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Abstract

In this thesis, we investigate corrections to the QCD factorization approach in exclusive,
charmless B decays and study their relevance for future precision analyses. Using the
framework of Heavy Quark Effective Theory and Soft-Collinear Effective Theory, we
derive factorization formulas for two types of decays. For the radiative B̄ → γℓν decay,
we extend the factorization analysis to the case of an off-shell hard-collinear photon
and scalar interpolating currents with space-like separation. We estimate subleading
power corrections in an operator product expansion that includes B-meson light-cone
distribution amplitudes (LCDAs) of higher twist. Moreover, we employ sum rules using
dispersion relations to obtain soft corrections induced by the leading power factoriza-
tion and the 1/Eγ- and, 1/mb-suppressed effects. The results provide constraints on
exclusive matrix elements of the B meson from future lattice QCD calculations. For
non-leptonic B̄ → M1M2 decays into light mesons, we show that the QCD factor-
ization of the leading power amplitude can be generalized to include electromagnetic
corrections. To this end, we consistently define the associated form factors and LCDAs
in QCD×QED. These objects are infrared divergent so that the non-radiative ampli-
tude needs to be dressed with an ultrasoft function, accounting for the real emission
of photons. For both radiative and non-leptonic decays, we use renormalization group
techniques to resum large logarithms involving different scales. To complete our anal-
ysis, we provide numerical estimates for the subleading effects and QED corrections in
the respective cases.





Zusammenfassung

In dieser Arbeit untersuchen wir Korrekturen zur QCD Faktorisierung in exklusiven,
charmlosen B-Zerfällen und deren Relevanz für zukünftige Präzisionsanalysen. Mithilfe
der effektiven Theorien schwerer Quarks und soft-kollinearer Moden leiten wir Fak-
torisierungsformeln für zwei Zerfallsarten her. Für den radiativen Zerfall B̄ → γℓν er-
weitern wir den Faktorisierungsansatz um den Fall von off-shell Photonen und skalaren
interpolierenden Strömen mit raumartigem Abstand. Wir schätzen potenz-unterdrück-
te Korrekturen in einer Operatorproduktentwicklung ab, welche Lichtkegelverteilungs-
amplituden (LCDAs) des B Mesons zu höherer Twist-Ordnung beinhalten. Darüber
hinaus nutzen wir Summenregeln aus Dispersionsrelationen, um weiche Korrekturen
zu erhalten, die durch die Faktorisierung in führender Potenz und 1/Eγ- und 1/mb-
unterdrückte Terme induziert werden. Die Ergebnisse werden exklusive Matrixelemente
des B Mesons durch zukünftige QCD Gitterrechnungen eingrenzen. Für nichtleptoni-
sche B̄ → M1M2 Zerfälle in leichte Endzustände zeigen wir, dass die QCD Fak-
torisierung der Amplitude um elektromagnetische Korrekturen erweitert werden kann.
Hierfür definieren wir konsistent die assoziierten Formfaktoren und LCDAs in der
vollen QCD×QED Theorie. Diese Objekte sind infrarot-divergent, sodass die nicht-
radiative Amplitude mit einer ultraweichen Funktion ausgestattet werden muss, welche
die Emission reeller Photonen einschließt. Für sowohl den radiativen als auch den
nicht-leptonischen Zerfall lösen wir die Renormierungsgruppengleichungen, um große
Logarithmen verschiedener Skalen zu resummieren. Zuletzt liefern wir numerische Ab-
schätzungen für die potenz-unterdrückten Terme und die QED Korrekturen in den
entsprechenden Szenarien.
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Chapter 1

Introduction

In 2012, the ATLAS [1] and CMS [2] experiments confirmed the existence of the Higgs
boson, which was the last missing piece of the Standard Model (SM) of particle physics.
These measurements completed the model built up by earlier works and discoveries,
see [3–14] for some of the central publications and [15] for a review. Up to date, the
SM is one of the most accurate theories that describes the fundamental interactions
of matter, even though it is incomplete by several means. First of all, gravitation
is not part of the SM and hence gravity-related phenomena like recently detected
gravitational waves [16] or the nature of dark matter [17] are not explained. Moreover,
the observation of neutrino oscillations [18, 19] which require neutrinos to be massive
does not match the assumption of the model. In addition, the sources of CP-violation
in the SM are not sufficient to create the observed matter-antimatter asymmetry in
the universe. We could continue this list to include more unexplained phenomena, but
apart from these rather obvious mismatches between the model and the real world,
there are also more subtle tensions regarding measured quantities predicted by the SM.
A paradigm in this context is the anomalous magnetic moment of the muon (g − 2)µ
which describes the coupling to an external magnetic field and differs by 4.2σ to the SM
prediction according to the findings in [20]. These kind of discrepancies may ultimately
be related to effects of New Physics (NP).

The search for NP drives both theoretical and experimental physics towards increas-
ing precision analyses in different branches of high energy physics. Generally, we expect
to find NP effects in two ways: either directly or indirectly. A direct detection could be
achieved by producing a new particle due to an increase of the center-of-mass energy
in a (future) collider [21–23]. In contrast to the discovery of the Higgs boson, there
is no further symmetry or guiding principle like the violation of perturbative unitarity
(cured by the Higgs mechanism) which would indicate the existence of new phenomena
between the electroweak and the Planck scale. Instead, the second promising strategy
to find NP is to focus on methods allowing for a possible indirect detection based on a
precise comparison between theoretical prediction and experimental measurement. The
area of Flavour Physics represents an encouraging field where theory and experiment
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1. Introduction

have provided striking insights to the SM. Experiments at B factories like BaBar or
Belle have shown that the decays of b-quark hadrons are especially suitable for precision
studies [24]. From the theory side, this is supplemented by the fact that the B-meson
mass is comparably large, so that perturbative calculations are possible and yield re-
liable results. Within the next decade, collider experiments like LHCb and Belle II
increase their luminosity and detector efficiency and are thus expected to reach higher
precision in various B-decay channels, see e.g. [25]. Therefore, it becomes even more
desirable to study these decays and push theoretical calculations to the next frontier.

Charmless B decays in particular offer a broad variety of SM checks. In the past,
there have been a couple of discrepancies and anomalies drawing attention due to
their large tension compared to the SM theory prediction. One famous example in
this regard is the discrepancy between the exclusive and inclusive determination of the
CKM matrix element Vub that deviates by 3.3σ [26].1 Generally, we aim to resolve
whether these tensions are real by sharpen theoretical calculations in specific decay
channels. In this work, we focus on exclusive radiative B̄ → γ(∗)ℓν and non-leptonic
B̄ → ππ, πK decays. While the radiative decay can be used to measure Vub and
hadronic properties of the B meson, the non-leptonic decays are particularly sensitive
to CP-violating strong and weak phases, required to constrain SM model parameters.
We explain the aim of our analysis for both decay types in Sec. 1.1 and Sec. 1.2.

For precise theoretical calculations, it is necessary to disentangle all parameters
and scales in the SM. Since we are interested in measurements much below the elec-
troweak scale, fields with masses of O(mW ) or greater appear only virtually within
Feynman diagrams. Their effects can be integrated out in an operator product ex-
pansion (OPE) and stored in Wilson coefficients, multiplying the operators of a low
energy, non-renormalizable effective field theory (EFT) [29, 30]. The coefficient func-
tions and coupling constants obey a renormalization group equation (RGE) that needs
to be solved to resum large logarithms of the the b-quark and W -boson mass ratio
mb/mW ≈ 5%. In practice, this improves the theoretical prediction since these log-
arithms could otherwise spoil the perturbative expansion when the strong coupling
becomes large so that αs lnm

2
b/m

2
W ∼ O(1). We refer to this as renormalization group

(RG) improved perturbation theory.
At low energies, the nature of the strong interaction generally leads to the confine-

ment of bound states like the B meson. This implies that hadronic matrix elements of
EFT operators at the b-quark scale cannot be calculated perturbatively a priori. In-
stead, we parametrize the matrix elements by form factors that have to be determined
experimentally or by lattice calculations in Quantum Chromodynamics (QCD). Due to
scale evolution, the strong coupling αs becomes smaller than unity and thus perturba-
tive at scales above a few times ΛQCD.2 In the range up to mb, we can use further EFT

1The anomalies in B → K(∗)ℓ+ℓ− decays, parametrized by the branching fractions R(K) and R(K∗),
provide a counter example. They were intensively studied over the last decade and hinted towards
a violation of lepton flavour universality. However, the tensions have been eliminated by the newest
results from LHCb in December 2022 [27,28].

2ΛQCD ≈ 200− 300 MeV defines the scale at which αs is formally infinite.
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1.1 QCD factorization in B̄ → γℓν

methods to compute the amplitudes of B-meson decays in a heavy-quark expansion. As
a result, we obtain universal hadronic matrix elements that enter process-independently
in different decay channels and are “multiplied” by process-dependent perturbative co-
efficients. Physically, these coefficients have to be understood as short-distance inter-
actions of the partonic meson constituents that decouple in the heavy-quark limit from
the non-perturtabive, long-distance fluctuations. We refer to this as the “factorization”
of long- and short-distance physics.

In the following, we present the central ingredients and applications of the QCD
factorization approach in the radiative B̄ → γℓν as well as non-leptonic B̄ → M1M2

decays. The aim of this thesis is to extend the leading power factorization formalism
for both cases. For the first decay type, we consider more general correlation func-
tions and estimate subleading power corrections in the heavy-quark expansion using
an OPE and a dispersion relation. For the second type, we consider effects of Quantum
Electrodynamics (QED) and develop a generalized QCD×QED factorization formula.

1.1 QCD factorization in B̄ → γℓν

In experimental measurements, exclusive B̄ → ℓν and B̄ → γℓν decays have been
analyzed to determine the CKM matrix element Vub. When the photon in the final
state becomes soft, the latter process cannot always be distinguished from a purely
leptonic final state, so that it has to be viewed as a background process [31]. For an
energetic photon with energy Eγ ∼ mb ≫ ΛQCD, however, the B̄ → γℓν decay probes
the intrinsic structure of the B meson. In this context, it is one of the simplest cases
to analyze hadronic matrix elements and study QCD factorization as the process only
involves one hadron.

The general idea of factorization is to decompose the amplitude (or cross section)
of a process into more fundamental objects using a power expansion. In this way, one
decouples long- from short-distance physics and achieves a separation of the scales by
consequently applying EFT techniques. The natural scale of B decays is defined by the
heavy b-quark mass ΛQCD ≪ mb ≪ mW that determines the “hard” scale in the process.
As we discussed in the introduction, fields with masses of order of the electroweak scale
O(mW ) appear only virtually at the scale mb. After integrating out these fields, we
arrive at the electroweak Hamiltonian containing four-fermion interactions [32]. In the
SM, the semi-leptonic b→ u transition is mediated by the operator

Hsl =
GFVub√

2
CslQsl , Qsl = [ūγµ(1− γ5)b][ℓ̄γ

µ(1− γ5)νℓ] , (1.1)

where GF is the Fermi constant and Csl the Wilson coefficient that contains the UV
physics of the electroweak scale. In QCD-only, we have Csl = 1 to all orders in pertur-
bation theory. The B̄u meson decays weakly through the interaction in (1.1) and the
amplitude for this decay is given by

A(B̄u → γℓ−νℓ) =
GFVub√

2

〈
γℓ−νℓ

∣∣[ℓ̄γµ(1− γ5)νℓ][ūγµ(1− γ5)b]
∣∣B̄u(p+ q)

〉
, (1.2)
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u

ū

b

γ

ν̄ℓ

ℓ

(a)

b

ū

b

γ

ν̄ℓ

ℓ

(b)

ū

b

γ

ν̄ℓ

ℓ

(c)

Figure 1.1: Tree level emission of the hard-collinear photon from (a) the light u-quark
(b) the heavy b-quark and (c) the lepton. The box indicates the insertion
of Qsl in (1.1).

where a time-ordered product with an arbitrary number of QCD and QED current
interactions is implicitly understood but no further insertions of weak operators are
considered. Note that the B-meson momentum is displayed as the sum of the outgoing
photon momentum p and the momentum q of the lepton pair ℓν. In the present context,
we restrict ourselves to leading order (LO) in the electromagnetic coupling and focus
on QCD-only effects. At LO, the photon can either be emitted from the final state
lepton or the quarks of the B meson, see Fig. 1.1. We can decompose these three
contributions according to [33]. The emission from the B-meson quarks are contained
in the hadronic tensor

Tµν(p, q) =

∫
d4x eipx

〈
0
∣∣T{jemµ (x), jweakν (0)

}∣∣B̄u(p+ q)
〉
. (1.3)

The electromagnetic and the weak current are given by

jemµ (x) =
∑
q ̸=t

eQq q̄γµq(x) , jweakν (0) = ūγν(1− γ5)b(0) , (1.4)

where the electromagnetic coupling is e2 = 4παem and the electric charge of the up-
type and down-type quarks Qu = 2/3 and Qd = −1/3 are factored out. Note that we
focus on the hadronic part only since the sum over all spin and polarization states of
the leptonic fields can be done trivially. The hadronic tensor in (1.3) can be further
decomposed into the Lorentz structures

Tµν(p, q) = ϵµνλρp
λvρFV (Eγ) + [−i(vp)gµν + ivµpν ]FA(Eγ)− i

vµvν
(vp)

fB

+ terms with pµ . (1.5)

The third term, proportional to vµvν , is fixed by the Ward identity of the amplitude
and originates from the photon emission of the lepton. It involves the B-meson decay
constant in QCD 〈

0
∣∣ūγν(1− γ5)b(0)

∣∣B̄u(p+ q)
〉
= ifB(p+ q)ν , (1.6)

4



1.1 QCD factorization in B̄ → γℓν

which has to be determined non-perturbatively. In principle, also the form factors FV

and FA defined by (1.5) have to be determined in this way. However, these objects
can be decomposed (factorized) further into a product of perturbative coefficients and
universal hadronic matrix elements (functions). Using the heavy-quark expansion, one
finds [34,35]

FV (Eγ) = FA(Eγ) = eQufBmB C(Eγ;µ)

∫ ∞

0

dω

2Eγω
J(2Eγω;µ)ϕB(ω;µ)

+ power corrections . (1.7)

Power corrections to this formula are of order ΛQCD/Eγ ∼ ΛQCD/mb ≪ 1. The short-
distance physics is contained within the hard and hard-collinear functions C and J .
Their natural scales are Eγ ∼ mb and 2Eγω ∼

√
ΛQCDmb

3, at which the strong coupling
is much smaller than unity and hence these objects can be calculated in perturbation
theory. The remaining long-distance (“soft”) physics of O(ΛQCD) is parametrized by
the non-perturbative matrix element〈

0
∣∣ū(x)[x, 0]/xγ5b(0)∣∣B̄(p+ q)

〉
= itfBmB

∫ ∞

0

dωe−iωtϕB(ω;µ) , (1.8)

where x2 = 0 is a light-like reference vector aligned with the direction of the photon.
The meson velocity is defined by p + q = mBv and the implicit prescription on the
Fourier transformation variable t = vx − i0 is induced by the analytic structure of
the operator on the left-hand side in (1.8). [x, 0] is a finite distance gauge-link that
ensures gauge invariance of this operator. Its definition and origin will be explained in
Chapter 2.

The function ϕB(ω;µ) is the leading-twist light-cone distribution amplitude (LCDA)
of the B-meson defined in QCD. It is a process-independent matrix element that cap-
tures the two-particle contributions of the B-meson, approximately viewed as a b- and
u-quark valence state, and was initially introduced in [36]. The first application of this
function states back to the QCD factorization of the spectator scattering interactions
in non-leptonic B decays, which is discussed in the next section 1.2. Although (1.8)
reflects the light-like correlation between these valence states, the matrix element cap-
tures the entire soft fluctuations of the bound state. For this reason, it is traditionally
defined in the framework Heavy Quark Effective Theory (HQET) rather than in QCD,
which will be introduced in Chapter 2. The B LCDA enters in almost every exclusive
decay involving the B meson and is convoluted with a hard-collinear function, which
behaves like 1/ω at tree-level. A central object that appearing on the amplitude level
and eventually appearing in observable is therefore the first inverse moment [37]

1

λB(µ)
=

∫ ∞

0

dω

ω
ϕB(ω;µ) . (1.9)

3We count ω ∼ ΛQCD even though we integrate ω in (1.7) to infinity. The variable ω can be associated
with the typical momentum of the light u-quark that is of order O(ΛQCD). We expect the B LCDA
to favour this momentum configuration, so that ϕB(ω) ∼ O(1) for ω ∼ ΛQCD and is relatively
suppressed otherwise.
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1. Introduction

Corrections at next-to-leading order (NLO) in the strong coupling introduce logarith-
mic modifications to this object that are discussed in later chapters. The value of
inverse moment is typically given by λB(1 GeV) = 460± 160 MeV [38,39].

The inverse moment λB suffers from large uncertainties in experimental and lattice
determinations and so far it has been a challenging task to obtain reliable constraints.
Since lattice QCD simulations require space-like (Euclidean) separated correlation func-
tions to implement sampling methods, the main difficulty is to find suitable objects
that are eventually related to the time-like operator in (1.8). Recent works proposed
several methods to match Euclidean correlators to the B-meson LCDA using EFTs
and factorization [40,41]. The current perspectives of lattice QCD in [42–44] motivate
the application of corresponding techniques to correlation functions of the form (1.3).
To this end, we consider the outgoing momentum in (1.3) to be off-shell with p2 < 0,
which provides a natural generalization to B̄ → γ∗ℓν. A complete factorization of
(1.3) in this case has already been derived for the four-lepton decay [45, 46]. In the
context of lattice calculations, we view the resulting object as an arbitrary correlation
function without an explicit embedding into a physical process. With this in mind and
in addition to the electromagnetic vector and the weak axialvector current in (1.4), we
analyze the correlation function (1.3) for (pseudo-)scalar currents. We further include
power corrections to the leading power factorization result for both scalar and vector
case based on the methods in [47]. This paves the way for precise future predictions of
non-perturbative quantities in B decays such as ϕB and λB.

1.2 QED effects in non-leptonic B̄ →M1M2 decays

In the second part of this thesis, we consider the factorization of charmless, non-leptonic
B̄ → M1M2 decays into two light final-state mesons. The QCD factorization formula
for these decays has been etablished in [37,48] and reads schematically〈

M1M2

∣∣Qi

∣∣B̄〉 = FBM1 × T I
i ∗ fM2ϕM2 + T II

i ∗ fM1ϕM1 ∗ fM2ϕM2 ∗ fBϕB . (1.10)

The “∗”-symbol denotes a convolution of the matching coefficients T I/II
i with the meson

LCDAs ϕM1 ϕM2 and ϕB. Usually, we refer to the first term in the formula (1.10) as
the “form-factor term” and to the second one as the “hard spectator-scattering term.”
The formula holds in general for every operator Qi of the electroweak Hamiltonian
that mediates b → q transitions into light quarks q = u, d, s. On the left hand side
of (1.10), the hard scattering kernels T I/II

i can be calculated in perturbation theory
since they contain physics at the scale mb and

√
ΛQCDmb. The kernel T II

i can be
further factorized into a hard and hard-collinear function, so that this term can be
associated with a generalization of (1.7) in the case of two hadronic final states. Both
short-distance kernels T I,II

i are known up to O(α2
s) (NNLO) in QCD [49–56]. The

form factor FBM1 is “located” at zero momentum transfer towards the meson M2 and
contains information about the soft interactions between the B-meson and M1, where
the latter is defined to be the meson that picks up the light “spectator” quark of the
B meson.
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1.2 QED effects in non-leptonic B̄ →M1M2 decays

b q

(T)

b q

(C)

b q

(P)

b q

(EW)

Figure 1.2: Different decay topologies for non-leptonic B decays with one weak effec-
tive b→ q transition: We refer to the diagrams as (T) colour-allowed, (C)
the colour-suppressed tree amplitudes, (P) colour-allowed QCD penguin
and (EW) colour-suppressed electroweak penguin. The spectator quark
line and annihilation topologies are not displayed.

Opposed to the radiative B̄ → γℓν decay, the decay of a B-meson into QCD final
states is much more complex since we require non-perturbative information about three
hadrons and their interactions. As such, we expect larger uncertainties for the predic-
tion of these decays. Nevertheless, they are interesting to study since the theoretical
structure involves many topologies, see Fig. 1.2, motivating different phenomenological
analyses. For instance, one finds that the colour-suppressed electroweak penguin con-
tribution dominantly affects the direct CP-asymmetries of different modes in B̄ → πK
decays. The SM prediction turns out to be incompatible with the corresponding exper-
imental data, leading to puzzling inconsistencies [57, 58]. In principle, NP models can
be used to explain this tension to the SM. However, we observe that electroweak pen-
guin amplitudes indirectly break the isospin symmetry, which holds between the u- and
d-quark in QCD, and enter linearly in the asymmetries. QED can mimic these effects
as it breaks isospin explicitly due to the different electric charges Qu and Qd. Hence
one should properly include QED corrections in the SM predictions, before tailoring
NP models to explain the tensions.

In general, the inclusion of QED effects may also become relevant beyond O(α2
s),

which has been shown in numerous publications [59–65]. As an example, we observe
in the analysis of B̄s → µ+µ− that leading QED effects can be power-enhanced with
respect to the QCD amplitude by a factor of mB/ΛQCD, where mB ≫ ΛQCD is the B-
meson mass. Even though this is not the case for non-leptonic decays, it still displays
the importance of these effects. Many of the recent works consider QED effects only
as point-like up to the scale mB, even though photons with energy above a few times
ΛQCD can resolve the inner partonic structure of the B-meson. In a proper framework,
one has to deal with these structure-dependent terms by explicitly calculating them in
a perturbative framework between the scale mB and a few times ΛQCD.

In this thesis, we show that the QCD factorization formula (1.10) can be extended
to include QED effects using Soft-Collinear Effective Theory (SCET). The derivation
follows our analysis in [66] and involves a two-step matching from the full weak ef-
fective theory onto SCETI and SCETII. We find that the QCD×QED factorization
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1. Introduction

formula takes the same form as in (1.10), even though it differs in complexity from
its QCD analogue. The QED-generalized LCDA of the B-meson in particular acquires
new phenomenological properties as it retains information about the charge and flight
direction of the outgoing mesons through soft, light-like Wilson lines. The Wilson lines
originate from the non-decoupling of soft photons when the external states are elec-
trically charged. This is opposed to QCD-only, where soft gluons decouple since the
external mesons are colour neutral. As a consequence, the hadronic matrix element
of the B meson in QCD×QED contains soft rescattering phases, so that the function
should rather be viewed as a “soft function” for the process. Therefore, we strictly omit
the term “LCDA” in this context. Generally, matrix elements ⟨M1M2|Qi|B̄⟩ become
infrared (IR) divergent in the presence of virtual QED effects. A peculiar point lies
in the inclusion of low-energetic (“ultrasoft”) photons accounting for the IR behaviour
of the hadronic matrix elements in the factorization formula. The IR-finite observable
measured in the experiment is the branching fraction B̄ → M1M2(γ), with an arbi-
trary number of ultrasoft photons in the final state. On a technical level, this requires
that the non-radiative amplitude must be dressed with ultrasoft exponentiation fac-
tors, resumming logarithms below the scale of a few times ΛQCD and above a threshold
∆E ≪ ΛQCD for the photon energy, which is for theory and experiment convenient to
be ∆E ≈ 60 MeV. In our computations, we calculate the first order QED corrections
to the short-distance kernels for the current-current operators in the weak effective
Hamiltonian and the scale evolution of the QED-generalized LCDAs. The latter anal-
ysis is based on the results of [67, 68]. In the numerical evaluation of QED effects, we
restrict ourselves to the case of π and K mesons.

1.2.1 Comment on hadronic input

The decay constants, form factors and distribution amplitudes introduced in Sec. 1.1
and 1.2 can be determined from experimental measurements or lattice QCD calcula-
tions. For a review of lattice data, we refer to the most recent summary [69] and the
references therein. Regarding the experimental side, the decay constants fM of light
and heavy pseudoscalar mesons M = B, π,K are determined from their leptonic decays
M → ℓν [15]. The B̄ →M1 form factors and the B-meson LCDA can be calculated by
light-cone sum rules (LCSR), see [70–76] for a review of the method and their results.
The determination of the light-meson LCDAs of pions and kaons uses similar meth-
ods [77–79]. We note that the information about the pion distribution function is much
more precise due to the excellent data for the π → γγ∗ form factor from the BaBar and
Belle experiment [80,81]. The distribution amplitudes are in general model-dependent.
We discuss specific models for the case of light and heavy mesons in the main text
alongside with numerical results.
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1.3 Outline

1.3 Outline

The outline of this thesis is as follows. In Chapter 2, we review the formalism of the
effective theories HQET and SCET to prove factorization in exclusive decays. We
recapitulate that the effective theory approach traces back to a method of regions
analysis in QCD. We use a scalar correlation function similar to B̄ → γℓν as a prime
example for our computations. The basic results of this chapter build the bridge
towards the calculation of subleading effects in Chapter 3. The 1/mb- and 1/Eγ-
suppressed terms can be calculated with a sum rule from a light-cone expansion of
the hadronic correlation functions that is derived in 3.2. The results displayed in
Sec. 3.3 are only valid in the tree-level approximation of the higher-twist LCDAs since
we encounter endpoint-divergent integrals otherwise. In Chapter 4, we derive the
QCD×QED factorization formula for B̄ →M1M2 decays. We consecutively match the
full theory onto SECTI in Sec. 4.2 and SCETII in Sec. 4.3. The inclusion of ultrasoft
effects is considered in Sec. 4.5. The resummation of logarithms due to QED effects is
subject of Chapter 5. We analytically solve the renormalization group equations for the
light-meson LCDAs and the soft functions to all orders in the strong and to first order
in the electromagnetic coupling. The scale evolution for the light LCDAs, the soft and
ultrasoft function are treated separately in Sec. 5.1–5.3. In the numerical analysis of
Chapter 6, we compare the dispersive treatment of (pseudo-)scalar and (axial-)vector
cases for the subleading corrections and discuss the model dependence of the results to
some extent. We further provide numerical estimates of QED effects in B → ππ and
B → πK observables that enter through different terms in the factorization formula.
We conclude in Chapter 7. The appendices A-F provide supplementary material for
the renormalization and scale evolution of the collinear and soft functions.
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Chapter 2

Basic concepts of QCD factorization

In this chapter, we review some of the basic methods to prove QCD factorization in
hard-exclusive processes. To this end, we apply the framework to the specific case of
the scalar correlation function

T (p, q) =

∫
d4xeipx

〈
0
∣∣T{jem(x), jweak(0))}∣∣B̄(p+ q)

〉
= −vpFS(vp, p

2) . (2.1)

We define the scalar form factor FS by this equation for later convenience. The outgoing
momentum p is chosen to be off-shell with p2 < 0 and the scalar currents are, similar
to (1.4), given by

jem(x) =
∑
q ̸=t

eq q̄(x)q(x) , jweak(0) = ū(0)(1− γ5)b(0) . (2.2)

The kinematics of this decay dictate that the correlation function can only depend on
two kinematic invariants, that we choose to be the off-shellness p2 and the “photon”
energy Eγ = vp, which is of order of the hard scale mb. Note that Eγ is related to the
variable q2 by momentum conservation (p−mBv)

2 = q2.
The example is chosen in strong analogy to the introductory B̄ → γℓν decay in

Sec. 1.1 since there are several motivations to consider scalar currents. In general, the
inclusion of scalar currents as well as tensor operators in the weak effective Hamiltonian
is a typical way to account model-independently for NP effects at low energies, see
e.g. [82] for an application in Λb decays. The main motivation to study the correlator
in (2.1) was already mentioned in the introduction, namely that we can relate the
Euclidean correlator to the light-like operator (1.8) using factorization. By applying
the same methods to (2.1) and including power corrections, we can extract further
information about hadronic matrix elements of the B meson. In the following, we stick
to the analysis of scalar currents as it provides a simple playground for the application
of basic QCD factorization techniques. A generalized factorization of the (axial-)vector
case in (1.3) will be discussed in Chapter 3.
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2. Basic concepts of QCD factorization

2.1 Heavy-quark expansion

The scalar form factor (2.1) can be factorized into more fundamental objects using
the heavy quark expansion. The soft scale in this process is set by the scale ΛQCD.
Since the momentum component Eγ ∼ mb is large, there are two expansion parameters
ΛQCD/mb ≪ 1 and ΛQCD/Eγ ≪ 1. For the remainder of this section, we expand our
results in the counting parameter λ = ΛQCD/mb. Since the photon energy cannot
be larger than mb, the 1/Eγ-corrections are strictly smaller than λ and thus we have
ΛQCD/Eγ < λ and treat the latter as an O(λ) correction for simplicity.

We highlight that the evaluation of the hadronic correlation function depends on
the chosen reference frame in the intermediate steps of the calculation. The simplest
and most convenient choice is to consider the B-meson rest frame, where the meson
momentum is given by pµB = mBv

µ with vµ = (1, 0, 0, 0). In good approximation, we
can assume the b-quark to carry almost all of the momentum of the entire meson while
the light quark momentum only fluctuates on scales of O(ΛQCD). To define a suitable
reference frame accounting for the large momentum transfer of the photon, we choose
two light-like reference vectors

nµ
+ = (1, 0, 0, 1) , nµ

− = (1, 0, 0,−1) , (2.3)

with n+ · n− = 2. Any given momentum of the process can be decomposed in terms of
these reference vectors

pµ = (n−p)
nµ
+

2
+ (n+p)

nµ
−

2
+ pµ⊥ , (2.4)

where the latter component is transverse with respect to the two vectors n± · p⊥ = 0.
Note that we can rotate the frame such that the transverse component of the photon
momentum p⊥ = 0 vanishes. The large momentum transfer is chosen to be in the
n−-direction, so that n+p ∼ mb. We further assume the photon to be off-shell by order
p2 ∼ λm2

b , which allows for a perturbative treatment in the following. This implies
that the plus-component scales as n−p ∼ λmb.

To establish a factorization formula for (2.1), we apply the power counting of the
momenta to the amplitude and expand to leading power (LP) in λ. The LP expression
can be matched onto a simplified hadronic matrix element. Since perturbation theory is
only valid above a few times ΛQCD and the physics at this scale should be independent
of the low-energetic, soft structure, we replace the hadronic state

∣∣B̄(p+ q)
〉

with its
leading partonic Fock state

∣∣b(pb)ū(l)〉.1 Throughout our calculations, we take the
heavy quark momentum to be on-shell pµb = mbv

µ. The light quark momentum scales
soft as lµ ∼ λmb and is taken to be off-shell in order to regulate IR divergences. Note
that we cannot rotate the transverse component l⊥ to zero since we already chose

1In general, we need to consider states involving more than two partons, e.g.
∣∣būg〉 or

∣∣būqq̄〉, since
the B meson is a bound state consisting of a sea of soft particles fluctuating at O(ΛQCD). These
contributions turn out to be power-suppressed due to additional internal propagators.
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2.1 Heavy-quark expansion

p⊥ = 0. At LO, the correlator in (2.1) is then given by

T (LO) = v̄(l)eQu

i(/p− /l)

(p− l)2 + i0
(1− γ5)u(pb) + v̄(l)(1− γ5)

i(/pb − /p+mb)

(pb − p)2 −m2
b + i0

eQdu(pb)

=
ieQu

2(n−p− n−l + i0)
v̄(l)/n−(1− γ5)u(pb)

(
1 +O(λ1/2)

)
≡ T (0)

(
1 +O(λ1/2)

)
, (2.5)

where, in the first line, the first term corresponds to the photon emission from the light
quark and the second term to the emission from the heavy quark shown in Fig. 1.1a
and b. Without knowing the λ-scaling of the spinors in (2.5), it is easy to see that the
second term is relatively power-suppressed to the emission from the u-quark.

The central idea of factorization is now that the non-perturbative, soft physics can
be stored in a universal, gauge invariant function. In Sec. 1.1 we already introduced
the B-meson LCDA in (1.8) that fulfills this purpose. Note that we replace z = tn− in
this section. The finite distance Wilson line is defined by

[tn−, 0] ≡ P exp

{
igs

∫ t

0

ds n−Gs(sn−)

}
(2.6)

and equals unity at tree-level. The operator P denotes the path-ordering of the ex-
ponential. To higher orders, its analytic structure enforces the position space LCDA
ΦB to have only poles in the upper half-plane of t. This implies that the momentum
variable after Fourier transformation only has support for ω > 0. More precisely, we
have

ϕB(ω;µ) =

∫ ∞

−∞

dt

2π
eiωt ϕ̃B(t− i0;µ) , (2.7)

ϕ̃B(t;µ) =

∫ ∞

0

dω e−iωt ϕB(ω;µ) . (2.8)

We can calculate the LO contribution from the soft function by analyzing the tree-
level matrix element with external partons. We find in the hadron and parton picture
respectively∫

dt

2π
eiωt
〈
0
∣∣ū(tn−)/n−γ5b(0)

∣∣B̄(mBv)
〉
= ifBmBϕB(ω;µ) , (2.9)∫

dt

2π
eiωt
〈
0
∣∣ū(tn−)/n−γ5b(0)

∣∣b(pb)ū(l)〉 = δ(ω − n−l)v̄(l)/n−γ5u(pb) . (2.10)

The matrix element of
〈
0
∣∣ū(tn−)/n−b(0)

∣∣B̄〉 vanishes since the B-meson is a pseu-
doscalar state. Hence the operator has no overlap with the corresponding parity quan-
tum number and partonic contributions of the form v̄(l)/n−u(pb) can be neglected. By
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2. Basic concepts of QCD factorization

comparing the two expressions in (2.9) and (2.10), we conclude that we need to replace

v̄(l)/n−(1− γ5)u(pb) → −ifBmB

∫ ∞

0

dω ϕB(ω;µ)

∣∣∣∣
n−l=ω

(2.11)

in the amplitude (2.5), where we set the spectator quark component n−l → ω be-
fore performing the ω integration. This is a greatly simplified version of the mo-
mentum space projector method [83] which generally involves a second function ϕ−
to parametrize the hadronic matrix element of (1.8) entirely.2 We find for the LO
amplitude

T (LO) = eQufBmB

∫ ∞

0

dω
ϕB(ω;µ)

n−p− ω + i0

(
1 +O(λ1/2)

)
. (2.12)

For the form factor, we obtain

F
(LO)
S (Eγ, p

2) = eQufBmB

∫ ∞

0

dω
ϕB(ω;µ)

2Eγω − p2 − i0
, (2.13)

where the power corrections have been neglected. We emphasize that (2.13) respresents
the LO factorization formula for the correlator defined in (2.1). We derived this result
only by using power counting arguments for the momenta. The result can be extended
to include radiative corrections, which is however more complicated due to the appear-
ance of loop integrals. Generally, we expect at LP in the heavy quark expansion that
the formula takes the form

FS(Eγ, p
2) = eQufBmB CS(Eγ;µ)

∫ ∞

0

dω
ϕB(ω;µ)

2Eγω − p2 − i0
JS(2Eγω, p

2;µ) (2.14)

to all orders in perturbation theory. We prove this result in Sec. 2.4 by matching QCD
onto a combined HQET×SCET effective theory and determine the coefficient functions
CS and JS at NLO.

2.2 Method of regions

Before introducing the HQET×SCET framework in the next section, we calculate
the O(αs) corrections to the hadronic correlator (2.5) that can be used to determine
the NLO coefficient functions. The corresponding one-loop diagrams are depicted in
Fig. 2.1. We analyze the loop integrals using the method of regions [84, 85], which
corresponds to an asymptotic expansion of the integrand based on a certain momentum
scaling. In this approach, every loop momentum can be thought of as a sum of different
modes induced by the power counting of the external momenta. We then compute the
loop integrals for the distinct modes and add the results together, which is oftentimes
simpler than calculating the entire integral at once. The method reveals the underlying
2The common definition follows from (3.9) in the limit x2 → 0.
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2.2 Method of regions
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Figure 2.1: One-loop diagrams contributing to the correlator (2.1). The black box
indicates the insertion of the weak b → u transition. We refer to (a) as
the weak vertex correction, (b) the electromagnetic vertex correction, (c)
the self-energy graph and (d) the box diagram.

structure of the factorization proof in terms of effective theories, which motivates a
further discussion of the momentum modes and their field variables afterwards.

At LP in our scenario, there exist three relevant momentum regions which are classi-
fied by the λ-scaling of the loop momentum components k ∼ (k+, k−, k⊥) according to
the decomposition in (2.4). Note that we define k− ≡ n+k and k+ ≡ n−k. The regions
are defined by the scalings

1. hard (h) k ∼ (1, 1, 1)mb,

2. hard-collinear (hc) k ∼ (λ, 1,
√
λ)mb,

3. soft (s) k ∼ (λ, λ, λ)mb.

In the following, we drop the factor of mb in our notation, which can be always restored
by dimensional analysis. Using these terms, we highlight that the b-quark momentum
mbv scales hard, the photon momentum p hard-collinear and the spectator quark mo-
mentum l soft. In general, this list needs to be extended to other cases that can have
different scalings, as we discuss in Sec. 2.3. We split up the correlation function in
(2.1) as

T = T (LO) + T (NLO) + . . . = T (0) +
αsCF

4π
T (1) +O(α2

s) , (2.15)

where we drop the power corrections of O(λ) relative to the leading terms in T (0)

and T (1). We emphasize that the full NLO result may contain IR divergences due to
the non-perturbative nature of the matrix element at low-energies. The divergences
appear in the soft region and are regulated by choosing the light quark momentum to
be off-shell l2 ̸= 0. Throughout this thesis, we consider γ5 in the naive dimensional
regularization (NDR) scheme.
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2. Basic concepts of QCD factorization

2.2.1 Hard region

In the hard region, the loop momentum scales as k ∼ (1, 1, 1). At LP, mainly the
hard region of Fig. 2.1(a) contributes since other contributions from Fig. 2.1(b)-(d) are
scaleless or even power-suppressed. The complete, non-expanded integral of diagram
2.1(a) reads

T (1a) = 16π2eQu (2.16)

× µ̃2ϵ

∫
ddk

(2π)d
v̄(l)(/p− /l)γµ(/p+ /k − /l)(1− γ5)(mb/v + /k +mb)γ

µu(pb)

[(p− l)2 + i0][(p+ k − l)2 + i0][(mbv + k)2 −m2
b + i0][k2 + i0]

.

We expand every term in the integrand to LP in λ. For the hard-collinear u-quark
propagator, this implies

/p+ /k − /l

(p+ k − l)2 + i0
=

(n+p)
/n−
2
+ /k

k2 + (n+p)(n−k) + i0
+O(λ1/2) , (2.17)

when the loop momentum k counts hard. In total, the hard region at LP is given by

T
(1a)
h =

8π2eQu

[n−p− n−l + i0]

× µ̃2ϵ

∫
ddk

(2π)d
v̄(l)/n−γµ(/p+ /k)(1− γ5)(mb/v +mb + /k)γµu(pb)

[k2 + i0][k2 + 2mbv · k + i0][k2 + (n+p)(n−k) + i0]
. (2.18)

This integral can be calculated with conventional methods by introducing Feynman
parameters. We obtain the leading power result

T
(1a)
h = T (0)

(
4

ϵUV

− 1

ϵ2
− 2

ϵ

[
1 + ln

µ

n+p

]
+ 2− π2

12
+ 8 ln

ν

mb

− 4 ln
µ

mb

+
2

1− r
ln r + ln2 r − 2 ln2 µ

n+p
+ 2Li2

(
1− 1

r

))
+O(λ) , (2.19)

where we defined the ratio r = n+p/mb. In the hard region, we distinguish between
the scale ν that originates from the UV divergence and the IR scale µ. Both types
can easily be separated within the calculation. The IR divergences will be cancelled
by the corresponding UV divergences in the hard-collinear and soft region while the
UV divergence has to be renormalized in the full theory. An important observation for
this mechanism to work is that the Dirac structure in the numerator can be reduced to
the LO object T (0) in (2.5), which we have shown to be equivalent to the soft matrix
element (2.11) at tree-level.

For completeness, we remark that the hard region of the box diagram is power
suppressed while the hard region of the electromagnetic vertex and the self-energy
graph are scaleless. More precisely, we have

T
(1b)
h = T (0)

(
4

ϵUV

− 4

ϵ
+ 4 ln

ν2

µ2

)
, (2.20)
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2.2 Method of regions

T
(1c)
h = T (0)

(
− 1

ϵUV

+
1

ϵ
− ln

ν2

µ2

)
, (2.21)

which is required for later purposes. Note that for axial-vector currents in (1.3), these
contributions cancel exactly since the poles of both hard regions agree up to a relative
sign.

2.2.2 Hard-collinear region

The hard-collinear region with k ∼ (λ, 1,
√
λ) contributes in all cases except the box

diagram from Fig. 2.1(d), which is again power-suppressed. For the weak vertex cor-
rection, the hard-collinear region is given by

T
(1a)
hc = 32π2(−i)T (0)

× µ̃2ϵ

∫
ddk

(2π)d
(n+p+ n+k)

[k2 + i0][(n−p+ n−k − n−l)(n+p+ n+k)− k2⊥ + i0][n+k + i0]

= T (0)

(
2

ϵ2
+

2

ϵ

[
1 + ln

µ2

(n+p)(n−l − n−p)

]
+ 4− π2

6

+ 2 ln
µ2

(n+p)(n−l − n−p)
+ ln2 µ2

(n+p)(n−l − n−p)

)
. (2.22)

For the electromagnetic vertex correction, we obtain

T
(1b)
hc = 16π2 T (0) (2.23)

× µ̃2ϵ

∫
ddk

(2π)d
d(k − l)2 + 2(n+p)(n−l − n−k) + (d− 2)(n−p)(n+l − n+k)

[k2 + i0][(k − l)2 + i0)][(n+p+ n+k)(n−p+ n−k − n−l) + i0]

= T (0)

(
2

ϵ
− 2

ϵ

n−p

n−l
ln
n−p− n−l

n−p
+ 2 + 4 ln

µ2

(n+p)(n−l − n−p)

− 2 ln
µ2

(n+p)(n−l − n−p)
+
n−p

n−l
ln
n−p− n−l

n−p

[
− 2 ln

µ2

−p2
+ ln

n−p− n−l

n−p

])
.

For the self-energy graph of the hard-collinear propagator, we have

T
(1c)
hc = 32π2(−i)T (0)

× µ̃2ϵ

∫
ddk

(2π)d

(2− d)((1− n+k
n+p

)(p− l)2 + (n+k)(n−p− n−l) + (n−k)(n+p))

[(p− l)2 + i0][k2 + i0][(p+ k − l)2 + i0]

= T (0)

(
− 1

ϵ
− ln

µ2

(n+p)(n−l − n−p)
− 1

)
. (2.24)
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2.2.3 Soft region

For soft momentum k ∼ (λ, λ, λ), the self-energy graph in Fig. 2.1(c) is scaleless since
the u-quark line is hard-collinear. In all other cases, the soft region leads at least to
finite results of the integration. For the weak vertex, we have

T (1a)
s = 32π2(−i)T (0) µ̃2ϵ

∫
ddk

(2π)d
1

[k2 + i0][2v · k + i0][n−p+ n−k − n−l + i0]

= T (0)

(
− 1

ϵ2
− 2

ϵ
ln

µ

n−p− n−l
− 3

4
π2 − 1

2
ln2 µ2

(n−p− n−l)2

)
. (2.25)

For the electromagnetic vertex we find

T (1b)
s = 32π2(−i)T (0) µ̃2ϵ

∫
ddk

(2π)d
(n−k − n−l)

[k2 + i0][(k − l)2 + i0][n−p+ n−k − n−l + i0]

= T (0)

(
2

ϵ
+

2

ϵ

n−p

n−l
ln
n−p− n−l

n−p
+ 2 ln

µ2

−l2
+ 2

n−p

n−l
ln

µ2

−l2
ln
n−p− n−l

n−p

+ 4 +
n−p

n−l
ln2 n−p− n−l

n−p
+ 4

n−p

n−l
Li2

(
1− n−p

n−p− n−l

))
. (2.26)

The box graph contributes with the finite integral

T (1d)
s = 16π2eQu (2.27)

×
∫

d4k

(2π)4
(n+p) v̄(l)/v(/k − /l)/n−(1− γ5)u(pb)

[k2 + i0][2v · k + i0][(k − l)2 + i0][(n+p)(n−k − n−l) + p2 + i0]
.

The explicit result of this integration involves generically complicated hypergeometric
functions [86,87]. For this reason, we refrain from a detailed analysis and point towards
(A.12) and (A.15), where we show that this integral cancels exactly after matching onto
the effective theory.

We note that the IR divergences in the soft region are entirely regulated by the
off-shell spectator momentum l2 ̸= 0, so that the results (2.25)-(2.27) are IR-finite. All
divergences therefore arise from the UV region of the integration. For instance, the UV
double pole in (2.25) is a combination of the limits n+k, k⊥ → ∞ in the integration.
The single pole in (2.26) originates from n+k → ∞. In the hard-collinear region,
divergences can arise from both the UV and the IR. The results in particular contain
divergencs from n+k, k⊥ → 0 that cancel the UV divergences of the soft region. The
sum of divergences in the soft and hard-collinear region together exactly correspond to
the IR divergences of the hard region. In this way, we reproduce the full theory result
from the sum of all regions

T (1) = T
(1)
h + T

(1)
hc + T (1)

s . (2.28)
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2.3 Heavy Quark and Soft-Collinear Effective Theory

This decomposition is exact to all orders in λ. In (2.28), we refer to the leading power
integrals given by (2.18)-(2.27). A more detailed, pictorial analysis of the divergent
structure and interplay between different regions can be found in Fig. 2 of [88] for the
case of heavy-to-light form factors. The pole cancellation between the different regions
allows for a systematic renormalization of each sector, which is properly done in the
framework of effective theories.

2.3 Heavy Quark and Soft-Collinear Effective Theory

The loop momentum virtuality k2 ∼ λ2 ≪ λ ≪ 1 introduces a hierarchy of scales,
which corresponds to ΛQCD ≪

√
ΛQCDmb ≪ mb. At the scales mb and

√
ΛQCDmb,

the strong interaction still lies in the perturbative regime, so that the hard and hard-
collinear contributions in (2.18)-(2.24) yield an accurate result for the correlator in
this region. Together with the explicit results from the last section, this motivates to
integrate out the high-oscillating modes of the quark and gluon fields so that only the
soft region is reproduced by an effective theory. The perturbative results then enter
with the corresponding matching coefficients. Technically, this is done by splitting
the fields into different variables that contain the hard(-collinear) and soft modes in
an EFT framework. In the following, we distinguish between two effective theories.
While Heavy Quark Effective Theory (HQET) deals with the modes of the massive,
heavy b-quark, Soft-Collinear Effective Theory (SCET) focuses on soft and energetic
light degrees of freedom that are assumed to be massless. The large scale in SCET
refers to the momentum transfer in a distinct direction which is typically O(mb). We
integrate out the hard modes for both light and heavy quark fields at the scale mb

and the hard-collinear modes at the scale
√
ΛQCDmb. Even though these EFTs have

different characteristics, we treat them on equal ground in the matching calculation,
so that we generally need to consider interactions between the light and heavy quark
fields via hard(-collinear) and soft gluons.

To review the fundamental properties of HQET and SCET, we consider the QCD
Lagrangian containing the heavy quark field Q and a light quark field q

LQCD = Q̄(i /D −mQ)Q+ q̄i /Dq , (2.29)

where the Yang-Mills Lagrangian accompanied with gauge-fixing and ghost terms is
implicitly understood. The heavy quark inside a meson carries almost all of the mo-
mentum and can therefore be parametrized by pQ = mQv + kres, where the residual
momentum is O(ΛQCD). We define two components of the heavy quark field

hv(x) = eimQv·x
(
1 + /v

2

)
Q(x) , Hv(x) = eimQv·x

(
1− /v

2

)
Q(x) , (2.30)

which in sum yield Q(x) = exp(−imQv · x)(hv +Hv)(x). The scaling of the two fields
in (2.30) can be inferred from the analysis of the propagators〈

0
∣∣T{hv(x), h̄v(0)}∣∣0〉 = (1 + /v

2

)∫
d4p

(2π)4
i(/p+mQ)

p2 −m2
Q + i0

e−i(p−mQv)x

(
1 + /v

2

)
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2. Basic concepts of QCD factorization

=

(
1 + /v

2

)∫
d4k

(2π)4
i(/k +mQ/v +mQ)

k2 + 2mQv · k + i0
e−ikx

(
1 + /v

2

)
=

∫
d4k

(2π)4
i(1 + /v)

2v · k + i0
e−ikx +O(λ7/2) , (2.31)

〈
0
∣∣T{Hv(x), H̄v(0)

}∣∣0〉 = −iδ(4)(x)
(
1− /v

4

)
+O(λ9/2) . (2.32)

In the second line, we substituted the momentum p→ mQv + k, where the remaining
loop momentum kµ ∼ λ scales soft. From the second to third line, we expanded in the
expression to leading power in λ, so that we find〈

0
∣∣T{hv(x), h̄v(0)}∣∣0〉 ∼ λ3 . (2.33)

We conclude that the small field component scales as hv ∼ λ3/2. Equivalently, we find
Hv ∼ λ2 from (2.32) since δ(4)(x) ∼ λ4 for soft fluctuations, which implies that the
field variable Hv is power-suppressed. This fact can also be observed on the level of
the Lagrangian: Plugging in (2.30) into the Lagrangian (2.29), we find that the field hv
propagates as a massless degree of freedom while Hv propagates with a mass of 2mQ.
We can integrate out the heavy mode at tree level by deriving the formal solution to
the equation of motion

Hv(x) =
1

2mQ + iv ·D
i /⃗D⊥hv(x) , (2.34)

where /⃗D⊥ = /D − /vv ·D. After replacing (2.34) in the Lagrangian, we obtain

LHQET = h̄viv ·Dhv + h̄vi /⃗D⊥
1

2mQ + iv ·D
i /⃗D⊥hv = L(0)

HQET +O
(

1

mQ

)
. (2.35)

The replacement in (2.34) strictly corresponds to field redefinition that leads to the
appearance of a Jacobian in the path integral. However, it can be shown by gauge
invariance that the Jacobian is just an irrelevant constant. The HQET Lagrangian
L(0)

HQET = h̄viv · Dhv contains the leading interactions between the heavy quark and
hard-collinear and soft gluon fields. Note that the covariant derivative iv · D only
contains the soft gluon field since the hard-collinear part vanishes due to momentum
conservation. Furthermore, we assume a mass term δmh̄vhv to be absent.3. In pertur-
bative calculations, the Feynman rules of HQET are given by

i(1 + /v)

2v · k + i0
, igsv

µT a , (2.36)

for the heavy quark propagator in (2.31) and the quark-gluon interaction, respectively.
For a complete review of the EFT formalism, we refer to original publications and
lectures of HQET [90–93].
3In a proper framework, the residual mass term δm ∼ ΛQCD must be included in order to cancel UV
renormalons from HQET operator matrix elements, see [89] for a detailed discussion.
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2.3 Heavy Quark and Soft-Collinear Effective Theory

Momentum modes and scaling

hard (h) p ∼ (1, 1, 1)

hard-collinear (hc) p ∼ (λ, 1,
√
λ) hard-anti-collinear (hc̄) p ∼ (1, λ,

√
λ)

collinear (c) p ∼ (λ2, 1, λ) anti-collinear (c̄) p ∼ (1, λ2, λ)

soft (s) p ∼ (λ, λ, λ)

Table 2.1: Momentum scaling p ∼ (p+, p−, p⊥) according to the light-cone decom-
position in (2.4). We define λ = ΛQCD/mb and neglect an overall factor
of mb in our notation. The anti-collinear modes are not relevant to the
present context of this Chapter, but will appear in B̄ → M1M2 decays
involving an additional direction of large momentum transfer. We use the
label C = hc, c as a generalized index that contains both (hard-)collinear
modes.

SCET was developed by a series of publications addressing heavy quark decays into
light, energetic particles [88, 94–99]. It is deeply connected to the method of regions
approach presented in the last section. The treatment of the light quark fields in SCET
is more subtle compared to heavy quark fields in HQET as we deal with additional
modes. In general, the light quark field can be decomposed into different components

q(x) = ξC(x) + ηC(x) + qs(x) , (2.37)

such that the collinear fields have collinear momentum scaling and the soft field soft
scaling. Note that the label C = (hc, c) may include an additional collinear mode
scaling as p ∼ (λ2, 1, λ), which is relevant in the context of Chapter 4. A complete list
of the momentum labels and their light-cone components can be found in Table 2.1.
For the remainder of this section, we assume C to have hard-collinear scaling, i.e.
p ∼ (λ, 1,

√
λ). Similar to the heavy quark case, the two components ξC and ηC are

defined by projections on the light-cone

ξC(x) = P+q(x) ≡
/n−/n+

4
q(x) , ηC(x) = P−q(x) ≡

/n+/n−

4
q(x) . (2.38)

The projectors fulfill standard relations P 2
± = P±, P±P∓ = 0 and P+ + P− = 1.

Following the same analysis as in (2.31), we find that the propagators of these fields
scale as

〈
0
∣∣T{ξC(x), ξ̄C(0)}∣∣0〉 = ∫ d4k

(2π)4
i(n+k)

/n−
2

k2 + i0
e−ikx ∼ O(λ) , (2.39)

〈
0
∣∣T{ηC(x), η̄C(0)}∣∣0〉 = ∫ d4k

(2π)4
i(n−k)

/n+

2

k2 + i0
e−ikx ∼ O(λ2) , (2.40)
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〈
0
∣∣T{qs(x), q̄s(0)}∣∣0〉 = ∫ d4k

(2π)4
i/k

k2 + i0
e−ikx ∼ O(λ3) . (2.41)

Note that we assume the loop momentum to have hard-collinear and soft scaling,
respectively. We conclude that ξC ∼ λ1/2, ηC ∼ λ and qs ∼ λ3/2. This analysis can
be extended to the gauge sector, yielding a power counting for the collinear and soft
gluon fields, shown in Table 2.2. Analogously to HQET, we proceed by deriving the
equations of motion at tree level to eliminate the power-suppressed collinear field

ηC(x) =
1

in+D
i /D⊥

/n+

2
ξC(x) +

1

in+D
/GC

/n+

2
qs(x) . (2.42)

The leading term in this expression is proportional to ξC since qs is power-suppressed.
After integrating out the field operator ηC in (2.29), we obtain the leading power SCET
Lagrangian

L(0)
SCET = ξ̄C

(
in−D + i /DC⊥

1

in+DC

i /DC⊥

)
/n+

2
ξC + q̄si /Dqs . (2.43)

The subleading terms to this Lagrangian have been derived in [99, 100]. It can be
shown that the tree-level SCET Lagrangian is exact and requires no renormalization,
see e.g. [97]. The renormalization is therefore fully contained in the operator matching.
Furthermore, we emphasize that the derivative in−D in (2.43) still contains soft gauge
fields, so that collinear fields interact with soft gluons at LP. This interaction can be
removed by a decoupling transformation discussed in Sec. 2.4.1. When both collinear
modes in C are present, we usually refer to (2.43) as the SCETI Lagrangian. After
integrating out the hard-collinear mode, we refer to the theory as SCETII which only
involves the remaining collinear and soft fields (c,s). Finally, we note that one can
trivially extend the Lagrangian to include several collinear directions n±i with n+i ·
n−j = 2δij by adding copies of the Lagrangian (2.43) to the effective theory.

2.3.1 Gauge invariance

The leading power HQET×SCET Lagrangian given by (2.35) and (2.43) admits a
set of fundamental symmetries. First and foremost, the effective theory respects gauge
invariance inherited from QCD. In the effective theory, each field transforms separately
under the gauge group, which can be viewed as a direct sum of collinear and soft gauge
transformations

VC(x) = eiα
a
C(x)T

a

, Vs(x) = eiα
a
s (x)T

a

. (2.44)

The transformations act on fields as

ξC → VCξC , qs → qs , Gµ
C → VCG

µ
CV

†
C +

i

gs
VC
[
Dµ

s , V
†
C

]
, Gµ

s → Gµ
s , (2.45)
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Scaling of field components

Heavy quark soft hv ∼ λ3/2 , Hv ∼ λ2

hard-collinar ξhc ∼ λ1/2 , ηhc ∼ λ

Light quark collinear ξc ∼ λ , ηc ∼ λ2

soft qs ∼ λ3/2

hard-collinear n−Ghc ∼ λ , n+Ghc ∼ 1 , Ghc⊥ ∼ λ1/2

Gauge field collinear n−Gc ∼ λ2 , n+Gc ∼ 1 , Gc⊥ ∼ λ

soft Gµ
s ∼ λ

Table 2.2: Scaling of field variables for different momentum modes, which follows from
the analysis of the respective propagators. For the quark fields, we explic-
itly derived the counting in (2.31),(2.32) and (2.40)–(2.41). The scaling of
the gauge field components can be inferred by the same arguments [101].

ξC → VsξC , qs → Vsqs , Gµ
C → VsG

µ
CV

†
s , Gµ

s → VsG
µ
s V

†
s +

i

gs
Vs
[
∂µ, V †

s

]
, (2.46)

where Dµ
s = ∂µ − igsG

µ
s only contains the soft gauge field. The collinear fields trans-

form under both collinear and soft gauge transformations since they interact with the
soft modes via the leading power Lagrangian. The soft fields on the other hand do not
transform under the collinear gauge transformation. For this reason, the field decom-
position and redefinition in (2.37) and (2.42) is only valid at tree-level as it does not
respect gauge symmetry at NLO. To maintain gauge invariance, we have to account
for a consistent transformation by replacing the soft field according to

qs(x) → W (x)qs(x) , (2.47)

where we construct the object W such that the full theory field q transforms homoge-
neously under the entire gauge group. For details of the precise construction based on
the properties of Wilson lines, we refer to [102].4 For our purposes, it is sufficient to
introduce the semi-infinite collinear and soft Wilson lines

WC(x) = P exp

{
igs

∫ 0

−∞
ds n+GC(x+ sn+)

}
, (2.48)

Sn−(x) = P exp

{
igs

∫ 0

−∞
ds n−Gs(x+ sn−)

}
. (2.49)

At LP, the Wilson line in (2.47) is given by W = WC . The soft Wilson line carries the
label of the collinear direction. The label distinguishes the soft Wilson line originating
4In [102] the Wilson line W is written as a product WZ† involving the full gauge field and its soft
part, which ensures the correct transformation properties.
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from collinear lines to the ones associated to the anti-collinear direction n+ that will
appear in Chapter 4. Note that we can construct finite distance Wilson lines from a
product of two semi-infinite lines

[x, y] = Sn−(x)S
†
n−(y) , (2.50)

which appeared in the definition of the B-meson LCDA in (1.8) and (2.6). The advan-
tage of using (2.48) and (2.49) is their simple transformation under the collinear and
soft gauge group

WC → VCWC , Sn− → Sn− and WC → VsWCV
†
s , Sn− → VsSn− . (2.51)

This implies for the finite distance Wilson line to transform as [x, y] → Vs(x)[x, y]V
†
s (y).

We emphasize that the transformations for the collinear Wilson line only hold at LP
and are more complicated otherwise.

We can use the collinear Wilson lines to define gauge-invariant building blocks in
the effective theory and construct operators that respect gauge symmetry ad hoc. We
define

χC = W †
C(x)ξC(x) , Gµ

C(x) = W †
C(x)[iD

µ
CWC](x) , (2.52)

which are clearly invariant under the collinear gauge transformations but still transform
under the soft gauge group. This allows for a simple construction of invariant operators,
for instance

J (B1)(s1, s2; 0) ∼ χ̄C(s1n+)/GC⊥(s2n+)Γhv(0) , (2.53)

that reflects three-particle interactions between a heavy quark, a collinear quark and a
gluon field with an arbitrary Dirac structure Γ. We shifted the position space variable
of the heavy quark field to zero, which can always be done after multipole expand-
ing the field operator and using translational invariance, so that the operator counts
homogeneously of order O(λ3/2). The precise origin and definition of A- and B-type
operators will be clarified in the next section.

2.3.2 Reparametrization invariance

The definition of HQET×SCET strictly depends on the choice of the reference vectors
vµ and nµ

±. We can reparametrize these vectors by explicit transformations that leave
the scaling of momenta and fields invariant [103–105]. More precisely, the effective
theory stays separately invariant under the transformations

vµ → vµ + δvµ , nµ
± → (1± α)nµ

± , nµ
± → nµ

± ± ϵµ⊥ , (2.54)

when α ∼ O(1), ϵµ⊥ ∼ O(λ1/2) and the normalization (v + δv)2 = 1 is maintained.
This reparametrization invariance imposes contraints on subleading operators. As a
consequence, we can use the invariance to construct a suitable basis of HQET×SCET
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2.3 Heavy Quark and Soft-Collinear Effective Theory

operators that are fixed up to next-to-leading power (NLP) and simplify matching
calculations in QCD.

A concrete example where this symmetry applies is the matching of the QCD heavy-
to-light current onto HQET×SCET, which is frequently used to parametrize matrix
elements in decays of heavy mesons into light particles. The matching equation reads5

q̄ΓXb(0) =

∫
dŝ Ĉ

(A0)i
X (ŝ;µ) J

(A0)i
X (s; 0) +

∫
dŝ1dŝ2 Ĉ

(B1)i
X (ŝ1, ŝ2;µ)J

(B1)i
X (s1, s2; 0)

+ . . . , (2.55)

where ŝ = (n+p)s is the large component of the energetic light quark or gluon and
ΓX = {1, γ5, γµ, γµγ5, σµν} an arbitrary Dirac matrix. The A-type and B-type operators
label whether the operator contains two-particle or three-particle contributions. A
complete matching of the heavy-to-light current for all possible Dirac matrices up to
NNLO can be found in [49, 105–107]. Since we restrict ourselves to scalar operators,
we consider the two currents

J
(A0)
S (s, 0) = χ̄C(sn+)(1− γ5)

(
1− 1

in+
⃗∂
i ⃗/∂⊥

)
hv(0) , (2.56)

J
(B1)
S (s1, s2, 0) =

1

mb

χ̄C(s1n+)/GC,⊥(s2n+)(1 + γ5)hv(0) , (2.57)

which are of O(λ2) and O(λ5/2) respectively. Note that the term proportional to ⃗/∂
in (2.56) is fixed by reparametrization invariance, but power-suppressed as it counts
as O(λ5/2). This is an explicit example how the form of the operators on the right
hand side of (2.55) is dictated by symmetry arguments. The Wilson coefficient C(A0)

S

in momentum space depends on the large component n+p and is obtained by Fourier
transformation

C
(A0)
S (n+p;µ) =

∫
dŝeisn+pĈ

(A0)
S (ŝ;µ) . (2.58)

We refrain from giving more details about the (B1) operator as it will drop out by
power counting arguments in the following.

Contrary to the heavy-to-light case, the matching of the electromagnetic current in
(2.2) onto SCET differs slightly in its computation. We replace u → ξC + ηC +WCqs
together with (2.42) at LP, which is correct up to O(λ3/2). For the scalar current, we
find that two terms in the expansion are relevant:

q̄q(x) = j
(3/2)
ξξ (x) + j

(2)
ξq (x) +O(λ5/2) . (2.59)

5Here, we do not distinguish between the UV and IR scale dependence, which is however explicitly
done in Sec. 2.4.2.
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The effective currents are given by

j
(3/2)
ξξ = ξ̄C

1

in+D
i /D⊥

/n+

2
ξC + h.c. , (2.60)

j
(2)
ξq = q̄sχC + h.c. (2.61)

We do not express the current j(3/2)ξξ in terms of the gauge invariant building blocks
(2.52) for later convenience.

Lastly, we note that HQET admits the heavy-quark spin-symmetry at LP in 1/mQ.
However, this symmetry has no direct application in our context.

2.4 Factorization

The effective theory description from Sec. 2.3 allows us to systematically derive and
prove factorization for the scalar correlator (2.1). In the following, we use (2.55) and
(2.59) to match the currents from QCD to SCET and express the correlator in terms
of SCET fields. We further replace the QCD B-meson state by its HQET equivalent∣∣B̄(p+ q)

〉
→ √

mB

∣∣B̄(v)
〉
.6 At LP, we find

T (p, v) = eQu

√
mBCS(Eγ;µ)

∫
d4xeipx

〈
0
∣∣T{(j(3/2)ξξ + j

(2)
ξq

)
(x), J

(A0)
S (0; 0)

}∣∣B̄(v)
〉

+O(λ) , (2.62)

where we redefined the matching coefficient C(A0)
S → CS to account for the renormal-

ization of the scalar electromagnetic current in QCD. In (2.1), the collinear and soft
fields in the currents (2.60) and (2.61) carry an implicit u-quark flavour label since the
contribution from the heavy-quark current is power-suppressed. Note that we used the
translation invariance ϕ(x) = eixPϕ(0)e−ixP for the collinear field of J (A0)

S to perform
the ŝ-integral from (2.58).

In order to explain the structure of (2.62), several comments must be made. The first
observation is that the LP correlator counts as T ∼ λ1/2 and hence power-corrections
are O(λ) as indicated. The counting can be inferred from the tree-level expression,
where the two light u-quark fields are contracted to a hard-collinear propagator

T (p, v) ∝
∫
d4xeipx

〈
0
∣∣ū(x) uhc(x)ūhc(0) b(0)∣∣B̄(v)

〉
∼ 1

λ2
· λ3/2 · λ1/2 · λ1/2 · λ3/2 · 1

λ3/2
∼ λ1/2 . (2.63)

6The additional factor of
√
mB accounts for a mass-independent normalization of the B-meson state

in HQET, ⟨B̄(v′)|B̄(v)⟩ = (2π)32v0δ(3)(v⃗ − v⃗′). We conclude that |B̄⟩ ∼ λ−3/2 since the delta-
distribution counts as 1/Λ3

QCD with the spatial momentum only fluctuating at O(ΛQCD).
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The external u-quark and b-quark fields overlap with the B-meson state and therefore
have the soft scaling of λ3/2. We anticipate that the exponential eipx ∼ O(1), so that
the position variable scales as xµ ∼ (1, 1/λ, 1/

√
λ) since p is hard-collinear. Hence,

the integral measure counts as d4x ∼ λ−2. On the EFT side, we consequently need
to collect all effective operators such that the entire object contributes at O(λ1/2)
or, equivalently, the product of operators within the time-ordered product scales as
T{. . .} ∼ λ4. Simultaneously, we have to match the quantum numbers of the external
state. From these requirements, we immediately conclude that contributions with the
B-type current J (B1)

S ∼ λ5/2 in (2.57) are absent, since the product j(3/2)ξξ J
(B1)
S ∼ λ4 but

has no light quark field qs to overlap with the B-meson. To add further soft fields in
an expression containing only collinear fields, we require an insertion of the subleading
Lagrangian

L(1/2)
ξq = q̄sW

†
Ci /D⊥ξC + h.c. (2.64)

that adds another power of λ1/2. For the B-type currents, this implies that their
contribution can be at least of O(λ) so that they are subleading. The situation for
the A-type current is different as the product j(3/2)ξξ J

(A0)
S ∼ λ7/2 allows for an insertion

of (2.64). Hence, this term contributes at leading power, in addition to the tree-level
term j

(2)
ξq J

(A0)
S ∼ λ4. Note that the term /∂⊥ in the A-type current (2.56) does not

contribute due to its additional power suppression. In the following, we define the two
contributions arising from this analysis separately

T̂ 1 =

∫
d4xeipx

〈
0
∣∣T{j(2)ξq (x), χ̄

(u)
C (1− γ5)hv(0)

}∣∣B̄(v)
〉
, (2.65)

T̂ 2 = i

∫
d4y

∫
d4xeipx

〈
0
∣∣T{L(1/2)

ξq (y), j
(3/2)
ξξ (x), χ̄

(u)
C (1− γ5)hv(0)

}∣∣B̄(v)
〉
, (2.66)

where we factored out the coefficient T = eQu
√
mBCST̂ in front.

2.4.1 Decoupling transformation

We emphasize that the collinear fields in the correlator (2.62) as well as in the reduced
objects (2.65) and (2.66) still interact with soft gluons via the leading power SCET
Lagrangian (2.43). The soft-collinear interaction appears in the derivative term in−D
and can be removed by the decoupling transformation

ξC(x) = Sn−(x−)ξ
(0)
C (x) , Gµ

C(x) = Sn−(x−)G
(0)µ
C (x)S†

n−(x−) . (2.67)

This transformation decouples the soft from the collinear modes, so that in−DC only
contains the collinear gauge field at LP, see [101] for details. In the remainder of this
section, we assume that this decoupling has been done and we drop the index (0) for
the collinear fields. The reduced correlator (2.65) takes the form

T̂ 1(p, v) =

∫
d4xeipx

〈
0
∣∣T{q̄(u)s Sn−(x−)χ

(u)
C (x), χ̄

(u)
C (1− γ5)S

†
n−hv(0)

}∣∣B̄(v)
〉
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2. Basic concepts of QCD factorization

=

∫
d4xeipx

〈
0
∣∣T{χ(u)

Cα(x), χ̄
(u)
Cβ

}∣∣0〉× [1− γ5]βγ

×
〈
0
∣∣T{q̄(u)sα Sn−(x−)S

†
n−hvγ(0)

∣∣B̄(v)
〉
, (2.68)

where we can now factorize the collinear and soft matrix elements at LP due to the
absence of soft-collinear interactions. The indices α, β, γ refer to the Dirac algebra
while the colour structure is implicitly understood. We multipole expanded the position
space argument of the soft function since factors of x−∂ ∼ λ and x⊥∂ ∼ λ1/2 yield an
additional power-suppression when acting on soft fields. Therefore, the soft function
depends only on one variable x− = tn−, where t = vx.

In (1.8) we defined the B-LCDA (soft function) in QCD. In the framework of HQET,
the leading-twist LCDA is defined by〈

0
∣∣q̄sα(tn−)[tn−, 0]hvγ(0)

∣∣B̄(v)
〉
= −iFB(µ)

2

[(
1 + /v

2

)
γ5

]
γα

Φ+(t− i0;µ)

+ . . . (2.69)

The omitted terms are proportional to /n− and annihilated by the properties of the
collinear function ⟨0|T{χC, χ̄C}|0⟩. Therefore, they are not relevant in the present
context. However, these terms need to be included for NLP computations in Chapter
3, more precisely in (3.9). Note that we combined the two semi-infinite Wilson lines into
[tn−, 0] = Sn−(tn−)S

†
n−(0) introduced in (2.6). The difference to the QCD definition

lies in the presence of the heavy quark field hv and the mass-independent state
∣∣B̄(v)

〉
,

changing the scale dependence of the function ϕ+ compared to ϕB. This further implies
that the static decay constant FB(µ) in HQET defined by the local matrix element〈

0
∣∣q̄s(0)/n−γ5hv(0)

∣∣B̄(v)
〉
= iFB(µ) (2.70)

is scale dependent. It can be related to the QCD decay constant via [91]

FB(µ) = fB
√
mBK

−1(µ) = fB
√
mB

[
1 +

αsCF

4π

(
3 ln

µ

mb

+ 2

)
+O(α2

s)

]
. (2.71)

The HQET operator on the right hand side of (2.69) retains the analytical structure
compared to QCD, so that the Fourier transformation is, analogously to (2.7) and (2.8),
given by

ϕ+(ω;µ) =

∫
dt

2π
eiωtΦ+(t− i0;µ) , Φ+(t;µ) =

∫ ∞

0

dωe−iωtϕ+(ω;µ) (2.72)

and the function in momentum space is supported for ω > 0. We emphasize that the
local limit t→ 0 in (2.69) does not commute in general with the inclusion of radiative
corrections [38]. The normalization Φ+(0;µ) = 1 induced by (2.69) and (2.71) therefore
only holds at tree level.
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2.4 Factorization

Employing (2.69) and (2.72), the first contribution to the correlator in (2.65) takes
the form

T̂ 1(p, q) = −iFB(µ)

2

∫ ∞

0

dω ϕ+(ω;µ)

[
(1− γ5)

(
1 + /v

2

)
γ5

]
βα

×
∫
d4xei(p−ωv+)x

〈
0
∣∣T{χ(u)

Cα(x), χ̄
(u)
Cβ}
∣∣0〉 . (2.73)

The matrix element in the second line involves only fermion fields living at the hard-
collinear scale. Therefore, this object can be identified with a hard-collinear (jet)
function. We define∫

d4xei(p−ωv+)x
〈
0
∣∣T{χ(u)

Cα(x), χ̄
(u)
Cβ(0)}

∣∣0〉 = −i
ω − n−p− i0

[
/n−

2

]
αβ

J1(ω, p;µ) , (2.74)

where vµ+ = n+
µ/2 is inherited from the Fourier transform of the LCDA. Note that the

matrix element has to be proportional to [/n−/2]αβ due to the intrinsic structure of the
hard-collinear propagator (2.39) in SCET. The prefactor −i/(ω − n−p− i0) is chosen
for convenience. In total, the first contribution can be written as

T̂ 1(p, q) = −FB(µ)

2

∫ ∞

0

dω

ω − n−p− i0
J1(ω, p;µ)ϕ+(ω;µ) , (2.75)

which admits the structure of the factorization formula in (1.7). We can derive an
equivalent form for the second term (2.66)

T̂ 2(p, q) = −FB(µ)

2

∫ ∞

0

dω

ω − n−p− i0
J2(ω, p;µ)ϕ+(ω;µ) . (2.76)

In this case, the jet function is defined by

i

∫
d4ye−iωv+y

∫
d4xeipx

〈
0
∣∣{[W †

Ci /D⊥ξ
(u)
C ]α(y), j

(3/2)
ξξ (x), χ

(u)
Cβ(0)

}∣∣0〉
=

−i
ω − n−p− i0

[
/n−

2

]
αβ

J2(ω, p;µ) . (2.77)

Again, the intrinsic structure of the fields including their projectors lead to the fact that
the matrix element on the right hand side of (2.77) is proportional to /n−/2. Finally, we
combine (2.74) (2.77) together with the definition T = −vpFS to obtain the complete
factorization formula

FS(Eγ, p
2) = eQufBmBK

−1(µ)CS(Eγ;µ)

∫ ∞

0

dω

2Eγω − p2
J(2Eγω, p

2;µ)ϕ+(ω;µ) ,

(2.78)

where J = J1 + J2. Note that the hard-collinear function only depends on the hard-
collinear scales 2Eγω and p2, where ϕ+ is assumed to be dominated by the support
from ω ∼ ΛQCD. This completes the formal derivation of the QCD factorization for
(2.1) at LP.
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2. Basic concepts of QCD factorization

2.4.2 Renormalization

In order to derive the NLO expressions for the hard and hard-collinear matching coef-
ficients C and J in (2.78), we properly match the full onto the effective theory. This
matching is deeply connected to the method of regions computation in QCD from
Sec. 2.2, but requires renormalization on both the QCD and the HQET×SCET side.
We renormalize the UV divergences on the QCD side by first multiplying the correlator
with the external on-shell quark field renormalization factors for the b- and the u-quark
at one-loop

Z
(1)
b = −1

2

(
1

ϵUV

+
2

ϵ
+ ln

ν2

m2
b

+ 2 ln
µ2

m2
b

+ 4

)
, (2.79)

Z(1)
u = −1

2

(
1

ϵUV

− 1

ϵ
+ ln

ν2

µ2

)
, (2.80)

where Zi = 1 + Z
(1)
i αsCF/4π. Even though the on-shell renormalization factor of the

light quark field vanishes, we separate UV and IR scales to track the origin of the
divergences. In fact, the on-shell factors correspond to the hard region of the external
field renormalization. After adding these factors, the full theory result still contains
a UV divergence that needs to be subtracted by an additional renormalization factor,
corresponding to the MS renormalization of the scalar heavy-to-light currents in QCD

Z
(1)
QCD =

6

ϵUV

. (2.81)

In this way, the product Z−1
QCDZbZuT ultimately becomes UV finite. We emphasize

that the UV divergences from the hard region in (2.19)–(2.21) match the ones from the
complete QCD result, which are removed by the renormalization. Hence, the remaining
divergences in the combination Th+Z

(1)
b +Z

(1)
u −Z(1)

QCD are of infrared nature. They are
cancelled by the sum of all hard-collinear and soft contributions. On the HQET×SCET
side, we therefore introduce the counter term in the MS scheme

Z
(1)
C = − 1

ϵ2
− 5

2ϵ
− 2

ϵ
ln

µ

n+p
, (2.82)

which renders the hard region finite. Hence, we find that the hard matching coefficient
equals the renormalized hard region and obtain

CS(Eγ;µ, ν) = 1 +
αsCF

4π

(
12 ln

ν

mb

− 11 ln
µ

mb

− π2

12

− 2 ln2 µ

2Eγ

+ 2Li2
(
1− 1

r

)
+ ln2 r +

2

1− r
ln r

)
. (2.83)

The scale ν corresponds to the UV renormalization scale in QCD while the scale µ is
associated with the factorization scale appearing in the hard-collinear and soft region.
The result agrees with [106,108].
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2.5 Resummation

Using the same arguments, we renormalize the sum of all hard-collinear contributions
(2.22), (2.23) and (2.24) in the MS scheme and remove the UV and IR divergences
that cancel with the hard and soft region respectively. We obtain the hard-collinear
matching coefficient

JS(2Eγω, p
2;µ) = 1 +

αsCF

4π

(
ln2 µ2

2Eγω − p2
+ 3 ln

µ2

2Eγω − p2
− π2

6
+ 5

− p2

2Eγω
ln
p2 − 2Eγω

p2

(
ln

µ2

−p2
+ ln

µ2

2Eγω − p2

))
. (2.84)

As a crosscheck, this result can also be obtained by calculating the object directly
from the SCET definitions in (2.74) and (2.77). The derivation together with the
corresponding SCET Feynman rules can be found in Appendix A. In this context, we
also discuss the cancellation of the soft region on both sides of the matching equation.

2.5 Resummation

The hard matching coefficient (2.83) contains logarithms involving the scale ratios µ/mb

and µ/n+p, that become large when µ is chosen to be of order of the hard-collinear or
soft scale. The same is true for logarithms of the jet function, evaluated at the hard
or soft scale and vice versa. These logarithms spoil the convergence of the fixed-order
perturbative expansion when αs lnµ/mb ∼ αs lnµ/n+p ∼ O(1).

We can resum large logarithms by solving the renormalization group (RG) of the
hard, jet and the soft function, to which we refer as RG improved perturbation theory.
In this way, the coefficients in (2.78) are evaluated at their natural hard(-collinear) or
soft scale and then evolved to a common reference scale. In the following, we restrict
ourselves to the renormalization of the hard and soft function and choose µ to be of
order of the hard-collinear scale. This approach simplifies the treatment of the jet
function as it does not contain large logarithms at the hard-collinear scale and hence
resummation is not required. A proper treatment, including the resummation of hard-
collinear logarithms, can be found for instance in [109] for the case of deep-inelastic
scattering.

The RGE for the hard coefficient CS can be derived from the counter term (2.82)
using the running of the strong coupling in QCD, given by dαs/d lnµ = −2ϵαs. We
find at one-loop

d

d lnµ
CS(Eγ;µ, ν) = −αsCF

π

[
ln

µ

2Eγ

+
11

4

]
CS(Eγ;µ, ν) ,

d

d ln ν
CS(Eγ;µ, ν) =

3αsCF

π
CS(Eγ;µ, ν) . (2.85)
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2. Basic concepts of QCD factorization

The distinction between the scales µ and ν is used to separate effects from the QCD
and SCET renormalization. Since the result should be overall independent with respect
to the chosen reference scales, we often use one common scale in practice. For µ = ν,
the RGE can be expressed more generally to any loop-order as

d

d lnµ
CS(Eγ;µ) =

[
− Γcusp(αs) ln

µ

2Eγ

+ γ(αs)

]
CS(Eγ;µ) . (2.86)

The scale evolution is determined by the functions

Γcusp(αs) =
∑
n=0

Γn

(
αs

4π

)n+1

, γ(αs) =
∑
n=0

γn

(
αs

4π

)n+1

. (2.87)

The former term is called the cusp anomalous dimension and appears as a universal
feature of heavy-to-light currents in HQET, related to the finite distance Wilson line
[tn−, 0] in (2.69) [110, 111]. The latter anomalous dimension γ in (2.87) involves two
contributions from the running coupling at five and four flavours respectively. The
NNLO results for Γcusp and γ are given in [107]. The evolution of the strong coupling
αs is determined by the beta function

βQCD(αs) =
dαs

d lnµ
= −2αs

∑
n=0

βQCD
n

(
αs

4π

)n+1

. (2.88)

The coefficients βQCD
n are known up to the five-loop order [112]. As discussed in

the introduction, we have βQCD(αs) < 0 for the flavour content of the SM such that
the strong coupling becomes large at lower energies and formally infinite at the scale
ΛQCD ≈ 200 − 300 MeV depending on the number of active flavours. Technically, the
effective theory contains four active flavours so that αs(nf = 5) needs to be matched
to αs(nf = 4) at the scale mb. Starting at two-loop, this matching is discontinuous.
The matching relations can be found in [113,114].

The RGE (2.86) can be solved by the simple ansatz

CS(Eγ;µ) = U1(Eγ;µ, µh) CS(Eγ;µh) ,

U1(Eγ;µ, µh) = exp

(∫ µ

µh

dµ′

µ′

[
− Γcusp(αs(µ

′)) ln
µ′

µh

+ γ(αs(µ
′))
])

. (2.89)

The evolution function U1(Eγ;µ, µh) evolves the coefficient from an arbitrary hard scale
µh ∼ O(mb) to another reference scale µ. Note that we assume that the decoupling of
the b-quark flavour in γ has been done. The derivation for the anomalous dimension of
the B-meson decay constant in HQET and the LCDA follows an equivalent derivation.
We obtain the resummed expressions

FB(µ) = U2(µ, µh)FB(µh) , (2.90)
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2.5 Resummation

ϕ+(ω;µ) =

∫ ∞

0

dω′ Us(ω, ω
′;µ, µs) ϕ+(ω

′;µs) , (2.91)

where the evolution function U2 is obtained from the factor U1 by sending Γcusp → 0
and replacing γ according to Appendix A of [33]. In general, the hard reference scale of
the decay constant and the matching coefficient can be different. However, we choose
them to be equal for convenience. At one-loop, the evolution factor of the B-meson
LCDA from a soft scale µs ∼ O(ΛQCD) is given in (5.92). We present more details
about the derivation and properties of the soft function evolution in Chapter 5. We
emphasize that the µ-dependence between the evolution functions cancels in the form
factor (2.78), so that

d

d lnµ
FS(Eγ, p

2) = 0 . (2.92)

Hence, the complete result does not depend on the factorization scale µ. We refrain
from verifying (2.92) explicitly and instead refer to [115] where this has been done for
the case of the (axial-)vector form factors. Nevertheless, this observation justifies to
choose the factorization scale µ arbitrarily.

In RG-improved perturbation theory, we distinguish between different approxima-
tions depending on their accuracy. The leading-logarithmic (LL) resummation cor-
responds to the solution of (2.86) with the one-loop expressions for Γcusp and the
tree-level for γ. The next-to-leading logarithmic (NLL) resummation uses two-loop
Γcusp and one-loop γ etc., see Table 1 in [101].

33





Chapter 3

Subleading effects in B-meson correlators

In the last chapter we derived the QCD factorization for the scalar form factor (2.78)
at LP in the heavy-quark expansion. We expect the power corrections to the factor-
ization formula to be of order O(5− 10%). In general, it turns out to be conceptually
difficult to access these corrections in the traditional SCET framework due to the ap-
pearance of endpoint divergences. Based on the discussion for the scalar form factor in
Chapter 2, the central problem can be paraphrased as follows: In a naive attempt, one
would calculate NLP corrections by expanding the tree-level expression (2.5) and the
integrands in the method of regions computation from Sec. 2.2 up to the next order
in λ. However, this approach fails since convolution integrals at NLP in SCET gen-
erally become divergent at the boundary of the integration range. A simple example
in this context is the evaluation of the heavy-quark emission in Fig. 1.1b. Using the
momentum space projector method, we find that this contribution can be matched to

ξ
(b)
S =

eQdfBmB

2Eγmb

(
1− 2mb

Eγ

)∫ ∞

0

dω ϕ+(ω;µ) . (3.1)

Even though ϕ+ vanishes linearly for ω → 0, the behaviour for ω → ∞ dictated by the
RGE leads to ϕ+(ω) ∝ ω−1−a with −1 < a < 0 and hence (3.1) diverges beyond tree-
level. Physically, the divergence originates from an overlap with a region of different
virtuality. Up to date, there exists no formal EFT framework to consistently handle
endpoint divergences. Instead, the general strategy is to reshuffle the divergences from
the different regions by introducing refactorization conditions, so that each region again
only contains its natural scale. This analysis requires a careful case-by-case study
and is not pursued in this work. For an overview of the recent research activity see
e.g. [116–122].

Our aim is to estimate power corrections by a complementary approach. More
precisely, we want to compute corrections to the scalar form factor FS(Eγ, p

2) in (2.1)
as well as for the vector form factors FV (Eγ, p

2) and FA(Eγ, p
2) in (1.5) with a small

off-shellness p2 ≈ −Λ2
QCD where p2 < 0. These can be used for a comparison with

future lattice QCD calculations which serves as our motivation. The main results for
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3. Subleading effects in B-meson correlators

the (axial)-vector form factors appearing in this chapter already exist in the literature.
They can be inferred from [46,47] and are not discussed in detail.

To access the 1/Eγ and 1/mb power corrections, we use a dispersion relation for
the correlation functions in (2.1) and (1.3). The correlators are dominated by hard-
collinear x2 ∼ 1/

√
mbΛQCD and soft x2 ∼ 1/Λ2

QCD region. The former can be accessed
by an OPE and involves higher-twist functions of the B-meson LCDA. The latter
contains long-distance physics and cannot be calculated in perturbation theory, but
the dispersion relation allows us to estimate the soft correction to the form factors by
a sum rule. We can show that both contributions describe the subleading effects to a
sufficient accuracy. In what follows, we parametrize the NLP corrections to the form
factors by

FS(Eγ, p
2) =

eQufBmBRS(Eγ, p
2;µ)

2EγλB(Eγ, p2;µ)
+ ξS(Eγ, p

2) , (3.2)

FV (Eγ, p
2) =

eQufBmBR(Eγ, p
2;µ)

2EγλB(Eγ, p2;µ)
+ ξ(Eγ, p

2) + ∆ξ(Eγ, p
2) , (3.3)

FA(Eγ, p
2) =

eQufBmBR(Eγ, p
2;µ)

2EγλB(Eγ, p2;µ)
+ ξ(Eγ, p

2)−∆ξ(Eγ, p
2) . (3.4)

The factor R{S} contains the radiative corrections at LP. For the scalar case, the factor
is determined at NLO through the expressions in (2.83) and (2.84). We define the
generalized inverse moment as

1

λB(Eγ, p2;µ)
= 2Eγ

∫ ∞

0

dω

2Eγω − p2
ϕ+(ω;µ) . (3.5)

All NLP effects such as (3.1) are absorbed into ξS, ξ and ∆ξ. Based on the above
discussion about endpoint divergences, we emphasize that we do not consider radiative
corrections to the subleading terms. For the vectorial form factors, the decomposition
into symmetry-preserving and symmetry-breaking parts ξ and ∆ξ has originally been
introduced in [33]. In the following, we develop the fundamental ideas to calculate ξS,
ξ and ∆ξ with the scalar case at hand.

3.1 Higher-twist corrections

For x2 ∼ 1/
√
mbΛQCD, the hard-collinear propagator can be expanded in an OPE

according to the heavy quark limit x2 → 0. The NLP terms in this expansion yield the
hard-collinear corrections to the form factors. For the scalar correlator, the 1/Eγ- and
1/mb-corrections to (2.1) at tree-level can be obtained from the identity b = hv +Hv

and the equation of motion for the heavy mode Hv in (2.34) in HQET. We obtain two
separate terms

T 1/Eγ =
√
mB

∫
d4xeipx

〈
0
∣∣T{jem(x), ū(1− γ5)hv(0)

}∣∣B̄(v)
〉
, (3.6)
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3.1 Higher-twist corrections

T 1/mb =

√
mB

2mb

∫
d4xeipx

〈
0
∣∣T{jem(x), ū(1− γ5)i /Dhv(0)

}∣∣B̄(v)
〉
. (3.7)

In the first expression, the corrections are associated with the 1/Eγ terms originating
from an expansion of the hard-collinear propagator up to NLP. The second term is
already 1/mb-suppressed so that the hard-collinear propagator only enters at tree level.
In both cases, we consider the expansion in a soft gluon background since the inclusion
of hard-collinear gluons would correspond to loop corrections beyond our accuracy, and
actually lead to divergent integrals. The propagator of the hard-collinear quark fields
can be expanded as [123]

〈
0
∣∣T{qhc(x)q̄hc(0)}∣∣0〉 = i/x

2πx4
− 1

8π2x2

∫ 1

0

du
{
igsG̃λρ(ux)x

λγργ5

+ (2u− 1)gsGλρ(ux)x
λγρ
}
+ . . . , (3.8)

where the dual field strength tensor is defined by G̃λρ = ϵλραβG
αβ/2. We emphasize

once more that the gluon fields in (3.8) only contain soft modes. In addition to the
expansion of the hard-collinear propagator, we need to include the next-to-leading
terms in the two-particle LCDA

〈
0
∣∣q̄s(x)[x, 0]Γhv(0)∣∣B̄(v)

〉
=− iFB(µ)

2
tr

[
γ5Γ

(
1 + /v

2

){
Φ+(t;µ) + x2G+(t;µ)

− /x

2vx

[
(Φ+ − Φ−)(t;µ) + x2(G+ −G−)(t;µ)

]}]
, (3.9)

for the leading term in (3.8). For the remaining chapter, we omit the soft index qs for
the light quark field. Due to the analytic structure of the operator on the left-hand
side of (3.9), the functions Φ− and G± inherit the same i0-prescription as the function
ϕ+. The Fourier transformed functions ϕ− and g± are equivalently obtained by (2.72).
At tree-level, the limits x→ 0 and vx→ 0 imply the normalization∫ ∞

0

dω ϕ±(ω;µ) = 1 ,

∫ ∞

0

dω [ϕ+ − ϕ−](ω;µ) = 0 , (3.10)

where the latter also holds true for the distribution functions G±. For the subleading
terms in (3.8), the appearance of soft gluon tensors requires the introduction of three-
particle LCDAs which are defined by [124]

〈
0
∣∣q̄(x)gsGλρ(ux)x

ρΓhv(0)
∣∣B̄(v)

〉
=
FB(µ)

2
tr

[
γ5Γ

(
1 + /v

2

)
(3.11)

×
{
(/xvλ − γλvx)(ΨA −ΨV )− iσλρx

ρΨV − xλXA + xλ
/x

vx
YA

}
(vx, uvx;µ)

]
,
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3. Subleading effects in B-meson correlators

〈
0
∣∣q̄(x)igsG̃λρ(ux)x

ργ5Γhv(0)
∣∣B̄(v)

〉
=
FB(µ)

2
tr

[
γ5Γ

(
1 + /v

2

)
(3.12)

×
{
(/xvλ − γλvx)(Ψ̃A − Ψ̃V )− iσλρx

ρΨ̃V − xλX̃A + xλ
/x

vx
ỸA

}
(vx, uvx;µ)

]
.

The Fourier transformation to momentum space is generically given by

ψ(ω1, ω2;µ) =

∫
dx1
2π

∫
dx2
2π

e−iω1x1−iω2x2Ψ(x1, x2;µ) . (3.13)

We emphasize that the functions defined by (3.9), (3.11) and (3.12) differ in their
power counting which is usually referred to as twist in this context. We present further
details on the twist expansion in Appendix B, including the analysis of the small ω-
behaviour for the LCDAs. In our case, four combinations of the three-particle LCDAs
are relevant

Φ3 = ΨV −ΨA ,

Φ4 = ΨV +ΨA , Ψ4 = ΨV −XA , Ψ̃4 = −ΨA + X̃A , (3.14)

which are of twist-3 and twist-4, respectively. After using (3.8) and applying the
higher-twist definitions (3.9)–(3.12), the 1/Eγ term (3.6) in position space becomes

T 1/Eγ =
eQufBmB

2π2

∫
d4x

eipx

x4
(vx)

×
{
Φ+(vx) + x2G+(vx)−

x2

2(vx)2
{
Φ+(vx)− Φ−(vx)

}
+
x2

4

∫ 1

0

du
[
2uΦ3 + (2u− 2)Φ4 + (2u− 1)Ψ4 − Ψ̃4

]
(vx, uvx)

}
. (3.15)

We perform the Fourier transformation using the integrals in Appendix B.1. For the
1/Eγ contribution to ξS, we find

ξ
1/Eγ

S (Eγ, p
2) =

eQufBmB

4E2
γ

{∫ ∞

0

4E2
γdω

(2Eγω − p2)2
[ω2ϕ+(ω)− 4g+(ω)] (3.16)

+ 2

∫ ∞

0

2Eγdω

2Eγω − p2

(
− ωϕ+(ω) +

∫ ω

0

dω′[ϕ+ − ϕ−](ω
′)

)

+

∫ ∞

0

dω1

∫ ∞

0

dω2

(
4E2

γ [ψ4 + ψ̃4 + 2ϕ4](ω1, ω2)

(2Eγω1 − p2)(2Eγ(ω1 + ω2)− p2)

+
2

ω2

[ϕ3 + ϕ4 + ψ4](ω1, ω2)

[
2Eγ

2Eγ(ω1 + ω2)− p2
− 1

ω2

ln
2Eγ(ω1 + ω2)− p2

2Eγω1 − p2

])}
.
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3.1 Higher-twist corrections

Opposed to the real photon limit p2 → 0, the denominator is regularized by the off-
shellness p2 < 0, so that all integrals are endpoint finite. To our accuracy, we assume
the tree-level normalization in (3.10) and neglect four-particle contributions like qGGhv
or qqqhv. The latter implies that we can further simplify the above expressions using
the equation of motion for the light fields, commonly referred to as Wandzura-Wilczek
(WW) relations, see [124]. Imposing the relations from Appendix B.2, the result in
(3.17) drastically simplifies to

ξ
1/Eγ

S (Eγ, p
2) =

eQufBmB

4E2
γ

{
Λ̄

λB(Eγ, p2)
+

∫ ∞

0

2Eγdω

2Eγω − p2

∫ ω

0

dω′[ϕ+ − ϕ−](ω
′)

+

∫ ∞

0

2Eγdω

2Eγω − p2

[
ω2 d

dω
ϕ+(ω)− 8

d

dω
g+(ω)− ω[ϕ+ + ϕ−](ω)

]
+

∫ ∞

0

2Eγdω1

2Eγω1 − p2

∫ ∞

0

2Eγdω2

2Eγ(ω1 + ω2)− p2
[ψ + ψ̃4 + 2ϕ4](ω1, ω2)

}
. (3.17)

To calculate the 1/mb-corrections, we only require the leading term of the propaga-
tor in (3.8) since the corresponding term already enters with a factor 1/mb from the
equation of motion of the heavy quark field hv. We eliminate the derivative acting on
hv in (3.7) by using the HQET operator identity [125]

q̄(x)ΓD⃗λhv(0) = ∂λ[q̄(x)Γhv(0)]−
(

∂

∂xλ
q̄(x)

)
Γhv(0)

− i

∫ 1

0

duūq̄(x)gsGλρ(ux)x
ρΓhv(0) , (3.18)

where ū = 1− u. Note that the derivative in the first term on the right-hand side acts
on the entire operator [q̄(x)Γhv(0)]. Taking the B to vacuum matrix, this contribution
equals 〈

0
∣∣∂λ[q̄(x)Γhv(0)]∣∣B̄(v)

〉
= lim

y→0

∂

∂yλ
〈
0
∣∣q̄(x+ y)Γhv(y)

∣∣B̄〉
= lim

y→0

∂

∂yλ
e−iΛ̄vy

〈
0
∣∣q̄(x)Γhv(0)∣∣B̄〉

= −iΛ̄vλ
〈
0
∣∣q̄(x)Γhv(0)∣∣B̄(v)

〉
. (3.19)

Similar to the 1/Eγ case, we evaluate the matrix element together with the latter two
terms of (3.18) by applying the LCDA definitions above. In total, we obtain

T 1/mb =
eQufBmB

4π2mb

∫
d4x

eipx

x4
vx

{
Λ̄Φ+(vx)− iΦ′

+(vx)

− i

vx
(Φ+ − Φ−)(vx) + 2ivx

∫ 1

0

duūΦ3(vx, uvx)

}
, (3.20)
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3. Subleading effects in B-meson correlators

where the prime in the first line denotes the derivative with respect to the position
space variable vx. After performing Fourier transformation and applying the WW
relations, the contribution to the scalar form factor reads

ξ
1/mb

S (Eγ, p
2) =

eQufBmB

4mbEγ

{
Λ̄

λB(Eγ, p2)
−
∫ ∞

0

dω
2Eγω[ϕ+ + ϕ−](ω)

2Eγω − p2

+ 2

∫ ∞

0

2Eγdω1

2Eγω1 − p2

∫ ∞

0

2Eγdω1

2Eγ(ω1 + ω2)− p2
ϕ3(ω1, ω2) . (3.21)

Note that we neglected the photon emission from the b-quark in (3.20) and (3.21),
which we compute separately. In this case, the correlation function can be matched to

T (b) = −eQdfBmB

2Eγmb

(vp)

(
1− 2mb

Eγ

)
, (3.22)

ξ
(b)
S (Eγ, p

2) =
eQdfBmB

2Eγmb

(
1− 2mb

Eγ

)
. (3.23)

Without the tree-level approximation, this result was already stated in (3.1).

3.1.1 Results for the (axial-)vector case

The derivation for the NLP contributions for the vector form factors in (3.3) and
(3.4) follows the same arguments as for the scalar case. Rather than giving a precise
derivation, we summarize the results which in part have been presented in [47]. In
position space, we obtain

T 1/Eγ
µν =

eQufBmB

2π2

∫
d4x

eipx

x4
[
− ϵµνρσx

ρvσ + i(vx)gµν
]

×
{
Φ+(vx) + x2G+(vx)−

x2

4

∫ 1

0

du
[
(2u− 1)Ψ4 − Ψ̃4

]
(vx, uvx)

}
, (3.24)

T 1/mb
µν =

eQufBmB

4π2mb

∫
d4x

eipx

x4
[ϵµνλρx

λvρ − i(vx)gµν ]

{
− Λ̄Φ+(vx) + iΦ′

+(vx)

+
i

vx
(Φ+ − Φ−)(vx)− 2i(vx)

∫ 1

0

duūΦ3(vx, uvx)

}
, (3.25)

T (b)
µν =

eQdfBmB

2Eγmb

[ϵµνλρp
λvρ + i(vp)gµν ]Φ+(0;µ) , (3.26)

where we neglected terms proportional to pµ since they do not contribute to the form
factors FV and FA. We find the symmetry-preserving contribution ξ and symmetry-
breaking part ∆ξ defined in (3.3) and (3.4) by performing the Fourier transformation
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3.1 Higher-twist corrections

and compare the result with the definition in (1.3). For the tree-level and WW ap-
proximation, we find

ξ1/Eγ =
eQufBmB

4E2
γ

{
− 2 +

∫ ∞

0

2Eγdω

2Eγω − p2
ωϕ+(ω) + 2

∫ ∞

0

dω ln

(
ω − p2

2Eγ

)
ϕt3
− (ω)

−
∫ ∞

0

2Eγdω1

2Eγω1 − p2

∫ ∞

0

2Eγdω2

2Eγω2 − p2
[ψ4 + ψ̃4](ω1, ω2)

[
1− p2

2Eγ(ω1 + ω2)− p2

]}
,

(3.27)

∆ξ1/Eγ =
eQufBmB

4E2
γ

∫ ∞

0

dω
2Eγdω

2Eγω − p2
ωϕ+(ω) , (3.28)

and

ξ1/mb = ξ
1/mb

S , ∆ξ1/mb = 0 , ξ(b) = 0 , ∆ξ(b) =
eQdfBmB

2Eγmb

. (3.29)

We emphasize that the 1/mb corrections in (3.29) agree to the previous scalar result
(3.21). Within our approximation, we observe that no endpoint-divergent convolutions
appear in the results for the scalar and vector form factors.

3.1.2 Twist-5 and twist-6 contributions

In addition to the twist-3 and twist-4 contributions, there are some terms of twist-5
and twist-6 that give rise to 1/E2

γ corrections entering ξS, ξ and ∆ξ. The correspond-
ing tree-level diagrams are depicted in Fig. 3.1 and involve the insertion of the ⟨ūu⟩
vacuum condensate. In diagrams (a)–(d), the exchanged gluon has hard-collinear vir-
tuality. Hence, we can calculate these contributions using standard methods, such as
the projector method discussed in Appendix C.2. Out of the four diagrams, we find
that only diagram (a) contributes at O(1/E2

γ) with

ξ
(a)
S,tw56 = −ξ(a)tw56 = −eQufBmBg

2
sCF ⟨ūu⟩

12p2Eγ

∫ ∞

0

dω

2Eγω − p2
ϕWW
− (ω) . (3.30)

At this accuracy, we neglect the twist-3 contribution of ϕ−, so that only the WW part
appears in the above results. The gluon exchanged in diagrams (e) and (f) is soft and
thus, we can not extract the condensate term perturbatively. Instead, we again use
the expansion of the hard-collinear propagator in a soft background. For diagram (e),
there are two relevant terms in this expansion. In d space-time dimensions, they read

⟨0|T{qhc(x), q̄hc(x)}|0⟩ ⊃
Γ
(
d
2
− 1
)

8π2(−x2) d
2
−1

∫ 1

0

duuū/xgs(DλG
λρ)(ux)xρ

+
Γ
(
d
2
− 2
)

16π2(−x2) d
2
−2

∫ 1

0

du

(
uū− 1

2

)
gs(DλG

λρ)(ux)γρ . (3.31)
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3. Subleading effects in B-meson correlators

(a) (b) (c)

(d) (e) (f)

Figure 3.1: O(αs) corrections with one insertion of the vacuum condensate ⟨ūu⟩.

After using the equation of motion (DλG
λρ)a = −gsq̄γρT aq, we obtain four-quark

operators of the form [ūu][ūb], in which we replace uαūβ → −δαβ⟨ūu⟩/12. Performing
the Fourier transformation with the help of Appendix B.1, we find

ξ
(e)
S,tw56 = −eQufBmBg

2
sCF ⟨ūu⟩

12p2Eγ

∫ ∞

0

dω

2Eγω − p2
[ϕ+ + ϕWW

− ](ω) , (3.32)

ξ
(e)
tw56 = −eQufBmBg

2
sCF ⟨ūu⟩

24p2Eγ

∫ ∞

0

dω

2Eγω − p2
ϕWW
− (ω) , (3.33)

∆ξ
(e)
tw56 =

eQufBmBg
2
sCF ⟨ūu⟩

24p2Eγ

∫ ∞

0

dω

2Eγω − p2
ϕ+(ω) . (3.34)

Diagram (f) can be obtained in a hybrid approach using the O(1/x2) terms in (3.8) and
inserting one QCD interaction vertex for the b-quark, which produces a hard-collinear
heavy-quark propagator. This procedure ensures that the exchanged gluon is soft, but
does not provide an explicit condensate contribution. In fact, the corresponding term
is part of the twist-5 amplitude g− and hence at least O(1/E3

γ).

3.2 Dispersion relation

For soft contributions from x2 ∼ 1/Λ2
QCD, the hadronic matrix elements cannot be

evaluated by an OPE in the heavy quark limit. However, we can relate the form
factors at negative p2 < 0 to the physical spectrum using a dispersion relation. This
approach has been introduced for the γγ∗ → π form factor in [126] and applied to the
B̄ → γℓν decay in [47, 127]. Again, we only consider the analysis of the scalar form
factor to keep the discussion simple as the results for the vector case follow by simple
replacements.
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3.2 Dispersion relation

The physical spectrum contains cuts and poles along the positive real p2 axis cor-
responding to single particle and bound states. To factor out these contributions, we
insert a complete set of states between the currents in (2.1) so that

T (p, q) =

∫
d4xeipx

∑∫
X

{
θ(x0)

〈
0
∣∣jem(x)∣∣X〉〈X∣∣jweak(0)∣∣B̄(p+ q)

〉
+ θ(−x0)

〈
0
∣∣jweak(0)∣∣X〉〈X∣∣jem(x)∣∣B̄(p+ q)

〉}
=
∑∫
X

i(2π)3δ(3)(p⃗− p⃗X)

p0 − p0X + i0

〈
0
∣∣jem(0)∣∣X〉〈X∣∣jweak(0)∣∣B̄(p+ q)

〉
+ . . . , (3.35)

where the Heaviside functions θ(±x0) originates from the time-ordered product [128].
In the second line, we performed the position space integral after using translational
invariance. The omitted term corresponds to the second integration for x0 < 0 and
contains a factor of p0+p0X−i0 in the denominator. Since p0, p0X > 0, this term will not
contribute to the dispersion relation. We take the imaginary part of (3.35) to obtain
the spectral representation

ImF had
S (Eγ, p

2) =
i

2Eγ

∑∫
X

(2π)4δ(4)(p− pX)
〈
0
∣∣jem(0)∣∣X〉〈X∣∣jweak(0)∣∣B̄(p+ q)

〉
= πfσFB→σ(Eγ, p

2) δ(p2 −m2
σ) + θ(p2 − s0)ImF

had
S (Eγ, p

2) . (3.36)

We singled out the lowest-lying scalar resonance σ, sometimes referred to as f0(500),
with mass mσ in the narrow-width approximation [15]. The parameter s0 defines an
effective continuum threshold. To find the last line, we further defined the scalar meson
decay constant and the B → σ form factor by〈

0
∣∣jem(0)∣∣σ(p)〉 = −ifσmσ , (3.37)

〈
σ(p)

∣∣jweak(0)∣∣B̄(p+ q)
〉
=

vp

mσ

FB→σ(Eγ, p
2) . (3.38)

Note that the additional factor of i ensures that the matrix element i⟨0|jem|σ⟩ is real.
The spectral representation (3.36) shows that there are no hadronic contributions for
p2 < 0. We can therefore relate the form factor for negative p2 to the physical spectrum
using Cauchy’s integral theorem and deforming the contour to enclose the discontinu-
ities on the positive real p2-axis. We find

F had
S (Eγ, p

2) =
fSFB→σ(Eγ, p

2 = m2
σ)

m2
σ − p2

+
1

π

∫ ∞

s0

ds
ImF had

S (Eγ, s)

s− p2
. (3.39)

We neglect the m2
σ dependence in the factor FB→σ(Eγ, p

2 = m2
σ) = FB→σ(Eγ) in the

following. In Chapter 2, we calculated the scalar form factor for hard-collinear photon
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3. Subleading effects in B-meson correlators

momentum using QCD factorization. Above the threshold s0, we assume that the
continuum can be approximated by the partonic model ImF had

S = ImFQCDF
S , to which

we refer as quark-hadron duality. For p2 < 0, we observe that the jet function (2.84)
does not contain imaginary parts from the hard-collinear logarithms. Therefore, we
obtain a similar dispersion relation to (3.39)

FQCDF
S (Eγ, p

2) =
1

π

∫ ∞

0

ds
ImFQCDF

S (Eγ, s)

s− p2
, (3.40)

where ImF (s) = (F (s + i0) − F (s − i0)/(2i). We emphasize that no subtraction
term in the dispersion relation appears due to the asymptotic behaviour of the QCD
factorization result for p2 → ∞. Both the hadronic and the perturbative form factor
can be related by a Borel transformation in the variable p2. This transformation acts
on an arbitrary function F (p2) as [129]

BM2F (p2) = lim
−p2,n→∞

−p2/n=M2

(−p2)n+1

n!

(
d

dp2

)n

F (p2) . (3.41)

For p2 → ∞, we assume that the hadronic correlator coincides with the QCD factor-
ization due to the absence of particle poles and continuum cuts. Hence, we equate the
Borel transformed expressions for (3.39) and (3.40)

BM2F had
S (Eγ, p

2) = BM2FQCDF
S (Eγ, p

2) . (3.42)

The transformation (3.41) acts on the form factor denominators as

BM2

(
1

(s− p2)n

)
=

1

(n− 1)!

exp
(
− s

M2

)
M2(n−1)

(3.43)

for n > 1 and thus trades the variable p2 for the Borel parameter M . Physically,
the Borel parameter exponentially suppresses contributions from higher states in the
continuum. It therefore improves the theoretical prediction as it reduces the error of
the quark-hadron duality assumption. In practice, the parameter is chosen to be of
the order of the hard-collinear scale and varied in a small numerical window to ensure
the independence of the result on M . We discuss the choice of the Borel parameter
in Chapter 6. After subtracting the continuum contribution from the left-hand side of
(3.42), we find

fσFB→σ(Eγ) =
1

π

∫ s0

0

ds e−(s−m2
σ)/M

2

ImFQCDF
S (Eγ, s) . (3.44)

We insert (3.44) into (3.39) and obtain

FS(Eγ, p
2) =

1

π

∫ ∞

s0

ds

s− p2
ImFQCDF

S (Eγ, s)
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3.3 Soft corrections

+
1

π

∫ s0

0

ds

m2
σ − p2

ImFQCDF
S (Eγ, s) e

−(s−m2
σ)/M

2

= FQCDF
S (Eγ, p

2) + ξsoftS (Eγ, p
2) . (3.45)

In the last line, we added and subtracted the integral
∫ s0
0

to recover the QCD factor-
ization result in (3.40). We conclude that the remaining term ξsoftS entirely originates
from soft interactions. The definition

ξsoftS (Eγ, p
2) =

1

π

∫ s0

0

ds

s− p2

[ s− p2

m2
σ − p2

e−(s−m2
σ)/M

2 − 1
]
ImFQCDF

S (Eγ, s) (3.46)

=

∫ s0
2Eγ

0

dω′

2Eγω′ − p2

[2Eγω
′ − p2

m2
σ − p2

e−(2Eγω′−m2
σ)/M

2 − 1
]
Φeff

S (ω′;µ)

holds for arbitrary p2 < 0, while the imaginary part of the QCD factorization form
factor FQCDF

S (Eγ, s) is calculated for hard-collinear s > 0. For later purposes, we
parametrized the integral in the second line in terms of the variable ω′ = s/2Eγ. We
defined the effective function

Φeff
S (ω′;µ) =

2Eγ

π
ImFQCDF

S (Eγ, 2Eγω
′) , (3.47)

which turns out to be equivalent to the B-meson LCDA at LO in the factorization
approach. At NLO, the LCDA gets modified due to hard-collinear corrections from
the jet function.

We remark that (3.46) represents the soft correction to the scalar form factor FS.
For the (axial-)vector case, the derivation follows almost the exact same steps. The
main difference is the appearance of vector currents in (3.35), so that the vector meson
resonances ρ and ω instead of σ contribute as the lowest-lying resonance. We combine
both contributions into one generalized form factor with equal mass mρ ≈ mω. The
corresponding formula reads

ξsoft{V,A}(Eγ, p
2) =

∫ r0
2Eγ

0

dω′

2Eγω′ − p2

[2Eγω
′ − p2

m2
ρ − p2

e−(2Eγω′−m2
ρ)/M

2 − 1
]
Φeff

{V,A}(ω
′;µ) ,

Φeff
{V,A}(ω

′;µ) =
2Eγ

π
ImFQCDF

{V,A} (Eγ, 2Eγω
′) , (3.48)

where the indices refer to the contributions from V and A that have to be matched
onto the ξ and ∆ξ parametrization in (3.3) and (3.4). Note that (3.48) can be obtained
from (3.46) upon replacing mσ → mρ and s0 → r0. The latter accounts for a different
continuum threshold in the physical spectrum of scalar and vector mesons.

3.3 Soft corrections

In this section, we present the result for the soft corrections induced by the LP factor-
ization formula and the higher-twist results in Sec. 3.1 for both scalar and (axial-)vector
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3. Subleading effects in B-meson correlators

case. For the latter, we require the generalization to (1.7) for an off-shell photon with
p2 < 0. We restrict ourselves to the transverse part of the correlation function T⊥

µν ,
in which the currents are given by γ⊥µ ⊗ γ⊥ν (1 − γ5). The corresponding factorization
theorem acquires a similar form to (2.78):

F{V,A}(Eγ, p
2) = eQufBmBK

−1(µ)C
(A0)
V (Eγ;µ)

∫ ∞

0

dω

2Eγω − p2
J(2Eγω, p

2;µ)ϕ+(ω;µ) .

(3.49)

We remark that the coefficient C(A0)
V in this formula in fact refers to the matching

coefficient of the heavy-to-light current from QCD to SCET since the electromagnetic
and weak vector currents do not require UV renormalization in QCD. Both matching
coefficients can be found in the literature [108,115] and are given by

C
(A0)
V (Eγ;µ) = 1 +

αsCF

4π

(
− 5 log

µ

mb

− 2 log2
µ

2Eγ

+ 2Li2
(
1− 1

r

)
− 6− π2

12

+ log2 r +
2− 3r

1− r
log r

)
, (3.50)

J(2Eγω, p
2;µ) = 1 +

αsCF

4π

(
ln2 µ2

2Eγω − p2
− π2

6
− 1

− p2

2Eγω
ln
p2 − 2Eγω

p2

(
ln

µ2

−p2
+ ln

µ2

2Eγω − p2
+ 3

))
. (3.51)

For the longitudinal components, the formula (1.7) admits a more complicated struc-
ture which we do not consider, see [46].

3.3.1 LP contributions

To calculate the soft corrections from the LP factorization up to NLO in (2.78) and
(3.49), we use the identities from Appendix D.1. In both cases, the soft form factor
takes the form

ξsoftS,NLO(Eγ, p
2) = eQufBmBK

−1(µ)CS(Eγ;µ) (3.52)

×
∫ s0

2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
σ − p2

e−(2Eγω′−m2
σ)/M

2 − 1

]
ϕeff
S (ω′;µ) ,

ξsoftNLO(Eγ, p
2) = eQufBmBK

−1(µ)C
(A0)
V (Eγ;µ) (3.53)

×
∫ r0

2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
ρ − p2

e−(2Eγω′−m2
ρ)/M

2 − 1

]
ϕeff(ω′;µ) ,

∆ξsoftNLO(Eγ, p
2) = 0 . (3.54)
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3.3 Soft corrections

For convenience, we redefined (3.47) to Φeff
S = eQufBmBK

−1C ϕeff
S . For the scalar case,

the effective function is given by

ϕeff
S (ω′;µ) = ϕ+(ω

′;µ) +
αs(µ)CF

4π

{(
ln2 µ2

2Eγω′ + 3 ln
µ2

2Eγω′ +
π2

6
+ 5
)
ϕ+(ω

′;µ)

+ 2 ln
µ2

2Eγω′

∫ ∞

ω′
dω ω′ ln

ω − ω′

ω′
d

dω

ϕ+(ω;µ)

ω

−
(
2 ln

µ2

2Eγω′ + 3
)∫ ω′

0

dω ln
ω′ − ω

ω′
d

dω
ϕ+(ω;µ)

+

∫ ω′

0

dω ln2 ω
′ − ω

ω′
d

dω

[ω′

ω
ϕ+(ω;µ) + ϕ+(ω;µ)

]}
. (3.55)

For the vector case, we have

ϕeff(ω′;µ) = ϕ+(ω
′;µ) +

αs(µ)CF

4π

{(
ln2 µ2

2Eγω′ +
π2

6
− 1
)
ϕ+(ω

′;µ)

+
(
2 ln

µ2

2Eγω′ + 3
)∫ ∞

ω′
dω ω′ ln

ω − ω′

ω′
d

dω

ϕ+(ω;µ)

ω

− 2 ln
µ2

2Eγω′

∫ ω′

0

dω ln
ω′ − ω

ω′
d

dω
ϕ+(ω;µ)

+

∫ ω′

0

dω ln2 ω
′ − ω

ω′
d

dω

[ω′

ω
ϕ+(ω;µ) + ϕ+(ω;µ)

]}
. (3.56)

Generally, we consider the hard matching coefficients CS, CV and K as well as the
B-meson LCDA in (3.52) and (3.53) to include the resummed evolution factors up
to NLL accuracy based on the discussion in Sec. 2.5. To this end, we recall that
the RGE for the scalar coefficient slightly differs from [107] due to the additional UV
renormalization of the scalar electromagnetic current in QCD in the correlation function
(2.1). The corresponding µ-dependence is compensated by the single-logarithmic term
in the scalar jet function (2.84).

3.3.2 NLP contributions

The higher-twist contributions correct the QCD factorization result at NLP and there-
fore enter the soft form factor through the dispersion relation. Up to twist-4, we define

ξsoftS,tw34(Eγ, p
2) =

eQufBmB

2Eγ

∫ s0
2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
σ − p2

e−(2Eγω′−m2
σ)/M

2 − 1

]
ΞS,1(ω

′)

+
eQufBmB

2mb

∫ s0
2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
σ − p2

e−(2Eγω′−m2
σ)/M

2 − 1

]
ΞS,2(ω

′) . (3.57)
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3. Subleading effects in B-meson correlators

An analogous definition holds for the vector case upon replacing s0 → r0, mσ → mρ

ξsofttw34(Eγ, p
2) =

eQufBmB

2Eγ

∫ r0
2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
ρ − p2

e−(2Eγω′−m2
ρ)/M

2 − 1

]
Ξ1(ω

′)

+
eQufBmB

2mb

∫ r0
2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
ρ − p2

e−(2Eγω′−m2
ρ)/M

2 − 1

]
Ξ2(ω

′) . (3.58)

The coefficient functions are calculated from the results in Sec. 3.1, where we again use
the relations from the Appendices B.2 and D.1. From (3.17), (3.21), (3.27) and (3.29),
we obtain

ΞS,1(ω) = (Λ̄− ω)ϕ+(ω)− 2ωϕWW
− (ω) + ωϕt3

− (ω)−
∫ ω

0

dω′ϕt3
− (ω

′) (3.59)

+

∫ ∞

0

dω2

ω2

[ψ4 + ψ̃4 + 2ϕ4](ω, ω2)−
∫ ω

0

dω2

ω2

[ψ4 + ψ̃4 + 2ϕ4](ω − ω2, ω2) ,

ΞS,2(ω) = (Λ̄− ω)ϕ+(ω)− ωϕ−(ω) + 2

∫ ∞

0

dω2

ω2

ϕ3(ω, ω2)− 2

∫ ω

0

dω2

ω2

ϕ3(ω − ω2, ω2) ,

Ξ1(ω) = −2

∫ ω

0

dω′ϕt3
− (ω

′)− 2ωϕWW
− (ω) +

d

dω
(ω2ϕ+(ω)) (3.60)

−
(∫ ω

0

dω1

∫ ∞

ω−ω1

dω2

ω2

∂

∂ω1

+

∫ ω

0

dω2

∫ ∞

ω−ω2

dω1

ω1

∂

∂ω2

)
[ψ4 + ψ̃4](ω1, ω2) ,

Ξ2(ω) = ΞS,2(ω) . (3.61)

For the symmetry-breaking term (3.28), we find

∆ξsofttw34 =
eQufBmB

2Eγ

∫ r0
2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
ρ − p2

e−(2Eγω′−m2
ρ)/M

2 − 1

]
ω′ϕ+(ω

′) .

(3.62)

The twist-5 and twist-6 terms in (3.30) and (3.32)–(3.34) sum up to

ξsoftS,tw56 =
−Nu

12p2Eγ

∫ s0
2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
σ − p2

e−(2Eγω′−m2
σ)/M

2 − 1

]
× [ϕ+ + 2ϕWW

− ](ω′) , (3.63)

ξsofttw56 =
Nu

24p2Eγ

∫ r0
2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
ρ − p2

e−(2Eγω′−m2
ρ)/M

2 − 1

]
ϕWW
− (ω′) , (3.64)

∆ξsofttw56 =
Nu

24p2Eγ

∫ r0
2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
ρ − p2

e−(2Eγω′−m2
ρ)/M

2 − 1

]
ϕ+(ω

′) , (3.65)

where we introduced the normalization constant Nu ≡ eQufBmBg
2
sCF ⟨ūu⟩ for conve-

nience. This completes our calculation of the NLP corrections at O(1/E2
γ). We present

first qualitative numerical estimates in Chapter 6.
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Chapter 4

QCD×QED Factorization

The QCD factorization framework as it was presented in Chapter 2 is the state-of-
the-art tool to parametrize and calculate precision observables of non-leptonic decays.
Although its technical difficulties at NLP, the results compete up to now with the ex-
perimental precision from LHCb and Belle II. However, to obtain profound predictions
in the future, it is necessary to improve the theoretical calculations beyond the LP
accuracy in QCD-only. As discussed at the beginning of Chapter 3, there are ongoing
efforts to derive a consistent framework for QCD factorization at NLP in the heavy-
quark expansion which is accompanied by higher-order perturbative calculations for
the matching coefficient functions at LP.

So far, QED corrections in B decays have barely been investigated even though they
could be of similar size as NLP and O(α2

s) corrections. In non-leptonic B decays, QED
effects are usually taken into account by dressing the QCD-only amplitude with Bloch-
Nordsieck factors below the scale ΛQCD that resum collinear and soft logarithms up to
the B-meson mass scale mB. This approach assumes the B meson to be point-like up
to distances of order 1/mB, which is conceptually wrong above the scale ΛQCD. In this
regime, photons can resolve the partonic substructure of hadrons that are typically
confined to a size of order 1/ΛQCD. Beyond the scale mB, one furthermore needs to
include QED effects as well as their running in the Wilson coefficients of the weak
effective operators.

In this chapter, we address the incomplete treatment of QED effects in charmless,
non-leptonic B̄ →M1M2 decays into light final-state mesons Mi = π,K. Note that the
meson M1 is specifically defined to pick up the spectator quark. Our analysis is based
on [66] and the follow-up publications [68, 130] that consider the renormalization of
LCDAs for light and heavy mesons. For decays into heavy (charmed) mesons, we refer
to [67]. We consider the following three separate aspects depending on their energy
range:

i) Above the scale mB, QED effects can be added to the Wilson coefficients of the
weak effective operators in a standard manner by using the results of [131].
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4. QCD×QED Factorization

ii) Between the scale mB and ΛQCD, we can extend the QCD factorization approach,
schematically given in (1.10), to a combined QCD×QED factorization formula
that takes a similar form as in QCD-only

〈
M1M2

∣∣Qi

∣∣B̄〉 = im2
B

{
FBM1

Q2
(0)

∫ 1

0

du T I
i,Q2

fM2ΦM2(u) (4.1)

+

∫ 1

0

du dv

∫ ∞

−∞
dω T II

i,Q2
(u, v, ω)fM1ΦM1(v)fM2ΦM2(u)fBΦB,⊗(ω)

}
.

Qi denotes an operator of the weak effective Hamiltonian, mediating a b → q
transition. Here, the mesons M1 and M2 are strictly assumed to be massless and
hence carry the energy of mB/2 each while flying in back-to-back directions.

iii) Below the scale ΛQCD, the meson masses cannot be neglected. We further include
an arbitrary number of ultrasoft photons in the final state of B̄ →M1M2(γ) with
total energy ∆E ≪ ΛQCD. This is necessary to render the entire process IR finite
in QED since the non-radiative amplitude

〈
M1M2

∣∣Qi

∣∣B〉 becomes IR divergent
once virtual QED corrections are considered. The energy difference allows for
perturbative calculations in a theory of point-like mesons [62].

We emphasize that the above statements are valid at the corresponding scales up
to a small window below and above a few times ΛQCD. In this energy range, QED
interacts with a strongly coupled system that requires a non-perturbative matching to
the effective theory environment.

The second point ii), accounting for the structure-dependent contributions, turns
out to be the most difficult and novel part which will be the main focus of this chapter.
The formula (4.1) describes factorization for the four possible final-state charge combi-
nations ⊗ = (Q1, Q2) = (0, 0), (−, 0), (0,−), (+,−). The flipped combinations can be
obtained by CP invariance of the full QCD×QED theory. Compared to QCD-only, the
essential difference is that the form factor FBM1 and the hard scattering kernels T I/II

depend on the electric charge Q2 and implicitly on the direction of flight of the second
meson M2 that is produced by the weak interaction. The QED-generalized definitions
of the light and heavy meson LCDAs ΦM and ΦB,⊗ inherit the same attributes but
require an additional modification depending on the charge combination of the exter-
nal states. While for light mesons these generalizations are quite natural, the B-meson
LCDA becomes a rather complicated object that contains soft physics at the scale
ΛQCD. Almost every modification in this context is related to the non-decoupling of
soft photons from electrically charged mesons. For the heavy meson LCDA, this leads
to the appearance of soft rescattering phases and it therefore should rather be viewed
as a soft function to the process so that we omit the term “LCDA” in the following. To
this end, we conclude that the non-perturbative objects become process-dependent.

To prove the factorization formula (4.1), we derive the hard scattering kernels at
O(α0

sαem) by consecutively matching the full QCD×QED theory onto HQET×SCETI

and HQET×SCETII. Opposed to the radiative B̄ → γℓν decay discussed in Chapter 2,
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4.1 Matching equation

the external states are collinear objects, such that we need to distinguish between hard-
collinear and collinear modes in the process. SCETI therefore refers to a theory of light
fields including soft, collinear and hard-collinear scaling while SCETII only contains the
soft and collinear modes. We introduce the operator basis for both EFTs in Sec. 4.1
and discuss the SCETI matching in Sec. 4.2 alongside with the renormalization of
QED-generalized heavy-to-light currents and light-meson LCDAs. The matching onto
SCETII in Sec. 4.3 integrates out the hard-collinear modes and factorizes the spectator
scattering term in (4.1). We introduce soft rearrangement factors to consistently sep-
arate soft and collinear scales. The case of Q2 ̸= 0 is particularly interesting since soft
photons do not decouple from the B → M1 transition, which contains soft spectator
scattering contributions. In this case, the QED-generalized form factor FBM1 in SCET
can be replaced by a QCD×QED form factor of the semi-leptonic B̄ →M1ℓ

−ν̄ℓ decay.
We present the precise formalism for this replacement in Sec.4.2.4.

To address point iii), we introduce the ultrasoft function below ΛQCD in Sec. 4.5
that accounts for the real emission of an arbitrary number of ultrasoft photons with
total energy ∆E ≪ ΛQCD. For photons at this scale, perturbative calculations can be
done in an effective theory where mesons have point-like QED coupling. In a standard
framework, the IR singularities of virtual QED effects cancel with the corresponding
divergences from the phase space integration after calculating the decay width. This is
qualitatively different in QED where the non-perturbative objects entering (4.1) retain
the IR divergences of the non-radiative amplitude. In practice, we therefore consider
the form factors and LCDAs as well as the ultrasoft function as separately IR/UV
regularized objects. The resummation of the collinear and soft logarithms mMi

/ΛQCD

and ∆E/ΛQCD is subject of Chapter 5.

4.1 Matching equation

The B meson decays weakly into light final states through b → u transitions in the
effective Hamiltonian. Generally, there are many operators and topologies that con-
tribute to the decay into (non-leptonic) pseudoscalars, some of which we presented
in Fig. 1.2. We restrict ourselves to the case of current-current operators Q1,2 in the
Hamiltonian

Heff =
GF√
2
V ∗
uDVub (C1(ν)Q1 + C2(ν)Q2) + h.c. (4.2)

The generalization to other operators may follow in future works. We choose to work
within the CMM operator basis [132] where

Q1 = [ūγµT a(1− γ5)b][D̄γµT
a(1− γ5)u] ,

Q2 = [ūγµ(1− γ5)b][D̄γµ(1− γ5)u] . (4.3)

T a denotes the SU(3) colour generator in the fundamental representation and D = d, s
the down-type quark flavour. At tree level, the operator Q2 is generated after inte-
grating out the W boson and the operator Q1 is induced by renormalization. The
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4. QCD×QED Factorization

Q2

ub

ūD

a a

bb

Q2

Db

ūu

b

b

a

a

Figure 4.1: “Right” and “wrong” insertions of the operator Q2, respectively. The
indices a and b denote the colour flow.

Wilson coefficients C1,2(ν) include the QED corrections from the electroweak field con-
tent. Depending on the flavour structure, the insertion of an operator Qi is referred to
as “right” or “wrong” insertion corresponding to colour-allowed and colour-suppressed
amplitudes respectively, see Fig. 4.1. For neutral QM2 = 0, only the wrong insertion
contributes to the decay while for charged M2 the right insertion enters. At tree level,
the Dirac structure for the wrong insertion can be rearranged using (colour) Fierz
transformations, see equation (24) of [133].

4.1.1 SCETI operator basis

Both right and wrong insertions of Qi can be matched onto operators in the effective
theory. In Chapter 2, we presented the fundamental steps of this procedure in the sim-
ple framework of scalar currents. For the case at hand, the operators in HQET×SCETI

side are given by a combination of A0- and B1-type heavy-to-light currents and an anti-
collinear operator1

OI(t) = [χ̄
(q1)

C̄
(tn−)

/n−

2
(1− γ5)χ

(u)

C̄
(0)][χ̄

(q2)
C (0)/n+(1− γ5)hv(0)] , (4.4)

OIIγ(t, s) =
1

mb

[χ̄
(q1)

C̄
](tn−)

/n−

2
(1− γ5)χ

(u)

C̄
(0)][χ̄

(q2)
C (0)

/n+

2
/A⊥C(sn+)(1 + γ5)hv(0)] .

(4.5)

The gluon operator OIIg is obtained upon replacing /A⊥C → /G⊥C, where the latter was
defined in (2.52). In the anti-collinear fermion fields, the u-quark flavour of the outgoing
anti-quark is fixed while q1,2 = u, d, s are not restricted. The collinear Wilson line WC

in QCD-only from (2.48) gets multiplied by the corresponding QED exponential

W
(q)
C (x) = exp

{
iQqe

∫ 0

−∞
ds n+AC(x+ sn+)

}
WC(x) , (4.6)

1In [66] we distinguished between two operator types, depending on the total electric charge of the
meson M2. Here, we use a compact notation and only separate the results for the hard-scattering
kernels.
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4.1 Matching equation

where Qq = 2/3,−1/3 labels the up- and down-type electric quark charge. The fields
χC̄ and /A⊥C are the gauge-invariant building blocks defined in (2.52) with QED

χ
(q)
C = [W

(q)
C ]†ξ

(q)
C , Aµ

C⊥ = e

[
Aµ

C⊥ − i∂µ⊥n+AC

in+∂

]
. (4.7)

Note that the photon field is just the abelian version of the gluon field. For the anti-
collinear fields, analogous definitions and conventions with the replacements C → C̄
and n+ → n− apply. We recall that the labels C and C̄ refer to both collinear and
hard-collinear scalings given in Table 2.1. The labels c and c̄ solely correspond to the
(anti-)collinear λ-scaling.

The matching equation for each operator Qi is given by

Qi(0) =

∫
dt̂ H̃ I

i,Q2
(t̂)OI(t) +

∫
dt̂dŝ H̃ II

i,Q2
(t̂, ŝ)OII(t, s) . (4.8)

We emphasize that the right and wrong insertions of both operators Qi of the full
theory can be matched onto the same OI/II operators. The wrong insertion applies for
the case of Q2 = 0 and the right insertion for Q2 = −1. The difference is encoded in the
hard matching coefficients H I/II obtained from a partonic calculation. Their Fourier
transformation is given by

H I
i (u) =

∫
dt̂H̃ I

i (t̂)e
iut̂ , H II

i (u, v) =

∫
dt̂dŝH̃ II

i (t̂, ŝ)e
iut̂+iv̄ŝ , (4.9)

where 0 < u, v < 1 and t̂ = mBt and ŝ = mBs are the rescaled variables that involve
the hard scale associated to the large energy transfer. We omit the charge label Q2 in
the following until we present the final results.

A standard power counting analysis shows that the operators scale as OI ∼ λ3 and
OII ∼ λ7/2 when pure hard-collinear scaling for the fields is assumed. Hence, we would
naively expect the second operator to be power-suppressed. However, we require an
additional insertion of subleading Lξq Lagrangians with different powers to match the
quantum numbers of the external states

i

∫
d4xT{OI(t),L(1)

ξq (x)} ∼ i

∫
d4xT{OII(t, s),L(1/2)

ξq (x)} ∼ λ4 . (4.10)

This is related to the fact that the operator OII can be associated with the transverse
photon polarizations only as discussed in Appendix C.2. We conclude that both oper-
ators contribute at the same power. Note that after matching onto SCETII, the four
external light quarks of the outgoing mesons have collinear scalings ξc,c̄ ∼ λ so that
the power is reduced by another factor of λ2 in total and the operators count as O(λ6)
effectively. Furthermore, the external states scaling as λ−3/2 for the B meson and λ−2

for the light mesons contribute to the power counting.2 Altogether, the LP amplitude
therefore is of order O(λ5/2), consistent with QCD-only.
2This property follows from the normalization of light meson states. The light-meson mass introduces
an additional factor of λ compared to the heavy meson, see (2.62).
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4. QCD×QED Factorization

q2b

ūq1

q2b

ūq1

q2b

ūq1

q2b

ūq1

q2b

ūq1

q2b

ūq1

Figure 4.2: One-loop corrections to the four-point transition amplitude b → q1ūq2.
The box denotes a right or wrong insertion of the operators Q1 and Q2

in (4.3).

4.1.2 Hard region computation

The factorization in SCETI is based on integrating out the hard region in a method of
regions approach we discussed in Sec. 2.2. To calculate the hard region, we proceed in
complete analogy to the derivation in Chapter 2 and replace the external states in the
non-radiative matrix element in the partonic picture〈

M1(p)M2(q)
∣∣Qi

∣∣B̄(p+ q)
〉
→
〈
q̄(pq)q2(pq2)q1(qq1)ū(qu)

∣∣Qi

∣∣b(mbv)q̄s(l)
〉
. (4.11)

We work in the B-meson rest frame where pB = mBv, such that the momenta of
the two outgoing mesons are parametrized by pµ = EM1n

µ
− and qµ = EM2n

µ
+, where

EM1 = EM2 = mB/2 and nµ
± defined in (2.3). Most generally, the momenta of the

leading valence quark states can be parametrized by

pµb = mbv
µ + kµres , lµ = ω

nµ
+

2
+ lµ⊥ + l−

nµ
−

2
,

kµq1 = uEM2n
µ
+ + kµq1⊥ +

k2q1
2uEM2

nµ
−

2
, kµū = ūEM2n

µ
+ + kµū⊥ +

k2ū
2ūEM2

nµ
−

2
,

kµq2 = vEM1n
µ
+ + kµq2⊥ +

k2q2
2vEM1

nµ
+

2
, kµq̄ = v̄EM1n

µ
+ + kµq̄⊥ +

k2q̄
2v̄EM1

nµ
+

2
. (4.12)

In what follows, we can typically neglect the residual momentum kµres of the b-quark as
well as the transverse component of the (anti-)collinear quarks that are all of O(ΛQCD).
The off-shellness k2q for the light quarks has to be kept to regulate the soft and collinear
IR divergences in the soft and collinear matrix elements, even though they are of
subleading order O(Λ2

QCD).
The O(αem) corrections to (4.11) can arise from i) one-loop (form factor) and ii) tree-

level (spectator scattering) interactions, which have hard and hard-collinear virtualities
respectively. The spectator quark momentum l ∼ (λ, λ, λ) scales soft and appears
only in the spectator scattering term since it requires a hard-collinear interaction to
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4.1 Matching equation

turn collinear in the M1 final state. In this section, we focus on the hard one-loop
effects of the form factor terms i) and calculate the one-loop corrections to the four-
point amplitude b → q1ūq2. The corresponding Feynman diagrams are depicted in
Fig. 4.2. The hard-collinear spectator-scattering is computed in Sec. 4.4. To explain
the fundamental steps of the calculation, we restrict ourselves to the computation of
the hard region of the first diagram in Fig. 4.2 for the right insertion of the operator
Q2. For this particular case, the partonic calculation yields

R
(1a)
h = −ie2QdQq1µ̃

2ϵ

∫
ddk

(2π)d
1

[(k + kq1)
2 + i0][k2 + 2mbvk + i0][k2 + i0]

(4.13)

× [ū(kq2)γ
µ(1− γ5)(mb/v +mb + /kq1)γ

νu(pb)][ū(kq1)γν(/k + /kq1)γµ(1− γ5)v(kū)] ,

=
αemQdQq1

4π

[(
1

ϵUV
− 1

ϵ2
− 1

ϵ

(
2 + ln

µ2

m2
B

− 2 lnu

)
− 2− π2

12
+

2− 3u

ū
lnu− ln2 u

+ ln
ν2

m2
B

− 2 ln
µ2

m2
B

+ 2 lnu ln
µ2

m2
B

− 1

2
ln2 µ2

m2
B

+ 2Li2
(
− ū
u

))
⟨OI⟩+ 3

4ϵUV
⟨E I⟩

]
.

The results for the wrong insertion including the remaining diagrams can be found in
Appendix C.1. At LP, we do not distinguish between the b-quark pole mass mb and
the B-meson mass mB since the difference is O(λ1/2). We treat γ5 in the NDR scheme
and define the tree-level matrix elements in (4.13)

⟨OI⟩ = [ū(kq1)
/n−

2
(1− γ5)v(kū)][ū(kq2)n+(1− γ5)u(pb)] , (4.14)

⟨E I⟩ = [ū(kq1)
/n−

2
(1− γ5)γ

µ
⊥γ

ν
⊥v(kū)][ū(kq2)n+(1− γ5)γ⊥νγ⊥µu(pb)] . (4.15)

Note that the external spinors refer to the LP momentum components in (4.12) and
therefore coincide in QCD×QED and HQET×SCETI. Hence, we conclude that the
hard region can be reduced to two operator structures. The first term corresponds to
the operator OI defined in (4.4), while the second operator originates from an evanes-
cent contribution that was not present at tree level. At the one-loop order in d ̸= 4, it
cannot be removed by a Fierz transformation. Instead, we extend the operator basis
to include evanescent operators that account for “Fierz related” expressions. These
operators enter with a UV pole that requires renormalization and generally can enter
matrix elements ⟨Qi⟩ with finite terms of the form O(ϵ)/ϵUV. On the QCD×QED-side,
we therefore define the evanescent operators

E
(1)
1 = ūγµγνγρT a(1− γ5)b D̄γµγνγρT

a(1− γ5)u− 16Q1 ,

E
(1)
2 = ūγµγνγρ(1− γ5)b D̄γµγνγρ(1− γ5)u− 16Q2 , (4.16)

which vanish in d = 4 space-time dimensions. In the following, we show that the
renormalization of these operators removes the UV pole proportional to ⟨E I⟩ appearing
in the last line of (4.13).
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4.1.3 Renormalization of the hard region

In Chapter 2, we observed that the hard matching coefficient corresponds to the renor-
malized hard region, which included the external field and current renormalization. In
the present context, we additionally encounter UV divergent as well as finite terms
from the evanescent operators. To consistently renormalize the hard region, we follow
the procedure in [53]. The matrix element of an operator Qi takes the general form

⟨Qi⟩ =
{
A

(0)
i +

αem

4π

[
A

(1)
i + Z

(1)
ext A

(0)
i + Z

(1)
ij A

(0)
j

]
+O(α2

em)

} 〈
OI/II

〉(0)
, (4.17)

where ⟨O⟩(0) denotes HQET×SCETI operator at tree-level. At the one-loop order, the
tree-level factor A(0)

i is multiplied with the on-shell MS factors

Z
(1)
b = −Q

2
d

2

(
1

ϵUV

+
2

ϵ
+ 4 + ln

ν2

m2
b

+ 2 ln
µ2

m2
b

)
, (4.18)

Z(1)
q = −

Q2
q

2

(
1

ϵUV

− 1

ϵ
+ ln

ν2

µ2

)
. (4.19)

The light quark factor is strictly included for every q = q1, ū, q2, so that the external
factor Z(1)

ext = Z
(1)
b +

∑
q Z

(1)
q consists of four contributions in total. The remaining UV

divergences are absorbed into the current renormalization

Z
(1)
ij =

1

ϵUV

(
6QuQd 0 1

4
(Q2

u +Q2
d + 2QuQd) 0

0 6QuQd 0 1
4
(Q2

u +Q2
d + 2QuQd)

)
, (4.20)

where the coloumn index j refers to the extended operator basis (Q1, Q2, E
(1)
1 , E

(1)
2 ). We

emphasize that Z(1)
ij includes the renormalization for the evanescent operators defined

in (4.16). From (4.17), we can read off the hard matching coefficients

H
I/II(0)
i = A

(0)
i , (4.21)

H
I(1)
i = A

(1)
i +

(
Z

(1)
ext − Y (1)

)
A

(0)
i + Z

(1)
ij A

(0)
j . (4.22)

In the second line, we subtracted the factor Y (1) that removes the IR divergences in hard
region corresponding to the UV renormalization for the operator OI in HQET×SCETI.
We remark that (4.17) and (4.22) hold for both right and wrong insertion of the oper-
ators Qi and in particular for OI and OII simultaneously. Since the latter operator is
a tree-level contribution, we omitted the corresponding index in (4.22). In principle,
the evanescent contributions also need to be included for the wrong insertion on the
EFT side. However, the difference Y (1) − Ỹ (1) turns out to be O(ϵ) and can thus be
neglected since we renormalize the difference OI − ÕI to zero.
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4.2 SCETI factorization

4.2 SCETI factorization

To renormalize the hard region consistently, we need to determine the UV renormal-
ization in SCETI and therefore derive the operator renormalization Y (1) of OI/II. We
recall that at LP soft and (anti)-collinear modes interact separately through the leading
SCET Lagrangian (2.43). On the EFT side, both operators involve the anti-collinear
building block χ̄(q1)(tn−)/n−(1 − γ5)χ

(u)/2 that is multiplied to the A0- and B1-type
currents. We factorize both structures in (4.4) and (4.5) by applying the decoupling
transformation (2.67) to the anti-collinear fields

ξ
(q)

C̄
(x) → S(q)

n+
(x)ξ

(q)

C̄
(x) , Gµ

C̄
(x) → Sn+(x)G

(0)

C̄
(x)S†

n+
(x) . (4.23)

The QED-generalized soft Wilson line is defined by

S(q)
n±(x) = exp

{
−iQqe

∫ ∞

0

ds n±As(x+ sn±)

}
Sn±(x), (4.24)

where Sn± refers to the QCD definition in (2.49) with one exception: The decoupling
corresponds to outgoing (anti-)particles such that the i0-prescription must be adjusted.
Hence, we use

Sn±(x) → P exp

{
− igs

∫ ∞

0

ds n±Gs(x+ sn±)

}
. (4.25)

Note that the QCD part of the Wilson line (4.24) for the decoupling of Aµ

C̄
combines

to unity. Since U(1) is abelian, the anti-collinear photon field requires no decoupling
transformation. As a consequence, the anti-collinear building block factorizes from the
heavy-to-light currents. After decoupling, the SCETI operators read

OI(t) = [χ̄
(q1)

C̄
(tn−)

/n−

2
(1− γ5)χ

(u)

C̄
(0)][χ̄

(q2)
C (0)/n+(1− γ5)S

†(QM2
)

n+ hv(0)] , (4.26)

OIIγ(t, s) =
1

mb

[χ̄
(q1)

C̄
](tn−)

/n−

2
(1− γ5)χ

(u)

C̄
(0)]

× [χ̄
(q2)
C (0)

/n+

2
/A⊥C(sn+)(1 + γ5)S

†(QM2
)

n+ hv(0)] . (4.27)

The soft Wilson line S†(QM2
)

n+ = S
†(q1)
n+ S

(u)
n+ is the combination from the decoupling of the

anti-collinear fields and is located at the origin. The QCD part of this Wilson line can-
cels and the position space argument tn− in the first field has been multipole expanded.
Due to the factorization of the anti-collinear sector, we can split the renormalization
factor into two contributions

Y (1)(u, v) = Z
(1)
J δ(u− v) + Z

(1)

C̄
(u, v) . (4.28)

In QCD-only, the renormalization kernel (4.28) corresponds to the serparate divergent
parts of the soft-collinear and anti-collinear building blocks. As we see in the following,
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ū

q1

ū

q1

ū

q1

Figure 4.3: One-loop diagrams at O(αem) that contribute to the anomalous dimen-
sions of the operator (4.29).

this will not be the case for QED a priori since soft photons between the meson M2 and
the B →M1 transition do not decouple when M2 is electrically charged. Nevertheless,
the meson M2 can be already factorized at the scale mb due to the soft rearrangement
presented in 4.2.3.

4.2.1 Anti-collinear kernel

We first address the calculation of Z(1)

C̄
, that is the renormalization of the anti-collinear

operator

OC̄(u) =

∫
dt̂

2π
e−it̂u[χ̄

(q1)

C̄
(tn−)

/n−

2
(1− γ5)χ

(u)

C̄
(0)] , (4.29)

where t̂ = 2EM1t. The QED corrections involve three diagrams, depicted in Fig. 4.3.
We calculate the matrix elements with the external quark momenta in (4.12) and
neglect the transverse component. The off-shellness serves as a regulator for soft and
collinear IR divergences and has to be kept. Hence all poles are of UV nature. The
renormalization factor including the external MS field renormalization is defined by

Oren
C̄ (u) =

∫ 1

0

dv ZC̄(u, v;µ) Obare
C̄ (v) . (4.30)

The bare diagrams are given by

⟨OC̄⟩(1a) = 2ie2Qq1Qu⟨OC̄⟩(0)µ̃2ϵ

∫
ddk

(2π)d
(1− ϵ) k⃗2⊥ δ(u− v − n−k/2EM1)

[k2 + i0][(k − kq1)
2 + i0][(k + ku)2 + i0]

=
αemQq1Qu

4π

2

ϵ

{
θ(v − u)θ(u)

u

v
+ θ(u− v)

ū

v̄

}
⟨OC̄⟩(0) +O(ϵ0) , (4.31)

⟨OC̄⟩(1b) = 2ie2Qq1⟨OC̄⟩(0)

× µ̃2ϵ

∫
ddk

(2π)d
n−(k + kq1) (Quδ(u− v − n−k/2EM1)−Qq1δ(u− v))

[k2 + i0][n−k + i0][(k + kq1)
2 + i0]
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=

{
αemQq1Qu

4π
2Γ(ϵ)

(
4πµ̃2

−k2q1

)ϵ
θ(v − u)θ(u)

v

(
1− u

v

)−1−ϵ (u
v

)1−ϵ

−
αemQ

2
q1

4π

2Γ(ϵ)Γ(−ϵ)Γ(2− ϵ)

Γ(2− 2ϵ)

(
4πµ̃2

−k2q1

)ϵ

δ(u− v)

}
⟨OC̄⟩(0) +O(ϵ0) , (4.32)

⟨OC̄⟩(1c) = 2ie2Qu⟨OC̄⟩(0)

× µ̃2ϵ

∫
ddk

(2π)d
n−(k + ku) (Qq1δ(u− v + n−k/2EM1)−Quδ(u− v))

[k2 + i0][n−k + i0][(k + ku)2 + i0]

=

{
αemQq1Qu

4π
2Γ(ϵ)

(
4πµ̃2

−k2u

)ϵ
θ(u− v)

v̄

(
u− v

v̄

)−1−ϵ ( ū
v̄

)1−ϵ

− αemQ
2
u

4π

2Γ(ϵ)Γ(−ϵ)Γ(2− ϵ)

Γ(2− 2ϵ)

(
4πµ̃2

−k2u

)ϵ

δ(u− v)

}
⟨OC̄⟩(0) +O(ϵ0) . (4.33)

In the results above, the variable u refers to the Fourier-conjugate variable t of the anti-
collinear operator while v is the variable of the external momenta. To avoid confusion,
we note that we used u for the anti-collinear momenta before in the parametrization
(4.12).

The non-local terms proportional to θ(u − v) in (4.32) and (4.33) may contain ad-
ditional divergences, which can arise in the limit u→ v from the convolution with the
operator OC̄(u). We extract the true UV behaviour by introducing the plus-distribution
(in the variable u)∫ 1

0

du
[
. . .
](u)
+
f(u) ≡

∫ 1

0

du
[
. . .
]
(f(u)− f(v)) , (4.34)

which regulates divergences from the limit u → v. Then, the total result from (4.31)–
(4.33) including the light quark renormalization takes the form

V (u, v) = Qq1Qu

[(
1 +

1

v − u

)
u

v
θ(v − u) +

(
1 +

1

u− v

)
1− u

1− v
θ(u− v)

](u)
+

(4.35)

+ δ(u− v)

(
(Qq1 −Qu)

2

(
1

ϵ
+

3

4

)
+ (Qq1 −Qu)

(
Qq1 ln

µ2

−k2q1
−Qu ln

µ2

−k2ū

))
.

For convenience, we defined

Z
(1)

C̄
(u, v) = −2

ϵ
V (u, v) . (4.36)

For q1 = u, the meson is electrically neutral and the first line of (4.35) vanishes. In this
case, we obtain the ERBL evolution kernel [134–136] that describes the scale evolution
of light-meson LCDAs. From the neutral case, the QCD limit can be obtained by
sending αemQ

2
u → αsCF . For q1 = d, s when the meson is electrically charged, the
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4. QCD×QED Factorization

renormalization factor contains a 1/ϵ2 pole and depends on the off-shellness k2q1 and
k2u. The former implies that the LCDA kernel has a cusp logarithm. From the latter
follows that the anomalous dimension a priori is ill-defined since it depends on the IR
regulators. The corresponding logarithmic terms in (4.32) and (4.33) originate from
the limit where the photon momentum becomes soft. Hence, it can be interpreted as
a soft overlap with the remaining heavy-to-light operator. We discuss the cancellation
of the soft overlap contribution between the (anti-)collinear operators in Sec. 4.2.3.

4.2.2 Generalized heavy-to-light current

After the decoupling of the anti-collinear sector, the operator OI contains the QED-
generalized heavy-to-light current that we define as

J (A0)(0, 0) = χ̄
(q2)
C (0)/n+(1− γ5)S

†(QM2
)

n+ hv(0) . (4.37)

The operator renormalizes locally with J ren = Z
(1)
J J bare. As discussed below (4.27),

the soft Wilson line with charge QM2 originates from the anti-collinear q1- and u-quark
fields. It inherits the off-shellness of the external quark momenta, which can be seen
from a simple analysis of an outgoing anti-collinear propagator with incoming soft
momentum k

/kq1 − /k

(kq1 − k)2 + i0
≈

n−kq1
/n+

2

n−kq1(n+k − δc̄)
. (4.38)

Consequently, we need to replace n+k − i0 → n+k − δc̄ for the Feynman rule in the
soft Wilson line

−eQM2n
µ
+

n+k − δc̄
, δc̄ ≡

k2q1
(n−kq1)

+ i0 =
k2ū

(n−kū)
+ i0 , (4.39)

which arises from the first-order expansion S
†(QM2

)
n+ (0) ≈ 1 − eQM2

in+∂−i0
n+As(0) + O(e2).

This was already discussed in Appendix A of [60]. The definition of δc̄ in (4.39) imposes
a relation between the off-shellness of the q1- and the ū-quark of the meson M2. At first
sight, those should be independent, however, we require equality in (4.39) so that the
identity S†QM2 = S†(q1)S(u) is maintained. In addition, we introduce an off-shellness for
the light quark q2 according to (4.12). Including the MS renormalization factors for hv
and ξc, we obtain

Z
(1)
J = −Q2

d

{
1

ϵ2
+

1

ϵ

[
L+

5

2

]}
+ 2QM2Qd

{
1

ϵ2
+

1

ϵ

[
L+

3

2
+ iπ

]}
− Q2

M2

1

ϵ

[
L+

3

2
+ 2 ln

(
−δc̄
µ

)
+ iπ

]
, (4.40)

where we defined

L ≡ ln

(
µ2

m2
B

)
. (4.41)
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hv ξc

c

hv ξc

s

hv ξc

s

hv ξc

s

Figure 4.4: O(αem) corrections to the generalized heavy-to-light current (4.37) in
SCETI. The black dot represents the soft Wilson line S†(QM2

)
n+ . Diagrams

for the external field renormalization are not shown.

We recover the QCD result [53] for the renormalization of the heavy-to-light current
from the neutral case QM2 = 0 together with the replacement Q2

d → CF . At one-loop
in QED-only, the renormalization of the second heavy-to-light current

J (B1)(0, s, 0) =
1

mb

[χ̄
(q2)
C (0)

/n+

2
/A⊥C(sn+)(1 + γ5)S

†(QM2
)

n+ hv(0)] (4.42)

agrees with ZJ in (4.40) due to the absence of photon self-interactions.3 Both (A0)-
and (B1)-type currents are multiplied with the same anti-collinear operator OC̄. Hence
the operator OII renormalizes in the same way as OI at this order.

4.2.3 Soft rearrangement

From the one-loop counter terms (2.82) with (4.35) and (4.40), we obtain the operator
renormalization for the SCETI operator

Y (1)(u, v) = δ(u− v)

(
−Q2

d

{
1

ϵ2
+

1

ϵ

[
L+

5

2

]}
+ 2QM2Qu

{
1

ϵ2
+

1

ϵ

[
L+

3

2
+ iπ

]}

+
2

ϵ
QM2

[
Qd lnu−Qu ln (1− u)

])
(4.43)

− 2

ϵ
Qu (Qu +QM2)

[(
1 +

1

v − u

)
u

v
θ(v − u) +

(
1 +

1

u− v

)
ū

ū
θ(u− v)

]
+

.

An important observation is that the result does not depend on the off-shellness of
the external quarks, more precisely the IR regularization. For an electrically charged
meson with QM2 ̸= 0, the IR regulators appear in each of the separate sectors and
prevent a consistent factorization. We can restore factorization of the anti-collinear
3Furthermore, the renormalization of the current operator does not depend on the Dirac structure
between the soft and collinear fields.
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sector and the B̄ → M1 transition by introducing a soft rearrangement that removes
the overlap between those two. To this end, we consider similar to [60] the vacuum
matrix element4 ∣∣∣⟨0|[S(QM2

)
n− S

†(QM2
)

n+

]
(0) |0⟩

∣∣∣ ≡ R
(QM2

)
c R

(QM2
)

c̄ (4.44)

that defines the two rearrangement factors Rc and Rc̄. In dimensional regularization,
the on-shell vacuum matrix element (4.44) vanishes to all orders in the electromagnetic
coupling as soft Wilson lines only produce scaleless integrals. However, we recall that
the soft Wilson lines still inherit the off-shellness from the (anti-)collinear momenta
after the soft decoupling. For the collinear direction n−, we this implies a similar
replacement to (4.38) and (4.39) for the Feynman rule with incoming momentum k,
that is

1

n−k − i0
→ 1

n−k − δc
, δc ≡

k2ū
n+kū

+ i0 =
k2q
n+kq

+ i0 . (4.45)

We expand the Wilson lines up to one-loop order and find

⟨0|(S(QM2
)

n− S
†(QM2

)
n+ )(0) |0⟩ = 1 + µ̃2ϵ

∫
ddk

(2π)d
−2i

k2 + i0

eQM2

n−k + δc

eQM2

n−k − δc̄
(4.46)

= 1− αem

4π
Q2

M

[
2

ϵ2
+

2

ϵ
ln

µ

−δc
+

2

ϵ
ln

µ

−δc̄
− 2iπ

ϵ

+ ln2 µ

−δc
+ ln2 µ

−δc̄
+ 2 ln

µ

−δc
ln

µ

−δc̄
− π2

2
− 2iπ

(
ln

µ

−δc
+ ln

µ

−δc̄

)]
.

In the calculation, we assumed Re(δc,c̄) < 0, which can be done since the UV renor-
malization of the entire effective operator does not depend on the IR regulators. The
imaginary parts in the last line arise from logarithmic terms of the form ln(µ/δc̄) =
ln(µ/(−δc̄))− iπ due to the i0-prescription of the regulators. To avoid the introduction
of spurious rescattering phases in the (anti-)collinear sector, we take the absolute value
of (4.46) and obtain

R
(QM1

)
c = 1− αem

4π
Q2

M1

[
1

ϵ2
+

2

ϵ
ln

µ

−δc
+ ln2 µ

−δc
+ ln

µ

−δc
ln

µ

−δc̄
− π2

4

]
, (4.47)

R
(QM2

)
c̄ = 1− αem

4π
Q2

M2

[
1

ϵ2
+

2

ϵ
ln

µ

−δc̄
+ ln2 µ

−δc̄
+ ln

µ

−δc
ln

µ

−δc̄
− π2

4

]
. (4.48)

We emphasize that we defined the factor Rc such that the divergent part only contains
the collinear off-shell regulator δc. In the same way, the divergent contribution of Rc̄

only depends on δc̄. The finite terms are symmetric and hence Rc can be obtained
from Rc̄ by interchanging n+ ↔ n− and δc ↔ δc̄.5 To conveniently define the collinear
4In our convention nµ

−, defines the direction of the positively charged M1 meson in contrast to the
direction chosen for ℓ− in [60]. Moreover, the absolute value was not considered in this publication
and the factors Rc and Rc̄ were defined to include the same δc and δc̄ dependence.

5The definition of Rc and Rc̄ in [66] leaves an ambiguity for the finite terms. This is resolved by the
choice in (4.47) and (4.48).
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sector, we label the factor Rc with the charge QM1 = −QM2 .
For the generalized heavy-to-light current, a division by the factor Rc̄ in (4.48) yields

Z
(1)
J +R

(QM2
)(1)

c̄ = −Q2
d

{
1

ϵ2
+

1

ϵ

[
L+

5

2

]}
+ 2QM2Qd

{
1

ϵ2
+

1

ϵ

[
L+

3

2
+ iπ

]}
− Q2

M2

{
1

ϵ2
+

1

ϵ

[
L+

3

2
+ iπ

]}
. (4.49)

Indeed, we find that the total renormalization factor of the current does not contain
the IR regulator δc̄.

Light-meson LCDA

The soft rearrangement removes the IR regulator dependence in the renormalization
factor of the anti-collinear kernel in (4.35). Hence, we multiply the operator OC̄ in
(4.29) by the factor Rc̄ from (4.48) and define

⟨M2(p)|R
(QM2

)
c̄ χ̄

(q1)
c̄ (tn−)

/n−

2
(1− γ5)χ

(u)
c̄ (0)|0⟩ = in−p

2

∫ 1

0

du eiu(n−p)tfM2ΦM2(u;µ) .

(4.50)

This is the operator definition of the leading-twist QED-generalized light-meson LCDA
for the meson M2. The function ΦM2(u;µ) follows an RGE that describes its scale
evolution. The anomalous dimension is defined by the equation

d

d lnµ
ΦM2(u;µ) = −

∫ 1

0

dv Γ(u, v;µ) ΦM2(v;µ) . (4.51)

The evolution kernel is a combination of the counter term and the rearrangement factor

Γ(u, v;µ) = −
∫ 1

0

dw
dZC̄(u,w;µ)

d lnµ
Z−1

C̄
(w, v;µ)− dR

(QM2
)(1)

c̄

d lnµ
. (4.52)

The one-loop renormalization factor in (4.35), (2.82) and the factor Rc̄ from (4.48)
yield the one-loop anomalous dimension in QED

Γ(1)(u, v;µ) = −αemQM2

π

(
QM2

(
ln

µ

2E
+

3

4

)
−Qq1 lnu+Qu ln ū

)
δ(u− v) (4.53)

− αemQq1Qu

π

[(
1 +

1

v − u

)
u

v
θ(v − u) +

(
1 +

1

u− v

)
ū

v̄
θ(u− v)

](u)
+

,

which does not depend on δc,c̄ anymore. Hence, the UV divergences of the operator in
(4.50) have been renormalized consistently. As mentioned below (4.35), we recover the
QCD result by sending QM2 → 0 and αemQq1Qu → αsCF . We emphasize that (4.53)
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4. QCD×QED Factorization

defines the scale evolution for both neutral and charged mesons QM2 = 0,−1. Note
that we have R(0)

c̄ = 1 by definition. We discuss the solution of (4.52) including the
QCD kernel in Sec. 5.1.

The function ΦM2(u;µ) in (4.50) is normalized with respect to the QCD decay con-
stant fM2 , that is defined by the local matrix element t → 0 in the absence of QED.
Since fM2 does not evolve under the renormalization group, all QED effects are there-
fore absorbed into the evolution of ΦM2 . This is a convenient choice since the local
operator in QED would mix into higher logarithmic moments by scale evolution. In
contrast to QCD-only, this implies that the normalization

∫ 1

0
duΦ(u;µ) ̸= 1 will be

violated when QED effects are considered.
We furthermore emphasize that the definition (4.50) is universal. Hence it also

applies to the collinear meson M1 after factorization in SCETII. Note that the choice of
the anti-collinear direction n+ for the operator required a corresponding collinear vector
n− and vice versa. More generally, we can define for any light-like vector ni− another
back-to-back direction ni+ that fulfill ni+ni− = 2. Note that a specific (anti-)collinear
direction does not necessarily need to correspond to a real particle in the process.
The soft rearrangement (4.44) then defines a pair Rci and Rc̄i computed from the
corresponding soft Wilson lines for the i-th reference vectors. In this way, we can
employ an arbitrary number of light-meson LCDAs after factorizing the soft-collinear
interactions. For an n-jet SCET operator, we have

Oeff = Os ×Oc1Oc2 . . .Ocn =
Os

Rc1Rc2 . . . Rcn

× (Rc1Oc1)(Rc2Oc2) . . . (RcnOcn) ,

(4.54)

where each collinear sector is individually renormalized. Since the complete operator
Oeff has to be renormalizable in a consistent effective theory, the same argument applies
to the remaining soft operator. Based on this discussion, we conclude that the QED-
generalized light-meson LCDA remains a relevant universal object for exclusive multi-
body processes.

We finally remark that the boost invariance of the LCDA is broken due to the large
energy dependence EM2 = mB/2 in (4.53). Hence, the definition (4.50) enforces the
choice of a “soft reference frame” which is naturally given by the B-meson rest frame
for this decay. Moreover, we note that the neutral π0 meson needs to be described
by two distinct quark LCDAs since QED breaks the isospin symmetry between the u-
and d-quarks. We can choose between the pair Φ(u)

π0 and Φ
(d)

π0 or the SU(2) singlet and
triplet representation. The LCDAs generally mix under renormalization which requires
the definition of an additional two-gluon LCDA. In the following, we focus on the case
of electrically charged mesons.

B̄ → M1 form factors

Since we multiplied the factor Rc̄ in the anti-collinear sector, we subtract it in the soft-
collinear building blocks. We therefore modify both SCETI operators OI/II according
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4.2 SCETI factorization

to (4.54) and obtain

⟨M1(p
′)| 1

R
(QM2

)
c̄

χ̄
(q)
C (0)/n+(1− γ5)S

†(QM2
)

n+ hv(0)|B̄(v)⟩ = 4EM1ζ
BM1
Q2

(EM1) , (4.55)

⟨M1(p
′)| 1

R
(QM2

)
c̄

1

mb

χ̄
(q)
C (0)

/n+

2
/AC,⊥(sn+)(1 + γ5)S

†(QM2
)

n+ hv(0)|B̄(v)⟩

= −2EM1

∫ 1

0

dτeiτ(n+p′)sΥBM1
Q2

(EM1 , τ) , (4.56)

which defines the generalized SCETI B̄ → M1 form factors ζBM1 and ΥBM1 in the
presence of QED. The gluon form factor definition can be obtained from (4.56) upon
replacing A → G and ΥBM1

Q2
(EM1 , τ) → ΣBM1

Q2
(EM1 , τ). For vanishing mass mM1 = 0,

the energy of the meson M1 in the B-meson rest frame is given by EM1 = n+p
′/2 =

(m2
B − q2)/(2mB). In the QCD-only limit, αem → 0 the form factors (ζ,Σ,Υ) turn into

(ξ,Ξ, 0) in the convention of [49].
The discussion below (4.54) implies that the form factors (4.55) and (4.56) are well-

defined. Due to the non-decoupling of the Wilson line S†(QM2
)

n+ and the soft rearrange-
ment, these factors depend on the direction of flight n+ and the charge QM2 of the
outgoing anti-collinear meson through soft interactions. Finally, with the refinements
in (4.55), (4.56) and (4.50), we find the SCETI factorization formula

〈
M1M2

∣∣Qi

∣∣B̄〉 = im2
B

{
ζBM1
Q2

∫ 1

0

duH I
i,Q2

(u)fM2ΦM2(u) (4.57)

− 1

2

∫ 1

0

du dz
[
H IIγ

i,Q2
(u, z)ΥBM1

Q2
(1− z) +H IIg

i,Q2
(u, z) ΣBM1

Q2
(1− z)

]
fM2ΦM2(u)

}
.

Note that we dropped the energy argument EM1 = mB/2 in the form factors. This
completes the factorization proof in SCETI. For the results of the hard matching
coefficients H I/II, we refer to Sec. 4.4.

4.2.4 Semi-leptonic QED factorization

The QED-generalized form factor ζBM1
Q2

exclusively contains fields and states defined in
the effective theory and is therefore a pure HQET×SCETI quantity. In the following,
we substitute this object by the full theory QCD×QED form factor

ζBM1
Q2

(EM1 = mB/2) → FBM1
Q2

(q2 = 0), H I
i,Q2

(u) → T I
i,Q2

(u) , (4.58)

which can typically be determined with lattice or LCSR methods and hence represents a
more suitable object in the factorization formula. The replacement uses a corresponding
factorization for the full theory form factor and in general modifies the hard matching
coefficient that we define to be T I [83]. For neutral M2, the form factor ζBM1

0 can
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4. QCD×QED Factorization

be expressed in terms of standard local heavy-to-light currents. For charged M2, the
additional soft Wilson lines however prevent the matching to local currents as it inherits
the electrical charge and direction of flight of M2. Nevertheless, we can relate the form
factor to the semi-leptonic B̄ → M1ℓ

−ν̄ amplitude, in the kinematic limit where the
neutrino becomes soft and the lepton carries almost everything of the momentum so
that q2 = 0 and Eℓ = mB/2. In SCETI, the non-radiative amplitude of B̄ → M1M2

contains the same IR behaviour after decoupling the anti-collinear sector, so that we
can trade ζBM1

− for FBM1
− as discussed below.

The semi-leptonic b → u transition is mediated by the Hamiltonian in (1.1). We
emphasize that in QED the Wilson coefficient Csl(ν) ̸= 1 is generally scale-dependent
due to short-distance corrections from the electroweak scale. We refer to [131] for the
one-loop result of Csl in QED and use it to resum large logarithms αn

em lnm(mW/mb)
with m ≤ n between mW and mb by evolving the scale downwards to ν ∼ O(mb). The
semi-leptonic amplitude is

Asl,M1

non-rad =
GF√
2
VubCsl

〈
M1ℓ

−ν̄ℓ
∣∣Qsl

∣∣B̄〉
≡ GF√

2
Vub 4EM1 [ū(pℓ)

/n−

2
(1− γ5)vνℓ(pν)]A

sl,M1

red . (4.59)

We define Asl,M1

red in the second line as the “form factor” of this transition. Note that
the factor does not depend on the renormalization scale ν since the product CslQsl is
ν-independent. We follow the same arguments for the factorization of the operators Qi

in the non-leptonic decay to obtain a factorization formula for Qsl〈
M1ℓ

−ν̄ℓ
∣∣Qsl

∣∣B〉 = 4EM1 [ū(pℓ)
/n−

2
(1− γ5)vνℓ(pν)]Zℓ

{
H I

sl(Eℓ) ζ
BM1
− (EM1) (4.60)

− 1

2

∫ 1

0

dz
[
H IIγ

sl (Eℓ, z)Υ
BM1
− (EM1 , 1− z) +H IIg

sl (Eℓ, z)Σ
BM1
− (EM1 , 1− z)

]}
.

In fact, we observe that the same SCETI form factors appear in (4.57) for the charged
meson QM2 = −1. Contrary to the meson M2 in the non-leptonic decay, the lepton in
the semi-leptonic decay is a point-like particle subject to QED-only interactions such
that we can factor out the spinor structure in front. This simplifies the analysis of
the anti-collinear sector compared to the convolution and renormalization of the light-
meson LCDA defined by (4.50). The anti-collinear lepton can be parametrized by a 0
→ ℓ matrix element of the lepton field χ

(ℓ)

C̄
= [W

(ℓ)

C̄
]†ξ

(ℓ)

C̄
defining the renormalization

factor Zℓ in (4.60) [60]. We regulate the IR divergences off-shell with momentum p2ℓ
for the lepton and calculate

〈
ℓ−(pℓ)

∣∣χ̄(ℓ)

C̄
(0)
∣∣0〉 = ū(pℓ)

/n−/n+

4

{
1 +

αem

4π
Q2

ℓ

[
2

ϵ2
+

3

2ϵ
+

2

ϵ
log

µ2

−p2ℓ
+O(ϵ0)

]}
.

(4.61)
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4.2 SCETI factorization

Once again, we observe that the UV structure depends on the IR regularization, which
could be anticipated since the same form factors appear on the right-hand side of
(4.57) and (4.60). We remove this dependence by multiplying with the soft rearrag-
nement factor R(Qℓ)

c̄ that is obtained from (4.48) with QM2 → Qℓ and δc̄ → p2ℓ/n−pℓ,
where n−pℓ = 2Eℓ. Note that a corresponding factor is subtracted in the form factor
definitions of (4.60). The UV renormalization factor for the on-shell matrix element〈
ℓ−(pℓ)

∣∣R(Qℓ)
c̄ χ̄

(ℓ)

C̄
(0)
∣∣0〉 is then given by the sum of (4.61) and (4.48), that is

Zbare
ℓ = 1 +

αem

4π
Q2

ℓ

[
1

ϵ2
+

3

2ϵ
+

2

ϵ
ln

(
µ

n−pℓ

)
+O(ϵ0)

]
. (4.62)

We emphasize that (4.62) is the point-like analogue to the QED-generalized ERBL
kernel (4.36).

Finally, the above results can be used to eliminate the SCETI form factor ζBM1
− in

favour of QCD×QED quantities. As mentioned beforehand, we use the traditional
QCD treatment [106] for the neutral QM2 = 0 case. For QM2 = −1, we define

FBM1
− (q2 = 0) ≡ 1

CslZℓ

Asl,M1

red (q2 = 0, Eℓ = mB/2) . (4.63)

Using (4.60), we exchange the SCETI form factor in the non-leptonic decay and obtain

〈
M1M2|Qi|B̄

〉
= im2

B

{
FBM1

Q2
(0)

∫ 1

0

du T I
i,Q2

(u) fM2ΦM2(u) (4.64)

− 1

2

∫ 1

0

du dz
[
Ĥ IIγ

i,Q2
(u, z)ΥBM1

Q2
(1− z) + Ĥ IIg

i,Q2
(u, z)ΣBM1

Q2
(1− z)

]
fM2ΦM2(u)

}
,

which parametrizes the first term in factorization formula (4.57) in terms of general
QCD×QED form factors. The modifications for the hard-scattering kernels are given
by

T I
i,0(u) ≡

H I
i,0(u)

H I
f

, T I
i,−(u;Eℓ) ≡

H I
i,−(u)

H I
sl(Eℓ)

. (4.65)

In addition, the previously defined coefficients H I/II
i,Q2

in (4.8) change according to

Ĥ IIγ
2,−(u, z;Eℓ) = H IIγ

2,−(u, z)− T I
2,−(u;Eℓ)H

IIγ
sl (z) ,

Ĥ IIγ
1,0 (u, z) = CF Ĥ

IIγ
2,0 = H IIγ

1,0 (u, z)− T I
1,0(u)H

IIγ
f (z) . (4.66)

Note that Ĥ IIγ
1,− does not require a redefinition and therefore equals H IIγ

1,−. The coeffi-
cients H I(1)

f and H IIγ
f (z) appearing in (4.65) and (4.66) originate from the factorization

of the full theory form factors. We can infer them from the semi-leptonic matching
coefficients in (4.60) by setting Qℓ = 0. Finally, we indicated an explicit dependence
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4. QCD×QED Factorization

on the lepton energy Eℓ for the hard-scattering kernels when M2 is charged. In fact,
we can choose Eℓ ∼ O(mB/2) arbitrarily since the matching onto the semi-leptonic
B̄ → M1ℓν̄ amplitude only requires q2 = 0 to hold exactly. In the following, we drop
this argument and calculate the kernels for Eℓ = mB/2. The generalization follows
directly from the results in Sec. 4.4.

4.3 SCETII factorization

In Sec. 4.2, we integrated out the hard modes and obtained formula (4.57) that describes
the factorization of the anti-collinear sector from the B̄ → M1 transition, where the
form factor FBM1

Q2
contains the soft spectator scattering interactions. The form factors

ΥBM1 and ΣBM1 on the other hand can be further factorized into separate B̄ → 0
and 0 → M1 matrix elements in SCETII. The corresponding matching coefficient
encodes the hard-collinear spectator interactions and is represented by a jet function
that convolutes the soft and collinear functions in the process. For QCD-only, one-loop
computations have shown that the convolution integrals converge to all orders in the
strong coupling [49,88,106]. For QED, we expect the same to hold true at O(αem) and
thus perform the tree-level matching using generalized definitions for the LCDAs. The
SCETI → SCETII matching equation reads

ΥBM1
Q2

(1− z) =
1

4

∫ ∞

−∞
dω

∫ 1

0

dv J⊗(1− z; v, ω)fBΦB,⊗(ω)fM1ΦM1(v) , (4.67)

where ΦB,⊗, ΦM1 and J⊗ are the soft, collinear and jet function respectively.6
Formally, we obtain (4.67) by first decoupling the collinear from the soft modes us-

ing the transformation (4.23) for the collinear fields with the soft S(q)
n− Wilson line.

Moreover, we integrate out the hard-collinear modes which can be trivially done on
the Lagrangian level by sending ξC → ξc. Since spectator-scattering requires a sub-
leading L(1/2)

ξq interaction, the decoupling transformation leads to the appearance of
S
(q)
n−(tn−)S

†(q2)
n− (0), where t = vx. The tn−-dependence enters from the multipole ex-

pansion of the position argument in the Lξq interaction. Alongside with an additional
rearrangement factor R(QM )

c accounting for the light-meson LCDA, we absorb the soft
contributions into the definition

imB

∫ ∞

−∞
dω e−iωtfBΦB,⊗(ω;µ)

=
1

R
(QM1

)
c R

(QM2
)

c̄

〈
0
∣∣q̄(q)s (tn−)[tn−, 0]

(q) /n−γ5hv(0)S
†(QM1

)
n− S

†(QM2
)

n+

∣∣B̄〉 . (4.68)

6Equivalently to (4.50), the LCDA for the meson M1 is defined by

⟨M1(p
′)|R(QM1

)
c χ̄(q2)

c (sn+)
/n+

2
(1− γ5)χ

(q)
c (0)|0⟩ = in+p

′

2

∫ 1

0

dv eiv(n+p′)sfM1ΦM1(v;µ) ,

obtained by the trivial replacements n− → n+ and R
QM2
c̄ → R

(QM1
)

c .
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4.4 Matching coefficients

Note that we inserted unity (S
†(q)
n− S

(q)
n−)(0) to obtain a QCD-like finite distance Wilson

line [tn−, 0]
(q) = S

(q)
n−(tn−)S

†(q)
n− in analogy to (2.6) and the soft M1 Wilson line S†(QM1

)
n− ,

similar to the anti-collinear case. Hence for electrically charged final states, the B-
meson LCDA is fundamentally modified and we refer to it as soft function. Most
generally, we distinguish in (4.68) between the four possible charge combinations ⊗ =
{(0, 0), (−, 0), (0,−), (+,−)} that define four soft functions in total. The two distinct
cases of electrically charged and neutral M2 differ in particular. For QM2 ̸= 0, the
functions entail major phenomenological differences to the neutral case, namely that
it contains soft-rescattering phases and the support has to be extended to ω < 0 in
contrast to QCD-only. We discuss the origin and the implications of these modifications
in Chapter 5.

We refrain from giving an operator definition for the jet function J⊗ that contains
the hard-collinear modes. In this regard, one might follow the discussion in Sec. 2.4.1
for a derivation. Instead, we compute the coefficient directly at tree level using a Fierz
transformation for the four-quark operator

J⊗(z̄; v, ω) = −4παemQsp

Nc

1

mBωv̄
δ(z̄ − v̄) . (4.69)

The spectator quark charge is given by Qsp = Qd−QM1 −QM2 . The interplay between
different photon polarizations to the operators OI and OII ensures that the jet function
is purely determined from hard-collinear transverse photon exchange. Appendix C.2
shows the cancellation of the longitudinal polarization for the particular case of ⊗ =
(+,−).

After inserting (4.67) into the SCETI factorization formula (4.57), we obtain the
final QCD×QED factorization

〈
M1M2|Qi|B̄

〉
= im2

B

{
FBM1

Q2
(0)

∫ 1

0

du T I
i,Q2

(u)fM2ΦM2(u)

+

∫ ∞

−∞
dω

∫ 1

0

du dv T II
i,⊗(u, v, ω)fM1ΦM1(v)fM2ΦM2(u)fBΦB,⊗(ω)

}
, (4.70)

which completes the separation of hard, hard-collinear, (anti-)collinear and soft modes
in non-leptonic B̄ → M1M2 decays. We expressed the convolution of the hard coef-
ficient with the jet function in terms of one the spectator-scattering term T II in the
second line

T II
i,Q2

(ω, u, v) = −1

8

∫ 1

0

dz Ĥ II
i,Q2

(u, z)J⊗(1− z; v, ω) . (4.71)

4.4 Matching coefficients

We completed the formal derivation of the QCD×QED factorization and the results
for the matching coefficients have yet to be listed. The computation for the form factor
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4. QCD×QED Factorization

term follows the arguments of the previous sections. We present the results at tree-level
and one-loop separately. Moreover, we present the results for the kernels H I/II as well
as for the refinements T I/II.

4.4.1 Hard-scattering kernels H I
i,Q2

and H IIγ
i,Q2

,At tree-level, the matching of the operators Qi onto OI yields the coefficients H I(0)
i,Q2

whose expressions are

H
I(0)
1,− (u) = 0 , H

I(0)
1,0 (u) =

CF

Nc

, (4.72)

H
I(0)
2,− (u) = 1 , H

I(0)
2,0 (u) =

1

Nc

. (4.73)

The factors with QM2 = 0,−1 arise from the right and wrong insertion, respectively.
As expected, these results agree with QCD-only. We emphasize that the contribution
from the color-octet operator Q1 vanishes for the charged M2 case at LO in QCD and
to all orders in QED. The same holds true for the relative factor CF in the neutral case
so that the identities are exact

H I
1,−(u) = 0, H I

1,0(u) = CFH
I
2,0(u) . (4.74)

At the one-loop order, we evaluate the hard region of the diagrams in Fig. 4.2 which
corresponds to the on-shell matrix elements A(1)

i defined in (4.17). We consider the
general operator for the right insertion

[q̄2γ
µ(1− γ5)b][q̄1γµ(1− γ5)u] . (4.75)

Including the corresponding renormalization factors, we find from (4.22)

H
I(1)
2,−(u) = Qq1Qq2

(
L2 − 4Lν + L (4 + 2iπ − 2 lnu) + ln2 u− 2iπ lnu− 7π2

6
+ 1

)
−QuQq2

(
L2 − Lν + L (4 + 2iπ − 2 ln ū)− ln ū (3 + 2iπ − ln ū)− 7π2

6
+ 3iπ + 6

)
+QuQd

(
1

2
L2 − 4Lν − 2L (−1 + ln ū) + 2 ln2 ū− 2

u
ln ū+ 2Li2 (u) +

π2

12
− 3

)
−QdQq1

(
1

2
L2 − Lν + L(2− 2 lnu) + 2 ln2 u− 3 lnu+

lnu

ū
+ 2Li2(ū) +

π2

12
+ 2

)
− 3 (Qq1 +Qu) (Qq2 +Qd)

−Qq2Qd

(
1

2
L2 − Lν + 2L+

π2

12
+ 4

)
−Q2

d

(
1

2
Lν + L+ 2

)
− 1

2
Q2

q2
(Lν − L)
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− 1

2

(
Q2

q1
+Q2

u − 2QuQq1

)
(Lν − L) . (4.76)

We abbreviate the logarithm of the UV scale ν as

Lν ≡ ln

(
ν2

m2
B

)
, (4.77)

which is distinguished from the factorization scale µ in L and matches to the scale
evolution of the Wilson coefficients Ci(ν). Hence, the ν-dependence cancels with the
QED corrections from the electroweak scale. On the other hand, the scale µ correlates
to the scale dependence of the form factors in the SCETI factorization formula (4.57).
In (4.76), the first four lines correspond to the first four diagrams in Fig. (4.2), which
can be identified from the quark charges. The fifth line originates from the finite terms
of the evanescent operators as discussed in Sec. 4.1. The sixth line is a combination
of the last diagram in Fig. 4.2 and the external quark field renormalization. The last
line corresponds to the virtual corrections in between the anti-collinear q1- and u-quark
that are scaleless when UV and IR are not distinguished. We recover the QCD-only
result by setting all charge factors to unity. In particular, the sixth line reproduces the
renormalization factor CFF/CF in the notation of [53]. For the wrong insertion, we use
the colour Fierz relation to obtain

H
I(1)
2,0 (u) =

1

Nc

H
I(1)
2,− (u)− 1

Nc

(Qd −Qu) (Qq2 −Qq1) . (4.78)

Finally, the all-order statement in (4.74) determines the coefficients H I(1)
1,− and H I(1)

1,0 .
At this point, we emphasize that the results (4.76) and (4.78) arising from the opera-

tor (4.75) are gauge-dependent due to the generalized quark charges. Our results have
been computed in Feynman gauge. Once we insert the physical values for a specific
process, the gauge dependence cancels. For an electrically charged meson M2 with
q1 = d and q2 = u, we set the up- and down-type charges in (4.76) to Qq1 = Qd = −1/3
and Qq2 = Qu = 2/3 and find

H
I(1)
2,− (u) = −13L2

18
+

4

3
Lν − L

(
41

18
+

4iπ

3
− 4

3
ln(1− u)− 2

3
lnu

)
− 2f(u) + 4f(1− u)

9
− (2− u) ln(u)

3(1− u)
+

83π2

108
− 4iπ

3
− 19

9
. (4.79)

For the neutral case with q1 = u and q2 = d, we set Qq1 = Qu = 2/3 and Qq2 = Qd =
−1/3. Using (4.78), we have

H
I(1)
2,0 (u) = − 1

54
L2 +

4

9
Lν −

5

54
L− 2

27
g(u)− π2

324
+

29

27
. (4.80)

To compactify our notation, we introduced the function

f(u) = Li2(1− u) + 2 ln2 u− (3 + 2iπ) lnu− lnu

1− u
(4.81)
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q2b

ūq1

Aµ
⊥

q2b

ūq1

Aµ
⊥

q2b

ūq1

Aµ
⊥

q2b

ūq1

Aµ
⊥

Figure 4.5: Five-point diagrams S1-S4 in the full theory that are matched onto the
operator OIIγ in spectator scattering. The index numbers are assigned
to the order in which the diagrams are shown. The transverse photon
carries outgoing momentum k.

as well as

g(u) = 3

(
1− 2u

1− u
lnu− iπ

)
+

[
2 Li2(u)− ln2 u+

2 lnu

1− u
− (3 + 2iπ) lnu

− (u→ 1− u)

]
. (4.82)

To calculate the hard matching coefficients of the tree-level spectator-scattering, we
follow the arguments in [50]. Using the momentum prescription in (4.12), we compute
the on-shell five-point amplitude

⟨q1(kq1)ū(kū)q2(kq2)γ(k)|Qi|b(pb)⟩ (4.83)

that describes the b→ q1ū q2γ transition, where the outgoing photon gets connected to
the spectator quark line. The matrix element (4.83) has to be equivalently considered
for the SCETI operators which results in a matching equation similar to (4.8)

⟨Q2⟩ =
4∑

i=1

Si = H
Iγ(0)
2,Q2

⊗ ⟨OI⟩(0) +H
IIγ(0)
2,Q2

⊗ ⟨OIIγ⟩(0) , (4.84)

where ⊗ denotes the convolution in the momentum variables u and v and the angle
brackets correspond to the partonic matrix element in (4.83). At LO in αem, there are
four diagrams Si shown in Fig. 4.5 that have to be considered. Based on the discussion
in Appendix C.2, we recall that the longitudinal polarizations enter the hard coefficient
H I so that we assume the photon to be transversely polarized with one subtlety for
diagram S4. In this case, we need to distinguish between long- and short-distance
effects arising from the q2-propagator. When the momentum of the photon becomes
soft, the q2-propagator runs through its pole corresponding to a non-local long-distance
contribution. On the SCET side, this contribution appears as a time-ordered product
of the operator OI with subleading Lagrangian insertions [102]. Hence, these long-
distance effects cancel on both sides of the matching equation. Therefore, only the
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4.4 Matching coefficients

local short-distance contribution S4|SD enters the matching coefficient, which can be
extracted by the replacement [50]

i(/kq2 + /k)

(kq2 + k)2
→ i

n+(kq2 + k)

/n+

2
. (4.85)

For the right insertion of Q2, we find

S1 = 0 ,

S2 =
2eQu

ūmb

〈
/n−

2

〉
C̄

[ū(kq2)γ
µ
⊥(1 + γ5)u(pb)] ϵ

∗
⊥µ ,

S3 =
2eQd

mb

〈
/n−

2

〉
C̄

[ū(kq2)γ
µ
⊥(1 + γ5)u(pb)] ϵ

∗
⊥µ ,

S4|SD = 0 , (4.86)

where we defined 〈
/n−

2

〉
C̄

≡ [ū(kq1)
/n−

2
(1− γ5)v(kū)] . (4.87)

The momenta in (4.86) refer to their LP expressions in (4.12). Note that QCD×QED
and SCET spinors from contractions of ξC,C̄ and hv fields are then equivalent. For
transverse photons, we have n±·ϵ = 0 and the matrix element ⟨OI⟩(0) just corresponds to
the long-distance contribution of S4 since the coupling of the photon to (anti-)collinear
Wilson lines vanishes. We already extracted the short-distance part S4|SD, so that we
can neglect the former term on the right-hand side of (4.84). The spinor structure of
S2 and S3 matches the tree-level matrix element of the operator OIIγ. We can therefore
read off the coefficients

H IIγ
2,−(u, v) = NcH

IIγ
2,0 (u, v) =

2

ū
Qu + 2Qd . (4.88)

The factor Nc accounts for the wrong insertion of Q2. For the operator Q1, we find
similar to (4.74)

H IIγ
1,0 (u, v) = CFH

IIγ
2,0 , H IIγ

1,−(u, v) = 0 . (4.89)

We remark that QED effects to the gluonic coefficient H IIg are O(αsαem) and hence
not considered to our accuracy.

Finally, we emphasize that in pure QCD only the diagrams S1 and S2 enter the
hard-scattering coefficient H IIg. Since longitudinal gluon polarizations cancel among
the diagrams, there is no need to assume a transverse polarization for the gluon in the
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4. QCD×QED Factorization

matching equation. In QED however, an equivalent computation would turn out to
be too naive since the projection of S2 onto the anti-collinear LCDA yields an integral
of the form

∫ 1

0
du ϕM2(u)/ū that is endpoint-divergent. As we discussed earlier and

demonstrate in Appendix C.2, this contribution originates from longitudinal photons
which are part of the generalized SCETI form factor ζBM1 defined in (4.55).

4.4.2 Hard(-collinear)-scattering kernels T I
i,Q2

and T IIγ
i,Q2

In this section, we derive the physical hard-scattering kernels T I/II of the QCD×QED
factorization formula (4.1). In order to trade the SCETI for the full theory form factor,
we require the semi-leptonic coefficients in (4.60). We obtain the both coefficients from
the general result H I in (4.76) and H II in (4.88) upon sending Qq1 → Qℓ, Qu → 0 and
u→ 2Eℓ/mB. For Eℓ = mB/2, we drop the lepton-energy argument in the coefficients
and find

H
I(0)
sl = 1 ,

H
I(1)
sl = QℓQu

(
L2 − 3Lν + (3 + 2iπ)L− 7π2

6
− 2

)
−Q2

d

(
1

2
L2 +

5

2
L+

π2

12
+ 6

)
,

H IIγ
sl (z) = 2Qd . (4.90)

The matching coefficients for the full theory QCD×QED form factor can be obtained
by setting Qℓ = 0 in the above7

H
I(1)
f = −Q2

d

[
1

2
L2 +

5

2
L+

π2

12
+ 6

]
,

H
IIγ(0)
f (z) = 2Qd . (4.91)

The hard-scattering kernels for the form factor term follow from (4.65) and the results
in (4.79), (4.80), (4.90) and (4.91). We find

T
I(1)
1,− (u) = 0 ,

T
I(1)
2,− (u) = −2

3
Lν +

2

3
L (2 ln(1− u) + lnu)

− 2f(u) + 4f(1− u)

9
− (2− u) ln(u)

3(1− u)
− 4iπ

3
− 25

9
,

T
I(1)
1,0 (u) = CFT

I(1)
2,0 (u) =

16

27
Lν −

8

81
g(u) +

140

81
, (4.92)

7Compared to [106], our convention differs by a factor −1/2 in the spectator-scattering terms. Hence,
we identify HIIγ

f → −2C
(B1)
f+

in the QCD-only limit Qd → 1.
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where f(u) and g(u) were defined in (4.81) and (4.82). Since the form factor renormal-
ization enters at one-loop, the tree-level terms remain the same T I(0)

i,Q2
(u) = H

I(0)
i,Q2

(u).
For the spectator-scattering terms, the shift in (4.66) implies

Ĥ IIγ
2,−(u, z;Eℓ) =

2

ū
Qu , Ĥ IIγ

1,0 (u, z) = CF Ĥ
IIγ
2,0 (u, z) =

2CF

Ncū
Qu . (4.93)

The right insertion of the octet operator Q1 still vanishes, so that Ĥ IIγ
1,−(u, z) = 0. To

obtain the entire kernel including the contribution from the jet function, we perform
the integral (4.71) together with the expressions from (4.93) and (4.69). The results
at O(αem) are given by

T II
2,(Q1,−)(ω, u, v) = NcT

II
2,(Q1,0)

=
Nc

CF

T II
1,(Q1,0)

=
παemQspQu

Nc

1

mBωūv̄
, (4.94)

while T II
1,(Q1,−)(ω, u, v) = 0 for an arbitrary charge of the meson M1.

We conclude the analysis of the hard-scattering kernels with some important re-
marks. First, we emphasize that the double-logarithmic terms L2 appearing in H I(1)

are absent in the result for T I(1)
2,− (u) in (4.92). This is a consequence of the matching onto

the semi-leptonic amplitude and the full theory form factors. The remaining single log-
arithm L corresponds to the scale dependence of the light-meson LCDA normalization
appearing as a new feature in QED. The latter can be related to specific terms in the
anomalous dimension as we discuss in Sec. 5.1. More precisely, the IR µ-dependence
in T I(1)

2,− (u) matches to the UV dependence of fM2ΦM2(u)/Zℓ in the convolution (4.64).
For QM2 = −1, this follows explicitly from (4.35), (4.48) and (4.62) due to the form
factor replacement in (4.63). We have

R
(QM2

)(1)
c̄ +

2

ϵ

∫ 1

0

dv V (u, v)|Qq1=Qd
− Z

(1)
ℓ = −2

ϵ
QM2 [Qd lnu−Qu ln(1− u)] , (4.95)

which exactly agrees to the coefficient of L in (4.92). The ν-dependence on the other
hand is related to the renormalization of Qi and Qsl which cancels against the depen-
dence of the Wilson coefficients Ci(ν) and Csl(ν) respectively.

As a second remark, we emphasize that the non-radiative B̄ → M1M2 amplitude
contains IR poles within the SCET form factors and LCDAs after matching on the
EFT. These objects are defined as non-radiative hadronic matrix elements in presence
of QCD and QED and correspond to non-perturbative but IR divergent quantities. At
first sight, we might conclude that this renders the non-perturbative input ill-defined
since the finite scale ΛQCD may not serve as an IR regulator for soft QED divergences.
However, one should regard these matrix elements as short-distance coefficients of a
low-energy theory below a few times ΛQCD obtained from SCETII, where photons cou-
ple to point-like mesons. At this energy scale, we are free to choose a matching scale
µIR at which the IR divergences cancel in the matching procedure. The scale µIR differs
from the renormalization scale µ that corresponds to the UV renormalization of the
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4. QCD×QED Factorization

non-perturbative matrix elements which we calculated explicitly in perturbation the-
ory by introducing off-shell IR regulators. Formally, the matching of SCETII onto the
effective theory of point-like mesons must be performed non-perturbatively at µIR. This
leaves a hole in our ability to compute QED effects between scales above and below a
few times ΛQCD. Nevertheless, we can view the non-perturbative quantities in presence
of QED as properly IR subtracted matching coefficients leaving a certain scheme de-
pendence. Hence, the discussion justifies considering the form factors, LCDAs and the
soft function in the conventional framework, in which experimental or lattice input, as
well as general distribution models, can be used.

To demonstrate the central points listed above, we consider the anti-collinear leptonic
matrix element 〈

ℓ−(pℓ)
∣∣R(Qℓ)

c̄ χ̄
(ℓ)

C̄
(0)
∣∣0〉 = Zℓū(pℓ)

/n−/n+

4
(4.96)

as a concrete example which we already used to define the UV renormalization factor
Zℓ in Sec. 4.2.4. The matrix element (4.96) represents the point-particle equivalent to
a hadronic LCDA that can be calculated perturbatively due to the absence of QCD
at LO in O(αem). The result for the bare UV coefficient Zbare

ℓ was given in (4.62).
To extract the IR dependence, we calculate the on-shell matrix element including the
leptonic on-shell renormalization factor obtained from (4.18) by replacing Qd → Qℓ

and mb → mℓ. From the result, we subtract the UV pole given by the divergent part
of Zbare

ℓ and find

Z
(1)
ℓ = − 1

ϵIR

(
1 + ln

m2
ℓ

m2
B

)
+

1

2
ln
µ2

m2
ℓ

+
1

2
ln2 µ

2

m2
ℓ

+ 2 +
π2

12
(4.97)

= −
(

1

ϵIR
+ ln

µ2
IR

m2
ℓ

)(
1 + ln

m2
ℓ

m2
B

)
+

3

2
ln
µ2
UV

m2
ℓ

+
1

2
ln2 µ

2
UV

m2
B

− 1

2
ln2 m

2
ℓ

m2
B

+ 2 +
π2

12
,

which corresponds to the UV-renormalized but IR-divergent matrix element. In the
second line of (4.98), we separated the UV and IR scales µUV = µIR = µ. The lepton
mass mℓ acts as a regulator for the collinear divergences and hence the 1/ϵIR pole
originates from a soft singularity. Moreover, the large logarithm lnmℓ/mB reflects
the relative boost between the external particle rest frames. While µUV gets canceled
against the scale dependence of the hard-scattering kernel and the light-meson LCDA,
see (4.95), the IR scale µIR is removed after matching onto the theory of point-like
objects. In particular, we can relate µIR to the scale dependence of the ultrasoft function
introduced in the next section that is associated with real soft photon emission much
below ΛQCD.

4.5 Ultrasoft photons

Throughout the analyses of the previous sections, we highlighted several times that the
non-radiative amplitude of the exclusive B̄ → M1M2 decay contains IR singularities
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4.5 Ultrasoft photons

arising from virtual QED corrections. To construct an IR finite observable, we must
account for the emission of an arbitrary number of soft photons once the external states
are electrically charged. In fact, experiments can not measure the difference between
a charged final state and one that is accompanied by soft photons or electron-positron
pairs below a certain energy threshold. Therefore, the relevant physical observable is
the inclusive decay width

Γ[B̄ →M1M2](∆E) ≡ Γ[B̄ →M1M2 +Xs]
∣∣
EXs≤∆E

, (4.98)

where Xs denotes all possible soft particle combinations with energy EXs . The total
energy has to be smaller or equal to some energy cut ∆E ≪ ΛQCD in the experiment.
We refer to ∆E as the “ultrasoft” scale in the process and use ∆E ≈ 60 MeV for the
soft emission. At leading power in ∆E/ΛQCD, the inclusive B̄ →M1M2+Xs amplitude
factorizes into the non-radiative part and an ultrasoft matrix element

A(B̄ →M1M2 +Xs) = A(B̄ →M1M2) ⟨Xs|(S̄(QB)
v S

†(QM1
)

v1 S
†(QM2

)
v2 )(0)|0⟩ . (4.99)

The outgoing time-like Wilson lines S(QMi
)

vi are given by (4.24) with the replacement
n± → vi, where vi is the velocity label of the meson Mi obeying v2i = 1. On the other
hand, the incoming B meson gives rise to the Wilson line [60]

S̄(QB)
v (x) = exp

{
+ieQB

∫ 0

−∞
ds v · Aus(x+ sv)

}
, (4.100)

where the electric B-meson charge is fixed by conservation QB = QM1 +QM2 , ensuring
gauge invariance of the ultrasoft function. We emphasize that the meson masses of
order mMi

∼ O(ΛQCD) cannot be set to zero in the ultrasoft regime like we did in the
hard(-collinear) matching. Hence, the ultrasoft function does not contain collinear di-
vergences but large logarithms of the scale ratios ∆E/ΛQCD and mMi

/ΛQCD. Formally,
the factorization formula (4.99) can be derived from a non-perturbative matching at
ΛQCD on the EFT of mesons with point-like QED interactions [137]. We skip a precise
derivation but note that each meson is treated in a (boosted) HQET framework. For a
review of the theoretical concepts, we refer to [138–140]. In this approach, the Wilson
lines in (4.99) ultimately arise from the decoupling of ultrasoft photons.

By squaring (4.99), we obtain the decay width

Γ[B̄ →M1M2](∆E) = |A(B̄ →M1M2)|2 S⊗({vi},∆E) , (4.101)

where the ultrasoft function is given by

S⊗({vi},∆E) =
∑
Xs

|⟨Xs|(S̄(QB)
v S

†(QM1
)

v1 S
†(QM2

)
v2 )(0)|0⟩|2 θ(∆E − EXs) . (4.102)

This function appears generally in the ultrasoft regime of cross sections and can be
calculated perturbatively [141]. We expand the O(αem) corrections to leading power
in mMi

/mB ≪ 1 and obtain

S(1)
(+,−) = 8

(
1

2
+

1

2
ln
m2

M1

m2
B

)
ln

µ

2∆E
−
(
2 + ln

m2
M1

m2
B

)
ln
m2

M1

m2
B

− 2

3
π2
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+ (mM1 → mM2) , (4.103)

S(1)
(−,0) = 8

(
1 +

1

2
ln
m2

M1

m2
B

)
ln

µ

2∆E
−
(
2 + ln

m2
M1

m2
B

)
ln
m2

M1

m2
B

+ 4− 2

3
π2 . (4.104)

We find S(1)
(0,0) = 0 trivially and the result for S(1)

(0,−) can be inferred from the last line
by sending mM1 → mM2 . Our result for S(1)

(+,−) agrees with [141].
The IR scale dependence of the non-radiative amplitude A(B̄ →M1M2) matches the

µ-dependence of the ultrasoft function for the different charge cases. We choose µ ∼ µc

of order of the hadronic scale ΛQCD and derive the resummation of large logarithms in
∆E/µ in Sec. 5.3. Finally, we emphasize once again that we are not able to determine
QED corrections between the ultrasoft theory and SCETII perturbatively in a small
window around ΛQCD.8 We further note that the exclusive matrix element defining the
light-meson LCDA in (4.50) uses a frame in which the mesonM2 is ultrarelativistic with
respect to the emitted radiation. Hence, the consistency of the factorization approach
requires ∆E ≪ ΛQCD for the applicability of the LCDA.

8The non-perturbative matching onto an EFT between the ultrasoft region and SCETII which contains
light-like operators, is generally challenging for lattice QCD/QED simulations. In recent years,
different studies regarding this issue advanced in the context of (semi-)leptonic decays, see [142–145].
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Chapter 5

Resummation of QED effects

The QCD×QED factorization formula obtained in Chapter 4 connects physics of dif-
ferent scales. In Sec. 2.5, we showed in a simplified environment how this affects
the evaluation of matching coefficients and the non-perturbative input. For the non-
leptonic B̄ → M1M2 decay, we encounter multi-layered scales that are more precisely
associated to the hard, hard-collinear, (anti-)collinear, soft and ultrasoft region. Each
object entering the factorization formula is naturally evaluated at its respective scale
using a certain model, experimental/lattice input or theoretical calculation. For the
calculation of observables, we use the factorization scale independence to choose a com-
mon reference scale, which typically has hard-collinear virtuality. A priori, the scale
hierarchy introduces large logarithms involving the different scale ratios, which are then
resummed by solving the RG. In what follows, we consider the scale evolution of the
QED-generalized light and heavy meson LCDAs as well as the ultrasoft function. Since
the jet function enters at tree-level, we do not require any RG improvement beyond the
running of αem. For the hard-matching coefficients that encode the structure-dependent
logarithms between mB and ΛQCD, we disregard the resummation, leaving it for fu-
ture work. The fixed-order expressions already yield a good approximation since QED
logarithms (αem ln2mb/ΛQCD)

n are expected to be small.
We recall that the QED-generalized LCDAs for charged light and heavy mesons

acquire phenomenological modifications due to the non-decoupling of soft photons in
the factorization approach. In the first place, this is related to an overlap of the soft
and collinear region, which was discussed and removed in Sec. 4.2. For the light meson
LCDA, the anomalous dimension (4.53) in QED contains additional local logarithmic
terms that change the endpoint behaviour and renders the well-known scale evolution
in terms of Gegenbauer coefficients non-diagonal. As a consequence, the LCDA loses
its interpretation as probability distribution since its normalization becomes scale-
dependent in contrast to QCD-only. For the heavy meson LCDA, the generalizations
in QED are even more drastic. Due to the soft Wilson lines in the definition (4.68), the
position space function develops singularities in the entire complex plane and hence
acquires support for ω < 0. Moreover, the Wilson line product introduces imaginary
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soft rescattering phases. We therefore strictly refer to the QED-generalized heavy
meson LCDA as soft function since the name “LCDA” is no longer justified. We remark
that both hadronic matrix elements for light and heavy pseudoscalar mesons are chosen
to be normalized with respect to the µ-independent QCD decay constant fP in absence
of QED, which implies that all QED effects are part of the wave functions.

To explain the fundamental new features, we proceed as follows: In Sec. 5.1, we
focus on the endpoint behaviour and the solution in terms of Gegenbauer moments
for the light meson LCDA. The latter can be only solved analytically to first order
in αem on top of an all-order resummation for αs. For the soft function discussed in
Sec. 5.2, we first derive the renormalization factors and the corresponding anomalous
dimension. Along these lines, we introduce the first inverse (logarithmic) moments
of these functions that acquire a much simpler RGE. We further discuss the solution
to the RGE and the phenomenological implications. Lastly, we derive the ultrasoft
exponentiation factors in Sec. 5.3.

5.1 Light-meson LCDA

We defined the prototype for the light-meson LCDA in the case of the outgoing anti-
collinear meson M2 in Sec. 4.2. Including the soft rearrangement, we observed that
the matrix element (4.50) has a well-defined UV anomalous dimension in QED. This
generalizes the pure QCD twist-2 distribution amplitude as an essential and universal
object in various exclusive processes accounting for an arbitrary number of virtual
gluon and photon exchanges. To point out the differences between the pure QCD
and the generalized QED behaviour, we first recall some of the basic properties of the
light-meson LCDA in presence of QCD-only. In this case, the LCDA is defined by the
non-local matrix element

⟨M(p)|q̄1(tn+)[tn+, 0]
/n+

2
(1− γ5)q2(0)|0⟩ =

in+p

2

∫ 1

0

du eiu(n+p)tfMϕM(u;µ) , (5.1)

where [tn+, 0] = W (tn+)W
†(0) is a finite distance collinear Wilson line1 and qi are ar-

bitrary quark flavours. Generally, the momentum pµ = Enµ
− +m2

M/(4E)n
µ
+, expressed

in terms of light-like reference vectors, indicates the direction of large momentum trans-
fer E ≫ mM in the process. We note that the function ϕM itself is boost-invariant and
the scale-independent decay constant fM defined in the local limit t→ 0, which yields
the normalization

∫ 1

0
du ϕM(u;µ) = 1 at every scale.

In the neutral meson case, the QED generalization of ϕM corresponds to the trivial
replacement W → W (q) for each quark q1 = q2 = q. For a charged meson with
q1 = D = d, s and q2 = u, we observed that the gauge-invariant operator

D̄(tn+)W
(d)(tn+)

/n+

2
(1− γ5)W

†(u)(0)u(0) (5.2)

1W (x) corresponds to WC(x) in (2.48) without the collinear label for the gauge field, so that W

represents the full QCD Wilson line. The same relation holds for W (q) obtained from W
(q)
C in (4.6).
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corresponding to (4.29) in SCET retains soft IR divergences in collinear QED loops.
The soft rearrangement cures this ill-definedness by multiplication with a factor of
R

(QM )
c . In fact, there must always exist such a factor and a corresponding soft function

so that the complete process is IR finite, which justifies the possibility to rearrange
the overlap as discussed in Sec. 4.2.3. Hence, we conclude that the LCDA remains
universal to any exclusive decay when electromagnetic effects are included. In terms
of QCD×QED fields, we define the charged light-meson LCDA generally as

in+p

2

∫ 1

0

du eiu(n+p)tfMΦM(u;µ) (5.3)

= ⟨M−(p)|R(QM )
c (D̄W (d))(tn+)

/n+

2
(1− γ5)(W

†(u)u)(0)|0⟩ .

Note that we can express the collinear Wilson line product in terms of a QED gener-
alized finite distance and a semi-infinite line W (d)(tn+)W

†(u)(0) = [tn+, 0]
(d)W (QM )(0).

The latter Wilson line depends on the total electric charge QM = Qd−Qu = −1 of the
meson and shows that the operator is not localized on a finite interval once the meson
is charged. We remark that the QCD term in W (QM )(x) cancels exactly as the meson
is colour-neutral. Hence, this effect is intrinsically related to QED.

In general, the LCDA follows equivalently to (4.51) the RGE

d

d lnµ
ΦM(u;µ) = −

∫ 1

0

dv Γ(u, v;µ)ΦM(v;µ) . (5.4)

We explicitly derived the QED anomalous dimension in (4.53) from the one-loop
counter term (4.35) and the rearrangement factor R(QM2

)
c̄ in (4.48). We do not re-

capitulate these arguments here and simply replace Qu → Qq2 upon adding the QCD
limit [134–136], so that the complete QCD×QED anomalous dimension at one-loop
reads

Γ(u, v;µ) = −αem

π
δ(u− v)QM

(
QM

(
ln

µ

2E
+

3

4

)
−Qq1 lnu+Qq2 ln ū

)
(5.5)

− αsCF + αemQq1Qq2

π

[(
1 +

1

v − u

)
u

v
θ(v − u) +

(
1 +

1

u− v

)
ū

v̄
θ(u− v)

](u)
+

.

The definition of the evolution kernel applies to the charged as well as the neutral
case. For a charged meson, the local logarithmic terms in the first line of (5.5) lead to
a violation of the normalization

∫ 1

0
duΦM(u;µ) ̸= 1.2 Moreover, the LCDA becomes

asymmetric under the exchange of u ↔ ū due to the different quark charges which
reflects the explicit isospin-symmetry breaking in QED. Thee logarithmic terms in
2The logarithmic corrections are entirely related to one-loop QED effects. Since the LCDA is nor-
malized with respect to the µ-independent decay constant fM , these are part of the dimensionless
function ΦM itself.
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5. Resummation of QED effects

particular contain a dependence on the energy E of the meson that is of order of the
hard scale, such that boost-invariance is explicitly broken. The latter is a remnant of the
soft rearrangement and represents an example of the factorization (collinear) anomaly
[146, 147] since the energy E implicitly defines the soft modes in the ultrarelativistic
frame of the meson. We observe that the energy dependence is a global feature as it
enters with the meson charge Q2

M . The corresponding logarithmic term similarly arises
in the point-like limit for the leptonic matrix element in (4.96) that is renormalized by
Zℓ(µ) in (4.62) with Qℓ, Eℓ ↔ QM , E. The scale evolution is given by

d

d lnµ
Zℓ(µ) =

αem

π
Q2

ℓ

(
ln

µ

2E
+

3

4

)
Zℓ(µ) , (5.6)

which has a multiplicative solution Zℓ(µ) = Uℓ(µ, µ0)Zℓ(µ0) determined by the “local”
evolution factor3

Uℓ(µ, µ0) = exp

{∫ µ

µ0

dµ′

µ′
αem(µ

′)

π
Q2

ℓ

(
ln

µ′

2E
+

3

4

)}
. (5.7)

Since Uℓ ̸= 1 for any two distinct scales, we directly observe that the normalization is
no longer conserved. Motivated by the factorization theorem (4.70) which includes the
semi-leptonic amplitude alongside with 1/Zℓ, we redefine the LCDA to Φ̂M = ΦM/Zℓ.
Note that the logarithmic terms still change the overall normalization of Φ̂M .

In QCD-only, the kernel (5.5) can be diagonalized in terms of Gegenbauer polynomi-
als. The local logarithmic terms in QED produce non-diagonal coefficients that prevent
us from finding a simple solution. Nevertheless, we can study the analytic structure
of the evolution kernel to identify the endpoint behaviour of the all-order solution ΦM

compared to the asymptotic form of ϕM = 6uū for µ → ∞ in QCD. In Sec. 5.1.2, we
derive a fixed-order O(αem) solution to the RGE (5.4) that resums QCD logarithms
together with an αem expansion. We recall that the light-meson LCDA in presence of
QED naturally has to be understood as a matching coefficient of a low-energy effective
theory and thus contains IR divergences that are minimally subtracted in dimensional
regularization. The analytical and numerical results therefore apply to this particular
scheme.

5.1.1 Endpoint behaviour

In QCD-only, the light-meson LCDA vanishes linearly at both endpoints u, ū → 0,
which is a consequence of conformal symmetry in QCD [148]. In Appendix B, we
provided an explicit example of how the twist counting naturally constructs higher-twist
operators of the B LCDA and determines their asymptotic behaviour. The general
arguments apply to both heavy and light mesons and restrict the functional shape of
the anomalous dimension. They are based on an OPE in terms of conformal operators
3We recall that the double-logarithmic expression in Uℓ is a universal feature of the radiative amplitude
including ultrasoft photons introduced in Sec. 4.5.

82



5.1 Light-meson LCDA

in QCD at the RG fixed point4 in d = 4− 2ϵ spacetime dimensions [149]. The running
in QCD×QED depends however on both couplings β(αs, αem) such that there is no
related fixed point to the RG. Hence, we do not expect conformal symmetry arguments
to apply. We further note that QED becomes strongly coupled at scales of order 1012

GeV, which are physically irrelevant to the application range of the light meson LCDA.
Nevertheless, this implies that the arguments below strictly apply to the one-loop RGE
only and may be corrected by higher-loop orders.

The kernel (5.5) acts as a distribution in the variable u since it is convoluted with a
hard function in exclusive processes. However, to analyze the behaviour of the function
ΦM under the RG, we rewrite the kernel to act in the variable v5

[
. . .
](u)
+

=
[
. . .
](v)
+

+

(
u ln ū+ ū lnu+

3

2

)
δ(u− v) . (5.8)

In this way, the RGE (5.4) becomes self-consistent, meaning that for any initial function
ΦM(u;µ0) the infinitesimal evolution dΦM/d lnµ can be computed from the distribution
in integral over v. In what follows, we construct an asymptotic expansion for ΦM(u;µ)
in the endpoint regions u → 0 and u → 1. We restrict ourselves to the analysis
of the u → 0 case since u → 1 can be inferred from Qq1 ↔ Qq2 and consequently
QM → −QM . Near the endpoint u→ 0, the evolution equation is generally dominated
by two momentum regions in which v ∼ u ≪ 1 (soft region) and v ∼ 1, u ≪ 1 (“true”
collinear region). We approximate the distributions according to the power counting
in a method of regions approach [84], see Sec. 2.2,

Collinear region:
∫ 1

0

dv
[
. . .
](v)
+

→ u

∫ 1

0

dv

v

(
1 +

1

v

)
, (5.9)

Soft region:
∫ 1

0

dv
[
. . .
](v)
+

→ u

∫ ∞

0

dv
[θ(v − u)

v(v − u)
+
θ(u− v)

u(u− v)

](v)
+
. (5.10)

In the first line, we neglected the plus-distribution as the additional term is power-
suppressed. The soft region in the second line now acts as a distribution on functions
with extended support [0,∞). Depending on the convoluted function ΦM(v;µ), both
regions may diverge at v → 0 and v → ∞ respectively so that the integrals need to be
regularized.6

In the following, we assume that the light meson LCDA near the endpoint u → 0
exhibits the form ΦM(u;µ0) ∼ ub for some initial scale µ0. There are four distinct cases
for the exponent b for which either one or both regions (5.9) and (5.10) dominate.
4The RG fixed point in QCD is sometimes referred to as the “Wilson-Fisher critical point”. To any
loop order, it is defined by the dimensional regulator ϵ∗ at which the QCD beta function vanishes,
i.e. βQCD(αs, ϵ

∗) = 0.
5To show the equality in terms of distributions, we integrate both sides with respect to two test
functions

∫ 1

0
du
∫ 1

0
dvf(u)g(v).

6The method of regions approach yields an accurate power expansion in which power-suppressed terms
can be disregarded even when they are divergent.
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5. Resummation of QED effects

i) For b > 1, the collinear region dominates and the integral (5.4) counts in total
as u1. We neglect the local terms and the soft region that scales as ub ≪ u1.
As a consequence, the collinear RGE instantaneously reproduces linear endpoint
behaviour for any b > 1 since after an infinitesimal evolution step µ0 → µ0 + dµ
the leading term ΦM(u;µ0 + dµ) ∼ u1 supersedes the ub initial condition.

ii) For b = 1, both regions and the local terms have the same power counting so
that the full kernel contributes to the RGE. The asymptotic behaviour can be
inferred as a limiting case from the soft approximation as discussed below.

iii) For b < 1, the soft region and the local terms both scale as ub and dominate.
In this case, the simplification allows us to analytically solve the RGE in Mellin
space. Note that the result strictly depends on the initial condition ΦM(u;µ0).

iv) For b ≤ −1, the evolution equation becomes ill-defined since the distribution
integral in (5.4) always diverges. The local terms in QED drive the LCDA un-
avoidably towards this regime when we evolve the function to exceptionally large
scales.

Without further assumptions, only case iii) can be analytically solved to a satisfactory
extent. We therefore focus on this case and assume b < 1 at the initial scale µ0. To
provide the basic ideas of the derivation for the asymptotic behaviour, we first recall
some of the fundamental steps in QCD-only. In this case, the RGE in the soft region
becomes

Γ(u, v;µ)
∣∣soft
αem=0

= −αsCF

π

{[
uθ(v − u)

v(v − u)
+
θ(u− v)

(u− v)

](v)
+

+ δ(u− v)

(
lnu+

3

2

)}
,

(5.11)

which exactly coincides with the kernel governing the evolution of the B LCDA ϕ+ up
to a constant in the local term. Physically, this configuration is in fact equivalent to a
heavy-light system since for u→ 0, the q1-quark in the light meson is restricted to soft
momenta while the q2-quark has a comparably large and relatively fixed momentum
component n+kq2 . The solution to (5.11) therefore involves the standard hypergeomet-
ric 2F1 convolution given in [150]. We rederive this result in a slightly different form
following the analyses in [35, 151]. The endpoint behaviour can be analyzed using a
Mellin transformation for the LCDA

Φ̃M(η;µ) ≡
∫ ∞

0

du u−1−η ΦM(u;µ) , ΦM(u;µ) =

∫ c+i∞

c−i∞

dη

2πi
uη Φ̃M(η;µ) , (5.12)

where c is a real parameter.7 A posteriori, the function itself takes the form ΦM(u;µ) ∼
ubµ for u→ 0 with some scale-dependent exponent bµ. Hence, we must choose c < bµ in

7Note that we use the transformation prescription also for the LCDA ϕM (u;µ) in QCD-only.
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5.1 Light-meson LCDA

order for the Mellin transform to converge (the latter requires Re(η) < bµ). Restricting
to QCD-only, the RGE (5.11) in Mellin-space reads[

d

d lnµ
+
αsCF

π
∂η

]
ϕ̃M(η;µ) = −αsCF

π

(
Hη +H−η −

3

2

)
ϕ̃M(η;µ) , (5.13)

in which Hn = γE + ψ(n + 1) and ψ(n) = Γ′(n)/Γ(n) are the harmonic number and
the digamma function respectively. The solution to this equation is given by [150]

ϕ̃M(η;µ) = e(2γE−3/2)a Γ(1− η)Γ(1 + η + a)

Γ(1 + η)Γ(1− η − a)
ϕ̃M(η + a;µ0) . (5.14)

The differential operator on the left-hand side of (5.13) leads to a shift in the η-variable
of the Gamma functions and the initial condition. We define

a ≡ a(µ, µ0) = −CF

∫ µ

µ0

dµ̃

µ̃

αs(µ̃)

π
=

2CF

βQCD
0

ln
αs(µ)

αs(µ0)
+O(αs) , (5.15)

where βQCD is the QCD β function given in (2.88). At one-loop, the relevant coefficient
for nf active quark flavours is

βQCD
0 =

11

3
Nc −

2

3
nf , (5.16)

with Nc = 3. Since βQCD < 0 for nf ≤ 6, the evolution variable (5.15) is strictly
negative when evolving to higher scales µ > µ0. In fact, it turns out that the evolution
factor is restricted to −1 < a < 0 in pure QCD.

The solution (5.14) holds to all orders in the strong coupling. In principle, we can
obtain an analytic form in u-space by performing the inverse Mellin transformation.
This is however not the goal of our analysis, since the soft approximation has no
concrete application in the present context.8 Instead, we determine the asymptotic
behaviour from the analytic properties of the solution in Mellin space. To this end, we
observe that (5.12) and (5.14) restrict the contour parameter c to the strip −1 − a <
c < bµ ≡ b − a(µ, µ0) so that the inverse transformation exists. We then deform the
integration contour to enclose all singularities in the right half-plane of η. Note that
the initial condition ϕ(u;µ0) ∼ ub leads to a pole at η = bµ for the shifted function
(5.14) in Mellin space. The left-most pole on the real axis for Re(η) > c in (5.14)
dictates the asymptotic form of ϕM(u;µ) for u→ 0. In our analysis, we strictly assume
power-like behaviour for the initial condition without logarithmic lnu corrections that
are only produced once QED is included. For bµ < 1, the contour picks up the pole of
ϕ̃M(η+a;µ0) and the asymptotic behaviour of the solution is given by ϕM(u;µ) ∼ ubµ .
We present the precise analytic derivation in Appendix E.1. When µ is large enough,
we generate linear behaviour bµ = 1 at which the Γ(1 − η) term becomes relevant.
We neglect the bµ > 1 case since the collinear kernel automatically reproduces the
8The solution to these kinds of equations is discussed in more detail in Sec. 5.2.
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5. Resummation of QED effects

linear endpoint behaviour. For bµ = 1, one might be tempted to directly extrapolate
ϕM(u;µ) ∼ u1. However, we emphasize that the collinear kernel (5.9) enters at this
power. Nevertheless, the soft approximation determines the asymptotic behaviour
of the LCDA since the collinear region does not provide lnu enhanced terms that
generate a different form. This is different to the soft region (5.10) in which the
integral

∫∞
u

dv
v2
ϕM(v;µ) for ϕM(v;µ) ∼ v1 does produce these terms.

For QCD, the above analysis is pictured in the left plot of Fig. 5.1, which shows
the RG flow of the exponent bµ = b − a(µ, µ0) for given b to the scale µ > µ0. While
bµ < 1, the evolved function turns into ϕM(u;µ) ∼ ubµ irrespective of the initial
behaviour ϕM(u;µ0) ∼ ub. As soon as we reach bµ = 1, the scale evolution does not
change the asymptotic behaviour anymore which is consistent with the asymptotic form
ϕM(u;µ → ∞) → 6uū. Lastly, we note that b > 1 immediately becomes linear again.
In the case of neutral mesons in QED, the same arguments apply since the evolution
kernel just enters with the prefactor αsCF → αsCF + αemQ

2
q. A more sophisticated

discussion in terms of Gegenbauer moments can be found below (5.31). In contrast
to QCD-only, the one-loop results are not viable at extremely high scales when αem

eventually tends to infinity and perturbation theory breaks down.
For charged mesons in QCD×QED, the analysis of the asymptotic behaviour be-

comes slightly more complicated due to the logarithmic terms in (5.5) but follows the
same lines above. The small u behaviour is independent of the overall normalization
and thus we redefine the LCDA

ΦM(u;µ) = Zℓ(µ)Φ̂M(u;µ) . (5.17)

which subtracts the point-like limit (5.6). The Mellin-space RGE for Φ̂M(u;µ) in the
soft approximation reads[

d

d lnµ
+
αsCF + αemQq1(Qq2 −QM)

π
∂η

]
˜̂
ΦM(η;µ)

= −αsCF + αemQq1Qq2

π

(
Hη +H−η −

3

2

)
˜̂
ΦM(η;µ) , (5.18)

where we adapted the Mellin transform (5.12) to the normalized LCDA ˜̂
ΦM(η;µ).

Following [151], we write down the ansatz

˜̂
ΦM(η;µ) = e2γEa−3ǎ/2 Γ(1− η)Γ(1 + η + a)

Γ(1 + η)Γ(1− η − a)
˜̂
ΦM(η + a;µ0)

× exp

{
−
∫ µ

µ0

dµ′

µ′
αem(µ

′)Qq1QM

π

(
Hη+a(µ,µ′) +H−η−a(µ,µ′)

)}
, (5.19)

which provides a solution to (5.18) with the generalized evolution variable

a ≡ a(µ, µ0) = −
∫ µ

µ0

dµ̃

µ̃

αs(µ̃)CF + αem(µ̃)Qq1(Qq2 −QM)

π
. (5.20)
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Figure 5.1: Instructive example of the RG flow for the exponent bµ in the limit
u → 0: The left plot shows QCD-only, while the right plot pictures
full QCD×QED. In a simplified model with one quark and lepton gen-
eration, we choose unphysical couplings αs(µ0) = 4π, αem(µ0) = π/4 at
the initial scale µ0 = 1 GeV. The running is determined by βQCD

0 = 29/3
and βQED

0 = −32/9. In the right plot, the solid vertical red line displays
the QED Landau pole at µL ≈ 9.5 GeV while the dashed vertical red line
marks the critical scale defined by (5.27) at µc ≈ 2.8 GeV. The red curve
shows the evolution of bµ = 1 at µc towards the ill-defined, gray-shaded
region with bµ = −1.

We additionally defined another global variable in the prefactor of the solution

ǎ ≡ ǎ(µ, µ0) = −
∫ µ

µ0

dµ̃

µ̃

αs(µ̃)CF + αem(µ̃)Qq1Qq2

π
. (5.21)

The second line in (5.19) originates from the additional derivative term on the left-
hand side of (5.18) which is related to the local logarithmic terms in the RGE. Its non-
trivial analytic structure modifies the asymptotic behaviour of the evolved function.
We discuss these properties including the full scale dependence in Appendix E.2. In the
present context, we focus on two particular scenarios in which the analytic structure
of the harmonic number exponential becomes “simple”. We first consider i) the QED-
only case with scale-dependent αem(µ) and second ii) the case of scale-independent
couplings αs and αem in QCD×QED. In both scenarios, we can perform the integral
in the second line of (5.19) exactly and obtain

˜̂
ΦM(η;µ) = e2γEa−3ǎ/2

[
Γ(1− η)Γ(1 + η + a)

Γ(1 + η)Γ(1− η − a)

]1+p
˜̂
ΦM(η + a;µ0) , (5.22)
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where, compared to the QCD solution (5.14), the Gamma functions are exponenti-
ated by the non-integer p = αemQq1QM/(αsCF + αemQq1(Qq2 −QM)). The asymptotic
behaviour then depends on the initial condition and the value of the exponent.

In case i), the exponent simplifies for QED-only to p = QM/(Qq2 − QM) = −3/5
with QM = −1. Furthermore, the evolution variable

a = Qq1(Qq2 −QM)
2

βQED
0

ln
αem(µ)

αem(µ0)
+O(αem) (5.23)

turns out to be positive for µ > µ0 due to the sign of the quark charges and the QED
β function at one-loop

dαem

d lnµ
= −α

2
em

2π
βQED
0 , βQED

0 = −4

3

[
Nc(nuQ

2
u + ndQ

2
d) + nℓQ

2
ℓ

]
< 0 . (5.24)

Above, nu(nd) and nℓ are the number of active up (down) quark and lepton flavours
respectively. In this case, we find the power-like behaviour for small u to be ΦM(u;µ) ∼
ubµ for b < 1, and ΦM(u;µ) ∼ u1−a(µ,µ0) for b ≥ 1. Since a > 0, the endpoint behaviour
is generally pulled towards smaller values of the exponent and eventually to bµ = −1
when µ becomes large enough. As a consequence, the LCDA becomes divergent when
going below bµ = 0. Furthermore, the evolution equation becomes ill-defined as (5.4)
breaks down for bµ < −1. In the real world, this effect appears only at unphysically
high scales and is prohibited by the strong interaction at low energies.

For ii) scale-independent couplings in QCD×QED, the evolution variable reads

a = −αsCF + αemQq1(Qq2 −QM)

π
ln

µ

µ0

(5.25)

and hence, QCD and QED effects in general compete due to the different relative
signs induced by the electric charges of the meson and its constituents. The global
sign of (5.25) then determines the asymptotic behaviour of the solution (5.22). For
αsCF+αemQq1(Qq2−QM) < 0, we have a > 0 so that bµ decreases with increasing µ and
the endpoint behaviour equals to the QED-only case i). For αsCF+αemQq1(Qq2−QM) >
0, we have a < 0 and bµ increases with µ, which is the phenomelogically relevant case
comparable with QCD-only. The endpoint behaviour of the LCDA is ΦM(u;µ) ∼ ubµ

for bµ < 1 and hence driven towards linear dependence so that we definitely reach
bµ = 1 for a finite µ < ∞. At bµ = 1, the analytic properties of the solution are more
complicated, since the Gamma function Γp(1−η) in (5.22) not only has a pole at η = 1,
but also an attached branch cut extending to Re(η) → ∞. The integration along this
cut yields

ΦM(u;µ) ∼ u(− lnu)p . (5.26)

We conclude that at bµ = 1, the linear asymptotics of the light meson LCDA are
enhanced by the logarithmic term (− lnu)p. For αem → 0, we restore the QCD-only
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solution as the exponent p becomes zero. These relations can also be observed in an
αem expansion since the first-order term enters with αemu ln (− lnu).

The two special cases above provide the discussion ground for the full QCD×QED
theory, including running of the gauge couplings at one-loop. The exponent p intro-
duced below (5.22) implicitly defines a critical scale through (5.20) given by

αs(µc)CF + αem(µc)Qq1(Qq2 −QM) = 0 . (5.27)

For the critical scale, the power p has a singularity p(µc ∓ 0) = ±∞ with an opposite
sign on both sides that marks the change from a QCD-like to a QED-like endpoint
behaviour. The RG flow in terms of the asymptotic exponent bµ is displayed in the
right plot of Fig. 5.1. On a mathematical level, we conveniently distinguish between the
cases µ0 > µc and µ < µc. In the former, we find αsCF +αemQq1(Qq2−QM) < 0 so that
the solution behaves like ΦM(u;µ) ∼ ubµ , where bµ < 1 decreases as in QED-only, and
we reach the ill-defined region of the RGE at a finite µL > µ0. This only happens some
orders of magnitude before entering the strong coupling regime in QED and hence,
it is irrelevant for practical applications.9 For µ < µc, we find again ΦM(u;µ) ∼ ubµ

but for increasing bµ < 1. Interestingly, we observe for bµ = 1 that our result (5.26)
also applies in this case even though it was derived for fixed couplings only. This fact
emerges from the full scale-dependent discussion in Appendix E.2. The special case
µ0 < µc < µ is not listed since we can always split the evolution into smaller pieces.

In general, we conclude that the linear endpoint behaviour in physical scenarios is
modified by an additional (− lnu)p term. Hence, inverse moments like

∫ 1

0
duΦM(u;µ)/u

appearing in the factorization theorem (4.70) exist at realistic scales. In Fig. 5.2, we
present the new qualitative features of the light meson LCDA involving the scale-
dependent normalization, asymmetry as well as divergent endpoint behaviour for large
artificial αem. The plot is generated by discretization of the RGE (5.4), for which we
refer to Chapter 6, providing more insights on the method.

5.1.2 Gegenbauer moments and analytic O(αem) solution

For realistic applications, we assume low scales at which αem is small. In this case, the
first-order O(αem) solution to the RGE already provides an excellent approximation of
the resummed result. This corresponds more precisely to a resummation of logarithms
αk
emα

n
s ln

n+k µ/µ0 with k = 0, 1. Hence, QCD logarithms are summed on top of a
fixed-order expansion in the electromagnetic coupling. We recall that in QCD-only,
the kernel (5.5) can be diagonalized in terms of Gegenbauer polynomials. For this
reason, we express the LCDA in (5.4) as

Φ̂M(u;µ) = 6uū
∞∑
n=0

aMn (µ)C(3/2)
n (2u− 1) , (5.28)

9In a theory with other quark and lepton flavours, the coefficient βQED
0 could be large enough to render

the RGE for ΦM (u;µ) inconsistent much below the scale where QED becomes strongly coupled.

89



5. Resummation of QED effects

αem = 1

αem = 2

αem = 3

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

Figure 5.2: The plot shows a numerical solution to (5.4) for the LCDA of a negatively
charged π−. We discretize the u-interval [0, 1] to N = 1001 points that
are logarithmically distributed and use lattice QCD results for the initial
condition Φ̂π−(u;µlat) = 6uū(1+aπ2 (µlat)C

(3/2)
2 (2u−1)) (black solid curve)

at µlat = 2 GeV with aπ2 (µlat) from Table 6.3. The strong coupling αs(µ)
runs at one-loop while the αem is fixed to three different, artificially large
values. We evolve the LCDA to µ = 10 GeV (dotted curves) and observe
that i) the normalization is not conserved, the LCDA ii) gets asymmetric
in u↔ ū and iii) begins to diverge at u = 1 for large αem. The latter is a
consequence of the larger charge Qu leading to momentum configuration
in which the u-quark is preferred to carry a higher momentum fraction in
the meson.

which results in an infinite dimensional system of coupled ordinary differential equa-
tions for aMn (µ), where C

(3/2)
n (2u − 1) and aMn (µ) are the n-th Gegenbauer polyno-

mial/moment respectively. Note that we subtracted the universal factor Zℓ according
to (5.17). For the n-th coefficient in the expansion (5.28), the RGE is given by

d

d lnµ
aMn (µ) = −αs(µ)CF + αem(µ)Qq1Qq2

2π
γna

M
n (µ)− αem(µ)

π
QM

∞∑
m=0

fnma
M
m (µ) ,

(5.29)

where the coefficients in the last term are given by

fnm =
4(2n+ 3)

(n+ 2)(n+ 1)

∫ 1

0

du (Qq1 lnu−Qq2 ln ū) uū C
(3/2)
n (2u− 1)C(3/2)

m (2u− 1)
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=
(
Qq2 − (−1)n+mQq1

)
×



(2n+ 3)

(n−m)(n+m+ 3)
× (m+ 1)(m+ 2)

(n+ 1)(n+ 2)
n > m

(2n+ 3)

(m− n)(n+m+ 3)
n < m

1

2n+ 3
+Hn+1/2 −Hn+2 + ln 4 n = m.

(5.30)

The non-diagonal terms fnm originate from the local logarithmic terms in the RGE
so that Gegenbauer moments with different coefficients in general mix under scale
evolution.

In the neutral case QM = 0 with Qq1 = Qq2 = Qq, we find that (5.29) becomes
diagonal and the solution is similar to the LL solution in QCD-only

an(µ) =

(
αs(µ)

αs(µ0)

)CF γn/β
QCD
0

(
αem(µ)

αem(µ0)

)Q2
qγn/β

QED
0

an(µ0) , (5.31)

with

γn = 1− 2

(n+ 1)(n+ 2)
+ 4

n+1∑
m=2

1

m
= 4Hn+1 − 3− 2

(n+ 1)(n+ 2)
(5.32)

is the anomalous dimension [134] that asymptotically behaves like γn ≈ 4 ln(n) at large
n. For the neutral case as well as in QCD-only the factors in (5.31) suppress the Gegen-
bauer moments for an upward scale evolution since αs(µ) < αs(µ0), CFγn/β

QCD
0 > 0

and αem(µ) > αem(µ0), Q2
qγn/β

QED
0 < 0. Therefore, we can truncate the Gegenbauer

expansion at some n = n0 which is oftentimes chosen to be n0 = 2 due to constraints
from lattice QCD. Note that we argued before that QED in general prevents a trun-
cation of the series, but only for charged mesons. Since γ0 = 0, the zeroth moment is
scale-independent so that the normalization

∫ 1

0
duΦM(u;µ) = a0 = 1 is maintained for

QM = 0.
In the case of QM ̸= 0, the first term in (5.29) proportional to Qq1Qq2 < 0 comes

with the opposite sign compared to the QCD contribution and enhances the Gegenbauer
moments with increasing µ. Nevertheless, we truncate the series at n0 = 2 since we
restrict ourselves to low scales at which αem(µ) stays small in contrast to αs(µ).10

Furthermore, the coefficients fnm lead to a mixing of lower into higher Gegenbauer
moments and vice versa. We especially emphasize that a0 receives corrections from
higher moments as f0m ̸= 0 such that the normalization of the LCDA is no longer
conserved. For large n, the diagonal contribution fnn ≈ QM ln 4 becomes constant and
thus irrelevant with respect to the former logarithmically enhanced γn term in (5.29).
The non-diagonal terms on the other hand fall off like fnm ∼ 1/n3 for n ≫ m and
10Only at extremely large scales QED would turn the overall sign of the first term so that higher

Gegenbauer moments get increasingly relevant.
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5. Resummation of QED effects

fnm ∼ 1/m2 for m ≫ n. When n ∼ m are of the same order, the off-diagonal terms
drop as 1/n. We conclude that, independent of the QED coupling, the mixing between
distant Gegenbauer moments gets strongly suppressed by the mixing matrix. Together
with the truncation argument, this motivates to solve the resulting finite-dimensional
coupled system (5.29) iteratively to first-order in αem.

In the approximation where QED is small, we now solve the RGE analytically to
O(αem) which sums the leading logarithms αk

emα
n
sL

n+k with k = 0, 1 with L = lnµ/µ0.
The resummation of QCD logarithms is in fact necessary since αs × L ∼ O(1) while
αem × L ≪ 1 justifies the first-order expansion in the electromagnetic coupling.11 We
expand the Gegenbauer moments to first order according to

an(µ) = aQCD
n (µ) +

αem(µ)

π
a(1)n (µ) +O(α2

em) , (5.33)

where we count the QCD moments as aQCD
n (µ) ∼ O(1) and the QED moments as

a
(1)
n (µ) ∼ O(ln(µ/µ0), αs(µ0)/αs(µ)). Technically, one could expand also the initial

condition an(µ0) in the form of (5.33). This would however correspond to a resumma-
tion beyond the LL accuracy in QED. After inserting (5.33) into (5.29), we obtain the
two differential equations

d

d lnµ
aQCD
n (µ) = −αs(µ)CF

2π
γna

QCD
n (µ) (5.34)

and

d

d lnµ
a(1)n (µ) = −αs(µ)CF

2π
γna

(1)
n (µ)− In(µ) (5.35)

where the inhomogeneous part is given by

In(µ) =
1

2
Qq1Qq2γna

QCD
n (µ) +QM

∞∑
m=0

fnma
QCD
m (µ) . (5.36)

For convenience, we neglected the index M of the Gegenbauer moments. The RGEs
(5.34) and (5.35) correspond to the zeroth and first-order equations in αem. We em-
phasize that the inhomogeneity (5.36) involves all QCD Gegenbauer moments. As
expected, we recover from (5.34) the LL QCD solution

aQCD
n (µ) =

(
αs(µ)

αs(µ0)

)CF γn/β
QCD
0

aQCD
n (µ0) . (5.37)

For the QED corrections at O(αem), we obtain

a(1)n (µ) =

(
αs(µ)

αs(µ0)

)CF γn/β
QCD
0

a(1)n (µ0)−
1

2
Qq1Qq2γna

QCD
n (µ) ln

µ

µ0

(5.38)

11For the universal factor Zℓ, we keep the double-logarithmic accuracy to all orders in αem.
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− QM

∞∑
m=0

2πfnm

βQCD
0 + (γn − γm)CF

{
aQCD
m (µ)

αs(µ)
− aQCD

m (µ0)

αs(µ0)

(
αs(µ)

αs(µ0)

)CF γn/β
QCD
0

}
.

We recall that a(1)n (µ0) represents the QED initial condition whose inclusion is beyond
LL. In principle, this correction could be accessed by a future lattice simulation in the
full QCD×QED theory. Nevertheless, the expansion of the initial condition according
to (5.33) seems to be unnatural and we therefore send a

(1)
n (µ0) → 0 in the numerical

analysis of (5.38).

5.2 Soft functions

We defined the soft functions (4.68) in the framework of SCETII factorization for the
heavy B-meson decay into two light particles flying back-to-back. The precise definition
depends on the soft rearrangement done in Sec. 4.2.3 and in particular the product of
two soft Wilson lines from the decoupling of the two collinear sectors. As we will see
in the following, the latter introduces imaginary parts, i.e. soft rescattering phases.
We emphasize that the definition (4.68) still contained the B-meson decay constant in
QCD to match the well-known factorization formula (4.70). It is however convenient
to treat the soft functions entirely in HQET so that their natural definition becomes

iFB(µ)

∫ ∞

−∞
dω e−iωtΦB,⊗(ω;µ)

=
1

R
(QM1

)
c R

(QM2
)

c̄

〈
0
∣∣q̄(q)(tn−)[tn−, 0]

(q) /n−γ5hv(0)S
†(QM1

)
n− S

†(QM2
)

n+

∣∣B̄(v)
〉
, (5.39)

where the HQET decay constant is given in (2.71). Since FB(µ) is defined in the
absence of QED, the entire electromagnetic corrections are contained in ΦB,⊗.

Generally, the soft functions produce large logarithms when evaluated much above
the soft scale ΛQCD that require resummation. To this end, we analyze the behaviour
under renormalization of these functions. We define the UV renormalization factor by

Oren
⊗ (ω;µ) =

∫ ∞

−∞
dω′ Z⊗(ω, ω

′;µ) Obare
⊗ (ω′) , (5.40)

where O⊗ represents the Fourier-transformed operator with respect to the variable t
on the right-hand side of (5.39). In (5.40), we include the MS factors of the external
quark fields as well as the soft rearrangement factors Rc,c̄. The one-loop diagrams
contributing to the renormalization are depicted in Fig. 5.3. As for the light meson case,
the ω′-convolution in (5.40) indicates a mixing of operators with different momentum
variables. However, in the present context, one additional modification arises: Contrary
to QCD-only, where the function is supported for ω > 0 [152], the integration range for
ω′ extends to negative infinity for QM2 ̸= 0. Hence, we most generally need to consider
support for −∞ < ω < ∞. The anomalous dimension for ΦB,⊗(ω;µ) is then defined
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hv

qs

(a)

hv

qs

(b)

hv

qs

(c)

hv

qs

(d)

hv

qs

(e)

hv

qs

(f)

Figure 5.3: One-loop diagrams at O(αem) for the soft function. The finite-distance
Wilson line [tn−, 0]

(q) corresponds to the black square. An insertion of
the product S†(QM1

)
n− S

†(QM2
)

n+ is indicated by a black dot. We do not display
the vertex correction since it is UV finite as we see from QCD in (A.14).

by

d

d lnµ
ΦB,⊗(ω;µ) = −

∫ ∞

−∞
dω′ Γ⊗(ω, ω

′;µ)ΦB,⊗(ω
′;µ) , (5.41)

where the kernel can be computed from the Z⊗-factor and the scale-dependent decay
constant FB(µ) in (2.71)

Γ⊗(ω, ω
′;µ) = −

∫ ∞

−∞
dω̂

dZ⊗(ω, ω̂;µ)

d lnµ
Z−1

⊗ (ω̂, ω′;µ) + δ(ω − ω′)
dFB(µ)

d lnµ
. (5.42)

In the following, we calculate the renormalization factor and the anomalous dimen-
sion for ΦB,⊗ in Sec. 5.2.1 and 5.2.2 respectively. Moreover, we introduce their first
inverse (logarithmic) moments in 5.2.3 that play an essential role in factorization theo-
rems like (1.7) or (4.70). The solution to the RGE of the soft functions alongside with
the asymptotic behaviour and in terms of inverse moments is discussed in Sec. 5.2.5–
5.2.6. We highlight that we obtain an all-order solution in both cases, even though
the Laplace space solution for ΦB,⊗ is only formal without concrete application. In the
last Sec. 5.2.7, we therefore approximate the solution for the soft function again to first
order in αem for which we find an analytic form in ω-space.

5.2.1 Renormalization of ΦB,⊗

We find the renormalization factor (5.40) by calculating the partonic matrix elements
of the operator ⟨0|O⊗(ω)|q̄s(ω′)hv⟩ in momentum space. The variable ω′ ≡ n−l always

94



5.2 Soft functions

denotes the momentum variable of the incoming soft momentum l from the light spec-
tator quark. We strictly assign ω to be the Fourier conjugate to the position space
variable t on the right-hand side of (5.39). For convenience, we split the QCD from
QED corrections and denote the counter term as

Z⊗(ω, ω
′, µ) = δ(ω − ω′) +

αs

4π
ZQCD(ω, ω′, µ) +

αem

4π
ZQED

⊗ (ω, ω′, µ) . (5.43)

Without further notation, we identify Z⊗ and Γ⊗ with the one-loop expressions given
below.

The computation of ZQED
⊗ from the diagrams in Fig. 5.3 varies in multiple steps

compared to the QCD calculation [152]. First and foremost, the extended support
on the entire real axis for ω and ω′ requires the introduction of two modified plus-
distributions that mix the momentum variables ω′ > 0 into ω < 0 and vice versa.
To give a precise example, we derive the contribution for diagram (a). We use off-
shell regularization for the spectator quark momentum l2 ̸= 0. As before, the soft
Wilson lines in the operator definition carry the off-shell regulators δc,c̄ in (4.39) and
(4.45) after the decoupling from the collinear propagators. In addition to previous
computations, we derive the Feynman rule for the finite-distance Wilson line [tn−, 0]

(q)

which is defined below (4.68). For outgoing photon momentum k, we have

Qspen
µ
−

n−k + δc
(δ(ω + n−k − ω′)− δ(ω − ω′)) , (5.44)

where the ω′ denotes the incoming anti-quark momentum variable and δc arises from
the Wilson line in the collinear decoupling. For (a), the finite-distance Wilson line only
contributes together with the Wilson line of QM2 to the UV divergent terms. Dropping
the charge factors QspQM2 , we find for diagram (a)

µ̃2ϵ

∫
ddk

(2π)d
−2i

k2 + i0

e

n−k + δc

e

n+k − δc̄
(δ(ω + n−k − ω′)− δ(ω − ω′)) (5.45)

=
−2αem

(2π)d−2
µ̃2ϵ

∫ ∞

0

d(n−k)

n−k + δc

∫
dd−2k⊥

−k2⊥ − δc̄n−k
(δ(ω + n−k − ω′)− δ(ω − ω′))

=
−2αem

(4π)1−ϵ

(
µ̃

−δc̄

)ϵ

Γ(ϵ)

∫ ∞

0

d(n−k)

n−k + δc

(
µ̃

n−k

)ϵ

(δ(ω + n−k − ω′)− δ(ω − ω′))

=
−2αem

(4π)1−ϵ

(
µ̃

−δc̄

)ϵ

Γ(ϵ)

{
θ(ω′ − ω)

ω′ − ω + δc

(
µ̃

ω′ − ω

)ϵ

− Γ(ϵ)Γ(1− ϵ)

(
µ̃

δc

)ϵ

δ(ω − ω′)

}
.

We recall our choice Re(δc,c̄) < 0 and note that we decomposed the loop momentum
k2 = (n−k)(n+k) + k2⊥ into light-cone components. We first integrated n+k with the
residue theorem enforcing n−k > 0. We ultimately find two contributions that are
proportional to δ(ω − ω′) (local) and θ(ω′ − ω) (non-local). The Heaviside function
originates from the former δ(ω + n−k − ω′) term since n−k must be positive. It con-
tributes for ω < ω′ where, most importantly, ω is not necessarily positive in contrast
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hv

qs

uq

M1

M2

hv

qsl v̄p′

k

l

k

Figure 5.4: The two diagrams provide an example of how diagram (a) of Fig. 5.3 in
the EFT arises from a full theory diagram in QCD×QED. The soft pho-
ton (wavy) line connects external (anti-)collinear fermions and internal
hard(anti-)collinear propagators, where the latter gets contracted to the
finite distance Wilson line in HQET×SCETII. In terms of momentum
components, the difference ℓ − k − v̄p′ flows through the hard-collinear
(curly) gluon line. At LP, the corresponding propagator turns into 1/ω
with ω = n−(ℓ−k) = ω′−n−k. Even though the soft photon momentum
counts formally as ΛQCD, it can become of order of the large component
n−k ∼ O(u n−q) ∼ O(mb → ∞). Hence, we always generate ω > 0 from
ω′ > 0 since n−k has no upper bound in the heavy-quark limit.

to QCD-only. In fact, we require the ω < 0 part of the diagram in order to obtain
a consistent local limit t → 0 of the operator (5.39). The local limit corresponds to
an ω-integration of (5.45) over the entire real axis, which has to be performed before
renormalizing the UV divergences.12 Since the finite-distance line vanishes in this limit,
diagram (a) should collapse to zero which is only the case by integrating −∞ < ω <∞.
As a consequence, any initial ω′ > 0 will eventually result in ω < 0 by scale evolution.
This is an effect of diagram (a) only, so that we conclude −∞ < ω < ∞ is generated
only for QM2 ̸= 0.

Similar to the light meson case in (5.8), we can understand the renormalization
factor as a distribution in both variables ω and ω′. In ω, the soft functions act as an
operator-valued distribution on the jet function (4.69). For ω′ on the other hand, the
RGE for the soft operators becomes self-consistent and Z⊗ as well as Γ⊗ has to be
viewed as a kernel integrated against a test function ϕ(ω′).13 To reveal the true UV
structure of (5.45), we recast the non-local term into a generalized plus-distribution.
We distinguish between i) ω > 0 and ii) ω < 0 and expand the result in both cases in
terms of the regulators δc,c̄ that will drop out after all diagrams have been summed.
i) For ω > 0, we have ω′ > 0 imposed by θ(ω′−ω) and thus we can use the standard

12We discussed in Chapter 2 that the local limit does not commute with the operator renormalization
according to [38].

13We provide the results for distributions in ω in Appendix D.2.
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plus-distribution∫ ∞

−∞
dω′[ . . . ]

+
ϕ(ω′) =

∫ ∞

−∞
dω′[ . . . ](ϕ(ω′)− ϕ(ω)) . (5.46)

The non-local term becomes

θ(ω)

∫ ∞

−∞
dω′ θ(ω

′ − ω)

ω′ − ω + δc

(
µ̃

ω′ − ω

)ϵ

ϕ(ω′)

= θ(ω)

∫ ∞

−∞
dω′ω′

[
θ(ω′ − ω)

ω′(ω′ − ω + δc)

]
+

ϕ(ω′) + θ(ω)ϕ(ω)

∫ ∞

ω

dω′ ω

ω′(ω′ − ω + δc)
+O(ϵ)

= θ(ω)

∫ ∞

−∞
dω′ω′

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

ϕ(ω′)− θ(ω)ϕ(ω) ln
δc
ω

+O(ϵ, δc) . (5.47)

We assume that the test function behaves like ϕ(ω′) ∼ 1/ω′ and hence we do not
obtain UV divergences from the ω′ integration. Up to logarithmic corrections induced
by higher loop orders, this behaviour can be inferred from the jet function in (4.69).
Consequently, we can expand (5.47) up to O(ϵ) that gives rise to an irrelevant constant
for ϵ → 0. Since the plus-distribution including 1/(ω′ − ω + δc) produces IR finite
results for δc → 0, we can set the regulator in this term to zero up to vanishing linear
corrections O(δc).
ii) For ω < 0, the variable ω′ can either be positive or negative. In this case, the

region for ω′ > 0 requires no regularization while for ω′ < 0 we introduce the modified
plus-distributions (comparable with the +a distribution in [153])∫ ∞

−∞
dω′[ . . . ]⊕/⊖ ϕ(ω

′) =

∫ ∞

−∞
dω′[ . . . ](ϕ(ω′)− θ(±ω′)ϕ(ω)) . (5.48)

For the case at hand, the ⊖-distribution regulates the 1/(ω′ − ω) pole in (5.45) when
ω < 0 and ω′ < 0. We thus find for the ω < 0 contribution of diagram (a)

θ(−ω)
∫ ∞

−∞
dω′ θ(ω

′ − ω)

ω′ − ω + δc

(
µ̃

ω′ − ω

)ϵ

ϕ(ω′)

= θ(−ω)
∫ ∞

−∞
dω′
[
θ(ω′ − ω)

ω′ − ω + δc

]
⊖
ϕ(ω′) + θ(−ω)ϕ(ω)

∫ 0

ω

dω′ 1

ω′ − ω + δc
+O(ϵ)

= θ(−ω)
∫ ∞

−∞
dω′
[
θ(ω′ − ω)

ω′ − ω

]
⊖
ϕ(ω′)− θ(−ω)ϕ(ω) ln δc

−ω
+O(ϵ, δc) . (5.49)

We require the second ⊕-distribution in (5.48) for the regularization of diagram (e)
in case of ω > 0 and ω′ > 0. All other diagrams involve the standard plus-distribution
(5.46) and are not explicitly calculated. For diagram (e), we follow the same procedure
above. Without giving specific details, this diagram evaluates to

2αem

(4π)1−ϵ
Γ(ϵ)

{
θ(ω − ω′)

ω − ω′ − δc

(
µ̃

ω − ω′ − δc

)2ϵ

− Γ(2ϵ)Γ(1− 2ϵ)

(
µ̃

−δc

)2ϵ

δ(ω − ω′)

}
,

(5.50)
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where we stripped off the charge prefactor QdQsp. Again, we consider the two distinct
cases i) and ii) and rewrite the non-local term accordingly. For ω > 0, we require the
⊕-distribution since ω′ can be either positive or negative. We obtain

θ(ω)

∫ ∞

−∞
dω′ θ(ω − ω′)

ω − ω′ − δc

(
µ̃

ω − ω − δc

)2ϵ

ϕ(ω′)

= θ(ω)

∫ ∞

−∞
dω′
[
θ(ω − ω′)

ω − ω′

]
⊕
ϕ(ω′) + θ(ω)ϕ(ω) ln

ω

−δc
+O(ϵ, δc) . (5.51)

For ω < 0, the standard distribution suffices in order to find

θ(−ω)
∫ ∞

−∞
dω′ θ(ω − ω′)

ω − ω′ − δc

(
µ̃

ω − ω − δc

)2ϵ

ϕ(ω′)

= θ(−ω)
∫ ∞

−∞
dω′ ω′

[
θ(ω − ω′)

ω′(ω − ω′)

]
+

ϕ(ω′) + θ(−ω)ϕ(ω) ln −ω
−δc

+O(ϵ, δc) , (5.52)

where we introduced a factor of 1/ω′ in the distribution to ensure convergence of the
integration. We conclude by (5.51) that any ω′ < 0 can be pushed by diagram (e) to a
positive ω up to infinity. Therefore, on the level of the anomalous dimension, diagrams
(a) and (e) of Fig. 5.3 can mix positive into negative support and vice versa while the
remaining contributions retain the sign of the initial momentum variable ω′.

Our findings are in fact consistent with the physical picture: In QCD-only, the static
HQET field hv provides an infinite source of momentum in the light-like directions n+

and n−. Hence, the spectator quark momentum ω′ = n−ℓ can absorb an arbitrary
amount of this momentum and extends to infinity in the heavy quark limit mb → ∞,
which is reflected by diagram (e) that principally takes any ω′ to infinity. In QED,
the effect gets reversed since the spectator quark still couples to the outgoing charged
mesons through soft photons. The spectator in particular couples to the outgoing anti-
collinear meson M2 whose constituents carry away large momentum n−q ∼ O(mb) in
the n+-direction. For mb → ∞, this implies that the light quark loses momentum
and ω′ eventually extends to negative infinity. We present the latter scenario resulting
from diagram (a) in Fig. 5.4. Altogether, we summarize that the soft functions have
particularly distinguished to the B LCDA in QCD once M2 is charged.

To obtain the final result for the renormalization factor of diagram (a), we insert
the results from (5.47) and (5.49) corresponding to ω > 0 and ω < 0 into (5.45). We
obtain the UV counter term

Z
QED,(a)
⊗ = QspQM2

{
2

ϵ
θ(ω)ω′

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

+
2

ϵ
θ(−ω)

[
θ(ω′ − ω)

ω′ − ω

]
⊖

−
(
2

ϵ2
+

2

ϵ
ln

µ

−δc̄
+

2

ϵ
θ(ω) ln

µ

ω
+

2

ϵ
θ(−ω) ln µ

−ω

)
δ(ω − ω′)

}
, (5.53)
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where the regulator δc drops out in the local terms. We give the results for diagrams
(b)-(d) without further details. Diagram (b) only contains local terms that are given
by

Z
QED,(b)
⊗ = QdQM1

(
1

ϵ2
+

2

ϵ
ln

µ

−δc

)
δ(ω − ω′) +QdQM2

(
1

ϵ2
+

2

ϵ
ln

µ

−δc̄

)
δ(ω − ω′) .

(5.54)
For both diagrams (c) and (d) we find non-local terms with support for ω > 0 and
ω < 0 that originate from the integral∫ ω′

0

d(n−k)f(n−k)δ(ω + n−k − ω′) = f(ω′ − ω) [θ(ω)θ(ω′ − ω)− θ(−ω)θ(ω − ω′)] .

(5.55)

We emphasize that the contributions from this integral do not mix positive into negative
momentum variables and vice versa. In pure QCD, the last term in (5.55) vanishes as
the heavy meson LCDA supports ω > 0 exclusively. In QCD×QED however, this term
needs to be included since diagram a) generates ω < 0 after an infinitesimal evolution
step. In total, we find the one-loop expressions

Z
QED,(c)
⊗ =

2

ϵ
QspQM1

{
− θ(ω)ω

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

− θ(−ω)ω
[
θ(ω − ω′)

ω′(ω − ω′)

]
+

+ ln

(
µ

ω − i0

)
δ(ω − ω′)− ln

(
µ

−δc

)
δ(ω − ω′)

}
, (5.56)

Z
QED,(d)
⊗ =

2

ϵ
Q2

sp

{
− θ(ω)ω

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

− θ(−ω)ω
[
θ(ω − ω′)

ω′(ω − ω′)

]
+

− δ(ω − ω′)

}
.

(5.57)

The UV divergent terms of diagram (c) do not mix positive into negative support.
However, this contribution enters similar to diagram (a) in Fig. 5.4 with a coupling of
the soft spectator quark to the collinear line next to the interaction vertex. Therefore,
the meson M1 may carry an infinite amount of momentum away so that ω < 0 is
generated through finite terms of the diagram. Diagram (e) is obtained by adding
together (5.48)

Z
QED,(e)
⊗ = QdQsp

{
− 2

ϵ
θ(ω)

[
θ(ω − ω′)

ω − ω′

]
⊕
− 2

ϵ
θ(−ω)ω′

[
θ(ω − ω′)

ω′(ω − ω′)

]
+

+

(
1

ϵ2
+

2

ϵ
θ(ω) ln

µ

ω
+

2

ϵ
θ(−ω) ln µ

−ω

)
δ(ω − ω′)

}
. (5.58)

The remaining diagram (f) contracts the soft Wilson lines ofM1 andM2 and contributes
when both mesons are charged. We find

Z
QED,(f)
⊗ = QM1QM2

(
− 2

ϵ2
− 2

ϵ
ln

µ

−δc̄
− 2

ϵ
ln

µ

−δc
+

2iπ

ϵ

)
δ(ω − ω′) . (5.59)
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Lastly, we include the external renormalization factors

ZQED
v = −Q

2
d

ϵ
δ(ω − ω′) , ZQED

q =
Q2

sp

2ϵ
δ(ω − ω′) . (5.60)

Most of the above results contain the IR regulators δc,c̄. After including the rearrange-
ment factors from (4.47) and (4.48) in (5.39), this dependence cancels and we obtain
a well-defined UV renormalized matrix element. We recall that these factors were in-
troduced through (4.44) together with the absolute value to avoid spurious imaginary
parts in the collinear sector. Irrespective of the particular choice, the soft functions
generally are complex-valued due to soft rescattering of the external states. We discuss
the QCD limit of these expressions in the next step.

5.2.2 Anomalous dimension for ΦB,⊗

Depending on the electric charge, the standard and generalized plus-distributions ap-
pear in certain linear combinations after adding the renormalization factors of each
diagram together. To this end, we define ZQED:

F>(ω, ω′) = ω

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

+

[
θ(ω − ω′)

ω − ω′

]
⊕
,

F<(ω, ω′) = ω

[
θ(ω − ω′)

ω′(ω − ω′)

]
+

+

[
θ(ω′ − ω)

ω′ − ω

]
⊖
,

G>(ω, ω′) = (ω + ω′)

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

− iπδ(ω − ω′) ,

G<(ω, ω′) = (ω + ω′)

[
θ(ω − ω′)

ω′(ω − ω′)

]
+

+ iπδ(ω − ω′) .

(5.61)

We indicate the ω > 0 (ω < 0) support by the superscript > (<). For convenience in
later computations, the G-distributions are defined with an additional imaginary part.
Note that these distributions do not mix positive and negative momentum variables.
Instead, only the distributions F> and F< contain the ⊕ and ⊖ distributions that
cause a transition from ω′ < 0 to ω > 0 and from ω′ > 0 to ω < 0 respectively. We
further combine the distributions (5.61) into

H±(ω, ω
′) ≡ θ(±ω)F>(<)(ω, ω′) + θ(∓ω)G<(>)(ω, ω′) . (5.62)

with the upper (lower) sign corresponding to > (<). Adding the contributions from
(5.53)–(5.60) and (4.47) as well as (4.48), we receive

ZQED
⊗ (ω, ω′) =

[
(Q2

sp + 2QspQM1)

(
1

ϵ2
+

2

ϵ
ln

µ

ω − i0

)
+

2

ϵ

(
iπ(Qsp +QM1)QM2 −

3

4
Q2

sp −
1

2
Q2

d

)]
δ(ω − ω′)

100



5.2 Soft functions

− 2

ϵ
Qsp

[
QdH+(ω, ω

′)−QM2H−(ω, ω
′)

]
, (5.63)

where we used charge conservation Qd −Qsp = QM1 +QM2 and recombined ln (µ/[ω−
i0]) = ln (µ/[−ω]) + iπ for ω < 0. As mentioned before, the IR regulators cancel in
the sum of all diagrams. We find QCD limit of (5.63) by setting the meson charges to
zero and Q2

sp, Q
2
d → CF :

ZQCD(ω, ω′) = CF

{(
1

ϵ2
+

2

ϵ
ln

µ

ω − i0
− 5

2ϵ

)
δ(ω − ω′)− 2

ϵ
H+(ω, ω

′)

}
. (5.64)

We remark that this renormalization factor also contains terms for ω < 0. In pure
QCD, this contribution vanishes since we assume positive support due to the analytic
structure of the position space operator defining the LCDA. Once QED effects are
included, we generate negative support that then obtains a response from the QCD
terms in (5.64). The traditional QCD expression in absence of QED can be obtained
when restricting to test functions and integration for ω, ω′ > 0 so that the distribution
reduces to the well-known QCD result [152] H+ → F with

F (ω, ω′) = ω

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

+

[
θ(ω − ω′)

ω − ω′

]
+

. (5.65)

Finally, we obtain the anomalous dimension for ΦB,⊗ by plugging (5.63) and (5.64)
into (5.42) together with (2.71)

Γ⊗(ω, ω
′) =

αsCF

π

[(
ln

µ

ω − i0
− 1

2

)
δ(ω − ω′)−H+(ω, ω

′)

]
+
αem

π

[(
(Q2

sp + 2QspQM1) ln
µ

ω − i0
− 3

4
Q2

sp −
1

2
Q2

d (5.66)

+ iπ(Qsp +QM1)QM2

)
δ(ω − ω′)−QspQdH+(ω, ω

′) +QspQM2H−(ω, ω
′)

]
, .

We recall that every distribution acts in the variable ω′ and refer to the result in (D.9)
as the distributions in ω. In what follows, we present the anomalous dimension for
each charge combination explicitly.

B̄0 → M0
1M

0
2 (⊗ = (0, 0))

For the neutral case QM1 = QM2 = 0, we have Qsp = Qd and only diagrams (d) and (e)
from Fig. 5.3 enter the anomalous dimension. Moreover, we can drop the ω < 0 part
of the ⊕-distribution and thus F> collapses to F in (5.65). The anomalous dimension
becomes

Γ00(ω, ω
′) =

αs(µ)CF

π

[(
ln
µ

ω
− 1

2

)
δ(ω − ω′)− F (ω, ω′)

]
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+
αem(µ)Q

2
d

π

[(
ln
µ

ω
− 5

4

)
δ(ω − ω′)− F (ω, ω′)

]
, (5.67)

which provides a trivial extension to the QCD result. Note that the QCD differs from
the QED kernel by constant in the local term arising from FB(µ) in the definition
(5.42).

B̄− → M−
1 M0

2 (⊗ = (−, 0))

For charged QM1 = −1 but still neutral QM2 = 0 implying Qsp = Qu, the diagrams from
Fig. 5.3(b)–(e) contribute. In this case, the soft function contains the rearrangement
factor 1/Rc that cancels the IR regulator δc. We again neglect the ω < 0 terms since
M2 is neutral and obtain

Γ−0(ω, ω
′) =

αs(µ)CF

π

[(
ln
µ

ω
− 1

2

)
δ(ω − ω′)− F (ω, ω′)

]
+
αem(µ)

π

[(
(Q2

u + 2QuQM1) ln
µ

ω
− 3

4
Q2

u −
1

2
Q2

d

)
δ(ω − ω′)

− (Q2
u +QuQM1)F (ω, ω

′)

]
. (5.68)

In fact, we restore the expression for Γ00 in (5.67) upon sending QM1 → 0 and Qu → Qd,
where the latter refers to the spectator quark charge. We remark that the charge
coefficients of the ln(µ/ω) term and the −F distribution differ by QuQM1 in contrast
to QCD which turns out to be important for the solution of the corresponding RGE.

B̄− → M0
1M

−
2 (⊗ = (0,−))

Once QM2 = −1, we have to include the terms for ω < 0 since the support will be
generated for any initial condition. For QM1 = 0 the spectator charge is Qsp = Qu. We
divide the anomalous dimension in the two regions ω > 0 and ω < 0 by

Γ⊗(ω, ω
′) = θ(ω)Γ>

⊗(ω, ω
′) + θ(−ω)Γ<

⊗(ω, ω
′) . (5.69)

For ω < 0, we use lnµ/(ω− i0) = lnµ/(−ω) + iπ to make the imaginary contributions
explicit. In total, we find

Γ>
0−(ω, ω

′) =
αs(µ)CF

π

[(
ln
µ

ω
− 1

2

)
δ(ω − ω′)− F>(ω, ω′)

]
+
αem(µ)

π

[(
Q2

u ln
µ

ω
− 3

4
Q2

u −
1

2
Q2

d

)
δ(ω − ω′)

− (Q2
u +QuQM2)F

>(ω, ω′) +QuQM2 (G
>(ω, ω′) + iπδ(ω − ω′))

]
, (5.70)
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Γ<
0−(ω, ω

′) =
αs(µ)CF

π

[(
ln

µ

−ω
− 1

2

)
δ(ω − ω′)−G<(ω, ω′) + iπδ(ω − ω′)

]
+
αem(µ)

π

[(
Q2

u ln
µ

−ω
− 3

4
Q2

u −
1

2
Q2

d

)
δ(ω − ω′)

− (Q2
u +QuQM2) (G

<(ω, ω′)− iπδ(ω − ω′)) +QuQM2F
<(ω, ω′)

]
. (5.71)

Note that we can relate Γ< to Γ> by exchanging F> ↔ G< − iπ and G> + iπ ↔ F<

respectively. The imaginary parts in particular match the ones from the G-distributions
in (5.61). We conclude that Γ0− and therefore Φ0−(ω;µ) remains real-valued.

B̄0 → M+
1 M−

2 (⊗ = (+,−))

For ⊗ = (+,−), every aspect of the previous calculation applies. In addition, we
have Qsp = Qd, QM1 = −QM2 . We observe that the off-shell regulators Fig. 5.3(a)–
(e) already cancel amongst themselves. The real part of the remaining diagram f)
is removed by 1/Rc and 1/Rc̄, leaving an explicit imaginary phase proportional to
QM1QM2 . According to the decomposition (5.69), we obtain

Γ>
+−(ω, ω

′) =
αs(µ)CF

π

[(
ln
µ

ω
− 1

2

)
δ(ω − ω′)− F>(ω, ω′)

]
+
αem(µ)

π

[(
(Q2

d − 2QdQM2) ln
µ

ω
+ iπQM1QM2 −

5

4
Q2

d

)
δ(ω − ω′)

−Q2
dF

>(ω, ω′) +QdQM2 (G
>(ω, ω′) + iπδ(ω − ω′))

]
, (5.72)

Γ<
+−(ω, ω

′) =
αs(µ)CF

π

[(
ln

µ

−ω
− 1

2

)
δ(ω − ω′)−G<(ω, ω′) + iπδ(ω − ω′)

]
+
αem(µ)

π

[(
(Q2

d − 2QdQM2) ln
µ

−ω
+ iπ(QM1 −Qd)QM2 −

5

4
Q2

d

)
δ(ω − ω′)

−Q2
d (G

<(ω, ω′)− iπδ(ω − ω′)) +QdQM2F
<(ω, ω′)

]
. (5.73)

The soft function for ⊗ = (+,−) turns out to be complex-valued due to soft rescattering
of the final state mesons, reflected by the imaginary phase. Based on our discussion
for diagram a) in the previous section, we observe that QM2 = 0 would remove the
distribution F< in (5.73). In this case, we restore (5.67) and (5.68) depending on the
charge of M1 when positive support is assumed. Finally, we remark that QM2 → Qℓ

leads to the corresponding anomalous dimension for the soft function in the leptonic
decay Bq → µ+µ− [60].
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5.2.3 RGE of the first inverse (logarithmic) moments

In (4.70), we found that the soft functions ΦB,⊗ are part of the LP factorization theorem
in QCD×QED. As such, they are part of a convolution with a hard-collinear jet function
that behaves like 1/ω−i0 up to logarithmic corrections from higher loop orders. Rather
than solving the RGE for the soft functions themselves, it is oftentimes convenient to
study the scale evolution of the inverse moments instead. To this end, we define for
n > 0

1

λB(µ)
=

∫ ∞

−∞

dω

ω − i0
ΦB,⊗(ω;µ) ,

σn(µ) = λB(µ)

∫ ∞

−∞

dω

ω − i0
lnn

(
µ̃

ω − i0

)
ΦB,⊗(ω;µ) . (5.74)

We emphasize that this definition differs to QCD in the sense that we generally integrate
over the entire real axis, and in particular the origin so that the i0-prescription has to
be included. Note that the i0 prescription arises from the hard-collinear propagator and
is therefore inherited in the logarithmic terms. We normalize the logarithmic moments
to λ−1

B (µ), where µ̃ serves as an arbitrary but fixed reference scale. Hence, the scale
evolution only enters through the functions ΦB,⊗(ω;µ).

The existence of (5.74) for ω > 0 in QCD can be inferred from the asymptotic
behaviour ϕ+(ω) ∝ ω that follows from the conformal symmetry arguments in Ap-
pendix B. In the case of QM2 = 0, the soft functions are still restricted to ω > 0 and
the inverse moments are well-defined in QCD×QED due to their behaviour similar to
the light meson LCDA that is discussed in Appendix E.3. When M2 becomes charged,
the soft function develops a non-zero value and potentially diverges logarithmically for
ω → 0 in which case the i0-prescription in (5.74) is required to perform the integral
consistently. We argue below that the inverse-logarithmic moments remain finite, but
the analytic structure near ω = 0 implies that higher inverse moments like 1/(ω− i0)2

cannot exist.14 Note that the integration in (5.74) over the origin provides an ad-
ditional source of imaginary rescattering phases compared to QCD-only, where these
arise through hard or hard-collinear loops.

The RGE for the inverse-logarithmic moments (5.74) corresponds to a coupled system
obtained by calculating the lnµ-derivative of

d

d lnµ

(
σn(µ)

λB(µ)

)
= −

∫ ∞

−∞

dω

ω − i0
lnn

(
µ̃

ω − i0

)∫ ∞

−∞
dω′ Γ⊗(ω, ω

′;µ)ΦB,⊗(ω
′;µ) ,

(5.75)

using the scale evolution of the soft functions (5.66). In the further derivation, we
exchange the integral order and perform the ω integration in advance. To this end,
14Contrary to QCD, where 1/ω2 moments do not exist due to the linear endpoint behaviour, the

existence 1/(ω − i0)2 moments are forbidden by a different reason in QED: The analytic properties
of the soft function are designed such that these moments diverge.
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we conveniently view the plus-distributions H± as distributions in the variable ω. We
denote these distributions with a superscript ω. The corresponding expressions for F (ω)

and G(ω) are provided in (D.11). Both distributions equivalently define H(ω)
± according

to (5.62). Interestingly, we find for the integration over ω for n ≥ 0∫ ∞

−∞
dω

lnn µ̃
ω−i0

ω − i0
H

(ω)
+ (ω, ω′) =

2n!

ω′ − i0

⌊n/2⌋∑
k=1

ζ2k+1

(n− 2k)!
lnn−2k µ̃

ω′ − i0
, (5.76)

where ζ2k+1 denotes the Riemann zeta function of odd numbers. This result agrees
with the QCD result when restricting to positive support. In fact, the same equation
holds true for Fω with only ω > 0. In (5.76), we find that the imaginary part defined
in the distribution G>

ω recombines to the final logarithmic term which was the original
motivation to include the local iπδ(ω − ω′) piece in (5.61). We further observe that
(5.76) with H(ω)

− evaluates to the same expression and thus conclude that∫ ∞

−∞
dω

lnn µ̃
ω−i0

ω − i0

(
H

(ω)
+ (ω, ω′)−H

(ω)
− (ω, ω′)

)
= 0 . (5.77)

In other words, the distributions H(w)
± coincide on the function space of inverse mo-

ments including their logarithmic corrections.15 From (5.77) follows directly that the
ω-integral in (5.77) over F>

ω (ω, ω′) − G>
ω (ω, ω

′) and G<
ω (ω, ω

′) − F<
ω (ω, ω′) vanishes

for ω′ > 0 and ω′ < 0, respectively. By using (5.77) we can therefore eliminate the
distribution H− which generates negative support in favour of H+. As an important
consequence, the RGE (5.66) greatly simplifies and allows us to construct an auxiliary
function that produces the solution for the inverse moments in Sec. 5.2.5.

We obtain the RGE for the inverse moments by plugging (5.76) and (5.77) into
(5.75). For n = 0, the plus-distributions do not contribute and the equation for the
first inverse moment reads

d

d lnµ
λ−1
B (µ) =

αsCF

π

[
− σ1(µ) + ln

µ̃

µ
+

1

2

]
λ−1
B (µ)

+
αem

π

[
(Q2

sp + 2QspQM1)

(
−σ1(µ) + ln

µ̃

µ

)
+

3

4
Q2

sp +
1

2
Q2

d

− iπ(Qsp +QM1)QM2

]
λ−1
B (µ) . (5.78)

For n ≥ 1, we find the RGE of the logarithmic moments

dσn
d lnµ

=
αsCF

π

[
− σn+1 + σnσ1 + 2n!

⌊n/2⌋∑
k=1

ζ2k+1

(n− 2k)!
σn−2k

]
15The relation does not apply to more general moments that are discussed in the conclusion of Sec-

tion 5.2.5.
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+
αem

π

[
(Q2

sp + 2QspQM1)(−σn+1 + σnσ1)

+ (Q2
sp +QspQM1) 2n!

⌊n/2⌋∑
k=1

ζ2k+1

(n− 2k)!
σn−2k

]
. (5.79)

Our results match in QCD limit αem → 0 the results in [154] up to an extra term of
the form nσn−1 that appears due to the renormalization scale µ instead of µ̃ in the
definition of (5.74). The RGEs for the inverse moments differ in two aspects from the
QCD result: First, the charge factor between the logarithmic terms and the summation
in (5.79) do not agree, which only causes minor modifications. Second, the imaginary
term in the last line (5.78) immediately produces a complex phase that can in principle
be extracted by redefining

λ−1
B (µ) → exp

{
− iπ(Qsp +QM1)QM2

∫ µ

µ0

dµ′

µ′
αem(µ

′)

π

}
λ−1
B (µ) . (5.80)

The imaginary contributions are absent in the evolution of the logarithmic moments
σn(µ). Hence, these moments stay real when choosing entirely real σn(µ0) at the initial
scale since the first inverse moment does not mix into higher terms.

5.2.4 Evolution equation in Laplace space

In order to solve the RGE for the soft functions, we follow a similar yet more com-
plex procedure as for the light meson LCDA in Sec. 5.1.1. In particular, we orientate
ourselves at [150, 155] which uses a Mellin, or more generally Laplace transform to
turn the evolution equation local in the conjugate η-space, allowing us to find a solu-
tion therein. We apply the method to the soft function by splitting it similar to the
anomalous dimension in (5.69) into its respective support regions

ΦB(ω;µ) = θ(ω)Φ>(ω;µ) + θ(−ω)Φ<(ω;µ) . (5.81)

In what follows, we neglect the charge index ⊗ for better readability. We consider the
Laplace transform in the variable lnµ/ω separately for ω > 0 and ω < 0. In the first
case similar to QCD-only, we have

Φ̃>(η;µ) =

∫ ∞

0

dω

ω

(µ
ω

)η
Φ>(ω;µ) ,

Φ>(ω;µ) =

∫ c+i∞

c−i∞

dη

2πi

(µ
ω

)−η

Φ̃>(η;µ) , (5.82)

For the negatively supported part, we define

Φ̃<(η;µ) =

∫ ∞

0

dω

ω

(µ
ω

)η
Φ<(−ω;µ)
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Φ<(−ω;µ) =
∫ c+i∞

c−i∞

dη

2πi

(µ
ω

)−η

Φ̃<(η;µ) . (5.83)

These transformations are connected to the inverse moment integration

Φ̃B(η;µ) =

∫ ∞

−∞

dω

ω − i0

(
µ

ω − i0

)η

ΦB(ω;µ) = Φ̃>(η;µ)− eiπηΦ̃<(η;µ) . (5.84)

Note that the integral over ω defines the function Φ̃B on the left-hand side which cannot
be viewed as an integral transformation. Besides, it is impossible to recover ΦB from
Φ̃B. Nevertheless, we can use (5.84) to derive the inverse-logarithmic moments in the
limit η → 0, for which we refer (5.94) and the follow-up arguments.

The evolution equation in Laplace space becomes a coupled differential equation
for the two functions Φ̃> and Φ̃<. In the derivation, we can either use the results as
distributions in ω or ω′. We explicitly list the results for integration against pure powers
ωη in Appendix D.3. The RGEs are then commonly defined in the strip −1 < Re(η) < 0
and we obtain(

d

d lnµ
− η

)
Φ̃>(η;µ) =

αsCF

π

[
−Hη −H−η − ∂η +

1

2

]
Φ̃>(η;µ)

+
αsCF

π
Γ(−η)Γ(1 + η)Φ̃<(η;µ)

+
αem

π

[
− (Q2

sp + 2QspQM1)∂η +
3

4
Q2

sp +
1

2
Q2

d − iπQM1QM2

−QspQd(Hη +H−η) +QspQM2(H−η +H−1−η)

]
Φ̃>(η;µ)

+
αem

π
QspQdΓ(−η)Γ(1 + η)Φ̃<(η;µ) . (5.85)(

d

d lnµ
− η

)
Φ̃<(η;µ) =

αsCF

π

[
−H−η −H−1−η − ∂η +

1

2

]
Φ̃<(η;µ)

+
αem

π

[
− (Q2

sp + 2QspQM1)∂η +
3

4
Q2

sp +
1

2
Q2

d − iπ(Qsp +QM2)QM1

−QspQd(H−η +H−1−η) +QspQM2(Hη +H−η)

]
Φ̃<(η;µ)

− αem

π
QspQM2Γ(−η)Γ(1 + η)Φ̃>(η;µ) . (5.86)

We combine the two equations to find the RGE for Φ̃B, that is(
d

d lnµ
− η

)
Φ̃B(η;µ) =

αsCF

π

[
−Hη −H−η − ∂η +

1

2

]
Φ̃B(η;µ)
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+
αem

π

[
QspQM1(Hη +H−η)− (Q2

sp + 2QspQM1) (Hη +H−η + ∂η)

+
3

4
Q2

sp +
1

2
Q2

d − iπ(Qsp +QM1)QM2

]
Φ̃B(η;µ) . (5.87)

Note that we implemented the relation Γ(−η)Γ(1 + η) = eiπη(iπ +Hη −H−1−η) which
implies H−1+η +H−1−η = Hη +H−η. We could have obtained (5.87) also differently by
recalling that the distributionsH± coincide (5.77) for inverse (logarithmic) moments. In
fact, we can enlarge this statement to include pure powers as we show in Appendix D.3.
In conclusion, we do not require the partition in (5.81) to arrive at the RGE (5.87),
which is valid for −1 < Re(η) < 1 since only Hη and H−η appear.

Before deriving the all-order solution of the soft functions and their inverse moments,
we review the calculation of the QCD solution ϕ+. The RGE for QCD is defined by

d

d lnµ
ϕ+(ω;µ) = −

∫ ∞

0

dω′ ΓQCD(ω, ω′;µ) ϕ+(ω
′;µ) , (5.88)

where we set ΓQCD = Γ⊗|αem=0 in (5.66). In QCD-only, we consider only positive
support for ϕ+(ω;µ) so that the Laplace transform (5.82) applies and the QCD kernel
ΓQCD collapses to its conventional form [152] with the distribution F in (5.65). We
find the RGE in Laplace space(

d

d lnµ
− η

)
ϕ̃+(η;µ) =

αsCF

π

[
−Hη −H−η − ∂η +

1

2

]
ϕ̃+(η;µ) , (5.89)

where −1 < Re(η) < 1. The analytical solution of this equation can be expressed in
terms of the evolution variables

V QCD(µ, µ0) =−
∫ µ

µ0

dµ′

µ′
αs(µ

′)CF

π

[
ln
µ′

µ0

− 1

2

]
,

aQCD(µ, µ0) =−
∫ µ

µ0

dµ′

µ′
αs(µ

′)CF

π
. (5.90)

We generally neglect the dependence of µ and µ0 in these expressions. Together with
the inverse transformation, the general solution becomes [150]

ϕ̃+(η;µ) = eV+2γEa

(
µ

µ0

)η
Γ(1− η)Γ(1 + η + a)

Γ(1 + η)Γ(1− η − a)
ϕ̃+(η + a;µ0) , (5.91)

ϕ+(ω;µ) = eV+2γEa

∫ ∞

0

dω′

ω′

(µ0

ω′

)a
Ga

( ω
ω′

)
ϕ+(ω

′, µ0) , (5.92)

which holds for any initial function. Note that we omit the QCD superscript above
and in (5.93) to focus on the structure of the solution. The analytic structure of (5.91)
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restricts the real contour parameter to the interval −1 < c < 1. For convenience, we
express the kernel of the convolution in (5.92) in terms of the Meijer-G function

Ga

( ω
ω′

)
≡ G1,1

2,2

(
−a , 1− a

1 , 0

∣∣∣∣ ωω′

)
(5.93)

=
Γ(2 + a)

Γ(−a)

(
ω′

max(ω, ω′)

)a
min(ω, ω′)

max(ω, ω′)
2F1

(
1 + a, 2 + a; 2;

min(ω, ω′)

max(ω, ω′)

)
.

Albeit these functions are more complicated and untypical to use, they allow us to
cast results into compact expressions. We present the exact definition and some of the
fundamental properties of Meijer-G functions in Appendix F. For QCD, we note that
Ga(z) has an integrable singularity for z → 1 so that the integral in (5.92) exists.

5.2.5 Solution for inverse moments

The coupled evolution equations for the inverse-logarithmic moments in (5.78) and
(5.79) can be solved exactly. We infer the solution from (5.84) which fulfills the RGE
(5.87) so that we can calculate the moments by

λ−1
B (µ) = lim

η→0
Φ̃B(η;µ) = lim

η→0

{
Φ̃>(η;µ)− eiπηΦ̃<(η;µ)

}
, (5.94)

σn(µ) = lim
η→0

λB(µ)

(
∂η − ln

µ

µ̃

)n

Φ̃B(η;µ) . (5.95)

While the limit η → 0 corresponds to the first inverse moment, the limit η → 1
produces the second inverse moment with 1/(ω − i0)2, etc.

To provide a solution to (5.87), we introduce the QCD×QED evolution variables

V = V QCD −
∫ µ

µ0

dµ′

µ′
αem(µ

′)

π

[
(Q2

sp + 2QspQM1) ln
µ′

µ0

− 3

4
Q2

sp −
1

2
Q2

d

+ iπ(Qsp +QM1)QM2

]
,

a = aQCD −
∫ µ

µ0

dµ′

µ′
αem(µ

′)

π
(Q2

sp + 2QspQM1) , (5.96)

with the QCD expressions V QCD and aQCD from (5.90) and the µ-dependence neglected.
Note that we still expect −1 < a < 0 in practical applications since QED effects are
small. We further define two evolution functions

F(η;µ, µ0) = exp

{∫ µ

µ0

dµ′

µ′
αem(µ

′)QspQM1

π
(Hη+a(µ,µ′) +H−η−a(µ,µ′))

}
, (5.97)

G(η;µ, µ0) = exp

{∫ µ

µ0

dµ′

µ′
αem(µ

′)QspQM1

π
(H−η−a(µ,µ′) +H−1−η−a(µ,µ′))

}
. (5.98)
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In the same manner of (5.19), we find the solution of (5.87) to be

Φ̃B(η;µ) = eV+2γEa

(
µ

µ0

)η
Γ(1− η)

Γ(1 + η)

Γ(1 + η + a)

Γ(1− η − a)
F(η;µ, µ0)Φ̃B(η + a;µ0) . (5.99)

Using (5.95), we compute the first inverse moment at η = 0

λ−1
B (µ) = eV+2γEaΓ(1 + a)

Γ(1− a)
F(0;µ, µ0)

∫ ∞

−∞

dω

ω − i0

(
µ0

ω − i0

)a

ΦB(ω;µ0) . (5.100)

To obtain σ1, we similarly calculate the first derivative for η → 0 with (5.95) and (5.99)
and find16

σ1(µ) = Ha +H−a + ln
µ̃

µ0

+

∫ ∞

−∞

dω

ω − i0

(
µ0

ω − i0

)a

ln
µ0

ω − i0
ΦB(ω;µ0)∫ ∞

−∞

dω

ω − i0

(
µ0

ω − i0

)a

ΦB(ω;µ0)

+

∫ µ

µ0

dµ′

µ′
αem(µ

′)QspQM1

π
(H ′

a(µ,µ′) −H ′
−a(µ,µ′)) . (5.101)

By proceeding with this method, we can construct the solution to any inverse logarith-
mic moment. In the QCD limit αem → 0, we recover the results of λB and σ1 in [154]
up to the earlier mentioned difference regarding the reference scale. We emphasize
(5.100) and (5.101) are the all-order solutions in both QCD and QED couplings. Their
existence is tied to the asymptotic behaviour of ΦB for ω → 0 and ω → ±∞ that
ensures the convergence of the ω integral. We derive the details of this behaviour from
the all-order statements for the soft functions in Sec. 5.2.6.

We remark that the simple form of the RGE (5.87) and its solution (5.99) emerges
from the fact that the distributions H+ = H− agree on the function space of inverse
moments. In a complementary approach, we may assume this equality directly on
the level of the anomalous dimension to eliminate the ω < 0 support and obtain the
solutions (5.100) and (5.101) thereafter. The soft function then has to be viewed as
some auxiliary function Φred

B that obeys the RGE for ω > 0 only

d

d lnµ
Φred

B (ω;µ) = −
∫ ∞

0

dω′ Γred
⊗ (ω, ω′;µ) Φred

B (ω′;µ) . (5.102)

The anomalous dimension reduces to

Γred
⊗ (ω, ω′) =

αsCF

π

[(
ln
µ

ω
− 1

2

)
δ(ω − ω′)− F (ω, ω′)

]
16Alternatively, the RGE (5.78) fixes the expression of σ1 once the solution to λ−1

B is known. With
the result for σ1, we then obtain σ2 by (5.79) for n = 1. This allows us to build the complete tower
of solutions.
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+
αem

π

[(
(Q2

sp + 2QspQM1) ln
µ

ω
− 3

4
Q2

sp −
1

2
Q2

d

+ iπ(Qsp +QM1)QM2

)
δ(ω − ω′)− (Q2

sp +QspQM1)F (ω, ω
′)

]
, (5.103)

where we defined the QCD distribution F in (5.65).
The solutions to the inverse moments (5.100) and (5.101) can be calculated in the

same way from (5.94) but using the solution for Φ̃red
B,⊗(η). In addition, we trade the

integral expressions involving the soft function at the scale µ0 for the sum over all
initial inverse moments by∫ ∞

0

dω

ω

(µ0

ω

)a
lnn µ0

ω
Φred

B (ω;µ0) = λ−1
B (µ0)

(
µ0

µ̃

)a n∑
k=0

(n
k

)
lnn−k µ0

µ̃

∞∑
l=0

alσk+l(µ0)

l!
,

(5.104)

which holds for ω > 0 and n ≥ 0. We find the same equation when extending to
ω < 0, so that both approaches coincide. Let us emphasize that there is no physical
interpretation of the reduced function Φred

B itself and hence it becomes most natural to
use λB(µ0) and σn(µ0) instead.

The above discussion holds only true for the particular moments defined in (5.74).
In general factorization theorems like (2.78) and (3.49), the inverse moment 1/(ω −
n−p − i0) obtains a shift from the virtual photon momentum component. For these
translated moments, the equality of distributions (5.77) does not apply and thus the
evolution equation does not simplify. In this case, we require a proper all-order solution
for Φ̃> and Φ̃< to calculate the inverse moments.

5.2.6 All-order solution for ΦB,⊗

The complete RGE (5.41) can be solved in Laplace space to all orders in the strong
and electromagnetic coupling upon taking linear combinations of the previous results.
To begin with, we express the Laplace transformed function for the negative support
via (5.84) as

Φ̃<(η;µ) = e−iπη(Φ̃>(η;µ)− Φ̃B,⊗(η;µ)) , (5.105)

where Φ̃B is the solution (5.99) that determines the first inverse moments. Then, the
RGE for Φ̃> given by (5.85) decouples and can be solved on its own. We find(

d

d lnµ
− η

)
Φ̃>(η;µ) =

αsCF

π

[
−H−η −H−1−η − ∂η + iπ +

1

2

]
Φ̃>(η;µ)

+
αem

π

[
(Q2

sp + 2QspQM1)(−H−η −H−1−η − ∂η)

+QspQM1(H−η +H−1−η) +
3

4
Q2

sp +
1

2
Q2

d − iπ(Qsp +QM1)QM2
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+ iπ(QspQd +QspQM2)

]
Φ̃>(η;µ)

− αsCF + αemQspQd

π
e−iπηΓ(−η)Γ(1 + η)Φ̃B,⊗(η;µ) . (5.106)

The system (Φ̃>, Φ̃B) strictly corresponds to two differential equations with an upper
triangular form. It remains to find the solution for Φ̃> that solves (5.106) with the
inhomogeneous function Φ̃B. We solve the RGE by using variation of constants. To
this end, we introduce a modified evolution variable

â(µ, µ0) = −
∫ µ

µ0

dµ′

µ′
αs(µ

′)CF + αem(µ
′)(QspQd +QspQM2)

π
. (5.107)

The solution becomes

Φ̃>(η;µ) = eV+2γEa

(
µ

µ0

)η[
Γ(−η)Γ(1− η)

Γ(−η − a)Γ(1− η − a)
e−iπâG(η;µ, µ0)Φ̃>(η + a;µ0)

− Γ(−η)Γ(1− η)Γ(1 + η + a)

Γ(1− η − a)
F(η;µ, µ0)e

−iπηΦ̃B(η + a;µ0) (5.108)

×
∫ µ

µ0

dµ̃

µ̃

αs(µ̃)CF + αem(µ̃)QspQd

π
e−iπa(µ,µ̃)−iπâ(µ,µ̃)(F−1G)(η;µ, µ̃)

]
,

where the combination F−1G simplifies to

(F−1G)(η;µ, µ̃) = exp

{∫ µ

µ̃

dµ′

µ′ αem(µ
′)QspQM1 cotπ(η + a(µ, µ′))

}
(5.109)

due to the identity H−1−η − Hη = π cot πη. Again, we restore the QCD result (5.91)
for αem → 0. The solution for Φ̃< can be constructed from (5.99), (5.105) and (5.108)
and is not given explicitly. Afterwards, the inverse Laplace transform from (5.82) and
(5.83) allows us to calculate the entire function ΦB(ω;µ) numerically. We circumvent
the numerical calculation by deriving analytical results at O(αem) in Sec. 5.2.7 which
already provide an accurate estimate for soft QED effects.

The analytic structure of the all-order solution (5.108) dictates the asymptotic be-
haviour of the soft function ΦB in momentum (ω) space. In the following, we study the
behaviour for the two relevant cases i) ω → 0 and ii) ω → ±∞. We require knowledge
about both limits to determine the convergence of the inverse moment integral in (5.74).
While for i) we observe that the soft function develops a distinct ω − i0 prescription
for the leading term, we find for ii) that the power law dependence already ensures
the convergence of the integration. We restrict ourselves to realistic scenarios in which
the evolution variable is −1 < a < 0 due to the choice of µ, µ0 ≪ µL. Moreover, we
assume the exponential model ΦB(ω;µ0) = ω/ω2

0 e
−ω/ω0 θ(ω) at the initial scale µ0. In

Laplace space, this corresponds to

Φ̃>(η + a;µ0) =
1

ω0

(
µ0

ω0

)η+a

Γ(1− η − a) , Φ̃<(η + a;µ0) = 0 . (5.110)
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Up to the pole at η = 1 − a, the functional form of ΦB(ω;µ) is then completely
determined by the poles of the Gamma functions and the Harmonic numbers from
the F - and G-distributions defined in (5.61). To extract the asymptotic behaviour, we
perform the inverse transformation (5.82) for both cases and apply the same arguments
of the previous discussion for the soft region u → 0 in the light meson case from
Sec. 5.1.1 and Appendix E.

i) For ω → 0, we shift the straight integration line c±i∞ of the inverse transformation
to a curve enclosing all poles and branch cuts of the right half-plane with respect to
Re(η) = c. The contour parameter is chosen to lie in the strip −1−a < c < 0 for which
the contour integration converges. The left-most singular term in the right half-plane
dominates and arises from η → 0 through Γ(−η) and G(η) in (5.108). Expanding these
contributions in the limit η → 0, we obtain

Φ>(ω → 0;µ) ∼ 1

ω0

∫
C

dη

2πi

(
ω

ω0

)η(
1

−η

)1+p(µ)

=
1

ω0

1

Γ(1 + p(µ))

(
− ln

ω

ω0

)p(µ)

.

(5.111)

We choose the same contour C as in E.2 and defined

p(µ) =
−αem(µ)QspQM1

αs(µ)CF + αem(µ)(Q2
sp + 2QspQM1)

. (5.112)

Note that p(µ) can easily be related to the result for the light meson LCDA by replacing
Qq1 → Qsp and Qq2 → Qq1 in the definition below (5.22) identifying QM1 = Qq1 −Qsp

which was QM = Qq1 −Qq2 before. The solution Φ̃< uses the same contour parameter
c and acquires an equivalent behaviour due to (5.105). The exponential prefactor
in the latter equation recombines for ω < 0 into e−iπη(−ω)η = (ω − i0)η, so that the
leading term becomes an analytic function of ω−i0. In total, we obtain the asymptotic
behaviour in the ω → 0 limit

ΦB(ω → 0;µ) =
1

ω0

κ

Γ(1 + p(µ))

(
− ln

ω − i0

ω0

)p(µ)

+O
(
ω

ω0

)
, (5.113)

with the dimensionless constants κ. According to (5.105), the difference between the
ω > 0 and ω < 0 functions in Laplace space is given by the solution for Φ̃B in (5.99).
The relevant branch cut for ω → 0 advances from the left-most pole Re(η) = 1 to the
right. Thus, it can only contribute to the O(ω/ω0) terms in (5.113). Consequently,
the linear corrections do not inherit the i0-prescription from the leading term in the
asymptotic expansion. Overall, we observe that the soft function becomes finite at
ω = 0 for p = 0 (⊗ = (0,−)) while for p > 0 (⊗ = (+,−)) it logarithmically diverges.
This conclusion is validated by the numerical results in Fig. X. We emphasize that
the result in (5.113) only applies to the case of QM2 ̸= 0 for which negative support is
generated. For QM2 = 0, the support is restricted to ω > 0 and the solution boils down
to a product of Gamma functions multiplied with an exponential of Harmonic numbers
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as shown in Appendix E.3. For ω → 0, the soft function then vanishes linearly up to
logarithmic corrections.

ii) For ω → ±∞, the integration contour after deformation encircles all poles and
cuts in the left half-plane with respect to Re(η) = c. In this case, the right-most
singular term located at η → −1 − a determines the asymptotic behaviour. We find
the leading contribution

ΦB(ω → ±∞;µ) ∼ 1

ω0

(
±ω
ω0

)−1−a

lnp(µ0)

(
±ω
ω0

)
. (5.114)

The power law behaviour ω−1−a remains analogous to the QCD result [152] with the
difference that a includes the QED corrections according to (5.96). We remark that the
form of (5.113) and (5.114) strictly originates from the exponential model. However,
the asymptotic behaviour in particular arises from the model-independent analytic
structure of the solution (5.108). Therefore, different initial conditions will result in
similar conclusions, up to exotic choices that collide with the relevant singular terms
in Laplace space.

Existence of inverse moments

From the results in (5.113) and (5.114), we can infer the existence of the first inverse-
logarithmic moments defined in (5.74). For comparison, we summarize that in QCD-
only scale evolution generates a behaviour of the form ϕ+(ω;µ) ∝ ω for ω → 0 and
ϕ+(ω;µ) ∝ ω−1−aQCD for ω → ∞. The former implies that the second and higher
inverse moments proportional to 1/ωn with n ≥ 2 do not exist. Since −1 < aQCD < 0,
the latter renders all non-negative moments ωm with m ≥ 0 divergent. Hence, only
the 1/ω-moment including logarithmic corrections is well-defined in pure QCD. Even
though QED effects are more complicated, they should retain the convergence of the
inverse moment integrals in QCD×QED. In fact, the behaviour ω → ± agrees to the
QCD-only result up to the trivial replacement aQCD → a yielding the same consequence.
For ω → 0, the arguments become more subtle: The leading term in the asymptotic
expansion is an analytic function in the variable ω− i0 and thus it can be shifted away
from the origin such that the inverse moment integrals converge. Along these lines,
the linear terms of order O(ω/ω0) give rise to finite corrections. For the 1/(ω − i0)n

moments, however, the linear and higher order terms spoil the convergence of the
integration at ω = 0 since they are non-analytic in ω− i0. As we discussed previously,
this consequence emerges from the analytic structure in Laplace space, more specifically
from the branch cuts beginning at η = 1, 2, 3, . . . in the solution of Φ̃B in (5.99) that
makes up the difference between the two support regimes ω > 0 and ω < 0.

Finally, we note that the second inverse moment can be rewritten in terms of the
derivative with respect to the first argument of the soft function using integration by
parts ∫ ∞

−∞

dω

(ω − i0)2
ΦB(ω;µ) =

∫ ∞

−∞

dω

ω − i0
∂ωΦB(ω;µ) , (5.115)
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where the boundary terms vanish due to the ω → ±∞ behaviour in (5.114). For
⊗ = (0,−), we found that the soft function is continuous so that we can directly
conclude from (5.115) that it cannot be differentiable since the left-hand side diverges.
For the general charge case ⊗ = (+,−) this has no further implications as the soft
function becomes logarithmically divergent with p(µ) > 0 in (5.113).

5.2.7 Analytic solution for ΦB,⊗ to O(αem)

Once again, we recall that QED effects are assumed to be small. In Sec. 5.1.2, we
introduced the first-order solution to O(αem) in terms of Gegenbauer moments of the
light meson LCDA that sums QCD logarithms (αsL)

n to all orders on top of a fixed-
order expansion in αem. We apply the same arguments to the soft function and expand
the evolution equation linearly in the electromagnetic coupling.17 For the soft function,
this implies

ΦB(ω;µ) = ϕ+(ω;µ) +
αem

π
Φ(1)(ω;µ) +O(α2

em) , (5.116)

where we expand around the QCD LCDA ϕ+(ω;µ) with ω > 0. As before, the QED
corrections are entirely contained in Φ(1)(ω;µ) ∼ O(ln2(µ/µ0), αs(µ0)/αs(µ)). The
expansion (5.116) motivates to divide the one-loop kernel into the corresponding QCD
and QED terms

Γ⊗(ω, ω
′, µ) = ΓQCD(ω, ω′, µ) +

αem

π
ΓQED
⊗ (ω, ω′, µ) . (5.117)

Furthermore, we split the support of the first-order QED function according to (5.81)

Φ(1)(ω;µ) = θ(ω)Φ
(1)
> (ω;µ) + θ(−ω)Φ(1)

< (ω;µ) . (5.118)

The RGE at zeroth order in αem is then given by (5.88). At first order, we obtain

d

d lnµ
Φ(1)(ω;µ) =−

∫ ∞

−∞
dω′ ΓQCD(ω, ω′;µ) Φ(1)(ω′;µ)

−
∫ ∞

0

dω′ ΓQED
⊗ (ω, ω′;µ)ϕ+(ω

′;µ) . (5.119)

We emphasize that the QED anomalous dimension generates ω < 0 support for the
function Φ(1) from ω′ > 0 in ϕ+. Hence, we have to consider the full kernel ΓQCD

opposed to QCD-only and thus conclude that both convolutions on the right-hand side
of (5.119) contribute to the negative support of the soft function. Using the decom-
position (5.118) together with (5.61) and (5.65), we again find two coupled differential
equations, but this time for the first order functions Φ

(1)
> and Φ

(1)
< , reading

d

d lnµ
Φ

(1)
> (ω;µ) =

αsCF

π

∫ ∞

0

dω′
[(

− ln
µ

ω
+

1

2

)
δ(ω − ω′) + F (ω, ω′)

]
Φ

(1)
> (ω′;µ)

17In principle, we can derive the first-order term from the formal all-order solution (5.108). Yet it
seems convenient to restart from the evolution equations since this approach directly leads to a
simpler result.
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+
αsCF

π

∫ 0

−∞
dω′F>(ω, ω′)Φ

(1)
< (ω′;µ) +

∫ ∞

0

dω′
[
(Q2

sp +QspQM1)F (ω, ω
′)

+QspQM2(F (ω, ω
′)−G>(ω, ω′))−

(
(Q2

sp + 2QspQM1) ln
µ

ω

+ iπ(Qsp +QM1)QM2 −
3

4
Q2

sp −
1

2
Q2

d

)
δ(ω − ω′)

]
ϕ+(ω

′;µ) , (5.120)

d

d lnµ
Φ

(1)
< (ω;µ) =

αsCF

π

∫ 0

−∞
dω′
[(

− ln
µ

−ω
− iπ +

1

2

)
δ(ω − ω′)

+G<(ω, ω′)

]
Φ

(1)
< (ω′;µ)−QspQM2

∫ ∞

0

dω′F<(ω, ω′)ϕ+(ω
′;µ) . (5.121)

Note that these equations are separately defined for ω > 0 and ω < 0 respectively.
After applying the Laplace transformation (5.82) and (5.83) in both cases, we find(

d

d lnµ
− η

)
Φ̃

(1)
> (η;µ) =

αsCF

π

[
−Hη −H−η − ∂η +

1

2

]
Φ̃

(1)
> (η;µ)

− αsCF

π
Γ(η)Γ(1− η)Φ̃

(1)
< (η;µ) +

[
QspQM1(Hη +H−η)

+QspQM2(H−1−η −Hη)− (Q2
sp + 2QspQM1)(Hη +H−η + ∂η)

− iπQM1QM2 +
3

4
Q2

sp +
1

2
Q2

d

]
ϕ̃+(η;µ) , (5.122)(

d

d lnµ
− η

)
Φ̃

(1)
< (η;µ) =

αsCF

π

[
−H−η −H−1−η − ∂η +

1

2

]
Φ̃

(1)
< (η;µ)

+QspQM2Γ(η)Γ(1− η)ϕ̃+(η;µ) , (5.123)

with −1 < Re(η) < 0.18 Most importantly, we observe that the evolution equation for
Φ

(1)
< does not depend on Φ

(1)
> . As a consequence, we can obtain a self-consistent solution

to (5.123) alone and insert the result into (5.122) to find a solution for thereafter.
Mathematically, we obtain the solution for (5.123) by a variation of constants which

was already used to find (5.108). The general solution acquires a similar form to [151]
and reads

Φ̃
(1)
< (η;µ) = eV+2γEa

(
µ

µ0

)η
Γ(1− η)Γ(−η)

Γ(1− η − a)Γ(−η − a)

[
Φ̃

(1)
< (η + a;µ0)

−QspQM2Γ(−η − a)Γ(1 + η + a)ϕ̃+(η + a;µ0) ln
µ

µ0

]
. (5.124)

18The convergence strip is based on the analytic structure induced by the distribution relations in
Appendix D.3 and restricts the contour parameter to the interval −1 < c < 0 for both transforma-
tions.
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Inserting (5.124) into (5.122), we find for Φ̃
(1)
> the solution

Φ̃
(1)
> (η;µ) = eV+2γEa

(
µ

µ0

)η
Γ(1− η)Γ(1 + η + a)

Γ(1 + η)Γ(1− η − a)

[
Φ̃

(1)
> (η + a;µ0)

+

∫ µ

µ0

dµ′

µ′
αs(µ

′)CF

π

Γ2(−η − a(µ, µ′))Γ2(1 + η + a(µ, µ′))

Γ(−η − a)Γ(1 + η + a)

{
Φ̃

(1)
< (η + a;µ0)

−QspQM2Γ(−η − a)Γ(1 + η + a)ϕ̃+(η + a;µ0) ln
µ′

µ0

}
+

(∫ µ

µ0

dµ′

µ′ {QspQM1(Hη+a(µ,µ′) +H−η−a(µ,µ′))

+QspQM2(H−1−η−a(µ,µ′) −Hη+a(µ,µ′))}

− (Q2
sp + 2QspQM1)

{
1

2
ln2 µ

µ0

+ (Hη+a +H−η−a + ∂η) ln
µ

µ0

}

+

[
3

4
Q2

sp +
1

2
Q2

d − iπQM1QM2

]
ln

µ

µ0

)
ϕ̃+(η + a;µ0)

]
. (5.125)

For practical purposes, we did not perform the integral in the second line when it enters
with Φ̃

(1)
< (η + a;µ0), even though it momentarily results in a simpler form. To recover

Φ(1)(ω;µ), we take the inverse transformation of (5.125) and (5.124). In doing so, we
recast the harmonic numbers in terms of their plus-distribution expression

Hη = −
∫ 1

0

dx

[
1

1− x

]
+

xη = −
∫ 1

0

dx

1− x
(xη − 1) . (5.126)

In this way, we evaluate the µ′-integrals in (5.125) which then generally produce the
function

h(x) ≡
∫ µ

µ0

dµ′

µ′ x
a(µ,µ′) =

2π

βQCD
0 + 2CF lnx

[
1

αs(µ)
− 1

αs(µ0)

(
αs(µ)

αs(µ0)

) 2CF

β
QCD
0

lnx
]
,

(5.127)

and come along with several convolutions. Finally, we obtain

Φ
(1)
> (ω;µ) = eV+2γEa

∫ ∞

0

dω′

ω′

(µ0

ω′

)a [
Ga

( ω
ω′

)
Φ

(1)
> (ω′;µ0)

+

∫ 1

0

dx

1− x

{
(xa − 1)G1,0

a

(xω
ω′

)
− (x−1−a − x−1)G1,0

a

( ω

xω′

)}
Φ

(1)
< (−ω′;µ0)

−
∫ µ

µ0

dµ′

µ′
αs(µ

′)CF

π
QspQM2G

3,3
a(µ,µ′)

( ω
ω′

)
ln
µ′

µ0

ϕ+(ω
′;µ0)
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+

∫ 1

0

dx

[
1

1− x

]
+

{
(Q2

sp + 2QspQM1)

(
xaGa

(xω
ω′

)
+ x−aGa

( ω

xω′

))
ln

µ

µ0

−QspQM1

(
h(x)Ga

(xω
ω′

)
+ h(x−1)Ga

( ω

xω′

))
−QspQM2

(
− h(x)Ga

(xω
ω′

)
+ x−1h(x−1)Ga

( ω

xω′

))}
ϕ+(ω

′;µ0)

+

{
− (Q2

sp + 2QspQM1)

(
1

2
ln2 µ

µ0

+ ln
µ0

ω′ ln
µ

µ0

)

+

(
3

4
Q2

sp +
1

2
Q2

d − iπQM1QM2

)
ln

µ

µ0

}
Ga

( ω
ω′

)
ϕ+(ω

′;µ0)

]
, (5.128)

Φ
(1)
< (ω;µ) = eV+2γEa

∫ ∞

0

dω′

ω′

(µ0

ω′

)a [
G2,0

a

(
−ω
ω′

)
Φ

(1)
< (−ω′;µ0)

−QspQM2G
2,1
a

(
−ω
ω′

)
ln

µ

µ0

ϕ+(ω
′;µ0)

]
. (5.129)

For shorthand notation, we introduced

Gm,n
a

( ω
ω′

)
≡ Gm,n

2,2

(
−a, 1− a

1, 0

∣∣∣∣ ωω′

)
,

Gm,n
a(µ,µ′)

( ω
ω′

)
≡ Gm,n

4,4

(
−a(µ, µ′), −a(µ, µ′), −a, 1− a

−a(µ, µ′), −a(µ, µ′), 1, 0

∣∣∣∣ ωω′

)
, (5.130)

based on the general Meijer-G functions Gm,n
p,q defined in (F.1). The first-order solu-

tions (5.128) and (5.129) provide the QED corrections to the QCD evolved function in
(5.116). In practice, these O(αem) terms sufficiently describe the soft photon exchange
in the exclusive B̄ →M1M2 decays.

5.3 Ultrasoft QED effects

On top of the RGE evolution for the collinear and soft functions, we consider the resum-
mation of QED logarithms in the ultrasoft regime. Opposed to the structure-dependent
logarithms between ΛQCD and mB, these might result in percent level corrections to
the decay rate (4.101). The ultrasoft logarithms can be universally obtained from an
ultrasoft effective theory of point-like mesons or, equivalently, from scalar QED with
point-like meson interaction vertices, see [137]. The RGE running from the hard scale
µb ∼ mb to the collinear scale µc ∼ ΛQCD in these objects produces universal Sudakov
factors of the form

eSMi
(µb,µc) = exp

{
−αem

2π
Q 2

Mi
ln2 µc

µb

}
, (5.131)
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plus a term defining the difference between leading double and the structure-dependent
QED logarithms according to [60]. We introduce (5.131) to factor out the contributions
from the two final states in the exponentiated ultrasoft function. As discussed in
Chapter 4, the ultrasoft logarithms are related to the IR dependence of the form factors
and LCDAs appearing in the factorized amplitude. For µ = µc, the scale dependence
therefore cancels in the combined expression∣∣eSM1

(µb,µc)+SM2
(µb,µc)

∣∣2 eS(1)
⊗

= exp

{
αem

π

(
Q2

B +Q2
M1

[
1 + ln

m2
M1

m2
B

]
+ Q2

M2

[
1 + ln

m2
M2

m2
B

])
ln

mB

2∆E

}
, (5.132)

where S(1)
⊗ is given in (4.103). Even though we consider the Sudakov factors eSMi in

the double logarithmic approximation, we include the complete logarithmic dependence
for ∆E in (4.103). We observe that the scale dependence in the ultrasoft logarithm
of (5.132) has been promoted up to the hard scale mB. At the level of the ultrasoft-
inclusive decay rate (4.101), we obtain

Γ[B̄ →M1M2](∆E) = Γ(0)[B̄ →M1M2] U(M1M2) , (5.133)

with the all-order resummed ultrasoft function

U(M1M2) =

(
2∆E

mB

)−αem
π

(
Q2

B+Q2
M1

[
1+ln

m2
M1

m2
B

]
+Q2

M2

[
1+ln

m2
M2

m2
B

])
. (5.134)

The factor Γ(0) in (5.133) contains the squared virtual amplitude
∣∣〈M1M2

∣∣Qi

∣∣B̄〉∣∣2
modulo the Sudakov factors (5.131), which we reshuffled into the ultrasoft function.
We emphasize that this choice is not unique. In the above approach however, the
ultrasoft function (5.134) turns out to be universal and independent of the factorization
scale in the logarithmic ∆E corrections. Hence, we most naturally refer to Γ(0) as the
non-radiative decay width.

By comparison to [137], we find agreement when setting µ = mB in (4.103) and
(5.134) while neglecting virtual contributions as well as power corrections in mMi

/mB.
From an EFT perspective, choosing the hard scale in the ultrasoft function is wrong a
priori since the ultrasoft theory is only valid up to ΛQCD. However, the SCET analysis
in Chapter 4 allows us to neglect the stucture-dependent terms in the reorganization
of the Sudakov factors above, such that mB appears in the final result. Below ΛQCD,
our treatment of ultrasoft QED effects relies on the factorization in (4.99) including
the static Wilson lines that contain ultrasoft flucations of O(∆E) in a similar manner
to HQET. In the corresponding ultrasoft EFT, the logarithms of m2

Mi
/m2

B appear due
to the large boost between the light and heavy meson rest frames. In contrast, the
analysis in [137] keeps the point-like mesons as dynamical degrees of freedom, which
eventually leads to unphysical multipole couplings in virtual corrections of O(ΛQCD).
These contributions do not enter the radiation factor (5.134) and may be understood
as part of an unspecified non-radiative decay rate.
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Chapter 6

Numerical results

In the previous chapters, we considered two cases for which we improved the QCD
factorization analysis in the context of exclusive processes. The first one involved the
computation of subleading power corrections to the Euclidean correlation functions
(2.1) and (1.3) in an 1/Eγ- and 1/mb-expansion. More precisely, we included hard-
collinear as well as induced soft corrections to the LP factorization formula, where
the latter have been obtained from a dispersive treatment. The second improvement
regards the inclusion of QED effects in a combined QCD×QED factorization approach
for non-leptonic B decays with light final states.

In a first numerical analysis, we present qualitative estimates for the respective cases.
For the corrections to the B-meson correlators, we are mainly interested in the relative
size of LP and NLP contributions, which are discussed in the first section. For the QED
effects, we consider concrete applications to B̄ → πK observables. We separately dis-
cuss the various effects that enter the factorization formula, which involve electroweak
QED effects, structure-dependent and ultrasoft contributions including their behaviour
under scale evolution.

6.1 Subleading effects in QCD factorization

To estimate the magnitude of the subleading corrections, we consider the relative size
of the LP and NLP contributions to the correlators (2.1) and (1.3) that enter the form
factors in (3.2), (3.3) and (3.4). At LP, we use the factorization results from (2.78) and
(3.49) as well as the one-loop resummation for the hard coefficients and the B LCDA.
At NLP, we approximate the leading and subleading twist LCDAs by their tree-level
matrix elements. Here and in what follows, we assume an exponential model for the B
LCDAs, which is one of the simplest choices according to [36].1 Within our analysis,
we consider the combined model based on [124]. For the two-particle LCDAs, we use

ϕ+(ω) =
ω

ω2
0

e−ω/ω0 , (6.1)

1We postpone a more in-depth analysis involving different models to an upcoming publication [156].
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Masses, decay constant and model parameters
mb = 4.8GeV mB = 5.3GeV Λ̄ = mB −mb

fB = 0.19GeV λ2E = 0.03GeV2 λ2H = 0.06GeV2

Resonances, Borel parameter and condensate
mσ = 0.500GeV s0 = 1.0GeV2 M2 = 1.25GeV2

mρ = 0.775GeV r0 = 1.5GeV2 ⟨ūu⟩(µ0) = −0.24GeV

Table 6.1: Standard input values. We run the strong coupling at three-loop accuracy
with nf = 4 below mb. For scale evolution from the initial scale µ0 = 1GeV
to µ = 1.5GeV, we find αs(µ) = 0.348929. The reference value at the
electroweak scale is αs(mZ) = 0.118. We estimate the continuum threshold
for the scalar mesons based on [15]. The model parameters of the three-
particle LCDAs have been taken from [157].

ϕWW
− (ω) =

1

ω0

e−ω/ω0 , ϕt3
− (ω) =

λ2E − λ2H
6ω5

0

e−ω/ω0(−ω2 + 4ωω0 − 2ω2
0) , (6.2)

g+(ω) = − λ2E
6ω2

0

{
(ω − 2ω0)Ei

(
− ω

ω0

)
+ (ω + 2ω0)e

−ω/ω0

(
ln
ω

ω0

+ γE

)
− 2ωe−ω/ω0

}
+
e−ω/ω0

2ω0

ω2

{
1− 1

36ω2
0

(λ2E − λ2H)

}
, (6.3)

where the exponential integral is defined by Ei (−z) =
∫∞
z
e−xdx/x. For the three-

particle LCDAs, we use

ϕ3(ω1, ω2) =
λ2E − λ2H

6ω5
0

ω1ω
2
2 e

−(ω1+ω2)/ω0 , ψ4(ω1, ω2) =
λ2E
3ω4

0

ω1ω2 e
−(ω1+ω2)/ω0 ,

ϕ4(ω1, ω2) =
λ2E + λ2H

6ω4
0

ω2
2 e

−(ω1+ω2)/ω0 , ψ̃4(ω1, ω2) =
λ2H
3ω4

0

ω1ω2 e
−(ω1+ω2)/ω0 . (6.4)

In the following, we consider scale evolution from µ0 = 1GeV to µ = 1.5GeV and
use three-loop running of αs. When not specified otherwise, we employ the numerical
values of Table 6.1.

6.1.1 LO+LP analysis

We first analyze the impact of different choices for p2 to LO at LP. To this end, we
recall that all form factors agree at this accuracy in the factorization approach, but
differ in the soft correction due to different scalar and vector meson masses and effective
continuum thresholds. We have

F
(LO)
S = F

(LO)
V = F

(LO)
A = eQufBmB

∫ ∞

0

dω

2Eγω − p2
ϕ+(ω) , (6.5)
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Figure 6.1: LO results for the soft correction ξ̂ = ξ/F for different values of p2. We
use the reference value ω0 = 0.35GeV.

ξsoftS,LO = eQufBmB

∫ s0
2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
σ − p2

e−(2Eγω′−m2
σ)/M

2 − 1

]
ϕ+(ω) , (6.6)

ξsoftLO = eQufBmB

∫ r0
2Eγ

0

dω′

2Eγω′ − p2

[
2Eγω

′ − p2

m2
ρ − p2

e−(2Eγω′−m2
ρ)/M

2 − 1

]
ϕ+(ω) , (6.7)

and ∆ξsoftLO = 0. We present the relative size of the LO result with respect to the soft
correction in Fig. 6.1 for different values of Eγ. The results for the scalar and vector case
differ qualitatively, but show the largest variation in the low-p2 region. In the following,
we adopt the choice of p2 = −0.1GeV2 ∼ Λ2

QCD which is a realistic value for lattice
QCD simulations. For this particular value, we find at LO that the soft correction
can be of order O(5%) for the vector case, while the scalar corrections amount to an
O(20%) effect. Hence, we also expect the NLO contributions to be comparably large
for the scalar case.

As mentioned beforehand, the expressions in (6.6) and (6.7) depend on the reso-
nance masses, the continuum threshold and the Borel parameter. Due to the smaller
parameter values in the scalar sector, we expect the dispersion relation to be less robust
against variations of the Borel parameter M . Indeed, we observe from Fig. 6.2 that
the choice of the parameter in the range of M2 = (1.25± 0.25)GeV2 affects the scalar
result at LO up to O(5%). The vector form factors, on the other hand, vary with less
than one percent.

Lastly, we remark that the limit p2 → 0 is not smooth in general. For p2 = 0, some
convolution integrals of the twist-5 and twist-6 contributions become divergent and
require a special treatment according to [47]. In this case, Fig. 3.1(c) is promoted to
an O(1/E2

γ) correction.

6.1.2 NLO+NLP analysis

The aim of an advanced analysis [156] is to extract information about the leading-twist
LCDA ϕ+, in particular λB. In our model, this object can be naively related to the
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Figure 6.2: Dependence on the Borel parameter M2 = (1.25± 0.25)GeV for the LO
contributions plus the dispersive (soft) part for the scalar (S) and axial-
vector (V,A) case. The central line in each region corresponds to the
exact LO result.

input parameter ω0. To obtain first numerical estimates, we consider three different
values of this parameter, shown in Fig. 6.3. We include the complete results at NLP
in our analysis and compare the NLO contributions from the LP factorization to the
higher-twist effects. The resummation for the hard coefficients as well as the leading-
twist LCDA is considered at LL accuracy. In this approximation, the evolved function
ϕ+(ω;µ) is given by

ϕ+
B(ω;µ) =

1

ω0

eV+2γEa

(
µ0

ω0

)a

Fa

(
ω

ω0

)
, (6.8)

which follows from (5.92) with Fa(z) ≡ zΓ(2 + a) 1F1 (2 + a, 2,−z).2 We combine the
higher-twist corrections from the OPE into

ξhtS ≡ = ξ
1/Eγ

S

∣∣∣∣
(3.17)

+ ξ
1/mb

S

∣∣∣∣
(3.21)

+ ξ
(b)
S

∣∣∣∣
(3.23)

+ ξS,tw56

∣∣∣∣
(3.30)+(3.32)

, (6.9)

ξht ≡ = ξ1/Eγ

∣∣∣∣
(3.27)

+ ξ1/mb

∣∣∣∣
(3.21)

+ ξtw56

∣∣∣∣
(3.30)+(3.33)

, (6.10)

∆ξht ≡ = ∆ξ1/Eγ

∣∣∣∣
(3.28)

+∆ξ(b)
∣∣∣∣
(3.29)

+∆ξtw56

∣∣∣∣
(3.34)

. (6.11)

In total, the subleading terms can be represented by the sum of these higher-twist parts
and the soft corrections from the dispersive improvement

ξS = ξhtS

∣∣∣∣
(6.9)

+ ξsoftS,NLO

∣∣∣∣
(3.52)

+ ξsoftS,tw34

∣∣∣∣
(3.57)

+ ξsoftS,tw56

∣∣∣∣
(3.63)

, (6.12)

2The evolution factors refer to the QCD definition in (5.90).
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Figure 6.3: Form factors FS and (FV ± FA)/2 as a function of Eγ for different values
of the parameter ω0. We choose p2 = −0.1GeV2. The solid line refers
to the NLO and its soft contribution, while the dashed curve includes all
terms up to and including twist-5 and twist-6.

ξ = ξht
∣∣∣∣
(6.10)

+ ξsoftNLO

∣∣∣∣
(3.53)

+ ξsofttw34

∣∣∣∣
(3.58)

+ ξsofttw56

∣∣∣∣
(3.64)

, (6.13)

∆ξ = ∆ξht
∣∣∣∣
(6.11)

+∆ξsofttw34

∣∣∣∣
(3.62)

+∆ξsofttw56

∣∣∣∣
(3.65)

. (6.14)

We list three form factor combinations in Fig. 6.3, in which the NLO-only terms and
the complete higher-twist results are displayed separately. The vector combinations
(FV ± FA)/2 eliminate the dependence on ∆ξ and ξ respectively and thus entirely
reflect each correction at once. For both cases, the higher-twist contributions modify
the NLO results by at least 20%. In the scalar sector, we expect a larger deviation to
the NLO result due to the enhancement of the soft correction. We observe that the
form factors depend only weakly on the value of Eγ. Furthermore, we find that the
higher-twist contributions in ∆ξ decrease the value of the LP result while ξ overall
increases the contribution.

In Fig. 6.3, we did not include uncertainties from the theoretical/experimental input.
In this regard, the results only display a first estimate on the relative size of the LP
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compared to NLP contributions. To obtain a proper estimate for λB, one has to
incorporate these uncertainties and improve the resummation up to NLL, at which the
dependence on the first logarithmic moment σ1 becomes relevant, see [47]. For this
analysis, we again refer to [156].

6.2 QED corrections in B̄ → πK observables

The analysis of QED corrections involves three major regimes, discussed in Chapter 4
and 5. To display their numerical relevance, we specifically consider the QED effects
in context of B̄ → πK observables entering from i) the electroweak (above mB), ii)
the structure-dependent (between mB and µc

3) and the iii) ultrasoft region (below
ΛQCD). The structure-dependent part in particular contains the contributions from
the light-meson LCDA and the soft functions, which are treated separately.

As the structure-dependent terms ii) arise from weak operator insertions Q1,2, we
can view these corrections as modifications to the colour-allowed and colour-suppressed
tree-amplitudes α1(M1M2) and α2(M1M2) in the notation of [158]. In QCD-only, the
amplitudes are defined with respect to an overall factor

AM1M2 ≡ i
GF√
2
m2

BF
BM1
0 (0)fM2 , (6.15)

subtracting the non-perturbative dependence on the QCD form factor FBM1
0 and decay

constant fM2 . In QCD×QED, we generally define

A(M1M2) ≡ i
GF√
2
m2

BF
BM1
Q2

(0)fM2 , (6.16)

which now depends on the electric charges QM1 and QM2 through the QED-generalized
form factor FBM1

Q2
(0). We normalized the LCDAs with respect to the pure QCD decay

constants, such that fM2 appears in (6.16). The product of Aαi generally does not
factorize due to soft interactions. Therefore, we do not need to retain the QCD-like
separation of A and αi. Instead, we define

A(M1M2)αi(M1M2) = AM1M2

(
αQCD
i (M1M2) + δαi(M1M2)

)
, (6.17)

to directly compare QCD and QED contributions, where the latter are entirely con-
tained within δαi(M1M2). At O(αem), we decompose the various QED effects according
to

δαi(M1M2) ≡ δαWC
i (M1M2) + δαK

i (M1M2) + δαF,V
i (M1M2) + δαF,sp

i (M1M2) . (6.18)

The term (WC) refers to the electroweak Wilson coefficients, (K) to the hard and
hard-collinear scattering kernels, (F,V) to the vertex and (F,sp) to the spectator terms
3The collinear scale µc of order of a few times ΛQCD has been introduced in Sec. 5.3 to factor out the
Sudakov factors for M1 and M2 into the ultrasoft function.
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6.2 QED corrections in B̄ → πK observables

Coupling constants and masses [GeV]
αem(mZ) = 1/127.96 αs(mZ) = 0.118 mB = 5.297 mZ = 91.19

Decay constants [MeV] and form factors
fπ = 130 fK = 160 fB = 190 FBπ

0 = 0.25 FBK
0 = 0.34

CKM parameters and RπK

|λu/λc| ≡ |VusV ∗
ub/VcbV

∗
cs| = 0.0206 RπK = fπF

BK
0 /fKF

Bπ
0 = 1.11

Wilson coefficients and coupling constants at ν = 4.8 GeV
CQCD

1 = −0.26 CQCD
2 = 1.01 αem = 1/132.24 αs = 0.216

Parameters of distributions amplitudes at µ = 1 GeV
aπ2 = 0.138 aK̄1 = 0.061 aK̄2 = 0.124 λB = 250 MeV

Coupling constants and α̂c
4 at µ = 1 GeV

αem = 1/134.05 α̂c
4 = −0.104− 0.015i

Table 6.2: Numerical values for the evaluation of QED effects. To obtain the Gegen-
bauer moments at 1GeV, we consider downward scale evolution for the
lattice results from [159] in the QCD LL approximation. We consider the
Wilson coefficients in QCD-only at NNLL.

from the form factor and LCDAs. We neglect the spectator part since it is of order
O(αemαs). Moreover, we do not consider QED corrections to the form factor in this
work. When M2 is charged, we replace FBM1

− with the semi-leptonic factor (4.63). In
this case, the Wilson coefficient Csl will enter our analysis via δαWC. Note that the
point-like factor Zℓ is part of δαF,V.

We consider the QED corrections to the light-meson LCDA and soft functions enter-
ing the factorization formula (4.70) separately. Both function types obey a first-order
integro-differential equation that determines their scale evolution. On top of the eval-
uation of the analytical results in Chapter 5, we solve these equations numerically by
discretizing the corresponding function domain. We discuss this procedure in more
detail in Sec. 6.2.6 and Sec. 6.2.7.

6.2.1 Electroweak corrections

In the downward scale evolution of the QED-generalized Wilson coefficients from the
electroweak scale, we sum the QCD but not the QED logarithms according to [160].
The results can be expressed in terms of two expansion parameters αs and κ ≡ αem/αs.4

4We expect the resummation of QED effects between mB and the electroweak scale to be even less
important than the resummation for the hard-scattering kernels, which we assumed to be negligible.
Since we resum the large QCD logarithms cs = αsL, the QED logarithms αemL = κcs will be pro-
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We restrict ourselves to O(κ, καs) and to NLL accuracy. This implies the inclusion of
QED corrections in Ci(µ0) at the electroweak scale as well as O(κ, καs) terms in the
anomalous dimension, see also [161] for comparison. We consider three-loop running
for αs and αem and include four-loop contributions from QCD as in Sec. 3.3 of [160].
We obtain the solution to the RGE for the Wilson coefficients from [160] with

λ ≡ βQED
0 αem(µ0)

βQCD
0 αs(µ0)

, ω ≡ 2βQCD
0

αs(µ0)

4π
, (6.19)

where βQCD
0 = 23/3 and βQED

0 = 80/9 for nf = 5. Similar to (6.17), we split the QCD
and QED contributions as

Ci(ν) = CQCD
i (ν) + δCi(ν) . (6.20)

For the Wilson coefficients in QCD at NNLL as well as the value of the gauge couplings
in the MS scheme, we refer to Table 6.2. We choose the Z-boson mass mZ as the initial
scale for the downward scale evolution to ν = 4.8GeV with nf = 5. For the QED
corrections at the lower scale, we obtain

δC1(ν) = −1.66
αem(ν)

4π
= −1.00 · 10−3 , (6.21)

δC2(ν) = 5.68
αem(ν)

4π
= 3.42 · 10−3 . (6.22)

On the level of the tree amplitudes αi, we find in consequence

δαWC
1 (M1M2) = δC2 = 5.68

αem(ν)

4π
= 3.42 · 10−3 , (6.23)

δαWC
2 (M1M2) =

4

9
δC1 +

1

3
δC2 = 1.16

αem(ν)

4π
= 0.695 · 10−3 . (6.24)

For QM2 = −1, we need to include the semi-leptonic coefficient Csl due to the normal-
ization onto the semi-leptonic amplitude in the factorization formula. In this case, we
use the fixed-order result at one-loop [131]

δCsl(ν) =
αem(ν)

π
ln
mZ

ν
= 11.78

αem(ν)

4π
= 7.09 · 10−3 . (6.25)

In our specific analysis for B̄ → πK, this modification only enters through the colour-
allowed tree amplitude, for which we find

δαWC
1 (M1M2) = δC2 − δCsl C

tree
2 = −3.88 · 10−3 . (6.26)

Uniformly ignoring O(αsαem) contributions, we employ Ctree
2 (ν) = 1.03. Compared to

(6.23), we find that the QED contribution enters with an opposite sign but equivalent
size after the SCETI → QCD×QED form factor replacement.

moted to κf(cs), where f(cs) is the resummed QCD expression from the solution of the corresponding
RGE in [160].

128



6.2 QED corrections in B̄ → πK observables

6.2.2 Hard-scattering kernels

In the second step, we consider the hard-scattering corrections to the amplitudes α1

and α2 which are given by

δαK
i (M1M2) =

αem(µ)

4π

∑
j=1,2

CQCD
j (ν)

[
V (1)
j (M2) +Hem

j,Q2
(M1M2)

]
. (6.27)

The former contribution defines the convolution appearing in the form factor term

Vi(M2) =

∫ 1

0

du T I
i,Q2

(u)ϕM2(u) , (6.28)

while the second involves the hard-collinear spectator scattering. In the present con-
text, we use the naive lattice estimates from Table 6.2 for the Gegenbauer moments
of ϕM2 in QCD and truncate the Gegenbauer expansion after the second moment. For
QM2 = 0, this implies

V (1)
2 (M0

2 ) = − 2

27

[
−6Lν − 18− 3iπ +

(
11

2
− 3iπ

)
aM2
1 − 21

20
aM2
2

]
, (6.29)

and V (1)
1 (M0

2 ) = CFV (1)
2 (M0

2 ). For QM2 = 1, we have

V (1)
2 (M−

2 ) =

[
−5

3
L− 2Lν

3
− 97

18
− 22iπ

9
− π2

9

−
(
1

2
L+

133

72
+
iπ

3

)
aM2
1 −

(
3

5
L+

184

75
+

2iπ

5

)
aM2
2

]
, (6.30)

and V (1)
1 (M−

2 ) = 0. The normalization to the semi-leptonic amplitude removes some
double logarithms of H I

i,−(u) in (4.79), which shrinks the magnitude of the QED ef-
fect. The ν-dependent logarithms Lν in the above results cancel against the corre-
sponding electroweak coefficients, which corresponds to the cancellation of UV and
IR divergences in the EFT picture. The µ dependence in L, on the other hand,
matches the QED factorization scale in fM2ΦM2/Zℓ which we treat separately such
that V (1)

2 (M2) stays µ-dependent. In the following, we choose µ = 1GeV for the
collinear scale. We run the electromagnetic coupling at one-loop with flavour thresh-
olds at 4.8GeV (nf = 4), 1.2GeV (nf = 3) for the b- and c-quark and at µτ = 1.78GeV
for the tau.

Finally, we note that the spectator-scattering term can be expressed as a sum of
Gegenbauer moments

Hem
2,−(M1M2) =

4π2QspQu

Nc

rsp(M1)

9

∫ 1

0

du dv
ϕM2(u)ϕM1(v)

ūv̄
, (6.31)

=
4π2QspQursp(M1)

Nc

∑
i,j

aM1
i aM2

j , (6.32)
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multiplied with

rsp(M1) ≡
9fBfM1

mBλBF
BM1
0 (0)

. (6.33)

We use (4.94) applied to Hem
2,−(M1M2) in order to transition between different charge

combinations. More precisely, we have

Hem
1,−(M1M2) = 0 , Hem

1,0 (M1M2) = CFH
em
2,0 (M1M2) =

CF

Nc

Hem
2,−(M1M2) . (6.34)

6.2.3 Penguin-dominated B → πK decays

We parametrize the penguin-dominated B → πK decays by the four amplitudes [158]

AB−→π−K̄0 = AπKα̂
p
4 ,

√
2AB−→π0K− = AπK [δpuα1 + α̂p

4] + AKπ

[
δpuα2 + δpc

3

2
αc
3,EW

]
,

AB̄0→π+K− = AπK [δpuα1 + α̂p
4] ,

√
2AB̄0→π0K̄0 = AπK [−α̂p

4] + AKπ

[
δpuα2 + δpc

3

2
αc
3,EW

]
. (6.35)

The coefficients αi(M1M2) denote the various topologies of the decay modes. In addi-
tion to the first two amplitudes we introduced earlier, α̂4 and αc

3,EW refer to the QCD
(electroweak) penguin amplitudes based on the notation in [158]. Every term in (6.35)
further contains a multiplicative CKM factor VpbV ∗

ps with a sum over p = u, c. The
corrections from the hard-scattering kernels are

δαK
1 (π

+K−) =
αem(µ)

4π
CQCD

2

[
V2(K

−) +Hem
2,−(π

+K−)
]
, (6.36)

δαK
1 (π

0K−) = δαK
1 (π

+K−) +
αem(µ)

4π
∆K

1 , (6.37)

δαK
2 (K̄

0π0) =
αem(µ)

4π
(CFC

QCD
1 + CQCD

2 )
[
V2(π

0) +Hem
2,0 (K̄

0π0)
]
, (6.38)

δαK
2 (K

−π0) = δαK
2 (K̄

0π0) +
αem(µ)

4π
∆K

2 , (6.39)

which can be read off from the right and wrong insertions of the operators Q1,2. For
two of these contributions, only the differences of the spectator scattering terms enter

∆K
1 = CQCD

2 (ν)
(
Hem

2,−(π
0K−)−Hem

2,−(π
+K−)

)
= 8.03

rsp(π)

0.674
, (6.40)

∆K
2 =

(
CFC

QCD
1 (ν) + CQCD

2 (ν)
)(

Hem
2,0 (K

−π0)−Hem
2,0 (K̄

0π0)
)
= 1.59

rsp(K)

0.610
, (6.41)
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6.2 QED corrections in B̄ → πK observables

which is related to the fact that the vertex terms Vi are independent of QM1 . The
evaluation of these expressions yields

δαK
1 (π

+K−) =
αem(µ)

4π

[
−0.89− 7.96i− 2.68

rsp(π)

0.674

]
= (−2.12− 4.73i) · 10−3 ,

δαK
1 (π

0K−) =
αem(µ)

4π

[
−0.89− 7.96i+ 5.36

rsp(π)

0.674

]
= (2.65− 4.73i) · 10−3 ,

δαK
2 (K̄

0π0) =
αem(µ)

4π

[
0.83 + 0.46i− 0.53

rsp(K)

0.610

]
= (0.18 + 0.27i) · 10−3 ,

δαK
2 (K

−π0) =
αem(µ)

4π

[
0.83 + 0.46i+ 1.06

rsp(K)

0.610

]
= (1.12 + 0.27i) · 10−3 . (6.42)

We observe that all QED corrections at this level are per mille effects. The choice of the
factorization scale merely affects the numerical results above. To give an example, the
first term in the square brackets change by O(1) when choosing the collinear scale to be
µ = 1.5GeV rather than 1GeV. Note that the factorization scale dependence cancels
explicitly in the branching fractions and direct CP asymmetries considered below.

6.2.4 Ultrasoft factors

We defined the resummed ultrasoft exponentiation factor U(M1M2) in (5.134) that
multiplies the non-radiative decay rate to render the entire process IR finite. This
requires a choice for ∆E, which refers in our case to the signal region of the πK invariant
mass around mB. The factorization approach relies on the hierarchy ∆E ≪ ΛQCD, so
that we choose ∆E = 60MeV in analogy to the treatment of Bq → µ+µ− in [60].5
Compared to the previously investigated QED effects, the ultrasoft contributions turn
out to be quite sizeable

U(π+K−) = 0.914 ,

U(π0K−) = U(K−π0) = 0.976 ,

U(π−K̄0) = 0.954 ,

U(K̄0π0) = 1 . (6.43)

For QM2 = −1, the form factor replacement including the normalization to the semi-
leptonic amplitude modifies the branching ratio to

Br(π+K−) ∝
∣∣Asl,M1

non−rad α1(π
+K−)

∣∣2 U(π+K−) , (6.44)

5On the experimental side, the invariant mass spectrum including soft photon emission is currently
generated by the PHOTOS algorithm which only uses an upper cutoff at 5GeV, see [162, 163].
Based on our framework, we suggest to focus on the signal window around mB without additional
extrapolations.
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equivalently for Br(π0K−), where we receive the non-radiative part from

Br(M1ℓ
−) = U(M1ℓ

−) |Asl,M1

non−rad|
2 . (6.45)

The factor U(M1ℓ
−) can be obtained from U(M1K

−) in (5.134) by replacing the mass
dependencemK → mℓ. We multiply the ultrasoft function in (6.45) to the semi-leptonic
decay rate such that our determination of Asl,M1

non−rad is indeed given by the non-radiative
part of the non-leptonic amplitude.

6.2.5 Branching ratios, isospin sum rule and direct CP asymmetries

The individual QED corrections studied so far only yield small corrections to the QCD
results. This might be different for certain branching fractions in which QED effects
are relatively enhanced compared to QCD. To this end, we introduce the ratio

RL =
2Br(π0K̄0) + 2Br(π0K−)

Br(π−K̄0) + Br(π+K−)
= RQCD

L + δRL , (6.46)

where the pure QCD term is

RQCD
L = 1 + |rEW|2 − cos γ Re (rTr

∗
EW) + . . . (6.47)

The factors rEW and rT denote the ratios of electroweak penguin α3,EW and tree co-
efficients α1 divided by the QCD penguin α̂c

4. These ratios are O(0.1), so that (6.46)
may be understood as an expansion in terms of rEW and rT. While QCD corrections to
unity enter quadratically in (6.47), we find that the QED effects provide linear terms

δRL = cos γ Re (δE) + δU , (6.48)

where δE arises from the Wilson coefficients and hard-scattering kernels and δU from the
ultrasoft function. In (6.48), only the differences of the spectator-scattering corrections
∆K

i defined in (6.40) and (6.41) enter the coefficient δE at LO due to the dependence on
the charge QM1 . As a consequence, the ratio RL does not depend on the factorization
scale µ in contrast to the individual corrections δαK

i . Since the electroweak Wilson
coefficients are also independent of QM1 , they do not appear in the coefficient δE.
Numerically, we obtain

δE =
αem(µ)

4π

∣∣∣∣λuλc
∣∣∣∣ ∆K

1 +∆K
2 RπK

α̂c
4(πK)

= (−1.89 + 0.27i)
αem(µ)

4π
= (−1.12 + 0.16i) · 10−3 , (6.49)

using the CKM coefficient λu/λc, the QCD penguin amplitude α̂c
4 and the form-factor

ratio RπK in Table 6.3. Hence, QED again reduces to a per mille effect that is further
suppressed by the CKM angle cos γ. The ultrasoft coefficient is

δU ≡ 1 + U(π0K−)

U(π−K̄0) + U(π+K−)
− 1 = 5.8% . (6.50)
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We recall that this number is obtained for ∆E = 60MeV and thus implicitly depends
on the experimental analysis. Adding both results, we find with γ = 70◦

δRL = 5.7% , (6.51)

where the ultrasoft QED corrections make up almost the entire value. In this case,
QED exceeds the corresponding QCD contribution RQCD

L − 1 = 0.01± 0.02 [158].
In addition to these kinds of ratios, direct CP asymmetries are frequently considered

observables where QED might become relevant. Based on isospin relations, we find a
sum rule

∆(πK) ≡ ACP(π
+K−) +

Γ(π−K̄0)

Γ(π+K−)
ACP(π

−K̄0)− 2Γ(π0K−)

Γ(π+K−)
ACP(π

0K−)

− 2Γ(π0K̄0)

Γ(π+K−)
ACP(π

0K̄0) ≡ ∆(πK)QCD + δ∆(πK) , (6.52)

involving different asymmetries in B̄ → πK that sum up to zero apart from small
corrections [164, 165]. In the expansion of small amplitude ratios, we find for QCD-
only

∆(πK)QCD = 2 sin γ [Im (rT r
∗
EW) + 2 Im (rCr

∗
EW)] + . . . , (6.53)

where rC is the ratio of the colour-suppressed amplitude. Due to αc
3,EW ∼ α1, we neglect

the first term in (6.53) and thus the interference between rC and rEW determines the
QCD part ∆(πK)QCD = (0.5± 1.1)% [55]. The QED effects are given by

δ∆(πK) = −2 sin γ Im (δE) + δ∆U , (6.54)

with the imaginary part of δE in (6.49) and a corresponding ultrasoft correction δ∆U .
The former term is O(r0) but dominated by the imaginary part of α̂c

4 since the spectator-
scattering terms ∆K

i are real at O(αem). Hence, this contribution is much smaller
compared to the ultrasoft part

δ∆U =2 sin γ
[
Im (rP − rT ) + Im (rP )

U(π−K̄0)

U(π+K−)

+ Im (rT + rC − rP )
U(π0K−)

U(π+K−)
− Im (rP + rC)

U(π+K−)

]
= −0.39% , (6.55)

which first appears at O(r). The amplitude ratios given in [158] are rC = 0.06−0.016i,
rP = 0.018+0.0038i and rT = 0.18−0.030i. The ultrasoft contribution (6.55) depends
in particular on imaginary parts of the r-ratios in QCD and inherits large uncertainties
as the determination of imaginary phases from experimental data turns out to be
challenging. In total, we find

δ∆(πK) = −0.42% . (6.56)
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This result shows that QED only provides a small correction to the isospin sum rule
in (6.52). According to [164], the same statement is true for QCD, such that larger
deviations can not be explained in QCD×QED and may ultimately hint towards NP. To
complete our analysis, we list each direct CP asymmetry for the amplitudes in (6.35).
QED again enters linearly through a term δACP, but the ultrasoft factors cancel in the
ratio of CP-conjugated expressions. We obtain

δACP(π
+K−) = 2 sin γ

∣∣∣∣λuλc
∣∣∣∣ Im δα1(π

+K−)

α̂c
4(πK)

= 0.14% , (6.57)

δACP(π
−K̄0) = 0 ,

δACP(π
0K̄0) = −2 sin γ

∣∣∣∣λuλc
∣∣∣∣RπK Im

δα2(K̄
0π0)

α̂c
4(πK)

= 0.01% ,

δACP(π
0K−) = 2 sin γ

( ∣∣∣∣λuλc
∣∣∣∣ Im [δα1(π

+K−) +RπKδα2(K̄
0π0)

α̂c
4(πK)

]
+ Im δE

)
= 0.16% .

Here, the corrections δα1,2 include both δαK and δαWC. For M2 = K−, we consider
the difference

δ(πK) ≡ ACP(π
0K−)− ACP(π

+K−) , (6.58)

for which we only find a tiny QED correction

2 sin γ

(∣∣∣∣λuλc
∣∣∣∣RπKIm

δα2(K̄
0π0)

α̂c
4(πK)

+ Im δE

)
= 0.02% . (6.59)

All in all, the CP asymmetries do not contain sizeable QED corrections, in contrast to
the ratio RL. In fact, each term is strictly smaller than the QCD uncertainty from the
experimental input.

6.2.6 Light-meson LCDA

For the light-meson LCDA, we discussed the phenomenological modifications of QED
in Sec. 5.1 by solving the RGE in (5.4) to first order in αem (to all orders in the soft
approximation near u, ū → 0). Since we do not obtain analytical all-order results on
the entire domain of the QED-generalized LCDAs, we focus on the first-order results of
the Gegenbauer moments. In addition, we present the numerical solution of the RGE
from which we calculated the graphs in Fig. 5.2. We remark that the results refer to
the properly IR-subtracted matrix elements.

For the discretization of the RGE (5.4), we choose N points ui that split the u ∈ [0, 1]
interval into N − 1 sub-intervals, where i = 1, . . . , N . Taking N large, we replace the
v-integral in the differential equation by a finite (Riemann) sum. In this way, we obtain
N coupled differential equations that can be solved numerically. Regarding the precise
summation, we implement the trapezoidal rule to decrease the error of the numerical
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method.6 At given ui, we approximate the first distribution of (4.53) according to

dΦM(ui;µ)

d lnµ
∝
∫ 1

0

dv θ(v − ui)

(
1 +

1

v − ui

)
ui
v
ΦM(ui;µ)

≈ 1

2

(
− 1

ui
ΦM(ui;µ) + ΦM(ui+1;µ)− ΦM(ui;µ)

)

+
N−1∑
j=i+1

(uj+1 − uj)

2

(
1 +

1

uj − ui

)[
ui
uj

ΦM(uj;µ)− ΦM(ui;µ)

]
, (6.60)

where in the second line, for the limit uj → ui, we replaced the function with its
discretized derivative. The same treatment applies to the second distribution and the
local terms. In our calculation, we formally exclude the endpoint u = 0 and u = 1
by reducing the entire interval u ∈ [ϵ, 1− ϵ] for small ϵ ≪ 1 since the evolution kernel
becomes divergent at these points. In practice, we choose ϵ = 10−10 and distribute the
number of points ui of the interval logarithmically increased towards both endpoints.
For N = 1001 points, the numerical evaluation agrees with the LL result in QCD up
to an error of less than 0.04%.7 We calibrate this error in QCD-only, for which we
know the analytical solution. Hence, it merely provides an estimate for the QED case,
which is dominated by the endpoint contributions from the local terms at unrealistic
high scales.

To parametrize the QED corrections for the light LCDA, we recall the decomposition
in terms of Gegenbauer polynomials

ΦM(u;µ) = Zℓ(µ) 6uū
∞∑
n=0

aMn (µ)C(3/2)
n (2u− 1) , (6.61)

where Zℓ is the point-like evolution factor defined in (5.6). In the following, we present
the results for the evolved Gegenbauer moments based on the discussion in Sec. 5.1.2.
At the initial scale µ0, we use results obtained from lattice QCD µlat = 2GeV evolved
downwards in QCD-only at LL accuracy, given in Table 6.3. We emphasize that the
initial function should be viewed as an IR-subtracted (scheme-dependent) model for
the LCDA, for which we calculate the UV evolution numerically. In QCD×QED, we
evolve the function to higher scales µ alongside with the gauge couplings, including
the decoupling of the bottom and charm quark as well as the tau lepton at the flavour
thresholds µ = mb,c,τ .8 In our analysis, we consider the scale evolution separately at LL,
NLL and NNLL accuracy in QCD while keeping the LL evolution for QED by using the
first-order results in (5.38).9 To be consistent, we implement the NLO (NNLO) anoma-
lous dimension and two-loop (three-loop) running for αs at NLL (NNLL). We choose to
6The estimated error is proportional to (∆u)3, where ∆u refers to the difference of two neighboring
points.

7The error refers to the initial function and scales chosen in Fig. 5.2.
8The decoupling of the tau is only required for the electromagnetic coupling αem(µ).
9We neglect corrections at the threshold mb induced by matching relations for the Gegenbauer mo-
ments at NNLL in QCD since they are expected to be small.
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6. Numerical results

Quark and lepton masses
mb = 4.78 GeV mc = 1.67 GeV mτ = 1.78 GeV

Gegenbauer moments at µlat = 2 GeV
aπ0 = 1 aπ1 = 0 aπ2 = 0.116+19

−20

aK0 = 1 aK1 = 0.0525+31
−33 aK2 = 0.106+15

−16

Gegenbauer moments at µ0 = 1 GeV
aπ0 = 1 aπ1 = 0 aπ2 = 0.140+23

−24

aK0 = 1 aK1 = 0.0593+35
−37 aK2 = 0.128+18

−19

Table 6.3: Numerical values of the (two-loop pole) quark masses in the running of
αem and Gegenbauer coefficients at the initial scale µ0 = 1GeV obtained
from lattice QCD results at µlat = 2GeV in [159]. We neglect the four-
loop QCD contribution in the strong coupling and increase one digit of
precision, so that some values differ from Table 6.2. The value of mc refers
to the charm-quark pole mass.

evolve our results to µ = 5.3GeV ≈ mB and µ = 80.4GeV ≈ MW respectively. While
the first value is chosen to obtain estimates in the environment of exclusive B decays,
the evolution to the electroweak scale eventually becomes important in rare decays like
W− → π−γ [166].

The lattice QCD calculations provide results for the first three Gegenbauer moments
a0,1,2(µ). Generally, the moments an(µ0) with n > 2 mix into these first moments under
QED evolution. In the initial model, we choose an(µ0) = 0 for n > 0, since we expect
those contributions to be small. The QED evolution then again produces these higher
coefficients in the upward scale evolution, which is also the case for pure QCD beyond
LL. As we discussed earlier, we further neglect QED corrections at the initial scale
which are currently not accessible.

At the scale µ = 5.3 GeV, we find the moments of a negatively charged pion π−(dū)
to be

aπ
−

0 = 1
∣∣
QCD

+ 0.0035
∣∣
QED

,

aπ
−

1 = 0
∣∣
QCD

+ 0.0006
∣∣
QED

,

aπ
−

2 = 0.0951
∣∣
LL

− 0.0084
∣∣
NLL

+ 0.0001
∣∣
NNLL

+ 0.0010
∣∣
QED

, (6.62)

For the kaon K−(sū), we have

aK
−

0 = 1
∣∣
QCD

+ 0.0035
∣∣
QED

,

aK
−

1 = 0.0462
∣∣
LL

− 0.0023
∣∣
NLL

+ 0.0001
∣∣
NNLL

+ 0.0009
∣∣
QED

,
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6.2 QED corrections in B̄ → πK observables

aK
−

2 = 0.0869
∣∣
LL

− 0.0078
∣∣
NLL

− 0.0000
∣∣
NNLL

+ 0.0010
∣∣
QED

. (6.63)

At the scale µ = 80.4 GeV, we find for the pion

aπ
−

0 = 1
∣∣
QCD

+ 0.0094
∣∣
QED

,

aπ
−

1 = 0
∣∣
QCD

+ 0.0015
∣∣
QED

,

aπ
−

2 = 0.0657
∣∣
LL

− 0.0098
∣∣
NLL

+ 0.0002
∣∣
NNLL

+ 0.0021
∣∣
QED

, (6.64)

and for the kaon

aK
−

0 = 1
∣∣
QCD

+ 0.0095
∣∣
QED

,

aK
−

1 = 0.0365
∣∣
LL

− 0.0030
∣∣
NLL

+ 0.0002
∣∣
NNLL

+ 0.0020
∣∣
QED

,

aK
−

2 = 0.0601
∣∣
LL

− 0.0091
∣∣
NLL

+ 0.0002
∣∣
NNLL

+ 0.0021
∣∣
QED

. (6.65)

In the above results, we do not provide uncertainties for our results since the QCD NLL
contributions are typically larger than O(15%), which is the order of the lattice error
at the input scale µlat = 2GeV. Generally, we observe that the QED corrections are
strictly below the NLL QCD evolution but one order of magnitude above the NNLL
corrections. Depending on the high scale, the size of the relative QED correction in aπ−

2

ranges between 1% and 4% compared to the LL and between 12% to 21% with respect
to the NLL contributions. In the upward scale evolution, the QCD coupling decreases
while the QED coupling increases so that naturally QED effects get more relevant. In
contrast to QCD-only, the Gegenbauer moments do however not necessarily tend to zero
which would asymptotically lead to ϕM(u;µ → ∞) = 6uū. Nevertheless, we expect
the higher moments to be small at realistic scales where QCD still dominates. Since
QED breaks the normalization condition and the isospin symmetry, the scale evolution
changes QCD-fixed Gegenbauer moments such as aM0 |QCD = 0 and aπ−

1 |QCD = 0.
The light-meson LCDA appears in the factorization theorem (4.1) through convo-

lutions with a hard-collinear function. In earlier chapters of this thesis, we already
stressed the importance of inverse moments for the soft function, appearing in these
kinds of factorization theorems. The same discussion applies to the case of light mesons,
for which the hard-collinear function typically behaves like u−1 or ū−1. Hence, we define
the inverse moments as〈

ū−1
〉
M− (µ) =

∫ 1

0

du

1− u
ΦM−(u;µ) = Zℓ(µ)× 3

∞∑
n=0

aM
−

n (µ) , (6.66)

〈
u−1
〉
M− (µ) =

∫ 1

0

du

u
ΦM−(u;µ) = Zℓ(µ)× 3

∞∑
n=0

(−1)naM
−

n (µ) , (6.67)

which are given in terms of infinite sums over Gegenbauer moments. For the numerical
values based on the previous analysis for the moments, we obtain for the π− at the
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scale µ = 5.3 GeV〈
ū−1
〉
π− = 0.9997

∣∣QED

point charge
(3.285+0.05

−0.05

∣∣
LL

− 0.020
∣∣
NLL

+ 0.017
∣∣QED

partonic
) ,〈

u−1
〉
π− = 0.9997

∣∣QED

point charge
(3.285+0.05

−0.05

∣∣
LL

− 0.020
∣∣
NLL

+ 0.012
∣∣QED

partonic
) , (6.68)

and at 80.4 GeV〈
ū−1
〉
π− = 0.985

∣∣QED

point charge
(3.197+0.03

−0.03

∣∣
LL

− 0.022
∣∣
NLL

+ 0.042
∣∣QED

partonic
) ,〈

u−1
〉
π− = 0.985

∣∣QED

point charge
(3.197+0.03

−0.03

∣∣
LL

− 0.022
∣∣
NLL

+ 0.031
∣∣QED

partonic
) . (6.69)

For the kaon K−, we obtain at µ = 5.3 GeV〈
ū−1
〉
K− = 0.9997

∣∣QED

point charge
(3.399+0.05

−0.05

∣∣
LL

− 0.026
∣∣
NLL

+ 0.018
∣∣QED

partonic
) ,〈

u−1
〉
K− = 0.9997

∣∣QED

point charge
(3.122+0.03

−0.03

∣∣
LL

− 0.011
∣∣
NLL

+ 0.011
∣∣QED

partonic
) , (6.70)

and at 80.4 GeV〈
ū−1
〉
K− = 0.985

∣∣QED

point charge
(3.290+0.03

−0.03

∣∣
LL

− 0.029
∣∣
NLL

+ 0.044
∣∣QED

partonic
) ,〈

u−1
〉
K− = 0.985

∣∣QED

point charge
(3.071+0.02

−0.02

∣∣
LL

− 0.010
∣∣
NLL

+ 0.029
∣∣QED

partonic
) . (6.71)

In the above expressions, we explicitly factored out the point-like limit Zℓ(µ), to which
we refer as “point charge”. The label “partonic” refers to the structure-dependent
corrections, purely contained in the evolution of the Gegenbauer moments. In terms
of precision, we use the evolution factor (5.7) for Zℓ(µ) that resums the point-like
logarithmic corrections to all orders while treating the Gegenbauer moments (5.38) to
first order in αem. At the initial scale, we impose Zℓ(µ0) = 1. Moreover, we choose the
hard scale E = µ/2 of two-body decays for the energy dependence entering Zℓ(µ). The
results in (6.68)– (6.71) are obtained from the first nmax = 100 Gegenbauer moments,
which are produced by QED as well as QCD NLL corrections. The convergence of the
infinite sum in (6.66) and (6.67) differs for these two effects. For QCD NLL, we require a
rather high truncation of the series to obtain reliable results while QED effects converge
relatively fast so that we typically generate the given values already at nmax = 10. We
do not consider the uncertainties from the lattice QCD input regarding the unknown
coefficients an(µlat) for n > 2. The results solely correspond to a comparison between
different QCD and QED contributions for a particular model evolved to higher scales.

Compared to the analysis of the Gegenbauer moments in (6.62)–(6.65), the relative
size of QCD and QED effects differs in the prediction for the inverse moments. Both
QCD NLL and QED corrections are O(1%), which is the same order of the lattice
uncertainty of the input in Table 6.3. The uncertainties in (6.68)–(6.71) refer only
to the QCD LL effects based on these input values. Beyond O(10 GeV), the QED
contributions exceed the QCD NLL results whereas at 80.4 GeV they also become
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6.2 QED corrections in B̄ → πK observables

larger than the lattice uncertainty of the LL contribution. In contrast to QCD, QED
in particular evolves the zeroth Gegenbauer moment aM0 , which corresponds to the
normalization in QCD of O(1) and explains the magnitude of this effect.10 The isospin
breaking effects caused by QED in ⟨ū−1 − u−1⟩π− turn out to be a few permille to 1%
level.

Finally, we remark that the point-like and structure-dependent QED contributions
have opposite effects on the Gegenbauer moments. The first one diminishes and the
second one enhances the value of these objects. We still separate both effects since we
shifted the point-like limit to the ultrasoft function in Sec. 5.3, which is by definition
not contained in the non-radiative amplitude.

6.2.7 Soft functions

For the soft functions, we analyze the effects of the one-loop evolution in (5.66). The
phenomenological modifications are generally more complicated compared to the light
meson case. Nevertheless, some arguments of the discussion remain similar. At the
low scale µ = µ0, we separate the QED effects from the QCD initial condition in the
spirit of (5.116)

ΦB,⊗(ω;µ0) = ϕ+(ω;µ0) +
αem

π
Φ

(1)
B,⊗(ω;µ0) +O(α2

em) , (6.72)

where we fix Φ(1)(ω;µ0) = 0.11 Here, we again choose the exponential model (6.1) with
ω0 = 0.3 GeV for the initial function which carries an implicit θ(ω) to indicate the
domain. For the gauge couplings, we set αem(µ) = 1/134 and αs(µ0) = 0.48. In the
present context, we evolve αs at one-loop for nf = 4 flavours and neglect threshold
effects.

We solve the RGE (5.41) in a similar manner to the previous section by discretizing
the domain and distributions according to (6.60). The main difference is that the soft
function support extends to the entire real axis ω ∈ [−∞,∞]. We introduce an upper
and lower cutoff for ω and spare out a small window around the origin that regulates
possible divergences from the distributions for ω → 0. The discretization procedure
then applies to the two separate intervals [−ϵ,−Ω] and [ϵ,Ω] for which we choose
ϵ = 10−7 and Ω = 104 GeV. For each interval, we use N + 1 points logarithmically
concentrated towards the boundary at |ω1| = ϵ. In total, we obtain 2(N + 1) coupled
first-order differential equations that we solve numerically. For the case of QM2 = 0, the
support of the soft functions stays positive, so that we only encounter N +1 equations
from the interval [ϵ,Ω]. As a benchmark, we recover the analytic QCD LL solution
to a precision of 0.02% when evolving from µ0 = 1 GeV to µ = 2 GeV. Since QED

10At µ = 80.4 GeV, QED corrections change aπ
−

0 = 1 by O(1%). On the other hand, QCD NLL
effects produce an O(15%) variation on the LL result for aπ

−

2 = 0.0657. Thus, the QED effects are
relatively enhanced.

11We consider the QCD-only function for the initial condition since QED effects correspond to higher
order corrections compared to our accuracy.
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6. Numerical results

effects on this level are tiny, we choose the electromagnetic coupling fictitiously large
to αem = 0.5 and present the qualitative implications in Fig. 6.4 for both combinations
⊗ = (0,−) and ⊗ = (+,−). The red dots show the imaginary part produced in the
latter scenario whereas the blue dots represent the real part in both cases. In addition,
we depict the unevolved exponential model (grey) and the QCD LL result, given in
(6.8).

In Sec. 5.2.7, we derived the analytic solution (5.128) and (5.129) to first order in
the QED coupling. We compare this result to the numerical solution by inserting (6.1)
together with Φ(1)(ω;µ0) = 0 into these expressions. We then perform the correspond-
ing ω′-integrals by applying the fundamental properties of Meijer-G functions, some of
which are presented in Appendix F.12 We find

Φ
>(1)
B,⊗ (ω, µ) =

1

ω0

eV+2γEa

(
µ0

ω0

)a
[
−QspQM2

∫ µ

µ0

dµ′

µ′
αs(µ

′)CF

π
G33

34

(
ω

ω0

)
ln
µ′

µ0

+

∫ 1

0

dx

[
1

1− x

]
+

(
−QspQM1

{
h(x)Fa

(
xω

ω0

)
+ h(x−1)Fa

(
ω

xω0

)}

+QspQM2

{
h(x)Fa

(
xω

ω0

)
− x−1h(x−1)Fa

(
ω

xω0

)}
+ (Q2

sp + 2QspQM1)x
aFa

(
xω

ω0

)
ln
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µ0

)
+

{
− (Q2

sp + 2QspQM1)

(
1

2
ln2 µ

µ0

+ ln
µ0e

γE

ω0

ln
µ

µ0

)

+

(
3

4
Q2

sp +
1

2
Q2

d − iπQM1QM2

)
ln

µ

µ0

}
Fa

(
ω

ω0

)]
, (6.73)

Φ
<(1)
B,⊗ (ω, µ) = −QspQM2

ω0

eV+2γEa

(
µ0

ω0

)a

Γ(1 + a)Γ(2 + a) U

(
1 + a, 0,− ω

ω0

)
ln

µ

µ0

.

(6.74)

We recall that V and a in the first-order solution are given by the QCD factors in
(5.90). In the first line, we defined the short-hand notation

G33
34(z) ≡ G33

34

(
−a(µ, µ′), −a(µ, µ′), −a
−a(µ, µ′), −a(µ, µ′), 1, 0

∣∣∣∣z) , (6.75)

while in the last line we introduced the Tricomi confluent hypergeometric function

U(a, b, z) =
Γ(b− 1)

Γ(a)
z1−b

1F1(a− b+ 1, 2− b, z) +
Γ(1− b)

Γ(a− b+ 1)
1F1(a, b, z) . (6.76)

12The result is most easily obtained by a calculation in Laplace space.
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Figure 6.4: Upward scale evolution of the exponential model (6.1) (gray curve) for
ω0 = 0.3 GeV from µ0 = 1 GeV to µ = 2 GeV. The QCD-only LL solution
(6.8) is represented by the black line. The upper and lower panel show
the evolution of Φ0−(ω;µ) and Φ+−(ω;µ) respectively for αem = 0.5. In
QCD×QED, the first-order O(αem) corrections (6.73) and (6.74) generate
real (blue curve) and imaginary (red curve) parts. The dotted curves are
obtained from the discretization method applied to the full kernel (5.66).
Note that Φ0−(ω;µ) does not contain imaginary contributions due to the
absence of soft rescattering.

141



6. Numerical results

initial QCD (0, 0) (−, 0) (0,−) (+,−)

λ−1
B 3.3333 2.7922 2.7918 2.8018 2.7900 + 0.0096i 2.7977 + 0.0096i

σ1 0 −0.2125 −0.2129 −0.2099 −0.2139 −0.2108

Table 6.4: Numerical results for λ−1
B (in GeV−1) and σ1. We choose the reference scale

to be µ̃ = ω0e
−γE and ω0 = 0.3 GeV for the exponential model. The initial

value refers to the scale µ0 = 1GeV while all other values represent the
results at the high scale µ = 2GeV.

In Fig. 6.4, the real and imaginary parts of the solution (6.73) and (6.74) correspond to
the solid blue and red line respectively. We find excellent agreement to the numerical
solution, even though we considered αem = 0.5 to be large. From our analysis about
the asymptotic behaviour in (5.113), we recall that the soft function for ⊗ = (+,−)
becomes log-divergent in the limit ω → 0. This divergence is absent in the first-order
solution above since it enters at O(α2

em).
The realistic value of the electromagnetic coupling at 1− 2 GeV is αem = 1/134. In

this case, we consider the evolution of the first inverse-logarithmic moments defined in
(5.74). At µ0 = 1 GeV, the moments initially take the form

λ−1
B (µ0) =

1

ω0

, σn(µ0) =
n∑

k=0

(n
k

)
(−1)k Γ(k)(1) lnn−k µ̃

ω0

, (6.77)

with Γ(k)(1) = ∂kzΓ(z)
∣∣
z=1

. In what follows, we focus on the evolution of the first
two moments λB and σ1. To this end, we set µ̃ = ω0e

−γE according to [47] which
implies σ1(µ0) = 0. From the all-order solutions (5.100) and (5.101), we find for the
exponential model

λ−1
B (µ) =eV+2γEaΓ(1 + a)

ω0

(
µ0

ω0

)a

F(0;µ, µ0) , (6.78)

σ1(µ) =Ha + γE + ln
µ̃

ω0

+

∫ µ

µ0

dµ′

µ′
αem(µ

′)QspQM1

π

{
H ′

a(µ,µ′) −H ′
−a(µ,µ′)

}
. (6.79)

Here, a and V denote the QED-generalized variables in (5.96). The evolution function
F is defined in (5.97). We list the numerical results for the scale evolution to µ = 2
GeV in Table 6.4. Comparing these results to the discretization method, we achieve
agreement at the permille level (equivalent to the numerical error). We find that
the QED contributions maximally give rise to an 1.2% effect, which is less than the
expected contribution from the two-loop QCD evolution [167].
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Chapter 7

Conclusion

In this thesis, we investigated two different improvements to the QCD factorization
framework in exclusive particle decays. Our main goal was to increase the accuracy of
theoretical calculations in precision observables of charmless B decays. To this end, we
considered generalized correlation functions related to the radiative B̄ → γℓν decay and
derived a combined QCD×QED factorization approach for non-leptonic B̄ → M1M2

decays with light meson final states.
In the first part, we constructed the factorization theorem for a B̄ to vacuum ma-

trix element with space-like separated (pseudo-)scalar currents at LP in a 1/Eγ- and
1/mb- expansion. We included NLP contributions by expanding the QCD fields in a
soft background and derived sum rules to estimate the soft corrections. The results
contain generalized inverse-logarithmic moments of the leading- and higher-twist B-
meson LCDAs. We applied the same procedure to the transverse part of the B̄ → γ∗ℓν
correlator with (axial-)vector currents. A first numerical analysis shows the qualita-
tive dependence of the results on the off-shellness p2 and the model parameter λB. In
view of current perspectives for lattice QCD, we expect that these kinds of correlation
functions can be calculated in the near future. From this, we can eventually extract
more precise information about hadronic matrix elements of the B meson that enter
various observables in exclusive decays.

The second and main part of this work focused on the development of a unified
QCD×QED factorization framework in non-leptonic B decays. For the case of current-
current operators Qi in the weak effective Hamiltonian, we derived a consistent fac-
torization theorem incorporating virtual QCD and QED corrections between scales of
a few times ΛQCD and mB. Most notably, the formula retains the form of pure QCD
regarding the appearance of form factors and hard(-collinear) matching coefficients
convoluted with QED-generalized versions of the light and heavy meson LCDAs. To
prove factorization, we calculated the hard-scattering kernels Ti at O(α0

sαem). The
hadronic matrix elements entering the factorization formula generally become process-
dependent as they retain information on the electric charge and direction of flight of
the outgoing mesons through soft photon exchange. The light-meson LCDA, however,

143



7. Conclusion

remains universal in most of its aspects. Compared to pure QCD, we find that the
normalization and the UV-fixed linear endpoint behaviour of the LCDA are modified
by QED effects. Moreover, the definition of the LCDA is not boost-invariant and re-
quires the choice of a soft reference frame. For charged π mesons in particular, QED
generates an asymmetric distribution due to the breaking of isospin-symmetry. On
the other hand, the heavy-meson LCDA involves soft rescattering physics and should
rather be viewed as a soft function for a specific two-body back-to-back process with
one of the four distinct charge combinations ⊗ = {(0, 0), (−, 0), (0,−), (+,−)}. In the
heavy-quark limit, soft photons coupling to M2 can carry an infinite amount of energy
away from the spectator quark. As a consequence, the soft function support in terms
of the momentum variable ω extends over the entire real axis when M2 is charged.

In presence of QED, the non-perturbative objects appearing in the factorization for-
mula contain IR divergences. To construct IR-finite observables, we included ultrasoft
photon emission with energy ∆E ≪ ΛQCD and calculated the ultrasoft exponentiation
factor that multiplies the non-radiative decay rate. In practice, we understand the IR
divergences of the hadronic matrix elements in the factorization theorem as minimally
IR-subtracted matching coefficients to an effective theory at scales below the validity
of the factorization formula. Above the scale mB, we employed QED effects from the
electroweak scale within the Wilson coefficients of the weak effective theory. We solved
the evolution equations of the Wilson coefficients, light-meson LCDA, the soft and ul-
trasoft function, which resums large logarithms of different scale ratios. The analytical
results mostly refer to the resummation of QCD logarithms to all orders in the strong
coupling, while QED effects are treated in a fixed-order expansion up to O(αem). An
exception to this are the inverse-logarithmic moments of the soft functions, for which
we obtain an all-order solution in both gauge couplings, as well as the ultrasoft function
that is resummed to all orders in αem.

In the numerical analysis, we considered QED corrections to branching fractions,
CP asymmetries and hadronic functions appearing in B̄ → πK decays. We observe
that the individual QED corrections in almost every case are smaller than the QCD
uncertainties obtained from the experimental/lattice data. In two scenarios, we find
sizable QED corrections: For the ratio RL, the QED contributions sum up to an O(5%)
effect, which are dominated by ultrasoft effects. When evolving the light-meson LCDA
to scales of order O(mW ), we also reach percent level corrections that may become
relevant for electroweak precision observables.

The QCD×QED factorization approach has already been extended to the case of
heavy-light final states in [67]. From a conceptional point of view, it might be interest-
ing to include the remaining operators of the weak effective theory and the resumma-
tion of structure-dependent QED logarithms in future works. Finally, we note that our
framework leaves a small window around ΛQCD, in which we are not able determine
QED effects perturbatively. The corresponding matching corrections can potentially
be determined from lattice calculations in the future.
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Appendix A

Renormalization in HQET×SCET

In Sec. 2.4.2, we derived the one-loop expressions for the matching coefficients CS and
JS in the factorization formula (2.78). Based on the structure of divergences in the one-
loop results from Sec. 2.2, we argued that only the respectively renormalized hard and
hard-collinear regions contribute to these coefficients. In the following, we prove this
fact by calculating the hard-collinear and soft matrix elements on the HQET×SCET
side. This finally shows how the hard-collinear and soft regions in the effective theory
are reproduced and how they cancel on both sides of the matching equation.

A.1 Jet function in SCET

We defined the scalar jet function JS by the two matrix elements (2.74) and (2.77).
Now, we calculate the expressions J1 and J2 in SCET at one-loop using the Feynman
rules in the effective theory, which can be derived from the leading power Lagrangian
(2.43) and its subleading term (2.64). For an extensive review of SCET Feynman rules,
we refer to Appendix A of [168]. Note that the collinear Wilson lines at any loop order
can be replaced by inverse derivatives using∫ 0

−∞
dsn+GC(x+ sn+) =

i

in+∂ + i0
n+GC(x) . (A.1)

The computation of the function J1 involves three diagrams, depicted in Fig. A.1a-c.
We note that the two contributions from diagram (b) and (c) are identical. The one-
loop results are

J
(a)
1 (2Eγω, p

2) =
αsCF

4π

(
− 1

ϵ
− ln

µ2

2Eγω − p2
− 1

)
, (A.2)

J
(b)
1 (2Eγω, p

2) =
αsCF

4π

(
2

ϵ2
+

2

ϵ
+

2

ϵ
ln

µ2

2Eγω − p2
− π2

6
+ 4

+ 2 ln
µ2

2Eγω − p2
+ ln2 µ2

2Eγω − p2

)
, (A.3)
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↓ p − ωv+

(a)
↓ p − ωv+

(b)
↓ p − ωv+

(c)

ωv+−→ p−→

j(3/2)L(1/2)
ξq

(d)

ωv+−→ p−→

j(3/2)L(1/2)
ξq

(e)

ωv+−→ p−→

j(3/2)L(1/2)
ξq

(f)

ωv+−→ p−→

j(3/2)L(1/2)
ξq

(g)

Figure A.1: One-loop contributions to the operators (2.74) and (2.77). (a)-(c) con-
tribute to J1 while (d)-(g) display corrections to J2. Interactions at the
edge of the fermion lines indicate the insertion of a hard-collinear Wilson
line from the field χC or the insertion of L1/2

ξq . The electromagnetic cur-
rent j(3/2) in SCET is defined in (2.60). Diagrams (d), (e) and (g) vanish
in dimensional regularization.

J
(c)
1 (2Eγω, p

2) = J
(b)
1 (2Eγω, p

2) . (A.4)

The 1/ϵ divergences originate from both UV and IR and are renormalized in MS. In
total, we obtain the renormalized function by the sum of (A.2)-(A.4)

J1(2Eγω, p
2;µ) = 1 +

αsCF

4π

(
2 ln2 µ2

2Eγω − p2
+ 3 ln

µ2

2Eγω − p2
− π2

3
+ 7

)
. (A.5)

The computation of the function J2 is generically more complicated due to the struc-
ture of the current j(3/2)ξξ defined in (2.60). In principle, we can emit an arbitrary number
of collinear gluons from this current. At one-loop, there are four diagrams which could
contribute to the function J2, see Fig. A.1(d)-(g). As it turns out, only diagram (f)
has a non-vanishing contribution. For simplicity, we concentrate on this diagram only.
The Feynman rule for the subleading Lagrangian L(1/2)

ξq in (2.64) is known to be

igsT
A

(
γµ⊥ − nµ

+

n+l

)
/n+

2
, (A.6)

where l denotes the momentum of the incoming soft anti-quark. The Feynman rule for
the j(3/2)ξξ can be derived from two external quark fields with momentum k′ and k∫

d4xeipx
〈
q(k′)

∣∣T{ξ̄C 1

in+D
i /D⊥

/n+

2
ξC − ξ̄Ci

⃗/D⊥
1

in+
⃗D

/n+

2
ξC

}∣∣q(k)〉
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=

∫
d4xeipx

[
ū(k′)eik

′x

(
1

in+∂
i/∂⊥ − i ⃗/∂

1

in+
⃗∂

)
e−ikx

/n+

2
u(k)

]

=

∫
d4xeipx+ik′x−ikxū(k′)

(
/k⊥
n+k

−
/k′⊥
n+k′

)
/k⊥
/n+

2
u(k)

= (2π)4δ(4)(k′ − k + p)ū(k − p)

[
− n+p

n+k(n+k − n+p)
/k⊥
/n+

2

]
u(k) . (A.7)

We conclude that the Feynman rule is given by

− n+p

n+k(n+k − n+p)
/k⊥
/n+

2
. (A.8)

The calculation of Fig. A.1(f) yields

J
(f)
2 (2Eγω, p

2;µ) =
αsCF

4π

(
− 2

ϵ2
− 2

ϵ
ln

µ2

2Eγω − p2
− 2

ϵ

p2

2Eγω
ln

2Eγω − p2

−p2
− 2 +

π2

6

− ln2 µ2

2Eγω − p2
+

p2

2Eγω
ln2 µ2

2Eγω − p2
− p2

2Eγω
ln2 µ2

−p2

)
. (A.9)

Hence, the renormalized jet function is

J2(2Eγω, p
2;µ) =

αsCF

4π

(
− 2 +

π2

6
− ln2 µ2

2Eγω − p2

+
p2

2Eγω
ln2 µ2

2Eγω − p2
− p2

2Eγω
ln2 µ2

−p2

)
. (A.10)

In sum, J1 and J2 reproduce the hard-collinear region of the full theory and in particular
the hard-collinear matching coefficient JS in (2.84).

A.2 Soft region in HQET

To complete the QCD → QET×SCET matching, it remains to show that the soft region
is reproduced on both sides of the matching equation by calculating the matrix element
2.69 at NLO. There are three diagrams shown in Fig.A.2 in the effective theory. The
Feynman rule for the soft operator is derived similarly to (A.7). For the two-particle
case, it is only proportional to /n−γ5δ(ω − ω′). For the three-particle case, we obtain(

δ(ω − ω′)− δ(ω − ω′ + n−k)

)
/n−γ5 , (A.11)

where k denotes the momentum of the incoming/outgoing gluon from the finite distance
Wilson line [tn−, 0]. Using the HQET Feynman rule for the heavy quark propagator,
we obtain the contributions from the three diagrams

S(1a) = −2ig2sCF v̄(l)/n−γ5u(v) µ̃
2ϵ

∫
ddk

(2π)d
(δ(ω − n−l)− δ(ω − n−l + n−k))

[k2 + i0][2vk + i0][n−k − i0]
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lq̄s

hv

ω

(a)

lq̄s

hv

ω

(b)

lq̄s

hv

ω

(c)

Figure A.2: NLO diagrams for the operator defined in (2.69). The double fermion
line represents the heavy quark field. The finite distance Wilson line is
denoted by the black square.

=
αsCF

4π
v̄(l)/n−γ5u(v)2Γ(ϵ)

θ(ω − n−l)

ω − n−l

(
4πµ̃2

(n−l − ω)2

)ϵ

. (A.12)

S(1b) = −2ig2sCF v̄(l)/n−γ5u(v)

× µ̃2ϵ

∫
ddk

(2π)d
(n−k − n−l)(δ(ω − n−l)− δ(ω − n−l + n−k))

[k2 + i0][(k − l)2 + i0][n−k − i0]

=
αsCF

4π
v̄(l)/n−γ5u(v)

(
4πµ̃2

−l2

)ϵ

2Γ(ϵ)

{
− Γ(−ϵ)Γ(2− ϵ)

Γ(2− 2ϵ)
δ(ω − n−l)

+
ωθ(n−l − ω)

n−l(n−l − ω)

(
ω

n−l
− ω2

n−l2

)−ϵ}
, (A.13)

S(1c) = −2ig2sCF

∫
d4k

(2π)4
v̄(l)/v/k/n−γ5u(v)

[k2 + i0][(k + l)2 + i0][2v · k + 2v · l + i0]
, (A.14)

In order to compare the soft matrix element to the soft region from (2.25), (2.26) and
(2.27), we integrate the results together with the tree-level jet function. We observe
that each diagram (A.12)–(A.14) separately reproduces the soft region in (2.25)–(2.27).
In total, we obtain

T (1)
s =

∫ ∞

0

dω

ω − n−p− i0
S(1) . (A.15)

We conclude that the soft region in the full theory exactly corresponds to the soft
matrix element in the effective theory and hence cancels on both sides of the matching
equation.
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Appendix B

Twist expansion in QCD

Factorization theorems and NLP effects in exclusive B decays as discussed in Chapter 2
and 3 involve hadronic matrix elements of heavy-to-light operators on or near the
light-cone x2 → 0. In pure QCD, the counting of the corresponding operators can be
conveniently organised in terms of conformal (geometric) twist [148]. This allows in
particular for a systematic parametrization of the bi- and trilocal operators

q̄s(x)Γhv(0) , q̄s(x1)Gµν(x2)Γ
µνhv(0) . (B.1)

To this end, one constructs the conformal spin and twist for each light field of the
operator defined by

j =
1

2
(l + s) , t = l − s , (B.2)

where l refers to the canonical mass-dimension of the field and s to its spin projection
on the light-cone.1 We present a list for some field projections in Table B.1. The total
twist of an operator is defined by the sum of the light field twist plus one, following
the convention in [124]. To give an example, the operator〈

0
∣∣q̄s(z1n−)/n−G⊥+(z2n−)hv(0)

∣∣B̄〉 = 2FB(µ)Φ3(z1, z2) , (B.3)

with G⊥+ ≡ γµ⊥n
ν
−Gµν contributes in total at twist-3. The conformal spin of the light

fields dictates the behaviour of the LCDA for small arguments in momentum space
according to f(ωi) ∼ ω2ji−1. Since the quark field has conformal spin j = 1 while the
gluon field strength has j = 3/2, we find ϕ3(ω1, ω2) ∼ ω1ω

2
2. In the same way, the

remaining operators are constructed up to a given twist counting. We refrain from
giving the precise operator definitions but summarize the endpoint behaviour of each
function in the main text. For the two-particle LCDAs, we find

ϕ+(ω) ∼ ω , ϕ−(ω) ∼ ω0 , g+(ω) ∼ ω2 , g−(ω) ∼ ω . (B.4)

1More precisely, s is defined to be the eigenvalue of the operator Σ+− ≡ nµ
−n

ν
+Σµν , where the spin

operator acts on the quark and gluon field as Σµνq = iσµν/4, with σµν = i[γµ, γν ]/2 and ΣµνGλ =
(gνλGµ − gµλGν)/2.
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B. Twist expansion in QCD

Fields q̄s/n− q̄s/n+ G⊥+ G+− /G⊥⊥ G⊥−

l 3/2 2

s 1/2 −1/2 1 0 −1

t 1 2 1 2 3

2j − 1 1 0 2 1 0

Table B.1: Values of the canonical dimension l, the light-cone spin projection s and
twist t for the light fields of bi- and trilocal heavy-to-light operators. The
conformal spin j dictates the small ω-behaviour of the LCDAs in the light
quark field argument f(ω) ∼ ω2j−1.

For the three-particle LCDAs, we have

ϕ4(ω1, ω2) ∼ ω0
1ω

2
2 , ψ4(ω1, ω2) ∼ ω1ω2 , ψ̃4(ω1, ω2) ∼ ω1ω2 . (B.5)

At LP in the heavy-quark expansion, we only expect the leading twist-2 amplitude
ϕ+ to contribute in physical processes. However, with increasing power of λ, the
higher-twist LCDAs above generally appear in subleading terms. In fact, we observe
that lower-twist amplitudes also enter in NLP corrections, which is a general feature
of the twist expansion [169,170]. In the physical picture, the meson can be viewed as a
multi-parton state, in which these different contributions are related by the equations of
motions in QCD. For our purposes, we summarize some of the implications in Sec. B.2.

B.1 Fourier integrals

In Chapter 3, we perform several Fourier integrals from position to momentum space,
for which we require some general identities. For p2 < 0, we have most generally in d
dimensions that ∫

ddx
eipx

(−x2 + i0)n
= −iπ

d
2
Γ
(
d
2
− n

)
Γ(n)

(
4

−p2

) d
2
−n

. (B.6)

Taking suitable derivatives, we find explicitly∫
ddx

eipx

(−x2 + i0)
d
2
−1
xλxρ = − 8iπ

d
2

Γ
(
d
2
− 1
) (4pλpρ − p2gλρ)

p6
,

∫
ddx

eipx

(−x2 + i0)
d
2
−2
xλ =

64π
d
2

Γ
(
d
2
− 2
) pλ
p6

. (B.7)

For d = 4, we perform the Fourier transformation according to∫
d4x

eipx

x4
xλ = 2π2p

λ

p2
,

∫
d4x

eipx

x4
xλxρ =

2π2i

p2

(
−gλρ + 2

pλpρ

p2

)
,
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B.2 Wandzura-Wilczek relations

∫
d4x

eipx

x2
xλ = 8π2p

λ

p4
,

∫
d4x

eipx

x2
= −4π2i

p2
. (B.8)

We furthermore require∫ ∞

0

dω ϕ(ω)

∫
d4x

ei(p−ωv)x

x2(vx)
xλ = 8π2i

∫ ∞

0

dω
(p− ωv)λ

(p− ωv)2

∫ ω

0

dω′ϕ(ω′) , (B.9)

which we obtain after integrating by parts. Note that the boundary term vanishes
since the exponential factor e−iω(vx−i0) inherits the i0-prescription from the analytic
structure of the LCDAs.

B.2 Wandzura-Wilczek relations

Under the assumption that we can neglect four-particle contributions like
∣∣q̄bgg〉 or∣∣q̄bq̄q〉, the equations of motion for the light fields impose connections between LCDAs

of different twist, also known as Wandzura-Wilczek (WW) relations [171]. For the two-
particle LCDA ϕ−, this implies a decomposition of the form ϕ− = ϕWW

− + ϕt3
− , where

the WW part can be written as

ϕWW
− (ω) =

∫ ∞

ω

dω′

ω′ ϕ+(ω
′) , (B.10)

which provides a solution to the equation of motion in the absence of the three-particle
content while ϕt3

− represents the remaining twist-3 corrections [83]. The same separation
applies to g+ = gWW

+ + gt3+t4
+ , even though it is less relevant in our context. A simple

application of (B.10) yields∫ ω

0

dω′[ϕ+ − ϕ−](ω
′) = −

∫ ω

0

dω′ϕt3
− (ω

′)− ωϕWW
− (ω) . (B.11)

This combination typically appears under the integral∫ ∞

0

2Eγdω

2Eγω − p2

∫ ω

0

dω′[ϕ+ − ϕ−](ω
′) = −

∫ ∞

0

dω ln

(
2Eγω − p2

4E2
γ

)
[ϕ+ − ϕ−](ω)

=

∫ ∞

0

dω ln

(
ω − p2

2Eγ

)
ϕt3
− (ω)− 1− p2

2Eγ

∫ ∞

0

dω

ω
ln

(
2Eγω − p2

−p2

)
ϕ+(ω) , (B.12)

where we stripped of constant factors in the first term since [ϕ+ − ϕ−] and therefore
ϕt3
− are normalized to zero in the tree-level approximation according to (3.10).
The relations between two- and three-particle LCDAs in position space can be found

in [47, 124]. For our purposes, we list some relevant equations in momentum space.
The two-particle LCDA g+ can be related to ψ4 via

4E2
γ

∫ ∞

0

dω
4g+(ω)

(2Eγω − p2)2
=

∫ ∞

0

2Eγdω

2Eγω − p2
2(Λ̄− ω)ϕ+(ω) (B.13)
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−
∫ ∞

0

2Eγdω

2Eγω − p2

∫ ω

0

dω′[ϕ+ − ϕ−](ω
′)

− 4E2
γ

∫ ∞

0

dω1

∫ ∞

0

dω2

∫ 1

0

du
2ūψ4(ω1, ω2)

(2Eγ(ω1 + uω2)− p2)2
.

We note that the sum of the LCDAs [ψ4 + ψ̃4] is purely twist-4 whereas the difference
[ψ4 − ψ̃4]

t3+t4 contains both twist-3 and twist-4 terms. The latter twist-3 contribution
can be expressed in terms of ϕt3

− as

4E2
γ

∫ ∞

0

dω1

∫ ∞

0

dω2

∫ 1

0

du
[ψ4 − ψ̃4]

t3(ω1, ω2)

(2Eγ(ω1 + uω2)− p2)2
=

∫ ∞

0

dω ln

(
ω − p2

2Eγ

)
ϕt3
− (ω) .

(B.14)

For the twist-4 part, we find

4E2
γ

∫ ∞

0

dω1

∫ ∞

0

dω2

∫ 1

0

du
[ψ4 − ψ̃4]

t4(ω1, ω2)

(2Eγ(ω1 + uω2)− p2)2
(B.15)

=

∫ ∞

0

2Eγdω

2Eγω − p2
d

dω

(
− ω2

2
ϕWW
− (ω) +

1

2

∫ ω

0

dω′ω′ϕ+(ω
′) + 2

∫ ω

0

dω′(Λ̄− ω′)ϕ+(ω
′)

)

− 4E2
γ

∫ ∞

0

dω1

∫ ∞

0

dω2

∫ 1

0

du

(
[ψ4 + ψ̃4](ω1, ω2)

(2Eγ(ω1 + uω2)− p2)2
+

[ψ4 + ψ̃4](ω1, ω2)

(2Eγ(uω1 + ω2)− p2)2

)
.

In the case of scalar currents, the subleading terms additionally contain a dependence
on the LCDAs ϕ3 and ϕ4. These functions fulfill respectively

4E2
γ

∫ ∞

0

dω1

∫ ∞

0

dω2

∫ 1

0

du
2uϕ3(ω1, ω2)

(2Eγ(ω1 + uω2)− p2)2

=

∫ ∞

0

2Eγdω

2Eγω − p2

(
ωϕ−(ω) +

∫ ω

0

dω′[ϕ+ − ϕ−](ω
′)

)
, (B.16)

4E2
γ

∫ ∞

0

dω1

∫ ∞

0

dω2

∫ 1

0

du
2[uϕ4 + ψ4](ω1, ω2)

(2Eγ(ω1 + uω2)− p2)2

=

∫ ∞

0

2Eγdω

2Eγω − p2

(
(Λ̄− ω)ϕ+(ω)−

∫ ω

0

dω′[ϕ+ − ϕ−](ω
′)

)
. (B.17)
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Appendix C

Diagrammatic results for B̄ →M1M2 decays

C.1 Vertex corrections

The hard matching coefficients of Sec. 4.4 are computed from the hard region of the
diagrams depicted in Fig. 4.2. We presented the results of the right insertion for
diagram 4.2(a) in (4.13). In the following, we complete the list for the wrong insertion
and the remaining diagrams 4.2(b)-(e). We have

W
(1a)
h =

Qq1Qu

Nc

(
1

ϵUV
− 1

ϵ2
− 1

ϵ

(
2 + log

µ2

u2m2
B

)
− 4− π2

12
− log2 u (C.1)

+
2− 3u

ū
log u+ 2 log u log

µ2

m2
B

− log
µ2

m2
B

− 1

2
log2

µ2

m2
B

+ 2Li2
(
− ū
u

))
⟨ÕI⟩ .

For the second diagram, we find

R
(1b)
h = QuQd

{(
− 4

ϵUV
+

1

ϵ2
+

1

ϵ

(
2 + ln

µ2

ū2m2
B

)
− 3 +

π2

12
+ ln2 ū− 2

u
ln ū

− 2 ln ū ln
µ2

m2
B

− 2 ln
µ2

m2
B

+
1

2
ln2 µ2

m2
B

− 2Li2
(
−u
ū

))
⟨OI⟩+ 3

4ϵUV
⟨E I⟩

}
, (C.2)

W
(1b)
h =

QuQd

Nc

{(
− 4

ϵUV
+

1

ϵ2
+

1

ϵ

(
2 + ln

µ2

ū2m2
B

)
− 5 +

π2

12
+ ln2 ū− 2

u
ln ū (C.3)

− 2 ln ū ln
µ2

m2
B

− 2 ln
µ2

m2
B

+
1

2
ln2 µ2

m2
B

− 2Li2
(
−u
ū

))
⟨ÕI⟩+ 1

4ϵUV

⟨Ẽ I⟩
}
.

For the third diagram, we have

R
(1c)
h = Qq1Qq2

{(
− 4

ϵUV
+

2

ϵ2
+

2

ϵ

(
2 + ln

µ2

−um2
B

)
+ 1− π2

6
+ ln2 µ2

−um2
B

)
⟨OI⟩

+
3

4ϵUV
⟨E I⟩

}
, (C.4)
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W
(1c)
h =

Qq1Qq2

Nc

(
− 4

ϵUV
+

2

ϵ2
+

2

ϵ

(
2 + ln

µ2

−um2
B

)
− 1− π2

6
+ ln2 µ2

−um2
B

)
⟨ÕI⟩

+
1

4ϵUV
⟨Ẽ I⟩

}
. (C.5)

The fourth diagram yields

R
(1d)
h = QuQq2

{(
1

ϵUV
− 2

ϵ2
− 2

ϵ

(
2 + ln

µ2

−ūm2
B

)
− 6 +

π2

6
− 3 ln

µ2

−ūm2
B

− ln2 µ2

−ūm2
B

)
⟨OI⟩+ αQ2

u

4π

3

4ϵUV
⟨E I⟩

}
, (C.6)

W
(1d)
h =

QuQq2

Nc

(
1

ϵUV
− 2

ϵ2
− 2

ϵ

(
2− ln

µ2

−ūm2
B

)
− 8 +

π2

6
− 3 ln

µ2

−ūm2
B

− ln2 µ2

−ūm2
B

)
⟨ÕI⟩ . (C.7)

The fifth’s diagram yields

R
(1e)
h = QdQq2

(
1

ϵUV
− 1

ϵ2
− 1

ϵ

(
2 + ln

µ2

m2
B

)
− 4− π2

12
− ln

µ2

m2
B

− 1

2
ln2 µ2

m2
B

)
⟨OI⟩ ,

(C.8)

W
(1e)
h =

QdQq2

Nc

{(
1

ϵUV
− 1

ϵ2
− 1

ϵ

(
2 + ln

µ2

m2
B

)
− 4− π2

12
− ln

µ2

m2
B

− 1

2
ln2 µ2

m2
B

)
⟨ÕI⟩

+
1

4ϵUV
⟨Ẽ I⟩

}
. (C.9)

For the wrong insertion, we additionally defined the matrix elements

⟨ÕI⟩ = [ū(kq1)γ
µ
⊥(1− γ5)u(pb)][ū(kq2)γ⊥µ(1− γ5)v(kū)] , (C.10)

⟨Ẽ I⟩ = [ū(kq1)γ
µ
⊥γ

ν
⊥γ

λ
⊥(1− γ5)u(pb)][ū(kq2)γ⊥µγ⊥νγ⊥λ(1− γ5)v(kū)] . (C.11)

Comparing right and wrong insertion, the result proportional to the Fierz equivalent
operators OI and ÕI only differs by a constant. We remark that the last contribution
of diagram 4.2(e) is often referred to as “non-factorizable” since the results cancel with
the corresponding renormalization of the full QCD×QED form factor.

C.2 Photon polarization and spectator scattering

According to the discussion in Sec. 4.4.2, the spectator scattering kernels H IIγ
i,− receive

contributions from the first three diagrams S1–S3 that correspond to Fig. C.1(a)–(c)
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ūq1

q̄s q̄s

(b)

q2b

ūq1

q̄s q̄s

(c)

q2b

ūq1

q̄s q̄s

(d)

OI
−

q2b

ūq1

q̄s q̄s

‖

(i)

OI
−

q2b

ūq1

q̄s q̄s

‖ / ⊥

(ii)

OIIγ
−

q2b

ūq1

q̄s q̄s

⊥

(iii)

Figure C.1: Spectator scattering at tree-level in the QCD×QED (first line) compared
to HQET×SCETI (second line).

respectively. In the matching calculation, we assumed the photon to be transversely
polarized. In a more precise treatment, the cancellation between different polariza-
tions ensures the absence of endpoint divergences in the factorization formula (4.70).
The longitudinal polarization states are in fact entirely contained in the time-ordered
products of the operator OI in SCETI.

To prove these statements, we calculate the full theory and EFT diagrams in Fig. C.1
using the LCDA projector method [37,48]. The method simplifies the computation in
terms of hadronic matrix elements since it projects the on-shell spinors directly onto
the light- and heavy-meson LCDAs. From the EFT viewpoint, this corresponds to a
simultaneous elimination of hard and hard-collinear scales and thus a straightforward
matching onto SCETII. In what follows, we neglect the three-particle LCDAs in the
Wandzura-Wilcek approximation and only include two-particle contributions up to
twist-3. The B-meson projector generalizes (2.11) and acts on the partonic amplitude
with stripped off spinor (colour) indices βα (ba). We have [83]

MB
αβ = −ifBmB

4

δab
Nc

[
1 + /v

2

{
ϕB
+(ω) /n+ + ϕB

−(ω) /n−

−
∫ ω

0

dη
(
ϕB
−(η)− ϕB

+(η)
)
γµ

∂

∂lµ⊥

}
γ5

]
αβ

. (C.12)

For the case of light pseudoscalar mesons, we apply the projector [158]

MP
αβ =

ifP
4

δab
Nc

[
/p γ5 ϕP (x)
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C. Diagrammatic results for B̄ →M1M2 decays

− µMγ5

(
ϕp(x)− iσµν

pµ p̄ν

p · p̄
ϕ′
σ(x)

6
+ iσµν p

µ ϕσ(x)

6

∂

∂k⊥ν

)]
αβ

, (C.13)

where p denotes the total momentum of the meson and the spatial components of the
light-like vector p̄ are aligned in the opposite direction of p. For both kinds of projectors,
the transverse derivatives are taken with respect to the quark momenta parametrized
by (4.12), with the refinement kq1⊥ = −kū⊥ = k⊥ for light mesons. Note that the
definition of the LCDAs in (C.12) and (C.13) refers to their QCD-only expressions.
For simplicity, we omit the QED generalization in this context, which would yield
equivalent results. Moreover, we include the light and heavy LCDAs up to twist-3 to
track the endpoint-divergent convolutions. These terms involve in particular ϕ−, ϕp

and ϕσ and appear at LP in the heavy-to-light form factors in [83]. The convolutions
arise more precisely form time-ordered products with OI which is not matched further
onto SCETI as mentioned above.

We separate the polarization states of the hard-collinear photon in Fig. C.1 by decom-
posing the metric tensor according to gµν = (nµ

+n
ν
− + nµ

−n
ν
+)/2 + gµν⊥ into longitudinal

and transverse components. At LP, we obtain for diagrams (a) – (d) in Feynman gauge

⟨Q2⟩(a)∥ = −QdQsp

〈
v̄−2
〉
M1

〈
ω−1

〉
− , ⟨Q2⟩(a)⊥ = 0 ,

⟨Q2⟩(b)∥ = QuQsp

〈
v̄−2
〉
M1

〈
ω−1

〉
− , ⟨Q2⟩(b)⊥ =QuQsp

〈
v̄−1
〉
M1

〈
ū−1
〉
M2

〈
ω−1

〉
+
,

⟨Q2⟩(c)∥ = QdQsp

〈
v̄−2
〉
M1

〈
ω−1

〉
− , ⟨Q2⟩(c)⊥ =QdQsp

〈
v̄−1
〉
M1

〈
ω−1

〉
+
,

⟨Q2⟩(d)∥ = QuQsp
µM1

3

〈
v̄−2
〉
σ1

〈
ω−2

〉
+
,

⟨Q2⟩(d)⊥ = QuQsp

〈
v̄−1
〉
M1

〈
ω−1

〉
− +QuQsp

µM1

3

〈
v−1v̄−1

〉
σ1

〈
ω−2

〉
+
. (C.14)

We used Qq1 = Qd and Qq2 = Qu for the general case ⊗ = (+,−) in which the
spectator quark charge is Qsp = Qd and normalized the results by subtracting the
factor of N ≡ iπαfM1fM2fBmB/Nc. The angle brackets define the convolutions

⟨vn⟩X ≡
∫ 1

0

dv vnϕX(v) , ⟨ωn⟩± ≡
∫ ∞

0

dω ωnϕB
±(ω) . (C.15)

In total, all contributions in (C.14) are summed to obtain the left-hand side of the
matching equation (4.84).

From the RG evolution of the different LCDAs we conclude that the convolutions
⟨v̄−2⟩M , ⟨v̄−2⟩σ, ⟨ω−2⟩+, ⟨ω−1⟩− are endpoint-divergent. We observe that diagrams
(a) – (c) are individually ill-defined only when the photon is longitudinally polarized.
For diagram d), both polarizations lead to divergent convolutions. In QCD-only, the
spectator scattering diagrams (c) and (d) enter the B →M1 form factor while (a) and
(b) cancel amongst each other. This differs to QED since longitudinal terms of (a) and
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C.2 Photon polarization and spectator scattering

(b) sum up to a divergent contribution proportional to QM2 = Qu −Qd, which naively
would spoil factorization. However, as we show in the following, this term originates
from the hard-collinear Wilson line in OI that connects to the spectator quark and
cancels in the matching equation.

We verify the cancellation by calculating the SCETI matrix elements on the right-
hand side of the matching equation (4.84). For OI, this involves the computation of
diagrams (i) and (ii) in Fig. C.1 and for OIIγ

− the corresponding diagram (iii). Using
the same methods as above, we find

⟨ÕI(u)⟩ ≡
∫

dt̂

2π
e−iut̂ ⟨OI(t)⟩ (C.16)

= NQuQsp ϕM2(u)
[ 〈
ω−1

〉
−

〈
v̄−2 + v̄−1

〉
M1

+
µM1

3

〈
v−1v̄−2

〉
σ1

〈
ω−2

〉
+

]
,

⟨ÕIIγ
− (u, v)⟩ ≡

∫
dŝ

2π

dt̂

2π
e−i(ut̂+(1−v)ŝ) ⟨OIIγ

− (t, s)⟩ = N Qsp

2

ϕM1(v)

v̄
ϕM2(u)

〈
ω−1

〉
+
.

We implicitly used H I
2,−(u) = 1 + O(αs, αem) that can be inferred from the matching

of four-point matrix elements of OI. The second line exactly reproduces the divergent
contributions we obtained in (C.14). Hence, all endpoint-divergent convolutions are
part of the form factor ζBM1

Q2
. From the last line of (C.16) we recover the matching

coefficient (4.88)

H IIγ
2,−(u, v) =

2Qu

ū
+ 2Qd , (C.17)

which we already found from the matching in (4.84) assuming only transverse photon
polarizations. The precise combinations between the full-theory and SCET diagrams
are given by

⟨Q2⟩(a)+(b)+(c)
∥ =

∫ 1

0

du H I
2,−(u)⟨ÕI(u)⟩(i) ,

⟨Q2⟩(d)∥ + ⟨Q2⟩(d)⊥ =

∫ 1

0

du H I
2,−(u)⟨ÕI(u)⟩(ii) ,

⟨Q2⟩(a)+(b)+(c)
⊥ =

∫ 1

0

dvdu H IIγ
2,−(u, v)⟨Õ

IIγ
− (u, v)⟩(iii) , (C.18)

which finally justifies to consider only transversely polarized photons in the derivation
of H IIγ

2,−(u, v).
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Appendix D

Relations for distribution amplitudes

D.1 Dispersive integrals

The dispersive treatment for the soft form factor in (3.46) requires the calculation of
imaginary parts from the QCD factorization results. In the simplest case, the imaginary
part is picked up from the hard-collinear propagator

Im
1

ω − ω′ − i0
= πδ(ω − ω′) , (D.1)

which follows from the Sokhotksi-Plemelj theorem involving the principal value for the
real part. For higher integer powers 1/(ω − ω′ − i0)n we generally integrate by parts
to reduce the expression to (D.1). For non-integer powers or logarithmic corrections,
we rewrite

1

ω − ω′ − i0
lnn−1 ω

′ − ω

ω′ =
d

dω

1

n
lnn ω

′ − ω − i0

ω′ (D.2)

=
d

dω

1

2

(
θ(ω′ − ω) ln

ω′ − ω

ω′ + θ(ω − ω′)

(
ln
ω − ω′

ω′ + iπ

))n

and again integrate by parts. For the NLO corrections of the LP factorization formula
in (2.78) and (3.49) to the soft form factor, we use the following identities

Im

π

∫ ∞

0

dω

ω − ω′ − i0
ln2 µ2

2Eγ(ω − ω′)
ϕ+(ω;µ)

= ln2 µ2

2Eγω′ϕ+(ω
′;µ)− 2 ln

µ2

2Eγω′

∫ ω′

0

dω ln
ω′ − ω

ω′
d

dω
ϕ+(ω;µ)

− π2

3
ϕ+(ω

′;µ) +

∫ ω′

0

dω ln2 ω
′ − ω

ω′
d

dω
ϕ+(ω;µ) , (D.3)

Im

π

∫ ∞

0

dω

ω − ω′ − i0

ω′

ω
ln
ω′ − ω

ω′

(
ln

µ2

2Eγω′ + iπ

)
ϕ+(ω;µ)
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= − ln
µ2

2Eγω′

∫ ∞

ω′
dω ln

ω − ω′

ω′
d

dω

ω′

ω
ϕ+(ω;µ)−

π2

2
ϕ+(ω

′;µ)

− 1

2

∫ ω′

0

dω ln2 ω
′ − ω

ω′
d

dω

ω′

ω
ϕ+(ω;µ)−

1

2

∫ ∞

ω′
dω ln2 ω − ω′

ω′
d

dω

ω′

ω
ϕ+(ω;µ) , (D.4)

Im

π

∫ ∞

0

dω

ω − ω′ − i0

ω′

ω
ln
ω′ − ω

ω′

(
ln

µ2

2Eγω′ − ln
ω − ω′

ω′

)
ϕ+(ω;µ)

= − ln
µ2

2Eγω′

∫ ∞

ω′
dω ln

ω − ω′

ω′
d

dω

ω′

ω
ϕ+(ω;µ)−

π2

6

− 1

2

∫ ω′

0

dω ln2 ω
′ − ω

ω′
d

dω

ω′

ω
ϕ+(ω;µ) +

1

2

∫ ∞

ω′
dω ln2 ω − ω′

ω′
d

dω

ω′

ω
ϕ+(ω;µ) , (D.5)

Im

π

∫ ∞

0

dω

ω − ω′ − i0

ω′

ω
ln
ω′ − ω

ω′ ϕ+(ω;µ) = −
∫ ∞

ω′
dω ln

ω − ω′

ω′
d

dω

ω′

ω
ϕ+(ω;µ) . (D.6)

Note that the logarithm in the first line of the third equation corresponds to the term
lnµ2/2Eγ(ω − ω′) appearing in the jet functions (2.84) and (3.51).

D.2 Distributions in ω

For the self-consistent treatment of the soft function RGE, it appeared natural to
introduce the plus-distributions (5.46) and (5.48) in the variable ω′. To obtain the
evolution equations for the first inverse-logarithmic moments (5.78) and (5.79), we
conveniently consider the distributions to act in the variable ω instead. Here, we
present the corresponding alternative results from Sec. 5.2 for the distributions and
the anomalous dimension.

The fundamental linear combinations of ω′-distributions are displayed in (5.61). To
let these distributions act in ω, we define analogous plus-distributions∫ ∞

−∞
dω
[
. . .
](ω)
+
f(ω) =

∫ ∞

−∞
dω
[
. . .
]
(f(ω)− f(ω′)) ,∫ ∞

−∞
dω
[
. . .
](ω)
⊕/⊖f(ω) =

∫ ∞

−∞
dω
[
. . .
]
(f(ω)− θ(±ω)f(ω′)) . (D.7)

By integrating against test functions
∫
dωdω′ϕ(ω)ψ(ω′), we find the relations:

θ(ω)ω′
[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

= θ(ω′)

[
θ(ω′ − ω)

ω′ − ω

](ω)
⊕

− θ(−ω)θ(ω′)

ω′ − ω
,

θ(−ω)
[
θ(ω′ − ω)

ω′ − ω

]
⊖
= θ(−ω′)ω

[
θ(ω′ − ω)

ω(ω′ − ω)

](ω)
+

+
θ(−ω)θ(ω′)

ω′ − ω
,

θ(ω)ω

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

= θ(ω′)ω

[
θ(ω′ − ω)θ(ω)

ω′(ω′ − ω)

](ω)
+

,
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θ(−ω)ω
[
θ(ω − ω′)

ω′(ω − ω′)

]
+

= θ(−ω′)ω

[
θ(ω − ω′)θ(−ω)
ω′(ω − ω′)

](ω)
+

,

θ(ω)

[
θ(ω − ω′)

ω − ω′

]
⊕
= θ(ω′)ω

[
θ(ω − ω′)

ω(ω − ω′)

](ω)
+

+
θ(ω)θ(−ω′)

ω − ω′ ,

θ(−ω)ω′
[
θ(ω − ω′)

ω′(ω − ω′)

]
+

= θ(−ω′)

[
θ(ω − ω′)

ω − ω′

](ω)
⊖

− θ(ω)θ(−ω′)

ω − ω′ . (D.8)

The terms proportional to θ(−ω)θ(ω′) or θ(ω)θ(−ω′) disappear after taking the linear
combinations according to (5.61) so that every diagram of Fig. 5.3 and consequently
the anomalous dimension can entirely be written in terms of the ω-distributions in
(D.7).

Using (D.8), we obtain the anomalous dimension equivalent to (5.66)

Γ
(ω)
⊗ (ω, ω′) =

αsCF

π

[(
ln

µ

ω − i0
− 1

2

)
δ(ω − ω′)−H

(ω)
+ (ω, ω′)

]
+
αem

π

[(
(Q2

sp + 2QspQM1) ln
µ

ω − i0
− 3

4
Q2

sp −
1

2
Q2

d (D.9)

+ iπ(Qsp +QM1)QM2

)
δ(ω − ω′)−QspQdH

(ω)
+ (ω, ω′) +QspQM2H

(ω)
− (ω, ω′)

]
,

but with the distributions in ω as can be indicated by the replacement H → H(ω).
Equivalently to (5.62), we define

H
(ω)
± (ω, ω′) ≡ θ(±ω′)F>(<)

ω (ω, ω′) + θ(∓ω′)G<(>)
ω (ω, ω′) , (D.10)

where the F and G distributions that mimic (5.61) in ω are given by

F>
ω (ω, ω′) = ω

[
θ(ω′ − ω)θ(ω)

ω′(ω′ − ω)

](ω)
+

+ ω

[
θ(ω − ω′)

ω(ω − ω′)

](ω)
+

,

G>
ω (ω, ω

′) = ω

[
θ(ω′ − ω)θ(ω)

ω′(ω′ − ω)

](ω)
+

+

[
θ(ω′ − ω)

ω′ − ω

](ω)
⊕

− iπδ(ω − ω′) ,

F<
ω (ω, ω′) = ω

[
θ(ω − ω′)θ(−ω)
ω′(ω − ω′)

](ω)
+

+ ω

[
θ(ω′ − ω)

ω(ω′ − ω)

](ω)
+

,

G<
ω (ω, ω

′) = ω

[
θ(ω − ω′)θ(−ω)
ω′(ω − ω′)

](ω)
+

+

[
θ(ω − ω′)

ω − ω′

](ω)
⊖

+ iπδ(ω − ω′) . (D.11)

Note that the superscript > (<) indicates the support ω′ > 0 (ω′ < 0) respectively.
In contrast to the F> and F< distributions in ω′, the distributions G>

ω and G<
ω cause

the mixing between different support regimes in this representation. We thus obtain
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(D.10) by sending θ(±ω)F>(<) → θ(±ω′)F
>(<)
ω and θ(±ω)G>(<) → θ(±ω′)G

>(<)
ω in

(5.62). This implies furthermore that the results in (5.67)–(5.73) for the explicit charge
four charge cases can be inferred from the replacement F → Fω and G → Gω. Then
for QM2 ̸= 0, the subscripts > and < on the anomalous dimension separate ω′ > 0 and
ω′ < 0, contrary to (5.69).

D.3 Distributions acting on pure powers

In Sec. 5.2, we translate the evolution equation (5.41) to Laplace space in order to find
analytic solutions thereafter. There are two ways to obtain the form of the RGEs in
Laplace space using the transformation (5.82). In the first approach, we integrate the
RGE by

∫
dω
ω
(µ
ω
)η and therefore use the representation in terms of ω-distributions. The

second way uses distributions in ω′ that affect factors ( µ
ω′ )

−η that enter by expressing
the soft function directly in terms of its Laplace transform for ω′ > 0 and ω′ < 0
respectively. Both strategies lead to the same final results. However, the intermediate
steps differ by the outcome of the distributions when they act on pure powers. For
distributions in ω, we have

θ(±ω′)

∫ ∞

−∞

dω

ω − i0

(
µ

ω − i0

)η

F>(<)
ω (ω, ω′) = θ(±ω′)

(
µ

ω′−i0

)η
ω′ − i0

(−Hη −H−η) ,

θ(±ω′)

∫ ∞

−∞

dω

ω − i0

(
µ

ω − i0

)η

G>(<)
ω (ω, ω′) = θ(±ω′)

(
µ

ω′−i0

)η
ω′ − i0

(−Hη −H−η) , (D.12)

where −1 < Re(η) < 1. Note that we implemented Hη −H−1−η +π cot(πη) = 0, which
altogether yields∫ ∞

−∞

dω

ω − i0

(
µ

ω − i0

)η

H
(ω)
± (ω, ω′) =

(
µ

ω′−i0

)η
ω′ − i0

(−Hη −H−η) . (D.13)

Hence, the difference H(ω)
+ −H

(ω)
− integrated against pure powers vanishes, which gen-

eralizes (5.76) and (5.77). In fact, we recover the latter two equations by taking the
η-derivative in (D.13) and setting η → 0. As an equivalent observation, we state that
F>
ω −G>

ω and G<
ω −F<

ω vanish for the two respective support regimes ω′ > 0 and ω′ < 0.
For the separate transformations that enter with factors of ( µ

−ω
)η for ω < 0, we

consider the combined expressions for the distributions Gω which yield∫ ∞

−∞

dω

ω

[
θ(ω)

(µ
ω

)η
+ θ(−ω)

(
µ

−ω

)η ]
θ(±ω′)G>(<)

ω (ω, ω′)

=
θ(±ω′)

ω′

(
µ

±ω′

)η

(−H−η −H−1−η − Γ(−η)Γ(1 + η)∓ iπ) ,

(D.14)
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that converges in the strip −1 < Re(η) < 0. The term the F -distributions in (D.12)
remains equivalent and is therefore not listed. To complete our summary, we present
the analogous results for the distributions in ω′, that are given by∫ ∞

−∞
dω′
[
θ(ω′)

( µ
ω′

)−η

+ θ(−ω′)

(
µ

−ω′

)−η ]
θ(±ω)F>(<)(ω, ω′)

= θ(±ω)
(
µ

±ω

)−η

(−Hη −H−η + Γ(−η)Γ(1 + η)) , (D.15)

∫ ∞

−∞
dω′
[
θ(ω′)

( µ
ω′

)−η

+ θ(−ω′)

(
µ

−ω′

)−η ]
θ(±ω)G>(<)(ω, ω′)

= θ(±ω)
(
µ

±ω

)−η

(−H−η −H−1−η ∓ iπ) . (D.16)
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Appendix E

Asymptotic behaviour of hadronic functions

In QCD-only, the asymptotic behaviour of LCDAs can be inferred from conformal
symmetry at the critical point of the QCD β function. For the B-LCDA, we explic-
itly made use of the implications in Appendix B. However, once QED gets involved,
we cannot rely on these arguments anymore as we already discussed in Sec. 5.1.1. In
that case, we need to study the evolution equations of the hadronic objects analyti-
cally and develop different solution strategies. Throughout Chapter 5, we performed
Mellin/Laplace transformations to extract the analytic structure of the RGEs and their
solutions. Most notably, we found that the asymptotic behaviour for the light meson
LCDA and the soft functions receive logarithmic modifications near the “endpoints”
u, ū = 0 and ω = 0, ω → ±∞ respectively.

We derived these modifications for the first time in (5.26) in the case of scale-
independent strong and electromagnetic couplings. In the following sections, we provide
more details on the derivation of these results and in particular show that the analysis
even applies when the one-loop running for the gauge couplings αs(µ) and αem(µ) is
included. For the light meson LCDA, we first consider the inverse Mellin transform in
QCD-only to illustrate the strategy of the derivation. For the soft function, we present
additional special cases in which we can solve the RGE analytically to all orders in
both couplings.

E.1 Inverse Mellin transform in QCD

Before turning to the solution in QCD-only, we begin with some general remarks: The
central result of Sec. 5.1.1 shows that the light meson LCDA for u→ 0 approaches its
asymptotic form ΦM(u;µ) ∼ u(− lnu)p, where the logarithm gets exponentiated with
the non-integer power p = αemQq1QM/(αsCF + αemQq1(Qq2 −QM)). We obtained this
expression from the soft approximation of the evolution kernel in (5.10) and stated
that the collinear region of the RGE does not alter this result even with an initial
condition of the form ΦM(u;µ) ∼ ub and b = 1, for which the soft region diverges in
the UV. To this end, we recall that the method of regions relies on the expansion of
the integrand irrespective of the fact whether the individual separation converges or
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not. In consequence, we introduce an upper cut-off Λ ∼ O(1) for the initial function
Φ̂M(u;µ0) = θ(Λ−u)ub that regulates the UV divergence in the soft region and cancels
after the collinear approximation has been added to the result. Since the latter may
only supply subleading logarithms lnu, we conclude that the soft approximation already
determines the complete asymptotic behaviour for small u. For this particular initial
condition, the computation of the small-u behaviour becomes simple since the Mellin
transform corresponds to a simple pole at η = b given by

˜̂
ΦM(η;µ0) =

Λb−η

b− η
. (E.1)

Note that the Mellin transform converges for Re(η) < b and hence we choose c < b
for the integration contour of the inverse transformation. We remark that the choice
(E.1) captures all important implications for the asymptotic behaviour and can be used
without loss of generality.

Now for QCD-only, the above discussion implies that the Mellin space solution for
the soft approximation (5.14) including (E.1) becomes

ϕM(u;µ) = Λbµ e(2γE−3/2)a

∫ c+i∞

c−i∞

dη

2πi

(u
Λ

)η Γ(1− η)Γ(1 + η + a)

Γ(1 + η)Γ(1− η − a)

1

bµ − η
. (E.2)

We defined the QCD evolution variable a in (5.15) and bµ ≡ b − a(µ, µ0), where the
renormalization-scale dependence has been neglected. The integrand of (E.2) is an
analytic function in the complex η-plane, except for the points where the numerator
Gamma functions and the initial condition is singular. More precisely, there are two
strings of poles that are associated to the Gamma functions with η = −1 − a − n
and η = 1 + n extending to the left and right respectively for non-negative integers
n = 0, 1, 2, . . . . The single pole of the initial condition is located at η = bµ. For u→ 0,
we assume u < Λ so that the factor (u/Λ)η provides an exponential suppression for
the integrand in the limit Re(η) → ∞. We can then deform the integration contour
c±∞ to a curve enclosing the poles in the right-half plane with respect to c. Due to the
asymptotic behaviour of the Gamma functions for Re(η) → −∞, the contour parameter
c must be chosen in the strip −1 − a < c < min(1, bµ), which constrains b > −1 and
a > −2 that avoids an overlap between the two sets of Gamma function poles.1 From
the analyticity, we thus conclude that the contour can be further divided into small
circles enclosing the poles at η = bµ, 1+n in mathematically negative direction. Hence,
the integral in (E.2) evaluates to the sum of all residues corresponding to these poles.
The leading contribution in the limit u→ 0 is given by the left-most pole with respect
to Re(η) > c. We find

ϕM(u;µ) = e(2γE−3/2)aΛbµ
∑

η=bµ,1+n

(−1) · Res
[(u

Λ

)η Γ(1− η)Γ(1 + η + a)

Γ(1 + η)Γ(1− η − a)

1

bµ − η

]
1At unrealistically high scales, we eventually encounter a > −2. In this scenario, we divide the
evolution into smaller steps and glue the solutions together in order to obtain an analytic continuation
for the entire scale domain.
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= e(2γE−3/2)a

(
Γ(1 + b)Γ(1− bµ)

Γ(1− b)Γ(1 + bµ)
ubµ +

Λbµ−1

bµ − 1

Γ(2 + a)

Γ(−a)
u+O(u2)

)
. (E.3)

Note that the former term does not depend on the UV regulator Λ, which can be
anticipated since it yields the asymptotic behaviour for bµ < 1 for which the collinear
region does not contribute. In this case, the small-u behaviour is entirely dictated
by the pole of the initial condition at µ0. For bµ → 1, the regulator Λ cancels after
adding the previously suppressed collinear region and the result (E.3) collapses to a
finite constant multiplied with u, reflecting the linear endpoint behaviour.

Finally, we summarize that the endpoint behaviour for u → 0 is determined by the
exponent bµ. When the exponent is smaller or larger than one, the solution becomes
proportional to ubµ or linear, respectively. In QCD-only, the evolution variable a < 0
is negative such that bµ always tends to the linear solution. The same arguments apply
for the soft approximation in the limit u → 1, which matches the asymptotic form
ϕM(u;µ→ ∞) → 6uū found by conformal symmetry.

E.2 Inverse Mellin transform in QCD×QED

For the general analysis in QCD×QED, we now prove how the inverse transformations
generates the logarithmic modifications of lnu for the light meson LCDA in (5.26).
The derivation directly carries over to the soft functions for which we omit the detailed
derivation in the following sections. We separate our discussion into two different
cases with respect to the evolution below and above the critical scale (5.27). The
phenomenologically relevant case is µ < µc whereas µ0 > µc entails only conceptually
interesting corrections. We focus on the former, for which µ0 < µ < µc and the
evolution variable a(µ, µ0) < 0 is strictly negative. For the QED-generalized solution
of the soft region in Mellin space (5.19) together with the initial condition (E.1), we
have

˜̂
ΦM(η;µ) = e2γEa−3ǎ/2 Γ(1− η)Γ(1 + η + a)

Γ(1 + η)Γ(1− η − a)

Λbµ−η

bµ − η

× exp

{
−
∫ µ

µ0

dµ′

µ′
αem(µ

′)Qq1QM

π

(
Hη+a(µ,µ′) +H−η−a(µ,µ′)

)}
. (E.4)

Here, the definition of bµ = b−a contains the QCD×QED evolution variable (5.20). The
evaluation of the inverse transformation of (E.4) becomes more difficult in the present
context due to the non-trivial analytical structure of the exponential containing an
additional integration over harmonic numbers in the second line. For negative integers,
the harmonic numbers acquire simple pole and thus the µ′ integration generates branch
cuts along the real η-axis. We recall that for QCD-only, the contour parameters must
lie in the strip −1 − a < c < min(1, bµ) that divides the non-analytic poles and cuts
into strings extending to the left and right, where Hη+a(µ,µ′) and H−η−a(µ,µ′) contribute
to each region respectively. The asymptotic expansion Hη ∼ ln η for |η| → ∞ justifies
that we can shift the contour to encircle the discontinuities on the right-hand side of
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Re(η) = c in the small-u limit as in QCD. In complete analogy, the left-most pole
or cut for Re(η) > c yields the dominant contribution to the asymptotic expansion
of ΦM(u;µ). As long as bµ < 1, the residue for η = bµ defines the leading term and
thus the LCDA at µ is proportional to ubµ . For bµ = 1 or better b = 12, the structure
of the harmonic numbers becomes relevant. More precisely, the exponential factor
in (E.4) develops a branch point for η → 1 through the simple pole of H−η−a(µ,µ′) =
−1/(1−η−a(µ, µ′)) +. . . The omitted terms correspond to regular terms and poles/cuts
advancing further to the right. We thus expand the µ′ integral according to

−
∫ µ

µ0

dµ′

µ′
αem(µ

′)Qq1QM

π
H−η−a(µ,µ′) =

∫ µ

µ0

dµ′

µ′
αem(µ

′)Qq1QM

π

1

1− η − a(µ, µ′)

+ regular terms and poles/cuts to the right . (E.5)

The domain of µ′ corresponds to the interval [a, 0] for the evolution variable a(µ, µ′),
where a = a(µ, µ0) < 0, and hence the entire branch cut in the left-most term acquires
a finite length from η = 1 to η = 1− a. In general, the exponential of (E.5) generates
cuts along the intervals [1+n, 1−a+n] for non-negative integers n = 0, 1, 2, . . . . Since
the left-most part for η → 1 dominates the asymptotic behaviour, which corresponds
to µ′ → µ, we further expand the integrand denominator in (E.5) to

a(µ, µ′) = −αs(µ)CF + αem(µ)Qq1(Qq2 −QM)

π
ln
µ

µ′ + . . . (E.6)

Note that we also expanded αem(µ
′) → αem(µ) up to logarithmic corrections from the

QED running. Altogether, the integration inside the exponential boils down to

−
∫ µ

µ0

dµ′

µ′
αem(µ

′)Qq1QM

π
H−η−a(µ,µ′) = p(µ) ln

1

1− η

+ regular terms and poles/cuts further to the right, (E.7)

which formally equals to the scale-independent result in the first term but with one-
loop dependence p(µ) = αem(µ)Qq1QM/(αs(µ)CF + αem(µ)Qq1(Qq2 −QM)). Note that
for µ < µc, the exponent p(µ) > 0 is strictly positive. In addition to (E.7), the Laurent
expansion Γ(1 − η) contributes with another singular term in (E.4). The remaining
terms do not affect the endpoint behaviour for u → 1. Hence, we absorb these terms
into a dimensionless constant κ and find for the inverse Mellin transform

Φ̂M(u;µ) = κ

∫
C

dη

2πi
uη
(

1

1− η

)1+p(µ)

+O(u2) . (E.8)

Based on [172], the choice of the contour C that encircles the discontinuity for Re(η) > 1
requires a “careful” decomposition. We divide the contour into a small circle Cϵ around
η = 1 and two straight lines Ccut along the real axis, with a small positive and negative
2The initial condition for b = 1 below µc reflects a stable point of the evolution equation.
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imaginary part. More precisely, we parametrize the circle of radius ϵ by η = 1 + εeiφ

with φ ∈ (2π, 0) and the straight lines by a linear function from 1 + ε to ∞ and vice
versa. For these separate contributions, we obtain

Φ̂Ccut
M (u;µ) = κ

∫ ∞

1+ε

dη

2πi
uη disc

[(
1

1− η

)1+p ]
= κ

u(− lnu)p

Γ(1 + p)Γ(−p)
Γ(−p,−ε lnu) ,

Φ̂Cε
M (u;µ) = κ

u(− lnu)p

Γ(1 + p)Γ(−p)

∞∑
n=0

(−1)n(−ε lnu)n−p

n!(n− p)
. (E.9)

In the above, we defined the discontinuity of a function f as disc(f(η)) = f(η + i0)−
f(η − i0) and Γ(−p,−ε lnu) as the incomplete gamma function

Γ(−p,−ε lnu) = Γ(−p)−
∞∑
n=0

(−1)n(−ε lnu)n−p

n!(n− p)
. (E.10)

Note that the first n < p terms with p(µ) > 0 diverge for ϵ→ 0 due to ϵn−p. However,
these terms cancel in the sum of both results in (E.9) so that we ultimately find

Φ̂M(u;µ) = Φ̂Ccut
M (u;µ) + Φ̂Cε

M (u;µ) +O(u2) =
κ

Γ(1 + p(µ))
u(− lnu)p(µ) +O(u2) .

(E.11)

Finally, this result proves our claim (5.26) for running couplings in QCD×QED.
Lastly, we remark that the above analysis differs for a scale evolution beyond the

critical scale with µ > µ0 > µc. In this case, the evolution variable a(µ, µ0) < 0 turns
negative and thus the left-most branch cut of the harmonic number H−η−a(µ,µ′) in (E.4)
begins at η = 1−a. Hence, depending on the initial condition, the endpoint behaviour
for u → 0 either becomes ubµ or u1−a. For the latter, logarithmic enhancements from
η → 1 may be generated even though they will not play a physical role, since any evolu-
tion at these scale instantaneously produces a behaviour proportional to u1−a(µ0+dµ,µ0)

where 1− a(µ0 + dµ, µ0) < 1. We conclude that only the power-like behaviour is rele-
vant, and we can safely assume b < 1 for the initial function such that bµ < 1− a < 1
and the endpoint behaviour is dictated by the single pole at η = bµ. Hence, above
the critical scale in QED, the LCDA always behaves like ubµ , and eventually the RGE
will reach u−1 at some finite µ≫ µc, where the evolution equation becomes ill-defined
since the convolution with the anomalous dimension (5.5) diverges.

E.3 Soft function for QM2
= 0

In the case of QM2 = 0, the negative supported part of the anomalous dimension (5.66)
decouples so that we consider only positive support for each soft function ΦB,(Q1,0)(ω;µ).
This is in fact dictated by the analytic structure of the position space matrix element,
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E. Asymptotic behaviour of hadronic functions

which again allows to consider t − i0 and ω > 0 as in QCD-only.3 The kernel (5.66)
then collapses to QCD-like expressions, and we find for the RGE in Laplace space(

d

d lnµ
− η

)
Φ̃B,(Q1,0)(η;µ) =

αsCF

π

[
−Hη −H−η − ∂η +

1

2

]
Φ̃B,(Q1,0)(η;µ)

+
αem

π

[
− (Q2

sp + 2QspQM1) (Hη +H−η + ∂η)

+QspQM1(Hη +H−η) +
3

4
Q2

sp +
1

2
Q2

d

]
Φ̃B,(Q1,0)(η;µ) ,

(E.12)

which agrees to (5.87) for QM2 = 0. Therefore, we obtain an equivalent solution to
(5.99), namely

Φ̃B,(Q1,0)(η;µ) = eV+2γEa

(
µ

µ0

)η
Γ(1− η)

Γ(1 + η)

Γ(1 + η + a)

Γ(1− η − a)
F(η;µ, µ0)Φ̃B,(Q1,0)(η + a;µ0) .

(E.13)

Alternatively, we obtain this result by sending Φ̃< → 0 in (5.108). As a crosscheck, we
recover the O(αem) solution (5.125) by expanding (E.13) and the initial condition with
(5.116) to first order in αem upon replacing QM2 → 0.

For the rather simple solution (E.13), we can derive the asymptotic behaviour similar
to the light meson LCDA. However, in this context, we are interested in two different
limites, that are i) ω → 0 and ii) ω → ∞. We restrict ourselves to the analysis of the
exponential model ΦB,(Q1,0)(ω;µ0) = ω/ω2

0e
−ω/ω0 θ(ω) at the initial scale, for which the

inverse transformation of the solution reads

ΦB,(Q1,0)(ω;µ) =
eV+2γEa

ω0

∫ c+i∞

c−i∞

dη

2πi

(
µ0

ω0

)a(
ω

ω0

)η
Γ(1− η)Γ(1 + η + a)

Γ(1 + η)
F(η;µ, µ0) ,

(E.14)

where −1 < a < 0 and −1 − a < c < 1 + a. The function (E.14) acquires the same
form as in (E.4) for the soft region of the light meson LCDA. We therefore apply the
same procedure of the previous section to the two cases above sparing out particular
details.
i) The contour for ω → 0 encloses the pole and branch cuts to the right of Re(η) = c.

For η → 1, the leading contribution comes from Γ(1−η) and F(η;µ, µ0) given in (5.97).
We find

ΦB,(Q1,0)(ω → 0;µ) ∼ ω

ω2
0

(
− ln

ω

ω0

)p(µ)

, (E.15)

3The soft Wilson line proportional to QM2 in the n+-direction enters with a different relative sign
of the i0-prescription in the denominator of diagram (a) in (5.45). Hence, the operator acquires
singularities in the entire complex plane of the position space variable.
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with p(µ) defined in (5.112). Similar to QCD-only, the soft function for QM2 = 0
becomes linear near the origin, but with a logarithmic modification as in the light
LCDA case (5.26). Note that the pole at η = 0 from the all-order solution does not
contribute in this case, so that the results differs to (5.113).
ii) The contour for ω → ∞ encloses the poles and cuts on the left-hand side of

Re(η) = c. In this limit, we obtain

ΦB,(Q1,0)(ω → ∞;µ) ∼ 1

ω0

(
ω

ω0

)−1−a

lnp(µ0)

(
ω

ω0

)
, (E.16)

that matches the asymptotic expansion of the all-order result in (5.114) since the
evolution variable only contains the charge of QM1 .

E.4 Soft function for QMi
≫ Qu,d

To understand the structure of the evolution equation for the soft functions, it is
instructive to consider a specific unphysical limit, in which the electric quark charges
are assumed to be small with respect to the meson charges. For ⊗ = (+,−), this
implies that we can neglect the Q2

sp and QspQd terms in the anomalous dimension so
that the kernel becomes

Γ
(a)−(c)
⊗ (ω, ω′;µ) ≈ αem

π

[(
2QspQM1 ln

µ

ω − i0
+ iπ(Qsp +QM1)QM2

)
δ(ω − ω′)

+QspQM2H−(ω, ω
′)

]
, (E.17)

We further neglect the QCD terms proportional to αs and thus the kernel (E.17)
effectively corresponds to diagrams (a)–(c) of Fig. 5.3 in QED-only. Hence, the ⊖-
distribution of diagram (a) generates negative support for the soft function, but there
is no opposite effect since the ⊕-distribution of diagram (e) does not appear. As a
consequence, the RGE for Φ> decouples (in Laplace space), which is the opposite
effect of the decoupling from Φ< in the case of QM2 = 0. In detail, the evolution
equations are(

d

d lnµ
− η

)
Φ̃>(η;µ) =

αem

π

[
2QspQM1(−∂η −H−η −H−1−η)

+QspQM1(H−η +H−1−η)− iπQM1QM2

]
Φ̃>(η;µ) , (E.18)(

d

d lnµ
− η

)
Φ̃<(η;µ) =

αem

π

[
2QspQM1(−∂η −Hη −H−η)

+QspQM1(Hη +H−η)− iπ(Qsp +QM2)QM1

]
Φ̃<(η;µ)
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+
αem

π
QspQM1Γ(−η)Γ(1 + η)Φ̃>(η;µ) . (E.19)

To solve these equations, we proceed with the methods developed in Sec. 5.2.7 by first
solving the first equation on its own and infer the latter by variation of constants. For
simplicity, we further consider the electromagnetic coupling to be scale independent.
We define the two evolution variables

V QED = −αem

π

[
QspQM1 ln

2 µ

µ0

+ iπQM1QM2 ln
µ

µ0

]
,

aQED = −αem

π
2QspQM1 ln

µ

µ0

, (E.20)

for which we drop the QED label in the following. We find the particular solution as
a limiting case of (5.108). More precisely, we have

Φ̃>(η;µ) = eV
(
µ

µ0

)η [
Γ(−η)Γ(1− η)

Γ(−η − a)Γ(1− η − a)

]1/2
Φ̃>(η + a, µ0) , (E.21)

Φ̃<(η;µ) = eV
(
µ

µ0

)η [
Γ(1− η)Γ(1 + η + a)

Γ(1 + η)Γ(1− η − a)

]1/2{
Φ̃<(η + a, µ0)

+
αemQspQM1

π

Φ̃>(η + a, µ0)

Γ1/2(−η − a)Γ1/2(1 + η + a)

×
∫ µ

µ0

dµ′

µ′ Γ
3/2(−η − a(µ, µ′))Γ3/2(1 + η + a(µ, µ′))eiαemQspQM1

ln(µ′/µ)

}

= eV
(
µ

µ0

)η

e−iπη

[
Γ(−η)Γ(1− η)

Γ(−η − a)Γ(1− η − a)

]1/2
Φ̃>(η + a, µ0)

×
{
1− e−iπa/2

[
Γ(−η − a)Γ(1 + η + a)

Γ(−η)Γ(1 + η)

]1/2}
. (E.22)

The exponent of 1/2 arises through the Harmonic number exponential that can be
calculated exactly for the case of fixed gauge couplings:

αemQspQM1

π

∫ µ

µ0

dµ′

µ′ (Hη+a(µ,µ′) +H−η−a(µ,µ′)) = −2γEa−
1

2
ln

Γ(1− η)Γ(1 + η + a)

Γ(1 + η)Γ(1− η − a)
.

(E.23)

The scale independence of αem further allows to perform the µ′-integral in the third
line of (E.22) explicitly. Rather than in the precise form of the general solution, we are
interested in the asymptotic behaviour near the origin. For this purpose, we assume
the exponential model (6.1) for which Φ̃<(η, µ0) = 0 and

Φ̃>(η + a, µ0) =
1

ω0

Γ(1− η − a)

(
µ0

ω0

)η+a

. (E.24)
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Applying the inverse transformation to (E.21) and (E.22) with (E.24), we have

Φ>(ω;µ) =
eV

ω0

(
µ0

ω0

)a ∫ c+i∞

c−i∞

dη

2πi

(
ω

ω0

)η [
Γ(−η)Γ(1− η)Γ(1− η − a)

Γ(−η − a)

]1/2
,

Φ<(ω;µ) =
eV

ω0

(
µ0

ω0

)a ∫ c+i∞

c−i∞

dη

2πi

(
−ω
ω0

)η

e−iπη

[
Γ(−η)Γ(1− η)Γ(1− η − a)

Γ(−η − a)

]1/2
×
{
1− e−iπa/2

[
Γ(−η − a)Γ(1 + η + a)

Γ(−η)Γ(1 + η)

]1/2}
. (E.25)

For QED-only, we have a > 0 such that the contour must be chosen in the interval
−1−a < η < −a based on the analytic structure of the Gamma functions. In the limit
ω → 0, we deform the contour to enclose the cuts extending to the right of Re(η) = c.
The left-most contributions starts at the branch-point η = −a and determines the
asymptotic expansion near the origin

ΦB(ω;µ) =
eV

ω0

(
µ0

ω0

)a
Γ1/2(a)Γ1/2(1 + a)

Γ(−1/2)
×



(
ω

ω0

)−a[
− ln

ω

ω0

]−3/2

ω > 0

(
−ω
ω0

)−a

eiπa
[
− ln

−ω
ω0

+ iπ

]−3/2

ω < 0

=
eV

ω0

(
µ0

ω0

)a
Γ1/2(a)Γ1/2(1 + a)

Γ(−1/2)

(
ω − i0

ω0

)−a[
− ln

ω − i0

ω0

]−3/2

. (E.26)

In another toy world, we could even change the sign of the quark charges such that
a < 0. For this case, the pole at η = 0 dominates the asymptotic expansion and we
find

ΦB(ω;µ) =
eV

ω0

(
µ0

ω0

)a
Γ1/2(1− a)

Γ1/2(−a)Γ(1/2)

[
− ln

ω − i0

ω0

]−1/2

, (E.27)

which implies a logarithmic vanishing of the soft function for ω → 0.
We remark that both results in (E.26) and (E.27) show that the leading term in an

asymptotic expansion around the origin for the soft function with QM2 ̸= 0 retains the
i0-prescription of the first inverse-logarithmic moments. Moreover, we can directly ob-
serve from (E.25) that the linear term proportional to Γ(1−η) differs for the negatively
supported solution Φ<. Hence, the i0-prescription is broken explicitly at O(ω/ω0) as
expected such that the second inverse moment does not exist in QCD×QED.
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Appendix F

Meijer-G functions

The results of Sec. 5.2 are represented most generally in terms of convolution integrals
over the so-called Meijer-G functions. These functions arise through complex line
integrals of the inverse Laplace transformation in (5.82). To supplement our analysis,
we present some fundamental features of the Meijer-G functions based on [173]. For
integers 0 ≤ m ≤ q and 0 ≤ n ≤ p, we define a Meijer-G function via the complex
contour integral

Gm,n
p,q

(
a

b

∣∣∣∣z) =

∫
C

dη

2πi
zη

∏m
j=1 Γ(bj − η)

∏n
j=1 Γ(1− aj + η)∏q

j=m+1 Γ(1− bj + η)
∏p

j=n+1 Γ(aj − η)
, (F.1)

with arbitrary coefficients a = (a1, . . . , ap) and b = (b1, . . . , bq). In general, there are
three possibilities for the choice of the contour C determined by the analytic properties
of the Gamma functions that appear in the integrand. For our studies, we only regard
one specific type, that is a straight line from c − i∞ to c + i∞ with the real contour
parameter c. The latter is chosen such that the chains of Gamma function poles in the
numerator get separated. Then, the contour integral (F.1) yields a finite result as long
as p + q < 2(n +m) and |arg(z)| < (n +m − (p + q)/2)π. To discuss the asymptotic
behaviour, we consider the two relevant limits z → 0 and z → ∞. In the former, we
can deform the contour C to a line beginning and ending at Re(η) = ∞ enclosing all
poles of Γ(bj − η) in the mathematically negative direction. In the latter, we enclose
the string of poles from Γ(1 − aj + η) in the positive direction with start and end at
Re(η) = −∞. Note that for large integers n,m, p, q, the numerical evaluation of the
complex contour integral in (F.1) generally becomes difficult.

In our calculations, we used two relevant identities∫ ∞

0

dz Gm,n
p,q

(
a

b

∣∣∣∣λz)Gµ,ν
σ,τ

(
c

d

∣∣∣∣ωz)
=

1

λ
Gn+µ,m+ν

q+σ,p+τ

(
−b1, · · · − bm, c,−bm+1, . . . ,−bq
−a1, . . . ,−an,d,−an+1, . . . ,−ap

∣∣∣∣ωλ
)
,
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Gm,n
p,q

(
a

b

∣∣∣∣z) = Gn,m
q,p

(
1− a

1− b

∣∣∣∣1z
)
. (F.2)

We refer to the first one as the closure property under integration over positive valued
arguments. The latter serves as an inversion formula. From the first identity, we can
infer from the Laplace transformation that∫ ∞

0

dz zαe−ωzGm,n
p,q

(
a

b

∣∣∣∣λz) = ω−α−1Gm,n+1
p+1,q

(
−α, a

b

∣∣∣∣λω
)
. (F.3)

The above relations were implicitly used for the numerical evaluation of the first-
order solution (5.128) and (5.129) in Sec. 6.2.7, for which the exponential model was
implemented as the initial condition. One peculiarity is that the Meijer-G functions
depending on their coefficients may acquire a singular behaviour at the point z = 1.
This is in fact already the case in the QCD-only scenario for the function Ga(z) that
is defined in (5.93). Since the singularity for z → 1 appears in a convolution, we have
to prove on a technical level that the integral exists for any regular initial condition so
that the singular term remains integrable. According to [151], we can derive this from
an asymptotic expansion of (5.93) around z = 1 for which we obtain

lim
z→1

G1,1
2,2

(
−a, 1− a

1, 0

∣∣∣∣z) = −sinπa

π

Γ(1 + 2a)

|1− z|1+2a
+O(1) . (F.4)

Note that for realistic cases, we consider −1 < a < 0 such that the singular term be-
comes integrable. We neglect the explicit analysis for the remaining Meijer-G functions
in the main text since it is generally more complicated. However, from the coefficients
that enter these functions, we conclude that the singular terms behave like |1− z|−1−2a

such that we only encounter integrable singularities and hence Φ
(1)
B,⊗ in (5.128) and

(5.129) remains finite at any point.
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