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Abstract A method is proposed to identify the fully anisotropic elasticity tensor by applying the impulse
excitation technique. A specially designed batch of several differently oriented bar-shaped specimens with
rectangular cross section is analyzed with respect to the eigenfrequencies of their fundamental flexural and
torsional modes. Estimations based on the equations for the calculation of the isotropic Young’s modulus and
the shear modulus from the ASTM standard allow a first approximation of the elasticity tensor from a selected
subset of the measured eigenfrequencies. Subsequently, a more precise determination of the elasticity tensor
is achieved by a numerical modal analysis using the finite element method. In this course, a Newton–Raphson
optimization method is applied to solve the inverse problem. The proposed approach is demonstrated on a
batch of specimen fabricated from the nickel-base alloy IN718 by selective laser melting.

Keywords Mechanical spectroscopy · Inverse problem · Impulse excitation technique · Anisotropic
elasticity · Additive manufacturing

1 Introduction

The determination of isotropic elastic properties by the impulse excitation technique (IET) is well established
and standardized [1]. A specimen is excited by the impact of a needle-shaped projectile to vibration, allowing
to calculate the dynamic moduli from the eigenfrequencies obtained in the recorded sound spectrum [2].
Dynamic methods for the characterization of elastic behavior, such as IET, show several advantages compared
to static methods: The results are highly accurate, a wide range of specimen geometries is suitable and the
experimental setup is inexpensive and easy to handle [3,4]. Furthermore, the measured frequency spectrum
contains more information with regard to the elastic response than the stress–strain relation obtained by static
methods, which is particularly useful in connection with anisotropic behavior. Isotropic elastic constants can
directly be calculated by equations in closed form from the fundamental eigenfrequencies, whereby in case
of anisotropy the elastic constants have to be determined by solving an inverse problem involving several
eigenfrequencies. For orthotropic plates with known orientation of planes of material symmetry, the in-plane
engineering constants can be evaluated following the Resonalyzer method [5]. This approach is particularly
relevant for fiber-reinforced composite plates andmetal sheets, because in these cases the orientations of planes
of material symmetry are known by their relation to the direction of the reinforcement or to the rolling direction
[6–8]. IET was also successfully applied for the determination of the elastic constants of single crystals and
their orientation from the eigenfrequencies of specimens, consisting of equally oriented crystals [9]. Further
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methods exist for the characterization of the elastic behavior of directionally solidified alloys or directionally
recrystallized alloys, where the texture is known [10].

In case of additively manufactured alloys, the texture and consequently the anisotropic elastic behavior
strongly depend on various process parameters and on the scanning strategy. These dependencies are subject
of current research, giving rise to a greater need for direct determination of the fully anisotropic elasticity
tensor without any a priori knowledge of the class of material symmetry or the orientation of possible planes
of material symmetry besides methods based on texture measurements and ultrasound spectroscopy [11,
12]. Within the scope of this contribution, a method is presented to determine all 21 components of the
elasticity tensor by IET, in order to capture the complete elastic behavior resulting from any potentially
complex texture, caused by the manufacturing process. Initial considerations of this approach were proposed
by the authors in [13]. In this course, a specially designed batch of several differently oriented specimens with
rectangular cross section is analyzed with respect to the eigenfrequencies of their fundamental flexural and
torsional eigenmode. Estimations based on the equations in closed form for the calculation of the isotropic
Young’s modulus and the shear modulus from the ASTM standard allow to formulate the method under
consideration of stability with respect to measurement deviations and additionally enable a first approximation
of the elasticity tensor from a selected subset of the experimentally determined eigenfrequencies. Subsequently,
the Newton–Raphson optimization method in combination with a numerical modal analysis using the finite
element method (FEM) is applied to identify the components of the elasticity tensor that fit the experimentally
determined eigenfrequencies best. The proposed approach is demonstrated on a batch of specimens fabricated
from the nickel-base alloy IN718 by selective laser melting (SLM). A comparison between the experimentally
determined eigenfrequencies, that do not contribute to the optimization scheme, and the ones predicted on the
basis of the determined elasticity tensor allows to verify the result. An analysis of the harmonic decomposition
of the elasticity tensor as well as the corresponding dilatational modulus and the Voigt tensor indicates the
validity of the results.

2 Estimation of elastic constants by IET

The resonant frequencies of a solid dependon the geometry, the density, the elastic properties and the dampingof
the material. Neglecting the material damping results in the equality of resonant frequencies and corresponding
undamped eigenfrequencies. In case of linear elasticity, the elastic properties are specified by the elasticity
tensor Ci jkl , or by the compliance tensor Si jkl , which relate the stress tensor σi j and the strain tensor εi j by
Hooke’s law in its general form:

σi j = Ci jkl εkl , (1)

εi j = Si jkl σkl . (2)

Due to the minor symmetries, Si jkl = S jikl = Si jlk = S jilk , and the major symmetry, Si jkl = Skli j of
the compliance tensor, 21 of its 81 components describe the complete elastic behavior in the most general
anisotropic case.

In the special case of isotropy, all components can be specified by two independent elastic constants, e.g.,
by Young’s modulus E and shear modulus G:

Si jkl =
(
1

E
− 1

2G

)
δi j δkl + 1

4G

(
δik δ jl + δil δ jk

)
, (3)

where δi j denotes the Kronecker delta. The determination of these constants from the fundamental eigenfre-
quencies of a specimen is standardized by the ASTM and is discussed in Sect. 2.1. However, in case of full
anisotropy all 21 components are to be determined. This leads to an inverse problem, which is covered by the
proposed method.

In order to provide a closed-form estimation of the elastic constants even in the anisotropic case, a modi-
fication of these relations is proposed in this section.



Determination of the anisotropic elasticity tensor by mechanical spectroscopy 167

Fig. 1 Sketch of the experimental setup, showing the specimen supported by wires in the vibration nodes and the impact point of
the projectile for the excitation of the fundamental flexural eigenfrequency ff and the fundamental torsional eigenfrequency ft

2.1 Determination of isotropic elastic constants

Depending on the elastic modulus to be examined, the specimen geometry must be chosen properly. The
ASTM standard for measurement of isotropic elastic properties suggests cylindrical specimens as well as
bars with rectangular cross section [1]. Cylindrical specimens are suited for the determination of the Young’s
modulus from the fundamental flexural eigenfrequency ff , whereas bars with rectangular cross section allow
additionally to identify the shear modulus from the fundamental torsional eigenfrequency ft . In order to allow
an almost free vibration, the specimen is supported in the vibration nodes of the eigenmode corresponding to
the eigenfrequency to be measured, while the impact point of the excitation projectile is selected such that the
eigenfrequency is sufficiently excited, as shown in Fig. 1.

In case of isotropic elasticity the Young’s modulus E can be calculated based on Euler–Bernoulli’s beam
theory according to:

E = 0.9465 T1m l3 f 2f
b t3

. (4)

The correction factor T1 dependsmainly on the ratio of thickness t to length l and is close to one in case of slender
specimen geometries, as it accounts for the influence of transverse shear deformation in the corresponding
eigenmode. For the calculation of the shear modulus G, the following empirical equation applies:

G = 4 B m l f 2t
(1 + A) b t

. (5)

The constants A and B strongly depend on the ratio of thickness t to width b and hence essentially contribute
to the calculation of the shear modulus. The influence of the density is implicitly considered by the mass m of
the specimen.

2.2 Estimation of components of the compliance tensor for anisotropic elasticity

In case of fully anisotropic elastic behavior, the eigenfrequencies depend on several elastic constants, whereby
these relations are not known in closed form. Leissa [14] suggests an approximation for the eigenfrequencies
of plates in case of orthotropic anisotropy in closed form. However, these equations only apply, if the planes of
material symmetry are parallel to the edges of the plate. In the most general case of arbitrary planes of material
symmetry the eigenfrequencies can be calculated by a numerical modal analysis using FEM, but, in contrast
to the isotropic case, the corresponding inverse problem cannot be solved in closed form. Nevertheless, to
estimate certain components of the compliance tensor with respect to the specimen basis (e1, e2, e3), which is
shown in Fig. 1, we propose to modify the standardized relationships for isotropic elasticity.

In the fundamental flexural eigenmode, the normal strain in the longitudinal direction of the specimen is
predominant. Consequently, the Young’s modulus E in Eq. (4) is replaced by the Young’s modulus E1 in the
longitudinal direction of the specimen, which is the reciprocal of the component S1111 of the compliance tensor
with respect to the specimen basis:

S1111 = 1

E1
= b t3

0.9465 T1m l3 f 2f
. (6)

In case of slender specimens, the fundamental torsional eigenfrequency is significantly influenced by the shear
modulus G12, due to the predominant shear deformation in the specimen plane occurring in the corresponding
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fundamental eigenmode. The reciprocal of the shear modulus G12 is directly related to the component S1212
of the compliance tensor. This relation allows to estimate S1212 by substituting the shear modulus G by the
shear modulus G12 in the specimen plane, by modification of Eq. (5):

S1212 = 1

4G12
= (1 + A) b t

16 B m l f 2t
. (7)

The relations (6) and (7) show that the estimations are highly sensitive with respect to the specimen thickness.
Hence, in order to enable an accurate determination of the elastic constants from themeasured eigenfrequencies,
it is essential to manufacture specimens with high precision in parallelism of the specimen sides and tomeasure
the specimen dimensions at high accuracy.

Theoretically, also higher-order flexural eigenfrequencies, higher-order torsional eigenfrequencies, as well
as the eigenfrequencies of longitudinal vibration modes could be taken into account. However, under the
assumption of homogeneous elastic behavior, higher-order eigenfrequencies contain almost the same infor-
mation concerning the elastic properties as the fundamental ones. The eigenfrequencies of longitudinal modes
depend mostly on the Young’s modulus E1, similar to the flexural eigenfrequencies. Furthermore, the longitu-
dinal eigenmodes are difficult to excite using the impulse excitation setup, see Fig. 1. In addition, it is difficult
to realize a free vibration corresponding to higher-order eigenmodes, due to the required highly precise support
of the specimen in the vibration nodes. Therefore, only the fundamental flexural frequency and the fundamen-
tal torsional frequency are considered in the proposed method, as specified by the ASTM standard in case of
isotropic elastic behavior.

2.3 Verification of the estimations of the compliances

The proposed estimations of S1111 and S1212 are verified by comparing the fundamental eigenfrequencies
calculated by rearranging Eqs. (6) and (7), which are referred to as f Estf and f Estt with the corresponding ones
calculated by numerical modal analysis using FEM, which are denoted by f FEMf and f FEMt . This calculation
of the eigenfrequencies from the elastic constants represents the direct problem of the aforementioned inverse
problem. Additionally, the sensitivities with respect to the components of the compliance tensor allow an
explanation of the deviation between both approaches, as the finite element model takes into account all
components of the compliance tensor. The deviations between the results calculated by both approaches
depend significantly on the degree of anisotropy and the orientation of planes of material symmetry relative
to the specimen sides. These aspects are exemplarily shown in a study by means of three different material
models.

Model (a) represents isotropic elastic behavior (E = 200 GPa, ν = 0.3), whereas in models (b) and (c) the
elastic behavior of a cubic single crystal is assumed. This limiting case represents the strongest anisotropy that
can result from a texture generated in the manufacturing process. The elastic constants of the IN718 single-
crystal material assumed in this study are provided by Martin et al. [21] and listed in Table8 of Sect. 4.3. The
density is set to ρ =8.15 g cm−3, which is in good agreement with the experimentally obtained values, see
Table9.

Models (b) and (c) differ in the orientation of the lattice vectors, as shown in Fig. 2. In material model (b),
the lattice vectors of the unit cell coincide with the specimen basis. Hence, the planes of material symmetry
are parallel to the specimen sides. In contrast to that, the lattice vectors in model (c) are rotated relative to
the basis vectors of the specimen coordinate system by the Euler angles with Bunge convention (φ1 = −26◦,
φ = 45◦, φ2 = 0◦).

The specimen dimensions assumed in this study are identical to the ones in the experiment (l = 65mm,
b = 18mm, t = 4.5mm). The sensitivities of the estimations are calculated by rearranging Eqs. (6) and (7)
and differentiation with respect to the components of the compliance tensor:

∂ f Estf

∂S1111
= −1

2

√
b t3

0.9465 T1m l3
(S1111)

− 3
2 , (8)

∂ f Estt

∂S1212
= −1

8

√
(1 + A) b t

B m l
(S1212)

− 3
2 . (9)
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The partial derivatives of the eigenfrequencies with respect to the compliances calculated by the numerical
modal analysis are approximated by evaluation of the forward difference quotient:

∂ f FEM

∂Smnop
= f FEM

(
Si jkl + δim δ jn δko δlp 	S

) − f FEM
(
Si jkl

)
	S

. (10)

The results are listed in Table1, showing that the estimation of the eigenfrequencies ff and ft for material
models (a) and (b) are close to the numerically calculated results. In material model (c), larger deviations are
observed.

These deviations can be discussed by the sensitivities of the eigenfrequencieswith respect to the components
of the compliance tensor showing the strongest impacts as outlined in Fig. 3.

The eigenfrequency ff is most sensitive with respect to S1111, whereby ft is mainly influenced by S1212
as expected, but it can be seen that both eigenfrequencies are also influenced by S1112 and additionally ft is
sensitive to S1313. The influence of S1112 becomes particularly visible in material model (c), where the lattice
vectors of the unit cell are rotated, such that the absolute value of S1112 is maximized. Despite this influence,
the estimations are acceptable, since the absolute value of S1112 is several times smaller than those of S1111 or
S1212 at its maximum for the analyzed single-crystal material.

The sensitivity of ft with respect to S1313 contributes particularly to the deviation of the eigenfrequency ft ,
if the difference between S1212 and S1313 is significant. If these components are equal, as in material models (a)
and (b), this shortcoming has less impact because in the estimation of ft , which is based on isotropic elasticity,
the influence of transverse shear deformation is considered and in case of isotropy S1212 and S1313 are equal.
The influence of S1313 increases significantly for specimens with higher thickness to width ratio. Hence, in our
work the specimen dimensions are chosen, such that the influence of S1313 is moderate, in order to achieve an
adequate estimation of S1212 from ft by Eq. (7), even if the difference of S1212 and S1313 is significant. The
estimation of the eigenfrequencies for material model (b) are better in contrast to model (c), because in the
former case S1112 = 0 and S1212 = S1313.

In conclusion, the sensitivity analysis shows a nonlinear relationship between the eigenfrequencies and the
components of the compliance tensor, but it can be seen that Eqs. (6) and (7) provide good estimations for the
relation between the compliances and the fundamental eigenfrequencies, even for the pronounced anisotropy
in case of single-crystal elastic behavior and the adverse orientation of the planes of material symmetry.

Fig. 2 Orientation of the lattice vectors (a, b, c) of the face centered cubic lattice relative to the specimen basis for material
models (b) and (c)

Table 1 Comparison of the estimated (Est) and numerically calculated (FEM) eigenfrequencies ff and ft and their sensitivities
for the material models (a), (b) and (c)

Model ff (Hz) ∂ ff
∂S1111

(1013 Hz Pa) ft (Hz) ∂ ft
∂S1212

(1013 Hz Pa)

(a)
Est 5339.9 − 53.4 10575.7 − 162.7
FEM 5345.0 − 51.7 10613.0 − 138.6
(b)
Est 4022.6 − 22.8 12623.7 − 276.7
FEM 4068.6 − 23.0 12591.0 − 234.0
(c)
Est 4783.6 − 38.4 9406.9 − 114.5
FEM 4718.2 − 34.3 10669.0 − 134.4
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Fig. 3 Sensitivities of eigenfrequencies ff and ft with respect to the components of the compliance tensor showing the strongest
impacts, calculated numerically

3 Determination of the elasticity tensor by solving an inverse problem

If the orientation of possible planes of material symmetry is unknown, the anisotropic elasticity tensor and
hence the compliance tensor are specified by 21 independent components. For their determination from 21
eigenfrequencies of differently oriented specimens, 21 independent relations are required. These relations are
not known in closed form (as discussed in Sect. 2.2), and each eigenfrequency depends on several components
of the compliance tensor. Hence, the corresponding inverse problem will be solved by minimization of the
deviation between the eigenfrequencies calculated numerically on the basis of the elasticity tensor to be
determined and the corresponding measured ones, using the Newton–Raphson method. For this purpose, a
first approximation of the compliance tensor, based on the estimations in closed form is proposed in Sect. 3.1.
It allows to select the specimen orientations as well as the 21 eigenfrequencies in order to enable a robust
determination of the compliance tensor as described in Sect. 3.2. Even though the convergence rate of the
optimization is also high from remote starting points, it is recommended to start the optimization scheme from
the approximated compliance tensor, in order to reduce the number of required iteration steps.

3.1 First approximation of the compliance tensor

The direct relations in closed form between the fundamental eigenfrequencies and certain components of the
compliance tensor with respect to the specimen basis, as described in Sect. 2.2, allow to estimate compliances
in arbitrary directions and/or planes by proper choice of the specimen orientation. These compliances are
linearly related to the components of the compliance tensor with respect to a reference basis

(
e1, e2, e3

)
,

according to the transformation rule of the fourth-order compliance tensor:

S(p)
i j k l = Sm n o p Q(p)

i m Q(p)
j n Q(p)

k o Q(p)
l p , (11)

where Q(p)
i m represent the transformation coefficients and the overlined indices refer to the reference basis,

whereas the other indices refer to the basis of the corresponding specimen p. This orthogonal transformation is
specified by the Tait–Bryan angles, which are addressed in Sect. 3.2. Due to the minor and major symmetries
of the compliance tensor, as discussed in Sect. 2, the 81 summands can be reduced to a set of 21 independent
components multiplied with corresponding adapted transformation coefficients a(p)

α β
, as shown in “Appendix

A.” This simplification allows the representation of the transformation by the independent 21 components Sα

with single index and the corresponding adapted transformation coefficients a(p)
α β

with double indices:

S(p)
α = a(p)

α β
Sβ, α, β = 1 . . . 21. (12)

The coordinates of the compliance tensor are arranged in a symmetric matrix of dimension 6x6 by application
of the common conversion of indices i j → I : (11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6),



Determination of the anisotropic elasticity tensor by mechanical spectroscopy 171

allowing to clarify the assignment between the components in notation Sα and Si jkl :1

[
SI J

] =

⎡
⎢⎢⎢⎢⎢⎣

S1 S2 S3 S4 S5 S6
S7 S8 S9 S10 S11

S12 S13 S14 S15
S16 S17 S18

sym S19 S20
S21

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

S1111 S1122 S1133 S1113 S1123 S1112
S2222 S2233 S2213 S2223 S2212

S3333 S3323 S3313 S3312
S2323 S2313 S2312

sym S1313 S1312
S1212

⎤
⎥⎥⎥⎥⎥⎦

. (13)

In order to distinguish between the contributions of different specimens, the specimen number p is indicated
by a superscript index. The component S(p)

1 is estimated from the eigenfrequency f (p)
f by Eq. (6), whereas

the component S(p)
21 is estimated from the eigenfrequency f (p)

t by Eq. (7). Therefore, the components of the
compliance tensorwith respect to the reference basis are directly related to the eigenfrequencies of the specimen
by the sets of adapted transformation coefficients a(p)

1β
and a(p)

21β
:

S(p)
1 = a(p)

1β
Sβ, (14)

S(p)
21 = a(p)

21β
Sβ. (15)

These transformations can be interpreted as a scalar product of two vectors, where
[
a(p)
1β

]
or

[
a(p)
21β

]
denote

columnvectors containing the adapted transformation coefficients and
[
Sβ

]
denotes a columnvector containing

the components of the compliance tensor with respect to the reference basis:

S(p)
1 =

[
a(p)
1β

]T ·
[
Sβ

]
, (16)

S(p)
21 =

[
a(p)
21β

]T ·
[
Sβ

]
. (17)

Equations of type Eqs. (16) and (17) can be combined to a system of linear equations:

[
Mi β

]
·
[
Sβ

]
= [bi ] , (18)

where the vectors containing the transformation coefficients are assembled to the matrix:

[
Mi β

]
=

[[
a(1)
1β

]T [
a(1)
21β

]T [
a(2)
1β

]T
..

[
a(k)
21β

]T ]T
. (19)

The compliances with respect to the reference basis are arranged consistently with the transformation coeffi-
cients in the column vector:

[bi ] =
[
S(1)
1 S(1)

21 S(2)
1 .. S(k)

21

]T
. (20)

If the resulting linear system of equations consists of 21 independent equations, it can be solved and hence
provides a first approximation of the compliance tensor.

1 This matrix representation of independent components of the compliance tensor does not correspond to an orthonormal basis.
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3.2 Selection of specimen orientations

The system of linear equations for the first approximation of the compliance tensor can be solved uniquely, if

the matrix
[
Mi β

]
has full rank. This depends on which equations of type Eqs. (16) and (17) are included in the

system of equations and on the orientation of the corresponding specimens. In order to formulate the inverse
problem under consideration of stability, it is of major importance that the choice of specimen orientations and
the selection of equations are conceived with the objectives that measurement deviations and shortcomings of
the estimations, as described in Sect. 2.1, affect the result of the first approximation as little as possible. This

aspect can be evaluated by the condition number κ2 of the matrix
[
Mi β

]
, which specifies an upper limit of the

relative error in the result caused by a relative error in the input data:

∣∣∣∣[	Sβ

] ∣∣∣∣
∣∣∣∣[Sβ

] ∣∣∣∣ ≤ κ2

∣∣∣∣[	bi ]
∣∣∣∣∣∣∣∣[bi ] ∣∣∣∣ , (21)

where || · || denotes the L2-norm. The condition number is calculated by the ratio of the maximum and the

minimum singular value of the matrix
[
Mi β

]
:

κ2 =
σmax

([
Mi β

])

σmin

([
Mi β

]) . (22)

In order to minimize κ2 the orientations of the specimens are selected such that a preferably low number

of matrix row operations of
[
Mi β

]
is necessary for solving the system of linear equations. Consistent to the

notation of the compliances in Eq. (13) the transformation coefficients are arranged in a matrix of same dimen-
sion in order to clarify the assignment between the coordinates of the compliance tensor and the corresponding
adapted transformation coefficients. The index related to the specimen basis α is either 1 for the component
S(p)
1 or 21 for the component S(p)

21 :

[
a(p)
〈α〉 I J

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(p)
α 1

a(p)
α 2

a(p)
α 3

a(p)
α 4

a(p)
α 5

a(p)
α 6

a(p)
α 7

a(p)
α 8

a(p)
α 9

a(p)
α 10

a(p)
α 11

a(p)
α 12

a(p)
α 13

a(p)
α 14

a(p)
α 15

a(p)
α 16

a(p)
α 17

a(p)
α 18

sym a(p)
α 19

a(p)
α 20

a(p)
α 21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

Manufacturing of the batch of specimens via selective laser melting is done in a single job, therefore
the construction volume of the 3-D printer must be efficiently used. Additionally, the specimens are post-
processed after manufacturing from cylinders in order to achieve the required geometric accuracy and to avoid
disturbances of the microstructure due to surface effects. The specimen orientations are specified by Tait–
Bryan angles, of rotation sequence (e3, e2′ , e1′′ ) with corresponding angles (ψ , θ , ϕ), that describe the intrinsic
rotation from the reference basis to the specimen basis.

Consideration of the outlined aspects has led to following discretized Tait–Bryan angles for possible
specimen orientations: ψ = {0◦, ±45◦, ±135◦, 180◦}, θ = {0◦, −45◦}, ϕ = {0◦, ±45◦, 90◦}, allowing to
manufacture a batch of specimens containing all possible combinations of ψ and θ . Adding a further cylinder
with axis normal to the build plate completes the batch of 17 specimens as shown in Fig.4.

The angle ϕ for each specimen is selected by evaluation of the minimum condition number resulting from
the system of 21 most suitable linear equations, generated by the complete batch of specimens, whereas the
other frequencies can be used for validation of the result.

Several specimen orientations and the selection of equations for the system of linear equations are specified
by considerations for the estimation of certain components of the compliance tensorwith respect to the reference
basis.
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Fig. 4 Batch of specimens to be built by additive manufacturing

Specimens oriented coaxially to the basis vectors, as shown in Fig. 5, allow to directly estimate the elements
on the diagonal of the matrix

[
SI J

]
, see Eq. (13). The compliances S1, S7 and S12 are determined by the

fundamental flexural eigenfrequencies f (p)
f , whereas the components S16, S19 and S21 are calculated from the

fundamental torsional frequencies f (p)
t of specimens 1, 5 and 17. In Table2, the Tait–Bryan angles are outlined

together with the corresponding nonzero transformation coefficients of sets a(p)
1β

and a(p)
21β

that contribute six

equations to the system of linear equations.
The components S2, S3 and S8 in the left upper quadrant of

[
SI J

]
are estimated by the fundamental torsional

frequencies of specimens 10, 14 and 15 in combination with the already determined elements on the diagonal.
Their specimen planes are parallel to the coordinate planes of the reference system, but the angle between the
basis vectors in the coordinate planes is 45◦ , as shown in Fig. 6, which leads to the sets of transformation
coefficients listed in Table3.

Three further specimens are intended to determine the components S17, S18 and S20 in the right lower
quadrant of the matrix

[
SI J

]
. Their specimen planes are tilted at an angle of 45◦ to the coordinate planes as

Fig. 5 Orientations of specimens 1, 5 and 17

Table 2 Orientation angles and nonzero transformation coefficients of specimens 1, 5 and 17

p ψ (◦) θ (◦) ϕ (◦) a(p)
1β

a(p)
21β

1 0 0 90 a(1)
1 1

= 1 a(1)
21 19

= 1

5 90 0 0 a(5)
1 7

= 1 a(5)
21 21

= 1

17 0 − 90 0 a(17)
1 12

= 1 a(17)
21 16

= 1
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Fig. 6 Orientations of specimens 10, 14 and 15

Table 3 Orientations and nonzero transformation coefficients of specimens 10, 14 and 15

p ψ (◦) θ (◦) ϕ (◦) a(p)
21β

10 180 − 45 90 a(10)
21 1

= a(10)
21 12

= 0.25, a(10)
21 3

= −0.5

14 − 90 − 45 90 a(14)
21 7

= a(14)
21 12

= 0.25, a(14)
21 8

= −0.5

15 − 45 0 0 a(15)
21 1

= a(15)
21 7

= 0.25, a(15)
21 2

= −0.5

shown in Fig. 7. An analysis of the nonzero transformation coefficients a(p)
21β

for specimens 2, 3 and 6 in

Table4 shows that these components (S17, S18 and S20) can be identified in combination with the already
determined diagonal elements.

From the orientation selection of the first nine specimens twelve equations result, allowing to determine the
elements in the abovementioned quadrants of the matrix

[
SI J

]
as independently as possible. Nine additional

Fig. 7 Orientation of specimens 2, 3 and 6

Table 4 Orientations and nonzero transformation coefficients for specimens 2, 3 and 6

p ψ (◦) θ (◦) ϕ (◦) a(p)
21β

2 0 − 45 0 a(2)
21 16

= a(2)
21 21

= 0.5, a(2)
21 18

= 1

3 45 0 90 a(3)
21 16

= a(3)
21 19

= 0.5, a(3)
21 17

= 1

6 90 − 45 0 a(6)
21 19

= a(6)
21 21

= 0.5, a(6)
21 20

= 1
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Table 5 Orientations and sets of transformation coefficients for the determination of elements in the right upper square of
[
SI J

]

p ψ (◦) θ (◦) ϕ (◦) a(p)
α β

2 0 − 45 0 a(2)
1 β̄

4 45 − 45 − 45 a(4)
21 β̄

7 135 0 − 45 a(7)
1 β̄

, a(7)
21 β̄

8 135 − 45 − 45 a(8)
21 β̄

11 − 135 0 − 45 a(11)
21 β̄

12 − 135 − 45 − 45 a(12)
21 β̄

14 − 90 − 45 90 a(14)
1 β̄

16 − 45 − 45 − 45 a(16)
21 β̄

Table 6 Orientations of specimens for verification of the result

p ψ (◦) θ (◦) ϕ (◦)

9 180 0 − 45
13 − 90 0 45

equations are necessary in order to reach the full rank of 21 of the matrix
[
Mi β

]
. It is challenging to identify

orientations of further specimens, such that elements in the right upper quadrant of
[
SI J

]
are determinable

independently from each other. Hence, theminimumcondition number resulting frombatches of specimenwith
all possible combinations of ϕ for the remaining 8 specimens are compared in order to find the combination
of the most suitable angles and the best selection of equations in order to complete the linear system of
equations. In Table5, the resulting angles are listed together with the sets of transformation coefficients that
contribute the missing nine equations, whereby the orientations of specimens 2 and 14 were already chosen by
the considerations mentioned before. Following this approach, a condition number of κ2 = 8.33 is achieved.
Orientations of specimens that do not contribute to the system of linear equations are arbitrarily chosen for
verification of the result. In Table6, the orientations of these specimens are listed.

3.3 Identification of the elasticity tensor by optimization

The discrepancy between the first approximation of the compliance tensor and the exact solution of the
inverse problem results from the shortcomings described in Sect. 2.3. In order to eliminate the impact of these
shortcomings on the determined elasticity tensor, an optimization scheme based on the Newton–Raphson
method is applied. By the proposed considerations, outlined in Sect. 3.2, 21 eigenfrequencies were already
selected allowing a robust identification of the compliance tensor. In the optimization scheme the sum of
least squared differences between these eigenfrequencies, calculated by the numerical modal analysis on the
basis of the current compliance tensor and the corresponding measured ones, is minimized. This results in the
following optimization problem:

min
[Sα]

g = min
1

2

∣∣∣∣[ f FEMi

] − [
f Exi

] ∣∣∣∣2. (24)

The vector
[
f FEMi

]
contains the selected eigenfrequencies of type f (p)

f or f (p)
t determined by the numerical

modal analysis and the vector
[
f Exi

]
represents the corresponding measured eigenfrequencies.

The gradient of the objective function g results from the deviation between the frequencies:

[
∂g

∂Sα

]
= [

f FEMi

] − [
f Exi

]
, (25)
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whereas the partial derivatives in the Hessian are approximated by the forward difference quotients, similar to
the approach in Eq. (10), but with respect to the components corresponding to the reference basis:

[
∂ fi
∂Sα

]
=

⎡
⎢⎢⎢⎢⎣

∂ f1
∂S1

∂ f1
∂S2

.. ..
∂ f1
∂S21

∂ f2
∂S1

∂ f2
∂S2

.. ..
∂ f2
∂S21

.. .. .. .. ..
∂ f21
∂S1

∂ f21
∂S2

.. ..
∂ f21
∂S21

⎤
⎥⎥⎥⎥⎦ . (26)

In each iteration step, the optimization variables are updated:

[Sα]{n+1} = [Sα]{n} −
⎛
⎝

[
∂ f FEMi

∂Sα

]
{n}

⎞
⎠

−1

·
[

∂g

∂Sα

]
{n}

. (27)

It is assumed that by the aforementioned choice of specimen orientations and selection of eigenfrequencies
for the optimization scheme, the objective function g has a single root,which is found by using the approximated
compliance tensor as starting point for the optimization problem.

The proposed approach is validated by assuming a certain compliance tensor with respect to the reference
basis, which is based on different material models and numerically calculating the corresponding eigenfre-
quencies of the specimens. Subsequently, the approximation of the compliance tensor and the optimization
scheme is executed. These studies showed convergency to the assumed compliance tensor for all investigated
material models, based on the single-crystal elastic properties of IN718, as shown in Table8, even in single
crystalline state and adverse orientation of planes of material symmetry.

4 Experimental

In order to verify the proposed method, the batch of specimens described in Sect. 3.2 was manufactured by
SLM. In the applied scanning strategy, the scan vectors are rotated in every layer by 67◦, but directions within
a certain range of parallelism to the inert gas flow are skipped. Due to the variety in the orientation of the
scan vectors over all layers, neither the symmetry class nor the orientation of possible planes of symmetry of
the macroscopic elasticity tensor is known a priori. The required high geometric accuracy of the specimens is
achieved by electrical dischargemachining (EDM)of the specimens from the built cylinders.Due to the residual
stresses induced during the additive manufacturing process, the specimens are distorted during machining,
which is corrected in subsequent recutting steps in order to achieve a low deviation in parallelism of the
specimen sides. The dimensions of each specimen are measured by a micrometer screw at several positions
and additionally the mass is determined accurately, allowing to set up a calculation model of each individual
specimen for the equations in closed form, as well as for the finite element model. The parameters for the
calculation models are given in Table9 of “Appendix B”. The fundamental eigenfrequencies are measured
by employing an experimental setup similar to the one described by Roebben [2]. Table7 summarizes the
measured eigenfrequencies of all specimens.

4.1 Results

The first approximation of the elasticity tensor results from the inverse of the approximated compliance tensor,
as described in Sect. 3.1, and is presented in Voigt notation:

[
CI J

]
{0} =

⎡
⎢⎢⎢⎢⎢⎣

277 117 104 −14 3 2
257 120 −7 2 9

260 −10 −1 8
85 2 2

sym 68 0
73

⎤
⎥⎥⎥⎥⎥⎦
GPa.
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Table 7 Comparison of experimentally determined flexural and torsional eigenfrequencies f Exf and f Ext with the predicted
frequencies determined numerically, based on the approximated elasticity tensor

[
CI J

]
{0} and the elasticity tensor subsequently

to the last iteration of the optimization scheme
[
CI J

]
{3}

p f Exf

(
103Hz

)
f FEMf {0}

(
103Hz

)
f FEMf {3}

(
103Hz

)
f Ext

(
103Hz

)
f FEMt {0}

(
103Hz

)
f FEMt {3}

(
103Hz

)
1 5472* 5466 5472 9924* 10013 9924
2 5048* 5063 5049 10799* 10833 10799
3 5208 5300 5252 10576* 10592 10576
4 5318 5280 5355 10153* 10290 10153
5 5074* 5085 5074 10247* 10364 10247
6 5553 5404 5495 10080* 10135 10079
7 5163* 5162 5163 10518* 10571 10518
8 5317 5057 5041 10925* 10890 10925
9 5447 5468 5475 10084 10125 10051
10 5068 5064 5006 10911* 10888 10911
11 5163 5305 5256 10596* 10607 10597
12 5308 5417 5377 10058* 10155 10058
13 5079 5072 5062 10429 10776 10744
14 5586* 5578 5586 9991* 10064 9991
15 5152 5152 5154 10331* 10402 10331
16 5291 5287 5250 10871* 10814 10871
17 5221* 5228 5221 11035* 10947 11035

Frequencies that contribute to the optimization scheme are marked by *

Subsequently, three optimization steps are applied, as described in Sect. 3.3, which leads to the elasticity
tensor:

[
CI J

]
{3} =

⎡
⎢⎢⎢⎢⎢⎣

284 127 108 −11 8 4
265 128 −4 7 10

265 −8 1 12
87 1 2

sym 67 1
71

⎤
⎥⎥⎥⎥⎥⎦
GPa.

Table7 shows a comparison between the experimentally determined eigenfrequencies of all specimens and the
corresponding ones predicted numerically on the basis of the approximated compliance tensor subsequently
to the third iteration step.

4.2 Analysis of the frequency deviations

The good agreement of the measured eigenfrequencies that do not contribute to the determination of the
elasticity tensor with the corresponding ones predicted on the basis of the resulting elasticity tensor (Table7)
indicate the validity the result. The maximum deviation in the fundamental flexural frequency is 276Hz,
whereas the maximum deviation in the fundamental torsional frequency is 315Hz. On the basis of the elasticity
tensor, determined by optimization, it is possible to express the frequency deviation in form of a deviation in
the Young’s modulus 	E1 and shear modulus 	G12 by linear approximations:

∣∣	E1
∣∣=

∣∣∣ f Exf − f FEMf{3}
∣∣∣

∂ f FEM

∂E1

∣∣∣∣[
CI J

]
{3}

, (28)

∣∣	G12
∣∣=

∣∣ f Ext − f FEMt{3}
∣∣

∂ f FEM

∂G12

∣∣∣∣[
CI J

]
{3}

, (29)

resulting in the maximum absolute deviations of |	E1| = 20GPa and |	G12| = 5GPa.
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4.3 Analysis of the determined elasticity tensor

The Voigt tensor Vi j and the dilatational modulus Di j provide further information on the elastic behavior and
can be directly calculated from the elasticity tensor.

The dilatational modulus Di j = Ci jkk is calculated by contraction of the elasticity tensor with respect
to the last two indices. In case of the elastic behavior of a cubic single crystal, the dilatational modulus is a
spherical tensor and can be directly expressed by the elastic constants [15]:

Di j = d δi j , where d = C1111 + 2C1122. (30)

The interpretation of the elasticity tensor as a tensor of second order in a six-dimensional space with an
orthogonal basis by application of the Mandel notation allows a representation of the elasticity tensor and
the compliance tensor in form of a spectral decomposition involving six eigenvalues λi with corresponding
orthogonal eigenvectors Ni [16]:

C =
6∑

i=1

λi Ni ⊗ Ni , (31)

S =
6∑

i=1

1

λi
Ni ⊗ Ni . (32)

The eigenvectors can be transformed to second-order tensors in the original three-dimensional space. Analysis
of the spectral decomposition of the elasticity tensor of a cubic single crystal shows that the eigenvalue λ1,
corresponding to the compression mode, correlates with the diagonal elements of the dilatational modulus:

λ1 = d = C1111 + 2C1122. (33)

Hence, due to the orthogonality of the eigenvectors, the compression mode is decoupled from the shear modes.
Consequently, in case of cubic crystals, the bulk moduli of single crystals and polycrystals are identical and
independent of the homogenization theory. This is also reflected by the formulas in closed form suggested by
Böhlke et al. [17,18] for the homogenization by Voigt, Reuss and the singular approximation of the Hashin–
Shtrikman bounds. These relationships allow to compare the diagonal elements of the dilatational modulus
calculated from the determined elasticity tensor,

[
DI J

]
{3} =

⎡
⎣519 26 16

520 −24
sym 501

⎤
⎦GPa,

with those calculated from single-crystal data taken from the literature, as listed in Table8. It can be seen that
the diagonal elements of

[
DI J

]
{3} are almost identical and show a good agreement with the literature. The low

deviatoric part of the dilatational modulus is a further indication of the validity of the result.
The Voigt tensor Vi j = Cikk j is calculated by the contraction of the elasticity tensor with respect to

the middle indices. In case of cubic single crystals, the Voigt tensor is spherical and depends on the elastic
constants:

Vi j = v δi j , where v = C1111 + 2C1212. (34)

In contrast to the dilatationalmodulus theVoigt tensor of orientation averaged elasticity tensors is only spherical
by application of the orientation average suggested by Voigt. Nevertheless, the Voigt tensor of the determined
elasticity tensor shows also small values of the off-diagonal elements:

[
VI J

]
{3} =

⎡
⎣422 15 11

423 −12
sym 418

⎤
⎦GPa.

The diagonal elements are close to each other, but slightly lower compared to the corresponding ones reported
in the literature, as outlined in Table8.
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Table 8 Elastic constants of single crystals of IN718 with corresponding diagonal elements of the dilatational modulus and the
Voigt tensor

Refs. [20] [21] [22] [23]

C1111 (GPa) 240.9 259.6 231.2 244.8
C1122 (GPa) 140.5 179.0 145.1 149.2
C1212 (GPa) 105.7 109.6 117.2 123.6
d (GPa) 521.9 617.6 521.4 543.2
v (GPa) 452.3 478.8 465.6 492.0
H (GPa) 95.1 105.0 96.8 96.8
h (GPa) 23.2 46.3 18.6 18.6

The harmonic decomposition provides a further possibility to analyze the determined elasticity tensor. It
represents a decomposition of totally symmetric tensors of even order into harmonic tensors, as described by
Baerheim [19] for application to the elasticity tensor. In a first step, the elasticity tensor is split up into a totally
symmetric tensor Mi jkl and an asymmetric tensor of fourth order Ai jkl , according to:

Mi jkl = 1

3

(
Ci jkl + Cik jl + Cil jk

)
, (35)

Ai jkl = Ci jkl − Mi jkl . (36)

The totally symmetric part is described by three harmonic tensors: A scalar value H , a second-order harmonic
tensor Hi j and a harmonic tensor of fourth order Hi jkl :

Mi jkl = Hi jkl + δi j Hkl + δkl Hi j + δik Hjl + δ jl Hik + δil H jk + δ jk Hil + H
(
δi j δ jk + δik δ jl + δil δ jk

)
.

(37)

The asymmetric part can be described by a linear map of a second-order symmetric tensor hi j and a scalar
value h, according to:

Ai jkl = δi j hkl + δkl hi j − 1

2

(
δik h jl + δ jl hik + δil h jk + δ jk hil

) + h

(
δi j δkl − 1

2
δik δ jl − 1

2
δil δ jk

)
.

(38)

The scalar values H and h depend on the trace of the Voigt tensor and the dilatational modulus:

H = 1

45
(Dkk + 2 Vkk) , (39)

h = 1

9
(Dkk − Vkk) , (40)

whereby the second-order harmonic tensors can be described by their deviators D̂i j and V̂i j :

Hi j = 1

21

(
D̂i j + 2 V̂i j

)
, (41)

hi j = 2

3

(
D̂i j − V̂i j

)
. (42)

Since the harmonics H and h are invariant for cubic single crystals and hence also for polycrystals by
application of the orientation average by Voigt, these quantities of the determined elasticity tensor can be
compared with the corresponding ones of the single-crystal data from the literature listed in Table8. For the
determined elasticity tensor the harmonics result to H{3} = 90.41GPa and h{3} = 30.86GPa, which are in
range of the data reported in the literature. The application of the orientation average by Voigt would lead
to zeros of the second-order harmonic tensors, in case of polycrystalline cubic alloys, as the deviators of the
Voigt tensor and the dilatational modulus are zero in this case. Hence, theoretically the number of independent
constants for the description of the elasticity tensor is reduced from 21 to 11, as harmonic tensors of second
order can be described by 5 independent constants [24]. However, the Voigt orientation average is a rough
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estimate of the resulting elasticity tensor of a polycrystal. The components of the harmonic tensors of second
order corresponding to the determined elasticity tensors show low values:

[
HI J

]
{3} =

⎡
⎣0.38 2.64 1.79

0.48 −2.23
sym −0.86

⎤
⎦GPa,

[
hI J

]
{3} =

⎡
⎣3.02 7.05 3.53

3.29 −8.05
sym −6.30

⎤
⎦GPa,

which confirms this aspect.
Finally the question arises, if the determined elasticity tensor can be assigned to any certain symmetry

class. Due to measurement deviations and the determination of all 21 independent components of the elasticity
tensor an exact assignment is not possible, except to the triclinic symmetry class. Therefore, an appropriate
distance measure to symmetry classes as proposed by Stahn et al. [25], which is based on the contribution of
Francois et al. [26] is used. In a first step, the components of the elasticity tensor are transformed to a symmetry
basis, which is found by eigenvectors of the dyad:

t = h + h

2
1, (43)

where h and h are the harmonic tensors, as described above. This allows to calculate the closest elasticity tensor
of the symmetry class G by the average of the orbit of the elasticity tensor in the corresponding symmetry
group, according to:

CG = 1

|G|
|G|∑
i=1

Q
i
∗ C, (44)

where C denotes the fourth-order elasticity tensor to be analyzed in the symmetry basis, Q
i

∈ G are the

elements of the corresponding symmetry group, ∗ is the Rayleigh product and | · | denotes the cardinality. The
normalized distance of the elasticity tensor to the closest element of the symmetry class is calculated by:

d (C,G) =
∣∣∣∣C − CG

∣∣∣∣∣∣∣∣C∣∣∣∣ , (45)

where
∣∣∣∣·∣∣∣∣ denotes the Frobenius norm.

Figure 8 presents a comparison between the distances of both the determined elasticity tensor and the
elasticity tensor of the cubic single crystal of IN718 reported in the literature [19] to different non-triclinic
symmetry classes. Apparently, none of the distances of the determined elasticity tensor to any of the symmetry
classes is particularly small. An interesting fact is that its distance to the cubic symmetry class is almost equal
to its distance to the isotropic class, even though the single crystals of the polycrystalline aggregate are cubic.
Furthermore, the distance of the elasticity tensor describing the elastic behavior of the cubic single crystal to
the isotropic class is twice the distance of the determined elasticity tensor to this class. Hence, the determined
elasticity tensor marks the halfway stage of the microstructure on its way from the single crystalline state to
an untextured polycrystalline aggregate. The closest elasticity tensor of the isotropic class to the determined
elasticity tensor is specified by a Young’s modulus of 196GPa and a shear modulus 75GPa.

5 Discussion

The presented method was demonstrated on a batch of specimens from the nickel-base alloy IN718 fabricated
by SLM. An analysis of the results indicates the validity of the determined elasticity tensor. The orientations
and the geometry of the specimens were conceived with the objectives that the method is stable with respect
to measurement deviations and converges for a wide range of various types of macroscopic elastic anisotropy.

Numerical verifications involving different material models confirm that the proposed method converges,
even in case of the nickel-base alloy in single crystalline state and adverse orientation of the planes of material
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Fig. 8 Comparison of the distances of the determined elasticity tensor and the elasticity tensor of the cubic single crystal (of
IN718 reported in the literature [19]), to different non-triclinic symmetry classes

symmetry. The application of the proposedmethod tomaterialswith stronger anisotropymay lead to divergence
in theNewton–Raphson optimization scheme,which could be avoided using alternative optimization strategies.
However, as a consequence of stronger anisotropy, the reliability of the estimations in closed form declines.
Therefore, the choice of specimen orientations may get unfavorable, leading to an increased impact of the
measurement deviations on the results.

The determination of the elasticity tensor is based on the assumption of homogeneous elastic behavior,
which is reasonable for the determination of the elastic properties of bulk materials, but leads to additional
uncertainties in case of inhomogeneous elastic behavior.

In contrast to a texture-based approach to assess the elasticity tensor of polycrystalline materials, the
presented method does not require the knowledge of the elastic constants of the corresponding single crystal.
The elastic properties determined by the proposed method are averaged over a large volume compared to
diffraction measurements, such as EBSD (electron backscatter diffraction) or XRD (X-ray diffraction). This
is particularly beneficial in case of additively manufactured alloys, where the grain size can be large and only
a few layers are captured by the diffraction measurements.

Besides modeling uncertainties, such as the assumption of homogeneity and the neglect of material damp-
ing, as well as the effect of residual stresses on the vibration behavior, the accuracy of the proposed method
mainly depends on the deviation of the specimen dimensions in the calculation models from the geometry
of the manufactured specimens. In particular, a discrepancy in specimen thickness shows the strongest influ-
ence. An increased specimen thickness lowers the sensitivity of the eigenfrequencies with respect to thickness
variations and additionally leads to a more reliable specimen preparation.

On the other hand, with increasing specimen thickness the estimations in closed form become less accurate
due to the increasing influence of S1313, as discussed in Sect. 2.3, and the sensitivity with respect to the elastic
properties decreases. The chosen specimen geometry represents a good balance between these aspects.

In case of cubic single-phase alloys, the second-order harmonic tensors of the elasticity tensor are zero on
the assumption of the orientation average by Voigt. Therefore, a further development of the proposed method
enabling a robust determination of the harmonics of the elasticity tensor seems to be promising in order to
reduce the number of required specimens.

6 Conclusion

In this contribution, a method was suggested to determine the anisotropic elasticity tensor from the eigen-
frequencies of a batch of specimens by the impulse excitation technique. It allows an efficient and reliable
identification of the elastic properties, without requiring additional information on the microscopic scale.
Hence, it is a valuable tool to explore the relation between the scanning strategy in the SLM-process and
the resulting anisotropic elastic behavior, provided the microstructure is homogeneous on the macroscopic
level. In this context, a further verification by studies on different SLM-processed materials in combination
with microstructural investigations is necessary. The knowledge of the anisotropic elasticity tensor is also
essential for a reliable estimation of the residual stresses on the macroscopic level, which play a crucial role
in SLM-processing.
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Since the impulse excitation technique can also be employed at elevated temperatures, a study of the
evolution of the anisotropic elasticity tensor during heat treatment seems to be feasible, providing valuable
information for the further development of the SLM-based material processing route.
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Appendix A: Transformation of the compliance tensor

According to the transformation rule for a fourth-order tensor, an arbitrary component Si jkl with respect to the
specimen basis is determined by the sum of 81 components with respect to the reference basis multiplied with
the corresponding transformation coefficients:

Si j k l = Sm n o p Qi m Q j n Qk m Ql p = S1111 Qi1 Q j1 Qk1 Qk1 + · · · + S3333 Qi3 Q j3 Qk3 Qk3 (46)

Theminor andmajor symmetries of the compliance tensor allowpermutations of the tensor indices, as described
in Sect. 2. Depending on the choice of the indices, these permutations lead to several equivalent components
that can be grouped together. The following types of groups can be distinguished:

– S〈i〉〈i〉〈i〉〈i〉
– S〈i〉〈i〉〈 j〉〈 j〉 = S〈 j〉 〈 j〉〈i〉〈i〉
– S〈i〉〈i〉〈i〉〈 j〉 = S〈i〉〈i〉〈 j〉〈i〉 = S〈i〉〈 j〉〈i〉〈i〉 = S〈 j〉〈i〉〈i〉〈i〉
– S〈i〉〈 j〉〈i〉〈k〉 = S〈 j〉〈i〉〈i〉〈k〉 = S〈i〉〈 j〉〈k〉〈i〉 = S〈 j〉〈i〉〈i〉〈k〉 = S〈i〉〈k〉〈i〉〈 j〉 = S〈i〉〈k〉〈 j〉〈i〉 = S〈k〉〈i〉〈i〉〈 j〉 =

S〈k〉〈i〉〈 j〉〈i〉
– S〈i〉 〈 j〉〈i〉 〈 j〉 = S〈 j〉〈i〉〈i〉〈 j〉 = S〈i〉〈 j〉〈 j〉〈i〉 = S〈 j〉〈i〉〈 j〉〈i〉.
These permutations allow to reduce the transformation from 81 summands to 21 summands of independent
components with corresponding adapted transformation coefficients, that include the transformation coeffi-
cients of equivalent components, as shown in the following transformation, where an independent component
of each type of group is shown in detail:

Si jkl = S1111 Qi 1 Q j 1 Qk 1 Ql 1 + S1122

(
Qi 1 Q j 1 Qk 2 Ql 2 + Qi 2 Q j 2 Qk 1 Ql 1

)

+ S1112

(
Qi 1 Q j 1 Qk 1 Ql 2 + Qi 1 Q j 1 Qk 2 Ql 1 + Qi 1 Q j 2 Qk 1 Ql 1 + Qi 2 Q j 1 Qk 1 Ql 2

)

+ S1213

(
Qi 1 Q j 2 Qk 1 Ql 3 + Qi 2 Q j 1 Qk 1 Ql 3 + Qi 1 Q j 2 Qk 3 Ql 1 + Qi 2 Q j 1 Qk 3 Ql 1 +

+ Qi 1 Q j 3 Qk 1 Ql 2 + Qi 1 Q j 3 Qk 2 Ql 1 + Qi 3 Q j 1 Qk 1 Ql 2 + Qi 3 Q j 1 Qk 2 Ql 1

)

+ S1212

(
Qi 1 Q j 2 Qk 1Ql 2 + Qi 2 Q j 1 Qk 1Ql 2 + Qi 1 Q j 2 Qk 2Ql 1 + Qi 2 Q j 1 Qk 2Ql 1

)
= S1 ai 1 + · · · + S2 ai 2 + · · · + S6 ai 6 + S20 ai 20 + · · · + S21 ai 21.

(47)

http://creativecommons.org/licenses/by/4.0/
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Appendix B: Model parameters

The average dimensional values of the specimens result from single measurements by a micrometer screw at
13 positions for thickness t , 5 positions for width b and 3 positions for length l. The density ρ is calculated
from the dimensions and the determined mass of the specimen.

Table 9 Average dimensional values, masses and calculated densities of the specimens

p l (mm) b (mm) t (mm) m (g) ρ
(
g cm−3

)
1 65.013(0.005) 18.019(0.003) 4.495(0.014) 42.934 8.154
2 65.010(0.003) 18.012(0.008) 4.514(0.003) 43.297 8.191
3 65.004(0.004) 18.011(0.008) 4.512(0.005) 43.262 8.190
4 65.013(0.001) 18.010(0.010) 4.514(0.004) 43.300 8.193
5 65.010(0.001) 18.009(0.005) 4.513(0.006) 43.245 8.184
6 65.013(0.002) 18.010(0.008) 4.503(0.006) 43.115 8.178
7 65.017(0.005) 17.990(0.008) 4.512(0.004) 43.185 8.182
8 65.003(0.003) 18.016(0.008) 4.522(0.005) 43.370 8.190
9 65.010(0.002) 18.018(0.006) 4.503(0.010) 43.127 8.176
10 64.991(0.001) 18.007(0.007) 4.515(0.004) 43.278 8.191
11 65.014(0.004) 18.018(0.005) 4.520(0.004) 43.385 8.194
12 65.008(0.003) 18.008(0.011) 4.510(0.007) 43.224 8.187
13 64.999(0.006) 18.016(0.003) 4.496(0.006) 43.020 8.171
14 65.011(0.004) 18.011(0.006) 4.511(0.004) 43.219 8.182
15 65.027(0.003) 18.013(0.003) 4.493(0.009) 42.954 8.161
16 65.016(0.001) 18.013(0.012) 4.509(0.009) 43.227 8.186
17 65.027(0.007) 17.996(0.006) 4.501(0.007) 43.081 8.179

The standard deviations are given in brackets
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