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Abstract
Production systems of the automotive industry process parts that were previously designed and manufactured according 
to different manufacturing technologies. In car body architectures, additive manufacturing (AM) has become a relevant 
technology for supplementing conventional manufacturing technologies, e.g., casting or forming technologies. This paper 
presents a methodology for an automatic and objective early-stage analysis of part features and the subsequent identifica-
tion of the parts’ most suitable manufacturing technology. For this purpose, a comprehensive database is required, in which 
several technological and economic parameters need to be derived and predicted, including part requirements, production 
inherences, expected lifecycle costs, as well as geometric information. Based on this, data screening allows to effectively 
evaluate the technological and economic potential for a component to be manufactured either conventionally or additively 
in early product development phases. One core element is the part requirements derivation and analysis within one novel 
module of the part screening methodology. Subsequently, the product development process and the production system can 
be adapted according to the identified, most promising manufacturing technologies. Hence, this early-stage decision allows 
for cost reduction through an increased planning reliability. This work thus contributes to a successful co-evolution of smart 
product development and the production processes.

Keywords  Part screening · Additive manufacturing · Manufacturing system design · Early-stage flexibility · Smart 
production planning

1  Introduction

Considering the challenges of modern production systems, 
the ability to adapt themselves early and flexibly is becoming 
increasingly important and represents a significant competi-
tive advantage [1]. To ensure efficient and flexible product 
development and production, it is important to gain certainty 
regarding the parts’ manufacturing technologies early in the 
development process [2]. To achieve this, part screening 
methods can be used for this early-stage selection, allowing 
automatic analyses of components’ characteristics part by 
part [3]. These methods must consider technological and 
economic factors to identify the most suitable technology 

[4, 5]. Only in that way, they enable an early-stage, holistic 
comparison of manufacturing scenarios while predicting or 
deriving component´s features.

In addition to conventional manufacturing technologies, 
additive manufacturing (AM, also called 3D-printing) has 
potential to supplement future production systems because 
of exclusive advantages, e.g., geometric design freedom and 
reduction of manufacturing tool investments [6, 7]. How-
ever, AM still needs to achieve the productivity of conven-
tional processes, e.g., casting or forming technologies [8, 9]. 
Unlike other part screening approaches, this paper’s meth-
odology thus aims at eliminating the limitation of analyzing 
only one manufacturing technology at a time.

First, the work at hand analyzes existing methods to 
assess manufacturing technologies. Then, it presents a part 
screening methodology consisting of four novel part screen-
ing modules. Each module addresses one of the core aspects 
for an early manufacturing technology selection [10, 11]:

 *	 Tobias Buechler 
	 tobias.buechler@iwb.tum.de

1	 Institute for Machine Tools and Industrial Management, 
Technical University of Munich, 80333 Munich, Germany

2	 BMW AG, 80788 Munich, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11740-021-01070-2&domain=pdf


24	 Production Engineering (2022) 16:23–41

1 3

•	 The parts’ requirements (reg. corrosion, crash, and tem-
perature resistance),

•	 Production related inherences for each manufacturing 
scenario (e.g., joining complexity in the final product’s 
production line),

•	 The parts’ expected costs for each manufacturing sce-
nario,

•	 Early-stage abstract geometric information (e.g., the 
parts’ bounding box).

In summary, the methodology and its modules enable an 
early-stage prediction and derivation of component features 
and the subsequent selection of the most suitable manufac-
turing technology for each individual part. As a result, the 
use of the methodology prevents efficiency losses that occur 
when developing a component according to a manufacturing 
technology that is subsequently identified as not suitable.

2 � Part screening and evaluating technology 
potentials

2.1 � State of the art

Design methodology in product development. Current 
approaches in design methodology, such as extended map-
ping matrices, offer manual frameworks to facilitate and 
intertwine design and development processes [12]. However, 
they are not suitable for a highly automated field like part 
screening. Other approaches focus on production systems 
design but lack insights on a component level [13].

General approaches for evaluating technology poten-
tials. Various screening and decision-making methods are 
used to assess manufacturing technology potentials [14]. 
Some approaches focus exclusively on identifying the best 
technology chain setup [15]. Others aim at a systematic and 
early identification of rising production technologies or at an 
efficient substitution management [16]. Most of the technol-
ogy evaluation methodologies focus on the technology and 
its machines itself, rather than evaluating every component 
individually [17].

In contrast, part screening approaches work on a com-
ponent level but mostly focus on identifying suitable AM 
parts. However, some approaches require manual selection 
steps that prevent efficient assessments of many parts at a 
time [5, 6]. Other AM screening methodologies focus on the 
cost calculation of manufacturing costs but neglect further 
relevant parameters for an AM evaluation [18].

Detailed analysis of an AM part screening approach. 
A modular part screening approach was selected to explain 
and visualize AM screening [19]. This existing approach 
is depicted in Fig. 1. It is considered as the most suitable 

approach for the succeeding explanations because of the fol-
lowing characteristics:

•	 Modular logic → suitable for necessary extensions (new 
modules).

•	 Part screening on a component level → consistent with 
this paper’s methodology.

•	 Application in the automotive industry → consistent 
application example.

First, data such as parts lists containing IDs, names, and 
masses is collected. Then, geometric data of preceding 
development projects is supplemented, assuming a similar 
design of succeeding future parts. The component data is 
transformed into tessellation data (angles, wall thicknesses) 
to quantify the geometric complexity. A k-nearest neighbor 
approach (supported by a reference parts database) transfers 
the information into geometry-related complexity classes. 
Parts with a high geometric complexity are more likely to be 
potential AM parts in future development projects. Trained 
neural networks for material prediction are employed to 
compensate for possible information gaps. Furthermore, a 
filling degree prediction assesses the best arrangement of 
the components in the building space of the 3D printer. The 
prediction is based on numerous historical data sets from 
construction jobs that trained the underlying support vector 
machine. Finally, historic cost data, such as the manufac-
turing costs and required tool investments of conventional 
technology alternatives complete the data base.

At last, these collected parameters serve as input variables 
for a fuzzy logic system. Fuzzy systems imitate the human 
ability to make decisions based on imprecise and non-
numerical information [20]. The scaled information of the 
input variables is first fuzzyfied via membership functions. 
Then, the fuzzy values are used for a calculation and are 
defuzzyfied via the fuzzy output variable: the AM potential 
for each component [21]. More details regarding the fuzzy 
logic and its extensions can be found in Sect. 4.3.

2.2 � Need for action

By analyzing state-of-art methods, the need for improve-
ment is evident regarding certain critical points: current 
approaches either lack automation, neglect parameters, work 
non-predictive, or focus exclusively on one manufacturing 
technology.

The relevance of missing parameters was confirmed via 
empirical assessments of previous screening results and 
interviews with experts in materials science and liability 
approvals. Liability approvals ensure the conformance of 
products with legal and technological requirements. The 
empirical assessments of samples from preceding devel-
opment projects showed that some parts with a presumed 
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high AM potential were, in fact, not ideally suitable to be 
3D-printed (see Table 1).

Specifications regarding requirements, e.g., for corro-
sion, crash, and temperature resistance, are highly relevant 
to assess manufacturing technology potentials. However, 
these categories are not considered in current screening 

approaches due to the lack of requirements information in 
early development phases. This first potential improvement 
is addressed by the new requirements derivation module, 
which will be presented in Sects. 3.1 and 4.1.

Another potential improvement is the economic evalua-
tion of the components in different manufacturing scenarios. 

Fig. 1   Modular part screening 
flow chart for additive manufac-
turing, based on [19] (symbols 
according to ISO 5807)
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In existing screening approaches, few costs are considered 
and compared in a non-predictive manner, e.g., direct manu-
facturing costs or one-time-investments. Hence, the current 
approach relies on historic cost data of preceding develop-
ment projects. Furthermore, a lifecycle analysis must include 
the steps before and after production of the components [22]. 
Another decisive factor is the quantification of the respec-
tive technology’s advantages, e.g., lightweight design [23, 
24]. Conducting a cost comparison at an early stage in 
product development inevitably requires a cost prediction 
to fill information gaps. This predictive cost estimation is 
addressed in the second and third new module, which will 
be presented as concepts in Sects. 3.2 and 4.2.

This paper hence contributes to overcoming the lack of 
automated, early-stage technology selection approaches on 
a component level. The modules aim at answering the fol-
lowing research questions:

1.	 How can relevant screening parameters be derived and 
predicted early in product development?

2.	 How can the methodology and its modules ensure an 
automated approach that is suitable for large amounts 
of data and components?

3.	 How can manufacturing scenarios be compared objec-
tively for each individual component?

3 � General methodology for an automated 
manufacturing technology selection 
in early development phases

The methodology consists of novel modules that provide 
new parameters for the evaluation of manufacturing scenar-
ios for each individual component, as illustrated in Fig. 2. 
Three of the four modules will be elaborated upon in Sects. 3 
and 4: The requirements module, the production module, 
and the cost prediction module.

Each module faces the challenge of analyzing parts 
regarding the most promising manufacturing technology 
before necessary information is available. Hence, the mod-
ules process and predict data to provide the overarching 

Table 1   Expert discussion of parts that were classified as potential AM parts

AM part screening suggestions Critical requirement Outcome expert discussion Valid screen-
ing sugges-
tion?Part ID Part name

7484xxx Holder isofix Crash resistance Heat treatment T7 required to resist crash forces
AM-Material not yet qualified

No

9623xxx Holder rear seat Crash resistance Heat treatment T7 required to resist crash forces
AM-Material not yet qualified

No

2880xxx Adapter winglet Corrosion resistance Cathodic electrophoretic coating required
AM-Material not yet qualified

No

Fig. 2   Early-stage part screening for an automatic selection of the most suitable manufacturing technology for each component
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screening methodology and its fuzzy inference systems with 
necessary information (see Fig. 3).

3.1 � Requirements module: automatic early‑stage 
derivation of part requirements

The requirements module was elaborated to test the follow-
ing hypothesis: The derivation and consideration of part 
requirements is essential for an early and precise evaluation 
of manufacturing technology potentials in part screening.

The most suitable manufacturing technology must be 
selected early in product development, even though some 
requirements might not yet be specified. Hence, a require-
ments module was developed, which derives part require-
ments based on the location (building areas) in the final 
product (see Fig. 4). To ensure a reliable and predictive 
derivation, predesign information is used: the final prod-
uct’s building areas must be manually assigned with expert 
knowledge and data of requirement sheets (one-time step, 
see Fig. 5). Subsequently, components can be automatically 
allocated to building areas based on their coordinates allow-
ing for a derivation of requirement classes. Relevant require-
ments categories include corrosion, crash, and temperature. 
These are used as examples for demonstrating the logic of 

Fig. 3   The modules’ general 
steps for an early-stage deriva-
tion and prediction of data

Fig. 4   General steps for deriv-
ing part requirements early in 
product development
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the requirements classification in three increments: high 
requirements, medium requirements, and low requirements. 
The requirements module will be exemplarily executed in 
Sect. 4.1.

3.2 � Production module and cost module: 
estimating costs early in product development

Production module. The production module generates 
information regarding the different manufacturing scenarios 
for each part and their effect on the production line.

Predicting the joining complexity: After a training phase 
with historic data, abstract geometric information is used 
to estimate the parts’ joining complexity (JC) in the final 
product’s production line for each manufacturing scenario. 
The joining complexity is quantified using the 2014 Harbour 

Report Methodology. It enables a quantitative comparison 
of relevant joining technologies by standardizing the joining 
complexity with spot welding as a reference, as illustrated 
in Table 2 [25].

Deriving further parameters: The production module 
generates further data based on user selections, such as the 
intended production location or the so-called commodity sce-
narios. Backend production data (e.g., the plant’s clock rate, 
production quantities) and inbound logistics information for 
purchased parts can thus be derived for each manufacturing 
scenario. Furthermore, it roughly estimates the technolo-
gies’ lightweight potentials based on implemented expert 
knowledge and suggests the merger of smaller, separate parts 
for the AM and the casting scenario. These integral sugges-
tions are based on similar materials, wall thicknesses, and 
adjoining locations.

Finally, the production module transmits the generated 
data to the cost module to contribute to an early cost predic-
tion (see Fig. 6).

Cost prediction module. First, historic cost data must 
be collected to enable the subsequent training of predic-
tion models. Machine planning and start-up costs supple-
ment manufacturing costs and one-time investments. Costs 
associated with the production process, such as costs for 
inbound logistics, storage, and production line investments 
also need to be added [26]. The different cost positions are 
analyzed regarding their relevance for the lifecycle view. 
To ensure a successful training, clustering methods identify 
patterns in the historic data sets, such as suitable input fea-
tures and specific cost structures of different manufacturing 

Fig. 5   Requirement sheets 
and expert data used to assign 
requirement classes to building 
areas

Table 2   Excerpt of the joining complexity (JC) values

JC Warm joining technolo-
gies

Cold joining technolo-
gies

Pointwise 
applica-
tion

Spot welding 1 Punch riveting 2
Projection welding 1.5 Clinching 1.5

Longitu-
dinal 
applica-
tion per 
mm

Laser soldering 0.03 Structural bonding 0.003
Torch brazing 0.14 Crimping 0.014
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technologies. Following the data collection, different cost 
prediction algorithms are trained with historic data for each 
cost type: Linear Regressions, Neural Nets, Random For-
rests and Ensemble Learning Models. The best performing 
prediction model is selected for each cost type based on 
statistical figures (bias, variance, R2-value, mean absolute 
error) and accuracy plots (see Fig. 7).

Future costs can thus be estimated for different manu-
facturing scenarios to fill information gaps of upcoming 
development projects at an early point in time (see Fig. 8).

3.3 � Part screening: uniting and analyzing 
the modules’ outputs

Each module predicts and derives data and provides the 
part screening methodology with necessary information to 
evaluate the different manufacturing scenarios. To handle 
the different kinds of modular information (quantitative data, 
requirement classes, etc.), the screening methodology uses 
fuzzy rule sets for each manufacturing scenario (see Fig. 9). 
These fuzzy rules embody expert knowledge and thus rep-
resent the strengths and weaknesses of each manufacturing 
technology. Exemplary fuzzy rules can be found in Sect. 4.3.

Concluding Sect. 3, the expanded part screening flow 
chart is illustrated in Fig. 10, containing the four new mod-
ules that contribute to an automated early stage manufactur-
ing technology comparison.

4 � Exemplary application: car body 
development

The automotive industry serves as an application example 
for introducing three of the new modules. The detailed con-
struction and design of car body parts relies on the previ-
ous, early-stage selection of the respective manufacturing 
technology for each part (see Fig. 11). So far, this decision 
is based on human experience or non-automatic evaluations 

Fig. 6   The production module 
predicts and derives information 
for the succeeding cost module

Fig. 7   Exemplary accuracy plot of cost type A and prediction model 
A (e.g., a Neural Net)
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and is hence biased towards the status quo of preceding 
product developments. The modules address this issue 
by quantifying and objectifying relevant input and output 
parameters to minimize the human bias. An early technol-
ogy selection inevitably implies a critical data availability 

since there is no holistic component information before the 
construction and design phase. To overcome this challenge, 
the modules will fill these information gaps with predictions 
and derivations based on elementary data that exists in early 
development phases, e.g.:

Fig. 8   General steps for a pre-
dictive estimation of costs early 
in product development

Fig. 9   Uniting and analyzing 
the modules’ outputs with fuzzy 
rules
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Fig. 10   Extended screening 
flow chart for an early manufac-
turing technology selection
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•	 The parts’ rough geometry (bounding box).
•	 The parts’ rough volume and mass.
•	 The parts’ installation location in the final product (the 

car body).

4.1 � Requirements module: automatic early‑stage 
derivation of part requirements

Car Body Area Logic. The overarching goal is to automati-
cally derive component requirements using input sources 
that exist early in product development processes, e.g. speci-
fication sheets, part names, and part installation locations. 
To achieve this, the vehicle architecture was divided into 

car body areas on a coordinate basis. The selected refer-
ence model comprises 89 cuboids as car body areas. One 
exemplary layer of car body areas is illustrated in Fig. 12. 
By using specification sheets, requirements management 
systems, and expert knowledge, a requirements definition 
was developed for each car body area. The two exemplary 
data sets in Fig. 12 depict the coordinates and applicable 
requirements of two car body areas.

Transferability to differing vehicle architectures. A 
major challenge to achieve the automatic assignment of 
components to car body areas is the transferability to differ-
ing vehicle architectures, which vary significantly in terms 
of coordinates. Two vehicle models serve as examples for 
the following explanations: base model (index b) builds the 
basis, focus model (index f) represents the target for the 
intended car body area conversion.

Fig. 11   Early application of 
the methodology in product 
development

Fig. 12   Exemplary layer of the car body area division with two exemplary data sets, including the assigned requirement classes
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To ensure this portability, conversion formulas were 
developed based on the manually built base model and 
existing vehicle dimension databases. These formulas auto-
matically stretch or compress the car body areas of the base 
model, allowing to flexibly fit the focus model’s car body 
architecture (see Fig. 13). The dimension databases con-
tain more than 200 dimensions, such as different wheel-
bases, vehicle widths, etc. (see Fig. 14). These databases 
exist early in the product development process and include 
various vehicle types (sedan, SUV, sport) and drive variants 
(battery electric or combustion engine). In some cases, the 
variances between certain car body areas of different vehicle 
architectures were too big to be covered by the conversion 

formulas. To address this issue, a base model and respective 
car body areas were defined for different types of vehicle 
architectures.

Furthermore, expert knowledge about the correlation 
of dimension differences between base model b and focus 
model f and their effect on car body area coordinates was 
implemented (see Table 3 and Fig. 14). This knowledge also 
differentiates between redundant and cumulative dimension 
effects. For instance, some dimensions are allocated parallel 
to each other. In this case, only one of the parallel dimen-
sions need to be considered to calculate the correct con-
version factor. On the other hand, dimensions can also be 
aligned serially, causing a cumulative effect that requires 
considering several dimensional differences to correctly 
stretch or compress the respective car body area (see Eqs. 2 
and 3). In combination with the conversion formulas, the 
implemented knowledge enables a derivation of the car body 
areas’ change on a coordinate basis.

Since neighboring car body areas inevitably share coordi-
nates, calculated coordinates are also valid for the respective 
car body areas that adjoin. Hence, shared coordinates are 
adopted by neighboring car body areas (see Fig. 15). This 
adoption avoids superfluous calculations of shared coordi-
nates and gaps between adjoining areas.

The conversion formulas work as follows: dimensions 
(DX, DY, DZ) are automatically gathered from the existing 
databases in x, y, and z direction for base model b and focus 
model f. Afterwards, percentage deviations between dimen-
sions of the base model and the focus model can be quanti-
fied and converted into conversion factors FX, FY, or FZ for 
all three coordinate directions and each dimension(i), where 
i is the running index (Eq. 1).

Fig. 13   Logic for the automatic adaption of car body area coordinates from base model b to focus model f using the existing vehicle dimension 
database

Fig. 14   Exemplary dimensions III and VII: gauge front and back
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Next, the manually built base model’s car body areas 
(running index j) are stretched or compressed by multiply-
ing its coordinates with relevant conversion factors (Eqs. 2 
and 3). The coordinates of one car body area can be affected 
by more than one dimension, potentially leading to a sum of 
relevant conversion factors in Eqs. 2 and 3 according to the 
implemented expert knowledge (see Table 2).

(1)

FXf ,dimension(i) = 1 −
DXf ,dimension(i)

DXb,dimension(i)

FYf ,dimension(i) = 1 −
DYf ,dimension(i)

DYb,dimension(i)

FZf ,dimension(i) = 1 −
DZf ,dimension(i)

DZb,dimension(i)

(2)

⎛
⎜⎜⎝

Xmin

Ymin

Zmin

⎞
⎟⎟⎠f ,area(j)

=

⎧
⎪⎨⎪⎩

Xmin,f ,area(j) = Xmin,b,area(j) ∗ (1 −
∑

i FXf ,dimension(i))

Ymin,f ,area(j) = Ymin,b,area(j) ∗ (1 −
∑

i FYf ,dimension(i))

Zmin,f ,area(j) = Zmin,b,area(j) ∗ (1 −
∑

i FZf ,dimension(i))

Additionally, Table 4 and Fig. 16 help to understand the 
equations by providing an exemplary calculation of the coor-
dinates of focus model car body area 7.

The combination of calculating further changes and 
adopting shared coordinates enables an automatic adaptation 
of all car body areas, thus leading to a comprehensive car 
body area model. Hence, this automatic adaption achieves 
the goal of ensuring a transferability of the methodology to 
differing car models.

Application and output of the requirements module. 
By using existing parts lists as an input, components from 
a wide range of vehicle architectures can be automatically 
allocated to car body areas based on their coordinates. This 
assignment allows an auto-matic derivation of requirements 
that the components need to fulfill (see Figs. 17, 18). The 
derivation of crash requirements is supplemented with infor-
mation drawn out of specific crash databases. The gained 

(3)

⎛
⎜⎜⎜⎝

Xmax

Ymax

Zmax

⎞
⎟⎟⎟⎠f ,area(j)

=

⎧
⎪⎨⎪⎩

Xmax,f ,area(j) = Xmax,b,area(j) ∗ (1 −
∑

i FXf ,dimension(i))

Ymax,f ,area(j) = Ymax,b,area(j) ∗ (1 −
∑

i FYf ,dimension(i))

Zmax,f ,area(j) = Zmax,b,area(j) ∗ (1 −
∑

i FZf ,dimension(i))

Table 3   Implemented knowledge: Certain dimensions affect certain car body areas, essential for calculating relevant conversion factors F in 
Eq. (2.1) and Eq. (2.2) 

Car body area Car body area name Relevant dimensions Relevant dimensions:

Minimum car body area 
coordinates

Maximum car 
body area coor-
dinates

7 Engine zone (hot end) (I) Overlap front
(II) Front wheel center
(III) Gauge front
(IV) Height front hood
(V) Ground clearance

Xmin: I + II
Ymin: III
Zmin: V

Xmax: I + II
Ymax: III
Zmax: IV − V

28 Underbody (rear axis area) (VI) Wheel base
(VII) Gauge back
(VIII) Ground clearance

Xmin: VI
Ymin: 0
Zmin: VIII

Xmax: VI
Ymax: VII
Zmax: 0

Fig. 15   Exemplary logic for 
adopting shared coordinates 
between neighboring body areas
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knowledge regarding the requirements enriches the fuzzy 
logic system for the manufacturing technology potential 
assessment, as described in Sect.  4.3. Furthermore, an 
approach related to named entity recognition is applied: The 
components names are being searched for defined strings 
and combined with the automatic allocation in a specific 
car body area to enable a functionality classification for 

each part. Unlike the usual named entity recognition, this 
approach focuses on words only rather than full sentences 
[27]. Exemplary functionalities include sealing, directing 
strains, connecting parts, or deliberate deforming in crash 
scenarios. For instance, if the comp-

onent’s name contains strings such as {strut, reinforce-
ment, column, crash} or if the component is installed in the 
car body area of a suspension strut dome, the primary task 
is that of guiding high forces and strains. The knowledge 
regarding these functionalities allows further analyses and 
fuzzy rule extensions that are currently being developed.

Table 4   Exemplary calculation of the minimum x coordinate of focus 
model f car body area 7 using Eq. (1) and (2.1) (input information in 
light blue, calculations in white)

Car Body Area Name Xmin, b, area(j)

Coordinate

7 Engine Zone (Hot End) Xb,min,area(7) = − 576

Relevant Dimensions Car Body 
Area 7 (Table 3)

DXdimension(i) 
Base Model b / Focus Model f
(Existing Database)

(I) Overlap Front
(II) Front Wheel Center
X: I + II

(I) (b): 500 mm
(II) (b): 1000 mm
(I) (f): 489 mm
(II) (f): 986 mm

FXf ,dimension(i)

(Eq. 1)
X
���,� ,area(j) 

Coordinate
(Eq. 2.1)

FXf ,dimension(I)

= 1 − DXf ,dimension(I)

DXb,dimension(I)

 = 

1 −
489mm

500mm
  = 1 − 0.978 = 0.022

FXf ,dimension(II)

= 1 − DXf ,dimension(I)

DXb,dimension(I)

 = 1 − 986mm

1000mm
  = 1 – 

0.986 = 0.014

Xmin,f ,area(7)

= Xmin,b,area(7) 

∗ (1 −
∑

i (FX)f ,dimension(i))

 =  − 576 * (1 − (0.022 + 0.014))
 =  − 555

Fig. 16   Exemplary adaption 
of car body area 7 from base 
model b to focus model f, using 
Eq. 1 and Eq. 2.1 with 2.2

Fig. 17   Relevant excerpt of 
Fig. 10
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4.2 � First steps towards the cost prediction

Production module. The production module provides the 
cost module with necessary data to allow for a cost predic-
tion on a component level.

As a first step, a feature database must be built to enable 
the prediction training and the future derivation of produc-
tion parameters based on user selections. The database con-
tains abstract geometry data and production information of 
preceding product generations (see Table 5).

After a successful training and validation phase, the 
joining complexity can be predicted for each manufactur-
ing scenario. Furthermore, the user can select the intended 

production location and the relevant vehicle segment (SUV, 
coupé). Based on that, the module’s backend derives further 
parameters (see Table 6). Finally, the production module 
transmits the gathered data to the cost module (see Fig. 19).

Cost module. Table 7 shows exemplary data sets for the 
first step towards cost prediction: collecting historic data 
for prediction training. It is evident that costs for production 
are higher when the part is manufactured additively. None-
theless, AM parts offer benefits such as lightweight design 
opportunities and do not require tool investments due to the 
geometrical variability of the 3D-printing machines [28, 29].

The cost data is supplemented with the geometric and pro-
duction related data as input features, to allow for the sub-
sequent training and selection of cost prediction models (see 
Fig. 20). Each cost type requires specific input features that can 
be identified through correlation analyses of the historic data. 
Based on the production module’s output, the cost prediction 

Fig. 18   Logic of assigning parts (existing info in light blue) to car body areas for deriving requirement classes and functionalities for three exem-
plary parts

Table 5   Building the feature database for data derivation and prediction training (Exemplary historic features of conventionally and additively 
manufactured parts)

Part fea-
tures

Geometric information Production information

Future backend data Prediction training

Size X-direc-
tion

Size Y-direc-
tion

Size Z-direc-
tion

Volume Mass Current 
technology

Plant clock 
rate

Inbound 
logistics

Joining 
com-
plexity

Part A 10.2 cm 9.7 cm 13.5 cm 161.1 cm3 474.2 g Deep drawing 45 units/h 0 km 11.6
Part B 8.4 cm 5.6 cm 2.1 cm 52.3 cm3 203.7 g AM 45 units/h 89 km 8.2
Part C 9.4 cm 15.3 cm 5.4 cm 252.3 cm3 343.8 g Casting 45 units/h 74 km 13.7
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models estimate costs for each manufacturing scenario to iden-
tify the cheapest manufacturing technology for each part.

4.3 � Integrating the new modules into the screening 
methodology

The modules’ outputs are requirement classes and cost infor-
mation for each component and manufacturing scenario, 
which in turn serve as an input for the fuzzy logic system 
(see Table 8).

The fuzzy logic system. The new requirements fuzzy 
rules were developed in close collaboration with experts 
from material sciences and liability approvals. Hence, the 
rules illustrate the current capabilities of the respective 
manufacturing technology to fulfill challenging require-
ments. The exemplary use case in the automotive industry 
thus leads to the fuzzy inference system (fis) and rule set 
below. Since an AM potential assessment is used for validat-
ing the expanded rule set, the selected examples focus on the 
rules for evaluating the parts’ AM potentials. Further rules 
of other manufacturing technologies and input parameters 
are represented by excerpts.

Table 6   Exemplary output of the production module for one part (≙ input for the cost module)

Input data Predicted Derived and calculated based on user selections and imple-
mented backend data

Part Manufacturing 
Scenario

Material Geometric 
Informa-
tion

Joining Complex-
ity

Clock Rate Greenfield/Brown-
field

Logistics 
Purchas-
ing

Light-
weight 
Potential

A Deep Drawing Steel … 11.6 45 units/hour Greenfield 54 km –
A Casting Aluminum … 38.1 45 units/hour Greenfield 110 km 40%
A Rolling Steel … 11.9 45 units/hour Greenfield 92 km –
A Pressing Aluminum … 22.3 45 units/hour Greenfield 112 km 35%
A AM Aluminum … 34.3 45 units/hour Greenfield 73 km 52%

Fig. 19   Relevant excerpt of 
Fig. 10

Table 7   Step one towards cost prediction: Building the cost database for prediction training (Exemplary historic costs of conventionally and 
additively manufactured parts)

PART costs Part production Car body production line Quant. AM poten-
tials

Costs/volume

Machine start-up Material/
produc-
tion

Tool invest Storage Inbound 
logistics

Production 
line invest

Production costs Lightweight design 
etc

Part A 1 € 2 € 7 € 2 € 1 € 1.50 € 2 € – 0.10 €/cm3

Part B – 3 € – 1 € 1 € 2 € 2.50 €  − 2 € 0.84 €/cm3

Part C 1.50 € 2 € 9 € 2.50 € 2 € 2 € 2 € – 0.21 €/cm3

Fig. 20   Relevant excerpt of 
Fig. 10
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Setting up the fuzzy inference system:

newfis (fisName="screening_tool",
andMethod = "min", orMethod = "max", impMethod = "min", aggMethod = "max",
defuzzMethod = "centroid")

Defining the requirement parameters as fuzzy input variables:

screening_tool � addvar(screening_tool, "input", "Class Corrosion", c(1,3))
screening_tool � addmf(screening_tool, "input", 1, "low", "singletonmf", c(1))
screening_tool � addmf(screening_tool, "input", 1, "medium", "singletonmf", c(2))
screening_tool � addmf(screening_tool, "input", 1, "high", "singletonmf", c(3))

screening_tool � addvar(screening_tool, "input", "Class Temperature", c(1,3))
screening_tool � addmf(screening_tool, "input", 2, "low", "singletonmf", c(1))
screening_tool � addmf(screening_tool, "input", 2, "medium", "singletonmf", c(2))
screening_tool � addmf(screening_tool, "input", 2, "high", "singletonmf", c(3))

screening_tool � addvar(screening_tool, "input", "Class Crash", c(1,3))
screening_tool � addmf(screening_tool, "input", 3, "low", "singletonmf", c(1))
screening_tool � addmf(screening_tool, "input", 3, "medium", "singletonmf", c(2))
screening_tool � addmf(screening_tool, "input", 3, "high", "singletonmf", c(3))

AM-Rules resulting from the novel requirements module:

If (Material is Metal) and (Class Corrosion is high) then (AM Potential is medium)
If (Material is Metal) and (Class Crash is high) then (AM Potential is low)
If (Material is Metal) and (Class Temperature is high) then (AM Potential is medium)
If (Material is Metal) and (Class Corrosion is medium) then (AM Potential is medium)
If (Material is Metal) and (Class Crash is medium) then (AM Potential is low)
If (Material is Metal) and (Class Temperature is medium) then (AM Potential is high)
If (Material is Metal) and (Class Corrosion is low) then (AM Potential is high)
If (Material is Metal) and (Class Crash is low) then (AM Potential is high)
If (Material is Metal) and (Class Temperature is low) then (AM Potential is high)

Rules resulting from other modules, e.g. the novel cost prediction module:If (Costs/Volume AM) is lower than (Cost/Volume Drawing) then (AM Potential is high)
If (Costs/Volume AM) is higher than (Costs/Volume Casting) then (Casting Potential is high)
…
If (Leightweight_Bonus is high) then (AM Potential is high)
…
If (Geom_Complexity is low) then (Rolling Potential is high)
…
If (Part_Volume is high) then (AM Potential is low)
…

Table 8   Input data for the fuzzy logic system (requirements and cost module data in light blue)

Para-meters Part mass Part volume Geo-
metrical 
complexity

Predicted costs AM Predicted costs 
casting

Class corrosion Class crash Class temperature

Part A 375 g 20 cm3  < 5 1,50 €/cm3 1,60 €/cm3 High High Medium
Part B 1243 g 80 cm3  > 10 1,40 €/cm3 1,10 €/cm3 High High Medium
Part C … … … … … … … …
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Validating the new requirements fuzzy rules. The 
desired positive effect of the requirement fuzzy rules on the 
quality of the potential assessment was validated through 
an exemplary AM potential analysis. First, the fuzzy logic 
was applied with and without the novel requirements fuzzy 
rules for 28 validation parts. These validation parts were 
selected based on previous AM potential assessments. By 
integrating requirements into the fuzzy logic system, the 
main hypothesis was confirmed through a more precise 
potential assessment:

The AM potential is quantified on a scale from 0 to 100 by 
the fuzzy logic system. When taking the requirements into 
account, some validation parts lost significant AM poten-
tial. The AM potential loss resulted from high requirements 
and led to a decrease in the overall ranking, as indicated 
by the ranking position in brackets in Table 9. In contrast, 
low requirements did not have a negative impact on the AM 
potential which led to a higher placement in the AM poten-
tial ranking. Figure 21 depicts the relative AM potential loss, 
a ratio of the AM potential loss and the previous AM poten-
tial evaluation without the novel fuzzy rules. To quantify the 
average requirements class regarding the three requirements 
categories per part, the three increments were replaced by 
numeric values: high ≙ 3, medium ≙ 2, low ≙ 1. Parts that 
already had a low AM potential before introducing the novel 
fuzzy rules did not lose significantly more potential due to 
high requirements (see orange area in Fig. 21). However, the 
current fuzzy rules need to be constantly updated regard-
ing potential technological developments and an increas-
ing number of completed liability approvals in AM. These 
developments might lead to an increasing robustness of AM 
parts to challenging requirements.

The rule set extension thus avoids false screening assess-
ments that previously had to be manually corrected by an 
expert at a later point in time. For instance, some of the vali-
dation parts were ranked very highly in former AM poten-
tial assessments that did not take requirements into account. 
Subsequently, many of those parts were identified as not 
suitable for AM due to challenging requirements and miss-
ing liability approvals (e.g., first part in Table 9). However, 

without novel AM liability approvals, e.g. for AM coating 
processes, these parts are not capable of resisting corrosion-
related challenges in the long term, as confirmed by experts 
in material sciences. These imprecise screening assessments 
caused an efficiency loss that can now be avoided early in 
the development process. Accordingly, the novel fuzzy rules 
also support the differentiation within conventional manu-
facturing technologies in part screening. E.g. casting parts 
lack robustness to high crash loads.

5 � Summary and outlook

The analysis of existing technology evaluation methods 
shows a lack of automated, early-stage technology selection 
approaches on a component level. This paper thus proposes 
a part screening methodology to select a manufacturing tech-
nology for each individual component in early development 
phases. In general, four core aspects need to be considered 
in a predictive manner for such a technology comparison and 
selection: the parts’ requirements, production related inher-
ences, the parts’ expected costs, and early-stage abstract geo-
metric information (e.g. bounding box) for each manufactur-
ing scenario. These four fields are addressed by one module 
each, providing the overarching part screening methodology 

Table 9   Sensitivity of the AM potential assessment (scale 0–100) to the novel requirements fuzzy rules, including the part ranking position (#1 
to #28) in brackets

Part ID Part name Car body area Class corrosion Class 
crash

Class 
tempera-
ture

AM potential 
without requirement 
rules

AM potential with requirement 
rules

7340xxx Bracket AGD 31.1 High Low High 86,12 (#1 Overall) 72,78 (#11 Overall)  
7340xxx Bracket free 

form AGB
43.3 Low Low High 86,12 (#2 Overall) 75,07 (#2 Overall)  

7394xxx Connection bear-
ing tube

15.3 Low Low Low 85,84 (#4 Overall) 85,84 (#1 Overall)  

Fig. 21   Correlation between assigned requirement classes and the 
parts’ AM potential loss



40	 Production Engineering (2022) 16:23–41

1 3

and its fuzzy rules with essential predictions and derived 
information. Three of the modules were introduced in this 
paper. These modules were exemplarily applied in the car 
body development. The requirements module offers the fol-
lowing achievements:

Addressing research question 1:

•	 Part requirements can be derived early in product devel-
opment based on specification lists, requirements man-
agement systems, and part coordinates.

•	 Addressing research question 2:
•	 Components can thus be automatically classified accord-

ing to different requirement classes and functionalities.
•	 The described requirements analysis methodology can be 

automatically adapted to differing product architectures, 
ensuring its general applicability.

•	 Addressing research question 3:
•	 The outputs of the requirements module are suitable for 

expanding and specifying the fuzzy logic system.
•	 A validation analysis (AM focus) confirmed a more 

precise technology assessment, corroborating the main 
hypothesis of this paper:

•	 Considering requirements in part screening leads to more 
precise manufacturing technology potential assessments.

•	 The necessity of manually correcting former screening 
results due to neglected requirements can be avoided.

Additionally, the production module and the cost predic-
tion module were conceptually introduced. First, historic 
cost data is clustered and analyzed to identify cost patterns 
and input features for cost prediction. Potential input features 
are the parts quantities, abstract geometric information, and 
production related information. Production related data is 
predicted and derived by the production module to provide 
the cost module with necessary input features. Based on that, 
a technology-dependent cost estimation and comparison for 
future product developments can be trained and conducted 
at an early point in time.

In conclusion, this paper provides an outlook on neces-
sary scientific efforts within the scope of the topic at hand. 
To ensure an early-stage and automated manufacturing 
technology comparison for a variety of parts, all four core 
aspects (requirements, production environment, expected 
costs, abstracted geometry) need to be considered. The 
remaining modules will be published in the main author’s 
upcoming articles. Finally, each module’s fuzzy rules will 
be assessed by applying a sensitivity analysis.
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