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Abstract
The Valles Marineris Explorer Cooperative Swarm navigation, Mission and Control research project aims to explore the 
Valles Marineris canyon system on Mars with, among others, multibody rotary-wing unmanned aerial vehicles (UAVs) 
comprising of a hexrotor system and a helium-filled balloon being attached to it by means of a rope. In this paper, we develop 
a high-fidelity closed-loop control system in MATLAB® and Simulink™ to present the application of an adequate flight 
controller guaranteeing (1) asymptotic tracking position control of the multibody flight system, (2) suppression of the bal-
loon’s swinging motion in forward flight case, and (3) stabilization of the rope angle around its equilibrium for steady-state 
conditions. Applying feedback linearization for the outer loop and analytical backstepping for the inner loop of a nonlinear 
cascaded control design model of the hexrotor system, we propose an extension of the baseline flight controller by two artifi-
cial augmentation approaches to cope with the balloon dynamics. Basically, by utilizing oscillation damping feedbacks of the 
uncertain plant which are applied as additional commands to either the inner or the outer loop’s reference model. Simulation 
results are presented for an eight-shaped flight maneuver at the bottom of Valles Marineris proving that the augmentation 
units increase the flight controller capabilities to suppress modeling errors artificially—without changing the baseline control 
laws. The augmentation units actively damp the balloon motion in the forward flight case for non-steady-state conditions to 
counteract the rope oscillations and finally stabilize the rope angle around its equilibrium, so that the Mars vehicle is able to 
reach a steady-state in position when its extraterrestrial mission profile is successfully completed.
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Abbreviations
ART   Angular rates tracking
CDM  Control design model
CRM  Closed-loop reference model
DLR  German Aerospace Center
DoF  Degrees of Freedom

DALR  Dry adiabatic lapse rate
EoM  Equations of motion
FSD  Institute of Flight Systems Dynamics
FSDSE  FSD Simulation Environment
LF  Lyapunov function
MARV  Martian autonomous rotary-wing vehicle
MCD  Mars Climate Database
MIL  Model-in-the-loop
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NDI  Nonlinear Dynamic Inversion
Ode  Ordinary differential equation
PCA  Position command augmentation
PT1  First-order proportional transfer function
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TVA  Thrust vector augmentation
TVT  Thrust vector tracking
UAV  Unmanned aerial vehicle
VaMEx  Valles Marineris Explorer
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List of symbols
B  Input matrix
CD  Aerodynamic drag coefficient
CT  Propulsive thrust coefficient
Cn  Propulsive torque coefficient
D  Feedback gain matrix
ddp  Damping constant of virtual damper
E  Error matrix
e  Tracking error vector
e  Tracking error
F  Force vector
F  Absolute force
f   Nonlinear function
g0  Normal gravity potential of Mars
g  Gravitational force vector
g  Nonlinear function
H  Orientation matrix of Euler Angles
HG  Geopotential height
HG,1  Transition height of Martian troposphere
havg  Average ground height of Valles Marineris
h  Geodetic height above reference ellipsoid
I  Identity matrix
J  Mass moment of inertia tensor
Jzz  Mass inertia around rotational axis
K  Feedback gain matrix
k  Feedback or steady-state gain
ksp  Stiffness of virtual spring
kT , kM  Motor constants
l  Length
l̃  Spring deflection
l0  Norm length of virtual spring
M  Vector of external moments
M  Aerodynamic moment of rotor
m  Mass
P  Positive definite symmetric matrix
p  Atmospheric pressure
Q  Positive definite symmetric matrix
R  Rotation matrix
RHe  Gas constant of Helium
RMars  Gas constant of planet Mars
r  Position vector
rc  Pilot position vector command
r̃c  Augmented position command vector
rr  Filtered position command vector
rbl  Radius of propeller blade
S  Reference area
T   Atmospheric temperature
T   Total thrust force
T  Thrust-magnitude matrix
T�  Reduced thrust-magnitude matrix
t  Time (time constant)
t  Thrust vector
tc  Thrust vector command (pseudo-control)

tr  Filtered thrust vector command
t̃  Augmented thrust vector
u  Input vector
u1∕2  Pseudo control input vector of TVT/ART 
uc  Input vector command
u  Pseudo control input
u  Kinematic velocity in direction of x-axis
V   Lyapunov control function
V   Total velocity
V   Total volume
v  Kinematic velocity vector
vcmd  Mapped velocity vector of remote control
x  State vector of multicopter
xBal  State vector of balloon
xP  Plant state vector
x  Position in direction of x-axis
y  Output vector
y  Position in direction of y-axis
zB∕b∕I∕S  Z-Axis of B/b/I/S-frame
z  Position in direction of z-axis
�  Defined angle to y-axis
Γ  Lapse rate
�  Defined angle to z-axis
�  Logical operator
�  Relative damping coefficient
Θ  Pitch angle
�  Polytropic exponent
�  Vector of Euler Angles
�  Dynamic viscosity
�fr  Frictional coefficient
�d  Desired control effort vector
Φ  Roll angle
�  Atmospheric density
�evl  Areal density of balloon envelope
�  Gradient of dynamic viscosity decrease
�  Pseudo control input vector
�  Defined angle to y-axis
Ψ  Azimuth angle
�  Angular velocity or rotational speed
�0  Eigenfrequency
�Ib
z,c

  Pilot yaw rate command

�Ib
z,r

  Filtered yaw rate command
�  Vector of angular velocities
�  Skew-symmetric matrix of angular velocities

Operators
‖ ⋅ ‖  Euclidean norm of a vector
×  Cross product of two vectors
◦  Dot product of two vectors
(⋅)−1  Inverse of a matrix
(⋅)+  Moore–Penrose inverse of a matrix
(⋅)T  Transpose of a matrix
(⋅)  Creation of a diagonal matrix
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d(⋅)  Total differential

  (1) Point of reference

  (2) Actual point

  (3) Type of physical quantity

  (4) Reference coord. system of first derivative

  (5) Reference coord. system of second 
derivative

  (6) Notation frame

1 Introduction

Deeper questions that arise in countless scientific reports [1, 
2] or [3] deal with the origin and evolution of life: How did 
life begin and where did it originate if not on Earth? These 
are questions that perplexed scientists for a long time and, 
eventually on account of that, triggered a wide search for 
extinct organisms on other planets in our solar system. The 
most promising terrestrial planet to solve this gap in under-
standings of humanity is Mars.

Valles Marineris Explorer Cooperative Swarm naviga-
tion, Mission and Control, in short called VaMEx-CoSMiC 
or VaMEx, is a German research project which was started 
in 2012 to focus on the exploration of the red planet or 
rather the Valles Marineris. Until today, the Valles Mari-
neris is stated to be the largest canyon system in our solar 
system providing geological peak values of ~3000  km 
length, ~600 km width, and ~11 km depth in total. It is 
located in the southern hemisphere of the planet parallel 
to its equatorial axis and expands roughly from 0° to 20° S 
and from 50° to 90° W excluding the Tharsis region in the 
West. Due to the deep cliffs and fractured rock layers, geolo-
gists are hoping to reveal new insights into the history of 
Mars and find evidence for microbial life or even petrified 
microorganism being hidden into the Martian crust. The key 
purpose of VaMEx is therefore to develop, compare, and 
evaluate technologies for an unmanned autonomous robotic 
swarm mission exploring the Valles Marineris. Within the 
project, the Institute of Flight System Dynamics (FSD, TU 
Munich) is, inter alia, responsible for the design of rotary-
wing platforms being used as swarm participants and their 
embedment into a high-fidelity simulation environment. This 
incorporates a model-based plant design of the flying plat-
form and the derivation of a suitable flight controller both 
forming the closed-loop control system [4–6].

Regarding the thin atmosphere on Mars, the develop-
ment of a fully operational multicopter concept is quite a 
difficult task. Since all propellers’ require high-density val-
ues to produce sufficient thrust, only the deepest points are 
investigated for an extraterrestrial mission profile leading 
to a geographic location of 14.035° S and 58.5° W at the 
bottom of Valles Marineris with an average height havg of 
−4907 m below the Martian geoid. At the FSD, conceptual 
studies for this given design point were conducted by [7] to 
determine a first suitable solution for a Martian rotary-wing 
unmanned aerial vehicle (UAV) being depicted in Fig. 1. A 
MATLAB®-based scalable, parametric design tool [8] was 
invented afterwards to reevaluate different vehicle configura-
tions. As an ultimate version, a 6-rotor UAV with a balloon 
being attached to it by means of a flexible rope was chosen 
as most appropriate solution. The balloon provides addi-
tional buoyancy for the vehicle leading to an enhancement 
of the actuators’ battery lifetime and thus to a total flight 
time improvement.

1.1  Literature overview

In the literature, several conceptual studies besides VaMEx 
exist to determine the optimal design of a flying platform on 
Mars as in [9]. In addition to rotary-wing UAV concepts, the 
Martian Autonomous Rotary-Wing Vehicle (MARV) [10], 
the Mars Helicopter Scout [11], or a meso-scaled 4-rotors 
UAV concept called Mesicopter [12] were published among 
many other concepts.

Flight control approaches for those Martian UAVs as well 
as their dynamic modeling into a simulation environment are 

Fig. 1  VaMEx project emblem [6]
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rare to find in literature—not to mention multibody rotary-
wing concepts like the proposed Mars vehicle of Sect. 1. 
Only limited data have been published [11, 12] which does 
not vary widely from terrestrial procedures. Based on these 
findings, we conclude that terrestrial methods for modeling 
UAV dynamics, incorporated control strategies, and their 
simulative setup, e.g., within MATLAB® and Simulink™, 
can likewise be used to build a virtual flight control sys-
tem for Martian rotorcraft. As state-of-the-art simulation 
framework, the FSD Simulation Environment (FSDSE), 
which incorporates a high-fidelity six degree of freedom 
rigid-body model, is studied and used to develop a Mar-
tian simulation environment which meets the requirements 
of the VaMEx-CoSMiC project. Successful applications of 
the FSDSE are, e.g., given in [13, 14] and a comprehensive 
model description is given in [15]. A summary of commonly 
used approaches to design, model, and control terrestrial 
hybrid UAVs was conducted by [16]. Our main distinctions 
within the stated methods are reflected by three key issues:

First, we address the embedment of a realistic atmos-
pheric model which is built on high-resolution atmos-
pheric measurement data being smoothed and prepared by 
a meteorological database of Mars to best fit 14.035° S and 
58.5° W, the vehicle’s geographic take-off location at Valles 
Marineris. Due to the low Reynolds numbers, propellers are 
not able to rotate as fast as on Earth which was also the most 
challenging factor presented in [10].

Second, we propose a procedure to develop a nine degrees 
of freedom multibody UAV model which relies on the clas-
sical Newtonian formulations in which a six degrees of free-
dom rigid-body model for the multirotor system and a three 
degrees of freedom point-mass model for the balloon are 
afflicted with one kinematic constraint each. The suspension 
line, or rather rope, is enforced with one kinematic constraint 
at each coupling point being obtained by a massless spring-
damper oscillator model. This model significantly aids in the 
design of multibody dynamics which are, in general, derived 
with analytical mechanics leading to complex first- or sec-
ond-order differential equations. For instance, the governing 
motions for comparable dynamic models as, e.g., a multi-
body Parafoil-UAV are obtained using either Lagrange’s 
equations, shown in [17], or the Hamiltonian procedure, 
published in [18]. In [19], Lagrange’s equations are likewise 
used to obtain the dynamic model system formulations of a 
multibody quadrotor UAV with cable-suspended payload.

Third, and main contribution of this paper, we present a 
flight controller which is capable to handle multibody flight 
dynamics guaranteeing

 (i) Asymptotic tracking position control of the multiro-
tor system, while damping the suspension line oscil-
lations simultaneously.

 (ii) Suppression of the balloon’s swinging motion in for-
ward flight case.

 (iii) Stabilization of rope angle around its equilibrium for 
steady-state conditions.

Among a greater diversity of nonlinear flight controllers, 
Backstepping [20] and Nonlinear Dynamic Inversion (NDI) 
[21] are two of the most widely used control design method-
ologies for agile multirotor systems. Examples of success-
ful applications are, e.g., given in [14, 22–26]. Essentially, 
Backstepping is a model-based approach to obtain, based 
on control-Lyapunov functions [20], asymptotical closed-
loop stability of a feedback control system which provides 
a so-called strict feedback form [20], whereas NDI is a state 
transformation which ensures, without any approxima-
tions, linear input–output dynamics of a nonlinear system. 
It is therefore often called Feedback Linearization [21]. A 
comparison between NDI and analytical backstepping was 
conducted by [27] showing that both methods ensure the 
same satisfying controller performance for agile multirotor 
systems. Thus, in this paper, we propose a nonlinear flight 
controller which is a cascaded version of a backstepping-
based attitude controller nestling inside a superior position 
controller, which is based on NDI, to meet objective (i).

The idea of both backstepping and NDI methodologies 
is, in general, to make a dynamic system or rather its state 
trajectory follow a desired reference trajectory by determin-
ing an appropriate control law. In case of uncertain dynamic 
systems, however, modeling errors are inevitable within the 
control design model which leads to a mismatch between 
the state and reference trajectory. A common approach to 
cope with modeling errors is to augment the baseline flight 
controller architecture for addressing secondary controller 
capabilities as stated in (ii) and (iii).

The first, and perhaps most intuitive, approach is to aug-
ment the baseline flight controller by input shapers [28] 
which are, e.g., used in multibody quadrotor UAVs with 
suspended load [29] or in helicopter slung load systems [30] 
to damp the swinging motion. Input shaping is a power-
ful feedforward technique where the natural frequency and 
damping ratios are estimated from the linearized well-known 
plant dynamics to determine an oscillation damping com-
mand being applied to the reference model. Since the actual 
reference model remains open-loop, robustness of this tech-
nique is often achieved by adding a delayed feedback of the 
uncertain plant to the closed-loop control system which is 
related to the theory of delayed feedback control [31]. This 
feedback is then added to the feedforward reference trajec-
tory which results in an active vibration-damping and also 
delayed reference signal. Similar to the input shaping tech-
nique, control design parameters have to be determined from 
a linearized state-space model, where the actual time-delay 
needs to be modeled. Examples of successful applications 
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are, e.g., given in [32] for container cranes or in [31, 33, 
34] for helicopter slung load systems to actively damp the 
swing motion. In [24], a comparison between the usage of 
input shaping, delayed feedback control, and a combination 
of both techniques showed that the input shaping is indeed 
advantageous in suppressing unintended swing motions for 
a multibody hexrotor UAV with cable-suspended load, but 
also, that a delayed feedback controller pose a powerful 
standalone augmentation approach to address the controller 
capabilities (ii) and (iii).

In this paper, we summarize the nonlinear dynamic 
effects of the plant, being represented by oscillating motion 
of the suspension line, as uncertainties and suppress them 
by augmenting either the inner loop or outer loop’s reference 
model with oscillation damping feedbacks which are applied 
as additional commands to solve objective (ii) and (iii). 
Although this method is in the spirit of delayed feedback 
controllers [31], the augmentation signals are not subjected 
to time-delays. Additionally, we directly augment the input 
signals of the reference model which generates a closed-loop 
including both the uncertain plant and the reference model. 
The proposed artificial augmentation units are therefore 
assigned to the classical theory of closed-loop reference 
models [35, 36] which have their origin in the framework 
of adaptive control [37, 38]. In literature, augmentation 
approaches for multibody UAVs which explicitly use the 
theory of closed-loop reference models to satisfy the control-
ler’s capabilities (ii) and (iii) could not have been identified.

1.2  Outline

The remainder of this paper is organized as follows: The 
plant design of the multibody Mars vehicle is presented in 
Sect. 2. Section 3 reviews the nonlinear control design model 
and derives the baseline flight controller. Two oscillation 
damping feedback augmentation approaches are presented 
in Sect. 4, both extending the baseline flight controller sepa-
rately. Simulation results are stated in Sect. 5 to validate the 
control design including the artificial augmentation units. 
Section 6 summarizes the stated findings and provides a 
short conclusion.

2  Plant design

The Mars vehicle is modularly implemented into MATLAB® 
and the Simulink™ toolbox as multibody UAV forming the 
plant of the closed-loop control system. It consists of two 
nonlinear UAV models, a six degrees of freedom (6DoF) 
rigid-body model for the multicopter and a 3DoF point-
mass model for the balloon. Both models are additionally 

afflicted with kinematic constraints to not only generate a 
linked connection, but also to support a modular design pro-
cess. The general structure is depicted in Fig. 2. The high-
fidelity simulation model consists of four main submodels, 
the environment submodel, the equations of motion (EoM), 
the multibody system formalism, and the airframe submodel. 
Its baseline architecture is inspired by the FSDSE [15].

Using the state-space model representation, the multirotor 
system is input affine in

the system’s commanded input vector, containing the square 
of the actuators’ commanded rotational speeds �c,i ∈ ℝ . Its 
system dynamics can be described by

as well as the autonomous balloon system dynamics are 
described by

To uniquely describe the current situation of both 
dynamic systems for an arbitrary point in time, the multi-
copter state vector x ∈ ℝ

12 includes the position rR ∈ ℝ
3 , 

the kinematic velocity vR ∈ ℝ
3 , the angular rates �IB ∈ ℝ

3 , 
and the Euler Angles � ∈ ℝ

3 as attitude representation. 
The balloon state vector xBal ∈ ℝ

6 only includes the posi-
tion rQ ∈ ℝ

3 and the kinematic velocity vQ ∈ ℝ
3 . Sum-

marizing both state vectors to xP =
[
x xBal

]T  , the total 
plant state vector, it is possible to write the plant system 
dynamics to

so that the system output equation is given by

(1)uc =
[
�2
c,1

�2
c,2

�2
c,3

�2
c,4

�2
c,5

�2
c,6

]T
∈ ℝ

6,

(2)ẋ = f
(
x, xBal

)
+ g(x) ⋅ uc,

(3)ẋBal = f
(
x, xBal

)
.

(4)ẋP =

[ [
ṙR v̇R �̇

IB
�̇
]T

[
ṙQ v̇Q

]T
]
=

[
f
(
x, xBal

)
+ g(x) ⋅ uc

f
(
x, xBal

)
]
,

Fig. 2  Nonlinear plant model of Mars vehicle
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To determine the current plant state vector xP(t + ∆t) 
only by means of the last known plant state vector xP(t), 
Simulink™ provides a broad range of higher order ordinary 
differential equation (Ode) solvers like Ode4 which is based 
on the fourth-order Runge–Kutta method [39]. In contrast to 
first-order Ode solvers, where Euler’s integration [39] serves 
as a base, the Ode4 solver determines an averaging value 
for the plant state vector’s derivative ẋP(t) at exactly four 
weighted sampling points. This not only ensures a higher 
accuracy to solve, respectively, propagate the UAVs’ non-
linear state equations numerically, but also upholds the fact 
that ẋP(t) is usually not constant during a time increment of 
∆t. To build a time-history simulation [39], Ode4 is used as 
numerical integration method with a fixed sampling time ∆t 
of 0.001 s to step the plant state vector forward.

2.1  Environment submodel

To ensure that the multibody UAV can be simulated under 
realistic environmental conditions of planet Mars, a Mar-
tian Standard Atmosphere (MSA) is implemented inside the 
environment submodel which is related to the multicopter 
reference point R.

This atmospheric model is built on high-resolution atmos-
pheric measurement data being smoothed and prepared by 
the Martian climate database (MCD) V5.2 [40]. For altitude 
definitions, a Martian reference ellipsoid with a geocentric 
radius rM of 3394.6 km is established which is based on the 
concept of the World Geodetic System 84 [41]. The obtained 
ellipsoid best fits the geographic location of 14.035° S and 
58.5° W at the Valles Marineris, while its semi-major axis 
a equals 3396.2 km and the square of its first eccentricity e2 
equals 0.0117. This reference surface also defines the normal 
gravity potential g0 ∶= 3.717m∕s2 being required for the 1D 
quadratic gravitation model [42, 43].

In addition to seasonal and diurnal changes, the MSA 
is related to a Martian solar longitude of 359◦ and a local 
true solar time of 12 ∶ 00 in Mars year 24. Regarding the 
vertical extension of the Valles Marineris, the crucial part 
of the MSA forms the Martian troposphere which can be 
considered as real polytropic up to a height of ~ 6.4 km above 
the ground. Meteorological studies yield that the decrease 
of atmospheric temperature with altitude can be represented 
by two major dry adiabatic lapse rates [44] (DALRs) [40].

• Γl = 2.99
K

km
 for { HG ∈ ℝ|-5000m<HG≤1183 m}

• Γup = 0.74
K

km
 for { HG ∈ ℝ|-1183m<HG≤6405m}

very precisely, so that the Martian troposphere is divided 
into two layers, the lower Martian troposphere (index l) 

(5)y =
[
xP uc

]T
∈ ℝ

24.

and the upper Martian troposphere (index up). Due to both 
constant DALRs, the barometric formula [42]

can be solved analytically which, in terms of the ideal gas 
law [44], leads to all formulas for atmospheric changes rela-
tive to the geopotential height [42]

where hR is the geodetic height of the multirotor sys-
tem above the reference ellipsoid. A summary is listed in 
Tables 1 and 2 where T , p , and � denoting the atmospheric 
temperature, pressure, and density as well as � represents the 
dynamic viscosity on Mars. 

A proof, that the atmospheric model maps the MSA 
V5.2 measurement data with high accuracy is shown in 
Fig. 3. The only rough distinctions can be identified at 
ground level of Valles Marineris, due to the temperature 
ground effect as a result of cosmic radiation on Mars, 
and for heights beyond the upper Martian troposphere. 
These model uncertainties of the MSA are excluded within 
the flight envelope of the Mars vehicle, since simulation 
results are only evaluated from an average height havg of 
−4907 m below the Martian geoid. Therefore, they can be 
neglected for further investigations.

(6)
1

p
dp = −

g0

RMars

1

T
dHG,

(7)HG =
rM ⋅ hR

rM + hR
,

Table 1  Atmospheric model for upper Martian troposphere

MSA formula Ref. values

Tup(HG)
T0

=
[
1 +

Γup

T0
HG

]

pup(HG)
p0

=
[
1 +

Γup

T0
HG

] �up

�up−1

�up(HG)
�0

=
[
1 +

�up

�0

HG

]

�
(
HG

)
=

pup(HG)
RMars⋅Tup(HG)

T0 = 220K

p0 = 560 Pa

�0 = 0.0135 Pa

�0 = 1.1289 ⋅ 10−5 Ns∕m2

Γup = 0.74K∕km

�up = 1.0396

�up = 0.038Ns∕kg3

RMars = 191.523 J∕kgK

Table 2  Atmospheric model for lower Martian troposphere

MSA formula Ref. values

Tl(HG)
T1

=
[
1 +

Γl

T1

(
HG − HG,1

)]

pl(HG)
p1

=
[
1 +

Γl

T1

(
HG − HG,1

)] �l

�l−1

�l(HG)
�1

=
[
1 +

�l

�1

(
HG − HG,1

)]

�
(
HG

)
=

pl(HG)
RMars⋅Tl(HG)

T1 = 221.04K

p1 = 626.32 Pa

�1 = 1.1336 ⋅ 10−5 Ns∕m2

HG,1 = −1183m

Γl = 2.99K∕km

�l = 1.1821

�l = 0.149Ns∕kg3

RMars = 191.523 J∕kgK
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2.2  Equations of motion

For describing the state equations of the multirotor system, 
we use a body-fixed (B) frame and a North-East-Down (I) 
frame as reference frames being depicted in Fig. 4. The 
multicopter reference point R denotes the origin of the 
B-frame and is assumed to be congruent with its center 
of gravity G. This yields decoupled differential equations 
for the translation and rotation dynamics. The I-frame is 
located on the surface of Valles Marineris and has a non-
relocatable placement at the multirotor system’s point of 
departure. Its x–y-plane is parallel to the local surface 
whereby the xI-axes points to the Martian north pole. By 
assuming that planet Mars is non-rotating and flat, without 
any elliptical shape, the I-frame is considered as inertial 
and can be used to apply Newton’s second law of motion 
[39]. The state propagation equations for position, transla-
tion, rotation, and attitude can thus be formulated by

whereby I ∈ ℝ
3x3 is the identity matrix and H(�) ∈ ℝ

3x3 is 
given by

(8)

⎡⎢⎢⎢⎢⎣

�
ṙR
�I

m ⋅ I ⋅
�
v̇R
�IB

JR ⋅
�
�̇
IB
�B

�̇

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

�
vR
�I

FR − m ⋅ I ⋅
�
�
IB ×

�
vR
�I�

MR − �
IB × JR ⋅ �IB

H(�) ⋅ �IB

⎤⎥⎥⎥⎥⎦
,

In Eq.  (8), m = 2.317 kg denotes the total mass of the 
multirotor system including 0.2 kg of payload, FR ∈ ℝ

3 
and MR ∈ ℝ

3 the total amount of all external forces and 
moments related to R, and JR represents the multicopter’s 
mass moment of inertia tensor which is approximately given 
by diag

(
0.131 kgm2 0.131 kgm2 0.261 kg m2

)
∈ ℝ

3x3 . 
To describe the attitude of the multirotor system, 
� =

[
Φ Θ Ψ

]T
∈ ℝ

3 is defined as vector of Euler angles, 
where Ψ ∈ [−�;�] denotes the azimuth angle, Θ ∈ [−�;�] 
represents the pitch angle, and Φ ∈ [−�;�] symbolizes 
the roll angle. Together, they constitute the rotation matrix 
RIB = Rz(−Ψ)Ry(−Θ)Rx(−Φ) ∈ SO3 which maps a vector 
from the B-frame into the I-frame. To avoid the inherent sin-
gularity of Eq. (9) for Θ = ±π∕2 , the simulation model can be 
switched—based on the configuration values (see Fig. 2)—to 
quaternions [15] being used as 4-dimensional representation 
to describe the orientation of the multirotor system. In addition 
to the environment submodel of Sect. 2.1, the multicopter’s 
differential equation for its geodetic height is given by

where ḣR denotes the time derivative of the geodetic height 
with respect to the I-frame being required for altitude defini-
tions above the reference ellipsoid.

To describe the sate propagation equations of the balloon 
point-mass model, we choose Q as reference point and use a 
second body-fixed coordinate frame, the BBal-frame, to formu-
late its dynamics. The state propagation equations for position 
and translation are thus given by

where mBal = 0.06 kg denotes the balloon mass and FQ ∈ ℝ
3 

the total amount of all external forces related to Q. In rela-
tion to Sect. 2.1, the balloon’s differential equation to propa-
gate its geodetic height hQ can be formulated to

where ḣQ denotes the time derivative of hQ with respect to 
the I-frame being required for altitude definitions above the 
reference ellipsoid.

2.3  Multibody system formalism

Complex first- or second-order differential equations do usu-
ally occur while working with multibody dynamics. These 

(9)H(�) =

⎛
⎜⎜⎝

1 sinΦtanΘ cosΦtanΘ

0 cosΦ −sinΦ

0 sinΦ∕cosΘ cosΦ∕cosΘ

⎞
⎟⎟⎠
.

(10)ḣR =
[
0 0 −1

]
RIB

(
vR
)I
B
,

(11)

[ (
ṙQ
)I

mBal ⋅ I ⋅
(
v̇Q
)IBBal

]
=

[ (
vQ
)I

FQ

]
,

(12)ḣQ =
[
0 0 −1

](
vQ
)I
BBal

,
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Fig. 3  Atmospheric profiles located 14.035° S and 58.5° W at Valles 
Marineris



132 D. Bodmer et al.

1 3

equations do not only require a lot of computing power, it is 
also much more difficult to maintain an analytical formulation 
using, e.g., the theory of virtual work [45] or the Lagrange 
equations [45], respectively, solving them. In this paper, we 
use the classical Newtonian formulations to impose kinematic 
constraints on both dynamic systems ẋ and ẋBal as massless 
spring-damper oscillator (SDO) model to approximate a real-
istic rope connection. This SDO model triggers FR

rp
∈ ℝ

3 and 
FQ
rp
∈ ℝ

3 , the rope reaction forces, and adds them—as part of 
the airframe submodel—to the total amount of applied forces 
FR and FQ acting on both dynamic systems. For describing the 
kinematics of the SDO model, the multicopter rope (R*) frame 
as well as the balloon rope (R*

Bal) frame are introduced as 
reference frames. Both R*- and R*

Bal-frame are moving freely 
with the UAVs’ reference point while serving the following 
properties (see Fig. 4):

• The xR∗∕xR∗
Bal

-axis is always pointing in the rope’s direc-
tion of action.

• The yR∗∕yR∗
Bal

-axis is always aligned with the 
xByB∕xBBal

yBBal
-plane.

• The yR∗∕yR∗
Bal

-axis and the zR∗∕zR∗
Bal

-axis forming a right-
hand coordinate system.

To describe the orientation of the resulting rope force 
relative to the B- and BBal-frame, �R∗ and �R∗ , respectively, 
�R∗

Bal
 and �R∗

Bal
 , are defined as rope angles. Together, they con-

stitute the rotation matrix RR∗B = Ry

(
+�R∗

)
Rz

(
�R∗

)
∈ SO3 , 

respectively, RR∗
Bal

BBal
= Ry

(
−�R∗

Bal

)
Rz

(
�R∗

Bal

)
∈ SO3 , which 

are given through the geometric vector chains

and

(13)
(
rRQ

)
B
= RT

IB

[(
rQ
)
I
−
(
rR
)
I

]
=
[
xRQ yRQ zRQ

]T
B
,

whereby I ∈ ℝ
3x3 is the identity matrix. The multicopter 

rope angles can thus be calculated to

as well as the balloon rope angles to

2.3.1  Design of spring force

To design the spring force for the SDO model, it is assumed 
that a spring produces a restoring force proportional to its 
deflection l̃ . In case of the multicopter, l̃ can be calculated 
through ‖�rRQ�

B
‖ as well as l̃ is determined by ‖�rQR�

Bal
‖ 

for the balloon UAV. Using Eqs. (13) and (14), this leads to 
a spring force of [45]

for the multirotor system and likewise

for the balloon, where l0 = 5m implies the virtual spring’s 
norm length. Since the rope should act in a naturally flexible 
manner, the spring design may not be too stiff. The virtual 
spring stiffness ksp is therefore chosen to equal 0.5 kg∕s2 
which will, in the end, confer a smooth oscillating behav-
ior to the SDO model. Regarding Eqs. (17) and (18), � , or 
rahter, �Bal are both logical operators ensuring that only posi-
tive spring forces are transmitted by the rope. Otherwise, 

(14)
(
rQR

)
BBal

= I
[(
rR
)
I
−
(
rQ
)
I

]
=
[
xQR yQR zQR

]T
BBal

,

(15)

�R∗ = arctan

�
yRQ

xRQ

�
;�R∗ = arctan

⎛
⎜⎜⎜⎝

−zRQ��
xRQ

�2
+
�
yRQ

�2

⎞
⎟⎟⎟⎠
,

(16)

�R∗
Bal

= arctan

�
yQR

xQR

�
;�R∗

Bal
= arctan

⎛
⎜⎜⎜⎝

+zQR��
xQR

�2
+
�
yQR

�2

⎞
⎟⎟⎟⎠
.

(17)(FR
sp
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(18)(FQ
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Bal
= 𝜀BalI
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Fig. 4  System architecture of multibody Mars vehicle with SDO 
model and I-frame
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pushing forces would act on both UAVs for l̃ being smaller 
than l0 which is not desired. Thus

can be defined for the multicopter as well as

for the balloon UAV.

2.3.2  Design of damper force

To design the damping force for the SDO model, it is 
assumed that a damper always produces a force acting in 
opposite direction of its movement [45]. The damping force 
depends therefore on the UAVs’ change of position over time 
in rope direction which are given by

for the multirotor system and

for the balloon. Otherwise, kinematic velocity elements of 
multicopter or balloon in non-rope direction would wrongly 
lead to a damping force which is not desired. Based on the 
R*- and R*

Bal-frame properties and coordinate definitions, 
the damping force of the SDO model can be formulated to

for the multicopter and likewise

for the balloon, where � , or rather, �Bal are already prede-
fined by Eqs. (19) and (20) ensuring that damping forces 
only occur, while the rope is oscillating due to a positive 
spring force. Furthermore, ddp implies the virtual damping 
constant which is chosen to equal 0.75 kg∕s . This choice of 
parameter is synergetic with the spring design of Sect. 2.3.1, 
so that a smooth oscillating behavior is damped in a short 
time period.

(19)𝜀 =

�
1, ‖�rRQ�

B
‖ − l0 > 0

0, ‖�rRQ�
B
‖ − l0 ≤ 0

,

(20)𝜀Bal =

�
1, ‖�rQR�

Bal
‖ − l0 > 0

0, ‖�rQR�
Bal

‖ − l0 ≤ 0
,

(21)uR =
[
1 0 0

]
RR∗B

(
vR
)I
B
,

(22)uQ =
[
1 0 0

]
RR∗

Bal
BBal

(
vQ
)I
BBal

,

(23)
�
FR
dp

�
R∗

= �I

⎛⎜⎜⎝

−ddp
�
uR + uQ

�
0

0

⎞⎟⎟⎠R∗

,

(24)
�
F
Q

dp

�
R∗
Bal

= �BalI

⎛⎜⎜⎝

−ddp
�
uR + uQ

�
0

0

⎞⎟⎟⎠R∗
Bal

,

2.3.3  Rope force of SDO model

To design the rope force for the SDO model we simply use 
Eqs. (17) and (23), or rather, (18) and (24) and add them as 
part of a vector summation. In addition to the multicopter, 
it directly follows:

for its rope force being notated in the B-frame, as well as

for the balloon’s rope force being notated in the BBal-frame.

2.4  Airframe submodel

The airframe is the most extensive submodel in the plant. 
Its outputs are strongly interrelated to the EoM submodel of 
Sect. 2.2, since the state equations of multicopter and bal-
loon can only be propagated with the total sum of all exter-
nal forces and moments acting on the UAVs. The airframe’s 
task is to provide and prepare them. As the Martian density 
is most crucial to produce buoyancy for the balloon UAV, 
or rather, has a linear dependency to the thrust equation of 
the propellers, the airframe submodel is mainly depending 
on the MSA being embedded in the environment submodel 
(see Sect. 2.1).

In case of the multirotor system, all external forces and 
moments are given by

and

being subdivided into their physical types of origin which 
are propulsion (P), aerodynamics (A), gravity (g), ground 
contact (C), and rope (rp). To formulate the multicopter’s 
gravity force, we use the 1D quadratic gravitation model [42]

Since R is assumed to be congruent with the multicopter’s 
center of gravity, the gravitational force as well as the rope 
force, given by Eq. (25), induce no moments in Eq. (28) and 
therefore only contribute to the balance of forces in Eq. (27). 
To design a simplified behavior for the multirotor system’s 

(25)
(
FR
rp

)
B
= RT

R∗B

[(
FR
sp

)
R∗

+
(
FR
dp

)
R∗

]
,

(26)
(
FQ
rp

)
BBal

= RT
R∗
Bal

BBal

[(
FQ
sp

)
R∗
Bal

+
(
F
Q

dp

)
R∗
Bal

]
,

(27)

(
FR

)
B
=
(
FR
C

)
B
+
(
FR
g

)
B
+
(
FR
A

)
B
+
(
FR
P

)
B
+
(
FR
rp

)
B
,

(28)

(
MR

)
B
=
(
MR

C

)
B
+
(
MR

g

)
B
+
(
MR

A

)
B
+
(
MR

P

)
B
+
(
MR

rp

)
B
,

(29)
�
FR
g

�
B
= RT

IB

⎛⎜⎜⎜⎝

0

0

m ⋅ g0 ⋅
�

HG

hR

�2

⎞⎟⎟⎟⎠I
.
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ground contact, four contact points rCi ∈ ℝ
3 , each of them 

given by the vector summation of rR and rRCi , are defined as 
landing gear exerting the total contact force

as well as the total contact moment

on the vehicle if, and only if, the vehicle is in direct contact 
with the valley surface of Valles Marineris. The particular 
contact force of each contact point FCi ∈ ℝ

3 is composed of 
frictional forces [45] in the xB-yB plane and an impact force 
in zB-direction both counteracting the vehicle’s movement. 
Since we assume that the landing gear carries the vehicle 
mass equally, i.e., each landing gear leg carries one quarter 
of the vehicle’s gravitational force, given by Eq. (29), the 
contact force of each contact point can be formulated as [45]

where �fr represents the frictional coefficient which equals 
100. Applying Euler’s classical treatment of vector analysis 
[39], the kinematic velocity of each contact point is given by

The propulsive forces and moments are produced by six 
propellers. Each of them provides two blades, a calculated 
density of 240 kg∕m3 , a blade radius rbl of 0.2055m , and 
a mass inertia Jzz = 8.9 ⋅ 10−4 kg∕m2 around its rotational 
axis [8]. To avoid an inherent minus sign within the pro-
pulsion unit modeling, six propeller-fixed (Pi) frames are 
introduced, where the zPi

-axis is perpendicular to the xB–yB 
plane and points in direction of positive thrust. The cor-
responding rotation matrix from the body-fixed B-frame 
into the particular Pi-frame is therefore simply given by 
RPiB

= Rx(�) ∈ SO3 and, while using the Pi-frame as nota-
tion frame, the rotational speeds vector of each propeller 
can be written as �PiRot =

[
0 0 �act,i ⋅ �i

]T
∈ ℝ

3 depending 
on �act,i , the actuators’ predefined direction of rotation with 
respect to the zPi

-axis. For rotor one, three, and five, �act,i 
equals 1 , whereas for rotor two, four and six, �act,i equals 
−1 . Assuming that the position of each propeller rTi ∈ ℝ

3 
is given by the vector summation of rR and rRTi , the total 
propulsive force in Eq. (27) can be formulated to

(30)
(
FR
C

)
B
=

4∑
i=1

RT
IB

(
FCi

)
I
,

(31)
(
MR

C

)
B
=

4∑
i=1

(
rRCi

)
B
× RT

IB

(
FCi

)
I
,

(32)
�
FCi

�
I
=

⎛⎜⎜⎝

−�fr 0 0

0 −�fr 0

0 0 0

⎞⎟⎟⎠
�
vCi

�I
I
−

1

4
I
�
FR
g

�
I
,

(33)
(
vCi

)I
I
= RIB

[(
vR
)I
B
+
(
�
IB
)
B
×
(
rRCi

)
B

]
.

as well as the corresponding total propulsive moment in 
Eq. (28) can be determined by

In Eqs. (34) and (35), the thrust-generating force is the 
aerodynamic force of the propeller which is indicated by 
an index A. We derive this force from the Blade Element 
Momentum Theory [46] while assuming the propeller can 
be approximated by a circular disc providing an elliptical 
circulation distribution and therefore a constant induced 
velocity distribution in radial direction. Based on [46], 
the aerodynamic force of each propeller can be written to

where the thrust coefficient CT equals 0.074 [8]. In Eq. (35), 
the propulsive moment of each propeller MTi

T
 is composed 

of a gyroscopic moment MTi
Gyro

 as well as an aerodynamic 
moment MTi

A
 , which corresponds to Eq. (36) and can thus be 

formulated to

Here, Cn denotes the torque coefficient and is given by 
0.0164 [8]. Based on Euler’s classical treatment of vector 
analysis [39], the gyroscopic moment can be written to

where JTi = diag
(
0 0 Jzz

)
∈ ℝ

3x3 is the propeller’s mass 
moment of inertia tensor and �̇PiRot the propeller’s angular 
acceleration which is related to the actuator model.

A common approach to reproduce the actuator’s 
dynamic behavior is to filter the propeller’s angular rate 
by a PT1 element instead of modeling the actual electric 
drive. This PT1 filter, based on [47], is given as

where tPT1 is the filter’s time constant which equals 
0.05 s and �PiRot

c ∈ ℝ
3 is the actuator’s commanded rota-

tional speed vector being related to the vector elements 
of the system’s commanded input uc , given by Eq. (1), 
through

(34)
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)
B
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)
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)
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]
.
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,
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where �2
c,i

∈ uc.
As the multirotor system has no lift-generating surfaces, 

except the thrust-producing propellers, the aerodynamic 
force in Eq. (27) is solely approximated by the body drag. 
Based on the static MSA of Sect. 2.1, the aerodynamic 
velocity of the multicopter is equal to its kinematic veloc-
ity. Since the aerodynamic reference point is assumed to 
be congruent with the multirotor system’s center of grav-
ity, or rather R, the aerodynamic force is, based on [46], 
written to

where the dimensionless drag coefficients CDx and CDy are 
assumed to equal −0.06 , respectively CDz to equal −0.13 . In 
Eq. (41), the reference area Sr is given by 1m2 . Similar to the 
rope and gravitational force, the aerodynamic force induces 
no moments in Eq. (28).

For the balloon UAV the total sum of all external forces 
simplifies, in contrast to the multirotor system, to

where the rope force is provided through Eq. (26). Since 
the balloon has no thrust-producing propulsion unit, the 
aerodynamic force FQ

A
∈ ℝ

3 is the solely force acting on 
the UAV. In Eq. (42), one part of this force is generated 
by the balloon’s buoyancy and the other part by its body 
drag. For the sake of simplicity, we assume that the balloon 
can be approximated by a spherical shape and that unheated 
helium ( RHe = 2077 J∕kg K) is used as carrier gas which is 
less dense than the surrounding atmosphere in the Valles 
Marineris. Since the modeling of the balloon includes an 
envelope which generates a gravitational force due to its 
mass, the balloon’s net buoyant force can be formulated to

Here, �evl = 0.003128 kg∕m2 is the envelope’s areal 
density which corresponds to a polyethylene hull with an 
estimated film thickness of 0.0034 mm [48], and SBal is the 
balloon surface which is calculated to 15.09m2 based on its 
spherical shape approximation. As per [48], the balloon’s 
buoyant force can be written as

(40)
(
�
PiRot
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)
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0 0

√
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)T

Pi

,

(41)
�
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.

where VBal denotes the total volume of the balloon being pre-
defined by 5.51m3 . Based on the static MSA of Sect. 2.1, the 
aerodynamic velocity of the balloon is equal to its kinematic 
velocity. Thus, the body drag force in Eq. (42) is, based on 
[46], calculated to

where the dimensionless drag coefficient CD equals −0.2 and 
the reference area Sr,Bal is predefined by 3.77m2.

3  Control design

The goal of this section is to obtain a simplified mathematical 
description of the plant, so that the derived model can be used 
as a basis for the flight control design of the proposed Mars 
vehicle. In comparison to the high-fidelity simulation model 
in Sect. 2, this procedure only takes aspects and properties of 
physical significance into account. Thus, it is assumed that 
both multirotor system and balloon UAV can be decoupled in 
terms of flight characteristics so that the balloon dynamics and 
the SDO model are neglectable within the controller model.

To solve objective (i), the flight controller is designed using 
a nonlinear cascaded control design model (CDM) which is 
inspired by [26] and [49].

For describing the main dynamic aspects of the multirotor 
system, another body-fixed (b) frame is introduced which pro-
vides similar properties as the B-frame of Sect. 2.2 and is illus-
trated in Fig. 5. Referring to Eqs. (36) and (37), it is assumed 
that all force and moments of the propulsion unit are directly 
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I
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Fig. 5  Control design model of the Mars vehicle including b-frame 
without depiction of zb-axis
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correlated to the propellers’ aerodynamic forces and moments. 
Let kT = 4.1 ⋅ 10−6 Ns2∕rad2 and kM = 1.85 ⋅ 10−7 Nms2∕rad2 
denote constant coefficients of each rotor, and then, the aero-
dynamic forces and moments are proportional to the square of 
the rotors’ commanded rotational speed �c,i and can both be 
calculated, for the i-th rotor, as 

Note that, since only main physical effects are considered, 
gyroscopic moments are neglected within the CDM. Equa-
tions (46) and (47) illustrate that all aerodynamic forces and 
moments are explicitly related to the commanded input vec-
tor of the plant, given by Eq. (1), which contains the square 
of the actuators’ commanded rotational speeds. Since the 
CDM’s output vector vd ∈ ℝ

4 contains the desired virtual 
control effort and this effort is represented through the spa-
tial distribution of all desired moments MR

d
 and through the 

total desired force TR
d
 , both acting on the multirotor system’s 

reference point R, vd is directly correlated to the plant’s com-
manded input vector by

Note that the mapping between the desired virtual con-
trol and the set of the actuators’ squared commanded rota-
tional speeds is described by the control matrix B ∈ ℝ

4×6 . 
Based on Eqs. (46) and (47), this matrix is composed of 
BM ∈ ℝ

3×6 , which describes the linear mapping for the mul-
ticopter’s total propulsive moment 

(
MR

)
b
∶= BMuc being 

defined as

as well as BT ∈ ℝ
1×6 , which is describing the mapping for 

the multicopter’s total propulsive thrust TR ∶= BTuc being 
defined as

In Eq. (49), l denotes the multicopter arm length which 
is predefined by 0.4315 m . By assuming a unique map-
ping similar to quadcopter configurations where vd and the 

(46)Ti = kT ⋅ �2
c,i
,

(47)Mi = �act,i ⋅ kM ⋅ �2
c,i
.

(48)
vd ∶=

[ (
MR

d

)
b

TR
d

]
=

[
BM

BT

]

⏟⏟⏟
B

uc ∈ ℝ
4.

(49)

⎡⎢⎢⎢⎣

−kTl −
1

2
kTl

1

2
kTl

0

√
3

2
kTl

√
3

2
kTl

kM −kM kM

kTl
1

2
kTl −

1

2
kTl

0 −
√
3

2
kTl −

√
3

2
kTl

−kM kM −kM

⎤⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�2
1,c

�2
2,c

�2
3,c

�2
4,c

�2
5,c

�2
6,c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(50)
[
kT kT kT kT kT kT

]
uc.

number of actuators have the same dimension ( B−1 is quad-
ratic and does exist), the commanded input vector of the 
plant can be calculated by introducing the Moore–Penrose 
pseudoinverse B+ ∈ ℝ

6×4 , so that [50]

To ensure that the desired virtual control is mapped 
into the physically attainable set of the actuators’ squared 
commanded rotational speeds, Eq.  (51) is further used 
to introduce the actuators’ rate constraints by saturating 
the vector elements of uc to �2

c,i,min
= 0 rad2∕s2 as well as 

�2
c,i,max

= (6000 ⋅ �∕30)2 rad2∕s2.
Euler’s first and second law [45] serves as a basis for the 

controller model to derive the translational and rotational 
dynamics of the multirotor system which are both related to 
the I-frame used as an inertial reference frame. The transla-
tional dynamics can thus be written to

where m = 2.317 kg denotes the multirotor system mass, 
mgR ∈ ℝ

3 its gravitational force including g0 , tR ∈ ℝ
3 its 

total propulsive force, and 
(
v̇R
)II its absolute acceleration 

which is the time derivative of the multicopter’s kinematic 
velocity with respect to the I-frame. Applying Euler’s clas-
sical treatment of vector analysis [39] as well as using the 
b-frame as notation frame, the rotational dynamics can be 
written to

where JR ∈ ℝ
3×3 represents the multirotor system’s mass 

moment of inertia tensor, which is constantly chosen as 
diag

(
0.131 kg m2 0.131 kg m2 0.261 kg m2

)
 . To obtain an 

attitude representation, Euler angles are introduced—similar 
to the plant design—where Ψ ∈ [−�;�] represents the azi-
muth angle, Θ ∈ [−�;�]  symbolizes the pitch angle, and 
Φ ∈ [−�;�] is the roll angle. Together, they constitute the 
rotation matrix RIb = Rz(−Ψ)Ry(−Θ)Rx(−Φ) ∈ SO3 which 
maps a vector from the b-frame into the I-frame. The first 
two CDM states are defined by the multicopter’s kinematic 
velocity vR as well as �Ib which is the vector of kinematic 
angular body rates. Their time-depending dynamic behav-
ior is given by Eqs. (52) and (53). To control the position 
of the multirotor system, rR ∈ ℝ

3 is defined as the CDM’s 
position state whereby its kinematic relation to the multi-
copter velocity is provided through 

(
ṙR
)I
=
(
vR
)I . Instead of 

choosing � ∈ ℝ
3 , the vector of Euler angles, as the CDM’s 

attitude state, we chose the multicopter’s total propulsive 
force tR ∈ ℝ

3 as attitude state which can be calculated, while 
using the b-frame as notation frame, to

(51)uc ∶= B+vd = BT
(
BBT

)−1
vd.

(52)m
(
v̇R
)II

= mgR + tR,

(53)

(
�̇
Ib
)b
b
= −

(
JR

)−1((
�
Ib
)
b
× JR

(
�
Ib
)
b

)
+
(
JR

)−1(
MR

)
b
,
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This thrust vector is composed of the total propulsive 
thrust TR , given by Eq.  (50), and zb =

[
0 0 1

]T  , which 
defines the unit vector of the body zb-axis. To obtain the 
time derivative of Eq. (54), we use the I-frame as reference 
frame while applying Euler’s classical treatment of vector 
analysis [39] which yields

For a more compact notation of Eq. (55), the thrust 
vector dynamics can be reformulated into a matrix–vector 
form of notation [49] which includes T ∈ ℝ

3×3 , the thrust-
magnitude matrix, as well as T� ∈ ℝ

3×3 , the reduced 
thrust-magnitude matrix:

Note that this approach is based on a reduced attitude 
parametrization [51] where the multicopter’s yaw rate is 
excluded from the thrust vector dynamics in Eq. (55) or 
(56). Hence, a rotation around the zb-axis is not correlated 
to a change of the CDM’s attitude state based on Eq. (55) 
or (56), so that the multirotor system’s yaw control can 
be designed independently.

3.1  Baseline controller

Based on the CDM of Sect. 3, a flight controller for the 
Mars vehicle can be derived which is primarily inspired 
by [26] and [49]. The flight controller is a cascaded ver-
sion of a backstepping-based attitude controller nestling 
inside a superior position controller which is based on 
Feedback Linearization [52]. Both nonlinear controllers 
are denoted as baseline controller, since they serve as a 
base for the artificial augmentation strategies presented 
in Sect. 4. Figure 6 summarizes the overall controller 
architecture.

Based on its cascaded structure, the flight controller is 
divided into an inner attitude loop being enclosed by an 
outer position loop. Since the dynamics of the inner loop 
are much faster than the dynamics of the outer loop, we 
conclude that both loops can be designed independently 
being justified by the theory of time-scale separation [53]. 
Inside the position loop, rR and vR are both controlled by 

(54)
(
tR
)
b
= −TR

(
zb
)
b
.

(55)
�
ṫ
R
�I

b
= −ṪR

�
zb
�
b
− TR

⎡
⎢⎢⎢⎣

�
żb
�b
b

���
=0

+
�
�
Ib
�
b
×
�
zb
�
b

⎤
⎥⎥⎥⎦
.

(56)

�
ṫ
R
�I

b
= −ṪR

�
zb
�
b
+

⎛
⎜⎜⎝

0 −TR 0

TR 0 0

0 0 0

⎞
⎟⎟⎠

�������������
T𝜔

�
�
Ib
�
b
=

⎛
⎜⎜⎝

0 −TR 0

TR 0 0

0 0 −1

⎞
⎟⎟⎠

�����������������
T

⎛
⎜⎜⎝

𝜔Ib
x

𝜔Ib
y

ṪR

⎞
⎟⎟⎠
b

.

stabilizing second-order error dynamics. Inside the atti-
tude loop, tR is controlled using a two-step backstepping 
control law as well as �Ib

z
 is controlled using a one-step 

backstepping control law. The position as well as the yaw 
rate controller are fed by rR

c
 and �Ib

z,c
 , the pilot’s position 

and yaw rate command, whereas the attitude controller 
is fed by a commanded thrust vector tR

c
 as feedforward. 

Since the overall controller testbed is treated as a model-
in-the-loop (MIL) simulation, the controller states are 
initialized through the plant state vector xP . Feasible ref-
erence trajectories, indicated by the subscript r, are not 
only provided by linear first- and second-order reference 
models (PT1 and PT2 filters), but also by a second-order 
nonlinear reference model [49], to define the controllers’ 
tracking objectives.

3.1.1  Baseline position controller

To derive the feedback law for the baseline position con-
troller, position error dynamics are stabilized by the outer 
loop’s pseudo-control tR

c
 around its zero equilibrium. The 

control objective has been reached when rR tracks a desired 
reference trajectory rR

r
∈ ℝ

3 , so that the position tracking 
error ep ∈ ℝ

3 and its time derivatives converge to zero:

We choose the I-frame as notation frame and insert 
Eq. (52) into (59) yielding

(57)ep ∶=
(
rR
r

)
−
(
rR
)
,

(58)
(
ėp
)I

=
(
vR
r

)I
−
(
vR
)I
,

(59)
(
ëp
)II

=
(
v̇R
r

)II
−
(
v̇R
)II

.

Fig. 6  Architecture of baseline flight controller
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where 
(
zI
)
I
=
[
0 0 1

]T denotes the zI-axis of the I-frame 
being notated in the I-frame. Next, we assume that a total 
commanded thrust tR

c
 does establish

which denotes a desired behavior of ëp . All matrices Kv , Kx , 
Ki are Hurwitz and of the set ℝ3×3 . If the total thrust tR is 
selected according to the pseudo-control law

the desired position error dynamics in Eq. (61) and the real 
position error dynamics in Eq. (60) become equal so that the 
CDM’s position state rR and the translation state vR approach 
their reference trajectories exponentially fast.

3.1.2  Baseline attitude controller

The control objective of the baseline attitude controller is 
achieved when tR tracks a desired reference trajectory tR

r
∈ ℝ

3 , 
so that the attitude tracking error et ∈ ℝ

3 and its time deriva-
tive converge to zero:

We choose the I-frame as notation frame and insert 
Eq. (56) into (64) by using the rotation matrix RIb:

Here, (∗) defines the vector of pseudo-control variables for 
the thrust vector tracking (TVT). To derive the control law 
of this first backstepping step, a positive definite Lyapunov 
function (LF) candidate V1 [53] is chosen in quadratic form as

whereby the time derivative of V1 ∈ ℝ is calculated to

To obtain an exponential decay behavior of ėt , Eq. (67) 
must ensure negative semi-definiteness. Therefore, let 

(60)
(
ëp
)II
I
=
(
v̇R
r

)II
I
− g0

(
zI
)
I
−

1

m

(
tR
)
I
,

(61)
(
ëp,d

)II
= −Kv

(
ėp
)I

− Kx

(
ep
)
− Ki

[
∫

t

t0

(
ep
)
dt

]
,

(62)
(
tR
c

)
I
= m

[(
v̇R
r

)II
I
− g0

(
zI
)
I
−
(
ëp,d

)II
I

]
,

(63)et ∶= tR
r
− tR,

(64)ėt =
(
ṫ
R

r

)I

−
(
ṫ
R
)I

.

(65)

�
ėt
�I
I
=
�
ṫ
R

r

�I

I
− RIb

�
ṫ
R
�I

b
=
�
ṫ
R

r

�I

I
− RIbT

⎛
⎜⎜⎝

𝜔Ib
x

𝜔Ib
y

ṪR

⎞
⎟⎟⎠
b

���
(∗)

.

(66)V1

(
et
)
=

1

2
eT
t
et,

(67)V̇1

(
et
)
=

1

2
ėT
t
et +

1

2
eT
t
ėt = eT

t
ėt.

ėt,d = −Ktet denote a desired decay behavior of the real TVT 
error dynamics. Then, using Eq. (67) once more a desired 
time derivative of V1 can likewise be written to

where Kt ∈ ℝ
3×3 is a Hurwitz matrix acting as feedback gain 

of et . We assume that V̇1,d can be generated by a desired 
pseudo-control input u1 =

[
u1x u1y u1z

]T
∈ ℝ

3 , so that 
for (∗) = u1 , the desired time derivative V̇1,d and the time 
derivative of the actual LF V̇1 become equal. A comparison 
of Eqs. (67) and (68), while using the I-frame as notation 
frame, yields the pseudo-control law for the TVT

after inserting Eq. (65) into Eq. (67). Note that, since the thrust-
magnitude matrix is quadratic and provides full column and 
row rank, its inverse T−1 ∈ ℝ

3×3 can be calculated to

In Eq. (70), a problem of singularity arises for the inverse 
thrust-magnitude matrix if the total propulsive thrust TR is 
equal to zero. To avoid that T−1 becomes singular we saturate 
TR to a minimum permissible propulsive thrust of 0.1N . 
Concerning the general backstepping methodology [53], the 
error cross-coupling term lacks in Eq. (69) which illustrates 
the main distinction in deriving the baseline controllers’ 
pseudo-control laws compared to [26]. The attitude loop is 
stabilized independent of ep being justified by the theory of 
time-scale separation [53]. The baseline position controller 
shall lose some of its performance, since the inner loop and 
therefore also the plant’s commanded input vector uc receive 
less information of the outer loop.

Proceeding with the general backstepping methodology, 
the comparison between the desired pseudo-control law for 
the TVT, given by (69), and the current vector of pseudo-
control variables (∗) (see Eq. (65)) leads to sub-targets of 
the primary control objective. Since both angular body 
rates �Ib

x
 and �Ib

y
 are related to the rotational dynamics, 

given by Eq. (53), they cannot be manipulated directly in 
a manner that �Ib

xy
=
[
�Ib
x

�Ib
y

]T
∈ ℝ

2 matches the desired 
pseudo-control u1xy =

[
u1x u1y

]T
∈ ℝ

2 at any time. Hence, 
to ensure angular rates tracking (ART), the ART error 
e�xy =

[
e�x e�y

]T
∈ ℝ

2 and its time derivative with respect 
to the b-frame must converge to zero:

(68)V̇1,d = eT
t
ėt,d = eT

t

[
−Ktet

]
,

(69)
(
u1
)
b
= T−1RT

Ib

[(
ṫ
R

r

)I

I
+ Kt

(
et
)
I

]
,

(70)T−1 =

⎛⎜⎜⎝

0 1∕TR 0

−1∕TR 0 0

0 0 −1

⎞⎟⎟⎠
.

(71)e�xy = u1xy − �
Ib
xy
,
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To satisfy TVT and ART at the same time, the ART error 
must be included within the TVT error dynamics, so that 
Eq. (71) is reformulated to �Ib

xy
= u1xy − e�xy and inserted 

into Eq. (65) which yields

Since the actual pseudo-control variable ṪR becomes 
an input for the inner loop while propagating it to a first-
order integrator chain (see Fig. 6), and additionally, since 
we assume that every demanded, or rather desired, input 
for the inner loop can be generated in such a short period 
of time that it is always available, ṪR matches its desired 
pseudo-control u1z at any time, so that no additional sub-
ordinated control error arises. For the sake of clarity, we 
rewrite Eq. (73) to

To derive the control law of this second backstep-
ping step, the valid LF candidate V1 , given by Eq. (66), is 
extended to

whereby the time derivative of V2 ∈ ℝ can be determined to

We use the I-frame to notate the TVT error and its dynamics 
as well as the b-frame to notate the ART error and its dynamics. 
After inserting Eq. (67) into Eq. (76), it follows:

By inserting the pseudo-control law for the TVT, given 
by Eq. (69), into Eq. (74), and additionally, using Eq. (72) 
for the ART error dynamics, Eq. (77) can be rewritten to

In addition to the general backstepping methodology 
[53], the error cross-coupling term in Eq.  (78) must be 

(72)
(
ė𝜔xy

)b
=
(
u̇1xy

)b
−
(
�̇
Ib
xy

)b

.
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�
ėt
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I
− RIbT

⎛⎜⎜⎝

u1x − e𝜔x
u1y − e𝜔y

ṪR
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.
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ėt
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I
− RIbT

�
u1
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b
+ RIbT
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0

⎞⎟⎟⎠b
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(75)V2

(
et, e�xy

)
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1

2
eT
�xy

e�xy,

(76)V̇2

(
et, e𝜔xy

)
= V̇1 + eT

𝜔xy
ė𝜔xy.

(77)V̇2

(
et, e𝜔xy

)
=
(
et
)T
I

(
ėt
)I
I
+
(
e𝜔xy

)T
b

(
ė𝜔xy

)b
b
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(78)
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2

�
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�
=
�
et

�T
I
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−Kt

�
et

�
I
+ RIbT
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−
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�
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retransformed, so that the ART error is explicitly included 
in the vector space ℝ2 . For this purpose, a weighted matrix 
W ∈ ℝ

3×2 is introduced which satisfies that 
(
e�x e�y 0

)T
b
 

can be replaced by W
(
e�xy

)
b
 . Since V2 , respectively its time 

derivative, is a scalar quantity, we transpose the error cross-
coupling term 

(
et
)T
I
RIbTW

(
e�xy

)
b
 and rewrite Eq. (78) to

Note that Eq. (79) includes the angular body accelera-
tions �̇�Ib

x
 and �̇�Ib

y
 which are directly affected by the rota-

tional dynamics, given by Eq. (53). Thus, �̇Ib
xy

 defines the 
vector of pseudo-control variables for the ART. To render 
Eq. (79) negative semi-definite, which proofs stability of 
both tracking errors et and e�xy around their zero equilibria 
0 ∈ ℝ

3 and 0 ∈ ℝ
2 , let ė𝜔xy,d = −K𝜔xye𝜔xy denote a desired 

decay behavior of the real ART error dynamics. Then, using 
Eq. (77) once more, a desired time derivative of V2 can like-
wise be written to

where K�xy ∈ ℝ
2×2 is a Hurwitz matrix acting as feedback 

gain of e�xy . We assume that V̇2,d can be generated by a 
desired pseudo-control input u2xy =

[
u2x u2y

]T
∈ ℝ

2 , so 
that for �̇Ib

xy
= u2xy , the desired time derivative V̇2,d and the 

time derivative of the actual LF V̇2 become equal which 
yields the pseudo-control law for the ART:

Note that the pseudo-control law for the ART includes u̇1x 
and u̇1y , the time derivatives of the TVT’s desired pseudo-
controls. To obtain the dynamics of u1xy with respect to the 
b-frame, we use Eq. (69) and apply Euler’s classical treat-
ment of vector analysis [39] which yields

In Eq. (82), the time derivative of the inverse thrust-mag-
nitude matrix with respect to the b-frame can be calculated 
to [26]
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I
Kt

�
et

�
I
+
�
e𝜔xy

�T
b

⎡⎢⎢⎢⎢⎢⎢⎣

�
1 0 0

0 1 0

�

���������

W
T

T
T
�
et

�
b
+
�
u̇1xy

�b
b
−
�
�̇
Ib
xy

�b

b

⎤⎥⎥⎥⎥⎥⎥⎦

.

(80)

V̇
2,d = V̇

1,d +
(
e𝜔xy

)T
b

(
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and the time derivative of the rotation matrix RbI with 
respect to the b-frame is given by the following kinematics 
[26]:

being related to the Strapdown equation [39]. To finally 
constitute the pseudo-control law for the overall ART in the 
vector space ℝ3 we use Eq. (81) and, additionally, assume 
that u2z ∈ ℝ , which represents the pseudo-control law of the 
one-step backstepping yaw rate controller, is already given 
from Sect. 3.1.3 leading to

Since all vector elements of u2 ∈ ℝ
3 can be interpreted 

as a desired angular body acceleration around the xb-,yb -, 
and zb-axis of the CDM, the relation between the desired 
moments MR

d
 and u2 is given by inserting Eq. (85) into the 

CDM’s rotational dynamics (see Eq. (53)):

Since the CDM’s output vector vd , given by Eq. (48), 
also represents, conversely, the input to stabilize the inner 
loop of the CDM, Eq. (86) emphasizes that the angular body 
accelerations match their purposed desired values, being 
comprised in u2 , if vd is mapped into the attainable set of 
the actuators’ squared commanded rotational speeds, estab-
lished through Eq. (51). This mapping also involves the total 
desired force TR

d
 , or rather TR , which can be determined by 

propagating the desired pseudo-control u1z to a first-order 
integrator chain:

With regard to Eq. (70), the initial condition of Eq. (87) is 
predefined by TR

(
t0
)
= 0.1N . The final result for the base-

line flight controller’s desired virtual control vector can then 
be summarized to
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b
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b
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b
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(
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b
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�
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(87)TR
d
= TR = ∫

t

�=0

(
u1z

)
d�.

(88)vd =

[
JR

(
u2
)
b
+
(
�
Ib
)
b
× JR

(
�
Ib
)
b∫ t

t0

(
u1z

)
dt

]
.

3.1.3  Yaw rate controller

Using the thrust vector tR as reduced attitude state allows 
an independent yaw control design for the CDM, since the 
angular body rate �Ib

z
∈ ℝ is entirely decoupled from the 

attitude kinematics, given through Eqs. (55) and (56). The 
control objective of the yaw rate controller is achieved when 
�Ib
z

 tracks a desired reference trajectory �Ib
z,r

∈ ℝ, so that the 
yaw motion tracking error e�z ∈ ℝ and its time derivative 
converge to zero:

To derive the control law for the yaw rate tacking, we 
choose again a positive definite LF candidate V3 [53] in 
quadratic form as

whereby the time derivative of V3 ∈ ℝ is calculated to

To enforce an exponential decay behavior of ė𝜔z , 
Eq. (92) must ensure negative definiteness. Therefore, let 
ė𝜔z,d = −k𝜔 ⋅ e𝜔z denote a desired decay behavior of the real 
yaw rate error dynamics. Then, we use Eq. (92) once more 
and write a desired time derivative of V3 as

where the feedback gain k�z ∈ ℝ is positive definite and con-
stant. We assume that V̇3,d is generated by a desired pseudo-
control input u3 ∈ ℝ such that for �̇�Ib

z
= u3 , Eqs. (92) and 

(93) become equal which yields the pseudo-control law for 
the yaw rate tracking

after inserting Eq. (90) into Eq. (92). We conclude from 
Eq.  (94) that yaw rate tracking is guaranteed under the 
assumption that the angular body acceleration is adjusted in 
a manner that �̇�Ib

z
 equals u3 at any time, so that ė𝜔z declines 

to zero exponentially fast. For the sake of consistency, we 
write u2z = u3.

3.1.4  Reference models

Within this section, reference models are presented which 
are used to generate feasible trajectories for the baseline con-
trollers that shall ultimately be tracked by the states of the 

(89)e�z = �Ib
z,r

− �Ib
z
,

(90)ė𝜔z = �̇�Ib
z,r

− �̇�Ib
z
.

(91)V3

(
e�z

)
=

1

2
⋅e2

�z
,

(92)V̇3

(
e𝜔z

)
= e𝜔z ⋅ ė𝜔z.

(93)V̇3,d = e𝜔z ⋅ ė𝜔z,d = e𝜔z ⋅
[
−k𝜔z ⋅ e𝜔z

]
,

(94)u3 = �̇�Ib
z,r

+ k𝜔ze𝜔z = �̇�Ib
z,r

+ k𝜔z

(
𝜔Ib
z,r

− 𝜔Ib
z

)
,
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plant. Feasible means that the reference trajectories shall be 
sufficient smooth, so that they can physically be achieved by 
the Mars vehicle. Otherwise, the baseline controllers’ track-
ing objectives would be doomed to fail in the long term [54].

Usually, linear reference models are used to obtain the r
-trajectories since they provide the simplest approach to plan 
a desired trajectory by only using a n-dimensional filter. To 
obtain the desired trajectory for the yaw rate controller, the 
pilot’s yaw rate command �Ib

z,c
 is filtered by a PT1 element. 

This PT1 filter represents a linear first-order reference model 
and, based on [47], is given by

whereby the time constant t�z is constantly chosen as 1.25 s . 
This emphasizes that the attainable vector space for a desired 
moment around the body zb-axis is reduced to a minimum 
(while the yaw rate controller is active) being beneficial with 
regard to the low-density conditions in Valles Marineris (see 
Sect. 2.1). In case of the baseline position controller, the 
linear second-order reference model [47]

is used, where tp = 0.2 s , � = 1 and ks = 1 define the second-
order system parameter. In addition to the baseline attitude 
controller, the task is to generate smooth r-trajectories out of 
the commanded thrust vector tR

c
 . In this case, it is reasonable 

not to use a PT2 filter as in Eq. (96). The reason for this is 
based on Eq. (54), since it is not guaranteed that ‖zb‖ = 1 at 
every time instant. Hence, in terms of the thrust vector satu-
ration subsystem (see Fig. 6), tR

c
 is separated into Tc , which 

indicates the commanded thrust magnitude, but also into the 
unit vector zb,c , which indicates the pointing direction of the 
commanded thrust vector:

Note that, since the baseline position controller is based 
on the theory of Feedback Linearization [52], the total com-
manded thrust vector always tries to cancel out the system’s 
inherent dynamics being, inter alia, induced by the gravita-
tional acceleration, so that 1∕‖tR

c
‖ in Eq. (98) stays bounded 

at every time instant. To generate smooth r-trajectories out of 
Eqs. (97) and (98), the kinematics of the reference thrust vec-
tor tR

r
 must be derived in the first place. According to the clas-

sical treatment of direct vector differentiation [39], it follows:

(95)�̇�Ib
z,r

=
1

t𝜔z

(
𝜔Ib
z,c

− 𝜔Ib
z,r

)
,

(96)
(
v̇R
r

)II
I
+

2𝜁

tp

(
vR
r

)I
I
+

1

t2
p

(
rR
r

)
I
=

ks

t2
p

(
rR
c

)
I
,

(97)TR
c
= ‖tR

c
‖ ∈ ℝ,

(98)zb,c =
1

‖tR
c
‖ t

R
c
∈ ℝ

3.

To determine the thrust-magnitude reference trajectory TR
r
 

and its time derivatives, a PT2 filter can be used, similar to 
Eq. (96), leading to [47]

whereby tT = 0.05 s , � = 1 and ks = 1 define the second-
order system parameter. To obtain the directional reference 
trajectory zb,r , we introduce a nonlinear reference model [49]

which provides the rotational dynamics of tracking the 
physical unit vector zb,c by the S-frame’s virtual unit vec-
tor zS =

[
0 0 1

]T  . The parameters �0,S = 1.75
1

s
 , �S = 1 , 

and ks = 1 are used to adjust how fast the virtual unit vector 
exponentially tracks zb,c by influencing the cross product on 
the right-hand side of Eq. (103) at every time instant. The 
tracking velocity is then indirectly conferred on �IS which 
indicates the S-frame’s angular velocity vector relative to the 
I-frame. Since �IS is related to the Strapdown equation [39] 
by the following kinematics:

Equation (104) serves RIS . This rotation matrix not only 
implies the mapping from a vector being notated in the 
S-frame to a vector being notated in the I-frame, it can also 
be used to extract the required directional reference trajectory 
notated in the I-frame due to

Equation (105) only holds by setting up the exact same ini-
tial conditions �IS

(
t0
)
= �

Ib
(
t0
)
 such as RIS

(
t0
)
= RIb

(
t0
)
 

within the virtual model. Thus, S-frame and b-frame are con-
current for t0 which, upon reversion, means that the b-frame 
or rather its zb-axis tracks zb,c . Euler’s treatment of vector dif-
ferentiation [39] is finally used to obtain the zb,r-kinematics 
being required for Eqs. (99) to (101):

(99)
(
tR
r

)
I
= −TR

r

(
zb,r

)
I
,

(100)
(
ṫ
R

r

)I

I
= −ṪR

r

(
zb,r

)
I
− TR

r

(
żb,r

)I
I
,

(101)
(
ẗ
R

r

)II

I
= −T̈R

r

(
zb,r

)
I
− 2ṪR

r

(
żb,r

)I
I
− TR

r

(
z̈b,r

)II
I
.

(102)T̈R
r
+

2𝜁

tT
ṪR
r
+

1

t2
T

TR
r
=

ks

t2
T

TR
c
,

(103)

(
�̇
IS
)S
S
+ 2𝜁S𝜔0,SI

(
�
IS
)
S
=
[
𝜔2
0,S
I
(
zS
)
S
× ks𝜔

2
0,S
I
(
zb,c

)
S

]
,

(104)
�
ṘIS

�I
= RIS

�
�

IS
�
SS

= RIS
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0 −𝜔IS
z

𝜔IS
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𝜔IS
z

0 −𝜔IS
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SS

,

(105)
�
zS
�
I
= RIS
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0

0

1

⎞⎟⎟⎠S
∧
=
�
zb,r

�
I
.
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with

3.1.5  Stability analysis of closed‑loop system

To provide a valid baseline flight controller, closed-loop 
stability of the CDM must be guaranteed which is shown 
in this section. To track the reference position rR

r
 as well as 

the reference velocity vR
r
 , both given by Eq. (96), we define 

the total error of the CDM’s position loop epos ∈ ℝ
6 using 

Eqs. (57) and (58) to

As we are aiming to stabilize the dynamics of Eq. (109) 
around its zero equilibrium, we use the I-frame as notation 
and reference frame while applying Euler’s classical treat-
ment of vector analysis [39] which yields

where ëp is given by Eq. (60). To obtain a matrix–vector 
notation, the position loop error dynamics from Eq. (110) 
are reformulated into

where the matrices M ∈ ℝ
6x6 , A ∈ ℝ

6x6 , and B ∈ ℝ
6x3 are 

given by

including I ∈ ℝ
3×3 as identity matrix and 0 ∈ ℝ

3×3 as zero 
matrix. Since it is assumed that every demanded input for 
the position loop is, based on the theory of time-scale sep-
aration [53], always available and disposable, tR equals tR

c
 

(106)

�
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I
= RIS

�
żb,r

�I
S
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�
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S

���
=0
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�
IS
�
S
×
�
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�
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y
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x
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S

,

(107)
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)II
S
= RIS
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)IS
S
+
(
�
IS
)
S
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S

]
,

(108)
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S
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S
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S
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(109)epos ∶=

(
ep(
ėp
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rR
r

)
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(
rR
)

(
vR
r

)I
−
(
vR
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)
.

(110)ėpos =
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ėp
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ëp
)II
I
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vR
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I
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(111)Mėpos = Aepos + B
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m
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v̇R
r

)II
I
− m

(
zI
)
I
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(
tR
)
I

]
,

(112)M =

[
I 0

0 mI

]
, A =

[
0 I

0 0

]
, B =

[
0

I

]
,

at any time, so that we can insert Eq. (62) into Eq. (111) 
yielding

For the desired position error dynamics ëp,d , given by 
Eq. (61), we only consider the feedback matrices Kx and Kv 
in the closed-loop system. By multiplying Eq. (113) with 
M−1, it follows:

with

denoting the error matrix of the position loop. All inher-
ent nonlinearities of the CDM’s outer loop are canceled out 
by the pseudo-control law (62) which yields a linear state-
space representation for ėpos . To achieve asymptotic stabil-
ity, meaning that the linear error dynamics (114) show an 
exponential decay behavior, so that epos converges at its zero 
equilibrium 0 ∈ ℝ

6 , E must be a stability matrix, and thus, 
Eq. (115) is only allowed to exhibit poles in the left-half 
complex plane. To examine E , we use the so-called Lyapu-
nov equation [53] which manifests that a positive definite 
LF Vpos ∈ ℝ must be found satisfying Vpos

(
epos

)
> 0 and 

Vpos(0) = 0 for all epos ≠ 0 . We obtain a valid LF candidate 
in quadratic form as

whereby the time derivative of Vpos is calculated to

Equations  (116) and (117) both include the matrix 
P ∈ ℝ

6×6 which we can chose arbitrarily. The only pri-
mary constraint is that P must be positive definite as well 
as symmetric, so that P = PT is always satisfied [53]. After 
inserting the linear error dynamics, given by Eq. (114), into 
Eq. (117), we find

so that the matrix Q ∈ ℝ
6×6 is given by the Lyapunov equa-

tion [53]:

While choosing, e.g., P as identity matrix I ∈ ℝ
6×6 , we 

conclude from Eq. (119) that Q becomes positive definite 
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m
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)II
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]
.
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���������������������������
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epos,

(119)ETP + PE = −Q.
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and therefore that E is Hurwitz [53]. Thus, Eq. (114) is a 
stable linear system while choosing the feedback gain matri-
ces Kx and Kv positive definite which guarantees position 
and velocity tracking at any given time. Since the dynamics 
of the CDM’s inner loop are considerable faster than the 
dynamics of the outer loop, we conclude that the closed-loop 
system is stable under the pseudo-control inputs u1 and u2 , 
given by Eqs. (69) and (85), provided that the feedback gain 
matrices Kt , K�xy , and k�z are positive definite and constant. 
Note that the desired pseudo-control law for the TVT always 
exists, since we saturate TR to a minimum permissible pro-
pulsive thrust of 0.1N to avoid that the inverse thrust-mag-
nitude matrix T−1 , given through Eq. (70), becomes singular 
[53].

4  Artificial augmentation units

In this section, artificial augmentation units are developed 
to extend the baseline flight controller’s architecture, shown 
in Fig. 6, to increase its capabilities in suppressing modeling 
errors artificially. This procedure is advantageous to achieve 
objective (ii) and (iii), since the units work independent from 
the baseline controller. Thus, the control laws derived in 
Sect. 3.1 are still valid.

Due to the uncontrollability of the balloon UAV, unin-
tended rope oscillations are causing steady-state errors [47] 
in the multirotor system’s position. Additionally, when the 
rope touches the rotor plane, or rather the propeller tips, 
the flight mission is endangered and may fail. The idea is 
therefore to damp the balloon motion artificially within 
the horizontal plane by generating a closed-loop reference 
model (CRM) [35] either for the inner or the outer loop of 
the CDM. Based on the developed methodology, we call 
our first approach the thrust vector augmentation (TVA), 
whereas our second approach is called the position com-
mand augmentation (PCA).

The general idea of both TVA and PCA is to embed a 
feedback of the uncertain plant into the reference model so 
that a closed-loop results. If this feedback is defined as an 
error, it tries to pull the reference model towards the plant so 
that both meet “half-way” and the error is, at least, reduced 
[35]. We use the balloon’s relative position to the multi-
copter rRQ

xy
=
[
xRQ yRQ

]T
∈ ℝ

2 , given by Eq. (13), and the 
balloon’s relative velocity vRQ

xy
=
[
uRQ vRQ

]T
∈ ℝ

2 , given 
by the vector subtraction of vR

xy
=
[
uR vR

]T
∈ ℝ

2 from 
vQ
xy
=
[
uQ vQ

]T
∈ ℝ

2 , as error signals and embed them into 
the baseline controllers’ open-loop reference models (ORM). 
These error signals are then scaled by the Hurwitz matrices 
DBal and KBal , the so-called Luenberger gains [35], which 
are both of the set ℝ2×2.

4.1  Thrust vector augmentation

We implement the TVA approach by augmenting the com-
manded thrust vector tR

c
 which represents the pseudo-control 

input of the CDM’s outer loop. The augmented thrust vector 
is then defined as

 whereby tR
c
 is given by Eq. (62) and the weighted matrix 

W ∈ ℝ
3×2 is given through Eq.  (79). Due to the TVA, 

Eq. (98) is redefined, so that the unit vector zb,c indicates 
the pointing direction of t̃R

c
 without violating that ‖zb,c‖ = 1 

at every time instant. Hence, while the Mars vehicle operates 
on a mission, a balance between a desired attitude command 
and a reduction of the balloon error signals is obtained. 
Since the error signals are only defined within the horizontal 
plane and, by scaling KBal and DBal to a lower level, the inner 
loop’s control objective remains and, finally, concludes in 
the stabilization of the rope angle �R∗ around 90◦ for steady-
state conditions (see Fig. 4). The main advantage of the TVA 
is based on its robustness against external disturbances. 
While the TVA is activated, the baseline control target—to 
stabilize the tracking error ep around its equilibrium 0 ∈ ℝ

3

—cannot be bypassed. Only a significant growth of ep is 
obtained for non-steady-state conditions since a mismatch 
between the desired pseudo-control input tR

c
 and the actual 

augmented pseudo-control input t̃R
c
 of the CDM’s outer loop 

is produced on purpose to stabilize the relative position of 
the balloon in the forward flight case.

4.2  Position command augmentation

To realize the PCA approach and generate a CRM inside the 
position loop, we augment the initial position command rR

c
 , 

so that the new pilot command is defined as

whereby the weighted matrix W ∈ ℝ
3×2 is given through 

Eq. (79). In case of the PCA, the position tracking error in 
Eq. (57) is redefined to ẽp = r̃R

r
− rR , since the r-trajectories 

of the second-order reference model, given by Eq. (96), are 
fed by the augmented position command r̃R

c
 as feedforward. 

Hence, while the Mars vehicle operates on a mission, a 
balance between a desired position command and a reduc-
tion of the balloon error signals is obtained. Since the error 
signals are only defined within the horizontal plane and, 
by scaling KBal and DBal to a lower level, the outer loop’s 
control objective remains and, finally, concludes in the sta-
bilization of the rope angle �R∗ around 90◦ for steady-state 
conditions (see Fig. 4). Although a disproportionate growth 
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I
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I
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I
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I
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of ẽp is prevented, by pulling the reference model towards 
the plant, the overall controller target, to reach a steady-
state in the vehicle’s position, so that ep converges to zero, 
is only satisfied in the absence of stationary external distur-
bances. In case of, e.g., static wind, the error feedback ‖rRQ

xy
‖ 

is always positive and low-frequent. Thus, reference model 
and plant do constantly meet “half-way”, so that the overall 
control target is misled by the deviation between r̃R

r
 and rR

r
 . 

To overcome this problem, the linear error term KBalr
RQ
xy

 is 
passed through a washout filter [39] satisfying that the outer 
loop’s control objective remains even under steady wind by 
only using the transient rate of the feedback. We embed the 
washout filter as second-order system and only use the first 
derivative for Eq. (121) which will solely produce non-zero 
augmentation signals when the linear error term is high-
frequent and not steady. Figure 7 shows the schematic struc-
ture of the PCA approach including the washout filter where 
�0 = 0.6

1

s
 , � = 1 and ks = 1 define its system parameters.

5  Simulation results

This section summarizes the simulation results of testing 
the CDM of Sect. 3 on the high-fidelity plant design model 
of Sect. 2. Since the overall simulation testbed is treated as 
MIL, the controller states are initialized through the plant 
state vector xP so that, inter alia, the CDM’s b-frame and the 
plant’s B-frame are congruent from scratch.

To demonstrate the controller performance, the closed-
loop system response for the Mars vehicle’s position state 
rR is evaluated on a digital-8-flight-maneuver at the bottom 
of Valles Marineris. The flight path is obtained by a refer-
ence trajectory being in shape of a long curved “8” rep-
resenting a suitable extraterrestrial mission profile to, e.g., 
scan the Martian surface from above and detect prominent 
spots where swarm participants should perform scientific 
experiments.

The mission has a total flight time of 180 s . The actual 
maneuver starts eastwards and is performed within 120 s . 
This provides a time slot of 60 s to not only reach a steady-
state in the vehicle position, but also to eliminate steady-state 
errors [47]. The take-off location is initialized according to 

the environment submodel of Sect. 2.1 with a geodetic alti-
tude of - 4906m blow the Martian geoid. Since �R∗ describes 
the radial distance between the rope and the xB–yB plane of 
the multirotor system, �R∗,ne = 20◦ is defined as never exceed 
rope angle for a quantitative mission assessment. To make 
the handling more intuitive and, to provide proper smooth 
trajectories, the pilot’s position command arises from an 
integrated joystick-velocity command vR

cmd
 . For the sake of 

comparability, vR
cmd

 is constantly given by 
[
±3 ±3 ±1

]T , so 
that the pilot’s position command is determined as follows:

Equation (122) also ensures that, for every time instant, 
the multirotor system does not accelerate upwards faster 
than the balloon. For the baseline controllers, the feedback 
gain matrices Kv = diag

(
2 2 1

)
 , Kx = diag

(
0.5 0.5 0.5

)
 , 

Ki = diag
(
0.1 0.05 0.05

)
 , Kt = diag

(
4 4 4

)
 , as well 

as K�xy = diag
(
20 20

)
 and k�z = 8 are chosen constant 

and Hurwitz. With regard to the artificial augmentation 
units, KBal = diag

(
1.2 0.8

)
 and DBal = diag

(
0.15 0.3

)
 

are constantly chosen for the PCA approach as well as 
KBal = diag

(
0.5 1

)
 and DBal = diag

(
0.5 0.75

)
 for the 

TVA approach.
Figure 8 shows the simulation results for three different 

flight controller configurations. On top, the Mars vehicle’s 
position tracking behavior for the baseline flight controller 
is depicted, whereas in the middle and on the bottom, the 
position tracking for the flight controller with activated PCA 
and TVA is shown. The balloon’s position rQ is depicted in 
green with a starting position of 

[
0 0 −20

]T with respect to 
the I-frame. The true position of the Mars vehicle rR (blue) 
tracks the reference position rR

r
 (red) even under influence 

of the balloon UAV and rope dynamics very accurately 
which implies a satisfying robustness for all three control-
ler configurations. In terms of the TVA, the oscillating offset 
between rR and rQ is reduced, so that an additional offset 
between rR and rR

r
 is caused on purpose, due to the mismatch 

between tR
c
 and t̃R

c
 , to reduce the rope oscillations. A signifi-

cant reduction of this additional offset is achieved in terms 
of the PCA by smoothly shifting the aimed position tracking 
objective from the ORM to the CRM for non-steady-state 
conditions. Due to the fact that, while the PCA is activated, 
the augmented reference position r̃R

r
 does distinguish from 

the nominal reference position rR
r
 , the Mars vehicle’s posi-

tion tracking for the flight controller with activated PCA 
shows the nominal trajectory for the reference position rR

r
 , 

being depicted as black dashed line, and additionally, shows 
the actual augmented trajectory for the reference position r̃R

r
 , 

which is tracked, in red. For the sake of clarity, the position 
tracking for the flight controller with activated TVA also 
shows the nominal trajectory for the reference position rR

r
 

(122)
(
rR
c

)
I
= ∫

t

�=0

(
vR
cmd

)
I
d�.

Fig. 7  Schematic structure of PCA approach within closed-loop con-
trol system (plant state vector feedback is not shown)
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(black dashed line), which is equal to the actual trajectory 
for the reference position (depicted in red) to emphasize the 

fact that the ORM of the CDM’s outer loop remains for the 
flight controller configuration with activated TVA.

Figure 9 depicts the vector elements of the position track-
ing error ex,p , ey,p , and ez,p ( ̃ex,p , ẽy,p and ẽz,p for the PCA) in 
xI -, yI -, and zI-direction of the I-frame over time. In case 
of the TVA, the position errors are mainly capped between 
∓0.5m for ex,p and even ∓2m for ey,p , whereas for the base-
line controller and for the baseline controller with PCA ex,p 
and ey,p , respectively, ẽx,p and ẽy,p , are settled below ∓0.2m 
and ∓0.6m . Due to the artificial augmentation units, the 
Mars vehicle is able to not only reach a steady-state in posi-
tion, but also to eliminate all steady-state errors, so that ‖ep‖ , 
or rather ‖ẽp‖ , converge to zero at the end of the simulation 
period. The baseline controller itself is not able to elimi-
nate the steady-state errors which is caused by the mod-
eling errors inside the CDM (neglection of balloon and rope 
dynamics).

For the sake of completeness, Fig. 10 illustrates the atti-
tude tracking (TVT) in xI -, yI -, and zI-direction over time 
for the baseline controller during the digital-8-maneuver. 
The thrust vector elements tR

x
 , tR

y
 , and tR

z
 track the reference 

thrust vector elements tR
x,r

 , tR
y,r

 , and tR
z,r

 very accurately which 
implies a good controller performance similar to the posi-
tion tracking simulation results presented before. This is 
expected since tR

x,c
 , tR

y,c
 , and tR

z,c
 , the vector elements of the 

desired pseudo-control input for the CDM’s outer loop, are 
only used as virtual control to stabilize the position loop 
exponentially. The initial control objective to track the 
ORM remains without stabilizing the balloon dynamics in 

Fig. 8  Position tracking while digital-8-maneuver for baseline con-
troller (top), baseline controller with PCA (middle), and baseline con-
troller with TVA (bottom)
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Fig. 9  Position tracking error while digital-8-maneuver for baseline 
controller (top), baseline controller with PCA (middle), and baseline 
controller with TVA (bottom)
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the forward flight case. Rope oscillations do clearly occur 
at the end of the simulation period which are propagated by 
the outer loop’s position and velocity error feedbacks to the 
inner loop of the CDM.

In Fig. 11, the attitude tracking (TVT) in xI -, yI -, and zI
-direction over time for the baseline controller with PCA 
is presented during the digital-8-maneuver. The controller 
performance of tracking the reference thrust vector elements 
tR
x,r

 , tR
y,r

 , and tR
z,r

 by the vehicle’s estimated thrust vector ele-
ments tR

x
 , tR

y
 , and tR

z
 are comparably good as the simulation 

results of the TVT for solely using the baseline controller, 
without PCA, as shown in Fig. 10. The only difference can 
be recognized in the end of the simulation period. Here, 
all disturbing rope oscillations, illustrated by a swirling of 
tR
x
 , tR

y
 , and tR

z
 , since the rope pulls the rotor plane back and 

forth, are canceled out entirely being established through 
tR
x,c

 , tR
y,c

 , and tR
z,c

 . Based on the outer loop’s CRM, the desired 
pseudo-control tR

c
 propagates the augmented trajectories r̃R

r
 

and ṽR
r
 for the position and velocity reference to the nonlinear 

reference model of the CDM’s inner loop which concludes 
in a “PCA-dominated” trajectory design for the reference 
thrust vector tR

r
.

In Fig. 12, the attitude tracking (TVT) in xI -, yI -, and zI
-direction of the I-frame over time for the baseline control-
ler with TVA is presented during the digital-8-maneuver. 
The elements of the estimated thrust vector tR

x
 , tR

y
 , and tR

z
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Fig. 10  Attitude tracking (TVT) in xI-direction (top), yI-direction 
(middle), and zI-direction (bottom) over time during digital-8-maneu-
ver for baseline controller
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Fig. 11  Attitude tracking (TVT) in xI-direction (top), yI-direction 
(middle), and zI-direction (bottom) over time during digital-8-maneu-
ver for baseline controller with PCA

Fig. 12  Attitude tracking (TVT) in xI-direction (top), yI-direction 
(middle), and zI-direction (bottom) over time during digital-8-maneu-
ver for baseline controller with TVA
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are tracking the reference thrust vector elements tR
x,r

 , tR
y,r

 , 
and tR

z,r
 with high accuracy which implies a good control-

ler performance. Similar to the simulation results of the 
TVT while using the baseline controller with PCA, shown 
in Fig. 11, the rope oscillations do completely vanish in 
the end of the flight maneuver. However, for the TVT, 
the augmented thrust vector command t̃R

c
 does distinguish 

from the nominal thrust vector command tR
c
 . That is why, 

the attitude tracking in Fig. 12 shows the nominal trajec-
tories for the thrust vector command tR

x,c
 , tR

y,c
 , and tR

z,c
 , and, 

additionally, shows the actual augmented trajectories for 
the thrust vector command t̃R

x,c
 , t̃R

y,c
 , and t̃R

z,c
 to emphasize 

that the TVT objective is smoothly shifted from the ORM 
to the CRM for non-steady-state conditions. The elements 
t̃R
x,c

 and t̃R
y,c

 do, besides their initial task to control rR
xy

 and vR
xy

 
by stabilizing second-order position error dynamics, also 
stabilize the balloon dynamics around their zero equilibria, 
so that the rope oscillations are canceled out entirely at the 
end of the simulation period. In addition to that, the TVT 
in zI-direction of the I-frame over time shows that t̃R

z,c
 and 

tR
z,c

 are equal, since the augmentation unit solely damps the 
balloon motion artificially within the horizontal plane. The 
latter two statements lead to the fact that the position error 
ex,p as well as ey,p in xI - and yI-direction of the I-frame must 
increase on average which can be confirmed by Fig. 9.

To provide a quantitative mission assessment, Fig. 13 
shows the simulation results for the rope angle variation 
over time during the digital-8-maneuver for all three con-
troller configurations. For the baseline controller, the rope 
angle �R∗ is capped between 90◦ and 30◦ . For the baseline 
controller with PCA, �R∗ is capped between 90◦ and 40◦ 
which is further reduced to a range between 90◦ and 50◦ in 
terms of the baseline controller with TVA. The flight mis-
sion can be stated as successful and practicable for all of 
the three controller configurations since �R∗,ne is not under-
shot. In terms of a smallest possible rope angle range, the 
baseline controller with TVA shows the best performance, 
or rather, is most successful in damping the balloon motion 
artificially within the horizontal plane. Nevertheless, the 

rope oscillations can not only be reduced significantly, but 
also canceled out entirely at the end of the flight maneu-
ver when the baseline controller is extended artificially 
by either the PCA or the TVA approach. At this time, the 
balloon is perfectly arranged above the multirotor system 
which cannot be achieved by solely using the baseline con-
troller without the artificial augmentation units.

6  Summary, conclusion, and outlook

In this paper, we presented a nonlinear flight controller 
for a multibody Mars vehicle guaranteeing asymptotic 
tracking position control with active oscillation damping. 
Relating thereto, as main contribution, we have studied 
two artificial augmentation approaches for the baseline 
controller:

• Thrust vector augmentation (TVA),
• Position command augmentation (PCA),

which both increase the controller capabilities to sup-
press modeling errors artificially without changing the 
baseline control laws. Basically, by utilizing oscilla-
tion damping feedbacks of the uncertain plant which are 
applied as additional commands to either the inner or the 
outer loop of the controller’s reference model. We pose 
that both TVA and PCA approach are advantageous to 
cope with plant uncertainties and that they can be added 
to an existing controller architecture (linear/nonlinear).

By utilizing the classical Newtonian formulations, 
a nine degrees of freedom multibody UAV model was 
derived including a six degrees of freedom rigid-body 
model for a hexrotor system and a three degrees of free-
dom point-mass model for a balloon UAV to setup a first 
stage high-fidelity simulation model. Kinematic con-
straints were imposed on both UAV models as massless 
spring-damper oscillator model to approximate a realistic 
rope connection. To simulate the extraterrestrial flight mis-
sion under realistic conditions, an atmospheric model was 
built on high-resolution measurement data being smoothed 
and prepared by a meteorological database of Mars to best 
fit 14.035° S and 58.5° W, the vehicle’s geographic take-
off location at Valles Marineris. A nonlinear control design 
model of the hexrotor system was created and considered 
as baseline controller providing a cascaded structure. 
Feedback linearization was applied for the outer loop and 
analytical backstepping for the inner loop to derive all 
feedback laws. To cope with uncertain dynamic effects 
of the plant, being represented by oscillating motion of 
the suspension line, two artificial augmentation units were 
developed (TVA and PCA approach) both extending the 
baseline flight controller’s architecture separately.

20 40 60 80 100 120 140 160 180
30

40

50

60

70

80

90

baseline PCA TVA

Fig. 13  Rope angle �R∗ [◦] over time during digital-8-maneuver for 
baseline controller, baseline controller with PCA, and baseline con-
troller with TVA
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Simulation results were presented for an eight-shaped 
flight maneuver at the bottom of Valles Marineris prov-
ing that both augmentation units actively damp the bal-
loon motion in the forward flight case for non-steady-state 
conditions to counteract the rope oscillations and finally 
stabilize the rope angle around its equilibrium while keep-
ing the system within its limits. The Mars vehicle was only 
able to reach a steady state in position including either the 
TVA or PCA approach in the closed-loop control system 
underlining their importance for the extraterrestrial mis-
sion simulation. However, further analysis of both pro-
posed approaches is still required, since stability or rather 
semi–global stability (concerning closed-loop reference 
models for uncertain plants whose states are accessible) 
was not in the focus of this paper.

Future work should therefore hone the artificial augmen-
tation units in a second stage high-fidelity simulation model 
including sensor models and state estimators for both hexro-
tor system and balloon UAV. Additionally, proper trajectory 
planning should be examined to ensure that (a) smoother 
rope angle trajectories are provided by adding additional 
feedforward terms to the baseline controller’s architecture 
and (b) the closed-loop control system stays within prede-
fined safety bounds. To investigate the performance of the 
controller when subjected to exogenous disturbances, differ-
ent wind scenarios shall be applied to the controlled plant to 
reproduce mission-critical environmental conditions such as 
dust storms on Mars, and especially, in the Valles Marineris.
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