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Abstract
Singular exponential nonlinearities of the form eh(x)ε−1

with ε > 0 small occur in many
different applications. These terms have essential singularities for ε = 0 leading to very
different behaviour depending on the sign of h. In this paper, we consider two prototypical
singularly perturbed oscillators with such exponential nonlinearities. We apply a suitable
normalization for both systems such that the ε → 0 limit is a piecewise smooth system.
The convergence to this nonsmooth system is exponential due to the nonlinearities we study.
By working on the two model systems we use a blow-up approach to demonstrate that this
exponential convergence can be harmless in some cases while in other scenarios it can lead
to further degeneracies. For our second model system, we deal with such degeneracies due to
exponentially small terms by extending the space dimension, following the approach in Kris-
tiansen (Nonlinearity 30(5): 2138–2184, 2017), and prove—for both systems—existence of
(unique) limit cycles by perturbing away from singular cycles having desirable hyperbolicity
properties.

Keywords Singular perturbations · Non-smooth systems · Blow-up method · Exponential
asymptotics · Relaxation oscillations

1 Introduction

Exponential nonlinearities arise in many different areas of mathematical modelling. In elec-
tronic oscillators, for example, the Ebers–Moll model for an NPN transistor provides an
exponential relationship between the ‘emitter current’ and the ‘base-emitter voltage’. See
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[7,11]. Also, in chemical kinetics, the reaction rates are, by the Arrhenius equation, expo-
nential functions of the temperature. Frequently, the temperature is assumed constant in such
models, but in systems where large temperature variations occur (e.g. in explosions), the
resulting exponential nonlinearity becomes important for the dynamics. Similar nonlinear-
ities appear in other settings when the effect of temperature becomes important, see e.g.
[2,8] for exponential nonlinearities in plastic deformation. In the related area of friction,
exponential nonlinearities also play an important role, for example in rate-and-state friction
laws, see [4,5,32,33] and [1,21,30] for dynamical studies of such models. Although these
friction models were first derived from experiments, the exponential nonlinearities have later
been connected to Arrhenius process resulting from breaking atomic bonds at the atomic
level [31]. Sometimes modellers also introduce exponentials more heuristically, for example
when regularizing a switch by a tanh-function.

All of the examples of exponential nonlinearities highlighted above, are also examples
of (within relevant parameter regimes) singularly perturbed systems. Over the past decades,
these type of systems have been successfully described by geometric singular perturbation
theory (GSPT) and blow-up, see e.g. [6,9,17,25], but singular exponential nonlinearities like
eh(x)ε−1

, with essential singularities along h(x) = 0 as ε → 0, have traditionally been seen
as an obstacle to such analysis.

The problem is two-fold. Firstly, such systems approach piecewise smooth systems (upon
proper normalizations) as ε → 0, having very different behaviour for h(x) > 0 and h(x) < 0.
The mathematical analysis of smooth systems with non-smooth singular limits via GSPT and
blow-up is currently an active area of research, see e.g. [13,19,23,24]. Secondly, for systems
with nonlinearities of the form eh(x)ε−1

the convergence of the smooth system to its nonsmooth
counterpart happens at an exponential rate. Whereas this exponential convergence can be
harmless in some cases, it can also lead to further degeneracies due to ‘exponential loss of
hyperbolicity’.Wewill demonstrate this through the study of two prototypical systems,which
we introduce in the following. The usual blowup method [6,25] is adapted to algebraic loss
of hyperbolicity, and cannot compensate for these exponential degeneracies. Nevertheless,
recently in [20] it was shown how one can modify this approach (basically by extending the
space dimension) to deal with these special degeneracies. We will use this modified blowup
approach in the present paper.

Finally, it is worthy to remark on the applicability of the methods proposed beyond the
scope of the prototypical oscillators considered herein. Both of these oscillators feature
exponential nonlinearities of the specific form exε

−1
. Nevertheless, such a form is ‘typical’

in the sense that it may be viewed as a ‘local normal form’ for a larger class of essential
singularities eh(x)ε−1

, where h(x) is any regular smooth function of the state variable(s) x
such that the zero level set � = {h(x) = 0} is codimension-1 in state space. All such
singularities may be treated using the methods proposed herein, either directly, or following
a suitable local coordinate transformation u = h(x).

1.1 Two Prototypical Oscillators: Hester and Le Corbeiller

The aim of our paper, is to shed further light on singularly perturbed systems with expo-
nential nonlinearities. We will do so by considering two ‘prototypical’ singularly perturbed
oscillators with exponential nonlinearities:
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Fig. 1 In a Phase portrait of (1.1) for the parameter values in (1.3) and ε = 0.1. A stable limit cycle is shown
in red. The repelling equilibrium is marked as a black dot. In b x(t) and y(t) along the limit cycle shown in
a. Also in a The nullclines are dashed and unstable focus is indicated by a black disk (Color figure online)

The Hester system:

{
ẋ = y,

ẏ = −x − 2γ y + μ
(
eyε

−1 − κe(1+α)yε−1
)

,
(1.1)

with γ ∈ (0, 1), α > 0, μ > 0, κ > 0, and

The Le Corbeiller system:

{
ẋ = y + a,

ẏ = −x + by(2 − eyε
−1

),
(1.2)

with b ∈ (0, 1), a > 0. In both systems, 0 < ε � 1 is the singular perturbation parameter.
The system in (1.1) is a model of a transistor oscillator, see [11], based on the Ebers–

Moll large-signal approximation. In reference to [11], we will refer to (1.1) as the ‘Hester’
system. The constant ε−1 in the exponentials is given by e/kT where k is the Boltzmann
constant, e is the magnitude of the electronic charge and T is the temperature in Kelvin. The
approximation 0 < ε � 1 is therefore valid for sufficiently large temperatures T including
room temperatures where ε ≈ 10−2.

Figure 1 shows the phase portrait and associated oscillations with parameter values

α = 0.5, μ = 0.4, κ = 0.2, γ = 0.3, (1.3)

and ε = 0.1. The observed sharp transitions indicate singular dynamics, even for this ‘large’
value of ε. The oscillations become increasingly slow-fast in kind with decreasing values of
ε, as shown in Fig. 2, which shows the phase portrait and associated oscillations with the
same parameter values (1.3), except with ε = 0.01. The oscillations in Figs. 1 and 2 are
known as two-stroke relaxation oscillations, by reference to the two distinct components to
the oscillation; similar oscillations have been considered in the context of GSPT in [16].

Regarding the motivation for the system in (1.2), we first point out that for a = 0 the ε

can be scaled out by setting x = εx2, such that

ẍ2 + x2 + μẋ2(e
ẋ2 − 2) = 0, (1.4)

whenwriting the system as a second order equation. This equation appears in [29, Eq. (25)] as
an example of a simple system of ‘electric-oscillator-type’ exhibiting two-stroke oscillation.
Within the framework of electronic oscillators, we may therefore consider (1.2) with a > 0
as a forced version of (1.4) (by analogy with the ‘forced van der Pol oscillator’). In reference
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Fig. 2 In a Phase portrait of (1.1) for the parameter values in (1.3) and ε = 0.01. A stable limit cycle is shown
in red. In b x(t) and y(t) along the limit cycle shown in a

to [29], we will refer to (1.2) as the ‘Le Corbeiller’ system. As in Figs. 1 and 2, the phase
portrait and associated oscillations for (1.2) are shown in Figs. 3 and 4, for parameter values

a = 1, b = 0.25, (1.5)

ε = 0.1 in Fig. 3, and ε = 0.01 in Fig. 4. As with the Hester system (1.1), sharp transitions
between distinct components of the oscillations indicates singular dynamics even for the
‘large’ ε value in Fig. 3. In contrast to the Hester system, however, ẋ = a > 0 along the
(noninvariant) set defined by y = 0 for (1.2) and—as a result—the oscillations, spending a
fraction of their time near this set, do not become slow-fast in kind with decreasing ε. Rather
it appears that the period has a well-defined limit as ε → 0. Nevertheless, the ‘singular’
nature of the oscillations does become more pronounced as ε → 0, insofar as the transition
between the two distinct components of the oscillation becomes sharper.

1.2 Main Results

We prove existence of limit cycles for (1.1) and (1.2) for all 0 < ε � 1 using a combination
of GSPT and the blow-up method adapted in [20] for the study of degeneracies caused by
exponential nonlinearities.We present these results in the following, considering each system
separately.

Remark 1.1 While systems (1.1) and (1.2) seem similar in nature, the level of difficulty to
analyse them using the GSPT toolbox is remarkably different.

1.2.1 The Hester System

Due to the singular exponential nonlinearity eyε
−1
, system (1.1) has no limit for ε → 0

for y > 0. This problem can be circumvented by appealing to the notion of topological
equivalence and applying a time transformation

dt1 = (1 + e(1+α)yε−1
)dt, (1.6)
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Fig. 3 In a Phase portrait of (1.2) for the parameter values in (1.5) and ε = 0.1. The attracting limit cycle is
shown in red, the repelling equilibrium is marked by a black dot. Even for this large value of ε the system
clearly displays a form of multi-scale dynamics, e.g. note the rather sharp corner of the limit cycle. In b x(t)
and y(t) along the limit cycle shown in a (Color figure online)

Fig. 4 In a Phase portrait of (1.2) for the parameter values in (1.5) and ε = 0.01. A stable limit cycle is shown
in red. A sharp corner in the limit cycle is now clearly visible. In b x(t) and y(t) along the limit cycle shown
in a (Color figure online)

which gives

ẋ = y

1 + e(1+α)yε−1 ,

ẏ = −x − 2γ y + μeyε
−1

1 + e(1+α)yε−1 − κμe(1+α)yε−1

1 + e(1+α)yε−1 ,

(1.7)

where with a slight abuse of notation the overdot denotes differentiation with respect to the
new time t1. For any ε > 0, this corresponds to a smooth transformation of time; (1.1) and
(1.7) therefore have the same orbits for any ε > 0.

Remark 1.2 Viewed less abstractly, the time transformation defined by (1.6) corresponds
to a multiplication of the vector-field by the strictly positive function (1 + e(1+α)yε−1

)−1.
This leaves all orbits unchanged. Such space dependent rescalings together with the blow-up
method are commonly used in GSPT, see e.g. [18,19,26] and will also be used frequently in
the present paper.
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Clearly, the time transformation defined by (1.6) is singular for ε = 0, but it has the
advantage that the new system (1.7) has a well-defined pointwise limit as ε → 0 for any
y �= 0. In fact, in this limit we obtain the piecewise smooth (PWS) system:

ẋ = 0,

ẏ = −κμ,
(1.8)

for y > 0 and

ẋ = y,

ẏ = −x − 2γ y,
(1.9)

for y < 0, the dynamics of which we sketch in Fig. 5. The discontinuity set � = {y = 0} is
called the switching manifold in the PWS literature [3]. Given γ ∈ (0, 1), system (1.9) for
y < 0 has a stable focus at (x, y) = (0, 0) which is on the switching manifold � = {y = 0}.
In the PWS literature, this situation is known as a boundary focus, see [12,28] or the recent
papers [14,15] on boundary singularities in smooth systems with nonsmooth limits. Under
the forward flow of (1.8) or (1.9), respectively, every point with y > 0 or y < 0 will reach
y = 0 in finite time. The case γ ≥ 1 for which (0, 0) is a stable node is also interesting
(though not considered in [11]); this is discussed in Sect. 7.

Frequently, in PWS systems one prescribes a Filippov vector-field [3,10] on � to have
a well-defined forward flow. However, since ẋ = 0 on y = 0 for both (1.8) and (1.9), the
Filippov system is completely degenerate on �, consisting entirely of (pseudo-)equilibria
[3,28]. Our analysis of the Hester problemwill reveal a slow flow near the switchingmanifold
� for all 0 < ε � 1 (see Lemma 1.4), and allow us to define a singular relaxation cycle

�0 = �1 ∪ �2.

Here �1 is an orbit segment (a fast jump) of (1.9), obtained by flowing the uniquely identified
jump-off point (x j , 0) ∈ � with

x j = μα

(1 + α)(1+α)/ακ1/α
, (1.10)

forward until the first return to � at the drop point (xd , 0) with xd = xd(x j ) < 0, whereas
�2 is a ‘slow orbit’ segment on � connecting (xd , 0) with (x j , 0); see Fig. 5. The existence
of a unique value x j as given by (1.10) follows from the existence of a regular fold [25] of a
critical manifold identified in rescaled coordinates with y = εy2, i.e. in the ‘switching layer’;
details are deferred to Sect. 2.1.

Our main result on the Hester system is the following theorem.

Theorem 1.3 Consider the Hester system (1.1) and fix a large ball Br of radius r . Suppose
that

κ(1 + α) ∈ (0, 1), γ ∈ (0, 1), μ > 0. (1.11)

Then there exists an ε0 > 0 such that for all ε ∈ (0, ε0), system (1.1) has a unique limit cycle
�ε in Br . Furthermore, �ε is attracting and

�ε → �0,

in Hausdorff-distance, as ε → 0+.
If κ(1 + α) > 1 then no limit cycles exist for 0 < ε � 1 in Br .
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Fig. 5 Phase portrait of the
piecewise smooth system (1.8),
(1.9) in black. The switching
manifold � = {y = 0} is shown
in magenta. Under the conditions
(1.11), the singular cycle
�0 = �1 ∪ �2 perturbs to a
stable limit cycle by Theorem 1.3

In addition we are able to identify the following asymptotics of a corresponding locally
invariant (slow) manifold:

Lemma 1.4 Let I ⊂ (−∞, x j ), with x j as in (1.10), be a closed interval. Then for (1.1),
there exists an exponentially attracting locally invariant (slow) manifold given as a graph:

y = εh(x, ε), x ∈ I , ε ∈ [0, ε0),
with h smooth in both variables and 0 < ε0 � 1.

The existence of locally invariant slow manifolds as described in Lemma 1.4 explains
the observed quiescent (i.e. inactive) phase of the oscillations, see again Figs. 1 and 2.
These slow manifolds are obtained as Fenichel slow manifolds [9] within the switching layer
y = O(ε). As such, the usual local invariance and contractivity properties apply. The term
‘exponentially attracting’ used above refers to the fact that each slow manifold is a base
manifold for a stable asymptotic rate foliation with contraction along stable fibers greater
than e−c/ε for some constant c > 0.

1.2.2 The Le Corbeiller System

As in the ‘Hester case’, due to the exponential term eyε
−1
, system (1.2) does not have a limit

as ε → 0 for y > 0. Again, we introduce a time transformation

dt1 = (1 + eyε
−1

)dt,

corresponding to multiplication of the vector-field by the strictly positive function (1 +
eyε

−1
)−1, to obtain

ẋ = y + a

1 + eyε−1 ,

ẏ = −x + 2by

1 + eyε−1 − byeyε
−1

1 + eyε−1 .

(1.12)
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Fig. 6 Phaseportrait of the
piecewise smooth system (1.13),
(1.14) in black. The switching
manifold � = {y = 0} is shown
in magenta. Under the conditions
(1.16), the singular cycle
�0 = �1 ∪ �2 perturbs to a
stable limit cycle by Theorem 1.5
(Color figure online)

For this system, the pointwise limit as ε → 0 is well-defined for all y �= 0, and gives the
following PWS system:

ẋ = 0,

ẏ = −by,
(1.13)

for y > 0 and

ẋ = y + a,

ẏ = −x + 2by,
(1.14)

for y < 0, with {y = 0} as switching manifold �. Some orbits of this limiting PWS system
are shown in Fig. 6.

On the one hand, the y < 0 system (1.14) has an unstable focus for b ∈ (0, 1) at
(x, y) = −a(2b, 1), but also a quadratic, visible fold tangency [3] on the switching manifold
at (x, y) = (0, 0). On the other hand, the y > 0 system (1.13) has a line of equilibria along
�. The Filippov system is therefore again completely degenerate along �.

Our analysis of the Le Corbeiller problem will reveal a reduced flow on an invariant
manifold near the switching manifold � for all 0 < ε � 1 (see Lemma 1.6). Anticipating
this, we define a singular relaxation cycle

�0 = �1 ∪ �2, (1.15)

where�1 is the orbit segment of (1.14) obtained by flowing the tangency point (0, 0) forward
until the first return (xd , 0), with xd < 0, to�, see Fig. 6. The set�2 is defined as the segment
(xd , 0) on the switching manifold �. Notice that in contrast to the Hester system, there is
no boundary focus point on �. Rather, the visible fold singularity [22] in the Le Corbeiller
system provides a natural candidate for a concatenation point between cycle segments which
can be identified on the PWS level, i.e. without the need to look in rescaled coordinates near
�.

Our main result on the Le Corbeiller system is:

Theorem 1.5 Consider the Le Corbeiller system (1.2) and fix a large ball Br of radius r .
Suppose that

b ∈ (0, 1), a > 0. (1.16)
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Then there exists an ε0 > 0 such that for all ε ∈ (0, ε0), system (1.2) has a unique limit cycle
�ε in Br . Furthermore, �ε is attracting and

�ε → �0,

as ε → 0+, in Hausdorff-distance.

Again, we are also able to identify the following asymptotics of a corresponding locally
invariant manifold with our methods:

Lemma 1.6 For system (1.2), fix a closed interval I ⊂ (−∞, 0). Then there exists an expo-
nentially attracting locally invariant manifold given as a graph:

y = εW (−x/(εb))
(
1 − εbx−1h(x,W (−x/(εb))−1)

)
, (1.17)

for x ∈ I , ε ∈ (0, ε0), with another smooth function h satisfying h(x, 0) = 2, and where
W : (−e−1,∞) → (−1,∞) is the principal Lambert-W function, defined by z = W (zez)
for all z ∈ (−1,∞).

Using the asymptotics

W (w) = logw(1 + O(log−1 w log logw)), (1.18)

of W for w → ∞, we realise that the invariant manifold (1.17) has the following leading
order asymptotics

y ∼ ε log(−x/(εb)),

as ε → 0+.

Remark 1.7 The two oscillations in Figs. 2 and 4, and the singular versions in Figs. 5 and 6,
look qualitatively similar. Also the statements in Theorems 1.3 and 1.5 are almost identical.
However, their PWS versions have different degeneracies along � and we shall see that the
systems are very different in the singular limit ε → 0, requiring different techniques for their
analysis. For the Hester system (1.1) under the assumption (1.11) the exponentials do in fact
not cause significant complications. In this respect the Le Corbeiller system (1.2) behaves
very differently—the exponential terms lead to several complications which require a much
more involved analysis. This is also reflected in the different asymptotics of their invariant
manifolds presented in Lemma 1.4 and Lemma 1.6.

1.3 Overview

In Sect. 2, we first study (1.1) and prove Theorem 1.3. The proof, based upon the blow-up
method and GSPT, is fairly straightforward, in particular in comparison with the proof of
Theorem 1.5, which makes up the rest of the paper, see Sect. 3. Obviously, an essential step
in the proof of Theorem 1.5 will be to prove Lemma 1.6. This is done in Sect. 3.2 after
having described our blow-up approach. Subsequently, we present two lemmas Lemma 3.9
and Lemma 3.10 that prove Theorem 1.5, see Sects. 3.4 and 3.5. In Sect. 4 we then prove
Lemma 3.9 before proving Lemma 3.10 in Sect. 5. Further details of the blow-up used to
prove Lemma 3.10 are delayed to Sect. 6. In Sect. 7, we conclude our paper by presenting
an outlook.

Remark 1.8 Throughout this paper, we will assume some familiarity with geometric singular
perturbation theory and in particular with the blow-up method. The interested reader is
referred to, e.g., [23,25,27] for background and more references.
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2 Blow-Up Analysis of the Hester System

2.1 The Scaling Approach

Important insight into the dynamics of the Hester model (1.1) for small values of ε can be
gained by first rescaling y according to

y = εy2 , (2.1)

which provides a zoom into the dynamics close to the switching manifold �. This gives

ẋ = εy2,

ε ẏ2 = −x − 2γ εy2 + μ
(
ey2 − κe(1+α)y2

)
.

(2.2)

System (2.2) is a standard slow-fast system, which has the form

x ′ = ε2y2,

y′
2 = −x − 2γ εy2 + μ

(
ey2 − κe(1+α)y2

) (2.3)

on the fast time scale τ = t/ε. By setting ε = 0 we obtain the corresponding layer problem

x ′ = 0,

y′
2 = −x + μ

(
ey2 − κe(1+α)y2

)
.

The set

C =
{
(x, y2) : x = μ

(
ey2 − κe(1+α)y2

)
, y2 ∈ R

}
,

see Fig. 7, is a manifold of equilibria, which in GSPT is called the critical manifold of
system (2.2). The critical manifold C is the disjoint union of the following sets

Ca = C ∩ {y2 > y j }, F = C ∩ {y2 = y j } = {(x j , y j )}, Cr = C ∩ {y2 < y j },
recall (1.10), where

y j := − 1

α
log (κ(1 + α)) . (2.4)

Here Ca (Cr ) is normally hyperbolic and attracting (repelling, respectively), whereas F
is a regular fold point. Since Ca is normally hyperbolic, any compact submanifold perturbs
to an attracting locally invariant slow manifold for 0 < ε � 1 by Fenichel’s theory [9]. This
proves the statement regarding the invariant manifold in Lemma 1.4.

The reduced problem on C

ẋ = y2,

0 = −x + μ
(
ey2 − κe(1+α)y2

)
,

is obtained by going to a (super) slow time and setting ε = 0. There is a unique equilibrium
on C at y2 = 0. For κ satisfying (1.11) the equilibrium is on the repelling branch Cr and it
is an unstable node. In this case the slow flow on Ca is towards the right and approaches the
fold point, where a fast downward jump along the unstable fiber of the layer problem occurs,
see Fig. 7.
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Fig. 7 Dynamics of system (2.2) in the singular limit ε = 0. Orbits of the layer problem are shown in green.
The critical manifold C and the reduced flow on it are shown in blue. The critical manifold C has a fold point
F (orange), dividing C into normally hyperbolic attracting and repelling branches Ca and Cr respectively.
Under the conditions (1.11) there is an unstable node on the critical branch Cr and the slow flow on Ca has
ẋ > 0 (Color figure online)

Remark 2.1 The reduced flow on normally hyperbolic branches of C occurs on a slow
timescale for times that are O(ε2) slow with respect to the fast time τ in the switching
layer, but onlyO(ε) slow with respect to the original time t in system (1.1). The fact that the
timescale along C isO(ε) slow with respect to the original time t explains (and is consistent
with) the slow-fast relaxation oscillatory behaviour observed in Figs. 1 and 2.

Remark 2.2 In Fig. 7 and in all subsequent figures, we are following some conventions which
are commonly used in GSPT to distinguish between the dynamics of the different limiting
problems,which need to be shown simultaneously in the samefigure:Green segments indicate
“fast” orbits (of layer problems) whereas blue indicates slow flow (on critical manifolds) that
is obtained upon (further) desingularization (by speeding up time). Orbits which approach
equilibria (in forward or backward time) in hyperbolic directions are highlighted by triple-
headed arrows, whereas flows in slow and center directions are highlighted by single-headed
arrows. Degenerate points, e.g. the fold point F , which need to be blown-up, are given indi-
vidual colors, which are then also used for the corresponding blown up higher-dimensional
objects.

Summing up, we have shown that the upper half of the limit cycle in the Hester problem
can be obtained by the GSPT analysis of system (2.2): For x < 0 there is fast dynamics
towards Ca along orbits of the layer problem, then there is slow flow along Ca towards the
fold point F , where a fast jump occurs with y2 going to −∞. The x−coordinate of the fold
point F is the value x j defining the right boundary of the segment �2 of the singular cycle
�0 = �1 ∪ �2, see Fig. 5.

However, we have to keep in mind that solutions of system (2.2) with y2 = O(1) corre-
spond to solutions of system (1.1) in a narrow strip y = O(ε) around the switching surface
�. To obtain the full limit cycle, we also have to consider the region y = O(1) < 0; this is
not covered by the scaling (2.1). The analysis and the matching of these different regimes
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based on blow-up is carried out in the next subsection. Not surprisingly, we will see that the
segment �1 of the singular cycle �0 is the orbit of the PWS system (1.9) starting at (x j , 0),
see Fig. 5.

2.2 The Blow-Up Approach

To connect (2.2) with the PWS system (1.8) and (1.9), we apply a version of the blow-up
method [6,25], see also [22–24].

As always in the blow-up approach one has to consider the extended system

x ′ = ε
y

1 + e(1+α)yε−1 ,

y′ = ε

(
−x − 2γ y + μeyε

−1

1 + e(1+α)yε−1 − κμe(1+α)yε−1

1 + e(1+α)yε−1

)
,

ε′ = 0,

(2.5)

in R3 obtained from (1.7) written on the fast time defined by ( )′ = ε(̇ ) by adding the trivial
equation for ε. This extended system has the (x, y, 0)-plane as a set of equilibria. The line
x ∈ R, (y, ε) = (0, 0) is singular in the sense of lack of smoothness of the vector field (2.5)
as ε → 0. Recall that this degenerate line is precisely the switching manifold � (embedded
into R3) of the piecewise smooth system defined by (1.8) for y > 0 and (1.9) for y < 0. We
regain smoothness by applying the blow-up transformation

r ≥ 0, (ȳ, ε̄) ∈ S1 �→
{
y = r ȳ,

ε = r ε̄,

blowing up the degenerate line to the cylinder R × S1 with r = 0, see Fig. 8. Since we are
only interested in ε ≥ 0, only the part of the cylinder with ε̄ ≥ 0 is relevant. The edges
ȳ = ±1, ε̄ = 0, r = 0 of this half cylinder will be important later.

Remark 2.3 Note the color-coding which will be used frequently: the switching manifold �

shown in magenta in Fig. 5 is blown-up to the cylinder shown in magenta in Fig. 8.

The vector field (2.5) induces a vector field on the blown-up space. As always, the cylinder,
corresponding to r = 0, and the plane ε̄ = 0 are invariant and capture the crucial dynamics,
both corresponding to ε = 0. Notice, that the scaling (2.1) can be viewed as a directional
chart (obtained by setting ε̄ = 1) of the blow-up transformation, which covers the side of the
cylinder corresponding to ε̄ > 0. In contrast to the usual blow-up approach [6,25], we will
not divide by r . Thus, we find that the slow-fast system (2.3) multiplied by the positive and
smooth function

1

1 + e(1+α)y2
,

which does not change the orbits, describes the blown-up dynamics in the chart corresponding
to ε̄ = 1. In particular, on the cylinder we recover the limiting dynamics shown in Fig. 7.

In addition blow-up provides a compactification of system (2.2) as y2 → ±∞. Thus the
unstable fiber of the fold point F limits now on a point on the edge ȳ = −1, ε̄ = 0 , see Fig. 8.
Actually, the two edges ȳ = ±1, ε̄ = 0, r = 0 of the half cylinder are lines of equilibria of
the blown-up system, which must be studied in directional charts corresponding to ȳ = ±1.
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Fig. 8 Dynamics of system (2.5) after blow-up on the cylinder (magenta), corresponding to r = 0, and in the
plane (black) ε̄ = 0. We show a view from the top, i.e. from ε̄ > 0, with the orientation of the x, y, ε axis
being indicated by black arrows labeled with x, y, ε. The edges ȳ = ±1, ε̄ = 0, r = 0 of the half cylinder
are lines of equilibria, which are hyperbolic except at the point (orange) with ȳ = −1, x = 0. In the plane
ε̄ = 0 we recover the PWS dynamics (black) of system (1.8), (1.9). On the cylinder we recover the layer
problem (green) and the reduced problem (blue) of system (2.2). This allows to define an improved singular
cycle �0 = �1 ∪ �2,1 ∪ �2,2 ∪ �2,3 which perturbs to a true cycle �ε for ε � 1 (Color figure online)

In these charts we recover the PWS system (with improved hyperbolicity properties) within
ε̄ = 0 after dividing out factors of ε̄, respectively. We illustrate our findings in Fig. 8.

The required analysis—to establish this rigorously—is standard, see e.g. [18,22–24].Also,
very similar computations are carried out in detail for the (more complicated) Le Corbeiller
systembelow.We therefore only summarise the results for theHester system.Along the edges
ȳ = ±1, ε̄ = 0 we find lines of equilibria (magenta in Fig. 8) having a hyperbolic saddle-
structure, except for x = 0, ȳ = −1, ε̄ = 0 (orange circle) which is fully non-hyperbolic.
This structure provides an improved singular cycle

�0 = �1 ∪ �2,1 ∪ �2,2 ∪ �2,3,

(thick closed curve in Fig. 8), having good hyperbolicity properties except at the fold F of
the critical manifoldC (blue). Therefore, it is easy to perturb this singular cycle into an actual
limit cycle for 0 < ε � 1 by first considering a return mapping to the section {y = −δ}
near x j , for example, and then applying e.g. [25] to the passage near fold F (working in the
scaled coordinates (2.1)) to show that the Poincaré map is a strong contraction. We leave out
the details because they are standard. See again [18] for a related system where more details
are provided.

3 Blow-Up Analysis of the Le Corbeiller System

In the limit ε → 0 the transformed Le Corbeiller system (1.12) limits on the PWS system
(1.13), (1.14) which has the singular cycle �0 = �1 ∪ �2, see Fig. 6.
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Fig. 9 Dynamics of system (3.2) in the singular limit ε = 0. Orbits of the layer problem (3.3) are shown in
green, the flow going upwards for x < 0 and downwards for x > 0. The set L2 defined by x = 0 within ε = 0
is a line of degenerate singularities (Color figure online)

Motivated by the similarity of the two systems and by the success of the scaling approach
for the Hester system, we begin our analysis by considering the original Le Corbeiller system
(1.2) by rescaling

y = εy2, (3.1)

i.e. by zooming into the switching manifold �. This produces the following system

ẋ = εy2 + a,

ε ẏ2 = −x + bεy2
(
2 − ey2

)
.

(3.2)

System (3.2) is a slow-fast system in standard form, with layer problem

x ′ = 0,

y′
2 = −x,

(3.3)

which has a degenerate, non-hyperbolic line L2 = {(x, y2) : x = 0} of equilibria. Away
from x = 0 the flow is trivial and regular (upward for x < 0, downward for x > 0), see
Fig. 9.

Remark 3.1 In contrast to the analysis of the Hester model based on the rescaling (2.1) in
Sect. 2.1 the slow-fast dynamics of the the rescaled system (3.2) is quite degenerate, e.g. there
exists no normally hyperbolic critical manifold. At this stage the rescaled system seems to
capture very little of the observed limit cycle. Nevertheless, the flow defined by the rescaled
system (3.2) and in particular the nonhyperbolic line L2 of equilibria, will play an important
role in a refined analysis of the limit cycle based on blow-up. More precisely, the flow of the
rescaled system (3.2) will be recovered as the flow on the blow-up of the switching manifold
� to a cylinder, see Fig. 10. However, the full resolution of the Le Corbeiller model will
require more than just one cylindrical blow-up due to its more singular dependence on ε.
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To obtain a full resolution and to connect (3.2) with the PWS system (1.13) and (1.14) we
study again the extended system

x ′ = ε
y + a

1 + eyε−1 ,

y′ = ε

(
−x + 2by

1 + eyε−1 − byeyε
−1

1 + eyε−1

)
,

ε′ = 0,

(3.4)

obtained by transforming (1.12) to the fast time scale τ = t/ε end adding the trivial equation
for ε.

The set defined by (x, y, 0) is then a plane of equilibria, with the subset given by y = 0
being extra singular due to the lack of smoothness there. We gain smoothness by applying
the blow-up transformation

r ≥ 0, (ȳ, ε̄) ∈ S1 �→
{
y = r ȳ,

ε = r ε̄,
(3.5)

to the extended system. By this blow-up transformation the line {(x, 0, 0), x ∈ R} corre-
sponding to the switching manifold � × {0} is blown-up to a cylinder. Again only the part
of the cylinder corresponding to ε̄ ≥ 0 is relevant for our analysis, see Fig. 10.

Three coordinate charts

K1 : ȳ = −1, K2 : ε̄ = 1, K3 : ȳ = 1,

are necessary to analyze the dynamics on the blown-up space. We will make use of the usual
subscript notation to specify coordinates in each chart, defining chart-specific coordinates as
follows:

K1 : y = −r1, ε = r1ε1, (3.6)

K2 : y = r2y2, ε = r2, (3.7)

K3 : y = r3, ε = r3ε3. (3.8)

Transition maps between a chart Ki and K j (i �= j) will be denoted by κi j , and are given
here by

κ12 : r1 = −r2y2, ε1 = −y−1
2 , y2 < 0,

κ23 : y2 = ε−1
3 , r2 = r3ε3, ε3 > 0.

(3.9)

We will also adopt the convention of denoting a set γ by γi when viewed in a particular
coordinate chart Ki .

Remark 3.2 Notice again that the scaling (3.1) corresponds to the directional chart K2, which
is hence customarily referred to as a “scaling chart”. In the following we will call the chart
K1 an “entry chart”, because in this chart the singular flow relevant for the limit cycle returns
to the edge (ȳ, ε̄) = (−1, 0) of the cylinder and continues from there on the cylinder, see
see Fig. 10. Note that in charts Ki , i = 1, 3 the cylinder corresponds to ri = 0. These charts
provide a compactification of the variable y2 from the scaling chart K2, i.e. y2 → −∞ in the
plane r2 = 0 corresponds to ε1 → 0 in the plane r1 = 0, and y2 → ∞ in the plane r2 = 0
corresponds to ε3 → 0 in r3 = 0, see (3.9).

Since it is the easiest chart to analyze we start with the scaling chart K2.
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Fig. 10 Dynamics of system (3.4) after blow-up on the cylinder (magenta), corresponding to r = 0, and in
the plane (black) ε̄ = 0. We show a view from the top, i.e. from ε̄ > 0, with the orientation of the x, y, ε axis
being indicated by black arrows labeled with x, y, ε. Fast flow on the cylinder is shown in green. The line ls is
a line of hyperbolic equilibria, except for the fully degenerate point q ∈ ls ∩ L (brown). The line le (orange)
and the L (brown) are lines of completely degenerate equilibria (Color figure online)

Chart K2

The governing equations in chart K2 are

x ′ = r2(r2y2 + a)

1 + ey2
,

y′
2 = −x + r2by2 (2 − ey2)

1 + ey2
,

r ′
2 = 0,

(3.10)

which is system (3.2) written on the fast time scale and multiplied by the positive and smooth
factor

1

1 + ey2
.

Thus for r2 =0, i.e. on the cylinder, we recover the layer problem and in particular the fully
nonhyperbolic line L2 corresponding to x = 0, see Fig. 10.

Chart K1

We now discuss the dynamics in the entry chart K1. The governing equations are

x ′ = r1(a − r1),

r ′
1 = r1

(
x + br1

(
2 − e−ε−1

1

))
,

ε′
1 = −ε1

(
x + br1

(
2 − e−ε−1

1

))
.

(3.11)
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These equations are obtained by transforming to the new coordinates followed by a desin-

gularization of the vector field corresponding to dividing out a factor of ε1(1 + e−ε−1
1 )−1,

which is smooth for ε1 ≥ 0. Note, that it is this division that allows us to recover the PWS
system within ε1 = 0, see Lemma 3.3. In particular, there is an isolated equilibrium at
p1 := (−2ba, a, 0), and two lines of equilibria

ls,1 = {(x, 0, 0) : x ∈ R} and L1 = {(0, 0, ε1) : ε1 ≥ 0}.

The following lemma summarizes important dynamical features of this system, which are
illustrated in Fig. 10.

Lemma 3.3 The following hold for system (3.11):

(i) The linearization about any point (x, 0, 0) on the line of steady states ls,1 has eigen-
values

λ = 0, x,−x,

and thus, the line ls,1 is a line of saddle points except at the origin q1 := (0, 0, 0)
which is fully non-hyperbolic.

(ii) The line of steady states L1 is fully non-hyperbolic, and coincides (where domains
overlap) with the line L2 observed in the K2 chart.

(iii) The plane ε1 = 0 is invariant. Within this plane points (x, 0, 0) ∈ ls,1 with x > 0 are
hyperbolic repelling, respectively hyperbolic attracting for x < 0. The flow in this
plane in r1 > 0 is precisely the flowof the y < 0 system (1.14)multiplied by a factor r1,
through the identification y = −r1. The equilibrium p1 = (−2ba, a, 0) is an unstable
focus within the invariant ε1 = 0 plane for any b ∈ (0, 1). Furthermore, there is a
quadratic tangency between the flow of (3.11)|ε1=0 and ls,1 at q1, corresponding to
the tangency observed in Sect. 1.2.2. The equilibrium p1 extends to ε1 > 0 as a line
of equilibria which coincides upon coordinate change back to the original variables
with the true equilibrium of the system identified in Sect. 1.2.2.

(iv) The plane r1 = 0 is invariant. Within this plane points (xb, 0, 0) ∈ ls,1 with xb > 0
are hyperbolic attracting, respectively hyperbolic repelling for xb < 0, with stable,
reps. unstable manifolds given by x = xb.

Proof The statement (i) follows immediately from the linearization along ls,1, and the simple
form of the equations when restricted to the invariant plane r1 = 0:

x ′ = 0,

ε′
1 = −ε1x .

(3.12)

The statement (ii) follows by an application of the transition map κ12 given in (3.9), and the
statements (iii) and (iv) follow by simple calculations made using the system governing the
dynamics in the invariant plane ε1 = 0:

x ′ = r1(a − r1),

r1
′ = r1(x + 2br1).

(3.13)

��
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Chart K3

Dynamics in chart K3 are governed by

x ′ = r3e
−ε−1

3 (a + r3),

r ′
3 = −r3

(
br3 + e−ε−1

3 (x − 2br3)
)

,

ε′
3 = ε3

(
br3 + e−ε−1

3 (x − 2br3)
)

,

(3.14)

after desingularization through division of the right hand side by ε3(1+ e−ε−1
3 )−1. In partic-

ular, there are two lines of equilibria:

le,3 = {(x, 0, 0) : x ∈ R} and L3 = {(0, 0, ε3) : ε3 ≥ 0}.
Restricted to the invariant planes r3 = 0 and ε3 = 0, we obtain the following equations

x ′ = 0,

ε′
3 = ε3xe

−ε−1
3 ,

(3.15)

and

x ′ = 0,

r ′
3 = −br23 ,

respectively. It is clear that any point in either le,3 and L3 is fully non-hyperbolic.We notice in
particular the ‘exponential loss of hyperbolicity’ in (3.15) as ε3 → 0. The following lemma
summarizes the important features of this system, which are illustrated in Fig. 10.

Lemma 3.4 The following hold for system (3.14):

(i) The line of steady states le,3 is fully non-hyperbolic.
(ii) The line of steady states L3 is fully non-hyperbolic, and coincides where domains

overlap with the non-hyperbolic line L2 observed in the K2 chart.
(iii) The plane ε3 = 0 is invariant. The flow in this plane in r3 > 0 is precisely the y > 0

system (1.13) multiplied by a factor r3, through the identification y = r3. The flow in
ε3 = 0, r3 > 0 is parallel to the r3-axis and toward le,3.

(iv) The plane r3 = 0 is invariant. The flow in this plane for ε3 > 0 is parallel to the x-axis,
and toward (away from) the line le,3 for x < 0 (x > 0).

Proof Straightforward. ��

We briefly sum up the results obtained by the above analysis, which are illustrated in
in Fig. 10. We have achieved a certain desingularization of (3.4) by means of the blow-up
transformation (3.5). On the cylinder r = 0 we have recovered the layer problem of (3.2) in
particular the nonhyperbolic line L . In the invariant plane ε̄ = 0 we have recovered the PWS
system (1.14) and (1.13) for ȳ < 0 respectively ȳ > 0. At the invariant line ls of saddle type
we have gained hyperbolicity away from the nonhyperbolic point q . The invariant lines le
and L are still fully degenerate and will be treated by further blow-ups.
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3.1 Blow-Up in the Exponential Regime

To deal with the (exponential) loss of normal hyperbolicity associated with the line le,3 in
system (3.15), we use the approach put forward in [20]: introduce the auxiliary variable

q = e−ε−1
3 ,

and extend the phase space by including an equation for q ′. For improved readability (in
subsequent blow-up transformations) we drop the subscripts in the coordinates of chart K3

in the following. Thus, the following system

x ′ = rεq(a + r),

r ′ = −rε (br + q (x − 2br)) ,

ε′ = ε2 (br + q (x − 2br)) ,

q ′ = q (br + q (x − 2br)) ,

(3.16)

is obtained after a further multiplication of the right hand side by ε; we therefore basically
undo the division by ε used to obtain (3.14). It is worth keeping in mind that

Q =
{
(x, r , ε, q) : q = e−ε−1

}
(3.17)

is invariant. We will often use this fact, utilizing it when it helps in the analysis.
In system (3.16), the non-hyperbolic line of equilibria L3 in (3.14) shows up as the Q-

restricted subset:

Le = P ∩ Q =
{(

0, 0, ε, e−ε−1
)

: ε ≥ 0
}

,

of the non-hyperbolic plane of equilibria

P = {(0, 0, ε, q) : ε, q ≥ 0} . (3.18)

The subscript ‘e’ (for ‘exponential’) in Le signifies that we are considering the object in the
extended, four-dimensional system (3.16). Similarly, the line of equilibria

le = {(x, 0, 0, 0) : x ∈ R} ,

can be viewed as an improved version of the line of degenerate equilibria le,3. It is the
intersection of two separate degenerate planes: {(x, 0, 0, q) : x ∈ R, q ≥ 0} and

Pe = {(x, 0, ε, 0) : x ∈ R, ε ≥ 0} . (3.19)

Although the extended system (3.16) is clearly quite degenerate, the main advantage of
this system is that the loss of normal hyperbolicity is now algebraic, and blow-up methods
are applicable. Therefore, we introduce a blow-up of the plane of equilibria Pe of system
(3.16) via the map

ρ ≥ 0, (r̄ , q̄) ∈ S1 �→
{
r = ρr̄ ,

q = ρq̄.
(3.20)

We are primarily interested in the dynamics observable in the entry chart

K1 : q̄ = 1,
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which has chart specific coordinates

r = ρ1r1, q = ρ1. (3.21)

In this chart, we obtain the system

x ′ = ρ1r1ε(a + ρ1r1),

r ′
1 = −r1(1 + ε) (x + br1 (1 − 2ρ1)) ,

ε′ = ε2 (x + br1 (1 − 2ρ1)) ,

ρ′
1 = ρ1 (x + br1 (1 − 2ρ1)) ,

(3.22)

after a suitable desingularization (division by ρ1). Note that the set

Q1 =
{
(x, r1, ε, ρ1) : ρ1 = e−ε−1

}
is invariant under the flow induced by (3.22). The non-hyperbolic plane P defined in (3.18)
becomes a plane of equilibria for system (3.22),

P1 = {(0, 0, ε, ρ1) : ε ≥ 0, ρ1 ≥ 0},
and

le,1 = {(x, 0, 0, 0) : x ∈ R}
constitutes a line of equilibria for the system (3.22). We also have

Le,1 = P1 ∩ Q1 =
{(

0, 0, ε, e−ε−1
)

: ε ≥ 0
}

, (3.23)

which will be important for our analysis.

Lemma 3.5 The following hold for the system (3.22):

(i) Within ε = 0, there exists a two-dimensional manifold of equilibria given by

C1 =
{(

x,− x

b(1 − 2ρ1)
, 0, ρ1

)
: x ≤ 0, ρ1 ∈ [0, β1]

}
.

The linearization about any point in C1 has a single non-trivial eigenvalue

λ = x

b(1 − 2ρ1)
≤ 0,

where β1 > 0 is chosen sufficiently small for the inequality to hold. Accordingly, C1 is
normally hyperbolic and attracting within ε = 0 for x < 0, and non-hyperbolic along
the line I1 = {(0, 0, 0, ρ1) : ρ1 ∈ [0, β1]}.

(ii) Within ρ1 = 0, there exists a two-dimensional manifold of equilibria given by

S1 =
{(

x,− x

b
, ε, 0

)
: x ≤ 0, ε ∈ [0, β2]

}
.

The linearization about any point in S1 has a single non-trivial eigenvalue

λ = x

b
≤ 0.

Accordingly, S1 is normally hyperbolic and attracting within within ρ1 = 0 for x < 0,
and non-hyperbolic along the line I2 = {(0, 0, ε, 0) : ε ∈ [0, β2]}. Note that I1 ∩ I2 =
{(0, 0, 0, 0)}.
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(iii) The manifolds C1 and S1 intersect the invariant domain of interest Q1 along a one-
dimensional manifold of equilibria C1 satisfying

C1 = C1 ∩ Q1 = S1 ∩ Q1 = C1 ∩ S1 =
{(

x,− x

b
, 0, 0

)
: x ≤ 0

}
.

Consideredwithin the invariant plane ε = ρ1 = 0, themanifoldC1 is normally hyperbolic
and attracting for x < 0, being non-hyperbolic at the point P : (0, 0,0, 0).

(iv) The plane P1 is fully non-hyperbolic, and Le,1 coincides with the image of the non-
hyperbolic line L3 observed in system (3.14) (recall Lemma 3.4).

(v) The eigenvalues associated with the linearization along le,1 are given by

λ = 0, −x, 0, x,

implying that le,1 is a line of partially hyperbolic saddles for x �= 0, and non-hyperbolic
for x = 0.

Proof The statement (i) follows after linearization of the system obtained by restricting to
the invariant hyperplane ε = 0:

x ′ = 0,

r ′
1 = −r1 (x + br1 (1 − 2ρ1)) ,

ρ′
1 = ρ1 (x + br1 (1 − 2ρ1)) .

(3.24)

Similarly, the statement (ii) is obtained after linearization of the systemobtained by restricting
to the invariant hyperplane ρ1 = 0:

x ′ = 0,

r ′
1 = −r1(1 + ε) (x + br1) ,

ε′ = ε2 (x + br1) .

(3.25)

Statement (iii) follows immediately from (i)-(ii) and the observation that ρ1 = e−ε−1 =
0 �⇒ ρ1 = ε = 0.

Statement (iv) follows after linearization of the system (3.22), together with an application
of the blow-down transformation.

Statement (v) also follows after linearization of the system (3.22). ��
The most important properties of system (3.22) described in Lemma 3.5 are sketched in

Fig. 11.

Remark 3.6 Clearly, not all properties of the four-dimensional system (3.22) are visible in
Fig. 11, which focuses on explaining how the second blow-up improves the situation shown
in Fig. 10. Keep in mind, that the second blow-up (3.20) affects only a small neighborhood of
the line le in Fig. 10. The degenerate line le is blown up to the orange cylinder, corresponding
to ρ = 0, i.e. ρ1 = 0 in chart (3.21). In this chart r1 > 0 means “going up” on the cylinder,
which due to y = r3 = ρ1r1 justifies our use of the y-axis in the figure.

The preceding observations are sufficient to prove the following result, which will in turn
allow for a proof of Lemma 1.6.

Lemma 3.7 Fix a closed interval I ⊂ (−∞, 0). The system (3.22) then has a three-
dimensional locally invariant manifold M1 taking the form of a graph

r1 = − x

b(1 − 2ρ1)
+ ερ1m(x, ε, ρ1), x ∈ I , ρ1 ∈ [0, β1], ε ∈ [0, β2], (3.26)
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Fig. 11 Dynamics upon blow-up (3.20) of le on the cylinder (orange), corresponding to ρ = 0. We show a
view from the top, i.e. from ε̄ > 0, with the orientation of the x, y, ε axis being indicated by black arrows
labeled with x, y, ε. Fast flow on the orange cylinder is shown in green. In comparison with Fig. 10 we have
gained hyperbolicity at the line of equilibria le and we are able to identify a normally hyperbolic critical
manifold C (blue). The line (half-circle) L (brown) of equilibria and, in particular, the equilibrium P (purple)
are still degenerate and will require additional blow-up transformations (Color figure online)

for βi > 0 i = 1, 2 sufficiently small, and where m(x, ε, ρ1) is smooth. The manifold M1

contains the manifolds of equilibria C1 and S1 within the invariant hyperplanes ε = 0 and
ρ1 = 0, respectively, and the dynamics restricted to M1 has ẋ = a to leading order in the
x-direction, with respect to the original time in (1.2).

Proof Follows from center manifold theory and the statements in Lemma 3.5. ��

3.2 Proof of Lemma 1.6

To prove Lemma 1.6 and the expression in (1.17) we simply restrict M1 in (3.26) to the
invariant set Q1 and blow down to the (x, y)-coordinates. Using (3.8), (3.21) and by returning
the subscript 3 on ε in (3.26), we obtain the following equations

y = e−ε−1
3

(
− x

b

) (
1 + e−ε−1

3 m̃(x, ε3, e
−ε−1

3 )
)

, (3.27)

and

ε = e−ε−1
3

(
− x

b

) (
1 + e−ε−1

3 m̃(x, ε3, e
−ε−1

3 )
)

ε3, (3.28)

where 0 < ε � 1 is the original small parameter. In these expressionswehave also introduced
a new m̃ obtained by expanding the first term in (3.26) about ρ1 = 0 and setting −x/b > 0
outside a bracket. It is straightforward to show that m̃(x, 0, 0) = 2. The expression in (1.17)
is the result of solving these equations for y as a function of ε. Let

Z(s) = W (s−1)−1, (3.29)
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for any s > 0, whereW is the Lambert-W function satisfyingW (t)eW (t) = t for every t > 0.
Then

s = Z(s)e−Z(s)−1
, (3.30)

and Z has a continuous extension to s = 0 with value Z(0) = 0. We then solve (3.28) by
introducing the auxiliary variable u through the expression

ε3 = Z(εb/(−x)) (1 + Z(εb/(−x))u)−1 . (3.31)

Notice that

• u = 0 in this expression by (3.30) gives the ‘leading order solution’ of (3.28) obtained
by setting m̃ ≡ 0.

• Once we have obtained ε3 as a function of ε, we obtain the desired y as a function of ε

from (3.27) as

y = εε−1
3 . (3.32)

Write

z := Z(εb/(−x)). (3.33)

Then inserting (3.31) into (3.28) produces the following equation

1 = e−u(1 + zu)−1
(
1 + e−z−1

e−um̃(x, z(1 + zu)−1, e−z−1
e−u)

)
, (3.34)

after canceling out a common factor on both sides obtained from (3.30) with s = εb/(−x).
This equation is smooth in u, x and z ≥ 0. In particular, u = z = 0 is a solution for any x ∈ I
and the partial derivative of the right hand side with respect to u gives −1 for u = z = 0,
x ∈ I . Therefore, by applying the implicit function theorem, we obtain a locally unique
solution u = h̃(x, z) of (3.34) with h̃ smooth, satisfying h̃(x, 0) = 0 for all x ∈ I , and where
z ∈ [0, β3] for β3 > 0 sufficiently small. A simple computation shows that h̃ is exponentially
small with respect to z:

h̃(x, z) = e−z−1
h(x, z),

for some smooth h satisfying h(x, 0) = m̃(x, 0, 0) = 2. Inserting (3.33) into this expression
produces, by (3.31) and (3.30), the following locally unique solution of (3.28)

ε3 = Z(εb/(−x))
(
1 − εbx−1h(x, Z(εb/(−x)))

)−1
.

Finally, by inserting this into (3.32) we obtain the expression

y = εZ(εb/(−x))−1 (
1 − εbx−1h(x, Z(εb/(−x)))

)
,

which by (3.29) gives (1.17).

3.3 Improved Singular Cycle and Preliminary Results

The analysis thus far is sufficient for the construction of an improved singular orbit and
corresponding Poincaré map. The singular orbit can now be viewed as a union of distinct
orbit segments�i , i = 1, 2, 3, 4, and the line L . The segment�1 is already defined as the part
of the singular cycle contained in the half plane y < 0, and xd < 0 is the x-coordinate of the
first intersection of the trajectory flowed forward from (0, 0) with the line y = 0 in system
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Fig. 12 Due to the improved hyperbolicity properties obtained by the second blow-up (3.20), we are able to
identify a less degenerate singular cycle �0 = �1 ∪�2 ∪�3 ∪�4 ∪ L . The sections �1 and �2 used to define
the Poincaré mapping  = 2 ◦ 1 are also shown

(1.14); see the discussion leading to the expression (1.15) in Sect. 1.2.2. The remaining
segments �i are are listed below, together with the coordinate chart used to define them.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�2 = {(xd , y2, 0) : y2 ∈ R} , chart K2,

�3 = {
(xd , r1, 0, 0) : r1 ∈ [0,−b−1xd ]

}
, chart K1,

�4 = {
(x1,−b−1x1, 0, 0) : x1 ∈ [xd , 0]

}
, chart K1,

L = {(0, y2, 0) : y2 ∈ R} , chart K2.

(3.35)

Remark 3.8 Note that we are permitting a slight abuse of notation here by allowing �2 to
refer to a different segment as in Sect. 1.2.2, expression (1.15). In fact, it is �2 ∪�3 ∪�4 ∪ L
in (3.35) that upon blowing down to the (x, y)-plane becomes �2 in (1.15).

We can now define an improved singular cycle �0 by

�0 = �1 ∪ �2 ∪ �3 ∪ �4 ∪ L,

see Fig. 12. Although this cycle has improved hyperbolicity properties, it is still completely
degenerate along L . A fully nondegenerate singular cycle, resolving the dynamics around L ,
will be presented in Sect. 5.1, relying on details in Sect. 6 once the remaining prerequisite
blow-ups have been defined.
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3.4 The Poincarémap5 = 52 ◦ 51

Also shown in Fig. 12 are two sections �1 and �2, both transversal to �0. We define these
as follows:{

�1 = {(x,−δ, ε) : x ∈ [−α, α], ε ∈ [0, ε0]} , (x, y, ε),

�2 = {(−η, r1, ε, ρ1) : r1 ∈ [0, R], ε ∈ [0, β], ρ1 ∈ [0, β]} , chart K1,
(3.36)

for suitably chosen, small positive constants δ, α, ε0, η, R, β. We then define the Poincaré
map  : �1 → �1 induced by the flow of the extended system ((1.12), ε̇ = 0) in terms of
the composition

 = 2 ◦ 1 : �1 → �1,

where 1 : �1 → �2, and 2 : �2 → �1 denote transition maps induced by the flow. To
prove Theorem 1.5 we consider each of 1 and 2 in turn.

First, we consider the map 1 and write

1 : (x,−δ, ε) �→ (−η, r11 (x, ε),W (r11 (x, ε)/ε)−1, εW (r11 (x, ε)/ε)). (3.37)

To obtain the last two components of 1, we have used (3.8), (3.21) and the invariance of
the set Q.

Lemma 3.9 The following holds for α > 0 and ε0 > 0 sufficiently small:

(i) 1 is well-defined and at least C1 with respect to x.
(ii) The image 1(�1) ⊂ �2 is an exponentially thin wedge-shaped region about M ∩ �2,

where M is the center manifold in Lemma 3.7.
(iii) In particular, the restricted map x �→ r11 (x, ε) for any ε ∈ (0, ε0] is a strong contraction,

i.e.

r11 (x, ε) = η

b
+ O(ε log ε−1),

∂

∂x
r11 (x, ε) = O (

e−c/ε) ,

(3.38)

for some constant c > 0.

Given the form of the map in (3.37) and Lemma 3.9, we write 2 as follows

2 : (−η, r1,W (r1/ε)
−1, εW (r1/ε)) �→ (

x2(r1, ε),−δ, ε
)
, (3.39)

for any r1 ∈ I , ε ∈ [0, δ]. Here I is a small neighborhood of η/b, recall (3.38). The form in
(3.39) restricts 2 to the relevant subset of �2 defined by invariance of ε and the set Q, and
allows for composition with 1, see (3.37).

Lemma 3.10 The following hold for R, β > 0 and ε0 sufficiently small:

(i) 2 is well-defined and at least C1 with respect to r1.
(ii) The restricted map r1 �→ x2(r1, ε) for any ε ∈ (0, ε0] is a strong contraction, i.e.

∂

∂r1
x2 (r1, ε) = O (

e−c/ε) , (3.40)

for some constant c > 0.
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3.5 Proof of Theorem 1.5

Taken together, Lemma 3.9 and Lemma 3.10 show that  is a contraction. Theorem 1.5
and the existence of a perturbed limit cycle �ε for all 0 < ε � 1 is then a consequence
of the contraction mapping theorem. Lemma 3.9 is proved in Sect. 4. A rigorous proof of
Lemma 3.10 requires additional blow-ups. We summarise these in in Sect. 5, see Sect. 5.1,
allowing for the proof of Lemma 3.10 to be outlined in Sect. 5.2. The blow-up analysis
outlined for the purposes of proving Lemma 3.10 are given in greater detail in Sect. 6.

Remark 3.11 It follows from Lemma 3.9 and Lemma 3.10 that is a strong contraction even
though the both active and inactive phases of the corresponding relaxation oscillations occur
on timescales of O(1) as ε → 0, see again Figs. 3 and 4, i.e.  is a strong contraction even
though the oscillations are not slow-fast in the classical van der Pol-type sense.

4 TheMap51: Proof of Lemma 3.9

We define additional transversal sections �1,i , i ∈ {2, 3, 4, 5} as in Fig. 13, and consider the
map 1 as a composition

1 = 1,5 ◦ 1,4 ◦ 1,3 ◦ 1,2 ◦ 1,1,

where 1,1 : �1 → �1,2, 1,5 : �1,5 → �2, and 1,i : �1,i → �1,i+1 for i = 2, 3, 4
denote transition maps induced by the flow. To prove Lemma 3.9, we consider each map in
turn. The first three mappings are more standard, so we will just summarise the findings.

4.1 The TransitionMaps51,i for i = 1, 2, 3

The mapping1,1 : (x,−δ, ε) �→ (x1,1(x, ε),−δ, ε) is a diffeomorphism by regular pertur-
bation theory. Notice that for any c > 0, we have |x1,1(x, ε) − xd | ≤ c for all x ∈ [−α, α],
ε ∈ [0, ε0] upon taking δ > 0, α > 0 and ε0 > 0 sufficiently small. Working in the chart
K1, see Lemma 3.3, the second (local) map 1,2 is also standard, see e.g. [18, Theorem
4.2], being of the following C1 form x �→ x1,2(x) + O(ε log ε−1). Here x1,2(x) is the base
point of the local stable manifold intersecting �1,2 at (x,−δ, 0), and the orderO(ε log ε−1)

does not change upon differentiation with respect to x . Working in chart K2, 1,3 is a dif-
feomorphism of the form x �→ x1,3(x, ε), with x1,3 smooth and x1,3(x, 0) = x for all x .
In total, the composition 1,3 ◦ 1,2 ◦ 1,1 is C1 with respect to x of the following form
x �→ x̃1,3(x) + O(ε log ε−1) with x̃1,3 smooth.

The mappings 1,4 and 1,5 are less standard because they occur in the exponential
regime. We therefore include some more details in the following.

4.2 The Local TransitionMap51,4 : 61,4 → 61,5

We work in chart K1, for which

�1,4 =
{(

x, r1, δ, e
−δ−1

)
: |xd − x | ≤ α4, r1 ∈

[
0, eδ−1

R4

]}
,

and define

�1,5 =
{
(x, R5, ε, ρ1) : |xd − x | ≤ α5, ε ∈ [0, β5] , ρ1 ∈

[
0, e−β−1

5

]}
,
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Fig. 13 To prove Lemma 3.9 we decompose 1 : �1 → �2 into further transition mappings 1,i , i =
1, . . . , 5. The relevant new sections �1,i , i = 2, . . . , 5 are shown

as a small section about the intersection �0 ∩ {r1 = R5}. Some of the expressions simplify
by setting

R5 = e−δ−1
, (4.1)

so we will adopt this choice in the following. The interval for ρ1 is chosen by restriction to
the invariant set Q1. For ease of calculations, we drop the subscripts in (3.22) and translate
(xd , 0, 0, 0) to the origin by introducing x̃ = x − xd . After dividing the right hand side of the
new system by the locally positive factor − (xd + x̃ + br(1 − 2bρ)), we obtain the system

x̃ ′ = −ρrε(a + ρr)

xd + x̃ + br(1 − 2bρ)
,

r ′ = r(1 + ε),

ε′ = −ε2,

ρ′ = −ρ.

(4.2)

We consider the system (4.2) in order to characterize the map 1,4.

Proposition 4.1 The map 1,4 : �1,4 → �1,5 is well-defined for δ > 0 and α4 > 0
sufficiently small, and given by

1,4 :
(
x, r , δ, e−δ−1

)
�→

(
x + O(r log r−1), e−δ−1

,W (1/rδ)−1 , rδW (1/rδ)

)
.

Here the order of O(r log r−1) does not change by differentiation with respect to x.
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Proof Consider a solution of (4.2) satisfying⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x̃(0) = x̃in,

r(0) = rin,

ε(0) = δ,

ρ(0) = e−δ−1
,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x̃(T ) = x̃out ,

r(T ) = R5,

ε(T ) = εout ,

ρ(T ) = ρout .

The system

r ′ = r(1 + ε),

ε′ = −ε2,

ρ′ = −ρ,

(4.3)

decouples from (4.2), and can be integrated directly to give

r(t) = rine
t (1 + δt) , ε(t) = δ

1 + δt
, ρ(t) = e−δ−1

e−t .

One can use these equations to obtain the following expression for the transition time T :

T = −δ−1 + W

(
R5

rinδe−δ−1

)
.

By the above we obtain

ε(T ) = W

(
R5

rinδe−δ−1

)−1

, ρ(T ) = rinδe
−δ−1

R−1
5 W

(
R5

rinδe−δ−1

)
.

(These expressions also follow from the conservation of the original ε and the set Q, see
(3.8) and (3.21): rinδe−δ−1 = R5ε(T )e−ε(T )−1

.) Furthermore,

x̃ ′ = O(ρ(t)r(t)ε(t))) = O(rin),

which is C1-smooth, guaranteeing that the leading order is well behaved with respect to
integration. Hence

x̃out − x̃in = O(rinT ).

The result then follows from (4.1) and using the asymptotics (1.18) of W . ��

4.3 The TransitionMap51,5 : 61,5 → 62

We continue to work in chart K1.

Proposition 4.2 For η > 0 sufficiently small, the map 1,5 is well-defined and exponen-
tially contracting in the r1-coordinate. In particular, if r1,51 (x, ε, ρ1) is the r1-coordinate of

1,5(x, R5, ε, ρ1) then r
1,5
1 is C1 with respect to x, satisfying the following estimates

r1,51 (x, ε, ρ1) = η

b
+ O(ρ1),

∂

∂x
r1,51 (x, ε, ρ1) = O(e−c/(ερ1)),

for some c > 0.
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Proof Trajectories with initial conditions in �1,5 are strongly attracted to their base-points
on the invariant center manifold M1 in Lemma 3.7, and track the slow flow after reaching a
local tubular neighborhood of M1. To leading order, the flow on M1 is determined by

x ′ = −a

b
xερ1(1 + O(ε + ρ1))), (4.4)

so that x ′ > 0 and1,5 is therefore well-defined. Center manifold theory implies exponential
contraction (e−ct ) along one-dimensional fibers with base points on M1. Since

• r1(t) ≥ ν > 0 for some ν > 0 sufficiently small during the transition from �1,4 to �1,5;
• r1ρ1ε = const., see (3.8) and (3.21);

we can estimate the travel time, where x changes by O(1), to be of order O(1/(ερ1)). The
result therefore follows. ��

4.4 Proof of Lemma 3.9

The analysis of the mappings 1,i , i ∈ {1, 2, 3, 4, 5} in Sects. 4.1, 4.2 and 4.3 prove
Lemma 3.9 upon composition. In particular, the exponential contraction in the r1-coordinate
in Lemma 3.9, is a corollary of Proposition 4.2 upon using that ε = r1ρ1ε3, see (3.8) and
(3.21), with r1 ≈ η/b.

5 TheMap52: Proof of Lemma 3.10

The analysis of the map2 requires good control of the flow close to the line L of degenerate
equilibria L , see Fig. 12. Additional blow-ups are necessary in order to prove Lemma 3.10.
In this section we summarise the blow-up transformations and dynamical features leading to
the construction of the final nondegenerate singular cycle �0 as shown in Fig. 14. The cycle
�0 has a total of eight distinct segments �i , i ∈ {1, . . . , 8}. We have already identified the
segments �i for i ∈ {1, 2, 3, 4} in (3.35); the segments �i for i ∈ {5, 6, 7, 8} will be defined
by three additional blow-ups needed to resolve the degeneracies of the line L . This section
is included here for expository purposes: a more detailed technical presentation is given in
Sect. 6.

By looking at Fig. 12 and by extrapolating from what we did so far, it is natural to
expect that a straightforward (cylindrical) blow-up of the non-hyperbolic line (circle) L will
be necessary for the construction of the final singular cycle �0. However, it turns out that
additional difficulties arise close to the point P which is the endpoint of L on the (orange)
cylinder, corresponding to ρ = 0. This is somewhat expected, given that this transition
corresponds dynamically to a transition between regimes in which exponential terms are
dominant (the upper horizontal cylinder) to a regime in which algebraic terms are dominant
(the vertical cylinder obtained after blow-up of L). The analysis of this transition requires
two additional spherical blow-ups shown in Fig. 14, which are necessary for resolving the
degeneracies and ‘connecting’ the two regimes.

5.1 Successive Blow-Ups and the Fully Nondegenerate Singular Cycle 00

The required sequence of blow-up transformations is sketched in Fig. 15, and outlined in the
following.
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Fig. 14 The fully nondegenerate singular cycle obtained from the repeated blow-up transformations, visualized
in Fig. 15, summarized in Sect. 5.1 and detailed in Sect. 6

By Lemma 3.5, Sect. 3.1, themanifold C terminates in a non-hyperbolic point P (purple) at
the endpoint of the non-hyperbolic curve Le (the origin in chartK1 coordinates) corresponding
to the endpoint of the vertical non-hyperbolic line L (brown); see Fig. 15a. In order to resolve
this degeneracy, this point is blown-up to a sphere as in Fig. 15b; this is done in Sect. 6.1.1 as
part of a larger ‘cylinder of spheres’ blow-up. Note that this sphere is the ‘outer sphere’ (also
purple) in Fig. 14. The manifold C then terminates in a partially hyperbolic and attracting
point PL on the equator of this sphere. One identifies the extension of the singular cycle as
a normally hyperbolic attracting curve of equlibria N (blue) on this sphere, terminating in
another non-hyperbolic point PO (cyan), as shown in Fig. 15b.

The non-hyperbolic point PO is analyzed in Sect. 6.1.3 by means of a second spherical
blow-up. This is the ‘inner sphere’ (also cyan) sketched in Figs. 14 and 15c. We identify an
attracting, partially hyperbolic point pl (cyan) on the equator of the sphere as the endpoint of
N . The relevant thing for the construction of �0 is the existence of a unique center manifold
W (cyan) emanating from pl , whichwe can identifywith�6; compare Figs. 14 and 15c. Phase
plane arguments (the system is no longer slow-fast) are given in Sect. 6.1.3 (see Lemma 6.6
in particular) in order to show that W terminates in yet another non-hyperbolic point pO
(brown), from which the non-hyperbolic line L (also brown) emanates.

All remaining non-hyperbolicity is resolved by means of cylindrical blow-up of L in
Sects. 6.1.4 and 6.2, leading to the fully resolved scenario sketched in Fig. 14, see also
Fig. 15d. In Sect. 6.1.4, a cylindrical blow-up applied locally near the inner blow-up sphere
leads to the identification of a partially hyperbolic saddle point ps (brown). The orbit W
terminates at ps , and the next component of �0 can be identified with the unstable manifold
Wu(ps), which is shown in Lemma 6.7 to lie along the outside ‘edge’ of the cylinder, denoted
by H (also brown) in Fig. 15d. The remaining analysis is carried out in Sect. 6.2, after it is
shown in Lemma 6.8 that the dynamics in the local cylindrical blow-up described above can
be mapped to those obtained in a cylindrical blow-up of the line L in the algebraic regime,
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(a) (b)

(c) (d)

Fig. 15 Sequence of blow-up transformations needed to desingularize the dynamics near the line of degenerate
equilibria L and to connect the exponential regime and the critical manifold C with the orbit �1 (black) in the
plane ε̄ = 0. In awe show again Fig. 11. The degenerate equilibrium P (purple) is blown up to a sphere (purple)
in b, as described in Sect. 6.1.1. On this sphere another degenerate equilibrium PO (cyan) is identified, which
is blown-up to another sphere (cyan) shown in c, as detailed in Sect. 6.1.3. Finally, the still remaining line of
degenerate equilibria L (brown) is blown-up to a cylinder (brown) shown in d and analyzed in Sects. 6.1.4
and 6.2 (Color figure online)

i.e. in charts Ki , i = 1, 2, 3, subsequent to the (first) cylindrical blow-up leading to the
lower horizontal cylinder in Fig. 14. The analysis leads to the identification of the final two
cycle segments �7 and �8 in Fig. 14. The first can be identified with H, which is shown
in Lemma 6.13 to be invariant and terminating in a partially hyperbolic singularity at qs .
The second can be identified with the unstable manifold Wu(qs), which is invariant, and
shown (also in Lemma 6.13) to terminate in a hyperbolic (resonant) saddle singularity qo.
Although the analysis here is to some extent standard, it is frequently complicated by the fact
that transition across different coordinate charts becomes non-trivial after the application of
multiple blow-up transformations.
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Fig. 16 Illustration of the sections �2,i , i ∈ {2, . . . , 9} relevant for the description of the map 2 as the
composition of several transition maps 2,i , i ∈ {1, . . . , 9}

To summarise, we define the fully nondegenerate singular cycle �0 by

�0 = �1 ∪ �2 ∪ �3 ∪ �4 ∪ �5 ∪ �6 ∪ �7 ∪ �8,

where �i for i ∈ {1, 2, 3, 4} have already been defined in (3.35) and where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�5 = N ,

�6 = W,

�7 = H,

�8 = {
(r11, 0, 0) : r11 ∈ [

0, 1
2a

]}
, chart K11.

(5.1)

Regarding �8, the coordinates specified by the chart K11 are defined in Sect. 6.2.6, see also
(6.40). Note also that the union �5 ∪ �6 ∪ �7 ∪ �8 of the segments in (5.1) becomes L in
(3.35) upon blowing down. Each segment has improved hyperbolicity properties that allow
us to describe the mapping 2 and prove Lemma 3.10.

5.2 Proof of Lemma 3.10: A Summary

Similar to our analysis of the map 1, the map 2 can be analyzed by defining additional
transversal sections �2,i , i ∈ {2, . . . , 9} as in Fig. 16, and considering the composition

2 = 2,9 ◦ 2,8 ◦ 2,7 ◦ 2,6 ◦ 2,5 ◦ 2,4 ◦ 2,3 ◦ 2,2 ◦ 2,1.

Here 2,1 : �2 → �2,2, 2,9 : �2,9 → �1, and 2,i : �2,i → �2,i+1 for i ∈ {2, . . . 8}
denote transition maps induced by the flow.

To prove Lemma 3.10, we have to consider the maps2,i in turn. However, each mapping
is standard so we just focus on explaining in what coordinates the mappings are described,
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making references to equations, sections and lemmas to come below, and summarise the
findings as follows:

The transition map 2,1 is described in the coordinates specified by the chart K1, see
(6.3). By center manifold theory and Lemma 6.2 below the mapping is well-defined and
exponentially contracting in the direction transverse to W .

The transitionmap2,2 is described in the coordinates specified by the chartK2, see (6.3).
The properties of this map are similar to 2,1 since the line of partially hyperbolic equilibria
N extends all the way down to PO . However, PO is non-hyperbolic and it is important to
highlight that in K2 we are leaving the ‘exponential regime’. We can therefore reduce the
phase space dimension again, see (6.7). This produces a 3-dimensional system.

The transition map 2,3 is described in the coordinates specified by the chart K̃1, see
(6.16). Center manifold theory and Lemma 6.5 below show that the mapping is well-defined
and exponentially contracting in the direction transverse to W .

The transition map 2,4 is a diffeomorphism by regular perturbation theory applied in
the coordinates specified by the chart K̃2, see (6.16).

The transition map 2,5 is described in the coordinates specified by the chart K̂31, see
(6.23) and the equations of motion in (6.24), associated with the blow-up of L . In these
coordinates we gain hyperbolicity, as indicated in Fig. 15d, see also the local picture in
Fig. 21. Within the center manifold, the point ps (see Fig. 15d) is a hyperbolic saddle upon
further desingularization, having H as an unstable manifold. The mapping 2,5 is therefore
well-defined and (algebraically) contracting.

The transition map 2,6. By Lemma 6.8 below, we can transform the result on 2,5 into
the chart K21, see (6.28), associated with blowing up L in the original scaling chart K2,
recall (3.7). Here we can also describe the mapping 2,6 as a diffeomorphism by regular
perturbation theory using the invariance of the line H. See also Lemma 6.11.

The transition map 2,7 is described in the coordinates specified by the chart K11, see
(6.27), as a local passage near the semi-hyperbolic saddle qs . The mapping is well-defined
and non-expanding; the details being similar to those in [18, Theorem 4.2].

The transition map 2,8 is described in the coordinates specified by the chart K11, see
(6.27). Since the flow along the invariant line between �8 ∩ �2,8 and �8 ∩ �2,9 is regular
and finite-time (see Figs. 14 and 16), 2,8 is a diffeomorphism.

The transition map 2,9 is described in the coordinates specified by the chart K12, see
(6.27), as passage near the resonant hyperbolic saddle qo with a one dimensional unstable
manifold �1. The details are similar to those in [22, lemma 3.6].

Each map is one-dimensional and at least C1 upon restriction to 0 < ε � 1 and the set
Q. This completes the (sketched) proof of Lemma 3.10 upon composition.

6 Blow-Up Analysis for theMap52

The blow-up transformations and main features in the analysis for the proof of Lemma 3.10
are presented in this section. Our analysis divides into two parts: (i) an understanding of
the transition between the exponential and algebraic regimes, and (ii) a blow-up analysis
describing the dynamics near the non-hyperbolic line L in the algebraic regime. Part (i) is
considered in Sect. 6.1, and focuses (among other things) on the spherical blow-ups shown
in Fig. 14. Part (ii) is considered in Sect. 6.2.

123



1856 Journal of Dynamics and Differential Equations (2022) 34:1823–1875

6.1 Exiting the Exponential Regime

Here we consider the transition out of the ‘exponential regime’. In terms of Fig. 14, our aim
is to understand the manner in which trajectories move from the upper horizontal cylinder
(exponential regime), to the vertical cylinder (algebraic regime).

6.1.1 Blow-Up Near the Non-hyperbolic line Le,1 in ChartK1

We start in the exponential regime, chart K1, dropping the subscripts in system (3.22):

x ′ = ρrε(a + ρr),

r ′ = −r(1 + ε) (x + br (1 − 2ρ)) ,

ε′ = ε2 (x + br (1 − 2ρ)) ,

ρ′ = ρ (x + br (1 − 2ρ)) .

(6.1)

By Lemma 3.5, the one-dimensional manifold C identified with the cycle segment �4 termi-
nates at (0, 0, 0, 0) ∈ P , where P : x = r = 0 constitutes an entire plane of non-hyperbolic
fixed points for (6.1). One could proceed by blowing up the entire plane P , however only
the dynamics near the curve Le ⊂ P will be relevant for the transition (recall that Le and
L3 coincide where domains overlap; see again Lemma 3.5). This motivates a blow-up of
(x, r , ρ) = (0, 0, 0) in the following form

ν ≥ 0, (x̄, r̄ , ρ̄) ∈ S2 �→

⎧⎪⎨
⎪⎩
x = ν x̄,

r = νr̄ ,

ρ = νρ̄.

(6.2)

We introduce the coordinate charts

K1 : x̄ = −1, K2 : ρ̄ = 1,

for which we have chart-specific coordinates given by

K1 : x = −ν1, r = ν1r1, ρ = ν1ρ1,

K2 : x = ν2x2, r = ν2r2, ρ = ν2.
(6.3)

Remark 6.1 Notice that ε is not transformed by (6.2). Geometrically, (6.2) therefore blows
up

L = {(0, 0, ε, 0) : ε ≥ 0} ⊂ P, (6.4)

to a ‘cylinder of spheres’ CS = {ν = 0} × S2 × R. Note that each CS ∩ {ε = const .} is an
invariant sphere in CS. Notice also that

(I) Le and L are tangent at (0, 0, 0, 0), and

Le ∩ L = {(0, 0, 0, 0)}. (6.5)

(II) Considered in terms of its parameterization (3.23), Le is flat at (0, 0, 0, 0), and thus flat
with respect to the line L as ε → 0; see Fig. 17.

Geometrically, it seems more natural to blow-up Le. To do this one would rectify Le and
apply the cylindrical blow-up transformation (6.2) along (the transformed) Le. However,
our approach avoids this unnecessary coordinate transformation. Besides (a) only the sphere
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Fig. 17 Illustration within
{x = 0} of the lines L (magenta)
and Le (brown) as subsets of the
plane P : x = r = 0 (shaded
magenta) (Color figure online)

CS ∩ {ε = 0}, which is the same for both approaches (recall (6.5)), will be relevant, and (b)
once we leave the exponential regime and enter ρ̄ > 0 of the sphere (6.2), we will apply a
subsequent blow-up transformation that effectively blows up Le (or L).

We will adopt the following notational convention: given an object γ identified in chart
K1, we denote its image under the blow-up transformation (6.2) by γ ′, and it’s image in
a particular coordinate chart Ki by γ ′

i (this will help to avoid confusion given the earlier
dropping of subscripts etc).

The transition maps between coordinates in charts Ki , i = 1, 2 are given by

κ ′
12 : r1 = −x−1

2 r2, ρ1 = −x−1
2 , ν1 = −ν2x2, x2 < 0,

κ ′
21 : x2 = −ρ−1

1 , r2 = ρ−1
1 r1, ν2 = ν1ρ1, ρ1 > 0.

(6.6)

Recall also that the set Q =
{
(x, r , ε, ρ) : ρ = e−ε−1

}
is invariant for the system (6.1). In

chart Ki coordinates, then, the following are invariant:

Q′
1 =

{
(r1, ε, ρ1, ν1) : ν1ρ1 = e−ε−1

}
, Q′

2 =
{
(x2, r2, ε, ν2) : ν2 = e−ε−1

}
. (6.7)

K1 Chart

The dynamics in chart K1 are governed by

r ′
1 = r1

(
(1 + ε) (1 − br1(1 − 2ν1ρ1)) + ρ1r1ε

(
a + ρ1r1ν

2
1

))
,

ε′ = −ε2 (1 − br1(1 − 2ν1ρ1)) ,

ρ′
1 = −ρ1

(
1 − br1(1 − 2ν1ρ1) − ρ1r1ε

(
a + ρ1r1ν

2
1

))
,

ν′
1 = −ν1ρ1r1ε

(
a + ρ1r1ν

2
1

)
.

(6.8)

after a suitable desingularization (division by ν1). Themanifold of equilibriaC1 in Lemma3.5
shows up as a manifold of equilibria C ′

1 for the system in the invariant hyperplane ε = 0
given by

r ′
1 = r1 (1 − br1(1 − 2ν1ρ1)) ,

ρ′
1 = −ρ1 (1 − br1(1 − 2ν1ρ1)) ,

ν′
1 = 0,

(6.9)
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and the manifold of equilbira S1 in Lemma 3.5 shows up as a manifold of equilibria S′
1 for

the system in the invariant hyperplane ρ1 = 0, given by

r ′
1 = r1 ((1 + ε) (1 − br1)) ,

ε′ = −ε2 (1 − br1) ,

ν′
1 = 0.

(6.10)

We are interested in the intersection C ′
1 ∩ S′

1, since this is contained within the domain of
interest Q′

1. In particular, this intersection constitutes a line of equilbria

C′
1 = C ′

1 ∩ Q′
1 = S′

1 ∩ Q′
1 = C ′

1 ∩ S′
1 = {(

b−1, 0, 0, ν1
) : ν1 ≥ 0

}
,

in the ε = ρ1 = 0 plane. The line C′
1 terminates at the point PL : (b−1, 0, 0, 0), which sits

on the equator of the invariant sphere segment ν1 = ε = 0. In fact, within the invariant plane
ν1 = ε = 0 we have

r ′
1 = r1 (1 − br1) ,

ρ′
1 = −ρ1 (1 − br1) ,

(6.11)

which has a line of equilibria

N ′
1 = {(

b−1, 0, ρ1, 0
) : ρ1 ≥ 0

}
emanating from PL . Finally, we identify a line of equilibria along the positive ν1-axis, i.e.
along

l′e,1 = {(0, 0, 0, ν1) : ν1 ≥ 0} .

Lemma 6.2 The following hold for system (6.8):

(i) The point PL is partially hyperbolic with a single non-zero eigenvalue λ = −1, and
there exists a corresponding three-dimensional center manifold M ′

1 tangent to the center
eigenspace Ec(PL), which can be chosen to be the extension of the manifold M1.
Locally, M ′

1 contains the two-dimensional manifolds of equilbria C ′
1 and S′

1 as restric-
tions

M ′
1

∣∣
ε=0 = C ′

1, M ′
1

∣∣
ρ1=0 = S′

1,

and the one-dimensional manifolds of equilbria C′
1 and N ′

1 as restrictions

M ′
1

∣∣
ε=ρ1=0 = C′

1, M ′
1

∣∣
ε=ν1=0 = N ′

1.

The variables ε, ρ1 (r1) are increasing (decreasing) along M ′
1 \ (

C ′
1 ∪ S′

1 ∪ N ′
1

)
.

(ii) The eigenvalues associated with the linearization along l′e,1 are given by

λ = 1, 0, −1, 0,

implying that l′e,1 is a line of partially hyperbolic saddles.

Proof Assertion (i) is standard center manifold theory. Assertion (ii) is a direct calculation.
��
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6.1.2 K2 Chart

The system in chart K2 is given by

x ′
2 = −x2 (x2 + br2(1 − 2ν2)) + r2ε

(
a + r2ν

2
2

)
,

r ′
2 = −r2(2 + ε) (x2 + br2(1 − 2ν2)) ,

ε′ = ε2 (x2 + br2(1 − 2ν2)) ,

ν′
2 = ν2 (x2 + br2(1 − 2ν2)) ,

(6.12)

after a suitable desingularization (division by ν2). At this point we note that the analysis may
be simplified by restricting to the invariant set Q′

2. By doing so we reduce the dimension by
1 after eliminating ν2, and consider the reduced system on this set

x ′
2 = −x2

(
x2 + br2

(
1 − 2e−ε−1

))
+ r2ε

(
a + r2e

−2ε−1
)

,

r ′
2 = −r2(2 + ε)

(
x2 + br2

(
1 − 2e−ε−1

))
,

ε′ = ε2
(
x2 + br2

(
1 − 2e−ε−1

))
.

(6.13)

Note that the system obtained by restricting to ε = 0 in (6.13) is equivalent to the system
obtained by restricting to ν2 = ε = 0 in system (6.12), and given by

x ′
2 = −x2 (x2 + br2) ,

r ′
2 = −2r2 (x2 + br2) .

(6.14)

Here we identify the line of equilbria

N ′
2 = {(

x2,−b−1x2, 0
) : x2 ≤ 0

}
corresponding to the extension of N ′ in chart K2, as well as a line of equilibria

L ′
e,2 = {(0, 0, ε) : ε ≥ 0} .

Lemma 6.3 The following holds for the system (6.13):

(i) The line of equlibria N ′
2 has a single non-trivial eigenvalue λ = x2 ≤ 0. Hence N ′

2 is
normally hyperbolic and attracting for x2 < 0, and terminates in a non-hyperbolic point
at the origin PO : (0, 0, 0).

(ii) There exists a unique centermanifold M ′
2 with base along compact subsets ofN2 bounded

away from PO. The manifold M ′
2 can be identified with the extension of the manifold M ′

1
identified in chart K1 coordinates in Lemma 6.2. The variable r2 is decreasing along
M ′

2 \ N ′
2.

(iii) The line L ′
e,2 is non-hyperbolic, and coincides where domains overlap with the non-

hyperbolic line L3 identified in chart K3 coordinates.

Proof Statement (i) follows immediately after linearization of the system (6.14) along N ′
2.

The statement (ii) follows from center manifold theory, together with uniqueness of the
manifold M ′

1 described in Lemma 6.2 and an application of the transition map κ ′
12 in (6.6).

The statement (iii) follows after linearization of the system (6.13) and an application of
the blow-down transformation. ��

The situation is illustrated in Fig. 18.
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Fig. 18 Illustration of the blowup of the degenerate equilibrium P (purple) to the ‘outer sphere’ (purple)
within ε̄ = 0. On the sphere we find the attracting critical manifoldN (blue) with reduced flow connecting PL
to the degenerate equilibrium PO (cyan). The fast flow on the sphere is shown in green (Color figure online)

Remark 6.4 Figure 18 shows dynamics not visible in charts K1 or K2. To gain a complete
picture of the dynamics one must look in the additional coordinate charts K3 : r̄ = 1 and
K4 : x̄ = 1. In particular, a hyperbolic saddle PR is identified at (x̄, r̄ , ρ̄) = (0, 1, 0), ε = 0
in chart K3, and a partially hyperbolic line of saddle-type equlibria is identified along the
positive x̄-axis in chart K4. We omit the details here for expository reasons.

6.1.3 Spherical Blow-Up of the Point PO

Here we consider the dynamics near the point PO in system (6.13) by means of a spherical
blow-up. We drop subscripts in (6.13), and define the blow-up by the transformation

σ ≥ 0, (x̄, r̄ , ε̄) ∈ S2 �→

⎧⎪⎨
⎪⎩
x = σ x̄,

r = σ r̄ ,

ε = σ ε̄.

(6.15)

We are primarily interested in the dynamics observable in the phase directional charts

K̃1 : r̄ = 1, K̃2 : ε̄ = 1,

for which we introduce the chart specific coordinates

K̃1 : x = σ1x1, r = σ1, ε = σ1ε1,

K̃2 : x = σ2x2, r = σ2r2, ε = σ2.
(6.16)

We adopt the following notational convention: given an object γ identified in chart K2, we
denote its image under the blow-up transformation (6.15) by γ̃ , and it’s image in a particular
coordinate chart K̃i by γ̃i .
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The transition map between charts K̃1 and K̃2 is given by

κ̃12 : x1 = r−1
2 x2, ε1 = r−1

2 , σ1 = σ2r2, r2 > 0,

κ̃21 : x2 = ε−1
1 x1, r2 = ε−1

1 , σ2 = σ1ε1, ε1 > 0.
(6.17)

˜K1 Chart

The dynamics in chart K̃1 are governed by

x ′
1 = ε1

(
a + σ1e

−2(σ1ε1)−1
)

+ x1 (1 + σ1ε1)
(
x1 + b

(
1 − 2e−(σ1ε1)

−1
))

,

ε′
1 = 2ε1 (1 + σ1ε1)

(
x1 + b

(
1 − 2e−(σ1ε1)

−1
))

,

σ ′
1 = −σ1 (2 + σ1ε1)

(
x1 + b

(
1 − 2e−(σ1ε1)

−1
))

,

(6.18)

after a suitable desingularization (division by σ1). We identify an equilibrium for the system
(6.18) at pr : (0, 0, 0), as well as a line of equilibria

Ñ1 = {(−b, 0, σ1) : σ1 ≥ 0} ,

corresponding to the extension of the line of equilbria N ′
2 observed in chart K2. Note that

Ñ1 terminates at pl : (−b, 0, 0).

Lemma 6.5 The following hold for system (6.18):

(i) The point pl : (−b, 0, 0) is partially hyperbolic with a single non-zero eigenvalue
λ = −b < 0. There exists a corresponding two-dimensional center manifold M̃1 tangent
to the center eigenspace Ec(pl), which can be chosen to be the extension of the manifold
M ′

1.
The manifold M̃1|ε1=0 contains the one-dimensional manifold Ñ1 as a normally hyper-
bolic and attracting manifold of equilbria. Moreover, M̃1|σ1=0 contains a unique
one-dimensional center manifold W̃1, and the slow flow on W̃1 is increasing in the
ε1-coordinate.

(ii) The equilibrium pr : (0, 0, 0) is a hyperbolic saddle with eigenvalues

λ = b, 2b, −2b.

The stable manifold Ws(pr ) is contained in x1 = ε1 = 0, which is invariant.

Proof The statement (i) follows after linearization of the system (6.18) and an application
of the center manifold theorem. In particular, one obtains the following graph expression for
W̃1 via the usual matching approach:

W̃1 : x1 = −b + a

1 + b
ε1 + O(ε21).

Hence the dynamics on W̃1 are governed by

x ′
1 = aε1

1 + b
+ O(ε21 ),

ε′
1 = 2aε21

1 + b
+ O(ε31),

from which assertion (i) follows.

123



1862 Journal of Dynamics and Differential Equations (2022) 34:1823–1875

The statement (ii) follows after linearization of the system (6.18), and the observation that
restriction to x1 = ε1 = 0 gives

x ′
1 = 0,

σ ′
1 = −2bσ1.

��

˜K2 Chart

The dynamics in chart K̃2 are governed by

x ′
2 = r2

(
a + σ2r2e

−2σ−1
2

)
− x2 (1 + σ2)

(
x2 + br2

(
1 − 2e−σ−1

2

))
,

r ′
2 = −2r2 (1 + σ2)

(
x2 + br2

(
1 − 2e−σ−1

2

))
,

σ ′
2 = σ 2

2

(
x2 + br2

(
1 − 2e−σ−1

2

))
,

(6.19)

after a suitable desingularization (division by σ2). The system (6.19) has a line of equilibria

L̃e,2 = {(0, 0, ε) : ε ≥ 0} . (6.20)

Lemma 6.6 The following hold for system (6.19):

(i) The unique one-dimensional center manifold W̃2 = κ̃12(W̃1) is contained within σ2 = 0,
and forward asymptotic to the nonhyperbolic point po : (0, 0, 0). In particular, W2

approaches po tangent to the positive x2-axis.
(ii) The line L̃e,2 is non-hyperbolic, and coincides where domains overlap with the non-

hyperbolic line L ′
e,2 observed in the K′

2 chart (and hence with the non-hyperbolic line
L3 observed in chart K3).

Proof In order to prove the assertion (i) we consider the system in the invariant plane σ2 = 0:

x ′
2 = ar2 − x2 (x2 + br2) ,

r ′
2 = −2r2 (x2 + br2) .

(6.21)

The system (6.21) has a single non-hyperbolic equilibrium po at (0, 0). Moreover, the region

V = {
(x2, r2) : −b−1r2 ≤ x2 ≤ ab−1, r2 ≥ 0

}
bounded by the x2-axis, the r2-nullcline {(−b−1r2, r2) : r2 ≥ 0}, and the vertical asymptote
{(ab−1, r2) : r2 ≥ 0} in the x2-nullcline, is forward invariant. In particular, the x2-axis is
invariant with dynamics

x ′
2 = −x22 ,

so that x ′
2 < 0 for x2 �= 0; see Fig. 19. Now define a compact subset Ṽ ⊂ V by

Ṽ = {(x2, r2) ∈ V : r2 ≤ c2} ,

and choose c2 > 0 sufficiently large so that by Lemma 6.5, W̃2 = κ12(W̃1) enters Ṽ
transversally through r2 = c2. Since Ṽ is compact and forward invariant, the Poincaré-
Bendixon theorem applies, and W̃2 is forward asymptotic to po at (0, 0).
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(a) (b)

Fig. 19 Blow-up of the degenerate equilibrium PO (cyan) from Fig. 18 to a sphere (cyan). On the sphere the
equilibrium pl is connected to the degenerate equilibrium p0 (brown) by the manifold (heteroclinic orbit)W
(cyan). In a The phase plane σ2 = 0 in chart K̃2 used in the proof of Lemma 6.6 regarding the asymptotic

properties of the local version W̃2 ofW in chart K̃2. The plane σ2 = 0 covers the sphere σ = 0 viewed from
ε̄ = 1. In b A global picture for comparison (Color figure online)

Fig. 20 Results after two spherical blow-ups: outer sphere (purple), inner sphere (cyan) (Color figure online)

To see that W̃2 approaches (0, 0) tangent to the positive x2-axis, notice that trajectories
in Ṽ \ {(0, 0)} reach the forward invariant region

Ṽ ′ =
{

(x2, r2) ∈ Ṽ : r2 ≤ x22
a − bx2

}
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bounded above by the component of the x2-nullcline in the positive quadrant in finite time.
Hence W̃2 approaches (0, 0) from within Ṽ ′, and therefore tangent to the positive x2-axis.

Statement (ii) is a straightforward calculation and application of the (successive) blow-
down transformations. ��

The situation is sketched in Fig. 20.

6.1.4 Blow-Up of˜Le,2

Finally, in this subsection, we consider a cylindrical blow-up of the non-hyperbolic line L̃e,2

identified in equation (6.20). This is done in a neighborhood of the point p0 covered by chart
K̃2. In Sect. 6.2.1 we will carry out a similar cylindrical blow-up of the line L within the first
cylindrical blow-up as defined in (3.5), which needs to be carried out in coordinate charts
Ki , i = 1, 2, 3 defined in (3.6), (3.7), and (3.8). There, we will also show that these two
cylindrical blow-ups match up.

We start with system (6.19), drop the subscripts, introduce a hat notation (needed in the
process of matching the results obtained here with the results obtained in Sect. 6.2.1), and
define a weighted blow-up transformation by the map

ŝ ≥ 0, ( ¯̂x, ¯̂r) ∈ S1 �→
{
x̂ = ŝ ¯̂x,
r̂ = ŝ2 ¯̂r . (6.22)

We are primarily interested in the dynamics observable in coordinate charts

K̂31 : ¯̂x = 1, K̂32 : ¯̂r = 1,

for which we introduce chart specific coordinates

K̂31 : x̂ = ŝ1, r̂ = ŝ21 r̂1,

K̂32 : x̂ = ŝ2 x̂2, r̂ = ŝ22 .
(6.23)

The transition map between charts K̂31 and K̂32 is given by

κ̂3132 : ŝ1 = ŝ2 x̂2, r̂1 = x̂−2
2 , x̂2 > 0,

κ̂3231 : ŝ2 = ŝ1r̂
1/2
1 , x̂2 = r̂−1/2

1 , r̂1 > 0.

The subscript notation, although a little cumbersome, will be helpful in when considering
the dynamics in coordinate charts covering the lower portion of the blown-up line (circle) L .

̂K31 Chart

The equations in the K̂31 chart are given by

r̂ ′
1 = −2r̂21

(
a + σ r̂1ŝ

2
1e

−2σ−1
)

,

σ ′ = σ 2
(
1 + br̂1ŝ1

(
1 − 2e−σ−1

))
,

ŝ′
1 = −ŝ1

(
−r̂1

(
a + σ r̂1ŝ

2
1e

−2σ−1
)

+ (1 + σ)
(
1 + br̂1ŝ1

(
1 − 2e−σ−1

)))
,

(6.24)

after a suitable desingularization (division by ŝ1). The system (6.24) has a single equilibrium
at ps : (0, 0, 0).
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Lemma 6.7 The following holds for system (6.24):

(i) The equilibrium ps is partially hyperbolic with a single nonzero eigenvalue λ = −1
and a corresponding two-dimensional local center manifold M̂s given by ŝ1 = 0. The
variable σ is increasing along M̂s ∩{σ > 0} while r̂1 is decreasing along M̂s ∩{r̂1 > 0}.

(ii) The strong stable manifold Ws(ps) lies within r̂1 = σ = 0, and the r̂1−, σ−, ŝ1-axes
are all invariant. In particular, r̂1 is decreasing along the r̂1-axis, σ is increasing along
the σ -axis (which we denote by H), and ŝ1 is decreasing along the ŝ1-axis. Hence, ps is
a non-hyperbolic saddle.

Proof The statement (i) follows after linearization at ps , and an application of the center
manifold theorem.

Invariance of the r̂1−, σ−, ŝ1-axes follows immediately from the form taken by the
equations when restricted to the respective axes. In {ŝ1 = r̂1 = 0} we have

σ ′ = σ 2,

in {ŝ1 = σ = 0} we have
r̂ ′
1 = −2ar̂21 ,

and in {σ = r̂1 = 0} we have
ŝ′
1 = −ŝ1.

The assertion (ii) follows. ��

̂K32 Chart

We omit the details in chart K̂32 for the sake of brevity, simply noting that calculations reveal
no equilibria and an invariant flow along the ‘equator’ ŝ2 = σ = 0, as indicated in Fig. 21.

6.2 Blow-Up of L in the Algebraic Regime

In order to obtain the fully nondegenerate singular cycle, it remains to blow-up the vertical
non-hyperbolic line (circle) L in the algebraic regime. We return to the dynamics observable
after the (first) cylindrical blow-up, as defined in (3.5), i.e. the problem considered in coor-
dinate charts Ki , i = 1, 2, 3. In Sect. 6.2.1 we introduce the blow-up of L , and show that the
dynamics observed in Sect. 6.1.4 can be related to the dynamics observed in this blow-up in
an overlapping domain. In Sect. 6.2.2 we derive the qualitative properties of the dynamics
associated with the ‘lower part’ of the vertical cylinder in Fig. 14.

6.2.1 Blow-Up of L

We consider the dynamics near the lower portion of the non-hyperbolic line (circle) L . We
introduce a secondary weighted blow-up defined via the transformation

(x, r , (ȳ, ε̄)) �→ (s, (x̄, r̄) , (ȳ, ε̄)) ,

where

s ≥ 0, (x̄, r̄) ∈ S1 �→
{
x = sx̄,

r = s2r̄ .
(6.25)
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(a) (b)

Fig. 21 Blow-up of the line of equilibria Le (brown) to a cylinder (brown). In a Local picture near the
hyperbolic equilibrium ps in chart K̂31. The cylinder corresponds to the plane ŝ1 = 0 (brown). The plane
σ = 0 corresponds to the (inner) sphere (cyan). By the cylindrical blowup of Le , we have gained hyperbolicity.
The line H (brown) is the (non-hyperbolic) unstable manifold of ps (also brown). In b A global picture for
comparison (Color figure online)

Composing this with the map (3.5), we obtain

s ≥ 0, (ȳ, ε̄) ∈ S1, (x̄, r̄) ∈ S1 �→

⎧⎪⎨
⎪⎩
x = sx̄,

y = s2r̄ ȳ,

ε = s2r̄ ε̄.

(6.26)

Geometrically, the transformation (6.26) blows up the circle of non-hyperbolic points L to
the torus {s = 0}× S1× S1, for which only the subset defined by r̄ ≥ 0 and ε̄ ≥ 0 is relevant.
In total, six coordinate charts are necessary for an understanding of the main dynamical
features:

K11 : ȳ = −1, x̄ = 1, K21 : ε̄ = 1, x̄ = 1, K31 : ȳ = 1, x̄ = 1,

K12 : ȳ = −1, r̄ = 1, K22 : ε̄ = 1, r̄ = 1, K32 : ȳ = 1, r̄ = 1.
(6.27)

In particular x̄ = 1 in charts Ki1 and r̄ = 1 in charts Ki2, for i = 1, 2, 3, and the subscript
i signifies the ‘visible region’ of the first (horizontal) cylinder defined by the blow-up trans-
formation (3.5). For charts K1 j covering the region visible in ȳ = −1 we have chart specific
coordinates

K11 : x = s1, y = −s21r11, ε = s21r11ε1,

K12 : x = s2x2, y = −s22 , ε = s22ε1.

For charts K2 j covering the region visible in ε̄ = 1 we have chart specific coordinates

K21 : x = s1, y = s21r21y2, ε = s21r21,

K22 : x = s2x2, y = s22 y2, ε = s22 .
(6.28)
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For charts K3 j covering the region visible in ȳ = 1 we have chart specific coordinates

K31 : x = s1, y = s21r31, ε = s21r31ε3,

K32 : x = s2x2, y = s22 , ε = s22ε3.
(6.29)

The transition maps between overlapping charts are given by

κ1112 : s1 = s2x2, r11 = x−2
2 , x2 > 0,

κ1121 : r11 = −r21y2, ε1 = −y−1
2 , y2 < 0,

κ1122 : s1 = s2x2, r11 = −x−2
2 y2, ε1 = −y−1

2 , x2 > 0, y2 < 0,

κ1221 : s2 = (−r21y2)
1/2 , ε1 = −y−1

2 , x2 = (−r21y2)
−1/2 , y2 < 0, r21 > 0,

κ2122 : s1 = s2x2, r21 = x−2
2 , x2 > 0,

κ2131 : r21 = r31ε3, y2 = ε−1
3 , ε3 > 0,

κ2132 : s1 = s2x2, r21 = x−2
2 ε3, y2 = ε−1

3 , x2, ε3 > 0,

κ2231 : s2 = s1 (r31ε3)
1/2 , x2 = s1 (r31ε3)

−1/2 , y2 = ε−1
3 , r31, ε3 > 0,

κ3132 : s1 = s2x2, r21 = x−2
2 , x2 > 0,

and their inverses can be computed directly using these expressions if necessary.
We will focus in this section on the dynamics observable in charts Ki j , i = 1, 2, j = 1, 2.

The dynamics in charts Ki j with i = 3 have already been considered in Sect. 6.1.4, as is
shown in the following result.

Lemma 6.8 Coordinates (r31, ε3, s1) in chart K31 are related to coordinates (r̂1, σ, ŝ1) in
chart K̂31 via

r31 = σ−1r̂1, ε3 = σeσ−1
, s1 = σe−σ−1

ŝ1, σ > 0. (6.30)

Coordinates (x2, ε3, s2) in chart K32 are related to coordinates (x̂2, σ, ŝ2) in chart K̂32 via

x2 = σ 1/2e−(2σ)−1
x̂2, ε3 = σ, s2 = σ 1/2e−(2σ)−1

ŝ2, σ > 0.

Proof The expressions given for the coordinates (r31, ε3, s1) in chart K31 are obtained by
composing blow-up maps (3.8), (3.21), (6.16) and the coordinates for K̂31 in (6.23). In the
notation below, we avoid dropping subscripts and append them at each coordinate change
(except where the ‘hat notation’ suffices). Explicitly, the first three compositions give

x = ν2x2,

y = r3 = ρ1r31 = ν22r312,

ε = r3ε3 = ν2r312ε3,

q = ρ1 = ν2,

and subsequent restriction to ν2 = e−ε−1
3 gives

x = e−ε−1
3 x2, y = e−2ε−1

3 r312, ε = e−ε−1
3 r312ε3.
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The last two compositions give

x = e−ε−1
3 x2 = e−σ−1

2 x2σ2 = σ2e
−σ−1

2 ŝ1,

y = e−2ε−1
3 r312 = e−2σ−1

2 σ2r312 = σ2r̂1e
−2σ−1

2 ŝ21 ,

ε = e−ε−1
3 r312ε3 = e−σ−1

2 σ 2
2 r312 = σ 2

2 r̂1e
−σ−1

2 ŝ21 .

Dropping the subscript in σ2 and comparing with the K31 coordinates given in (6.29) yields
the result.

The expressions given for the coordinates (x2, ε3, s2) in chart K32 are obtained by a similar
argument: composing blow-upmaps (3.8), (3.21), (6.16) and the coordinates for K̂32 in (6.23)
gives

x = σ x̂2e
−σ−1

ŝ2, y = σe−2σ−1
ŝ22 , ε = σ 2e−σ−1

ŝ22 ,

(where we have dropped the subscript in σ2), and direct comparison with the expression for
K32 coordinates in (6.29) yields the desired result. ��

We obtain the following corollary.

Corollary 6.9 The (invariant) σ -axis in system (6.24) is mapped to

H31 = {(0, ε3, 0) : ε3 > 0}
under the transformation defined by the equations (6.30), which is invariant for the system
obtained in chart K31 coordinates. Dynamics on H31 are governed by

ε′
3 = ε3e

−ε−1
3 . (6.31)

Proof This is an immediate consequence ofLemma6.8 and the formof the equations obtained
in chart K31, which are given by

r ′
31 = −r31

(
br31s1 + e−ε−1

3
(
1 − 2br31s1 + 2r31a + 2r31s

2
1

))
,

ε′
3 = ε3

(
br31s1 + e−ε−1

3 (1 − 2br31s1)
)

,

s′
1 = s1r31e

−ε−1
3

(
a + s21r31

)
,

after a suitable desingularization (division by s1). The expression in (6.31) follows by restric-
tion to r31 = s1 = 0. ��

6.2.2 Blow-Up for the Lower Part of L

Lemma 6.8 shows how the dynamics in the transitional regime can be related to the dynamics
in the algebraic regime, after application of the blow-up transformation (6.26). Moreover,
Lemma 6.7 and Corollary 6.9 are sufficient for an understanding of the main dynamical
features and in particular, the construction of�0. Hence,we restrict attention here to dynamics
in charts K11, K12, K21, K22 only in this section.
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6.2.3 K22 Chart

We can determine the equations in the chart K22 by considering the system (3.2) on the fast
time scale with ε = r2, i.e.

x ′ = r22 (a + r2y) ,

y′
2 = −x + br2y2

(
2 − ey2

)
,

r2 � 1, (6.32)

and then apply the secondary transformation defined by the equations

x = s2x2,

r = s22 .
(6.33)

This produces the following system

x ′
2 = a + s22 y2,

y′
2 = −x2 + bs2y2(2 − ey2),

s2 � 1, (6.34)

after a suitable desingularization (division by s2).

Lemma 6.10 The system (6.34) is a regular perturbation problem, with leading order dynam-
ics on compact domains determined by the dynamics of the limiting system

x ′
2 = a,

y′
2 = −x2,

(6.35)

for which all orbits are of the form

y2(x2) = − x22
2a

+ c0,

for constants c0.

Proof This follows by direct integration of the equations (6.35). ��

6.2.4 K21 Chart

The equations in chart K21 can be determined by considering the system (6.32) and applying
the secondary transformation defined by the equations

x = s1,

r2 = s21r21.

We obtain the following system,

y′
2 = −1 + bs1r21y2

(
2 − ey2

)
,

r ′
21 = −2s21r

3
21

(
a − s21r21y2

)
,

s′
1 = s31r

2
21

(
a − s21r21y2

)
,

(6.36)

after applying a time desingularization (division by s1).
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Lemma 6.11 The system (6.36) is invariant in subspaces r21 = 0, s1 = 0, and along the
invariant line

H21 = {(y2, 0, 0) : y2 ∈ R} .

In all three subspaces y2 is the only dynamic variable, with dynamics governed by

y′
2 = −1. (6.37)

Proof Straightforward restriction. ��

6.2.5 K12 Chart

The equations in the chart K12 can be determined by considering the system (3.11) and
applying the secondary transformation

x = s2x2, r1 = s22 .

One obtains the system

x ′
2 = a − s22 − 1

2
x2

(
x2 + bs2

(
2 − e−ε−1

1

))
,

ε′
1 = −ε1

(
x2 + bs2

(
2 − e−ε−1

1

))
,

s′
2 = 1

2
s2

(
x2 + bs2

(
2 − e−ε−1

1

))
,

(6.38)

after a suitable desingularization (division by s2). The system (6.38) has three equilibria:

qi =
(
−√

2a, 0, 0
)

, p12 = (−2b
√
a,

√
a, 0

)
, qo =

(√
2a, 0, 0

)
.

Lemma 6.12 The following holds for the system (6.38):

(i) The equilbria qi and qo are hyperbolic saddles with eigenvalues

λ1,i =
√
a

2
, λ2,i = √

2a, λ3,i = −
√
a

2
,

and

λ1,o = −
√
a

2
, λ2,o = −√

2a, λ3,o =
√
a

2
,

respectively. There is a strong resonance in each case due to the relation λ1,i/o = λ2,i/o+
λ3,i/o.

(ii) The equilibrium p12 is an unstable focus within the invariant ε1 = 0 plane for any b > 0,
a ∈ (0, 2), and coincides upon coordinate change with the true equilibrium of the system
p.

(iii) The lines

G±,12 =
{(

±√
2a, ε1, 0

)
: ε1 ≥ 0

}
are invariant.
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Proof Statements (i) and (ii) are immediate upon linearization of the system (6.38) and an
application of the blow-down map, respectively. To prove the statement (iii), consider the
system in the invariant plane s2 = 0:

x ′
2 = a − 1

2
x22 ,

ε′
1 = −ε1x2.

(6.39)

It is easy to verify that this system has invariant lines along x2 = ±√
2a, ε1 ≥ 0. ��

6.2.6 K11 Chart

The equations in the chart K11 can be determined by considering the system (3.11) and
applying the secondary transformation

x = s1, r1 = s21r11. (6.40)

One obtains the system

r ′
11 = r11

(
1 + bs1r11

(
2 − e−ε−1

1

)
− 2r11

(
a − r11s

2
1

))
,

ε′
1 = −ε1

(
1 + bs1r11

(
2 − e−ε−1

1

))
,

s′
1 = s1r11

(
a − r11s

2
1

)
,

(6.41)

after a time desingularization (division by s1), for which there are two equilibria:

qs = (0, 0, 0), qo,2 =
(
0,

1

2a
, 0

)
.

Lemma 6.13 The following holds for the system (6.41):

(i) The equilibrium qs is partially hyperbolic with a eigenvalues

λ = 1,−1, 0.

The equilibrium qo,2 coincides with the hyperbolic saddle qo observed in chart K12.
(ii) The lines

G+,11 =
{(

1

2a
, ε1, 0

)
: ε1 ≥ 0

}
, H11 = {(0, ε1, 0) : ε1 ≥ 0} ,

are invariant, with ε1 decreasing along G11, and decreasing along H11.

Proof The statement (i) follows immediately by a linearization of (6.41) and an application
of the transition map κ1112.

To prove the statement (ii), consider the system in the invariant plane s1 = 0:

r ′
11 = r11 (1 − 2ar11) ,

ε′
1 = −ε1.

(6.42)

The equations decouple, and the lines along r11 = 1/2a, ε1 ≥ 0 and r11 = 0, ε1 ≥ 0 are
invariant with dynamics governed in each case by

ε′
1 = −ε1.

Hence ε1 is decreasing along G11, and decreasing along H11. ��
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Fig. 22 The complete desingularization near the line L of degenerate equilibria

Taken together, Lemma 6.10, Lemma 6.11, Lemma 6.12 and Lemma 6.13 imply the main
dynamical features associated with the lower portion of the blow-up of L , as sketched in
Fig. 22. Note the resemblance to the regular fold when viewed ‘from below’ (as one might
expect due to the presence of the quadratic tangency in the PWS system). For further details
on the regular fold see [22]. This resemblance is further exemplified by the fact that the
invariant lines G± observed in the K1 j charts connect in the region of the cylinder visible in
the K2 j charts in Fig. 22; this is shown below.

Proposition 6.14 The invariant lines G± observed in charts K1 j connect along the invariant
parabola given in chart K22 coordinates by

y2(x2) = − x22
2a

, r2 = 0.

Proof Starting from chart K11 and applying the relevant blow-down transformation, we may
parameterize the G+ in chart K1 coordinates as

G+,1 =
{(

x,
x2

2a
, ε1

)
: ε1 ≥ 0

}
.

Applying the κ12 transition map in (3.9) gives the following parameterization for G+ in chart
K2,

G+,2 =
{(

x, y2,− x2

2ay2

)
: y2 ≤ 0

}
,
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and applying the secondary blow-up transformation (6.33) and expressing G+,2 in chart K22

coordinates gives

r2 = s22 = − x2

2ay2
= − s22 x

2
2

2ay2
�⇒ y2(x2) = − x22

2a
.

A similar argument applies for G−, and the result follows. ��

7 Summary and Outlook

In this paper, we have proved existence of limit cycles in two prototypical examples with
singular exponential nonlinearities. Our approach was geometric and consisted of the follow-
ing: Firstly, we applied a proper normalization by dividing the right hand side by a suitable
factor, producing a PWS limit as ε → 0. Secondly, we applied a modification of the blow-up
approach following e.g. [22,23] to deal with degeneracies of this type, recall Sect. 2.2. For the
Hester system, this basically led to a system with desirable hyperbolicity properties allowing
us to perturb away from a singular cycle. Under the assumptions (1.11), the exponential
nonlinearities did therefore not provide any obstacles for this result. For the Le Corbeiller
problem, we did not recover the essential geometric structure, recall Fig. 7, by a simple
scaling. Instead the ‘slow manifold’ was hidden within a separate ‘exponential’ blow-up, see
C in Fig. 11. This also led to more complicated asymptotics, recall Lemma 1.6, which we
were able to capture using the method in [20]. The manner in which the analyses differed for
Hester and Le Corbeiller oscillators is also reflected dynamically. For example, the relaxation
oscillations in the Hester system are genuinely slow-fast in the sense that they exhibit a long
period of inactivity, followed by a rapid active phase, the reset; recall Remark 2.1. Hence, the
period of these oscillations is approximated to leading order by the amount of time spent in
the vicinity of the attracting slow manifold, and tends to infinity as ε → 0. By contrast, the
leading order dynamics along the invariant manifold corresponding to the inactive phase of
the Le Corbeiller relaxation oscillations is governed by ẋ = a; recall Lemma 1.6. Here, both
active and inactive phases of the relaxation oscillations occur on the same timescale. Thus
the leading order approximation of the period is determined by the time taken to flow along
the orbit segment �1 according to (1.17), plus the time taken to flow along �2 according to
ẋ = a.

There are a number of directions in which one may extend the analysis of the prototypical
Hester and Le Corbeiller oscillators considered herein. For example, assume in the Hester
oscillator case that (1.11) is violated by γ ≥ 1; then (0, 0) is a stable node for (1.9) and
�1 is therefore asymptotic to this point. This leads to a more degenerate singular cycle in
Fig. 8 with the orbit within y < 0 connecting to the orange circle at x = 0. This point is
‘extra’ singular due to the exponentials. Studying limit cycles in this case would require use
of the same machinery used to describe the oscillations in the Le Corbeiller problem. One
could also consider the termination of relaxation oscillations as a → 0+ in the Le Corbellier
system.Themechanism for termination is a (degenerate) singularly perturbedboundary-focus
bifurcation [15], which occurs when the unstable focus of the limiting PWS system collides
with the switching manifold � for a = 0. Unfolding this bifurcation requires additional
blow-up transformations. In fact, the necessary transformations and singular geometry have
been described in the PhD thesis [13, Ch. 6], where it was shown that similarly to the canard
explosion phenomenon, there exists a family of singular cyclesmediating a transition between
large amplitude relaxation oscillations for a = O(1) and small amplitude oscillations for
a = O(ε). Unlike classical canard explosions, however, the cycles only grow as an algebraic
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(as opposed to exponential) function of ε with respect to variation in a; see also [14,15,24].
The actual onset of oscillations is due to a supercritical Hopf bifurcation in an ε-dependent
domain. The analysis presented in [13, Ch. 6] is purely singular, however, and a proof of
persistence for 0 < ε � 1 remains for future work.

Regarding the generality and extendability of the methods presented herein, it is worthy to
note that a competition between rational/polynomial and exponential/logarithmic terms may
be expected to lead to similar dynamical features even in the absence of an explicit pertur-
bation parameter ε. To see this, consider the very common case in which the term eh(x) with
h(x) = x arises in the right-hand-side. This term will dominate rational/polynomial contri-
butions on large domains when x � 1, while the rational/polynomial terms dominate when
x � −1. Hence, the system will ‘look PWS’ on a large domain. This can be formalised by
rescaling x = ε−1X for some 0 < ε � 1, or by Poincaré compactification. Such systems can
then be studied using the methods developed in this manuscript. It follows that the techniques
presented herein have applicability for a significant and important class of dynamical systems
in applications characterised by competing rational/polynomial and exponential/logarithmic
terms. The adapted blow-up methods presented herein provide a rigorous and systematic
method for connecting dynamical regimes that are well approximated by distinct limiting
problems corresponding to rational/polynomial and exponential/logarithmic terms.

In conclusion, our geometric approach for studying the Hester and the Le Corbeiller
systems is general and we therefore expect that it can be applied to different problems of this
kind, including the ones discussed in the introduction. This will be part of future work in the
area.
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