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Abstract
In the present study, a nonlinear system identification approach based on a long short-term memory (LSTM) neural network 
is applied for the prediction of transonic buffet aerodynamics. The identification approach is applied as a reduced-order 
modeling (ROM) technique for an efficient computation of time-varying integral quantities such as aerodynamic force and 
moment coefficients. Therefore, the nonlinear identification procedure as well as the generalization of the ROM are pre-
sented. The training data set for the LSTM–ROM is provided by performing forced-motion unsteady Reynolds-averaged 
Navier–Stokes simulations. Subsequent to the training process, the ROM is applied for the computation of the aerodynamic 
integral quantities associated with transonic buffet. The performance of the trained ROM is demonstrated by computing the 
aerodynamic loads of the NACA0012 airfoil investigated at transonic freestream conditions. In contrast to previous stud-
ies considering only a pitching excitation, both the pitch and plunge degrees of freedom of the airfoil are individually and 
simultaneously excited by means of an user-defined training signal. Therefore, strong nonlinear effects are considered for the 
training of the ROM. By comparing the results with a full-order computational fluid dynamics solution, a good prediction 
capability of the presented ROM method is indicated. However, compared to the results of previous studies including only 
the airfoil pitching excitation, a slightly reduced prediction performance is shown.

Keywords Nonlinear system identification · Reduced-order model · Long short-term memory neural network · Buffet 
aerodynamics · Computational fluid dynamics

1  Introduction and motivation

Unsteady dynamic aeroelastic and aerodynamic phenom-
ena, such as flutter and buffet, are of paramount importance 
concerning safety and efficiency requirements of passenger 
aircraft. Transonic buffet, also referred to as shock buffet, is 
characterized by shock–boundary layer interaction, result-
ing in self-sustained cycles of shock movement and partial 
flow separation. However, even in the absence of any struc-
tural excitation, these phenomena can occur. A comprehen-
sive overview of computational and experimental studies 
of transonic buffet is given by Giannelis et al. [1]. Several 
studies in recent years revealed that transonic shock buffet 

oscillations are characterized by a characteristic frequency, 
which is a dependent on airfoil shape, Mach number, and 
angle of attack [2, 3].

Due to the self-sustained flow characteristics, the result-
ing aerodynamic forces and moments are characterized 
by unsteady variations. In an industrial context, unsteady 
Reynolds-averaged Navier–Stokes (URANS) simulations 
must be performed to capture the strongly nonlinear flow 
physics associated with shock formation and shock move-
ment [2]. In addition, the applied computational method 
must account for viscous effects to represent boundary layer 
interaction and flow separation. However, to resolve these 
relevant mechanisms, the effort of computational methods 
is still time- and cost-consuming, resulting in a high demand 
for fast and accurate surrogate methods to decrease compu-
tational time and costs. Therefore, a strong focus has been 
set on the further development of system identification and 
reduced-order model (ROM) methods in the past years. Con-
sidering aerospace applications in particular, a short over-
view of linear and nonlinear ROM approaches is given in 
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the following: several studies concerning aerodynamic ROM 
approaches based on linear system identification have been 
conducted. Examples are based on the eigensystem realiza-
tion algorithm (ERA) [4] applied by Silva and Bartels [5], 
the auto-regressive with moving average (ARMA) approach 
applied by Raveh [6], or the auto-regressive with exogeneous 
input (ARX) architecture used by Zhang and Ye [7]. How-
ever, nonlinear system identification methods also capturing 
separated flow conditions and large-amplitude motions are 
still under development. Reliable approaches for the com-
putation of, e.g., flutter and limit-cycle oscillations (LCO) 
are based on radial basis function (RBF) neural networks 
[8] or multilayer perceptron (MLP) neural networks [9, 
10]. Moreover, ROMs based on Kriging interpolation [11] 
and Wiener type models [12] produce accurate predictions. 
Furthermore, Zhang et al. [13] applied a multi-kernel RBF 
neural network for modeling unsteady aerodynamics con-
sidering different flow conditions. In addition, ROMs based 
on fuzzy logic [14–16] yield accurate and reliable results for 
nonlinear system identification purposes.

However, in contrast to the application of ROMs for flut-
ter and LCOs, challenges arise when considering buffet aero-
dynamics. Due to the self-induced unsteady flow condition 
even in the absence of any structural excitation, a transient 
output based on steady system inputs must be covered by 
the applied ROM method. Therefore, a feedback connection 
between the system input and output must be implemented 
[17].

So far, only a limited amount of studies dealing with 
ROMs in the context of transonic buffet is available. Bour-
guet et al. [18] performed buffet investigations using a proper 
orthogonal decomposition (POD) approach. Kou et al. [19] 
applied dynamic mode decomposition (DMD) to identify 
the dominant flow modes associated with transonic buffet. 
Furthermore, Winter and Breitsamter developed a nonlinear 
ROM approach based on a neuro-fuzzy model (NFM) that 
is serially connected with an MLP neural network [20]. The 
application of this approach yields accurate results for the 
prediction of integral aerodynamic quantities associated with 
transonic buffet [17].

In the present paper, a nonlinear ROM approach based 
on a recurrent long short-term memory (LSTM) neural 
network is applied for an aerodynamic investigation of the 
transonic buffet phenomenon. The LSTM network is trained 
and utilized for the computation of integral aerodynamic 
quantities, in particular the lift and pitching moment coef-
ficient, induced by transonic buffet. Therefore, a reference 
numerical data set is computed by means of URANS simula-
tions. As a test case, the NACA00012 airfoil is investigated 
at transonic freestream conditions. Although the following 
training and application procedure has already been applied 
by the authors toward the NACA0012 airfoil undergoing 
user-defined pitch motion [21], the present study includes 

the investigation of strong nonlinear effects due to a user-
defined individual and simultaneous excitation of the pitch 
and plunge DoFs of the NACA0012 airfoil. Compared to 
previous studies, which only considers a pitching excitation, 
a slightly reduced prediction performance of approximately 
10% is indicated for all considered test cases. In addition, 
the training performance of the pitch–plunge-trained ROM 
is reduced in terms of training error and number of training 
iterations. However, since strong nonlinear effects are con-
sidered due to a simultaneous DoF excitation, the prediction 
performance of the trained LSTM is still sufficient.

2  Computational methods

In the following section, the applied ROM approach as well 
the computational methods for the generation of the training 
and validation data are briefly described. Therefore, a short 
introduction of basic recurrent neural networks (RNNs) is 
given, followed by a more detailed description of the applied 
LSTM neural network and the corresponding training proce-
dure. The last subsection covers a short introduction of the 
applied CFD solver.

2.1  Recurrent neural network

RNNs are defined as a class of neural networks, character-
ized by internal self-connections, which allow for sequen-
tial information processing. Since all elements of the input 
sequence are processed in the same manner, the network is 
able to develop a memory based on outputs of current and 
previous time-steps. This characteristic allows the network 
to store information as memory data [22].

A common RNN architecture includes an input and out-
put layer, which are characterized by feed-forward connec-
tions. Between these two layers, one or more hidden layers 
are included, which process data in a recurrent way. Within 
each layer, information is processed by means of activation 
functions, including weights and biases [23].

The training of the RNN is commonly performed by mod-
ifying its parameters using a gradient descent optimization 
[23]. Therefore, a loss function quantifying the accuracy 
of the neural network is minimized to achieve a high net-
work performance. Considering a prediction of time-series 
data, the loss function evaluates and minimizes the differ-
ence between the output as obtained by the network and a 
reference full-order solution. By applying gradient descent 
optimization, a loss function is computed at each time-step, 
followed by an update of the corresponding weights. This 
weight modification is accomplished by computing the gra-
dient of the loss function by means of the backpropagation 
algorithm. Since the algorithm is applied at each time-step, it 
is also referred to as backpropagation through time (BPTT) 
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[24]. However, if the number of hidden layers is increased, 
the vanishing gradient problem can arise during the training 
of an RNN. Due to this issue, information from previous 
time-steps is not taken into account in an efficient way, pos-
sibly resulting in a loss of information provided by the data 
at the current considered time-step [25].

2.2  Long short‑term memory neural network

To avoid the aforementioned vanishing gradient problem, 
a recurrent LSTM neural network architecture is applied in 
the present study to represent the nonlinear system dynam-
ics associated with the transonic buffet phenomenon. The 
LSTM architecture was first published by Hochreiter and 
Schmidhuber [26] and represents a special type of RNNs, 
designed for time-series prediction based on both short- and 
long-term dependencies. In Fig. 1, the node architecture of 
an LSTM network, which is commonly referred to as a cell, 
is illustrated.

Within the LSTM network architecture, a system output 
yt is computed based on the input of the current time-step xt , 
the output from a previous time-step yt−1 , as well as memory 
data ct−1 from several previous time-steps. Since the filter-
ing of memory data is accomplished by linear interactions, 
the LSTM network is able to take information from several 
previous time-steps into consideration for output prediction. 
This characteristic eliminates the aforementioned vanishing 
gradient issue [23]. In contrast to a classical RNN architec-
ture, an LSTM cell processes information by means of three 
different gates, namely the forget gate ft , the input gate it , 
and the output gate ot (see Fig. 1). Within the gate structure, 

data processing is accomplished by either a sigmoid ( � ) or 
tan h activation function and pointwise multiplication.

Within the forget gate ft  , the output from the previous 
time step yt−1 as well as the input of the current time-step xt 
are collected (see Eq. 1)

In Eq. 1, Wf  is defined as the corresponding gate weight 
matrix, while bf  represents a bias vector. By means of an 
activation function, the data are either further processed or 
discarded from the previous cell state. In the present study, 
the sigmoid activation function is chosen (see Eq. 2)

Within the input gate it , input from the present cell state is 
processed by the sigmoid function (see Eq. 3)

Subsequently, a new vector ct is created by means of a tanh 
activation function, including information that is potentially 
chosen to be added to the present cell state. Subsequently, 
the present cell state is updated by multiplying the selected 
data to the state vector ct (see Eq. 4)

At the output gate ot , the output yt of the cell is defined by 
adding the cell data filtered by the activation function (see 
Eq. 5) to the aforementioned state vector

(1)ft = �(Wf [xt, yt−1] + bf ).

(2)�(x) =
1

1 + e−x
.

(3)it = �(Wi[xt, yt−1] + bi).

(4)
c̃t = tan h(Wc[xt, yt−1] + bc)

ct = ftct−1 + itc̃t.

Fig. 1  Architecture of a LSTM 
cell
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Finally, the transferred memory data of the single cell is 
passed to consequent cells or the output layer of the LSTM 
network (see Eq. 6)

Based on a numerical reference data set including the input 
and output system information, the parameters are updated 
in the training process using a backpropagation through 
time (BPTT) [24] approach. For minimizing the training 
error, which is defined as the mean-square error (MSE) in 
the present study, the adaptive moment estimation (ADAM) 
[27] algorithm is applied. By applying ADAM, the overall 
training data set is split into several units, also referred to 
as batches, which are processed to the LSTM network in 
a sequential manner. Furthermore, the algorithm includes 
a learning rate � , which must be defined prior to the train-
ing process. However, in comparison to different gradient 
descent methods such as the Stochastic Gradient Descent 
(SGD), ADAM computes different learning rates for each 
weight of the network by means of gradient moment 
estimation.

2.3  Unsteady aerodynamic reduced‑order 
modeling

In the present study, the LSTM neural network is applied 
for the identification process of the input and output system 
dynamics associated with the transonic buffet phenomenon. 
Considering k as the current discrete time-step, the system 
identification can be defined as follows:

The training and validation of the LSTM–ROM are accom-
plished based on a numerical data set, representing the char-
acteristic system features. Therefore, CFD simulations are 
performed for a certain flow condition, while the structural 
DoFs are excited by means of an user-defined training sig-
nal. For a sufficient application, the signal must be defined 
to cover the amplitude and frequency range, which should 
be predicted by the ROM. Due to the numerical compu-
tation based on external motions, varying time-series of 
aerodynamic forces and moments result. By combining the 
excitation signal, which represents the system input, and the 
resulting CFD calculation output, the merged data set can be 
employed for the training and validation of the ROM.

2.4  CFD solver

The URANS simulations for the computation of the buffet 
phenomenon are conducted using the TAU code developed 

(5)ot = �(Wo[xt, yt−1] + bo).

(6)yt = ot tan h(ct).

(7)yk = f (xk, yk−1, ck−1).

by the German Aerospace Center (DLR) [28]. The computa-
tion of the training, validation, and test data set are accom-
plished using the same settings. TAU solves the URANS 
equations in conservation form using a shock-capturing 
finite volume scheme. For the spatial discretization, a central 
scheme with matrix dissipation is applied. The discretization 
of the convective fluxes is accomplished using a second-
order central scheme, while the gradients are reconstructed 
using a Green–Gauss scheme. The temporal integration is 
performed using a backward Euler implicit scheme, while 
the embedded pseudo-time solution is computed by means 
of a lower upper symmetric Gauss–Seidel (LU-SGS) algo-
rithm. To accelerate the computations, a multi-grid approach 
is applied. For turbulence modeling, the Spalart–Allmaras 
turbulence model with Edwards modification is applied. 
The mesh deformation for the respective pitch and plunge 
motion of the NACA0012 airfoil is implemented using a 
TAU-Python interface.

3  Results

3.1  Test case: NACA0012 airfoil

To investigate the prediction capability of the LSTM–ROM, 
the training procedure introduced in Sect. 2.3 is applied for 
the computation of the lift ( CL ) and pitching moment coef-
ficient ( CMy ) of the NACA0012 airfoil. Based on numerical 
studies performed by Raveh [2], the transonic buffet condi-
tion of the examined airfoil is defined by a free stream Mach 
number of Ma∞ = 0.72 , a Reynolds number of Re = 107 , 
and an angle of attack of � = 6◦ . In Fig. 2, the distribution 
of the pressure coefficient at buffet condition, divided by 
four time-steps within a single buffet period TBuffet , is shown. 
Even without any structural excitation, the cyclic shock 
motion and the change in separation intensity are clearly 
visible. Based on the analysis of the resulting lift coefficient 
response at buffet condition, a reduced buffet frequency of 
kred = 2�f ⋅ cref∕U∞ = 0.43 has been identified. For the pre-
sent investigation, the chord length of the NACA0012 airfoil 
has been defined as cref = 1 m, while the pitching axis is 
located at 25% of the chord length of the airfoil.

The employed, block-structured reference CFD grid is 
discretized by 28 ⋅ 104 elements using ICEM CFD. To ensure 
the independence of the solution from the spatial discretiza-
tion, a grid-sensitivity study was conducted. Therefore, sev-
eral grid refinement steps have been performed. In Fig. 3, the 
time-series of the lift coefficient is presented for the applied 
grid levels. Since the relative error between the grids dis-
cretized by 56 ⋅ 104 and 28 ⋅ 104 elements is computed as 
0.13% and 0.12% with respect to the minimum and maxi-
mum amplitude of CL , the grid with 28 ⋅ 104 cells is cho-
sen for the following study. To define the time-step for the 
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simulations, a time resolution study has been additionally 
performed. Based on the study, the time-steps are chosen 
as �� = 0.11, corresponding to a physical time-step of �t = 
5 ⋅ 10−3 s, since the relative error compared to a smaller time-
step of �t = 1 ⋅ 10−3 s is given as 0.07%. However, increasing 
the time-step to �t = 1 ⋅ 10−2 s results in a relative error of 
almost 5%.

3.2  Generation of training data

For the training of the LSTM–ROM, the pitch and plunge 
DoFs of the NACA0012 airfoil are excited by means of 

an amplitude-modulated pseudo-random binary signal 
(APRBS). This signal type is characterized by a high infor-
mation content per signal length, since a large range of vari-
ous amplitudes and frequencies can be covered [20, 29]. 
Therefore, the application of an APRBS enables a reduction 
in simulation time and costs compared to other excitation 
signals.

For the following study, three different APRBS have been 
randomly defined, including 15,000 time-steps each. For the 
application, the signals have been scaled to limit the pitch 
amplitude to � = ±1◦ . The plunging motion is also limited 
to h = ±1 ⋅ cref  . In addition, the scaled signals are smoothed 
to mitigate large gradients in the original signal. In Fig. 4, 

Fig. 2  Contour plots of the pres-
sure coefficient cp showing the 
buffet cycle of the NACA0012 
airfoil ( Ma∞ = 0.72, Re = 107 , � 
= 6◦ , without excitation). TBuffet 
refers to the buffet period

Fig. 3  Results of the grid-
sensitivity study based on the 
time-series of the unsteady lift 
coefficient CL
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one of the three scaled and smoothed APRBS is exemplary 
shown.

Analogous to the remaining two signals, the first and last 
parts of the APRBS are constructed for a separate excitation 
of the pitch (gray line) and plunge (blue dotted line) DoF, 
respectively. In between these two time instances, a com-
bined excitation of both DoFs is accomplished to capture 
the nonlinear interactions caused by a combined input. The 
separate excitation for the pitch and plunge DoF is defined 
by 6000 time-steps each, whereas the combined excitation 
includes 4500 time-steps.

3.3  Nonlinear system identification

With respect to the application case in Sect. 3, the input of 
the LSTM–ROM is defined by the pitching angle � and the 
plunging degree of freedom h, whereas the lift and pitching 
moment coefficient denote the system output. Therefore, the 
ROM represents a multiple-input/multiple-output system, 
given by the following input ( xt ) and output vector ( yt):

Based on the numerical input and output data set, the 
LSTM–ROM is trained according to the aforementioned 
training procedure (see Sect. 2.3). Prior to the ROM train-
ing, the overall numerical data are divided into a training 
and validation data set. Therefore, two of the three available 
APRBS are applied for the training, whereas the remaining 
one is employed for ROM validation during training.

To define the hyperparameters for the training process, 
an extensive parameter study is conducted. Based on the 
study, the following hyperparameters of the LSTM net-
work are defined: the number of hidden layers is varied 
between one and three; however, two hidden layers are 
chosen for the recent study. A single-layer LSTM indicates 
a lower performance quality, whereas the implementation 

(8)
xt = [�, h]

yt = [CL,CMy
]T.

of three hidden layers intensively increases the training 
time. For each of the two hidden layers, the following 
number of neurons is considered: nneurons = [50, 100, 200]. 
Since the implementation of 100 and 200 neurons also 
results in an increasing training time without any consider-
able performance improvement, the number of neurons per 
layer is set to 50. As already stated in Sect. 2.2, the ROM 
is trained using gradient descent with an initial learning 
rate of � = 0.001. An increase of the learning rate to � = 
0.01 results in an acceleration of convergence; however, 
the training performance decreases. Reducing the learn-
ing rate to � = 0.0001 leads to a deceleration of conver-
gence and therefore an considerable increase in training 
time. Since two of the three available APRBS are chosen 
for LSTM training, the training batch size is defined as 
two. The number of time-steps is equal to the number of 
time-steps covered by the training signals. Furthermore, 
instead of using the entire number of training samples in 
each batch, a sequence length of 100 time-steps is selected. 
Since both the excitation of the pitch and plunge DoF are 
considered, the number of input features is defined as 
two. Furthermore, as already stated in Sect. 2.2, a tan h 
is selected as the state activation function, while the gate 
activation function is chosen as � . The convergence trends 
of the LSTM–ROM during the training process are visual-
ized in Fig. 5

Prior to the application of the LSTM network for 
unknown data prediction, the LSTM network is applied 
to the training data itself by performing multi-step ahead 
predictions. In Fig. 6, the results of the lift coefficient due 
to the excitation of the APRBS, as shown in Fig. 4, are 
given. The results as computed by the LSTM–ROM are 
compared to the reference CFD solution.

For error quantification, the fit factor Qi [30], as defined 
in Eq. (9), is computed. Therefore, the model output ŷ is 
represented by the ROM response. A fit factor of 100% 
defines an exact agreement between the ROM and the CFD 
results [20]

Fig. 4  Time-series of the scaled 
and smoothed training signal 
(APRBS) for a separate and 
combined excitation of the pitch 
and plunge degree of freedom
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Based on the results of the reference CFD simulation 
and the ROM prediction, fit factors of Qi(CL) = 86.36% and 
Qi(CMy) = 85.12% are computed for the lift and pitching 
moment coefficient, respectively. As it can be seen, the ROM 
prediction of the lift and pitching moment coefficient yields 
a good agreement with the CFD solution, which is a mini-
mum requirement for further application tests.

4  Application of the LSTM–ROM

For the final model generalization test, sine signals represent-
ing different reduced frequencies kred,Ex = [0.2,0.4,0.6,0.8] 
are defined for the excitation of both DoFs. The test signal 
representing a reduced frequency of kred,Ex = 0.2 is exem-
plary shown in Fig. 7. Analogous to the training signal, the 

(9)Qi = 100% ⋅

⎡
⎢⎢⎢⎣
1 −

�∑Ns

s=1
(yi(s) − ŷi(s))

2

�∑Ns

s=1
(yi(s))

2

⎤
⎥⎥⎥⎦
.

Fig. 5  Training and validation losses of the LSTM/ROM

Fig. 7  Combined sine signal 
representing a reduced fre-
quency of kred,Ex = 0.2 for the 
separate and combined excita-
tion of the pitch and plunge 
DoF (NACA0012 airfoil, 
Ma∞ = 0.72 , Re = 107 , and � 
= 6◦)

Fig. 6  Lift coefficient response 
caused by the scaled APRBS 
excitation (NACA0012, 
Ma∞ = 0.72 , Re = 107 , and 
� = 6◦ ). Besides the CFD refer-
ence solution, the simulation 
result of the LSTM–ROM is 
shown
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pitching amplitude is defined as � = ± 1◦ , whereas the 
plunge motion is limited to h = ± 0.1 ⋅ cref  . The refer-
ence full-order CFD simulations are computed based on the 
aforementioned TAU setup. To compare the ROM and CFD 
solutions without the influence of any initial transient errors, 
in total, 14 excitation periods have been computed for each 
DoF with both the CFD solver and the LSTM–ROM. Fur-
thermore, the combined excitation period is represented by 
seven cycles. To provide a clear visualization of the results, 
time-domain as well as frequency-domain responses are pre-
sented in the following. The frequency-domain responses 
are visualized using a Fast-Fourier Transformation (FFT), 
plotted over the reduced frequency ( kred).

Evaluating the time- and frequency-domain response 
of the lift coefficient (see Figs. (8, 9), a nonlinear and fre-
quency-dependent interaction between the airfoil motion 
and the buffet phenomenon is visible. The same interaction 
is also visible in the resulting pitching moment coefficient 
(see Fig. 10). This interaction has already been studied by 
Raveh [2] and Winter and Breitsamter [17] for the consid-
ered NACA0012 airfoil test case. For a reduced frequency 

of kred,Ex = 0.2, which is smaller than the corresponding 
shock buffet reduced frequency ( kred,Buffet = 0.43), an inter-
action of the buffet frequency and the airfoil motion fre-
quency is indicated. The influence of the shock buffet can 
be clearly distinguished from the effects resulting from 
the combined airfoil excitation. Furthermore, the buffet 
frequency appears to be less distinctive than the excitation 
frequency of kred,Ex = 0.2. In addition, also other frequency 
peaks at around kred = 0.4 and kred = 0.6 occur, which 
might be a result of the high nonlinear interaction.

In contrast, considering an excitation frequency of kred,Ex 
= 0.4, which is very close to the buffet frequency, the influ-
ence of buffet decreases to a large extent and the system is 
predominantly governed by the applied airfoil motion [17]. 
This characteristic is known as the “lock-in” effect [2]. Con-
sidering the remaining application cases, also a decrease in 
the buffet frequency is indicated. For both cases, most of the 
excitation response is represented by the airfoil excitation 
motion. However, at an airfoil excitation of kred,Ex = 0.8, 
the peak of the buffet frequency ( kred,Ex = 0.43) is larger 
compared to the excitations of kred,Ex = 0.4 and kred,Ex = 0.6.

Fig. 8  Time-domain responses 
of the lift coefficient result-
ing from harmonic pitch and 
plunge motions with kred,Ex = 
[0.2,0.4,0.6,0.8]. The results of 
the LSTM–ROM are compared 
to the reference CFD solution 
( Ma∞ = 0.72, Re = 107 , � = 6◦)
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Although the underlying flow physics of the buffet phe-
nomenon are nonlinear to a high extent, a comparison of the 
reference CFD results with the results of the LSTM–ROM 
yields a good prediction capability of the selected test cases. 
Some less dominant frequency peaks are not fully captured 
by the LSTM network; however, the most dominant peaks 
are represented correctly in frequency and amplitude. Con-
sidering the computed fit factors, which are summarized in 
Table 1, a sufficient performance quality is further empha-
sized. In addition, the LSTM–ROM is able to capture the 
lock-in effect originating from the separate and combined 
excitation of the pitch and plunge DoF.

5  Computational effort

In the present work, the computations for the CFD refer-
ence solutions have been performed on the SuperMUC-NG 
of the Leibniz Supercomputing Centre, using 6 nodes with 
48 cores each, resulting in 288 cores. In contrast, the ROM 

computations have been conducted on a state-of-the-art 
workstation using a single Intel Xeon 2.2 GHz processor.

The computation of the APRBS forced-motion CFD 
simulation required approximately 72 h on the SuperMUC-
NG. Therefore, considering the number of applied cores, an 
overall computational time of 20,736 CPU hours results. In 
contrast, the LSTM–ROM training process was conducted 
within approximately one CPU hour on the workstation. 
Thus, the overall computational effort for the ROM training 
is summed up to 20,737 CPU hours, while the computations 
of the APRBS response have the highest share on the overall 
ROM training process.

Due to the dependency of the oscillation period on 
kred,Ex , a different number of computed time-steps is set for 
each of the harmonic motions with varying frequencies. 
Therefore, an averaged computation time of 48 h with the 
TAU solver is assumed for each simulation, resulting in a 
total computational time of 55,296 ( 4∗48∗288 ) CPU hours. 
In contrast, the computation of the LSTM–ROM required 
on average 2 h for each harmonic motion excitation, 

Fig. 9  Frequency-domain 
responses of the lift coeffi-
cient resulting from harmonic 
pitch and plunge motions with 
kred,Ex = [0.2,0.4,0.6,0.8]. The 
results of the LSTM–ROM are 
compared to the reference CFD 
solution ( Ma∞ = 0.72, Re = 
107 , � = 6◦)
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resulting in a total computational time of 8 CPU hours. 
Therefore, considering the number of selected test cases 
and the APRBS training computation, a reduction of com-
putational time by a factor of 2.66 was achieved. However, 
without considering the computational time necessary for 
the computation of the training data, for every additional 
test simulation, a reduction by four orders of magnitude is 
possible.

6  Conclusion

In this paper, an unsteady aerodynamic reduced-order model 
(ROM) based on a long short-term memory (LSTM) neural 
network was applied to predict integral aerodynamic forces 
and moments associated with transonic buffet. Therefore, a 
training data set computed by means of unsteady Reynolds-
averaged Navier–Stokes simulations has been provided. 
To demonstrate the prediction capability of the ROM, the 
NACA0012 airfoil was investigated at a transonic buffet con-
dition, undergoing individual and simultaneous pitch and 
plunge motions. Based on the results, a precise performance 
quality for predicting both the self-sustained unsteadiness 
and the characteristics resulting from the external excitation 
was emphasized. Furthermore, the overall computational 
effort was reduced by four orders of magnitude compared to 
a full-order computational fluid-dynamics solution for every 
additional simulation, neglecting the production time of the 
training data. However, compared to previous studies con-
sidering only an individual pitching excitation, a decrease 

Fig. 10  Frequency-domain 
responses of the pitching 
moment coefficient result-
ing from harmonic pitch and 
plunge motions with kred,Ex = 
[0.2,0.4,0.6,0.8]. The results of 
the LSTM–ROM are compared 
to the reference CFD solution 
( Ma∞ = 0.72, Re = 107 , � = 6◦)

Table 1  Corresponding fit 
factors of the application of 
harmonic airfoil motions with 
varying frequencies ( � = ±1◦ , 
h = 0.1 ⋅ c

ref
)

kred,Ex Q(CL) (%) Q(CMy) (%)

0.2 78.09 79.23
0.4 83.14 77.46
0.6 82.78 80.82
0.8 83.94 78.04
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in prediction performance of approximately 10% was indi-
cated for all considered test cases. In addition, the training 
performance of the LSTM–ROM was reduced. However, 
since the trained ROM has been applied for the prediction 
of strong nonlinear effects due to a simultaneous DoF exci-
tation, the resulting performance quality is still sufficient. 
For future studies, it is intended to apply the LSTM–ROM 
to three-dimensional aircraft configurations. Furthermore, 
coupling the ROM with a structural model will allow for the 
computation of aeroelastic buffeting.
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