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Abstract. We present an example of an electronic wavefunction with maximally entangled MPS represen-
tation, in the sense that the bond dimension is maximal and cannot be lowered by any re-ordering of the
underlying one-body basis. Our construction works for any number of electrons and orbitals.

1 Introduction

It has long been recognized that matrix product states
(MPS) yield accurate representations of quantum chem-
ical wavefunctions. Such representations lie at the heart
of the QC-DMRG method, a state-of-the-art method
for strongly correlated systems [1–5]. However, exact-
ness requires exponentially large matrices with respect
to the system size and the quality of the approximation
is governed by the size of the discarded singular values
of the corresponding unfoldings ψμ1,...,μk

μk+1,...,μL
[5,6].

Unlike in spin chains with identical sites, where the
required matrix sizes are connected to the entanglement
between subsystems which is in turn governed by area
laws [7–10], the situation in quantum chemistry is more
complicated. The role of the sites is then taken by the
system’s molecular orbitals, and the matrix ranks, the
singular values, and the overall approximation quality is
strongly influenced by the ordering of the orbitals [3,11–
14]. Reordering the orbitals corresponds to changing the
topology of the tensor network underlying the MPS;
see Fig. 1. As turns out, standard examples with maxi-
mal entanglement such as the fermionic Bell states (see
below) have the feature that the largest matrix rank (or
bond dimension) for L molecular orbitals occupied by
N = L/2 electrons drops from maximal, 2L/2, to just 2
independently of L, under optimal re-ordering.

Here we present an explicit, rather more intricately
correlated state whose bond dimension stays at the
maximal value 2L/2, regardless of any re-ordering.

2 MPS representation

Given a suitable orthonormal set {ϕ1, . . . , ϕL} of molec-
ular spin orbitals, typically consisting of occupied and
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unoccupied Hartree–Fock orbitals, recall the exponential-
sized full-CI expansion of an electronic wavefunction
which reads, in N -particle, respectively, Fock space,

Ψ =
∑

i1<...<iN

λi1,...,iN
|ϕi1 , . . . , ϕiN

〉

=
1∑

μ1,...,μL=0

ψμ1,...,μL
Φμ1,...,μL

.

(1)

Here the |ϕi1 , . . . , ϕiN
〉 are Slater determinants and

ψμ1,...,μL =

⎧
⎨

⎩

λi1,...,iN , if μi1 = . . . = μiN = 1,
∑

j

μj = N

0, else,

Φμ1,...,μL =

{
|ϕi1 . . . , ϕiN 〉, if μi1 = . . . = μiN = 1

0, else.

(2)

The MPS approximation consists in the ansatz

ψμ1,...,μL
= A1[μ1] · · · AL[μL], (3)

where the Ak[μk] are matrices of size 1×M (for k = 1),
M × M (for k = 2, . . . , L − 1), and M × 1 (for k = L)
for some moderate value of M .

3 Fermionic Bell states

Next, we argue that prototype examples of strong
entanglement from spin physics and QIT—like Bell
states—are in fact only weakly entangled in the MPS
sense if re-ordering of the “sites” is allowed. Of course
re-ordering only makes sense for molecular orbitals, not
sites in 1D spin chains.
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Fig. 1 Schematic picture of a MPS before and after
reordering the orbitals (vertices). Bonds represent virtual
variables, i.e., summation indices in the matrix product; see
Eq. (3)

For N electrons occupying L = 2N orbitals {ϕ1, . . . ,
ϕL}, one can easily write down a fermionic analogon to
the standard Bell states.

Set ψk :=
(
ϕk + ϕk+N

)
/
√

2 for k = 1, . . . , N and
consider the Slater determinant Ψ := |ψ1, . . . , ψN 〉. It
is then not hard to see (e.g., [15]) that its minimal MPS
representation in the basis

(
ϕk

)
k

has bond dimension
2N .

Now apply a re-ordering which puts paired-up orbitals
next to each other,

(
ϕ̃1, ϕ̃2, . . . , ϕ̃L−1, ϕ̃L

)
=

(
ϕ1, ϕN+1, . . . , ϕN , ϕL

)
.

We claim that in the new basis
(
ϕ̃k

)
k
, Ψ has an MPS

representation with bond dimension just 2. Indeed

Ψ =
1∑

μ1,...,μL=0

A1[μ1] · · · AL[μL] Φ̃μ1,...,μL
(4)

where Φ̃ is specified as in (2) and the matrices Ak are

A1[μ1] =
(
δ0μ1 δ1μ1

)
, AL[μL] =

(
δ1μ1 , δ

0
μ1

)T
,

A2�[μ2�] =

(
δ1μ2�

0

0 δ0μ2�

)

, A2�+1[μ2�+1] =

(
δ0μ2�+1

δ1μ2�+1

δ0μ2�+1
δ1μ2�+1

)

.

Here � = 1, . . . , N − 1 and δk
ν denotes the Kronecker

delta.

4 Maximally entangled state

To construct a state whose bond dimension cannot be
reduced by any re-ordering, we start off by recalling an
old result by Besicovitch [16]; let p1, . . . ps, be different
primes. Then

Theorem 1 (Corollary 1 in [16]) A polynomial P (
√

p1,
. . . ,

√
ps) with rational coefficients and degree w.r.t.

each entry less than or equal to 1, not all equal to zero,
cannot vanish.

Now we consider the set P := {√
pj : pj prime}. Then

every matrix A whose elements belong to P and are
pairwise different has maximal rank, since—for every

square submatrix B—det(B) is exactly a polynomial of
the above form.

Now define the state ΨP by

ΨP =
∑

i1<...<iN

λi1,...,iN
|ϕi1 , . . . , ϕiN

〉

=
1∑

μ1,...,μL=0

ψμ1,...,μL
Φμ1,...,μL

,

(5)

where the coefficients λi1,...,iN
are mutually different

elements of P and the second equation gives the occu-
pation representation with ψμ1,...,μL

corresponding to
λi1,...,iN

as in (2). Then every unfolding ψμ1,...,μk
μk+1,...,μL

is a
matrix of the above form and thus has maximal rank.
In particular [17], Ψ has maximal bond dimension.

Furthermore if we consider any new ordering, that
is, we change our orbitals according to (ϕ1, . . . , ϕL) =
Q(ϕ̃1, . . . , ϕ̃L) with Q ∈ R

L×L a permutation matrix,
then we cannot decrease the rank of any unfolding.
Indeed, it is easy to see that we then obtain the fol-
lowing representation:

ΨP =
∑

j1<...<jN

λ̃j1,...,jN
|ϕ̃j1 , . . . , ϕ̃jN

〉

=
1∑

μ1,...,μL=0

ψ̃μ1,...,μL
Φ̃μ1,...,μL

,

with

λ̃j1,...,jN
=

∑

i1<...<iN

λi1,...,iN

∣∣∣∣∣∣∣

qi1,j1 . . . qi1,jN

...
...

qiN ,j1 . . . qiN ,jN

∣∣∣∣∣∣∣
,

where qij denotes the elements of Q. Since Q is a permu-
tation, exactly one determinant will be non-zero. Thus
every unfolding still contains the same elements but
only their positions change. But by construction of the
set P, the position within the unfolding ψ̃μ1,...,μk

μk+1,...,μL
is

irrelevant as long as all entries are different elements
of P. Hence the unfolding still has full rank. Therefore
ΨP still has maximal bond dimension.

We remark that in contrast to orderings, arbi-
trary fermionic mode transformations, i.e., choosing the
transformation Q above as a unitary, can always some-
what decrease the bond dimension. In the two-particle
case (N = 2), this can even achieve the optimal bond
dimension of 3, for an arbitrary number of orbitals L
[18].

5 Singular value distribution

We have also numerically calculated the singular value
distribution of our example states for different values
of N and L and different orderings (such as the widely
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Fig. 2 Singular value distribution of the matrization
ψμ1,...,μ6

μ7,...,μ12 of the state ΨP [Eq. (5)] with N = 6 electrons
and L = 12 orbitals, for different orderings

used Fiedler order [11]) using the code tensor-train-julia
[19].

Figure 2 corresponds to N = 6, L = 12, and a ran-
dom choice of

(
L
N

)
primes of size less than 2N+L. The

different orderings shown are the original (canonical)
order, the Fiedler order [11], and the more recent best
weighted prefactor order [15]. In particular all 2L/2 sin-
gular values are non-zero, as predicted.

The singular values are seen to decay extremely
slowly, and exhibit a remarkable almost-invariance
under re-ordering. A less extreme but related observa-
tion, that the bond dimension cannot be lowered much
by re-ordering, was made in an interesting numerical
study of strongly correlated states in the 1D Hubbard
model [20]. By contrast, for weakly correlated states
re-ordering typically reduces the tail by several order
of magnitude [15].

Physically, the slow decay in Fig. 2 means that for
the state ΨP , any two subsystems obtained by parti-
tioning the molecular orbitals into two equal-size parts
are strongly entangled.
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