
 

 
Technische Universität München 
TUM School of Engineering and Design 
 

 

 

 

A Data-Driven Approach for  
Predictive Maintenance Integrated Production Scheduling 

 

 
Simon Ximeng Zhai 

 
 

 

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen 

Universität München zur Erlangung eines 

Doktors der Ingenieurwissenschaften (Dr.-Ing.) 

genehmigten Dissertation. 

 

 

Vorsitz:                     Prof. Dr.-Ing. Michael F. Zäh 

 

Prüfer*innen der Dissertation: 

 

1.     Prof. Dr.-Ing. Gunther Reinhart 

2.     Prof. Dr.-Ing. Johannes Fottner 

 

Die Dissertation wurde am 20.04.2023 bei der Technischen Universität München eingereicht 

und durch die TUM School of Engineering and Design am 21.08.2023 angenommen.



Editor’s Preface 

In times of global challenges, such as climate change, the transformation of mobility, 

and an ongoing demographic change, production engineering is crucial for the sustain-

able advancement of our industrial society. The impact of manufacturing companies 

on the environment and society is highly dependent on the equipment and resources 

employed, the production processes applied, and the established manufacturing or-

ganization. The company’s full potential for corporate success can only be taken ad-

vantage of by optimizing the interaction between humans, operational structures, and 

technologies. The greatest attention must be paid to becoming as resource-saving, 

efficient, and resilient as possible to operate flexibly in the volatile production environ-

ment.  

Remaining competitive while balancing the varying and often conflicting priorities of 

sustainability, complexity, cost, time, and quality requires constant thought, adaptation, 

and the development of new manufacturing structures. Thus, there is an essential need 

to reduce the complexity of products, manufacturing processes, and systems. Yet, at 

the same time, it is also vital to gain a better understanding and command of these 

aspects.  

The research activities at the Institute for Machine Tools and Industrial Management 

(iwb) aim to continuously improve product development and manufacturing planning 

systems, manufacturing processes, and production facilities. A company’s organiza-

tional, manufacturing, and work structures, as well as the underlying systems for order 

processing, are developed under strict consideration of employee-related require-

ments and sustainability issues. However, the use of computer-aided and artificial in-

telligence-based methods and the necessary increasing degree of automation must 

not lead to inflexible and rigid work organization structures. Thus, questions concerning 

the optimal integration of ecological and social aspects in all planning and development 

processes are of utmost importance.  

The volumes published in this book series reflect and report the results from the re-

search conducted at iwb. Research areas covered span from the design and develop-

ment of manufacturing systems to the application of technologies in manufacturing and 

assembly. The management and operation of manufacturing systems, quality assur-
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ance, availability, and autonomy are overarching topics affecting all areas of our re-

search. In this series, the latest results and insights from our application-oriented re-

search are published, and it is intended to improve knowledge transfer between aca-

demia and a wide industrial sector. 

 

Rüdiger Daub        Gunther Reinhart        Michael Zäh 
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Abstract 

Predictive Maintenance (PdM) is one of the core innovations of Industrie 4.0 that captures the 

interest of research and industry alike. While prediction models and related artificial intelligence 

technology have become more potent due to ongoing research, most models are not designed 

considering actual industrial practice and are not validated with industrial data. In addition, the 

predictive information about the remaining lifetime and the health condition of machines is 

rarely used to integrate production and maintenance scheduling which is crucial for creating 

actual value-added.  

To overcome these limitations, this dissertation proposes a holistic approach that directly inte-

grates PdM models with production and maintenance scheduling: the Predictive Maintenance 

Integrated Production Scheduling (PdM-IPS) approach. Since the manufacturing of different 

product variants causes different levels of degradation to the machine, an operation-specific 

health prognostics model is developed. Thus, to enable PdM-IPS, a generative deep learning 

model based on the conditional variational autoencoder that is able to derive an operation-

specific health indicator from large-scale industrial condition monitoring data is proposed. This 

model outputs the estimated change in a machine's health condition after producing a specific 

production sequence. Operation-specific degradation information is subsequently used for in-

tegrated production and maintenance scheduling. Specifically, a flexible job shop problem with 

maintenance constraints is formulated and solved by a two-stage genetic algorithm. 

Results indicate that the PdM-IPS approach is able to find feasible high-quality PdM integrated 

production schedules using both simulated and real industrial data. Finally, the PdM-IPS ap-

proach was prototypically implemented in a real production line in the automotive industry. 

Expert interviews indicate that the PdM-IPS approach returns promising results and shows a 

reasonable amortization period.
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1 Introduction 

Manufacturing companies today face various challenges: increased competition due to glob-

alization, shorter product life cycles, as well as product diversification and individualization 

(ELMARAGHY 2012, ABELE & REINHART 2011, WARNECKE ET AL. 2003). The resulting competi-

tive pressure forces the manufacturing industry to innovate and create new means to stay 

competitive. Recent advancements in information and communications technology, together 

with developments in Artificial Intelligence (AI), enable the so-called fourth industrial revolution, 

Industrie 4.0, which in turn empowers industrial companies to increase productivity and effi-

ciency (REINHART 2017) significantly. Predictive Maintenance (PdM) is one core innovation 

made possible by the fourth industrial revolution and is able to increase productivity and effi-

ciency by reducing machine downtimes, hence gaining vast attention from academia and in-

dustry alike (ZHAI & REINHART 2018).  

1.1 Motivation 

Many manufacturing companies, however, apply so-called predetermined preventive mainte-

nance (PM), in which maintenance actions are carried out based on production cycles or simply 

time – regardless of the actual health condition of the machine (MÄRZ 2017, p. 691). Using 

recent advances in the research of AI and condition monitoring (CM) measurements from so-

phisticated sensors, the health condition and remaining useful life (RUL) of the machine and 

its components can be estimated (LEI ET AL. 2018). These advances enable the new mainte-

nance strategy PdM. Knowing the health condition of machinery allows the operator to conduct 

maintenance just in time, thus not wasting RUL by maintaining prematurely, as is often time 

the case when preventive maintenance strategies are utilized (ZHAI & REINHART 2018). Costs, 

therefore, can be reduced by preventing unexpected machine breakdowns and unnecessary 

maintenance actions (BEN ALI ET AL. 2011, DENKENA ET AL. 2012, CHEN ET AL. 2014). PdM ap-

proaches rely on physical, knowledge-based and data-driven modeling for RUL predictions 

(BEKTAS ET AL. 2019b, p. 4). Data-driven modeling has been the focal point of recent research 

activities due to the developments in AI research. Higher effectiveness and broader applica-

bility, particularly for more complex machining systems (BEKTAS ET AL. 2019b, p. 5), such as 

machine tools, resulted from such research undertakings. A study conducted by the German 

Mechanical Engineering Industry Association (VDMA) states that more than 80 % of compa-

nies consider applying PdM (FELDMANN ET AL. 2017). 

Recent studies also confirm the high potential of PdM, particularly in increasing machine avail-

ability and preventing unexpected failures (DUSCHEK ET AL. 2021, ZHAI ET AL. 2020, FELDMANN 
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ET AL. 2017, STAUFEN AG 2018). However, these studies also indicate that the manufacturing 

industry requires models tailored to its constraints, such as limited data quantity and quality. 

While nearly three-quarters of respondents expect that PdM will have high relevance for main-

taining their machinery in the near future, only 7 % are satisfied with current PdM solutions. 

Figure 1-1 displays the discrepancy of PdM's expected importance for manufacturing compa-

nies in the following years compared to the capabilities of current PdM solutions (STAUFEN 

AG 2018). The vast majority state that improvements in terms of PdM’s scope and functionality 

are necessary. Holistic approaches, as well as the inclusion of industrial constraints, are re-

quested. These approaches shall improve the whole production line and should not focus only 

on maintenance. 

 

Figure 1-1: Relevance of PdM in the near future and current capabilities of PdM solutions 

(STAUFEN AG 2018, n=450). 

Such holistic approaches include integrated production scheduling and maintenance planning 

(IPSMP). IPSMP describes the general problem of finding an optimal production and mainte-

nance schedule subject to both production and maintenance constraints (ZANDIEH ET 

AL. 2017), which in theory enables the transfer of PdM information to the place where the actual 

value is created: the shop floor (LADJ ET AL. 2019, ZHAI ET AL. 2019, PAN ET AL. 2012). However, 

most existing IPSMP approaches only focus on integrating preventive maintenance actions 

and production scheduling. The challenge of integrating PdM into IPSMP lies in the operation-

specific modeling of degradation (BOUGACHA ET AL. 2019, ZHAI ET AL. 2021). Different machin-

ing operations on multifunctional machine tools lead to different degradation levels, i.e., the 

degradation of the machine is dependent on the operation running on the machine (C. FITOURI 

ET AL. 2016). This implies that PdM solutions must be modeled operation-specifically to be 

industrially viable.  

Product variants are manufactured using different machining operations and thus, different 

production schedules impose different levels of degradation on the machine. Existing IPSMP 
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approaches assume the operation-specific degradation to be linear to the processing time of 

the operation (LADJ ET AL. 2019, C. FITOURI ET AL. 2016). This does not necessarily hold in 

industrial use cases. For example, operations involving the processing of harder materials 

usually lead to higher degradation than softer materials, even if the softer material is processed 

longer. Hence, operation-specific modeling of degradation and predicting the future health con-

dition, therefore enabling PdM Integrated Production Scheduling (PdM-IPS). The development 

of an approach for PdM-IPS is the objective of this dissertation and includes the application of 

PdM information in IPSMP problems by operation-specifically estimating degradation and op-

timizing the production and maintenance schedule accordingly. 

1.2 Problem Statement and Objective  

Two key challenges can be identified that prevent the holistic application of PdM-IPS in the 

industry:  

1. Need for operation-specific modeling of degradation and health condition prediction 

As the degradation of machine tools and their components is non-linear, models estimating 

and predicting the health condition must consider non-linear operation-specific degrada-

tion. Hence, more elaborate and complex modeling is required. In addition, the output of 

these models has to be designed to be used for the subsequent IPSMP. 

2. Low industrial data quality and availability 

Industrial data differs heavily from benchmark data used in academia for modeling, e.g., 

the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset by 

SAXENA & GOEBEL 2008 in terms of both quality and availability (YAN ET AL. 2017): 

a. Data quality 

Noisy and, in some cases, even missing or redundant data is common in the industry. 

Industrial data typically is unstructured, multi-dimensional, heterogenic and sometimes 

even not available in digital form. Furthermore, industrial data has to be acquired from 

multiple sources. As such, extensive data preprocessing is necessary to derive meaningful 

data that can be used to model machines' health conditions. 

b. Data availability 

Modeling the health condition requires data where the machine was both in healthy and 

faulty states. Preventive maintenance actions lead to rare failures of the machine in prac-

tice. This limits the applicability of PdM models since most of them rely on failure labels. 
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Data is abundant when the machine is in a healthy state, while data corresponding to fail-

ures is sparse. 

The overall objective of this dissertation is thus the development of a novel data-driven Pre-

dictive Maintenance Integrated Production Scheduling (PdM-IPS) approach. It aims to specif-

ically design and apply health condition models and IPSMP algorithms with regard to each 

other and focus on their seamless interaction. The approach shall cater to the industrial reality 

regarding data that manufacturing companies face today, realize operation-specific health pre-

diction and its application in IPSMP. The PdM-IPS approach ensures that recent PdM achieve-

ments are used for planning purposes, hence harmonizing production scheduling and mainte-

nance planning. Specifically, the PdM-IPS approach aims at: 

• Modeling and applying operation-specific health condition information of a machine for 

scheduling purposes, 

• Preventing machine breakdowns, thus increasing machine availability, 

• Reducing the number of unnecessary maintenance actions, 

hence, overall, 

• Generating a feasible integrated production schedule and maintenance plan. 

The scientific work required to design and realize the PdM-IPS approach can be split into four 

sub-objectives: 

1. Identification of requirements and success factors for PdM-IPS. 

2. Operation-specific modeling of degradation for subsequent PdM-IPS. 

3. Development of a suitable IPSMP algorithm and integration of operation-specific deg-

radation information. 

4. The validation of PdM-IPS in an industrial setting. 

1.3 Requirements 

To reflect specific requirements (R) of the PdM-IPS approach, they are divided into general 

requirements, PdM requirements, and IPSMP requirements. All presented requirements were 

derived from analysis of the state of the art and expert studies. This represents the first stage 

of the applied research methodology of this dissertation, which will be introduced in the next 

section.  

General requirements refer to requirements that apply to the general application of the ap-

proach. PdM requirements describe specific requirements that concern the modeling of the 

health condition of the machine. Lastly, IPSMP requirements refer to the requirements con-

cerning the design of the scheduling algorithm. Both PdM and IPSMP requirements are derived 

from the general requirements and industrial constraints. 



 

5 

1.3.1 General Requirements 

R1 General applicability 

The approach shall be generally applicable and valid. The models developed within the ap-

proach must have the ability to be applied in different production scenarios, i.e., different shop 

floor layouts and machinery. This entails that the application of the approach must be inde-

pendent of the type of machine on the shop floor. 

R2 Industrial applicability 

The approach shall be applied in an industrial setting and should generate value-added for the 

applying company. Hence, industrial constraints must be addressed accordingly. 

R3 Modularity 

The models developed within the approach shall be modular to account for the dynamic and 

disruptive manufacturing companies face nowadays. This necessitates that the models shall 

be easily exchanged or modified to account for changing circumstances. 

R4 Economic viability 

The approach shall be economical, i.e., the application of the approach shall be financially 

amortized in a reasonable time. Improved collaboration of production and maintenance should 

facilitate improved planning, resulting in less machine downtime and higher machine utilization. 

The resulting profits shall be higher than the additional costs, e.g., for implementing and main-

taining the approach. 

1.3.2 Predictive Maintenance Related Requirements 

R5 Robustness 

To account for R1 and R2, the modeling of the health condition of the machine shall be robust 

to noise, missing data, mixed data outliers and different operational and fault conditions, see 

LEI ET AL. (2018). 

R6 Ability to handle high-dimensional data 

Since industrial CM data is usually high dimensional (see R1 & R2), the models shall operate 

efficiently with high dimensional data and extract meaningful health indicators (HIs), see 

MICHAU ET AL. (2018). 
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R7 Ability to handle a low amount of labeled failure data 

In order to be industrially viable (see R2), the health condition model within the approach shall 

be able to generate health assessments and predictions in a setting where failure data corre-

sponding to the CM data is rarely available. Due to the low number of labeled failure data, a 

(semi-)unsupervised learning model shall be preferred over a supervised learning model, see 

GUGULOTHU ET AL. (2018). 

R8 Operation-specific health assessment and prediction 

As motivated in section 1.2, operation-specific modeling of the health condition is critical for 

subsequent application in planning algorithms. Hence, the model shall assess the current and 

predict future health conditions operation-specifically, see ZHAI ET AL. (2021). 

1.3.3 Integrated Production Scheduling and Maintenance Planning 

Related Requirements 

R9 Flexibility regarding shop floor layout 

R1 and R2 lead to the requirement of a planning model capable of being widely applicable. 

The planning model within the PdM-IPS approach shall be based on a flexible job shop layout, 

where job operations can be scheduled on multifunctional machines capable of executing mul-

tiple operations. Flexible job shops are thus representative of many industrial shop floors 

(ROSHANAEI ET AL. 2013). 

R10 Time-efficiency 

The planning and scheduling algorithm and its interaction with the health condition model shall 

use reasonable computing power and time to compute its results to be viable for industrial 

application (see R2). Reasonable computing power refers to systems that are typically availa-

ble for decision-makers, e.g., desktop computers. Reasonable computing times depend on the 

planning horizon and frequency of planning and thereupon have to be evaluated use case 

dependently. 

R11 Multi-objective optimization ability 

As the term entails, IPSMP has two objectives: optimizing both production scheduling and 

maintenance planning. The planning algorithm shall consequently handle multiple objectives 

simultaneously and compute feasible solutions in reasonable time. Objectives can be compet-

ing, so trade-offs might be necessary. 
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R12 Consideration of the decision maker’s preferences 

The approach shall allow user inputs regarding objective functions and other parameters to 

reflect the preferences of the decision-maker, e.g., the production and maintenance planner. 

Objectives may conflict with each other and on that account, the decision-maker has to care-

fully assess the priorities according to entrepreneurial needs (STRUNZ 2012, p. 23). This in-

cludes weighing objectives of production schedules and maintenance plans against each other 

and setting thresholds for critical machine degradation, maximum calculation time, and other 

parameters.  

1.4 Research Methodology and Structure of This Dissertation 

This dissertation utilizes the Design Research Methodology (DRM) by BLESSING & 

CHAKRABARTI (2009) as the underlying methodology to scientifically develop, implement and 

evaluate the approach. The DRM was created to facilitate design research through the estab-

lishment of a cohesive, interdisciplinary framework that aims at enhancing the integration and 

assessment of various design support tools and methods and to develop a standard experi-

mental and validation methodology (BLESSING & CHAKRABARTI 2009). Herein, the “primary fo-

cus lies on supporting engineering and industrial design research” (BLESSING & 

CHAKRABARTI 2009, p. 2). The authors define the term design as “activities that actually gen-

erate and develop a product […] or technology […] needed to realize the product and to fulfill 

the needs of the user and other stakeholders” (BLESSING & CHAKRABARTI 2009, p. 1). The term 

product is referred to as a broader concept comprising both physical (e.g., a machine tool) and 

virtual solutions (e.g., software or process), or a combination of both. Needs can be social and 

also “economic (e.g., manufacturing systems for mass production)” (BLESSING & 

CHAKRABARTI 2009, p. 1).  

Since the objective of this dissertation is to design and realize an industrial viable PdM-IPS 

approach (see Chapter 1.3), the DRM is well-suited in supporting the research process as well 

as ensuring that the above-mentioned economical needs are fulfilled. Thus, the DRM is chosen 

as the underlying research methodology of this dissertation. 

The DRM consists of four stages: Research Clarification, Descriptive Study I, Prescriptive 

Study, and Descriptive Study II.  

Research Clarification states the focus, as well as the success criteria and requirements of the 

research project. The Descriptive Study I provides a basis for subsequent development of sup-

port, as well as to identify factors that facilitate or hinder success. The Prescriptive Study builds 

upon these findings, develops support and enables its evaluation, with the latter being the 

focus of the Descriptive Study II. BLESSING & CHAKRABARTI (2009) note that the DRM stages 
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do not have to be traversed sequentially, nor does every stage have to be examined with the 

same level of detail. Iterations have to take place and variations of the DRM are necessary to 

cater to the individual needs of each research project. 

As presented in Figure 1-2, this thesis uses the introduced stages of the DRM as the framework 

for the scientific work. Each stage is utilized to fulfill one sub-objective introduced at the end of 

section 1.2. It should be noted that the transition between stages is seamless and thus, the 

allocation of stages to chapters is not to be understood strictly. The chosen traversing of the 

stages in the presented manner supports the deductive research in order to design the PdM-

IPS approach: By analyzing technical fundamentals and the state of the art the research is 

clarified and the research deficit and the research objectives are derived. The Descriptive 

Study I is applied in order to derive crucial success factors, which subsequently are taken into 

account in the Prescriptive Study. The Descriptive Study II is finally utilized to validate the 

developed PdM-IPS approach. 

 

Figure 1-2: Relation between the DRM, the objective of each stage,  

the structure of this dissertation and the embedded publications.  

Research Clarification 

This stage was applied to clarify the research deficits, identify the research goal and its related 

requirements. Chapters 1 and 2 motivate the research and introduce corresponding terminol-

ogy, methods and fundamentals. The status quo is presented by reviewing recent studies. The 
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introduction of PdM-IPS-related terms and the following analysis of scientific literature on cur-

rent approaches for the problem at hand serve as the basis for developing the support in the 

prescriptive study. By doing so, these chapters clarify the research objectives as well as the 

requirements to achieve these objectives. 

The third chapter represents the central chapter of this thesis, comprises a short introduction 

to the PdM-IPS approach and presents the associated embedded publications. These four 

publications mainly focus on the Descriptive Study I and the Prescriptive Study and focus on 

systematically developing the means needed for support and fulfilling the sub-objectives intro-

duced in section 1.2.  

Descriptive Study I 

The objective of the first Descriptive Study is to identify crucial success factors. Two publica-

tions are at the core of this study in order to identify these factors. These analyze the current 

challenges of industrial PdM application and develop a first generic model for PdM-IPS, thus 

focusing on sub-objective 1 (see section 1.2.). This model is tested in a simulative environment 

to identify and describe crucial success factors needed for the industrial application of PdM-

IPS, namely an operation-specific health modeling and an efficient integrated solving algo-

rithm.  

Prescriptive Study  

The Prescriptive Study is utilized in order to develop the support for success: The two publica-

tions of the Prescriptive Study build upon the findings of the previous stage and develop the 

PdM-IPS approach. The first publication develops an operation-specific health model capable 

of predicting the future health condition of a machine conditioned to a given production se-

quence and covers sub-objective 2. The second publication uses this health model in an 

IPSMP setting to develop a time-efficient two-stage genetic algorithm as the solver, hence 

realizing sub-objective 3. The PdM-IPS approach is verified with simulative data and validated 

using industrial data in a realistic application scenario in both publications. 

Descriptive Study II 

The second Descriptive Study aims to validate, evaluate and discuss the designed approach. 

Thus, this study was applied in order to achieve sub-objective 4. The Descriptive Study II com-

prises a critical discussion and reflection and an economic evaluation of the approach and is 

presented in chapter 4. The approach is discussed according to the requirements introduced 

in section 1.3 and its potential is evaluated using expert interviews. Different scenarios of a 

prototypical application of the approach are examined in the economic evaluation. Finally, a 

summary and outlook on possible further research directions conclude the dissertation. 
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2 Terminology, Fundamentals and 

State of the Art 

This chapter introduces the key terminology, fundamentals and the state of the art of this dis-

sertation to ensure a common understanding. As such, it is part of the Research Clarification 

stage of the DRM. In particular, the introduced terms are used in the publications presented in 

chapter 3. Emphasis is put on the state of the art of IPSMP and recent developments in health 

condition modeling at the end of each subchapter. 

2.1 Maintenance Terminology 

According to DIN EN 13306, maintenance is defined as the 

“combination of all technical, administrative and managerial actions during the life cycle of an 

item intended to retain it in, or restore it to, a state in which it can perform the required function.” 

Hence, the primary maintenance objectives for manufacturing companies are to ensure ma-

chine availability, prolong useful life, and prevent machine failures (STRUNZ 2012, p. 2). It 

should be noted that a failure refers to a point in time after which the machine cannot fulfill its 

intended function, such as manufacturing products within the required tolerances. In the con-

text of this dissertation, a maintenance action refers to repair actions that restore the state of 

an item, thus ensuring availability. An item in the definition above refers to a part, component 

or (sub-)system that can be described individually. Items include objects that are subject to 

degradation and therefore may require maintenance, e.g., machines or machine components. 

Machines, in turn, are represented by a single or a set of predetermined critical components.  

The health condition of machinery can be represented by a health indicator (HI) (LEI ET 

AL. 2018) that decreases with degradation. HIs are frequently bounded and range from 0 to 1 

for better comparison, with 1 being the “perfect healthy state”, while 0 denotes an “absolutely 

degraded” or failing state. Figure 2-1 depicts an exemplary HI of an item. The useful life de-

scribes the timespan of one run to failure, i.e. /.%"*/,0 − /1. The HI drops due to degradation 

between /1 and an arbitrary time point /2. The remaining useful life (RUL) denotes the timespan 

from time point /2 and /.%"*/,0. It should be noted that after failure, a maintenance action resets 

the HI to 1. 
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Figure 2-1: Schematic visualization of HI, degradation, (remaining) useful life and 

corresponding points in time. 

Using a preventive maintenance strategy (see next section), maintenance is planned and 

scheduled according to predetermined time intervals. The item’s condition is determined by 

condition monitoring or by predicting the degradation evolution before all useful life is depleted. 

Corrective maintenance is not scheduled since it is conducted after the failure of an item. It is 

thus a reactive strategy. Table 1 presents key terms related to maintenance used in this dis-

sertation. 

Maintenance Strategies 

Maintenance strategies are used to achieve maintenance objectives, i.e., by repairing and as 

such, restoring the functionality of items. These strategies can be generally divided into the 

categories of preventive and corrective according to DIN EN 13306 (2018, p. 58). Corrective 

maintenance is carried out after the item in question has failed to restore its function (DIN EN 

13306 (2018, p. 38). Preventive maintenance is carried out to “asses and/or to mitigate degra-

dation” (DIN EN 13306 (2018, p. 24) and can be further divided into predetermined and condi-

tion-based maintenance (CbM). Figure 2-2 presents the categorization of maintenance strate-

gies according to DIN EN 13306. 
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Table 1: Maintenance-related terms of this dissertation. 

Term Definition Source 

Maintenance 
schedule 

“Plan produced in advance detailing when a spe-
cific maintenance task should be carried out.”  

DIN EN 13306 
(2018, p. 46) 

Maintenance plan “Structured and documented set of tasks that in-
clude the activities, procedures, resources and the 
time scale required to carry out maintenance.” In 
the context of this thesis, a maintenance plan refers 
to a plan produced in advance detailing the point in 
time and duration of a maintenance task. 

DIN EN 13306 
(2018, p. 10) 

Availability “Ability of an item to be in a state to perform as and 
when required, under given conditions, assuming 
that the necessary external resources are pro-
vided.” 

DIN EN 13306 
(2018, p. 17) 

Useful life “Time interval from first use until the instant when a 
limiting state is reached.” 

DIN EN 13306 
(2018, p. 22) 

Failure “Loss of the ability of an item to perform a required 
function.” 

DIN EN 13306 
(2018, p. 26) 

Degradation “Detrimental change in physical condition, with 
time, use or due to external cause.” Subsequently 
may lead to failure. 

DIN EN 13306 
(2018, p. 28) 

Condition Monitor-
ing (CM) 

“Activity, performed either manually or automati-
cally, intended to measure at predetermined inter-
vals the characteristics and parameters of the 
physical actual state of an item.” 

DIN EN 13306 
(2018, p. 41) 

Repair “Physical action taken to restore the required func-
tion of a faulty item.” 

DIN EN 13306 
(2018, p. 44) 

Health Indicator 
(HI) 

“HIs are constructed using signal processing tech-
niques, artificial intelligence (AI) techniques, etc., to 
represent the health condition of machinery.” 

LEI ET AL. (2018, 
p. 800) 

Remaining Useful 
Life (RUL) 

“The remaining useful life (RUL) of an asset or sys-
tem is defined as the length from the current time to 
the end of the useful life.” 

SI ET AL. (2011, 
p. 1) 
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Figure 2-2: Classification of maintenance strategies according to 

DIN EN 13306 (2018, p. 58). 

Predetermined maintenance actions are executed in regular time intervals or after a certain 

number of production cycles in use without assessing the actual condition of the item in ques-

tion. The term preventive maintenance is often used to refer to predetermined maintenance in 

the industry (ZHAI & REINHART 2018). Hence, for the remainder of this thesis, preventive 

maintenance will be used to refer to predetermined preventive maintenance. Condition-based 

maintenance (CbM) assesses the physical condition of an item before deciding on whether or 

not to maintain it. CbM is funded on CM by using sophisticated sensors that measure physical 

parameters like vibration, which represent the condition of a component (LEI ET AL. 2018). Fig-

ure 2-3 schematically visualizes the typical point in time of maintenance actions for the pre-

sented strategies. While corrective maintenance actions occur after failure, PM and CbM con-

duct the maintenance action while the machine is still in a healthy state. CbM actions tend to 

be closer to failure than predetermined PM actions and thus utilize more useful life. This is 

enabled by monitoring the actual condition of the machine instead of following predetermined 

maintenance intervals.  

CbM can be conducted with or without the prognosis of degradation evolution. CbM without 

degradation prognosis is referred to as non-predictive maintenance or frequently referred to 

as CbM in industry, i.e., when maintenance actions are conducted based on exceeding prede-

termined thresholds of CM data and not prognosis (ZHAI ET AL. 2020). Hence, for the remainder 

of this thesis, non-predictive condition-based maintenance is referred to as CbM. 
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Figure 2-3: Schematic visualization of typical maintenance point in time for  

different maintenance strategies. 

On the other hand, predictive maintenance uses CM data to predict the health condition of an 

item. The maintenance action is then carried out “following a forecast […] of the significant 

parameters of the degradation of the item” (DIN EN 13306 (2018, p. 24). PdM can be seen as 

the latest development in the realm of maintenance strategies in the era of Industrie 4.0, 

emerging from the traditional maintenance paradigms of preventive and CbM (ZHAI & 

REINHART 2018). PdM uses the same CM data foundation as CbM, but unlike CbM, PdM pre-

dicts the future health condition and plans maintenance accordingly, instead of simply reacting 

to surpassing a threshold. The need for this new paradigm is caused by recent trends and 

change drivers of maintenance (STRUNZ 2012, pp. 9-11):  

• the increased complexity, degree of automation and interlinking of production machinery, 

where the failure of one machine leads to a standstill in production, 

• the over-proportional price increase for replacement parts and machines, therefore stress-

ing the demand to utilize components and avoid premature maintenance entirely, 

• the increase in processing speeds in manufacturing leads to components and tools be-

coming more susceptible to failure due to higher processing forces. 

These change drivers caused maintenance strategies to evolve, as Figure 2-4 depicts. Cor-

rective maintenance was viable when no flow production was established and singular failures 

did not cause production stops. This changed with the introduction of flow shops and prede-

termined preventive maintenance was applied. With the introduction of automated solutions 

and computational power to production, CM enabled CbM to warn operators of imminent fail-

ures and possibly dangerous situations. Building upon CM data and using AI to predict future 

health conditions, PdM now enables the efficient use of RUL information.  
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Furthermore, the degradation behavior and maintenance point in time can be influenced (ZHAI 

& REINHART 2018). As depicted in Figure 2-2, beneficially applying PdM will be the focus of 

this dissertation. 

 

Figure 2-4: Evolution of maintenance based on ZHAI & REINHART (2018). 

2.2 Integrated Production Scheduling and 

Maintenance Planning 

Research on integrated production scheduling and maintenance planning (IPSMP) has gained 

attention in recent years and deals with optimally planning production subject to maintenance 

actions (DA ET AL. 2016, p. 951). Most approaches have treated maintenance planning and 

production scheduling independently in the past, leading to “suboptimal solutions, due to the 

fact that they are interrelated” (HADIDI ET AL. 2012, p. 21). IPSMP is also referred to as “ma-

chine scheduling with availability constraints”, with the availability constraints being attributed 

to maintenance actions, machine breakdowns or tool replacements during the scheduling pe-

riod (HARRATH ET AL. 2012, p. 13).  

IPSMP can be categorized as models with time-based and condition-based maintenance ac-

tions (GHALEB ET AL. 2020). Time-based approaches schedule maintenance actions according 

to predetermined time intervals, i.e., following the PM paradigm. In contrast, condition-based 

approaches plan maintenance actions based on either an item's assessed or predicted health 

condition.  

In the following, state-of-the-art time and condition-based IPSMP approaches will be pre-

sented. The focus will be on condition-based approaches since the IPSMP approach of this 

dissertation also follows the condition-based paradigm. For the sake of brevity, only the most 

relevant literature will be presented. Since IPSMP is the focus of publication no. 4, the reader 

shall be referred to Appendix 7.1 for a more detailed literature review. Table 2 summarizes key 

terminology concerning IPSMP used in the following sections as well as throughout this dis-

sertation. 
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Table 2: IPSMP-related terminology. 

Term Definition Source 

(Production) 
Scheduling 

“[Scheduling] deals with the allocation of resources 
to tasks over given time periods and its goal is to 
optimize one or more objectives”. In the context of 
production, resources are oftentimes machines 
and/or operators and objectives can be the minimi-
zation of makespan. 

PINEDO (2016, 
p. 1) 

Maintenance Plan-
ning 

Closely related to production scheduling, it focuses 
on allocating resources for the maintenance of ma-
chines such that it is ensured that a production sys-
tem is “the most available (or the least unavailable) 
possible […] to execute the production jobs as 
soon as possible”.  

See also the definition of “maintenance plan” in Ta-
ble 1. 

BERRICHI ET 
AL. (2010, 
p. 1584) 

Single machine Describes a production system layout, where a set 
of jobs have to visit only one machine.  

PINEDO (2016, 
p. 33) 

Flow Shop Production system layout where jobs have to un-
dergo a series of operations following the same 
route. “The machines are then assumed to be set 
up in series and the environment is referred to as a 
flow shop.” 

PINEDO (2016, 
p. 151) 

(Flexible) Job Shop Production system layout where “the routes are 
fixed, but not necessarily the same for each job”, i.e., 
jobs have to visit machines in a special order with 
precedence constraints. In flexible job shops, one 
job can be manufactured on multiple machines. 

PINEDO (2016, 
p. 183),  

KACEM ET AL. 
(2002, p. 1) 

2.3 Time-Based Integrated Production Scheduling and 

Maintenance Planning Approaches 

CASSADY & KUTANOGLU (2003) and CASSADY & KUTANOGLU (2005) were some of the first 

researchers to formulate the IPSMP problem. The authors examined production scheduling on 

a single machine with preventive maintenance actions, with the objective to minimize the ex-

pected total weighted tardiness. Their proposed integrated model yielded improved results 

than scheduling production and planning maintenance independently. 

BENBOUZID-SITAYEB ET AL. (2011) formulated a flow shop problem subject to preventive mainte-

nance actions. These actions were associated with time intervals [8$"3, 8$%&], in which they 
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have to be started and completely executed. 8$"3 referred to the point in time after the pre-

defined minimum time between two maintenance actions has passed, whereas 8$%& described 

the maximum time between two maintenance actions. Early and delayed PMs were penalized 

using a cost function. Two metaheuristics were proposed to solve cost the subsequent mini-

mization problem. The results indicated that “the simultaneous optimization of both production 

and maintenance criterion gives better results” (BENBOUZID-SITAYEB ET AL. 2011, p. 45f.) than 

sequentially optimizing the problem. 

A flexible job shop problem with integrated preventive maintenance actions was studied by YE 

& MA (2015). The authors established a multi-objective optimization model to minimize the 

makespan and maintenance costs for the integrated production and maintenance schedule. 

The decision to plan maintenance was made before assigning each job operation to the ma-

chine. To simultaneously optimize both production and maintenance objectives, the weighted 

sum method was applied. A genetic algorithm was implemented to solve the formulated prob-

lem. Compared to an independent planning approach with fixed preventive maintenance peri-

ods in simulative studies, the proposed approach resulted in better outcomes regarding both 

makespan and maintenance costs. 

SCHREIBER (2022) developed a system for integrated production and maintenance planning, 

which consists of a technical subsystem aiming at describing and optimizing the planning prob-

lem and the social subsystem, which describes the methodology for integrated production and 

maintenance planning. The whole system aims at holistically optimizing production and 

maintenance planning with respect to the objectives costs, time, quality and flexibility of the 

manufacturing system. Predetermined maintenance actions were planned according to the 

number of manufactured products and linear accumulation of degradation was thus assumed. 

The multicriterial optimization problem was solved using the Goal programming method1. 

 
 

 

1 The Goal programming method describes a multiobjective optimization approach that seeks to find a 
solution that satisfies all objectives as much as possible while considering the priorities and trade-offs 

between them (SCHNIEDERJANS 1995). 
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2.4 Condition-Based Integrated Production Scheduling and 

Maintenance Planning Approaches 

Condition-based IPSMP approaches, as opposed to the approaches presented in the previous 

section, apply health assessment to determine the health condition of machines and use this 

information to plan maintenance actions accordingly. As mentioned, the condition can be either 

assessed using CM to plan the immediately following action or predicted to enable a longer 

planning horizon. As with the time-based approaches, different concepts for single machine, 

flow and job shop layout exist. 

IPSMP using assessed degradation information 

While not directly taking operation-specific degradation into account for future prognosis of 

health conditions, PAN ET AL. (2012) utilized CM continuously assess a machine's health con-

dition. In a single-machine layout, the health condition was evaluated while processing a spe-

cific job sequence. Maintenance actions were scheduled based on the health assessment at 

the same time as production jobs. A health indicator quantified the assessed health condition 

of a machine. Predefined thresholds indicate the failing state AB.%"* and AB4%.0, which de-

scribed the state where manufacturing was deemed safe. In order to determine the optimal 

time for maintenance, the authors extended the RUL concept to include the remaining mainte-

nance life (RML), which refers to the remaining time until maintenance needed. RUL spans 

until AB.%"*, while RML marks the time until AB4%.0 is reached, see Figure 2-5. RML thus acts 

as a buffer and allows for uncertainties in RUL prediction. 

 

Figure 2-5: Concept of Remaining Maintenance Life based on PAN ET AL. (2012, p. 1052). 

GLAWAR ET AL. (2018) developed an IPSMP concept using CbM consisting of a CM system, 

communication and production sequence optimization layer. The CM system returns so-called 

health points, indicating the current health condition of the machinery. The authors explicitly 
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acknowledged the need for product-specific degradation modeling for subsequent scheduling. 

Depending on its health point value, production shall continue or a maintenance action shall 

be executed. The presented approach did not go beyond the conceptual phase and the authors 

state that further research is needed.  

KARNER ET AL. (2018) applied this concept to a use case in the metal forming industry. Due to 

the product’s different thickness and material, the degradation was modeled linearly, but nev-

ertheless product-specifically. By incorporating the current health condition and linearly extrap-

olating the health condition after the execution of the following product, the decision-maker can 

decide whether to conduct maintenance. Hence, only very short-term decision support was 

realized. 

IPSMP using predicted operation-specific degradation  

C. FITOURI ET AL. (2016) established an IPSMP model based on the JSSP and presented a 

heuristic for solving the problem. Their modeling of operation-specific degradation is one of the 

most common approaches found in literature: The authors assumed that an arbitrary prognos-

tics module supplies the information on the RUL of each machine. The degradation ∆" depend-

ent on job or operation & is calculated as the proportion of its processing time $" and the RUL 

of the machine, 

 ∆" 	= !!
'56  (2-1) 

The resulting total degradation of a machine imposed by a specific sequence of jobs, i.e., 

production schedule, is based on the linear accumulation of operation-specific degradations of 

the assigned operations, ∆()(%*= ∑ ∆"" . A minimum and a maximum threshold of accepted deg-

radation were assigned to each machine to plan maintenance actions. The proposed heuristic 

aims to find the starting times for the maintenance actions and the production jobs by minimiz-

ing makespan and total costs. 

The linear operation-specific degradation modeling presented in equation (2-1) serves as the 

basis for various other approaches: LADJ ET AL. (2016) and LADJ ET AL. (2017b) solved a single-

machine ISPMP instance using genetic algorithms. LADJ ET AL. (2017a) and LADJ ET AL. (2019) 

extended the degradation modeling by introducing fuzzy logic to capture the uncertainty of 

degradation. A flow shop IPSMP instance is modeled and solved using variable neighbor 

search (LADJ ET AL. 2017a) and genetic algorithm (LADJ ET AL. 2019), respectively. 

BENAGGOUNE ET AL. (2020) also studied a single machine instance with linear degradation 

behavior of operations as outlined in equation (2-1) and the impact of RUL uncertainty on 

IPSMP. An unspecified prognostics module supplied the RUL information. Job operations sub-
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ject to linear operation-specific degradation ' are scheduled with respect to a predefined deg-

radation threshold ∆, which must not be exceeded. The objective of the model is the minimi-

zation of total maintenance cost 37: 

 37 = 31 + 3$G'"(/)H,	 (2-2) 

where 31 represents the fixed cost per maintenance action and 3$ the cost of advance, i.e., 

costs of premature maintenance: 

 3$G'"(/)H = IJG∆ − '"(/)H							&9	'"(/) < ∆
0																													&9	'"(/) = ∆,	 

(2-3) 

J hereby represents the cost of advance per unit of time. 

As such, the model penalizes premature maintenance actions that do not make use of the 

RUL. Particle swarm optimization2 is used to solve the resulting problem optimally. 

In order to optimize production planning, DENKENA ET AL. (2020) apply a statistical method to 

estimate the failure durations of machine tools. Data was acquired from practical experiments 

to model failure durations and their approach showcases high accuracy. These estimations 

can in turn be used for production scheduling. It should be noted that operation-specific pre-

diction of RUL and subsequent scheduling was not within the scope of their work. Neverthe-

less, the prognosis of failure duration does possess the potential to improve IPSMP holistically. 

In summary, IPSMP approaches using both current and predicted health conditions exist. Still, 

the lack of industrial applicability due to simplified linear assumptions of degradation evolution 

hinders the actual application in industry. In particular, holistic approaches which include the 

interaction of actual operation-specific PdM applications, i.e., applications capable of predicting 

RUL using industrial data and respective IPSMP algorithms, are missing.  

 
 

 

2 Particle swarm Optimization describes a population-based heuristic optimization algorithm that utilizes 
a swarm of particles that iteratively explore the search space to converge towards the global optimum 

(KENNEDY & EBERHART 1995). 
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2.5 Prognostics and Health Management (PHM) 

As presented in the previous section, at the core of most IPSMP approaches is a prognostics 

module, also referred to as the PHM module, that returns the health condition or RUL of a 

machine. Hence, the field of PHM deals with health assessment and its prediction based on 

real-time information (KIM ET AL. 2017, p. 1). The main tasks of PHM can be summed up as 

follows (KIM ET AL. 2017, p. 3, LEI ET AL. 2018, ASSAF 2018, p. 18): 

1. Data Acquisition 

Data Acquisition deals with collecting meaningful “measurement data from sensors and 

process them to extract useful features for diagnosis” (KIM ET AL. 2017, p. 3). 

2. Diagnostics 

Diagnostics detect the cause and severity of a failure. By comparing the measured data 

with its defined thresholds, failures are detected. The failure is then isolated and its 

severity is assessed. 

3. Prognostics 

Prognostics aim at predicting the RUL of a component or machine. The health state is 

estimated using the acquired data and subsequently, the RUL is predicted. 

a. State estimation and HI construction 

The acquired raw data is further processed by applying AI or signal processing 

techniques to derive HIs. These extract relevant health condition information while 

filtering out measurement noise. HIs represent the health condition of the monitored 

machine.  

b. State prediction 

The degradation trend is predicted with regard to historical data and the future state, 

i.e., the future HI is predicted. It should be noted that HIs trend downwards with 

increasing degradation, while a degradation indicator trends upwards with increas-

ing degradation. Further, it should be noted that HIs range from 0 to 1 (see Table 

1) and only represent how “healthy” a machine is for a given point in time.  

c. RUL prediction 

As mentioned, RUL is defined as the time left before the HI reaches a defined failing 

threshold. Based on the estimated current HI and future HI, RUL can therefore be 

predicted and calculated. Approaches for predicting RUL vary from statistical, phys-

ics, AI or hybrid approaches. 
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4. Health management 

Health management deals with optimally managing the logistics, organization and plan-

ning of maintenance. Apart from scheduling maintenance, health management aspects 

will not be the focus of this thesis. 

Prognostics is regarded as the “key enabler that permits the reliability of a system to be eval-

uated” (KIM ET AL. 2017, p. 3). In this thesis, prognostics is the main focus of the PHM applica-

tion. Thus, the term “PHM module” refers to models that use the underlying techniques of 

prognostics. As described in section 1.2, operation-specific predictions are needed for PdM-

IPS. In the following, the origin and the definition of the term operation-specific and state-of-

the-art approaches for data-driven prognostics will be presented. 

2.5.1 Operational Conditions and Operating Regimes: The Significance 

of Time-Varying Operational Conditions for HI Modeling 

Operation-specific predictions refer to predictions that were made concerning the machine’s 

actual operational condition, i.e., the “physical loads and environmental conditions experienced 

by the item during a given period” DIN EN 13306 (2018, p. 24). A detailed examination of PHM 

literature reveals that depending on the field of application, the term “operating” or “operational 

condition” has been defined slightly differently, as shown in Table 3.  

While WANG (2010) and SAXENA ET AL. (2008) described operational conditions from an ab-

stract, general perspective, PEYSSON ET AL. (2019) focused on traditional machine tools in a 

manufacturing environment. Operational conditions further can be clustered to operating re-

gimes3. All definitions share a certain causality: system inputs, such as a specific setting for a 

machining process, cause certain behavior of the item. Thus, the definition of healthy behavior 

depends on these system inputs. 

 

 

 

 
 

 

3 An operating regime refers to a defined subspace of an operational condition that can be induced by 
machining operation. The definition of operating regime and examples are given on p. 24. 
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Following literature findings, this dissertation defines operational conditions regarding manu-

facturing and machine tools as follows: 

An operator of a manufacturing company chooses the corresponding machine program 

according to the production demand. This machine program (e.g., CNC-program) defines 

a set of machining parameters, also referred to as operating parameters, which in turn 

define the machine's operational or operating condition. Subsequently, the active opera-

tional condition causes the system behavior. Sensors can both measure, the operational 

condition as well as the system behavior. Measurements are saved as multivariate sensor 

time series data over the item’s lifetime. Only the operational condition can be influenced 

directly, e.g., in the case of machine tools, the measurable feed rate can be set and con-

trolled (i.e., operational condition).  

Table 3: Definitions of the term “operational condition” in PHM literature. 

Definition Reference 

“Operational conditions are a set of variables that decide the settings of the 
system’s operation. They can be considered as ‘inputs’ to the system in gen-
eral […]. For instance, the speed and feed rate for a machining process are 
operational conditions while the power consumption of the spindle is not 
[…].” 

WANG (2010, 
p. 58) 

“Let !!" (#) be an operational condition at time index	#, where &	 = 	1, 2, …	,, 
is the condition number, and -	 = 	1, 2, …	, . is the UUT (Unit Under Test) in-
dex. The operational conditions describe how the system is being operated 
and are sometimes referred to as the load on the system.” 

SAXENA ET AL. 
(2008, p. 3) 

“A machine tool […] aims at performing successive operations to raw mate-
rial to produce a finished workpiece. Each operation may involve the use of 
a specific tool and axis movements with optimized machining parameters, 
such as spindle speed […]. The structuration of machine operating condi-
tions […] [contains] the following layers: production, cycle, step, tool change 
(TC) and move (M). […] The different operating conditions can be collected 
directly from the machine's numerical command. If it is not the case, they 
should be inferred from the raw sensor measurements such as axis posi-
tions.” 

PEYSSON ET AL. 
(2019, 139 f.) 

 

At the same time, the system reacts with measurable vibrations that cannot be directly con-

trolled (i.e., system behavior or system condition). Intuitively, products or parts of the same 

product family seen from a manufacturing perspective can form an operational condition since 

they require similar operational parameters. This is caused by similar characteristics such as 

product geometry or material, requiring similar manufacturing processes. The operational con-

dition thus has a significant effect on the system behaviors, with different operational conditions 

causing large variances in the measurement of the system behavior. 
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Figure 2-6 schematically presents and summarizes the definition of the operational condition 

of this dissertation and its relationships. 

 

Figure 2-6: Relation between operational conditions and system behavior. 

Often, an operational condition is synonymously referred to as an operating regime (OR) in the 

scientific literature (BEKTAS ET AL. 2017, MALHOTRA ET AL. 2016, JOHANSEN 1994). This disser-

tation follows the distinction between these terms as outlined by WANG (2010) and ZHAI ET AL. 

(2021). An operating or operational condition	! refers to a vector of operational parameters %$, 

e.g., machining settings. These operational conditions ! belong to an operational space ", i.e. 

!	 ∈ 	".  

An OR #! is defined as a meaningful subspace or cluster in the operational space " 

(WANG 2010, p. 61, JOHANSEN 1994, p. 7). The operational conditions !	 ∈ 	" can be clustered 

into a finite number N of operating regimes Ω = {#2, #8, … , #9} by an arbitrary clustering or 

space partitioning algorithm 9+(!). A membership vector 4ST is introduced to assign an oper-

ational condition ! to an operating regime #9 which can represent a fuzzy assignment (e.g., 

4ST = [0.1, 0.9, 0]:) or a discrete membership assignment (e.g., 4ST = [0,1,0]:) for each 

timestep. Thereby, the dimensionality of 4ST equals the number of operating regimes. 

Figure 2-7 shows an example of an arbitrary sensor measurement of operational parameters 

over a given time period. %$2, %$8, %$; represent operational parameters, e.g., machine settings 

for feed rate, cutting speed and cutting depth. The operational condition !	 ∈ 	" represent a 

combination of these parameters. In this example, !< features the operational parameters 

%$2 = %$8 = 1, %$; = 0. A clustering algorithm 9+(!) determines the membership to the oper-

ating regime. In this discrete case, !< belongs to the bright green cluster #=. 
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Figure 2-7: Operational conditions and operating regimes. 

A set or sequence of operating regimes OpRegSeq can represent required machining opera-

tions to manufacture different product variants. For example, the manufacturing of product A 

requires the OpRegSeq of ORs #2, #8, #>, #=, while product B only utilizes operating regimes 

#2, #8, #;. By introducing operating regimes, new product variants can be represented by the 

recombination of existing operating regimes or the addition of new operating regimes. This 

approach ensures that historical CM data can still be used even if new product variants are 

introduced to the production program. 

LANZA ET AL. (2009), BIAN ET AL. (2015) and LI ET AL. (2019) emphasized the significance of 

modeling the health condition of machinery subject to time-varying operational conditions since 

these lead to different loads and result in different degradation rates. Furthermore, the defini-

tion of a healthy system condition is also dependent on the active operational condition. 

LUO ET AL. (2019) collected the vibration signal of a cylinder machining process that consists 

of four operations: surfacing, milling, drilling and boring. As Figure 2-8 illustrates, the raw vi-

bration signals and corresponding spectra differ significantly and indicate different degradation 

on the machine. Therefore, time-varying operational conditions have to be taken into account 

for health modeling. 
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Figure 2-8: Four different machining operations and their corresponding vibration data, 

own schematic representation based on LUO ET AL. (2019, p. 510). 

 

LI ET AL. (2019) presented an artificial scenario for an operation-unspecific prognostics ap-

proach, see Figure 2-9. An exemplary machine has two operational conditions, 0 and 1. The 

actual condition (in Figure 2-9: “system state”) of the machine degrades until it fails, indicated 

by the final value of 1.0. As opposed to health indicators, which denote 0 as depleted and 1 as 

a fully healthy state, the system state described by the degradation signal uses 1 as fully de-

pleted and 0 as a fully healthy state. It should be noted that the actual health condition or 

system state usually cannot be directly observed. The corresponding “degradation signal”, 

e.g., vibration or other sensor signals, is significantly higher when in operational condition 1 

and thus could lead to a false alarm, even if the actual system state is not critical.  

Surfacing Milling Drilling Boring
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Figure 2-9: Effect of operational condition on degradation signal, 

own schematic representation based on LI ET AL. (2019, p. 90). 

BIAN ET AL. (2015) described two major challenges of dynamic operational conditions on the 

CM signals: First, different operational conditions cause changing degradation rates. Second, 

changes in operational conditions may cause sudden jumps at changepoints in the CM signals. 

Consequentially, the degradation patterns in the sensor signals are overlaid with large vari-

ances and complicate the interpretation of these signals. Naïve health indicators, e.g., a single 

trending signal, tend to trigger many false alarms when the signal exceeds the prespecified 

failure threshold due to operational condition changes (LI ET AL. 2019). In reality, the system 

might still have wear reserves for additional operation cycles, as can also be seen in Figure 

2-9.  

Reliable prognostic models need to differentiate whether a signal change is caused by a 

change in the operational condition or by increasing degradation. In addition to the effects of 

operational conditions on CM data, the task of prognostics itself for longer time horizons is 

getting more demanding since future operational conditions cannot be reliably predicted 

(SANKARARAMAN & GOEBEL 2014). To account for condition-induced variance and to enable 
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prognostics in a setting of time-varying operational conditions, researchers have proposed dif-

ferent preprocessing techniques such as operation-specific standardization, i.e., standardizing 

the range of the data according to the operation regime (WANG ET AL. 2008, WANG 2010, BABU 

ET AL. 2016, LIAO ET AL. 2018). 

2.5.2 Modeling Operation-Specific Health Indicators 

As presented in the section above, different operational conditions of a system yield different 

loads and cause different degradation rates. For modern data-based prognostics, it is essential 

to consider varying operational conditions, as they strongly impact condition monitoring data. 

An overview of different operation-specific HI modeling techniques is presented in the follow-

ing. Given that operation-specific HIs are the focus of publication no. 3, the reader shall be 

referred to Appendix 7.1 for a more detailed literature study. 

Among the first works that explicitly consider time-varying operational conditions for degrada-

tion modeling are WANG ET AL. (2008) and WANG (2010). Their approach comprises two core 

procedures: HI construction and RUL prediction. The preprocessing step of the operating re-

gime partitioning is required to consider multiple operational conditions. This partitioning re-

quires clustering operational parameters into ORs and subsequently min-max normalizing the 

data with respect to the data collected under the same OR. The task of health indicator learning 

was formulated as a supervised learning problem. By applying linear regression models on a 

set of normalized sensor data with a consistent trend over time, the HI is predicted. The HI can 

be used for the ensuing RUL prediction by comparing the HI trajectory of a system instance to 

a database of HI curves of run-to-failure instances using a curve-matching algorithm. Based 

on the training instances’ HI trajectories and RULs, the final RUL was computed by comparing 

the most similar trajectories (WANG 2010). The approach was validated using NASA’s simu-

lated C-MAPSS dataset developed by SAXENA & GOEBEL (2008), which is regarded as one of 

the most prominent benchmark datasets in PHM research. 

LANZA ET AL. (2009) formulate a statical method based on the Weibull Distribution in order to 

model variable operational conditions. The shape parameter of the Weibull Distribution is con-

sidered to be the load-dependent parameter and is obtained by applying the Maximum Likeli-

hood Estimation on collected failure data. Using the derived Weibull Distribution, the timing of 

preventive maintenance actions and spare part provision is optimized thereafter. 

LI ET AL. (2019) proposed a state-space model in which the challenges of changing degradation 

rates and jumps at change points in CM data are modeled as separate influences. Using a 

state transition function based on a Wiener process, the dynamic and operation-specific deg-

radation rate was modeled. Measurement functions were used to account for the mentioned 
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sudden jumps in the degradation signal due to change points. These functions smoothen the 

jumps in the signal whenever the operational condition changes. This was done by mapping 

each operational condition to a condition-specific reference baseline. False alarms could be 

reduced and RUL predictions were retrieved. Further, the results obtained by applying this 

approach to a simulated bearing data set indicate a high performance and outperforming pre-

vious models, e.g., developed by BIAN ET AL. (2015). 

MICHAU & FINK (2019) developed an unsupervised learning approach utilizing a variational au-

toencoder (VAE) for system monitoring of a fleet of similar systems. Due to the similarity of 

these systems, the training data for one specific system instance can be and thereafter is 

enhanced by CM data from other instances of the fleet. The health prediction was based on a 

one-class classification using a variational autoencoder that aims at predicting whether the CM 

data is faulty or healthy. A real data set of a fleet of 112 power plants running under different 

operating and environmental conditions was used to evaluate and validate the developed ap-

proach. 

KARNER ET AL. (2019) compared different machine learning algorithms to predict changes in 

health conditions in order to enable the subsequent IPSMP approach proposed by GLAWAR ET 

AL. (2018) introduced in section 2.4. While acknowledging the need for product-specific mod-

eling, the proposed orthogonal matching pursuit approach for estimating the health condition 

of tools in the steel industry did not explicitly display how product-specific health conditions are 

estimated. Nevertheless, the approach achieved high metrics in terms of R² and RMSE values. 

Using a neural network-based model, BEKTAS ET AL. (2019a) constructed a HI and predicted 

RUL for the simulated dataset C-MAPSS. Emphasis was being put on transforming raw and 

noisy sensor data under varying operational conditions and modeling a HI. By comparing dif-

ferent HI trajectories, a similarity-based RUL prediction model was inferred. The approach per-

formed well in terms of error metrics compared to other state-of-the-art approaches on the 

same dataset. 

In summary, approaches to model operation-specific health conditions do exist. However, 

these advanced models cannot be directly combined with the existing IPSMP approaches and 

thus, the potential of these prediction models is not realized. Value-added from sophisticated 

operation-specific health models can only be realized if they are applied in a manufacturing 

environment that plans its production according to the predicted health states of its production 

machines. 
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2.6 Facit: Research Deficits 

After examining the state of the art of both IPSMP and operation-specific HI modeling literature, 

it becomes clear that significant advancements in both fields have been made in recent years. 

Figure 2-10 schematically presents the current state of IPSMP, its relationship with production 

scheduling and maintenance planning, as well as the research gap that PdM-IPS aims to fill. 

On the one hand, researchers developing algorithms for production and maintenance planning 

have realized that joint planning of both production and maintenance results in significant im-

provements in terms of machine availability and makespan. PdM enables the development of 

more sophisticated IPSMP models that can schedule maintenance actions based on the actual 

condition of the machine. Existing IPSMP models usually apply a simplified linear degradation 

model to estimate the wear on machines. Also, these IPSMP models postulate the existence 

of arbitrary PHM models capable of operation-specifically modeling the machine's condition 

and outputting the required information for planning purposes.  

On the other hand, recent PHM research developed sophisticated models capable of opera-

tion-specifically modeling the health condition, i.e., taking time-varying conditions into account. 

However, these models were not designed for subsequent scheduling purposes in industrial 

manufacturing settings. Existing PHM approaches are not validated with industrial data in 

many cases, so the viability for actual application remains unclear. The disaggregation of prod-

ucts into their respective operating regimes is needed to ensure operation-specific health con-

dition modeling. Furthermore, the recombination of sequences of operating regimes back to 

products is required for scheduling purposes. Hence, the identification of operating regimes of 

different product variants in CM data, the health indicator modeling and subsequent product 

and production plan specific health prediction have to be improved. 

The research deficits can be summed up as follows: 

1. Operation-specific health modeling using industrial data. 

2. Enablement of operation-specific health model for scheduling purposes. 

3. IPSMP algorithm that is capable of using operation-specific health information and re-

turns feasible solutions in reasonable time. 
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Figure 2-10: Identified research gap for the PdM-IPS approach. 

In conclusion, a holistic approach for the industrial application of the PdM-enabled IPSMP, i.e., 

a PdM-IPS approach, is needed. The PdM-IPS approach shall include HI modeling and sched-

uling approaches that work together in a synchronized way to optimally plan production and 

maintenance such that the RUL of machines is optimally consumed.  
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3 Predictive Maintenance Integrated 

Production Scheduling 

The overarching objective of this dissertation is the development and implementation of the 

PdM-IPS approach in the manufacturing industry. As such, this chapter concisely presents the 

PdM-IPS approach and summaries of the embedded publications that lead to its development. 

As outlined in the previous chapter, the PdM-IPS approach aims to build upon existing IPSMP 

approaches and fill the identified research deficits. In addition, the formulated approach shall 

fulfill the requirements defined and presented in section 1.3. 

Three modules are at the center of the PdM-IPS approach: the Planning Module, the Interface 

Module, and the PHM Module. Each module has been developed to fulfill the requirements 

defined in section 1.3 and the identified research deficits in the previous chapter. Thereby, 

each module addresses the different identified needs of PdM-IPS.  

The PHM Module enables operation-specific HI estimations based on CM data of industrial 

production machinery and supplies the Planning Module with the required information to 

schedule maintenance actions. This module, therefore, addresses research deficits one and 

two. Unlike existing approaches, the PHM Module returns the estimated change in the health 

condition of production machinery caused by the processing of distinct product sequences and 

production schedules, thus enabling the Planning Module to schedule production and mainte-

nance optimally.  

The Interface Module acts as a bridge of communication between the PHM and the Planning 

Module, it converts the production schedules generated by the Planning Module into opera-

tional data that the PHM Module can utilize. Additionally, it also sends back the expected deg-

radation information of the same production schedule to the Planning Module. The Interface 

Module resolves research deficit two. 

The Planning Module focuses on the optimal planning of production and PdM jobs and falls 

within the category of IPSMP approaches. In contrast to existing approaches, the Planning 

Module is explicitly designed to operate with health indicator estimations from prediction mod-

ules, particularly from the PdM-IPS approach’s own PHM Module with the support of the Inter-

face Module. Hence, the Planning Module addresses research deficit three. 
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3.1 Concept Overview 

Figure 3-1 provides a conceptual overview, including all the modules of the PdM-IPS approach. 

The Planning Module is founded upon a genetic algorithm to conduct IPSMP optimally. It re-

ceives production orders and production and maintenance performance measures (e.g., 

makespan) to base the optimization on and outputs an integrated production and PdM sched-

ule. Corresponding priorities of these production and maintenance objectives are also obtained 

in the form of weights from the decision-maker (usually a production planner or scheduler) to 

formulate the cost function, i.e., the objective function. 

The parameters of the objective function, i.e., the costs, are derived from both production and 

maintenance metrics and the health condition of the machines required to execute and manu-

facture the developed schedule. The module calculates the cost-optimal integrated production 

and PdM schedule based on the cost function.  

The Interface Module receives the generated PdM integrated production schedule from the 

Planning Module, transforms this schedule to respective OpRegSeqs and transmits this infor-

mation to the PHM Module. The predicted degradation imposed by the schedule that the PHM 

Module computes is then received and sent back to the Planning Module. 

The PHM Module is based on a special neural network architecture: the conditional variational 

autoencoder (CVAE). CVAEs apply representation learning which enables them to learn the 

feature pattern. The PHM Module takes CM data and production order data as input and esti-

mates the health condition based on this data. In particular, the CVAE is trained with historical 

CM and production order data and is able to both assess and predict the degradation imposed 

by a specific production schedule that it receives from the Planning Module via the Interface 

Module. By estimating the change in the health condition of production machinery after pro-

cessing specific schedules, the Planning Module can now determine whether to proceed with 

production or plan a maintenance action instead. 

As depicted in Figure 3-1, the presented modules interact with each other to generate an op-

timal integrated production and PdM schedule by incorporating information from the scheduler, 

respective production orders and the CM of production machines from the shop floor. The 

resulting schedule includes timeslots for set-up and production as well as for PdM actions, i.e., 

timeslots for maintenance actions. 
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3.2 Embedded Publications 

Four publications are at the center of the development and implementation of the PdM-IPS 

approach and will be presented in the following subsections. Titles and authors of these pub-

lications can be retrieved from Table 4, as well as the primary focus area of each publication 

with regard to the overall PdM-IPS approach (see Figure 3-2). These embedded publications 

can be found in Appendix 7.1. 

The number of four publications was chosen in order to cover all four stages of the DRM as 

well as achieve the outlined objectives in section 1.2. While publications 1 and 2 mainly focus 

on DRM’s Research Clarification and Descriptive Study I, the latter two publications deal with 

the Prescriptive Study and Descriptive Study II. The first two publications examine the status 

quo of PdM in industry and postulate a theoretical PdM-IPS model, thus creating the basis for 

the development of support. Crucial factors that determine the success of PdM are identified. 

The latter two publications build upon these findings and create the actual support for the PdM-

IPS approach by developing and implementing the Planning, PHM and Interface Module.  

Table 4: Overview of publications. 

No. Title Year of 
publication 

Authors Focus area 

1 An empirical expert study on 
the status quo and potential of 
predictive maintenance in In-
dustry 

2020 Zhai, S.; Achatz, 
S.; Groher, M.; 
Permadi, J.; Rein-
hart, G. 

Industrial re-
quirements for 
successful PdM 
application 

2 Formulation and solution for 
the predictive maintenance In-
tegrated job shop scheduling 
problem 

2019 Zhai, S.; Riess, A.; 
Reinhart, G. 

Planning Mod-
ule 

3 Enabling predictive mainte-
nance integrated production 
scheduling by operation-spe-
cific health prognostics with 
generative deep learning 

2021 Zhai, S.; Gehring, 
B.; Reinhart, G. 

PHM Module 

4 Predictive maintenance inte-
grated production scheduling 
by applying deep generative 
prognostics models: approach, 
formulation and solution 

2022 Zhai, S.; Kande-
mir, M. G.; Rein-
hart, G. 

Planning Mod-
ule, Interface 
Module 
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Publication 1 sheds light on the perceived potentials as well as challenges of PdM application 

by the manufacturing industry. Expert studies indicated that holistic approaches for applying 

PdM, i.e., approaches that use the health condition of machinery for planning purposes, are 

required and in turn motivate PdM-IPS.  

Publication 2 explores the general formulation of PdM-IPS problem instances using simplified 

degradation models based on the Weibull distribution. A genetic algorithm was adapted to 

display its potential to solve PdM-IPS instances in reasonable time. The publication concludes 

by stating that real PHM models instead of simplified degradation models shall be developed 

for the PdM-IPS approach to generate value-added for the industry.  

Publication 3 develops and implements a PHM model based on a CVAE to assess and predict 

the health condition of a machine operation-specifically. The developed model is able to quan-

tify the health condition after a specific sequence of operations has been executed or products 

have been manufactured. The simulated benchmark data set C-MAPSS and real industrial 

data were used to validate the PHM model.  

 

Figure 3-2: Overview of publication and their relationship to the overall PdM-IPS approach 

as well as to the stages of the DRM. 

Publication 4 uses the developed model of publication 3 as the PHM Module for IPSMP. A two-

stage genetic algorithm was developed to optimally schedule production and PdM actions for 
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the flexible job shop. Together with an interface enabling the exchange of information between 

the PHM model and the genetic algorithm, the PdM-IPS approach is realized. The PdM-IPS 

approach is validated in a production line using simulated C-MAPSS as well as real industrial 

data for the PHM model. Results indicate that the PdM-IPS approach can indeed optimally 

schedule production and maintenance actions regarding the actual health condition of ma-

chines. 

The publications on which this dissertation is based were produced in collaboration with other 

researchers. However, the author of this dissertation was the first author in the creation of all 

four publications included. In sections 3.2.1 to 3.2.4, following the summary of each publica-

tion, the individual contribution of the first author and those of the co-authors are presented.  

3.2.1 Publication 1: An Empirical Expert Study on the Status Quo and 

Potential of Predictive Maintenance in Industry 

The first publication focuses on PdM's status quo and potential in the industrial application by 

conducting an expert study (ZHAI ET AL. 2020). Actions to be taken to successfully develop 

PdM systems that are feasible to be used industrially are derived from empirical data collected 

from 62 European manufacturing experts. This publication therefore contributes to the Re-

search Clarification and the Descriptive Study I of the DRM by identifying the factors for the 

success of industrial PdM applications (see Figure 1-2). 

The study utilized a standardized, anonymized online questionnaire and the data was subse-

quently retrieved from the online database. Subsequent statistical analysis of the data was 

conducted offline using Microsoft Excel. Both quantitative and qualitative questions were asked 

and as such, a mixed-method research approach as outlined by YIN (2014) was followed. Par-

ticipants were asked whether they have experience in applying PdM in their company. All 

closed questions had multiple answers to select from, i.e., the questions were multiple-choice. 

In addition, participants could freely add answers if they perceived that the existing options did 

not match their opinions. The questionnaire of this study can be found in Appendix 7.3. 

Five key findings and resulting possible actions to be taken concerning successful PdM appli-

cation can be derived from the analysis of the empirical data: 
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1) Respondents who stated that they possess PdM experience tended to evaluate the 
potential of PdM higher, but holistic approaches were still regarded as necessary to 
fulfill the promise of PdM. 

This finding can be explained by the users' positive experiences with PdM, e.g., by realizing 

cost savings and reducing downtime. While the potential was rated higher in the PdM experi-

enced group, these respondents noted that potentials are not yet fully exploited. The free text 

answering section, where participants were asked to add potentials they perceive, lists possi-

ble exploitation fields. Responses mostly demanded a holistic approach to PdM, e.g., using 

PdM information to integrate maintenance and production planning. 

2) A common understanding is required to streamline PdM implementation and appli-
cation. 

The implementation and application of PdM are highly interdisciplinary. Different understand-

ing of PdM throughout the company hinders the successful application of PdM. The terms CbM 

and PdM were frequently confused (see section 2.1 for definition), which led to misunderstand-

ings and different expectations. 

3) PdM has a significant positive impact on maintenance processes. 

The retrieved data from the study showed that PdM experienced respondents rate their mainte-

nance processes better than the inexperienced group. In combination with the fact that PdM 

users were overall satisfied with PdM applications and that they rated the potential of PdM 

highly, it can be derived that PdM does indeed have a positive impact on the respondent’s 

maintenance processes. 

4) Data is widely available in the industry. 

The study showed that the majority of both PdM experienced and inexperienced respondents 

acquire data from different sources, albeit PdM experienced respondents stated that they col-

lect more data compared to the inexperienced group. Thus, the first step toward PdM imple-

mentation is already taken. 

5) Research should focus on models that use real industrial data. 

The biggest challenge all respondents faced was the lack of know-how concerning value-add-

ing PdM applications (see Figure 3-3). Therefore, research should focus on using real indus-

trial data when developing models. Scientific literature primarily uses simulated datasets to 

benchmark their models. These datasets do not mirror the industry's challenges in practice, 

e.g., handling lack of failure data. 
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Figure 3-3: Identified challenges of PdM implementation, grouped by 

PdM experience of participants. Multiple answers were possible. 

In conclusion, this empirical study showed that future research should focus more on develop-

ing holistic PdM approaches using real industrial data. By doing so, the highly-rated potentials 

of PdM can be exploited and real value-added can be generated. 

Figure 3-4 shows the relative contribution of the author of this dissertation for this publication. 

 

Figure 3-4: Contribution of work for publication 1. 
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3.2.2 Publication 2: Formulation and Solution of the Predictive Mainte-

nance Integrated Job Shop Scheduling Problem 

The second publication explores the formulation of IPSMP problem instances with integrated 

PdM actions in a job shop setting, i.e., a manufacturing setting where necessary maintenance 

actions of machines are predicted and the production is scheduled such that minimal downtime 

occurs (ZHAI ET AL. 2019). Further, the feasibility of genetic algorithms as the solver for such 

problems is evaluated. Results indicate that the developed genetic algorithm is indeed able to 

produce high-quality schedules, including PdM actions. The design of the genetic algorithm 

and its hyperparameters is following the principles laid out by WERNER (2013). By deriving 

further required success factors and prototyping the solution method, this publication is set at 

the intersection of the DRM’s Descriptive Study I and the Prescriptive Study. 

First, analysis of scientific literature led to the conclusion that a holistic IPSMP formulation, 

including operation-specific modeling of degradation, is required (see also the first publication 

in section 3.2.1). Therefore, the formulation of such problem is extended by reliability and ma-

chine breakdown prediction. The publication assumes that an arbitrary PHM module supplies 

information )*+"#, i.e., the RUL of a machine ( processing only operation &. To consider oper-

ation-specific degradation, the Operation Specific Stress Equivalent (OSSE) is subsequently 

defined as follows:  

 '"# =	 !!
'56!"

  (3-1) 

This formula is adapted from LADJ ET AL. (2016) and C. FITOURI ET AL. (2016). $" describes the 

processing time for a certain operation #"# running on machine (. For improved comparability 

between operations, it is assumed that the PHM module provides the )*+"# information on the 

basis of the machine’s as good as new condition, meaning that a maintenance action fully 

resets the RUL to 1. This simplifies the cumulative degradation ,# = ∑ '"# 	"  estimation to 

 ,#(/2) = ,#(/1) + ,#(/2 − /1) = ,#(/1) +	'"#  (3-2) 

with ,#(/2) being the cumulative degradation of machine ( at the time /2, i.e., after running the 

operation #2. 

The cumulative degradation directly influences the machine’s reliability and failure probability. 

The scientific literature has different measurements and models of reliability, the most fre-

quently used measurement being the failure rate - (LAWLESS 2003). Following STRUNZ (2012), 

using the two-parameter cumulative Weibull distribution function X(/) with shape parameter 2 

and the scale parameter 1, the reliability )(/) can be modeled as follows: 
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 )(/) = 1 − X(/) = Y?@
#
$A
%

  (3-3) 

STRUNZ (2012) also denotes the degradation progress can be mathematically expressed as 

the ratio (B of the operational time / and the remaining operational lifetime 1. Following the 

OSSE introduced in Eq. (3-1), the operational time passed / equals the sum of operation pro-

cessing times $". As described above, the remaining operational life time 1 is identical to the 

)*+"# provided by the PHM module, yielding 

 
(
B 	= 	∑

!!
'56!"

	" =	∑ '"# =	" Δ#(/). (3-4) 

Thus, Eq. (3-3) can be reformulated to  

 )(/) = 1 − X(/) = Y?C"(()%. (3-5) 

For an exemplary schedule with a sequence of six operations, the reliability and cumulative 

degradation can be visualized as presented in Figure 3-5. 

 

Figure 3-5: Exemplary evolution of ,#(/) and )(/) for 2 = 1. 

Existing JSSP benchmark instances were adapted within this publication to formulate the 

maintenance-integrated JSSP using operation-specific degradation information. In particular, 

the well-known ft10 benchmark instance of FISHER & THOMPSON (1963), which describes a 

JSSP instance containing ten machines processing ten jobs with ten operations each,  was 

extended by OSSEs. To account for the operation-specific degradation and its effect on the 

machine’s reliability, a new minimization objective is formulated: the Reliability Weighted 

Makespan 3$%&' . It is defined as the latest reliability weighted completion time  

 
3$%&' = max	(32' , 38' , … , 33'), and  

3"' = )(/) ∙ 3" + G1 − )(/)H ∙ (3" + X)  
(3-6) 
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where 3"' equals the completion time 3" of Job & multiplied by )(/) (i.e., how probable the job 

can be completed without the machine failing) and a time penalty X, weighted according to the 

failure probability X(/) = 1 − )(/).  

A genetic algorithm (GA) with job-based representation with repetition (YAMADA ET AL. 1997) 

is designed and validated in a simulation setting. The GA is initialized with the random job 

selection method (JORAPUR ET AL. 2016) and uses tournament selection, the precedence pre-

serving crossover operator and insertion and shift mutation (WERNER 2013) at a rate of 95 % 

and 5 %, respectively. The stopping criterion is set to 100 generations. The input is the pro-

duction demand derived from the ft10 instance, while the output represents a feasible PdM 

integrated schedule. A simulation model is created that calculates the failure probability of each 

machine according to the cumulative degradation imposed by a feasible schedule. Unplanned 

machine breakdowns are simulated proportionally to the calculated failure probability. 

The proposed solution method is validated using the ft10 instance and benchmarked against 

results from the literature. Results indicate that the proposed GA is able to produce schedules 

comparable to the optimal literature schedules. Most notably, the number of machine failures 

is reduced by planning PdM actions. However, the solved problem instance is based on an 

arbitrary PHM module supplying simplified operation-specific degradation information that, in 

turn, is used to simulate machine breakdowns. Future research shall replace this arbitrary PHM 

module with a realistic PHM module. The publication proves the viability of applying GAs to 

solve PdM-IPS problem instances and concludes by stating that to realize holistic PdM-IPS, a 

PHM-module capable of deriving operation-specific degradation estimations from real indus-

trial is required. 

Figure 3-6 shows the relative contribution of the author of this dissertation for this publication. 

 

Figure 3-6: Contribution of work for publication 2. 
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3.2.3 Publication 3: Enabling Predictive Maintenance Integrated Pro-

duction Scheduling by Operation-Specific Health Prognostics with 

Generative Deep Learning 

The third publication builds upon the findings of the second publication and develops and im-

plements the PHM Module of the PdM-IPS approach and as such serves as part of the Pre-

scriptive Study of the DRM by developing the support needed for PdM-IPS (ZHAI ET AL. 2021). 

Within the publication, the DRM was applied as the overarching research methodology while 

the cross-industry standard process for data mining (CRISP-DM) was chosen for the domain-

specific development of industry-viable health models. The PHM Module is developed accord-

ing to the following objectives: 

• ability to handle industrial data where labeled failure data is sparse while unlabeled CM 
data is widely available, 

• modeling under time-varying operational conditions and 

• supply of product-specific HI for subsequent scheduling. 

The publication includes the methodology to develop the PHM Module, which includes all nec-

essary steps to generate product-specific HI predictions, i.e., data preparation, and developing 

a HI model consisting of a health assessor and a data simulator for subsequent health condi-

tion prediction. The PHM Module has CM sensor data, historical production and operation data 

and failure events of machines as input. Using a combination of conditional variational auto-

encoders (CVAE), the output of an operation-specific (and, if needed, product-specific) HI pre-

diction is estimated. 

Apart from the usual data preprocessing steps like merging and imputation, operating regime 

identification (ORI) and operating regime-specific standardization (ORSS) are applied to ena-

ble subsequent operation-specific modeling. ORI partitions the CM data into meaningful clus-

ters that represent ORs. Depending on the data, different clustering algorithms are suggested 

for ORI. Using the identified ORs, ORSS is applied to the CM data to transform the data to a 

common scale while preserving their inherent variance. The resulting transformation leads to 

scaled and comparable CM data across different ORs. The reader shall be referred to section 

2.5.1 for more information on ORs and their significance in HI modeling. Using the information 

on failure events of machines, healthy and unhealthy timespans of CM data are labeled: 

Healthy data accounts for the first 20 % of data since the last maintenance action, while un-

healthy data is defined as 80 % of the data leading up to the machine failure. The data prepro-

cessing concludes by splitting the data into training, testing and validation sets. 

Two CVAEs are trained: the health assessor CVAE (HA-CVAE) and the data simulator CVAE 

(DS-CVAE). CVAEs in general consist of an encoder and decoder network and are able to 
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learn the latent representation 6 of data 4 (in this case: CM data) conditioned on 5 (in this case: 

ORs) and reconstruct the data back to 47, see Figure 3-7. It does so by minimizing the recon-

struction error |4 − 47|.  

 

Figure 3-7: Simplified architecture of the CVAE. 

Figure 3-8 presents the interaction between DS-CVAE and HA-CVAE and the general proce-

dure of operation-specific HI prediction of the PHM Module. The left side represents the men-

tioned training phase, while the right side depicts the application. The HA-CVAE utilizes the 

fact that a trained CVAE can only reproduce data it has seen during training well. By training 

the HA-CVAE with healthy data only, the reconstruction error will increase when CM data be-

haves differently due to degradation. The HA-CVAE alone is thus able to estimate the condition 

of the machine given incoming CM data but not able to predict the condition of the machine 

given a future production schedule since it needs CM data as input. In order to predict the 

degradation an arbitrary future production schedule induces on machines, the DS-CVAE, 

which outputs simulated CM data given a future production schedule, is introduced. The DS-

CVAE is trained on all data and is therefore also capable of reproducing degraded CM signals.  

In application, only the decoder of the DS-CVAE is used to generate simulated CM data con-

ditioned on a given future production schedule. This simulated CM data is fed back to the HA-

CVAE, which will return a HI estimate based on the reconstruction error. Therefore, an opera-

tion-specific HI prediction for a future production schedule is realized. Apart from using the 

reconstruction error, other metrics can also be utilized in order to estimate the HI, e.g., the 

reconstruction probability $,0+. Different metrics can lead to improved HI estimations depend-

ing on the available data and its characteristics. In evaluations, the metric $,0+ showed the 

highest performance when working with industrial data. The application of the CVAE as an 

underlying unsupervised learning model and the combination of HA-CVAE and DS-CVAE en-

ables the PHM Module to generate HI estimations with only a low number of failure observa-

tions since the models are trained on widely available CM data. 

The PHM Module was validated using both NASA’s C-MAPSS dataset and industrial dataset 

originating from a multifunctional machine tool. Being an unsupervised learning task, there is 
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no ground truth available for the evaluation of HI estimates. In line with PHM literature, metrics 

assessing desired properties of HI trajectories are used to evaluate the HA-CVAE. These met-

rics are monotonicity, robustness, trendability and inter-unit consistency. 

 

Figure 3-8: DS-CVAE and HA-CVAE during training and their interaction during application. 

The evaluation of unsupervised deep generative models as the DS-CVAE is to this day still 

debated in the scientific community. Simple error measures such as the MSE or MAE between 

data points do not suffice to capture the generative capabilities of models. Hence, the evalua-

tion takes place by plotting and comparing the probability distributions of the generated sensor 

data of the DS-CVAE for different discrete periods, i.e., life cycle bins that represent different 

stages of degradation. A higher overlapping rate between the generated distribution and the 

real distribution indicates better results since a larger spectrum of the real probability distribu-

tion was reconstructed.  

While good results were achieved for C-MAPSS and industrial data, the expressiveness of the 

generated HIs for the industrial data is limited due to limited trendability, i.e., a limited decline 

of the HI. Explanations for this behavior could be wrongly labeled failure data and limited ex-
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pressiveness of the recorded CM data. Also, it should be noted that the system-wide calcula-

tion of the HI using a mean aggregation implicates the derived HI does not differentiate be-

tween components, which especially can impact the HI of multi-functional machine tools. More 

targeted, component-wise HI modeling and a weighted aggregation can lead to improved re-

sults. 

Figure 3-9 displays an exemplary output of the PHM Module, the predicted HI trajectory based 

on the metric reconstruction probability $,0+ for four different future sequences of ORs using 

real industrial data. Operation-specific degradation is visible, with sequence 1 (green) causing 

less degradation than sequence 4 (orange). 

 

Figure 3-9: Four different HI predictions for four different future OR sequences. 

Figure 3-10 shows the relative contribution of the author of this dissertation for this publication. 

 

Figure 3-10: Contribution of work for publication 3. 
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3.2.4 Publication 4: Predictive Maintenance Integrated Production 

Scheduling by Applying Deep Generative Prognostics Models: Ap-

proach, Formulation and Solution 

The Planning Module, Interface Module and holistic interaction in sync with the PHM Module 

are the focus of the fourth and final publication (ZHAI ET AL. 2022). Using the presented PHM 

Module from publication 3, a two-stage genetic algorithm (TSGA) for the PdM-IPS approach is 

developed and forms the Planning Module. Together with the validation using artificial and 

industrial data and discussion of resulting PdM integrated schedules, it covers the Prescriptive 

Study and Descriptive Study II of the DRM. 

After a thorough analysis of the state of the art, it was derived that existing solutions to solving 

the IPSMP problem have two significant drawbacks. First, integrating PdM in the flexible job 

shop setting was not thoroughly addressed in the scientific literature; most approaches only 

focused on single-machine or flow shop settings. Second, existing publications that did ad-

dress more complex JSSP settings used a simplified linear degradation model and thus did 

not account for the challenges of industrial data and non-linear PHM models. Consequently, 

this publication aims at developing an optimization model for the maintenance integrated flex-

ible job shop scheduling problem and the interface of this model to the developed non-linear 

PHM Module. 

As shown in both publication 2 (see section 3.2.2) and the scientific literature, genetic algo-

rithms are well-suited to encounter the multi-objective IPSMP using PdM information from a 

PHM module. As such, this publication proposes a genetic algorithm with elitist and tournament 

selection operators as the underlying optimization model for PdM-IPS. In comparison to the 

developed genetic algorithm in the second publication (see section 3.2.2), changes in algo-

rithm architecture and objective functions were made. Most notably, to improve efficiency, a 

TSGA was designed. The single-objective first stage S1 aims at generating a high-quality initial 

population for the multi-objective second stage S2. S1 focuses only on generating an optimal 

production schedule, while S2 optimizes for both production and maintenance metrics and is 

thus more computationally intensive. A population consists of a defined number of chromo-

somes whereby each chromosome represents a different schedule, i.e., a candidate solution. 

The hyperparameters of the genetic algorithm were retrieved using a full-factorial experiment 

and the hyperparameter combination yielding the best results was chosen. The flow chart pre-

sented in Figure 3-11 provides an overview of the TSGA, the interactions of both stages and 

the interface with the PHM Module. 

After generating random populations, S1 optimizes these populations according to the produc-

tion metrics makespan 3$%& and tardiness 8()(%* over generations until the termination criterion 
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is reached. The fittest generations, i.e., the lowest makespan and tardiness populations, are 

merged for the subsequent S2. By ensuring that S2 starts in promising search regions, S1 thus 

aims to improve the convergence speed of the multi-objective stage S2.  

 

Figure 3-11: Simplified flowchart of the proposed TSGA with a) Single-objective Stage S1, 

b) Multi-objective Stage S2 and c) Interface between the PHM Module and GA-S2. 

S2 aims at the multi-objective optimization of both production and maintenance using the 

weighted fitness function, and hence, the overall objective function: 
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99F consists of the sum of the scaled values of 3′$%&, 8′$%& and the scaled costs associated 

with transport and set-up of the production schedule a′9F. 9G9 focuses on minimizing the scaled 

total degradation of all machines ∆′()(%*, the maximum degradation of a single machine 

∆′+,"("+%* and associated scaled costs of PdM actions a′G9. While ∆′()(%* is minimized to mini-

mize the frequency of maintenance actions, the minimization of ∆′+,"("+%* ensures the balanced 

usage of the machines. By assigning infinitive costs to a′G9 in case a machine is used beyond 

its failure threshold, PdM actions are guaranteed. 

Table 5: Fitness function components of S2. 

Fitness function Scaled parameters to minimize Description  

Production 
schedule 99F 

3′$%& Makespan 

8′$%& Tardiness 

a′9F Transport and set-up costs 

Maintenance 
planning 9G9 

∆′()(%* Total degradation over all ma-
chines 

∆′+,"("+%* Degradation of the machine with 
the highest degradation 

a′G9 Costs of PdM action 

To retrieve the values needed for 9G9, the PHM Module introduced in publication 3 (see section 

3.2.3) is applied. Each chromosome, i.e., PdM integrated PS, is fed to the PHM Module to 

estimate the change of the HI, i.e., the degradation the very schedule is expected to cause. 

The Interface Module translates each PS to sequences of ORs that in turn condition the CVAE 

of the PHM Module. The PHM Module simulates the specific sequence on each machine and 

returns the predicted HI and failure threshold /#,.%"* for all machines. Using this information, 

∆′()(%*, ∆′+,"("+%* and a′G9 can be calculated and optimized. Due to the stochastic nature of 

the PHM Module, the predicted values can differ slightly for the same schedule in different 

simulation runs. In order to limit these effects, multiple runs of the algorithm and the presenta-

tion of the top three chromosomes, i.e., schedules, are suggested. The decision-maker thus 

has the option to choose from multiple different options, thereby also including her or his im-

plicit knowledge. Hence, the PdM-IPS approach serves as a decision support system. 

Two scenarios were developed to validate and evaluate the PdM-IPS approach using the de-

veloped TSGA, i.e., the Planning Module, together with the Interface Module and the PHM 

Module. While both scenarios focused on short-term planning, i.e., daily and weekly planning 
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horizons, they differed in terms of data used to train the PHM Module and shop floor layout 

(see Table 6).  

Table 6: Scenarios for the validation of the PdM-IPS approach. 

No. Training data of PHM Module Multifunctional 
machines Product variants 

1 Simulated C-MAPSS data 5 5 

2 Real industrial data 3 10 

Artificial production lines were modeled using different numbers of multifunctional machines 

as well as product variants. Figure 3-13 (see next page) features an exemplary user interface 

and visualization of a developed PdM-integrated production schedule for the first scenario.  

With the support of the user interface, the decision-maker can set flexible job shop data (e.g., 

number of machines, jobs and other constraints), objective parameters regarding costs and 

time and TSGA hyperparameters by selecting the respective tab. Production times, set-up 

times, as well as PdM actions, can be retrieved for the fittest three chromosomes. In addition, 

the cost positions are also presented. 

Results indicate that the developed PdM-IPS approach can generate optimal PdM-integrated 
production schedules for both simulated and real industrial data in reasonable time. In both 

cases, the TSGA converges, critical machine conditions and potential machine failures can be 

avoided by scheduling PdM actions. 

Figure 3-12 shows the relative contribution of the author of this dissertation for this publication. 

 

Figure 3-12: Contribution of work for publication 4. 

90%

65%

60%

80%

74%

10%

35%

40%

20%

26%

Idea and formulation of research objective

Modeling

Application and Evaluation

Writing and editing

Total
Simon Zhai Others



 

51 

 

Figure 3-13: Exemplary user interface and the result of the PdM-IPS approach. 
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4 Validation, Discussion and Reflection of the 

Results 

This chapter focuses on the validation, discussion and reflection of the conducted work and 

results in both qualitative, i.e., technical, and quantitative, i.e., economical, manner. In previ-

ously established terminology, this chapter, therefore, forms the Descriptive Study II of the 

DRM (see Figure 1-2). 

As formulated in section 1.2, the main challenge regarding PdM-IPS was identified: the need 

for operation-specific health modeling in the presence of industrial data with limited quality and 

availability. Existing IPSMP approaches, such as those proposed by LADJ ET AL. (2016), LADJ 

ET AL. (2019) and BENAGGOUNE ET AL. (2020) (see section 2.2), are limited in terms of sched-

uling scope (e.g., focus on single machine scheduling). Therefore, they are not suited for inte-

gration with state-of-the-art health modeling approaches such as the model proposed by 

MICHAU & FINK (2019) (see section 2.5). The assumption of linear degradation development of 

most IPSMP approaches heavily limits industrial applications where this very assumption 

rarely holds. While the state of the art does offer non-linear and operation-specific HI modeling 

as demonstrated by MICHAU & FINK (2019), LI ET AL. (2019) and others (see sections 2.5.1 and 

2.5.2), these approaches are not developed with subsequent IPSMP interaction in mind and 

thus can not be directly utilized for PdM-IPS. 

The developed PdM-IPS approach can be clearly delimited from existing methods by focusing 

on operation-specific health modeling using industrial data for subsequent IPSMP. Existing 

approaches for operating regime identification (WANG 2010) are adapted so the developed 

PHM Module can operation-specifically estimate degradation caused to machines due to the 

processing of specific production schedules. Unlike the formulation of KARNER ET AL. (2019), 

operation-specific and subsequently product-specific changes in HI estimation are explicitly 

modeled. Hence, PdM actions can be planned according to non-linear HI estimations instead 

of simplified linear assumptions. The presented PdM-IPS approach includes all necessary 

steps from industrial CM data preparation and HI estimation to finally develop an optimal PdM 

integrated production schedule for the flexible job shop. 

The following section 4.1 focuses on the technical discussion and fulfillment of requirements 

by revisiting the requirements formulated in section 1.3 at the beginning of this thesis. Section 

4.2 presents the application of the PdM-IPS approach in an industrial use case, including both 

a technical and economical discussion, in order to validate the overall approach. 
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4.1 Technical Discussion and Fulfillment of Requirements 

This section discusses the fulfillment of the general, PdM-related and IPSMP-related require-

ments introduced in section 1.3 to develop the PdM-IPS approach. The focus lies on the critical 

discussion of fulfillment of the requirements and highlighting both achievement and encoun-

tered challenges. 

4.1.1 Fulfillment of General Requirements 

R1 General applicability 

The PHM Module generated meaningful HI estimations for both simulated and real indus-

trial data, see publication 3 (section 3.2.3). The Planning Module is based on a flexible job 

shop layout, see publication 4 (section 3.2.4). Most other shop floor layouts can be mod-

eled as a variation of a flexible job shop by introducing constraints. Since the developed 

TSGA is able to solve FJSSPs, it is also able to solve other scheduling problems. The 

Interaction Module is formulated use-case independently and thus can also be generally 

applied. 

R2 Industrial applicability 

By validating the PdM-IPS approach using industrial data, the industrial applicability, in 

general, was proven, see publications 3 and 4 (see sections 3.2.3 and 3.2.4). The prepro-

cessing of the data and the subsequent application of the unsupervised CVAE model en-

able operation-specific health modeling even when data quality is low and the amount of 

failure data is scarce. As with all learning approaches, it should be noted that higher data 

quality and availability lead to better results.  

Furthermore, the approach still needs manual adaptation in the implementation: Expert 

knowledge is necessary to choose those CM signals that reflect the machine’s condition 

and to decide whether a system-wide or component-level HI should be applied. The defi-

nition of the threshold is also based on expert knowledge and can differ depending on the 

use case, e.g., the definition of the critical HI threshold for PdM actions and the splitting 

proportion of the training data set according to healthy and unhealthy intervals. When fail-

ure data is scarce, the splitting of the training data according to these failures is of high 

significance for the quality of the prediction.  

R3 Modularity 

The PdM-IPS approach consists of the modules PHM Module, Interface Module and Plan-

ning Module. Using the Interface Module to translate products into sequences of operating 
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regimes, the algorithms of the PHM and Planning Modules can be adapted and replaced if 

needed. For example, instead of a CVAE, other artificial neural network architectures can 

be implemented in the PHM Module. In addition, the PHM Module and the Planning Module 

can also be adapted for stand-alone usages, e.g., for use cases where only HI estimates 

or only production schedules are required. 

R4 Economic viability 

As it will be shown in the following section 4.2.2, the PdM approach is economical since 

expenses are amortized in reasonable time (around one year in case of a new implemen-

tation in an exemplary use case).  

4.1.2 Fulfillment of PdM-Related Requirements 

R5 Robustness 

Robustness towards low data quality (e.g., outliers, missing data, …) is key in industrial 

applications. By showing the ability to handle industrial data, the proposed PdM-IPS ap-

proach is robust and can derive meaningful results even in low data quality circumstances. 

However, major sensor failures can lead to either unusual behavior or even the absence 

of sensor readings. A manual or automated system to identify these irregularities is re-

quired to prohibit false HI estimations. 

R6 Ability to handle high-dimensional data 

The developed PHM Module can handle high-dimensional data, as shown in section 3.2.3. 

In the mentioned publication, the PHM Module successfully derived HI-estimations using 

industrial CM data acquired by 140 different sensors. 

R7 Ability to handle a low amount of labeled failure data 

By applying a CVAE as the underlying model, the PHM Module applies unsupervised learn-

ing. The design of the PHM Module explicitly caters to the industrial reality of having a low 

number of failure observations by applying the unsupervised learning model CVAE. 

The modular design of the whole approach makes it also possible to use other unsuper-

vised models, e.g., generative adversarial networks. Naturally, adaptation and further work 

are required to implement these models. 

R8 Operation-specific health assessment and prediction 

Together with the ORI, CVAE enables conditioning of the model to different operation se-

quences and as such can generate operation-specific health assessments and predictions. 
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In line with R2 and R6, other artificial neural networks that have the ability to be conditioned 

can also be applied, e.g., conditional generative adversarial networks (CGAN).  

4.1.3 Fulfillment of IPSMP-Related Requirements 

R9 Flexibility regarding shop floor layout 

As described in section 3.2.4 and in line with R1, the Planning Module is based on a flexible 

job shop and is thus representative of many industrial shop floors. Other layouts, e.g., flow 

shops, can be easily modeled by introducing different constraints.  

R10 Time-efficiency 

The TSGA ensures time-efficient calculation by both the used metaheuristic and its design 

in two stages. The first stage ensures that the computationally-intensive second stage 

starts in a promising search region. In publication 4 (see section 3.2.4.), it was shown that 

the PdM-IPS approach could run on normal desktop PCs. Higher processing power and 

memory can further scale the approach's ability and facilitate the usage of CM signals 

sampled with high frequency. 

R11 Multi-objective optimization ability 

Genetic algorithms are able to optimize multi-objectively. As such, the implemented TSGA 

fulfills this requirement. 

R12 Consideration of the decision maker’s preferences 

The decision-maker can set different production and maintenance metrics weights to pri-

oritize the optimization process accordingly. Furthermore, thresholds for critical machine 

degradation and maximum calculation time, amongst others, can also be chosen. 

To conclude, the requirements defined in section 1.3 were explicitly taken into account while 

developing the PdM-IPS approach and as such, all requirements are fulfilled. Further potentials 

regarding industrial implementations were identified and are detailed in the following. 

4.2 Validation Case Study: The PdM-IPS Approach in 

Industrial Application 

The validation of the PdM-IPS approach took place following a multi-step validation approach. 

First, separate validation of each module, i.e., the PHM, Interaction and Planning Module, was 

conducted in publications 3 and 4. These validations showcased that the PHM Module is in-

deed able to construct meaningful operation-specific HI estimates using industrial data. 
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Also, it was shown that these estimates could be successfully transferred by the Interface 

Module such that the Planning Module can generate PdM-integrated production schedules. 

Second, this section presents the results of holistic validation of the PdM-IPS approach that 

took place in a real production setting using a functional prototype. 

The prototype was implemented in a production line in the automotive industry for over four 

months to evaluate the industrial as well as economic viability of the approach. The automotive 

industry is the most important branch of Germany’s manufacturing industry with the largest 

revenue of any branch, yielding 411 bil. Euro and while directly employing 786.000 employees 

in 2021 (BUNDESMINISTERIUM FÜR WIRTSCHAFT UND KLIMASCHUTZ 2023). As such, choosing an 

automotive company for the validation of PdM-IPS ensures the largest possible impact. In ad-

dition, machine tools used in the automotive industry are utilized in other industrial branches 

and hence, validation results are transferable. For example, a company that manufactures 

parts for jet engines also utilizes machine tools that are subject to degradation. 

It should be noted that due to privacy reasons, no company and personnel names are men-

tioned. The following sections are based on adapted and abstracted production settings as 

well as anonymized statements of experts to preserve confidentiality. The observed production 

line consists of multiple units of the same multi-functional machine tool able to produce differ-

ent product variants. CM data was acquired from 32 sensors of a representative machine tool 

and was resampled to 1 Hz. These 32 sensors were preselected from a total of 140 sensors 

according to expert knowledge and represent six machine tool components. In principle, the 

PdM-IPS approach is also able to handle the processing of all 140 sensors, as shown in pub-

lication 3. However, as the results of the mentioned publication suggest, a preselection of the 

most meaningful sensor signals and a component-wise HI aggregation can significantly im-

prove result quality.  

A combination of qualitative and quantitative methods, i.e., expert interviews and cost-benefit 

analysis, are applied to ensure multiple perspectives and different levels of abstractions of the 

validation are considered. It can thus be stated that the validation, in general, follows a mixed-

method design (KUCKARTZ 2014, p. 33). The qualitative validation is based on expert inter-

views with six experts working in the mentioned production setting. In order to enable in-depth 

validation interviews, the number of experts was kept low and was limited to those experts who 

had in-depth knowledge of the developed PdM-IPS approach. The experts were chosen ac-

cording to their expertise and experience and to cover the wide range of PdM-IPS: one process 

expert with more than 25 years of maintenance experience, a specialist for data engineering, 

development and operations (“DevOps”), an IT specialist responsible for PdM in the depart-

ment, a specialist for tooling maintenance and two specialists for planning and operational data 
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acquisition. It should be noted that the choice of experts is indeed a limiting factor of the rep-

resentative population. The statements and results can therefore be seen as valid for other 

manufacturing companies with similar prerequisites, that is, companies that utilize machine 

tools subject to degradation which is at least indirectly measurable using an available CM sys-

tem. Furthermore, maintenance and production are scheduled and documented electronically. 

4.2.1 Qualitative Analysis 

In order to critically discuss the validity of the developed PdM-IPS approach, the validation 

methodology of LANDRY ET AL. (1983) was adapted. Landry et al. distinguish five different va-

lidities that models in operations research and, more generally, decision support models have 

to fulfill. Using a structured questionnaire as the basis for expert interviews, the fulfillment of 

these validities was examined. 

Conceptual validity describes "[...] the degree of relevance of the assumptions and theories 

underlying the conceptual model of the problem situation for the intended users and use of the 

model” (LANDRY ET AL. 1983, p. 212). In the context of PdM-IPS, conceptual validity guarantees 

that the user’s scope is covered and that the model represents the problem at hand with 

enough detail.  

Logical validity deals with "[...] the capacity of the formal model to describe correctly and ac-

curately the problem situation” (LANDRY ET AL. 1983, p. 213). In other words, logical validity 

ensures that the problem and its constraints are correctly described. The experimental validity 

focuses "[...] the quality and efficiency of the solution mechanism” (LANDRY ET AL. 1983, 

p. 213), while the operational validity evaluates the "[...] quality and applicability of the solutions 

and recommendations" (LANDRY ET AL. 1983, p. 214). Finally, the data validity rates the "[...] 

the sufficiency, accuracy, appropriateness, and availability of the data" (LANDRY ET AL. 1983, 

p. 214). 

Interview methodology 

Expert interviews are chosen as means for the qualitative analysis since exclusive and often 

implicit knowledge of the expert is required to provide the information necessary to assess the 

five dimensions of validity. A semi-structured design is selected for the expert interview, com-

bining multiple open-ended and close-ended questions. The questionnaire and answers can 

be found in Appendix 7.4. The design of the questionnaire and formulation of questions follow 

the best-practice recommendations of PORST (2014, 53 f.): 

• Question type: Closed, semi-open and open questions can be utilized in question-

naires. Closed questions can be easily interpreted and used for further analysis. How-

ever, these questions narrow down the answering possibilities of the interviewees and 
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might force them to select an answer that does not reflect their respective opinion. 

Semi-open questions extend closed questions with the answer possibility “other” to en-

able different answers. Open questions empower the interviewees to voice their opinion 

freely but come at the price of decreased comparability and difficulty for evaluation and 

subsequent analysis. 

The utilized questionnaire uses closed and open questions. Closed questions are ap-

plied for rating defined aspects of the PdM-IPS approach using the Likert scale. This 

application minimizes the possibility that the interviewee’s opinion is not reflected in the 

answering possibilities. Furthermore, interviewees are allowed to voice any different 

opinion or observation to every closed question, thus enabling capturing a holistic view. 

Open questions are mainly employed to capture the expert’s opinion regarding further 

chances and risks of the PdM-IPS approach that are not yet mentioned. Selecting ex-

perts familiar with the problem at hand ensures that the answers to the open questions 

are comparable and within the bounds of the use case. 

• Scaling of answers: As mentioned, the Likert scale is applied to quantify the personal 

impression of a described aspect. When applicable, an equal amount of items is given 

as answering possibilities to prohibit the middle item from being misused as an “escape 

category.” This effect describes when interviewees choose the middle category to avoid 

voicing opinions (PORST 2014, p. 83). For questions where experts are asked to quan-

tify an aspect (e.g., estimated savings), the provided items shall represent a realistic 

distribution. 

The applied questionnaire follows these guidelines. Middle items are allowed for ques-

tions that concern the evaluation of experimental results but are prohibited when rating 

concepts. In order to estimate realistic saving potentials, the highest possible answer 

category is “>20 %”. 

• Question formulation: The questions shall be formulated such that their semantic un-

derstanding is easy to derive. This entails the explanation of unknown terms and exact 

specifications of possibly ambiguous vocabulary. 

Before answering the questions, all experts receive a thorough presentation about the 

PdM-IPS approach and related terminology. By doing so, a common understanding is 

ensured. 

The interview is divided into two parts. Part A was conducted between April and May 2021, 

while part B was conducted from July until October 2021. Part A focuses on the concept of the 

PdM-IPS approach and starts with an introductory presentation of roughly 30 minutes of PdM-

IPS, related terminology and its application in the company. Part B focuses on experimental 

results. The interviews were held in German language and were subsequently translated into 
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English. In order to evaluate the different dimensions of validity, multiple questions concerning 

each dimension were asked. All questions are related to the prototypical implementation of the 

PdM-IPS.  

The first part focuses on the conceptual and operational validity, which were rated using a six-

point Likert scale (strongly disagree, disagree, slightly agree, agree, strongly agree), forcing 

the interviewee to take a non-neutral position so deviations in the concept from reality can be 

clearly seen. Part B uses a five-point Likert scale (strongly disagree, disagree, undecided, 

agree, strongly agree) and focuses on experimental, data and logical validity. The interviewee 

was given the possibility to voice a neutral position because part B incorporates examples of 

actual PdM-IPS applications. For the final evaluation, answers to the six-point Likert scale were 

scaled to match the five-point Likert scale to derive the average levels of fulfillment. The ex-

perts were asked to elaborate on the question freely and base the rating on their overall 

thoughts. In addition, the answers were recorded to provide a further basis of corroboration 

and potential for further improvement. 

Figure 4-1 depicts the average fulfillment of each validity class with a scale from 1 (no fulfill-

ment) to 5 (high fulfillment). 

Summary of interview results 

With a score of 4.6, the conceptual validity of the developed PdM-IPS approach was rated the 

highest. All respondents agree that integrating machine degradation into production schedul-

ing is essential. Specifically, it was agreed upon that operation-specific modeling of degrada-

tion is indeed required to derive meaningful estimations of health conditions. The experts could 

reflect on PdM-IPS's main components and confirm that the underlying concepts of these com-

ponents match the requirements of the use case at hand. 

The logical validity was rated 4.3 on average. The proposed approach, including the formal 

model and solution method, as well as assumptions made considering degradation and 

maintenance, were considered to be following the expert’s expectations. However, experts 

note that outliers and changes in measurements of condition monitoring data can certainly be 

caused by degradation, but other causes like sensor malfunctions and human errors should 

also be considered.  

The operational validity was rated with an average score of 3.8. The cause for the slightly lower 

evaluation is that some experts voiced skepticism concerning the incorporation of product-

specific degradation for integrated planning finding its way into their daily operation. This skep-

ticism is caused by existing scheduling constraints such as strict tact times and supply chain 

restrictions. Integration into daily operations will take time and reorganization of the production 

might have to take place, which cannot be realized for every manufacturing setting. However, 
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the experts agree that, in principle, the integration of operation-specific and product-specific 

degradation in production scheduling is important and the prototypical application of the PdM-

IPS approach in their setting was successful.  

 

Figure 4-1: Average degree of satisfaction based on expert’s evaluation. 

Data validity was rated with an average score of 3.5. Although the rating is reasonably high, 

data validity was rated the lowest among all validities. While experts state that the data acqui-

sition period of four months is satisfactory for a prototypical validation, this period should be 

prolonged to assure that all eventualities and seasonalities are captured in the data. Further-

more, the need to interpret failure logs that were manually created is not trivial and is a source 

of errors since maintenance operators do not utilize a standardized language when protocolling 

failure and maintenance events. This interpretation is needed to label the acquired sensor data 

as “healthy” or “unhealthy”. There is also the possibility of failure events that were not logged 

due to human error, hence leading to “unhealthy” data being labeled as “healthy”. Lastly, faulty 

sensors could lead to misreading and erroneous data. 

Finally, with an average score of 4.1, the experimental validity also received a high rating. 

Different HI predictions and the corresponding ground truths (see Appendix 7.4.2) of the pro-

totypical application were presented to the experts for evaluation. In particular, operation-spe-

cific degradation trends were identified. The presented HI predictions include both good and 

poor predictions that occurred during the validation phase to enable the experts to voice an 
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unbiased rating. The interviewees recognize the overall prediction performance of the proto-

typical implementation as being highly satisfactory, albeit mentioning that more testing and 

optimization are needed for live applications in mass production.  

Additionally, possible PdM-integrated production schedules were presented. Experts 

acknowledge that these schedules have a high potential to improve production and mainte-

nance planning, especially improving communication between production and maintenance 

personnel. Nevertheless, the realization of such integrated planning is a long-term objective 

since multiple departments are involved and best suited for flexible production settings, e.g., a 

matrix production layout envisioned for Industrie 4.0 (KUKA SYSTEMS GMBH 2016). 

Overall, the average of 4.1 out of 5 over all validities indicates that the prototypical implemen-

tation of the PdM-IPS approach was deemed successful by the experts and thus, the industrial 

viability of the PdM-IPS approach was proven. 

4.2.2 Economic Discussion: Cost-Benefit Analysis 

In order to evaluate the economic benefits of the PdM-IPS approach, a cost-benefit analysis is 

applied. An exemplary manufacturing setting resembling a real production line in the automo-

tive sector consisting of 18 multifunctional machine tools is investigated. These machine tools 

are equally distributed in three machine parks, each representing one processing step. Prod-

ucts to be manufactured have to visit all three parks. Assumptions similar to the proposed PdM 

evaluation model of WOLF ET AL. (2019) are applied. The economic discussion is structured as 

follows: First, costs for developing and implementing the PdM-IPS approach are estimated. 

Subsequently, the cost-saving potential is analyzed and finally, the amortization period is cal-

culated.  

The costs of adapting and implementing the PdM-IPS approach depend on the PdM maturity 

level the manufacturing company is situated in. As indicated by BUSSE ET AL. (2019), different 

maturity levels and scenarios shall be examined to make the right investment decision. For 

example, the costs of implementing the PdM-IPS approach are lower for production sites that 

already have a CM system and corresponding sensors installed on the machine tools than for 

a site with no system installed. To account for these differences, different maturity levels are 

examined: CbM, PdM and PdM-IPS. The maturity levels are considered reached when the 

tasks listed in Table 7 to Table 9 have been completed. Each level is needed to reach the next 

one, e.g., in order to realize PdM-IPS, CbM and PdM have to be implemented. It is important 

to emphasize that the PdM-IPS approach includes models that can be used for each maturity 

level: the HA-CVAE can be used for CbM, the combination of HA-CVAE and DS-CVAE is 
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required for PdM and finally, the combination of HA-CVAE, DS-CVAE (introduced as PHM 

Module, see section 3.2.3) and the scheduling module enable PdM-IPS.  

Estimation of development and implementation costs 

Table 7 to Table 9 depict the amount of work and related costs needed to reach the maturity 

level of CbM, PdM and PdM-IPS, respectively. The amount of work is based on the actual and 

estimated times needed to develop and implement the approach, the costs per hour are based 

on estimates of 150 € per hour for researchers and engineers (R/E) (BAYRISCHE 

INGENIEURKAMMER-BAU 2019) and actual costs of student researchers and interns (S/I) of 35 € 

per hour. It should be noted that hardware costs are neglected at this stage and will be added 

to calculate the amortization duration in the subsequent section. 

Table 7: Cost estimation for development and implementation of the maturity level “CbM” for 

the exemplary use case. 

Condition-based Maintenance 
Task Hours Cost rate [€/h] Costs [€] 

Data Pipeline Set up 
30 S/I 35 1,050 
10 R/E 150 1,500 

Data Preparation 
500 S/I 35 17,500 
40 R/E 150 6,000 

Feature Engineering 
100 S/I 35 3,500 
20 R/E 150 3,000 

Development Health Assessment 
700 S/I 35 24,500 
200 R/E 150 30,000 

Model Validation 
40 S/I 35 1,400 
10 R/E 150 1,500 

Online Implementation 
60 S/I 35 2,100 
10 R/E 150 1,500 

User Interface Development 
90 S/I 35 3,150 
10 R/E 150 1,500 

Operator Training 
16 S/I 35 560 
4 R/E 150 600 

Scaling Costs 
144 S/I 35 5,040 
36 R/E 150 5,400 

Sum    109,800 
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Table 8: Cost estimation for development and implementation of the maturity level “PdM” for 

the exemplary use case with existing CbM. 

Predictive Maintenance 
Task Hours Cost rate [€/h] Costs [€] 

Development Data Simulator 
800 S/I 35 28,000 
300 R/E 150 45,000 

Prediction Validation 
140 S/I 35 4,900 
20 R/E 150 3,000 

User Interface Extension 
36 S/I 35 1,260 
4 R/E 150 600 

Operator Training 
16 S/I 35 560 
4 R/E 150 600 

Scaling Costs 
8 S/I 35 5,040 
2 R/E 150 5,400 

Sum    79,360 

 

Table 9: Cost estimation for development and implementation of the PdM-IPS approach for 

the exemplary use case with existing CbM and PdM. 

PdM-IPS 
Task Hours Cost rate [€/h] Costs [€] 

Development Planning Module 
800 S/I 35 28,000.00  
300 R/E 150 45,000.00  

Development Interface Module 
140 S/I 35 4,900.00  
100 R/E 150 15,000.00  

Validation 
100 S/I 35 3,500.00  
20 R/E 150 3,000.00  

User Interface Extension 
100 S/I 35 3,500.00  
25 R/E 150 3,750.00  

Operator Training 
25 S/I 35 875.00  
10 R/E 150 1,500.00  

Sum    109,025 

 

Estimation of the cost-saving potential 

Since estimations for the cost-saving potential of advanced maintenance paradigms are 

spread widely (THOMAS & WEISS 2021, p. 3), specific experts familiar with the use case at hand 

were interviewed to receive a realistic and precise estimation. Using financial key performance 

indicators (KPIs) obtained from the Kennzahlenkompass (VDMA VERLAG 2020) of the German 
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Mechanical Engineering Industry Association (VDMA) and industry-related literature to calcu-

late the base costs of the exemplary use case, transparency and transferability to other man-

ufacturing settings are ensured. Relevant KPIs and calculation formulas can be found in Ap-

pendix 7.2.  

The cost-saving potential per year of maturity levels of CbM and PdM was estimated by the 

experts responsible for maintenance and CbM/PdM rollout and is presented in Table 10 and 

Table 11. It should be noted that the base costs in the following tables are already reduced by 

the savings realized by the previous maturity level. 

Table 10: Estimated cost saving per year of CbM for the exemplary use case. 

Condition Based Maintenance 

Position Base Costs [€] Saving ratio Savings [€] 
Total costs of unplanned downtime 5,621,465 25 % 1,405,366 
Total costs of planned downtime 897,545 15 % 134,632 
Costs for internal maintenance 2,448,329 5 % 122,416 
Costs for external maintenance 2,448,329 5 % 122,416 
Costs for tool replacement 1,370,057 5 % 68,503 
Costs for spare parts 1,224,165 5 % 61,208 
Costs for rejects due to low quality 4,621,166 15 % 693,175 
Sum   2,607,717 

 

Table 11: Estimated cost saving per year of PdM for the exemplary use case. 

Predictive Maintenance 

Position Base Costs [€] Saving ratio Savings [€] 

Total costs of unplanned downtime 4,216,099 5 % 210,805 
Total costs of planned downtime 762,913 10 % 76,291 
Costs for internal maintenance 2,325,913 5 % 116,296 
Costs for external maintenance 2,325,913 5 % 116,296 
Costs for tool replacement 1,301,554 0 % - 
Costs for spare parts 1,162,956 10 % 116,296 
Costs for rejects due to low quality 4,216,099 5 % 210,805 
Sum   635,983 

 

To estimate the yearly cost-saving potential of PdM-IPS, the same six experts ranging from 

production and IT to maintenance in the automotive industry were interviewed (see section 

4.2.1). The median saving ratio class was chosen in order to calculate the estimated savings. 
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If the median was between two classes, the more conservative, i.e., lower class, was chosen. 

Since each saving ratio class represents a saving range (e.g., 5-10 %), minimum, average and 

maximum estimated savings are calculated. The results are displayed in Table 12. 

Table 12: Estimated cost saving per year of the PdM-IPS approach for the 

exemplary use case. 

PdM-IPS 
Position Base 

Costs [€] 
Min. 

saving 
ratio 

Average 
saving 
ratio 

Max. 
saving 
ratio 

Min. 
sav-

ings [€] 

Average 
savings 

[€] 

Max. 
savings 

[€] 
Total costs 
of unplanned 
downtime 

4,005,294 3.0 % 3.0 % 3.0 % 120,159 120,159 120,159 

Costs for in-
ternal 
maintenance 

2,209,617 5.0 % 7.5 % 10.0 % 110,481 165,721 220,962 

Costs for ex-
ternal 
maintenance 

2,209,617 2.5 % 3.75 % 5.0 % 55,240 82,861 110,481 

Costs for 
tool replace-
ment 

1,301,554 2.5 % 3.75 % 5.0 % 32,539 48,808 65,078 

Costs for re-
jects due to 
low quality 

4,21,166 2.5 % 3.75 % 5.0 % 115,529 173,294 231,058 

Sum     433,948 590,843 747,737 

 

Estimation of the amortization period 

By taking costs and yearly savings into account, it is possible to calculate the amortization 

period. Three Scenarios are investigated, each mirroring a different maturity level of the exem-

plary manufacturing setting: 

• Scenario A: Hardware, e.g., sensors, is available and installed, and maturity levels CbM 

and PdM are already developed and implemented. Only the PdM-IPS approach has to be 

developed and implemented. This scenario represents companies that already have ex-

tensive PdM experience but lack the integration of production and maintenance planning. 

The exemplary company of the case study can be located in this scenario. 
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• Scenario B: Hardware equipment is available and installed, but all three maturity levels 

CbM, PdM and the PdM-IPS approach have to be developed and implemented. This sce-

nario represents companies that are preparing to roll out the PdM-IPS approach but have 

no experience in PdM yet. 

• Scenario C: Hardware has to be purchased and installed. All three maturity levels CbM, 

PdM, and the PdM-IPS approach have to be developed and implemented.  

This scenario represents companies with no experience in PdM which have not yet decided 

to implement the PdM-IPS approach. The estimated additional hardware costs per ma-

chine are 150,000 €, representing a high estimation (CAPGEMINI 2018, p. 7, STRAUSS ET 

AL. 2018).  

Furthermore, yearly operating costs of 100 working hours of engineering personnel per ma-

turity level are assumed, adding 15,000 € per maturity level. For all three maturity levels, the 

operating costs are equal to 45,000 €. 

Table 13 shows the costs and associated saving estimations of each scenario. It should be 

noted that “best, average and worst-case” scenarios refer to the different expert estimations of 

savings for the PdM-IPS approach, as presented in Table 12. In line with other studies showing 

the high saving potential of PdM technologies (THOMAS & WEISS 2021), also the PdM-IPS ap-

proach realizes significant reductions in costs with an average savings of around 600,000 € 

per year for the exemplary use case. Together with the savings realized by CbM and PdM, 

over 3.8 € million could be saved. By dividing the sum of the development and operating costs 

by the expected savings, the amortization period is calculated and presented in Table 14 for 

each scenario. Unsurprisingly, the last scenario features a much higher amortization period 

than the first two scenarios since hardware costs are included. It is noteworthy that, all in all, 

even the worst-case scenario possesses an amortization period of around 300 working days. 

However, it should be highlighted that this calculation assumes the possibility to implement 

PdM-IPS directly without the eventual costs of organizational change since this cost position 

is highly dependent on each company in question. 

Table 13: Overview of costs and savings for different scenarios. 
 

Costs of De-
velopment 
and Imple-

mentation [€] 

Operating 
costs [€/y] 

Savings, best 
case [€/y] 

Savings, av-
erage case 

[€/y] 

Savings, 
worst case 

[€/y] 

Scenario A 109,025 15,000 747,737 590,843 433,948 
Scenario B 313,185 

45,000 3,991,437 3,834,543 3,677,648 
Scenario C 3,013,185 
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Table 14: Overview of amortization periods for different scenarios. 

4.3 Discussion and Reflection: Conclusion 

This chapter critically discussed the fulfillment of requirements and showcased the application 

of the PdM-IPS approach in an industrial use case. Achievements and challenges were iden-

tified using both qualitative and quantitative means of analysis. With an average validation 

score of 4.1/5, experts considered the prototypical implementation in an industrial setting suc-

cessful. The expert interviews revealed that the prototypical implementation showed promising 

results in both monetary and technological terms.  

The PdM-IPS approach fully met the experts' expectations in terms of concept, logic and ex-

perimental results. HI predictions based on future production sequences were evaluated re-

garding plausibility. While errors in data due to sensor failures or human mistakes were possi-

ble and can lead to low-quality predictions, it was deemed that the PdM-IPS approach itself is 

industrially viable. The approach can handle typical data inconsistencies, e.g., missing data, 

by applying data preparation techniques and is also able to work with a limited amount of failure 

data.  

Still, it should be noted that data validity was rated lowest among all validities, which represents 

one major limitation of the PdM-IPS approach: Ensuring data quality and availability is not 

trivial, wrong measurements or mislabeling of the failure data due to human error can render 

the HI less meaningful – or, in the worst case, even give a false sense of security. Thus, the 

implementation of the PdM-IPS approach requires the interdisciplinary collaboration of differ-

ent departments to ensure the correct setup of data acquisition and interpretation of the ac-

quired data. Preventing erroneous data from emerging and identifying its root cause are chal-

lenges that all data-driven approaches face and are investigated in other research fields, e.g., 

the application of virtual sensors to identify faulty sensors (DARVISHI ET AL. 2021). 

The experts agree that product-specific degradation should be considered when planning pro-

duction and maintenance. However, it should be noted that a company-wide rollout of the PdM-

IPS approach is not yet possible due to operational constraints and should be considered in 

the future. Operational constraints can be the biggest roadblock for PdM-IPS implementation, 

 Amortization period, 
best case [d] 

Amortization period, 
average case [d] 

Amortization period, 
worst case [d] 

Scenario A 54 69 95 
Scenario B 29 30 31 
Scenario C 279 290 303 
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e.g., existing manufacturing lines may be limited as to how much they can adapt their current 

production and maintenance planning.  

Nevertheless, the prototypical approach showcases that value-added can indeed be realized. 

By introducing three exemplary scenarios, each representing a different PdM maturity of the 

company, potential costs and savings are showcased. It should be noted that all scenarios 

exclude eventual costs for organizational change since this cost position is highly dependent 

on the company in question. It is shown that for each scenario high savings can be realized. 

The amortization period is reasonably low, with an estimation of one year in the most con-

servative estimation. This knowledge enables future decision-makers to consider introducing 

the PdM-IPS approach when adapting existing manufacturing sites or when new factories have 

to be built. 
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5 Summary and Outlook 

The final chapter of this thesis summarizes the work conducted and the main results of this 

dissertation in section 5.1 and outlines further possible future research areas in section 5.2.  

5.1 Summary 

Recent developments in AI and condition monitoring (CM) led to the emergence of the new 

maintenance paradigm Predictive Maintenance (PdM), which enables manufacturing compa-

nies to prevent unplanned downtime and achieve significant savings. However, the potential 

of synchronizing production and PdM actions has yet to be realized, since state-of-the-art ap-

proaches cannot product-specifically estimate the degradation of manufacturing equipment 

and utilize this information for integrated planning purposes. 

The first chapter presents the underlying motivation and status quo of PdM. In addition, the 

underlying research methodology, the DRM, is introduced. By challenging the status quo, the 

overarching research objective is derived: the development of an industrially viable Predictive 

Maintenance Integrated Production Scheduling (PdM-IPS) approach. Specifically, this ap-

proach shall include the operation-specific modeling of degradation and health condition pre-

diction and the ability to handle industrial data, i.e., data from industrial condition monitoring 

systems and operating logs. Industrial data is especially challenging for PdM applications due 

to its high dimensionality and low amount of labeled failure data. 

The second chapter introduces PdM-IPS-related terminology, fundamentals and state-of-the-

art literature. The research deficit lies in a holistic approach for the industrial application of 

PdM-IPS, which includes Health Indicator (HI) modeling and scheduling approaches. These 

must work in sync to optimally plan production and maintenance such that the remaining useful 

life (RUL) of machines is optimally consumed. In the scientific literature, degradation and RUL 

consumption are often simplified as linear to the processing time, but this assumption may not 

accurately reflect the real-life situation in industrial settings. 

In order to overcome these shortcomings, the third chapter presents a data-driven approach 

for PdM-IPS, i.e., an approach to integrating production scheduling and maintenance planning 

using the potential of recent developments in AI. The development and implementation of the 

PdM-IPS approach are outlined in four publications. The first publication presents an expert 

study of European manufacturing companies. The study reveals that a holistic application of 

PdM, i.e., PdM-IPS, catered to industrial needs and industrial data is required to succeed in 

PdM rollout.  
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A simulative PdM-IPS model is developed in the second publication. By assuming arbitrary 

linear operation-specific degradation, the health of machines was modeled. Subsequently, a 

GA was applied to schedule production and maintenance according to operation-specific deg-

radation. Results indicate that GAs are indeed suited to schedule PdM-IPS instances optimally. 

The holistic PdM-IPS approach is developed in the third and fourth publications and consists 

of three modules: the PHM Module, the Interface Module, and the Planning Module. The PHM 

Module derives product-specific HI estimations which the Planning Module will use to deter-

mine the integrated production and maintenance plan. The Interface Module facilitates com-

munication between these modules. 

As the linear assumption of degradation heavily limits industrial application, the PHM Module 

that derives non-linear operation-specific HIs from industrial data is developed in the third pub-

lication. Since failure events are rare and CM data when the machine was in a healthy state is 

widely available, the unsupervised learning model conditional variational autoencoder (CVAE) 

is utilized. The CVAE is conditioned to the active operating regime in training, thus enabling 

operation-specific modeling. Two CVAE models are trained: the Health Assessor (HA-)CVAE, 

which is trained on healthy CM data only and the Data Simulator (DS-)CVAE, which is trained 

on all available data. The product-specific HI prediction procedure is realized as follows: The 

DS-CVAE receives a production sequence as input. It generates corresponding CM data, 

which in turn is evaluated by the HA-CVAE. The HA-CVAE outputs the estimated HI after the 

manufacturing of the production sequence. The PHM Module is validated using both simulated 

and real industrial CM data. 

The fourth publication seamlessly integrates the PHM Module with a Planning Module, thus 

completing the PdM-IPS approach. A flexible job shop IPSMP is modeled and a two-stage 

genetic algorithm as a solution method is employed to solve the optimization problem. The 

solution method features two stages to increase efficiency. The first stage schedules only pro-

duction according to the set constraints and ensures that the more computationally intensive 

second stage starts in a promising search region. The second stage integrates production and 

maintenance planning. Production sequences generated by the Planning Module are transmit-

ted via the Interface Module to the PHM Module and the estimated HI is returned during the 

optimization process. This process is done for every candidate solution, i.e., production se-

quence. A PdM action is planned when the HI falls below a critical threshold, consequently 

preventing machine failure. By changing the weights of the objective function, the decision-

maker can prioritize maintenance (e.g., frequency of maintenance actions) or production met-

rics (e.g., makespan). The completed PdM-IPS approach is validated using simulated and real 

industrial CM data in an artificial production setting. 
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The fulfillment of requirements is evaluated and a case study is conducted based on a proto-

typical implementation of the approach in the automotive industry. Experts involved in the im-

plementation and application were interviewed to identify potentials and challenges. These 

expert interviews and a subsequent cost-benefit analysis deemed the approach industrially 

viable and profitable. In particular, the PdM-IPS approach was able to identify correct patterns 

of operation-specific degradation. The amortization period is conservatively estimated to be 

less than one year for a typical manufacturing setting. 

5.2 Outlook 

During the development, implementation and validation of the PdM-IPS approach, two core 

areas for possible further research work are identified and shortly summarized. 

Model advancement and improvement of data acquisition 

While the CVAE applied in the PHM Module is robust and is able to generate meaningful HI 

prediction, other generative models should also be considered and investigated. The Genera-

tive Adversarial Network (GAN) architecture is of high interest since its conditioned version 

CGAN possesses greater ability than the CVAE to generate more realistic CM signals, espe-

cially in generating samples with higher variance. However, the training of GANs can at times 

be unstable and requires high customization. Recent developments hint at the high potential 

of CGANs and combinations of CVAE and GANs for generating realistic image data and there-

fore should be considered for future application in PHM (BAO ET AL. 2017). 

Since the database and data acquisition is critical regardless of model architecture, the re-

search shall develop means of identifying erroneous data necessary for PHM applications and 

include these in the PdM-IPS approach as an additional module. Erroneous data can occur 

within but is not limited to CM and failure data. Virtual sensors are one concept that distin-

guishes malfunctioning sensors and their application can prevent erroneous CM data from 

being included in the model databases. In addition, failure logs shall be standardized and a 

system that prevents manual logging errors shall be developed. For industrial applications, 

designing a single source of truth combining all data streams is of vast importance to prevent 

ambiguous data and thus facilitate interdisciplinary and cross-departmental technologies like 

PdM-IPS. 

Application of the PdM-IPS approach as part of the Smart Factory 

Apart from model advancements, research should be conducted on the further potential of 

applications of PdM-IPS and its integration in current and future manufacturing lines of facto-
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ries. Since the PdM-IPS approach is best suited for a highly flexible and reconfigurable manu-

facturing line, research should investigate how the Smart Factory of the future can implement 

the PdM-IPS approach in accordance with other Industrie 4.0 technologies. New production 

management paradigms such as Lean 4.0 are emerging and enable new factory structures 

that facilitate the PdM-IPS approach implementation (DILLINGER ET AL. 2021). Due to the inter-

disciplinary and cross-departmental character of PdM-IPS, new organizational structures in 

production and maintenance shall be developed to foster cross-sectional cooperation and cre-

ate value-added. Research can focus on the combination, reorganization and creation of new 

departments that facilitate PdM-IPS, or vice versa, is facilitated by PdM-IPS. 
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7.2 Formulas and Key Performance Indicators 

The following section presents the formulas and KPIs used to calculate the base costs and 

amortization period of the exemplary use case for the cost-benefit evaluation (see section 

4.2.2). 

Notation Description Value Reference 

!#"$%%&' Cost for planned downtime 10 €/min WOLF ET AL. (2019, 
p. 980) 

!(%#"$%%&' Cost for unplanned downtime 50 €/min WOLF ET AL. (2019, 
p. 980) 

/#"$%%&' Ratio of planned downtime to total downtime 9.5 % VDMA VERLAG (2020, 
p. 169) 

/(%#"$%%&' Ratio of unplanned downtime to total down-
time 

11.9 % VDMA VERLAG (2020, 
p. 169) 

/),			%,%-!$.&/0$" Ratio of non-material related costs to all costs 52.5 % VDMA VERLAG (2020, 
p. 69) 

/),1 Ratio of defective quality-induced costs to the 
company’s revenue 

1.2 % VDMA VERLAG (2020, 
p. 147) 

/,(.#(. Ratio of total output to total expenditure  104 % VDMA VERLAG (2020, 
p. 65) 

/),			2&4 Ratio of costs for tools and additional produc-
tion equipment (e.g., electricity) to all costs 

3.7 % VDMA VERLAG (2020, 
p. 67) 

/2&4,2 Ratio of tools costs to all costs for tools and 
additional production equipment 

10 % Estimation  

/52 Downtime ratio 24.3 % VDMA VERLAG (2020, 
p. 169) 

/'&#/ Ratio of depreciation costs to all costs 2.9 % VDMA VERLAG (2020, 
p. 79) 

t!	
 

Average age/useful life of machine derived 
from depreciation time 

10 years VDMA VERLAG (2020, 
p. 39), 
BUNDESMINISTERIUM DER 
FINANZEN (2001) 

/!$0%.&%$%)& Ratio of maintenance costs to replacement 
costs 

5.7 % VDMA VERLAG (2020, 
p. 171) 
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/6#$/&	#$/.6 Ratio of spare parts costs to all maintenance-
related costs 

20 % Estimation 

/0%.&/% Ratio of internal maintenance costs to total 
maintenance costs 

50 % Estimation 

/&7.&/% Ratio of external maintenance costs to total 
maintenance costs 

50 % Estimation 

 

 

Item Formula 

Total costs of planned 
downtime per year 0#"$%%&',52 = /#"$%%&' ⋅ /52 ⋅ !#"$%%&' ⋅ 255[

4
5] ⋅ 16[

ℎ
4] ⋅ 60[

&#:
ℎ ] 

Total costs of unplanned 
downtime per year 0(%#"$%%&',52 = /(%##"$%%&' ⋅ /52 ⋅ !(%#"$%%&' ⋅ 255[

4
5] ⋅ 16[

ℎ
4] ⋅ 60[

&#:
ℎ ] 

Yearly non-material related 
costs of ; machines due to 
unplanned downtime 

08&$/"8 =
;

/),%,%-!$.&/0$"
⋅ !(%#"$%%&' ⋅ 255[

4
5] ⋅ 16[

ℎ
4] ⋅ 60[

&#:
ℎ ] 

Costs for rejects due to 
quality 

01 = /,(.#(. ⋅ 08&$/"8 ⋅ /),1 

Costs for tool replacement 02 = 08&$/"8 ⋅ /2&4,2 ⋅ /),2&4 

Replacement value of ; ma-
chines 

</&#"$)&!&%. = /'&#/&)0$.0,% ⋅ t! ⋅ 08&$/"8 

Overall costs for mainte-
nance, including spare parts 

09 = /!$0%.&%$%)& ⋅ </&#"$)&!&%. 

Costs for spare parts 09,:; = /6#$/&	#$/.6 ⋅ 09 

Costs for internal mainte-
nance 

09,0%. = (1 − /6#$/&	#$/.6) ⋅ 09 	 ⋅ /0%.&/% 

Costs for external mainte-
nance 

09,0%. = (1 − /6#$/&	#$/.6) ⋅ 09 	 ⋅ /&7.&/% 

Amortization period >$ =
0?@>@	?A	BCDC-?E&C:>	F:4	G&E-C&C:>F>#?:

HCF/-5	IFD#:J@ − KEC/F>#?:	0?@>@  
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7.3 Questionnaire of Publication 2: An Empirical Expert Study 

on the Status Quo and Potential of Predictive Mainte-

nance in Industry 

1. Which department of the company do you belong to?  

□  Research/Development 

□  Production 

□  Management 

□  Maintenance 

□  IT 

□  Logistic 

□  Marketing 

□  Human resources 

□  Quality management 

□  Administration 

□  Other  

2. In which industry segment is your company active?  

□  Automotive 

□  Chemical and process industry 

□  Consulting 

□  Electronic Industry 

□  Energy 

□  Wood or Metal Construction 

□  IT 

□  Food Industry 

□  Aerospace 

□  Mechanical Engineering 

□  Medicine Technology 

□  Pharmaceutical Industry 

□  Other  
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3. How many employees are working in your company?  

□  < 50 

□  50 to 250 

□  > 250 

4. What is the annual turnover of your company?  

□  <= 50 mil. Euro 

□  > 50 mil. Euro 

□  No information 

5. Which of the following would you associate with the term "predictive mainte-
nance"? 

Please choose all that apply: 

□  Acquisition of machine operating data 

□  Use of mathematical models to determine the machine condition 

□  Maintenance actions when the predetermined thresholds were exceeded 

□  Prediction of the instant (date) of failure of a machine 

□  Optimization of machine maintenance dates 

□  Continuous monitoring of machine operation 

□  I am not familiar with the term 

□ Other:  

Predictive maintenance is a core competence of Industry 4.0 for predicting machine failures. 
Based on the evaluation of various machine and process data, impending plant failures can 
be forecast and thus foresightful (predictive) maintenance strategies can be developed. In con-
trast to "condition monitoring", data is used to predict downtimes and does not simply react to 
limit values being exceeded.1 
[1 Zhai, S.: Predictive Maintenance als Wegbereiter für die instandhaltungsgerechte Produkti-
onssteuerung. ZWF 113 (2018) 5, S. 298-301] 
The following questions should be answered considering this definition for the term “predictive 
maintenance”!  
The questions in this section are aimed at assessing predictive maintenance in industry in 
general. The implementation of predictive maintenance in your company can still be ne-
glected. 

6. How do you generally assess the potential of predictive maintenance? 
 

Very low Low Adequate High Very 
high 

The potential seems ... 
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7. How do you assess the potential of predictive maintenance with regard to the 
following criteria? 

Please choose the appropriate response for each item: 
 

Very low Low Ade-
quate 

High Very 
high 

Cost savings 
     

Increase competitiveness 
     

Increase the degree of automation 
     

Increase in machine utilization 
     

Development of new business 
models 

     

Increase operational efficiency 
     

Avoidance of unplanned down-
times 

     

Increase the machine availability 
     

 
Multiple entries are possible. 

8. In addition to these criteria, do you see other areas for which predictive mainte-
nance has great potential? 

□  Yes, see the comment on the right: 

□  No 

Comment on your choice here: 

9. What risks and challenges do you associate with predictive maintenance? 

Please choose all that apply: 

□  Hiring additional specialists 

□  Retrofitting existing machines 

□  High costs 

□  Lack of know-how 

□  Threats to IT security/data protection 

□  Lengthy adjustment of business processes 

□ Other:  

10. How would you rate the efficiency of current maintenance processes in your 
company on a scale of 1 to 10? (1 = inefficient, 10 = very efficient) 

11. Does your company already have experience with predictive maintenance?  

□  Yes 

□  No 
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If you have answered yes, continue this questionnaire for questions 12-16. If you an-
swered no, continue with questions 16-20. 

If question 10 was answered with “yes”, continue here: 

12. What is your company's experience with predictive maintenance? 

Please choose the appropriate response for each item: 
 

Very 
bad 

Bad Neutral Good Very 
good 

The experiences are ... 
     

13. Which of the following describes best the current status of your company's 
predictive maintenance initiatives? 

Please choose only one of the following: 

□  Predictive maintenance applications are in the planning and evaluation phase 

□  Predictive maintenance applications are in the test phase 

□  First projects with business effects have already been started 

□  Predictive maintenance applications are already in use 

□  Other  

14. In which areas is predictive maintenance used in your company? 

Please choose all that apply: 

□  In the manufacturing process of your products 

□  In the end product itself 

□ Other:  

If predictive maintenance has not yet been used in your company, please answer this question 
in the sense: "For which areas in your company are there (concrete) considerations to intro-
duce predictive maintenance?" 

15. What data do you collect as part of the current maintenance processes in your 
company? 

Please choose all that apply: 

□  Current operating parameters of the systems (target values and their compliance, 
e.g., speed) 

□  Other sensor values that describe the state of the system in operation (e.g., vibra-
tions, temperature development, ...) 

□  Data describing the current value/overall condition of the system (e.g., wear of tools, 
...) 

□  Data on the machine's time utilization 

□  Ambient data (e.g., temperature or humidity in the vicinity of the system) 
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□  Maintenance history data (e.g., when was the maintenance? How often? What was 
checked/replaced? ...) 

□ Other:  

If question 10 was answered with „no”, continue here: 

16. What types of external support would be of great use to your company as you 
develop predictive maintenance strategies? 

Please choose all that apply: 

□  General provision of information (e.g., information events) 

□  Support with the introduction of predictive maintenance applications 

□  Support in the redesign of existing maintenance processes 

□  Support in the collection and management of machine data 

□  Support in the analysis of machine data 

□ Other:  

17. Why has predictive maintenance not been used in your company so far? 

Please choose all that apply: 

□  Implementation costs are too high 

□  Lack of know-how 

□  No application options 

□  Profitability too low 

□  Previous maintenance processes were satisfactory 

□ Other:  

18. Can you imagine using predictive maintenance in your company? 

□  Yes 

□  No 
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19. If your company decides to implement predictive maintenance, what types of 
external support would help develop predictive maintenance strategies? 

Please choose all that apply: 

□  General provision of information (e.g., information events) 

□  Support with the introduction of predictive maintenance applications 

□  Support in the redesign of existing maintenance processes 

□  Support in the collection and management of machine data 

□  Support in the analysis of machine data 

□ Other:  

20. What data do you collect as part of the current maintenance processes in your 
company? 

Please choose all that apply: 

□  Current operating parameters of the systems (target values and their compliance, 
e.g., speed) 

□  Other sensor values that describe the state of the system in operation (e.g., vibra-
tions, temperature development, ...) 

□  Data describing the current value/overall condition of the system (e.g., wear of tools, 
...) 

□  Data on the machine's time utilization 

□  Ambient data (e.g., temperature or humidity in the vicinity of the system) 

□  Maintenance history data (e.g., when was the maintenance? How often? What was 
checked/replaced? ...) 

□ Other:  

  



 

93 

7.4 Expert Interview 

Excerpts of the expert interview conducted with six experts are presented in the following. Part 

A of the interview took around 50 min and Part B around took 30 min. For the sake of brevity, 

only questions whose answers were summarized in chapter 4 are listed. Also, it should be 

noted that personal and confidential information is omitted. For multiple-choice questions, the 

respective number of responses per choice is listed. 

7.4.1 Expert Interview Part A 

 

1. Personal Background 

[…] 

 

2. Conceptual Validity 

The concept of the PdM-IPS approach is presented using a prepared Powerpoint-presenta-

tion. 

1. I understood the presentation’s content well. 

 Strongly 

Disagree 

Disagree Slightly 

Disagree 

Slightly 

Agree 

Agree Strongly 

Agree 

Number of 

responses 

    3 3 

2. I can reflect on key components of PdM-IPS. 

 Strongly 

Disagree 

Disagree Slightly 

Disagree 

Slightly 

Agree 

Agree Strongly 

Agree 

Number of 

responses 

   1 4 1 

The expert has the chance to ask questions concerning the concept and reflect on the con-

cept’s validity. 
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3. Operational Validity 

[…] 

1. It is important to incorporate machine degradation in production scheduling. 

 Strongly 

Disagree 

Disagree Slightly 

Disagree 

Slightly 

Agree 

Agree Strongly 

Agree 

Number of 

responses 

    5 1 

2. I am confident that machine degradation will be incorporated into future production 
scheduling. 

 Strongly 

Disagree 

Disagree Slightly 

Disagree 

Slightly 

Agree 

Agree Strongly 

Agree 

Number of 

responses 

1  1 1 3  

[…] 

3. Please justify your answers to questions 4 and 5. 

 

4. Opportunities and Risks 

1. What are the chances of PdM-IPS? 
 

2. What are the risks of PdM-IPS? 

 

5. Economical Aspects 

The expert shall consider the cost-saving potential of the following aspects given PdM-

IPS implementation in their company. 

1. Synchronized time of maintenance when service is provided by a non-company pro-
vider. 

Response 

Class 

1 2 3 4 5 6 

X < 2,5 % 2,5 % ≤ X < 

5 % 

5 % ≤ X < 10 % 10 % ≤ X < 

15 % 

15 % ≤ X < 

20 % 

20 % < X 

Number of 

responses 

3  2  1  
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Median response class: 2,5 % ≤ X < 5 % 

2. Extended durability of tools due to optimized production scheduling. 

Response 

Class 

1 2 3 4 5 6 

X < 2,5 % 2,5 % ≤ X < 

5 % 

5 % ≤ X < 10 % 10 % ≤ X < 

15 % 

15 % ≤ X < 

20 % 

20 % < X 

Number of 

responses 

 3 2 1   

Median response class: 2,5 % ≤ X < 5 % 

3. Deliberate induce degradation (i.e., by rescheduling products that induce higher deg-
radation) of certain machines when a production break, including planned mainte-
nance, is coming up. A higher maintenance efficiency can thus be ensured due to the 
full utilization of the components’ RUL. 

Response 

Class 

1 2 3 4 5 6 

X < 2,5 % 2,5 % ≤ X < 

5 % 

5 % ≤ X < 10 % 10 % ≤ X < 

15 % 

15 % ≤ X < 

20 % 

20 % < X 

Number of 

responses 

1 1 2 2   

Median response class: 5 % ≤ X < 10 % 

4. Rescheduling of products with higher manufacturing tolerances according to machine 
health to reduce quality rejections. Products with strict manufacturing tolerances are 
produced on machines with high HI, while products with less strict tolerances are pro-
duced on slightly degraded machines. 

Response 

Class 

1 2 3 4 5 6 

X < 2,5 % 2,5 % ≤ X < 

5 % 

5 % ≤ X < 10 % 10 % ≤ X < 

15 % 

15 % ≤ X < 

20 % 

20 % < X 

Number of 

responses 

2 1 1 2   

Median response class: 2,5 % ≤ X < 5 % 
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7.4.2 Expert Interview Part B 

1. Logical validity 

Assessment of the capability of the formal model to describe correctly and accurately the prob-

lem solution. Do the simplifications and assumptions during model development process hold? 

1. Machine failures are classified into two different groups. There exist non-predictable 
failure events and predictable failure events. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

   1 5 

 
2. During maintenance, only degraded or broken components are replaced. A high HI is 

assumed for not replaced components and is still functional because a strong HI de-
crease is observed only close to the system’s end of life. Therefore, the influence of 
imperfect maintenance is rather small. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

  2 3 1 

 
3. Measuring outliers with increasing frequency is an indicator of degradation. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

  2 4  

 
4. Inter-component correlation of health states exists. This relation can also be unidirec-

tional. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

   1 5 

__________________________________________________________________________ 
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2. Experimental validity 

To demonstrate the capabilities of the machine health prediction module, two production inter-

vals are identified. These production intervals feature the same variant and amount of manu-

factured products in order to take the product-specific wear into account. A prediction horizon 

of 700 products is chosen. 

Promising prediction results are shown for VHI 2 for both production intervals: 

Production interval 1 

 

Production interval 2 

 

The malfunction of component 4 during production period 1 is not predictable due to its stochastic char-

acter. Thus, a deviation between prediction and ground truth is given. 

In addition, two poor predictions of an arbitrary production interval are shown: 

 

  

1. The overall performance of the machine health prediction module is promising. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

  1 4 1 
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The following figure shows an exemplary production schedule resulting from PdM-IPS. In con-

trast to normal production schedules, time slots for maintenance, shown in red, are explicitly 

displayed. 

 

2. The displayed exemplary production schedule can in general support production and 
maintenance planning. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

   4 2 

 
3. The displayed exemplary production schedule can be employed in an adapted version 

for production and maintenance planning in your company. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

1  1 2 2 
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4. The displayed exemplary production schedule can be employed in an adapted version 
for production and maintenance planning in a different manufacturing company that 
uses a matrix production system. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

   3 3 

__________________________________________________________________________ 

3. Data validity 

Assessment of the sufficiency, accuracy, appropriateness, and availability of the data. Do the 

employed data fulfill the mentioned properties to a certain degree to solve the problem? 

1. An observation period of 4 months is suitable to train a sophisticated machine-learn-
ing model. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

 2 2 1 1 

 
2. Only data from “healthy” machine conditions are required for model training and no 

further knowledge of different failure causes is needed. 
 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

 2 2 1 1 

 
3. Operator logs offer the opportunity to assess the machine’s health implicitly. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

  3 2 1 
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4. The failure classification requires no increased quality of the operator logs and is 
based on the logs’ raw version. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

  5  1 

 
5. The sampling rate of 1 Hz for condition monitoring data is sufficient for promising 

model deployment. 

 Strongly Disa-

gree 

Disagree Undecided Agree Strongly 

Agree 

Number of 

responses 

 1 1  4 
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7.5 List of Supervised Student Research Projects 

In the context of the research performed by the author, various student research projects were 

intensively supervised concerning the methodology, problem statements, modeling, approach 

and the interpretation and documentation of the results. The supervision took place at the 

Institute for Machine Tools and Industrial Management (iwb) of the Technical University of 

Munich (TUM). The findings and results of the student research projects listed below have 

contributed to this dissertation. The author would like to express his sincere gratitude for the 

remarkable commitment of all supervised students and their relevant and important 

contributions. 

BUTZHAMMER, M. 2019 

Development of a Methodology for Data-Driven Risk Analysis of Systems for Maintenance 

Planning Support. Master’s Thesis (TUM). 

DUNKER, P. 2019 

Data-driven modeling of a Health Indicator for product-specific Predictive Maintenance. Mas-

ter’s Thesis (TUM). 

GEHRING, B. 2020 

A Generative Deep Learning Approach for Unsupervised Operation-specific Machine Health 

Prognostics. Master’s Thesis (TUM). 

KANDEMIR, M. 2021 

Design and Implementation of a Genetic Algorithm for Predictive Maintenance Integrated Pro-

duction Scheduling. Master’s Thesis (TUM). 

RIESS, A. 2018 

Development of a Predictive Maintenance Information Integration Model for Scheduling Opti-

mization. (Master’s term paper, TUM). 

RIESS, A. 2019 

A Deep Learning Approach to Operation Specific Predictive Maintenance of Machine Tools. 

Master’s Thesis (TUM). 

SCHATZ, M. 2021 

Unsupervised Learning and Feature Engineering for Industrial Predictive Maintenance. Mas-

ter’s Thesis (TUM). 
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SCZESNY, P. 2020 

Predictive Maintenance in Existing Manufacturing Companies: Potential Analysis of the Inte-

gration and Application. Bachelor’s Thesis (TUM). 

WU, Y. 2021 

An Advanced Deep Generative Model for Enhancing Health Prognostics and Data Augmen-

tation in Predictive Maintenance. Master’s Thesis (TUM). 

The students GEHRING, B.; KANDEMIR, M. and RIESS, A. are also co-authors of the embedded 

publications of this dissertation listed in Appendix 7.1. 
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