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Abstract
FPGA-SoCs are heterogeneous embedded computing platforms consisting of reconfigurable hardware and high-performance
processing units. This combination offers flexibility and good performance for the design of embedded systems. However,
allowing the sharing of resources between an FPGA and an embedded CPU enables possible attacks from one system on the
other. This work demonstrates that a malicious hardware block contained inside the reconfigurable logic can manipulate the
memory and peripherals of the CPU. Previous works have already considered direct memory access attacks from malicious
logic on platforms containing no memory isolation mechanism. In this work, such attacks are investigated on a modern
platform which contains state-of-the-art memory and peripherals isolation mechanisms. We demonstrate two attacks capable
of compromising a Trusted Execution Environment based on ARM TrustZone and show a new attack capable of bypassing
the secure boot configuration set by a device owner via the manipulation of Battery-Backed RAM and eFuses from malicious
logic.

Keywords FPGA-SoCs ·Memory and peripherals isolation ·Hardware trojan ·DMA attack · Trusted execution environment ·
Secure boot

1 Introduction

FPGAs are popular platforms used for the acceleration
of computations. Due to their good computational power
together with a low power consumption, these platforms are
widely used in the Cloud as an alternative to GPU accelera-
tion especially in machine learning applications. The FPGA
computing platform is also popular in the embedded world,
where system-on-chips (SoCs) with high-performance pro-
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cessing units are integrated together with an FPGA (FPGA-
SoCs). Besides enhancing performance, the sharing of CPU
resources together with an FPGA can also lead to security
threats. Academia has demonstrated powerful attacks from
the FPGA to the CPU in the FPGA-Cloud [8,18,23,29] and
the FPGA-SoC [5,15,19] computation paradigms. For these
kind of attacks, it is generally assumed that a third-party
intellectual property (IP) contained inside the reconfigurable
logic has a malicious hidden functionality or Hardware Tro-
jan (HT). Similarly, in this work, we consider the presence
of a HT inside a third-party IP used inside an FPGA-SoC.

Previousworkswhich considered the FPGA-SoC scenario
have shown that a HT can compromise the software running
on the embedded CPU of an FPGA-SoC via DDR mem-
ory manipulation [5,15,19]. This type of attack is similar to a
direct memory access (DMA) attack in which an external I/O
interface [3,4,14,22] alters the software running on a host PC.
DMA attacks can be prevented via the use of an input–output
memory management unit (IOMMU). This component is
responsible for thememorymanagement of peripherals and is
used to prevent unauthorized memory access from a periph-
eral. Modern FPGA-SoC architectures such as the Xilinx
Zynq UltraScale+ (ZU+) or the Intel Stratix 10 integrate a
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system memory management unit (SMMU), which is the
equivalent of an IOMMU in ARM terminology. The SMMU
makes the attacks described in [5,15,19] more difficult. Fur-
thermore, both architectures offer additional mechanisms for
isolation such as a memory protection unit (MPU), a periph-
eral protection unit (PPU) and ARM TrustZone technology.

Despite the presence of these isolation mechanisms, we
have shown in our previous work [10] that DMA attacks
from a HT are possible on the ZU+. We found out that a
hardware accelerator connected to the accelerator coherency
port (ACP) is not affected by the SMMU and that the Xilinx
memory protection units (XMPUs) fail in isolating the mem-
ory of the CPU from the ACP. This isolation issue enables
a HT hidden inside a third party IP to compromise the soft-
ware running on the embedded CPU of an FPGA-SoC. As
a concrete example, we demonstrated two ways of bypass-
ing security guarantees of a trusted execution environment
(TEE) via memory manipulation attacks.

This work extends our research performed in [10]. We
found out that the problem observed with the XMPUs also
affects the Xilinx peripheral protection unit (XPPU). The
isolation issue enables a HT contained inside a master using
the ACP to access CPU peripherals which are protected by
theXPPU.As a concrete example, we demonstrate a scenario
in which a HT programs an AES key in the Battery-Backed
RAM (BBRAM) and an RSA public key hash in the eFuses
of a device. This enables an attacker to bypass the secure
boot configuration set by the device owner and to start her
own authenticated image on the attacked device.

1.1 Our contribution

Similar to the works of [5,15,19], we exploit a security vul-
nerability of FPGA-SoC architectures, which allows a HT to
perform DMA attacks on the CPU subsystem. This work,
however, considers the ZU+ architecture, which contains
more protection mechanisms than the previous Zynq-7000
architecture.

In our original work [10], we show the feasibility of per-
forming powerful DMA attacks on ARM TrustZone, despite
the protection provided by this technology against DMA
attacks. This work reveals that the memory isolation issue
described in our original work is extended to the peripher-
als. We demonstrate a proof of concept attack allowing a HT
connected to the ACP to bypass the secure boot configura-
tion set by a device owner via the access to the eFuses and
BBRAM peripherals. An attack on secure boot was already
demonstrated on a Zynq-7000 platform in [15]. This work
considers a similar attack on the ZU+ platform and uses a
different approach as the one proposed in [15].

1.2 Structure of this work

The remainder of this work is organized as follows: Section 2
provides the background related to the ZU+ FPGA-SoC
and ARM TrustZone. Section 3 describes the accelerator
coherency port (ACP) and explains a security vulnerabil-
ity in the mechanism used to isolate CPU private mem-
ory/peripherals from a tightly coupled ACPmaster. Section 4
demonstrates two concrete attack examples on a TrustZone
based TEE. Section 5 demonstrates an attack which com-
promises of the hardware root of trust secure boot mode of
the ZU+. Section 6 discusses possible mitigations against the
attacks presented in this work and their portability to other
FPGA-SoCs. Section 7 contains the conclusion of this work.

2 Background

This section introduces the necessary background required
for understanding the attack methodology and the proofs of
concept presented inside this work. The first part introduces
the ZU+ architecture, some of its protection mechanisms and
its secure boot. Subsequently, ARM TrustZone technology
and the concept of trusted execution environment (TEE) are
described.

2.1 Xilinx ZU+ architecture

This work uses an FPGA-SoC based on the Xilinx ZU+ EG
MPSoC. This architecture consists of an quad-core ARM
Cortex-A53 as application processor unit (APU), an ARM
Mali-400 Graphic Processor Unit (GPU), a dual-core ARM
Cortex-R5 real-time processing unit (RPU) and an FPGA.
The MPSoC contains 256 kB on-chip memory (OCM) that
can be used for storing sensitive data or code and 2 GB exter-
nal DDRmemory. Thememory system is accessible through
the ARM AMBA AXI4 bus system. The MPSoC contains
state-of-the-art peripherals for external communication.

The interaction between the FPGA fabric and the process-
ing system (PS) is implemented via interrupts, GPIO signals
and AXI slave and master interfaces. This work particularly
relies on the use of the ACP, a port typically used for the
connection of a tightly coupled I/O coherent hardware accel-
erator to the Cortex-A53 memory subsystem. Further details
about the ACP are provided in Sect. 3.1.

ZU+ contains a set of security mechanisms that enable
secure boot, run-time protection, and secure key stor-
age/generation. Since this work focuses on memory and
peripheral manipulation via malicious logic, a description of
the mechanisms used for isolation of those assets is provided
in Sect. 2.2.
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2.2 Memory and peripherals protection schemes in
ZU+

This section presents the primitives that can be used to
achieve memory and peripheral isolation inside the ZU+
MPSoC.Those consist of a systemmemorymanagement unit
(SMMU), Xilinx memory protection units (XMPUs) and a
Xilinx peripheral protection unit (XPPU).

System Memory Management Unit (SMMU):

The SMMU is complementary to a traditional MMU. It
provides a two-stage address translation for I/O devices. The
first stage is relevant for systems running multiple OSs and is
managed by a hypervisor. In this stage, virtual addresses are
translated into intermediate physical addresses. The second
stage tackles address translation for the applications running
inside the OS. This is done by turning intermediate physical
addresses into physical addresses.

Another important service provided by anSMMUismem-
ory isolation. This property is achieved by restricting the
reachable address space for I/O devices and hence protects
the OS against DMA attacks.

XilinxMemory Protection Units (XMPUs):Eight XMPUs
work in collaboration with the SMMU to offer memory
protection (DDR, OCM) via isolation. These units check
explicitly if a master is allowed to access a given address via
the definition of memory regions. A memory region consists
of an address range and a list of masters which are allowed to
access this region. Additionally, TrustZone support enables
the placement ofmemory regions in the SecureWorld orNor-
mal World such that only allowed secure masters can access
a memory region tagged as secure. In case of an access vio-
lation, the XMPUs can notify the master via an interrupt or
the AXI response signals (RRESP/BRESP).

Xilinx Peripheral Protection Unit (XPPU): XPPU is
another important asset aiming at protecting peripherals and
configuration registers. The usage of the XPPU is similar to
the XMPUs, except that the concept of memory regions are
replaced by apertures. More precisely, an aperture is a set of
register addresses and the aperture permission list identifies
the masters that can read/write to those addresses. Like the
XMPUs, the XPPU supports TrustZone technology and thus
enables a partitioning of the registers between the Normal
World and the Secure World. An access violation is detected
when a master attempts to access a register that it is not
allowed to, or if a secure register is accessed via a non-secure
request.

2.3 Secure boot on the ZU+

Secure boot is a crucial security feature which guarantees
the integrity and authenticity of the software loaded during

Fig. 1 Hardware root of trust secure boot on the ZU+

the boot process. On the ZU+, two secure boot modes are
available: hardware root of trust and encrypt only. Recently,
F-Secure [7] has shown that the encrypt only secure boot is
vulnerable to boot header manipulation attacks. For the rest
of this work, we consider the hardware root of trust secure
boot. This boot scheme relies on an RSA authentication of
the boot image and a comparison of the public authentica-
tion parameters with a value stored inside the eFuses. The
description of the secure boot process used in this work is
shown in Fig. 1.

Upon startup of the ZU+, a hardware state machine per-
forms some verification tests and compares the SHA3/384
digest of the PMUROMwith a value stored inside the device.
If the two values match, the PMU ROM gets executed. This
code is responsible for performing early device initialization
and comparing a SHA3/384 digest of the CSU ROM with a
golden copy stored inside the device. If the two values are
equal, the PMU releases control to the CSU.

The CSU is then loading the RSA Primary Public Key
(PPK) into OCM and compares its hash value with a value
programmed inside the eFuses. Two PPK hash values can
be programmed inside the eFuses, the boot image header
specifies which value should be used. If the computed PPK
hash value corresponds to the value programmed inside the
eFuses, the PPK stored in OCM can be used for authenticat-
ing the Secondary Public Key (SPK). The SPK, SPKID and
SPK signature are contained inside the boot image. The next
step consists of checking if the SPKID matches the value
programmed inside the eFuses and if the computed SPK sig-
nature corresponds to the value contained inside the boot
image. If that is the case, the SPK can be used for authenti-
cating the first-stage boot loader (FSBL) and the platform
management unit firmware (PMU_FW). Optionally, both
components can additionally be encrypted with AES-GCM
256. The AES key used for decryption is the device key; this
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Fig. 2 TEE platform architecture

key is stored in the PUF, eFuses or BBRAM depending on
what is specified inside the boot header.

After the release of the APU, the FSBL uses the SPK to
authenticate the subsequent partitions contained inside the
boot image, namely the bitstream, ARM trusted firmware
(ATF) and u-boot. As before, these partitions can also be
optionally encrypted with the AES device key.

Once the FSBL is finished loading the partitions, the con-
trol is released to u-boot. U-boot finishes the boot chain by
authenticating the operating systemwith the SPK and option-
ally decrypts it with the device key.

2.4 ARMTrustZone-based trusted execution
environment

ARMTrustZone [2] is a technologydesigned to provide hard-
ware isolation for trusted software execution. It consists of
a set of security extensions added to many ARMv7-A and
ARMv8-A Cortex-A processors. Recently, TrustZone sup-
port has also been added forARMv8-Mprocessors; however,
this variant is out of the scope of this work.

A Cortex-A processor supporting ARM TrustZone has
its private resources (registers, caches, memory) partitioned
between the Normal World (NoW) and the Secure World
(SeW). The security configuration register (SCR) indi-
cates in which world the CPU is currently running. This
is also reflected on the ARM AMBA AXI bus via the
ARPROT[0]/AWPROT[0] bit.

ARMtrustedfirmware (ATF) is the reference implementa-
tion of the SeW software and is executing at Exception Level
3 (EL3). ATF contains a secure monitor which handles the
context switching between the two worlds upon receiving a
secure monitor call (SMC).

A further system-wide isolation is achieved by defining
SeW and NoW interrupts sources (FIQ for the SeW and IRQ
for the NoW). Interrupts triggered by a FIQ source can only
be handled in the SeW and similarly IRQ interrupts are han-
dled in the NoW. Therefore, a world switchmay be necessary
before handling an interrupt. Finally, ARM TrustZone also
enables the mapping (static or dynamic) of I/O devices such
as the DMA peripheral to one world.

TrustZone support inside the FPGA fabric: TrustZone tech-
nology is extensible to the FPGA fabric through the use
of the ARPROT[0]/AWPROT[0] bit and the AXI intercon-
nect. A master inside the FPGA fabric can dynamically
configure the security of a read/write transaction via the
ARPROT[0]/AWPROT[0] bit. A secure transaction is indi-
cated with the value 0; otherwise, the transaction is non-
secure. TheAXI interconnect enables the protection of slaves
by configuring them as secure or non-secure. A secure slave
can only be accessed by a master generating secure transac-
tions. A non-secure slave on the other hand is accessible by
both secure or non-secure masters.

Trusted Execution Environment (TEE): ARM TrustZone
technology enables the deployment of a TEE [9] inside the
FPGA-SoC. The software architecture of such a system is
shown in Fig. 2. TheTEE is running in parallel to the rich exe-
cution environment (REE). The TEE enables the execution
of security critical software in an isolated execution envi-
ronment, which is not directly accessible to the Rich OS.
In contrary to the Rich OS, only authenticated and unaltered
binaries run inside the TEE. The goal is to guarantee a secure
execution of critical software even if the Rich OS is compro-
mised. To interact with the TEE, the REE kernel is enhanced
with a TEE Driver. NoW client applications (CAs) use the
global platform TEE client API to communicate with the
trustlets or trusted applications (TAs). This API enables the
transfer of input and output parameters between a CA and a
TA.

The TAs are often obtained from third-parties software
sources. To guarantee the integrity and authenticity of the
trustlets, a signature verification is performed in the TEE
before their actual execution. If the signature verification is
successful, the trustlets are executed at EL0. Trustlets use
the global platform TEE internal core API to access to the
EL1 trusted operating systems (Trusted OS) functions such
as cryptography and secure storage.

3 Security vulnerability of the accelerator
coherency port

This section firstly describes the usage of the ACP inside the
ZU+ MPSoC. Subsequently, the mechanisms used to pre-
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Fig. 3 Accelerator coherency port memory interfacing

vent an ACP master to access processor private memory and
peripherals are discussed.

3.1 ACP slave interface on the Cortex-A53

Among all the available FPGA fabric memory interfaces,
the ACP is recommended for applications where a hardware
accelerator is tightly coupled with the application proces-
sor unit (APU). In comparison to the other FPGA memory
interfaces, the ACP has the fastest memory access. This is
achieved via a direct connection to the snoop control unit
(SCU) of the APU (see Fig. 3). The ACP is interfacing mem-
ory via 40 bit physical addresses and a 128 bit data bus.
Connecting a hardware accelerator to the SCU instead of the
cache coherent interconnect (CCI) enables a master in the
FPGA fabric to have a faster coherent access to the APU L1
and L2 caches. If the data requested by the hardware acceler-
ator is not present in the ARM Cortex-A53 caches, the ACP
optionally enables the allocation of a new cache line inside
the L2 cache. This coherent interface is however restricted to
16 Bytes and 64 Bytes burst transactions. The ACP provides
I/O coherency and is therefore not suitable for a hardware
accelerator which has private caches. For this particular use
case, the AXI coherency extension (ACE) interface, an inter-
facewhich provides bi-directional coherency, should be used
instead. The ACE port has nevertheless slower access times
to data than the ACP because of additional latency induced
by the CCI. ACP and ACE are the only interfaces in the logic
fabric which can access memory via physical addresses. The
other memory interfaces contained inside the FPGA fabric
access memory via virtual addresses through the SMMU.

3.2 Processor and ACPmaster memory isolation

The ACP is typically used to connect a tightly coupled
hardware accelerator to the ARM Cortex-A53 memory sub-
system. In this scenario, it is necessary to restrict the visible
address space of the hardware accelerator such that it can-
not compromise the software running on the processor. The
ideal candidate for this is the SMMU. However, as shown
in Fig. 3, the ACP is not connected to the SMMU. Alterna-
tively, the XMPUs should be suitable to restrict the memory
access rights of a hardware accelerator. To verify that the
XMPUs can indeed prevent a hardware accelerator to access
the whole APU memory via the ACP, a closer look at the
XMPUs’ isolation mechanisms is necessary.

As explained in Sect. 2.2, the XMPUs enables memory
isolation via the definition of several memory regions. A
memory region is characterized by:

– The start address of the region (R_START).
– The end address of the region (R_END).
– The security property (secure/non-secure) of the region
(R_SECURE).

– The region master ID value (R_MID_V) and the region
master ID mask (R_MID_MASK).

An incoming read or write request on an AXI port is checked
against the conditions listed in Eq. 1 for each memory region
(Ri ) defined in the XMPUs’ configuration registers.

⎧
⎨

⎩

Ri_ST ART ≤ AX I_ADDR ≤ Ri_ENDAX I_MI D_V
AX I_MI D_MASK == Ri_MI D_V&Ri_MI D_MASK
AX I_ARPROT [0]/AW PROT [0] == Ri_SECU RE

(1)

Only AXI transactions satisfying Eq. 1 are granted. AXI
transactions which are not matching the security configu-
ration of a region are rejected by the XMPUs and can be
optionally notified to the master via an interrupt.

The ZU+ documentation [26] provides the necessary
information regarding APU master ID. APU transactions
have their master ID defined according to Eq. 2.

APU_MI D[9 : 0] = 0010||AX I_MI D[5 : 0] (2)

Xilinx does not provide further information regarding the
ACPmaster ID.An inspection of theARMCortex-A53Tech-
nical Reference Manual [1] reveals that the six lowest bits of
the AXI read/write transaction ID can differentiate APU and
ACP transactions. The encoding for the six lowest bits of the
read/write ID is given in Table 1

From Eq. 2 and Table 1, it is clear that APU transactions
coming fromone of the four CPUcores andACP transactions
can be distinguished by their ID.
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Table 1 Read/write transactions
ID encoding for the ARM
Cortex-A53

AXI_MID Issuing capability per ID Transaction type

0b0000nn1 4 Core nn exclusiveread/write or
non-reorderable device read/write

0b0001nn1 1 Core nn barrier

0b001001 1 SCU generated barrier or distributed
virtual memory complete

0b01xx00 1 ACP read/write

0b1xxxnn1 1 Core nn read/write

1Where nn is the core number 0b00, 0b01, 0b10 or 0b11

To find out if this is indeed the case, we used Vivado
2018.2 to generate a design targeting theXilinx ZU+MPSoC
ZCU102 Evaluation Kit. This design contains a hardware
accelerator accessing memory via the ACP and the PS. Con-
figuring the XMPUs manually by writing specific values
inside registers can be quite a difficult and error prone task.
This requires the adaptation of the bootcode (psu_init.c)
where the memory regions for the XMPUs are defined. A
manual configuration of the isolation might also lead to a
too strong isolation, which prevents the system from work-
ing correctly. For those reasons, Xilinx recommends the use
of the Vivado isolation configuration (VIC) [27], a graphi-
cal tool that can be used to achieve peripherals and memory
isolation inside the ZU+. We used this tool to restrict the
memory access of the hardware accelerator. The generated
Hardware Description File (hdf) and bitstream are used to
generate the bootcode of the Cortex-A53 and thereby con-
figure the XMPUs. Once configured, the XMPUs’ registers
are locked, such that malicious software cannot alter the iso-
lation configuration.

Despite a correct definition of the memory region inside
the VIC, we discovered that the ACP master is able to access
APU memory addresses which it is not supposed to. The
unauthorized access is possible whether the corresponding
data is present in the APU caches or not. An inspection of
Fig. 3 reveals that the XMPUs are not located at the L2
cache controller but at the DDR controller instead. There-
fore, the access to cached private data could be expected if
the user carefully inspects the ZU+ architecture. The access
to uncached APU private memory is however something
which should be filtered by the XMPUs. A closer look at
the generated bootcode reveals that the master ID, start and
end address of the APU private regions are properly writ-
ten in the XMPUs’ registers. However, as explained earlier
in this section, the XMPUs’ transactions are also filtering
master IDs with masks values. The bootcode reveals the
IDs and masks values generated after using the VIC. The
ID 128 and the mask 960 are used for defining memory
regions for the Cortex-A53 core 0. An incoming ACP trans-
action on the other hand can have the IDs (144, 148, 152

or 160). Injecting these possible ACP ID values with the
mask value 960 in Eq. 1 lead to the result 128. Therefore,
the tuple (ID, mask) defined in software for APU core 0 does
not allow the XMPUs to distinguish APU and ACP transac-
tions, and thus enables illegal ACP memory access to APU
private memory whether is located inside the L2 cache or
not.

The mask configuration issue leads to severe memory
isolation problems. A HT contained inside a third-party IP
interfacing memory via the ACP can access the whole pro-
cessor memory with physical addresses. This opens the door
to DMA attacks performed from a HT contained in a hard-
ware accelerator. To demonstrate the impact of this threat,
we describe the implementation of two DMA attacks on a
TrustZone-based TEE in Sect. 4.

3.3 Processor and ACPmaster peripheral isolation

As mentioned in Sect. 3.1, ACP is an interface which is typ-
ically used to connect a hardware accelerator to the memory
subsystem. In addition, this interface also enables access to
system peripherals and some configuration registers for a
hardware accelerator. For security and safety reasons, it is
good practice to make peripherals accessible only to specific
masters. Some peripherals are by design only accessible to
a restricted list of masters, for others the access restriction
can be achieved via the use of the XPPU. In Sect. 3.2, we
explained that the XMPUs cannot isolate memory regions
of the APU from a hardware accelerator using the ACP. In
this section, we investigate whether this issue extends to the
XPPU as well.

As explained in Sect. 2.2, the XPPU is operating in a
similar way as the XMPUs, except that the notion of memory
regions, are replacedwith apertures. An aperture is a range of
registers addresses. The aperture permission list defines the
masters which are allowed to read/write to a given aperture.
In total, 400 apertures are defined on the ZU+.

The access control realized by the XPPU is explained in
Eq. 3. The first step consists of identifying the aperture corre-
sponding to an incomingAXI transaction (APPERinc). Once
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it is found that the XPPU performs amaster ID filtering oper-
ation similar to the one of the XMPUs (see Sect. 3.2). The
access can only be granted if the result of the filtering opera-
tion is contained in the list of the authorized master profiles
for the aperture. The final check consists of verifying that the
security of the transaction matches the one of the aperture.

If any of these three checks fail, the peripheral access is
denied, which results in a rejection of the transaction.

⎧
⎨

⎩

(AX I_MI D_V&AX I_MI D_MASK )

∈ APPERinc_AUT HORI Z ED_MAST ERS
AX I_ARPROT [0]/AW PROT [0] == APPERinc_SECU RE

(3)

Similar to the observations made in Sect. 3.2, we expect
the peripheral isolation between the APU and a hardware
accelerator using the ACP to work from a theoretical point
of view. To verify whether this is the case, we follow the
procedure from Sect. 3.2 and configured the XPPU isola-
tion inside Vivado. As a result, the XPPU should prevent the
ACP from accessing the address space of a peripheral while
allowing APU to access that peripheral. However, this did
not work in practice, because as with the XMPU, the XPPU
cannot distinguish APU and ACP transactions. A closer look
at the XPPU registers reveals that the APU core 0master pro-
file is configured with the ID 128 and mask 960. Since the
six lowest bits of the mask are unset, it is not possible for the
XPPU to distinguish APU core 0 and the ACP transactions
(see Eq. 2, Table 1 and the discussion of Sect. 3.2).

This mask value leads to peripherals isolation issues. A
HT contained inside an accelerator interfacing memory via
theACPcan access peripheralswhich it is not supposed to. To
illustrate the consequences of this problem, we have imple-
mented an attack in which an attacker can break secure boot
and take control of a ZU+ device by interfering with eFuses
and BBRAM in Sect. 5.

4 DMA attacks on OP-TEE

This section shows that a HT contained inside an ACP mas-
ter can compromise the software running on the APU via
memory manipulation. Our first PoC demonstrates how the
HT can affect the signature verification of trustlets before
their execution inside OP-TEE [20]. OP-TEE is a TEE ini-
tially developed by ST-Ericsson and STMicroelectronics as a
closed source project before being released as an open source
project by Linaro in 2014. The second PoC demonstrates the
retrieval of an AES key securely stored via software support.
This key is used for an AES-GCM decryption performed
inside a trustlet and can be found in a SeW memory dump.

4.1 System description

Architectural description: This work uses a Xilinx ZU+
MPSoC ZCU102 Evaluation Kit. The system considered in
this work is presented in Fig. 4. It consists of the processing
system (PS) and a third-party IP contained in the recon-
figurable logic (IP 1). An embedded Linux solution (Rich
OS) is running on the Cortex-A53. Furthermore, an ARM
TrustZone-based TEE is executing in parallel to the Rich
OS. The TEE consists of ARM trusted firmware (ATF) run-
ning inside the OCM and OP-TEE running inside the DDR
memory.OCMandDDRare partitioned in theNormalWorld
(NoW) and the Secure World (SeW). Since IP 1 is obtained
from a third party, it cannot be fully trusted. Unfortunately,
a hidden malicious functionality (Hardware Trojan) is con-
tained inside IP 1. To fulfill its functionality, IP 1 shares a
portion of the NoW DDR with the APU (APU/IP 1 shared
section represented in Fig. 4). The XMPUs are used to pre-
vent IP 1 from accessing memory outside of this section.
The configuration of the XMPUs is done according to Xil-
inx recommendation, with a tool integrated inside Vivado
[27]. The partitioning of the DDR memory and the OCM is
shown in Table 2. As shown in Fig. 4, only the ATF is run-
ning inside the OCM; therefore, the whole OCM has been
placed inside the SeW. Since a TEE is lightweight, a small
portion of the DDR memory (8 MB) has been configured as
secure. The rest of the DDRmemory (1500 MB) is occupied
by the Rich OS running on the APU. Among these 1500MB,
100 MB are shared between the APU and the ACP master.
This configuration is typical for the use of a tightly coupled
accelerator inside the FPGA fabric. Such scenarios are rele-
vant in a wide range of applications such as video processing,
machine learning, or cryptography.

Software stack description: On the software side, Petalinux
2018.2, an embedded Linux solution designed for Xilinx
devices, is running as the NoW Rich OS. OP-TEE 3.4.0 is
used as the SeW Trusted OS. OP-TEE relies on the TEE
ClientAPI v1.0 and the TEE Internal CoreAPI v1.1 to imple-
ment a TEE. The use of OP-TEE offers isolated execution of
security critical software inside the FPGA-SoC.

4.2 PoC1: Compromising the signature verification
of trustlets done by OP-TEE

Trustlets are binaries running inside the SeW at Exception
Level (EL 0). These applications access the core function
of OP-TEE running at EL1 via the TEE Internal Core API.
Trustlets can be developed by third parties and integrated
inside a system. Therefore, it is crucial to ensure the authen-
ticity and integrity of a trustlet before executing it. To achieve
this, the trustlets are stored as signed binaries inside the Rich
OS RootFS (see Fig. 5). The private key used for signing the
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Table 2 XMPUs configuration Master Start address Size TrustZone Memory type

APU non-secure subsystem

APU 0x0 1500 MB NoW DDR

APU secure subsystem

APU 0x60000000 8 MB SeW DDR

APU 0xFFFC0000 256 kB SeW OCM

ACP subsystem

S_AXI_ACP 0x30000000 100 MB NoW DDR

Fig. 4 System block design

trustlets is not present inside the Rich OS RootFS. This pre-
vents the modification of trustlets and the insertion of new
trustlets in case of a compromised Rich OS.

The start of a trustlet is initialized by a client application.
A special component (tee-supplicant) will then take care of
loading the trustlet into the SeW.Once loaded in the SeW, the
signature verification of the trustlet is performed. This verifi-
cation checks the integrity and authenticity of a trustlet before
executing it. If the signature verification fails, the client appli-
cation is notified and the execution of the trustlet stops. In the
other case, the trustlet is executed in EL0. The first PoC of
this work aims at compromising the signature verification of
a trustlet via a DMA attack (shdr_verify_signature function
contained inOP-TEE core) such that non-authorized trustlets
can be executed on the system.

Assuming the system setup described in Sect. 4.1 and
the XMPUs configuration in Table 2, a DMA attack is pos-
sible because of the memory isolation issue described in
Sect. 3.2. To extend the isolation issue to the TrustZone,

the HT must access SeW APU memory. As explained in
Sect. 3.2, XMPUs’ registers are locked once configured. On
ZU+ devices, the FPGA fabric is also loaded after the boot
of the processor. Therefore, a manipulation of the XMPUs’
registers from the HT is not possible. Instead, the HT can
simply set the security bit to 0 during read and write transac-
tions. By doing so, the generated transactions are tagged as
secure and theXMPUs return no security error. This privilege
escalation performed inside the FPGA fabric is necessary to
access the APU SeWmemory. To the best of our knowledge,
Xilinx does not provide any means to define a fixed security
policy of AXI masters inside the FPGA fabric via a policy
table.

The exploitation of these two issues enables an attacker to
write arbitrary code and data inside TrustZone memory and
thereby making code injection inside SeW DDR memory
possible. Our implementation of the DMA attack on the sig-
nature verification function consists of an offline and online
phase. The steps of the attack are outlined below:

– Identify the code of shdr_verify_signature function
(codeToReplace) by disassembling the OP-TEE binary
(offline).

– Modify the C code of shr_verify_signature so that all
signatures verification are valid (offline).

– Recompile OP-TEE and identify the code of themodified
shdr_verify_signature (codeToInject) by disassembling
the OP-TEE binary (offline).

– Dump the SeW DDR memory and identify the start
address of codeToReplace (online).

– Write the codeToInject over of the codeToReplace via the
ACP (online).

To verify the success of our attack, we tried to execute
a trustlet which is signed with an untrusted private key. If
OP-TEE is not compromised, the execution of the trustlet
is not possible because the signature verification mecha-
nism detects a security violation. After the injection of the
malicious code, non-authorized trustlets could be executed
without any error notification from OP-TEE. This type of
attack becomes relevant for an attacker which manages to
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Fig. 5 Attack on the trustlets signature verification

insert a malicious trustlet inside the Rich OS RootFS. Such a
scenario corresponds for instance to the download of a trust-
let from malicious sources on the internet. Alternatively, an
adversary that has obtained control of theRichOScan replace
existing trustlets with malicious trustlets compiled with its
own private key.

4.3 PoC2: Retrieving an AES key securely stored with
OP-TEE software support

Use case description: The second PoC considered in this
work is the decryption of sensitive files inside the FPGA-
SoC. Since the Rich OS is prone to attacks, a good security
practice consists of using a dedicated hardwaremodule in the
FPGA to perform the decryption. Alternatively, the designer
can leverage the TEE capabilities to implement the decryp-
tion in a secure way in software. This work uses the second
option as a design choice.We assume that the file is encrypted
with AES-128-GCM. The AES key (K0) is securely stored
in an encrypted form inside the Rich OS RootFS via the
secure file storage feature integrated inside OP-TEE. K0
is only accessible to a specific trustlet (trustlet_0). This
access limitation prevents a compromised Rich OS to access
K0. Moreover, unauthorized trustlets cannot get informa-
tion about K0. The interested reader can find complementary
information regarding OP-TEE secure file storage capabili-
ties in Appendix A.

In addition to a trustlet specific secure key storage, OP-
TEE provides isolated AES-128-GCM decryption via the
cryptographic functions contained inside the OP-TEE core.
OP-TEE core relies on the use of Libtomcrypt to perform the
AES-GCM decryption. This implementation precomputes

Fig. 6 Trustlet_0 description

the AES key schedule and stores it in a contiguous mem-
ory buffer to increase performance.

Trustlet_0 implements the access to the secure key file and
the AES-GCM decryption via the TEE Internal Core API.
The NoW client application provides the encrypted file, a 12
Bytes initialization vector (IV) and the key_id. These inputs
are processed according to the algorithmic description shown
in Fig. 6. If a key (key0) associated with key_id0 exists in an
encrypted form inside theRichOSRootFS (seeAppendixA),
it is loaded from the Rich OS RootFS and decrypted inside
trustlet_0. Once decrypted, K0 is further used for decrypting
the sensitive file. Before sending the plaintext back to the
client application, a tag verification ensures the authenticity
and integrity of the file. If the file has been tampered, an
error message is sent back to the client application. In the
other case, the plaintext is sent back to the client application.

DMA attack description: For the second PoC of this work,
it is assumed that the attacker has access to one sensitive
encrypted file. This file can be obtained by compromising
the server generating it or by eavesdropping the communica-
tion between the server and the FPGA-SoC. The attacker’s
goal consists of finding theAES key necessary for decrypting
the file with the help of a SeW memory dump. The system
setup described in Sect. 4.1 and the XMPUs’ configuration
described in Table 2 is assumed to be run on the FPGA-SoC.
The first step of the attack consists of dumping the whole
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Fig. 7 Little endian representation of the AES key schedule found in a
Secure World memory dump

SeW memory (8 MB) via the HT contained inside IP 1 (see
Fig. 4). This is done by generating secure read transactions
(ARPROT=0) on the SeW memory via the ACP. The next
step is to scan the obtained memory dump. Since Libtom-
crypt stores a precomputed AES key schedule in memory,
this structure should be observable in a memory dump. Sim-
ilar to [11], we identify an AES key inside a memory dump
by searching for a specific key schedule. The pseudocode for
finding an AES key inside a memory dump is explained in
Algorithm 1.

Algorithm 1 AES key finder from memory dump
1: procedure AES key finder(in memory_dump,

out key_found)
2: word_iterator [31:0]
3: key_cand [127:0]
4: key_schedule_cand [351:0]
5: key_ f ound ← 0
6: while key_ f ound �= 1 OR word_i terator �= endO f File

do
7: key_cand ← 16 Bytes following word_iterator
8: key_schedule_cand = KeySchedule(key_cand)

9: if key_schedule_cand ⊂ memory_dump then
10: key_ f ound ← 1
11: end if
12: word_iterator++
13: end while
14: end procedure

We verified the success of our approach for different AES
keys. Figure 7 corresponds to the portion of the memory
dump containing the key schedule (in little endian represen-
tation) associated with the AES key 8b 94 06 88 eb 6b d4 48
0f e5 6a 33 ac 2f f8 07.

In order to decrypt the sensitive file, the knowledge of the
IV is an additional requirement. This parameter is usually
not secret but should not be used multiple times with a same
key to prevent IV reuse attacks [16]. We assume that this
parameter is known to the attacker.

5 Compromising secure boot and secure
device updates on the ZU+ via the ACP

This section shows that a HT contained inside anACPmaster
can compromise the secure boot of the ZU+ via peripherals
manipulation. This is achieved by exploiting the possibility
for aHT toprogram the (Battery-BackedRAM)BBRAMand
eFuses via the ACP. After programming an RSA public key
hash in the eFuses and an AES key in the BBRAM, our PoC
shows that the attacker is able to start her own authenticated
and encrypted boot image in the hardware root of trust secure
boot scheme of the ZU+.

5.1 System description

The system architecture is shown in Fig. 8. It consists of the
FPGA-SoC and one server which is used to provide config-
uration updates. In order to transmit the updates securely to
the device owner, the configuration update files are authen-
ticated with RSA signatures and encrypted with AES-GCM.
This scheme is compatible with the hardware root of trust
secure boot mode of the ZCU102 Evaluation Kit which is
used in this work. In order to use this secure boot scheme, the
device owner has programmed the hash of the server’s public
key and an AES key inside the eFuses reserved for PPK0 and
the AES device key. The device owner has deliberately not
configured the set of eFuses used for storing PPK1, so that
it is possible to program a new key if the private key of the
server gets compromised. By doing this, it is also possible
to program the public key of another trusted source inside
PPK1 later on.

The FPGA-SoC configuration which is booted is shown
in Fig. 8. It consists of the processing system (PS) and a
third-party IP located inside the FPGA fabric (IP 1) which
is connected to the PS via the ACP. Similarly to Sect. 4.1,
the XMPUs are enabled to restrict the memory access of the
accelerator. Since IP 1 only requires access to a restricted
memory subsection and not to the APU peripherals, the
XPPU is in addition configured to prevent an access to periph-
erals. Among those peripherals is the eFuses controller,
which is accessed by the first-stage boot loader (FSBL) dur-
ing the authentication of the boot image.

Despite the use of secure boot, IPs obtained from third
parties may still contain a hidden HT. We assume that the
attacker has managed to include a HT inside IP 1 which she
intends to use for taking control of the device. Sections 5.2
and 5.3 explains the attack vectors that are exploited by the
HT. Once these steps are performed, we explain how the
attacker is able to start her own authenticated and encrypted
boot image in Sect. 5.4.
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Fig. 8 Secure boot with an image obtained from a third party

5.2 Programming of an RSA public key hash into the
eFuses from the ACP

As explained in Sect. 2.3, the hardware root of trust secure
boot relies on RSA authentication with public parameters
(PPK hash and SPKID) contained inside the boot image and
a comparisonwith a value stored inside eFuses. In this experi-
ment, we assume that the device owner has only programmed
one PPK hash inside the eFuses and investigate whether a HT
contained inside anACPmaster can program the second PPK
hash.

From the device owner perspective, this should not be pos-
sible since the XPPU has been configured in a way that the
ACP cannot access it. Due to the malfunction described in
Sect. 3.3, the ACP can however access the eFuse controller.
The procedure used for programming a PPK hash from the
ACP into the eFuses is described in Algorithm 2. After fol-
lowing these steps, the HT can read back the PPK value
programmed inside the PPK10..11 registers, which confirms
the success of the attack.

In Sect. 5.4, we show that this attack primitive enables
an attacker to start a boot image that is authenticated with
her own private key and thereby allows her to bypass the
hardware root of trust secure boot configuration set by the
device owner.

5.3 Programming of an AES key into BBRAM from
ACP

The BBRAM stores a 256 bit AES device key which can
be used for decrypting a boot image and authenticating it in
the encrypt only secure boot. In contrast to eFuses, BBRAM
can be reprogrammed multiple times. Xilinx provides code

Algorithm 2 Programming of an RSA public key hash into
eFuses
1: procedure eFuses RSA PPK programming(in

RSA_PPK_HASH)
2: e f use_wr_lock ← 0xDF0D � Unlock the eFuses controller
3: e f use_c f g_pgm_en ← 1 � Enable programming mode
4: Set timing constraints and initialize sysmon.
5: for (i = 0; i < 384; i ← i + 1) do
6: if RSA_PPK_H ASH [i] == 1 then
7: e f use_pgm_addr ← (row(RSA_PPK_H ASH [i]),

column(RSA_PPK_H ASH [i]))
8: end if
9: end for
10: e f use_c f g_pgm_en ← 0 � Disable programming mode
11: e f use_wr_lock ← 0 � Lock the eFuses controller
12: end procedure

snippetswhich enables programming ofBBRAMfromapro-
cessor (APU or RPU). The BBRAM registers are accessible
from the ACP. To verify the possibility of programming a
BBRAM key from the ACP, we performed the steps men-
tioned in Algorithm 3.

Algorithm 3 Programming an AES key into BBRAM
1: procedure BBRAM programming(in AES_KEY,in

AES_KEY_CRC, out status)
2: bbram_pgm_mode_reg <– 0x757BDF0D � Put BBRAM in

programming mode
3: bbram_{0..8}_reg ← AES_K EY
4: bbram_aes_crc_reg ← AES_K EY_CRC
5: while bbram_status_aes_crc_done �= 1 do
6: end while
7: if bbram_status_aes_crc_pass == 1 then
8: status ← success
9: else
10: status ← f ailure
11: end if
12: end procedure

By doing so, we found out that an ACP master is capable
of programming anAES key into BBRAM. Since we assume
that the device owner is decrypting the boot image with an
AES key stored inside the eFuses, it is possible for a HT to
reprogram the BBRAM without preventing the device from
booting. In Sect. 5.4, we explain how this attack primitive
can be used for booting an encrypted boot image, which is
successfully decrypted with a device key that is not the one
of the device owner.

5.4 Attack description

In order to bypass the hardware root of trust secure boot
configuration set by the device owner, the attacker needs to
program an RSA public key hash to the second set of eFuses
used for that purpose (seeSect. 5.2) andoptionally to program
an AES key into BBRAM (see Sect. 5.3). Programming an
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AES key into BBRAM is optional, because the hardware
root of trust secure boot can work with boot images that are
only authenticated, not encrypted. Both of these steps are
performed via the HT contained inside IP 1 (see Fig. 8).
After having done this, these keys are going to persist across
device reboots. From a device owner point of view, the device
is still bootingwithout any errors in the hardware root of trust
secure boot, because the hash of PPK0 and the AES key are
still programmed inside the eFuses.

In order to take control of the device, the attackermust also
be able to provide her own boot image to the device owner,
in which she has specified to use the PPK1 for authentica-
tion and the BBRAM as source for the device key. This can
be achieved by tricking the device owner into downloading
the boot image from malicious sources or by compromising
the communication between the device owner and the server.
Once the attacker has achieved the previous step, the device
owner will then start the attacker’s boot image successfully
with the impression that the image is validated with the keys
he programmed inside the device. In reality, these steps were
realized with the keys that the attacker programmed in the
non-volatile storage via the HT. Once the attacker has man-
aged to boot her own image on the device, it is also possible
for her to authenticate and decrypt partial bitstreams with
the AES-GCM device key stored inside the BBRAM. Again,
the device owner is expecting the device key to be stored in
the AES eFuses; however, the compromised boot image has
specified the BBRAM as device key source.

6 Mitigations and portability of the attacks
on other FPGA-SoCs platforms

In this section, we discuss possible countermeasures against
the attack vectors described in Sects. 3.2 and 3.3 and the
PoCs described in Sects. 4 and 5. We also evaluate if the
attacks presented in this work might be applicable on other
FPGA-SoC platforms.

6.1 Mitigations of the attacks presented in this work

For the rest of this section,we use the� symbol for indicating
that a mitigation is effective, the × symbol to indicate that it
is not and the � symbol to indicates that it partially addresses
the issue. The notation �DMA/× secure boot indicates that
a preventive technique effectivelymitigates the DMAattacks
described in Sect. 4 but not the attack against the hardware
root of trust secure boot described in Sect. 5.

Manual modification of the XMPUs’/XPPU’s configu-
ration (�DMA/�secure boot): The XMPUs/XPPU fail to
isolateAPUprivatememory/peripherals fromanACPmaster
because of the mask value associated with the APU regions.
We observed this vulnerability after using the Vivado iso-

lation configuration (VIC) to configure the XMPUs/XPPU.
Despite the existence of the VIC, the user can still configure
the XMPUs’/XPPU’s registers manually by modifying the
psu_init.c file.

According to Table 1, the 5th least significant bit (LSB)
of the mask should be set such that the XMPUs/XPPU can
distinguish a transaction originating from the APU and the
ACP. Therefore, wemodified the mask value 960 to 976 such
that the master ID filtering can work properly. However, we
observed that changing the mask value in the XMPUs regis-
ters prevents the system from booting. This means that there
is at least one incoming APU transaction for which the sec-
ond condition in Eq. 1 is not met. Our hypothesis is that the
“Core nn read/write” transaction ID is implemented with the
5th LSB set and therefore by considering the master ID 128,
which is stored for APU core 0 in the XMPUs registers, an
incoming APU transaction is not going to be filtered with
the result 128. The right approach consists of finding a solu-
tion which allows ”core 0 exclusive read/write” and ”core 0
read/write” to access APUmemory regions while preventing
it for the ACP. Given the ID encoding of these transactions
(see Table 1), we chose to modify the XMPU configuration
according to Table 3. With this approach, the ZU+ is booting
successfully, andmeanwhile, theACPcannot access theAPU
private memory. Given the memory isolation described in
Table 2, we had to manually define two newmemory regions
for the APU (one for the SeW and one for the NoW).

Changing the XMPU configuration only is however not
sufficient for solving the isolation problem fully. As shown in
Fig. 3, the XMPU cannot prevent an accelerator from access-
ing data located inside the L2 cache. Therefore, in order to
protect the TEE from the memory manipulation attacks pre-
sented in this work, cache maintenance operations should
be used after a SeW to NoW switch. We verified that the
approach is also working for the XPPU. However, in that
case, replacing a mask value was sufficient (see Table 4).
Since an access to a peripheral from the ACP always goes
through the XPPU, the caching problem encountered with
the XMPU does not apply here.

Use of another FPGA fabric to PS memory interface
(�DMA/�secureboot): The attack described in this work
assumes a hardware accelerator interfacing DDR memory
via the ACP. The ZU+ MPSoC provides alternative high-
performance memory interfaces. The ACP is however the
only interface which enables a hardware accelerator to allo-
cate cache lines inside the L2 cache.

Design of a specific isolation mechanism for the ACP
(�DMA/�secureboot): In contrast tomost of the PS slaves
ports (see Fig. 3), ACP transactions are not filtered by an
SMMU. As an alternative, Olson et al. [21] propose Bor-
der Control, a mechanism that can substitute an SMMU by
sandboxing accelerators and protecting the memory from a
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Table 3 XMPUs configuration (ID, mask) for APU memory regions

Old configuration New configuration

Core 0 (128, 960) Core 0 (128, 976)

Core 1 (80, 1022) Core 0 (160, 1008)

Core 2 (197, 1023) Core 1 (80, 1022)

Core 3 (98, 1023) Core 2 (197, 1023)

Core 3 (98, 1023)

Table 4 XPPU configuration (ID, mask) for the APU profiles

Old configuration New configuration

Core 0 (128, 960) Core 0 (128, 976)

Core 1 (80, 1022) Core 1 (80, 1022)

Core 2 (197, 1023) Core 2 (197, 1023)

Core 3 (98, 1023) Core 3 (98, 1023)

malicious or misbehaving accelerator. Similarly, a special
AXI wrapper as used in [15] can be an efficient mecha-
nism for providing memory/peripherals isolation in a system
where an untrusted hardware block interfaces memory via
the ACP. This wrapper acts like a firewall and can be con-
figured to prevent memory/peripherals access to a specified
address space.

Definition of a security policy table for hardware acceler-
ators (�DMA/�secureboot): A hardware accelerator can
arbitrarily configure the security of a transaction via the
ARPROT[0]/AWPROT[0] bit. A firewall associated with a
security policy table containing the security configuration of
each master can ensure that a master generates transactions
matching the security policy stored inside the table. This
alone is not enough to ensure memory/peripherals isolation;
however, guaranteeing least privilege execution is a common
practice in software and its extension to the FPGA fabric can
help in blocking some attack scenarios.

Use OCM instead of DDR memory for the TEE (×DMA/ ×
secureboot): Depending on the compilation options, OP-
TEE can be lightweight enough to fit in the 256 kB OCM.
This choice enables even better isolation compared to DDR
memory partitioning between theNoWand the SeW. In addi-
tion, it can protect the TEE against Rowhammer [17] and
ColdBoot [11] attacks.However,weverified that theXMPUs
also fails in preventing a hardware accelerator from access-
ing APU private OCM regions because of the same reasons
explained in Sect. 3.2.

Execute sensitive code in caches instead of DDR (×DMA/×
secureboot): CPU bound execution relies on having critical
data and code only in the processor registers and caches, not
in the DDR memory. Originally designed to mitigate Cold

Boot and DMA attacks, the Sentry [6] and CaSE frame-
works [28] enable the execution of a critical application
inside the cache only via the ARM lockdown features. The
protection against a DMA adversary is further achieved by
executing cryptographic operations in an isolated environ-
ment provided by ARMTrustZone. Both solutions, however,
are ineffective against the attacks presented inside this work;
an ACP DMA adversary can indeed snoop data in the pro-
cessor L1 and L2 caches and arbitrarily set the security bit
of a transaction.

Use of hardware support for secure key storage and cryp-
tography (�DMA/ × secureboot): This work uses the Rich
OSRootFS secure storage features provided byOP-TEE (see
Appendix A). Alternative possibilities on a ZU+ FPGA-SoC
are the BBRAM or eFuses. However, none of these features
can help to protect against the PoCdescribed in Sect. 4.3 if the
AES-GCM decryption is executed in software. An effective
mitigation against our attack is to perform the AES decryp-
tion with hardware support. The ZU+ boards already contain
a dedicated AES-GCMmodule that can be used for this pur-
pose, however, the integration of this module inside a TEE
requires additional work and a software solution might be
preferred for a faster deployment.

Program both set of eFuses used for storing the RSA
PPKs hash (×DMA/�secureboot): The attack presented
in Sect. 5.4 requires that only one PPK is programmed into
the eFuses. If the two sets of eFuses are programmed, the
attacker cannot program her own key into the second set.
Xilinx recommends programming both PPK hashes before
fielding a system but also specifies that this is not required
[26]. Programming only one of the PPKhashes also has some
advantages from a security point of view. If the private key
of a boot image provider gets compromised, it is possible to
revocate the corresponding public key hash and to program
a new one into the device.

Use the encrypt only secure boot (×DMA/�secureboot):
An alternative to the hardware root of trust secure boot is
the encrypt only secure boot. This scheme requires that all
partitions contained in the boot image are encrypted and
authenticated with AES-GCM. Xilinx specified that this
secure boot mode is only compatible with an AES-GCM
authenticationwith a key stored in the eFuses [24]. Therefore,
a variant of the attack against secure boot for this particular
scheme is not possible. However, besides the attack con-
sidered in this work, the encrypt only secure boot is also
vulnerable to boot header manipulation attacks [7].

6.2 Attack portability on other platforms

The PoC described in Sect. 4 was tested on a Xilinx ZU+
MPSoC ZCU102 Evaluation Kit (Production Silicon). To
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verify the portability of the PoC on other ZU+ boards, the
same designwas implemented for the ZCU104, ZCU106 and
Ultra96-V2 variants. Tests on these boards were not directly
performed, instead, a comparison of the generated psu_init.c
file with the file generated for the ZCU102 reveals that the
APU private memory regions are configured with the same
mask. Similarly, the APU apertures are configured with a
mask that does not allow filtering between APU and ACP.

The two previous observations make the attacks presented
in this work portable to other ZU+ boards.

Stratix 10 [13] is the Intel equivalent to the Xilinx ZU+.
However, this architecture does not contain anACP bus inter-
face to the ARM Cortex-A53. An inspection of the technical
referencemanual reveals that all FPGA to processor memory
interfaces present on the Stratix 10 go through an SMMU.
Additionally, a system of firewalls enables the protection of
memory and peripherals. To take advantage of this architec-
tural specificity, the user must nevertheless be careful when
selecting the order in which the FPGA fabric and the pro-
cessor are booting. A good prevention of DMA attacks from
malicious logic consists of configuring the Cortex-A53 and
the SMMU before loading the FPGA fabric. By doing so, the
user can effectively prevent theFPGAfabric to access proces-
sor private memory. The opposite configuration is insecure
and could lead to DMA attack scenarios during the boot of
the processor. Concerning authentication, Stratix 10 relies on
ECDSA with a root public key (equivalent of the PPK on the
ZU+) hash stored in the eFuses [12]. Only one root public
key can be programmed into a Stratix 10 device and root key
cancellation is not possible. Therefore, the attack performed
in Section 5.4 seems not to be applicable on this architecture.

7 Conclusion

This work shows two approaches for compromising an
FPGA-SoC via malicious hardware. The first one consists of
manipulatingmemory inorder to bypass some securitymech-
anisms of a TEE. In contrast to previous works [5,15,19],
our experiments were carried out on an FPGA-SoC based on
the modern ZU+ architecture from Xilinx. This architecture
contains more mechanisms for memory and peripherals iso-
lation inside the FPGA-SoC. Despite the presence of more
sophisticated isolation mechanisms, we show that malicious
hardware can still compromise memory via the accelerator
coherency port (ACP). This interface is usually considered
for scenarios where a hardware accelerator requires fast and
cache coherent memory access.

The second approach consists of the manipulation of the
FPGA-SoCperipherals viamalicious hardware hidden inside
an accelerator which uses the ACP. Our experiments reveal
an issue in the peripheral protection unit which enables the
malicious logic to access peripherals it is not supposed to.

We use this vulnerability to demonstrate a proof of concept
attack inwhich an attacker can bypass the secure boot config-
uration set by a device owner and boot her own authenticated
software. This is achieved by programming an RSA public
key hash into the eFuses and an AES key into BBRAM via
malicious logic.

Before using the ACP for hardware accelerators requiring
fast and cache coherent memory access, we strongly rec-
ommend to perform a security risk assessment considering
our detected attacks. If the usage of the ACP is necessary,
the attack vectors presented in this work can be mitigated
by manually changing the configuration of the XMPUs and
XPPU registers and flushing the L2 cache when switching
from the secure world to the normal world. As a more prac-
ticable solution, we would instead recommend the use of
sandboxing for ACP accelerators [21], or to use a wrapper as
done in [15].

8 Responsible disclosure

Xilinx has been informed about the XMPU vulnerability
we discovered in July 2019 and responded via the Answer
Record 72654 [25]. The memory isolation issue that we
observed is due to an unrestricted access to memory located
inside the L2 cache together with a configuration of a par-
ticular (mask, ID) value in the XMPUs’ registers after the
use of the Vivado isolation configuration [27]. The XMPUs
configuration issue extends the issue further and enables the
ACP to access data which is not located inside the APU’s L2
cache.

In parallel to this submission, we have informed Xil-
inx about the extension of the ACP isolation issue with the
peripherals of the FPGA-SoC. Xilinx recognized the second
issue on January 26th 2021, with no particular comments
from their side. As a general recommendation, we would
recommend a careful usage of the ACP in security critical
designs requiring isolation. This recommendation has also
been added to Xilinx ZU+ documentation, which enable a
user to be easily informed about our findings.
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Software-assisted secure data storage in OP-
TEE

The software-assisted secure data storage functionality imple-
mented inside OP-TEE follows the recommendations speci-
fied in the TEE Internal Core API specification. This feature
allows to store key material and general-purpose data with a
confidentiality and integrity guarantee.

The Rich OS RootFS secure storage feature relies on the
use of several encryption keys. The secure storage key (SSK)
is a per device key generated and stored in secure memory
during boot. This key is derived from a Hardware Unique
Key (HUK) and a ChipID as indicated in Eq. 4.

SSK = HMACSH A256(HUK ,ChipI D||′′staticstring′′)
(4)

The trusted application storage keys (TSKs) are a per TA
key used to protect the different file encryption keys (FEKs).
A TSK is obtained from the SSK and the TA_UUID accord-
ing to Eq. 5.

T SK = HMACSH A256(SSK , T A_UU I D) (5)

Each generation of a TEE file inside a TA comes with the
generation of a new FEK. This key is generated by a pseudo-
random-number generator and is further used to encrypt the
meta data of the file and the data blocks composing it. Meta-
data encryption results in the creation of the MetaData Field
as explained in Eq. 6:

⎧
⎨

⎩

FEKcrypt = AES − ECB(FEK , T SK )

(MetaDatacrypt , T AG) = AES − GCM(MetaData, I V , FEKcrypt )

MetaData Field = (FEKcrypt || I V || T AG || MetaDatacrypt )
(6)

Similarly, the encryption of a data block results in the creation
of a Data Block Field as defined in Eq. 7:

{
(DataBlockcrypt || T AG) = AES − GCM(DataBlock, I V , FEK )

DataBlock Field = ((DataBlockcrypt || T AG || I V )
(7)

As explained in Eqs. 6 and 7, a file used to store secure data
is encrypted with a per TA specific key. Therefore, this file
is only accessible to a specific TA.

The encrypted file is stored inside a hash tree, where the
Hash Tree Header contains the MetaData Field from Eq. 6
and where each Node contains the TAG and initialization
vector (IV) of a Data Block Field. A secure data file consists

of the encrypted data blocks and the generated Hash Tree.
This file (and its backup) is stored in the Rich OS RootFS
under /data/tee.
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