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Abstract

The formation and maintenance of correct patterns of different cell types is essential in developmental
and synthetic biological system. While there are experimentally and theoretically well established models
describing pattern formation with long-range interactions, the theoretical description of pattern formation
with short-range interaction lags behind. For these interaction types, detailed models as well as conceptual
ideas like the lateral inhibition model are available for specific systems. However, more general conceptual
frameworks appear not to be widely developed for or adapted to pattern formation with biological cells.

This thesis aims to contribute to such general conceptual frameworks by studying a minimal model which
is obtained by a threefold discretization. Spatial discretization is achieved by using the biological cells
itself, usually placed on a grid, as basic units. The internal cellular details are aggregated into a small finite
amount of discrete “states”, effectively corresponding to fixed points of a continuous dynamical systems
description. Since changes between such states take a finite amount of time, additionally a discretization
in time can be employed. The natural mathematical model with such a threefold discretization is a so
called cellular automaton (CA). The spatio-temporal dynamics in a CA is described by an update function
called “rule”. CA will be used in different variants throughout this thesis: starting with a basic CA, and then
branching out from this basic version to include additional motives found in biological system in a one by
one fashion - always removing the previous addition before adding the next element as central theme for
a chapter.

As a first variant of this model class, the formation of axial patterns, more specifically the iconic French
Flag, is studied. Using a basic 3 and 4 state CA, evolutionary algorithms, consensus procedures, and
engineering approaches are employed to find dynamical rules which produce said French Flag. For the
3 state space, a single type of rule is found which solves the task by partially rewriting and partially
sorting random initial patterns. These two patterning approaches, rewriting and sorting, can also be used
individually to create axial patterns in 4 state space. They show different properties when characterized
with regard to robustness to noise and asynchrony, kinetics, and scaling, and can be modified to handle
different initial conditions and target axial patterns.

After having identified rules for which form a specific target pattern without a specific initial condition or
external inputs, subsequently rules which allow the pattern to be flexibly programmable through external
inputs are investigated. Such inputs could come from organizer cells or optical stimuli. By mapping the
problem to a network, a limited set of rules which allow for the maximum flexibility of creating any target
pattern upon appropriate external input are found. The ten representative members of this set of rules all
follow an information conservation criterion, which can be shown to be sufficient for maximum flexibility,
but have different kinetics of pattern formation. Extending the problem to several dimensions allows for
robustness against noise, and combining several dynamical rules improves the robustness against the
timing of the external inputs.

CA usually assume a synchronous update, which is also found in some biological systems like in ver-
tebrate somite development. However, synchrony may not always be a given. To study conditions under
which the assumption of synchrony is valid, noise is included in the time point of the update together
with a signaling delay as a buffer against it. With this model it is investigated how active synchronization
algorithms can conserve an effectively synchronous update. Results include that in general with more
information available to them, synchronization algorithms are more successful in conserving synchroniza-
tion, although that relationship is not strictly monotonic. The algorithms are also applicable in several
dimensions and regular as well as irregular interaction topologies, and can deal with quenched and an-
nealed noise. Coupling pattern formation to synchronization shows that dynamical rules which quickly
reach a steady state are more robust to asynchrony. Additionally coupling the synchronization to the pat-
tern formation, an additional class of rules which frequently change the current pattern appear as robust.
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As a next modeling approach, short range interactions are combined with the classical morphogen gra-
dient constructing axial patterns. It is shown that the local interactions can help to smooth boundaries
between the different homogeneous fields of cell types in a noisy environment. Particularly successfully is
the direct addition of the gradient and the short range signaling input, which even in the presence of com-
parably strong noise in the local signaling can still improve the boundary roughness, all while preserving
the general scaling properties of the morphogen gradient pattern formation.

Biological cells are inherently mechanical objects which exert forces on each other. Furthermore, they
grow, divide, and die. To include those aspects, the CA dynamics is coupled to a vertex model which
effectively changes the underlying grid the CA cells sit on. It is shown that even in such a potentially
dynamic and varying environment, “Salt-and-Pepper” patterns can still be formed successfully.

To take the minimal CA models closer to integrating experimental data directly and bridge the gap to
more detailed but also more specific models of pattern formation with local interactions, a general class
of probabilistic CA mimicking simple verbal models is trained to emulate experimentally observed pattern
formation processes in the small intestine epithelium of mammals. Comparison to available experimental
test data shows that CA models have the potential to provide a platform to mathematically represent verbal
biological models and check if the proposed verbal mechanisms match the available experimental data.

Finally, an outlook on how CA models can be generalized with the use of network theory is given and it
is discussed how the recently available large scale “-omics” data-sets can be incorporated in the modeling
process.
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Zusammenfassung

Die Bildung und Erhaltung von korrekten Zelltypmustern ist wesentlich für Systeme in der Entwicklungsbi-
ologie und der synthetischen Biologie. Während es für die Musterbildung mit langreichweitigen Interaktio-
nen sowohl theoretisch als auch experimentell etablierte Modelle gibt, hinkt die theoretische Beschreibung
für Systeme mit kurzreichweitigen Interaktionen hinterher. Für diese Art der Interaktion sind in erster
Linie für spezifische Systeme detaillierte Modelle und konzeptionelle Ideen vorhanden. Allgemeine über-
greifende Konzepte scheinen jedoch bis jetzt nicht entwickelt oder nicht an die Musterbildung mit biologis-
chen System angepasst worden zu sein.

Diese Dissertation zielt darauf ab zu einem derartigen allgemeinen, konzeptionellen Rahmen beizutra-
gen indem, ein minimales Model untersucht wird, das durch eine dreifache Diskretisierung konstruiert wird.
Räumliche Diskretisierung wird dadurch erreicht, dass die biologischen Zellen selbst als grundlegende
Einheiten des Modells, üblicherweise auf einem Gitter verteilt, benutzt werden. Die intrazellulären Details
werden in eine endliche Anzahl von diskreten Zuständen aggregiert. Diese Zustände entsprechen effektiv
den Fixpunkten einer Beschreibung durch nichtlineare, kontinuierliche Systeme. Da die Wechsel zwis-
chen solchen Zellzuständen eine endliche Zeit benötigen, kann zusätzlich eine Diskretisierung in der Zeit
genutzt werden. Das natürliche mathematische Modell, welchem eine derartige dreifache Diskretisierung
inhärent ist, ist der zelluläre Automat (CA). Die raum-zeitliche Dynamik eines CA wird durch eine Aktu-
alisierungsfunktion, die „Regel“ genannt wird, beschrieben. CA werden im Rahmen dieser Thesis in un-
terschiedlichen Variationen benutzt: Ausgehend von einem grundlegenden CA zweigen unterschiedliche
Modellvarianten ab, die zusätzliche Motive beinhalten, die in der Entwicklungsbiologie gefunden werden.
Dabei wird üblicherweise Stück für Stück vorgegangen, indem zuerst das zuvor hinzugefügte Motiv wieder
entfernt wird, bevor das nächste Motiv als zentrales Element eines Kapitels dieser Arbeit hinzugefügt wird.

Als erste Variante dieser Modelklasse wird die Bildung von axialen Mustern, genauer die Bildung der
ikonischen „French Flag“, betrachtet. Unter Verwendung von CA mit 3 und 4 Zuständen werden evolu-
tionäre Algorithmen, Konsensusprozeduren und konstruktive Ansätze benutzt um dynamische Regeln zu
finden, welche diese „French Flag“ produzieren. Im 3-Zustandsraum wurde eine einzige Art von Regel,
die das Problem durch teilweises Überschreiben und teilweises Sortieren des ursprünglichen Musters löst,
gefunden. Die zwei Herangehensweisen – "Überschreiben" und "Sortieren" – können im 4-Zustandsraum
auch jede für sich genutzt werden, um axiale Muster zu erzeugen. Sie haben dabei unterschiedliche Eigen-
schaften im Bezug auf Robustheit gegenüber Rauschen und Asynchronität, Kinetik und Skalierung, und
können modifiziert werden, um mit unterschiedliche Anfangs- oder Zielbedingungen umgehen zu können.

Nach der Indentifikation von Regeln, welche ein spezifisches Zielmuster bilden ohne von einem spez-
ifischen Anfangsmuster auszugehen, wurden im Folgenden nach Regeln gesucht, die eine flexible Pro-
grammierbarkeit des Zielmusters eines Zellfeldes durch externe Eingaben für wenige Zellen des Feldes
erlauben. Derartige Eingaben können von einer „Organizer“ Zelle oder durch externe optische Stimuli
erzeugt werden. Indem das Problem auf ein Netzwerk abgebildet wird, konnte eine beschränkte Menge
von Regeln identifiziert werden, die, gegeben passende externe Eingaben, die maximale Flexibilität der
Erzeugung jedes gewünschten Zielmusters erlauben. Die 10 repräsentativen Mitglieder dieses Regelsets
gehorchen alle einem Informationserhaltungskriterium, von dem gezeigt werden kann, dass es hinreichend
für maximale Flexibilität ist, aber zeigen im Allgemeinen eine unterschiedliche Musterbildungskinetik. Eine
Erweiterung des Problems auf mehrere Dimensionen erlaubt die Erhöhung der Robustheit gegenüber
Rauschen, und die Kombination mehrerer unterschiedlicher dynamischer Regeln verbessert die Robus-
theit bezüglich der zeitlichen Koordinierung der externen Eingaben.

Für CA wird üblicherweise ein synchrones Update angenommen, welches sich auch in biologischen
Systemen wie der Somitogenese in Wirbeltieren findet. Diese Synchronizität mag jedoch nicht in allen
Kontexten voraussetzbar sein. Um zu untersuchen, unter welchen Bedingungen die Annahme der Syn-
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chronizität valide ist, wird ein zeitliches Rauschen zusammen mit einer Verzögerung als Puffer gegen das
Rauschen in das Model integriert. In diesem Rahmen wird untersucht, wie aktive Synchronisationsalgorith-
men ein effektiv synchrones Update erhalten können. Es wird gezeigt, dass Synchronisationsalgorithmen
besser funktionieren je mehr Informationen sie verarbeiten können, auch wenn dieser Zusammenhang
nicht monoton ist. Diese Algorithmen können auch in mehreren Dimensionen und sowohl auf regulären
als auch auf irregulären Gittertopologien angewendet werden, und sie können sowohl mit „quenched“ als
auch mit „annealed“ Rauschen umgehen. Die Kopplung der Musterbildung an die Synchronisation zeigt,
dass dynamische Regeln, welche rasch einen Gleichgewichtszustand erreichen, robust gegenüber Asyn-
chronität sind. Bei einer zusätzlichen Kopplung von Synchronisation an die Musterbildung zeigt sich, dass
dann auch die Klasse der Regeln, welche häufig das aktuelle Muster wechselt, relativ robust gegenüber
Asynchronität ist.

Als weitere Modellvariation werden die kurzreichweitigen Interaktionen mit klassischen Morphogengra-
dienten zur Konstruktion axialer Muster kombiniert. Es wird gezeigt, dass lokale Interaktionen dabei helfen
können glatte Grenzen zwischen homogenen Zelltypfeldern in der Präsenz von Rauschen zu erzeu-
gen. Insbesondere ist die direkte Summe von kurz- und langreichweitigen Signalen erfolgreich, welche
sogar im Falle von relativ starkem Rauschen des lokalen im Vergleich zum globalen Signals die Gren-
zrauigkeit verbessert, während die allgemeinen Skalierungseigenschaften des Morphogengradienten er-
halten bleiben.

Biologische Zellen sind inhärent mechanische Objekte, die Kräfte auf einander ausüben. Außerdem
wachsen sie, teilen sich und sterben. Um diese Aspekte in ein Model zu integrieren, wird die CA Dynamik
in ein Vertexmodel integriert, welches das dem CA zugrundliegende Gitter, auf dem die Zellen platziert
sind, modifiziert. Es wird gezeigt, dass selbst in einer solch potentiell dynamischen und wechselhaften
Umgebung „Salt and Pepper“ Muster erfolgreich erzeugt werden können.

Um die minimalen Modelle näher an die Integration von experimentellen Daten heranbringen zu können
und ein Brücke zu detaillierten aber spezifischeren Musterbildungsmodellen mit lokalen Wechselwirkun-
gen zu schlagen, wird eine allgemeine Klasse von probabilistischen CA, welche einfache verbale Modelle
eines biologischen Prozesses abbildet, trainiert, einen beobachteten Musterbildungsprozess im Dünndarm
von Säugetieren nachzubilden. Ein Vergleich mit experimentellen Daten zeigt, dass CA Modelle das Po-
tential haben eine Plattform zu bieten, um verbale biologische Modelle, welche aus experimentellen Daten
erzeugt werden, mathematisch abzubilden und zu überprüfen, ob die verbal vorgeschlagenen Mechanis-
men zu den verfügbaren experimentellen Daten passen.

Schlussendlich wird ein Ausblick darauf gegeben, wie CA Modelle mithilfe von Netzwerktheorie verall-
gemeinert werden können und es wird diskutiert wie die seit kurzem vorhandenen „-omics“ Datensätze in
die Modellbildungsprozesse eingebunden werden können.
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1 Introduction

One of the most intriguing processes in nature is the development of organisms from a single cell, the
fertilized egg, to complex, multicellular beings, consisting of 1013 cells in the case of humans [1]. This
process is studied in developmental biology [2, 3] and involves, amongst other processes, the specification
of cell types at correct positions relative to each other. While a correct formation of cell type patterns
leads to functioning organisms, failures in the pattern formation process can lead to malformations or
death. As an example, perturbations in the Notch signaling pathway, one of the major molecular means
of communication between cells, can lead to an incorrect formation of arteries, wrong spacing of sensory
organs, or malformation of pigmentation stripes [4]. Thus, the study of how patterns form is central to
understanding successful and failed development.

The pattern formation process itself is characterized by a self organization of the cells into these pat-
terns, sometimes augmented by external signals. It involves changes of cell fate, cell division, death
and migration steered by mechanical, chemical and electrical interaction between cells. They are studied
experimentally using a small set of so-called “model organisms”. These exemplary species are often con-
venient to work with experimentally [5, 6, 7], have an interesting phylogenetic position [5, 7], and, finally,
are simply investigated by many [6, 8]. Examples include the worm Caenorhabditis elegans, the fruitfly
Drosophila melanogster, the zebrafish Danio rerio, the African clawed frog Xenopus laevis, the mouse Mus
musculus, and a few hand full of other species. From a phylogenetic coverage perspective this leads to the
situation where a very few spots in the phylogenetic tree out of the 1.2 million known species and predicted
8.7 million eukaryotic species [9] are covered, as well as “local perturbations” around them. Although it
might thus seem difficult to form general statements about pattern formation processes in developmental
biology by studying only a small number of selected examples, it is assumed that only a comparably small
number of different signaling pathways exist, which are conserved across many species [10], and thus the
found principles can be hoped to be more widely applicable. Additionally, different species are remarkably
similar in early development, exemplified by the close resemblance of the embryos of mammals to each
other [11].

What are the pattern formation processes found in developmental biology? An example in a model
species is the specification of sensory organ precursors on the drosophila thorax, which involves a prepat-
tern, which gets further refined by local cell-cell interactions [12]. Another example is the segmentation in
vertebrae, which usually involves locally coupled oscillators in cells whose phases get slowed and arrested
by moving wavefront converting the temporal oscillations into a spatial pattern [13]. Yet, despite the (par-
tially) available knowledge about some specific examples, “How do cells know where they are” is a simple
question without a simple answer [14].

Understanding why a developmental mechanism works a certain way and not another, not only requires
a detailed molecular knowledge about the specific developmental example, but also a complete picture of
what can be achieved with the same or similar molecular ingredients in other contexts. Synthetic biology
provides another approach to investigate pattern formation by recombining or recreating the molecular
ingredients. In contrast to developmental biology, where usually the focus is more on knocking out com-
ponents of a system in order to determine their necessity, synthetic approaches determine the sufficiency
of components by a bottom-up approach [15]. Beyond sufficiency tests, creating intelligent, soft materials
consisting of synthetic cells which are able to be programmed to form desired spatio-temporal patterns
with the aim of creating new technologies is a goal major goal in synthetic biology [16].

From a theoretical perspective, there has been a long standing interest in extracting general patterning
principles from experimental observations. A concept that received ample attention was that of the mor-
phogen [17]. Coined as term by Turing, morphogens are chemical substances diffusing through a tissue
and performing chemical reactions [18]. In Turing’s work, two of these morphogens, a long range inhibitor
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and a short range activator, act together to form stationary pattern of varying concentration of with finite
wavelengths. Wolpert introduced in his solution to his famous French Flag problem of forming an axial
pattern in the form of the eponymous Flag a spatial dependence of the morphogen concentration, usually
called morphogen gradient, that is read out by the cells to instruct them about their position [19, 20]. Al-
though in his seminal 1969 paper Lewis Wolpert complained that "A feature of developmental processes
which is not often discussed is the extent to which there are, or will emerge, general or universal prin-
ciples which are applicable to development in the same way that there appears to be universal rules for
genetics, or, of more relevance, for the transcription and translation of genetic material at the molecular
level" [20], the time has changed since "[p]attern formation [was] a rather neglected area of developmental
biology" [20]. Both above proposed mechanisms of forming a pattern have since found solid experimental
underpinning [21, 22, 23, 24, 25, 26].

Apart from the long ranging morphogens, cells can also communicate with signals of shorter range.
The probably most well known example for this type of communication is through the interaction of the
transmembrane receptor Notch and its counterpart ligands Delta and Jag, whose binding to the Notch
receptor leads to a cleavage of the intracellular domain of Notch which subsequently modulates the ex-
pression of target genes [27]. Depending on the system and target genes, this may lead to a inhibition
or induction [28], or even synchronized oscillations [29]. Due to its transmembrane nature, Delta-Notch or
Jag-Notch signaling relies on direct cell-cell contact and is thus strictly local. With synthetic approaches,
Notch can also be modified to target different genes and bind with different ligands, even diffusible ones
[30, 31, 32]. While being the probably most well known mean of short range communication between
cells, also Eph/Ephrin [33] as well as membrane tethered Wingless [34] in the class of membrane bound
molecules, or Gap Junctions [35], small channels between the membranes of adjacent cells which allow
the direct passage of molecules, have been studied. While there have been specific, mostly detailed mod-
els developed for the different means of local communication, a general study of pattern formation with
local interactions in a unified framework seems to be missing. The benefit of such a general study could
be the discovery of general patterning strategies as well as limits of the described patterning processes.
For synthetic systems, these could be used as design instructions and bounds.

In order to conduct such a general study, using a simple coarse grained model has the advantage of
potentially not requiring detailed prior information about the properties of the individual model components
at the expense of relying on prior intuition about the cellular phenomenon [36]. Simple models have been
shown to be able to reproduce complex dynamics and showing independence of many detailed model
parameters [37]. Furthermore, since if a phenomenon of interest is recapitulated in a quantitative model,
this indicates that all necessary players and interactions may have been identified, or, in the case of a
negative results, that the phenomenon is not understood at the desired level yet [36]. Thus, the model
class of top down, agent based models can be seen as a way to formalize and generate hypothesis
about the understand such processes [38]. To keep it as simple as possible, the modelling framework
chosen throughout this thesis are cellular automata (CA). Developed by Ulam, von Neumann, Conway
and Wolfram [39, 40, 41, 42, 43, 44], they naturally encompass local interactions in a discretized space
with a discrete set of states and a discrete time dynamics, with the latter two assumptions being motivated
by the usual mapping of many molecular states to few cell fates [45] between which transitions than usually
happen on larger time scales. In addition to a basic version of this model, variants which systematically
include other pattern formation motives like organizer cells, long range signaling through morphogens,
mechanical interactions, cell movement, division and death will be investigated to study the consequences
of the combination of different motives.

This thesis is organized as follows: After an introduction to the molecular foundations of local, short
range interactions in cellularized systems (chapter 2), CA are introduced as model systems with a dis-
cussion of the thereby made modelling assumptions (chapter 3). As a first goal, CA rules which form a
specific pattern are investigated (chapter 4), followed by introducing organizer cells and searching for CA
rules which are able to form any pattern upon appropriate organizer input (chapter 5). Then the effect
of (a)synchrony is studied chapter 6. The effects local interactions can have in smoothening boundaries
created by a global gradient are the focus of a equilibrium and a non-equilibrium model in chapter 7. CA
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are combined with vertex models to include mechanical interactions, cell migration, division and death in
chapter 8. How CA models can be used to approximate experimental data is explored with a probabilistic
CA model for the case of small intestine tissue homeostasis in chapter 9. Finally, the found results are
summarized and future avenues of research discussed (chapter 10).
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2 How Do Cells Interact Locally? - Molecular
Components of Short Range Interactions

2.1 Local Interactions

While for the manner of exchanging signals between individual cells there would in principle be a myriad of
different possible signal carriers and ways of processing these signal carriers to influence gene expression
levels, only a small number of conserved signaling pathways are found in nature [10]. For short range
interactions, the probably most commonly discussed pathway is the Notch signaling pathway which is thus
the main focus of this section. Other means of exchanging signals between close by cells have been
experimentally studied and will be summarized briefly as well. The concept of local interaction on spatially
discrete systems can also be found in purely synthetic, non cellularized systems. For a brief description
of such a system see appendix A.1. Another synthetic system based on DNA nanorobotic arms [46] has
been proposed by Simmel and coworkers [47, 48].

2.1.1 Notch Signaling Pathway

The Notch signaling pathway, usually assessed to be among the major developmental signaling pathways,
is highly conserved among metazoans [58, 59, 60]. For a recent general reviews see [27] and [60].

Notch is a transmembrane protein, comprised of an extracellular part, a transmembrane part and an
intracellular domain (NICD) (fig. 2.1 (a, b)). Briefly, the unidirectional signaling is initiated by a ligand
binding to the extracellular domain of Notch, allowing a cleavage of NICD from the transmembrane part.
The NICD translocates into the nucleus and activates transcription of target genes (fig. 2.1 (a, b)).

Canonical ligands of the usual variants Notch1-4 are Delta (Dll1,3,4)/Serate (fig. 2.1 (a)) and Jagged
(Jag1,2), which are all transmembrane proteins [53]. Thus, direct cell-cell contacts are necessary to intro-
duce signaling. Upon binding, the mechanical stretch of Notch makes its extracellular domain susceptible
to cleavage through the ADAM1-metalloproteinase, allowing a subsequent cleavage of the NICD through
a γ-secretase [4] (fig. 2.1 (c)). The NICD translocates into the nucleus, where it acts as transcription factor
which modulates downstream targets by assembling a transcription activation complex together with the
CSL2 protein and co-activators like Mam3, SKIP4, and HATs5 [4, 27] (fig. 2.1 (c)). Since no modification
of NICD occurs during its translocation to the nucleus, the activation strength only depends on the nu-
clear concentration of NICD [60]. Activated target genes may include Notch itself, as well as Jag and
Hes, which in turn represses itself, Delta and differentiation factors [27, 52, 58] (fig. 2.1 (c)). After expres-
sion, Notch may be glycolized by Fringe (increasing (decreasing) the sensitivity for Delta (Jagged) ligands)
and can subsequently be cleaved by Furin-like convertase into intracellular and extracellular domains and
transported to the plasma membrane [27, 60].

Delta from the same cell may also inhibit the Notch receptor by binding without introducing the necessary
cleavages for signaling (“cis inhibition”) [53] (fig. 2.1 (c)). In contrast to the usual trans activation with a
ligand from a different, the response to cis inhibition is sharp and not graded [61].

Notch signaling strength depends on the contact area between the sender and receiver cell, with a larger
contact area leading to a larger signal strength [4, 28, 62] (fig. 2.1 (d)). Since the signaling involves direct

1a disintegrin and metalloproteinase
2CFB1-Suppresor of Hairless-LAG1
3Mastermind protein
4Ski interacting protein
5histone acetyltransferases
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Figure 2.1 Delta Notch Signaling. (previous page) (a) Complex of NOTCH1 (EGF11-13) bound to DELTA-LIKE
4 (N-EGF2) [49, 50], created with VMD [51] (VMD was developed by the Theoretical and Computational Bio-
physics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-
Champaign.). (b) Illustration of the principle idea of Notch signaling: The extracellular part of Notch binds to a ligand
attached to a neighboring cell, initiating a cleavage of the Notch intracellular domain (NICD). The NICD translo-
cates onto its target on the DNA and enables transcription of the downstream target genes. (c) A more detailed
view, adapted from [27] and [52]: The possible canonical ligands Delta Dll1,3,4 and Jaged Jag1,2 bind to the Notch
(Notch1-4) receptor [53], which, through mechanical pulling, exposes the extracellular part to cleavage through the
ADAM-metalloproteinase followed by a subsequent cleavage of the NICD through a γ-secretase [4]. The NICD
translocates into the nucleus where it assembles a transcription activation complex together with the CSL protein
and co-activators like Mam, SKIP, and HATs [54], which modulates the expression of target genes. This target genes
may include the Notch receptor Jag/Ser, Notch itself, and Hes, which in turn can inhibit Delta expression, differenti-
ation factors and its own expression [27, 52]. Glycolization of Notch trough Fringe can modulate the Notch receptor
to increase (decrease) its affinity to Delta (Jagged) [27]. Expressed Delta ligands of the same cell can inhibit Notch
receptors (cis-inhibition), preventing binding of Delta from other cells [55]. (d) Notch signaling strength depends on
the contact area between cells. The signaling can potentially not only reach directly neighboring cells, but via filopo-
dia also cells further away [4, 56] (e) For initially similar cells, concentration fluctuations lead to a stable expression
(repression) of Delta (Notch) in one and Notch (Delta) in the other cell [57]. (f) This leads to “Salt-and-Pepper” like
patterns of cells with high/low Notch (low/high Delta) expression [28]. (g) Conversely, the Jag concentration dynam-
ics has a fixed point for large Jag concentration in both neighboring cells [57], leading to a lateral induction (h) of Jag
concentration.

contact between cells, a naive expectation would be a pattern wavelength of at most 2 cells when the
interaction range is the length-scale determining the pattern range [28]. Yet, even in this case it is possible
to achieve large wavelength signaling by using filopodia, i.e., protrusion of the cell which can reach cells
further away [56] (fig. 2.1 (d)). As shown by Yaron et al. [63], juxtracine signaling, and thus Notch signaling,
is inherently noisy regardless of receptor density or cell-cell contact area, and for proper readout temporal
integration of signal is necessary.

The pattern which is formed depends on the expressed ligand [27, 28]. A detailed modelling of the
dynamics of the Notch pathway is usually achieved using the framework of differential equations, e.g., in
[64]. Starting with a 2 cell model, an expression of Jag upon NICD activation has stable fixed points for
no Jag expression in both cells, or a high Jagged expression in both cells [27, 57]. If one of the cells has
a nonzero Jag concentration, expression of Jag is induced in the other cell (“lateral induction”). If Hes is
expressed upon NICD activation, this leads in turn to a repression of Delta expression in the cell, leading
to a low expression of Delta together with a large expression of Notch in one of the cells and a large
expression of Delta and low expression of Notch in the other (“lateral inhibition”) [27, 57] (fig. 2.1 (e, f)).
On a larger scale, this causes a so-called “Salt-and-Pepper” expression of Notch and Delta. Depending
on the exact time scales of the expression dynamics, anti-synchronized Delta-Hes oscillations may appear
during neurogenesis, leading to a dynamic “Salt-and-Pepper” pattern [65]. Hes oscillations, coupled and
synchronized between cells through Delta Notch interactions, are also the basis of the clock and wavefront
mechanism of vertebrate somitogenesis [13].

The Notch signaling pathway is also able to discriminate between different Delta ligands by triggering
either pulsatile (Dll1) or sustained (Dll4) activation dynamics, which in turn activates either Hes1 or Hey1/L
genes, respectively [66, 67].

The Notch signaling pathway can be modified synthetically to change its function. Through genome
engineering, an optogenetic allele of Delta can be integrated in the genome of Drosophila melanogaster,
which can inhibit endogenous Delta activity upon activation [68]. By exchanging the extracellular and in-
tracellular domain of Notch, i.e., the recognition domain of the ligand and the effector domain affecting the
transcriptional output, the so-called “synNotch” pathway is able to affect differentiation, spatial patterning
and boolean decissions in many mammalian cell types [30]. Using this approach, the possibility of affect-
ing cell-cell adhesion and thus changing the mechanical properties of cells has been demonstrated [31].
The extracellular domain of the Notch receptor can further be modified to detect arbitrary diffusible, syn-
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thetic morphogens [32]. Different synNotch pathways can be engineered to not share common signaling
intermediates and are thus functionally orthogonal to each other [30].

2.1.2 Eph/Ephrin Singaling

Ephrins and their receptors Ephs are families of membrane bound molecules similar to Notch and its
ligands [2]. They each divide into two classes, A and B, where binding between receptors and ligands of
the same class but not the opposite class is possible6[2]. In contrast to Notch, they are not only capable of
forward signaling7, but also reverse signaling8 and bidirectional signaling [33]. Similar to Notch signaling,
signals may also be exchanged between non nearest neighbor cells via protrusions [69], but also exchange
of signals at a distance via exosomes is possible [70].

Eph/Ephrin signaling influences the mechanical properties of cells with their main signaling target being
the actin cytoskeleton [2]. Their sole interaction can mediate cell-cell adhesion, and the effects of their sig-
naling can induce cell-substrate adhesion, cell migration and axon extension [71]. However, the signaling
may also induce repulsive effects. The effect of a particular Eph/Ephrin interaction is not straightforward,
but depends on the cell types, the number of receptors and their clustering, the total intensity of the Eph
signals, and crosstalk with other pathways [2, 71]. Eph/Ephrin interactions in neural cells have been found
to guide cell migration over large distances and establish left-right asymmetries, as well as playing a role in
tissue separation and boundary formation processes [33]. Eph/Ephrin signaling can also influence cell dif-
ferentiation, e.g., in the small intestine epithelium it regulates stem cell renewal by controlling their position
and thus exposure to proliferation factors [71, 72].

2.1.3 Gap Junctions

Gap junctions are small channels in the cell membranes of animals that connect two adjacent cells. They
consist of 6 connexin molecules forming a half channel called connexon, which adheres to a connexon
of an adjacent cell forming a gap junction bridging an approximately 2-3nm gap between the two cells
[35, 73]. Connexons are able to transport ions, small molecules, hormones or messenger molecules
like cAMP through their approximately 1.5nm channels, allowing for local signal relay between cells [73].
Signaling through gap junctions can be regulated rapidly by adjusting the membrane potential across the
channel, as well as their probability of opening [35]. A slow regulation is possibly via changing connexin
synthesis, assembly, modification, or degradation rates [35].

In the context of electrically excitable cells, gap junctions have been discovered as a possibility to allow
for electrical transmission between cells, permitting, amongst others, the ability to synchronize cells re-
garding electrical and mechanical output [35]. Further, by sharing signaling molecules across cells, spatial
gradients can be buffered locally. As an example from a developmental application, it has been shown that
gap junctions are essential for correct color pattern formation in zebrafish, although the exact mechanism
is unclear [74].

Channels and pumps in cell membranes can more generally be used to exchange ions with the envi-
ronment, most famously used by neurons, but also non-neural tissue is capable of using bioelectricity and
gap junctions for computational purposes, even on the tissue level [75].

2.1.4 Tethered Wingless

Wingless (Wnt) is a diffusible morphogen and ligand of the Wnt pathway, a key pathway in embryonic
development, e.g., eponymously during development of the wing in Drosophila [2]. Through genome
engineering Wnt was expressed in a membrane tethered form, which surprisingly produced, apart from a
temporal delay, a similar pattern than diffusing Wnt [34].

6Exception to this rule is EphA4 binding both A and B ligands [2]
7Signal is transduced in cell with receptor
8Signal is transduced in cell with ligand
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2.1.5 Synthetic Systems: Signaling Between Artificial Cells

Attempting to bottom up construct artificial tissue made of cells proposes unique challenges. To separate
the inner chemical milieu of the cells from the external environment, a form of compartmentalization is
needed [76]. The permeability of said compartments needs to be chosen carefully to allow external supply
with chemical energy to allow the non equilibrium operation of the cells as well as passing of signaling
molecules9 [16]. Different approaches have been proposed based on phospholipid membranes [16], DNA
[77], integrated proteins [78], peptides [79] and proteins [80], as well as polymeres [81], all with different
mechanical and chemical properties. To allow the passage of signaling molecules, membrane pores like
α hemolysin or transmembrane receptors can be integrated and facilitate information exchange with the
environment [16]. The “cell type” of these closed compartments is then determined by the concentration of
certain molecules. For open compartments, the “cell type” can be realized by immobilization or selective
binding of reaction components [16].

The exchange of signaling molecules through membranes is dependent on the membrane and signaling
molecule composition. Smaller, apolar molecules like 3OC6-HSL might pass directly through the mem-
brane, larger, charged molecules like arabinose might need membrane pores [26]. Another possibility is
the use of membrane free compartments which allow the direct exchange of proteins [82].

As an example, Dupin et al. have shown that in emulsion-based artificial cellular compartments with
synthetic in vitro gene circuits artificial signalling and differentiation processes can be realized [26].

2.1.6 Intermediate Summary

To summarize so far: There are various options for exchanging signals locally. They can be membrane
bound, diffusion or bio-elelectricity based. Depending on the concrete choice of signaling option, the
communication might be an one or two way street. There may be crosstalk between different means of
communication. The signaling can for example affect gene expression and cellular mechanics. The sig-
naling pathways can be modified synthetically, or the whole “cellular” system can be created synthetically
by constructing some form of computational circuits which are compartmentalized and stand in contact to
each other by some mean of exchanging signals.

2.2 Other Developmental Motives Interacting With Local Signaling

While local, short range interactions between cells are an important factor in development and homeostasis
of tissues, other developmental motives may act at the same time and thus the combined influence of short
range interactions with said motives can open up completely new possibilities and challenges for pattern
formation. In the following section, some of these motives are described and their interplay with patterning
through local signaling discussed.

2.2.1 Organizer cells

Organizer cells are cells that do not receive or act on any signals they receive from other cells, i.e., are au-
tonomous, but signal themselves to their surroundings. The most famous example of this is the Speemann-
Mangold organizer [2, 83], a group of cells in amphibians that determines the fate of the cells around them
show by grafting experiments. Another type of cell that acts as organizer cells are the anchor cells in C.
elegans Vulva development steering the fate specification of the six vulva precourser cells in a row [28, 84].
Also other types of signaling centers are known in developmental biology like the Nieuwkoop center [2].
From a synthetic perspective, signaling centers could be engineered using optogenetic manipulation, e.g.,
of Delta-Notch signaling [68]. Having control over the signals cells send to their neighbors could have the

9Continuous production of signaling molecules requires energy and nutrient supply, but may either be emulated by a passive,
large reservoir with low permeability or active production in cells [16]
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advantage of inducing changes in patterns at cellular resolution while only addressing a single or a small
number of cells with external signals.

2.2.2 Morphogen Gradients

Morphogen gradients, as described in chapter 1, are a solution to the problem of axial pattern formation by
using varying concentrations of diffusible molecules read out by cells to determine the type of a cell. They
can potentially interplay with short range interactions as shown in Drosphila development: In the early
development, when the embryo is not yet cellularized, spatial pooling by diffusion of downstream effectors
can increase the precision of spatial localization [14, 85]; In the wing imaginal disc, communication via the
Fat signaling pathway generates precise positioning of a boundary in a sharp Wingless gradient [14, 86].
During the specification of sensory organ precursor cells in the bristle formation, local interactions act
as a refinement of a gradient prepattern [12]. In the chick embryo during primitive streak formation, a
combination of local and global signaling has recently been shown to be a good explanation of the available
data [87].

In synthetic systems, SynNotch [30] is an example of an engineered signaling toolkit that can both
encompass direct contact interactions [31] as well as interactions with diffusible morphogens [32], allowing
in principle for a combination of both signals.

For a potential coupling of different signals into a gene expression output different possibilities exist
[88, 89]. If, for simplification, the input function between activator concentration and promoter activity is
approximated by a logic approximation10, and both input signals (activators) are required to bind to the
promotor for high expression, this can be modeled by an AND gate [89]

f = AΘ (c1 −K1) Θ (c2 −K2) . (2.1)

If binding of either is sufficient, this corresponds to an OR gate [89]

f = A [Θ (c1 −K1) + Θ (c2 −K2)−Θ (c1 −K1) Θ (c2 −K2)] . (2.2)

If the inputs are additive, also a SUM representation [89, 90] may be chosen

f = A1c1 + A2c2. (2.3)

2.2.3 Synchronization

Synchronization of chemical oscillations is an actively studied motive in developmental biology, see e.g.,
[13, 91]. The basis of chemical oscillations is usually a negative feedback with delay [89]. More complex
motives are known, for example the Repressilator which involves an additional step [89, 92], or combina-
tions of negative and positive feedback with the possible inclusion of a bi-stable behaviour for increased
robustness [89].

When coupled, oscillators can synchronize their oscillation. Coupling between the oscillators can for
example occour by sharing a common element in their feedback loops [93]. An example of coupled oscil-
lations in developmental systems is the zebrafish segementation clock [13]: The expression of the Hes/Her
gene experiences a negative feedback with delay, leading to an oscillation of the expression level; addi-
tionally, the expression is influenced by the NICD, while the Hes/Her protein can repress Delta expression;
this allows for an influence of the Hes/Her gene expression of one cell on the Hes/Her gene expression of
a neighboring cell via Delta/Notch interactions through direct cell-cell contacts.

Oscillations have also been shown in synthetic systems, e.g., of artificial oscillators in droplets [94],
and synchronization has been studied with cell-free genetic oscillators in a spatially distributed system of
on-chip DNA compartments via diffusive molecules [95].

10For an activator concentration c, the rate of production f of a target protein is the given by a step function f = AΘ (c − K)
instead the usual model of a Hill function f = A cn

cn+Kn .
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2.2.4 Cellular Mechanics, Cell Growth, Division and Death

From a physicists perspective, a simplified description of a cell might be of a soft sphere filled with a fluid.
As such, it has a hydrostatic pressure associated with it, as well as pressure forces acting on it from the
contact with other cells or external fluid. The membrane of the cell may stick to other cells, e.g., through
the cadherine glykoproteins at the surfaces. The cell also has an internal mechanical structure consisting
of a network of proteins linked together, the cytoskeleton. Cells can grow, regulated by the respective rates
of biosynthesis of molecules relative to the degradation rates. Cell division, also a regulated process, can
increase the number of cells in a tissue, as well as cell death, which in case of apoptosis is again highly
regulated, can decrease the number of cells in a tissue.

All these motives can have an impact on patterning by local interaction. In the case of cell division and
death, simply the existence or non existence of cells might influence the resulting pattern. The size of the
cell can have an impact on the strength of the short range signals exchanged between cells [4, 28, 62].
Cell movement within the tissue might change the topology of the network of local interactions. Cadherine
proteins mediating mechanical adhesion might also be involved in signal transmission [96, 97].

The other way round, the local interactions might also have an influence on the discussed motives. Notch
signaling can influence tissue growth [98]. Eph/Ephrin can modify the mechanical properties of cells by
targeting the actin cytoskeleton [2] as influence cell adhesion and migration [71] (see also section 2.1.2).
The synNotch signaling platform can be programmed to influence cell adhesion [31].

2.2.5 Outlook on the Following Chapters

In the following chapter 3, a computational model for patterning with local interactions is presented. Then,
in chapter 4, the simplest version of this model is used to investigate how pattern formation due to local
interactions can lead to global patterns. After that, the model is supplemented one by one with the addi-
tional motives discussed in this section and the sole interplay of each of motive with local interactions is
investigated - organizer cells (chapter 5), synchronization (chapter 6), morphogen gradients (chapter 7),
and cellular mechanics, cell growth, division, and death (chapter 8).
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3 How to Model Local Interactions? - Cellular
Automata

In the previous chapter, the biological basis of pattern formation by local interactions have been presented.
In this chapter, the main modelling tool used in this thesis to investigate these pattern formation processes
is introduced: cellular automata (CA)1. While very simple in their structure, in their native formulation
CA already rely only on local interactions to form patterns and are at the same time able to produce
complex spatio-temporal dynamics, rendering it a great candidate for a model. The first section of the
chapter discusses the possibly simplest and most famous version of CA, so called elementary CA (ECA).
This framework gets generalized in the next section, followed by a discussion of possible classification
quantities and examples of modeling biological and artificial systems with CA. In the final section, light is
shed on the assumptions behind CA as modelling tool, as well as a discussion of their advantages and
disadvantages.

3.1 Elementary Cellular Automata

CA are a general modeling tool developed by Ulam, von Neumann, Conway and Wolfram [39, 40, 41,
42, 43, 44]. For didactic purposes, first the simplest form of CA, so called elementary CA (ECA), are
introduced. The model is then generalized and central definitions and results from cellular automata theory
is summarized.

A elementary cellular automaton is a grid of cells holding a single value xt
i ∈ {0, 1} each, where i ∈

{0, ..., L− 1} specifies the position along the grid with size L and t specifying the time step (fig. 3.1 (a)).
The values of the cells in the bulk of the grid are propagated in time according to a dynamical function, the
rule,

xt+1
i = f(xt

i−1, xt
i, xt

i+1). (3.1)

The rule is a input-output mapping specifying the next value of cell i given the current values of cell i as
well as the current values of cell i − 1 and i + 1, the nearest neighbors. All cells of the grid are updated
simultaneously according to the rule. The resulting dynamics over several steps in time is usually depicted
by drawing the values of the grid for each time step underneath the previous one (fig. 3.1 (b)). Since this
graphical representation is visually reminiscent of the so called kymographs used in other fields to depict
space and time dependent variables, see, e.g., [99], this terminology will be used onward.

To be able to talk about rules in an efficient manner, they are enumerated by first assigning an order to
the inputs of the rule by interpreting them as three digit binary numbers and second arrange the outputs
into a single number by bringing them into a sequence according to their descending input number. This
single output number is yet again interpreted as binary number unambiguously specifying the rule (cp.
[42]). Converting to a decimal number yields the usually used identifier for the rule (fig. 3.1 (c)).

It is possible to reformulate each ECA rule in an algebraic or boolean [100] form, e.g., rule 165 can be
rewritten as xt+1

i = ¬
(
xt

i−1 ⊕ xt
i+1
)

or as xt+1
i =

(
1 + xt

i−1 + xt
i+1
)

mod 2 [101].
As infinite systems cannot be simulated practically, boundary conditions have to be chosen to fully spec-

ify the simulation. The usual types of choices are either fixed or periodic boundary conditions (fig. 3.1 (d)).
Fixed boundary conditions can be used when they are known for the system to be modeled or when the
influence of a certain choice of boundary values on the dynamics is of interest. Periodic boundary condi-
tions have a use-case if the problem at hand is cyclic, e.g., in tube like cellular structures, which appear in

1“CA” will be used as an abbreviation both for the singular and plural form throughout the thesis
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Figure 3.1 Elementary Cellular Automata. (a). A cellular automaton consists of a grid of cells holding a variable
each which can take only the values 0 (depicted by white) or 1 (black). The system is propagated in time by a
so called rule, a function which specifies which value a cell takes in the next time step given the value of the cell
and its immediate two neighbors. All cells are updated simultaneously according to the same rule. (b) Simulation
of rule 165 from random and seed initial condition, presented in a space-time graph, a so called kymograph. (c)
Rules are enumerated by ordering their outputs according to the magnitude of the inputs in binary (e.g., the input
010=̂0102 = 210 contributes to third entry from behind in the binary rule string), and then interpreting this number
as a binary and converting it to decimal, here 101001012 = 16510. (d) Illustration of periodic and fixed boundary
conditions for rule 135 and as geometrical scetch. While in the periodic boundary conditions the behaviour introduced
by the seed is not influenced by interactions “across” the boundary, the fixed boundary influences the kymograph.
(e) To start the dynamics, initial conditions have to be chosen. Here, the examples “seed” (homogeneous with a
single differing site) and random initial condition are exemplified.

developmental system in the notochord for example [102], or when being interested in the “bulk” behaviour,
with the hope that system is large enough that influences “across” the “boundary” do not influence the bulk
behaviour on the relevant timescales. The latter is illustrated in fig. 3.1 (d), where the left kymograph with
periodic boundary conditions could also be achieved by simulating a larger system with the same initial
condition (homogeneous white with a single black in the middle) with fixed boundaries that are a distance
larger than the spatial extension of the shown system from the current boundaries of the system away.

To start the dynamics an initial value for each cell needs to be specified. Typical initial conditions are the
homogeneous initial condition (each cell has the same value), the “seed” initial condition (homogeneous
except for one differing cell), or the random initial condition where usually among all possible 2L initial
conditions a sample is drawn with equal probability (fig. 3.1 (e)).

Exemplary kymographs for all 256 ECA rules for both seed and random initial conditions and periodic as
well as fixed boundary conditions can be found in appendix A.2.1.

3.2 General Cellular Automata

Abstracting from the initial example of an ECA, a more formal definition based on [103] of CA can be
formulated for the purpose here as:

Definition 3.2.1. A cellular automaton C is a tuple C = (S, T ,N , f, I0, B, U) where

(i) S is a set of k states, S = {0, ..., k − 1}

(ii) T is a tessellation of a subspace D of the Euclidian space Rn, D ⊂ Rn, consisting of active sites
ci ∈ TA enumerated by i ∈ {0, ..., L} and boundary sites bj ∈ TB enumerated by j ∈ {0, ..., TB}
with T = TA ∪ TB

(iii) N is a neighborhood function N : T −→
L⋃

i=0
T that maps every site ci to a finite sequence N (ci)

consisting of distinct cells.

(iv) f is the update function (local update rule) f : Smaxi|N(ci)| → S governing the update dynamics of
each site ci,

x (ci, t + 1) = f
(
(x (ci, t))|N(ci)|

j=1 , t
)

(3.2)

(v) I0 is the initial condition I0 : T → ST , assigning every active site ci an initial value x (ci, t)

(vi) B is the boundary condition TB → T T
B , giving a value to each boundary value x(bj , t)

(vii) U (t) is an update schedule N0 → {0, ..., L}L, specifying which cell updates at a certain time step t.

Some notes on this definition:
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Figure 3.2 CA Definition. (a) In 1D CA, the neighborhood can be specified by a radius which is the distance
in number of cells in which cells are counted as belonging to the neighborhood. In the shown example r = 2.
(b) Hexagonal tessellation of the plane (c) Square tessellations of the plane with examples of the Moore and von
Neumann neighborhood. (d) Kymograph of ECA rule 135 with fixed boundary conditions from the same random
initial condition with a synchronous and random sequential update, respectively.
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1. Typical tessellations in one dimension are the above mentioned line with fixed or periodic boundaries.
For two dimensions, square, triangular and hexagonal tessellations are common (fig. 3.2 b, c), but
also irregular tessellations may be used to cater the model to biological systems (cp. appendix A.7).

2. In one dimension, the neighborhood function is usually specified by assuming that it is symmetric and
giving a radius r determining the number of cells included in the neighborhood in one direction from
the cell in question (fig. 3.2 (a)), i.e., ECA would be r = 1 CA. Radii larger than one can be realized
in a biological setting by either communicating with diffusible molecules or via filopodia [104]. In two
dimensions on square grids the usually used neighborhoods are the von Neumann neighborhood
including the cell itself and the neighbors at its faces, as well as the Moore neighborhood, additionally
including the cells at corners of the original cell (cp. fig. 3.2 c).

3. The size of the neighborhood |N (ci)| may depend on the cell ci when the tessellation is irregular,
e.g., a cell might have 5 or 6 neighbors.

4. The boundary condition B is simply a set of cells that does not follow the cellular automaton dy-
namics f , but is either fixed or follows some externally imposed dynamics. This allows an external
influence on the pattern formation.

5. In the usual case the update schedule contains all cells in TA, i.e., a synchronous update. Other
well known update schemes are random update (at each point in time a random cell updates with all
cells having the same probability of updating) and random sequential update (the update sequence
is random, but all cells have to perform an update before the sequence is reshuffled) (fig. 3.2 (d)).
Also more complex update schemes beyond this definition with the order depending on the states of
the cells are possible and will be discussed in chapter 6 and appendix A.6.1.

6. For the update function f some constraints have been given names. If f does only depend on the
sum of the values of the states in the neighborhood (including the cell to be updated itself),f =
f
((∑|N(ci)|

j=1 ci

)
, t
)

, this rule is called “totalistic”. If f depends on the sum of the values of the
states in the neighborhood excluding the cell itself, and the value of the cell itself, the rule is called
“outer totalistic”.

7. If the update function f is not a deterministic, but a probabilistic function where each output is chosen
with a certain probability depending on the inputs, the CA is called probabilistic.

3.3 Classification of Cellular Automata

Classifying CA serves the purpose of creating groups with homogeneous properties, enabling to predict
the behavioral characteristics of the class members by investigating a few representatives and have a
common identifier for the class object that enables a common research language [103]. For CA, a formal,
universally agreed classification scheme has not been reached yet. Here, a few well known schemes
which will be used later are briefly described. For a more comprehensive overview see the recent review
[103].

3.3.1 Equivalence classes

The idea of equivalence classes can easily described for elementary CA. In total, there are 223 = 256
ECA rules. It is possible to reduce the number of possible different dynamical behaviors by grouping
together rules which show exactly the same dynamics after either exchanging the left and the right side
in the inputs of the rule as well as mirroring the initial condition, or exchanging the values of the states
(colors) in the rule as well as the initial condition, or doing both at the same time (fig. 3.3). If mirroring
the side, exchanging the colors or applying both at the same time would for every case lead to a different
rule, together with the original rule each equivalence class could be expected to have 4 members and
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thus there are 256
4 = 64 classes. Actually, 88 equivalence classes are found since sometimes one of the

equivalence operations leads back to the original rule or to another equivalent rule. The behavior of each
rule in a class is equivalent and can be computed from the behavior any other rule in the same class by
making the appropriate exchanges (color, direction, or both), i.e., for a characterization it is enough to
analyze a single member of the class. For other types of CA and research problems, similar equivalence
classes can be found, see e.g., chapter 4. While the behavioral mapping for equivalence classes is one to
one, the downside is their sheer number, limiting their use quite considerably.

Figure 3.3 88 Equivalence Classes. The 256 ECA rules can be subdivided in 88 equivalence classes: each rule
has associated rules which can be generated by exchanging left and right, exchanging the meaning of the colors or
both at the same time.

3.3.2 Wolfram Classification

A way more condensing classification has been proposed by Wolfram [44]. By visual inspections, he
identified 4 kinds of behavior, which the respective members of a class follow for almost all initial conditions.
The behaviors are exemplified in fig. 3.4:

(W1) Class 1 consists of rules which quickly converge to a homogeneous final state.

(W2) Class 2 rules exhibit “a simple stable or periodic structures” [43, p. 17] in the long term behavior.

(W3) For class 3, this behavior appears to be chaotic.

(W4) For class 4, “complicated localized structures, some propagating” are found. [43, p. 17].

It is claimed by Wolfram that this classification is able to order all one dimensional CA [44], although it is
admitted, that the classification if often formally undecidable [105], which was shown by Culik and Yu [106].
The Wolfram classification scheme can arguably still be seen as the most influential since its widespread
use and being the reference point for other classification schemes [103].
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Figure 3.4 Wolfram Classes. Examples for the 4 Wolfram classes: Class 1 (first row), consisting of rules with very
simple behavior, “almost all initial condition lead to exactly the same uniform final state” [105, p. 231], showcased
here by rule 0 and 251. Class 2 (second row), with “many different possible final states, but all of them consist just
of a certain set of simple structures that either remain the same forever or repeat every few steps” [105, p. 235],
showcased here by rule 15 and 108. Class 3 (third row), depicting a behavior that is “complicated, and seems in
many respects random” [105, p. 235], showcased by rules 45 and 150. Class 4 (fourth row), with rules that “involves
a mixture of order and randomness” [105, p. 235] with localized structures which are produced, move around and
interact [105].
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3.3.3 Rule Tables Based Schemes

The rule table or “genotype” of the rule [103] determines the update dynamics of each site. Since the rule
table is quite small compared to the data from simulating the rule from many initial conditions to determine
the “phenotype” of the rule, a characterization of the rule solely based on its table promises a low resource
possibility of classifying the rules. Due to the strong non-linearity of the rules where slight changes in the
rule table can change the kymograph strongly (cp. fig. A.1), defining a parameter based on the rule table
that projects the essential features of the spatio-temporal dynamics is a challenging task. In the following
we describe a few such parameters.

1. Langtons λ: Langton’s Lambda is a parameter defined in reference to a so called “quiescent” state
q which, when it is the sole input, maps to itself, f(q, q, q, ...) = q. Then, λ is the fraction of inputs
that do not map to the quiescent state,

λ = k|N | − nq

k|N | (3.3)

with nq the number of input configurations that map to q, k the number of states and |N | the size of
the neighborhood [107] (fig. 3.5 (a)). k|N | is the total number of inputs. Of course, it is also possible
to calculate λ with respect to a state that is not quiescent. For the example in fig. 3.5 (a), with a
k = 2 state rule with a neighborhood size of |N | = 3 and quiescent state q = 0, k|N | = 8 and
nq = n0 = 4 and thus λ = 1

2 . In general, λ = 0 maps all inputs to the quiescent state, i.e., it is the
most homogeneous rule, while the most heterogeneous one, represented by an equal mapping to
all possible states, has λ = 1− 1

k . From λ = 0 to λ = 1, the Wolfram classes 1-3 lie approximately in
increasing order [107]. Class 4 rules are dispersed at the transition between class 2 and 3 rules as
the transition length, i.e., the time the CA takes for a periodic behavior to emerge, increases [107].

2. Kolmogorov Complexity: The Kolmogorov complexity of a string x is defined as the length of the
shortest program running on a Turing machine that outputs x and halts2. Naively, a more complex
rule is expected to produce a more complex kymograph [108]. Unfortunately, the Kolmogorov com-
plexity can not be computed directly [109], it is only possible to give an upper bound [109]. The
usual way to achieve this is writing down the outputs of the rule table as a string and compressing
that string with a lose-less compression method like the Lempel-Ziv compression algorithm [110].
The estimator for the complexity is then the length of the compressed string plus the length of the
compression algorithm (fig. 3.5 (b)). Since the latter is the same for all rules, i.e., an additive con-
stant, it can be dropped when comparing complexities from the same estimator.

3. µ-Sensitivity: The µ-sensitivity is defined [103, 111] as the changes in the output of the rule by
changing one of the sites in the neighborhood

µ = 1
|N | k|N |

∑
c1c2...c|N|

|N |∑
q=1

∂f

∂cq
(3.5)

with the Boolean derivative [112]

∂f

∂cq
=

0 if f
(
c1, ..., cq, ..., c|N |

)
= f

(
c1, ...c̄q, ..., c|N |

)
1 otherwise

(3.6)

with µ ∈
[
0, 1

2

]
for ECA (fig. 3.5 (c)). The µ sensitivity is low for rules producing ordered behavior

and large for rules with chaotic behavior [111].
2More specific, the Kolmogorov complexity of a string x is defined as

Kφ(x|y) = min {l (P ) , φ (P, y) = 0} (3.4)

with Turing machine φ, programs P , length function l, and input string y. y is usually taken as empty string, and since different
Turing machines φ changing the result only be a constant, both references are usually dropped.
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Figure 3.5 Quantitative Classification Schemes Schemes to classify rules quantitatively include the rule table and
pattern based schemes. Into the former category fall Langton’s λ (a), the Kolmogorov complexity of the rule (b) and
the µ sensitivity. The latter quantity can be split up in schemes which focus on local properties and schemes which
focus on global properties. The Kolmogorov complexity of the pattern (d) as well as the single site entropy (e) in
spatial or temporal direction are examples for schemes focusing on local properties, while looking at attractors and
transients (g) focus on global properties. Information integration or synergy (f) may fall in both categories.

3.3.4 Spatio-temporal Dynamics Based Schemes

Looking more on the “phenotype” of a rule, i.e., the spatio-temporal dynamics a rule generates for a cer-
tain initial condition, may also be a fruitful approach to classify CA. Wolframs classification based on visual
inspection (section 3.3.2) is one possible approach. More quantitative approaches take either small snap-
shots of the spatio-temporal dynamics and calculate an observable from these snapshots (local pattern
based), averaging over snapshots from different initial conditions, or try to classify the dynamics more
based on the whole spatio-temporal dynamics, possibly for all initial conditions (global pattern based).

1. Kolmogorov Complexity: Interpreting the pattern as string allows to assign each pattern a Kol-
mogorov complexity by using an estimation algorithm as described in section 3.3.3 (cp. fig. 3.5 (d)).
To arrive at a single number for a rule, ensemble averaging over many initial conditions and either
additional temporal averaging or using a pattern snapshot from time t >> L can be used.

2. Single Site Entropy: Intuitively, looking at the number of occurrences of the states in a pattern
(spatial dimension) or along the time trace of a fixed cell (temporal dimension), a different frequency
distribution can be expected for different rules, with rules producing fixed and/or homogeneous pat-
terns having a more peaked frequency distribution, while rules producing chaotic patterns/time traces
have a more uniform frequency distribution. This intuition about the frequency distribution can be
quantified by the Shannon entropy of a rule. The information theoretic Shannon entropy over a
discrete probability distribution pi is defined as [113]

H = −
k−1∑
i=0

pi log2 (pi) . (3.7)

It quantifies the amount of information that can be expected to be acquired by drawing a sample from
the distribution or, phrased differently, the number of yes or no questions that have to be asked on
average to identify the sample. [114, 115]. Interpreting now the either spatial or temporal frequency
distribution as probability for the occurrence of a certain state and performing appropriate ensemble
averages, the so called single site entropy of a rule can be defined [107] (cp. fig. 3.5 (e)).3

3. Information Integration/Synergy: To introduce information integration, first the concept of mutual
information has to be introduced. The mutual information between I two CA states xt

i and xt+s
j is

defined as [114]

I(xt
i; xt+s

j ) = −
∑
a,b

p
(
xt

i = a, xt+s
j = b

)
p (xt

i = a) p
(
xt+s

j = b
) = H

(
xt

i

)
−H

(
xt

i|xt+s
j

)
(3.8)

with i and j being the spatial positions of the cells and the sum runs over the possible states. It
measures the reduction in uncertainty in the knowledge about xt+s

j when learning xt
i. Now the

information integration or synergy can be defined [116, 117] as the difference between the mutual
information between a state xt

i and a set of states Υ and the sum of the mutual information between
xt

i and the individual members of Υ,

Sy = I
(
xt

i; Υ
)
−
∑
x∈Υ

(
I
(
xt

i; x
))

. (3.9)

3Note that there are also classifying attempts for CA using entropy concepts with a more complex “unit cell” than a single site by
combining several sites together, the so called block entropies [116].
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For example, for the Υ containing the same cell at the previous time step as well as the two neighbors
at the previous time step (cp. fig. 3.5 (f)), the information integration/synergy is

Sy = I
(
xt

i; xt−1
i−1, xt−1

i , xt−1
i+1

)
−

1∑
j=−1

(
I
(
xt

i; xt−1
i+j

))
(3.10)

As a “whole” - “sum of the parts” quantity it measures the dependencies that are introduced by the
rule between the chosen states in Υ at xt

i. Phrased differently, it measures how much more was
learned about xt

i by knowing the states in Υ at the same instance than what was learned about
xt

i in total by knowing each member of Υ individually. When testing different information processing
features as classification proxies for Wolfram’s CA rule classes, the information integration or synergy
was found to perform best [117]. Also larger orders over several time steps can be included. The
more time steps are included, the more the synergy turns from a quantity based on local patterning
information to a quantity based on global pattern information.

4. Attractor based classifications: The qualitative theory of nonlinear ordinary differential equations
focuses on determining how the the solution of an initial value problem changes when changing the
initial value [118], more specifically determining the fixed points and limit cycles, as well as their
stability and basins of attraction [119]. For CA this can be approached in a similar [120] but more
limited fashion due to the exponential growth of the number of possible patterns kL with CA size. To
quantify the complete dynamcis of a CA, a restriction to small system sizes is necessary. Then the
dynamics can be visualized as a graph (fig. 3.5 (g)) with the vertices being the individual possible
patterns and the directed edges the transitions between these patterns as specified by the rules
[120]. Since the dynamics is deterministic, each vertex (pattern) has exactly one outgoing edge
(i.e., the out-degree of every vertex is one), while each pattern can have different predecessors (pre-
images), i.e., different in-degrees are possible. Since the state space is finite, the dynamics can
either run into a fixed point (i.e., a pattern mapping to itself) or into a limit cycle. Thus, the graph
separates into different components (basins of attraction) with an attractor (fixed point or limit cycle)
each [120]. To specify the dynamics of a given rule for a fixed system size and boundary conditions,
the number nC and period TC of attractors, the transient lengths TT to reach the attractors, as well as
the density of “Garden of Eden states” ρE (vertices without in-degree, i.e., unreachable from other
states) [120] and the number of precursors (in degree) nP can be calculated. The scaling of nC ,
maxC (TC), maxC (TT ), ρE and maxV ertices (nP ) can now be investigated as a function of system
size for small system sizes. Note that these quantities are not independent of each other, as a large
quantity of one of nC , maxC (TC), maxC (TT ) implies lower values of the other two.

Numerical values for the above classification quantities are summarized in table A.1.

3.4 Examples of Modeling of Biological and Artifical Systems with Cellular
Automata

CA have been used previously to model a wide range of developmental and synthetic pattern forming
systems. The applications range different model species, from plants like a model for the primary shoot
meristems of arabidopsis thaliana [121], over insects like neurogenesis in drosophila [37] and vertebrae
lizard skin scales [122], to mammalian cell-cell interaction in human and rat cells [123]. Also, a wide variety
of different phenomena can be modelled, for example growth processes [124], adhesive cell interactions
[124], cellular swarming behavior [124], stripe formation in pigment cells [124], tumor development [124],
animal coat markings [125] and cell differentiation processes [126].

Apart from concrete systems, also more abstract analysis has been conducted using CA as modelling
tool. For example, in a more general secrete and sense CA framework, the statistical dynamics of spatial
order formation has been investigated with a focus on whether larger scale order, characterized by a large
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Moran’s I, appears [127]. CA are also used as an abstract toy model to investigate of unbound evolution
and novelty generation by having 2 interacting CA, where the state of one CA influences the rule of the
other [128, 129].

In summary, for special systems CA has been used to some degree as a successful modelling tool for
specific systems and some cases of more abstract biological systems.

3.5 Modelling Assumptions, Advantages and Disadvantages of CA Models

3.5.1 Modelling Assumptions

CA are based on a specific set of assumptions, which make them applicable to some biological regimes.
To map out theses regimes, in this section the assumptions are stated and discussed with regard to their
biological implications. Some of these assumptions are also relaxed in later chapters.

1. Discretization of cell states: CA have discrete states, while in biological cells the question whether
cell states are discrete or continuous is still open. Experimental cell type classification methods
started from unspecific dyes and developed into specific antibody staining and later hybridization
based techniques allowing for a detection cell type marker molecules [130]. Another possibility is
the characterization via functional assays, defining cells states based on the cellular behaviour [130].
Classically, cells states were assumed to be discrete with cell transitioning through commitment
points. Yet, this view has been challenged by modern day “-omics” suggesting a more continuous
trajectory in gene expression space by looking at molecular characterization of cell types that are
based on global profiling using high throughput methods [130].

The traditional visual metaphor [131] for epigenetic dynamics is the Waddington landscape [132].
It shows (potentially multiple) supercritical pitchfork bifurcations (cp. fig. 3.6) as a function of some
usually unspecified parameter. The idea can be visualized by the simple equation:

dx

dt
= sx− x3 (3.11)

The fixed points of this equation are x = 0, which is stable for s < 0 and unstable for s > 0, and
x = ±

√
s for s > 0 (stable). A cell moving in this landscape as the parameter s increases starting

from negative values resides in the stable fixed point x = 0 until s = 0. Then, the cell has to decide
to adopt one of two possible states x = ±

√
s as soon as s > 0 The viewpoint of a dynamical system

can be extended further as proposed by Kaufmann by asserting that stable cell types correspond to
attractors in a dynamical cell state landscape (fig. 3.7 (a)) towards which cells move [133]. Modifying
the landscape can then lead to the adaption of a different attractor (fig. 3.7 (b-e)). Recently, more
quantitative versions of this metaphoric picture based on experimental data was constructed by Saez
et al. for mouse embryonic stem cells [134]. Such a picture, even if transitions between cell states
are continuous, would support a modelling of cell states as discrete by identifying the attractors with
the discrete labels.

For the discrete modelling of the cell state transitions via the CA rule also exist established models
with a similar spirit, e.g., the modelling of biochemical networks through boolean models [135] or the
discretatization of Hill functions describing gene regulation through boolean like approaches which
allow to view the integration of several signal via logic gates [89].

Futhermore, it has been proposed that the exact inner workings of cells are irrelevant to development,
rather important are the cells, output, response to external signals and biophysical properties [136].

2. Reversibility of Cell State Transitions: Principally, CA models place no restriction on which state
can transition to which other state, i.e., cells switching state back and forth are allowed in this frame-
work, and are thus more general than the often irreversible cell differentiation. Yet, cell plasticity
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0
External Signal s
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Figure 3.6 Prototype of the Waddington Landscape. Shown is a single supercritical pitchfork bifurcation [119].
For a parameter s < 0, a cell in this landscape moves towards the only stable fixed point x = 0. If the parameter is
increased to s > 0, x = 0 becomes an unstable and x = ±

√
s stable fixed points. The metaphor of the Waddington

landscape is to assert a cell the state x. When the parameter s is increased, from x = 0 onward the cell starts to
follow one of two branches x = ±

√
s, corresponding to two different cell states.

Figure 3.7 Schematic 2 State System with External Signal. Represented is a potential landscape of the cell type
dynamic of a single cell: an equipotential (black line) of the dynamical system together with the steady states (blue
and red) and dynamical trajectories (green) originating at the saddle point of the potential surface, all for different
values of the external signal. When the external signal increases, the basin of attraction of the blue fixed point
decreases and the red fixed point appears (b), which continues (b-d) until the blue fixed point vanishes and the red
fixed point is the only one left (e). If the cell type is initially “blue” for low external signal, it will change to “red” for
large enough external signal.
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and de-differentiation is also an observed phenomenon [137], thus CA can in essence span the re-
quired range of cell state transitions in biological systems. Furthermore, as shown, e.g., in chapter 4,
coordinated cell state transitions can sometimes be interpreted as cell movement or sorting.

3. Immobility: The cells in a CA are ordered on a fixed grid, which either amounts to assuming sta-
tionary cells forming a rigid tissue matrix in biological context [138] that is, e.g., the standard case
for plants [8], or a patterning dynamics that is fast compared to topological changes in the tissue. In
chapter 8 this assumption is relaxed by also including dynamic grids.

4. Local Signaling: The neighborhood determines the range of the signaling in the CA dynamics. In
principle it is possible to include arbitrary connections, but the most common choices are neighbor-
hoods that only include the nearest neighbors or next nearest neighbors. This allows for a modelling
of local signals in the sense of the previous chapter, including signaling via portrustions.

5. Deterministic Dynamics: The standard CA dynamics is purely deterministic, despite the inevitably
noisy nature of biological systems (see e.g., [63, 139, 140]). The discretization buffers some of the
noise by coarse graining the many possible concentration combinations of bio-molecules into few
discrete states, but the transitions between those states might still be noisy. Turning to a probabilistic
CA allows for a modeling of said noise at the expense of introducing additional parameters. A
simple possibility for turning a deterministic CA into an probabilistic CA for low noise is to assume
that the CA follows the deterministic rule, but with a probability p it maps to a different state, with
the same probability for all possible states. Thus, the deterministic rule is followed with probability
q = 1 −

∑k
i=0 p. The exact modelling choice also greatly influences the dynamics and stochasticity

of the system, e.g., a not modeled “hidden state” might turn a nearly deterministic transition into a
stochastic one [141].

6. Directional Sensing of Signals: A general CA rule allows in principle to discriminate between the
directions from which a signal in the neighborhood is coming from. From a biological perspective,
this would require some kind of cell polarity. There are common restrictions on CA rule space where
the signal direction is irrelevant, e.g., outer-totalistic or totalistic rules (see above), which can be
enforced when the modelled phenomenon does not include directional signal processing.

7. Discrete Time Dynamics and Synchronization: CA dynamics assumes discrete steps in time,
which can be justified as follows. From the perspective of continuous dynamical system, state
changes can be seen as as transitions between concentration fixed points of molecules determining
cell state. Assuming a discrete time dynamics together with discrete states is then consistent with
a smaller timescale for the change between these fixed points compared to the retention time in the
fixed points. Yet, the retention times between state transitions do not have to be equidistant in real
time, allowing for an implicit modelling of phenomena like slowing down of cell cycle dynamics [142].
Another critical assumption is the synchronicity of the updates of the cells. The exact accuracy of
synchronization needed may depend on the time it takes for the signal to be relayed between differ-
ent cells and processed within the signal receiving cell, as well as the retention time between state
transitions, compare chapter 6 for a more detailed analysis. Synchronization between biological os-
cillators is possible via only local interactions [13], which may allow for the ability of a synchronized
patterning dynamics.

8. “Markovian” Dynamics The standard CA form calculates the new state of a cell only from state
values of the previous time step, similar to a stochastic process that is Markovian [143]. In a biological
context, this requires a degradation of the signaling molecules on a timescale shorter than the (real)
time of a single update. CA implementations with memory usually use for the inputs into an update
rule an exponential weighted sum of the past time steps, e.g., [144]

sT
i = xT

i +
∑T −1

t=1 αT −txt
i

1 +
∑T −1

t=1 αT −t
. (3.12)
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This corresponds to a degradation of signaling molecule with a rate related to α that is small com-
pared to the inverse of the (real) time between two updates. Additionally, to assume a “Markovian”
dynamics when constructing the landscape of cell states on which the finite CA states are defined (cf.
assumptions on discretization of cell states above), it must be ensured there are no hidden dimen-
sions, i.e., types of molecules relevant to the state of the cell which are not included in the dynamical
systems picture. Such an omission of relevant cell states could in principle lead to an identification
of 2 different states A1 and A2 as a single state A, possibly introducing dependencies on the past
for the dynamics of A since for one trajectory A1 may be the actual state, while for another it could
be A2.

Some of the assumptions listed above are relaxed or their justification investigated in the following chap-
ters by extending the basic CA model viewing CA as " [...] philosophy of modeling where one seeks a
description in terms of simple but essential mechanisms" [145]. In chapter 4, an asynchronous model
variant is studied during the analysis of the results, and in chapter 6, it is checked how local interactions
can sustain global synchrony between cells. Chapter 4 starts a discussion about a changing grid by intro-
ducing cell division, chapter 8 extends this discussion by an extension of the basic CA model to dynamic
grids allowing for cell movement, division, death and interactions between grid dynamics and CA dynam-
ics. Chapter 7 couples local CA-type dynamics to long range signaling. The effects of noise on CA are
investigated in chapters 4, 5, 6, and 7, fully switching to a probabilistic CA in chapter 9.

3.5.2 Disadvantages and Advantages of CA as Models

While CA as member of the class of agent based models seem like a natural framework to investigate
cellularized systems with each cell corresponding to an “agent”, the previous chapter discussed the long
list of assumptions that need to fulfilled to be able to employ them as models. While many of these
assumptions can be relaxed as will be demonstrated throughout the thesis, developmental systems might
not always fulfill this large list of eligibility criteria to be suite-able to be modeled by CA. Also adapting a CA
model to a concrete case can prove to be difficult since CA usually have little flexibility to adjust parameters
[145]. Even small changes in rule may lead to totally different outcome (as an example compare rule 180
and 181 in fig. A.1 differ only by one rule entry but show completely different behavior from seed initial
conditions).

On the plus side, CA are usually relatively easy to implement and have a great numerical stability [145].
The discrete nature of CA partially allows for an exhaustive numerical search for solutions in CA rule
space with found rules and dynamics often being easily interpretable and visuablizeable. CA can model
both linear and non-linear systems, and the space of all CA rules contains a great variety of different
dynamical behaviors (cf. section 3.3 and following sections). Finally, due to their “age” a large body of
CA-theory is available which can be relied on.
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4 How to Form Global Patterns with Local
Interactions? - French Flag Problem Revisited

The main content of this chapter is the result of the collaborative work of the author of this thesis together
with Gabriel Vercelli, which will be jointly published in [146]. Smaller parts where developed as collabo-
ration between the author and Maria Molina Antón (section 4.11.3, [147]) and Lukas Zett (section 4.11.4,
[148]) and are marked accordingly. All were supervised by Ulrich Gerland.

4.1 Global Patterns from Local Interactions: Forming French Flags

The analysis of pattern formation with local interactions is started by looking at one of the most simple
model systems: a 1D grid with fixed boundary conditions. From a biological perspective, such a system
may be of interest because biological systems are finite and thus usually have a boundary1 - may it be cells
of another tissue or the surrounding environment. Besides “real” one dimensional tissues and organisms
[84, 149], 2D stripped patterns are ubiquitous in nature [150, 151] - due to the symmetry of the problem
along the stripes a simplifying assumption can be that such patterning processes can be reduced to be
modelled effectively in 1D as a first approach.

The dynamics of pattern formation is modeled by a cellular automaton with synchronous updates as
described above. A pattern formation process described by this model has two inherent lengths scales:
The interaction range of the cellular automaton, which will be set to r = 1 initially, and the extension of the
grid itself.

On the one hand it is comparably easy to see how patterns with a length scale determined by the length
scale of the interaction can be formed - for example to produce an alternating pattern in a k = 2 state
system, it suffices to use rule 15 (xt+1

i = 1 + xt
i−1) which, after L steps, fills the pattern with alternations of

the left boundary state (cf. fig. A.2). On the other hand, the problem of finding pattern formation techniques
that construct patterns with wavelengths related to the grid size L seems less trivial. Such patterns are
known to be formed using long range morphogen gradients [2], but here the goal is to investigate how to
form them with short range interactions.

As a first simplification of the problem, a generic “target” pattern is specified which should be the sta-
tionary state that the cellular automaton reaches when starting from arbitrary initial conditions, namely
patterns with s stripes with equal width for s states in the final pattern. For 2 states, this corresponds to the
left half of the final pattern being 0, the right half being 1. For 3 states, it matches Wolpert’s iconic French
Flag pattern [20] with equal stripe widths. Different stripe width are investigated later.

To systematically screen rules (“genotypes”) for their ability to form patterns (“phenotype”) resembling
the French Flags from arbitrary initial conditions, a mathematical criterion has to be defined - in this case
the relative agreement with the target pattern (relative number of cells with the same state) after a fixed
simulation time 2L,

Φ = 1
L

L∑
i=1

δ(x2L
i , xgoal

i ), (4.1)

which is termed “fitness” of the rule (fig. 4.1). Other definitions of the fitness functions are possible and
may be useful in specific contexts, e.g., when looking for applications where the location or width of a
specific stripe is more vital than that of other stripes, or loss of biological function is not linearly associated

1it may be argued that in problems like the neural tube periodic boundary conditions are an appropriate modelling choice because
of the eponymous tube geometry, so not all finite systems do necessarily have a boundary from a modelling perspective
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with the number of cells in the wrong state, but depends on the phenotype in a more involved fashion. In
the abstract context here, only the relative agreement is used. Since the final pattern and thus the fitness
is not only a function of the rule but also of the initial condition, an average over different initial conditions
is taken. Checking all initial conditions is usually not feasible since the number scales with system size as
kL. Therefore, if not stated otherwise, NSample = 50 initial conditions are sampled for a length of L = 100
and a maximum simulation time of Tmax = 200.

Figure 4.1 Genotype, Phenotype and Fitness. The outputs specified in the rule table can be interpreted as the
genotype of a rule. Together with an initial condition they give rise to the phenotype visualized by the kymograph
and result in a final pattern after a fixed amount of time. To determine the fitness associated with this final pattern, it
is compared to a goal pattern and the fitness is calculated as the relative amount of matching states.

4.2 Only one Solution in 2 State Space

In the k = 2 state space, all rules can be explored exhaustively. While the fitness for most rules is close
to the value for a random choice of states 0.5, Rule 29 (marked red) has a fitness close to 1 (fig. 4.2 (a)).
The high fitness of rule 29 is not an artefact of the specific system size chosen for the fitness calculation in
fig. 4.2 (a), but consistent across several orders of magnitude of system size (fig. 4.2 (b)). The mechanism
by which rule 29 manages to achieve such a high fitness is illustrated by looking at a kymograph (fig. 4.2 c).
If the pattern is checkerboard like, blue and white states just switch their place in the bulk of the checker-
board. Checkerboards expand as long as they do not hit a completely blue patch to the left or a completely
white patch to the right. The blue (white) patches grow to the right (left) when hitting checkerboard like
patterns, and stay stagnant when hitting the other colored patch (ensuring a stable steady state). This
rough behavioural description allows to split up the rule table in the mappings responsible of conserving
the steady state, and mappings generating and conserving the checkerboard pattern (fig. 4.2 (d)).

4.3 Searching Vast Rule-Spaces: Evolutionary Algorithms and Multiple
Sequence Alignment

In the case of k = 3 states, exhaustively searching the whole CA rule space consisting of 7.63 × 1012

rules is hardly feasible, especially if not only a single target pattern is of interest but multiple under possibly
different settings. Thus, an efficient sampling algorithm has to be used. For cellular automata, evolutionary
or genetic algorithms (EA) have been employed in a similar setting trying to find rules that mimic early
Hydra development [152]. EA are a computational exploration technique that employs motives found in
natural evolution, but does not necessarily try to mimic real biological processes. The version used here
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Figure 4.2 2 State Solution (a) Fitness for all 2 state rules trying to generate a half blue, half white pattern from a
random initial condition. Fitness was calculated over NSample = 1000 for L = 100 and Tmax = 200. (d) Fitness as
a function of system size for rule 29. For L ≤ 20 NSample = 100000, for 20 < L ≤ 100 NSample = 10000, and for
L ≥ 100 NSample = 1000 was used. (c) Exemplary kymograph for rule 29 starting from random initial conditions. (d)
Rule table of rule 29, split in mappings necessary for a correct steady state and mappings creating the checkerboard
pattern.
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Figure 4.3 Evolutionary Algorithm and Consensus Procedure. (a) The evolutionary algorithms starts with a
population of rules and calculates their fitness according to fig. 4.1. It then mutates each rule in the population
and calculates the corresponding fitness. The mutated rules are compared their respective parent rules, and out
of this pairwise comparison the rule with the higher fitness is chosen. From this new population, the 30% worst
rules are eliminated and replaced by random rules and completes a single round of evolution, which gets repeated
Niteration = 1000 times. (b) Maximum and average fitness of a population of a single EA run as function of the
iteration showing the increasingly slower increase with iteration. (c) Comparison of maximum and average fitness
as a function of iteration for the evolutionary algorithm as described in (a), as well as versions without mutations or
without injection of random rules. The version described in (a) outperforms the other two regarding the maximum
fitness present in the population. (d) Distribution of maximum fitness for several evolutionary algorithm runs shows
that while in general good solutions are found, for finding exceptional solution several runs may be needed. (e)
Fitness as a function of system size for an exemplary best rule at the end of an evolutionary algorithm run. Fitness
is not constant with system size, but may change, and is subject to stochastic variations due to the sampling of the
initial condition. (f) Exemplary kymographs for said rule. (g) Consensus procedure taking the best rule in the rule
set at the end of the evolutionary algorithm run and calculating the fitness for all rules at most 6 mutations distant,
selecting the rules with fitness Φ > 0.9, and then constructing a consensus by aligning the rule outputs and taking
the majority output for each input.

(fig. 4.3 (a)) starts with a set of Npopulation = 100 randomly chosen rules. The fitness of the rules is
calculated, each rule is mutated twice and the fitness of the mutated rule is again calculated. Now the
fitness of the original and the mutated versions of the rule are compared and the lower performing is
discarded. The resulting rule population again comprises of 100 rules, from which the worst 30% are also
discarded and replaced by randomly chosen rules. This procedure is now repeated for NIteration = 1000
steps while the fitness of the best rule typically increases (fig. 4.3 (b)), yielding a final set of rules, the best
of which are usually high performing (fig. 4.3 (b, d)). Both mutation and random injections are needed
to efficiently search the rule space (fig. 4.3 (c, d)) - random injections alone would just be equivalent to
random sampling, mutations alone can increase the average fitness of the rule set efficiently but not the
maximum (fig. 4.3 (c, d))2. Since the interest here is only in the best performing rules, the combination
of both mutation and random injection seems to be a sufficiently well performing combination to search
the rule space3. The best rule found after several runs of the EA can reliably form a French Flag (fig. 4.3
(e, f)). Since it is expected that slight mutations to this rule yield in most cases also well performing
rules, additionally the neighborhood of well performing rules in rule space is surveyed. This serves several
purposes: First, knowledge of the well performing rules in the neighborhood allows for the construction of
a Consensus rule consisting of the most abundant entries in high fitness rules (fig. 4.3 (g)) in accordance
with motif search in DNA, RNA, and protein sequences [154]. Second, the evolutionary algorithm is
not constructed to sample the local neighborhood of well performing rules systematically and it can be
hypothesized that in this neighborhood equally well or better performing rules can be found.

The consensus procedure was carried out to include rules up to 5 mutations away from the rule found in
the EA with a fitness of 0.9 or larger. Out of this set of rules, the most abundant rule entries for each input
were selected to construct a “Consensus” rule, which can be seen in fig. 4.4 (a), (b). It is not sensitive to
the specific choice the number of mutations or fitness threshold for the inclusion of rules as can be seen
in table A.2 and is detailed in [146].

2It can be hypothesized that this is due to only finding local maxima in the fitness landscape and then being trapped inside them.
3Other common motives used in evolutionary algorithms are combinations of several rules, as well as fitness comparisons of the

mutated rules with the whole rule set and not just the immediate predecessor rule [153] - both motives have also been explored
during the early stages of the project in different combinations with the other motives but did not seem to yield satisfactory
results.
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Figure 4.4 Analysis of the Consensus Rule. (a) Logoplot of outputs of the rules with Hamming distance 5 around
the Consensus rule which have a fitness Φ > 0.9 showing how variable the entries of high fitness rules are. (b)
Fitness of single point mutations of the Consensus rule, generally agreeing with the picture from (a). (c) Stationary
state mappings. (d) Rule table of the “Consensus Rule” split into two modules: (1) the “Bulldozing” module consisting
of all entries which have a red state in the middle of the input and seed new blue and white states, as well as all
entries with red in the left input, in general erasing the middle entry and replacing it with red (2) and the “Sorting”
module consisting of the rest of the entries leading effectively to an exchange of blue and white states. (e) Fraction
of blue, white and red states in the final pattern as a function of system size. (f) Scatter plot of initial and final
number of red states (2s) of the Consensus rule as well as the Consensus rule mutated at input 9 to blue or white,
which lead to the conservation of the number of red states in the pattern. (g) As (f), but ensemble averages. (h)
Variance of the final number of white and blue states as a function of the leftmost red position in the initial condition
of the Consensus rule and the Consensus rule with mapping 9 mutated to white. Not having this mutation as in the
Consensus rule can generate an additional red bulldozer far to the left which guarantees a lower variance in the blue
and white proportion. (i) Fitness as a function of the system size for the Consensus rule, the best found rule, the
mapping 9 to white mutation of the Consensus rule and the analytical solution [146]. (j, k) Difference between the
final and initial number of 0s (1s) as a function of the initial number of 0s (1s) for the Consensus rule and the Mapping
9 to white modification of the Consensus rule showing the Conservation achieved by the mutation. (l) Kymographs
of the Consensus rule and the Consensus rule with mapping 15 mutated to blue.

4.4 Solutions for 3 State CA

4.4.1 Importance of Contributions

By looking at the rule, it is not clear which (combination of) rule entries are important in the sense that
mutating them would lead a rule with considerably lower fitness. Knowing the well working rules in the
local neighborhood allows for selection of the relevant rule entries. Thus, the fitness for all rules up to
Hamming distance 5 around the Consensus rule is calculated and all rules with fitness Φ > 0.9 are
selected. Then, the frequencies of each output in the input-output
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for the distribution of each rule contribution is calculated. While the entropy can be interpreted as the
amount of information gained from determining the exact entry instead of a choice from the distribution of
the associated random variable, subtracting the entropy from the maximum entropy gives the information
content

I(xt
i−1,xt

i,xt
i+1) = log2 (3)− S(xt

i−1,xt
i,xt

i+1) (4.3)

plotted in fig. 4.4 (a) in form of a logo plot. A set of contributions can be immediately singled out, the
steady state mappings (fig. 4.4 (c)) which map all inputs that can occur in a successfully formed French
Flag on the state of the middle input. These mappings guarantee that the the French Flag is a steady
state of the dynamics generated by the rule. It is intuitive that these contributions have a large information
content in contrast to other contributions, namely 2, 6, 9, 15, 18, 20, 24 and 25 (enumeration as in fig. 4.4 (b,
d)), which are highly variable and can be chosen almost at will without leaving the realm of the high fitness
neighborhood. This is also confirmed by the changes of the fitness by single mutations (fig. 4.4 (b)), which
show large negative changes for the steady state mappings, but only comparably small changes for the
contributions identified as highly variable.

4.4.2 Patterning Modules

By close inspection, the rule can be split up in two parts termed modules whose distinct dynamical behav-
iors can be characterized (fig. 4.4 (d)). The first module is termed “sorting module” and is comprised of all
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inputs which have a no red state in the middle or left part of the input of the mapping. Roughly speaking,
this module exchanges any blue cell that is to the right of a white cell, sorting the blue and white states
into the correct order. The second module is the “bulldozer module”, consisting of all cells with a red cell
in the middle or left input. It moves red cells to the right if there is no other red cell and leave blue and
white cells behind in an alternating fashion. Both modules work together to construct the French Flag. The
bulldozer module shifts all initially red states to the right, while the sorting module sorts any left behind
blue and white states as well as all blue and white states to the left of the leftmost red state in the correct
order. Since the number of red states in the initial condition is on average 1

3 and the blue and white states
are left behind in equal numbers, the resulting pattern can be expected to be close to a French Flag.

This high level description of the hypothetical rule dynamics of course needs to be confirmed by com-
puter experiments. It allows to formulate predictions about the expected behavior of the rule:

1. The initial number of red states should be conserved and thus the same as in the final French Flag.

2. For an initial condition without red states, the number of blue and white states should also be perfectly
conserved since they are only sorted.

3. The fitness should converge towards 1 for large system sizes L, limL→∞ Φ (L) = 1.

Checking the conservation of red states (fig. 4.4 (e), (f)), it is clear that strict conservation does not hold.
Additionally, the number of red cells in the final pattern is larger than the number of blue and white cells
(fig. 4.4 (g)). Inspecting the sorting module of the Consensus rule (fig. 4.4 (d)), it can be hypothesized that
entry 9 produces additional red states. This hypothesis is verified by mutating this entry to either blue or
white, in which case the numerical exploration shows a perfect conservation of red states (fig. 4.4 (e), (f)).
It can be speculated why a red entry 9 is more prevalent in the found high scoring rules used to construct
the Consensus rule. Having this entry potentially produces additional red states close to the left boundary,
which in turn reduces the “stochastic component” in the number of blue and whites in the final pattern
since the blue and whites left of the first red state keep their distribution when being sorted into the final
pattern. This can be quantified by first defining the difference between the number of blue and white states
in the final pattern as variable and then calculating the variance of that variable as a function of the position
of the leftmost red in the initial condition (fig. 4.4 (h)). If entry 9 is mutated this scales roughly linearly as
expected for the difference between two independent binomial random variables. If it is not mutated, the
variance approaches a constant value determined by the average position of the leftmost red state created
by entry 9.

Conservation of the number of white and blue states for white and blue only initial condition does also
not hold true (fig. 4.4 (i), (j)), again solely be because of entry 9 (fig. 4.4 (i), (j)).

The convergence of the fitness to 1 does also not hold (fig. 4.4 (k)) exactly. Assuming a uniform distribu-
tion of all rule inputs in the initial state and no new creation of inputs 9 during the rest of the simulation, a
fraction of 1

3 + 1
27 reds and 1

3 −
1
27 blues can be expected (fig. 4.4 (g)), which explains the missing conver-

gence to 1. An analytical model constructed from the above hypothesized assumptions about the dynamics
imposed by the Consensus rule supplemented by the effect of mapping 9 constructed by G. Vercelli pre-
dicts for 1 − Φ a scaling with system size proportional to L

1
2 and a limit of limL→∞ (1− Φ (L)) = 1 − 1

18
[146], which fits the numerical results (fig. 4.4 (j)). Mutation of mapping 9 leads to the prediction of a limit
of 1, which is also confirmed by numerical experiments (fig. 4.4 (k)) [146].

As a final note, mapping 15 would be expected to map to blue instead of white for a perfect bulldozing
module. However, mapping 15 influences the final pattern primarily when there is a large blue patch to the
right of the leftmost red cell, which is unlikely for random initial condition (fig. 4.4 (l)). Thus this mapping
does not effectively influence pattern formation.

4.4.3 Coverage of the Rulespace

The evolutionary algorithm and following consensus procedure might be successful in finding solutions
to the French Flag problem, but there is inherently no guarantee that all qualitatively different types of
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solutions are found with this procedure. For a single automaton length and a single target pattern, it is
in computational reach to calculate the fitness of all 3 state rules by using an adaptive fitness calculation
algorithm. In contrast to the normal algorithm, the fitness of a rule is only evaluated for NSample = 10
different initial conditions for L = 30, and only when the fitness calculated in this way exceeds 0.66666,
additionally 40 initial conditions are sampled for a total of NSample = 50 initial conditions. To conserve
memory, only rules with fitness exceeding 0.85 are finally used. For visualization purposes, a tSNE algo-
rithm [155, 156, 157] preceded by a principle component analysis of a 27 dimensional vector containing
the rule outputs is used to project the rules pace down to 2 dimensions (fig. 4.5). To check whether the
same modules as in the Consensus rule are used, the rules are colored by their relative agreement to
the relevant parts of these modules, where relevant parts is defined as having an information content that
is at most one bit less than the maximum information content (fig. 4.5 (a)-(d)). It shows that the relevant
parts of the sorting and bulldozing module are prevalent in nearly all of the found rules with high fitness
(fig. 4.5 (e)) either in the red bulldozer and blue-white sorting or in the blue bulldozer and white-red sorting
combination, with the exception of some rules on the top. These rules have, in contrast to all other rules,
not all entries necessary to yield the French Flag steady state which is also shown by coloring the rules
by their measured time to steady state (fig. 4.5 (g)) and direct visualization of the kymographs (fig. 4.5
(k)), and therefore are indeed an artefact of the chosen simulation time when calculating the fitness. The
crosses illustrate the prototypical Consensus rule (fig. 4.5 (h)) and its color symmetric counterpart (fig. 4.5
(i)).

4.5 Solutions for 4 State CAs

In this part, the combinations of the modules found in 3 state space in 4 state space as proposed by G.
Vercelli are explored. The fourth state is labeled black in the following.

The simplest way to generalize the Consensus rule to 4 states is to just take the entries of the 3 state
rule for all inputs that do not have a black state, let the bulldozer state also erase the black state, and
evenly distribute the rule outputs over the blue, white and red colors for inputs that contain a black state
(fig. 4.6 left column). Additionally, the entries that let the Consensus rule diverge from the simple model
of a pure red bulldozer and a pure blue-white sorting like for example rule entry 9 are now set such that
the simple model assumptions of red bulldozing and blue-white sorting are fulfilled (fig. A.3). This rule will
be called Mixed rule for purposes which will get clear later. In itself, the construction of the Mixed rule is
not particularly interesting because it behaves essentially like the Consensus rule (fig. 4.7 first and second
row), but it can serve as a comparison and benchmark for the following constructions.

With the additional fourth state, the bulldozing state which erases the initial pattern and generates the
rest of the states with equal proportion can be shifted on this black state, while all other states just sort
themselves starting from this states generated by the bulldozing state (fig. 4.6 middle column, fig. A.3).
Intuitively, this has the advantage that the relative proportion of the red state does only weakly depend on
the initial condition, namely on the position of the leftmost black state and the proportion of reds left to the
leftmost black state (fig. 4.7 third row).

Finally, it can be attempted to construct a rule that purely sorts blue, white and red states and converts
all the black states in the initial condition immediately into blue, white or red states. A rule working in
this way would, for the width of the stripes of the French Flag, solely rely on the statistics of the initial
condition. The problem in attempting to do this is that with 3 states it is unclear how to process the reverse
French Flag (red, white, blue) input, because red and blue need to be swapped to the same place and on
the neighboring tiles two white states are created (fig. 4.8 a). Having a fourth state allows to solve this
problem by using the fourth’s state as a temporal superposition of blue and red state that also gets sorted
and resolved as soon as the states around it are in a suitable condition (fig. 4.6 right column, fig. A.3,
fig. 4.8 (c) and (d)). The module that performs this action is termed resolution module (fig. 4.8 (b)). The
rule itself is termed Bubble rule because of its resemblance of the equally named parallel sorting algorithm
[158].
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Figure 4.5 Screening of Entire Rule-space. For all rules in 3 state rule-space, the fitness is calculated, all rules
with a fitness Φ > 0.85 are selected and for visualisation purposes projected down from the 27 dimensional genotype
space to a 2 dimensional space using first principle component analysis followed by t-distributed stochastic neigh-
borhood embedding. The colors represent relative amount of relevant entries (entries with an information content
larger log2(3) − 1) with the same output as the Consensus rule for a (a) blue white sorting module (b) white-red
sorting module (c) red bulldozer module (d) blue bulldozer module; (e) relative amount of steady state entries (f)
fitness Φ (g) time to steady state. Example kymographs for (h) Consensus rule (i) its symmetric counterpart (k) and
an example of the small batch of rules not reaching a steady state during simulation time.

Figure 4.6 Construction of Rules in 4 State Space. High level models of rules constructed in 4 state space, for
kymographs and detailed mapping see fig. 4.7 and fig. A.3. The Mixed rule is the 4 state extension of the Consensus
rule working similarly but now with the red state also erasing all black states. Landscaping rule uses the black state
to erase the preexisting pattern and seed blue, white, and red states alternatingly, which subsequently get sorted.
The Bubble rule sorts the initial pattern using a resolution module (fig. 4.8) to resolve inverse French Flag inputs.
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Figure 4.7 Kymographs for Consensus, Mixed, Landscaping, and Bubble Rule for Different System Sizes.
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Figure 4.8 Resolution Module (a) The resolution module solves the problem to which state the inverse French Flag
input should be mapped to. (b) Mappings of the resolution module (c, d) Illustrative simulation and general scheme
show how the resolution module resolves the inverse French Flag. It maps it to a black state creating one black and
one white state in the process. The black state moves to the right until there is no blue state any more 2 cells to its
right and then annihilates with a white state creating a blue and red state in the process.
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4.6 Scaling of the Fitness Function

One of the most notable conditions in the French Flag problem is that the pattern is scale-able, i.e., it
adapts to the system size. While it is intuitive from the simplified models stated above describing how the
rules work that the functioning should be independent of the system size, that the actual rule and not only
the simplified conceptual model need to be shown explicitly. Indeed, numerically calculating the fitness
for Consensus, Mixed, Landscaping and Bubble rule over a range of system sizes shows that in all cases
the fitness is large and slightly increasing with system size (fig. 4.9). The curves exhibit a high frequency
oscillations due to the discreteness of the system which only allows proportions of exactly 1:1:1 if the
system size is divide-able by 3. The curves can be fitted well in a log-log plot (fig. 4.9 inset), resulting in
linear scaling coefficients of roughly −0.5 for the Mixed and Bubble rule and −1 for the Landscaping rule.
A detailed mathematical model developed by G. Vercelli [146] shows that it is possible to predict these
exponents using the simplified conceptual models of sorting and bulldozing together with a uniformly state
distribution in the initial condition. In a nutshell, since both Mixed and Bubble rule rely on (for at least
a part of the stripes) purely sorting the initial condition, the fitness difference to 1 is dominated by the
absolute difference of the number of states in the initial condition from the average 1/3L. As shown in
the publication, this difference scales as the inverse square root of the system size, reproducing the fitted
coefficients. The Landscaping rule on the other hand uses the bulldozer state to completely erase the
pattern and perfectly reconstruct it, thus all fitness deficits originate from the part of the initial condition
left of the leftmost bulldozer state in the initial condition. The size of this part is roughly independent of
the system size, i.e., its relative size shrinks inversely proportional to the system size. Thus, it creates a
fitness deficit scaling roughly inversely proportional to the system size explaining the measured coefficient
of −1.

Figure 4.9 Scaling of the Fitness Function. Fitness as a function of the system size for Mixed, Landscaping and
Bubble rule. High frequency oscillations are due to the non unique definition of the target pattern if the system size
is not divisible by 3. The Landscaping rule outperforms Bubble and Mixed rule, which have a similar graph. Inset: 1
- Φ as a function of the system size in a double logarithmic plot together with linear fit functions illustrating the power
law scaling of the fitness function when approaching 1 in the limit of large systems.

4.7 Kinetics of Pattern Formation

In developmental systems, the time to form a pattern until the next step of development is often rather
limited [146]. Thus, a fast paced pattern formation mechanism can be imperative. A measure for the
speed of pattern formation is the average time it takes until the pattern reaches its steady state TSS ,
expressed as a function of the system size. Computationally measuring this parameter and using a linear
regression to fit TSS yields linear scaling coefficients of 0.74 for the Bubble rule, 1 for the Mixed rule and
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1.67 for the Landscaping rule fig. 4.10. The numbers have again also been derived using mathematical
models based on the simplified conceptual models of these rules [146]. The Bubble rule just sorts the
initial condition, which for large system sizes should for the furthest states should naively take at most
2/3L steps to reach their respective states - yet the resolution model delays the sorting with each of its
applications by a step, thus increasing this number slightly to 0.74. The Mixed rule first needs time to sort
all red states to the right 2/3L and then sorts the last created blue state from the 2/3L position to the
1/3L position, in total 2/3L + 1/3L = L steps. For the Landscaping rule, this increases to L steps for the
bulldozer state to move completely to the right and then subsequently 2/3L steps for the last created blue
state to reach the blue stripe, yielding L + 2/3L = 5/3L steps necessary.

Figure 4.10 Time to Steady State. (a) Distribution of the time to steady state for Consensus, Mixed, Bubble and
Landscaping rules, together with their averages and theoretical values for a fixed system size. (b) Scaling of the
time to steady state as a function of system size for the prototypical rules together with linear fits and theoretical
estimates.

4.8 Leaving the perfect world: Noise, Growth and Asynchrony

So far, the setting of the model was deterministic, except for the varying initial conditions, and the number
of cells was constant.

4.8.1 Noise

In more realistic scenarios like developing organisms or synthetic signaling, noise is usually ubiquitous
[140]. It may influence transmission, processing and storing of the information about the states. Here,
noise will be modeled by a probability p that during a CA update of a single cell the dynamics will not
follow the CA rule but instead choose one of the states at random. This single parameter models noise
during the transmission of information, the processing of the received and stored information, or during
the storage of information itself. Figure 4.10 (a) gives a visual impression of how pattern formation with
Mixed, Landscaping and Bubble rule changes in the presence of noise for different noise strength. The
Bubble rule seems a lot less affected than the Mixed and Landscaping rule, from which the latter seems to
perform worst. Intuitively, this can be understood as a creation of a bulldozer state through noise far left in
the pattern basically restarts pattern formation nearly from scratch - for large enough noise p the average
time between establishing two new bulldozer state through noise is then smaller than the time it takes for
the pattern to form, never ending the pattern formation effectively. For the Bubble rule on the other hand,
the general pattern is not disturbed too much by the noise since individual errors just get sorted, but do
not “spread” throughout the pattern. Note that a width of L/3 for each stripe is a steady state under noise
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for the Bubble rule assuming that it just sorts: If a stripe has currently length l and there are 4 states in
total, i.e., 3 flag states (the black state gets changed to the others relatively quickly), on average lp2

3 of
the mutations in the stripe change their state to a different one, while on average (L− l)p1

3 change to this
state in the other stripes - equating these two processes results in l = L

3 . To quantify the stability of the
pattern formation process, in fig. 4.10 (b) the average boundary positions as a function of the noise are
shown, where boundary position is defined as the first occurrence (looking from the left) of a consecutive
triple of cells with at least two cells in a state of the corresponding stripe, confirming that the Bubble rule
indeed is stable against noise in contrast to Mixed and Landscaping rule.

4.8.2 Growth

In development, pattern formation often occurs during growth of the tissue itself. To check whether Mixed,
Landscaping and Bubble rule are able to form the pattern during growth, a simple homogeneous growth
is introduced: every cell has a probability q of dividing itself per step (“growth rate per cell”), with both
daughter cells adopting the same state as the mother. In fig. 4.10 (c) again kymographs for different
growths rates per cell are depicted, showing that for low growth rates per cell, patterns form reasonably
well, while for larger growth rates per cell the patterns get distorted. To quantify this more, the average
fitness as a function of the initial system size for a growth rate per cell of 0.002 is shown in fig. 4.10 (d).
This is used as a measure since the average number of new cells per time step is qL, i.e., increasing either
the initial size or the growth rate both increases the total growth rate. For smaller initial sizes, the fitness
increases, while for larger sizes it starts to decrease again. This can be explained by the combination of
two realizations: A steady state pattern is, for short times, only mildly affected by growth since if the stripes
roughly have a relative width of 1/3 each, each of the grows with the same rate. Once the total growth rate
exceeds roughly one cell per time step, growth happens faster than pattern formation, and thus the latter
cannot succeed if it is not finished yet. To test this explanation, the initial length at which the exponential
growth is faster than the pattern formation Lcrit is estimated using qTSSLcrit = 1, which approximately
marks the length at which the fitness starts to dip again. The exception is the Landscaping rule, which
creates new bulldozer states for the input (2, 1, 0) (reverse French Flag) - a input that does usually not
appear during pattern formation behind the last bulldozer, but can due to the system growth (fig. A.7 and
fig. 4.10 (c)). Mutating this entry to a non bulldozer state changes the form of the curve to be similar to
the curves of the other rules (fig. A.4 (f) and fig. A.7). In summary, all prototypical rules are able to form
patterns during growth, with their ability decreasing the longer the pattern formation takes favouring the
Bubble rule over bulldozer module based rules.

4.8.3 Asynchrony

A central assumption of our model is the synchronous update of all cells. While there are examples of
pattern formation where the expression of certain genes is synchronized due to local interactions [29],
there is in general no guarantee that cell state changes happen synchronously across different cells.
To test how much an asynchronous update influences pattern formation with the prototypical rules, the
probability of a cell to perform an asynchronous update per time step pA is defined. At each time step,
a set of cell is chosen according to this probability to update asynchronously. All other cells first perform
a synchronous update, then the cells of the asynchronous set update in a randomly chosen order. The
fitness as a function of pA is plotted in fig. 4.10 (e), showing that Mixed and Bubble rule outperform
Landscaping rule and generate pattern with a relatively high fitness even when on average 30% of the
cells update asynchronously. The low performance of the Landscaping rule can partially be explained by
entry 36, which is the only entry generating new black states without black inputs. Under synchronous
operation of the rule, input 36 does not appear left of the leftmost black state after the initial condition is
processed, but the asynchronous update can generate this input and thus new black cells, which restart
the patterning process (fig. 4.10 (f)). Mutating said entry to white improves the fitness significantly (fig. 4.10
(e)). In conclusion, the Mixed and Bubble rule can withstand a significant portion of asynchronous update,
while the Landscaping rules needs slight modifications.
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Figure 4.10 Noise and Growth (previous page). (a) Kymographs for the dynamics of Mixed, Landscaping and
Bubble rule for different probabilities of mutating the states of an individual cell to a wrong state at each time step.
Generation of new bulldozer modules (Mixed and Landscaping rule) drastically impacts the pattern formation, while
the effects of errors in the dynamics of the Bubble rule only have local effects. (b) Average boundary position,
defined as the first occurrence (looking from the left) of a consecutive triple of cells with at least two cells in a state
of the corresponding stripe, as a function of the error probability underpinning the stability of the Bubble rule. (c)
Kymographs for the dynamics of Mixed, Landscaping and Bubble rule for different rates for each cell to divide at each
time step. (d) Fitness as a function of system size for Mixed, Landscaping and Bubble rule together with estimates
of the system size which on average has one cell division per time step in the whole grid. (e) Fitness as a function
of the probability of asynchrony for Bubble, Landscaping and Mixed rule as well as the Landscaping rule modified
at position 36 away from black. (f) Exemplary kymographs for pattern formation with asynchrony for pA = 0.1 and
L = 34.

4.9 Changing the Target Pattern

While the French Flag serves its purpose as a conceptual target, its symmetry with regard to stripe width
raises the question if the techniques used to find solutions to the French Flag problem as well as the
solutions themselves are generalizeable to different but related problems. In this section, first the evolu-
tionary algorithm and consensus procedure are used to find solutions for different target ratios. Second, it
is shown that re-engineering the Bubble rule allows for nearly continuous adjustment of the stripe within a
range. Third, using the patterning modules of Landscaping and Mixed rule, solutions for flags with more
than three stripes are constructed.

4.9.1 Using Evolutionary Algorithms and Consensus Procedure to Search for Rules
Creating Different Target Patterns

The evolutionary algorithm and consensus procedure is in principle agnostic to the target patterns which
is specified by choosing the target in the fitness function. To look for target patterns with a ratio of
blue:white:red equals (1:2:1), (2:1:1) or (3:1:1), respectively, the target pattern was set accordingly. Setting
the target pattern to different ratios, in this cases blue:white:red equals (1:2:1), (2:1:1) or (3:1:1), respec-
tively, and modifying the consensus procedure to a smaller coverage radius of 3. Since the found solutions
were riddled with special solutions for the used simulation time Tmax = 2L which did not reach the steady
state yet, the fitness function was adapted to average comparisons after Tmax = 2L and Tmax = 5L,
as well as looking for solutions for different lengths (L ∈ {40, 100, 200}). From several runs of EA and
consensus procedure, the best solutions were picked and are displayed in fig. 4.11. Visually inspecting
the kymographs (fig. 4.11 middle column), all rules seem to use variants of the sorting module, with solu-
tions to (1:2:1) and (3:1:1) sorting red and white instead of blue and white. Using special initial conditions
(fig. 4.11 right column), it is possible to shine a bit more light on the additional mechanism of each solution.
In case of the 1:2:1 rule, a single blue cells seems the be used as bulldozer producing red and white cells
at approximately 1:2 ratio. For the 3:1:1 ratio, the blue bulldozer is moving slower than 1 cell per time step
across the pattern while producing white and red at a 1:1 ratio, while for 2:1:1 the bulldozer seems to act
in a more stochastic manner.

4.9.2 Making the French Navy Happy: Re-engineering the Bubble Rule that Create French
Flags with Different Scales

When sailing at sea, the French navy is faced with the problem of a fluttering flag, which when having
originally 1:1:1 ratio will appear distorted viewed from a distance. To counter this problem, it chose a ratio
of 30:33:37 for the flag colors giving it a more even appearance when dancing in the wind [159]. Taking
this as a model problem, it can be asked if it is possible to modify our already found solutions in a fine
grained manner to achieve precisely tune target ratios. In order to solve this problem, the Bubble rule is
reinspected here. When being fed with an initial condition which contains only blue, white and red states,
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Figure 4.11 Solutions for Different Target Ratios Found by Evolutionary Algorithm Search. Average proportion
of each state as a function of the automata length (a, d, g) as well as exemplary kymographs from random (b, e, h, j)
as well as white with perturbation (c, f) initial conditions for the blue:white:red stripe width target ratios of 1:2:1 (a-c),
3:1:1 (d-f), and 2:1:1 (g-i).
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Figure 4.12 Conservation of States for the Bubble Rule. Difference between initial and final number of 0s (1s,
2s, respectively) as a function of the initial number of 0s (1s, 2s, respectively), demonstrating the conservation of the
number of states through the Bubble rule dynamics.

the Bubble rule conserves their relative proportions (fig. 4.12) and merely sorts them. A simple solution
to our problem would therefore just be a modification of the distribution of the initial states. Assuming this
is not possible, it can additionally be used that the resolution module which resolves sorting conflicts only
uses parts of all available rule entries with inputs containing black states, i.e., a lot of the inputs containing
black states are just chosen to distribute any blacks in the initial condition evenly to the other colors for
subsequent sorting. Changing the even balance of this distribution to lean more towards a desired state
can thus be expected to change the color ratio in the final flag when provided with a evenly distributed
initial condition. Testing this prediction slowly mutating the rule entries with black inputs which are not in
the sorting module (fig. 4.13), it can be seen that the average proportion of states can indeed be tuned in
a fine grained manner for any color of choice.

4.9.3 10 Shades of Blue: Combining Bulldozing and Sorting Modules to Generate Stripes
with More Target Patterns

So far, the number of states in the target pattern was kept constant and their number simply motivated by
the original French Flag problem. From a conceptual viewpoint it is interesting to reflect if the previously
obtained rules can be modified to create more stripes. Mixed and Landscaping Rule are a good candidate
for this since their operating principle is to erase the pattern using one of their states and then recreating it
by seeding the other states in an alternating fashion with a period of 2 (Mixed) or 3 (Landscaping) states for
the original French Flag and subsequently sorting them. Simply increasing the period to a larger number of
states and generalizing the sorting modules to any combination of states proves successful in producing
target pattern with more stripes with approximately equal ratio (fig. 4.14). In general, patterns with N
stripes formed by rules following the principle of the Mixed (Landscaping) rule are expected to require the
use of N (N + 1) states.

4.10 Changing the Initial Pattern

Whilst a random initial condition with a flat distribution over the states is probably the most unbiased initial
condition, in biological systems cells often start in an undifferentiated state and change later to a more
differentiated one. In the model here, this can be mimicked by interpreting the black state as undifferen-
tiated, i.e., apart from the fixed boundaries, all other cells are initially black, while the goal of forming a
French Flag as target pattern stays invariant. Applying the Landscaping rule to this initial condition solves
the French Flag problem perfectly, apart from the usual fitness oscillations if the system size is not divid-
able by 3 and thus the target pattern not completely specified (fig. 4.15 (a)). Alternatively to applying the
Landscaping rule, other solution strategies can be searched by evolutionary algorithm similar to above,
with the modification of only allowing sampling rules with the correct steady state mappings. The rules all
use the same strategy of having a uni-colored front moving with speed of on average 1

2 cell per time step
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Figure 4.13 Modifications of the Bubble Rule. Exemplary kymographs (a, c, e) and number of 0s (1s, 2s) in the
final pattern as a function of the number of mutations in the Bubble rule (b, d, f), demonstrating the possibility of
gradually changing the outputs of inputs with black states that do not belong to the sorting resolution module lead to
a nearly continuous change in the width of the stripes.
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Figure 4.14 More States. Exemplary kymographs for generalizations of the Mixed (a, b) and Landscaping rule (c,
d) to more than 4 states.

to the middle, meeting with a front producing white and the leftover color and moving at speed 1 (fig. 4.15
(b, c)). The states produced by the faster front get sorted accordingly.

Figure 4.15 Homogeneous Initial Pattern Fitness as function of the system size and exemplary kymograph starting
from a homogeneous initial condition of (a) Landscaping rule and (b, c) exemplary rules found by using evolutionary
algorithms. The EA only used rules with the correct steady state mappings.

4.11 Discussion and Outlook

4.11.1 Summary

In order to solve the French Flag problem of axial pattern formation with only local interactions, a cellular
automaton model was employed. With evolutionary algorithms, consensus procedures and engineering
approaches, solutions in 3 and 4 state space based on two different patterning strategies were found. One
patterning strategy is to sort a prexisting distributions of states in the correct order, the other is to erase
the existing pattern and create states in the right proportion. Combining these two strategies allows for
the construction of qualitatively different solutions. It was shown that the Bubble rule solution basing on
sorting states is robust against noise, growth and asynchrony, as well as its stripe width tune-able. The
Landscaping rule based on erasing the preexisting states and sorting the newly created ones is robust
against changes in the initial condition and its fitness converges faster to 1 as a function of the system
size.
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4.11.2 Comparison with previous results

From a method point of view, the work of Rohlf and Bornholdt is related concerning several aspects [152,
160]. They used a 3 state CA and evolutionary algorithms to successfully find a solution to the problem
of dividing an initially random 1D pattern into two compartments with sizes 0.3L and 0.7L where the left,
small compartment comprising of only cells in state 2 and the right compartment comprising only of cell
not in state 2. They showed scalability of the pattern with system size and robustness under noise and
growth similar as demonstrated above. Further, they investigated growth at the boundaries, robustness to
“cuts” and errors in directional signaling. Compared to the results presented in this thesis, their problem
was less strictly defined (only a condition on one of the the compartments) with just one special solution
that was discussed, which did not allow the investigation and characterization of more general patterning
principles for axial pattern formation.

From a results point of view, Ancona et al. [161] demonstrated in a general message passing model
different solution algorithm for solving the French Flag pattern. One of their solutions uses a variant of
counting the passed on messages to determine the (relative) position in the pattern and assign a color
based on that relative position. Another solution utilizes a sequential version of the Landscaping pattern
formation idea, where first the correct proportions of the colors are generated across the system, followed
by a Bubble sort to bring the colors in the correct order. All proposed solutions have a slower kinetics, and
similar or larger memory requirements then solutions found here.

4.11.3 Increased Interaction Range

The model used in this chapter included only interaction between directly neighboring cells. Yet, interac-
tions between non neighboring cells are possible, for example trough filopodia extending from one cell to a
more distant cell (see [4, 56] and fig. 2.1 (d)). To include those interactions, in an exploratory project con-
ducted by María Molina Antón supervised by the author of this thesis (personal communication, [147]), the
interaction range of the CA was increased. Naturally, this vastly increases the rule table and complicates
the analysis. Using a similar methodology as described in this section, rules that could solve the French
Flag problem were found. The kymographs for different carefully chosen exemplary initial conditions from
one of the found rules are shown in fig. 4.16. A number of hypothesis can be made from observing the
kymographs: The blue stripe is generated by red states hitting it with white to the right (a-d). While red
moves with a speed of one cell per time step (a, d, e, f), white can move with larger speed to the left (b,
c) and right (f). The red stripe is generated similarly by blue states hitting the red stripe, while the blue
seems to move right slower than 1 cell per time step on average (d). The findings hint at more elaborate
mechanisms that can work for larger interaction ranges, partially using the possible larger pattern forma-
tion speed. A slightly different approach was chosen by T. Ramalho by investigating 1D system in discrete
time and space, but continuous state [162]. The update function was of the form of a recurrent neural
network, and solving for a 2 state partition of the cells showed traveling wave solutions, yet was unable to
find a steady state [162].

4.11.4 2D Topology

A simple yet severe restriction of the above model was the one dimensional topology, which may be model
certain aspects of axial pattern formation, but aspects of increased fitness and error correction in axial
patterns via the second dimension or patterns different from axial patterns cannot be investigated. An
ongoing project with Lukas Zett [148] uses a split up of the 2D rule in a horizontal rule and a vertical
rule both subsequently acting on a cell and its 2 immediate neighbors in horizontal and vertical direction,
respectively (first the vertical then the horizontal rule). When using the Consensus rule in horizontal
direction, an evolutionary algorithm can be used to optimize the fitness with respect to the rule in vertical
direction. The result are rules outperforming a vertically uncoupled version or a version coupled by the
majority rule which always takes the local majority of states as an output for the vertical direction [148]. The
coupling of a Consensus rule in horizontal and a majority rule in vertical direction significantly improved
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Figure 4.16 Increased Interaction Range Kymographs for an exemplary rule with interaction range r = 2 for
exemplary initial condition chosen in order to reveal the basic mechanisms of the rule. Figure adapted from Maria
Molina Anton with permission [147].
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the fitness once noise was present, but was strongly susceptible to errors due to asynchrony, with a
reversed behavior of a horizontal Consensus rule coupled to a with regards to fitness optimized version of
the vertical rule [148]. Another possible solution found was to use a rule in vertical direction that creates
a nearly homogeneous pattern, which is then patterned by a horizontal rule specialized in forming this
intermediate pattern to a French Flag [148]. Additionally, solutions for triangular, hexagonal and irregular
topologies were found. The former two generally outperform uncoupled horizontal 1D Consensus rules
with regards to fitness, while for irregular grids the fitness is lower for large systems [148].

4.11.5 Increasing the Search Quality

Most extensions previously discussed in this chapter require the search of a rule-space which is often
many magnitudes larger, e.g., for 3 states 1D r = 1 CA can have 3(33) ≈ 7.62 · 1012 different rules, r = 2
CA 3(35) ≈ 8.72 ·10115 different rules, and 2D CA with a Moore neighborhood 3(39) ≈ 1.51 ·109391 different
rules. It is unclear if evolutionary algorithms are able to find well working rules in such vast spaces, thus
other approaches might be needed. If there are other features which need to be illuminated like the time to
steady state, mapping elites has shown to be a promising algorithm outperforming evolutionary algorithms
[163]. Its basic principle is instead of an unstructured list of rules it uses solutions over a low dimensional
feature space to construct new rules. If such a rule is a better solution than the already existing solution in
the corresponding sector in feature space it replaces the old rule [163]. Other algorithms exist that do not
rely on a low dimensional feature space, but instead work in the high dimensional rule space and create
a structured list of well performing and diverse rules by adding new rules to the list if they are either more
performant than rules in their close vicinity in rule space which are already in the list or “novel” compared to
the rules already in the list [164, 165]. Combinations of both conditions are also possible [165]. New rules
(“offsprings”) are created by mutation or crossover from parent rules chosen for the rules in the structured
list and the recently created rules [165]. If the offsprings are added to the structured list, their parents get
awarded with a higher “curiosity” which influences the likelihood of becoming a “parent” again [165].

4.11.6 Evolutionary Perspective: Fitness Landscapes

Another interesting avenue of research was proposed by Gabriel Vercelli, who opted for seeing the model
system in 4 state space as example for a possible space of all solutions a evolutionary process (in the
sense of biological evolution, not as evolutionary algorithm as mere search tool in this rule space) could
explore. This opens up questions like if there exists a path of continuous mutations between prototypical
rules which contains only high fitness rules.
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5 How to Steer Global Pattern Formation With
Local Interactions? - Programmability

This chapter consists of work started by Hao Wu [166] and Tiago Ramalho [162], extend in [167] and in
this thesis by the author, and cumulatively published in [168]. Here, a larger emphasis is given to the points
developed during the time of this thesis1 while other parts necessary for a coherent story are presented in
a more concise manner partially omitting proves or calculations already presented in [166], [162] or [167].
All were supervised by Ulrich Gerland. The author thanks Kilian Vogele and Friedrich Simmel for fruitful
discussions.

5.1 A Model for Programmability

In the previous chapter, finding a rule for the formation of a specific pattern from an unknown arbitrary initial
conditions without any additional inputs using local, nearest neighbor signaling was discussed. Here, the
focus is shifted to programmable pattern formation in the sense that the target is to find interaction logics
that are able to form any desired pattern from any given initial condition given that 1 or 2 cells at the
boundary or in the middle of the pattern supplement the appropriate inputs by changing their state, again
only relying on local, nearest neighbor signaling.

This target is motivated by organizer cells in developmental biology which instruct their neighboring
cells via cell-cell signaling while they themselves do not react to any cues recieved from the outside.
The most famous example of an organizer region is the Spemann-Mangold organizer inducing the main
body axis in early Drosophila development [2, 83]. A single "anchor cell" also organizes C. elegans vulva
development with a following signal relay by local interactions [28, 84]. Further, it has been demonstrated
that the evolution of formed patterns can occur through minor changes in cis-regulatory sequences which
control gene transcription [2, 169]. From a synthetic perspective, optogenetic manipulation of opto-Delta,
an optogenetic allel of Delta, opens a perspective of manipulating the expression programs of individual
cells effectively creating analogues to organizer cells [68].

As a modeling tool to investigate this research question, CA are chosen. In this CA, three types of
cells are used (fig. 5.1 (a)): bulk cells, which all follow the same CA rules with synchronous updates; fixed
boundary cells, which have a constant state; and organizer cells, which follow a protocol. All cells can have
one of two possible states, 0 or 1 (fig. 5.1 (a)). They are arranged linearly in a line with either two organizer
cells at both ends or one organizer cell at one and a fixed boundary cell at the other end. Alternatively,
they are arranged in a ring with an organizer cell embedded (fig. 5.1 (b)). Starting from an arbitrary initial
condition, the bulk cells are updated according to the CA rule, if necessary taking into account the states
of organizer or fixed boundary cell (fig. 5.1 (c)). The goal is now to find CA rules which allow for any initial
pattern and any target pattern a choice of organizer sequence that produces the target pattern.2

5.2 Limited Set of Rules Enables Programmability

As first attempt to solve this question exhaustive sampling of small systems is used. For a given system
topology and system size, a network/graph is generated whose nodes are all possible patterns of the bulk

1in particular: the parts about the degree statistics and standard classification quantities in section 5.2; section 5.3 except for
the part about microcanonical entropy; the comparison of different pattern complexities in section 5.6

2“Pattern” in this sentence can be any combination of 0s and 1s, not necessarily an ordered one.



56

Figure 5.1 CA Model for Programmable Pattern Formation. (a) The model features 3 types of cells: bulk cells,
following a CA update rule, organizer cells (marked by a red arrow), which follow a protocol, and fixed boundary cells
(square), which have a constant value. All cells can have either state 0 or 1, marked by color. (b) Three topological
setups are considered: A linear, 1D array of bulk cells with organizer cells on both sides (two-sided control), or
with an organizer cell on one side and a fixed boundary cell on the other side (one-sided control), as well as a
circular, 1D array of bulk cells with a single embedded organizer cell (embedded control). (c) The bulk cells follow
a CA dynamics, while the organizer cells control the patterning process by following a protocol of state changes.
A given CA rule is programmable if it allows the organizer cells to steer the pattern formation to any target pattern
starting from any initial pattern using an appropriate sequence of organizer signals. Reproduced from [168] under
the Creative Commons Attribution 4.0 International License [170].



57

(fig. 5.2 (a)-(c)). For each such pattern and each possible organizer input(s), the CA is executed once
synchronously and then an directed edge is draw between the initial pattern and the pattern after a single
step (fig. 5.2 (b)-(c)). For a given system size and system topology, this network now contains all possible
transitions between patterns and will be called "patterning graph". Thus, checking whether it is possible
to transition from any initial to any target pattern in the patterning graph is equivalent to checking if it is
possible to transition from any node of the patterning graph to any other node along the directed edges, i.e.,
checking if the patterning graph is strongly connected [171]. Using standard algorithms implemented in
Igraph [172] or NetworkX [173], respectively, it is possible to check which rules generate strongly connected
patterning graphs for a given system size and topology and are thus “programmable”.

The number of representatives from the CA equivalence classes (section 3.3.1) which are programmable
decreases monotonically as a function of the system size and seems to reach a stationary value for system
sizes larger than L = 8 (fig. 5.2 (d); for the “one-sided control” scenario a organizer cell on the left was
chosen). The representatives of the equivalence classes are tabulated in fig. 5.2 (e).

In order to explain how the programmable rules work, as a first measure the degree statistics of the
corresponding patterning graphs is investigated. For a given number of possible combinations of the
states of the organizer cells, the out-degree of each node, which is the number of edge-tails which begin
at that node, corresponds to that number - i.e., for a single organizer the out degree is 2, for two organizers
and thus 4 possible combinations of organizer states the out degree is 4. The in-degree distribution, which
is the distribution of edge heads ending at a node, can in principle be any distribution conserving the
cumulative degree and depends on the rule, but notably for programmable rules it is a distribution with a
single nonzero value of the corresponding out degree in contrast to nearly all other rules (fig. 5.2 (f) and
fig. A.8). The only other two rules with a similar in-degree distribution are the identity and complement rule
which are both trivially not programmable. The form of the in-degree distribution is somewhat surprising
since a lot of different degree distributions would allow for a strongly connected network, e.g., a single path
of edges connecting all nodes in a circular structure with all other edges pointing any desired nodes. It
also insinuates that programmable rules may be distinguished from non-programmable ones by sampling
the local structural statistics of their patterning graph which is also numerically feasible for larger patterning
graphs.

With the same goal in mind, also the values of standard classification quantities (chapter 3) was calcu-
lated for all 256 elementary CA rules, highlighting the programmable rules amongst them (fig. 5.3). Starting
from the top, Langton’s λ is both for the 0 or 1 as quiescence state for all programmable rules at 1

2 - which
is not surprising since in the table in fig. 5.2 (e) the given algebraic expressions for the rules indicate that
all of them are linear in at least one of their arguments, making a change in that argument change the
output of the rule and thus leading to an equal 0 - 1 output distribution of the rule. The µ-sensitivity does
not show a particular structure which can again be explained from the algebraic expressions which show
that while the programmable rules do depend at least in some inputs linearly, most either do not depend
on all inputs or do depend on them in a nonlinear fashion. The estimate for the Kolmogorov complexity
of the rule table does also not reveal any particular structure, yet both spatial and temporal Kolmogorov
complexity estimates show comparably large values for the programmable rules, indicating that without
a specific external protocol the space of patterns does not get compressed by the programmable rules,
consistent with the in-degree distributions discussed above and the values for spatial and temporal single
point entropies. The information integration or Synergy on the other hand does not show a particular struc-
ture with the values being distributed over both large and low values, indicating that some rules introduce
dependencies between the inputs, while others do not which again becomes apparent by looking at the
algebraic expressions on the rule table. Summed up, the analysis above indicates that computing esti-
mates for the spatial and temporal Kolmogorov complexity and single point entropy might, together with a
sampling of the in-degree distribution, hint which rules to check for programmability in larger rule spaces.
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Figure 5.2 Patterning Graphs. (a) Exemplary system with L = 3 bulk cells following rule 86 and two organizer
cells leading the pattern from 101 to 011. (b) Excerpt of the patterning graph of the system depicted in (a) (L = 3,
rule 86), defined nodes being patterns with L = 3 and directed edges being possible transitions for rule 86 and
the possible organizer states, with the red path corresponding to the patterning dynamics in (a). Organizer states
that corresponds to a specific transition are noted next to the directed edges. (c) Whole patterning graph for L = 3
and rule 86 and two-sided control. A rule is called programmable if transition form every bulk pattern to any other
bulk pattern is possible, i.e., if the graph is strongly connected. (d) Number of programmable rules as a function
of the system size for different system topologies, calculated by exhaustive generation of the patterning graphs and
checking for strong connectivity for one member of each equivalence class (section 3.3.1). The exact number of a
linear system with one organizer varies depending on the choice of the representative rule (not shown). For system
sizes L > 8 the number reaches a plateau value. (e) Programmable rules which comprise the plateau in (d) -
algebraic expression, rule number and input-output mappings, as well as indications about the sensitivity on the
initial pattern, the bijectivity of the rule (see below) and non-linearities. (f) Examples of in-degree distributions for
different rules and a random assignments of directed edges to a graph with the same number of nodes and edges
as the rules. Programmable rules have in general a histogram with only a single nonzero value. Reproduced from
[168] under the Creative Commons Attribution 4.0 International License [170].
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Figure 5.3 Classification of Programmable Rules by General Schemes. Langton’s λ with 0 (λ0) and 1 (λ1),
respectively, as “quiescent” state; µ sensitivity; Kolmogorov complexity of the rule table KR, of the pattern along the
spatial axis KS (length L = 100), averaged over 1100 time steps and 10 samples with random initial conditions, and
of the pattern along the temporal axis KT averaged over the spatial axis with similar parameters as above; Single
site entropy H calculated along the spatial HS and temporal axis HT , respectively, and averaged over the other, with
same parameters as above; Numerical calculation of the the synergy for 1 or 2 time steps S1 and S2, values from M.
Bojer [116]. Programmable rules are marked with a red +.
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5.3 Rules Enabling Programmability Form Patterns in Different Ways:
Patterning Strategies and Patterning Kinetics

After having determined the programmable rules and contextualized their values for some classification
quantities, in this section a closer look on which mechanisms the individual rules use to form the desired
target patterns is taken. In fig. 5.4 (a)-(h), it is exemplified how different programmable rules reach desired
target patterns (most of the time 10011100), starting from an all 0 initial condition except for (g). For (a)-(c),
examples are given with one organizer cell on the left and a fixed boundary cell on the right. The probably
simplest example is rule 240 (xt+1

i = xt
i−1) (fig. 5.4 (a)), which just moves the whole pattern one cell to the

right and the target pattern is thus plainly written into the left organizer cell (except for the 0 part of the target
pattern to the right). This is reminiscent of the clock and wavefront mechanism of vertebrate somitogenesis
[13] in the sense that a temporal signal gets written into a spatial pattern. The temporal signal may also be
processed, e.g., 15 (fig. 5.4 (b)), shifting the pattern to the right and simultaneously inverting the color at
each step, requiring a different organizer protocol. The processing might be more complex, exemplified by
rule 105 (fig. 5.4 (c)), generating also parts of a complex pattern without the external input and, depending
on the initial and final pattern, shortening the time it takes to form the target pattern. This can also be
achieved by using organizer cells on both sides, which allows some rules to systematically shorten the
time to reach the target pattern by processing information from both sides symmetrically (rule 90, fig. 5.4
(d)). Some rules may also process this information asymmetrically, only partially using one of the inputs
from one of the organizer cells (rule 30, fig. 5.4 (e)). At last, in fig. 5.4 (f)-(h) the organizer cell is embedded
in bulk cells in a linear arrangement. The pattern information might again be only transmitted to one side
(rule 240, fig. 5.4 (f)). It may also in some cases be computed directly from an initial pattern (rule 30,
fig. 5.4 (f)) or the information might be pushed in both directions, creating an interference like phenomenon
which eventually produces the target pattern.

To substantiate the loose claims made above about the patterning kinetics, it is useful to measure
how much the pattern space gets “compressed” by the action of the organizer cells. In order to do so, the
following thought experiment is undertaken: After selecting a target pattern, a little walker is placed at every
node of the patterning graph. All walkers move towards the target pattern along the shortest possible path
on the patterning graph. The amount of node still occupied by walkers, in the sense of statistical physics
the occupied “state space”, is recorded as a function of time. The logarithm of this quantity corresponds
to a microcanonical entropy-like quantity S(t). For a fixed system size and a single target pattern S is
plotted as a function of time for a circular topology with an embedded organizer (fig. 5.4 (i)) and a linear
topology with 2 organizers (fig. 5.4 (j)) for the corresponding programmable rules. For the circular topology
(fig. 5.4 (i)), rules that only transfer information into one direction (rules 15, 60, 240, cp. fig. 5.4 (f)) follow
a linear law (S(t) = L − t), while rules that transmit information in one direction linearly and in the other
non-linearly (30, 45, 120, 180, cp. fig. 5.2 (e) and fig. 5.4 (h)), have a non-linear dependency on time. For
two organizers, rules that process information linearly from both sides (rules 90, 105, 150, cp. fig. 5.2 (e))
form patterns faster (S(t) = L − 2t) than the other programmable rule. These fall into two sub-classes.
Rules that depend only linearly on the left entry and not the right entry show a perfectly linear behavior
with slope −1 (S(t) = L − t). Rules that depend on the left entry linearly and non-linearly on the right
entry show only a roughly linear behavior with slope −1 (S(t) = L− t)).

In conclusion, rules which process information linearly in both outer arguments can utilize two organizer
cells to form patterns twice as fast compared to using just one organizer cell or having two organizer cells
but rules which do not take inputs from one of their outer arguments. Rule with non-linear processing
of one of the outer arguments and a linear processing of the other can utilize two organizer inputs only
slightly better compared rule which only process one outer argument and ignore the other, but take longer
on average to form the pattern when placed in a circular topology because the same signal gets processed
twice in a different fashion.
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Figure 5.4 Patterning Strategies and Kinetics. (a)-(g) Exemplary kymographs for different rules and topologies.
Linear topology, one organizer cell: (a) Rule 240 copies the organizer sequence 1:1 into the pattern. (b) Rule 15
copies and additionally inverts the color at each step (c) Rule 105 shows a more complex information processing,
leading to a much quicker formation of the desired pattern from the same initial condition. Linear topology, two
organizer cells: (d) Rule 90 uses inputs from both sides equally, while rule 30 (e) fully uses inputs from one side,
but only partially inputs from the other side. Circular topology: (f) Rule 240 functions similar in circular topology (g)
Rule 30 can use information from both sides, which due to the interference of the signals from the inputs may lead
to a long pattern formation time (h). (i, j) Entropy S (occupied rule space, defined as the logarithm with base 2 of the
number of occupied patterns when starting from every initial pattern and moving towards a defined final pattern) as
a function of time for the programmable rules. Dashed lines correspond to S = −t + L and S = −2t + L, indicating
a linear decreases for all rules (linear, 2 organizers) or only linear rules (circular), with rules with linear inputs on both
sides being the fastest, while non-linear rules being slower in circular topology. Reproduced from [168] under the
Creative Commons Attribution 4.0 International License [170].
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5.4 Bijectivity Is a Sufficient Criterion for Programmability

The previous section already hinted that programmability has a connection to the linearity of the algebraic
expression. In this section, this notion is formalized with the concept of bijectivity [174].

Definition: A rule is called left bijective, if the mapping x −→ y with y = f
(
·, xt

i, xt
i+1
)

is bijective for
each combination of xt

i, xt
i+1 values (fig. 5.5 (a)-(b)). Right side bijectivity can be defined analogously.

This means for a left bijective rule, the output xt+1
i can be set to any desired value by chosing xt

i−1
appropriately. Translating this argument back in time and space until an organizer cell is reached allows
control of xt+1

i (fig. 5.5 (c)). The argument made in fig. 5.5 (c) allows for the following conjectures:

• If a rule is right side bijective, the same argument can be made with an organizer cell on the right.

• The argument is constructive in the sense that it produces a recipe for calculating the organizer
sequence Ot to reach the target pattern given the initial pattern and the rule.

• It explains the patterning kinetics discussed in the previous section: rules that can take inputs from
only one side need at most L steps to form the target pattern, rules that can take inputs from both
sides at most L

2 (or L+1
2 if L

2 is not of integer value).

• It also explains part of the discussed pattern formation mechanisms: For simple rules like 240 and
15, the organizer sequence can in principle be chosen independent of the initial state, although
taking the initial state into account might increase the speed of pattern formation. For more complex
rules, the initial state will influence the pattern formation and has to be taken into account.

• The bijectivity argument does neither use a specific number of states nor a specific system size.

• This also sets the lower boundary on number of programmable rules to k!k2
.

Figure 5.5 Organizer Sequence Construction for Bijective Rules. (a) Example of a left-bijective rule which
maps, for same middle and right input, to different outputs for different left inputs. (b) Example of non left-bijective
rule. (c) Illustration of the organizer sequence construction for a left-bijective rule. The values of all white cells are
not influenced by the organizer sequence. To set the state of x4(5), the state of x3(4) must be at the correct value,
while left-bijectivity of the rule guarantees that such a state exists. To set x3(4), x2(3) must be at the correct value.
This argument can be carried on up to the organizer O(0), which can per definition take any desired value and
thus determine x4(5). The same argument can now be made for x3(5) and O(1) and so forth. Thus, bijectivity of
the update rule is a sufficient condition for programmability. Reproduced from [168] under the Creative Commons
Attribution 4.0 International License [170].
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5.5 Expanding to More Dimension Allows Buffering of Errors

In realistic settings, the communication between cells, storage of the cell state, and processing of the
information are all erroneous. To model this, a probability p is introduced with which at each step a cell
changes its value to the opposite value similar to section 4.8.1. As observable, the probability of not having
an error in the final pattern Prob (noerror) is chosen. For rules that are only bijective in one of their outer
arguments it takes at most L steps to reach the target pattern and thus, by the construction in fig. 5.5 (c),
at most errors in L(L−1)

2 updates can influence the final pattern, leading to

Prob (no error) ∼ (1− p)
L(L−1)

2 ≈ 1− L (L− 1)
2

p +O
(
p2
)

. (5.1)

This estimate together with its Taylor expansion to the first order is shown in comparison to the numerically
sampled values for the programmable rules in fig. 5.6 c, confirming that the estimate indeed reproduces
the general behaviour of the model and showing the great sensibility towards errors.

In a one dimensional system with limited range, a correction of the errors is not directly possible since
there is not information redundancy. To introduce the possibility of such a redundancy, the system is extend
to two dimensions. The goal is to have a striped system in the sense that all cells in the y direction are
supposed to having the same state (fig. 5.6 (a)). The cells are arranged in a tube topology with periodic
boundary conditions along the y axis, with a total system size of L · K cells. The redundancy of the y
direction offers a possibility of increasing the reliability of pattern formation by locally averaging over this
direction, effectively equivalent of applying a majority voting rule similar to section 4.11.4 and [175], before
applying the CA rule (fig. 5.6 (b)). Using a combinatorical argument for the possible arrangements of errors
and their influences it is possible to show that

Prob (no error) ≈ 1− 2L2Kp2 +O
(
p3
)

, (5.2)

confirmed again by numerical sampling [167, 168]. Thus, the redundancy is able to reduce the sensitivity
of the programmable rules to errors drastically. There is some variability among the programmable rules,
which can be explained by the fact that there are rules which only shift the information (240, 15) and
thus not spread any introduced errors, whereas rules that also process the information in a complex way
also have the tendency to spread the errors and thus perform worst (rule 90, 105, 150). When changing
the boundary conditions on the top and bottom to be fixed, the error correction process is jeopardized
noticeably (fig. 5.7), with the exception of rule 15. As explanation it can be hypothesised that at the fixed
boundary the error correction breaks down since only two cells in the majority voting are updated by a
dynamical rule and the third is fixed - if those two cells have a different value correction is not possible.
The exception is for rules that invert the patterns at each step as for rule 15, allowing the averaging majority
rule also to have some effect on errors at the boundary cells.

5.6 Robustness Against Organizer Signal Timing

Up to now, the timing of the organizer signal had to be in precise lockstep with the updates of the bulk and
the target pattern did not have to be a stationary pattern of the update rule. The former can be achieved
by subjecting the organizer cells to the same synchronization mechanism as the bulk cells. The latter
has possibly no practical influence since the time an update takes is never specified in the model and
does not have to be the same for each step of the dynamics, and additionally transient patterns are a
common feature of developmental systems [176]. However, it may still be interesting to ask what kind of
patterns can be formed if these assumptions are relaxed. To this end, the model is changed insofar now it
is always waited until the dynamics reaches a stationary pattern before the organizer inputs change, but at
the same time also the rule is changed (fig. 5.8 (c)). The rule change would, in a developmental system, be
equivalent to changing the information processing of the same signals a cell receives, as, e.g., exemplified
by the Toll signaling pathway in Drosophila [169]. A combination of organizer inputs and rule is now referred
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Figure 5.6 Robustness Against Errors and Error Correction (a) To investigate robustness against errors cylin-
drical grid is used with organizer cells on the left and fixed boundary cells on the right. (b) An update step of the
Moore neighborhood comprises of an application of the majority rule in vertical direction, followed by a CA update in
horizontal direction. (c) To quantify the susceptibility to errors, the probability of not having an error in the final pattern
as a function of the probability of each cell mapping to the wrong state per time step p is calculated from simulations
for a 9x9 grid for the programmable rules (symbols). Solid lines give the values of an analytic theory with dashed
lines representing the corresponding Taylor expansions up to the first non constant order. Red for systems without
error correction, blue including error correction. Error-corrected systems are less susceptible to errors, leading to
a higher order of p dependency for small p. Reproduced from [168] under the Creative Commons Attribution 4.0
International License [170].
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Figure 5.7 Robustness Against Errors and Error Correction for Fixed Boundary Conditions. Same as in
fig. 5.6, but for fixed upper and lower boundary conditions instead of periodic. Correction works noticeably worse
due to the disruptive influence of the fixed boundary conditions. Only for rule 15 and its color switches (cp. fig. 5.4)
it is possible to correct errors more effectively (cp. [167]). Reproduced from [168] under the Creative Commons
Attribution 4.0 International License [170].

to as instruction. To capture this newly defined dynamics, the patterning graph of each rule is mapped to
a new graph with the nodes still being the patterns, but the edges now representing the transitions from a
pattern to (if existing) the stationary pattern to which it is lead by the rule (fig. 5.8 (a), (b)). Adding these
graphs for all rules together by keeping the nodes copying the edges into a common graph constructs the
“attractor graph” for a given system topology and system size. As initial state, a homogeneous bulk state
is chosen. Form other initial conditions, this initial condition can always be reached by the 0 rule

Since not all patterns are stationary states to some rules (except for the identity rule), some patterns
are not reachable. Calculating the number of actually reachable patterns by exhaustive exploration of
the pattern space shows that it can be well approximated by an exponential growth (fig. 5.8 d), which is
consistent with an analytical approach showing that the number of attractors of finite CA grows with the
exception of the identity rule more slowly with system size L than 2L [177]. Even though the number of
reachable patterns grows in exponential fashion, the number of instructions necessary still follows a linear
relationship (fig. 5.8 (e)), similar to the previous patterning scheme.

Ramalho looked at the pattern formation process in the sense of this section from the viewpoint of
Kolmogorov complexity by viewing the pattern formation process as means to compress the information
needed to generate a specific pattern [162, 168]. The number of instructions is then up to a constant an
upper bound for the Kolmogorov complexity of the pattern and it can be hypothesized that, since elemen-
tary cellular automata are a minimal model for algorithmic generative models, it is a good upper bound
to universal complexity [162]. Here, it is compared with the pattern complexity calculated as described
in section 3.3.4. Figure 5.9 demonstrates that both are only weakly related in the sense that low values
of one measure do not occur together with high values of the other measure, but otherwise no additional
structure can be seen. The first aspect can be explained by the fact that pattern which needs the lowest
number of instructions exhibit some periodicity as naively expected from patterns which are easily com-
pressed [162, 168]. That otherwise no structure is evident is not a contradiction of two measures for a
Kolmogorov complexity, since both can only be seen as upper limits and are up to a constant determined
by the underlying algorithm.
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Figure 5.8 Attractor Graphs. (a) Attractor graphs are generated by calculating the attraction basins of fixed points
of patterning graphs for fixed organizer inputs. (b) Each element of the attraction basin is then directly mapped to
the fixed point in the contribution to the attractor graph of the specific rule. As an example, the transition marked
in red arrows from pattern “101” to pattern “001”, which is stationary for rule 40, using [1, 1] as organizer inputs, is
equivalent to the red arrow in (b). The attractor graph comprises contributions from all CA rules and organizer inputs
for corresponding topology. (c) Exemplary trajectory in the attractor graph, changing rules and organizer inputs
(instructions) only after having reached a fixed point. Pattern 011001101001 is formed from a homogeneous initial
pattern. (d) Number of reachable patterns from a homogeneous initial condition as a function of the system size
from exhaustive calculations (symbols) as well as exponential fits (dashed lines), which all have a base smaller than
2. (e) Number of instructions necessary to reach a given state calculated exhaustively (symbols) with linear fits.
Reproduced from [168] under the Creative Commons Attribution 4.0 International License [170].

Figure 5.9 Pattern Complexity Number of
patterns with a zip length and number of in-
structions needed to reach all reachable pat-
terns for two organizer cells and L = 16. Zip
length is calculated by applying the zlib module
of python to a string representation of the pat-
tern and then subtracting the minimum result-
ing compressed size, compare section 3.3.4.



67

5.7 Discussion and Further Avenues of Research

In this chapter, a theory for programmable pattern formation was developed. First, a programmable rule
was defined as allowing to steer a patterning process starting from any initial pattern to any target pat-
tern by appropriately choosing organizer inputs. A computational approach by exhaustive analysis of the
space of patterns for small system sizes using network theory identified a limited set of rules that were
programmable. Estimates for the spatial and temporal Kolmogorov complexity as well as single point en-
tropies of the rules alongside with the degree statistics of the patterning graphs were identified as possibly
useful filtering criteria for the search of programmable rules in larger rule spaces. The patterning principles
employed by the rules where discussed, ranging from a Chinese’s whispers or Mexican wave [178] type
of information relay over complex information processing to interference type rules for circular topologies.
Bijectivity was identified as a sufficient criterion for programability of rules independent of system size or
number of states. Much like in a game of Chinese whispers, errors are a common feature of biological pat-
tern formation and have been addressed subsequently by introducing redundancy through extending the
system in a second dimension over which local averaging procedures have been performed. Finally, the
precises timing of the organizer protocol was relaxed at the expense of changing rules and it was shown
that under these conditions, it was still possible to reach an, as function of the system size, exponentially
growing amount of patterns in an, as function of the system size, linearly growing time.

The equivalent question in the theory of continuous systems is usually phrased as control theory [179,
180, 181]. In control theory, the notion of controllability is formalized similarly to programmability here
as the abilities to steer a dynamical system to any desired state from any initial state. Recent advances
focused on controllability of systems with complex topology yet simple linear dynamics [181]. In contrast,
we used a simple topology but a more complex, highly nonlinear dynamics in an open loop system. For
a discrete CA setting, a similar problem was addressed independently [166, 162, 167] in the framework
of regional control of CA. In a deterministic setting, Boolean derivatives [112] and peripheral linearity
have been employed as a conceptually similar vehicle to bijectivity to prove programmability of CA rule
[182, 183], as well as a graph theoretical approach was undertaken to computationally investigate the
question [184] which finally was generalized also in a probabilistic setting [185, 186].

How does the here discussed pattern formation mechanism via organizer cells compare with other
mechanisms in the literature [176] like, e.g., the clock and wavefront mechanism [13] or traveling and
phase waves [187]? For example, in the clock and wavefront mechanism the difference between exem-
plary investigated wild types and mutants seems to be the wavelength of the pattern, while the principal
form seems to be invariant [29]. As demonstrated here, with organizer cells the full capability of com-
plex, information processing subunits can be leveraged leveraged to achieve a complete adaptability of
the pattern formation process to freely chose-able target patterns and not only changes in the pattern
wavelength.

An example for a programmable dynamics may be the pattern formation during C. elegans vulva devel-
opment, where an anchor (“organizer”) cell steers the fate of 6 precursor cells [84]. Reverse engineering
a possible CA rule from the proposed high level models yield a partially specified rule which is compatible
with a bijective rule [167].

The results of this research can possibly be transferred to other fields ranging from locally communi-
cating robots [188, 189] over DNA based CA implementations [167, 190], to nanoscale robotic arms [46].
For the latter, as proposed by Simmel [48], controlling an organizer cells could be achieved through small
enough electrodes addressing only a single arm.

For future research, it seems promising to investigate the concept of programmability in 2D, yet an
attempt for a direct transfer of the concepts developed turned out to be not successful [167]. Thus, it
might be interesting to turn either to more relaxed forms of programmability, e.g., focusing only on a
subset of cells that need to be in the correct state or surrendering the all-to-all mapping as exemplified in
section 5.6. On the other hand, the external steering capacity could be strengthened by increasing the
number of organizer cells and/or decreasing their mutual dependency. Other promising avenues might be
investigating the influences of prepatterns [12, 116] and long range signaling.
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6 How to Synchronize Local Oscillations Globally?
- Pattern Formation and Synchronization

The main content of this chapter was the work of the author of this thesis with critical feedback by Mareike
Bojer and supervision by Ulrich Gerland. Section 6.6.1 was developed together with Johannes Harth-
Kitzerow, Torsten Enßlin, and Ulrich Gerland.

6.1 Introduction - Synchronization and Pattern Formation

With the minor exception in section 4.8.3, until now all used CA had synchronized updates, i.e., all cells
updated exactly at the same time. While this is the common assumption, which is, e.g., used by Wolfram
[42, 191] and Conway [41], the effects of asynchrony a CA has also been investigated - for a recent review
see for example Fatès [192]. The space of possible versions of (a)synchronous updates in CA stretches
between completely synchronous updates on one side and completely random updates, i.e., at each step
in time a cell is picked at random and updated. In between these extremes, several possible update
schemes are discussed in literature which usually vary

• the amount of cells synchronously updated at the same time,

• the amount of order (subsets) of cells follow when updating sequentially,

• how cells are assigned to the updating subset, e.g., with which probability,

• how long it takes to communicate the update to the neighbors, i.e., introducing a communication
delay, and with what probability the update is communicated at all or to which subset of neighbors.

Exemplary models from literature [193, 194] employing different update schemes are presented in ap-
pendix A.6.1, another example in the context of this thesis can be found in section 4.8.3. The pattern
formed can be strongly affected by the chosen type of update scheme and even undergo qualitative
changes akin to a phase transition as function of, e.g., the probability of communicating the update to
the neighbors or choosing the subset of cells which will be updated [194]. Thus, with the goal of reliably
forming a pattern, it is interesting to look at how synchronization could be achieved in CA. Assuming that
all cells have imperfect internal clocks and, as the focus is on pattern formation by local communication,
no global external clock signaling them when to update, the question can be asked to what extent it is
possible to keep CA globally synchronous just by local signaling.

6.2 A Model for Pattern Formation with Information Transmission Delay

6.2.1 Model Description

The model description is started by describing how a continuous oscillation model can be discretized in a
biological setting and how this can be emulated with a discrete stochastic update. Then, the integration of
such an update model with a CA is specified and a delay introduced.

To adapt a continuous time synchronization to a discrete CA setting, a continuous time oscillating clock
is discretized into a pulse like behavior (fig. 6.1 (a)). In this effective model, only at discrete time intervals,
representing, e.g., the maximum of the continuous phase model, the clock “ticks”. In a biological setting,
reacting only to a specific part of this oscillation could potential be realized by highly nonlinear signal
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processing functions [89], effectively acting as a filter mechanism. Also, an integrate and fire oscillation
[195] like proposed for firefly flashing, where a variable increases autonomously over time with additional
jumps added by firing neighbors until a threshold is reached at which the clock “fires” and resets itself, could
be possible. To simplify this more complex discretization model, it is assumed that successive cycle times τ
are drawn from a distribution P (τ) (fig. 6.1 (a)) to emulate the potentially noisiness in the oscillation phase.
For P (τ) it is assumed that the cycle time is originating from a sum of random variables specifying the
time of individual chemical reaction which in total comprise a full oscillation. Thus, a Gaussian distribution
with mean µ and standard deviation σ is chosen using the central limit theorem as justification. Each
cell is modeled with one of these clocks. The number of ticks a clock has performed will be labeled as
generations.

At each tick of the clock in a cell, the cell updates its state according to a cellular automaton rule pro-
cessing the states of the neighbors and its own state. If the information about the cell state update is
transmitted instantaneously, even extremely small temporal differences lead to cells already taking the
“new” neighbor states into account when updating. Consequently, the CA dynamics is effectively strongly
asynchronous even if the first “tick” of all clocks is synchronized due to the synchronous initial condition.1

This is not a desirable property for a predictable pattern formation close to a synchronous setting, instan-
taneous information transmission is additionally not a realistic assumption in a biological setting since the
transfer of molecules within a cell to its boundary in relevant concentrations takes time. Thus, a constant
temporal delay of the magnitude tdelay (fig. 6.1 (b, c)). It models the time for information processing and
transmission between neighboring cells, is introduced.

6.2.2 Observables and Parameter Choices

After having defined the model, the next step is to define appropriate observables. From the position of
pattern formation in CA it is of interest at which point the formed pattern diverges from a pattern formed
by an identical rule and initial condition but synchronous update. This point in time can be determined by
comparing the kymographs of a CA with synchronous update and a CA with an update scheme as defined
in the previous section - the first generation at which those two kymographs differ is defined as

tF irst Difference = arg min
t

(xsync
i (t) 6= xasync

i (t)). (6.1)

with xi being the state of cell i. While the CA dynamics might be effectively asynchronous, this might not
be reflected in the kymograph. As an example, for rule 0, the kymograph will after the first generation
always be 0, regardless if the updates happen in a synchronous or asynchronous manner. To quantify the
point where the dynamics is first asynchronous, tF irst Asynchrony is defined as the first time the temporal
difference between the update of neighboring cells exceeds the delay,

tF irst Asynchrony = arg min
t

(∆t (t) > tdelay) (6.2)

with ∆t being the temporal difference between the update of neighboring cells.
As simulation parameters the following values are used if not stated otherwise:

• Gaussian distributed update time with mean µ = 1 and noise σ = 0.016

• Temporal delay of tdelay = 0.1

• 1D system with periodic boundary conditions and system size L = 20

• 2 state random initial condition of the pattern

1If the mean of the update distribution µ is large compared to the standard deviation σ, the resulting update scheme can be
expected to initially be a variant of a cyclic update scheme in which all cells perform the update of a generation before any cell
performs the update of the next generation. The order of update within a generation can be expected to neither be random
nor fixed, but have some finite temporal correlation.
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Figure 6.1 A Model for Synchronization in Pattern Formation (a) Inside of a cell. The oscillations of gene
expression is usually modelled a continuous oscillation of a concentration c as a function of time (top). This oscillation
may have an average mean frequency with fluctuations around this mean. If a signal s is emitted only for large
concentrations or only detected for large concentrations, equivalent to applying a high pass filter c (s), the continuous
model is effectively discretized in a pulse like behavior representing the “ticks” of the oscillation clock (centre). This
pulse like behavior can also be directly produced by a discretized model drawing the times of the pulse from a
probability distribution P (τ) (bottom). (b) The cell and its neighbors. The ticks mark the update times of the
cellular automaton. The state of the cellular automaton is transferred with a delay tdelay to the neighbors of the
cell. The CA update xi (t + 1) = f

(
xrep

i−1 (t) , xi (t) , xrep
i+1(t) (t)

)
is conducted with the current state of the cell i itself

as well as the last states received from the neighbors
{

xrep
i−1, xrep

i+1
}

. These states might not be the current states
of the cells i + 1 and i − 1, but due to the delay cell i has not yet received an update. (c) Tissue context and
observable. Depicted are, for a set of cells (bottom), events as a function of time (vertical axis for each cell). Each
yellow rectangle with rounded corners symbolizes an update with the lower edge corresponding to a ticking of the
clock and the execution of the CA and the upper edge corresponding to how long it takes to communicate the state
change to the neighboring cells (tdelay). The dark or light colored circle at the lower edge of the yellow rectangles
records the state of the cell right after the update. If the temporal difference between the updates of neighboring
cells of the same generation ∆t is larger than the delay tdelay, then the update of the CA is effectively asynchronous.
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• All cells will start in perfect synchrony, i.e., the main question discussed will be if synchronization is
conserved.

As a first estimation, the temporal difference between two neighboring cells after a single temporal update
step follows a Gaussian distribution with mean 0 and standard deviation 2σ = 0.032. Thus, the probability
that 2 cells are synchronous after a single step in time is 98.7%. Each run is conducted for 1000 steps
in time. If the system is still synchronous and/or there is no difference between the synchronous and
asynchronous pattern, tF irst Asynchrony and tF irst Difference are set to 1001. For both measures, averages
over 2000 independent simulation runs are calculated.

6.2.3 Simulation Results

The aim of this section is to investigate how the delay can buffer against asynchrony due to the noise in the
update timing, to analyze which CA rules are robust in the context of asynchrony and identify the common
properties of those rules.

To quantify the buffering effects of the delay, in fig. 6.1 (a), the ensemble averaged time to the first
asynchrony 〈tF irst Asynchrony〉 is plotted as a function of the standard deviation of the update time σ for
different delay times tdelay. As can be expected, the larger the noise and the smaller the buffering effect of
the delay, the shorter the time until ∆t > tdelay for a pair of neighboring cells, i.e., the time until the system
is asynchronous.

More interesting is how different CA rules are affected by a possibly asynchronous dynamics. In fig. 6.2
(b)-(f), the average time to the first difference in the patterns between the potentially asynchronous and
completely synchronous dynamics 〈tF irst Difference〉 is shown for all elementary 2 state CA rules for all
heuristic Wolfram classes (cp. section 3.3.2) in fig. 6.2 (b), as well as separately for the individual classes in
fig. 6.2 (c) - (f). Class 1 rules, which consist of rules which quickly converge to a homogeneous final state,
have in general large values for 〈tF irst Difference〉 (fig. 6.2 (c)), as can be expected because reaching a
steady state quickly protects the dynamics from asynchronous updates. Class 2 rules, which exhibit “a
simple stable or periodic structure” [43, p. 17] in the long term behavior, partially also have large values for
〈tF irst Difference〉 (fig. 6.2 (d)), while the chaotic class 3 rules and class 4 rules typically with “complicated,
localized structures, some propagating” [43, p. 17] in general have low values for 〈tF irst Difference〉. The
behavior for different classes is consistent with the expectations stated when defining our observables.

To substantiate these expectations further, the values for typical classification quantities (cp. sec-
tion 3.3) as well as typical attractor properties as a function of 〈tF irst Difference〉 are shown in fig. 6.3
and fig. 6.4. While properties depending only on the rule-table itself (λ0, λ1, µ, KR) show no obvious
tendencies, both temporal Kolmogorov complexity and temporal entropy need to be low for rules with large
〈tF irst Difference〉, which is again consistent with a steady state behavior. Since both spatial Kolmogorov
complexity and spatial entropy have a range of different values for large 〈tF irst Difference〉, the patterns
formed with rules which are stable against asynchrony may appear simple or complex. The synergies
S1 and S2 show no obvious dependencies, suggesting that the integration of information does not play a
significant role regarding synchrony. Looking at the attractor properties of each rule (fig. 6.4) confirms the
picture already discussed: Rules with small average attractor sizes, hinting at steady states and not limit
cycles, and small transient length are potentially robust against asynchrony, while for large average attrac-
tor sizes and large transient length this robustness can not be achieved (fig. 6.4 (a)). The few rules which
have average attractor sizes of around 10 and a large value for 〈tF irst Difference〉 have a larger number
of attractors, between 100 and few 1000s, also consistent with the possibility of having several fixed point
attractors despite the large average attractor size (fig. 6.4 (b)).
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Figure 6.2 Synchronization with Delay - Dependency on Noise, Delay and Rule. (a) Mean time to the first
asynchrony 〈tF irst Asynchrony〉 as a function of the standard devation of the Gaussian update distribution for different
delays tdelay. (b) Average time to the first difference 〈tF irst Difference〉 as a function of the rule for different Wolfram
classes (blue class 1, green class 2, red class 3, grey class 4). (c)-(f) same as in (b), but only class 1 (c), class 2 (d),
class 3 (e), class 4 (f) shown per panel.



74

Figure 6.3 Synchronization with Delay - Classification Quantities. Classification quantities from section 3.3.3
and section 3.3.4 with numerical values in appendix A.2.2 as a function of the average time to the first difference
〈tF irst Difference〉.
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Figure 6.4 Synchronization with Delay - Attractor Properties. (a) Number of attractors, average attractor
sizes and average transient lengths for the CA dynamics as a function of the average time to the first difference
〈tF irst Difference〉 for the elementary cellular automata rules with linear (left column) and logarithmic (right column)
scaling of the “y-axis”. (b) Scatter plot of the number of attractors and average attractor sizes, color coded by
〈tF irst Difference〉.
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6.3 Conservation of Synchrony with Temporal Correction Schemes

6.3.1 Introducing a Correction Scheme

In the previous section, a model for the conservation of synchronization in cellular automata with delay
was introduced and its interplay with patterning was discussed. In this section, an additional possibility
for damping the temporal deviation between neighboring cells by using correction schemes are introduced
and characterized. For simplicity, the patterning through the rules is ignored during this section and rein-
troduced in section 6.4. The section is organized as follows. First, in this subsection a general overview
of the components of the model is given together with the standard choices of the components. In the
following subsections, variations of these choices are explored systematically.

To introduce a correction for the diffusive drifting of the individual update times of a cell, the temporal
difference between the update of neighboring cell and the cell itself ∆t is used. It is assumed that cells
correct for the delay when calculating ∆t. At each point in time when the cell sends an information about
its temporal update to its neighbors, again assumed to be tdelay after its own update, a cell checks if it has
received information about ticks of the neighboring cells (which reach it also with a delay of tdelay). The
ticks are processed if they reach the cell within a detection window of size tdetect, i.e., if

∆t < tdetect. (6.3)

If so it updates the time of its own next update or the ones of the neighbors or both by

tnext,after update
s+1,i = tnext

s+1,i + g (∆t) (6.4)

(fig. 6.5 (b)).2 The detection window tdetect is introduced to reduce confusion about if the ticking of a
neighbor belongs to the previous generation or already to the next generation. Thus, information about
neighboring “ticks” is only processed if it is received within a time-frame [−tdetect, 0] around the “tick” of the
cell itself (fig. 6.5 (c)). In a biological setting, this is similar to an “AND” gate, only activated if both the ticks
of a cell and its neighbor are sufficiently close in time.

The core idea of the model is now specified. Apart from the numerical values of the parameters, left
to define are the correction function g (∆t), the probability distribution P (τ), and the topology and neigh-
borhoods. The standard choice for the correction function g (∆t) is directly proportional to the deviation
g (∆t) = m∆t with m being the proportionality constant specifying the correction strength. As grid, a
static, 1D version of size L with periodic boundary conditions and cells only connected to their nearest
neighbors is the standard choice with other choices explored in section 6.3.4. As initial condition, all cells
will start in perfect synchrony. Throughout the rest of the section, the following parameters will be chosen
(all in arbitrary units which are consistent with each other, e.g., for parameters carrying a temporal unit it
will be the same choice of units for all):

m tdetect µ σ tdelay L Smax NE

0.3 0.15 1 0.016 0.1 20 1000 2000
Table 6.1 Standard Parameter Choices Used in the Simulation m is the proportionality constant, tdetect the
detection window size, µ and σ are mean and standard deviation of the Gaussian temporal update distribution,
tdelay the delay, L the system size, Smax the maximum number of simulated generations, and NE the ensemble
size.

As the initial condition for all cells is to start in synchrony, the main question discussed will be if syn-
chronization is conserved. In growing systems, this can be a natural assumption if the daughters of a
dividing cell inherit the state of the mother cell and the number of initial cells is low - this will be explored in
section 6.3.4. Additionally, a different approach without this restriction will be discussed in section 6.6.1.

2This is closely related to “pulse coupling” in other synchronization models where oscillators influences each other only in specific
phases of the oscillation cycle [93].



77

Figure 6.5 A Model for Synchronization with Correction in Pattern Formation. Same figure as fig. 6.1, but
without the CA and with included correction. (a) Unchanged from fig. 6.1. (b) An individual cell transmits the time
point of its own update with a delay tdelay to its neighbors, and receives their updates with the same delay. From
the difference between the time of its own update and the update time of its neighbor ∆t the cells calculates a
correction g (∆t) to its next update time if the update received is within the detection window tdetect. (c) Additionally
to fig. 6.1 (c), also the detection window is shown as yellow rectangle with curved edges and a dashed line. As
further observables to the time to first asynchrony (brown dash dotted line), examples for the temporal horizon of a
generation (brown solid line) and average advancement of a generation (brown dashed line).
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6.3.2 Correction Algorithm

To correct the diffusive drift of the temporal updates of the individual cells, different correction schemes
g(∆t) are applied:

• Proportional correction: gp(∆t) = m∆t. This assumes that the cell is able to use the magnitude of
the difference to the neighbor and adjust the update timings accordingly, scaled by a proportionality
constant m. As stated above, it is also the standard choice for the correction scheme in the following
chapters.

• Constant correction: gc(∆t) = m sign (∆t). This assumes that the cell is only able to detect if it is
ahead or behind in time compared to its neighboring cells and then adjusts the update timing by a
constant m.

• Kuramoto correction: gK(∆t) = m
2π sin (2π∆t). This assumes a Kuramoto type correction [196]

commonly used when discussion synchronization type problems. For small ∆t, the Kuramoto cor-
rection scheme can be expected to behave similarly to the proportional correction scheme since

gK(∆t) ≈ m∆t− 2mπ2

3
∆t3 + . . . ≈ gp(∆t). (6.5)

Additionally, the cells have the option to correct their own update timing or the update timing of their
neighbors, equivalent to correcting their own update timing with information from the interval [−tdetect, 0] or
[0, tdetect], respectively, or using both options. The options will be termed backward, forward and symmetric
correction. Thus, in total 9 different update schemes and 2 basic parameters m and tdetect need to be
discussed. The general strategy in the following sections will be to only change a few of these parameters
and keep the others at their default values, which are chosen to be: A proportional, symmetric correction
scheme with m = 0.3 and tdetect = 0.15.

Correction Strength m

As first variation the influence of different correction strengths m of the correction function is investigated.
In fig. 6.6 (a) the observable 〈tF irst Asynchrony〉E is chosen and only the proportionality constant m is
varied. The resulting curve is unimodal with its maximum around m = 0.3. As first key result it should
be noted that 〈tF irst Asynchrony〉E at this maximum is drastically larger than 〈tF irst Asynchrony〉E without an
applied correction scheme, corresponding to the value at m = 0 in this case, meaning that the correction
scheme works successfully. Second, the position of the maximum closer to m = 0.5 than to m = 1 can be
explained by imagining a system of just 2 cells - then values close to m = 1 would correspond to the cells
more or less exchanging update times, while lower values would bring the cells closer to each other.

In real biological systems, it can be expected that not all cells behave exactly identical but there may
be systematic, temporarily constant but spatially varying deviations how cells react to inputs from other
cells. In order to investigate how such deviations have an effect on the ability of the correction scheme to
keep the system synchronous, the corrections strength is modified by adding a Gaussian random variable
to mi,j = m + η (0, σm) for each individual connection between two neighboring cells i and j. In fig. 6.6
(b), 〈tF irst Asynchrony〉E is shown as a function of σm for otherwise default values. The correction scheme
is able to introduce a remarkable stability given that (a) already a single asynchrony between two cells is
enough to render the system asynchronous and (b) with approximately 60% chance a connection has a
number added that is larger than 2σm for the default values with L = 20.

The main purpose of the correction scheme is to correct the Gaussian update noise parameterized by
the standard deviation σ. A priori, it is not clear if a proportionality constant for which 〈tF irst Asynchrony〉E
is large for a given noise level also produces large 〈tF irst Asynchrony〉E for other noise levels. To check,
in fig. 6.6 (c) 〈tF irst Asynchrony〉E is plotted as a function of σ for different choices of the proportionality
constant m, showing that for the investigated parameters the curves around the optimum choice do not
overlap in general, indicating that the choice of m is not sensitive to the noise.
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Figure 6.6 Correction Scheme - Proportionality Constant. (a) 〈tF irst Asynchrony〉E as a function of the pro-
portionality constant m for otherwise default parameters (blue curve) and maximum number of generations 1000
indicated by the dashed line. 〈tF irst Asynchrony〉E shows a unimodal curve with the maximum around m = 0.3,
the standard choice for m. m = 0 correspond to a system without correction. In the case of m = 1, a symmetric
proportional connection leads to an exchange of the relative asynchrony, i.e., if cell i was ahead of cell i + 1 by ∆t, it
will after the correction be behind by ∆t rendering correction effectively useless. More effective values can be found
between these two extreme values for m. (b) 〈tF irst Asynchrony〉E as a function of the standard deviation of σm of
a temporarily constant, spatially varying Gaussian random variable added to the correction proportionality constant
m = 0.3. As a general trend, the larger the noise added, the lower is 〈tF irst Asynchrony〉E . Yet, compared to original
value of m = 0.3, the tolerated noise where there is still a significant correction is large. (c) 〈tF irst Asynchrony〉E as
a function of the standard deviation of the update noise σ for different correction proportionality constants m. Again,
intermediate correction proportionality constants provide the most effective corrections, however noises with σ > 0.2
are typically not effectively correctable. Around the optimal correction proportionality constant the exact choice of
the proportionality constant does not strongly affect 〈tF irst Asynchrony〉E .
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Update Schemes

In section 6.3.1, 9 possible correction schemes were described: proportional, constant and Kuramoto cor-
rection, each in the variant forward, backward and symmetric correction. In fig. 6.7, for these 9 possibilities
and three different choices of σ, the expected time of first asynchrony 〈tF irst Asynchrony〉E is plotted as a
function of the proportionality constant m.

The proportional and Kuramoto correction schemes show nearly identical curves, indicating that the
dynamics happens in the regime where the linear approximation eq. (6.5) of the Kurmaoto scheme is
valid. For the constant correction scheme, m is not unit-less but in units of time and is the magnitude of
the applied correction. Thus, it is not surprising that the optimal m values are different compared to the
other correction schemes. Constant correction seems in general to perform worse than the other schemes,
which is not surprising as for constant correction only the sign of the temporal differences between cells
is taken into account compared to the full value for proportional and Kuramoto correction, providing less
information for the correction scheme to use.

Forward and backward correction schemes produce similar behaviour for all cases, performing usually
worse with regards to the maximal values and being effective for larger m values than symmetric correction
schemes. The worse performance can be explained by the fact that when the correction is applied only
one of the cells shifts its update in time. But this shift is usually larger than in the symmetric case, which
may introduce stronger differences for the other neighboring cells. Similarly, because only one cell moves
its update time, to achieve bringing two neighboring cells close together in time, the optimal m has to be
double as large compared to the symmetric.

Comparing the curves for different noises (different rows of fig. 6.7), a similar behavior as in fig. 6.6 (c)
can be found for all correction schemes: the optimal correction proportionality constant is independent of
the noise.

When synchronizing distributed systems, an important consideration is how a correction scheme influ-
ences the global temporal propagation, i.e., is the average advancement of the temporal surface acceler-
ated, decelerated or not influenced by the correction scheme (see e.g. [197]). To check this, first for each
generation the spatial and ensemble average of the temporal surface is calculated (fig. 6.8 (a)). To mea-
sure the advancement per generation, the difference of the average time between subsequent generations
is taken. In order to determine if the advancement is accelerated or decelerated compared to the system
without correction, the mean of the update noise µ is subtracted from this difference and plotted as a
function of the generation s (fig. 6.8 (b-d)). The resulting curves are usually independent of the generation
(fig. 6.8 (c-d)) and can thus be fitted by a linear function as + b, where b indicates if a constant acceleration
or deceleration is present and a detects all linear deviations as function of the generation. The examples in
fig. 6.8 (c-d) show the fits for default values with (d) and without correction (c). A more systematic picture
can be obtained from fig. 6.9, where similarly as in fig. 6.6 the fit parameter b and a (insets) are plotted
as a function of the proportionality constant m for the different correction schemes and different choices
of the noise. The fit parameter a is small in all cases, strengthening above statement of a constant update
speed. The symmetric correction scheme introduces only small deviations of b from 0. However, forward
and backward correction schemes lead to an deceleration or acceleration, respectively. While proportional
and Kuramoto correction show again a similar dependency of b on m which simply behaves monotonically
as function of m, in the case of constant correction, the curve is unimodal. The latter can be attributed to
the constant size of the correction irrespective of the temporal deviations - if the correction is large even
for small perturbations, it can bring the system close to a state where the temporal deviation is larger
than the detection window - leading to no correction being applied at all. The dependency on the noise
is limited to small quantitative changes - higher noise leads to a small increase of b for proportional and
Kuramoto correction, as well as a shift of the position of the maximum for constant correction to smaller
values supporting the above explanation of the unimodal distribution, but qualitatively no changes can be
seen.
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Figure 6.7 Correction Scheme - Type and Direction. 〈tF irst Asynchrony〉E as a function of the proportionality
constant m for proportional correction (first column), constant correction (second column) and Kuramoto correction
(third column) as well as symmetric, forward and backward correction (different colors) and standard deviations of
the update noise (different rows). Please note that while for proportional and Kuramoto correction m has no units, for
the constant correction case m is in time units and corresponds directly to the magnitude of the applied correction.
Forward and backward correction result in similar curves, offset by a factor of roughly 2 in m space to the symmetric
correction and with lower maximal 〈tF irst Asynchrony〉E . Proportional and Kuramoto correction show nearly identical
curves, indicating that in the case of Kuramoto correction ∆t is in the regime where the linear approximation is valid.
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Figure 6.8 Correction Scheme - Velocity Fit. (a) Illustration of the calculation of the ensemble average of the
average time of a generation. For an individual simulation, the update times of each cell of each generation s
are recorded. The average time of a generation is calculated by spatially averaging 〈t (s, i)〉i. After performing
the simulation NE times, the corresponding ensemble averages 〈〈t (s, i)〉i〉E are calculated. (b) Illustration of the
fit of effective changes of the movement velocity. To calculate the effective change of the movement velocity of the
temporal surface, the difference between the average time of subsequent generations 〈〈t (s + 1, i)〉i〉E−〈〈t (s, i)〉i〉E
are calculated. Without correction, a velocity of µ = 1, the average temporal update per generation, would be
expected, and is thus subtracted from the difference to illustrate the deviation from the expectation. The resulting
curve as a function of the generation is plotted and fitted with a linear function ax + b to detect constant shifts as
well as linear temporal changes. (c-d) Exemplary data for the cases m = 0 (without correction, c) and m = 0.3
(with correction, d) and otherwise default parameter choices with corresponding fit and fit parameters in the legend.
The value of a close to 0 shows for both effectively no net deviation from a shift of the temporal surface of µ per
generation.
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Figure 6.9 Correction Scheme - Velocity Results. Fit parameter b and a (insets) as illustrated in fig. 6.8 as a
function of the proportionality constant m for proportional correction (first column), constant correction (second col-
umn) and Kuramoto correction (third column) as well as symmetric, forward and backward correction (blue, orange
and green colors, respectively) and standard deviations of the update noise (different rows). Since a has values
practically 0 in all cases (the curves overlap in each inset) and thus even over the course of a thousand generations,
a · s is small compared to µ = 1, there is no linear temporal increase or decrease of the velocity. While for symmetric
correction, there is no constant shift of the temporal update velocity, for forward (backward) correction the velocity
is decreased (increased). For proportional and Kuramoto correction the increase gets larger with increasing propor-
tionality constant m, which can be explained with the fact that the introduced bias in one direction scales with the
proportionality constant. For the constant correction case the unimodal curve can be explained by the fact that for
large corrections m, the applied correction always has the same value but might actually introduce destabilizing ef-
fects, since it may “over-correct”, and once the temporal difference is larger than the detection window, no correction
is applied at all.
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Detection window

As last parameter of the correction schemes the detection window size will be explored in this section.
In fig. 6.10 (a), the expected time to first asynchrony 〈tF irst Asynchrony〉E is plotted as a function of the
detection window size tdetect together with an indication of the size of the delay time tdelay for otherwise
default values. For increasing tdetect, 〈tF irst Asynchrony〉E is small until the detection window tdetect is only
a little bit smaller than the delay tdelay, then increases sharply until it reaches an plateau value at tdelay.
〈tF irst Asynchrony〉E drops again when µ− tdelay = 1− tdelay is reached, and stays small until tdetect = 1,
which marks the average onset time of the next generation.

For the first region of this curve, a sharp increase in 〈tF irst Asynchrony〉E , the hypothesis can be formed
that for a too small detection window the noise is too strong and pushes the system out of detection with
relatively large probability in a single step even if the temporal difference ∆t between the two cells in
question was 0 before.3 This hypothesis is confirmed in fig. 6.10 (b-d), where the same plot is shown for
different delay times tdelay and standard deviations of the update noise sigma σ, and the steep increases
of 〈tF irst Asynchrony〉E happen at lower values of tdetect for lower noise levels.

The second region of the curve is the plateau value which is abruptly reached at tdetect = tdelay, and can
be easily explained by the fact that if tdetect ≥ ∆t > tdelay, despite the correction scheme still functioning
the system is already asynchronous by definition. Larger delay times allow similarly as in systems without
correction scheme the tolerance of larger noises (fig. 6.10 (b-d)).

Finally, the sharp decrease once the system reaches tdetect = 1− tdelay can be attributed to the possible
interference of other cells which are in different generations. The correction of update times of these
cells may not lead to asynchrony when compared to cells within the same generation. But because their
updates are detected by neighboring cells updating at a different generation, the proportional correction
scheme induces a large correction of a magnitude |m∆t| > 0.3 · 0.9 = 0.27 > 0.1 = tdetect. The decrease
is again also seen in a similar fashion for other delay times and noise levels (fig. 6.10 (b-d)).

6.3.3 Cellular Level

In the previous section, the properties of the correction algorithm have been varied and discussed. In this
section, the focus is shifted to parameters on the cellular level independent of correction algorithm - the
noise of the temporal update time and the delay of information transmission.

Noise

A first exploration of the dependency of 〈tF irst Asynchrony〉E on the standard deviation of the update noise
σ has already been performed in the context of discussing its interplay with the correction strength m
(fig. 6.6 (c)) which established the general sigmoidal like form of the resulting curve, and that the optimal
correction strength is independent of the noise.

Another question with regards to the noise in the system is to ask how well the correction scheme per-
forms compared to not having a correction scheme, and compared to having a perfect correction scheme.
While the former comparison can easily be obtained by simulating the system with m = 0, the latter
refers to a system where a miraculous correction schemes is able to perfectly flatten the temporal land-
scape, i.e., achieve ∆ti,j = 0 for all neighboring cells i, j. The only way the asynchrony is now induced

3As a rough estimate: for a single update, the standard deviation of the Gaussian random variable is σ = 0.016 for standard
parameters. Since the essential variable is the temporal difference between two neighboring cells, this difference has a
standard deviation of σ∆t =

√
2σ = 0.0226. If the detection window size is set at 3σ∆t = 0.0678, after 20 steps there is

already a chance of approximately 64% that the system has lost synchrony in a single step.
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Figure 6.10 Correction Scheme - Detection Window. (a) 〈tF irst Asynchrony〉E as a function of the detec-
tion window tdetect with tdelay = 0.1 and µ − tdelay = 0.9 shown as dash-dotted lines. Between these lines,
〈tF irst Asynchrony〉E stays effectively at a constant value, increasing towards it for low values and decreasing for
large values, indicating that the lower of the two parameters, tdelay and tdetect, is dictating 〈tF irst Asynchrony〉E .
(b-d) 〈tF irst Asynchrony〉E as a function of the detection window tdetect for different values of the standard deviation
σ of the update noise and for different delay times tdelay = 0.05 (b), tdelay = 0.1 (c), tdelay = 0.15 (d) shown as dash
- dotted line, confirming the hypothesis that min (tdetect, tdelay) is the relevant parameter while max (tdetect, tdelay)
is not relevant within the shown parameter limits. Additionally, the larger min (tdetect, tdelay), the higher the tolerated
noise.
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is if a single step in the noise process directly leads to asynchrony before correction can be applied.
〈tF irst Asynchrony〉E can then be estimated to be

〈tF irst Asynchrony〉E ≈
Smax∑
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with the first term being an approximation for the expectation value of 〈tF irst Asynchrony〉E if the system
starts to be asynchronous before the maximum number of generations Smax = 1000 is reached and the
second term being an estimate how the latter is represented in a finite time simulation. The three resulting
curves can be seen in fig. 6.11 (a), showing that the correction scheme achieves a performance close the
perfect correction estimation.

Above estimation for perfect correction (eq. (6.6)) revealed a direct dependency on the size of the system
through the number of total connections that may get asynchronous. In fig. 6.11 (b), the effect of the inter-
play of different system sizes L and the standard deviation of the update noise σ on 〈tF irst Asynchrony〉E is
plotted. Even for small system sizes, a large enough noise will eventually induce an asynchronous state,
but the sensitivity on the length reduces with increasing system size.

Up until now, only one possible type of update noise was considered: annealed noise, modeled by a
Gaussian random variable with mean µ and standard deviation σ newly drawn for each temporal update
and cell. The goal of this type of noise is to mimic statistical fluctuations which are independent from each
other in space and time. However, different cells may have systematic differences which are constant in
time - to model this kind of systematic noise, a form of quenched noise is introduced by replacing the
constant mean update time µi of each cell by a Gaussian random variable with mean µ and standard
deviation σq which is constant in time but varies in space. In fig. 6.11 (c, d) 〈tF irst Asynchrony〉E is shown
as a function of the standard deviation of the annealed noise σ (standard deviation of the quenched noise
σq) for different σq (σ). While the general shape of 〈tF irst Asynchrony〉E as a function of the noises is in
all relevant cases basically a monotonically decreasing function, the different type of noises induce slight
differences. On the one hand, for the annealed noise, the noise is temporally independent and a new
random variable for this contribution is computed at each step. On the other hand, the quenched noise
represents systematic differences between the cells so the “dice” for the quenched noise are only “rolled”
once at the beginning, and then stays temporarily constant. Thus, assuming perfect correction and only
quenched noise, if the random variables are not large enough to force the system immediately out of
synchrony, asynchrony will not occur during the time of the simulation. However, for the annealed noise
the redrawing of the random variable at each time step increases the chances of pushing the system out
of synchrony before the maximum simulation time is reached. This explains why for very low values of the
other noise type, for quenched noise larger noise values are tolerated before 〈tF irst Asynchrony〉E ≈ 0 is
reached compared to similar values of the annealed noise.

Delay

To get a first impression of the effect of the delay tdelay on the conservation of synchrony measured by
〈tF irst Asynchrony〉E , in fig. 6.12 (a) it is shown as a function of tdelay for otherwise default parameters.
Starting at very low values, 〈tF irst Asynchrony〉E increases sharply around tdelay ≈ 5σ, reaching a plateau
at the maximum simulation time, and then falling again at large tdelay. At tdelay = tdetect = 0.15 no
noticeable change in the curve is observed.

The initial upraise at the empirically determined tdelay ≈ 5σ can be explained by the fact that, assuming
perfect correction, 5σ is approximately equivalent to producing a temporal difference larger than tdelay
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Figure 6.11 Correction Scheme - Noise. (a) 〈tF irst Asynchrony〉E as a function of the standard deviation of the
update noise σ for default parameters (m = 0.3), no correction (m = 0), and perfect correction, the last assuming
a flat temporal landscape after each step, showing that for default parameter choices the proportional correction
scheme is close to achieving a perfect correction. (b) 〈tF irst Asynchrony〉E as a function of the standard deviation
of the update noise σ for different system sizes, showing less dependency with increasing system size for all σ. (c)
〈tF irst Asynchrony〉E as a function of the standard deviation of the (annealed) update noise σ for different choices of
the standard deviation of the quenched noise σq changing the mean update time in a spatially varying, temporally
constant way. (d) 〈tF irst Asynchrony〉E as a function of the standard deviation of the quenched noise σq for different
choices of the standard deviation of the update noise σ. For large fixed quenched noises the curves as functions of
the annealed noise are lower than for exchanged roles of the noises.
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with a chance of 1
2500 ,4 so roughly the region where intermediate values of 〈tF irst Asynchrony〉E would be

expected since in total L · smax = 20 · 1000 = 20000 possibilities for such an event exist. This tendency of
〈tF irst Asynchrony〉E to rise at tdelay ≈ 5σ is confirmed in fig. 6.12 (b-d), where the same plot is shown for
different standard deviations of the noise σ and different detection windows tdetect.

The delay tdelay was already briefly discussed when looking at the detection window tdetect, with the
result that tdelay acts as an upper limit for the effect the detection window has on synchronization conser-
vation. For the default parameter values, tdetect is so large that 〈tF irst Asynchrony〉E has already reached
the maximum simulation time, thus no interplay between tdetect and tdelay can be observed. For larger
standard deviations of the noise σ and smaller detection windows tdetect, it is apparent that lower values of
tdetect lead to lower values of 〈tF irst Asynchrony〉E , even for larger values of tdelay. This can be explained
by the fact that for small tdetect in comparison to σ, the temporal differences can by chance quickly grow
larger than tdetect, from which on the synchronization schemes can no longer influence the temporal dif-
ferences which in turn follow effectively a diffusive behavior until tdelay is reached and thus the system is
asynchronous.

The decline of 〈tF irst Asynchrony〉E for values of tdelay close to 1 is due to the fact that for large tdelay the
system may formally still be in synchrony, but cells may for large enough detection windows detect cells
from the “previous” generation. This induces large, unwanted corrections ∆t and was partially the reason
for introducing corrections windows in the first place.

Figure 6.12 Correction Scheme - Delay. (a) 〈tF irst Asynchrony〉E as a function of the delay tDelay with the detection
window size tdetect = 0.15 as solid orange line and 5σ marked by a dash-dotted line. (b-d) 〈tF irst Asynchrony〉E as
a function of the delay tDelay for different standard deviations of the update noise σ = 0.016 (b), σ = 0.02 (c),
σ = 0.05 (d), with 5σ marked by a dash-dotted line indicating that if the delay and detection window size are large
enough compared to the noise the correction algorithm is able to smooth out the noise enough to allow for a large
〈tF irst Asynchrony〉E .

4This is evaluated by calculating the chance that a Gaussian random variable with mean 0 and standard deviation σ∗ has
absolute values |∆t| ≥ 5√
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6.3.4 Tissue Level

All properties so far have been discussed in the context of a static 1D grid of (mostly) size L = 20 with
periodic boundary conditions, and the focus was on the influence of the correction algorithm and the
characteristics of individual cells. In this section, the focus is shifted to the properties of the tissue - its size
and shape in the form of boundary conditions, if it is static or grows, in how many dimensions the tissue is
situated and how cells are connected to each other.

Size, Boundary Conditions and Growth

A first look on the dependency of the expected time to first asynchrony 〈tF irst Asynchrony〉E on the sys-
tem size L was taken in fig. 6.11 (b), which indicated that for larger system sizes 〈tF irst Asynchrony〉E
decreased. In fig. 6.13 (a), this dependency is shown explicitly, with 〈tF irst Asynchrony〉E at first rapidly
decreasing with system size. Ignoring finite size effects most likely introduced by the fixed number of
simulated generations, the data can be well approximated by 〈tF irst Asynchrony〉E ∼

1
L .

The default setting with regards to boundary conditions is having a “periodic” setting, where the left and
right end of the 1D line of cells are connected to each other, opposed to an “open” boundary condition
setting where the cells are disconnected. A priori it is not clear if the additional connection between the
two boundary cells is detrimental to synchronization because an additional connection exists at which the
asynchrony could appear, or favorable for synchronization since two distant cells are coupled reducing
the overall average distance between the cells leading to a potentially more temporally coherent system.
To investigate the influence of the choice of boundary conditions, in fig. 6.13 (b, c), 〈tF irst Asynchrony〉E
is plotted as a function of the proportionality constant m for different boundary conditions and system
sizes. For small system sizes, the periodic systems have a slightly larger optimal 〈tF irst Asynchrony〉E .
The proportionality constant mopt at which this optimum appears is in general lower for periodic boundary
conditions than for open boundary conditions. Thus, it appears that the effect of the additional interaction
favors synchronization and requires less correction input. Please note that in fig. 6.13 (c), for system size
2, mopt ≈ 0.5 for fixed and mopt ≈ 0.25 for periodic boundary conditions. These are the values one would
naively assume for perfect correction since mopt ≈ 0.5 shrinks the difference for symmetric correction and
only two cells with only one connection between them to 0, as well as mopt ≈ 0.25 does if there are two
connection between the same two cells, which is the case for periodic boundary conditions. For large
system sizes, the effects of the boundary condition diminish and the curves converge towards each other.

In the examples studied so far, the number of cells that try to conserve synchrony was kept constant.
However, a standard feature of many pattern forming or synchronizing systems is a simultaneous growth,
e.g., during somite formation in vertebrae [13]. To investigate if the conservation of synchronization can
be realized in a growing system, a 1D system of initial size L = 2 with an open topology and otherwise
default parameters is grown by adding an additional cell at the right end of the line of cells and initially
inherits the same update time as its direct neighbor, but afterwards evolves freely like all other cells. This
procedure is performed at every step in time until a predefined maximum amount of cells Nmax

added have
been added, from this point in time the number of cells is kept constant until the end of the simulation.
In fig. 6.13 (d) 〈tF irst Asynchrony〉E is shown as a function of m for different values of Nmax

added, displaying
a similar behavior then the curves in fig. 6.13 (b) without growth. This indicates that the synchronization
conservation algorithm is able to tolerate growth. Furthermore, the problem of the artificial assumption
that the system is initially in perfect synchrony is solved by this result as it is nearly equivalent to starting
with a single cell which, through cell division, grows the tissue to the desired final size.

2 and 3 Dimensions

While different boundary conditions and system sizes have been investigated in the previous section, all
the systems explored so far have been 1D. In this section regular 2D and 3D as well as irregular 2D
system will be highlighted. The number of cells in each dimension will be denoted by L1, L2 and L3,
respectively. To be able to compare such different geometries, in all cases 36 cells are used - in the 1D
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Figure 6.13 Correction Scheme - Size, Boundary and Growth. (a) 〈tF irst Asynchrony〉E as a function of system
size L shows a slowing, monotonic decrease (ensemble sizes NE = 10000 for 2 ≤ L ≤ 4, NE = 1000 for
5 ≤ L ≤ 29, NE = 500 for 30 ≤ L ≤ 59, NE = 200 for 60 ≤ L ≤ 139, NE = 20 for 140 ≤ L ≤ 299). (b-c)
〈tF irst Asynchrony〉E as a function of the proportionality constant m for periodic (blues) and open (reds) boundary
condition for different system sizes L (color gradients) and different standard deviations σ = 0.016 (b) and σ = 0.02
(c) of the update noise show that for small system sizes the periodic boundary conditions allow for a slightly better
correction due to the one more available connection and requires a slightly lower proportionality constant for optimal
correction, while for larger system sizes the difference diminishes. (d) 〈tF irst Asynchrony〉E as a function of the
proportionality constant m for a system with initial size L = 2 and open boundary conditions growing at one of its
ends with a rate of one cell per time step up to a maximum number of added cells indicated by the labels in the
legend.
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case L1 = 36, in the 2D cases L1 = 6, L2 = 6, and in the 3D cases L1 = 4, L1 = 3, L3 = 3. For the
regular 2D and 3D cases both square grids with von Neumann and Moore neighborhood are investigated,
for 2D case additionally a hexagonal grid is taken into account. 〈tF irst Asynchrony〉E as a function of the
proportionality constant m is shown in fig. 6.14 (a). In principle, the same motives are at play as for the
different boundary conditions - more connections may increase the number of possibilites cells can correct
their relative position, but in turn also increase the number of connections where an asynchrony might
appear. While for periodic boundary conditions the first effect seemed dominant, for additional dimensions
there is no clear tendency with 2D system performing slightly better in most cases for optimal choice of
m, while the 3D case with Moore neighborhood performs considerably worse. The curves seem to shift to
small m values for an increased number of connections, with the 2D hexagonal and the 3D von Neumann
neighborhood case with both 6 neighboring cells showing a nearly perfect overlapp. Rescaling m with
the number of cells in the corresponding neighborhood, mrescaled = NNeighborsm, e.g., mrescaled = 3m
for the 1D case, fig. 6.14 (b) is obtained which shows good overlapp of the curves with an optimum at
mrescaled = 1 indicating a general dependency on the relative amount of inputs the cell receives.

To check whether conservation of synchronization also works for irregular grids, these grids are pro-
duced by shifting midpoints of cells of an originally hexagonal grid randomly according to a triangular
distribution with standard deviation r followed by a Voronoi tessellation as presented in appendix A.7. For
the same irregularity r, 10 different grids are produced and each grid is sampled NE = 500 times. In
fig. 6.14 (c-f), 〈tF irst Asynchrony〉E as a function of the irregularity of the grid r for different proportionality
constant can be seen. Three trends can be identified: First, if m is similar to the optimal value for 2D
hexagonal grids (fig. 6.14 (a, e)), larger 〈tF irst Asynchrony〉E values can be observed. Second, in general
the lower the irregularity, the larger 〈tF irst Asynchrony〉E , although the effect seems to be small. Third, there
may be large differences between individual irregular grids as indicated by the small markers representing
〈tF irst Asynchrony〉E for the 10 different grids for each r and m.

External Driven Cell

What if a cell does not follow the usual, noisy temporal update procedure but is instead driven externally
to follow a precisely determined frequency and still couples to the other cells in the sense that it may
influence its neighbors through its correction scheme, itself however does not react to temporal differ-
ences to the neighbor? In section 6.3.4, 〈tF irst Asynchrony〉E as a function of the update step of such
a single, externally controlled cell for otherwise default parameters is shown. While for µExt = µ = 1,
〈tF irst Asynchrony〉E seems to be slightly larger compared to a system without externally driven cell, a
rapid decrease of 〈tF irst Asynchrony〉E is obtained when µExt deviates from 1. A possible explanation for
this rapid decrease can be that the correction algorithm is optimized to correct the update time of both
cells - but the externally driven cell does not change, putting the algorithm in a spot were it constantly
under-corrects against a systematic increases of the temporal differences.
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Figure 6.14 Correction Scheme - 2D and 3D. (a) 〈tF irst Asynchrony〉E as a function of the proportionality constant
m for different system dimensions, topologies and neighborhoods: 1D with periodic boundary conditions, 2D square
grids with v. Neumann and Moore neighborhoods as well as hexagonal grids, 3D square grids with v. Neumann and
Moore neighborhoods. All systems have 36 cells but a potentially different number of neighbors per cell. While the
optimal proportionality constant shrinks for more neighbors per cell, the maximal expected time to first asynchrony
〈tF irst Asynchrony〉E follows a nontrivial behaviour. The latter can be explained by the fact that more neighbors mean
more opportunities for correction, but at the same time also more opportunities for asynchronies. (b) Same as in
(a), but with mrescaled = NNeighborsm, shows that rescaling the proportionality constant by the number of neighbors
leads to a good overlap of the curves. (c-f) 〈tF irst Asynchrony〉E as a function of the irregularity of a 2D grid with
36 cells as illustrated in appendix A.7 for different values of the proportionality constant m = 0.07 (c), m = 0.11
(d), m = 0.15 (e), m = 0.19 (f). Solid lines indicates average over 10 different topologies with NE = 500 for each
topology, with individual points indicate values for the single topologies. For values of the proportionality constant
around the optimum for hexagonal grid determined from panel (a) of this figure of m = 0.15, 〈tF irst Asynchrony〉E is
larger for low irregularities than for large irregularities, while away from this optimum this trend is weaker, yet even
for larger irregularity of the grid an effective correction can be obtained.
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Figure 6.15 Correction Scheme - External
Drive. 〈tF irst Asynchrony〉E as a function of
the temporal update step of a single, “exter-
nally driven” cell, i.e., a cell which updates its
time with each generation by µExt without the
influence of noise. Only in a narrow region
around µ = µExt correction schemes works
appropriately.

6.4 Pattern Formation and Conservation of Synchrony in Cellular
Automata

6.4.1 Coupling of Pattern Formation to Synchronization

The possibly simplest connection of the synchronization schemes discussed in section 6.3 to the CA with
delay and noisy temporal update described in section 6.2 is a direct combination of the two models -
a pattern forming CA is running as described in section 6.2 while a correction scheme as described in
section 6.3 tries to conserve synchrony without any influence of the CA dynamics on the synchronization
scheme but an asynchronous dynamics being (possibly) reflect in the CA pattern formation.

To compare the performance with and without synchronization scheme, in fig. 6.16 (a-h) 〈tF irst Difference〉E
for default parameter values is shown for the different Wolfram classes for the case with (left column, same
as in fig. 6.2) and without correction (right column). As a first general observation, 〈tF irst Difference〉E
increases drastically for all rules with low values of 〈tF irst Difference〉E in the case without correction
schemes. For all class 1 rules, 〈tF irst Difference〉E is close to the maximum simulation time, and for all
other rules 〈tF irst Difference〉E ⪆ 600. This is especially interesting since in fig. 6.16 (i), the increase in
〈tF irst Asynchrony〉E is shown, which is the same for all rules up to sampling noise, but in general signifi-
cantly less than 600 - this indicates that even if the pattern formation process is already asynchronous, for
all rules it takes on average at least a bit longer until this change reflects in the pattern formation. A plau-
sible explanation for this behaviour could be that it is probable that the asynchrony first appears localized
to two cells only since asynchrony is an unlikely event - if the state of the relevant cells is the same with or
without synchronous update for those two cells due to the specific local pattern around those 2 cells at this
time, the asynchrony will not reflect in 〈tF irst Difference〉E , but it will in 〈tF irst Asynchrony〉E . Additionally it is
possible that the system will resynchronize randomly since it is likely that ∆t is just a little larger than tdelay

and the following temporal differences between the asynchronous cells are still smaller than tdetect leading
with large probability to resynchronization. If there is no correction scheme, asynchrony is happening after
approximately 5 steps on average and thus much more likely - which means it is also likely that a lot of
cells are in asynchrony with each other, increasing the likelihood of an influence on pattern formation. The
drastic effects of the synchronization scheme are again emphasized in fig. 6.16 (j) where the differences
in 〈tF irst Difference〉E for the case with and without correction scheme are depicted - illustrating that for
many rules the difference is more in the realm of 800 generations, for some even close to the maximum
simulation time.

To supplement the descriptive analysis of the previous paragraph it is interesting to look at the relationship
of different rule classification quantities with 〈tF irst Difference〉E and 〈tF irst Asynchrony〉E (fig. 6.17).

Neither Langton’s λ0 nor the Kolmogorov complexity KR show any tendency that would allow the identifi-
cation of synchronization conserving rules. At least in the first case, this is not surprising since the general
understanding is that Langton’s λ is only a good discriminator between dynamical regimes for a large
number of states and a large neighborhood [107]. Rules with zero µ are guaranteed to have maximum
〈tF irst Difference〉E , which is similar to the case without correction scheme and not surprising because if
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the output of a rule does not change if any input is changed, the expected behaviour for rule 0 and 255,
asynchrony is not an issue for pattern formation as discussed in section 6.2. The “changiness” C, defined
as the relative number of times in the rule table in which the state of the cell is changed, shows that a low
number of changes, consistent with the CA reaching invariant steady states quickly, are supportive of an
patterning process unperturbed by possible asynchrony even in the presence of a correction scheme.

From the local pattern based classifications, both Kolmogorov complexities as well as single site en-
tropies are able to deliver either sufficient or necessary criteria for synchronization conserving rules. Zero
spatial Kolmogorov complexity, equivalent to a very simple average pattern, is a sufficient criterion. Yet, low
temporal Kolmogorov complexity is a necessary criterion, i.e., if each cell changes quite unpredictably over
time from its local point of view the chances are high that the pattern formation process is influenced by the
asynchrony. Both low spatial and temporal single site entropy are sufficient for large 〈tF irst Difference〉E
with a correction scheme, implying that if the cells do not change their state very much both in spatial
or temporal direction the asynchrony has no effect on the pattern formation dynamics. Compared to the
case without correction, low spatial and temporal single site entropy are now a guarantee for a conserva-
tion of synchronization close to the maximum simulation time and not only an indicator of larger values of
〈tF irst Difference〉E , hinting that the correction scheme is able to keep the on average simple patterns long
enough synchronous that an invariant steady state is reached.

The synergies do not show any particular tendencies as in the case without a correction scheme.
Classifications based on the global spatio-temporal dynamics again support some necessary conditions

– a small average attractor size and small transient length are both unavoidable properties of a dynamics
that is not influenced by the asynchrony. This observation is again consistent with the observations made
when studying the CA dynamics without correction scheme.

To sum up, the introduction of a correction scheme does not only improve the conservation of synchrony
in the sense of an increased 〈tF irst Asynchrony〉E , but even more the conservation of the formed pattern
in the sense of an increased 〈tF irst Difference〉E compared to a system without correction scheme. Still,
largely the same properties that helped a CA without correction scheme to obtain a quasi synchronous
pattern even in the presence of asynchrony remain relevant.

6.4.2 Coupling of Pattern Formation to Synchronization and Synchronization to Pattern
Formation

As a second variant of introducing correction schemes, not only CA dynamics is coupled to the correction
scheme, but also the correction scheme to the CA dynamics. In practice, information about both correc-
tion scheme and CA state may be transmitted over the same channel, e.g., the state is communicated
via a concentration of a specific molecule, and if the CA updates and changes its state this concentration
changes. The change in concentration in the signal of the neighbors is then used as a marker for their tem-
poral update. This means that temporal updates can only be detected and used in the correction if the state
of the neighbor changes, introducing the mentioned coupling between CA and correction scheme. Such
a correction scheme with coupling between CA and correction scheme will be termed “state dependent”,
while a correction scheme without this coupling will be termed “state independent”.

For class 1 rules, the same rules which with correction scheme showed a larger value of 〈tF irst Difference〉E
than without a correction scheme (fig. 6.16 (a, e)), again show a higher tendency when comparing correc-
tion schemes with and without state dependence (fig. 6.19 (a, e)), yet lower than in the previous case. For
class 2, the effect of the state dependence is in many cases detrimental, as well as for all case 3 and 4
rules ((fig. 6.19 (b-d, f-h)). Nevertheless, a direct comparison with the case without a correction scheme
(fig. 6.16 (c-d)) reveals slight improvements in some cases. For most rules, the time to first asynchrony is
rather low when employing correction schemes with state dependence (fig. 6.19 (i)), yet for some class 2
rules it has nearly the same value as in the case without state dependence.

The behavior of class 1 rules could be expected since the lower boundary of having no correction at
all was already very high (fig. 6.2) and class 1 rules reach their homogeneous steady states quickly and
are thus unperturbed by asynchronous dynamics. However, the diverse behavior of class 2 rules needs
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Figure 6.16 Synchronization without Correction or Correction without State Dependence (a-h)
〈tF irst Difference〉E as a function of the rule for the 4 Wolfram classes for no correction algorithm (left column)
and with a correction algorithm (right column). (i, j) Difference of 〈tF irst Asynchrony〉E (i) and 〈tF irst Difference〉E (j)
with and without a correction algorithm as a function of the rule for all rules, as dots with colors as in (a-h).
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Figure 6.17 Synchronization with State Independent Correction - Classification Quantities. Classification
quantities from appendix A.2.2 as a function of 〈tF irst Difference〉E (red) and 〈tF irst Asynchrony〉E (blue) for state
independent correction.
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Figure 6.18 Synchronization with Correction - Attractor Properties. Number of attractors, average attractor
sizes and average transient lengths as a function of 〈tF irst Difference〉E (red) and 〈tF irst Asynchrony〉E (blue) for
state independent correction for the elementary cellular automata rules with linear (left column) and logarithmic
(right column) scaling of the “y-axis” and state independent correction.
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a bit more explanation. Class 2 consists of rules exhibiting either stable structures or periodic structures.
Both periodic structures and stable structures can be favorable and detrimental, depending on the exact
specificities. On the one hand, a highly repetitive pattern of quickly changing states of a periodic structure
leads to a detection of updates of neighbors and thus to a larger 〈tF irst Asynchrony〉E , which is again a
lower bound for 〈tF irst Difference〉E . On the other hand, quick succession of cell changes may lead to an
immediately differing pattern once asynchrony is reached. Similarly, for cells in a localized stable structure
on the one hand the correction scheme does not work anymore, leading to a quick asynchrony, which could
manifest itself in the pattern if the stable structure is not yet permanent. On the other hand, if it is permanent
and a global steady state is reached quickly it is invariant under asynchronous updates even if the steady
state is not homogeneous. The chaotic and strange behavior of classes 3 and 4, respectively, lead with
no large surprise to low values for 〈tF irst Difference〉E since as few as on average approximately 5 steps
without correction can be easily sufficient to reach asynchrony as shown in fig. 6.2, and this asynchrony
can manifest itself quickly in the pattern if the cells in the asynchronous connection start changing their
state again.

The classification quantities as a function of 〈tF irst Difference〉E show qualitatively a similar behav-
ior regarding larger trends as described for the cases without correction scheme or with state inde-
pendent correction scheme (fig. 6.20). Through the coupling from CA to synchronization procedure,
〈tF irst Asynchrony〉E for the first time depends on the rule in question and thus on its classification quanti-
ties. For 〈tF irst Asynchrony〉E to be large, it is necessary that the rule has λ0 = 0.5, µ ≈ 0.25, KR > 0.5,
large changiness C, small temporal Kolmogorov Complexity KT , and large single point entropies HS

and HT . All these findings are consistent with a rapidly changing pattern, which in turn would allow
the correction scheme to correct for temporal differences and lead to large asynchrony times. Since
〈tF irst Asynchrony〉E is a lower bound for 〈tF irst Difference〉E by definition, for rapidly changing patterns
〈tF irst Difference〉E can in general also be large.

Summed up, if the pattern formation of the CA and the synchronisation scheme are coupled in both
directions, rules from class 3 and 4 and many rules from class 2 behave significantly worse. Two very
different rule properties that can safeguard against changes in the pattern in the presence of update noise
could be identified: Either the rule reaches quickly a dynamical fixed point making its dynamics invariant
under asynchronous updates, or the rule produces a rapidly changing pattern allowing the correction
scheme to work effectively and conserve the synchronous update.
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Figure 6.19 Synchronization with State Independent and Dependent Correction (a-h) 〈tF irst Difference〉E as a
function of the rule for the 4 Wolfram classes for a correction algorithm which does not depend on state changes (left
column, same as fig. 6.16) or does depend on state changes (right column). (i) 〈tF irst Asynchrony〉E as a function of
the rule for all Rules, as dots with colors as in (a-h) with a correction algorithm dependency on state changes. As
grey lines the values of 〈tF irst Asynchrony〉E without dependency of the rule on state changes - the average in the
middle, average plus/minus three standard as top/bottom grey line. (j) Difference between 〈tF irst Difference〉E of a
state independent and state dependent correction algorithm as a function of the rule.
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Figure 6.20 Synchronization With State Dependent Correction - Classification Quantities. Classification quan-
tities from appendix A.2.2 as a function of 〈tF irst Difference〉E (red) and 〈tF irst Asynchrony〉E (blue) for state depen-
dent correction.
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Figure 6.21 Synchronization with Correction - Attractor Properties. Number of attractors, average attractor
sizes and average transient lengths as a function of 〈tF irst Difference〉E (red) and 〈tF irst Asynchrony〉E (blue) for
state independent correction for the elementary cellular automata rules with linear (left column) and logarithmic
(right column) scaling of the “y-axis” and state dependent correction.
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6.5 Connection to the Physics of Surface Growth

6.5.1 Observables and Models of Surface Growth

To connect to the physics of surface growth [198], it is possible to interpret the time ts (x⃗) of the sth update
of each cell as a “height” above time t = 0. Interpolating between the individual cells, this is reminiscent
of a surface. With each update step, this surface grows more and more, comparable to growth models in
surface physics with the substitution of update step s and time ts (x⃗) in the synchrony model with the time
T and height h (x⃗, T ) in the surface growth model. The standard observable of interest in surface growth
models is the standard deviation of the height function for a given s, called interface width, translated to
the synchrony model in 1D with length L here

w (L, s) =

√√√√ 1
L

L∑
i=1

[ts (i)− 〈ts (i)〉i]
2. (6.8)

If the growth of one point of the surface is independent of the growth at another point of the surface, i.e.,
there is no correction in the framework of the synchrony model,

w (L, s) ∼ s
1
2 L

1
2 (6.9)

by the central limit theorem in the appropriate limits.
For interacting systems, i.e., systems with correction, experimentally and in toy models a similar scaling

of the interface width of the form

w (L, s) ∼ sβFw

(
Ls

1
z

)
∼
{

s0Lα for At
1
z � L

sβL0 for At
1
z � L

(6.10)

with z = α
β , scaling function Fw (·), and a constant A has been found [198]. The above scaling relations

also imply invariance under the scaling

x 7→ bx s 7→ bzt δt 7→ bαδt (6.11)

with δt (x, s) = t (x, s) − 〈t (x, s)〉x being the deviation of the time to the average [198]. For the scaling
exponents α, β, and z, two characteristic sets of values exist describing two different universality classes:
the Edwards-Wilkinson (EW) class and the Kardar-Parisi-Zhang (KPZ) class.

For the EW class, the scaling exponents take the values

(α, β, z) =
(1

2
,
1
4

, 2
)

. (6.12)

A few toy models fall in this universality class, among them in discrete space random deposition with
diffusion, and in continuous space the EW equation (in surface physics notation)

∂

∂T
h (x, T ) = v0 + ν∇2h + η (x, T ) (6.13)

with η (x, T ) being Gaussian white noise and v0 and ν being constants.
For the KPZ class, the scaling exponents take the values

(α, β, z) =
(1

2
,
1
3

,
3
2

)
. (6.14)

Amongst the toy models of this class are in discrete space ballistic deposition, and in continuous space
the KPZ equation [199]

∂

∂T
h (x, T ) = v0 + ν∇2h + λ

2
(∇h)2 η (x, T ) , (6.15)

again with constants v0, ν, λ.
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6.5.2 Interface Width of the Temporal Surface under the Influence of Correction Schemes

To determine the interface width of the temporal surface, for each generation the standard deviation of the
temporal surface is calculated and the ensemble average taken for each generation separately (fig. 6.22
(a)). The initial and final part of the curve are fit with a function 〈w〉E = A1sc1 and 〈w〉E = A2sc2 ,
respectively (fig. 6.22 (b)). Without correction, both fits result in ci ≈ 0.5, consistent with the independent
growth in the surface model (eq. (6.9), fig. 6.22 (c)). For the default parameter choice, the results of the
fits are c1 = 0.176 and c2 ≈ 0 (fig. 6.22 (d)). The result for c2 is consistent with the results found in the
KPZ and EW case for large times, while the result for c1 does not fit either (eq. (6.12), eq. (6.14)). This
is not necessarily surprising since according to the strong universality conjecture models usually need
appropriate rescaling by “zooming” out in x and s dimension and scaling t appropriately to converge to the
fixed points with EW or KPZ characteristics, respectively [200].

For the purpose of analyzing the exponents more systematically, in fig. 6.23 and fig. 6.24 the fit param-
eters are plotted as a function of m for different correction schemes and standard deviations of the noise
σ. While there are quantitative differences, the general shape of the curve for c2 is the same in all cases:
For m = 0 and large m, the correction scheme is basically not in effect and c2 ≈ 0.5. For intermediate
values around the optimum correction constant, c2 ≈ 0 and the correction scheme does work effectively
preventing any further increase in the interface width. The data for c1 (fig. 6.24) reveals a slightly more
complicated picture. Proportional and Kuramoto correction schemes show a similar dependency: Starting
from c1 = 0.5 at m = 0, falling to slightly below 0.25 (forward and backward scheme) or around 0.15
(symmetric scheme) and subsequently rising again to larger values once m is significantly larger than the
optimal proportionality constant. In its effective range, the correction scheme is thus not only able stabilize
the interface width for large times but also to slow down the increase of the interface width in the initial
phase. Again, the values expected for the theoretical limiting models are not met. For the constant correc-
tion scheme, the c1 drops further down. Values below zero can be explained with the fit not including the
first few values, giving room for a drop in interface width.5

5This specific procedure is used because for the simplistic applied fit procedures employing least square fitting with the python
package scipy [201] it showed a better stability. With a more sophisticated approach currently developed by M. Bojer using
various different functions to fit the curve for both small and large number of generations and deciding the most appropriate
model via statistical testing procedure, better results might be possible.
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Figure 6.22 Temporal Surface Interface Width Fit (a) Illustration of the calculation of the ensemble average of
the interface width of a generation. For an individual simulation, the update times of each cell of each generation
s are recorded. The spatial standard deviation of the time of a generation is calculated w (s) = σt(i) (s). After
performing the simulation NE times, the corresponding ensemble averages 〈w (s)〉E are calculated. (b) To compare
to the standard surface growth classification quantities, 〈w (s)〉E is fitted by A1sc1 in the first few generations and
with A2sc2 in the last half of all generations. (c-d) Examples of the plot in (b) with data from a simulation without
correction (m = 0, c) and with correction (m = 0.3, d) for otherwise standard parameters with the corresponding fits
and their parameter values in the legend.
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Figure 6.23 Temporal Surface Interface Width Results c2. Fit parameter c2 and A2 (insets) of the long time limit
as illustrated in fig. 6.22 as a function of the proportionality constant m for proportional correction (first column),
constant correction (second column) and Kuramoto correction (third column) as well as symmetric, forward and
backward correction (different colors) and standard deviations of the update noise (different rows). Values for c2 for
EW- and KPZ-class (0) as solid line, for random growth (0.5) as dashed line and for ballistic growth (1.0) as dash-
dotted line.
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Figure 6.24 Temporal Surface Interface Width Results c1. Fit parameter c1 and A1 (insets) of the small time
limit as illustrated in fig. 6.22 as a function of the proportionality constant m for proportional correction (first column),
constant correction (second column) and Kuramoto correction (third column) as well as symmetric, forward and
backward correction (different colors) and standard deviations of the update noise (different rows). Values for c1 for
the Edward-Wilkinson Class ( 1

4 ) as dash-dotted line and for the KPZ class ( 1
3 ) as dashed line.
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6.6 Discussion and Further Avenues

In this chapter, pattern formation with CA in the context of arising asynchrony was investigated. A mini-
malistic model of discrete updates with noisy timing was extended to include a communication delay and
various correction schemes to alleviate the effects of noise in timing processes. It was found that in the
context of pattern formation, communication and information processing delay can be a productive force
acting as a buffer against asynchrony. If the patterning is coupled to the synchronization, but not the other
way round, patterning dynamics which reach steady states quickly are in general robust against asyn-
chrony. If the synchronization is additionally coupled to the patterning dynamics, also rules which have a
highly variable pattern formation process show robustness against asynchrony. Conservation of synchro-
nization can be achieved by using correction mechanisms which are either only based on the information
if a neighboring cell is faster or slower, or use the exact time difference in a linear fashion or in a model
similar to the classic Kuramoto model, with the latter two being equally more performant than the constant
correction scheme. Yet, these correction schemes cannot reach the performance of a “perfect” correction.
The schemes can deal with quenched as well as annealed noise, can handle systems growing by cell
division at the “tip” or anywhere in the system, different boundary conditions and system geometries. The
strength of the noise that can be handled depends apart from the efficiency of the correction on the amount
of information that is received and the amount of delay acting as a buffer. The process can also be inter-
preted in the context of the physics of surface growth, showing similar limiting characteristics regarding the
“roughness” of the surface of update times.

The connection of surface physics models and temporal surfaces has already been made in the context
of parallel discrete-event simulations [202]. Using a nearest neighbor update model which additionally
guarantees causality and is disturbed by a Poisson noise, they show a behavior close to the behavior of
the Edward Wilkinson model. Their model is guaranteed to never loose causality, albeit at the cost of
having an average update speed of approximately 1

4 for L → ∞, compared to approximately 1 for the
small length studied in our model. Introducing additional random connections between cells successfully
reduces the roughness of the temporal horizon [197].

Obvious extensions of the work done in this chapter are the inclusion of other motives investigated during
this thesis, e.g., dynamic topologies and coupling of the synchronization to the mechanical properties
of tissues (cp. chapter 8), inclusion of more complex pattern formation process and target measures
(cp. chapter 4, chapter 5), and extending the range of the interactions (cp. chapter 7). Additionally,
while here pattern formation in the context of mere conservation of an already present effective synchrony
was investigated, pattern formation in the context of a system that is just reaching a synchrony may be
interesting from a practical viewpoint. This could be realized for example via the Kuramoto correction
scheme. A different strategy to model this problem is discussed in the following subsection section 6.6.1.
One of the implicit assumptions of the models and observables was that the goal was to synchronize
the cells not only in the same “phase”, but also in the same generation. While this is important for the
pattern formation aspect and there are examples of gradual maturation with each cell division [203], in the
absence of a pattern formation mechanism the synchronization of the “phases” might be enough. Loosing
this restriction could bring the model closer to biological systems like the segmentation clock [13] or genetic
oscillations in Anabaena [149].

6.6.1 Outlook: Information Theoretical Inference of Phases During Synchronization of
Heterogeneous Oscillators

This section describes collaborative work by Johannes Harth-Kitzerow, Torsten Enßlin, Ulrich Gerland and
the author of this thesis, with the conceptual development performed by J.H.-K. and S.K. with the help of
T.E. and U.G.. The detailed calculations were executed by J.H.-K. and are not shown here.

The goal of this section is to develop a Bayesian approach to infer the update times of the neighbors
from the perceived time differences for potentially different update frequencies of the cells which are then
adjusted by the correction algorithm. An overview over the algorithm can be found in fig. 6.25.
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Figure 6.25 Inference Algorithm Overview. View of a single cell in the inference algorithm. The cell receives the
data di,n in the form of the temporal differences of the last ticks form the neighboring cells and tries to minimize
a quadratic loss function to optimally choose its new update time Ti,n+1. The distribution with which the average
is taken can be calculated assuming Gaussian priors and noises, as well as using Bayes theorem. From the new
update time, the new ticking frequency and from a continuity assumption the new ticking phase can be determined.

Set-Up

Cell i ticks in generation n with a frequency ωi,n which can differ from cell to cell and generation to gener-
ation. The ticking can be modeled by a ticking function

hi (t) = δ (1− cos (ωi,nt + ϵi,n)) (6.16)

with i denoting again the cell and n denoting again the generation. The time difference between ticks
without noise is then

Ti,n = 2π

ωi,n
+ εi,n − εi,n−1 = 2π

ωi,n
+ ∆εi,n (6.17)

with ∆εi,n = εi,n − εi,n−1. Assuming the ticking function changes smoothly at the nth update at time tn,

cos (ωi,n−1tn + ϵi,n−1) = cos (ωi,ntn + ϵi,n) = 1 (6.18)

is required, thus

ωi,ntn + ϵi,n
!
∈ 2πZ (6.19)

ωi,n−1tn + ϵi,n−1
!
∈ 2πZ. (6.20)

The updated phase ϵi,n can thus without loss of generality be chosen from

(ωi,n − ωi,n−1) tn + ∆εi,n = 0 (6.21)

to be
ϵi,n = ϵi,n−1 + (ωi,n−1 − ωi,n) tn. (6.22)

Deviations from the optimal behavior will again be modelled as diffusive drift by a Gaussian, giving an
effective ticking time of

δti,n = Ti,n + η(0, σi). (6.23)
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A cell i receives information about its neighbors if they have ticked before cell i, which is for two neighbors
indexed by i− 1 and i + 1

di,n = (min (0,−∆ti,n) , min (0,−∆ti+1,n)) (6.24)

with

∆ti,n :=
n∑

k=0
(δti,k − δti−1,k) . (6.25)

To simplify the equations, in the following it is assumed that the data is fully available, i.e.,

di,n = (−∆ti,n,−∆ti+1,n) . (6.26)

Loss Function

The goal of the cell is to minimize the time difference of the next ticking events, i.e., the time differences

Ti,n+1 − Ti+1,n+1 −∆ti+1,n (6.27)

Ti,n+1 − Ti−1,n+1 −∆ti,n. (6.28)

The loss function now effectively determines the correction scheme and different variations can be inves-
tigated. An example is a quadratic loss function, in the noiseless case

l = 〈‖2Ti,n+1 − Ti+1,n+1 − Ti−1,n −∆ti+1,n + ∆ti,n‖〉P (Ti+1,n+1,Ti−1,n+1|di,n,∆ti+1,n−1,∆ti+1,n−1). (6.29)

With noise, the loss function becomes

l = 〈‖2δti,n+1 − δti+1,n+1 − δti−1,n −∆ti+1,n + ∆ti,n‖〉P (Ti+1,n+1,Ti−1,n+1|di,n,∆ti+1,n−1,∆ti+1,n−1). (6.30)

Bayesian Model

For developing a Baysian inference model for P (Ti+1,n+1, Ti−1,n+1|di,n, ∆ti+1,n−1, ∆ti+1,n−1), the prior
information and the noise are assumed to be Gaussian distributed, thus

P (Ti+1,n+1, Ti−1,n+1|di,n, ∆ti+1,n−1, ∆ti+1,n−1) =∫
G (Ti+1,n+1 − Ti+1,n, σi+1)

G (Ti−1,n+1 − Ti−1,n, σi−1)
P (Ti+1,n, Ti−1,n|di,n, ∆ti,n−1, ∆ti+1,n−1, Ti,n) dTi+1,ndTi−1,n.

(6.31)

The posterior is now determined using Bayes Theorem:

P (Ti+1,nTi−1,n|di,n, ∆ti,n−1, ∆ti+1,n−1, Ti,n) =
P (di,n|Ti+1,n, Ti−1,n, Ti,n, ∆ti,n−1, ∆ti+1,n−1) P (Ti+1,n, Ti−1,n)

P (di,n|∆ti,n−1, ∆ti+1,n−1, Ti,n)
.

(6.32)

The three components of the right hand side can be determined by the assumptions stated above. For the
prior,

P (Ti+1,n, Ti−1,n) = G (Ti+1,n − Ti+1,n−1, σi+1)G (Ti−1,n − Ti−1,n−1, σi−1) . (6.33)

The likelihood is, again under Gaussian assumptions6

P (di,n|Ti+1,n, Ti−1,n, Ti,n, ∆ti,n−1, ∆ti+1,n−1) =∫
δ (∆ti,n −∆ti,n−1 − Ti,n + Ti−1,n + ηi−1,n − ηi,n)

δ (∆ti+1,n −∆ti+1,n−1 − Ti+1,n + Ti,n + ηi,n − ηi+1,n)
G (ηi−1, σi−1)G (ηi, σi)G (ηi+1, σi+1) dηi−1dηidηi+1.

(6.34)

6This step omits 10 lines of calculation by J-H.K.
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The evidence P (d) can be obtained from normalization or marginalization

P (di,n) =
∫

P (di,n|Ti+1,n, Ti−1,n, ηi) P (Ti+1,n, Ti−1,n, ηi) dTi+1,ndTi−1,ndηi. (6.35)

This model could now be solved either analytically or numerically.
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7 How to Use Local Interactions to Refine Patterns
Created by Global Signaling? - Coupling
Gradients and Local Signaling

This chapter comprises work from a bachelors thesis by Ludwig Burger [204] supervised by M. Bojer and
the author of this thesis as well as work by Mareike Bojer [116] in which the author of this thesis was
involved conceptually and which was published jointly [205]. All were supervised by Ulrich Gerland.

7.1 Morphogen Gradients and Local Interactions

Axial pattern formation was formulated by Wolpert as the already previously discussed French Flag prob-
lem [19]. The main conceptual solution to this problem was a gradient model [20], where gradients of
diffusible morphogens (fig. 7.1 (a), (b)) are read out by the individual cells and cell types are determined
via a thresholding mechanism. This solution model received experimental underpinning in the years since,
e.g., in Drosophila [25] or vertebrate neural tube [23]. Typically, through the thresholding mechanism dif-
ferent domains of gene expression are formed along the gradient axis as showcased by a French Flag. A
central problem for pattern formation with this mechanism is noise in its possible various sources [14], e.g.,
stochastic production of morphogens [139, 206], local variations due to the stochastic nature of diffusive
processes, or variations in the readout of the morphogen concentrations by the cells [14]. This leads to
domain boundaries which are not precise but rather “rough” [14], which might have negative effects for the
downstream development of the embryo. To straighten the boundaries, several mechanisms are possible.
For example, cells can have different mechanical properties for different cell types and thus sort them-
selves into the “correct” domain via mechanical forces [151], e.g., mediated by Eph/Ephrin Signaling [151].
Another conceptually possible mechanism, which is explored here, is that cells additional to the information
about the concentration of the morphogen at their position (“global signal”) also interact with their direct
neighbors (fig. 7.1 (c), (d)) locally and exchange information about their states (“local signal”). In the follow-
ing sections a set of assumptions are made: Cells are assumed to be on a static grid, receiving (possibly
noisy) signals from the morphogen gradient and their immediate neighbors (fig. 7.1 (b), (d)). The signal
from the gradient, which is assumed to be an exponential profile [207], will be processed logarithmically,
leading effectively to a linear gradient signal [208]. While on the left and right fixed boundary conditions
with cells in the “correct” (according to a noiseless global signal) state are used, along the perpendicular
axis periodic boundary conditions are chosen. Two models with different dynamics, signal processing and
noise parametrization are employed. In the next section, first a equilibrium model similar to Hillenbrand et
al. [208] is used to analyze a minimally constrained version of the problem of getting smooth boundaries
via local interaction. In the third section a more specific, dynamical model is analyzed with the focus on
which signal processing logic performs best when combining local and global signals in order to smooth
boundaries.
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Figure 7.1 Models for Axial Pattern Formation. (a) In the classical solution to the French Flag problem of axial
pattern formation diffusible morphogens set a gradient in extracellular space, which is read out by the cells and
trough a thresholding mechanism converted into a state. (b) The realistic model is conceptually simplified in an
abstract model where the cells are placed on a grid with the diffusible morphogens simplified in an field spanning the
whole grid. Different cell types are marked by different colors of the cell boundary. (c, d) Same as in (a, b), but with
additional local signaling. (e) Legend. (a) & (c) adapted from Bollenbach [209].
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7.2 Equilibrium Model

7.2.1 Model Definition and Observables

In this section, it is assumed that cells are placed on a grid of size N x M and that they can have two
states s = −1 and s = +1 (fig. 7.2). They try to align their states with an external field h(x) which is
chosen to be linear with a zero crossing in the middle of the grid

h (x) = Je

(
x− M

2

)
(7.1)

which is modeled by an “energy” function

H = −
∑

i

h(x)si(x). (7.2)

Cells interact with their direct neighbors such that they favor to have the same state, modeled again by a
corresponding “energy” function

H = −J
∑
〈i,j〉

sisj . (7.3)

Taking both local and global interactions together,

H = −J
∑
〈i,j〉

sisj −
∑

s

h(x)si(x) (7.4)

describes the “energy” of the system, which is constructed now such that cells try to have a state that
aligns with the external field and with their neighbors, i.e., a domain system with a smooth boundary
minimizes the energy for appropriately chosen parameters. Each configuration {s} has now an “energy”
associated with it. To model the noise in the pattern formation process it is assumed that each configuration
is appearing with a certain probability depending on the “energy” of the configuration. The probability
distribution is chosen to be of a Boltzmann type

p = 1
Z

exp

−J
∑

〈i,j〉 sisj −
∑

s Je

(
x− M

2

)
si

η

 (7.5)

with η quantifying the noise and Z being a normalization constant

Z =
∑

s1=±1
· · ·

∑
sN·M =±1

exp

−J
∑

〈i,j〉 sisj −
∑

s Je

(
x− M

2

)
si

η

 . (7.6)

This choice is motivated by the following reasons: (1) configurations with a straighter boundary at the right
position have a higher statistical weight, (2) it is the maximally unbiased distribution for a fixed average
“energy” [115], and (3) it is equivalent to the Ising model, an established toy model for locally interacting
spin systems which has already been sucessfully employed to model developmental systems [210].

The individual cells are placed on a lattice - either a square lattice with von Neumann neighborhood, a
hexagonal lattice, or an irregular lattice created by randomly shifting an initially regular hexagonal pattern
of points randomly (with the random shifts drawn from a triangular distribution with variance r) and then
defining cells by Voronoi tessellation (cp. appendix A.7). Boundary conditions are chosen to be fixed on
the left and right end of the simulation, and periodic on top and bottom.

As main observable, the roughness is chosen which is defined as the ensemble average of the standard
deviation of the interface position:

roughness =
〈√∑

y

[
xboundary (y)− 〈xboundary (y)〉configuration

]2〉
ensemble

(7.7)

It is obtained by Monte Carlo Sampling [211] of the configuration space, for implementation details see
[204].
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7.2.2 Results

The results of boundary formation for the different types of grids can be seen in fig. 7.2 (b) - (i). For a square
grid, the roughness as a function of the intrinsic noise is plotted in (b). The curve can be subdivided into 3
regimes, a self stabilization regime (1), and first (2) and second (3) linear regime. In the self stabilization
regime, the boundary is perfectly straight despite a nonzero noise. In the first linear regime, spin flips in the
row directly adjacent to the boundary are possible. There is a comparably large energy barrier for the flip
of a first, isolated spin at the boundary of 4J + Je, while every additional flip only costs Je. In the second,
also spin flips away from the boundary are possible. These have a very low probability of occurrence each
due to their large energy penalty of 8J + Je

∣∣∣x− M
2

∣∣∣, but there exist a lot of configurations with these, and
thus they can outweigh the changes directly adjacent to the boundary by their multiplicity. Additionally,
through the large distance to the boundary position they also contribute with a greater amount towards the
variance.

The larger the local interactions are, the later is the onset of the first linear regime (fig. 7.2 (c)). To model
the dependency, the self stabilization regime and the first linear regime are approximated by linear fits and
their intersection defined as the crossover point between the regimes or characteristic intrinsic noise ηC

(fig. 7.2 (d)). Plotting the characteristic intrinsic noise as a function of the local coupling constant yields
indeed a linear relationship (fig. 7.2 (e)).

For the hexagonal grid, the roughness plotted as a function of the intrinsic noise follows a qualitatively
different behaviour (fig. 7.2 (f)) as there is no self stabilization regime (1). This is due to the fact that in
a hexagonal grid cells position with their midpoint directly at the coordinate of the zero crossing of the
external field have, assuming all other cells have a "correct" state, no energy preference for either state.
Furthermore, again assuming all other cells have a "correct" state, cells half a cell diameter distant from
the zero crossing of the external field have 3 black and 3 yellow neighbors, and thus only an energy penalty
proportional to Je but independent of J when switching states.

For irregular grids, a similar behaviour as for the hexagonal grid occurs (fig. 7.2 (g)), although the initial
roughness at extremely low noise is larger due to the grid irregularities and the subsequent increase slower
since the number of state changes whose energies does not depend on the local interaction energies is
smaller due to the irregularities. The second regime this time is nearly completely stable for two reasons:
For these noises, the energy required to change states whose changes are penalized by local interactions
is a nearly unreachable barrier. Changes which only depend on the energy of the gradient however are
already realized in the roughness calculations also for lower intrinsic noise levels. Calculating again a
characteristic noise analogously to the procedure for square grids, only this time between the second
and third regime, yields again a nearly linear dependency of the characteristic noise as a function of
the local interaction constant J (fig. 7.2 (h)). As intuitively expected, the larger the noise of the grid
generation parameterized by r and thus the more irregular the grid (fig. 7.2 (i)), the slower the increase of
the characteristic noise (fig. 7.2 (h)).

Summarized, local interactions smooth boundaries in regular as well as irregular grids - the stronger
the interaction the lower the roughness of the boundary (fig. 7.2 (e), (h)). While for square grids the local
interactions facilitate a regime with a completely straight boundary, for hexagonal and irregular grids this
is not possible due to state changes with no or extremely low energy costs. Yet, as soon as the intrinsic
noise is large enough to realize these transitions, again a self stabilization regime appears with relatively
constant roughness as a function of the intrinsic noise until the noise is large enough to overcome also
barriers introduced by the local interactions. In general, disordered grids perform worse than ordered
grids. Interestingly, this is different than the behaviour of the Ising model without external field. Using
the magnetization as order parameter and the critical temperature as observable, Eltinge showed that the
transition from ordered to disordered phases occurs at higher temperature for disordered lattices than for
ordered lattices - it is conjectured that this is due to the on average larger number of nearest neighbors
since a similar increase can be seen by going from square to hexagonal lattices [212].
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Figure 7.2 Equilibrium Model. Adapted from Burger (2019) [204] with permission. (a) Basic model for a square grid
(MxN) with a exponential morphogen concentration creating a linearly varying signal with proportionality constant
Je, as well as local signaling with proportionality constant J . Boundary conditions are fixed (horizontal direction)
and periodic (vertical direction). Square grid: (b) Roughness as function of the intrinsic noise η. Three regimes are
marked corresponding to the exemplary grids below. In regime (1), self stabilization, the boundary is perfect despite
nonzero noise. In regime (2) spins flip in the row directly adjacent to the boundary. In regime (3) spin flips far away
are possible. (c) Roughness as a function of the intrinsic noise for different local gene-gene coupling constant J .
The larger the coupling constant, the lower the roughness. (d) Exemplary roughness as a function of the intrinsic
noise with fits of the first two regimes to determine the characteristic intrinsic noise ηC at their intersection. (e)
Characteristic intrinsic noise ηC as a function of the gene-gene coupling constant, together with a linear fit function.
Hexagonal Grid: (f) Roughness as a function of the intrinsic noise with different regimes, as well as exemplary
configurations for the regimes below. In contrast to the square grids, there is no self stabilization regime. Irregular
Grids: (g) Roughness as a function of the intrinsic noise for different irregularities of the grid, again with different
regimes marked and exemplary configurations below. (h) Characteristic intrinsic noise as a function of the gene-gene
coupling constant J for different irregularities of the grid calculated similar to the square grids but for the second and
third marked regimes. The larger the irregularities, the smaller the characteristic intrinsic noise for a given coupling
constant. (i) Relative amount of cells that have a certain number of neighbors for different irregularities of the grid.

7.3 Nonequilibrium Model

7.3.1 Model Definition and Observables

After having explored that local interactions can indeed smoothen boundaries established by gradients in
the presence of noise in equilibrium models, now the focus will be shifted towards a nonequilibrium model.
Again, a set of cells will be placed on a square grid, with each cell having a state c ∈

{
−1

2 , 1
2

}
being

subjected to a signal from a morphogen gradient sG
i,j and their nearest neighbors sL

i,j (fig. 7.3 (a), (b)). The
state of a cell ci,j (t) at position i, j and time t is evolved in discrete steps and is a direct function of these
two signals

ci,j (t + 1) = L
[
sG

i,j (t) , sL
i,j (t)

]
(7.8)

The gradient is again modeled as a linear function of slope m with noise introduced by an explicit noise
term ξG

ij which is chosen to be Gaussian white noise with zero mean and standard deviation σG

sG
i,j (t) = mi + ξG

ij (t) (7.9)

The local signal is calculated as the sum of the states of the neighbors plus again an Gaussian white noise
term with zero mean and standard deviation σG accounting for any inaccuracies due to errors in signal
production, transmission and readout

sL
i,j (t) =

∑
(k,l)∈neighbors(i,j)

ck,l (t) + ξL
ij (t) (7.10)

Left for definition is now to specify how the local and global signal give rise to the state in the next time
step (fig. 7.3 (c)). In a situation with only a gradient the update function L is defined to be consistent with
the gradient solution of the French Flag problem by introducing a threshold a below which the state in the
next time step is −1

2 , and above which it is 1
2 :

LGRAD
[
sG

i,j (t)
]

= Θ
[
sG

i,j (t)− a
]
− 1

2
(7.11)

If the state of the cell is defined by the concentration of a single protein and the signal acts as activator for
the expression of said protein, this is consistent with having an Hill input function for the expression of the
protein with infinite Hill coefficient [89]. Taking the local signal into account as well, both gradient and local
signal can give rise to an expression in different ways. Assuming again the state of the cell to be defined
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by the concentration of a protein, its expression could require both local and global signal to be present,
i.e., both activator signals binding to a promotor for the expression of the associated gene, leading to an
AND logic [88, 89, 213]

LAND
[
sG

i,j (t) , sL
i,j (t)

]
= Θ

[
sG

i,j (t)− a
]

Θ
[
sL

i,j (t)− aAND
]
− 1

2
. (7.12)

Alternatively, either could be sufficient, giving rise to an OR gate [88, 213, 89]

LOR
[
sG

i,j (t) , sL
i,j (t)

]
= Θ

[
sG

i,j (t)− a
]

+ Θ
[
sL

i,j (t)− aOR
]
−Θ

[
sG

i,j (t)− a
]

Θ
[
sL

i,j (t)− aOR
]
− 1

2
.

(7.13)
Finally, both could act on the same promoter and thus can be modeled by a SUM input function [89]

LSUM
[
sG

i,j (t) , sL
i,j (t)

]
= Θ

[
sG

i,j (t) + sL
i,j (t)− a

]
− 1

2
. (7.14)

In the following, these will be called AND, OR, and SUM rule. While for the SUM rule the thresholding takes
place relative to a single threshold, for the AND and the OR rule the thresholding needs to be done with
respect to a specific threshold aAND and aOR, respectively, before invoking the eponymous logic operation.
If the gradient formation is set to work from both homogeneous as well as random initial conditions and
at the same time reduce the used observables (see below) optimally, it can be shown numerically that
aAND = −1 and aOR = +1 are the only reasonable choices [205]. To reduce the parameter space
further, the total noise is defined as

ξ := ξL + ξG (7.15)

with a total variance of

σ2 :=
(
σL
)2

+
(
σG
)2

(7.16)

Then a parameter

α :=

(
σL
)2

σ2 (7.17)

can be defined to characterize the relative noise strength. This parameter is for most of the following
paragraphs chosen to be α = 2

mL+2 . Further, for the rest usually the paramter sets m and a
m are used

instead of a and m.
All updates are performed synchronously, yet the stationary results for the main observables (see below)

qualitatively agree for asynchronous, random update [205].
As first observable, the boundary position B, defined as the average number of cells with state −1

2 ,

B := 1
L

∑
i,j

δ

(
ci,j ,−1

2

)
, (7.18)

is chosen. To measure the fluctuations around this average, as second observable the Fuzziness F as
the number of cells in the wrong state with respect to the boundary position (regardless of their distance
to said boundary),

F := 1
L2

 ∑
i<B,j

δ

(
ci,j ,

1
2

)
+
∑

i>B,j

δ

(
ci,j ,−1

2

) , (7.19)

is used. The fuzziness as an observable is able to include outlier cells which are enclosed completely by
other cells of different cell types as well as a rough boundary between homogeneous groups of cell types.
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7.3.2 Results

Kinetics

In contrast to equilibrium model of the previous chapter, the non-equilibrium model allows to study if and
how a steady state is reached from different initial conditions. Figure 7.3 (d) shows boundary position and
fuzziness as a function of time for the AND and SUM rule for different initial conditions (random, all 1

2 , or all
−1

2 ) and different noise levels. For the AND rule, starting from an all −1
2 (OFF) grid, the boundary moves

roughly one cell on average towards the middle of the system (see also zoom ins in insert (i)) since the
structure of the rule needs both local and global signal to switch to the on state with the local signal initially
being available only at the boundary. For random or all ON initial condition, local signals are (for sure in
the all ON case, usually in the random case) available throughout the system and thus a boundary in the
middle of the system quickly forms. In all cases, after forming the boundary in the middle of the system
the roughness quickly reaches its stationary value. It can be shown that the OR is qualitatively similar to
the AND rule with inverted state values [205].

For the SUM rule and large noise, the boundary position and fuzziness quickly converge to their station-
ary values. For small noise, the boundary position converges to a value close to the value expected by the
pure gradient of L

2 , after which the signal from the gradient is not enough to outweigh the local signal until
a random fluctuation due to the noise introduces a “seed” (inset (iii), leftmost grid). The seed gradually
spreads through out the boundary row by flipping the neighbors (inset (iii), next 3 grids) increasing the
fuzziness temporarily, and finally consolidates into a boundary position at the zero crossing of the gradient
(inset (iii), rightmost grid).

Noise Dependency

To investigate the dependency of the pattern formation on the noise more thoroughly, in fig. 7.3 (e) the
dependency of the temporal averages of boundary position and fuzziness as well as the time necessary
to reach the stationary values are depicted for the AND, OR and SUM rule as well as for the pure gradient
(dark colors), together with predictions by analytical theory (light colors), all for a specific choice of system
size and parameters of the gradient. The initial conditions are “all off” except for the transition time where
the maximum of “all on” and “all off” initial conditions was taken.

The boundary position for the SUM rule is for all noise levels at the same position as the boundary
position of the gradient, while for AND and OR rule the boundary position deviates as a roughly linear
function of the noise level. The analytical values closely approximating the numerical results are derived
based on the fact that for a stable stationary boundary at position i the probability of a fluctuation to disturb
this boundary to the left must be smaller than the probability to disturb the boundary at i − 1 to the right.
The same must hold true for a disturbance of the boundary at i to the right and the boundary to the left at
i + 1 [205].

The fuzziness of all rules is a monotonically increasing function of the noise level and in general lower
than the pure gradient behavior. The SUM rule in general outperforms the AND and OR rule and has a
noticeable region of small noise where the fuzziness effectively stays zero, i.e., even though there is finite
noise present, the SUM rule is able to make any fuzziness of a pure gradient rule disappear.

To get a proper upper bound for the transition time to the stationary value, for the AND and OR rule,
the maximum time for an all ON and all OFF grid, respectively, is taken. Thus, it is independent of the
noise for these two cases because of the mechanism detailed in the previous section. For the SUM rule
it is a monotonically decreasing function - the larger the noise the more random flips appear aiding in the
formation of the stationary pattern as discussed in the previous section.

Having discussed now the dependencies for a specific ratio of local to global noise and specific parame-
ters of the gradient, in fig. 7.3 (f), for a fixed total noise

√
3σ = 2, for SUM, AND and OR rule the fuzziness

is plotted as a function of the relative noise ratio α for different levels of a
m . For all rules, the fuzziness

with rule is lower than the fuzziness of the pure gradient well beyond the half, indicating that even if the
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local interactions are more influenced by noise than the gradient signal itself the local rule is able to reduce
boundary fuzziness for different parameters of the gradient.

Scaling

A crucial property demanded for a solution of the French Flag problem [19] is that the solution is able
to scale with system size. To investigate this property, the relative fuzziness and the boundary position
relative to the system size for fixed noise and scaling gradient parameters are plotted in fig. 7.3 (g) as a
function of the system size. Ignoring finite size effects for small lengths, the relative boundary position
and the relative fuzziness are independent of the system size indicating that all solutions with rules scale
similarly as the pure gradient solution with system size.

Gradient Dependency

The remaining parameters that ask for a systematic discussion are the gradient slope m and the threshold
a. In fig. 7.3 (h) the average as well as the maximum and minimum values over the threshold a of the
ratio of the fuzziness of a logic to the fuzziness of the pure gradient FLogic

FGrad are plotted as a function of
the gradient slope. For all investigated values of the gradient and threshold parameters, the AND and OR
rules outperform the gradient logic and are themselves outperformed by the SUM rule.
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Figure 7.3 Nonequilibrium Model. Adapted from Bojer, Kremser, Gerland; 2022; Robust boundary formation in
a morphogen gradient via cell-cell signaling; Phys. Rev. E 105, 064405 [205] ©2022 American Physical Society.
Model Definition: (a) Cells in a square grids receive a morphogen signal which is linear as a function of the
horizontal coordinate (i) as well as local signals from their neighbors. (b) Cells can in either one of two states ON
and OFF (c) The state of a cell is determined by the local and global signal, as well as how are they coupled together.
Either only the global signal is compared to a threshold a [Grad], both signals are summed up and compared to a
threshold (a), or both are individually compared to thresholds a, aAnd or aOr, respectively, and then logically coupled
via the AND or OR logic. Results: (d) Kinetics:. Boundary position and boundary fuzziness as a function of time
for different standard deviations of the noise σ for the AND (upper panels) and SUM (lower panels) logic for different
initial grid configurations, together with exemplary grid configurations at the marked times. AND logic: For "Random"
and "all On" configurations, the boundary position L

2 is reached quickly, while for "all Off" the approach is gradually
step by step as illustrated in (i). The fuzziness similarly reaches a plateau value for "all On" and "Random" initial
conditions quickly, whereas it takes time until the boundary reaches L

2 to reach the plateau value for the "all Off"
initial condition. SUM logic: The boundary position gets close to the plateau value L

2 quickly, for large noise reaching
it nearly instantaneously, while it takes a long time for the low noise case. The fuzziness quickly reaches a low
value for all initial conditions in the low noise case, only increasing and falling again when the boundary is reaching
L
2 as illustrated in (iii). In the large noise case the fuzziness falls to a finite plateau value. (e) Absolute noise
dependency: Boundary position, fuzziness and time to steady state as a function of the noise level for all presented
logics. Simulation results in bold, analytical model in faint colors. The SUM rule has the same boundary position
as the gradient, whereas for the AND (OR) rule it increases (decreases) for larger noise. For the SUM rule, the
fuzziness stays 0 for finite noise levels, whereas for AND and OR logic it increases, although it is lower than with a
pure Gradient. All logics reach the steady state quickly except for the SUM logic. (f) Relative noise dependency:
Fuzziness as a function of the ratio of the local and total noise α for different logics and ratios a

m . All logics perform
better than the gradient logic even when the noise in the local signal is larger than the noise of the gradient but not too
large (g). Scaling: Boundary position per system size as well as relative fuzziness as a function of system size, all
reaching constant values for larger system sizes. (h) Gradient Dependency: Fuzziness of the logics relative to the
fuzziness of the gradient logic for different slopes of the gradient m, showing that in all cases the logics outperform
the pure gradient.

7.4 Discussion and Further Avenues of Research

To sum up, local interactions can reduce the roughness/fuzziness of a boundary formed by a gradient
mechanism in equilibrium and non-equilibrium models on various grids (fig. 7.2 (b), (f), (g)) and for various
interaction rules of local and global signal (fig. 7.3), while keeping the scaling property of the underlying
gradient model (fig. 7.3 (g)). In the non-equilibrium case it was shown that the SUM rule outperforms
the other interaction rules regarding its reduction of fuzziness (fig. 7.3 (d) - (h)) and conservation of the
boundary position imposed by a pure gradient rule (fig. 7.3 (e), (g)).

The simplicity of the models also has some serious drawbacks concerning the reach and strength of
the statements that can be made. For the equilibrium model, while qualitatively capturing the features of
a local interaction that aims to align cell types locally, a more thorough motivation of the chosen modeling
assumption is not available. Additionally, being an equilibrium model, all temporal effects can inherently
not be modeled like averaging signal measurements over time [14] and not only over space due to the lo-
cal interactions. The latter is also partially true for the non-equilibrium model that only allows for temporal
pooling of the previous values of the neighboring cells. Although several, including irregular, grids, were
investigated for the equilibrium models, only square grids were used in the non-equilibrium model. Ex-
tending the models to different grids by either including experimentally sourced irregular grids, extending
the models to 3 dimensions, including a mechanical model to also consider cell movements and topolog-
ical grid changes (cp. chapter 8), or taking into account the dependency of the local signal strength on
the shared interaction surface of the cells [62] are variations that should be readily implementable in the
current code-base. It can be speculated that especially the latter can reduce clustering effects found in the
equilibrium model for irregular grids [204].

Despite these drawbacks, the chosen models have advantages regarding their quick numeric solvability
and thus multitude of parameter combinations and research questions can be probed. In both cases, it
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could be established for a multitude of parameter combinations that local interactions can indeed reduce
the roughness/fuzziness of a boundary formed by a gradient mechanism and allowed for the comparison
of different mechanisms of combining the local and global signals in the non-equilibrium case. This pro-
vides theoretical support not only for developmental systems, but also for the challenging task of synthetic
mimicry of boundary formation [214]. Exemplary platforms of synthetic pattern formation have demon-
strated communication based on gradients [31, 215] and local interactions [30, 31]. Different communica-
tion logics can also be implemented and controlled in bacterial systems [216, 217]. The previous chapter
supports the choice of the SUM logic versus AND and OR logic as a design principle. It can be speculated
that the fact that for the SUM logic the signals are added up before thresholding and thus the variances of
the noise are only added as sum of squares leads to the advantageous performance over the AND and
OR logic [205]. However, it can be argued and experimentally supported in a bacterial system that for rare
signals thresholding followed by signal combination is preferential to the reversed procedure [205, 218].

In a recent study by Lee et al. [87], for the formation of the primitive streak in the chick embryo two
different models for interpreting morphogen gradients where investigated. The first compared the value of
morphogen signal to a threshold, in our notation roughly equivalent to

L = Θ
[
sG

i − a
]

(7.20)

in the formulation of the model here. The second compared the signal to the average neighborhood signal,

L = Θ
[

sG
AverageNeighbors − sG

i

sG
i

− a

]
(7.21)

with the size of the neighborhood may be larger then the nearest neighbors. Comparing these two mod-
els to data from different experimental settings lead Lee et al. to the conclusion that the second model
combining local and global signaling is better suited to explain the data. It should be noted that, while the
study shows the possibility for combining local and global signals in developmental settings, in their case,
the combination of local and global signaling is primarily used to determine the boundary position, while in
the case here the focus is on boundary fuzziness.
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8 How to Include Cell Movement, Division and
Death? - Coupling Vertex Models and Cellular
Automata

This chapter consists of work done by Sabina Orazov in her master thesis [219] supervised by Mareike
Bojer and the author of this thesis, all supervised by Ulrich Gerland.

8.1 Basic Vertex Model

The 2D vertex model (cp. fig. 8.1 a, b) in its usual form [220, 221, 222] is defined by specifying a set of
vertices

{
R⃗i

}
which determine the cell boundaries on a 2D surface, and an energy function specifying the

dynamics of the vertices of the form

E
({

R⃗i

})
=
∑

α

K

2
(Aα −A0)2 +

∑
α1,α2 adjacent

Λα1,α2 lα1,α2 +
∑

α

Γ
2

L2
α (8.1)

The first term describes the resistance of cells to changes in area (volume), e.g., compression of the cell is
met by a corresponding pressure with A0 being the volume the cells try to realize if not other cell would be
present and K a weighting factor for this contribution. The second term describes contributions due to e.g.,
cell-cell adhesion by cadherine molecules, as well as contracting forces, and depends on the interaction
length (surface) between two cells α1 and α2, lα1,α2 . The third term is a proxy for the effects of actomyosin
cortical tension and thus dependent on total circumference length of the cell α, Lα. Differentiating eq. (8.1)
with respect to the vertex positions leads to an expression for the force on a single vertex R⃗i.

F⃗net, i = ∂

∂R⃗i

E
({

R⃗i

})
(8.2)

The dynamics is then given in an overdamped setting by1

d

dt
x⃗i ∼ F⃗i (8.3)

To prevent the dynamics from being stuck in local minima, the proportionality constant for the line tension
term is not kept constant, but follows noisy dynamics as described in [221]:

Λ̇α1, α2 = −1
τ

(
Λα1, α2 − Λ0

)
+ Λ0

α1, α2γηα1, α2 (t) (8.4)

with the second term on the right hand side describing the noise with ηα1,α2 being a Gaussian white noise
with 〈ηα1,α2〉 = 0 and 〈ηα1,α2ηα3,α4〉 = δα1,α2;α3,α4δ (t− t′) as well as γ modeling the noise strength. The
noise term is counterbalanced by a relaxation term acting on a typical timescale τ .

The system of stochastic differential equations is solved by the Euler-Maruyama method with periodic
boundary conditions.

1Some terms presented in [221] are omitted here because they are only relevant with regards to implementing stresses in
periodic boundary conditions, but not relevant for the following discussion
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Apart from the geometrical changes by vertex movement, topological transitions (fig. 8.1 c-e) are possible
as well. T1-Transitions (fig. 8.1 c) happen when the length of an edge shrinks below a threshold lT1 ≈ 0,
corresponding to a change in local neighborhood. Cell division and death are essentially triggered once a
threshold value ADi is crossed from below, or ADe from above, respectively. In the case of cell death, the
dying cell is taken out of the simulation and the adjacent vertices are joined together (fig. 8.1 a, d). For cell
division, 2 new vertices and a new edge are inserted at random positions along the circumference of the
cell following the boundary condition of dividing the cell into to cells of equal size (fig. 8.1 a, e).

Growth in the vertex model in periodic boundary conditions can be implemented by increasing the lo-
cal equilibrium value of A, A0, to a large value, simultaneously scale the whole vertex model by the same
area and equilibrate the system afterwards.

8.2 Coupling to Cellular Automata

To couple the dynamics of the vertex model to a patterning dynamics via local signaling, a cellular automa-
ton can be run on the cells defined by the vertex model. Since the vertex model is defined in continuous
time and a cellular automaton in discrete time, a timescale δt needs to be defined that specifies the amount
of continous time between two cellular automaton updates. Taken together, the state s of cell α is changed
at time t + δt by the rule f , which depends on the states of the nearest neighbors.

sα (t + δt) = f (sβ, β ∈ Nα) (8.5)

Since the cell state corresponds to the gene expression of the individual cells which can regulate their
mechanical properties and growth, the state of the cell could also couple to the dynamics of the vertex
model by changing the corresponding parameters. This can be modelled by using first order differential
equations to smooth out the abrupt changes in cell state,

Λ̇α1, α2 = −1
τ

(
Λα1, α2 − Λ0

α1, α2 (sα1 , sα2)
)

+ Λ0
α1, α2 (sα1 , sα2) γηα1, α2 (t) (8.6)

Γα (sα) = h (sα) (8.7)

Ȧ0 (sα) = g (sα) (8.8)

Consequently, the energy function then changes to include these additional time dependencies

E
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R⃗i

})
=
∑

α

Kα

2
(Aα −A0 (t))2 +

∑
α1,α2 adjacent

Λα1,α2 (t) lα1,α2 +
∑

α

Γα (t)
2

L2
α. (8.9)
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Figure 8.1 Modified Vertex Model. (Previous page) (a) & (b) Vertex model. Cells are represented as polygons,
whose (shared) vertices follow an overdamped Newtonian dynamics. The force on each vertex consists of term from
3 qualitatively different origins: Area terms, depending on the area, representing the internal pressure of the cell; line
tension terms, modeling the adherence between cells, depending on the length of edges between vertices; cortical
tension terms, depending on the cellular circumferences, representing the forces due to the actomyosin ring on the
cell surface. Adding up all the forces excerted on a vertex by the adjacent cells results in the net force determining
the movement of a vertex. Technically, the forces are specified by defining an energy (b) and a force is obtained by
differentiating this expression with respect to the vertex position. The parameters of the energy expression follow
their own dynamics, only depending on the state of cells and, in case of the line tension proportionality parameter, a
noise term. The dynamics of the cell states follows a typical discrete cellular automata equation. (c)-(e) The vertex
model also allows for topological transitions, such as a change of local neighborhood positions (T1-transition, (c)),
cell death (d) and cell division (e). The processes are triggered once the length of an edge is smaller than a certain
threshold (T1 -transition) or the area of a cell is smaller(death)/larger(division) than a threshold, respectively.

8.3 Patterns in Growing Systems

As a first example, it was tried to construct a CA which qualitatively reproduces the “Salt and Pepper” like
patterns of Delta-Notch inhibitory signaling. To that end, a CA with 2 states is chosen. Each cell receives as
input the sum of the states of the other cells weighted by their contact length to account for the respective
signaling strength, compare [62], and their own state. A cell takes state 1 if the total signal is low, and state
0 if the total signal received is high, with a hysteresis to avoid rapid cell state switches (fig. 8.2 (e) and
[116]). The switching points are fixed to be apart by 1

3 of the total signal required for the switch from 0 to 1
termed llow (fig. 8.2 (e)). The latter is thus the only novel parameter left in the CA framework, together with
the number of Euler steps in relation to the number of CA steps taken. Figure 8.2 (a) and (b) qualitatively
show the dependence of the pattern on llow for a system growing from 36 to 72 cells. For small values
of llow, all cells are in state 0, and for high values of llow all cells are in state 1. For intermediate values
around llow = 0.62, a “Salt and Pepper” pattern appears. This is interesting especially in the context that in
similar models for fixed, regular grids, only flickering of the whole grid appears and noise in the CA signal
is needed to break the symmetry [116]. Keeping llow constant at 0.62 and changing the relative amounts of
CA update to Euler steps and topological transitions (fig. 8.2 (e), (d), (f)) qualitatively shows no difference
in the pattern.

8.4 Future Avenues of Research

In the previous section it was already pointed out that the influence of a dynamical interaction topology and
growth lead to effects that in static, regular systems could only be achieved through noise. Other potentially
interesting phenomena could be investigated within this framework. In the example above a very specific
CA was used to model a the specific phenomenon of “Salt and Pepper” patterns through mutual inhibition.
Given a specific type of pattern, a CA that can produce such a pattern can be searched in principle in
a similar way as presented in chapter 4 using evolutionary algorithms. The range of interaction can be
increased to model protrusions [223] or to include diffusive long range signaling [116, 205]. Also, the
coupling of chemical signaling (cell state) and mechanical properties can also be reversed as detailed
above as the mechanical properties of a cell usually depend on the cell state [224]. Another interesting
avenue might be the coupling of cell division on the chemical signals which is also a common theme in
development [225].
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Figure 8.2 Mutual Inhibition Example. CA with rule as shown in (e) on a grid grown from 36 to 72 cells from an
initially all 0 state for a vertex model with paramenters of case I (λ̄ = 0.12, γ̄=0.04) and case II (λ̄ = 0, γ̄=0.1) and a
relative noise magnitude z = 0.8 in the nomenclature of [220, 219]. The system is shown before (left column in each
case in (a)-(d)) and after (right) the last relaxation loop. (a) and (b): The CA parameter llow was varied while there
was one CA update per growth step (> 130 Euler steps, depending on the number of T1 transitions, and increase
of A0 → 1.4A0 of a single cell. (c) For llow = 0.62, instead of before 1 now 1, 2, or 10 CA steps are carried out
consecutively. An exemplary view after 1, 4, 6, and 10 updates for 10 CA steps is depicted in (f). (d) Amount of times
a CA step is performed in between of topological rearrangements. After 50 initial Euler steps, 8 times a loop of cell
division, T2 and T1 transitions with corresponding Euler relaxation steps in between is performed. On every 2nd, 4th
or 8th loop (period), a CA Update is performed. In all of the cases from (c), (d), (f) there is no qualitative difference
between the resulting patterns. Figure composition from [219].
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9 How to Create Models of Locally Interacting
Systems Directly from Data? - Infering Cellular
Automata Rules from Biological Data - a Case
Study for a 1D Model for the Small Intestine
Tissue Renewal

The content of this chapter was developed in a master thesis by Max Sina Knicker [226], which was
supervised by Mareike Bojer and the author of this PhD Thesis, responsible for concept development, all
supervised by Ulrich Gerland.

9.1 Biologcial Data and Verbal Model for Small Intestine Ephithelial
Dynamics

The small intestine epithelial tissue renewal process in mammals is the fastest and one of the most paradig-
matic examples of self-renewing tissues [203]. The small intestine consists of villi protruding into the lumen
of the gut as well as crypts dropping into the underlying connective tissue (fig. 9.1 (a)). Both villi and crypts
are lined with a single layer of epithelial cells, and those cells can move on the underlying connective tis-
sue. The main types1 of cells found in this lining of the gut are stem cells, which can differentiate in all cell
types found in the epithelium [228], absortive cells (enterocytes) and secretive cells (goblet cells, paneth
cells and enteroendocrine cells), which may have different sub-types [203, 229]. The stem cells reside in
the base of the crypt together with the paneth cells, while the enterocytes, goblet and enteroendocrine cells
slide in a conveyor belt like fashion towards the tip of the villus where they finally undergo apoptosis [203].
The division of the stem cells and the following potential differentiation of the daughter cells in the crypt
creates the cells that “feed” into the other end of the conveyor belt. Directly above the base of the crypt is
the so called rapid amplifying zone with already fate committed precursor cells (transient amplifying cells)
which divide to increase the number of cells of a certain type resulting from stem cell division [203, 229].

The signaling responsible for inducing proliferation and differentiation is based on a Wnt gradient in the
crypt lumen as well as Notch and Eph/Ephrin signaling between adjacent epithelial cells [230, 231]. Notch
signaling inhibits differentiation towards the secretory lineage, directing multipotent progenitors towards
the absorptive lineage [229]. Secretory cells in turn express Notch ligands, leading to a lateral inhibition
via direct contact interactions and thus surrounding of secretory cells with absorptive cells [229]. Further,
Notch regulates the differentiation of stem cells keeping a stem cell pool [230]. Wnt proteins are screted by
paneth and mesenchymal cells, forming a gradient in the crypt with largest values towards the base, and
are essential for stemness of the proliferating stem cells in the crypt [231]. Eph/Ephrin signaling is present
mediating cell migration and crosstalk between epithelial cell by this pathway control Wnt signaling [231].

1Also other cells types including tuft cells, m-cells and enterochromafin cells are found on the villus [227]
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Figure 9.1 Small Intestine Model (previous page) (a) Schematic cross section for the small intestine crypt. Crypts
are parts of the small intestine epithelium reaching into the underlying connective tissue. The epithelium consists
manly of stem cells (red) and paneth cells (green) in the very bottom of the crypt and goblet cells (yellow) and
enterocytes (blue) in the upper part. The cells move in a conveyor belt like motion form the bottom upwards, with the
stem cells producing new cells by cell division. In the Lumen, additionally a Wnt gradient is present (b) The dynamics
of the cell types is modelled by an probabilistic CA with 4 cell types - stem cells, paneth cells, enterocytes and goblet
cells. Each input for the probabilistic CA updating cell i at time t consists of the state of the cell xt

i itself, its left and
right neighbors xt

i−1, xt
i+1, and a binary variable for the external Wnt signal. This input gets mapped to each of

the 4 possible cell types with a certain probability p
(
xt

i+1|xt
i−1, xt

i, xt
i+1, Wnt (i, t)

)
. (c) Half of the cross section of

the crypt is modeled as a 1D grid of cells with size 25 and the cell types as described in (b). The Wnt gradient is
discretized to be “on” for the first 5 cells from the left and “off” for the rest of the cells. The dynamics is determined
by the probabilistic CA described in (b). (d, e) Additionally to the standard probabilistic CA, paneth and stem cells
can exchange positions with a probability pmove, and stem cells can divide with a probability pdivide.

9.2 Constructing a Quantitative Model for Small Intestine Ephithelial
Dynamics

The small intestine ephithelium has been the target of serveral modeling approaches [38], for example
quantitative 3D Models have been developed by Buske et al. [232] and Pin et al. [233]. Here, we strive
for a simplifcation of these two models in the context of cellular automata. As modelling framework 1D
probabilistic CA are picked (fig. 9.1 (b, c)). The automaton consists of a 1D grid of size L = 25, modelling
solely the crypt. To simplify the dynamics of different cell types, only 4 cell types are considered: stem cells,
enterocytes, paneth cells and goblet cells. The CA rule takes as inputs the state of the cell itself and its two
neighbors, as well as a value for the external Wnt gradient, assumed to be 1 if i ≤ 4 and 0 otherwise. Since
it is a probabilistic CA, for each possible combination of inputs a probability for each possible output state
is assigned, yielding 384 parameters2 to be determined for the model. Further, introducing the possibility
of an exchange of positions between stem and paneth cells with probability pmove at each step, ensures
that the paneth cells can reside in the crypt (fig. 9.1 (d)), and stem cell proliferation, which happens with
probability pdivide at each time step (fig. 9.1 (e)). Upon stem cell proliferation, the cell with the largest index
leaves the simulated system, corresponding to leaving the crypt and moving now along the villus. Since
along the villus no more differentiation dynamics happens this omits unnecessary simulation overhead. As
boundary conditions, a stem cell at i = −1 and an enterocyte at i = 25 are chosen.

Choosing the above modeling framework implies some key assumptions about the biological system as
well as introduces some strong simplifications:

• The one dimensional representation of an effectively 2 dimensional epithelial sheet is chosen to
reflect the cylindrical symmetry of the crypt.

• In order to simplify as much as possible for an initial approach, the number of cell types is quite
restricted. Most crucially, the existence of intermediate cell types prominent in the transient amplify-
ing zone and their capability of proliferation are omitted, as well as secretory cell types found more
seldom like for example enteroentrocytes. Also, quiescent stem cells acting as reserve [234] are not
part of the model.

• The Wnt signal is assumed to be a completely external signal independent of simulation dynamics
fixed in time, whose maintenance is not an intrinsic part of the model. This is justified by the many
possible sources of Wnt signal [235] and its stable appearance in the crypt.

• The number of parameters is large, even for a biological model. This is due to the fact that the
interactions between the different cell types as well as with the Wnt signal is not specified a priori
apart from the interaction ranges. Introducing additional assumption, like for example assuming stem

2Using conservation of probability, for the 4 states of each possible input 3 parameters have to be determined. There are 43 = 64
inputs due to the nearest neighbor CA, which double to 128 when taking the Wnt signaling into account
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cells and paneth cells are restricted to the region i ≤ 4 and enterocytes and goblet cells to the region
i > 4 apart from random appearances by noise with probability η reduces the number of variables
to 128 + 2. Further assuming isotropic local interactions lets the number of free parameters drop to
84 + 2.

To fit values for the remaining parameters, relative occurences of paneth and goblet cells as a function
of cell position from Chwalinski and Potten [236] as presented in Buske et al. [232] were used. The fit was
carried out by using a particle swarm optimization algorithm [237, 238] using the Canberra distance [239]
as distance measure. Running 91876 fit simulations for the Wnt off regime and 128157 for the Wnt on,
taking the 10 best each and combining them yields 100 high performing solutions. For more details on the
fitting procedure see [226].

The results are shown in fig. 9.2. As expected, the model fits the data it was adjusted to quite well
(fig. 9.2 (a)) and quickly reaches a steady state (fig. 9.2 (b)). The different cell types induced by Wnt on
and Wnt off regime can clearly be seen in exemplary simulations (c). Restricting the number of variables as
discussed above yields similar results. The model is also able to qualitatively and quantitatively reproduce
some results not included in the fit: pmove and pdivide effectively introduce two new timescales into the
system additionally to the vanilla probabilistic CA dynamics. Their ratio is of the order 10− 25, which is the
same order of magnitude found in literature [240, 230]. Further, the percentage of single cells, pairs, and
triplets of goblet cells adjacent to each other was in the same order of magnitude in the simulation (74%,
19%, 6%) as in experiments (80%, 12%, 5%) [241]. On the other hand, lateral inhibition would expect to
produce at least sometimes a goblet cell in a homogeneous field of enterocytes, but the corresponding
probability was close to zero in all fits. Also, seldomly occuring configurations have nearly arbitrary values
(since they do not contribute to the fit effectively).
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Figure 9.2 Results for the Small Intestine Crypt. Cell type distribution as a function of position for paneth and
goblet cells - experimental data from Chwalinski and Potten [236] as presented in Buske et al. [232] as dark markers,
mean (dark line) as well as maximum and minimum values as spanning the light colored, filled areas for a simulation
for 100 fit solutions. (b) Fraction of cell types for goblet, paneth and stem cells as well as enterocytes as a function
of generations for the 100 best solutions of the fitting procedure. As in (a), mean as dark line, with maximum
and minimum spanning the light colored, filled areas. (c) Exemplary kymograph. Figure adapted from [226] with
permission.





135

10 Summary and Outlook

10.1 Summary

Motivated by developmental pattern formation by direct contact interaction, in this thesis cellular automata
were used as a modeling tool to investigate different possible mechanisms of pattern formation facilitated
by such local interactions.

First, the main focus was finding rules that create a fixed target pattern, a French Flag, from random
initial conditions. Rules using different patterning strategies were found. Rules based on (partially) erasing
the pattern and recreating it showed a great robustness to changes in the initial conditions or the number
of different states in the final pattern. Rules based on sorting the initial distribution of states were able to
withstand perturbations due to noise, asynchronous updates and growth of the system, as well as being
tunable in nearly continuous fashion with respect the width of the stripes of the flag.

As a next step, the objective was changed from finding a rule that creates a single target pattern to find
rules that generate any desired target pattern from any initial pattern given inputs from a small number of
organizer cells which follow an appropriate protocol of cell state changes. Through exhaustive numerical
investigations a limited number of rules was identified that allow for this type of programmable pattern
formation, but in an qualitatively different manner. A sufficient information-conservation principle was iden-
tified which is employed by all the numerically found rules, and is independent of the number of states and
the size of the system.

While during the majority of this thesis the CA updates were synchronous, an asynchronous version
with stochastic changes of update times, communication delay and a correction possibility was introduced.
It was shown that for intermediate connection strengths the local interactions are able to keep the syn-
chrony of the system for a long time, for different topologies, system sizes, correction algorithms, growth,
simultaneous pattern formation, and types of update noise processes.

Coupling CA with vertex models allows studying pattern formation with local signaling in the presence of
realistic mechanical movement, growth, and death of cells. In a preliminary exploration it was shown that
“Salt and Pepper” patterns can be generated in a growing 2D system based on vertex models.

Supplementing a long range signal with nearest-neighbor signaling demonstrated the possibilities to
reduce the fuzziness in boundaries in equilibrium and non-equilibrium systems, with the best performance
for a coupling via a SUM logic followed by thresholding. This is independent of system size and model
parameters, and the boundary position again shows a scaling with the size of the system similar to systems
just based on long range signaling.

For specific biological systems, CA can also be inferred from experimental data and verbal biological
model descriptions as shown for a stochastic CA for small intestine homeostasis. In that function, it can
serve as a mathematical framework to check if the verbal models are able to explain the pattern formation
process accurately.

10.2 Future Avenues

10.2.1 2D and 3D Extension

Most of the investigated pattern formation scenarios have been on a 1D or very restricted regular 2D
topology, which has serious drawbacks. Regular topologies allow for a clear distinction of direction, for
example, when buffering for errors in 2D programmable systems (section 5.5) or increasing the fitness in
2D French Flags by coupling several 1D patterning processes across a second dimension (section 4.11.4).
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However, regularity is a simplification that allows for solution that neglect that in irregular topologies also
interactions in “diagonal” direction might appear which may not allow for a clear separation of a horizontal
or vertical direction. Similarly, the neglect of a third dimension makes the models not applicable for many
potential use-cases. Thus, expanding to more dimensions and irregular topologies seems to be a key
component for extending the models to more realistic cases. In the 2D case, the already or currently
explored approaches of irregular grids sampled with the same statistics as measured in biological tissue
(section 7.2) or the use of vertex models with a similar dynamics as measured in specific biological tissue
(chapter 8) are a promising avenue worth exploring further. For the 3D case, vertex models have also been
established to model the mechanical aspects [222] and could be used as model foundation comparable to
the 2D case above. Another approach of modeling growing tissues with CA has been made by Basanta et
al. [242], introducing cell division, death and movement and may be more suitable for a primary exploration.

10.2.2 Tissue as Network

A further path to systematically increase the complexity of the CA models is to represent the tissue as a
network. On the intercellular level, cells could be modeled as the nodes of the network, while interactions
could be represented as weighted edges of the network. This would allow to include short and long range
interactions into the same framework. From a network science point of view, such a network would be
constrained insofar that the network is embedded in real space, i.e., a spatial network [243]. “Connec-
tomes” mapping the spatial relationship between cells exist for some cases and could be used as direct
experimental data input [244]. Due to possible cell rearrangements, division and death, the network topol-
ogy is dynamic, thus a temporal network is necessary [244]. If several different interaction types are of
interest, multilayer networks could be used [245]. Leaning on ideas from the statistical physics of networks
[171], defining a stochastic process to create networks with the above described properties could simplify
their investigation. Modeling the intercellular communication via a network approach could help finding the
answers to questions like for example:

• How can information be transmitted optimally through such a network and does nature do the same?

• Does the network topology facilitate the pattern formed in biological systems or does it play against
them?

• Are there constraints on the possible dynamics happening on these networks?

CA represent the internal dynamics of cells with a single memory state and an information processing
instruction. The introduction of an intracellular network to explicitly model gene regulation that can be com-
bined with possibly several intercellular interaction networks could be another increase in complexity that in
some cases has shown interesting results [160, 246], but needs a more thorough exploration. Because the
possible state, parameter and network topology spaces are potentially huge, exploration strategies apart
from exhaustive search or random sampling might be necessary. Evolutionary approaches have shown
promising results reinventing strategies known from developmental biology for pattern formation of cells
modeled with gene regulatory networks but in simple 1D topologies and without any coupling between the
cells, only to an external gradient [247].

10.2.3 Integration of Experimental Data

The advent of large scale “-omics” datasets provides a tempting resource for the contruction of quantitative
models. Information about cellular states as a function of time may be provided by genetic lineage tracing
[248]: Prospective genetic lineage tracing uses the induction of a genetic tracer into a cell. Later, after
cell division, differentiation, etc., a sample of the tissue is collected and analysed, revealing which cells
originated from the same cellular ancestors. Retrospective genetic lineage tracing uses a similar idea, but
instead of an induced genetic trace, somatic mutations are leveraged to reconstruct relationships between
cells.
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Spatial transcriptomics is used to generate snapshots of cell states in the spatial dimension [249]. Tech-
niques include in situ hybridisation based tools, which visualize RNAs by hybridizing labeled probes in
the original environment, with the key limitation of spectral overlap of the labels; in situ sequencing tools
sequence the RNA in place, but are restricted by the size of the DNA balls needed for signal amplification;
in situ capturing methods capture the RNA in situ with analysis steps performed ex situ – here capturing
efficiency is the main limiting factor; in silico reconstruction methods use either reference atlases or de
novo assumptions about the expression characteristic in physical space. To investigate which cells in-
teract with each other, gene expression of known receptor ligand pairs is measured and their interaction
determined, e.g., by threshold or correlation based methods [250]. Cellular signals may also be recorded
with DNA-based systems, converting cellular signaling events into records on DNA strands, which can be
read out later [251].

Exemplary datasets of the above kind include single cell surveys of the mouse small intestine epithe-
lium [252], transcriptome data of Drosophila [253], and an atlas of cell types and lineage tracing for the
freshwater planarian Schmidtea mediterranea [254].

How to integrate this amount of data in a CA model? Usually, a rough idea of what is happening in the
system of interest already exists in biological literature and can be taken as an initial verbal model that
needs to be put into a quantitative context. For example, to extract cell states from transcriptomics data,
the expression of cell type markers can be used. Alternatively, if no dependency on predetermined notions
of cell types is wished, or the thought of having certain cell types in the system needs to be checked,
or knowledge about cell types is not available, clustering algorithms can be used to define cell states
[255]. If a fixed geometry is chosen, the exact geometry can, e.g., be chosen to fit experimental data
as exemplified for the small intestine crypt [232]. Having determined geometry and possible cell states,
the general form of the transition rules has to be determined, i.e., what general types of interactions and
their associated ranges. This can be done either from the verbal model, as in chapter 9, or by using the
transcriptomics data as described above. In a next step, the exact parameters of these transition rules have
to be fitted. Using a probabilistic model as in chapter 9, values can be fitted using the spatial snapshots
of the spatial transcriptomics data or the temporal snapshots from lineage tracing. As fit methods for
deterministic models evolutionary algorithms are an option, compare chapter 4. For probabilistic CA,
similar to chapter 9, particle swarm optimization can be used, but also gradient based methods are in
principle possible. The spatial transcriptomics data may also be used to generate initial conditions as well
as boundary conditions.

What use does such a model have? Following Mogilner et al. [36], showing that a quantitative model
can reproduce the biological phenomenon indicates that all “necessary players and interactions” [36] have
been identified or, in case of not being able to reproduce the data, the underlying mechanisms may not
be understood well. Furthermore, determining sensitivities of the parameters, stiff and sloppy parameter
combinations can be extracted, indicating which parameter combinations need to be determined more
precisely [256].

Leaving the world of CA models, one can speculate that it might even be possible to arrive at a more
generic class of models that in principle can include frameworks for all relevant cell-cell interaction types
and outcomes. As first examples, an approach was already undertaken to predict the state trajectory of
cells by learning models for transcriptomic vector fields in the context of hematopoiesis [257], and focusing
on image analysis and cell population estimation [258]. Feeding such a generic class of models with
transcriptomics data, quantitative models could be produced fast, potentially even without having a verbal
model first. Since in the transcriptomics data, in principle, also the expression of proteins determining
mechanical interactions is recorded, these may potentially be included as well. In some sense, this whole
approach would be close to having a “machine learning model” for morphogenesis, which has enough
realistic and interpret-able components to adapt to different biological situations when fitted to large scale
experimental data.
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A Appendix

A.1 Autonomous DNA Cellular Automata

An implementation of Cellular Automata has been proposed by Yin et al. for purely DNA based systems
[190]. On a track made of DNA lattice dangling DNA molecules can be mounted, engineered to have some
flexibility to allow for contact with the neighbors and a sticky end allowing connection to floating molecules
or their neighbors. In the solution, free floating DNA molecules again with sticky ends perform helper action
or act as rule molecules. Information about states is encoded into the DNA sequence. Through binding
with the neighbors and subsequent cleavage, a dangling DNA molecule can first incorporate information
about the state of the neighbors in its strand. Then, it can bind to an rule molecules which leads to the
assignment of a new state, with a subsequent restoration of a sticky end. This process an be engineered
in a way that it propagates as wave across the lattice, leading to an effectively synchronous CA update.
For more details see [190]. Organizer cells can in principle also implemented in this set-up by modifying
the initiator molecules necessary to start the waves such to also encode temporal information [167].
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A.2 Cellular Automata

A.2.1 Simulation of Elementary Cellular Automata

Periodic Boundary Conditions



141



142



143



144



145



146



147



148



149



150



151



152

Figure A.1 Simulation of Elementary Cellular Automata Rules for Length L = 80 and Seed or Random Initial
Conditions and Periodic Boundary Conditions.
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Fixed Boundary Conditions
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Figure A.2 Simulation of Elementary Cellular Automata Rules for Length L = 80 and Seed or Random Initial
Conditions and Fixed Boundary Conditions.
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A.2.2 Quantities to Classify Elementary Cellular Automata

Rule Equivalents Algebraic Form W λ0 λ1 µ KR KS KT HS HT S1 S2
0 255 0 1 0 1 0.000 0.000 0.000 0.000 0.001 0.003 0.000 0.000
1 127 (1+p)(1+q)(1+r) 2 1/8 7/8 0.125 0.000 0.446 0.005 0.543 0.561 0.130 0.345
2 16, 191, 247 (1+p)(1+q)r 2 1/8 7/8 0.125 0.200 0.502 0.112 0.423 0.423 0.130 0.130
3 17, 63, 119 (1+p)(1+q) 2 1/4 3/4 0.167 0.200 0.728 0.153 0.595 0.686 0.189 0.308
4 223 (1+p)q(1+r) 2 1/8 7/8 0.125 0.400 0.512 0.000 0.367 0.002 0.130 0.130
5 95 (1+p)(1+r) 2 1/4 3/4 0.167 0.400 0.755 0.003 0.582 0.430 0.189 0.308
6 20, 159, 215 (1+p)(q+r) 2 1/4 3/4 0.250 0.400 0.629 0.132 0.520 0.528 0.500 0.547
7 21, 31, 87 (1+p)(1+qr) 2 3/8 5/8 0.208 0.400 0.490 0.108 0.682 0.691 0.308 0.461
8 64, 239, 253 (1+p)qr 1 1/8 7/8 0.125 0.600 0.000 0.000 0.001 0.004 0.130 0.000
9 65, 111, 125 (1+p)(1+q+r) 2 1/4 3/4 0.250 0.600 0.425 0.077 0.673 0.675 0.500 0.802

10 80, 175, 245 (1+p)r 2 1/4 3/4 0.167 0.600 0.734 0.150 0.592 0.592 0.189 0.189
11 47, 81, 117 (1+p)(1+q+qr) 2 3/8 5/8 0.208 0.600 0.577 0.122 0.688 0.693 0.308 0.510
12 68, 207, 221 (1+p)q 2 1/4 3/4 0.167 0.600 0.681 0.000 0.588 0.002 0.189 0.189
13 69, 79, 93 (1+p)(1+r+qr) 2 3/8 5/8 0.208 0.600 0.393 0.000 0.685 0.004 0.308 0.510
14 84, 143, 213 (1+p)(q+r+qr) 2 3/8 5/8 0.208 0.600 0.307 0.074 0.679 0.679 0.308 0.549
15 85 1+p 2 1/2 1/2 0.167 0.600 0.967 0.194 0.681 0.691 0.000 0.000
16 2, 191, 247 p(1+q)(1+r) 2 1/8 7/8 0.125 0.600 0.509 0.114 0.396 0.396 0.130 0.130
17 3, 63, 119 (1+q)(1+r) 2 1/4 3/4 0.167 0.600 0.750 0.154 0.552 0.685 0.189 0.308
18 183 (1+q)(p+r) 3 1/4 3/4 0.250 0.600 0.653 0.566 0.564 0.568 0.500 0.594
19 55 (1+q)(1+pr) 2 3/8 5/8 0.208 0.600 0.693 0.005 0.688 0.693 0.308 0.419
20 6, 159, 215 (p+q)(1+r) 2 1/4 3/4 0.250 0.600 0.642 0.138 0.518 0.521 0.500 0.547
21 7, 31, 87 (1+pq)(1+r) 2 3/8 5/8 0.208 0.600 0.569 0.120 0.685 0.691 0.308 0.461
22 151 p+q+r+pqr 3 3/8 5/8 0.375 1.000 0.837 0.857 0.638 0.647 0.808 0.913
23 1+pq+pr+qr 2 1/2 1/2 0.250 1.000 0.644 0.005 0.691 0.693 0.434 0.466
24 66, 189, 231 p+pq+pr+qr 2 1/4 3/4 0.250 1.000 0.613 0.128 0.470 0.471 0.811 0.696
25 61, 67, 103 1+q+r+pqr 2 3/8 5/8 0.292 1.000 0.450 0.098 0.688 0.688 0.808 0.848
26 82, 167, 181 p+pq+r+pqr 2 3/8 5/8 0.292 1.000 0.828 0.242 0.670 0.672 0.808 0.818
27 39, 53, 83 1+q+pr+qr 2 1/2 1/2 0.250 1.000 0.862 0.180 0.684 0.689 0.623 0.471
28 70, 157, 199 p+q+pr+pqr 2 3/8 5/8 0.292 1.000 0.541 0.001 0.688 0.101 0.808 0.750
29 71 1+pq+r+qr 2 1/2 1/2 0.250 1.000 0.850 0.002 0.691 0.320 0.623 0.521
30 86, 135, 149 p+q+r+qr 3 1/2 1/2 0.333 0.600 0.970 0.999 0.688 0.693 0.811 0.954
31 7, 21, 87 1+pq+pr+pqr 2 5/8 3/8 0.208 0.600 0.530 0.112 0.626 0.690 0.308 0.461
32 251 p(1+q)r 1 1/8 7/8 0.125 0.600 0.000 0.000 0.001 0.005 0.130 0.041
33 123 (1+q)(1+p+r) 2 1/4 3/4 0.250 0.600 0.653 0.004 0.591 0.576 0.500 0.860
34 48, 187, 243 (1+q)r 2 1/4 3/4 0.167 0.600 0.700 0.145 0.555 0.555 0.189 0.189
35 49, 59, 115 (1+q)(1+p+pr) 2 3/8 5/8 0.208 0.600 0.707 0.147 0.641 0.665 0.308 0.454
36 219 q+pq+pr+qr 2 1/4 3/4 0.250 0.400 0.390 0.000 0.167 0.005 0.811 0.337
37 91 1+p+r+pqr 2 3/8 5/8 0.292 0.400 0.660 0.004 0.659 0.532 0.808 0.915
38 52, 155, 211 q+pq+r+pqr 2 3/8 5/8 0.292 0.600 0.778 0.160 0.610 0.611 0.808 0.365
39 27, 53, 83 1+p+pr+qr 2 1/2 1/2 0.250 0.600 0.820 0.183 0.681 0.691 0.623 0.471
40 96, 235, 249 (p+q)r 1 1/4 3/4 0.250 0.600 0.000 0.000 0.002 0.007 0.500 0.379
41 97, 107, 121 1+p+q+pq+r+pqr 2 3/8 5/8 0.375 0.600 0.728 0.250 0.654 0.659 0.808 0.889
42 112, 171, 241 (1+pq)r 2 3/8 5/8 0.208 0.400 0.863 0.173 0.670 0.671 0.308 0.308
43 113 1+p+q+pq+pr+qr 2 1/2 1/2 0.250 0.400 0.270 0.065 0.693 0.693 0.434 0.573
44 100, 203, 217 q+pq+pr+pqr 2 3/8 5/8 0.292 1.000 0.561 0.000 0.440 0.005 0.808 0.669
45 75, 89, 101 1+p+r+qr 3 1/2 1/2 0.333 1.000 0.969 0.999 0.688 0.693 0.811 1.000
46 116, 139, 209 q+pq+r+qr 2 1/2 1/2 0.250 1.000 0.648 0.135 0.641 0.641 0.623 0.625
47 11, 81, 117 1+p+pr+pqr 2 5/8 3/8 0.208 1.000 0.666 0.138 0.692 0.692 0.308 0.510
48 34, 187, 243 p(1+q) 2 1/4 3/4 0.167 1.000 0.723 0.149 0.542 0.542 0.189 0.189
49 35, 59, 115 (1+q)(1+r+pr) 2 3/8 5/8 0.208 1.000 0.643 0.135 0.652 0.663 0.308 0.454
50 179 (1+q)(p+r+pr) 2 3/8 5/8 0.208 0.600 0.583 0.005 0.693 0.693 0.308 0.461
51 1+q 2 1/2 1/2 0.167 0.600 1.000 0.005 0.692 0.693 0.000 0.000
52 38, 155, 211 p+q+qr+pqr 2 3/8 5/8 0.292 1.000 0.736 0.155 0.616 0.616 0.808 0.365
53 27, 39, 83 1+pq+r+pr 2 1/2 1/2 0.250 1.000 0.853 0.184 0.689 0.692 0.623 0.471
54 147 p+q+r+pr 4 1/2 1/2 0.333 0.600 0.698 0.423 0.675 0.690 0.811 0.931
55 19 1+pq+qr+pqr 2 5/8 3/8 0.208 0.600 0.620 0.005 0.647 0.693 0.308 0.419
56 98, 185, 227 p+pq+qr+pqr 2 3/8 5/8 0.292 1.000 0.619 0.131 0.671 0.671 0.808 0.930
57 99 1+q+r+pr 2 1/2 1/2 0.333 1.000 0.188 0.056 0.693 0.693 0.811 0.909
58 114, 163, 177 p+pq+r+pr 2 1/2 1/2 0.250 1.000 0.368 0.087 0.664 0.664 0.623 0.656
59 35, 49, 115 1+q+qr+pqr 2 5/8 3/8 0.208 1.000 0.672 0.136 0.656 0.662 0.308 0.454
60 102, 153, 195 p+q 3 1/2 1/2 0.333 0.600 0.972 1.000 0.688 0.693 1.000 1.000
61 25, 67, 103 1+pq+r+pr+qr+pqr 2 5/8 3/8 0.292 0.600 0.416 0.105 0.686 0.688 0.808 0.848
62 118, 131, 145 p+q+r+pr+qr+pqr 2 5/8 3/8 0.292 0.400 0.371 0.027 0.651 0.639 0.808 0.868
63 3, 17, 119 1+pq 2 3/4 1/4 0.167 0.400 0.724 0.153 0.599 0.683 0.189 0.308
64 8, 239, 253 pq(1+r) 1 1/8 7/8 0.125 0.400 0.000 0.000 0.001 0.004 0.130 0.000
65 9, 111, 125 (1+p+q)(1+r) 2 1/4 3/4 0.250 0.400 0.437 0.088 0.673 0.670 0.500 0.802
66 24, 189, 231 pq+r+pr+qr 2 1/4 3/4 0.250 0.600 0.608 0.129 0.478 0.479 0.811 0.696
67 25, 61, 103 1+p+q+pqr 2 3/8 5/8 0.292 0.600 0.416 0.091 0.687 0.689 0.808 0.848
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68 12, 207, 221 q(1+r) 2 1/4 3/4 0.167 0.600 0.696 0.000 0.551 0.002 0.189 0.189
69 13, 79, 93 (1+p+pq)(1+r) 2 3/8 5/8 0.208 0.600 0.417 0.000 0.687 0.004 0.308 0.510
70 28, 157, 199 q+r+pr+pqr 2 3/8 5/8 0.292 1.000 0.523 0.001 0.693 0.081 0.808 0.750
71 29 1+p+pq+qr 2 1/2 1/2 0.250 1.000 0.886 0.002 0.686 0.244 0.623 0.521
72 237 q(p+r) 2 1/4 3/4 0.250 0.400 0.319 0.000 0.404 0.004 0.500 0.352
73 109 1+p+q+r+pr+pqr 2 3/8 5/8 0.375 0.400 0.841 0.024 0.685 0.258 0.808 0.827
74 88, 173, 229 pq+r+pr+pqr 2 3/8 5/8 0.292 0.600 0.830 0.158 0.631 0.630 0.808 0.810
75 45, 89, 101 1+p+q+qr 3 1/2 1/2 0.333 0.600 0.970 0.999 0.688 0.693 0.811 1.000
76 205 q(1+pr) 2 3/8 5/8 0.208 1.000 0.887 0.000 0.643 0.001 0.308 0.308
77 1+p+pq+r+pr+qr 2 1/2 1/2 0.250 1.000 0.577 0.000 0.693 0.002 0.434 0.466
78 92, 141, 197 q+r+pr+qr 2 1/2 1/2 0.250 1.000 0.380 0.000 0.682 0.006 0.623 0.656
79 13, 69, 93 1+p+pq+pqr 2 5/8 3/8 0.208 1.000 0.383 0.000 0.686 0.003 0.308 0.510
80 10, 175, 245 p(1+r) 2 1/4 3/4 0.167 0.600 0.743 0.152 0.562 0.562 0.189 0.189
81 11, 47, 117 (1+q+pq)(1+r) 2 3/8 5/8 0.208 0.600 0.651 0.139 0.693 0.692 0.308 0.510
82 26, 167, 181 p+r+qr+pqr 2 3/8 5/8 0.292 0.600 0.829 0.242 0.675 0.673 0.808 0.818
83 27, 39, 53 1+q+pq+pr 2 1/2 1/2 0.250 0.600 0.848 0.183 0.687 0.690 0.623 0.471
84 14, 143, 213 (p+q+pq)(1+r) 2 3/8 5/8 0.208 0.200 0.324 0.079 0.693 0.691 0.308 0.549
85 15 1+r 2 1/2 1/2 0.167 0.200 0.960 0.190 0.692 0.693 0.000 0.000
86 30, 135, 149 p+q+pq+r 3 1/2 1/2 0.333 0.400 0.971 0.999 0.688 0.693 0.811 0.954
87 7, 21, 31 1+pr+qr+pqr 2 5/8 3/8 0.208 0.400 0.492 0.107 0.651 0.691 0.308 0.461
88 74, 173, 229 p+pr+qr+pqr 2 3/8 5/8 0.292 1.000 0.780 0.151 0.627 0.626 0.808 0.810
89 45, 75, 101 1+q+pq+r 3 1/2 1/2 0.333 1.000 0.969 0.998 0.688 0.693 0.811 1.000
90 165 p+r 3 1/2 1/2 0.333 0.600 0.970 0.999 0.688 0.692 1.000 1.000
91 37 1+q+pq+pr+qr+pqr 2 5/8 3/8 0.292 0.600 0.618 0.004 0.657 0.533 0.808 0.915
92 78, 141, 197 p+q+pq+pr 2 1/2 1/2 0.250 1.000 0.359 0.000 0.684 0.004 0.623 0.656
93 13, 69, 79 1+r+qr+pqr 2 5/8 3/8 0.208 1.000 0.408 0.000 0.687 0.004 0.308 0.510
94 133 p+q+pq+r+qr+pqr 2 5/8 3/8 0.292 0.600 0.599 0.001 0.676 0.045 0.808 0.868
95 5 1+pr 2 3/4 1/4 0.167 0.600 0.690 0.003 0.580 0.395 0.189 0.308
96 40, 235, 249 p(q+r) 1 1/4 3/4 0.250 0.600 0.000 0.000 0.002 0.006 0.500 0.379
97 41, 107, 121 1+p+q+r+qr+pqr 2 3/8 5/8 0.375 0.600 0.764 0.259 0.657 0.658 0.808 0.889
98 56, 185, 227 pq+r+qr+pqr 2 3/8 5/8 0.292 1.000 0.648 0.135 0.647 0.648 0.808 0.930
99 57 1+p+q+pr 2 1/2 1/2 0.333 1.000 0.101 0.027 0.693 0.693 0.811 0.909

100 44, 203, 217 q+pr+qr+pqr 2 3/8 5/8 0.292 1.000 0.586 0.000 0.472 0.005 0.808 0.669
101 45, 75, 89 1+p+pq+r 3 1/2 1/2 0.333 1.000 0.971 1.000 0.688 0.693 0.811 1.000
102 60, 153, 195 q+r 3 1/2 1/2 0.333 0.600 0.971 0.999 0.689 0.693 1.000 1.000
103 25, 61, 67 1+p+pq+pr+qr+pqr 2 5/8 3/8 0.292 0.600 0.433 0.103 0.686 0.689 0.808 0.848
104 233 pq+pr+qr+pqr 2 3/8 5/8 0.375 1.000 0.276 0.000 0.199 0.007 0.808 0.719
105 1+p+q+r 3 1/2 1/2 0.500 1.000 0.970 0.999 0.688 0.693 1.000 1.000
106 120, 169, 225 pq+r 4 1/2 1/2 0.333 0.600 0.971 0.999 0.688 0.693 0.811 0.811
107 41, 97, 121 1+p+q+pr+qr+pqr 2 5/8 3/8 0.375 0.600 0.741 0.270 0.658 0.660 0.808 0.889
108 201 q+pr 2 1/2 1/2 0.333 0.400 0.779 0.000 0.623 0.050 0.811 0.424
109 73 1+p+pq+r+qr+pqr 2 5/8 3/8 0.375 0.400 0.856 0.016 0.690 0.175 0.808 0.827
110 124, 137, 193 q+r+qr+pqr 4 5/8 3/8 0.292 0.600 0.612 0.298 0.682 0.659 0.808 0.960
111 9, 65, 125 1+p+pq+pr 2 3/4 1/4 0.250 0.600 0.380 0.073 0.672 0.641 0.500 0.802
112 42, 171, 241 p(1+qr) 2 3/8 5/8 0.208 1.000 0.876 0.174 0.662 0.662 0.308 0.308
113 43 1+q+pq+r+pr+qr 2 1/2 1/2 0.250 1.000 0.369 0.083 0.693 0.693 0.434 0.573
114 58, 163, 177 p+r+pr+qr 2 1/2 1/2 0.250 1.000 0.392 0.093 0.656 0.656 0.623 0.656
115 35, 49, 59 1+q+pq+pqr 2 5/8 3/8 0.208 1.000 0.672 0.139 0.665 0.670 0.308 0.454
116 46, 139, 209 p+q+pq+qr 2 1/2 1/2 0.250 1.000 0.647 0.134 0.653 0.653 0.623 0.625
117 11, 47, 81 1+r+pr+pqr 2 5/8 3/8 0.208 1.000 0.652 0.133 0.686 0.693 0.308 0.510
118 62, 131, 145 p+q+pq+r+pr+pqr 2 5/8 3/8 0.292 0.600 0.415 0.022 0.644 0.640 0.808 0.868
119 3, 17, 63 1+qr 2 3/4 1/4 0.167 0.600 0.736 0.155 0.579 0.689 0.189 0.308
120 106, 169, 225 p+qr 4 1/2 1/2 0.333 0.600 0.970 1.000 0.688 0.693 0.811 0.811
121 41, 97, 107 1+q+pq+r+pr+pqr 2 5/8 3/8 0.375 0.600 0.755 0.264 0.652 0.650 0.808 0.889
122 161 p+r+pr+pqr 3 5/8 3/8 0.292 0.600 0.662 0.843 0.683 0.693 0.808 0.894
123 33 1+q+pq+qr 2 3/4 1/4 0.250 0.600 0.669 0.004 0.645 0.548 0.500 0.860
124 110, 137, 193 p+q+pq+pqr 4 5/8 3/8 0.292 0.400 0.575 0.316 0.681 0.670 0.808 0.960
125 9, 65, 111 1+r+pr+qr 2 3/4 1/4 0.250 0.400 0.488 0.096 0.670 0.609 0.500 0.802
126 129 p+q+pq+r+pr+qr 3 3/4 1/4 0.250 0.200 0.669 0.845 0.683 0.692 0.811 0.989
127 1 1+pqr 2 7/8 1/8 0.125 0.200 0.480 0.005 0.462 0.610 0.130 0.345
128 254 pqr 1 1/8 7/8 0.125 0.200 0.000 0.000 0.001 0.005 0.130 0.041
129 126 1+p+q+pq+r+pr+qr 3 1/4 3/4 0.250 0.200 0.666 0.812 0.683 0.693 0.811 0.989
130 144, 190, 246 (1+p+q)r 2 1/4 3/4 0.250 0.400 0.582 0.125 0.456 0.456 0.500 0.421
131 62, 118, 145 1+p+q+pq+pqr 2 3/8 5/8 0.292 0.400 0.459 0.017 0.645 0.640 0.808 0.868
132 222 q(1+p+r) 2 1/4 3/4 0.250 0.600 0.620 0.000 0.456 0.003 0.500 0.440
133 94 1+p+r+pr+pqr 2 3/8 5/8 0.292 0.600 0.611 0.001 0.677 0.074 0.808 0.868
134 148, 158, 214 q+pq+r+pr+pqr 2 3/8 5/8 0.375 0.600 0.595 0.132 0.605 0.610 0.808 0.733
135 30, 86, 149 1+p+qr 3 1/2 1/2 0.333 0.600 0.969 1.000 0.688 0.693 0.811 0.954
136 192, 238, 252 qr 1 1/4 3/4 0.167 0.600 0.000 0.000 0.002 0.006 0.189 0.130
137 110, 124, 193 1+p+q+pq+r+pr+pqr 4 3/8 5/8 0.292 0.600 0.609 0.303 0.681 0.669 0.808 0.960
138 174, 208, 244 (1+p+pq)r 2 3/8 5/8 0.208 1.000 0.849 0.170 0.667 0.667 0.308 0.308
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139 46, 116, 209 1+p+q+pq+qr 2 1/2 1/2 0.250 1.000 0.641 0.134 0.669 0.669 0.623 0.625
140 196, 206, 220 q(1+p+pr) 2 3/8 5/8 0.208 1.000 0.706 0.000 0.568 0.003 0.308 0.327
141 78, 92, 197 1+p+r+pr+qr 2 1/2 1/2 0.250 1.000 0.448 0.000 0.683 0.005 0.623 0.656
142 212 q+pq+r+pr+qr 2 1/2 1/2 0.250 1.000 0.362 0.087 0.693 0.693 0.434 0.573
143 14, 84, 213 1+p+pqr 2 5/8 3/8 0.208 1.000 0.334 0.075 0.691 0.689 0.308 0.549
144 130, 190, 246 p(1+q+r) 2 1/4 3/4 0.250 0.600 0.563 0.121 0.414 0.414 0.500 0.421
145 62, 118, 131 1+q+r+qr+pqr 2 3/8 5/8 0.292 0.600 0.395 0.032 0.651 0.639 0.808 0.868
146 182 p+pq+r+qr+pqr 3 3/8 5/8 0.375 0.400 0.651 0.525 0.563 0.566 0.808 0.696
147 54 1+q+pr 4 1/2 1/2 0.333 0.400 0.621 0.335 0.637 0.686 0.811 0.931
148 134, 158, 214 p+q+pr+qr+pqr 2 3/8 5/8 0.375 0.600 0.609 0.131 0.596 0.595 0.808 0.733
149 30, 86, 135 1+pq+r 3 1/2 1/2 0.333 0.600 0.970 1.000 0.688 0.693 0.811 0.954
150 p+q+r 3 1/2 1/2 0.500 1.000 0.970 0.998 0.688 0.693 1.000 1.000
151 22 1+pq+pr+qr+pqr 3 5/8 3/8 0.375 1.000 0.838 0.857 0.638 0.647 0.808 0.913
152 188, 194, 230 p+pq+pr+qr+pqr 2 3/8 5/8 0.292 0.600 0.568 0.121 0.464 0.465 0.808 0.696
153 60, 102, 195 1+q+r 3 1/2 1/2 0.333 0.600 0.967 0.998 0.688 0.693 1.000 1.000
154 166, 180, 210 p+pq+r 2 1/2 1/2 0.333 1.000 0.976 0.234 0.688 0.690 0.811 0.544
155 38, 52, 211 1+q+pr+qr+pqr 2 5/8 3/8 0.292 1.000 0.778 0.162 0.581 0.581 0.808 0.365
156 198 p+q+pr 2 1/2 1/2 0.333 1.000 0.555 0.001 0.693 0.060 0.811 0.629
157 28, 70, 199 1+pq+r+qr+pqr 2 5/8 3/8 0.292 1.000 0.537 0.001 0.691 0.101 0.808 0.750
158 134, 148, 214 p+q+r+qr+pqr 2 5/8 3/8 0.375 0.600 0.599 0.130 0.596 0.594 0.808 0.733
159 6, 20, 215 1+pq+pr 2 3/4 1/4 0.250 0.600 0.612 0.131 0.532 0.533 0.500 0.547
160 250 pr 1 1/4 3/4 0.167 0.600 0.000 0.000 0.003 0.008 0.189 0.130
161 122 1+p+q+pq+r+qr+pqr 3 3/8 5/8 0.292 0.600 0.670 0.803 0.683 0.693 0.808 0.894
162 176, 186, 242 (1+q+pq)r 2 3/8 5/8 0.208 1.000 0.680 0.141 0.642 0.642 0.308 0.333
163 58, 114, 177 1+p+q+pq+pr 2 1/2 1/2 0.250 1.000 0.372 0.088 0.669 0.669 0.623 0.656
164 218 q+pq+pr+qr+pqr 2 3/8 5/8 0.292 0.600 0.411 0.000 0.303 0.007 0.808 0.688
165 90 1+p+r 3 1/2 1/2 0.333 0.600 0.969 0.997 0.688 0.693 1.000 1.000
166 154, 180, 210 q+pq+r 2 1/2 1/2 0.333 1.000 0.974 0.250 0.691 0.693 0.811 0.544
167 26, 82, 181 1+p+pr+qr+pqr 2 5/8 3/8 0.292 1.000 0.843 0.242 0.645 0.647 0.808 0.818
168 224, 234, 248 (p+q+pq)r 1 3/8 5/8 0.208 0.400 0.000 0.000 0.004 0.012 0.308 0.336
169 106, 120, 225 1+p+q+pq+r 4 1/2 1/2 0.333 0.400 0.971 0.999 0.688 0.693 0.811 0.811
170 240 r 2 1/2 1/2 0.167 0.200 0.970 0.192 0.688 0.688 0.000 0.000
171 42, 112, 241 1+p+q+pq+pr+qr+pqr 2 5/8 3/8 0.208 0.200 0.809 0.163 0.682 0.682 0.308 0.308
172 202, 216, 228 q+pq+pr 2 1/2 1/2 0.250 0.600 0.518 0.000 0.369 0.012 0.623 0.708
173 74, 88, 229 1+p+r+qr+pqr 2 5/8 3/8 0.292 0.600 0.792 0.152 0.619 0.619 0.808 0.810
174 138, 208, 244 q+pq+r+qr+pqr 2 5/8 3/8 0.208 0.600 0.830 0.166 0.653 0.653 0.308 0.308
175 10, 80, 245 1+p+pr 2 3/4 1/4 0.167 0.600 0.721 0.148 0.583 0.583 0.189 0.189
176 162, 186, 242 p(1+q+qr) 2 3/8 5/8 0.208 1.000 0.681 0.143 0.631 0.631 0.308 0.333
177 58, 114, 163 1+q+r+pr+qr 2 1/2 1/2 0.250 1.000 0.392 0.090 0.669 0.669 0.623 0.656
178 p+pq+r+pr+qr 2 1/2 1/2 0.250 1.000 0.629 0.005 0.693 0.693 0.434 0.466
179 50 1+q+pqr 2 5/8 3/8 0.208 1.000 0.663 0.005 0.693 0.693 0.308 0.461
180 154, 166, 210 p+q+qr 2 1/2 1/2 0.333 0.600 0.968 0.242 0.691 0.691 0.811 0.544
181 26, 82, 167 1+pq+r+pr+pqr 2 5/8 3/8 0.292 0.600 0.819 0.265 0.674 0.676 0.808 0.818
182 146 p+q+r+pr+pqr 3 5/8 3/8 0.375 0.400 0.660 0.557 0.562 0.567 0.808 0.696
183 18 1+pq+qr 3 3/4 1/4 0.250 0.400 0.649 0.609 0.564 0.567 0.500 0.594
184 226 p+pq+qr 2 1/2 1/2 0.250 1.000 0.255 0.065 0.693 0.693 0.623 0.747
185 56, 98, 227 1+q+r+pr+pqr 2 5/8 3/8 0.292 1.000 0.642 0.135 0.659 0.659 0.808 0.930
186 162, 176, 242 p+pq+r+pr+pqr 2 5/8 3/8 0.208 0.600 0.677 0.141 0.629 0.629 0.308 0.333
187 34, 48, 243 1+q+qr 2 3/4 1/4 0.167 0.600 0.697 0.144 0.557 0.557 0.189 0.189
188 152, 194, 230 p+q+pqr 2 5/8 3/8 0.292 0.600 0.587 0.126 0.501 0.501 0.808 0.696
189 24, 66, 231 1+pq+r+pr+qr 2 3/4 1/4 0.250 0.600 0.609 0.130 0.486 0.486 0.811 0.696
190 130, 144, 246 p+q+r+pr+qr 2 3/4 1/4 0.250 0.400 0.573 0.123 0.479 0.479 0.500 0.421
191 2, 16, 247 1+pq+pqr 2 7/8 1/8 0.125 0.400 0.464 0.105 0.395 0.395 0.130 0.130
192 136, 238, 252 pq 1 1/4 3/4 0.167 0.400 0.000 0.000 0.002 0.006 0.189 0.130
193 110, 124, 137 1+p+q+r+pr+qr+pqr 4 3/8 5/8 0.292 0.400 0.524 0.241 0.682 0.676 0.808 0.960
194 152, 188, 230 pq+r+pr+qr+pqr 2 3/8 5/8 0.292 0.600 0.576 0.123 0.479 0.479 0.808 0.696
195 60, 102, 153 1+p+q 3 1/2 1/2 0.333 0.600 0.970 0.998 0.688 0.693 1.000 1.000
196 140, 206, 220 q(1+r+pr) 2 3/8 5/8 0.208 1.000 0.755 0.000 0.583 0.003 0.308 0.327
197 78, 92, 141 1+p+pq+r+pr 2 1/2 1/2 0.250 1.000 0.408 0.000 0.685 0.004 0.623 0.656
198 156 q+r+pr 2 1/2 1/2 0.333 1.000 0.506 0.001 0.693 0.093 0.811 0.629
199 28, 70, 157 1+p+pq+qr+pqr 2 5/8 3/8 0.292 1.000 0.517 0.001 0.690 0.088 0.808 0.750
200 236 q(p+r+pr) 2 3/8 5/8 0.208 0.600 0.739 0.000 0.660 0.001 0.308 0.308
201 108 1+p+q+r+pr 2 1/2 1/2 0.333 0.600 0.801 0.000 0.608 0.033 0.811 0.424
202 172, 216, 228 pq+r+pr 2 1/2 1/2 0.250 1.000 0.515 0.000 0.398 0.010 0.623 0.708
203 44, 100, 217 1+p+q+qr+pqr 2 5/8 3/8 0.292 1.000 0.571 0.000 0.440 0.005 0.808 0.669
204 q 2 1/2 1/2 0.167 0.600 0.957 0.000 0.691 0.000 0.000 0.000
205 76 1+p+pq+r+pr+qr+pqr 2 5/8 3/8 0.208 0.600 0.834 0.000 0.661 0.001 0.308 0.308
206 140, 196, 220 q+r+pr+qr+pqr 2 5/8 3/8 0.208 1.000 0.718 0.000 0.583 0.003 0.308 0.327
207 12, 68, 221 1+p+pq 2 3/4 1/4 0.167 1.000 0.709 0.000 0.578 0.002 0.189 0.189
208 138, 174, 244 p(1+r+qr) 2 3/8 5/8 0.208 1.000 0.820 0.166 0.667 0.667 0.308 0.308
209 46, 116, 139 1+q+pq+r+qr 2 1/2 1/2 0.250 1.000 0.631 0.132 0.659 0.659 0.623 0.625

Continued on next page
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Continued from previous page
Rule Equivalents Algebraic Form W λ0 λ1 µ KR KS KT HS HT S1 S2
210 154, 166, 180 p+r+qr 2 1/2 1/2 0.333 1.000 0.963 0.262 0.690 0.690 0.811 0.544
211 38, 52, 155 1+q+pq+pr+pqr 2 5/8 3/8 0.292 1.000 0.785 0.163 0.622 0.622 0.808 0.365
212 142 p+q+pq+pr+qr 2 1/2 1/2 0.250 0.400 0.325 0.081 0.693 0.693 0.434 0.573
213 14, 84, 143 1+r+pqr 2 5/8 3/8 0.208 0.400 0.331 0.079 0.693 0.692 0.308 0.549
214 134, 148, 158 p+q+pq+r+pqr 2 5/8 3/8 0.375 0.600 0.649 0.137 0.600 0.600 0.808 0.733
215 6, 20, 159 1+pr+qr 2 3/4 1/4 0.250 0.600 0.636 0.132 0.580 0.579 0.500 0.547
216 172, 202, 228 p+pr+qr 2 1/2 1/2 0.250 0.600 0.497 0.000 0.388 0.011 0.623 0.708
217 44, 100, 203 1+q+pq+r+pqr 2 5/8 3/8 0.292 0.600 0.586 0.000 0.464 0.003 0.808 0.669
218 164 p+r+pqr 2 5/8 3/8 0.292 0.400 0.408 0.000 0.292 0.007 0.808 0.688
219 36 1+q+pq+pr+qr 2 3/4 1/4 0.250 0.400 0.396 0.000 0.199 0.005 0.811 0.337
220 140, 196, 206 p+q+pq+pr+pqr 2 5/8 3/8 0.208 0.600 0.706 0.000 0.533 0.003 0.308 0.327
221 12, 68, 207 1+r+qr 2 3/4 1/4 0.167 0.600 0.724 0.000 0.567 0.002 0.189 0.189
222 132 p+q+pq+r+qr 2 3/4 1/4 0.250 0.600 0.623 0.000 0.456 0.002 0.500 0.440
223 4 1+pr+pqr 2 7/8 1/8 0.125 0.600 0.525 0.000 0.414 0.002 0.130 0.130
224 168, 234, 248 p(q+r+qr) 1 3/8 5/8 0.208 0.600 0.000 0.000 0.005 0.017 0.308 0.336
225 106, 120, 169 1+p+q+r+qr 4 1/2 1/2 0.333 0.600 0.969 0.998 0.688 0.693 0.811 0.811
226 184 pq+r+qr 2 1/2 1/2 0.250 1.000 0.348 0.082 0.681 0.681 0.623 0.747
227 56, 98, 185 1+p+q+pr+pqr 2 5/8 3/8 0.292 1.000 0.592 0.125 0.666 0.666 0.808 0.930
228 172, 202, 216 q+pr+qr 2 1/2 1/2 0.250 1.000 0.497 0.000 0.397 0.010 0.623 0.708
229 74, 88, 173 1+p+pq+r+pqr 2 5/8 3/8 0.292 1.000 0.807 0.154 0.647 0.645 0.808 0.810
230 152, 188, 194 q+r+pqr 2 5/8 3/8 0.292 1.000 0.565 0.120 0.479 0.480 0.808 0.696
231 24, 66, 189 1+p+pq+pr+qr 2 3/4 1/4 0.250 1.000 0.620 0.129 0.469 0.469 0.811 0.696
232 pq+pr+qr 2 1/2 1/2 0.250 1.000 0.638 0.000 0.681 0.002 0.434 0.466
233 104 1+p+q+r+pqr 2 5/8 3/8 0.375 1.000 0.264 0.000 0.298 0.008 0.808 0.719
234 168, 224, 248 pq+r+pqr 1 5/8 3/8 0.208 0.600 0.000 0.000 0.006 0.018 0.308 0.336
235 40, 96, 249 1+p+q+pr+qr 1 3/4 1/4 0.250 0.600 0.000 0.000 0.002 0.006 0.500 0.379
236 200 q+pr+pqr 2 5/8 3/8 0.208 0.600 0.739 0.000 0.681 0.001 0.308 0.308
237 72 1+p+pq+r+qr 2 3/4 1/4 0.250 0.600 0.408 0.000 0.434 0.002 0.500 0.352
238 136, 192, 252 q+r-qr 1 3/4 1/4 0.167 0.600 0.000 0.000 0.002 0.007 0.189 0.130
239 8, 64, 253 1+p+pq+pr+pqr 1 7/8 1/8 0.125 0.600 0.000 0.000 0.001 0.004 0.130 0.000
240 170 p 2 1/2 1/2 0.167 0.600 0.977 0.192 0.693 0.693 0.000 0.000
241 42, 112, 171 1+q+pq+r+pr+qr+pqr 2 5/8 3/8 0.208 0.600 0.879 0.176 0.653 0.653 0.308 0.308
242 162, 176, 186 p+r+pr+qr+pqr 2 5/8 3/8 0.208 0.600 0.687 0.142 0.634 0.634 0.308 0.333
243 34, 48, 187 1+q+pq 2 3/4 1/4 0.167 0.600 0.715 0.152 0.561 0.562 0.189 0.189
244 138, 174, 208 p+q+pq+qr+pqr 2 5/8 3/8 0.208 0.600 0.831 0.166 0.647 0.647 0.308 0.308
245 10, 80, 175 1+r+pr 2 3/4 1/4 0.167 0.600 0.729 0.150 0.556 0.556 0.189 0.189
246 130, 144, 190 p+q+pq+r+pr 2 3/4 1/4 0.250 0.600 0.539 0.120 0.456 0.456 0.500 0.421
247 2, 16, 191 1+qr+pqr 2 7/8 1/8 0.125 0.600 0.516 0.114 0.376 0.376 0.130 0.130
248 168, 224, 234 p+qr+pqr 1 5/8 3/8 0.208 0.400 0.000 0.000 0.004 0.011 0.308 0.336
249 40, 96, 235 1+q+pq+r+pr 1 3/4 1/4 0.250 0.400 0.000 0.000 0.002 0.007 0.500 0.379
250 160 p+r-pr 1 3/4 1/4 0.167 0.400 0.000 0.000 0.002 0.007 0.189 0.130
251 32 1+q+pq+qr+pqr 1 7/8 1/8 0.125 0.400 0.000 0.000 0.001 0.004 0.130 0.041
252 136, 192, 238 p+q-pq 1 3/4 1/4 0.167 0.200 0.000 0.000 0.002 0.007 0.189 0.130
253 8, 64, 239 1+r+pr+qr+pqr 1 7/8 1/8 0.125 0.200 0.000 0.000 0.001 0.005 0.130 0.000
254 128 q+p(-1+q)(-1+r)+r-qr 1 7/8 1/8 0.125 0.000 0.000 0.000 0.001 0.005 0.130 0.041
255 0 1 1 1 0 0.000 0.000 0.000 0.000 0.001 0.003 0.000 0.000

Table A.1 Values of Classification Quantities for ECA. Properties listed are: Rules in the equivalence class;
Algebraic form in short notation xt

i−1 = p, xt
i = q, xt

i+1 = r, resulting values have to be taken modulo 2, expressions
from [100]; Wolfram rule class, values from Wolfram Alpha [259]; Langtons λ with 0 (λ0) and 1 (λ1), respectively,
as “quiescent” state; µ sensitivity; Kolmogorov complexity of the rule table KR, of the pattern along the spatial
axis (length L = 100), averaged over 1100 time steps and 10 samples with random initial conditions, and of the
pattern along the temporal axis averaged over the spatial axis with similar parameters as above; Single site entropy
H calculated along the spatial HS and temporal axis HT , respectively, and averaged over the other, with same
parameters as above; Numercial calculation of the the synergy for 1 or 2 time steps, values from M. Bojer [116].
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A.3 Fitness Calculation, Evolutionary Algorithm, Consensus Procedure

Algorithm 1 Fitness Calculation (taken from [146])

1: function FitnessSingleRule(f, TMax, L, NSample, GridT arget) ▷ Fitness of a single rule
2: j ← 0
3: Ftotal ← 0
4: for j < NSample do ▷ Iterate through requested number of samples
5: Grid← InitialState (L) ▷ Array containing the initial state
6: Grid, tSteadyState ← CA-Simulation (f, Grid, TMax, L)
7: Ftotal ← Ftotal + Differences (Grid, GridT arget) ▷ Add fitness for current iteration
8: j ← j + 1
9: Faverage ← Ftotal/NSample

10: return Grid, tSteadyState

11: function FitnessRuleList(Lf , TMax, L, NSample, GridT arget)
12: LF itness

13: for f in Lf do
14: Append (LF itness, FitnessSingleRule (f, TMax, L, NSample, GridT arget))
15: return LF itness

Algorithm 2 Evolutionary Algorithm Simulation (taken from [146])

1: Lf ← randomCA(N = 100, k = 3) ▷ Initial list of 100 random, 3-state rules
2: function EA-SIMULATION(Lf , NIteration, s)
3: l← 0
4: while l < NIterations do ▷ Loop over iterations
5: LF itness ← FitnessRuleList(Lf )

6: Mutate rules and replace if mutated are better
7: Lm

f ← Mutate(Mutate(Lf )) ▷ New List by mutating each rule in the list twice
8: Lm

F itness ← FitnessRuleList(Lm
f )

9: Lf , LF itness ← SelectFittestPairwise(Lf , Lm
f , LF itness, Lm

F itness) ▷ New list by selecting
pairwise fittest rules

10: Replace worst rules by random rules
11: Lf ← Sort(Lf , LF itness) ▷ Sort rules by their fitness
12: Lf ← Delete(Lf , s) ▷ Delete s worst rules from set
13: Lf ← Lf + randomCA(s, 3) ▷ Add s random rules to set

14: l← l + 1
return Lf
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Starting rule Maximum Dist Fitness threshold Consensus Rule
211022222201110112221110000 5 0.9 211222222201110112211110000
211022222201110112221110000 5 0.85 211222222201110112221110000
211022222201110112221110000 5 0.95 211222222201110112211110000
211022222201110112221110000 6 0.9 211222222201110112211110000
211022222201110112221110000 6 0.85 211222222201110112211110000
211022222201110112221110000 6 0.95 211222222200110112211110000
200222122202110112211110200 5 0.9 200222122202110112211110200
200222122202110112211110200 5 0.85 200222122202110112211110200
200222122202110112211110200 5 0.95 200222122202110112211110200
200222122202110112211110200 6 0.9 200222122200110112211110200
200222122202110112211110200 6 0.85 200222122200110112211110200
200222122202110112211110200 6 0.95 200222122202110112211110000

Table A.2 Consensus Rule for Different Parameters Consensus rule for 2 different starting rules, 2 different
neighborhood sizes and 3 different fitness thresholds. All consensus rules differed from the one selected by at most
5 mutations. Taken from [146].
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A.4 4 State Rules

A.4.1 Rule Tables

Figure A.3 Rule Table of Bubble, Landscaping, and Mixed Rule
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A.4.2 Growth

Figure A.4 Fitness During Growth Average fitness Φ as function of the system size L for a growing system for the
prototypical rules in 3 and 4 state space, as well as modifications to entries 9 (from 2 to 1) and 36 (from 3 to 1) for
the Consensus and Landscaping rule, respectively. The fitness for initial and final length and a static system without
growth are depicted. Growth rate was set to a probability of 0.2% per time step and cell. Ensemble sizes for the
average are 10000 (L ≤ 10), 1000 (10 < L ≤ 100), 100 (L > 100) for the growing system and 10000 (L ≤ 10), 1000
(L > 100) for the static system. The dashed vertical lines correspond to the length at which the growth rate of the
system exceeds the speed of the pattern formation process, defined by the equation 0.002aLcrit = 1, with a being
the average number of steps needed to complete pattern formation.
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Figure A.5 Kymographs for Consensus Rule During Growth. Kymograph for a growing system for the Consensus
rule (a, b) and modified Consensus rule modified at position 9 (to 1) (c, d) for initial sizes L = 80 (a, c) and L = 160
(b, d) with growth rate of 0.2% per cell and time step.
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Figure A.6 Kymographs for Bubble and Mixed Rule During Growth. Kymograph for a growing system for the
Mixed rule (a, b) and Bubble rule (c, d) for initial sizes L = 80 (a, c) and L = 160 (b, d) with growth rate of 0.2% per
cell and time step.
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Figure A.7 Kymographs for Landscaping Rule During Growth. Kymograph for a growing system for the Land-
scaping rule (a, b) and modified Landscaping rule modified at position 36 (to 1) (c, d) for initial sizes L = 80 (a, c)
and L = 160 (b, d) with growth rate of 0.2% per cell and time step.
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A.5 Programmability

A.5.1 In-Degree Distributions
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Figure A.8 In Degree Distributions. In degree distributions for linear topology with two organizer cells and system
size L = 16. Distributions are cut at 20. Reproduced from [168] under the Creative Commons Attribution 4.0
International License [170].
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A.6 Synchronization

A.6.1 Synchronization Schemes

Exemplary list of (a)synchronous CA update schemes compiled from [193, 194].

• Synchronous Update: All cells are update at the same time [193].

• Random Independent: At each step in time a cell is chosen at random and updated [193].

• Random Order: All cells are updated in random order. After each cell has performed an update, the
order is again randomly chosen [193].

• Cyclic-sequential ordered: The update order is fixed in the automaton definition and cycled through
until all cells have updated once, then repeated [193].

• Generic cyclic-sequential ordered: As above, but now the update can take some time until it is
communicated to the neighbors, maximally until the cell updates again [193].

• Clocked schemes: Timers are associated with each cell such that they update autonomously and
at possibly different and possibly variable frequencies and with different delays until the update is
communicated to the neighbors. [193].

• α-Synchronism: At each time-step a subset of cells is chosen, each cell is with probability α a
member of this subset, and then updated [194].

• β-Synchronism: Each cell is updated at the same time step, but the information about that update
is transmitted to the whole neighborhood only with probability β [194].

• γ-synchronism: Each cell is updated at the same time step, but the information about that update
is transmitted to each neighbor with probability γ [194].



181

A.7 Generation of Irregular Grids

The goal of this section is to describe an algorithm to generate 2D irregular grids whose irregularity can
smoothly be tuned with a parameter r, including regular grids for certain parameter values and grids which
closely resemble neighborhood configurations observed experimentally in quasi 2D tissue. To construct a
grid of M ·N points on a surface with dimensions Lx and Ly, the points are first distributed according to
the midpoints a M ·N hexagonal pattern. Then each point is shifted by δx and δy, both random variables
drawn from a triangular distribution with zero mean and standard deviation r. Periodic boundary conditions
are assumed for this as well as for the rest of the procedure. To construct neighborhood relationships for
each point, a Voronoi tessellation using the SciPy python package [201] is performed. The edge and area
distributions as well as exemplary tessellations for different values of the standard deviation r are shown in
fig. A.9. As expected, both distributions as well as the visual appearance of the grids tend to a more diverse
phenomenology for increasing r. For large enough r, both distributions come close to the experimental
distributions for the Drosophila wing epithelium extracted from Farhadifar et al. [220], indicating that the
procedure can be used as a proxy to generate grids which are statistically approximate representation of
specific experimental tissues.

Figure A.9 In Silico Generated Artificial Grids. Grids are generated by placing midpoints of cells according to a
regular hexagonal grid, shifting them by adding independent random variables drawn from a triangular distribution
with zero mean and standard deviations r to the midpoint coordinates, and subsequently performing a Voronoi
tessellation [201]. Examples are shown for a Grid of M · N = 6 · 6 = 36 cells on a surface of size Lx = Ly = 1
with periodic boundary conditions and an ensemble size of 100. (a) Frequency distribution of the number of edges
and relative area distribution 〈A#edges〉

Ensemble

〈A〉Ensemble, #Edges
of the generated grids different standard deviations r, together with

the experimental distribution for the Drosophila wing epithelium extracted from Farhadifar et al. [220]. (c) Exemplary
grids for different standard deviations r of the triangular distribution. Visualization procedure adapted from the
corresponding SciPy routine [201].
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