), and the case of i �= j is discussed in Appen-
dix B.2. Finally, applying the above with A = 1l shows that the projections
Pωi

[a−n,b+n] are nearly pairwise orthogonal for large n:

‖Pωi

[a−n,b+n]P
ωj

[a−n,b+n]‖ ≤ Cλn, for i �= j, (8.38)

from which (8.14) holds.
We now specialize to the situation in which the distinct pure states ωi

are related by a finite symmetry. Suppose we have a unitary representation
G ! g 	→ Ug of a finite group G on the single site Hilbert space Hx, and let σg

denote the corresponding automorphisms acting on the algebra of quasi-local
observables AΓ. Given a pure, translation invariant matrix product state ω,
consider the set of pure states, E0, defined by

E0 = {ω ◦ σg | g ∈ G}. (8.39)

Then, E0 is a finite set of mutually disjoint translation-invariant pure states to
which the previous discussion can be applied, and moreover, the corresponding
frustration-free finite-range interaction can be chosen such that σg(h) = h. For
such models we have the following theorem for stability.

Theorem 8.4. Let h ≥ 0 be a G-symmetric, frustration-free interaction for the
set of distinct MPS E0 as in (8.39). For any Λn ↑ Z and any interaction
Φ ∈ BF with F for a weighted F -function as in (6.13), there is a sequence of
perturbation regions Λp

n ↑ Z so that

HΛn
(s) =

∑

x,[x,x+R]⊂Λn

hx + s
∑

X⊆Λn

X∩Λp
n �=∅

Φ(X)

is a uniform gauge symmetry-breaking perturbation model. Moreover, there is
an sγ > 0 for each 0 < γ < γ0 so that

(i) Ss is a simplex of ground state of the infinite spin chain (Γ = Z).
(ii) The GNS Hamiltonian in each of the extreme points of Ss has a simple

ground state and a spectral gap bounded below by γ.
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Proof. From (8.37) and the surrounding discussion, we see that Assumption 8.2
holds with an exponentially decaying function Ω for which

rΩ,E0
x (Λn) ≥ d(x, ∂Λn).

This decay implies that for any sequence of increasing and absorbing intervals
Λn ↑ Z, there exists a sequence perturbation regions

Λp
n = {x ∈ Λn : rΩ,E0

y (Λn) ≥ Kn + Ln for all y ∈ bΛn
x (Kn)}

for which Corollary 6.9 applies. For example, one can choose the sequences Ln

and Kn as described in Sect. 6.3, see (6.41). The claims regarding the infinite
volume then follow from Theorem 8.3. �

An identical construction using site-blocking of the local Hilbert spaces
can be applied to obtain models with spontaneous breaking of the lattice
translation invariance that have p distinct p-periodic ground states, for any
p ≥ 2, see e.g. [77]. Other symmetries, such as lattice reflection and charge
conjugation can be treated in the same way. In each case Assumption 8.2
holds with exponential decay as well as an analog of Theorem 8.4.
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Appendix A. Estimating Transformations of Anchored
Interactions

In this section, we review some basic estimates concerning quasi-local trans-
formations of interactions. Many of the results proven here run parallel to
estimates that can be found in [83, Section V.D.]. However, we restrict our
attention to anchored interactions here, and this causes slight differences in
some arguments.

We begin with a simple lemma. For comparison, this lemma will play
the role as [83, Lemma A.9]. Let us introduce the following notation. For any
x ∈ R, set

|x|+ = max(x, 0). (A.1)

Furthermore, we will say that a function f : [0,∞)→ [0,∞) is summable if

‖f‖ =
∞∑

n=0

f(n) <∞. (A.2)

Lemma A.1. Let F,G : [0,∞) → [0,∞) be summable functions. If G is also
non-increasing, then for any R ≥ 0, one has that

∑

k≥0

G(k)
∑

n≥|R−k−1|+
F (n) ≤ min (‖G‖‖F‖,H(R)) (A.3)

where H : [0,∞)→ [0,∞) is given by

H(R) = G(0) · �R/2�
∑

n≥�R/2�
F (n) + ‖F‖

∑

n≥�R/2�
G(n). (A.4)

Proof. First note that for any R ≥ 0, one has the naive bound
∑

k≥0

G(k)
∑

n≥|R−k−1|+
F (n) ≤ ‖G‖‖F‖. (A.5)

It is also clear that for any 0 ≤ R < 2, H(R) = ‖G‖‖F‖.
For R ≥ 2, a different estimate holds. Note that, in this case, for 0 ≤ k ≤

�R/2� − 1, one has

R− k − 1 ≥ R− �R/2� ≥ R/2 (A.6)

and so since G is non-increasing,

�R/2�−1∑

k=0

G(k)
∑

n≥|R−k−1|+
F (n) ≤ G(0) · �R/2�

∑

n≥�R/2�
F (n). (A.7)

For the remaining terms, it is clear that
∑

k≥�R/2�
G(k)

∑

n≥|R−k−1|+
F (n) ≤ ‖F‖

∑

k≥�R/2�
G(k) (A.8)

This proves the estimate in (A.3). �
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Let us now review the notion of a transformed interaction. Consider a
ν-regular metric space (Γ, d), and assume that Λ ⊂ Γ is finite and there is an
associated quantum lattice system AΛ = B(HΛ), see Sect. 2.2 for more details.
For any x ∈ Λ and n ≥ 0, let us also denote by bΛ

x (n) = {y ∈ Λ : d(x, y) ≤ n}.
Let V ∈ AΛ denote the Hamiltonian associated with an anchored interaction
Φ : Λ× Z≥0 → AΛ, see Definition 2.5, i.e.

V =
∑

x∈Λ

∑

n≥0

Φ(x, n). (A.9)

For any linear map K : AΛ → AΛ, we will refer to the composition

K(V ) =
∑

x∈Λ

∑

n≥0

K(Φ(x, n)) (A.10)

as a transformed interaction. If the map K commutes with the involution, i.e.

K(A)∗ = K(A∗) for all A ∈ AΛ, (A.11)

then one may re-write this composition K(V ) as an anchored interaction. In
fact, using the local decompositions described in Sect. 4.3, see (4.30), we see
that for each x ∈ Λ and n ≥ 0

K(Φ(x, n)) =
∑

m≥n

ΔΛ
x,n;m(K(Φ(x, n))) (A.12)

where we used (4.32). Now inserting (A.12) into (A.10), we find that

K(V ) =
∑

x∈Λ

∑

n≥0

∑

m≥n

ΔΛ
x,n;m(K(Φ(x, n))) =

∑

x∈Λ

∑

m≥0

Ψ(x,m) (A.13)

where we have re-ordered the sums on m and n and set

Ψ(x,m) =
m∑

n=0

ΔΛ
x,n;m(K(Φ(x, n))). (A.14)

It is easy to check that K(V ), as written in (A.13), is an anchored inter-
action as in Definition 2.5. In fact, since K commutes with the involution, we
have that

Ψ(x,m)∗ = Ψ(x,m) ∈ AbΛx (m) for all x ∈ Λ and m ≥ 0. (A.15)

Moreover, if Φ satisfies (2.42), then so too does Ψ. In fact, if for some
x ∈ Λ and m ≥ 0, we have that Ψ(x,m) �= 0, then there is 0 ≤ n ≤ m for
which ΔΛ

x,n;m(K(Φ(x, n))) �= 0. If n = m, then 0 �= ΔΛ
x,m;m(K(Φ(x,m))) =

ΠΛ
bΛx (m)(K(Φ(x,m))) and therefore, Φ(x,m) �= 0. In this case, since Φ satisfies

(2.42), we know that there are points y, z ∈ bΛ
x (m) for which d(y, z) > m− 1.

Otherwise, there is 0 ≤ n < m for which ΔΛ
x,n;m(K(Φ(x, n))) �= 0 and thus

ΔΛ
x,n;m = ΠΛ

bΛx (m)−ΠΛ
bΛx (m−1) �≡ 0. In this case, it must be that bΛ

x (m)\ bΛ
x (m−

1) �= ∅. Thus with y = x and z ∈ bΛ
x (m) \ bΛ

x (m− 1), we find y, z ∈ bΛ
x (m) for

which d(y, z) > m− 1.
We will now show that if Φ and K have appropriate decay, then so too

does Ψ. Let us now assume that the linear mapping K : AΛ → AΛ is locally
bounded and quasi-local. More precisely, we assume that:
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(i) K is locally bounded: There is a number p ≥ 0 and B <∞ for which

‖K(A)‖ ≤ B|X|p‖A‖. (A.16)

for all A ∈ AX with X ⊂ Λ. Here p is called the order of the local bound
for K.

(ii) K is quasi-local: There is a number q ≥ 0 and a non-increasing function
G : [0,∞)→ (0,∞) with limr→∞ G(r) = 0 for which

‖[K(A), B]‖ ≤ |X|q‖A‖‖B‖G(d(X,Y )) (A.17)

for all A ∈ AX , B ∈ AY , and X,Y ⊂ Λ. Here q is called the order of the
quasi-locality bound for K and G is the associated decay function.

Let F be an F -function on (Γ, d) in the sense described in Sect. 2.2.3. For
any r ≥ 0, we will say that Φ has an r-th moment which is bounded by F if
there is a number ‖Φ‖r,F <∞ for which given any y, z ∈ Λ,

∑

x∈Λ

∑

n≥0:
y,z∈bΛx (n)

|bΛ
x (n)|r‖Φ(x, n)‖ ≤ ‖Φ‖r,F F (d(y, z)). (A.18)

The following result is the analogue of [83, Theorem 5.13] for anchored
interactions.

Theorem A.2. Let K : AΛ → AΛ be a linear map which is locally bounded and
quasi-local, and F be an F -function on (Γ, d). Set r = max(p, q) with p and q,
respectively, the orders of the local bound and quasi-local estimate for K, and
let Φ ∈ Br

F be an anchored interaction on Λ, satisfying (2.42). In this case,
the terms of transformed interaction Ψ defined as in (A.13)–(A.14) satisfy the
following bound: for any y, z ∈ Λ,

∑

x∈Λ

∑

m≥0:
y,z∈bΛx (m)

‖Ψ(x,m)‖ ≤ B‖Φ‖r,F F (d(y, z)) + 4κd(y, z)vH(d(y, z)/2)

+4
∑

w∈{y,z}

∑

x∈Λ:
d(x,w)>d(y,z)

H(d(x,w)). (A.19)

Here the function H : [0,∞)→ [0,∞) is given by

H(R) = G(0)‖Φ‖r,F �R/2�F (�R/2� − 1) + ‖Φ‖r,F F (0)
∑

k≥�R/2�
G(k) (A.20)
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Proof. We begin this argument as in the proof of [83, Theorem 5.13]. For each
x ∈ Λ and m ≥ 0, the estimate

‖Ψ(x,m)‖ ≤
m∑

n=0

‖ΔΛ
x,n;m(K(Φ(x, n)))‖

≤ ‖K(Φ(x,m))‖+
m−1∑

n=0

‖ΔΛ
x,n;m(K(Φ(x, n)))‖

≤ B|bΛ
x (m)|p‖Φ(x,m)‖+ 4

m−1∑

n=0

|bΛ
x (n)|q‖Φ(x, n)‖G(m− n− 1)

(A.21)

follows using (A.14), the form of the local decompositions, see (4.30), the
local bound (A.16), and inserted the quasi-local bound (A.17) into the general
estimate in Lemma 4.3, see (4.34). From this bound, it is clear that
∑

x∈Λ

∑

m≥0:
y,z∈bΛx (m)

‖Ψ(x,m)‖ ≤ B
∑

x∈Λ

∑

m≥0:
y,z∈bΛx (m)

|bΛ
x (m)|p‖Φ(x,m)‖

+4
∑

x∈Λ

∑

m≥0:
y,z∈bΛx (m)

m−1∑

n=0

|bΛ
x (n)|q‖Φ(x, n)‖G(m− n− 1)

(A.22)

Using the bound on the r-th moment of Φ, the first term on the right-hand-side
of (A.19) is clear.

For the second term above, we re-write

∑

x∈Λ

∑

m≥0:
y,z∈bΛx (m)

m−1∑

n=0

|bΛ
x (n)|q‖Φ(x, n)‖G(m− n− 1)

=
∑

x∈Λ

∑

k≥0

G(k)
∑

n≥0:
y,z∈bΛx (n+k+1)

|bΛ
x (n)|q‖Φ(x, n)‖. (A.23)

Now the argument diverges slightly from the proof of [83, Theorem 5.13].
Here, to further estimate, we will split the sum on x ∈ Λ. Before doing so,
for each x ∈ Λ, let us denote by m0(x) the smallest integer m ≥ 0 for which
y, z ∈ bΛ

x (m). Two observations readily follow. First, for any x ∈ Λ, d(y, z) ≤
d(y, x) + d(x, z) ≤ 2m0(x). Next, for each fixed x ∈ Λ,

∑

k≥0

G(k)
∑

n≥0:
y,z∈bΛx (n+k+1)

|bΛ
x (n)|q‖Φ(x, n)‖

=
∑

k≥0

G(k)
∑

n≥|m0(x)−k−1|+
|bΛ

x (n)|q‖Φ(x, n)‖ (A.24)

where we have used the notation (A.1).
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Let us now split Λ by writing

Λy,z = {x ∈ Λ : max (d(x, y), d(x, z)) ≤ d(y, z)} = bΛ
y (d(y, z)) ∩ bΛ

z (d(y, z))
(A.25)

and setting Λ = Λy,z ∪ Λc
y,z, a disjoint union. Note here that Λc

y,z = Λ \ Λy,z.
Now, for any x ∈ Λy,z, we estimate

∑

k≥0

G(k)
∑

n≥|m0(x)−k−1|+
|bΛ

x (n)|q‖Φ(x, n)‖

≤
∑

k≥0

G(k)
∑

n≥|d(y,z)/2−k−1|+
|bΛ

x (n)|r‖Φ(x, n)‖

≤ H(d(y, z)/2) (A.26)

where we have used that d(y, z)/2 ≤ m0(x) and Lemma A.1. Note that in
this application of Lemma A.1 we have taken F (n) = |bΛ

x (n)|r‖Φ(x, n)‖ and
used the analogue of (4.14). Since the right-hand-side above is independent of
x ∈ Λy,z and |Λy,z| ≤ |bΛ

y (d(y, z))| ≤ κd(y, z)ν by ν-regularity of (Γ, d), see
(2.1), we have now obtained the second term on the right-hand-side of (A.19).

Finally, for each x ∈ Λc
y,z there is w ∈ {y, z} for which d(x,w) > d(y, z).

In this case,
∑

k≥0

G(k)
∑

n≥|m0(x)−k−1|+
|bΛ

x (n)|q‖Φ(x, n)‖

≤
∑

k≥0

G(k)
∑

n≥|d(x,y)−k−1|+
|bΛ

x (n)|r‖Φ(x, n)‖ (A.27)

since d(x,w) ≤ m0(x) for each w ∈ {y, z}. Another application of Lemma A.1
completes the bound claimed in (A.19). �

In applications of Theorem A.2, it is common to know more detailed
properties of the function F which bounds the decay of the anchored interac-
tion Φ, see (A.18), as well as the function G which bounds the quasi-locality
of K, see (A.17). The corollary that follows demonstrates a useful form of this
estimate which holds whenever both F and G are members of the same decay
class; here we refer specifically to the decay classes described in Definition 4.5.

Corollary A.3. Under the assumptions of Theorem A.2, suppose further that
there exist positive numbers η, ξ, and θ for which both F and G, the decay
functions associate to Φ and K through (A.18) and (A.17) respectively, are in
decay class (η, ξ, θ). In this case, for each 0 < η′ < η, there is an F -function
F η′

Ψ on (Γ, d) for which
∑

x∈Λ

∑

m≥0:
y,z∈bΛx (m)

‖Ψ(x,m)‖ ≤ F η′
Ψ (d(y, z)) (A.28)

and moreover, for any ζ > ν + 1, there are positive numbers C1, C2, d, and
a′ ,satisfying C1 ≥ C2e

−η′fξ(a′dθ), for which one may take F η′
Ψ with the form
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F η′
Ψ = FΨ,0 · F dec

Ψ,η′ where:

FΨ,0(r) =
1

(1 + r)ζ
and F dec

Ψ,η′(r) =
{

C1 if 0 ≤ r ≤ d

C2e
−η′fξ(a′rθ) if r > d.

(A.29)

Proof. We prove this corollary in three steps. First, we argue that
∑

x∈Λ

∑

m≥0:
y,z∈bΛx (m)

‖Ψ(x,m)‖ ≤ GΨ(d(y, z)) (A.30)

for some function GΨ in decay class (η, ξ, θ). Then we show that the estimate
above implies the family of bounds in (A.28) with functions F η′

Ψ having the
form described in (A.29). Finally, we argue that each of the functions F η′

Ψ , as
above, are indeed F -functions on (Γ, d).

A direct application of Theorem A.2 shows that (A.30) holds for the
function GΨ defined by the right-hand-side of (A.19). Note that the function
H, as defined in (A.20), is clearly a member of the decay class (η, ξ, θ), and
thus so too is

x 	→ B‖Φ‖r,F F (x) + 4κxνH(x/2), (A.31)

here we use, for example, the comments made in Remark 4.6. To conclude
that this GΨ is in the appropriate decay class, we need only confirm that this
is true for the final term on the right-hand-side of (A.19). Since H is in the
appropriate decay class, for any 0 < η′ < η and each choice of ζ > ν +1, there
are positive numbers C1, C2, a, and d, with C1 ≥ C2e

−η′fξ(adθ), for which

(1 + r)ζH(r) ≤
{

C1 if 0 ≤ r ≤ d,

C2e
−η′fξ(arθ) if r > d.

(A.32)

In this case, we have that for 0 ≤ d(y, z) ≤ d,

4
∑

w∈{y,z}

∑

x∈Λ:
d(x,w)>d(y,z)

H(d(x,w)) ≤ 8C1 max
x∈Λ

∑

y∈Λ

1
(1 + d(x, y))ζ

. (A.33)

When d(y, z) > d, we also have

4
∑

w∈{y,z}

∑

x∈Λ:
d(x,w)>d(y,z)

H(d(x,w)) ≤ 8C2e
−η′fξ(ad(y,z)θ) max

x∈Λ

∑

y∈Λ

1
(1 + d(x, y))ζ

.

(A.34)
This completes the proof that GΨ is in decay class (η, ξ, θ).

Now, for any choice of ζ > ν + 1, we may write

GΨ(r) =
1

(1 + r)ζ
(1 + r)ζGΨ(r) for all r ≥ 0. (A.35)

Since GΨ is in decay class (η, ξ, θ), arguing as above we see that the family of
bounds claimed in (A.28)–(A.29) holds.
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Turning to the final point, let F η′
Ψ = FΨ,0F

dec
Ψ,η′ be as in (A.29). As is

proven, e.g., in Proposition A.2 of [83], the function

F̃ (r) =

{
C1 0 ≤ r ≤ d,

C2
(1+r)ζ e−η′fξ(a′rθ) r > d.

(A.36)

is an F -function on (Γ, d). One also readily checks that

1
(1 + d)ζ

F̃ (r) ≤ F η′
Ψ (r) ≤ F̃ (r) for all r ≥ 0, (A.37)

and thus F η′
Ψ is an F -function on (Γ, d) as well. �

Appendix B. Indistinguishability of Matrix Product States

We consider ground-state indistinguishability for a frustration-free quantum
spin chains with matrix product (MPS) ground states and open boundary con-
ditions. We show that for such models there is an exponential decay function Ω
for which the indistinguishability radius can be taken as the distance from the
site to the volume boundary, i.e., rΩ

x (Λ) = d(x, ∂Λ). After setting notation and
reviewing key properties of MPS, we prove ground-state indistinguishability
for models with a unique infinite volume ground state. Afterwards, we turn to
an example of discrete symmetry breaking where the local ground-state space
is spanned by several distinct MPS, and discuss how in the thermodynamic
limit the ground states become orthogonal.

B.1. MPS Indistinguishability with a Unique Ground State

We associate the same on-site Hilbert space to each site, i.e. Hx = C
d for

each x ∈ Z, and assume the MPS is translation invariant and has a primitive
transfer operator E : Mk → Mk. Here, k is the bond dimension of the MPS
and Mk is the set of k×k matrices. For a fixed an orthonormal basis {|i〉 : i =
1, . . . d} ⊂ Hx, these assumptions imply there is a set of matrices {vi}di=1 ⊂Mk

generating the MPS, and a density matrix ρ ∈ Mk for which E (in isometric
form) satisfies:

E(B) :=
d∑

i=1

v∗
i Bvi, E(1l) = 1l, E

t(ρ) = ρ. (B.1)

The primitive assumption guarantees ρ is invertible, and that there is a λ ∈
[0, 1) and c > 0 for which

‖En − E
∞‖ ≤ cλn (B.2)

where E
∞(B) := Tr(ρB)1l.

It is well known that for the resulting MPS2

Mk ! B 	→ Γ[l,r](B) :=
d∑

il,...,ir=1

Tr(Bvil
· · · vir

)|il . . . ir〉 ∈ H[l,r], (B.3)
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there is a (non-unique) finite-range, frustration-free interaction on Aloc
Z

so that
the ground-state space for each of the corresponding local Hamiltonians is
ker H[l,r] = ranΓ[l,r]. Moreover, the assumptions guarantee that this model
has a unique ground state in the thermodynamic limit, ω : AZ → C, defined
by

ω(A) = Tr(ρEA(1l)), ∀A ∈ Aloc
Z

(B.4)

where for each A ∈ A[a,b] and all B ∈Mk:

EA(B) := V ∗
[a,b]A⊗BV[a,b] with V[a,b] :=

d∑

ia,...,ib=1

|ia . . . ib〉 ⊗ via
· · · vib

.

(B.5)
For any finite interval [a, b], it is easy to verify using (B.1) that

V ∗
[a,b]V[a,b] = E

b−a+1(1l) = 1l, (B.6)

and moreover, that the state ω is consistent with the identification A 	→ A′ :=
1l⊗n ⊗ A⊗ 1l⊗m ∈ A[a−n,b+m]. For the latter, one finds ω(A′) = ω(A) by first
verifying EA′ = E

n ◦ EA ◦ Em and then using (B.1)–(B.4).
We now turn to the indistinguishability of the ground states. Given two

intervals [a, b] ⊂ [l, r], let P[l,r] denote the orthogonal projection onto ran(Γ[l,r])
and notice that for any A ∈ A[a,b],

‖P[l,r]AP[l,r] − ω(A)P[l,r]‖ = sup
Γ[l,r](B),Γ[l,r](C) �=0

∣∣〈Γ[l,r](B), (A − ω(A)1l) Γ[l,r](C)
〉∣∣

‖Γ[l,r](B)‖‖Γ[l,r](C)‖ .

(B.7)

The first result we provide, which will be used to bound the RHS above,
was first proved in [39, Lemma 5.2]. We provide the proof here as it outlines
the basic techniques needed to establish ground-state indistinguishability.

Lemma B.1. Fix finite intervals [a, b] ⊆ [l, r] and let Γ[l,r] : Mk → H[l,r] be
a translation invariant MPS with primative transfer operator E as in (B.1)–
(B.2). Then for any A ∈ A[a,b],

∣∣∣
〈
Γ[l,r](B), A Γ[l,r](C)

〉− ω(A) 〈B, C〉ρ

∣∣∣ ≤ c
(
Tr(ρ−1)λa−l + λr−b

)
‖A‖‖B‖ρ‖C‖ρ

(B.8)
where 〈B,C〉ρ := Tr(ρB∗C) is the inner product on Mk induced by ρ, and ω

is as in (B.4).

Proof. Fix any orthonormal basis B of C
k, and consider the LHS of (B.8).

Using this orthonormal basis to rewrite the trace and applying (B.1) and
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(B.5), the first inner product can be rewritten as
〈
Γ[l,r](B), AΓ[l,r](C)

〉

=
∑

il,...,ir
jl,...,jr

Tr(v∗
ir

. . . v∗
il
B∗)Tr(Cvjl

. . . vjr
)〈il . . . ir|A|jl . . . jr〉

=
∑

α,β∈B

∑

il,...,ir
jl,...,jr

〈
α, v∗

ir
. . . v∗

il
B∗α

〉
〈β,Cvjl

. . . vjr
β〉 〈il . . . ir|A|jl . . . jr〉

=
∑

α,β∈B

〈
α,Er−b ◦ EA ◦ Ea−l (B∗|α〉〈β|C) β

〉
. (B.9)

Here, we use that A is supported on [a, b], and choose the convention that E
0

is the identity operator on Mk. Letting E
∞ be as in (B.2), linearity implies

that

E
r−b◦EA◦Ea−l = E

∞◦EA◦E∞+(Er−b−E∞)◦EA◦E∞+E
r−b◦EA◦(Ea−l−E∞).

(B.10)
Inserting the definition of E

∞ and using the orthonormality of B, one
finds that the first term in this decomposition corresponds to the matrix inner
product from (B.8), i.e.

ω(A) 〈B,C〉ρ =
∑

α,β∈B
〈α,E∞ ◦ EA ◦ E∞ (B∗|α〉〈β|C) β〉 . (B.11)

For the second term, we can similarly rewrite the summation as

∑

α,β∈B

〈
α, (Er−b − E

∞) ◦ EA ◦ E
∞ (B∗|α〉〈β|C) β

〉
= Tr(CρB∗(Er−b − E

∞) ◦ EA(1l)).

Notice that ‖EA‖ ≤ ‖A‖ since V[a,b] is an isometry. As a result, using (B.2)
and applying Holder’s inequality proves:

|Tr(CρB∗(Er−b − E
∞) ◦ EA(1l))| ≤ ‖(Er−b − E

∞) ◦ EA(1l)‖‖CρB∗‖1
≤ cλr−b‖A‖‖Cρ1/2‖2‖ρ1/2B∗‖2
= cλr−b‖A‖‖C‖ρ‖B‖ρ (B.12)

where ‖ · ‖k for k = 1, 2 denotes the usual trace class and Hilbert-Schmidt
norms, respectively.

For the final term in (B.10), we again use (B.2) to bound
∣∣〈α,Er−b ◦ EA ◦ (Ea−l − E

∞) (B∗|α〉〈β|C) β
〉∣∣ ≤ cλa−l‖A‖‖B∗|α〉‖‖C|β〉‖

for any α, β ∈ B. Choose B to be any orthonormal basis that diagonalizes ρ,
i.e., ρ|α〉 = ρα|α〉. Summing over α ∈ B and applying Cauchy-Schwarz yields,

∑

α∈B
‖B∗|α〉‖ =

∑

α

ρ−1/2
α ‖B∗ρ1/2|α〉‖ ≤

√
Tr(ρ−1)‖B‖ρ.
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The analogous bound holds when summing over β. As a consequence,
∑

α,β∈B

∣∣〈α,Er−b ◦ EA ◦ (Ea−l − E
∞) (B∗|α〉〈β|C) β

〉∣∣

≤ cTr(ρ−1)λa−l‖A‖‖B‖ρ‖C‖ρ. (B.13)

Thus, inserting (B.10) into (B.9), the bound in (B.8) follows from com-
bining (B.11)–(B.13). �

In the situation that A = 1l, the operator inside the summation of (B.9)
becomes E

r−l+1 = E
∞ + (Er−l+1 − E

∞). In this case, the argument from
Lemma B.1 simplifies, and using an estimate similar to (B.13) one can prove

∣∣∣
〈
Γ[l,r](B),Γ[l,r](C)

〉
− 〈B,C〉ρ

∣∣∣ ≤ cTr(ρ−1)λr−l+1‖B‖ρ‖C‖ρ, (B.14)

see, e.g., [39, Lemma 5.2]. Choosing B = C, this bound implies that Γ[l,r] is
injective for sufficiently large intervals. Specifically, for any 0 �= B ∈ Mk one
has

1− cTr(ρ−1)λr−l+1 ≤
‖Γ[l,r](B)‖2
‖B‖2ρ

≤ 1 + cTr(ρ−1)λr−l+1. (B.15)

We are now ready to prove the lower bound on the indistinguishability
radius for models with MPS ground states and a unique thermodynamic limit.

Theorem B.2. Fix finite intervals [a, b] ⊆ [l, r] and let Γ[l,r] : Mk → H[l,r] be
a translation invariant MPS with primative transfer operator E as in (B.1)–
(B.2). Then for any A ∈ A[a,b],

‖P[l,r]AP[l,r]−ω(A)P[l,r]‖ ≤ C(r− l +1)
[
Tr(ρ−1)(λr−l+1 + λa−l) + λr−b

]
‖A‖

(B.16)
where ω is as in (B.4) and C(n) := c(1− cTr(ρ−1)λn)−1. As a result, one has
rΩ
x (Λ) ≥ d(x, ∂Λ) for all sites x in an interval Λ when choosing

Ω(n) := 2C(n)(2Tr(ρ−1) + 1)λn. (B.17)

Before proving the result, we note that if we set X = [a, b] and Λ = [l, r],
then d(X, ∂Λ) = min{l − a, r − b}, and so one could further bound (B.16) by

‖PΛAPΛ − ω(A)PΛ‖ ≤ C(|Λ|)(2Tr(ρ−1) + 1)λd(X,∂Λ)‖A‖, (B.18)

which motivates the choice for the LTQO function. The extra factor of two in
(B.17) comes from replacing the infinite state ω with the finite ground-state
functional ωΛ(A) = Tr(APΛ)/Tr(PΛ) used to define the indistinguishability
radius, see (2.9).

Proof. Fix nonzero matrices B,C ∈ Mk. Applying (B.8) and (B.14), one ob-
tains the bound

|
〈
Γ[l,r](B), (A− ω(A)1l)Γ[l,r](C)

〉
|

≤ |
〈
Γ[l,r](B), AΓ[l,r](C)

〉
− ω(A) 〈B,C〉ρ | (B.19)

+ |ω(A)|
∣∣∣
〈
Γ[l,r](B),Γ[l,r](C)

〉
− 〈B,C〉ρ

∣∣∣

≤ c
[
Tr(ρ−1)(λr−l+1 + λa−l) + λr−b

]
‖A‖‖B‖ρ‖C‖ρ (B.20)
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Therefore, (B.16) follows from combining this with (B.7) as inverting the
bounds in (B.15) implies

‖B‖ρ
‖Γ[l,r](B)‖ ≤

1√
1− cTr(ρ−1)λr−l+1

. (B.21)

To determine the indistinguishability radius, for any site x ∈ Λ one
trivially has that bΛ

x (n) = [x − n, x + n] for all n ≤ d(x, ∂Λ). Thus, if A ∈
A[x−m,x+m] for m ≤ n, (B.16) implies

‖PbΛx (n)APbΛx (n) − ω(A)PbΛx (n)‖ ≤ C(n−m)(2Tr(ρ−1) + 1)λn−m‖A‖,

where we trivially use λ2n+1 ≤ λn−m. Defining the state ωΛ(A) := Tr(APΛ)/
Tr(PΛ), the indistinguishability radius is given by bounding

‖PbΛx (n)APbΛx (n) − ωΛ(A)PbΛx (n)‖ ≤ ‖PbΛx (n)APbΛx (n) − ω(A)PbΛx (n)‖ + |ωΛ(A) − ω(A)|.

Thus, the claimed bound on rΩ
x (Λ) follows from estimating the second quantity

above.
For Λ sufficiently large, injectivity implies

ωΛ(A) = k−2
∑k2

i=1 〈ΓΛ(Bi), AΓΛ(Bi)〉 for an orthonormal basis {ΓΛ(Bi)} of
ran(ΓΛ). For any normalized state ΓΛ(B), the arguments from (B.20)–(B.21)
apply with B = C to produce

| 〈ΓΛ(B), AΓΛ(B)〉 − ω(A)| ≤C(n−m)(2Tr(ρ−1) + 1)λn−m‖A‖,

where we use (B.18), that C(r) and λr are decreasing functions, and n− k ≤
d(bx(k), ∂Λ) ≤ |Λ|. Thus, the result follows from the bound

|ωΛ(A)− ω(A)| ≤ 1
k2

k2∑

i=1

| 〈ΓΛ(Bi), AΓΛ(Bi)〉 − ω(A)|

≤ C(n−m)(2Tr(ρ−1) + 1)λn−m‖A‖.

�

B.2. Indistinguishability with Multiple MPS Ground States

We now turn our attention to the situation of a frustration-free model whose
ground states are spanned by several distinct MPS. Specifically, we assume
there are n ≥ 2 matrix product states for which the corresponding infinite
volume ground states are unique, i.e.

ωi �= ωj for i �= j,

and the ground-state space of the local Hamiltonians is kerHΛ =
∑n

i=1 ran(Γi
Λ).

Each of these matrix product states individually satisfy the conditions of the
previous section, namely (B.1)–(B.2), and so each of the infinite states ωi is
of the form (B.4), see also (B.5). As outlined in Sect. 8, the correct indistin-
guishability condition in this situation is:

‖P i
[a−n,b+n]AP j

[a−n,b+n] − δijωi(A)P i
[a−n,b+n]‖ ≤ ‖A‖Ω(n) (B.22)
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for all A ∈ A[a,b] where P i
Λ is the orthogonal projection onto ran(Γi

Λ). Applying
Theorem B.2, such a bound clearly holds when i = j. Therefore, we need only
show that in the case that i �= j,

sup
Γi

Λ(B), Γj
Λ(C) �=0

∣∣∣
〈
Γi

Λ(B), AΓj
Λ(C)

〉∣∣∣

‖Γi
Λ(B)‖‖Γj

Λ(C)‖
≤ ‖A‖Ω(n), (B.23)

where we set Λ = [a−n, b+n]. This is the content of [77, Lemma 6]. We briefly
outline this argument.

To simplify notation, consider two distinct infinite states ω1, ω2 : AZ →
C defined via matrix product states on the same quantum spin system. Let
{vi}di=1 ⊂ Mk and {wi}di=1 ⊂ Ml be the set of matrices defining Γ1

Λ and Γ2
Λ

with respect to the same orthonormal basis for Hx = C
d. Arguing similarly as

in (B.9), for any A ∈ A[a,b], one has

〈
Γ1

Λ(B), AΓ2
Λ(C)

〉
=

∑

α∈Bk
β∈BL

〈α,Fn ◦ FA ◦ Fn (B∗|α〉〈β|C) β〉

were Bk, and Bl are orthonormal bases for the respective virtual spin spaces
and, with respect to the isometries from (B.5), the transfer operators FA and
F on Mk×l are given by

FA(B) =V ∗
[a,b]A⊗BW[a,b] (B.24)

F(B) =
d∑

i=1

v∗
i Bwi = V ∗(1ld ⊗B)W (B.25)

where V :=
∑

i |i〉 ⊗ vi and W :=
∑

i |i〉 ⊗ wi are isometries for a single site.
Using a modified version of the argument used to obtain (B.13), see also

(B.21), one finds that (B.23) follows from showing that

‖F‖ := sup
0 �=B∈Mk×l

‖F(B)‖ρ2

‖B‖ρ2

< 1 (B.26)

where ‖B‖2ρ2
:= Tr(ρ2B

∗B) is the inner product induced by the density matrix
ρ2 associated with ω2. It is easy to see that ‖F‖ ≤ 1 as for any B,C ∈Mk×l

|Tr(ρ2C
∗
F(B))|2 ≤ Tr(ρ2C

∗V ∗V C)Tr(ρ2W
∗1l⊗B∗BW )

= Tr(ρ2C
∗C)Tr(ρ2B

∗B),

where we use that V ∗V = 1l, and W ∗1l⊗ B∗BW =
∑

i w∗
i B∗Bwi with (B.1).

Strict equality follows from showing that ‖F‖ = 1 implies ω1 = ω2. The details
of this argument, which can be found at the end of the proof of [77, Lemma
6], are left to the reader.
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