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Abstract
Monolithic optimization of large mechanical systems can be expensive and cumbersome. Drivers of computational
cost and integration effort are, e.g., the size of the design problem and the number of different components, models,
and disciplines. Distributed optimization schemes decompose large problems into smaller subproblems; however, they
typically require intense coordination effort. This paper proposes an approach for complete decoupling by decomposing
a monolithic optimization into independent optimization subproblems that can be solved without need for coordination.
This is accomplished by sampling the space of component performance, here represented by eigenvalues and eigenvectors
of stiffness matrices, and establishing meta models that map the relevant component performance values onto feasibility
and mass estimates. The optimization procedure consists of two steps: First, a system optimization problem is solved by
assigning stiffness requirements to components that are approximately feasible and mass-optimal. Second, the component
optimization problems are solved independently of each other such that stiffness requirements are satisfied. As information
on feasibility and mass is provided during system optimization by meta models, the approach will be referred to as informed
decomposition. The effectiveness of the approach is demonstrated by minimizing the mass of a simple two-component linear
structure subject to a requirement on total stiffness. This is done for three different component models, a beam with constant
cross-section, a beam with varying cross-sections, and an arbitrary 2-dimensional body, using parametric and topology
optimization, respectively. The approach produces results that are at most 1 % heavier than the results obtained by monolithic
optimization.

Keywords Systems design · System optimization · Structural optimization · Topology optimization ·
Top-down development · Meta models

1 Introduction

The design of systems with a large number of interacting
components can be a difficult task. Two different views
are particularly relevant for this paper. First, from a
computational performance point of view, the size of the
system can make an overall optimization prohibitively
expensive demanding a decomposition to reduce the size
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of the problem (ElMaraghy et al. 2012). Second, from
a designer’s perspective, it is often beneficial to think
about the entire system without its details. In top-down
development processes, requirements are formulated on the
system level and then broken down into requirements on
components. The components are then typically designed
by separate engineering groups (Martins and Lambe 2013;
Zimmermann et al. 2017). A decomposition is therefore
often preferred over a monolithic optimization utilizing
complete system analyses.

In a distributed optimization, the given problem is
decomposed into smaller subproblems containing subsets
of the objectives, design variables and constraints. How-
ever, common approaches as analytical target cascading
(Kim et al. 2003), multidisciplinary design optimization
of independent subspaces (Shin and Park 2005), or col-
laborative optimization (Braun et al. 1996) are not fully
separable architectures and need a coordination strategy to

Published online: 9 July 2021/

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-021-02993-1&domain=pdf
http://orcid.org/0000-0002-6695-2771
mailto: lukas.krischer@tum.de


L. Krischer and M. Zimmermann

maintain consistency between shared quantities of compo-
nents and/or the system.

Complete decoupling, i.e., horizontal decomposition
between system and component level and vertical decompo-
sition between different components, can avoid further coor-
dination between the components after the decomposition.
This kind of quantitative top-down design was introduced
by Zimmermann and von Hoessle (2013) and embedded
into a design procedure in Zimmermann et al. (2017).
Based on system targets, so-called solution spaces are com-
puted representing sets of good, i.e. feasible, designs. The
edges of box-shaped solution spaces are permissible inter-
vals for component properties and can be used to formulate
completely decoupled component requirements.

Unfortunately, for complete decoupling there is a risk
of excluding the optimal, but so far unknown solution
beforehand. In Zimmermann and von Hoessle (2013) this
is referred to as loss of solution space. One possible way
of solving this so-far unsolved problem is to incorporate a-
priori information from the component level with the help
of meta models into the decoupling procedure.

Meta models have a long history in systems design
as they can reduce the high computational cost of large
size computer models (Viana et al. 2014). For example,
deformation energy, referred to as compliance in the context
of structural optimization, is often utilized as a performance
measure. Since compliance is a load dependent quantity,
corresponding mechanical detailed designs are only valid
for the respective load case. Kim et al. (2016) carried out
a dynamic system optimization with a decomposition of
the structure based on a regression model that maps mass
on compliance for equivalent static loads of different time
steps. Oh et al. (2019) utilized deep learning techniques for
estimating topologies with respect to minimal compliance
for given normal and shear load cases of a car-wheel.
A further generalization to estimate detailed designs with
respect to arbitrary load cases is presented in Ulu et al.
(2015), Lei et al. (2019), and Yu et al. (2019), where
the regression models were trained for multiple load
cases. In conclusion, meta models based on compliance
need extensive sampling procedures with varying load
case conditions to allow for general applicability. Also,
compliance does often not accurately represent stiffness
related requirements of components as, e.g., maximum
displacement. Using compliance here would impose an
unnecessary strict constraint to a problem.

Yet, also the displacement of a structure is load depen-
dent. Therefore, quantities are needed that represent inher-
ent component characteristics that are independent of
changing boundary conditions as constraints or forces.
For linear static analyses, a stiffness matrix incorpo-
rates all information about the geometrical and physical
constitution of mechanical components and is therefore

load-independent. Moreover, it can be directly related to a
displacement requirement for a given load case and contains
all relevant information regarding the deformation behavior.
In Wang et al. (2019), a stiffness matrix–based optimization
of a serial robot based on a parametrization of a topology
was conducted utilizing a linear regression for the stiffness
estimate of the components with respect to mass. In the con-
text of multi-scale optimization, the connection of the macro
and micro scale of the structure is sometimes replaced by
meta models to reduce the computational cost. In Wu et al.
(2019) and Wu et al. (2020) a substructuring technique for
hierarchical lattice structures was used to estimate the mass
and the stiffness matrix of microstructures. For this purpose,
a regression model based on a reduced basis description
was established, where the microstructure properties are
determined by samples of parametrized unit cells. Further-
more, Wang et al. (2021) carried out a multi-scale topology
optimization where meta models of different parameterized
microstructures were considered with respect to material
properties as stiffness matrix or thermal conductivity. How-
ever, due to prescribed parametrization of the geometry, the
design freedom in the presented approaches is limited and
hence one does not exploit the full lightweight potential.
Kollmann et al. (2020) utilized topology optimization to
estimate microstructure designs. In order to determine the
stiffness matrix, substitute load cases were set up, which
were used to optimize different topologies with respect to
mass. Utilizing those topologies, a regression model was
trained to predict optimal microstructures. However, those
meta models do not work directly with a stiffness matrix
as an input, but with volume fraction, filter radius, and
either maximum bulk modulus, shear modulus, or minimum
poison ratio as input variables.

Besides the risk of excluding optimal designs, also
ensuring feasibility is a relevant and difficult challenge. In
theory, all positive semi-definite stiffness matrices can be
realized by a mechanical design. Huang and Schimmels
(1998) and Huang and Schimmels (2000) showed that
arbitrary spatial stiffness matrices can be realized with a set
of so-called screw springs. In practice however, limitations
like available geometrical space or the material choice do
restrict the feasible design space of stiffness matrices. To
avoid requirements on component stiffness that cannot be
satisfied, feasibility classification is adopted. In Ding and
Vemur (2005), an active learning strategy for feasibility
classification of analog circuits was implemented. Jeong
et al. (2012) used a support vector machine classifier
for mathematical test problems and air-conditioner pipe
design. In the context of material design, Jung et al. (2019)
modeled feasibility constraints to carry out a material
optimization for inverse crystallographic texture problems.
For the classification of stiffness matrices, no previous work
could be identified.
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Decomposition and optimization...

This paper presents an approach to decouple system and
component optimization of mechanical systems. For this
purpose, two sequential optimization steps are proposed.
First, a system optimization, where requirements on the
elastic behavior of the components, in particular their
stiffness matrices, are defined, and the mass and feasibility
are estimated by meta models. Thus, the loss of solution
space will be reduced. The resulting stiffness matrix
requirements are then propagated down to the components.
Second, independent component optimization problems
are solved. The components are designed via structural
optimization techniques, without any coordination with the
system level or each other.

The paper is organized as follows: In Section 2, the
demonstrator problem setup is explained. The proposed
approach is introduced in Section 3. For comparison,
in Section 4, two alternative design approaches are
shortly described. In Section 5, results for three different
component models are presented. The results are discussed
in Section 6 and the conclusions presented in Section 7.

2 Demonstrator problem

The overall development goal is to design a lightweight
mechanical system, consisting of two components, see
Fig. 1a, e.g., representing a two-component robot arm.
The mechanical structure is clamped on the left side
and consists of two components each with length
l(i)=300 mm. The requirement on the system stiffness
is:

The system must sustain a vertical load of F=50 N
with a maximum tip displacement of d0=1 mm.

(a)

(b)

Fig. 1 A simple mechanical two-component system (a), and the
respective degrees of freedom, length l(i) and stiffness matrix K(i) for
each component i (b)

The payload is applied on the right end of the structure.
Each component is modeled as linear elastic and has two
mechanical interface points. Each interface possesses two
degrees of freedom: one translational and one rotational, see
Fig. 1b. The design variable vector x(i) includes all design
details for component i on the component-detail level. In
the following, three exemplary component models will be
considered:

(M1) a beam with constant cross-section,
(M2) a beam with varying cross-sections,
(M3) an arbitrary body represented by a 2-dimensional

topology.

For a given material (see Table 1), detailed design
variables x(i) determine the component stiffness matrices
K(i) ∈ R

4×4 for both components i on the component-
performance level. Under a given load F , the structure
deforms resulting in a system displacement d . Similarly,
the detailed description x(i) also defines the mass m(i) of
each component and consequently the system mass is m =
m(1) + m(2). Figure 2a illustrates the dependencies between
all relevant quantities that are needed to solve the given
demonstrator problem.

3 Informed decomposition

3.1 κ-representation of the component stiffness
matrixK

Not all component stiffness matrices can be realized.
Feasible component stiffness matrices K ∈ R

4×4 must
satisfy the following requirements:

(R1) K must be symmetric
(R2) rigid body deformations should result in zero forces,
(R3) K must be positive semi-definite, for stability,
(R4) there exists a detail design x corresponding toK , that

satisfies the problem-specific restriction, e.g., related
to geometry.

Requirements (R1)–(R3) shall be satisfied by an appro-
priate representation of component stiffness matrices K

using eigenvectors ϕ of the generalized eigenvalue problem

Kϕ = λBϕ, (1)

Table 1 Material data

Material Young’s Poisson’s Density ρ

Modulus E (GPa) Ratio ν (g/cm3)

Al 70.0 0.33 2.70
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Fig. 2 Dependency graph of all
relevant quantities on the system
level (I),
component-performance level
(II), and component-detail level
(III) in a monolithic (a) and the
proposed approach (b)

(I)

(II)

(III)

(b)(a)

where B ∈ R
4×4 is chosen to adjust the physical units using

a reference displacement dr , i.e.,

B =

⎡
⎢⎢⎣
1 0 0 0
0 d2

r 0 0
0 0 1 0
0 0 0 d2

r

⎤
⎥⎥⎦ . (2)

Then, (1) can be rewritten with respect to Φ =
[ϕ1, ..., ϕ4] as KΦ = BΦΛ, and K can be expressed as

K = BΦΛΦ−1, (3)

where Λ = diag (λ1, ..., λ4). This satisfies (R1). Choosing
eigenvectors as rigid body deformations with zero-valued
eigenvalues

ϕ1 =

⎡
⎢⎢⎣

dr

0
dr

0

⎤
⎥⎥⎦ , λ1 = 0 (4)

and

ϕ2 =

⎡
⎢⎢⎢⎢⎣

−dr

2dr

l

dr

2dr

l

⎤
⎥⎥⎥⎥⎦

, λ2 = 0, (5)

will ensure (R2). (R3) will be satisfied by choosing only
eigenvalues equal or greater than zero,

λ3 ≥ 0, λ4 ≥ 0. (6)

The remaining eigenvectors ϕ3 and ϕ4 need to be
orthogonal to the already defined ϕ1 and ϕ2, representing
rigid body modes, and each other. The length of the vectors
is normalized for uniqueness, i.e.

ϕT
mBϕj =

{
0 for m �= j

d2
r for m = j

(7)

These equations can be solved to express ϕ3 and ϕ4 for
any given reference displacement dr and component length
l in terms of one remaining degree of freedom γ , denoted as

the eigenvector orientation (see Appendix A.1). For l2 �
d2
r , the expressions can be simplified to

ϕ3 =

⎡
⎢⎢⎢⎢⎢⎣

d2r
l

(
γ − (1 − γ 2)

1
2

)

γ

− d2r
l

(
γ − (1 − γ 2)

1
2

)

−2γ d2r
l2

− (1 − γ 2)
1
2

⎤
⎥⎥⎥⎥⎥⎦

, (8)

ϕ4 =

⎡
⎢⎢⎢⎢⎢⎣

− d2r
l

(
γ + (1 − γ 2)

1
2

)

− (
1 − γ 2

) 1
2

d2r
l

(
γ + (1 − γ 2)

1
2

)

2d2r
l2

(1 − γ 2)
1
2 − γ

⎤
⎥⎥⎥⎥⎥⎦

, (9)

with 0 ≤ γ < 1. In the following l=300 mm and dr=1
mm is set. All component stiffness matrices K satisfying
(R1)-(R3) are therefore determined by

κ = [γ, λ3, λ4]T . (10)

Satisfying (R4) is less straightforward. Whether or not
a component stiffness matrix can be realized will depend
on the provided design space and the utilized material. A
vector of feasibility estimators f̂ (κ)=f will be established
to express feasibility fj=1 or any infeasibility fj= −1 of a
given component stiffness matrix with respect to (R4).

In contrast to the classical problem setup in Fig. 2a,
the masses for the κ-representation of K are not computed
by the detailed design variable vector x, but with a mass
estimator m̂(κ) for κ . Thus, a mass estimate is available
without knowing the detailed design, see Fig. 2b.

Based on the κ-representation of K , the new top-down
approach is proposed (see Fig. 3). It is divided into (a) a pure
design procedure based on a horizontal and vertical decom-
position of a system, enabling a completely independent
component design and (b) establishing feasibility estima-
tors f̂ (κ) and mass estimator m̂(κ), if appropriate models
are not available. Note that established meta models can be
reused for different design tasks.
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(a)

System 
Optimization

Component 
Optimization

(b)

Generate 
Input Samples

Component 
Optimization

Train
Meta Models

Fig. 3 Overview over the proposed approach consisting of (a)
system optimization and decoupled component optimizations and (b)
establishing feasibility estimators f̂ (κ) and mass estimator m̂(κ)

3.2 System optimization

For available f̂ (κ) and m̂(κ), the system optimization
decomposes the problem horizontally and vertically into
two completely independent component optimizations. The
system optimization problem reads:

min
κ(1),κ(2)

m̂(1)
(
κ (1)

) +m̂(2)
(
κ (2)

)

s. t.: d
(
κ (1), κ (2)

) − d0 ≤ 0

−f̂
(
κ (1)

) ≤ 0 (11)

−f̂
(
κ (2)

) ≤ 0

κ lb ≤ κ (1) ≤ κub

κ lb ≤ κ (2) ≤ κub.

The system optimization produces a mass-optimal
stiffness κ (i) for each component with the help of f̂ (κ)

and m̂(κ), while not knowing the detailed designs. Note
that the system optimization problem between level (I)
and (II), see Fig. 2, is significantly less expensive than
a monolithic optimization all the way down to level (III)
including the detailed design variable vector x(i) for both
components. The first requires solving for all component
interface displacements, say ds ∈ R

6. This is accomplished
by inverting the linear equation system Ksds = F s , with
Ks

(
κ (1), κ (2)

) ∈ R
6×6 being a system stiffness matrix

assembled with the two component stiffness matrices K(1)

and K(2) represented by κ (1) and κ (2), respectively, and
F s being a vector of loads on component interfaces. By
contrast, the second, i.e., monolithic optimization, requires

solving for all nodal displacement of a detailed Finite
Element mesh by inverting the linear equation system
Ksddsd = F sd , with Ksd ∈ R

nsd×nsd being the detailed
system stiffness matrix with nsd degrees of freedom, dsd

being the nodal displacement vector, and F sd , being the
vector of external nodal forces.

A particle swarm algorithm is utilized to solve the
given system optimization problem. Note that the algorithm
suffers from stochastic perturbations, therefore in the
following, N=10 optimizations are carried out and the best
result is taken.

The resulting κ (i) is used to formulate component
stiffness target values K0(i) for the two components

K0(i) = BΦ(i)(κ (i))Λ(i)(κ (i))Φ
−1
(i) (κ (i)). (12)

3.3 Component optimization

The component optimization between level (II) and (III),
see Fig. 2, identifies the optimal detailed design x(i) for
each component with minimum mass for a given reference
component stiffness matrix K0(i). The associated problem
statement reads

min
x(i)

m(x(i))

s. t.: ‖K(x(i)) − K0(i)‖ ≤ ε (13)

g(x(i)) ≤ 0

xlb ≤ x(i) ≤ xub,

where xlb and xub are the lower and upper bounds on
the detailed design variables x(i), K(x(i)) is the candidate
component stiffness matrix associated with x(i). g(x(i))

is an inequality constraint function including additional
restrictions for the respective component models.

The optimization problem is solved utilizing the method
of moving asymptotes (MMA) by Svanberg (1987). Since
the problem was completely decoupled, the system stiffness
measured by the total displacement d is assumed to satisfy
the requirement d ≤ d0 as long as the component
optimizations are feasible.

3.4 Establishing feasibility andmass estimator

When the feasibility estimators f̂ (κ) and the mass estimator
m̂(κ) are not available in closed form solution, meta models
are established by first sampling the input space of κ

satisfying (R1)-(R3), and, second, numerical optimization
to assess whether (R4) is satisfied. To create the input
samples, first κA is generated within the bounds [κ lb, κub].
The sample vector of the inputs reads

XA = [κA]. (14)
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For each κA, a reference component stiffness matrixK0A

is computed using (3). The corresponding detailed design
x with minimal mass m is sought using the component
optimization of (13). If the component optimization
converges, the feasibility flag will be set to fA=1 otherwise
fA=−1. The sample output vector containing the feasibility
flag and the realized mass for feasible designs reads

YA = [fA, mA]T . (15)

The resulting sample data [XA, YA] is used to train the
meta models f̂ (κ) and m̂(κ), which can then be utilized
for the system optimization of the design procedure of
Section 3.2. In Section 5, f̂ (κ) and m̂(κ) are derived for
each given component model.

4 Alternative design approaches for
comparison

The informed decomposition in Section 3 will be referred
to as approach (A) and will be compared to a complete
monolithic optimization, which is assumed to be the bench-
mark result, and an uninformed decomposition, where both
components are assigned a certain stiffness budget α.

Monolithic optimization, approach (B). This is the
standard approach to structural optimization where the mass
and the system displacement are directly computed from
the detailed design variables x of each component, see
Fig. 2a. The associated monolithic optimization problem for
approach (B) reads

min
x(1),x(2)

m
(
x(1)

) + m
(
x(2)

)

s. t.: d
(
x(1), x(2)

) − d0 ≤ 0 (16)

g
(
x(1), x(2)

) ≤ 0

xlb ≤ x(1) ≤ xub

xlb ≤ x(2) ≤ xub.

Uninformed decomposition, approach (C). This type
of vertical decomposition was previously introduced in
Krischer et al. (2020) for a similar two-component structure.
As an important difference to the proposed approach (A),
no mass estimation is used to balance the requirement on
the stiffness matrices of each component. Instead, a stiffness

distribution is motivated by a reference structure that is not
necessarily optimal. Also, no feasibility estimate is taken
into account. The total deformation

d = d(1) + θ(1)l(2) + d(2) (17)

can be additively decomposed into the translational
displacement d(1) and the rotational displacement θ(1) of
the first component and translational displacement d(2) of
the second component (see Fig. 4). The system requirement
d ≤ d0 will be satisfied, whenever the following component
requirements are satisfied,

b(1)(x) = (
d(1) + θ(1)l(2)

) − αd0 ≤ 0, (18)

b(2)(x) = d(2) − (1 − α) d0 ≤ 0, (19)

where α can assume any value between 0 and 1. α controls
how much stiffness will be contributed by each component
in order to meet the system stiffness requirement. The
component optimization of each component reads

min
x(i)

m(x(i))

s. t.: b(x(i)) ≤ 0 (20)

g(x(i)) ≤ 0

xlb ≤ x(i) ≤ xub.

Two stiffness distributions are chosen for comparison in
the following chapters: α = 0.5 (C.1) and α = 0.6 (C.2).

5 Results for three component models

5.1 Beamwith constant cross-section

To point out the main features of the proposed approach
(A), the simplest component model (M1) containing all
necessary ingredients is considered first. For this component
model, the feasibility and mass estimators, f̂ (κ) and
m̂(κ), are established. To validate the proposed approach,
they are derived in a closed form. A simple mechanical
representation with an i-beam and constant cross-sections
(see Fig. 5 (M1), for W(ζ) = const.) is utilized.

The detailed design variables for both components are

x =
[

w

W

]
0 < w ≤ W ≤ 40mm, (21)

where w = h and W = H are prescribed.

Fig. 4 Additive decomposition
of the system displacement d
into the respective component
displacements d(1), θ(1) and d(2)
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Fig. 5 Design variables of the component models for a beam with
constant cross-section (M1), a beam with varying cross-sections (M2),
and an arbitrary body represented by a 2-dimensional topology (M3)

The component stiffness matrix K and the mass m for a
constant cross-section Euler-Bernoulli beam are according
to Bathe (2006)

K = EIk(l), (22)

m = ρl (WH − wh) , (23)

with the moment of inertia I = 1/12
(
WH 3 − wh3

)
.

For physical feasibility, the outer flange width W must be
greater than w, i.e.,

g(x) = w − W ≤ 0. (24)

The component stiffness matrix K for a given length l

and a given material depends solely on the moment of inertia
I , see (22). Therefore, the stiffness matrix constraint can be
simplified to

‖K(x) − K0‖= I − I0 = 0. (25)

Utilizing these simplifications, the solution of the
component optimization (13) is

w =
(
W 4 − 12I

) 1
4
, (26)

W = 40mm, (27)

m = ρl
(
W 2 − (W 4 − 12I )

1
2

)
, (28)

and the sample data can be created as

XA = [λ3A, λ4A, γA], (29)

YA = [gA, mA, IA]
T , (30)

where the mass sample data is enriched by the inertia
information IA to derive the mass estimator with respect
to κ . Since the stiffness only depends on one structural
quantity I , also the κ-representation of K can be reduced
to one entry. In κ , the eigenvalues λ3 and λ4 represent
the stiffness of the beam, which therefore must possess a
constant ratio to each other. Consequently, the orientation
vector γ must be constant. Finally, the upper stiffness bound
is needed, which corresponds to a completely filled cross-
section. To incorporate all the needed information, only one
sample point N=1 with the maximum stiffness property is
needed. The feasibility estimators f̂ (κ) can then be derived
as

f̂1(κ) = λ4A

λ3A
λ3 − λ4 = c1λ3 − λ4 = 0, (31)

f̂2(κ) = γ − γA = γ − c2 = 0, (32)

f̂3(κ) = λ3 − λ3A = λ3 − c3 ≤ 0. (33)

The constant ratio is considered in (31). The constant
orientation vector γ in (32). The upper bound of the first
eigenvalue is captured by (33).

For setting up the mass estimator m̂(κ)with respect to λ3,
the relation between the moment of inertia I and the third
eigenvalue is needed λ3

I = λ3A

IA

λ3 = c4λ3, (34)

which can be inserted into equation (28)

m̂(κ) = ρl
(
W 2 − (W 4 − 12c4λ3)

1
2

)
. (35)

The established feasibility and mass estimators, f̂ (κ)

and m̂(κ) are shown in Table 2. In Fig. 6, the first row
shows the stiffness design space with the accessible space
as a one-dimensional line of designs with constant ratio λ3
and λ4 and constant eigenvector orientation γ . Additionally,
samples of infeasible designs are shown. Note that most of
the design space is infeasible.

Table 2 Explicit formulation of f̂ (κ) and m̂(κ) for the component
model (M1)

f̂ (κ) m̂(κ)

f̂1(κ) = c1λ3 − λ4 = 0, m̂(κ) = ρl

f̂2(κ = γ − c2 = 0, ...
(
W 2−(W 4−12c4λ3)

1
2

)

f̂3(κ) = λ3 − c3 ≤ 0.
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Fig. 6 Sampled stiffness design spaces for the component models
(M1)–(M3)

Having set up f̂ (κ) and m̂(κ), the system optimization
(11) can be solved. The results of the system optimization
can be seen in the first row of Fig. 7 and in Table 5. The
monolithic optimization of approach (B) and the proposed
systems design approach (A) have coinciding designs,
due to the explicit description of the feasibility and mass
estimator. Due to a non-optimal stiffness distribution α, the
eigenvalues λ3 and λ4 of approach (C.1) and (C.2) deviate
from the known optimal design, where the eigenvalues of
the first component are larger and of the second component
lower than in approach (B).

Due to the explicit formulations of f̂ (κ) and m̂(κ) and
(26), (27) and (34), the component-detail design x can be
derived directly from the system optimization results κ .
The results of all approaches are shown in Table 6 and
Fig. 8. All approaches use the full width W and height H ,
as calculated analytically before. Approaches (A) and (B)
show the same cross-sectional description. Consistent with
the higher eigenvalues, approach (C) assigns more stiffness
to the first component and less to the second component,
resulting in a heavier overall structure. In conclusion, all
approaches satisfy the given system requirement.

Fig. 7 Feasible and optimized stiffness κ for the component models
(M1)–(M3)

5.2 Beamwith varying cross-sections

To increase complexity, varying cross-section widths W(ζ)

are utilized for the second component model (M2). Each
structural component is discretized with ne=10 cross-
sections, see Fig. 5 (M2). The detailed design variables for
both components are the flange widths We, i.e.,

x = [We] tw ≤ We ≤ 40mm, (36)

for e = 1, ..., 10,

where H=40 mm, h = H − 2th , with th=3 mm, and
tw=1 mm are fixed for both components. The width w

is calculated as w = W − tw. In order to determine the
behavior of the components with respect to the defined two
interface degrees of freedom, the static Guyan condensation
technique is applied to the structure (Guyan 1965), with

2400



Decomposition and optimization...

(A)    Informed Decomposition
(B)    Monolithic Optimization
(C.1) Uninformed Decomposition
(C.2) Uninformed Decomposition

-20 -10 0 10 20
-20

-10

0

10

20

0 50 100 150 200 250 300
-20

-10

0

10

20

0 50 100 150 200 250 300
-20

-10

0

10

20

(A) (A)

(B) (B)

(C.1) (C.1)

(C.2) (C.2)

Fig. 8 Optimized component designs x of the component models
(M1)–(M3)

the element stiffness matrix Ke formulated for the element
length le = l

ne

Kd =
ne∑

e=1

Ke, (37)

Kddd = F d , (38)[
Kmm Kms

Ksm Kss

] [
dm

ds

]
=

[
Fm

0

]
, (39)

where the suffixm is used for the master-degrees of freedom
related to the two interfaces, and the suffix s is used for
the condensated interior degrees of freedom of the detailed
component stiffness matrix Kd . The equation is solved for
the master degrees of freedom and can be represented by

Kgdm = Fm, (40)

Kg = T T
g KdT g, (41)

T g =
[

1
−K−1

ss Ksm

]
, (42)

where Kg ∈ R
4x4 is the condensed interface component

stiffness matrix.
The sensitivities of the reduced component stiffness

matrix are derived in O’Connell et al. (1976) as

∂Kg

∂We

= T T
g

∂Kd

∂We

T g, (43)

where the derivative of the detailed component stiffness
matrix Kd for We is

∂Kd

∂We

= H 3 − h3

12
Eke(le). (44)

The mass sensitivities read
∂m

∂We

= ρle (H − h) . (45)

For K=Kg , the stiffness matrix requirement of the
component optimization problem (13) can be reformulated
to ensure that requirements (R1)–(R3) are satisfied as (see
Appendix A.2)

−ε ≤

⎡
⎢⎢⎣

K11−K11,0
K11,0

K22−K22,0
K22,0

K44−K44,0
K44,0

⎤
⎥⎥⎦ ≤ ε. (46)

Note that no constraint function g(x) is necessary.
To establish the meta models, N=1800 sample points

were generated utilizing a Latin hypercube sampling
procedure (McKay et al. 1979), see Fig. 6, where Nf =416
samples were feasible. In contrast to component model
(M1), a volume of feasible designs can be observed in the
stiffness design space. Due to the lower bound We≥tw, the
feasible stiffness design space has also lower bounds greater
than zero κ>0. The sample data is used to train a scalar-
valued feasibility estimator f̂ (κ) and mass estimator m̂(κ).
Therefore, machine learning methods are applied.

For estimating the feasibility f , support vector machines
(SVM) are chosen, due to their simplicity combined
with convexity also for non-linear classification problems
(Cortes and Vapnik 1995). Thus, the binary SVM classifier
from MATLAB is utilized and denoted in the following
with f̂SV M(κ). As a kernel function, radial basis functions
are used. The data is split into 80% training and 20%
test samples. The hyperparameters are determined using
a Bayesian optimization with a five-fold cross-validation
on the training data. To assess the performance of the
classifier, the false positive rate (FP), the true positive
rate (TP) and the accuracy (acc) were analyzed, see
Table 3. Since a decision for an infeasible design on the
system level, makes the whole design approach invalid,
the most important quantity is a low FP. Secondly, the
mass estimator has to be established using a regression
analysis. Feedforward artificial neural networks (ANN),
with their capacity of approximating any function with
any desired accuracy for a suitable parameter choice, have
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been frequently applied to a wide variety of regression
problems (Hornik et al. 1989; Bishop 2009). Hence, the
mass estimator is realized with an ANN m̂ANN(κ) trained
with the Levenberg-Marquardt algorithm in MATLAB. The
sample data is split into 80% training, 10% validation and
10% test samples. For choosing the best configuration of
hidden layers and respective neurons, a grid search was
carried out for nhl=1, ..., 5 hidden layers and nn=1, ..., 10
neurons. The configuration with the lowest R2-value was
chosen. The final ANN possesses nhl=2 hidden layers and
nn=7 neurons. Additionally, the mean squared error (mse)
of the mass was taken as a second performance measure,
see Table 3. Note that the meta models are valid for both
components.

Having established the meta models, the system opti-
mization (11) is carried out. The results of the system opti-
mization can be seen in in Fig. 7 and in Table 5. Approaches
(A) and (B) again produce similar system designs for both
components. In contrast, the uninformed approaches (C.1)
and (C.2) show higher and lower eigenvalues for the first
and second component, respectively. However, now not
only the eigenvalues λ3 and λ4, but also the eigenvector
orientation γ differs.

The results of the subsequent component optimization
and the corresponding alternative approaches are shown
in Fig. 8 and in Table 6. The width W decreases along
the ζ -axis of both components, as it would be expected.
The lightest designs are achieved by approaches (A) and
(B), which slightly differ in the weight of the components
and the overall mass. Both approaches (A) and (B) satisfy
the system requirement. Note that approach (C.1) is not
capable of fulfilling the component requirement of the
first component and hence also the system requirement
is violated resulting in a constant full width We of
component one. In contrast, approach (C.2) satisfies the
system requirement, however resulting in a higher total
weight compared to (A) and (B).

5.3 2-dimensional topology

Finally, arbitrary 2-dimensional bodies are designed utiliz-
ing topology optimization (M3). Both sides of each body
are connected rigidly to interface points. The height is set

Table 3 Performance measures of f̂SV M(κ) and m̂ANN(κ) for the
component model (M2)

f̂SV M(κ) m̂ANN(κ)

FP TP acc R2 mse (kg2)

0.00 1 1 0.996 4.42e−3

to H=98 mm and the thickness to W=1 mm for both
components, see Fig. 5 (M3).

The body is discretized with uniform 2d-plane stress
elements with stiffness matrices Ke (Bathe 2006) and
nζ =48 elements in the ζ - and nη=16 elements in the η-
direction. The total number of elements is ne=768 and
the respective element lengths are le= 0.98l

neζ
, leaving 1% of

the length for the connection between the body and the
interface points on both sides, He= H

neη
, and We=W . For

the component optimization, the classical SIMP approach
(Bendsøe and Sigmund 2004) is used with the element
densities ρe as the detailed design variables, a penalty factor
of p = 3 and a sensitivity filter radius of r = 1.2:

Kd =
ne∑

e=1

ρ
p
e Ke, (47)

x = [ρe], 0 < ρe ≤ 1. (48)

The optimization code is based on Sigmund (2001). First,
the known static condensation technique (Guyan 1965) is
applied, with respect to the boundary degrees of freedom of
both, the left and the right side of the plate, as the master
nodes

Kg = T T
g KdT g . (49)

In order to connect both sides of the body to the
interface points, master-slave elimination via a multi-
freedom constraint is applied, see Liu and Quek (2013).
The slave nodes of both sides are eliminated enforcing a
geometrical constraint with respect to the master interface
nodes yielding

Krg = T T
r KgT r . (50)

The derivatives of the component stiffness matrix Krg ∈
R
4x4 are

∂Krg

∂ρe

= T T
r

(
T T

g

∂Kd

∂ρe

T g

)
T r , (51)

∂Kd

∂ρe

= pρ
p−1
e Ke, (52)

and the mass gradients are constant

∂m

∂ρe

= ρleHeWe, (53)

with ρ as the density of aluminum.
Having computed the derivatives, the component opti-

mization problem (13) can be set up utilizing the reduced
stiffness constraint of Section 5.2. Again, no extra constraint
g(x) is required.

The component optimization problem is then used to
establish the meta models. While sampling, it could be
observed that for low-valued eigenvalues λ3 and λ4 the
designs tend to be infeasible. Also, the component mass m

exhibited a more nonlinear behavior for both eigenvalues
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Table 4 Performance measures of f̂SV M(κ) and m̂ANN(κ) for the
component model (M3)

f̂SV M(κ) m̂ANN(κ)

FP TP acc R2 mse (kg2)

0.0127 0.951 0.962 0.997 9.91e−4

in the low-value region. Therefore, the basic sample data
Xlhs ∈ [0, 1] created by Latin hypercube sampling is
mapped onto a cubic space Xlhs → X3

lhs for both
eigenvalues λ3 and λ4 and is then applied to the stiffness
design space κ ∈ [κ lb, κub] allowing for more sample data
in the crucial low-value region, see Fig. 6. The increased
design freedom of the topology optimization provides a
broad feasible design space with Nf = 1026 feasible
sample points.

The created sample data is used to train the meta models
f̂SV M(κ) and m̂ANN(κ) similar to Section 5.2. The ANN
has nhl = 3 hidden layers and nn = 9 neurons. The training
results are shown in Table 4.

Next, the system optimization is carried out. The results
are shown in Fig. 7 and Table 5. The designs of the first
component of approaches (A) and (B) differ slightly with
respect to both eigenvalues λ3, λ4 and the eigenvector

Table 5 Optimized stiffness κ for the component models (M1)-(M3)

Component modelApproach

(M1) (A) (B) (C.1) (C.2)

κ (1)

⎛
⎜⎝

rad
N
mm
N
mm

⎞
⎟⎠

⎡
⎢⎣

0.707

2.79e7

8.38e7

⎤
⎥⎦

⎡
⎢⎣

0.707

2.79e7

8.38e7

⎤
⎥⎦

⎡
⎢⎣

0.707

4.11e7

1.23e8

⎤
⎥⎦

⎡
⎢⎣

0.707

3.43e7

1.03e8

⎤
⎥⎦

κ (2)

⎛
⎜⎝

rad
N
mm
N
mm

⎞
⎟⎠

⎡
⎢⎣

0.707

1.11e7

3.34e7

⎤
⎥⎦

⎡
⎢⎣

0.707

1.11e7

3.34e7

⎤
⎥⎦

⎡
⎢⎣

0.707

5.88e6

1.76e7

⎤
⎥⎦

⎡
⎢⎣

0.707

7.35e6

2.20e7

⎤
⎥⎦

(M2) (A) (B) (C.1) (C.2)

κ (1)

⎛
⎜⎝

rad
N
mm
N
mm

⎞
⎟⎠

⎡
⎢⎣

0.576

2.47e7

7.81e7

⎤
⎥⎦

⎡
⎢⎣

0.581

2.50e7

7.85e7

⎤
⎥⎦

⎡
⎢⎣
0.7071

3.99e7

1.20e8

⎤
⎥⎦

⎡
⎢⎣
0.5904

3.15e7

9.69e7

⎤
⎥⎦

κ (2)

⎛
⎜⎝

rad
N
mm
N
mm

⎞
⎟⎠

⎡
⎢⎣

0.345

5.22e6

2.69e7

⎤
⎥⎦

⎡
⎢⎣

0.329

5.05e6

2.54e7

⎤
⎥⎦

⎡
⎢⎣
0.4582

3.58e6

1.44e7

⎤
⎥⎦

⎡
⎢⎣
0.4107

3.97e6

1.72e7

⎤
⎥⎦

(M3) (A) (B) (C.1) (C.2)

κ (1)

⎛
⎜⎝

rad
N
mm
N
mm

⎞
⎟⎠

⎡
⎢⎣

0.926

2.99e7

1.57e7

⎤
⎥⎦

⎡
⎢⎣

0.870

2.95e7

1.05e7

⎤
⎥⎦

⎡
⎢⎣

0.707

3.76e07

8.79e7

⎤
⎥⎦

⎡
⎢⎣

0.503

3.54e7

4.05e7

⎤
⎥⎦

κ (2)

⎛
⎜⎝

rad
N
mm
N
mm

⎞
⎟⎠

⎡
⎢⎣
3.67e−3

2.60e5

1.70e7

⎤
⎥⎦

⎡
⎢⎣
2.40e−3

1.81e5

1.78e7

⎤
⎥⎦

⎡
⎢⎣

0.999

8.83e6

8.05e4

⎤
⎥⎦

⎡
⎢⎣
1.70e−3

1.07e5

1.10e7

⎤
⎥⎦

orientation γ . The approaches (C.1) and (C.2) assign again
more stiffness, i.e. larger eigenvalues, to the first component
than to the second one. It is also noticeable that the second
component of approach (C.1) produces an eigenvector
orientation γ close to the upper bound with a larger third
eigenvalue λ3 and a smaller fourth eigenvalue λ4, in contrast
to the other approaches with an eigenvector orientation close
to the lower bound and a higher λ4 eigenvalue compared to
λ3.

The final topologies of the component optimization
are shown in Fig. 8. For all design models, the second
components converge to the known cantilever beam design
for classical bending load cases. The proposed approach (A)
exhibits a more tapered right end compared to (B), whereas
(C.1) and (C.2) only differ in the assigned densities of the
existing beam-like structure resulting in lower component
masses (see Table 6). Even though the results of the
system optimization of component one are different for
(C.1) compared to (A), (B), and (C.2), the results of the
component topology optimization in Fig. 8 show only slight
differences. The first component of approaches (A) and
(B) show thick beam-like structures at the outer regions
of the design domain, with crossbars for transferring the
shear loads. Yet, the position for these differs in both
approaches. Approach (C.2) produces a similar topology,
with a slightly higher material fraction in component one. In
contrast, the domain of approach (C.1) is completely filled
with material, stemming from a component requirement that
is too challenging. The required system displacement for
approach (C.1) is therefore violated, while approaches (A),
(B) and (C.2) are all feasible.

Table 6 Optimized component designs x of the component models
(M1)–(M3)

Component model Approach

(M1) (A) (B) (C.1) (C.2)

m(1) (kg) 0.196 0.196 0.303 0.246

m(2) (kg) 0.075 0.075 0.039 0.049

m (kg) 0.272 0.272 0.342 0.295

d (mm) 1.00 1.00 1.00 1.00

(M2) (A) (B) (C.1) (C.2)

m(1) (kg) 0.1527 0.1536 0.1873 0.2219

m(2) (kg) 0.0664 0.0653 0.0434 0.0487

m (kg) 0.2191 0.2189 0.2307 0.2707

d (mm) 1.00 1.00 1.02 1.00

(M3) (A) (B) (C.1) (C.2)

m(1) (kg) 0.0454 0.0446 0.0810 0.0611

m(2) (kg) 0.0276 0.0282 0.0208 0.0228

m (kg) 0.0730 0.0728 0.1018 0.0839

d (mm) 1.00 1.00 1.16 1.00
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6 Discussion

Validity The proposed approach (A) was capable of
successfully solving the given demonstrator problem for
three different component models (M1)–(M3) (see Fig. 9).
For the component model (M1), the exact expression for
the feasibility and the mass estimator led to the same
component-detail designs as for the monolithic system
optimization of approach (B). For the component models
(M2) and (M3), approach (A) utilized machine learning–
based meta models. Here, the system mass m only slightly
differed with a deviation below 1%.

Informed vs. uninformed decomposition The key ingredi-
ents, the feasibility and the mass estimators, proofed to be
crucial within the scope of completely decoupled optimiza-
tion schemes. The uninformed approach (C) turned out to
be both, at risk of proposing infeasible designs (C.1) and
producing no mass-optimal solutions (C.2). For more com-
plex design tasks with multiple load cases, the intuition
for reasonable component requirements will eventually fail.
Therefore, the proposed approach presents a promising way
of decomposing multi-component systems in a feasible and
mass-optimal way.

Computational cost One motivation of decomposing multi-
component systems is the high computational cost. For
the given problem, the computational cost of a monolithic
system optimization is still small compared to the sampling
process, where each sample point needs to be generated
by carrying out a single component optimization. However,

Fig. 9 Post-processing results of the optimized component designs of
the component models (M1)–(M3) for approach (A)

adding complexity to the problem by, e.g., a higher number
of components, multiple load cases with different boundary
conditions or a selection of available materials, can greatly
increase the cost of a monolithic system optimization.
In such a scenario, complete decoupling with separate
component optimizations could be less expensive (Krischer
et al. 2020). Moreover, the training process must not be
carried out for every single system optimization. Meta
models with a validity over a range of geometrical quantities
such as length, width, and height would enhance the
applicability to more complex and therefore more expensive
problems with a need for higher training cost only once.

Establishing meta models The generation of sample data
for the training process of the meta models is a critical
step. Besides the great computational cost, the infeasible
regions for highly detailed description of components are
often located in small areas that need to be captured
within the procedure. While training, even if captured, they
might be not considered by the feasibility estimator due to
unbalanced training data. Therefore, a sufficiently balanced
training data set needs to be ensured.

κ-representation of K The unique representation of com-
ponent stiffness matrices via an eigenvalue decomposition
helps to enable an efficient sample data generation (see
Section 3.1). However, a drawback of the approach is that
for eigenvector orientations γ close to the lower or upper
bound, the respective eigenvectors of the opposite bound
resemble each other. Hence, the results of the system opti-
mization in terms of κ can sometimes differ significantly
in γ for similar detailed design vectors x (see Section 5.3).
Also, since the sample data is not directly derived with
respect to κ , but in terms of the entries of the component
stiffness matrix K , see (13), the accuracy of the component
optimization can only indirectly be ensured by setting a low
threshold ε. Especially during the sampling procedure, a
compromise between a high accuracy and the computational
effort must be made.

Post-processing Finally, structural optimization results
often need a post-processing step. In Fig. 9, a manual
post-processing was carried out. However, small changes
might cause a invalid component behavior violating system
requirements. Hence, a requirement-based post-processing
is necessary to transfer the results into a feasible component.

7 Conclusion and future work

The proposed approach in this paper has two main ingredi-
ents: (a) a top-down design procedure and (b) establishing
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meta models for feasibility and mass estimation. The top-
down design procedure is based on two subsequent opti-
mization problems. First, a system optimization is carried
out, that decomposes the problem horizontally and verti-
cally into completely independent component optimization
problems. The elastic properties of the mechanical compo-
nents are hereby defined by component stiffness matrices,
which are parametrized by eigenvalues and eigenvectors,
enabling better access to the space of stiffness matrices. To
assess feasibility and mass of the given component stiffness
matrices, meta models are utilized. Feasibility is taken into
account by considering geometrical restrictions and mate-
rial properties. In order to distribute the requirements in a
mass-optimal way, a mass estimator is established that pro-
vides the lowest possible mass for a given stiffness. As a
result of the system optimization, required stiffness proper-
ties for both components are assigned, while not knowing
their detailed descriptions. In a second step, a subsequent
component optimization is using the stiffness properties as
constraints. The component optimizations can be carried
out completely independently of each other, making any
coordination between the components or the system level
unnecessary.

For a linear mechanical two-component system, the
proposed approach (A) was compared to two alterna-
tive design approaches. The approach (B) is a monolithic
system optimization, for designing an entire system at
once. The uninformed approach (C) distributes a prede-
fined stiffness budget to the components without knowing
the effect on mass and feasibility on the component-detail
level. Afterwards, two independent component optimiza-
tion problems are solved with respect to the assigned
stiffness budgets. Three different component models were
tested: (M1) a i-beam with constant cross-section, (M2)
a i-beam with varying flange width, and (M3) an arbi-
trary body represented by a 2-dimensional topology. It
could be shown that the proposed approach (A) is capa-
ble of assigning component requirements in a feasible
and mass-optimal manner, resulting in designs that only
slightly differ from the results of the monolithic optimiza-
tion of approach (B). The uninformed approaches (C) exhib-
ited problems, in either producing non-feasible require-
ments (C.1) and/or requirements that lead to suboptimal
designs (C.2).

In the future, the approach will be enhanced to prob-
lems with (a) multiple interfaces and (b) more degrees
of freedom per interface. In order to widen the appli-
cability of meta models, varying geometrical bound-
ary conditions will be considered during the training
phase. To reduce the computational effort of the train-
ing phase, active-learning sample procedures are to be
investigated.

Appendix A

A.1 Eigenvector derivation

The eigenvectors ϕ3 and ϕ4 solved with respect to l, dr and
γ :

ϕ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d2
r l

γ−
(

−4d2r γ 2+2d2r −l2γ 2+l2

l2

) 1
2

2d2r +l2

γ

−d2
r l

γ−
(

−4d2r γ 2+2d2r −l2γ 2+l2

l2

) 1
2

2d2r +l2

−2d2r γ−l2
(

−4d2r γ 2+2d2r −l2γ 2+l2

l2

) 1
2

2d2r +l2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(54)

ϕ4 =

⎡
⎢⎢⎣

ϕ41

ϕ42

ϕ43

ϕ44

⎤
⎥⎥⎦ (55)

ϕ41=−d2
r l

(
(4d2

r + l2)(−4d2
r γ 2 + 2d2

r −l2γ 2 + l2)
) 1
2 +

1
...

...
4d2

r

(
γ 2(4d2r +l2)

l2

) 1
2 + l2

(
γ 2(4d2r +l2)

l2

) 1
2

(2d2
r + l2)(4d2

r + l2)

ϕ42 = − (
(4d2

r + l2)(−4d2
r γ 2 + 2d2

r − l2γ 2 + l2)
) 1
2

4d2
r + l2

ϕ43 = d2
r l

(
(4d2

r + l2)(−4d2
r γ 2 + 2d2

r − l2γ 2 + l2)
) 1
2 +

1
...

...
4d2

r

(
γ 2(4d2r +l2)

l2

) 1
2 + l2

(
γ 2(4d2r +l2)

l2

) 1
2

(2d2
r + l2)(4d2

r + l2)

ϕ44 = 2d2
r

(
(4d2

r + l2)(−4d2
r γ 2 + 2d2

r − l2γ 2 + l2)
) 1
2 −

1
...

...
4d2

r l2
(

γ 2(4d2r +l2)

l2

) 1
2 − l4

(
γ 2(4d2r +l2)

l2

) 1
2

(2d2
r + l2)(4d2

r + l2)

A.2 Rigid bodymode condensatio
n of the component stiffness matrix

The component stiffness matrix K can be reduced by taking
the rigid body modes ϕ1 and ϕ2 into account. The resulting
linear system of equations

Kϕ1 = 0, (56)

Kϕ2 = 0. (57)
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can be solved in terms of the three diagonal terms K11, K22

and K44:

K21 = K11l
2 + K22 − K44

2l
,

K31 = −K11,

K41 = K11l
2 − K22 + K44

2l
,

K32 = −K11l
2 + K22 − K44

2l
,

K42 = K11l
2 − K22 − K44

2
,

K33 = K11,

K43 = −K11l
2 − K22 + K44

2l
. (58)
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