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Abstract
We comment on a recent article [Comput. Mech. 2020, 65, 487–502] about surface-tension modeling for free-surface flows
with Smoothed Particle Hydrodynamics. The authors motivate part of their work related to a novel principal curvature
approximation by the wrong claim that the classical curvature formulation in SPH overestimates the curvature in 3D by
a factor of 2. In this note we confirm the correctness of the classical formulation and point out the misconception of the
commented article.
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1 Introduction

The authors of the paper “Free surface tension in incompress-
ible smoothed particle hydrodynamics (ISPH)” [2] present
“a Dirichlet pressure boundary condition for ISPH [...]”
and “[...] a new approach to compute the curvature more
exactly for three-dimensional cases [...]”. This development
is motivated by the claim that the established SPH curvature
estimates give wrong results in three dimensions. As we will
show below, this claim is based on a straightforward miscon-
ception in using the curvature term.
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2 Curvature definition

The singular surface-tension force Fs at a phase interface
considering capillary forces only is given by

Fs = σκ f n, (1)

where σ , κ f and n denote the surface-tension coefficient,
the curvature and the surface normal direction, respectively.
Assuming constant material properties, the classical Young-
Laplace formula for a quiescent spherical drop is simply
�p = σκ f .
Fluidmechanical curvatureThe fluid mechanical curvature
is defined as

κ f = −∇ · n =
(

1

R1
+ 1

R2

)
= (κ1 + κ2) , (2)

where R1 and R1 are the principal radii of the surface, and
κ1 and κ2 its respective principal curvature (see, e.g., [1]).
Note, for a sphere in 3D with R1 = R2 = R, the curvature
is given by κ f = 2

R . In 2D, this curvature is simply κ f = 1
R

(considering a cylindrical surface with R1 = R and R2 →
∞).
Mean curvature The mean curvature or geometrical curva-
ture [5] is mathematically defined as

κg = −1
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(κ1 + κ2) . (3)
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Here, for a sphere in 3D with R1 = R2 = R, the curvature
reduces to κg = 1

R . In 2D, there is only a single principal
radius yielding κg = 1

R .

3 Discussion

Obviously, Fürstenau et al have confused the two defini-
tions and compared the numerical approximation for the fluid
mechanical curvature (their eq. 34) with the mean curvature.
This can be implied from a comparison of the two Figs. 2
and 3 in the article, where the analytical curvature for two
bubbles in 2Dand3D is comparedwith the numerical approx-
imations. Both analytical values are obtained from κg = 1

R
for the given radii. From Fig. 3 showing the numerical curva-
ture κ f and analytical mean curvature κg = 1

2κ f the authors
conclude:

“The approach was tested by comparing the curvatures
of spherical bubbles in 2Dand3D test cases (see Fig. 1).
When plotting the curvatures over the width (see Figs.
2, 3) it is obvious that in 2D the difference between ours
and the standard approach is small, but in 3D the stan-
dard approach overestimates the curvature by a factor
of 2 while ours is close to the analytical value.” (p. 493,
[2])

This statement or conclusion is wrong and needs to be recti-
fied in order to avoid proliferation.We point out that identical
results and erroneous claims also have been published in [3].

The geometrical curvature κg coincidences with the fluid
mechanical curvature κ f in 2D. In 3D, however, they differ
by definition by a factor of 2. Amongst other references, the
following quote from Taylor nicely clarifies this issue:

“1.1 The mean curvature is H = κ1 + κ2. The most
elementary approach of classical differential geometry
[5] is to define principal curvatures κ1 and κ2, and then
to define the mean curvature to be (κ1 + κ2) /2. The
“mean” in “mean curvature” refers to this idea of the
average of the curvatures. But in many ways, as will
become clear below, it is much more natural not to
divide by that 2, and it has become common to leave it
out. Thus we will use H = κ1 + κ2”. [6]

4 Conclusion

We emphasize that the well-known methods to compute the
curvature via the divergence of the surface normals (e.g.
[1,4]) give the correct results. Nonetheless, the proposed

approach of the authors to extract the mean curvature still is
valid and applicable. Yet, this methodology does not improve
on the prediction accuracy of existing formulations and does
not justify the additional computational effort for the local
coordinate transformation with principal curvature extrac-
tion.
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