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Received: 20 January 2023

Revised: 19 February 2023

Accepted: 20 February 2023

Published: 22 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Cell-Type-Specific Gene Regulatory Networks of
Pro-Inflammatory and Pro-Resolving Lipid Mediator
Biosynthesis in the Immune System
Matti Hoch 1 , Jannik Rauthe 1, Konstantin Cesnulevicius 2, Myron Schultz 2, David Lescheid 2,
Olaf Wolkenhauer 1,3,4 , Valerio Chiurchiù 5,6 and Shailendra Gupta 1,*

1 Department of Systems Biology and Bioinformatics, University of Rostock, 18055 Rostock, Germany
2 Heel GmbH, 76532 Baden-Baden, Germany
3 Leibniz-Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
4 Stellenbosch Institute of Advanced Study, Wallenberg Research Centre, Stellenbosch University,

Stellenbosch 7602, South Africa
5 Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
6 Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
* Correspondence: shailendra.gupta@uni-rostock.de

Abstract: Lipid mediators are important regulators in inflammatory responses, and their biosynthetic
pathways are targeted by commonly used anti-inflammatory drugs. Switching from pro-inflammatory
lipid mediators (PIMs) to specialized pro-resolving (SPMs) is a critical step toward acute inflammation
resolution and preventing chronic inflammation. Although the biosynthetic pathways and enzymes
for PIMs and SPMs have now been largely identified, the actual transcriptional profiles underlying
the immune cell type-specific transcriptional profiles of these mediators are still unknown. Using the
Atlas of Inflammation Resolution, we created a large network of gene regulatory interactions linked
to the biosynthesis of SPMs and PIMs. By mapping single-cell sequencing data, we identified cell
type-specific gene regulatory networks of the lipid mediator biosynthesis. Using machine learning
approaches combined with network features, we identified cell clusters of similar transcriptional
regulation and demonstrated how specific immune cell activation affects PIM and SPM profiles. We
found substantial differences in regulatory networks in related cells, accounting for network-based
preprocessing in functional single-cell analyses. Our results not only provide further insight into the
gene regulation of lipid mediators in the immune response but also shed light on the contribution of
selected cell types in their biosynthesis.

Keywords: inflammation resolution; network modeling; lipid mediators; RNA-seq; machine learning

1. Introduction

Inflammation is a complex and tightly regulated process that protects the body from
any form of damage, insult, or infection [1–3]. In addition to secreted proteins (cytokines),
lipid mediators (LMs) generated from polyunsaturated fatty acids (PUFAs) in the cell
membrane play a key role in regulating all the phases of inflammation, from the initial
acute response to its fine-tuning of inflammation transition and even termination [4].
During acute inflammation, arachidonic acid (AA) is the main PUFA that is used for the
biosynthesis of over 150 different pro-inflammatory lipid mediators (PIMs) (i.e., various
classes of prostaglandins, leukotrienes, and thromboxanes) that altogether act as the “fire-
starters” of the inflammatory response by controlling vascular and cellular responses and
by determining the cardinal signs of inflammation (redness, heat, swelling, pain, and loss
of function) [5–9]. In the last two decades, various LMs involved in the termination of
inflammation, so-called “specialized pro-resolving mediators (SPMs), have been identified
and are composed of over 30 lipids derived fromω-3 PUFA such as docosahexaenoic acid
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(DHA) and eicosapentaenoic acid (EPA) [10–13]. Unlike PIMs, SPMs promote the resolution
of inflammation and tissue repair by activating the cardinal signs of resolution (removal,
restoration, regeneration, remission, and relief). Their tightly regulated synthesis during
the inflammatory response is a crucial step in extinguishing the fire of inflammation, thus
favoring the return to homeostasis, as well as in the prevention of excessive inflammatory
responses and the development of chronic inflammation [9,13–15].

Although acute inflammation involves a large number of cells and molecules, its
initiation triggers relatively straightforward and ubiquitous cascades of various strengths
depending on the type and amount of stimulus (e.g., production of PIMSs, vasodilation,
chemotaxis of various immune cells) that ensure a rapid response in any tissue [1,3].
In contrast, the resolution of inflammation mechanisms (e.g., type and levels of SPM
production and their downstream signaling cascades) strongly depends on the tissue
microenvironment [9,12]. Although the SPM biosynthetic pathways, including regulatory
enzymes, are now largely identified and are the very same as those involved in PIM
production, the actual regulatory processes underlying cell-type-specific mediator profiles
remain elusive. In 2018, Norris and Serhan performed a metabolipidomics analysis of
human whole blood and identified functional and cell type-specific LM profiles [16]. Their
results showed that haematopoietically and functionally distant cell types have similar
LM profiles and, vice versa, closely related cells can synthesize substantially different
LMs, indicating individual cell type-specific regulations. LMs are secreted to neighboring
cells in an auto- and paracrine fashion [17,18]. Such a highly localized response would
require cell-type-specific transcriptional programs and thus a cell-type-specific expression
of transcriptional regulatory networks.

Usually, cell types are defined by cell-type-specific markers, morphological features,
and functional properties or by their distinct (multi-)omics profiles [19]. With the advance-
ment of single-cell RNA sequencing (scRNA-Seq), new subsets of existing cell types are
constantly being defined, and the established boundaries between cell types seem to disap-
pear [20]. Thus, modern experiments focus on single-cell data rather than bulk samples of
apparently related cells. However, the idea of subsets of a defined cell type also adds new
complexity to understanding cell-type-specific signal transduction that distinguishes them
from others. To address the challenge of analyzing physiological or functional relation-
ships in single cells, unsupervised machine-learning approaches proved to be extremely
useful for identifying patterns in single-cell expression profiles [21,22]. In addition to
clustering cells based on their omics profiles, generating topological features from cell-
type-specific molecular interaction networks enable the study of functional relationships
between molecules and genes [23]. However, the analysis capabilities rely on the causal
interactions in the network, making network construction and curation an essential step.

Recently, we published the Atlas of Inflammation Resolution (AIR) as a publicly avail-
able, web-based knowledge platform of molecular interactions and biological processes
involved in acute inflammation and its resolution [24]. We have identified key processes at
each stage of inflammation and developed a standardized representation of the associated
molecular interactions in so-called standardized molecular interaction maps (MIMs). The
manually curated causal interactions enable the use of systems biology approaches to
infer regulatory circuits, predict signal transduction pathways, or perform perturbation
experiments [25]. Among others, the AIR provides a detailed description of the biosyn-
thetic pathways of PIMs and SPMs from their precursors AA, DHA, and EPA. In this study,
we investigated cell-type-specific transcriptional networks associated with LM synthesis
pathways. We mapped scRNA-Seq data to gene regulatory networks extracted from the
AIR and examined how the networks are affected by differences in the expression of tran-
scription factors. We investigated how cellular LM profiles are modulated by changes in
the cell-type-specific network topology of gene regulatory networks (GRNs). By apply-
ing unsupervised machine learning approaches to network topological features extracted
from the GRNs, we clustered single cells according to their regulatory mechanisms and
identified their key gene regulators. We have shown how the application of network-based
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approaches can improve the analysis of functional molecular pathways and their regulatory
networks using scRNA-Seq data. Our results shed light on the gene regulation of LM
synthesizing enzymes across various immune cell types.

2. Results
2.1. Cell-Type-Specific LM Pathways

We clustered the cells based on the expression profile of genes included in the AIR
database, i.e., being directly related to immunological processes (Figures 1A and 2A). The
dimensionality reduction largely restored the cell type clusters as they are defined in the
metadata of both datasets. We investigated the expression of LM enzymes in the cells, and
whether clusters of enzyme expression correspond to Uniform Manifold Approximation
and Projection (UMAP) clustering. Additionally, for each cell, we analyzed whether the
substrates of LM biosynthesis, AA, DHA, or EPA, are linked to the final products through
the expression of catalyzing enzymes.
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were filtered for those included in the “Atlas of Inflammation Resolution” database. (B) Cell type-
specific de novo biosynthetic pathways of each lipid mediator class from the precursor molecules 
arachidonic acid (AA), docosahexaenoic acid (DHA), or eicosapentaenoic acid (EPA) based on the 
expression of catalyzing enzymes. (C) Clustered heatmap of lipid mediator enzyme expression 
color-coded by clusters defined from the UMAP in (A). 
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and adaptive immune cell populations, with monocytes being the only missing cell sub-
sets. The UMAP of immune-filtered gene expression was able to restore the cell type 
groups to a high degree (Figure 2A). The two-dimensional projection of the UMAP graph 
shows the cell branching in two directions starting from the hematopoietic cell group. 
Except for B cells, which are placed closer to the myeloid cells, these two groups coincide 
with the lymphoid and myeloid lineages, respectively. The analysis revealed that the over-
all ability to synthesize LMs, based on the expression of required enzymes, is much lower 
in lymphoid than in myeloid cells (Figure 2B). In particular, cells belonging to the myeloid 
lineage and hematopoietic stem cells are the ones most capable to biosynthesize both PIMs 
and SPMs, with macrophages and granulocytes (neutrophils, basophils, and eosinophils) 
being the most efficient due to the high expression of LM enzymes (Figure 2C). Mast cells 
and ILCs show a similar biosynthetic pathway in producing PIMs and only one class of 
SPMs, i.e., E-resolvins. As expected, NK cells and NKT cells also share a similar ability to 
synthesize the same class of LMs, which are limited only to prostaglandins (except for I-
prostaglandins) and thromboxanes; however, only NKT cells can produce maresins. In-
terestingly, epithelial cells display a biosynthetic pathway identical to NKT cells. Of note, 
it seems that neither T cells nor B cells are capable produce any LMs. 

Figure 1. Clustering of immune cell types in the GSE122108 dataset. (A) UMAP plot of immune cell
scRNA-seq data with highlighted clusters based on scRNA-seq cell sorting. Genes in the dataset were
filtered for those included in the “Atlas of Inflammation Resolution” database. (B) Cell type-specific
de novo biosynthetic pathways of each lipid mediator class from the precursor molecules arachidonic
acid (AA), docosahexaenoic acid (DHA), or eicosapentaenoic acid (EPA) based on the expression of
catalyzing enzymes. (C) Clustered heatmap of lipid mediator enzyme expression color-coded by
clusters defined from the UMAP in (A).

The GSE122108 dataset consists of mononuclear phagocytes, mainly macrophages,
of different tissues, with various pro- and anti-inflammatory stimuli. The cell types with
fewer samples, such as monocytes, dendritic cells, and microglia cells, were partially
restored (Figure 1A). Macrophage samples are widely scattered and partially mixed with
the clusters of the other cell types because they originate from a wide variety of tissues.
One macrophage cluster separates from all other cells and consists mainly of peritoneal
cells. These peritoneal macrophages also show a distinct LM enzyme profile, with an
expression of many genes and the only cells with consistently high expression of Alox15
and Ptgis and, thus, are the only cell types expressing the required enzymes for all LM
classes (Figure 1C). From the analysis, it emerged that while almost all cell types are
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fully capable to synthesize prostaglandins, leukotrienes, and thromboxanes, very few cell
types can only synthesize SPMs. Indeed, lipoxins (that are generated by AA but still
belong to the super-family of SPMs), protectins, and D-resolvins are produced only by
macrophages, maresins only by macrophages and microglia, while E-resolvins are produced
by all immune cells, including dendritic cells and monocytes (Figure 1B). Interestingly,
lipoxins, protectins, and D-resolvins show a similar pattern due to the expression of the
enzyme Alox15. In contrast, a group of dendritic cells expresses only those enzymes
required for synthesizing E-resolvins and leukotrienes. Microglia also show a consistent
expression profile, particularly of Alox5, Cbr1, Gpx4, and Ptgs1.
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expression of catalyzing enzymes. (C) Clustered heatmap of lipid mediator enzyme expression 
color-coded by clusters defined from the UMAP in (A). 

2.2. Cell-Type-Specific Gene Regulation 
Despite apparently similar expression profiles of LM enzymes, cells may differ in 

transcriptional circuits that tightly regulate LM synthesis. Moreover, a similar expression 
profile may be regulated by substantially different transcription factor networks, which 
would be required for cell-type-specific responses to stimuli in different tissues. Thus, we 
analyzed the connectivity between transcription factors and enzymes of each LM class in 
the cell-type-specific GRNs. After dimensionality reduction for all classes, the embeddings 
were combined and projected into single UMAPs for each dataset (Figure 3A,B). For each 
cluster, we identified the genes with the most significant differences compared with all 
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the significant (adj. p-value < 0.05 for any LM class) genes of the microglia cells, which 
build the most defined cluster in the UMAP plot (Figure 3C). For the two highest-ranked 
genes, Mef2a and Xrcc5, we additionally showed their regulatory score in relation to their 
expression in all samples. The plots show how the score is significantly increased in the 
microglia cells and, especially for Mef2a, is independent of its expression. In the literature, 
information on tissue-specific transcriptional regulation of LM biosynthesis is very sparse. 
Hence, to compare our results with experimental data, we searched the literature for any 
evidence supporting the immune modulatory function of the genes related to microglia. 
Of the thirteen genes, we found clear evidence in the literature for eight genes on their 
relevance in microglial function and neuronal inflammation (Mef2a [26], Hdac11 [27,28], 
Smad3 [29], Mef2c [30], Arid1a [31,32], Zfhx3 [33,34], Ets1 [35], and Jun [36]). Four genes 
were mentioned in experiments on microglial inflammation (Xrcc5 [37,38], Zfp191 [39], 
Prdm1 [40], and Usf2 [41]), whereas no information was found in the literature for only 
two genes (Znf383 and Nfrkb). The mode of action of the predicted genes in modulating 

Figure 2. Clustering of immune cell types in the GSE109125 dataset. (A) UMAP plot of immune cell
scRNA-seq data with highlighted clusters based on scRNA-seq cell sorting. Genes in the dataset were
filtered for those included in the “Atlas of Inflammation Resolution” database. (B) Cell type-specific
de novo biosynthetic pathways of each lipid mediator class from the precursor molecules arachidonic
acid (AA), docosahexaenoic acid (DHA), or eicosapentaenoic acid (EPA) based on the expression of
catalyzing enzymes. (C) Clustered heatmap of lipid mediator enzyme expression color-coded by
clusters defined from the UMAP in (A).

The GSE109125 dataset consists of many different cell types spanning the hematopoi-
etic lineage and includes stem cells, epithelial cells, and both compartments of innate and
adaptive immune cell populations, with monocytes being the only missing cell subsets.
The UMAP of immune-filtered gene expression was able to restore the cell type groups
to a high degree (Figure 2A). The two-dimensional projection of the UMAP graph shows
the cell branching in two directions starting from the hematopoietic cell group. Except
for B cells, which are placed closer to the myeloid cells, these two groups coincide with
the lymphoid and myeloid lineages, respectively. The analysis revealed that the overall
ability to synthesize LMs, based on the expression of required enzymes, is much lower in
lymphoid than in myeloid cells (Figure 2B). In particular, cells belonging to the myeloid
lineage and hematopoietic stem cells are the ones most capable to biosynthesize both PIMs
and SPMs, with macrophages and granulocytes (neutrophils, basophils, and eosinophils)
being the most efficient due to the high expression of LM enzymes (Figure 2C). Mast cells
and ILCs show a similar biosynthetic pathway in producing PIMs and only one class of
SPMs, i.e., E-resolvins. As expected, NK cells and NKT cells also share a similar ability
to synthesize the same class of LMs, which are limited only to prostaglandins (except
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for I-prostaglandins) and thromboxanes; however, only NKT cells can produce maresins.
Interestingly, epithelial cells display a biosynthetic pathway identical to NKT cells. Of note,
it seems that neither T cells nor B cells are capable produce any LMs.

2.2. Cell-Type-Specific Gene Regulation

Despite apparently similar expression profiles of LM enzymes, cells may differ in
transcriptional circuits that tightly regulate LM synthesis. Moreover, a similar expression
profile may be regulated by substantially different transcription factor networks, which
would be required for cell-type-specific responses to stimuli in different tissues. Thus, we
analyzed the connectivity between transcription factors and enzymes of each LM class in
the cell-type-specific GRNs. After dimensionality reduction for all classes, the embeddings
were combined and projected into single UMAPs for each dataset (Figure 3A,B). For each
cluster, we identified the genes with the most significant differences compared with all
other cells (adj. p-value < 0.05, see methods). Detailed information on all clusters, their
predicted genes, and included samples are available in the Supplementary Material.
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Figure 3. UMAP clustering of individual cells based on their topological association and expression
of transcription factors related to lipid mediator biosynthesis. scRNA-Seq profiles of two data sets,
GSE122108 (A) and GSE109125 (B) were mapped to a gene regulatory network and topological
features were extracted for the UMAP. (C) For the microglial cell cluster, transcription factors with
significantly higher scores than other clusters are shown. For the two highest-scoring transcription
factors, Xrcc5 and Mef2a, their score, and their expression in the cluster (red) compared with all other
cells (black) are shown in a scatter plot.

In the GSE122108 dataset, we observed many separate clusters and good restoration of
the main cell types, i.e., dendritic cells, macrophages, microglia, and monocytes (Figure 3A,
Supplementary File S1). Of note, macrophages appeared as smaller clusters that were
partially composed of tissue-specific cells, e.g., from the aorta, heart, or liver. We identified
the significant (adj. p-value < 0.05 for any LM class) genes of the microglia cells, which
build the most defined cluster in the UMAP plot (Figure 3C). For the two highest-ranked
genes, Mef2a and Xrcc5, we additionally showed their regulatory score in relation to their
expression in all samples. The plots show how the score is significantly increased in the
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microglia cells and, especially for Mef2a, is independent of its expression. In the literature,
information on tissue-specific transcriptional regulation of LM biosynthesis is very sparse.
Hence, to compare our results with experimental data, we searched the literature for any
evidence supporting the immune modulatory function of the genes related to microglia.
Of the thirteen genes, we found clear evidence in the literature for eight genes on their
relevance in microglial function and neuronal inflammation (Mef2a [26], Hdac11 [27,28],
Smad3 [29], Mef2c [30], Arid1a [31,32], Zfhx3 [33,34], Ets1 [35], and Jun [36]). Four genes
were mentioned in experiments on microglial inflammation (Xrcc5 [37,38], Zfp191 [39],
Prdm1 [40], and Usf2 [41]), whereas no information was found in the literature for only
two genes (Znf383 and Nfrkb). The mode of action of the predicted genes in modulating
microglia function has been attributed to their influence on cytokine expression. Our
results suggest that they modulate the immune response by also regulating the expression
of enzymes involved in the biosynthesis of LMs. Smad3, Jun, Usf2, and Xrcc5 have already
been described in their regulation of prostaglandins, while little to no research is available
on the other LM classes [42–45]. Mef2a and Mef2c have been identified as downstream
effectors of PGE2, which could indicate a feedback loop on prostaglandin e synthesis [46,47].

In contrast, in the GSE109125 dataset, the original cell types are more heterogeneously
distributed between clusters (Figure 3B, Supplementary File S2). The differences in the
expression of immune-related genes between the major immune cell types are not reflected
in the TFs associated with the LMs. However, two clusters consisting of hematopoietic
stem cells and mast cells, respectively, are strongly separated. While no significant TFs
were identified for the latter, the former shows a division into three subclusters, from each
of which several significant TFs were identified. Interestingly, based on cell metadata, the
three subclusters appear to represent stages of lymphoid hematopoiesis, namely (i) bone
marrow-derived stem cells (BMSCs) followed by (ii) early (DN1 and DN2a lymphocytes)
and (iii) late lymphoid progenitor cells. While BMSCs express many LM enzymes, they are
downregulated in lymphoid progenitors. When comparing the regulatory scores of stem
cells and early lymphoid progenitor cells, Hlf had the greatest difference in its score for
all LM classes (not shown). Hlf is an important regulator of lymphoid development in the
hematopoietic lineage [48]. Our results suggest that modulation of LM synthesis by gene
regulation of LM enzymes may play a role in shaping the fate of lymphoid cells by Hlf.

2.3. Immune Cell Activation Modulates Gene Regulatory Networks of Lipid Mediators

Several samples in the GSE122108 data were treated with pro- or anti-inflammatory
stimuli at several time points, including lipopolysaccharide stimulation (LPS), C. albicans
infection, induction of injury, paracetamol, and thioglycolate. We compared the cells at
successive time points for each stimulus and identified the TFs with the strongest changes
in their gene regulatory activity for each LM class (Figure 4A). For the selected genes,
we additionally show violin plots comparing their expression values (read counts) and
topology scores, showing that the estimated change in connectivity is independent of their
expression (Figure 4B). In general, the predicted that TFs show a strong variability between
cells and the different stimuli, suggesting that gene regulation of LMs in the immune
response is highly cell-type and environment specific. Additionally, especially at early time
points, the identified TFs also differ substantially between PIMs (e.g., the prostaglandin
classes) and SPMs (e.g., the resolvin classes) due to the distinct enzyme profile, arguing
for fine-tuned gene regulation. At later time points, the difference between PIM and SPM
classes becomes smaller, and the number of overlapping TFs increases.

Many predicted genes are well-known regulators of the immune response to respective
stimuli. For example, in liver macrophages stimulated with APAP, Hes1 appears to be
a key regulatory TF of most SPM classes. In vivo experiments showed that blocking
the Notch signaling pathway in mice reduced Hes1 levels and increased susceptibility to
APAP-induced liver injury [49]. In thioglycolate-stimulated monocytes/macrophages, our
model predicted several genes related to both PIMs and SPMs synthesis, which have also
been described in the literature, such as Epas1 (prostaglandins), Egr2 (prostaglandins),
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Cebpb (all LM classes), and Srebp1 (SPMs). Epas1, coding for HIF-2α, is an important
mediator of cellular processes and macrophage recruitment in response to hypoxia [50].
In an experimental thioglycolate periodontitis model, Egr2 and Cebpb were required for
macrophage activation [51]. In Srebp1 knockdown mice, thioglycolate-elicited macrophages
showed increased levels of pro-inflammatory cytokines and reduced levels of DHA and
EPA during the resolution phase after Tlr4 activation [52]. Although being related cell
types, the five subtypes of LPS-stimulated lung macrophages also differ in the predicted
TFs. Two subtypes of lung macrophages originate from broncho-alveolar lavage (BAL) and
show a similar gene regulation of prostaglandins through Klf10 and Vhl. Both genes have
already been associated with inflammatory responses in BAL macrophages [53,54]. For the
other LMs, both BAL subtypes do not overlap in the predicted TFs. The remaining lung
macrophage subtypes are defined by cell sorting markers. Their samples for which data
are available on days zero and three after LPS stimulation overlap at Stat1, Stat2, and Pias1.
The results become more diverse at later time points (day six vs. day three). We observed
that the three MHC-II- macrophage and monocyte subtypes partially overlap in Foxk2, Rora,
and Ing4 genes that are associated with cytokine production in response to LPS [55,56],
while for the MHC-II+ subtype, we predicted autophagy-related genes Rb1cc1, Rb1, and
Hdac2 [57–59]. Whether or not this difference is caused by MHC-II is yet to be determined,
as only limited evidence connects MHC-II with the predicted genes.

Figure 4. Transcription factors associated with stimulation of immune cell types. (A) The GSE122108
dataset includes gene expression data of immune cell types stimulated with inflammatory agents for
different time points. We identified the three major transcription factors with increasing topological
association to each lipid mediator class between time points of each cell type. (B) For three selected
genes, Rest, Hes1, and Srebf1, we show the normalized expression levels and topology scores for all
samples in a violin plot.
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2.4. LM Gene Regulation Shows Substantial Differences in Related Cell Types

Since the transcriptional regulation of LMs appears to be tightly regulated and cell-
type-specific, we investigated the extent to which closely related cell types may differ in the
transcriptional interaction networks of PIM and SPM synthesis. We identified the cell pairs
with the smallest distance in expression-based UMAP but the largest distance in transcrip-
tional network-based UMAP. The top-ranked sample pair consists of a macrophage from
the aorta and a macrophage from the lung stimulated with LPS (Figure 5A). Both tissue-
specific subtypes of macrophages appear to have a nearly identical transcriptomic profile
but substantially differ in LM gene regulation. Thus, we extracted the core regulatory net-
works (CRNs) to gain further insight into the genes contributing to the observed differences
(Figure 5B) and we additionally generated a CRN of an unstimulated sample of the same
lung macrophage subtype but without LPS stimulation to ensure that the difference is not
caused by the response to LPS. Interestingly, the CRN shows that the expression of most
LM enzymes is similar except for Ptgs2, which is not expressed in aorta macrophages. In
contrast, Ptgs2 is highly expressed in aorta macrophages with high expression levels of
the TFs Jun, Egr1, and Fos. All these three genes are highly associated with atherosclerotic
inflammation [60–62]. Egr1 is involved in the response to mechanical or oxidative stress
and, thus, the development of atherosclerosis from plaques and hypertonia [60,63,64].
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3. Discussion

The immune response is a tightly regulated system involving a large number of differ-
ent cell types with specific spatiotemporal functions. Over the years, experimental research
has attempted to identify and describe the molecular and functional processes involved.
However, although more and more knowledge is being gained and regulatory processes
are being elucidated, increasing complexity is blurring the boundaries between cell types.
At the same time, it is challenging to study the role of specific cells in immunological
processes and cell-type-specific immune responses. One reason for this is the enormous
cost and effort required to study the effects of a single transcription factor, e.g., using gene
knockout or targeted inhibition of transcripts with miRNAs. Consequently, experimental
identification of novel transcription factors regulating a particular process is not feasible
and, therefore, tends to be targeted based on hypotheses from other experiments. Moreover,
experimental data are mostly generated by measurable changes, such as changes in their
expression using RNA-Seq, but TFs do not necessarily have altered expression themselves,
and cell-type-specific changes could be mediated by changes in the topology of gene regu-
latory networks. As a result, very little information on cell-type-specific gene regulation
can be found in the literature, especially for the relatively young field of LM biosynthesis.

While the effects of LMs in cells and tissues have been extensively studied, particularly
for PIMs but recently also for SPMs, the regulatory mechanisms underlying their biosynthe-
sis in a cell-type-specific manner is still not very well investigated, which may be important
to understand how various cells communicate to resolve inflammation. This complexity
of the LM response is also shown by the ability of myeloid cells (i.e., macrophages and
granulocytes) to synthesize both PIMs and SPMs, while lymphoid cells seem incapable
to produce any LM. These results are also supported by the vast literature where both
classes of pro-inflammatory and pro-resolving LMs have been detected in a low or high
picomolar range in most cell populations belonging to the myeloid and innate compartment
of immunity. In contrast, evidence that cells of the lymphoid and adaptive immune system
can produce such LMs is very scarce (extensively reviewed in [8,9,65,66]).

Here, we investigated LM synthesis at the transcriptional level using in silico anal-
yses of cell-type-specific gene regulatory networks from scRNA-Seq data. Our results
highlight that, although cell types have similar expression profiles, they might exhibit
distinct transcriptional regulations of LM synthesis and, thus, respond with different LM
productions to experimental conditions. For instance, the higher expression of the stress-
and inflammation-related genes Egr1, Jun, and Fos in aorta macrophages than in lung
macrophages and their association with LM gene regulation, despite their similar RNA-Seq
profiles, might account for a physiological advantage in the aorta by enabling a sufficient
LM response to stress stimuli, such as hypertonia. Thus, our study showed that systems
biology approaches could identify cell- and tissue-specific patterns of gene expression–
phenotype relationships. Correlating the measured gene expression with underlying gene
regulation can improve the analysis and interpretation of scRNA-Seq data.

While large numbers of gene regulatory interactions are available in public databases,
identified using in silico predictions of binding motifs, information on the type and strength of
these interactions is rather scarce. Even if available, including such information also introduces
new challenges, such as integrating competitive TF interactions. As our study aims to compare
cell-type-specific GRNs, we built the networks using qualitative data (considering whether there
is an interaction between a TF and a gene) to avoid false negative information and, consequently,
disruptions in the network. By integrating expression data and topology algorithms, the
qualitative information is converted into quantitative regulation scores for machine learning
algorithms, providing a valuable estimation of a TF’s relevance in the GRN. Similar in silico
studies on gene interaction networks showed the use of network topology information to predict
key regulators and motifs [67–69]. The resulting bias towards highly connected nodes was
encountered by normalizing the regulation score by the node degree. In our approach, we
include information on multiple genes per LM class in the calculation of regulatory scores as
well as combining the predictions from machine learning for multiple LM classes. The approach
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can be translated equally to other immune mediators, such as cytokines. The interpretability
of the molecular results of this study is further limited to mice, although the methodology can
be easily translated into human data. We specifically chose murine RNA-Seq data as much
more murine than human in vivo studies are available that provide experimental evidence on
gene-to-phenotype associations.

With our study, we provided examples of how network-based scRNA-Seq data analyses
could provide insights into cellular mechanisms of LM regulation and generate new hypotheses
for follow-up investigations using human data. Thus, our results account for integrating systems
biology approaches to stratify cellular responses more accurately in experimental settings and
to discriminate or predict pathological states based on the ability of specific disease-associated
cells to engage in pro-inflammatory or pro-resolving pathways.

4. Materials and Methods
4.1. Network Curation

We extracted molecular interactions from the “lipid mediator biosynthesis from arachi-
donic acid” (Figure S1), “lipid mediator biosynthesis from DHA” (Figure S2), and “lipid
mediator biosynthesis from EPA” (Figure S3) submaps of the AIR using its Xplore tool.
The maps were then extended with transcription factor (TF) and gene target interactions
from the AIR MIM to create a gene regulatory network (GRN). Catalytic reactions were
transformed into the activity flow format by integrating enzymes in between the source and
target element with positive interactions each (Figure 6A). The resulting network can be
considered as the graph G of a set of elements (vertices V(G)) and connecting interactions
(edges E(G)). The edges encode whether two elements are linked by (de)activation, up-,
or downregulation and are defined as a collection of triples E ⊂ (s× r× t) consisting of
a source element s ∈ V, a relation r ∈ {−1, 1}, and a target element t ∈ V.

4.2. Data Processing and Integration

Two murine single-cell RNA-seq profiles (GSE122108 and GSE109125) with prepro-
cessed and library-size normalized read counts (q) by the Immunological Genome (Imm-
Gen) Project were downloaded from their website (http://rstats.immgen.org/DataPage/,
accessed on 10 November 2022). They include many different immune cell types from
various tissues with extensive descriptions of the samples’ origins and sorting markers.
Both datasets have been described in detail in their respective published studies [70,71].
While the GSE122108 dataset consists only of phagocytotic mononuclear cells, mainly
macrophages and monocytes, the GSE109125 data includes cells from all major cell types of
the lymphoid and myeloid lineage. We mapped the murine genes from the data with genes
in the AIR using human–mouse gene identifier associations from the Ensemble database
(https://www.ensembl.org/, accessed on 23 August 2020). We defined a read count of 10
as a threshold to mark a gene as expressed or unexpressed which is slightly higher than
the threshold of 5 used by the ImmGen project to exclude more genes with non-functional
expression levels [71,72]. Genes with read count values below the threshold in a cell type c
were removed from G resulting in cell-type-specific subgraphs Gc with Vc ⊆ V and Ec ⊆ E
(Figure 6B). Proteins from the manually curated submaps, i.e., enzymes directly involved
in the LM biosynthesis, as well as elements with no expression, such as metabolites or
phenotypes, were not removed from Gc. For cellular normalization, we divided the read
count value of each gene by its highest absolute value across all cell types, resulting in the
cell type normalized read count q̂.

4.3. Topological Analysis

A path P in the MIM of the length l ∈ N can be written as the sequence(
u1

r1→ u2
r2→ . . .

rL→ ul+1

)
with (ui, ri, ui+1) ∈ E. The relation r ∈ {−1, 1} between the

first and final element of any P is defined as (r1 · r2 · . . . · rl) for all interactions along P.
The shortest path SP between (u, v) is defined as an existing path Pu,v between u and v
where l(Pu,v) is minimized. In each subgraph Gc, the shortest paths between precursors and

http://rstats.immgen.org/DataPage/
https://www.ensembl.org/
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the final products in the LM biosynthesis were identified using the Breadth-First-Search. In
addition, pathing algorithms were applied to identify core regulatory networks (CRNs),
which are combined pathways from genes to LM enzymes with the maximum score of
genes passed. The identification of CRNs becomes a widest path problem and was solved
with an adaptation of Dijkstra’s algorithm. The edge weights are based on the edge’s
target node u and were set to either su for CRNs of a single cell or |∆su| when comparing
two sets of cells.
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thesis from scRNA-seq data. (A) Biosynthesis Pathways of LMs from AA, DHA, and EPA were
merged with transcription factor gene interactions from TRRUST to create a large-scale gene regula-
tory network (GRN) (B) Cell-type-specific GRNs were then generated by mapping scRNA-Seq to
genes and removing under-expressed genes from the network. From the GRNs, regulatory scores
were generated for all transcription factors based on their connectivity to lipid mediator enzymes.
(C) From the cell-type-specific GRN, we analyzed LM synthesis paths based on the expression of
enzymes. Dimensionality reduction of regulatory scores for all TFs using an unsupervised machine
learning approach then identified cell clusters with similar gene regulatory networks. A comparison
of the resulting clusters with the clusters generated using the gene expression data allowed the
identification of functionally and hematopoietically related cells.

4.4. Topological Weighting

For each LM class p, we calculated a weighting factor for all elements in the submaps
representing their topological inclusion in the paths connected to p. We recently described
this weighting approach [25]. In summary, the weighting of an element e is calculated
based on the percentage of elements and paths connected to p. Npaths is the number of
all paths to p and Npathse ⊂ Npaths are paths that go through e. Nnodes is the number of
elements connected to p and Nnodese ⊂ Nnodes the number of elements on the path from
e to p:

we,p = r
(
SPe,p

)
·
(

Npathse

Npaths
+

Nnodese

Nnodes

)
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4.5. Feature Extraction

We generated a regulatory score s for each gene in Gc, representing its association
to LM synthesis. We performed a stepwise signal propagation based on the approach
presented by Lee and Cho [73], starting from the LM enzymes and continuing in the reverse
direction through the transcription network (Figure 7A). The transcription factors’ scores
were updated at each step based on degree centralities (=number of interactions) in the
original GRN, their targets’ scores in the previous step, and their normalized read count q̂
(Figure 7B). The simulation was performed for each cell type and initiated separately for
each LM class by setting the starting scores st=0

e = we,p for each enzyme e in the LM class p.
The final regulatory score for each node u in the network is then defined as the area under
the curve (AUC) of scores over 100 signaling steps: su =

∫ 100
t=0 st

u (Figure 7C).
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Figure 7. Feature extraction from the cell-type-specific gene regulatory networks (GRNs). (A) Starting
from lipid mediator enzymes, the starting signal is traversed in reverse throughout the GRN. (B) For
a distinct number of steps, a score is updated for each transcription factor (TF) based on its gene
expression, the score of its target in the previous step, and the node degrees of both the TF and its
target. (C) The final score is defined as the AUC of the scores throughout 100 steps and is used as
an input for the unsupervised machine learning algorithm. (D) The statistical significance of a score
is calculated based on its distance to a regression line representing the correlation between the score
and the expression of the TF across cells.

4.6. Cell Type Clustering

We performed a Uniform Manifold Approximation and Projection (UMAP) analysis
for both datasets using both the filtered expression data and, for each LM class, using the
regulatory scores s generated from Gc (Figure 6C). UMAP reduces the high dimensionality
of the input data into a two-dimensional graphical representation where each point corre-
sponds to a cell in the data. In this way, cells with similar values are positioned close to
each other, while separated cells indicate larger differences. Cell clusters were identified
using manually adjusted k-means clustering on the generated embeddings. To visualize
distributions across all LM classes, their embeddings were combined into a single dataset
and a new UMAP was performed. Clustering in the enzyme expression heatmaps was
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performed using the Euclid-based hierarchical clustering method of the Python package
seaborn version 0.12.1 [74].

4.7. Statistical Evaluation of Features

The goal of the statistical analysis is to identify features that differ in a group of
samples, i.e., clusters. Since the calculation of regulatory scores is based on the expression
of the feature in the cell, the final scores are biased towards q̂. Therefore, instead of
calculating the highest scores, the features should be analyzed in relation to q̂. In an LM
class, the q̂ and s values of a gene in all cells, which are not in the cluster, were fitted to
linear regression, and a half-normal distribution was created from the absolute distances of
each cell from the line (Figure 7D). The p-value of the feature in the cluster is then calculated
from the z-score of the average distance of the cluster’s cells in the distribution.

5. Conclusions

In conclusion, this study demonstrates how the application of network-based ap-
proaches enables the identification of cell-type-specific regulatory networks from scRNA-
Seq data. We showed that gene regulation of the lipid mediator biosynthesis is highly
dependent on the cell type and stimuli. Our results further argue for a fine-tuned transcrip-
tional modulation of immune cell types and emphasize the necessity of systems biology
approaches in understanding the underlying mechanisms.
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