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Abstract: Navigation is often regarded as one of the most-exciting use cases for Augmented Reality
(AR). Current AR Head-Mounted Displays (HMDs) are rather bulky and cumbersome to use and,
therefore, do not offer a satisfactory user experience for the mass market yet. However, the latest-
generation smartphones offer AR capabilities out of the box, with sometimes even pre-installed apps.
Apple’s framework ARKit is available on iOS devices, free to use for developers. Android similarly
features a counterpart, ARCore. Both systems work well for small spatially confined applications, but
lack global positional awareness. This is a direct result of one limitation in current mobile technology.
Global Navigation Satellite Systems (GNSSs) are relatively inaccurate and often cannot work indoors
due to the restriction of the signal to penetrate through solid objects, such as walls. In this paper,
we present the Pedestrian Augmented Reality Navigator (PAReNt) iOS app as a solution to this
problem. The app implements a data fusion technique to increase accuracy in global positioning
and showcases AR navigation as one use case for the improved data. ARKit provides data about the
smartphone’s motion, which is fused with GNSS data and a Bluetooth indoor positioning system via
a Kalman Filter (KF). Four different KFs with different underlying models have been implemented
and independently evaluated to find the best filter. The evaluation measures the app’s accuracy
against a ground truth under controlled circumstances. Two main testing methods were introduced
and applied to determine which KF works best. Depending on the evaluation method, this novel
approach improved the accuracy by 57% (when GPS and AR were used) or 32% (when Bluetooth and
AR were used) over the raw sensor data.

Keywords: augmented reality; augmented reality navigator; Kalman filter; Global Navigation
Satellite Systems; ARKit; trilateration; beacons; data fusion

1. Introduction

The idea of Augmented Reality (AR) can be summarised in the simplest way as
augmenting the real-world with computer-generated information. This poses an interesting
base problem for all systems that attempt to provide an AR experience. To augment
the real-world, it must be perceived, at least in some ways. As technological innovation
progresses, Augmented Reality (AR) becomes an increasingly exciting topic. What used
to be a futuristic field of research is slowly getting to the mass market. HMDs for AR are
a heavily researched field, but not yet ready for the average consumer. Smartphones, on
the other hand, are prevalent, and current-generation devices offer video see-through AR
capabilities. Even though a smartphone AR experience feels less natural, it showcases the
potential of AR and can be seen as a precursor to HMD AR. Both Apple and Google have
recently published frameworks for their mobile operating systems that enable AR apps.
They are called ARKit and ARCore and offer roughly the same features. Apple ships every
sold phone with an app called Measure, which is powered by ARKit and can measure
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the size of real-world objects. Smartphones perceive the real-world by precisely tracking
the pose (position and orientation) in space and detecting elements of the environment
with the camera. This enables digital content to be attached to the real-world. Tracking
the smartphone’s motion is vital so digital content stays attached to its real-world position.
Local positioning works reasonably well for small confined areas, but there is currently no
capability to connect the local position precisely to a global position. The only option for
obtaining a global position is GPS, which is only accurate to a certain degree (about 5 m).

In this paper, we contribute by attempting to solve the problem of inaccurate global
positioning by fusing local motion information with global positioning data. ARKit gathers
motion information via the camera and the Inertial Measurement Unit (IMU). The global
positioning data come from GPS and a custom Bluetooth-based positioning system. The
latter is necessary for indoor scenarios where GPS does not work.

We describe the PAReNt ios app, which showcases pedestrian navigation via AR.
Navigation is based on global coordinates and, therefore, a well-suited application. The
results of this work enable not just this example, but many other AR applications are
possible, which could improve the quality of life. In principle, digital information can
be attached to coordinates and displayed at a certain position. Recommender systems
based on location and viewing angle would be apt examples for this. The outside wall of a
museum could display a preview of what’s inside. If precise positioning is connected with
Internet Of Things (IoT) systems, smart decisions can be made by gadgets, such as turning
off the light when the user leaves the room.

Outline

The rest of the manuscript is structured in the following way. Section 2 explores related
work in the fields of AR navigation, GNSS, and Bluetooth-based positioning approaches.
Section 3 explains the background knowledge that this work is based on and the details
of the data fusion method, the Kalman Filter (KF). Section 4 explains how the described
problem of precise positioning was approached. Section 5 describes the important imple-
mentation details. Section 6 discusses the evaluation and the quality of the results. Section 7
discusses the limitations of this work and how they can be improved in the near future,
and Section 8 concludes the manuscript.

2. Related Work
2.1. Augmented Reality Navigation

The idea of navigation as an application of augmented reality systems has existed
for a while. The potential advantages of AR navigation in military aircraft has already
been investigated [1]. It was concluded that information about basic navigation, flight
information, and possible targets could be superimposed in the helmet-mounted sights
of pilots. A wearable augmented reality system [2] has already been presented that was
location-aware and could annotate the user’s view with geographical information. The
system consisted of multiple separate sensors and computing devices that are portable, but
rather cumbersome to use. The goal was to develop a system that displays digital location
or object-based information indoors and outdoors while giving the user the possibility to
enhance and extend this information. One part of the application was a user guidance
system that displayed a path in the user’s view.

An AR navigation system for cars and a modified version for pedestrian navigation
have already been realised [3]. The system consists of a Personal Digital Assistant (PDA),
which acts as a video see-through display, a camera as the visual input, a GPS sensor,
an orientation tracker, a navigational device, and a computational unit (laptop). In the
car setup, the camera is mounted behind the front mirror, and the display is close to the
dashboard. The camera is placed directly behind the PDA in the pedestrian handheld setup.
The computational unit collects all sensor data, the video stream, and the path data from
the navigational device. After putting them together, the visual navigation data are shown
on the PDA display in the form of semitransparent lane markings on the camera image.
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More recent projects are using the growing capabilities of smartphones [4]. SunMap+
is a prototype available on the Android operating system for indoor AR navigation. The
application uses a custom-created 3D map of university buildings and facilitates the Vuforia
software development kit (SDK). The landmark recognition capabilities of the latter are
used to determine the users’ position. Additionally, a Pedestrian Dead Reckoning (PDR)
system is used when the Vofuria SDK fails. The PDR system uses the accelerometer to
detect step patterns and the magnetometer to obtain the direction of movement. This
system, like all IMU-based systems, is prone to accumulating errors, often called drift.
Singh et al. [5] proposed an AR-based navigation system that uses a smartphone. The
spatial data are stored as a CSV file, and the location identification is performed using
a GPS receiver and the stored data. A route calculation is made when the destination is
entered by the user, and the route is displayed on the user’s screen. The location of the
user is obtained solely based on the GPS data, and this can be prone to error. Multiple data
inputs for finding out the location can be used to provide more accurate navigation.

2.2. GNSS Improvements

Even though the Global Navigation Satellite System (GNSS) is accurate enough for
many problems, higher accuracy and precision are always desired. The integration of the
Inertial Measurement Unit (IMU) with GNSS using the Kalman filter has been discussed
in the literature for better accuracy [6,7]. A body-worn system has been presented, which
uses vision in addition to GPS and a low-cost IMU [8]. A FAST feature detector is used
in combination with the BaySAC algorithm to match and compute a homography matrix
of the camera movement. The computed information is then integrated with the data
captured by the IMU. It was shown that the vision and IMU combination resulted in an
approximately 1m error after 60 s and less than a 3m error after 6 min. It was concluded
that this improves the standalone IMU navigation radically, but uses much computing
power.

As smartphones evolved, they had GPS, IMU, and more computing power. Re-
searchers have combined GNSS and IMU in smartphones [9]. Emphasis has been placed
on situations with partial GNSS availability. The focus lies in comparing different kinds
of Kalman filters and testing them in simulated and real scenarios. They developed and
implemented four Kalman-based methods. The first is a classic Kalman Smoother (KS),
which incorporates position, heading, and step count with a fixed step length. The second
Kalman smoother with a variable Step Length (KS SL) extends the first with a heuristic
to incorporate the variable step length. The third and fourth are nonlinear Kalman filter
extensions, namely the Extended Kalman Filter (EKS) and the Unscented Kalman Filter
(UKS). The latter two incorporate the step length naturally and do not need an additional
heuristic. With full GPS coverage, none of the filters stand out with significantly better
results than the others. It could be argued that the UKS has a slight advantage. With only
partial GPS coverage, it becomes clear that the inclusion of a variable step length makes
a difference because the error of KS is about double that of the others. However, even
when using a variable step length, none of the remaining filters stand out significantly. The
walk was conducted by starting indoors, leaving the building, walking outdoors, turning
around, and re-entering the building. The generally high error levels were regarded by the
authors due to high GPS errors in the transition phases from outdoor to indoor [9].

2.3. Indoor Positioning Using Bluetooth

Using wireless networks to determine indoor position has been greatly researched [10].
Researchers have developed RADAR, one of the earliest systems based on WaveLan,
the predecessor of WiFi [10]. All the existing approaches in positioning via wireless
sensor networks have been summarised [11]. The focus lies on concepts independent
of the wireless technology used. One of the concepts is trilateration. Bluetooth-based
indoor location approaches have been evaluated [12]. They use a Received Signal Strength
Indicator (RSSI) trilateration approach. To convert the RSSI to distance in meters, they
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tested their Bluetooth devices. Several measurements at different distances were made
and combined with the radio propagation model. With the results of the trilateration, they
deployed a gradient filter and were able to reduce their average error from 5.87 m to 2.67 m.
Since this approach often takes average values over certain periods of time, it is not very
suited for moving targets.

Over time and with new Bluetooth standards, more systems have been developed [13].
A system that combined Bluetooth Low-Energy (BLE) and dead reckoning for positioning
via a smartphone has also been evaluated. Low-cost BLE beacons were used, and as a first
step, their RSSI behaviour was examined. It was seen that the RSSI can vary greatly, and
filtering is needed to deal with that. The path loss model was then used to turn the filtered
values into distances in meters. For positioning, the signals of three or more beacons were
fed into a multilateration model that uses the least-squares method to minimise residuals.
The PDR was developed based on an accelerometer step detection that registers peaks in
acceleration with a fixed step length of 74 cm. The magnetometer was used to detect the
direction of walking of the user. As the last step, the results from the trilateration were
combined with the results of the dead reckoning with a KF. The researchers evaluated the
developed system in an office corridor. Eight beacons were deployed, and the path had a
length of about 30 m.

3. Background
3.1. ARKit

ARKit [14] is a framework developed and maintained by Apple on the iOS platform
that enables users to develop AR-based applications using the front and back cameras. This
work only uses the back camera, for which ARKit provides features such as tracking of
the environment, a coordinate system to register objects, horizontal surface detection, and
more. The world tracking capabilities are powered by visual–inertial odometry [15], which
combines information from the IMU and information gathered by analysing the camera
video stream. The latter is performed by extracting features from each video frame and
tracking their positions across frames. Altogether, it results in the capability to compute
how the camera and, therefore, the whole smartphone moves in space across time. This
means, as long as ARKit runs, the position (in meters) and orientation (as a vector) of
the device are available, but only in comparison to the start position and orientation. It
was realised in the following way: As soon as ARKit starts, it puts the origin of a local
coordinate system at the position in space where the camera is located at that moment. In
the local coordinate system, the x-axis points to the right and left, the y-axis points up and
down, and the z-axis points out the front of the device, all relative to the position of the
camera when ARkit starts. The position and orientation of the coordinate system do not
change automatically during an ARKit session, but can be changed by the app developer.

3.2. Bluetooth Beacons

Bluetooth beacons are small devices that broadcast an identifier using the Bluetooth
protocol. The broadcasting is implemented via Bluetooth low-energy proximity sensing and
is independent of the receiver. The identifier of a beacon is programmable and consists of a
Universally Unique IDentifier (UUID), a major and a minor value. The latter two are 16 bits
each. The distance of a beacon to the Bluetooth signal receiver is usually approximated by
using the RSSI in combination with a path loss model.

3.3. Trilateration

Trilateration is the process of determining the location of a point based on distances
to three known locations. When the distances are not known precisely, the problem can
be as visualised in Figure 1. In the real-world, measurements are imprecise and prone
to noise up to a certain level. Reference [13] tackled this problem in the following way.
The difference between the real radius ri and the measured radius mi can be set as vi =
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ri − mi. The location x, y is the result that assumes a minimal squared measuring error,
mathematically expressed as

(x, y) = min(
i

∑(v2
i ))

Figure 1. Schematic example of trilateration as in [11]. (a) illustrates the normal trilateration process
of calculating a node’s position with the help of the intersection of three circles. (b) illustrates the
real-world scenario where the circles do not intersect precisely at one position but at many positions
due to inaccurate position information, which makes estimating a node’s position very difficult.

3.4. GNSS

Global Navigation Satellite Systems (GNSSs) are satellite systems that send radio
signalsto the Earth, which can be used for location and navigation purposes. There are
different levels of accuracy for the different satellite systems and different methods of
computing the location, but in general, an accuracy of about 5 m is presumed. The received
data are provided via a framework called CoreLocation.

3.5. Kalman Filter

This is a well-known algorithm to produce estimates of unknown variables. An
optimal Kalman gain functionality that adapts the gain on the fly, based on the current
uncertainty values, as well as the noise of prediction and measurement, is used. The
equation below describes the prediction step.

x̂k|k−1 = Fk x̂k−1|k−1 + Bkuk

Here, x̂k−1|k−1 is the the state estimate at time k− 1 given all observations at times
before and including k− 1. Fk is the state transition model at time k. Bk is the control model,
and uk is the control vector. x̂k|k−1 is the newly predicted state.

Pk|k−1 = FkPk−1|k−1FT
k + Qk

This equation changes the error covariance matrix in line with the predictions of state
estimates. Pk−1|k−1 is the error at k− 1 with all information available till k− 1. Fk is the
state transition model. Qk is the covariance process of the noise.

The update step is broken down into five different equations, which result again in an
updated state estimation and covariance matrix.

ỹk = zk −Hk x̂k|k−1

The above equation contains zk, the measurement at time k. Hk, the observation model,
transforms a state into the observation space. ˆxk|K−1 is the state estimate from the prediction
step.

Sk = HkPk|k−1HT
k + Rk



Sensors 2023, 23, 1816 6 of 25

The next equation takes the predicted error covariance matrix Pk|k−1 and transforms it
with the observation model (Hk) from the left and the transposed observation model (HT

k )
from the right. In addition to the measurement noise Rk, this results in Sk being able to be
described as the error covariance in the observation space, which includes the uncertainty
of the measurement.

Kk = Pk|k−1HT
k S−1

k

This equation computes the optimal Kalman gain, by comparing two error covariance
matrices.

x̂k|k = x̂k|k−1 + Kkỹk

This equation uses the gain to update the state estimate. yk describes the difference
between prediction and measurement in observation space.

Pk|k = (I−KkHk)Pk|k−1

This equation updates the error covariance based on information from the Kalman
gain. If the gain is close to zero, I − Kk Hk is close to the Identity (I), resulting in an error
covariance close to the prediction covariance error. A high Kalman gain close to one can
only occur when the measurement uncertainty is very low, and this then results in a lower
error covariance than the predicted error covariance.

4. Conceptual Approach

This section gives an overview of how the proposed problem of improved positioning
data for AR navigation is approached (Figure 2).

Figure 2. Overview of the approach.

The PAReNt iOS app captures sensor data, converts them to custom types, saves them
via JSON, and performs the trilateration and data fusion. The saved data are used by the
Mac OS X and CLI applications.
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4.1. Bluetooth Beacon Trilateration

Battery-powered short-range beacons sold by the company Avvel were used. To
convert from the RSSI to distances, a simplified model was used, which approximates the
signal propagation model with a second-order polynomial.

4.2. Data Fusion

A general overview of how the different sensor data are fused together can be found
in Figure 3. These raw data come in from the camera, the IMU, satellites, and via Bluetooth.
These data are then preprocessed in ARKit, CoreLocation, and the beacon trilateration
module. Four independent filters all take in the fusion source data and produce their own
results.

Figure 3. Overview of data fusion.

4.2.1. Kalman Filter 1

In the prediction phase, it was assumed that the state stays the same and there is no
control. The covariance of the process noise is determined by one parameter n, which is set
to meters. nlat and nlng compose the parameter n, converted in latitude–longitude space.
The conversion between latitude, longitude, and meters is different depending on where
the user is located in the world. The equation below summarises all definitions for the
prediction phase in this KF.

x̂ =

[
lat
lng

]
F =

[
1 0
0 1

]
B = 02,2 u = 02,1 Q =

[
nlat 0
0 nlng

]
When there is new ARKit sensor data available, the measurement (zk) is composed of

∆ak,lat and ∆ak,lng. The displacement from the last ∆alat,k−1 in meters is taken and converted
back into latitude space to compute a new latitude value. The same is performed for the
longitude values. By doing this, the observation model (H

¯
) is very simple, just the identity

matrix. The measurement noise (Rk) is determined by one parameter mA in meters, which
is then converted to the coordinate space. The equation below summarises the definitions
for the update phase:

zk =

[
∆ark,lat
∆ark,lng

]
H =

[
1 0
0 1

]
R =

[
mAlat 0

0 mAlng

]
For new GPS data, the modelling is similar, but no ∆ value needs to be taken for the

measurement. Therefore, gpsk,lat just describes the latitude GPS sensor data at time k. The
measurement noise mG can change with time. CoreLocation provides information about
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the accuracy of each measurement, depending on the GPS signal strength and more. The
equation below summarises the definitions required for the GPS update step:

zk =

[
gpsk,lat
gpsk,lng

]
H =

[
1 0
0 1

]
Rk =

[
mGk,lat 0

0 mGk,lng

]
4.2.2. Kalman Filter 2: KF Vel

This model includes the velocities in the latitude and longitude direction. The function
used describes the distance between two steps (∆sk), as the time between the steps (∆tk)
times the last velocity (vk − 1). The state (x̂) is now four-dimensional, because of the
additional velocity variables. The state transition model (Fk) implements this velocity
function in the latitude and longitude direction and is now different in each step k because
of ∆tk. As in the simple KF filter, no control method (B, u) is used.

x̂ =


lat
lng

vLat
vLng

 Fk =


1 0 ∆tk 0
0 1 0 ∆tk
0 0 1 0
0 0 0 1

 B = 04,4 u = 04,1

The process noise was assumed to be happening because of a constant acceleration a
¯

in
the latitude and longitude direction, based on Newton’s laws of motion ∆sk =

1
2 a∆t2 + vk−1

and vk = a∆t + vk−1. Therefore, in matrix form, all together, this becomes xk = Fkxk−1 +
Gk,latalat + Gk,lngalng with Gk,lat and Gk,lng defined as:

Gk,lat =


1
2 ∆t2

k
0

∆tk
0

 Gk,lng =


0

1
2 ∆t2

k
0

∆tk


This results in the following process noise covariance matrix:

Qk = Gk,latG
T
k,latσ

2
lat + Gk,lngGT

k,latσ
2
lng =


1
4 ∆t4

kσ2
lat 0 1

2 ∆t3
kσ2

lat 0
0 1

4 ∆t4
kσ2

lng 0 1
2 ∆t3

kσ2
lng

1
2 ∆t3

kσ2
lat 0 ∆t2

kσ2
lat 0

0 1
2 ∆t3

kσ2
lng 0 ∆t2

kσ2
lng


where σ is the standard deviation of a and Gk,latalat + Gk,lngalng N(0, Qk). For ARKit and
the GPS data, zk and Rk are constructed the same way as the last filter. The definitions are:

zk =

[
∆ark,lat
∆ark,lng

]
H =

[
1 0 0 0
0 1 0 0

]
Rk =

[
mAlat 0

0 mAlng

]
zk =

[
gpsk,lat
gpsk,lng

]
H =

[
1 0 0 0
0 1 0 0

]
R =

[
mGk,lat 0

0 mGk,lng

]
4.2.3. Kalman Filter 3: KF CT

The main difference between the first two filters and this one is that they use the
ARKit data as the control input, instead of the measurement input. The KF CT has a
two-dimensional state consisting just of latitude and longitude values. The control vector
∆ark is the displacement (difference) from the last ARKit value in meters. This is converted
into the latitude=-longitude space. The control model is an identity matrix since it only
connects the latitude and longitude values.

x̂ =

[
lat
lng

]
F =

[
1 0
0 1

]
Bk =

[
1 0
0 1

]
uk =

[
∆ark,lat
∆ark,lng

]
Q =

[
nlat 0
0 nlng

]
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The update step only consists of one GPS part, because the ARKit data are already used
in the prediction step. This results in exactly the same definitions as for the KF GPS update
step.

4.2.4. Kalman Filter: Four KF Vel CT

The KF Vel CT filter is a mixture between KF Vel and KF CT, and it uses a four-
dimensional state similar to KF Vel, but uses the ARKit data as the control vector. The
state x̂, the state transition model Fk, and the error covariance of the process noise (Qk) are
defined as in KF Vel. The difference is in the control model and the control vector. The AR
data are used in the control vector to adjust a change in velocity between the last step (k− 1)
and the current (k). The velocity during the step k is computed by ∆vark = ∆ark

∆tk
, where

∆ark is the difference in metersdetected by ARKit between the last step and the current step.
∆vark shows the change in velocity. The control model propagates that changed velocity
into the state estimation velocity and adjusts the position as well. The control model and
control vector are defined as:

Bk =


0 0 ∆tk 0
0 0 0 ∆tk
0 0 1 0
0 0 0 1

 u =


0
0

∆̇vark,lat
˙∆var, lng


The update step is similar to KF CT, only considering the GPS data, because the ARKit

data were already handled in the update step. The definitions are identical to the KF Vel
definitions for the GPS update.

4.3. Single Instruction Multiple Data

The Kalman filter is based mainly on matrix operations such as multiplications and
inversions. This work used an approach to speed up the computations by computing
matrix operations in parallel. This was performed by using Single-Instruction Multiple-
Data (SIMD) types. ARM Neon, which is part of the CPU in the iPhone, was used for this
purpose.

4.4. Augmented Reality Navigation

The navigation part was approached by displaying path markers on the ground.
The route information in the form of global latitude–longitude coordinates was obtained
with Apple’s MapKit framework. After the user chooses a destination, MapKit provides
a pedestrian route, which is converted into a path. The path is displayed in the user’s
augmented reality view, based on the user’s current location and orientation, which are
based on the results of the Kalman filters. The path is visually pinned to the ground by
setting the z-axis coordinate (height) to the same value as the ground. This information
about the ground is obtained by using ARKit’s horizontal plane detection feature.

5. Implementation
5.1. Overview

The MVC pattern was used to decouple functionalities and, therefore, keep the code-
base easily extendible (Figure 4). The connection between the three modules was realised
in Apple’s implementation of the observer pattern, named NotificationCenter. When the
model computes something new, it notifies all observers. The view was set up as a model
observer and, therefore, was able to render the newly computed information.

5.1.1. iOS Application Parent

The main iOS app is called PAReNt. This app uses almost all parts of the later described
code, besides some specific views of the Mac application and some evaluation methods of
the CLI application.
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Figure 4. Overview of the implementation.

5.1.2. Mac OS X GUI Application

This application is a native Mac OS X application that acts as a visualisation and
debugging tool. Via the JSONLogger, the collected sensor data from the iOS app are fed
into this tool. This was valuable during development because the KFs could be tested on
Mac OS X without actually performing a new walk again.

5.1.3. CLI Application

The CLI application is a benchmarking tool to measure the performance of the KFs. It
has two main tasks: the first is to use a batch of collected walks and evaluate all primary
sensor inputs, as well as the KFs. The second task is optimising the various parameters of the
four KFs.

5.2. Model

The model as part of the MVC is shared by all the applications, and its internal architec-
ture is shown in Figure 5. The base types are defined to provide a custom implementation
instead of using Apple’s internal types (resulting in tighter coupling to Apple’s ecosystem).
The second stage is the pre-processing and consists only of the trilateration, takes the Blue-
tooth beacon data and computes a location. The next step is the fusion, which includes all
four KFs.
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Figure 5. Overview of the model.

5.2.1. Location Type

The location type represents a certain location on the Earth’s surface (latitude–longitude,
altitude, accuracy of values). Furthermore, this type encapsulates the functionality needed
to convert between geographic coordinates and X, Y, and Z displacement coordinates. The
explicit handling of the latitude and longitude values, as well as all algorithms needed for
geometry on a model of the Earth are implemented in the coordinate type, which is the
only other base type that the location type is using.

5.2.2. Coordinate Type

The coordinate type carries the latitude and longitude values and provides algorithms
for dealing with the geometry on the Earth’s surface. There are several models to describe
the shape of the Earth. The following three models were implemented:

Equirectangular projection: This model projects the Earth’s surface on a rectangular
plane. This model has several problems, which result in straight lines on the globe not
translating into straight lines on the projection. The same is true for distances.

Earth as a sphere: Modelling the Earth as a sphere results in an increase in accuracy,
especially for larger distances. Only the radius is needed to describe all properties of the
sphere. The radius is often approximated as 6,378,137 m. The geometric algorithms are
based on [16] and are therefore computationally more complex.

Earth as an ellipsoid: The Earth’s shape can be approximated better by using an
ellipsoid instead of a sphere.

The geometric algorithms were based on [17], which are two iterative methods. The
methods give a higher accuracy, but are computationally even more complex than the
algorithms on a sphere.

5.2.3. Heading Type

The heading type represents the orientation on a map. This is an angle between 0 and
360 degrees. The type is directly initialised by the main controller with data coming from
CoreLocation. The data come from the internal magnetometer sensor, which measures the
Earth’s magnetic field.
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5.2.4. Augmented Reality Type

This type is a custom representation of the information that is provided by Apple’s
ARKit framework. The framework computes additional information based on the camera
and the inertial measurement unit. This AR type combines information about the camera
position and orientation in reference to a local coordinate system. Additionally, this type
computes a property called xzOrientation upon initialisation. It is an angle that represents
the phone’s general-looking direction on the Earth’s surface.

5.2.5. Beacon Type

The beacon type represents all data that are received from the Bluetooth beacons. For
every beacon, there is an identifier and the RSSI. The location of each beacon is supplied
via a key-value store, which assigns a coordinate to each beacon identifier. The actual
distance from the sensing device to a beacon is derived from the signal strength. This
highly depends on which beacons are used and how strong their signal is. The beacons
that were used were calibrated by measuring the signal strength at a close distance, a 1 m
and 6 m distance. The RSSI was 40 for a close distance, 60 for 1 m, and 90 for 6 m. To
convert between the RSSI (r) and distance (d), a second-order polynomial of the form
d = ar2 + br + c was used, which resulted in the parameters a = 7, b = 11, and c = 36.

5.2.6. Path Type

The path type holds navigation data about the route a user has to take to get to the
destination. This is realised by a list of locations that embody checkpoints that the user is
passing. The path type was also used to have the ground truth during the evaluation.

5.2.7. Line Type

This type represents a line between two coordinates. It is directly used in trilateration
and provides methods to intersect two lines.

5.2.8. Circle Type

This work used the properties of intersecting circles. If two circles are intersecting
twice, then a line between the two intersection points can be drawn. If there are three circles
that each intersect twice with each other, the resulting lines of the intersection points are
intersecting themselves at a point (Figure 6).

Figure 6. Overview: Beacon type dependencies.

Beacon location module: The result from the trilateration gives a specific user location,
but no accuracy value. The beacon location module adds an accuracy value by taking
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the sum of the difference of the found solution to the three distance circles. Therefore, if
something went wrong in the trilateration, this value will be very high, indicating a bad
accuracy. It is best understood as: accurate to x meters. This module then broadcasts the
trilateration solution with the accuracy value to everyone who is listening.

5.2.9. Kalman Filters

Figure 7 shows a simple overview of how each filter takes in GPS, beacon, and AR
data and fuses them together into one user location. The specific filters were derived from
one generic filter class, which implements the prediction and update step. The generic class
uses a custom matrix type internally. The matrix type implements all operations needed,
such as multiplication, inversion, transposing, and more.

Figure 7. Overview: Kalman filter data flow.

5.2.10. Orientation Difference

The orientation difference module is a KF that holds a current orientation difference
value (Figure 8). It takes two inputs, the magnetometer (heading type) and the xzOrienta-
tion of the AR type, then calculates the difference. If the difference is greater than 0, this
means the local coordinate system of ARKit got out of sync with the magnetometer data.
The KF was used here to smooth the difference.

Figure 8. Overview: orientation difference data flow.

5.3. View
5.3.1. Map View

This view shows the results of all four KFs on a satellite image of the current location.
The raw GPS, beacon AR data, and path are also visualised. In Figure 9, the right side
shows an example of what that map view looks like. This view is the main view of the Mac
application and the lower part of the debugging version of PAReNt.
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Figure 9. Overview of the map view data flow (left); example map view (right).

5.3.2. AR View

This view is used in the iOS app to display the path in the camera image depending
on the user’s location (Figure 10). It is basically the live image that the back-facing camera
captures, augmented with a blue path. It is realised via ARKit internal functionalities and a
custom type called ARLine.

Figure 10. Overview AR View data flow.

5.4. Controller

The controller as part of MVC serves as a direct interface to the operating system. The
following controllers described are only used by the iOS application and use functionalities
specific to the platform.

5.4.1. Main Controller

The main controller is the main interface between the underlying operating system
and the application. It is the starting point of the application and sets up the JSON
Logger, Kalman filter, and beacon trilateration module. The main controller configures
and manages the iOS framework CoreLocation. Once the framework is started, the main
controller captures all incoming data and processes them in the following ways:

Location data: The incoming location data are first converted from the Apple type
CLLocation to the custom location type. Then, the data are distributed via the mechanisms
of the observer pattern to every module that is interested.

Magnetometer data: Apple intends Bluetooth beacons to be a positioning mechanism
where GPS is not available. Therefore, beacons are also managed via CoreLocation. Core-
Location collects all beacon data and provides them to the application once a second. The
beacon type is then initialised with these data.

5.4.2. AR Controller

The AR controller serves as an interface to ARKit. It initialises the AR session and
registers the event handlers for incoming data sensed by ARKit. As soon as ARKit processes
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a new frame, the resulting data are converted into an AR type and distributed to everyone
that is listening to view the observer pattern (Figure 11). The coordinate system is also
rotated here if the orientation difference module detects an inconsistency. It also directs the
AR view. If a new path is broadcast (by the navigation controller), the path coordinates are
converted into the AR space.

Figure 11. Overview of the AR controller data flow.

5.4.3. Navigation Controller

The navigation controller’s main task is to provide the search bar for searching and
choosing a navigation destination. When a navigation destination is chosen, it finds the
corresponding route, converts it into a path type, and broadcasts it.

5.5. JSON Logger

The JSONLogger listens to all the raw sensor events, as well as custom system mes-
sages and logs them (Figure 12). The sensor events are location (GPS), magnetometer,
AR-type data, and beacons. The system message includes the start and end of evaluation
runs and path-related data. The events are encoded into JSON objects and are then saved
in the phone’s persistent memory.

Figure 12. Overview of the JSONLogger data flow.

5.6. Unit Tests

Several critical functionalities of this project cannot be solved analytically. The unit
tests described in this section are mainly used to make sure correct results are produced.
With the results of these tests, a medium level of accuracy was chosen. The high accu-
racy option did not yield any significant accuracy benefit at smaller distances (below
1 km), but resulted in a measurable performance decrease. The low-accuracy option,
on the other hand, decreased in accuracy with growing distances, but did not increase
performance significantly.

6. Evaluation

The evaluation of our work is described in this section. The two datasets and the testing
methods that were used are described in the first section. The next four sections describe
the evaluations of different types of input data and the performance of the proposed KFs.

6.1. Datasets and Testing Methods

Both datasets contain ground truths and sensor data captured from walks. During the
walk, the phone was held in front of the chest with a slight tilt forward. We tried to walk at
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a steady pace without stopping in between with as little deviation from the path as possible.
After the coordinates were taken from the satellite images, the distances between them
were calculated and compared with real-world measurements to ensure that the satellite
image was not distorted.

6.1.1. Dataset and AR

This is recorded data from walks around a basketball court. During recording, no
beacons were deployed; hence, the recording consisted only of GPS and augmented reality
data. The ground truth was the outer boundary of the court. Each dataset entry was the
captured data of one walk starting from the southeast corner, around the court, in a clock-
wise direction. Figure 13 (left) shows the basketball court with the ground truth marked
in yellow.

Figure 13. Ground truth/path of Dataset 1 (left) and Dataset 2 (right).

6.1.2. Dataset 2: Beacons, GPS, and AR

This dataset was created only along one sideline of the court. Additionally, nine
beacons were deployed on the right and left sides of this path. The distance between each
beacon and the path was 3 m, and the distance between the beacons on each side was 6 m.
Finally, the left side had a 3 m offset to the right side, resulting in a zigzag pattern. This can
be seen in Figure 13 with the path in yellow and the beacons in white.

6.1.3. Testing Method 1: Distance to Ground Truth

This method measures the distance of each recorded location to the ground truth.
For example, if the first GPS location is one meter next to the start point of the ground
truth, this results in an error of 1 m. For example (Table 1), it can be seen that the recorded
GPS signal deviates on average 1.74 m (averaged over all walks of Dataset 1). To assess
the performance of the GPS and the Kalman filter, the Mean-Squared Error (MSE) in the
last column of the mentioned table was used. There is one downside to this method. If a
filter produces results that are just staying at the start location and do not move at all, this
method would result in a very low error, even though this filter performed poorly.
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Table 1. Evaluation (Dataset 1): GPS and AR; distance to ground truth.

Mean Median max min σ MSE

avg GPS 1.74 1.29 8.46 0.04 1.70 7.20
avg AR 2.04 1.78 5.37 0.00 1.29 7.78
avg KF 1.23 1.00 4.64 0.00 1.01 3.12
avg KF Vel 1.33 1.05 5.37 0.00 1.15 3.63
avg KF CT 1.26 1.03 4.28 0.03 0.96 3.13
avg KF Vel CT 1.43 1.08 4.62 0.03 1.18 3.81

6.1.4. Testing Method 2: Distance to Correct Point on Ground Truth

To counter the just-mentioned downside of only taking the distance to ground truth,
this method measures the distance of a recorded location to the correct point on the ground
truth. Because the datasets were recorded walking at a steady pace, it can be derived that
the user is at 50% of the path after 50% of the elapsed time. It can be seen that the MSEs
(Table 2) of all Kalman filters were significantly lower than from GPS alone. The downside
of this method is that it is more dependent on the recording of a walk and the pace of the
walk. The cumulative distribution function of the error is plotted in Figure 14.

Figure 14. GPS error CDF of distance to correct point on the ground truth.

Table 2. Evaluation (Dataset 1): GPS and AR; distance to correct point on the ground truth.

Mean Median max min σ MSE

avg GPS 3.80 3.54 9.70 0.77 2.03 22.57
avg AR 4.80 4.60 7.18 2.58 1.33 30.29
avg KF 3.63 3.21 6.82 1.13 1.55 19.27
avg KF Vel 3.58 3.27 6.86 0.91 1.57 18.60
avg KF CT 3.46 3.16 6.96 1.01 1.70 18.13
avg KF Vel CT 3.42 3.19 7.33 0.89 1.66 17.25

6.1.5. Testing Method 3: Distance Start to End

This method calculates the distance between the start and the endpoint. This testing
is useful when used on Dataset 1 since those walks end at the same location as they start.
The resulting distance was then set in relation to the length of the path. Therefore, as an
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example, a path length of 80.63 m and a start-to-end distance of 67 cm results in a 0.83%
error. Using this method for assessing the Kalman filters is less valuable. Kalman filters
take bad estimates as the initial values and improve with every following input value. The
filters try to estimate the user’s position in a global reference frame, not the exact movement.
This was the case, as can be seen in Table 3.

Table 3. Evaluation (Dataset 1): GPS and AR; distance between the start and end.

Path Length Distance Start to End %

avg GPS 80.63 3.55 +4.40
avg AR 80.63 0.67 +0.83
avg KF 80.63 3.93 +4.88
avg KF Vel 80.63 3.75 +4.65
avg KF CT 80.63 4.02 +4.99
avg KF Vel CT 80.63 3.66 +4.54

6.1.6. Testing Method 4: Length of Recorded Data

This method measures the length of the recorded data. It takes the distance between
each location and accumulates it as the total length of the path. This method is valuable
when looking at local reference frame systems and was used in the ARKit evaluation as
well. It is also useful in testing KFs because a high error is an indication of a jitter in the
data. An example of a jittering filter signal can be seen in Figure 15. The purple line shows
the filter next to the GPS line (blue), the beacon line (red), and the smooth line (brown).

Figure 15. Jittering signal of KF Vel CT (purple) and smooth signal of KF CT (brown).

6.2. Raw Sensor Data
6.2.1. GPS

The evaluation produces values for all four testing methods. The most-precise one is
the distance to the correct point on a path (Table 4). The mean error averaged over all 19
recordings was 3.69m, with an average standard deviation of 2m. The average distance
between the start and end found in Table 3, which was 3.55m, showed about the same
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accuracy. In Table 4, it can be seen that there were maximal errors of up to 31.94m, and also,
the median of each recording was lower than the mean. This is a sign of a generally good
performance with rare outliers. These outliers seem to be often in connection to a bad GPS
signal at the beginning of a recording, when there is not yet a good signal from more than
a few satellites. An example of a somewhat bad and somewhat good GPS signal can be
found in Figure 16. The left image shows a bad signal including an initial outlier in the
right lower corner. The right image shows a clearly better signal.

Figure 16. GPS signal in 15 November 2022 11:43:21.json (left) and 15 November 2022 11:34:23.json
(right).

Table 4. Evaluation (Datasets 1 and 2): GPS; distance to correct point on the ground truth.

Mean Median max min σ MSE

15 November 2022 11:31:16.json 5.48 5.10 13.07 0.14 3.02 39.14
15 November 2022 11:32:52.json 4.44 4.05 10.03 0.25 2.80 27.55
15 November 2022 11:34:23.json 2.59 2.32 5.95 0.60 1.37 8.59
15 November 2022 11:35:52.json 3.93 4.22 7.13 0.45 1.78 18.59
15 November 2022 11:43:21.json 7.52 7.25 11.34 4.23 1.91 60.16
15 November 2022 11:44:49.json 2.08 1.51 6.12 0.14 1.61 6.92
15 November 2022 11:46:08.json 2.28 2.19 4.28 0.72 0.89 6.00
15 November 2022 11:48:33.json 1.96 1.59 4.10 0.15 1.11 5.06
15 November 2022 11:49:46.json 2.77 2.78 4.23 0.81 0.85 8.37
15 November 2022 11:54:54.json 4.74 3.72 31.94 0.43 4.94 46.90
15 November 2022 11:56:08.json 4.07 4.17 8.49 0.55 2.11 20.98
15 November 2022 14:35:08.json 1.80 1.97 3.35 0.30 0.98 4.19
15 November 2022 14:41:31.json 2.68 2.76 5.92 1.05 1.08 8.37
15 November 2022 14:50:04.json 2.81 2.70 4.68 1.76 0.75 8.48
15 November 2022 14:52:00.json 5.16 3.64 11.58 0.56 3.59 39.49
15 November 2022 14:52:53.json 6.56 5.77 13.85 1.17 4.34 61.79
15 November 2022 14:53:46.json 2.92 3.22 3.93 0.72 1.02 9.59
15 November 2022 14:54:34.json 2.92 1.93 6.40 1.11 1.84 11.91
15 November 2022 14:55:25.json 3.32 2.82 7.33 0.69 2.06 15.29

average 3.69 3.35 8.62 0.83 2.00 21.44
σ 1.56 1.46 6.33 0.90 1.19 18.38
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6.2.2. Bluetooth Beacons

For the evaluation of the Bluetooth beacon trilateration system, the Dataset 2 was used.
By looking at Table 5, a mean error of 1.42 m and an MSE of 4.46 m averaged over all walks
were seen. For the second testing method, the distance to the correct point on the ground
truth (Table 6), the average values for the mean error of 3.72 m and the MSE of 19.10 m were
about the same as for the GPS (mean: 3.52 m, MSE:19.89). The results of the third testing
method with length-related data can be found in Table 7. The average length deviation of
all walks was only +3%, but had a standard deviation of 24.74%. Even though the average
was better than, for example, the GPS on this dataset, the very high standard deviation
means the data were very inconsistent.

Table 5. Evaluation (Dataset 2): beacon; distance to the ground truth.

Mean Median max min σ MSE

15 November 2022 14:35:08.json 2.65 1.59 14.16 0.23 3.55 19.59
15 November 2022 14:41:31.json 1.44 1.20 3.46 0.11 1.04 3.16
15 November 2022 14:50:04.json 0.78 0.63 1.78 0.11 0.50 0.86
15 November 2022 14:52:00.json 1.20 1.14 2.66 0.13 0.69 1.91
15 November 2022 14:52:53.json 0.99 1.17 1.57 0.00 0.47 1.21
15 November 2022 14:53:46.json 1.15 1.07 3.54 0.05 0.78 1.91
15 November 2022 14:54:34.json 1.94 1.68 4.25 0.51 1.04 4.86
15 November 2022 14:55:25.json 1.21 1.30 3.20 0.09 0.84 2.16

average 1.42 1.22 4.33 0.16 1.11 4.46
σ 0.56 0.30 3.81 0.15 0.94 5.84

Table 6. Evaluation (Dataset 2): beacon; distance to correct point on the ground truth.

Mean Median max min σ MSE

15 November 2022 14:35:08.json 3.56 3.15 11.34 0.33 2.44 18.61
15 November 2022 14:41:31.json 3.56 3.55 6.41 0.33 1.64 15.34
15 November 2022 14:50:04.json 2.82 2.52 4.69 0.99 1.04 9.06
15 November 2022 14:52:00.json 4.97 4.23 10.20 0.78 3.62 37.78
15 November 2022 14:52:53.json 4.51 2.58 11.10 0.83 3.59 33.21
15 November 2022 14:53:46.json 3.18 2.89 4.99 1.81 1.08 11.26
15 November 2022 14:54:34.json 3.04 2.75 4.68 1.93 0.85 9.95
15 November 2022 14:55:25.json 4.11 4.45 5.14 2.07 0.84 17.55

average 3.72 3.27 7.32 1.13 1.89 19.10
σ 0.70 0.69 2.82 0.66 1.11 10.07

Table 7. Evaluation (Dataset 2): beacon; length-related data.

Path Length Recorded Length Deviation (%)

15 November 2022 14:35:08.json 25.90 75.88 +65.86
15 November 2022 14:41:31.json 25.90 25.54 −1.42
15 November 2022 14:50:04.json 25.90 23.45 −10.47
15 November 2022 14:52:00.json 25.90 24.13 −7.35
15 November 2022 14:52:53.json 25.90 21.93 −18.12
15 November 2022 14:53:46.json 25.90 23.64 −9.56
15 November 2022 14:54:34.json 25.90 25.50 −1.60
15 November 2022 14:55:25.json 25.90 27.75 +6.66

average 25.90 30.98 +3.00
σ 0.00 17.05 24.74

6.2.3. Augmented Reality

For the purposes of display, the global position of the local coordinate system was
associated with the first provided global position (GPS or beacons). Since the AR data are
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only given in a local reference frame, it did not make sense to evaluate them based on
Testing Method 1 nor Testing Method 2. The evaluation was performed with the length
and the distance start-to-end method. Table 8 shows an average deviation of a recorded
length of −2.52% measured on both datasets. Table 9 shows an average of only a 0.83%
distance error in relation to the path length. The standard deviation was also only 0.93%. In
conclusion, it can be said that ARKit handles rotations in movement better than the actual
distances of the movement itself.

Table 8. Evaluation (Dataset 1 and 2): AR; length-related data.

Path Length Recorded Length Deviation (%)

15 November 2022 11:31:16.json 80.63 73.38 −9.88
15 November 2022 11:32:52.json 80.63 76.29 −5.69
15 November 2022 11:34:23.json 80.63 75.47 −6.84
15 November 2022 11:35:52.json 80.63 75.15 −7.30
15 November 2022 11:43:21.json 80.63 80.33 −0.38
15 November 2022 11:44:49.json 80.63 76.12 −5.93
15 November 2022 11:46:08.json 80.63 75.47 −6.85
15 November 2022 11:48:33.json 80.63 77.15 −4.52
15 November 2022 11:49:46.json 80.63 75.19 −7.24
15 November 2022 11:54:54.json 80.63 76.87 −4.90
15 November 2022 11:56:08.json 80.63 76.29 −5.69
15 November 2022 14:35:08.json 25.90 27.76 +6.70
15 November 2022 14:41:31.json 25.90 24.22 −6.96
15 November 2022 14:50:04.json 25.90 30.67 +15.55
15 November 2022 14:52:00.json 25.90 24.86 −4.20
15 November 2022 14:52:53.json 25.90 25.48 −1.65
15 November 2022 14:53:46.json 25.90 25.15 −2.98
15 November 2022 14:54:34.json 25.90 30.52 +15.14
15 November 2022 14:55:25.json 25.90 24.85 −4.22

average 57.59 55.33 −2.52
σ 27.02 24.51 7.01

Table 9. Evaluation (Dataset 1): AR; distance between start and end.

Path Length Distance Start to End %

25 July 2022 11:31:16.json 80.63 1.34 +1.66
25 July 2022 11:32:52.json 80.63 0.52 +0.65
25 July 2022 11:34:23.json 80.63 0.17 +0.21
25 July 2022 11:35:52.json 80.63 0.13 +0.16
15 November 2022 11:43:21.json 80.63 2.74 +3.39
15 November 2022 11:44:49.json 80.63 0.13 +0.16
15 November 2022 11:46:08.json 80.63 0.29 +0.35
15 November 2022 11:48:33.json 80.63 0.05 +0.06
15 November 2022 11:49:46.json 80.63 0.67 +0.84
15 November 2022 11:54:54.json 80.63 0.46 +0.57
15 November 2022 11:56:08.json 80.63 0.85 +1.06

average 80.63 0.67 +0.83
σ 0.00 0.75 0.93

6.3. Fusion: GPS and Augmented Reality

The evaluation of the fusion of GPS and augmented reality focused on Dataset 1. It
can be seen from Table 1 that all four Kalman filters evaluated at about half the MSE of
GPS or augmented reality. KF (mean: 1.23 m, σ 1.01 m, MSE 3.12 m) stood out with the
best values. From Table 2, similar results can be seen. All four Kalman filters were better
than GPS and AR alone. The outcome of the third testing method can be found in Table 10.
As seen earlier, AR was very precise in length measurements, but measured on average
−5.93% to little. Two filters managed to yield slightly better results in this category (KF CT:
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−4.87%; KF Vel CT: +5.59%). The bad performance of the other two filters might be traced
back to jitter. It is unclear which of the four Kalman filters is the best to use.

Table 10. Evaluation (Dataset 1): GPS and AR; length-related data.

Path Length Recorded Length Deviation (%)

avg GPS 80.63 99.93 +14.01
avg AR 80.63 76.16 −5.93
avg KF 80.63 89.06 +9.18
avg KF Vel 80.63 93.04 +12.71
avg KF CT 80.63 77.14 −4.87
avg KF Vel CT 80.63 86.09 +5.59

6.4. Fusion Beacons and Augmented Reality

To assess the fusion of all three input signals, Dataset 2 was consolidated. As earlier,
the good performance of the beacon system can be seen (Table 11). The values of all Kalman
filters became worse than the values for fusion of just beacons and AR. In comparison to
GPS, the filters performed still better, with KF Vel CT producing an 84% better result than
GPS alone. The results of the second method are found in Table 12. This time, the addition
of the GPS increased the performance. In the last section, using KF CT resulted in a 15%
improvement over just using just beacons. When looking at the length testing method
(Table 13), 3 of the 4 filters underperformed. KF, KF Vel, and KF Vel CT recorded all about
30% more length than the actual path length. This suggests high jitter in the data.

Table 11. Evaluation (Dataset 2): GPS, beacon, and AR; distance to the ground truth.

Mean Median max min σ MSE

avg GPS 3.07 1.83 9.97 0.28 2.78 24.43
avg Beacon 1.42 1.22 4.33 0.16 1.11 4.46
avg AR 3.50 3.15 8.58 1.18 2.08 34.07
avg KF 1.70 1.16 5.38 0.16 1.39 8.00
avg KF Vel 1.89 1.12 6.54 0.07 1.66 11.32
avg KF CT 2.64 1.92 6.73 0.48 1.80 22.43
avg KF Vel CT 1.17 0.70 5.13 0.02 1.25 3.92

Table 12. Evaluation (Dataset 2): GPS, beacon, and AR; distance to correct point on the ground truth.

Mean Median max min σ MSE

avg GPS 3.52 3.10 7.13 0.92 1.96 19.89
avg Beacon 3.72 3.27 7.32 1.13 1.89 19.10
avg AR 4.33 4.24 6.90 1.79 1.45 24.65
avg KF 2.93 2.61 5.83 0.44 1.70 14.08
avg KF Vel 2.96 2.71 5.99 0.57 1.70 14.29
avg KF CT 2.80 2.51 5.48 0.72 1.52 13.00
avg KF Vel CT 2.71 2.22 6.26 0.36 1.77 13.76

Table 13. Evaluation (Data Set 2); GPS and Beacon and AR; Length related data.

Path Length Recorded Length Deviation (%)

avg GPS 25.90 28.80 +9.48
avg Beacon 25.90 30.98 +3.00
avg AR 25.90 26.69 +2.17
avg KF 25.90 36.34 +28.54
avg KF Vel 25.90 38.67 +32.48
avg KF CT 25.90 25.99 +0.01
avg KF Vel CT 25.90 38.97 +31.46
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7. Discussion

The first observation that can be drawn is that the proposed beacon trilateration system
yields better performance than GPS. The more complicated and conservative Method 2
returns only a 4% improvement in the MSE. However, the simpler Method 1, which was
less precise, but also less prone to human recording errors, returned an 82% better MSE
score for the Beacon system. With more extensive evaluation, mainly by increasing the
walking distance and deploying more beacons, the two methods should converge.

7.1. Improvement over Raw Data

After evaluating the data, it can be concluded that all four Kalman filters improved the
accuracy in user position over just using GPS or the proposed beacon trilateration system.
Table 14 summarises the improvement of the best Kalman filter for each fusion category,
split up into Method 1 and Method 2. The results from Method 1 suggest not taking GPS
signals into account when a beacon system is available. Method 2 should theoretically
result in a more accurate error measurement, but practically adds additional error caused
by human imperfection.

Table 14. MSE improvement of the best Kalman filters.

GPS and AR Beacon and AR GPS, Beacon, and AR

Method 1 +57%; KF +50%; KF Vel CT +12% to beacons; KF Vel CT
Method 2 +24%; KF Vel CT +15%; KF CT +32% to beacons; KF Vel CT

7.2. Choice of Kalman Filter

When averaging over all testing methods and all fusion concepts, the proposed Kalman
filter KF Vel CT reached the best average scores. Table 15 shows the average improvement
in the MSE of KF Vel CT over the best-available raw input source.

Table 15. MSE improvement of KF Vel CT.

GPS and AR Beacon and AR GPS, Beacon, and AR

Method 1 +51%; KF +50%; KF Vel CT +12% to beacons; KF Vel CT
Method 2 +24%; KF Vel CT +13%; KF CT +32% to beacons; KF Vel CT

7.3. Limitations and Future Work
7.3.1. Kalman Filter

This work only considered Kalman filters as a data fusion method, which limits
the system internally to linear models. Future projects should look at other algorithms
of data fusion, such as the Extended Kalman Filter (EKS), the Unscented Kalman Filter
(UKS), and the Particle Filter (PF). Those are capable of handling nonlinear models, which
could increase the positioning accuracy. Furthermore, it makes the incorporation of the
orientation into the main filter possible.

7.3.2. Bluetooth Beacon Trilateration

There are some properties of the datasets that naturally limit the validity of the
evaluation only to use cases that have the same properties. Both datasets were recorded
outside, which results in full GPS coverage. The second dataset, which deployed beacons, is
comparably small and does not have turns in its path. In future work, the evaluation should
be extended by looking at more cases such as partial GPS coverage, indoor environments
with deployed beacons, longer walking paths, and more independent smartphone motion
including fast movements and different walking speeds.



Sensors 2023, 23, 1816 24 of 25

7.3.3. Navigation

The navigational information about the route that should be taken was solely based
on the Apple MapKit framework as a routing service and inherited all the limitations that
come with it. For example, even though the MapKit routes for pedestrians were used,
MapKit does not have data about sidewalks. Therefore, the coordinates of the routes were
all centred in the middle of the street. Furthermore, MapKit does not have indoor maps yet.
In future work, maps that have more details could be used.

7.3.4. Augmented Reality Visualisation

The occlusions by objects such as tree stems, traffic light poles, or other pedestrians
were not handled at all. Alternative options regarding navigational clues could be used
in the future, such as floating arrows or checkpoints that need to be traversed. Gathering
more visual information about the environment is key when occlusions have to be properly
handled.

8. Conclusions

This work introduced the idea of AR systems that know their global position and
the possibilities this would open up for different location-based services. One example
is navigation via AR based on precise global position and map-based routing data. AR
navigation was approached with four different Kalman-filter-based algorithms that fused
together information from ARKit, GPS, and a custom Bluetooth-based positioning system.
The latter was needed, so that indoor environments with limited GPS availability are also
supported. An extensive evaluation was performed in Section 6 with two main goals. The
first was to determine which of the four Kalman filters performed best. This turned out to
be the most complicated of the four, called KF Vel CT. The filter uses an internal state based
on location and velocity and takes the ARKit data to control the inaccurate GPS and beacon
locations. The evaluation’s second goal was to determine how much the accuracy could be
improved when using data fusion. This turned out to be an interesting problem. It is not
trivial to test how much more accurate than GPS a system is when GPS is the only available
tool to determine global position. To address this, two main testing methods were proposed
in combination with a satellite-image-based ground truth that was carefully constructed.
An improvement in accuracy of 32% to 50% over raw signal data was shown. When AR,
GPS, and the beacon system were fused, a median error of only 70cm was reached.
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AR Augmented Reality
BLE Bluetooth Low-Energy
EKS Extended Kalman Filter
GNSS Global Navigation Satellite System
GPS Global Positioning System
HMD Head-Mounted Displays
IMU Inertial Measurement Unit
IoT Internet of Things
JSON JavaScript Object Notation
KF Kalman Filter
KS Kalman Smoother
MSE Mean-Squared Error
PAReNt Pedestrian Augmented Reality
PDA Personal Digital Assistant
PDR Pedestrian Dead Reckoning
RSSI Received Signal Strength Indicator
SDK Software Development Kit
SIMD Single-Instruction Multiple-Data
UKS Unscented Kalman Filter
UUID Universally Unique IDentifier
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