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Abstract

Due to the digital transformation, networking is also steadily increasing. More and more
devices can be controlled remotely or connected to the Internet. This development has
many advantages, but also brings dangers. Due to the additional interfaces and func-
tions, the attack surface of the systems increases. Since smart sensors, for example, are
also used in critical infrastructures, these devices and their communications have to be
specially secured. The standardization authority NIST therefore launched a project in
2018 with the aim of converting a new cryptographic algorithm into a national stan-
dard. This lightweight encryption method should be particularly suitable for securing
embedded systems, which have little computing power.
In this thesis, the algorithms available for selection are evaluated with respect to

various factors. To this end, a test environment that was developed specifically for this
purpose is first presented. Then, the test platforms and test cases, which are used to
evaluate the performance of the algorithms, are shown. Lastly, the results of the tests
are discussed and interpreted.
In the second part, hardening measures that protect cryptographic methods against

implementation side-channel attacks are introduced. Different hardening strategies are
discussed here. It is analyzed which performance penalties originate from the additional
protection measures. Furthermore, new strategies to efficiently protect a specific group
of algorithms are introduced and applied. Then, we compare the results of our hardening
techniques to related work, and investigate how much hardening affects the performance
of different lightweight algorithms.
Finally, we evaluate the novel cryptographic methods in an industry-oriented use case.

For this purpose, a test environment that represents a possible use case for lightweight
cryptography is built. In this scenario, the use of different encryption schemes in a
standardized wireless protocol is tested. In particular, the performance of the new
algorithms is compared to the current industry standard (AES-GCM) and it is analyzed
whether they bring significant advantages in the specific use case.
In general, this work summarizes our contributions to the NIST lightweight cryptog-

raphy standardization process. From starting with the design and implementation of the
environment for performance testing, through the analysis of (new) different hardening
measures and their effects, to the evaluation of the algorithms in a practical use case,
we try to present a detailed picture of the candidates and their applicability.
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Kurzfassung

Durch den digitalen Wandel nimmt auch die Vernetzung stetig zu. Immer mehr Geräte
können aus der Ferne gesteuert oder mit dem Internet verbunden werden. Diese Entwick-
lung hat viele Vorteile, bringt aber auch Gefahren mit sich. Aufgrund der zusätzlichen
Schnittstellen und Funktionen vergrößert sich die Angriffsfläche der Systeme. Da z.B.
intelligente Sensoren auch in kritischen Infrastrukturen eingesetzt werden, müssen diese
Geräte und deren Kommunikation besonders abgesichert werden. Die Standardisierungs-
behörde NIST hat daher 2018 ein Projekt ausgerufen, das zum Ziel hat, einen neuen
kryptographischen Algorithmus in einen nationalen Standard zu überführen. Dieses le-
ichtgewichtige Verschlüsselungsverfahren soll besonders zur Absicherung eingebetteter
Systeme geeignet sein, welche über wenig Rechenleistung verfügen.
In dieser Arbeit werden die zur Auswahl stehenden Algorithmen hinsichtlich ver-

schiedener Faktoren evaluiert. Dazu wird zunächst eine Testumgebung vorgestellt, die
speziell für diesen Zweck entwickelt wurde. Anschließend werden die Testplattformen
und Testfälle dargestellt, mit Hilfe derer die Performanz der Verfahren beurteilt wird.
Dann werden die Ergebnisse der Tests diskutiert und eingeordnet.
Im zweiten Teil werden Härtungsmaßnahmen eingeführt, die kryptographische Ver-

fahren zusätzlich gegenüber Seitenkanalangriffen auf deren Implementierung schützen.
Hier werden unterschiedliche Strategien zur Härtung diskutiert. Es wird analysiert,
welche Einbußen hinsichtlich der Performanz aus den zusätzlichen Schutzmaßnahmen
resultieren. Weiterhin werden neue Strategien zur effizienten Absicherung einer bes-
timmten Algorithmengruppe eingeführt und angewendet. Dann vergleichen wir die
Ergebnisse unserer Härtungsverfahren mit verwandten Arbeiten und untersuchen, wie
stark sich die Härtung auf die Performanz unterschiedlicher leichtgewichtiger Algorith-
men auswirkt.
Abschließend werden die neuartigen kryptographischen Verfahren in einem industrien-

ahen Anwendungsfall evaluiert. Dazu wird eine Testumgebung aufgebaut, die einem
möglichen Anwendungsfall für leichtgewichtige Kryptographie entspricht. In diesem
Szenario wird die Verwendung unterschiedlicher Verschlüsselungsverfahren in einem stan-
dardisiertem Funkprotokoll erprobt. Es wird insbesondere die Performanz der neuen Al-
gorithmen mit dem aktuellen Industriestandard (AES-GCM) verglichen und analysiert,
ob diese in dem konkreten Anwendungsfall signifikante Vorteile mit sich bringen.
Im Allgemeinen fasst diese Arbeit unsere Beiträge zum NIST Standardisierungsver-

fahren für leichtgewichtige Kryptographie zusammen. Beginnend mit dem Design und
der Implementierung der Umgebebung für Performanztests, über die Analyse (neuer)
unterschiedlicher Härtungsmaßnahmen und deren Wirkung, hin zu der Evaluation der
Algorithmen in einem praxisnahem Anwendungsfall, wird versucht ein detailliertes Bild
der Kandidaten und deren Anwendbarkeit darzustellen.
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1 Introduction

According to Auguste Kerckhoffs, a Dutch cryptographer living in the 19th century,
”[a cipher] should not require secrecy, and it should not be a problem if it falls into
enemy hands” [5]. This axiom was published in a journal article in 1883 and is now
rather known as ”Kerckhoffs’s principle”. While he referred this axiom only to secret
communication in wartimes, it still applies to modern cryptography today. In essence, it
means that the security goals of a cryptographic system shall be met, even if an attacker
knows the details about its design principle. Therefore, the specification of any modern
cipher is published and can be analyzed by any interested party.

This transparency in the design of cryptography should as well help to avoid another
incident similar to the recommendation of the Dual Elliptic Curve Deterministic Ran-
dom Bit Generator (Dual-EC-DRBG). In 2006, the National Institute of Standards and
Technology (NIST) issued a recommendation for random number generation for cryp-
tography, containing four different Random Number Generators (RNGs), with Dual-
EC-DRBG being one of them [6]. However, already during that time, the existence of a
potential backdoor integrated by the National Security Agency (NSA) and the security
of the RNG in general has been heavily discussed in the research community [7, 8, 9]. In
2013, the New York Times published an article referring to the leaked internal memos
of NSA contractor Edward Snowden. In the article, the author states that ”the N.S.A.
had inserted a back door into a 2006 standard adopted by N.I.S.T” [10]. Later in the
text, it is clarified that this claim concerns the Dual-EC-DRBG. As a response to these
events, NIST removed Dual-EC-DRBG from its recommendation (NIST SP 800-90A) in
2014 [11].

Kerckhoffs’s principle and the issues within drafting NIST SP 800-90A motivates an
as-transparent-as-possible evaluation during the selection process and standardization
of a novel cryptographic primitive. In the past, NIST already asked researchers and
representatives from industry to take part in the design, analysis and evaluation of cipher
candidates which were later to be standardized in a Federal Information Processing
Standard (FIPS). A popular example for a winner of such a competition is the Advanced
Encryption Standard (AES), which has been selected and standardized by NIST in 2001
and remains one of the most prominent symmetric ciphers until today [12]. AES, which
entered this NIST competition under the name Rijndael originally, has been found to be
the most suitable candidate among the 15 submitted algorithms and was later renamed
after the project name, Advanced Encryption Standard.

Since then, several similar-structured competitions have been held by NIST and other
initiatives. From 2004 to 2008, the eSTREAM project focused on evaluating efficient
stream ciphers for the use in both software and hardware applications. eSTREAM has

1



1 Introduction

been carried out by the ECRYPT consortium and in the end selected a portfolio of eight
algorithms [13].

In 2007, NIST initiated a project for finding a new hash algorithm as an alternative
or backup for SHA-2. Five years have been filled with evaluations, analysis and pre-
selections of the candidates, before Keccak was announced as the winner. The hash
algorithm was then finally standardized in FIPS 202 [14].
Another cryptographic competition held by NIST is the Post-Quantum Cryptogra-

phy (PQC) project launched in 2016. The PQC initiative aims to find alternatives to
currently used asymmetric cryptography, which can withstand attacks in the presence
of general quantum computers. NIST identified the algorithms for standardization in
July 2022, including one cipher for public-key encryption and three algorithms for digital
signing [15].
The Competition for Authenticated Encryption: Security, Applicability, and Robust-

ness (CAESAR) was started in 2013. The idea of this evaluation effort was to select
lightweight cryptographic algorithms that support authenticated encryption. Mainly,
the goal was to analyze if the submitted candidates outperform the current standard
for that use case, AES in Galois Counter Mode (GCM), in certain categories. The
CAESAR committee received 58 submissions initially, of which a portfolio of six ci-
phers has been selected as winners for three different use cases (lightweight applications,
high-performance applications, defense in depth) [16].
Further research regarding cryptography for resource-constraint environments is again

organized by NIST. With initiating the Lightweight Cryptography (LWC) project in
2018, NIST kicked off the future standardization process of a symmetric cipher support-
ing authenticated encryption. In its call for submissions, NIST asked cryptographers
to hand in cryptosystems that could be used as an alternative to AES-GCM in low-
performing systems and optionally are capable of hashing. Originally, 56 candidates
have been admitted to round 1. After two selection rounds supported by public evalua-
tion, now ten finalist ciphers remain in the last round 3. NIST expects to conclude the
competition with the choice of a winner in early 2023 [17].
The participation of research and industry in the CAESAR and NIST LWC project

shows that there is a noticeable interest in standardizing symmetric cryptography for the
use in constrained environments. According to a recent report from Business Insider, the
number of Internet of Things (IoT) devices will rise from 8 billion in 2019 to 41 billion
in 2027 [18]. With the constant growth of IoT devices in the field, the potential attack
surface also increases. What can happen if attackers find vulnerabilities in popular IoT
systems has been demonstrated, e.g. with the powerful Distributed Denial of Service
(DDoS) attacks guided by the so-called mirai botnet [19]. Hardening IoT systems also
includes securing their communication according to their particular use case. Depending
on the purpose of the device, confidential and authenticated data transmission can be a
requirement. Especially if these systems are embedded in critical infrastructures like the
smart grid or the water supply, a secure setup is of high importance. Small IoT devices
like intelligent sensors can lack the computing power to carry out well-established cryp-
tographic primitives, however, still security requirements need to be fulfilled. In these
use cases LWC poses a considerable alternative to e.g. AES. Specifically, where perfor-
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mance constraints meet security protection goals is where LWC could be an interesting
solution. The NIST LWC project wants to analyze under which circumstances novel
LWC algorithms can be of use in such scenarios and will establish a new standard to be
applied in industrial developments in the future.
This thesis focuses on the evaluation of software implementations of NIST LWC can-

didates. With 56 round 1 submissions and only one year of initial analysis time, a fair
assessment of all algorithms constitutes a big challenge. Obviously, the performance of
the candidates is one of the primary interests. But also e.g. the evaluation of the security
of the cipher design needs to be taken into account. Moreover, the question arises, how
and if a fair performance benchmarking of both soft- and hardware implementations
can be reached. In this work, we benchmark the NIST LWC candidates on the bases
of later discussed metrics and test software implementations in different disciplines and
use cases.
In detail, this thesis contributes to the NIST evaluation process with the following

efforts:

CB1 First, we will introduce the design and setup of our new test framework, specifically
created for benchmarking NIST LWC software implementations. We will explain
our design choices and give an overview over our standard test cases. It is also
motivated why we choose to build our own framework instead of relying on existing
software.

CB2 We will discuss what challenges and issues one has to face when assessing im-
plementations of (cryptographic) algorithms. We will then elaborate on what we
think is required for a fair performance comparison of individual implementations.

CB3 Using our before explained custom framework, we will present obtained perfor-
mance figures for various implementations of all NIST LWC submissions. In our
specific comparisons, we will later focus on 3rd round candidates that form the fi-
nal group in the ongoing competition. We compare benchmarking results in three
different categories and show how the LWC algorithms perform compared to AES
in our test cases. We will provide an interpretation of our results and give insights
regarding different peculiarities in the test data.

CB4 We study the efficient protection of implementations against basic Side-Channel
Analysis (SCA) and investigate how high the performance penalties are for selected
attack countermeasures. Moreover, we present novel methods to protect a specific
cipher category – Add-Rotate-XOR (ARX) ciphers – and compare the performance
of our guarded implementations to related work and non-protected variants [20].

CB5 Lastly, we evaluate the performance of the LWC candidates in an industrial use
case: We show how we built up a test setup out of hardware components applied
in industry and emulate a battery-powered water meter transmitting customer
data. We measure the energy consumption of the device running different LWC
algorithms and give an estimation if the use of LWC has a significant advantage
over the state-of-the art in that use case.
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1 Introduction

The thesis structure is roughly aligned with the mentioned contributions. In an intro-
ductory chapter, the preliminaries for this work are clarified. Especially, the evaluation
process within the NIST LWC project is described, together with the specified submis-
sion requirements for the algorithms. To conclude this chapter, an overview of the 1st
round candidates and their properties is given.
In the following chapter, our LWC setup for benchmarking software implementations

is presented. We describe the reasons for building the framework in our chosen way
and provide some details regarding how the different test cases are conducted and which
hardware elements have been used.
Chapter 4 deals with how a fair evaluation of the candidates can be realized and

presents our benchmarking results for many different implementations in the individual
test cases. Moreover, we discuss hardened implementations of some ciphers and collect
performance figures for these variants. We show how big the performance penalty is
for certain protection mechanisms to support the interpretation of the trade-off between
implementation security and performance with suitable data.
In chapter 5, we introduce relevant SCA countermeasures for software implementa-

tions. Later, we focus on the efficient protection of ARX ciphers, a design principle some
novel symmetric ciphers incorporate. We present two different new ways of searching ef-
ficiently protected ARX implementations and show our findings with both methods. We
then translate our results to a suitable lightweight cipher and compare the performance
of our protected implementations to related work.
Chapter 6 deals with the use case of applying LWC in energy-constrained infrastruc-

tures. We build up a hardware setup to represent the industrial use case of a battery-
powered smart water meter that sends data to the manufacturer wirelessly in a periodic
manner. We explain which components we use in the setup and how our energy-efficient
firmware and our test case is structured. We then describe how we collect power con-
sumption data from the hardware running different LWC algorithms. We present results
for many implementations and judge if (some) LWC ciphers have an advantage over AES
in this use case.
In chapter 7, this thesis is concluded and possible future work paths are introduced.
The related work relevant for a specific research field is distributed and discussed in

the dedicated chapters.
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2 Preliminaries

In this chapter, the details of the NIST LWC competition are introduced, alongside
a brief description of the submission requirements for candidates published by NIST.
Finally, we give an overview over each initially accepted cipher. With this analysis, we
create a common base of knowledge, which can be referred back to over the course of
this thesis.

The NIST LWC project was initiated in 2018 with the goal to find a lightweight
alternative to AES-GCM. This winning candidate should be standardized and later
used in IoT systems or any other environments where the computing resources are low
and still some security requirements need to be fulfilled. The call for algorithms resulted
in 57 submitted ciphers, of which 56 have been accepted as 1st round candidates. The
project is still ongoing and expected to yield a winner in the first half of 2023.

2.1 Evaluation Process

NIST organized the evaluation process transparently, similarly to the AES and SHA-3
initiatives in the past. There exists a public forum in which anyone can publish com-
ments regarding the project or promote relevant research [21]. Moreover, NIST regularly
hosts Lightweight Cryptography Workshops, where researchers or representatives from
industry can present and share their latest findings. Since the beginning of the LWC
project, three of these workshops have taken place, two virtually and one directly at the
NIST headquarters. Furthermore, the evaluation process is split in three rounds. After
the initial analysis of the 1st round ciphers, NIST announced 32 2nd round candidates
in 2019. After another public evaluation period, NIST picked ten ciphers to advance
into the final 3rd round. As of now, it is expected that there will be only one winning
candidate in the end, in contrast to e.g. CAESAR, which selected a final portfolio of
algorithms.

2.2 Submission Requirements

NIST stated various minimal requirements for cipher packages submitted to the LWC
contest. Besides obvious deliverables like the algorithm specification and intellectual
property statements, also a reference implementation of the cipher and a set of certain
test vectors had to be included in the submission. Furthermore, some design and security
goals had to be reached by each contender. NIST required the algorithms to support
Authenticated Encryption with Associated Data (AEAD). An authenticated encryption
E is defined as a function E(K,N,A, P ) = (C, T ) where K is the secret key, N is the
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2 Preliminaries

nonce, A is Associated Data (AD), P is the plaintext, C is the ciphertext and T is an
authentication tag. The corresponding decryption-verification function D is defined as
D(K,N,A,C, T ) = P [22]. In case the ciphertext is invalid, the decryption-verification
function shall not return the plaintext. There exist three main approaches to design
an AEAD mode, that differ in how the encryption and authentication processes are
interleaved. In an encrypt-then-MAC mode, the Message Authentication Code (MAC)
is calculated on the previously encrypted message. Here, the encryption happens prior
to the MAC calculation, hence the name. Authenticated encryption algorithms can also
be built using a MAC-then-encrypt scheme, where the message is authenticated and the
plaintext is encrypted together with the appended MAC. A third variation of the AEAD
mode consists of MAC-and-encrypt, here the plaintext is encrypted and authenticated
separately, the MAC is appended to the ciphertext. Generally, the encrypt-then-MAC
approach is preferred in AEAD designs due to providing integrity of the ciphertext in
contrast to the other methods [23].

AEAD algorithms usually rely on the nonce being unique while the same secret key is
in use. However, there are certain cipher designs that do not lose (all of their) security
in case of nonce-misuse, i.e. the repetition of nonces. NIST requires the submitters to
document the behavior of the ciphers in a non-unique nonce scenario [24]. NIST also
specified the minimum key length to be 128 bits and that ”cryptoanalytical attacks shall
require at least 2112 computations on a classical computer” [24]. In addition, submitters
were allowed to submit multiple variants with different parameter settings of the same
cipher family. Still, one cipher variant was to be named as the primary variant that
represents the main parameter set most suitable for the LWC use cases. Optionally, the
LWC candidates could also support hashing functionality. However, not every (final)
candidate supports it and in this thesis, we only focus on the AEAD variants of the
algorithms.

Apart from the requirements, NIST also defined the most important evaluation crite-
ria. These include cost metrics (area, memory and energy consumption) as well as perfor-
mance metrics (latency, throughput and power consumption). Moreover, the (efficient)
protection against side-channel and fault attacks is stated as a secondary evaluation
criterion [24].

2.3 Overview of Cipher Candidates

In the upcoming section, we will provide a categorization and some details of the initial
NIST LWC candidates. All of these candidates have been evaluated in our benchmarking
framework. While we introduce all 1st round LWC ciphers now, we will later focus on
the 3rd round candidates that are still part of the competition. We categorize the
cryptosystems according to which primitive they are based on. Note that we format the
name of the algorithm in bold face if the candidate is a member of the final selection
round.

This section represents a brief summary of the LWC candidates and their design
features. It is mainly meant to be used as a cohesive cipher reference, including links to
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2.3 Overview of Cipher Candidates

more detailed resources. When we discuss the performance and other factors of LWC
algorithms later in our work, one can refer back to this preliminary part.

Moreover, we condense important properties of each primary LWC candidate in ap-
pendix A. Our table summarizes key, state, block/rate and tag sizes. Also, the algorithms
are further distinguished by their number of rounds, security margin, underlying primi-
tive, the cipher type and mode. This allows for a quick classification of each candidate
at a glance.

2.3.1 (Tweakable) Block Ciphers

A block cipher describes an encryption/decryption algorithm that operates on a fixed
number of bits. Typically, it takes a message block of n bits and a fixed-length key
K as inputs. The decryption function D represents the inverse of the encryption func-
tion E. Tweakable block ciphers are algorithms that complement the input by a third
component, the tweak T . This introduces more variability to the cipher without sacri-
ficing cryptographic strength. The tweak T does not have to be secret. The main goal
of tweakable block ciphers is to introduce an additional input value that can be easily
exchanged if that is required by the use case. Since changing keys in traditional block
ciphers is often complex and not efficient, an easy-to-replace tweak can be beneficial. A
suiting use case for tweakable block ciphers is disk encryption, in which each memory
block is encrypted with the same key but an ascending counter tweak [25].

Most block cipher designs within the NIST LWC project rely on one of the two follow-
ing design principles to achieve secure encryption: For many LWC ciphers, Shannon’s
idea of Substitution-Permutation Networks (SPNs) to achieve confusion and diffusion in
a cryptographic algorithm is still relevant today. In a SPN block cipher such as AES,
confusion is typically reached through substitution networks (S-boxes), while diffusion
is introduced via a permutation layer. A SPN generally consists of a series of non-linear
and linear operations that are carried out a fixed number of times (rounds) [26]. The
second popular design pattern is a Feistel network. Contrary to SPN-based ciphers, in
Feistel networks the input block is divided in two halves L0 and R0. Then, R0 is en-
crypted using a subkey within the round function. The encrypted output is later XORed
with the input L0. In the following, the result of the first XOR operation is fed into the
round function and its output is again XORed with the other input half, this time R0 [27].

Block ciphers can be operated in different modes. The mode of operation defines
how the block cipher is applied to an input greater than the block size. Depending
on the security goals, certain ciphers can be instantiated with modes that provide au-
thentication, confidentiality or both. Cryptographic modes are separated in parallel and
feedback-based variants. With the former, one can process multiple message blocks in
parallel, while the latter requires some feedback data from the previous iteration in order
to process the next block. The most straightforward parallel mode is called Electronic
Codebook Mode (ECB). Here, every block is encrypted separately and the same plain-
text is always translated into the same ciphertext. This constitutes a weakness since it
allows for the recognition of patterns in the ciphertext. Like ECB, Counter Mode (CTR)
mode allows for parallelization and provides confidentiality only. It is commonly used to-
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gether with AES in encryption-only scenarios. Effectively, in this mode, the block cipher
is operated as a stream cipher. First, a nonce is combined with a counter. This value
is then encrypted, before the result is XORed with the plaintext [28]. Another popular
parallel mode is Offset Codebook Mode (OCB). It offers authenticated encryption by in-
tegrating a MAC into the encryption routine of a block cipher. There exist three versions
of this mode, of which only OCB1 and OCB3 are still considered to be secure [29, 30].
A parallel mode used in the NIST LWC project is Offset Two Rounds (OTR). This
mode also combines authentication and encryption. However, it only requires a call to
the encryption function of the underlying block cipher to execute both encryption and
decryption. Moreover, OTR represents a one-pass mode, meaning the input data needs
to be processed only once to achieve both confidentiality and authenticity.

Besides parallel modes, cipher modes based on feedback are heavily used in many
designs of the NIST LWC competition. These approaches always use some informa-
tion from the current block to process the next input. The selection of the particular
feedback value determines the corresponding mode of operation. When using Output
Feedback (OFB) mode, the output of the current encryption is used in the upcoming
encryption operation [28]. Similarly, by choosing Plaintext FeedBack (PFB) or Cipher-
text FeedBack (CFB), the plaintext or ciphertext block is fed to the following step as
an input, respectively. Another popular method is to combine two or more feedback
sources. For example, COmbined FeedBack (COFB) mode suggests mixing at least two
values from the previously mentioned triplet (output, plain- and ciphertext) to form the
final feedback [31].

The last operation mode described here is Synthetic Initialization Vector (SIV) mode.
It represents a MAC-and-encrypt scheme that incorporates cipher-based message au-
thentication and uses CTR mode to ensure confidentiality. SIV provides better security
against nonce-misuse than e.g. GCM. In SIV mode, the produced authentication tag is
reused as a ”synthetic initialization vector” (or nonce) input for the CTR mode encryp-
tion. In this authenticated encryption mode, the plaintext has to be processed twice,
which makes SIV a two-pass approach compared to e.g. OCB [32].

After the most commonly used operation modes within the NIST LWC project have
been introduced, in the following every algorithm candidate will be described briefly.
Each cipher profile acts as a short reference for the candidate and provides references to
more specialized, in-depth details.

• COMET [33], where the CO stands for CTR, operates on a mixture of the Beetle
and CTR modes. In its original design, Beetle combines a sponge construction (see
2.3.2) with a feedback function. This increases the security bound compared to tra-
ditional sponge structures and allows for a smaller state size [34]. The developers
take the design paradigm from Beetle, but replace the internal sponge permutation
with a call to a block cipher and make use of CTR mode. COMET offers different
variants with the underlying block ciphers AES, CHAM and Speck [35, 36]. De-
pending on the variant, the block size of the primitive is set to either 64 or 128
bits.
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• Elephant [37] is based on an encrypt-then-MAC mode. The exploited primitive
in Elephant is a simplified version of the tweakable Masked Even-Mansour (MEM)
block cipher [38], encryption is done in CTR mode and message authentication
is handled by a variation of the Wegman-Carter-Shoup principle [39]. Elephant
provides different instances relying on either SPONGENT [40] or Keccak [41]
as a permutation, depending on the configuration of the MEM cipher.

• ESTATE [42] features a MAC-then-encrypt mode, with OFB [28] applied for en-
cryption and the optimized Cipher Block Chaining (CBC) MAC variant FCBC for
tag generation [43]. There exist two instances of ESTATE, one using a tweakable
variant of the GIFT cipher [44] and another one using tweakable AES in its core.
ESTATE is built to be specifically energy-efficient in lightweight applications.

• FlexAEAD [45] describes a modified version of the FlexAD cipher using the Even-
Mansour construction [46]. The submission supports block and state sizes ranging
from 64 to 256 bits. Diffusion is achieved with exclusive-or (XOR) and shuffle
operations, the 8-bit AES S-Box is utilized for confusion.

• ForkAE [47] is constructed out of three main building blocks: First, a forkcipher as
introduced by Andreeva et al. is implemented as a symmetric key design compo-
nent. A forkcipher is a construction that receives a plaintext message and a tweak
as an input and generates two ciphertexts as an output [48]. As a second compo-
nent, the tweakable block cipher SKINNY is selected and used as the underlying
primitive. The last building block is formed by two specific operation modes, Se-
quential AEAD from a Forkcipher (SAEF) and Parallel AEAD from a Forkcipher
(PAEF). In short, ForkAE is a primitive exploiting SKINNY in the forked instan-
tiation FORKSKINNY, which is operating in the defined modes SAEF and PAEF.
Since it is based on SKINNY, the ForkAE shares many properties with this primi-
tive. The candidate is optimized for handling short messages particularly efficient,
and is comparatively easy to protect against basic side-channel attacks.

• GIFT-COFB [49] utilizes the COFB AEAD mode for block ciphers [31]. This
was initially designed to perform best regarding hardware implementation size.
The designers combine the COFB mode with the GIFT block cipher [44]. GIFT
was developed to deliver excellent performance in hardware and seemed to be
complicated to implement efficiently in software. However, the authors of the
submission presented a new a method called fixslicing to express the algorithm in
a more performant way in software [50]. Considering its novelty, the underlying
GIFT cipher presents a well-researched and fitting building block for LWC.

• Similar to GIFT-COFB, HyENA [51] is instantiated with the GIFT cipher. Its
input is put together from PFB and CFB, thus Hyena uses a hybrid feedback
mode [31]. HyENA focuses on efficiency in hardware designs. Moreover, it only
needs one block cipher call per data call, which is commonly referred to as the
single-pass property.
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• LAEM [52] adopts the SIMON block cipher as its main primitive [36]. The block
and state size of the candidate is 128 bits, independent of the algorithm variant.
The dominant changing parameter is the key size, with 128, 192 or 256 bits, de-
pending on the instance. LAEM operates in ECB mode and is built such that its
implementations can be easily parallelizable.

• LILLIPUT-AE [53] is based on the tweakable version of the block cipher LILLIPUT
presented in [54]. It features the two operation modes OCB and Synthetic Counter
in Tweak mode (SCT) [55]. The permutation consists of an extended generalized
Feistel network [56]. With the two different modes, LILLIPUT-AE offers one
nonce-respecting and one none-misuse resistant variant, which allows for flexibility
depending on the use case.

• Limdolen [57] operates in CTR mode with the round function inspired by the
Parallelizable Message Authentication Code (PMAC) SIV construction [58, 32].
The permutation features a Feistel structure and confusion is achieved through
ARX operations. Due to its design, Limdolen is inherently resistant to timing
side-channel and fault attacks.

• LOTUS-AEAD and LOCUS-AEAD [59] are instantiated with a tweakable variant
of the GIFT cipher [44]. The mode of operation of LOTUS relies on OTR, while
LOCUS features an OCB mode which has already been used in a variant of AES
submitted to CAESAR [60, 61]. Due to the nature of their modes, LOTUS and
LOCUS are easy to parallelize. The primary variant provides one of the smallest
state sizes (64-bit) of all NIST LWC candidates.

• mixFeed [62], short for MInimally Xored FEEDback, describes an AEAD algorithm
with a hybrid mode using a combined feedback from ciphertext and plaintext. The
designers choose AES with a key and nonce size of 128 bits as an underlying primi-
tive. However, in their AES-based operation, they carry out the MixColumns step
also in the final round. The secret subkey for each encryption is computed using
the input nonce. Through use of the nonce-dependent key, the master key remains
secret even in case the key corresponding to the nonce is leaked. Technically,
mixFeed can also work with other block ciphers incorporated in its core.

• Pyjamask [63] focuses on side-channel resistance while still being lightweight in
its design. The primitive is internally using its own permutation and relies on
OCB mode. The Pyjamask permutation only uses a minimal amount of non-
linear gates in order to allow for efficient implementations of (higher-order) masked
variants [61].

• Qameleon [64] represents another candidate which makes use of a variant of the
OCB mode. In particular, Qameleon operates in the PArallelisable NOnce Ro-
tating Authenticated Encryption with Assocaited Data (PANORAMA) mode and
instantiates the tweakable block cipher QARMA [65]. QARMA is built as an
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Even-Mansour construction featuring three rounds and has a 4-bit S-Box to ob-
tain confusion [66]. Qameleon allows for a high level of parallelization and is
specifically optimized for efficient memory encryption.

• As also seen in other NIST LWC submissions, Remus [67] is constructed from the
SKINNY cipher introduced in 2016 [68]. Remus shares its basic design with the
candidate Romulus, since both rely on the variants of the tweakable block cipher
SKINNY. Remus offers two main variants, the nonce-based AEAD cipher Remus-
N and the nonce misuse-resistant family Remus-M. Moreover, the designers chose
COFB as the basic mode of operation.

• Romulus [69] follows a similar design principle as Remus. Generally, SKINNY
is used as the internal block cipher which runs in COFB mode in Romulus-N.
Yet, Romulus-M adapts the SIV construction instead of the feedback-based mode
COFB. Remus and Romulus mainly differ in the way of the instantiation of the
tweakable block cipher. In Romulus, the state uses ”persistent key material and
a changing tweak” [67], while Remus is ”utilizing the whole tweakey state of
[SKINNY] as a function of the key” [67].

The designers of Romulus added a third variant of the cipher during the competi-
tion, Romulus-T. Romulus-T is developed as a leakage-resilient mode to limit ”the
exploitability of physical leakages via side-channel attacks, even if these leakages
happen during every message encryption and decryption operations” [69]. This
mode is designed according to the principles of the AEAD primitive TEDT [70].

• SAEAES [71] is based on the standard AES cipher. Therefore, e.g. protections
against side-channel attacks that have been studied for AES can also be easily
applied to SAEAES. The AES block cipher is instantiated in an AEAD mode of
SAEB, which is short for Small (Simple, Slim, Sponge-based) AEAD from Block-
cipher [72]. SAEB was designed to support a minimum state size (4 × 4 bytes in
SAEAES) and uses XOR operations only.

• Saturnin [73] specifies a permutation with a 4×4×4 cube of 4-bit nibbles as its state
and a 4-bit bitslice S-Box to realize confusion. The design offers two encryption
modes, Saturnin-CTR-Cascade as a general AEAD cipher and Saturnin-Short, a
design specifically built for working with messages that are smaller than 128 bits
and for scenarios where no AD is needed. Saturnin operates in an encrypt-then-
MAC mode, its block and key size is 256 bits.

• Simple [74] offers two main categories of ciphers. One where the state and block
size equals 128 bits and a second one, where these parameters are half the size. The
length of the key remains at 128 bits for both variants. For tag generation, Simple-
128 and Simple-64 define the building block CBCMAC-IV, while Simple128 uses
CTR and Simple64 uses CENC mode for encryption. Moreover, the cipher suite
provides different primitives, depending on the underlying block cipher. In their
submission, the designers state options with PRESENT, GIFT and Speck [75, 44,
36].
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• SIV-Rijndael256 [76] consists of the block cipher Rijndael, of which the AES stan-
dard has been formed. However, SIV-Rijndael uses Rijndael256, a variant of the
block cipher with a block and state size of 256 bits and a 128-bit key length. To
provide AEAD functionality, the cipher is paired with SIV, which combines an en-
cryption algorithm – in this case Rijndael256 – with a pseudorandom function [32].
Due to the design of the SIV mode, SIV-Rijndael256 still provides security in case
nonces are repeated.

• Another candidate that incorporates the SIV construction is SIV-TEM-PHOTON [77].
Here, SIV gets paired with the tweakable Even-Mansour structure TEM-PHOTON [78,
79]. In TEM-PHOTON, the round functions of the PHOTON permutation [80]
are selected as a base for the tweakable Even-Mansour cipher.

• Like other NIST LWC candidates, SKINNY [81] chooses the eponymous cipher as
the internal block cipher [68]. The submission provides two instances SKINNY-b-i,
where blocksize b is 128 bits for both and the input length i is either 256 or 384 bits.
The ciphers are designed according to the TWEAKEY framework and operate in
OCB mode [82]. SKINNY represents an already well-researched primitive, which
has withstood extensive cryptanalysis since its publication.

• SUNDAE-GIFT [83] specifies an AEAD scheme based on the block cipher GIFT-
128 [44]. The block cipher is utilized in the SUNDAE mode of operation. SUNDAE
was designed as a Small universal deterministic authenticated encryption for the
Internet of Things and presented in 2018 [84]. SUNDAE-GIFT is particularly suit-
ability for short messages, the authors argue that the internal usage of GIFT has
advantages in efficiency over e.g. candidates based on PRESENT or SKINNY [83].

• TGIF [85] describes the tweakable block cipher TGIF-TBC. The design of this
component is largely inspired by the GIFT cipher and even reuses 4 rounds of
GIFTb, which denotes a bitsliced variation of GIFT [44]. TGIF adapts its modes of
operation from Romulus and Remus. The variant TGIF-N implements a modified
COFB mode, while TGIF-M defines a similar mode to SIV and SCT [31, 32, 55].

• TinyJAMBU [86] represents a variant of the JAMBU mode submitted to the
CAESAR competition. The block cipher AEAD mode has there been selected as
a 3rd round candidate [87]. In TinyJAMBU, the designers show a smaller variant
of the JAMBU mode with a reduced message block size of 32 bits. TinyJAMBU
defines a keyed permutation featuring a 128-bit Non-Linear Feedback Shift Register
(NLFSR). The non-linear part of the permutation is realized with a NAND gate.
TinyJAMBU supports parallel computation and provides better authentication
security in case of nonce-misuse compared to other modes [86].

• TRIFLE [88], as the full name ThReshold Induced Fault resistant Lightweight
authenticated Encryption suggests, is designed to provide efficient (and inher-
ent) protection against side-channel and fault attacks. The submission defines
a specially-designed MAC-then-encrypt mode that hardens the cipher inherently
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Figure 2.1: General structure of a sponge construction [1]

against well-known fault attacks. Moreover, the authors claim that a protected
Threshold Implementation (TI) of TRIFLE can be realized more area-efficient
than e.g. for PRESENT or GIFT [44, 75, 88].

• AES-GCM [89] is not a NIST LWC candidate. However, it will be heavily used as
a reference to judge the performance of the novel ciphers’ implementations. AES-
GCM is a well-known standardized AEAD scheme that is applied in lots of use
cases, also in the industry. The encryption in AES-GCM is based on CTR mode,
while authentication happens in parallel through multiplications in the Galois field
GF (2128).

2.3.2 Sponge-based Ciphers

A sponge construction describes a cryptographic operation mode, which is based on a
permutation that has a fixed length and works on a defined number of bits b [90]. We
denote the permutation as a function f . The sponge construction as a whole has an
input m of variable length and produces an arbitrary-length output z. The permutation
f is typically applied on b several times, similar to a round function. In a sponge
construction, the bits b are divided into two groups, the rate r and the capacity c, such
that b = r + c.

Before the first main phase on the sponge (absorbing), the input string is padded and
sliced into blocks of size r. After b is initialized with zeros, the absorbing of the input
starts. Input blocks of size r are XORed into the bits b, then the permutation f is applied.
These two steps repeat as long as there are input blocks left. Note that the bits b are
also often referred to as the state of the sponge construction in the context of symmetric
cryptography or hashing.
In the second part of the sponge (squeezing phase), the construction extracts the first

r bits of the current state as an output block, then f is applied. Again, these two
operations repeat until the number of desired output blocks have been returned. The
last c bits of the state are never altered by the input, nor are they returned as an output.
Figure 2.1 illustrates the described steps carried out in a sponge construction.
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A popular variation of the standard sponge is the duplex mode. Inspired by full-duplex
communication, in a duplex sponge, the input (absorbing) and output (squeezing) phases
happen in an alternating fashion. Moreover, the in- and outputs have fixed lengths and
any output depends on all previously processed inputs. Duplexed sponge constructions
also allow for one-pass authentication and encryption. The SpongeWrap AEAD mode
relies on the duplex sponge. This single-pass authenticated encryption construction
requires the associated data to be unique for encryptions with the same key. Essentially,
the associated data has to behave the same way as a nonce to retain confidentiality. If
this property is violated, different plaintexts will be encrypted with the same keystream
[91].
An alternative to the standard duplex sponge is the monkey duplex mode. This

variant introduces the use of a nonce in the initialization phase. Since the nonce has
to be unique, this mode is not applicable in case the uniqueness of a nonce cannot be
guaranteed. However, this modification of the regular duplex sponge results in a gain in
security [92].
Besides these three sponge designs, the Beetle mode of operation is often integrated

in NIST LWC ciphers. Beetle is based on SpongeWrap and implements a sponge con-
struction together with a combined feedback block. The feedback is utilized to introduce
a difference between the current ciphertext and the input to the next permutation. In
classical sponge constructions, these values are the same. This alternation boosts the
security of the mode without sacrificing performance [34].
In the following, we introduce the sponge-based NIST LWC ciphers and their key fea-

tures. Again, sources with additional details for each cipher are linked and the algorithms
are added to the table overview in appendix A to support a quick comparison.

• ACE [93] features a 320-bit state consisting of five 64-bit words. It uses XOR, AND,
shift and shuffle operations together with a reduced version of the Simeck cipher
in its core [94]. ACE runs in a sLiSCP sponge mode specifically suited for Simeck-
based constructions [95]. ACE is implemented in a bitsliced manner, which makes
its implementation resistant against cache-timing attacks.

• ASCON [96] has the same state size as ACE and operates in a monkey du-
plex mode [92]. As mentioned before, in duplex constructions, the absorbing and
squeezing phases are not completed subsequently. The processing of an input mi

is directly followed by the squeezing of an output block zi.

Ascon has already been part of the CAESAR competition and some of its in-
stances were selected as the primary choice for lightweight authenticated encryp-
tion in the final portfolio. The Ascon suite provides three different main variants.
Ascon-128 and Ascon-128a are the recommended types for AEAD, while Ascon-
128 is set as the primary recommendation. Ascon-80pq offers higher resistance
against quantum key-search attacks. The cipher family is designed to be protected
against side-channel attacks at a low(er) cost.

• Like Ascon, CiliPadi [97] operates in a monkey duplex mode [92]. It offers four
different instances: Mild, Medium, Hot and ExtraHot, which differ in state, tag,
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key, block size and number of rounds. CiliPadi applies XOR operations and block
swaps for diffusion and implements two unkeyed rounds of the LED cipher (with
a 4-bit S-Box from PRESENT for confusion [98, 75]). The LED cipher can be
replaced with any AES-like block cipher in this design.

• CLX [99] features a sponge duplex mode of operation. CLX defines a permutation
P160+x,n, where the state size in bits is denoted by 160 + x and n specifies the
number of rounds. For example, P160,320 describes that a 160-bit state is updated
in 320 rounds. The state update function in CLX is realized with a NLFSR.
The computation of CLX allows for parallel execution of various rounds. The
cipher family contains seven AEAD variants, the primary member CLX-128 and
three pairs of ciphers with a key size of 128, 192 and 256 bits each. Every pair
consists of a version Q, which is optimized for speed and a versionH, which ensures
protection of the secret key in case of nonce-misuse.

• DryGASCON [100] is based on a mixture of Ascon and the DrySponge mode.
DrySponge is another sponge construction, which is similar to the duplex variation,
there are however slight differences in the ways its input is merged and the output
is returned [91]. DryGASCON is designed such that it allows for protection against
most physical attacks already on an algorithmic level. This is achieved through
the introduction of a dedicated input which is used for domain separation. The
algorithm utilizes a generalized version of the Ascon permutation, GASCON, that
supports a bigger state size and reaches up to 256-bit instead of 128-bit security.

• Gimli [101] was designed to fit a broad range of LWC use cases, ranging from
hardware targets to server systems that communicate with multiple clients possibly
running the same cryptographic algorithm. Gimli operates in a duplex mode and
features a 384-bit state. On bit level, the state is organized in a parallelepiped with
the dimensions 3×4×32. This corresponds to 12 32-bit words on an implementation
level. Gimli uses defined swap methods (big swap and small swap) to produce
diffusion and a SP-box consisting of AND, XOR and rotation operations to reach
confusion.

• Again, InGAGE [102] uses the monkey duplex mode of operation. One property
that distinguishes InGage from most other sponge-based ciphers is its low rate size,
which gets as small as 8 bits, depending on the variant. When r = 8, the state
holds 232 bits. In its largest configuration, InGAGE has a state size of 512 bits
with r = 64. As a non-linear layer, InGAGE implements a small 4-to-2-bit S-box
and diffusion is achieved through bit shuffling.

• ISAP [103] features a sponge-based encrypt-then-MAC construction. The main
design focus of the cryptosystem lies on the resistance against side-channel at-
tacks. Isap incorporates a re-keying function that ensures that always fresh secret
material is injected when processing new data. This mechanism hardens the prim-
itive against a number of Differential Power Analysis (DPA) attacks. Isap defines
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four different instances, Isap-K-128a, Isap-A-128a, Isap-K-128, and Isap-A-
128. The variants that have a K in their name internally employ a 400-bit state
processed by the Keccak permutation, while the other two apply the Ascon per-
mutation on a 320-bit state [41]. Keccak in a configuration with a larger state is
part of the SHA-3 specification [14].

• KNOT [104] is another NIST LWC candidate relying on a monkey duplex construc-
tion. The permutations applied in KNOT are based on the bitsliced block cipher
RECTANGLE [105]. KNOT offers various instances with different properties. For
example, the state size ranges from 256 to 512 bits. In the KNOT permutation,
three different steps are conducted subsequently: AddRoundConstant, SubColumn
and ShiftRow. These operations are carried out on the state bits b and can be ex-
pressed in a bitsliced manner. Therefore, KNOT is well-suited to be implemented
in a bitsliced way that is resistant against cache-timing attacks.

• ORANGE [106] and its AEAD variant ORANGE-Zest are built upon a slightly
modified sponge construction. ORANGE-Zest uses full state absorption and holds
a second 128-bit secret state to allow for the complete absorbing of the first
state. ORANGE utilizes the PHOTON256 permutation with its 4-bit S-box inter-
nally [80].

• Oribatida [107] is operated in a variant of the monkey duplex sponge mode. It
incorporates the SimP permutations, which are strongly inspired by instances of
the SIMON block cipher [36]. Oribatida defines two cipher versions, Oribatida-256-
64 with a permutation size of 256 bits (based on SIMON-128-128) and Oribatida-
192-96 with a smaller 192-bit state (based on SIMON-96-96). The second number
in the cipher name defines the size of the mask s, which is included to protect
the ciphertext additionally and reach the required security level stated by NIST.
Oribatida provides robustness in case of the release of unverified plaintexts. If a
plaintext is leaked from invalid ciphertexts, Oribatida still retains the integrity of
the data.

• PHOTON-Beetle [108] applies the sponge variant Beetle [34]. The Beetle mode
is instantiated with the PHOTON permutation that is also applied in ORANGE-
Zest. The PHOTON permutation, denoted as P256 by the designers of PHOTON-
Beetle, works on a 256-bit state, the rate of absorption differs between 128 and 32
bits, depending on the variant of PHOTON-Beetle.

• Shamash [109] is operated in a sponge duplex mode with a 320-bit state, ex-
pressed in five 64-bit words. It uses its own permutation based on MixColumns
and ShiftRows functions and a specifically designed 5-bit S-box. The authors claim
that the low algebraic degree 2 of the S-box, while it has disadvantages in regards
of algebraic attacks, makes it easier to implement protected versions of the ci-
pher. The minimum length for tags in Shamash is 8 bytes. The cipher is not
parallelizable due to its design.
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• SNEIKEN [110] defines the novel BLNK2 mode, which is modelled according to
the ”BLINKER-style” primitives [111]. These are state-based modes using rates
and capacities like standard sponge constructions. SNEIKEN employs a relatively
large 512-bit state, the data block size is either 256 bits (SNEIKEN256), 320 bits
(SNEIKEN192) or 384 bits (SNEIKEN128). The underlying SNEIK permuta-
tion is designed as a NLFSR. Additionally, diffusion is reached through a simple
ARX layer that performs additions, rotations and exclusive-or operations on 32-bit
words [20].

• SPARKLE [112] is inspired by the block cipher SPARX [113] and mainly mod-
ifies its block size and key length. The Sparkle permutation can be used in an
AEAD or hash setting. The designers of Sparkle name the algorithms for the two
categories of application Schwaemm and Esch. In Schwaemm, the Sparkle per-
mutation is instantiated within the duplex sponge mode Beetle. However, Beetle
is slightly modified by limiting the key length to the size of the capacity c. In-
ternally, Sparkle implements a four-round ARX-box operating on 32-bit words.
Schwaemm provides four instances (128-128, 256-128, 192-192, 256-256) with dif-
ferent security levels and state sizes ranging from 256 to 512 bits. Since we do
not consider hash functions in this work, we always refer to the AEAD variant
Schwaemm when mentioning the candidate Sparkle.

• SPIX [114] incorporates the monkey duplex sponge with a state size of 256 bits. It
uses the Simeck-based sLiSCP-light permutation that is also implemented in the
ACE cipher [95]. Block swaps and XOR operations help in achieving diffusion and
the eight-round 64-bit Simeck box is exploited for confusion [94]. SPIX processes
blocks of 64 bits and defines only a single instance for AEAD.

• SpoC [115] is operated in a slight variation of the Beetle mode. Like SPIX, it also
includes parts of Simeck and the sLiSCP-light permutation at its core. According
to the design of Beetle and other sponge constructions, the rate is usually masked
by the input bits. Instead, in SpoC the capacity part of the state is masked with
the input block. The authors claim that this change in the mode helps to achieve a
higher security level while implementing a lower state size. SpoC offers two cipher
variants, one with 192 and one with 256 state bits.

• Spook [116] was designed with the two primarily goals of resistance against SCA
and energy-efficiency. Therefore, the cipher features a leakage-resilient operation
mode that allows for efficient side-channel protection [117]. Furthermore, this
mode is coupled with the tweakable block cipher Clyde-128 and the Shadow-512
permutation. These advanced building blocks are inspired by the bitsliced designs
of other block ciphers [118]. Clyde-128 and Shadow-512 enable efficient bitsliced
and side-channel resistant implementations with a low-energy footprint.

• Subterranean 2.0 [119] origins from its first version published in 1992 [120]. The
state of Subterranean is expressed as a one-dimensional array of 257 bits, which
makes it hard to implement the cipher efficiently in software. The cipher is operated
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in a duplex sponge mode with an injection rate of 33 bits. Due to the state design
of Subterranean 2.0, the cipher is suited for low-area and low-energy hardware
implementations.

• Sycon [121] features a monkey duplex sponge. It implements the eponymous per-
mutation, which is operating on a 320-bit state. Confusion is achieved by using
a 5-bit S-box, the whole permutation consists of two different layers of smaller
permutations. The first layer applies simple linear diffusion on the 320-bit state,
the second (called FIST) performs five permutation steps on 64 symbols before
running the inverse of the first permutation layer on the state. Sycon is designed
in a way to be efficient in both software and hardware implementations.

• XOODYAK [122] defines a 384-bit state manipulated by the Xoodoo permuta-
tion [123], which is inspired by Keccak. The state is organized in three 128-bit
planes that are mixed on the basis of 3-bit column chunks. Xoodyak is operated
in Cyclist mode, a lightweight variation of Motorist, which is applied in the CAE-
SAR candidate Keyak [124]. In Xoodyak, nonce-misuse does not lead to leakage
of the secret key through cryptanalysis. Also, the authentication part of the cipher
does not rely on a nonce at all.

• Yarará [125] is using a duplex sponge construction with a state size of 256 bits
with a rate of 64 and a capacity of 192 bits. The state is expressed in the four
64-bit words x0, x1, x2 and x3. Diffusion is realized by alternating linear diffusion
and column mixing, while the confusion part relies on a 4-bit S-box. In Yarará,
the plaintext, ciphertext and AD is padded to a length of r/8 = 8 bits. The cipher
is well-suited for bitsliced implementations.

2.3.3 Stream Ciphers

The NIST LWC team also received some stream-based algorithms as proposals for first
round candidates. In contrast to block and sponge-based ciphers, a stream cipher does
not feature a block size or rate. Instead, the plaintext is processed symbol by symbol,
typically bit by bit. The input is combined with a (pseudo-) random keystream to obtain
the ciphertext. Typically, the combination of the input and the keystream is done with
a XOR operation. As mentioned previously, block ciphers can as well be operated as a
stream cipher by choosing a particular mode (e.g. CTR).

In the next section, we provide a brief description of each stream cipher taking part
in the NIST LWC project.

• Bleep64 [126] is heavily based on its predecessor BeepBeep introduced in 2002 [127].
Bleep64 shares the basic structure with BeepBeep, while it is improved in perfor-
mance and provides better avalanche. The key size is also reduced from 223 to
128 bits. Bleep64 implements a 127-bit Linear Feedback Shift Register (LFSR),
which acts as Pseudo-Random Number Generator (PRNG). This PRNG is paired
with an autokey stream cipher to provide confidentiality and integrity. The cipher
introduces non-linearity through ones’-complement addition.
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• The state of Fountain [128] is stored in four 64-bit LFSRs. Fountain exploits the
4-bit S-box of GIFT to extract the required number of bits. This 4-bit string is
then fed to a Maximum Distance Separable (MDS) matrix which is defined over
GF (22) [129]. Fountain is oriented towards efficient implementations in hardware
and allows for parallel computation.

• Grain-128AEAD [130] employs a pre-output generator that consists of a 128-
bit NLFSR and a 128-bit LFSR. This component is responsible for producing
a pseudo-random bit stream that is needed for encryption and authentication.
Both registers together also represent the state of the cipher. The second main
component of the algorithm is the authenticator generator, which is made from
a shift register and an accumulator. The two building blocks each are 64-bit in
size and the shift register contains the current 64 odd bits from the pre-output.
Grain-128AEAD represents a slight modification of Grain-128a, which has already
been introduced in 2011 [131]. A major difference to Grain-128a is that Grain-
128AEAD does not support an encryption-only mode, but always authenticates
the input data (according to the NIST LWC requirements).

• HERN [132] forms its state from four LFSRs containing the 64-bit words s0, s1, s2
and s3. Additionally, the two 1-bit variables a and b are used to hold the in- and
output bit, respectively. For the state update function, the LFSRs are connected
circularly, such that ”one bit of one register affects its previous register” [132].
HERN uses XOR together with AND operations to introduce non-linearity and allows
for 32 function steps to be computed in parallel.

• Quartet [133] organizes the state of the cipher as four 64-bit lanes x0, x1, x2 and
x3. The round function is defined as r = τ ◦λ◦ρ◦χ with λ and ρ providing diffusion
through rotations and Ascon-like operations, τ performing constant addition and
χ being the only functions introducing non-linearity. In Quartet, the plain- and
ciphertext is padded to match a multiple of 8 bit, the cipher can be (partly)
parallelized and is designed to be very efficient in hardware while maintaining
reasonable performance in software.

• TRIAD-AE, the AEAD variant of TRIAD [134], is built as an encrypt-then-MAC
construction with the MAC part relying on a sponge variant. For encryption,
TRIAD-AE adopts the TRIVIUM stream cipher [135] and alters it in order to
achieve a higher and NIST-compliant security level. The TRIAD state is con-
structed from three registers with the size of once 80 and twice 88 bits. This results
in a state size of 256 bits, which is a 32-bit reduction compared to the TRIVIUM
cipher. TRIAD-AE is designed with a focus on low-energy consumption and rea-
sonable area size. Nonce-misuse in TRIAD-AE leads to loss of confidentiality, but
no loss of the security of the key.

• WAGE [136] defines a 259-bit permutation derived from the Welch-Gong stream
cipher [137]. It was developed to be efficient in a hardware implementation. WAGE
is operated in a sponge duplex mode with a rate r of 64-bit. The round function
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consists of a LFSR, two Welch-Gong permutations and the application of four 7-bit
S-boxes. The LFSR, i.e. the state of the cipher, is expressed in 37 stages, with
every stage being an instance of the finite field F27 . WAGE applies padding to the
AD, plain- and ciphertext in case their length is not a multiple of 64 bits.

2.3.4 Others

• CLAE [138] is an AEAD design based on the Learning with Errors (LWE) prob-
lem [139]. A certain number of input bytes are encrypted into 2-byte ciphertexts.
That these 2-byte chunks appear as randomly sampled – similar to the decision
problem in LWE – forms the basic idea of CLAE. The 2-byte ciphertext has some
advantages when it comes to integrity and fault attacks. It offers 1-byte redun-
dancy, so its decryption will fail if the ciphertext is altered unintentionally or by a
fault attack. Moreover, any modification of the plaintext, the nonce or the AD will
be reflected in the whole ciphertext. If the ciphertext is changed, the decryption
process spreads the faults to each 2-byte block, where they can be detected. CLAE
provides protection against side-channel attacks due to ”[t]he bytes in the secret
key [being] accessed nondeterministically during encryption” [138].
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3 A Framework for Benchmarking NIST
LWC Ciphers

The core ideas presented in this chapter have already been published in S. Renner, E. Poz-
zobon, and J. Mottok. A hardware in the loop benchmark suite to evaluate NIST LWC
ciphers on microcontrollers. In International Conference on Information and Communi-
cations Security, pages 495–509. Springer, 2020

Over the last roughly 20 years, various benchmarking suites for cryptographic algo-
rithms have been developed. Especially, the evaluation projects mentioned in chapter 1
often kickstarted benchmarking efforts and the development of suitable frameworks to
assess the participating ciphers. For example, the work of Ankele et. al focuses on soft-
ware benchmarking of 2nd round CAESAR candidates. They classified the lightweight
ciphers and evaluated their speed on two desktop computers processing different message
lengths [141].

Older but still very popular frameworks are eBACS and SUPERCOP. eBACS con-
sists of different software components that are made for measuring the performance of
asymmetric cryptography, stream ciphers, hash functions and authenticated encryption
algorithms. Parts of it origin from the benchmarking efforts carried out during the eS-
TREAM competition [13]. SUPERCOP supports a significant amount of test cases and
platforms for evaluating cryptographic software. The setup features many test devices
operated by different engineers in different locations. SUPERCOP is run in powerful
desktop environments as well as on higher-power ARM Cortex-A cores. It iterates over
lots of compilation options to find the most performant settings for each platform and
implementation [142].

Dinu et al. worked on a performance evaluation tool to support the fair assessment of
software implementations of block ciphers. Initially, they benchmarked 19 cryptographic
algorithms in their FELICS framework [143, 144]. This FELICS framework was later
extended to allow for testing AEAD ciphers in the context of the NIST LWC project. It
features three different platforms and ranks algorithms accoring to execution time, code
size and Random Access Memory (RAM) utilization [145].

Other benchmarking efforts within the NIST LWC project include the research from
Weatherley. He focused on speed testing implementations on AVR-architecture. More-
over, he provided variants optimized on assembly level himself and conducted bench-
marks on 32-bit and 8-bit platforms. His results are presented in relation to the execu-
tion time of the ChaChaPoly AEAD scheme, an alternative to AES-GCM that relies on
the stream cipher ChaCha20 and the authentication algorithm Poly1305. ChaChaPoly
is standardized in an IETF RFC [146, 147].
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Campos et al. base their performance evaluations on a single architecture, RISC-V.
They study the optimization potential for C and assembly implementations of six NIST
LWC candidates. The cycle count for their software versions is measured in multiple
simulation environments and on a SiFive E31 core. The authors show that they can
reach significant speed gains when applying certain implementation strategies, such as
loop unrolling or bit interleaving [148].

The NIST cryptography team itself applied performance benchmarking of software
implementations. Their research includes execution time and code size evaluations on
four different architectures. NIST presented speed rankings for various message sizes,
both with and without AD. Their experiments have been initially conducted for 2nd
round candidates [149].

More examples for cryptographic software benchmarking outside the NIST LWC com-
petition are the research from Hyncica et al. and Tschofenig et al.: While the former
work also analyzes symmetric ciphers of embedded platforms, the latter compares the
performance of asymmetric algorithms. In particular, the timing differences of the sig-
nature and verification process of elliptic curve cryptography are evaluated on Cortex-M
microcontrollers [150, 151].

Since the performance of ciphers is important in a software and in a hardware imple-
mentation, other researchers also specialize in comparing e.g. the NIST LWC candidates
on FPGAs or ASICs. While this is out of scope for our work, their analyses complement
the software benchmarks and have to be taken into account when judging the weight
of a cipher. The most prominent benchmarking projects for hardware implementations
of NIST LWC ciphers are maintained by Kaps et al., Khairallah et al. and Aagaard et
al. [152, 153, 154].

Our benchmarking framework differs from the mentioned research in the following
aspects. First off, our solution is custom-built and tailored for the algorithms and con-
straints of the NIST LWC competition. This means both the software and the hardware
platforms has been designed and selected to be suitable for evaluating the NIST candi-
dates. Furthermore, the testing process and the tool was built to support a high degree
of automation. This allows for fast result gathering and feedback without heavy human
interaction. On top of the automated test procedure, we host a publicly accessible web-
site, where the benchmarking results and useful metadata is published for each test. The
website blends seamlessly with the idea of updating the comparison data with results
from freshly emerged implementations. Since also most parts of the testing process is au-
tomated, this allows us to always keep our benchmarking results up-to-date throughout
the whole NIST LWC project.

The combination of these key design points and features distinguishes our framework
from related work. While most benchmarking projects offer a subset of these properties,
none fully matches all of them. In the following section 3.1, we first discuss the require-
ments for an ideal NIST LWC benchmarking framework in detail and then highlight how
our custom-built solution matches these the best in comparison to the most important
related work.
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3.1 Requirements

When we planned our LWC benchmarking project, we had to decide whether we use
and extend an existing framework or if we build our own. In order to make an educated
decision, we elaborated requirements that our solution had to meet. While we did not
follow a strict software development process, we still researched the landscape of already
built frameworks and implemented the step of formulating requirements before the actual
design and implementation of the benchmarking tool.

The benchmarking project was already started shortly after the beginning of the NIST
LWC competition. With still 56 candidates in competition and multiple implementations
per candidate, we knew that having a high degree of automation in the testing procedure
and results gathering is critical. Moreover, one of our project goals was to support the
selection process by NIST throughout the whole project duration. In order to achieve
that, not only a strongly automated testbed is needed, but also a result database has to
be maintained and updated regularly.

Another key requirement is a suitable interface to the implementation that can be
used for sending input to and receiving output from the algorithms under test. Here, it
is helpful that NIST required every submission to include (at least) a reference imple-
mentation in C that contains encryption/decryption functions with a certain parameter
set. Listing 3.1 shows the C code for the predefined signatures of these functions [24].

1 i n t c rypto aead encrypt (
2 unsigned char ∗c , unsigned long long ∗ c len ,
3 const unsigned char ∗m, unsigned long long mlen ,
4 const unsigned char ∗ad , unsigned long long adlen ,
5 const unsigned char ∗nsec ,
6 const unsigned char ∗npub ,
7 const unsigned char ∗k
8 )
9

10 i n t c rypto aead decrypt (
11 unsigned char ∗m, unsigned long long ∗mlen ,
12 unsigned char ∗nsec ,
13 const unsigned char ∗c , unsigned long long c len ,
14 const unsigned char ∗ad , unsigned long long adlen ,
15 const unsigned char ∗npub ,
16 const unsigned char ∗k
17 )

Listing 3.1: Signatures of mandatory C functions for encryption/decryption

The parameters for the cryto aead encrypt function are the generated ciphertext *c
with the elements c[0],c[1], ..., c[*clen-1] (and clen referring to the length of
the ciphertext), m being the plaintext with the length mlen and the elements m[0],m[1],
..., m[mlen-1], *ad containing the AD with length adlen and *npub pointing to the
nonce, while *k points to the secret key array. *nsec is kept for compatibility reasons
with SUPERCOP and shall not be used. The same parameter explanations apply to
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the function cryto aead decrypt. This Application Programming Interface (API) is
borrowed from SUPERCOP and defines a uniform entry point that can be utilized in a
LWC cipher test setup.

Besides fitting software interfaces, also the hardware part of a benchmarking setup
has to suit potential LWC use cases. Mainly this means that the devices under test, i.e.
the microcontrollers, should be chips that are popular platforms for IoT developments
in industry or the maker community. Furthermore, a set of embedded systems should
feature different performance categories and architectures to support a holistic testing
approach. Also, the benchmarking tool should be designed in a modular fashion, such
that adding or replacing devices under test is possible and straight-forward.

It is important as well that a performance testing tool implements the most relevant
test cases. This includes not only measuring the right metrics, but also how these metrics
are measured and under which circumstances. In the past, most related work in the
field of software implementation benchmarking focused on one or more of the following
parameters: execution time, binary size, RAM footprint [144, 148, 149]. Especially when
measuring timings on the Microcontroller Units (MCUs), it is crucial to use external
measurement equipment to not get inaccurate results due to e.g. internal timer delays.
Additionally, when quantifying Read Only Memory (ROM) or RAM consumption, one
has to take into account the memory utilization due to the testing software itself and
exclude this exact amount when judging the utilization of the algorithm under test.
The correct application and implementation of these test cases has to be ensured in an
accurate benchmarking setup.

Also, some general testing principles need to be respected. Of course, the tests and
their corresponding results need to be reproducible and always follow the same test
protocol. The benchmark figures and the gathered metadata have to be saved for each
test (attempt). For every conducted test, a log file containing details regarding the
test procedure shall be available. This can be helpful when tracing errors in the test
execution or to verify a correct termination of a test. To support maximum transparency,
the results of every benchmark should be made available to the public, accompanied
by details on the time of the test execution and the source code of the benchmarked
algorithm. In that way, third parties can inspect and follow the benchmarking process
and potential execution errors can be detected easier. These transparency requirements
can be consolidated under the term public documentation.

In table 3.1, we summarize our previously explained requirements and form them to
phrases according to the Rupp et al. template [155]. In table 3.2, we show which of
these requirements are met (to what degree) by the most popular related work. It can
be concluded that none of the available frameworks offered every of our desired features
to the full extent. Since we also did not want to study the source of an existing solution
in-depth because we believe that this is as time-consuming as a custom build, we decided
to develop our own benchmarking framework tailored for the NIST LWC project. Also
note that we started the development of our testbed in 2018, so some novel related work
might not have been as mature at that time compared to how it is now.
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Abbreviation Requirement

REQ1
The framework shall have a modular design, such
that support for additional hardware platforms
can be integrated.

REQ2
The framework shall integrate a range of MCUs
that feature different architectures and
performance levels.

REQ3
The framework shall implement the possibility
to publish and update measured results and
test meta data.

REQ4
The framework shall support measuring the
execution time, code size and RAM
utilization of the implementations under test.

REQ5

The framework shall allow for an automated test
procedure, no user interaction shall be required
from the compilation step until the publication
of the results.

Table 3.1: Crucial requirements for an LWC software benchmarking framework

Framework Requirement Fulfillment

FELICS-AE REQ1 partly
REQ2 yes
REQ3 no
REQ4 yes
REQ5 no

SUPERCOP REQ1 yes
REQ2 no
REQ3 yes
REQ4 no
REQ5 no

NIST REQ1 yes
REQ2 yes
REQ3 no
REQ4 no
REQ5 no

Table 3.2: Comparison of required features of related benchmarking frameworks
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3 A Framework for Benchmarking NIST LWC Ciphers

3.2 Software Design and Implementation

The benchmarking framework should be designed to support the fulfillment of the pre-
viously engineered requirements. In terms of the software design that mainly concerns
the modularity, automation and possibility to store, publish and update results. We
opted for a simple design that acts in favor of these desired key properties. To be able
to add and remove devices under test from a software perspective, we decided to split
the instrumentation software in two categories. A general base software, which han-
dles all common testing tasks, including the collection and storage of the results and
a device-specific template firmware, that provides a runtime environment for the test
cases. Furthermore, this firmware should be responsible for initializing required periph-
erals and preparing the MCU for the testing phase. The base software drives the test
procedures and is responsible for managing the individual test instances for each device
and implementation. This includes scheduling benchmarks and gathering their results
in an automated manner.

A third component of the benchmarking framework consists of software that takes
care of the publishing and updating of results and additional metadata. While this in-
frastructure is still part of the framework, it is not involved in the actual test preparation
or execution. Instead, this component can be rather seen as a server-side add-on, which
shares many properties with standard websites. However, the interface from the testing
software to the web-based part needs to be defined in order to meet the requirements
regarding result updates and automation.

From an implementation point of view, we followed the ideas elaborated during the
design process. The MCU-specific template is written in C/C++, depending on the
development kit available for the device. As mentioned previously, the template covers
the initialization and startup phase of the individual MCU and provides boilerplate code
that is merged with the implementation under test for each test case. The scripts that
are managing the benchmarking procedures are the same for each MCU. In general,
they implement all steps from loading a cipher implementation to publishing the gained
results.

Every benchmarking run starts with an input ZIP file that contains one or more imple-
mentations of a cipher family. NIST dictated how a cipher submission shall be structured
within the ZIP file [24]. This also concerns the structure of present implementations.
Every implementation shall contain an encrypt.c file defining the encrypt/decrypt func-
tions described in section 3.1. The C file and other additional source files shall be placed
in the path cipher family/Implementations/crypto aead/cipher variant/

implementation variant/, with cipher family being the general name of the cipher,
cipher variant representing the instance of the cipher and implementation variant

describing the kind of implementation (e.g. armv6m). Moreover, every cipher variant
has to provide a text file with fixed test vectors for different input plaintexts. NIST
offers a tool to generate this file automatically such that it can be easily included in
the submission archive. Figure 3.1 shows parts of the structure of a ZIP submission
file that we take as an input for our testing framework. Since every submission to the
NIST LWC competition has to comply with the regulations, we can rely on the folder
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submission.zip

lw-cipher

Implementations

crypto aead

lw-cipher128

test vectors.txt

avr-fast

encrypt.c

arm-small

lw-cipher256

Documents

specsheet.pdf

Figure 3.1: Predefined directory tree of a ZIP-archived NIST LWC submission

structure when using the archives as input files for benchmarking. Initially, we extract
the archive and check if the submission includes an encrypt.c file and corresponding
test vectors for each cipher variant. Then we apply some Python scripts to process the
source files and instrument the MCUs testing procedures. Note that we are not making
any changes to the submitted ZIPs, we only utilize them as input archives. In the next
step, the framework fetches the source files for every cipher variant and tries to compile
them for each target platform. During that step, the individual C/C++ templates and
the implementation sources are merged. We utilize the API introduced in section 3.1 to
interface the AEAD algorithms. In its standard configuration, the compiling tool tries
to produce a binary for every combination of implementation and target firmware. The
compilation procedure is monitored by a logging routine in case one wants to investigate
why a compilation fails for a certain MCU.

As a next step, the binaries are flashed onto the devices under test and the benchmark
procedures can be started. The flashing process and the communication setup is specific
to the MCU and therefore part of the individual template. Nonetheless, all devices share
the same interfaces and some test routines, which is why a generic test common.py script
provides the base class for the testing functions. We initialize a serial interface on each
MCU and use that to communicate between the host system and the MCUs. We also
define a simple protocol to signal which kind of data is transferred. This is required e.g.
for marking the different categories of data from the test vectors. More details regarding
this communication channel will be discussed in section 3.4.

Besides the execution of the test cases, also managing and timing the tests for various
implementations on multiple platforms is an important part of the framework. It is
especially important to be able to evaluate many implementations subsequently in an
automated fashion. Therefore, we implemented a test scheduling script that monitors
the execution of the tests. Once an implementation assessment is finished and the MCU
under test is available, the script recognizes that and starts the flashing and testing
procedure for the next compiled implementation on that platform. This service monitors
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3 A Framework for Benchmarking NIST LWC Ciphers

all platforms simultaneously in order to execute the test cases as efficient as possible. We
also provide a graphical representation of the test/implementation queue via a simple
web interface. This interface also supports opening log files and the rescheduling or
restarting of single tests. It also can be used to monitor the progress of the current set
of benchmarks.

Once a test has terminated, the results for the benchmarked metric are stored in a
database, along with acquired metadata. Moreover, the tested implementation is com-
mitted and pushed to a public git repository and also the source code for the complete
testing framework is available from public sources.1,2 In addition to that, the measured
test results are uploaded to a public website3 which allows third parties to check and ver-
ify them. Furthermore, results for novel implementations can be included in a database
and website such that an up-to-date snapshot of results can be provided throughout the
duration of the NIST LWC project. By publishing the source code of the benchmarking
tool and maintaining a repository of tested software implementations, we offer a high level
of transparency. Due to the most parts of the testing routines being automated – from
the compilation process to the updating of the result website – we support an efficient
and repeatable benchmarking effort. To give rapid feedback regarding the performance
of newly developed implementations, we additionally included a submission form on our
website. Through that, programmers can send complying ZIP archives that are then
automatically handled by our benchmarking framework. With that approach, we enable
developers to verify their implementation strategies on different target platforms in an
uncomplicated manner.

3.3 Test Setup

The hardware part of the setup consists of a host PC, a Saleae Logic Pro 16 logic analyzer
and appropriate development boards containing the selected MCU cores. Every MCU
needs to feature a serial Universal Asynchronous Receiver/Transmitter (UART) interface
in order to communicate with the host system. In case any device does not offer that by
default, external serial modules are applied. Power for the MCUs is provided via USB.
We utilize the sigrok library to interface the logic analyzer in the speed measurements.
This means any powerful enough logic analyzer that is compatible with this library
can replace the Saleae Logic Pro 16. We include this device into our setup because
it offers a stable sampling rate of 100 MHz when using five channels in parallel. We
connect the logic analyzer to one GPIO pin on each MCU. This GPIO is then toggled
once an encryption/decryption is started and again after its termination. Through that
signalling, the logic analyzer can measure the time passed precisely and externally.

For flashing the binaries onto the target devices, we either connect via a JTAG interface
(when available), or alternatively program the MCU platforms via the serial interface.
We provide an overview over the appointed compiler versions, development kits and

1https://lab.las3.de/gitlab/lwc/candidates
2https://lab.las3.de/gitlab/lwc/compare
3https://lwc.las3.de
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Software type Tool Version

Compiler (Uno) gcc 5.4.0

Compiler (F1) gcc 9.2.1

Compiler (ESP) gcc 5.2.0

Compiler (F7) gcc 7.3.1

Compiler (R5) gcc 8.2.0

Framework PlatformIO 4.3.3

Framework STM32CubeMX 5.4.0

Interpreter Python 3.7.3

Logic Analyzer Library libsigrok 0.5.1

Debugger Software openocd 0.10.0

Table 3.3: Overview of used software tools

additional libraries used in our framework in table 3.3. The compiler versions correspond
to the variants used on the different platforms. Depending on the availability on each
MCU, we developed our firmware with either PlatformIO or STM32CubeMX. Hence, we
list the incorporated versions for both frameworks. To conclude the explanation of the
architectural and implementation-based details, Figure 3.2 visualizes the communication
model of the frameworks and its previously described parts.

Submitted
AlgorithmsSubmitted

AlgorithmsSubmitted
Algorithms

MCU-specific template

C/C++/Arduino
project structure

MCU

test.py

UART

JTAG / 
SWD

Compiled
Builds

Test 
Schedulercompile_all.py

Compiles

All combi-
nations are 
compiled

Logic
Analyzer

DB

Measurements from probes

Measurements

Logs

Test
Vectors

Figure 3.2: Core components and data flow of the test framework

In the following, some configuration details regarding the selected embedded platforms
are introduced. At the time of writing this thesis, the framework supports five different
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3 A Framework for Benchmarking NIST LWC Ciphers

cores with four different architectures. We selected the devices in order to reflect a
broad range of target platforms for different use cases. Even if some of the MCUs might
seem a bit too powerful for LWC, benchmarking algorithms on them still results in an
additional comparison on a different architecture and/or instruction pipeline. Note that
due to its modular design, the framework can be simply adapted to support additional
or different MCUs. On the hardware side, only a suitable development board, a serial
connection and a GPIO pin are required. To support a new board in software, one
needs to create a template firmware that initializes the device and acts as a runtime
environment for the test cases. The easiest way to achieve that, is to change an existing
template such that it fits the new device. We have already extended our initial set of
platforms with a RISC-V-based chip. We decided to support the emerging architecture
after our initial benchmarks, since we wanted to reflect the popularity of the chipset and
provide benchmarking figures for the relatively new instruction set.

Arduino Uno R3. The Arduino Uno R3 [156] is an evaluation board for the AT-
mega328P 8-bit AVR chip, which is now sold by Mircochip Technology. With its max-
imum clock frequency of 16 MHz, a flash memory size of 32 KB, 2 KB SRAM and 1
KB EEPROM memory, it forms the lower end in our performance matrix. The device
features a 2-stage pipeline and the AVR architecture offers 32 gerneral-purpose registers.

STM32F103C8T6 ”bluepill”. This lower-end ARM board [157] is known as ”bluepill”
or ”blackpill” in the maker community. It is a cheap device, containing an ARM Cortex-
M3 core. The 32-bit chip operates at a frequency of up to 72 MHz and includes 64 KB of
flash memory. Its ARMv7 architecture has a 3-stage pipeline and supports the Thumb(-
2) instruction set.

STM32 NUCLEO-F746ZG. This NUCELO development kit [158] is driven by a pow-
erful 32-bit ARM Cortex-M7 core clocking at a maximum of 216 MHz. It features 1
MB of flash memory and 320 KB of SRAM, which puts it in the upper half of our
performance matrix, together with the following two devices. The M7 chip integrates a
pipeline with six stages and includes basic branch prediction.

Espressif ESP32 WROOM. This evaluation board [159] includes the 32-bit Xtensa
LX6 MCU. It is running at 240 MHz and can store up to 4 MB of data in its flash
memory. Moreover, it also implements 320 KB of SRAM. The LX6 core contains a 5-
stage pipeline and supports 82 RISC instructions The ESP32 is a powerful and popular
target device for various IoT projects, both in industry and in the private sector.

Sipeed Maixduino RISC-V 64. The Maixduino board [160] represents a high-power
RISC-V MCU. It is built around the Kendryte K210 64-bit MCU. This core can run
at a maximum frequency of 400 MHz and integrates 8 MB of flash storage. While
this platform is probably too powerful for most software LWC use cases, it still can be
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utilized as a proxy for the RISC-V architecture, where potential peculiarities of cipher
implementations on RISC-V can be revealed.

3.4 Test Cases

Currently, our LWC benchmarking framework features three test cases, where three
performance metrics are taken into account. We measure encryption/decryption timings,
the binary size and the utilization of dynamic memory (RAM). The first two evaluations
are carried out on all five MCU platforms and four different architectures, while the RAM
measurement is only taken on one MCU. That is because early experiments during the
development process have revealed that the dynamic memory usage is fairly constant
across various platforms and even varies comparatively little in between implementations.
Therefore, we conduct this test only on our most powerful ARM chip.

3.4.1 Execution Time

In this benchmark, we measure the encryption/decryption speed of the implementa-
tions. We use the input/output data from the test vector file supplied with each sub-
mission. This approach has multiple advantages. First, we are provided with a well-
formed dataset, which has to be part of every algorithm package. Second, this dataset
is generated by a NIST tool and features a variety of input sizes and edge cases for
plaintexts/ciphertexts. Third, while the test vectors are useful for benchmarking pur-
poses, they can as well be utilized to verify the correctness of the implementation and
the communication during the test execution.

1 Key = 000102030405060708090A0B0C0D0E0F
2 Nonce = 000102030405060708090A0B
3 PT = 0001020304050607
4 AD = 00010203
5 CT = 60267634D1D37D06582A9A50A0EBDC62

Listing 3.2: Excerpt of a test vector file with example data for an input to the speed benchmark

We measure the time for the encryption/decryption of every test vector available
from the text file. It contains 1089 plain- and ciphertext pairs with a key, a nonce and
optionally AD. The variety and number of test vectors are defined by NIST. In case
the test vector features AD, the benchmark takes the tag generation and verification
into account when measuring the timings. Listing 3.2 shows how the test vector file is
structured. In the test procedure, we send the test vector data one by one from the
host PC to the device under test. When the data is transmitted, we signal the required
action (e.g. encryption) to the MCU via a serial control message. Upon this signal,
the encryption is started and the time is taken by utilizing the logic analyzer and pin
toggling, as described in the previous section. The speed is measured for every individual
test vector. The vectors cover different message sizes, from the empty plaintext without
AD up to 64 bytes length for both inputs. In parallel to the timing benchmark, we also
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3 A Framework for Benchmarking NIST LWC Ciphers

check the produced ciphertexts and compare them to the available data in the test vector
file. In this way, the correct transmission over the serial line and the right behavior of
the tested implementation is verified.

3.4.2 Code Size

To compare the binary sizes of the LWC implementations, we compile a firmware blob for
each MCU. We use the recommended compilation flags from NIST and automatically
integrate the cryptographic routines into the templates to create a flashable binary.
Then, the du system command is executed to display the code size. Note that we also
compile one binary without any included AEAD algorithm to gain knowledge about the
code size of the provided runtime environment. This minimal size can then be subtracted
from the total size of an implementation binary to get the raw size of the LWC code.

3.4.3 RAM Utilization

Before we run an algorithm in the RAM test case, we fill the whole dynamic memory
with a known pattern. This can be achieved by connecting the evaluation board to
the debug interface. In the following, the encryption/decryption routines are run with
the integrated algorithm under test. After the processing of the test vector data has
finished, the RAM sections are analyzed. We check which of the prefilled memory
regions have been overwritten and compare the state of the memory to the one before
the algorithm execution. We observe how many consecutive memory segments remain
unchanged and calculate the used memory based on that information. Again, we consider
the memory consumed by the template alone, in order to compare the RAM utilization
of the implementations only.
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4 Benchmarking NIST LWC
Implementations

The core ideas presented in this chapter have already been published in S. Renner, E. Poz-
zobon, and J. Mottok. The final round: Benchmarking NIST LWC ciphers on microcon-
trollers. In International Workshop on Attacks and Defenses for Internet-of-Things at
ESORICS, pages 1–20. Springer, 2022

In the following chapter, we will present benchmarking results for various LWC im-
plementations obtained with our framework. Before providing numbers for different
test cases, we describe how we aimed for a fair performance assessment of the individual
candidates and why this is sometimes not entirely possible due to external factors. More-
over, we give some insights regarding the AES-GCM implementation that we compare
the LWC candidates to and how we took into account the size of our MCU templates in
the memory consumption tests.

AES-GCM represents a state-of-the-art algorithm for authenticated encryption to
date. It is a well-studied and standardized cipher that is utilized also in industry. Since
the NIST LWC initiative has been started in order to find a more lightweight alternative
to AES-GCM, a performance evaluation of the candidates should include a comparison
to the de-facto standard. In general, we do not contribute our own implementations of
cipher algorithms. We also followed this principle with AES-GCM. The implementation
that we include, is stripped from a popular TLS library, Mbed TLS. This C library is
part of the IoT operating system Mbed OS and complies with NIST SP800-38 [89]. We
did not change the optimization level of the implementation or any code related to the
AES-GCM algorithm. However, we integrated some wrapper functions to make it fit
the proposed NIST LWC API. In this way, a seamless integration of the cipher could be
ensured.

Moreover, we set some implementation flags, such that the AES-GCM variant matches
best the design goals of LWC.We add MBEDTLS AES ROM TABLES and MBEDTLS AES FEWER

TABLES to the configuration because these options are typically used in embedded sys-
tems with low memory resources. The former flag causes that the AES round constants
and the S-Box are placed in the ROM, instead of being initialized in the RAM, the
latter configuration reduces the amount of stored tables in the ROM, which is advan-
tageous regarding the binary size. With this setting, we aim to bring the AES-GCM
implementation closest to what would be expected from a lightweight cipher.
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4.1 How to Support a Fair Evaluation

It is important to pay attention to various potential issues when benchmarking and
ranking cryptographic algorithms. This is because the performance of a cipher is not
only determined by its design, but also by numerous other factors. For example, the
focus of one candidate might be directed towards a specific use case, where one metric
(e.g. the binary size) might be very crucial, but another one (e.g. encryption speed)
has less or no priority. Other properties that some LWC candidates specialize in are
the performance for short messages (e.g. eight bytes) or the (inherent) security against
certain side-channel attacks.

While these factors are heavily influenced by design choices, also implementation dif-
ferences can greatly influence performance. Depending on the programming strategy, an
implementation can be tailored to fit a certain test case. A more balanced approach can
result in similar performance in a wider range of metrics. This comes down to the fact
that many performance goals contradict each other. For example, if an implementation
is optimized for speed, that usually means it has to make use of lots of precomputed
values, which in the end results in a larger binary size. Furthermore, optimizations
cannot only target certain metrics but are often directed towards specific platforms. In
the LWC competition, this means some cipher implementations are provided (partly)
in assembly language, e.g. for ARM- or AVR-based embedded controllers. Typically,
these implementations then perform better than standard C implementations, but on
the other hand they can of course only run on dedicated MCUs.

Any optimization usually limits the flexibility of an implementation. No matter if a
cipher instance is tailored for a specific platform, metric or use case, while the optimiza-
tion causes a performance boost in that one category, it makes it less efficient in other
disciplines. Depending on the project in which lightweight authenticated encryption is
required, either a highly optimized or a more generic implementation might be the best
choice.

Note that we present benchmarking results for 3rd round NIST LWC candidates only
here. That is because on the one hand, the already eliminated ciphers are no longer
relevant for the standardization effort. On the other hand, a variety of different imple-
mentations is available for (almost all) finalists since these algorithms have been studied
for a couple of years, at least since their introduction into the NIST LWC competi-
tion. Moreover, comparing the finalists to e.g. 1st round candidates is not beneficial
since often only reference or less optimized implementations are available for already
eliminated ciphers. On top of that, the reasons for a cipher exclusion can be manifold.
While some 1st round candidates might be able to compete with some finalists regarding
performance, they might have security issues which have been exposed during the NIST
LWC project. However, we would like to mention that the ciphers Ascon, GIFT-COFB,
KNOT, Sparkle, TinyJAMBU and Xoodyak delivered the overall best performance in
our 1st and 2nd round benchmarks. Regarding the KNOT cipher, a number of attacks
have been published, which can weaken the security of the algorithm [162, 163, 164].
NIST does not reveal in detail why a certain cipher has been selected as a 3rd round
candidate. However, they state ”ASCON, GIFT-COFB, ISAP, PHOTON-Beetle, Ro-
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mulus, SPARKLE, TinyJAMBU, and Xoodyak demonstrated performance advantages
over NIST standards in software benchmarks [...]. For hardware applications, the final-
ists ASCON, Elephant, GIFT-COFB, PHOTON-Beetle, Romulus, TinyJAMBU, and
Xoodyak demonstrated performance advantages over NIST standards. ISAP provides
promising features for applications requiring side-channel resistance.” in their status
report on the second round of the NIST LWC standardization process [165].

To maintain the neutrality of our testing efforts, none of the finalist implementations
we included in these benchmark experiments has been contributed or altered by us. This
means that we do not have any influence on the amount, quality or optimization level
of the tested implementations. We only gather every publicly available implementation
and save the tested and submitted implementations in our public databases. We do not
evaluate the same number of implementations for every cipher. This number depends
on the popularity of a candidate and the maintenance of the designer team. There
are candidates for which we have access to 100+ implementations and others, where
we only tested the initial implementation submission package with less than ten imple-
mentations. Obviously, the variety and amount of (optimized) implementations affects
the maximum performance a candidate can provide in the different test cases. Figure
4.1 gives an overview of how many implementations we have tested for each candidate
and which optimization focus or target architecture these implementations aim for. We
can see that there are more than twice as many implementations available for Ascon
as there are for the candidate with the second most implementations, Romulus. While
we have access to 111 and 50 implementations for these ciphers, respectively, Isap and
Sparkle offer between 30 and 40 implementations. Xoodyak, PHOTON-Beetle and
TinyJAMBU deliver more than ten but less than 20 variants; Elephant, GIFT-COFB
and Grain-128AEAD provide less than ten implementations. Analyzing the program-
ming languages of all implementations, one can derive that almost 50% of the variants
have been programmed in C. The most popular MCU target for assembly optimizations
is ARM, while Xtensa and AVR are on a similar level but far less prominent. Com-
bining assembly accelerations with C functions for less time-critical operations is the
second most common implementation strategy. Table 4.1 further specifies which kind of
(optimized) implementations have been available to us for every cipher. The number of
available implementations together with their optimization level can have an impact on
the measurable performance of a candidate. However, it is the designers’ responsibility
to make sure the capabilities of a cipher are best represented through their implemen-
tations.

In order to support a fair evaluation, we maintain the same benchmarking process
for any implementation which is in line with the requirements discussed in section 3.1.
Moreover, we include every available implementation of any NIST LWC candidate, com-
plemented by the AES-GCM implementation, in our benchmarking.
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Figure 4.1: Number of implementations grouped by optimization focus vs. number of imple-
mentations grouped by candidate
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Cipher/Implementation C ARM AVR Xtensa Combined

Ascon yes yes no yes yes

Elephant yes no no no yes

GIFT-COFB yes yes no no yes

Grain-128AEAD yes no no no yes

Isap yes yes no no yes

PHOTON-Beetle yes no no yes yes

Romulus yes yes no no yes

Sparkle yes yes yes no yes

TinyJAMBU yes no no no no

Xoodyak yes yes yes no yes

Table 4.1: Availability of differently optimized implementations of the LWC finalists (combined
includes C implementations with building blocks accelerated with assembly)

4.2 Performance of Non-protected Implementations

In the comparisons, always the best result of each candidate is considered. This means
that for each test case we sort all implementations of every cipher by the evaluated
metric and then include the best competitor into the corresponding plot. Note that
this might lead to the inclusion of different implementations of the same cipher for
different test cases. With that strategy, we ensure that we consider the most optimal
implementation available for any candidate and test case. Also, any implementations
included are representations of primary cipher variants. We do not consider any other
alternative variants because according to NIST these are not required to meet all defined
requirements, e.g. in terms of security boundaries.
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4.2.1 Speed
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Figure 4.2: Differences in encryption and decryption speeds (on the ESP32, for including au-
thentication, X-enc represents the encryption/authentication, X-dec represents the
decryption/verification with cipher X)

For the latency test case results, we show the average encryption time of all 1089 test
vectors and timings for distinct sizes and types of input data. The plots feature encryp-
tion/authentication only, since we are dealing with symmetric ciphers. While processing
the data set, we also measure the time for decryption/verification, however there is no
reproducible difference in encryption and decryption timings. This is illustrated in figure
4.2, where we plot both timing measurements for an empty input (0 bytes plaintext, 0
bytes AD) and for plaintext/AD combinations of 8/8, 16/16 and 32/32 bytes of data.

Our speed measurement results are represented by four subplots per test platform (see
e.g. figure 4.4). The upper left plot in the group always shows the average encryption
timings on the mentioned MCU. Since the test vector input data contains many different
message sizes and an average might be unfair for ciphers optimized for specific messages,
we include measurements for selected input sizes. This way we can estimate how the
speed of a cipher develops with growing plaintexts or altered input lengths in general. In
all plots, we give the processing timings in microseconds (µs). The top right plot shows
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4.2 Performance of Non-protected Implementations

the speed for processing 8, 16, 32 and 64 bytes of AD without any additional plaintext.
The bottom left depiction covers the timings for encryption of the same plaintext sizes,
this time without any AD involved. In the lower right plot we show the latency for
encryption and authentication of 16, 32 and 64 bytes of data, whereas half of the data
is encrypted and half of the data is treated as associated data. Every plot includes
the time it takes to process an empty input. So while the (b) and (c) plots magnify
the performance of the implementations for one part of the AEAD mode only, in (d) a
combined measurement is taken. Figure 4.3 gives the color codes for the graphs of each
cipher in the following plots. We do not include the runtime of NoCrypt in our speed
comparisons, since its average latency is only roughly 5% the amount the fastest cipher
requires. The NoCrypt measurement becomes more relevant in the memory test cases.

AES-GCM ASCON Elephant GIFT-COFB
Grain-128AEAD ISAP PHOTON-Beetle Romulus

SPARKLE TinyJAMBU XOODYAK

Figure 4.3: Legend of cipher color codes for latency plots

In figure 4.4, the speed benchmarking results obtained on the Arduino Uno platform
are shown. Note that we do not show a comparison to AES-GCM on this platform, since
the binary size of the implementation is too large to fit on the AVR chip. Generally,
six ciphers form the top group regarding the average encryption speed: Ascon, GIFT-
COFB, Romulus, Sparkle, TinyJAMBU and Xoodyak. Sparkle ranks first here,
followed by GIFT-COFB, Xoodyak, TinyJAMBU and Ascon. More than twice as slow
as the top candidate are PHOTON-Beetle and Grain. Elephant and Isap are the slowest
competitors on this platform. This also applies when looking at the measurements for
individual input sizes. However, one has to remember that Isap includes basic protection
mechanisms against fault and side-channel attacks by design, which makes it less efficient
regarding speed. For Elephant, we only had nine implementations available, none of them
being heavily optimized for embedded platforms. It is possible that the lack of highly
optimized code amplifies its bad ranking in this test case.

If we analyze the timings for different input sizes, a couple of interesting observations
can be made. Although TinyJAMBU and Ascon are slower than Sparkle on average,
they beat the winner for small message sizes (8 and 16 bytes) regardless of the combi-
nation of AD and plaintext to encrypt. Moreover, we can conclude that the timings for
some ciphers remain almost constant for various message lengths (see e.g. Xoodyak),
while they gradually increase for others (e.g. for TinyJAMBU). The speed differences
of Elephant and Isap in comparison to the rest are still visible in the subplots (b), (c)
and (d).
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Figure 4.4: (Average) encryption timings for different inputs on the Arduino Uno

We can see similar patterns again on the STM32F103 (compare figure 4.5). On the low-
powered ARM platform, Ascon, GIFT-COFB, Sparkle, TinyJAMBU and Xoodyak
reach the highest average speed. Elephant, PHOTON-Beetle and Isap rank the worst in
this test. AES-GCM is slower than most LWC ciphers in this test, reaching the eighth
out of eleven spots. The on average fastest candidate is an implementation of Xoodyak,
with Sparkle and Ascon being only slightly slower.

The results for different message sizes and modes generally support the results for
the average timings. However, again for short messages, the fastest candidate is out-
performed by some of its successors (Ascon, TinyJAMBU or Sparkle) regardless of
the input type. This is due to the encryption time of Xoodyak being very constant for
different input sizes, while it gradually rises (but starts slightly lower) for some of its
competitors. The nearly constant performance of Xoodyak for our tested input sizes
origins from the design of the cipher. The big 48-byte state, paired with an equally
sized permutation and a 44-byte rate, allows the cipher to process larger inputs without
any queuing. As long as the plaintext size does not exceed the state size, Xoodyak
can directly fit it into the state permutation. This is also reflected by the noticeable
increase in latency for the 64-byte plaintext input in subplot (c). In comparison to the
LWC candidates, AES-GCM ranks in the middle to middle-end of the field, also in the
detailed analysis for various input lengths.
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Figure 4.5: (Average) encryption timings for different inputs on the STM32F103

In figure 4.6, the measured timings on the STM32F746 are given. First off, it is
noticeable that AES-GCM performs better on the higher-powered ARM platform than
on the STM32F103. Regarding the average, it is the sixth fastest cipher, meaning
it beats five LWC candidates in this benchmark. Besides that, some patterns repeat
throughout the platforms. Ascon ranks first here but is tightly followed by Xoodyak,
TinyJAMBU, Sparkle and GIFT-COFB. Elephant is the slowest competitor, Romulus
and Grain form the middle, Isap and PHOTON-Beetle reach similar but slower speeds
than all others but Elephant.

There are no significant anomalies in the assessment of distinct input vectors. Ascon
and TinyJAMBU are the most efficient ciphers for shorter messages. Xoodyak and
Sparkle deliver nearly constant processing timings across the selected inputs. While
this results in a slight disadvantage for small inputs, it leads to an increased performance
on average.
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Figure 4.6: (Average) encryption timings for different inputs on the STM32F746

The results on the ESP32 (see figure 4.7) are generally comparable to the numbers
obtained on the STM32F746. Again, Ascon is leading, with Xoodyak, TinyJAMBU,
GIFT-COFB and Sparkle occupying the following spots. AES-GCM ranks sixth like
before, but is only marginally slower than Sparkle on average. Isap and Elephant per-
form the worst, however Isap is still six times as fast as Elephant but more than 26 times
slower than Ascon. The leading implementation is the fastest for all message sizes and
types on this platform, TinyJAMBU is more efficient than Xoodyak for small inputs.
AES-GCM delivers fairly constant timings for all test vectors, which are almost identi-
cal to the measurements taken for Sparkle. Once more, the performance of Xoodyak
remains at the same level for various inputs, while the encryption/authentication time
increases with the message size for Ascon and TinyJAMBU.
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Figure 4.7: (Average) encryption timings for different inputs on the ESP32

In figure 4.8, we provide the speed benchmarking figures for the Sipeed Maixduino.
On the 64-bit RISC-V platform, Ascon performs encryption and authentication most
efficiently. Xoodyak and TinyJAMBU are again placed in the top group. However,
on this MCU, AES-GCM beats Sparkle and GIFT-COFB regarding average speed
and therefore ranks in the fourth overall spot. Elephant covers the last place, with
Isap and PHOTON-Beetle setting as the second and third to last ciphers. In this
benchmark, Ascon is the fastest cipher for any highlighted input size/type combination.
TinyJAMBU is once again more efficient in processing short messages than Xoodyak.
GIFT-COFB and Grain deliver similar speeds on the Maixduino, Romulus is slightly
slower than this pair.
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Figure 4.8: (Average) encryption timings for different inputs on the Maixduino

4.2.2 Binary Size

For the code size measurement, we try to compile each available implementation for every
of our testing platforms. Obviously, not every implementation will compile on every
MCU due to e.g. use of architecture-specific assembly language or binaries exceeding
the memory capabilities of the device. As already mentioned beforehand, this occurs for
the AES-GCM implementation from Mbed TLS on the Arduino Uno. To take the code
size of the individual runtime environment of the platform into account, we compile our
template once without any code for encryption/decryption. The size of this NoCrypt
binary can later be compared to the size of the compiled blob of every firmware including
an LWC implementation. In that way, we observe the code size overhead introduced by
the tested AEAD implementation.

In figure 4.9, we introduce the code size measurements taken on the Arduino Uno. We
see Ascon and Xoodyak being in the top half, similar to what we observed in the speed
benchmarks. However, both are beaten by an implementation of PHOTON-Beetle and
Xoodyak is beaten by Isap. Romulus ranks last, with TinyJAMBU and Grain forming
the lower performing end of the rest. It is worth noting that the best implementation
of PHOTON-Beetle consists in code written in assembly, which has especially been
optimized for code size on AVR platforms.
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Comparing the binary sizes on the STM32F103 (see figure 4.10), one can analyze that
Ascon represents the most efficient implementation, while TinyJAMBU, GIFT-COFB,
Sparkle and Xoodyak form the rest of the top half. Isap leads the second half, in
which PHOTON-Beetle is second to last and Elephant ranks last. AES-GCM covers the
third to last overall spot regarding code size on the Cortex-M3 MCU.
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Figure 4.9: Code size measurement results on the Arduino Uno

Very similar rankings can be drawn from the results on the STM32F746. Again,
Ascon provides the smallest implementation, closely followed by TinyJAMBU. The
three worst candidates in this test are PHOTON-Beetle, Elephant and AES-GCM. On
this platform, Isap is part of the leading half, ranking at the fourth spot.
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Figure 4.10: Code size measurement results on the STM32F103
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Figure 4.11: Code size measurement results on the STM32F746

On both the ESP32 and the Maixduino (see figures 4.12 and 4.13), Ascon features
the most efficient implementation, with TinyJAMBU being very close to the leader. On
the RISC-V and the Xtensa architecture, Isap, Sparkle and Xoodyjak are members of
the upper ranking half and AES-GCM represents the largest implementation. Also, the
rest of the ciphers rank very similarly on these two MCUs, which leads to the two plots
being almost identical, qualitatively.
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Figure 4.12: Code size measurement results on the ESP32
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Figure 4.13: Code size measurement results on the Maixduino

4.2.3 RAM Utilization

To measure the RAM utilization of an algorithm correctly on the STM32F746, we check
the dynamic memory consumption of every MCU template without any integrated cryp-
tography. This is achieved by utilizing the simple memcopy operation implemented in
our NoCrypt routine. Then – as we do for the code size measurement – we test the
RAM utilization of every implementation and compare the consumption of the NoCrypt
template to the measurements obtained for the LWC candidates.
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Figure 4.14: RAM utilization measurement results on the STM32F746
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We present the results of this test case in figure 4.14. TinyJAMBU consumes the least
amount of RAM, while Ascon, Sparkle and Xoodyak are following. Overall, the
RAM utilization of the ciphers does not differ as much as the measurements in the speed
benchmarks. However, there are two exceptions: AES-GCM and Romulus represent the
two worst implementations in this test case and consume 60% and 68% more dynamic
memory than TinyJAMBU, respectively. The third to last ranked candidate, Grain,
only uses 17% more RAM than the leading algorithm.

Finally, we provide an overall comparison of the average timings and code sizes mea-
sured across platforms. In figures 4.15 and 4.16, we show how the performance of the
NIST LWC finalists compares to AES-GCM. We normalized the measurements taken
on four different platforms (all but the Arduino Uno) regarding the results for our AES
implementation on each platform. This means, we set the average encryption/authenti-
cation time and code size of AES as our baseline (see the dashed line at y = 1). If an
LWC implementation performed better than AES on a platform, this is indicated by a
scaled value which is smaller than 1. A value y = 0.5 would mean that this candidate
used half the resources (time or memory) in comparison to AES. In case an implemen-
tation achieved worse numbers than AES, this is shown by a value y > 1. An identical
performance as AES would be reflected by a value y = 1. For each cipher, four dots
for the four platforms are included in the plot. In figure 4.15, the value is cut off at
y = 2.75, even if a cipher might perform more than 2.75 times worse than AES. This
means, if a dot is placed on this end of the y-axis, the corresponding cipher performs at
least 2.75 times worse. We do this to allow for a clearer depiction of the more relevant
numbers in a lower range.
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Figure 4.15: Normalized cross-platform latency of NIST LWC ciphers compared to AES-GCM
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Obviously, the interpretation of the two concluding figures is identical to the previous
per-platform discussion. Here, we just offer another cross-platform display of the results.
We can, however, directly observe that Ascon, TinyJAMBU and Xoodyak perform
better than AES in any of our test cases. Moreover, we see that GIFT-COFB, Grain-
128AEAD, Romulus and Sparkle are sometimes better and sometimes worse than AES-
GCM regarding speed. The remaining candidates are always slower than the current
industry standard, regardless of the platform (see figure 4.15). Regarding code size,
only Elephant and PHOTON-Beetle perform (partly) worse than AES-GCM. All other
finalists achieve a lower code size on every tested architecture (compare figure 4.16).
Note that we consider the pure code size of each implementation here, with the size of
the MCU firmware (NoCrypt) subtracted from every binary.
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Figure 4.16: Normalized cross-platform code size of NIST LWC ciphers compared to AES-GCM

4.3 Studying Penalty Factors for Protected Variants

A cipher like Isap will always be among the slowest LWC candidates when it is compared
to optimized, unprotected implementations from other finalists. This is due to the design
properties of the Isap cipher. Its main goal is not to be the fastest candidate. However,
it is focused on robustness against various types of side-channel and fault attacks. Due to
its leakage-resilient sponge design including a re-keying function, standard side-channel
attacks are not applicable to this algorithm [103]. When we discuss side-channel analysis
and protection mechanisms in more detail in chapter 5, we will provide in-depth examples
for these kinds of attacks.
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The inherent protection against implementation attacks comes with a significant de-
cline in performance. Naturally, the generation of new session keys for every encryp-
tion/authentication takes time, which leads to the generally lower speed of Isap imple-
mentations in comparison to the rest of the remaining LWC finalists. Since NIST stated
resistance against side-channel analysis as a secondary selection criterion, the possibility
of protecting the algorithms against attacks and the performance of protected imple-
mentation variants poses an interesting research field. While any Isap implementation
is already secure against basic attacks by design, the other candidates need to provide
that security in dedicated implementations. Hardening algorithms by implementation
instead of by design is a common approach. There exist different strategies to trans-
form a normal implementation to a protected one. One of the main principles here is
to separate secret information (e.g. key bytes) in multiple parts called shares. An at-
tacker is then no longer able to get a hold of the secret, as long as he cannot collect
all shares. In general, the security level of an implementation rises with the number
of shares. However, also the computing time usually rises when the algorithm has to
work with a higher number of shares. Additional performance overhead is introduced
by routines for splitting and recombining the sensitive values.

The details of different protection techniques will be explained in a dedicated chapter
(see chapter 5). However, now we would like to investigate the overhead that protected
implementations introduce in relation to unprotected variants of the same cipher. More-
over, we want to compare the performance of a conventionally hardened implementation
of a NIST LWC finalist to the benchmarking results of the hardened-by-design cipher
Isap. Unfortunately, protected implementations are rarely available for the relatively
new LWC ciphers and their creation and validation represents a difficult task. Since
such implementations only exist for few candidates and even less of them are verified
to work as intended, we choose one popular candidate – Ascon – for our performance
comparison with Isap. As already seen in the benchmark of unprotected variants, we
have many Ascon implementations to choose from, including protected ones.

We prepare these protected implementations and analyze their performance using our
own benchmarking framework. As a target platform, we choose the STM32F103 MCU
that was already part of our hardware portfolio in the previously described benchmarks.
We evaluate two protected Ascon implementations, a 2-shares and a 3-shares variant
of the main instance, Ascon-128. As a baseline, we use the fastest primary instance
implementations of the unprotected Ascon and the Isap cipher. Note that we include
these same implementations in both the speed and ROM benchmarks. So, contrary to
the performance evaluation of unprotected variants, we do not choose the best imple-
mentation per cipher and use case in this set of tests. We do this because we believe
it is fair to show the speed and memory footprint for a single (unprotected) implemen-
tation of Ascon and Isap since alternative protected implementations for different use
cases are not available. Using a single implementation for both test cases results in the
implementation not being optimal for one of the test cases. We prioritize the speed test
case and select the fastest implementation per cipher for this analysis. Remember that
these implementations will not be the best choice for the ROM selection. In a scenario
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in which binary size is the highest priority, other (slower) variants should be chosen. In
figure 4.17, a legend of the color codes for the following plots is provided.
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Figure 4.17: Legend of cipher color codes for speed measurements of (masked) implementations
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Figure 4.18: (Average) encryption timings for (masked) versions of Ascon and Isap on the
STM32F103

Figure 4.18 shows the speed measurement results for the mentioned implementations.
As in the previous performance tests, we present timings averaged over all test vectors,
for authentication only, for encryption only and for specifically both. We observe that,
on average, the fastest Isap implementation is slower than a 2-shares version of Ascon
but faster than the version with the higher security level (with 3 shares). Moreover,
we can derive that Isap is particularly efficient in the authentication step because it
outperforms 2-shared Ascon there for larger message sizes. Overall, it is interesting to
see that Isap performs better than Ascon implemented with 3 shares, since Isap still
provides a higher ”by-design” security level than a 3-shared Ascon variation [103].
The performance overhead introduced by the countermeasures for Ascon is directly

noticeable in the timing benchmark. The 2-shares implementation causes a penalty
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factor of 5.7, while the 3-shares version takes even 9.9× as much time for encryption/au-
thentication on average. These penalty factors remain fairly constant regardless of the
input type and show how much more computation is needed in a conventionally protected
implementation.
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Figure 4.19: Code size measurement results for (masked) versions of Ascon and Isap on the
STM32F103

If we compare the results in the ROM test case (see figure 4.19), we recognize that
the shared Ascon versions differ only slightly in memory utilization, with the binary
including 3 shares requiring roughly 8% more ROM than the 2-shares version. The fastest
Isap implementation uses more than twice as much memory than the shared Ascon
variants. This is likely caused by an implementation strategy that stores many look-up
tables in the binary to optimize for high speeds. Isap can be implemented in a way
that it requires much less static memory, then however the speed of the implementation
usually declines.
There is virtually no overhead in ROM consumption for the shared implementations

of Ascon. Compared to the ROM footprint of its fastest implementation, the 2-share
version even consumes 7.8% less ROM than the unprotected one, while the variant with
3 shares practically produces the same binary size as the baseline implementation.
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Side-channel attacks pose a relevant security risk in embedded applications, especially if
the attacker has physical access to the device. In general, side-channel attacks comprise
all attacks that somehow make use of gained information from secondary ”channels” of
the system under test. Typical side-channels are power consumption, electromagnetic
radiation or timing data of the chip. Since these factors are not independent of the
processed data on the device, information regarding the running algorithm – including
sensitive values – can be derived from these side-channels. In the worst case, an attacker
can extract secret key material using side-channel analysis and corresponding statistical
methods.

There exist different strategies to protect an implementation of a cryptographic algo-
rithm from side-channel attacks. The main principle here is to make the sensitive values
independent of the side-channel, e.g. the power consumption of the device. The two
general approaches to achieve this goal are hiding and masking. As the name suggests,
hiding aims to hide sensitive information in the power trace. This can be accomplished
by either randomizing the power consumption of the embedded device, or by making it
(virtually) constant. Different strategies have been presented to realize this, for example
the execution of instructions can be randomized in time as long as this does not alter
the logic of the algorithm. Randomization in time then leads to a randomized power
consumption, which cannot be easily correlated to the processing of key material. The
second main protection strategy, masking, is based on dividing sensitive values in mul-
tiple parts, such that an attacker only gets hold of a subset of the wanted information,
which does not leak the secret (under certain circumstances). Through the sharing of
sensitive information, the whole value gets masked and cannot anymore be extracted
through basic side-channel analysis [166].

In the following chapter, we will categorize popular types of side-channel attacks.
Moreover, we discuss different approaches to hardening cryptographic algorithms on an
implementation level. Well-known strategies to evaluate leakage of sensitive values are
introduced, before we focus on the efficient protection of implementations of lightweight
ARX ciphers, specifically. We will explain, why protecting ARX ciphers is especially
challenging and provide an overview over how related work deals with this problem.
Then, we will introduce our two novel methods to find efficiently protected implementa-
tions for this cipher category and compare the performance of our solutions to previous
research. We evaluate the penalty that (our) optimized protection mechanisms intro-
duce in comparison to unprotected ARX implementations. Finally, we analyze how these
penalty factors relate to those presented for other types of LWC ciphers in section 4.3.
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5.1 Attack Types

Generally, side-channel attacks can be separated in invasive and non-invasive attacks.
While the former requires some kind of active tampering of the attacked hardware, for
the latter attack only capturing and processing of side-channel information is necessary.
In an invasive attack scenario, the device is actively manipulated such that it changes its
normal behavior. For example, altering the clock frequency or the power supply to cause
hardware faults are typical methods in this attack category. Non-invasive approaches
only make use of the side-channel emission that is naturally caused during the normal
operation of the hardware. This information is captured and can later be inspected
or statistically processed to obtain sensitive values. Both attack types require physical
access to the hardware, at least temporarily.

5.1.1 Simple Power Analysis

Simple Power Analysis (SPA) covers scenarios in which it is possible to extract the secret
information simply by visual inspection of the power data or another side-channel. This
power consumption data of the device over a certain time frame is referred to as a
trace in side-channel analysis. With SPA, an attacker tries to extract the values of
interest only from a couple of traces, or even a single trace. To be able to successfully
perform (single-trace) SPA, an attacker has to have knowledge regarding the executed
cryptographic implementation on the hardware [167, 168, 169]. Figure 5.1 shows a trace
of an AES encryption round. The different phases of the algorithm can be recognized
by visual inspection.

Figure 5.1: Magnified trace of a single AES encryption round

5.1.2 Correlation Power Analysis

Correlation Power Analysis (CPA), in contrast to SPA, requires a high number of side-
channel traces to be successful. However, the advantage over SPA is that in a CPA
setting, it is usually not necessary for the attacker to have detailed knowledge regarding
the hardware or the specific implementation. Often, it is sufficient to know which cryp-
tographic algorithm is executed on the attacked device. For a CPA attack, many (power)
traces during encryption/decryption have to be obtained from the hardware. Then, the
dependency between the power consumption and the processed data is exploited. By
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aligning the power traces and comparing them at defined points in time – where e.g. a
round key is calculated – an attacker can spot data-dependent differences.

In more detail, the first step is to identify points of interest in the executed algorithm,
i.e. one has to find intermediate values within the algorithm execution that are dependent
on (a part) of the secret key k. Moreover, the chosen intermediate value has to be a result
of a function that takes a known non-constant value v as an input. It is important for
the attacker to know the corresponding v for every power consumption trace measured in
the following step. When our intermediate value r is a result of f(k, v), the attacker can
calculate r for every possible instance of k. With this approach, we obtain a set of values
for r of which one of them must have been processed within the device during the power
measurement. In the next step, the hypothetical intermediate values have to be mapped
to power consumption values. In this step of a CPA attack, a power model has to be
applied. The Hamming distance and the Hamming weight model are popular power
models for value mapping. Both models exploit the fact that the Hamming weight
of a value and the Hamming distance between two subsequent values on a data bus
are proportional to the caused power consumption. After the mapping process, every
calculated hypothetical power consumption value is compared to the actually measured
power consumption at the point of interest. The value hypothesis that correlates best
with the power consumption over all recorded traces is most likely the data that has been
processed on the actual hardware. For evaluating the correlation between the power
model and the actual power consumption, typically the Pearson correlation coefficient is
calculated. Once a sufficient correlation peak has been found, the attacker can look up
the fitting key hypothesis for the value and thus the secret information is revealed [170,
166].

The Pearson correlation coefficient has been developed a long time ago and was later
adopted for use in side-channel evaluations [170]. The Pearson correlation ρ is defined
as follows.

ρx,y =

∑
(x− µx)(y − µy)√∑

(x− µx)2
∑

(y − µy)2
(5.1)

The correlation ρx,y of the variables x and y is calculated using the respective means
µx and µy. In a CPA attack, the compared data sets consist of the measured power traces
and the corresponding estimated power drain for different key hypotheses. If we assume
N acquired power traces t with M data points, tn,m specifies data point m of trace n.
Furthermore, we can denote the estimated power traces H and refer to a modeled key
guess data point g for trace n as hn,g. Using this notation, we can calculate the Pearson
correlation for every key guess g and data point m. The calculation that contains the
correct key hypothesis is most likely to have the highest correlation coefficient. If we
substitute the generic variables of the formula with the ones in the CPA use case, we
can write the equation in the following way.

ρg,m =

∑
(hn,g − µhg)(tn,m − µtm)√∑

(hn,g − µhg)
2
∑

(tn,m − µtm)
2

(5.2)
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The Pearson correlation is usually employed in such CPA scenarios. However, also
this attack method is still studied and developed further, which is reflected by more
recent publications in the area of leakage analysis [171].

Figure 5.2 depicts a CPA attack plot on the first secret key byte using the Pearson cor-
relation. The time span is targeting the first SubBytes operation in the AES algorithm.
We plot the correlation coefficient for every key byte guess and can derive the correct
secret by choosing the key hypothesis with the absolute highest correlation during the
sensitive operation (around data point 2470).
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Figure 5.2: Pearson correlation plot for a single AES key byte

5.1.3 Differential Power Analysis

In its basic form, DPA applies the Difference of Means approach to extract secret in-
formation from power traces. Similarly to CPA, a large number of power traces has to
be obtained in order to conduct a meaningful attack. Generally, the acquired power
traces have to be separated into two different subsets, of which then the difference of the
averages is calculated. In case the two subsets are significantly different, this differential
value will be non-zero. If they are statistically non-correlated, the difference of means
will be (close to) zero with a rising number of traces. The separation of traces has to
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happen according to a selection function. This function can imply any logic that groups
the traces into two different sets. For example, we can choose the Least Significant Bit
(LSB) of the output of the cipher implementation as our selection property. We then
class our traces by the value of this LSB being either 0 or 1. When the difference of
means is calculated between these two trace classes, we will find non-zero values at data
points that are correlated to the output bit. Sometimes, one merges the traces of each
group into one master trace to support an easier comparison. In practice, the selection
function will contain some operation that holds a known non-constant and a secret con-
stant value, e.g. the key or part of the key. As in CPA, the key byte hypothesis can
then be made but in DPA the traces are separated according to the selection function.
If the difference of the averages is calculated with the correct key hypothesis, we will see
significantly higher correlation than with the traces containing incorrect key guesses. In
a DPA attack, typically different points in time are attacked, in which different parts of
the secret are used in the algorithm. After all key bytes have been extracted, the whole
key can be reconstructed. [172].

Figure 5.3 shows a standard DPA approach using the difference of means on an AES
implementation. As a group distinguisher, the Hamming weight of the first S-box output
has been used. Subset 0 contains all low-energy traces, i.e. traces that incorporate a
Hamming weight < 4. All other traces (with a Hamming weight of >= 4) have been
classified as high energy traces. One can clearly observe a high difference of means around
data point 2470 for the grouping with the correct key guess (highlighted in orange).
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Figure 5.3: DPA difference of means attack plot for a single AES key byte

If we compare this analysis to the CPA attack seen in figure 5.2, we can conclude
that both CPA and DPA are successful for the standard AES use case. We compare the
efficiency of a CPA and a DPA approach in Figure 5.4. We use the difference of means
method for DPA and the Pearson correlation coefficient for the CPA attack. From the
side-to-side plots, one can derive how many traces are needed to attack a single key byte
in an unprotected AES implementation. Our plot shows the correlation and difference
of means for all key bytes, while the orange line represents the correct key guess. The
number of traces grows along the x axis. We can see that – in this example – the
required confidence for the correct key byte is reached from 25 traces upwards in the
CPA scenario. In the DPA setting, we require a bit more data (4̃0 traces) to confidently
determine the part of the key.
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Figure 5.4: Absolute correlation (top) and difference of means (bottom) for AES key byte
hypotheses in relation to the number of power traces
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5.1.4 Mutual Information Analysis

Mutual Information Analysis (MIA) represents a generic side-channel distinguisher that
measures the dependency of two random variables [173]. The basic analysis procedure
follows the principles of DPA and CPA. However, when comparing the key hypothesis,
the entropy H defined by Claude Shannon is used instead of e.g. the Pearson cor-
relation coefficient [174]. Another difference between MIA and previous model-based
side-channel analyses is that MIA can capture non-linear similarities, while correlation
can only find two-dimensional dependencies. Moreover, univariate approaches need to
apply pre-processing transformations to tackle a multivariate problem, while MIA allows
for direct multivariate inspection by default [175]. This can make the MIA model more
suitable for higher-order attacks on protected implementations, in which multiple points
of interest are analyzed simultaneously.

5.1.5 Template Attacks

Template attacks comprise the most powerful side-channel attacks. For this type of
analysis, an attacker has to have full control over the hardware or possess an identical
device. As the name suggests, then a template of the device under attack is built. This
means its behavior is studied in detail and various effects on the power consumption
caused by different inputs are observed. Depending on which way and how intensive
this profiling phase is carried out, an attacker can extract device-specific dependencies
between inputs and the acquired traces. This can even lead to a mapping of instruction
series and peculiarities in the power consumption. After a sufficiently exact template is
set up, an attacker can use this knowledge in e.g. an attack based on the profiled power
model. While this approach can make an attack more efficient and exact, it requires the
most extensive physical access to the hardware that processes the secret information of
interest [176].

5.2 Countermeasures

As mentioned in the introduction to this chapter, mainly two strategies are used when
it comes to protecting implementations from side-channel attacks – hiding and mask-
ing. Each of the two approaches can be implemented in different ways, however, most
of the recently published protection mechanisms can be assigned to either hiding or
masking. In the following two sections, we will introduce the general idea behind these
countermeasures and provide some details regarding their most popular variations.

5.2.1 Hiding

Hiding tries to conceal the dependency between the power consumption of the device
and the processed intermediate values. This is usually approached by either randomizing
the power consumption or equalizing it. Even if it is not possible to make the current
drain completely independent of the carried out operations, reaching a high degree of
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randomness/equality can be enough to protect the secret information from basic DPA.
A (close to) random power consumption can be achieved in two ways. One possibility
is to randomize the algorithm itself in time. This means that the hiding countermea-
sure consists in reordering operations within the implementation and changes the order
during the execution. The challenge here is to reach a high-enough level of mixed-up op-
erations in order to randomize the power consumption, while still maintaining the logical
correctness of the algorithm [177]. A simpler approach to alter the execution timings
and the resulting consumption is to insert additional instructions within the algorithm
implementation. Here, no reordering of the actual instructions is necessary and still the
power trace can be shifted in time.

Another strategy to randomize the measurement aims to change the actual power
consumption of the operations. This has the advantage that no changes have to be
made to the cipher implementation. However, equalizing or randomizing the power
consumption of actual instructions is a challenging task. Typically, the signal-to-noise
ratio is lowered in these scenarios, which effectively also lowers the leakage of the secret
information (see section 5.3.1). To reduce the signal-to-noise ratio, either the signal
can be reduced or the noise can be increased. The former aims to equalize the power
consumption by introducing e.g. filters in the layout, the latter tries to shadow the
sensitive operations through parallelism in the data path or particular components that
inject additional noise. Both of these measures should be considered already in the
design of a cryptographic device in order to be implemented properly [178, 166].

5.2.2 Masking

Masking refers to destroying the relation between known hypothetical values and pro-
cessed data through splitting the value in multiple parts. These parts are usually called
shares. The idea behind masking is that an attacker cannot construct the secret infor-
mation from its parts, unless he has access to all shares. In software implementations,
a masked representation of an algorithm is achieved by dividing the sensitive values in
multiple shared variables. It is important that the shared representation is correct, i.e.
the whole value can be reconstructed from its shares to build the appropriate output of
the algorithm. The computation time and the protection level rise with the number of
shares d. An implementation incorporating d shares protects (at most) against attacks
of order d − 1. In practice, this means that an attacker probing d − 1 wires on a de-
vice running a d-share implementation cannot extract sensitive information caused by
distance-based side-channel leakage [179].

5.2.2.1 Boolean Masking

We distinguish two main strategies of masking by their composition function, meaning
the operation that combines the shares back into the original value. When using Boolean
masking, the composition operation is an exclusive-or, so the secret value v, masked with
three shares v1, v2 and v3, is determined by v1⊕v2⊕v3. The equation f(a∗b) = f(a)∗f(b)
is true, given that the operation ∗ is a linear operation. If this linear operation is e.g. a
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XOR, f(a⊕ b) = f(a)⊕ f(b) applies. This means, a Boolean masking scheme is linear, as
long as the original operation is also linear. Therefore, Boolean masking is particularly
efficient for linear operations [166].

5.2.2.2 Arithmetic Masking

In arithmetic masking, the shares are combined by a non-linear operation. Here, either
modular addition or multiplication in a residue class ring is used. Our composition
equations for value v are then defined by v1 + v2 + v3 or v1 × v2 × v3, respectively.
Arithmetic masking is linear for non-linear operations. It is more suitable for non-linear
operations, similarly to Boolean masking being more efficient for linear operations.

Many cryptographic algorithms mix linear and non-linear operations, which means
changing Boolean masks into arithmetic masks (and vice versa) is required during run-
time. Various publications provide suggestions on how to securely transition in between
Boolean and arithmetic masking. However, the switching remains a resource-intensive
matter [180, 181].

5.2.2.3 Threshold Implementations

TIs haven been introduced as an alternative to Boolean masking. This concept has
first been developed for hardware implementations only and has the advantage that it
remains secure even in case of glitching attacks, contrary to other approaches [182, 183].
TIs also work on shares of sensitive values, which are reassembled to the whole value by
an exclusive-or operation. When TIs have been first introduced, the designers required
implementations to carry three shares to reach 1st-order security, one more share than
conventional methods. It has later been shown that a variation of the original TI-
definition can also be implemented with two shares only while still maintaining 1st-order
security [184]. Lately, this relatively new TI-scheme has also been adapted for use in
software implementations. At a basic level, protected implementations have to fulfill
three requirements in order to identify as a TI [182].

Correctness The exclusive-or combination of the input and output share has to resem-
ble in the correct (unshared) input or output value. This property is required to make
sure that the algorithm itself is implemented correctly and delivers the expected output
to the corresponding inputs. Correctness is obligatory only for input and outputs and
not necessarily for intermediate values during the different stages of the algorithm.

Non-completeness An implementation that operates on d shares shall only combine at
most d− 1 shares in a computation step in order to be d-order secure. This can require
a two-share algorithm to expand the number of output shares temporarily, in order to
not have to combine the only two shares at once. After the expansion, the shares can
be collapsed back, again. This expansion and collapsing layer allows for 1st-order secure
implementation with only two shares in a software setting.
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Uniformity All in- and outputs of the TI shall be uniformly shared. In order to prove
that, one can check if the input vector represents a uniform sharing for all possible
inputs. It can be shown that in case of a uniform input sharing, the output sharing is
uniform as well. The uniform distribution of the shares is not required for intermediate
states, but for the in- and outputs only.

With these requirements, one can build 1st-order secure implementations with (at
least) two shares per input and output.

5.2.2.4 Domain-Oriented Masking

Another novel masking scheme that relies on secret sharing is Domain-Oriented Masking
(DOM). DOM provides the same security level as TI, but has been shown to be more
resource-efficient for hardware implementations of AES. The main idea of DOM is to
organize shares in domains and not at a function level. Per share, DOM creates one
domain. The basic approach is to separate the shares of one domain from the shares
of other domains. Through the domain separation, no recombination of all shares of a
value can occur, which leads to d− 1-order security for a d-share implementation [185].

5.3 Leakage Detection

The aforementioned side-channel attacks all share one step in which the acquired traces
are processed with the goal to discover leakage of secret information. This processing
of the power consumption data incorporates some kind of statistical analysis in any
type of attack. Depending on the strategy and the gathered traces, different statistical
models can be applied to reveal correlations between the input data and the measured
power consumption. The selected method for detecting leakage is also relying on the
preprocessing of the traces and the capturing methodology. In most cases, points of
interest are determined at certain time slots and the traces are separated according to
the value of a relevant input word (see section 5.1.3). In dependency to the type of
partitioning and other properties of the traces, an appropriate statistical analysis step
is applied to reveal the leakage.

5.3.1 Signal-to-Noise Ratio

The Signal-to-Noise Ratio (SNR) is a data property that is often used in the digital
signal processing domain outside the context of side-channel analysis. The SNR can be
defined as seen in equation 5.3, where V ar is short for the variance.

SNR =
V ar(Signal)

V ar(Noise)
(5.3)

For the SNR in side-channel attacks, the signal part of the equation only concerns the
power consumption that is actually exploitable by the attacks. Since the non-exploitable
signal (i.e. power consumption) does not carry any desired information, it should not
be included in the SNR calculation. The noise however composes all types of noise that
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the traces contain. This is because, in contrast to the signal, the noise is relevant to the
attacker regardless of its origin, so none of it can be disregarded. To be able to calculate
the SNR, an attacker has to have control over the inputs of the algorithm. By carefully
selecting the plaintexts and the point(s) of interest, the desired trace set can be built
and used as the source data for an attack.

5.3.2 Welch’s t-test

Welch’s t-test has been introduced as a statistical comparison tool in 1947 [186]. Since
then, it has been adopted for and applied in different research disciplines. In general,
the t-test compares the mean of two datasets. If the mean of the inputs is equal, they
are considered to be not different. Goodwill et al. applied the t-test to side-channel
evaluations, and since then it has been a popular tool for basic leakage inspections [187].
The test is defined as depicted in equation 5.4.

t =
µA − µB√
σ2
A

NA
+

σ2
B

NB

(5.4)

A and B represent the two compared groups with their standard deviations σX and
their means µX . NA and NB are the sizes of the data sets (i.e. the number of traces
in side-channel evaluations). To use Welch’s t-test to determine side-channel leakage, a
threshold for |t| = 4.5 is set. This allows to make a statement regarding the difference of
the traces with a confidence of > 0.99999. If |t| < 4.5, the two datasets are regarded as
statistically not different, meaning no side-channel leakage can be detected by the t-test.
The t value itself can only be used to measure statistical difference of traces, qualitatively.
The actual value does not allow for an evaluation of the amount of leakage, e.g. the result
|t| = 2.3 does not imply worse side-channel protection than a result |t| = 1.2.

We distinguish fixed vs. fixed (specific) and fixed vs. random (non-specific) t-tests. In
a non-specific scenario, trace set A is collected with the same plaintext in every measure-
ment and trace set B contains traces acquired while incorporating random plaintexts
with a uniform distribution. The specific t-test asks for two datasets, both instrumented
with a fixed value. Welch’s t-test remains a standard analysis for leakage detection since
its introduction. However, it has been shown that specific properties of the input data
can lead to either non-detectable leakage or the detection of leakage that is not present
in practice. Hence, the methodology and application of the t-test is still discussed in
recent literature [188].

5.3.3 χ2-test

The χ2-test is used to analyze if unpaired observations on two variables are independent
of each other. The null hypothesis is that the measured observations are indeed inde-
pendent. The evaluation uses a contingency table to show the frequency distribution of
the variables. No statistical methods such as the investigation of the means are applied,
compared to the t-test. The distribution is spread according to χ2, hence the name of
the test. We now illustrate the concept of using a contingency table with a simplified
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Fi, j j = 0 j = 1 j = 2 j = 3 total

i = 0 17 47 32 14 110

i = 1 16 38 28 1 83

total 33 85 60 15 193

Table 5.1: Contingency table according to the histograms in figure 5.5

example derived from the original paper [189]. In this scenario, we use hypothetical data
distributions because our only goal is to present the χ2−-test approach.
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Figure 5.5: Histograms for example data sets

We assume two data sets with 110 and 83 elements each. The frequency of observations
is given by the histograms in figure 5.5. We build the contingency table 5.1 with the
data from the histogram and calculate the degrees of freedom v in the following. v is
defined as seen in equation 5.5, with r being the number of table rows and c being the
number of columns of the contingency table. If we fill in the values from our example,
we get v = 3.

v = (c− 1) · (r − 1) (5.5)

In the next step, we need to calculate the expected frequency for every table cell. We
denote the expected frequency for a cell (i, j) as Ei,j . In general, the expected frequency
is defined according to equation 5.6, with N specifying the sum of all cells.

Ei,j =
(
∑c−1

k=0 Fi,k) · (
∑r−1

k=0)Fk,j

N
(5.6)

If we again fill in the frequencies from table 5.1, we can derive the following table 5.2
with the expected frequencies for every cell. The χ2 statistic x can then be computed by
inserting the values from both tables into equation 5.7. We compute a χ2 statistic again
for every cell. In the end, we sum up the cell values to obtain the overall χ2 statistic as
follows:

x = 7.47× 10−3 + 0.11 + 5.59× 10−3 + 3.47 + 8.76× 10−3 + 0.13 + 6.21× 10−3 + 4.61
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Ei, j j = 0 j = 1 j = 2 j = 3

i = 0 17.36 44.74 31.58 8.55

i = 1 15.63 40.26 28.42 6.45

Table 5.2: Calculated frequencies for every cell

x =

r−1∑
i=0

c−1∑
j=0

(Fi,j − Ei,j)
2

Ei,j
(5.7)

Finally, we use the χ2 probability density function f (see equation 5.8, with Γ specify-
ing the gamma function) to calculate the probability to accept the null hypothesis. For
our example values, we get p ≈ 0.0139, which means the occurrences of the observations
in our example data sets are dependent on each other.

∫ ∞

x
f(x, v)dx, f(x, v) =


x
v
2−1e−

π
2

2
v
2 Γ( v

2
)

x > 0

0 otherwise
(5.8)

For side-channel leakage evaluation, the χ2-test evaluates the dependence of trace
classes and measured leakages. In case the null hypothesis holds true and this statement
can be made with appropriate confidence, it means – according to the χ2-test – the
leakages are not informative, i.e. not useful for an attack. If the null hypothesis can be
confidently rejected, informative leakage is present in the data [189].
While with the t-test evaluates the presence of leakage in a specific statistical order,

the χ2-test targets the whole distribution. This has the advantage that it can be used to
analyze the resistance of an implementation against distribution-based attacks. The t-
test is suitable to check if a masked implementation reaches the desired protection level.
However, the χ2-test can be of use for leakage evaluations regardless of a particular
statistical order [189].

5.4 Efficient Protection of ARX Ciphers

The core ideas presented in this section have already been published in S. Renner, E. Poz-
zobon, and J. Mottok. Evolving a Boolean masked adder using neuroevolution. In Inter-
national Workshop on Attacks and Defenses for Internet-of-Things at ESORICS, pages
21–40. Springer, 2022 and E. Pozzobon, S. Renner, J. Mottok, and V. Matoušek. An
optimized bitsliced masked adder for ARM Thumb-2 controllers. In International Con-
ference on Applied Electronics, pages 1–4. IEEE, 2022

Building symmetric ciphers from only modular additions, rotations and XOR oper-
ations is a popular design pattern, especially for lightweight algorithms. Due to the
simplicity of the core operations, a cipher only using these three elements can reach
a high encryption/decryption speed. These so-called ARX ciphers have therefore been
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proposed as alternatives to AES in resource-constraint environments. The most well-
known algorithms from that category are ChaCha20, Speck and Sparkle, which is 3rd
round candidate in the NIST LWC competition. Chacha20 can be seen as a successor
variant of the Salsa20 cipher, which has been selected for the winning portfolio of the
eSTREAM project [13]. Moreover, ChaCha20 has been shown to sometimes deliver bet-
ter performance than AES, specifically on devices that do not support AES hardware
acceleration [192]. The Sparkle ARX mode also offers highly competitive encryp-
tion/authentication speeds among the LWC candidates and AES, as our benchmarking
results presented in chapter 4 suggest.

While ARX structures deliver high processing speeds and are simple to implement,
masking them against the mentioned side-channel attacks is challenging. Protecting for
example against 1st-order DPA attacks comes with a big performance penalty, even if
latest optimization strategies are incorporated [193, 194, 195]. This overhead can be
identified as particularly high, if we compare the performance drop due to masking to
e.g. AES, where the penalty is much lower [196, 197].

In the following sections, we will introduce our research in the field of optimizing the
protection of ARX ciphers. First, we elaborate on why masking these structures comes
with such a high penalty. Then, conventional strategies to protect ARX ciphers are
mentioned and related work is discussed. Moreover, we present two novel methodologies
for finding efficiently masked ARX representations. We show under which circumstances
our solutions perform better than related work by giving detailed benchmarking figures.
Therefore, we implement ARX LWC algorithms using different masking strategies. Fi-
nally, we discuss real-world leakages of protected implementations on hardware suited
for LWC.

5.4.1 Complexity of Masking ARX Structures

We have already introduced the main principles and strategies for masking an algorithm.
When it comes to protecting ARX ciphers, the differences between Boolean and arith-
metic masking are especially relevant. Since the ARX algorithm design utilizes Boolean
(exclusive-or, rotation) and arithmetic operations (the addition), in general both masking
strategies can be used. When this is the case, switching in between masking types within
the implementation is required. Goubin et al. and Coron et al. published research re-
garding efficient algorithms for changing between arithmetic and Boolean masks. While
a masked ARX implementation can be realized with these switching algorithms, their use
requires many additional operations and therefore significantly lowers the performance
of the implementation [181, 180].

5.4.2 Conventional Masking of Addition

The deciding performance factor for a protected ARX implementation is the masking
of the addition part. In the early 2000s, research suggested transitioning to and from
arithmetic masking prior and after the addition, respectively. Here, the conversion
from arithmetic to Boolean masking is especially resource-intensive [181]. The work
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from Goubin et al. has a complexity of O(k), with k representing the bit width of the
addition [180]. Coron et al. published an alternative switching algorithm in 2015 which
reduces this complexity to O(log(k)) [198].

In more recent work, researchers abandoned the idea of transitioning in between mask-
ing types within the implementations. Instead, they seek ways to use Boolean masking
only, in order to save the processing time for the mask conversion. This however implies
that the algorithm has to be representable with Boolean operations only. Regarding
ARX ciphers, the crucial part is again the addition. While using Boolean masks for
exclusive-or and rotation operations is standard, providing a Boolean masked variant
of the addition is challenging. One strategy to achieve this, is to utilize Parallel Prefix
Adders (PPAs). These are adder structures that add binary words of a specific width
and use prefix operations to be more efficient. Typically, PPAs such as the Carry-Save
Adder (CSA) or the Kogge-Stone Adder (KSA) are implemented in larger hardware
circuits. Due to their gate-based design, they provide a Boolean representation of the
addition and therefore Boolean masking is applicable. This is true also for software
implementations, as long as their gate structure is transferable to assembly instructions.
Biryukov et al. followed a PPA approach to be able to directly mask the Boolean

operations. They introduce a tree-based exhaustive search algorithm to find an opti-
mally masked representation of the gates in a KSA. The masked gates are then plugged
into the KSA, which leads to a masked addition that can be included e.g. in ARX
implementations. The authors validate the protection level with a t-test. The secure
gate KSA delivers significantly better performance than the earlier conversion-based
approaches [193]. Similar work from partly the same research team has also been pub-
lished in 2017. In this second project, Dinu et al. adopt secure gate representations and
complement them to build a masked addition based on a CSA [195]. Other research
targets the masked addition in a hardware setting. Schneider et al. employ the ideas
of TIs (see section 5.2.2.3) to form a 3-share protected implementation. They present
speed gains for hardware implementations, however, they do not optimize for software
applications [199].
Jungk et al. pick up the TI approach and combine it with ideas from Biryukov and

Dinu (et al.). The research from Jungk et al. adopts a TI-like methodology for software
implementations. In this work, the authors dissect again a KSA and then mask its
parts in a TI scheme. However, they protect not only single gates at a time, but form
gadgets combined from subsequent operations. Similar to other research, after these
parts are properly masked, they are used to reassemble the now protected KSA in a
TI representation. Through this strategy, Jungk et al. reach improved performance
compared to related work. They validate their results in a ChaCha20 implementation
benchmark and report significant speed gains.

In our optimization research, we do not choose a PPA as our target. Moreover, we
do not apply switching between the two different masking types. We choose the masked
full adder as our subject of study and define the inputs a, b, cin and the outputs s and
cout. We believe there is more room left for optimization than in the heavily researched
PPAs. Furthermore, an efficiently masked full adder can later be used in a bitsliced
representation of an ARX cipher, i.e. the outcome is applicable to protected software
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implementations. We are researching two different paths regarding efficient masking
of the full adder. First, we follow an automated learning approach based on genetic
algorithms and neural networks to search for suitable designs. Here, we emphasize
a more unconventional and open strategy to solve this masking problem. Second, we
apply a more guided path, in which we exploit more standard exhaustive search methods,
similar to the work from the team of Biryukov. However, we modify their strategy based
on the developments we have observed from the neuroevolution approach.

We choose these different methods to study if an instrumented machine learning al-
gorithm is applicable to such masking optimization problems. Moreover, we would like
to compare the neuroevolutional technique to more conventional search approaches. In
the following, we introduce some basics regarding neuroevolution and genetic algorithms
and show how we fit these tools to our problem setting. Subsequently, we present our
guided exhaustive search methodology for finding our most efficient masked adders. In
later sections, we will provide software implementations for lightweight ARX ciphers and
show benchmarking results for our solutions and related work. Finally, we will touch on
our leakage evaluation and discuss power side-channel leakages on actual MCUs.

5.4.3 Finding Masked Adders Using Neuroevolution

Neuroevolution is a discipline within the field of artificial intelligence, its name signifies
the evolution of neural networks. Usually, genetic algorithms are utilized to generate and
evolve neural networks with some pre-defined properties [200, 201]. Through the applica-
tion of genetic algorithms, processes known from biology and nature are transferred into
computer science. Neuroevolution techniques are often applied to reinforcement learning
problems. As a benchmarking experiment, new variants of neuroevolution algorithms
are tested within video game environments, e.g. to solve navigation problems [202, 203].

Neuroevolution algorithms can be separated by the way they alter networks during
their execution. Topology and Weight Evolving Artificial Neural Networks (TWEANNs)
change the nodes/connections of a network and the associated weights, while conven-
tional algorithms modify the weights only and leave the topology untouched. The in-
corporated genetic algorithm, however, always follows the same steps: initialization,
selection, crossover and mutation. Initially, a startup population p0 of n networks is
created in line with the settings in the configuration. Each member of this population
is then evaluated according to the fitness function. This fitness function is defined such
that it can rate how good each network fulfills the requirements of the target network.
Each member of p0 is labeled with a rating from the fitness function. The population is
sorted by the fitness value and a certain part of the highest-rated networks proceeds to
the crossover step. Here, a mating process of the population is simulated, which is in-
spired by biology. The best-fit networks are allowed to reproduce and their children form
the next generation of networks p1. Similar to what happens in nature, some popula-
tion members also experience mutations, which further diversifies the group of networks.
Once a new generation is formed, the next algorithm iteration is started. This process
is carried out until either a certain number of populations has been produced or a suf-
ficiently fit solution network has been found. Technically, this exit condition is realized
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through a condition that terminates the algorithm in case a network surpasses a certain
fitness threshold in the evaluation phase.

5.4.3.1 The NEAT Algorithm

A well-known neuroevolution method is called NeuroEvolution of Augmenting Topolo-
gies (NEAT). It was introduced by Stanley et al. in 2002 and has been regularly
adopted in various research works over the years [204]. NEAT is ranked among the best-
performing techniques in multiple benchmarking experiments and different works have
shown that it beats other neuroevolution strategies in performance tests [205, 206, 207].
Due to its good reputation for solving difficult non-continuous problems and the avail-
ability of a well-documented open-source implementation, we selected NEAT as our base
algorithm for evolving masked full adders.

Like other neuroevolution techniques, NEAT implements a standard genetic algorithm.
However, NEAT has some properties which differentiate it from other neuroevolution
methods. The members of a population are referred to as genomes. A genome is an
encoding of a neural network. Every network is built from nodes that are linked by
connections. If a node has connections going to it and originating from it, it is called
a hidden node. Input nodes are nodes that only have outgoing connections, an output
node is an endpoint of a network which only has inbound connections. Every connec-
tion is associated with a weight. This weight is subject to change during the mutation
phase. Since NEAT operates on TWEANNs, connections can be rerouted or deleted,
new connections can be inserted and also nodes can be deleted or inserted. How much
change happens in one iteration is dependent on the configuration of the mutation rates
prior to runtime.

Another peculiarity of NEAT is that the algorithm is keeping track of the history of
each gene. A gene represents either a connection or a node. By saving an innovation
number for every newly appearing gene, the origin of each structure can be tracked. That
allows the algorithm to evaluate the similarity of single structures and whole genomes
when comparing them in the reproduction process. Since the historical markers reveal
how much alike genomes are in functionality, this information can be used to calculate
how distant one genome is to others. The genomic distances are taken into account
in another peculiarity of NEAT, which is speciation. By default, NEAT is separating
genomes into a number of species, based on the aforementioned distance. Members of
a species are then only competing with members within their own species, which helps
in protecting innovative genomes that do not fit the problem setup (yet) when arising.
The designers of NEAT motivate the use of speciation with a similar behavior in nature,
where different structures also compete with each other solely within their own species.

The NEAT algorithm typically works on continuous values within neural networks.
This means e.g. the weights of the connections are floats and the networks are built
from structures that cannot be directly translated into software implementations. This
is due to the fact that suitable problems for neuroevolutionary computing are very result-
oriented. In our use case, we are however not only very interested in what the networks
return, but also how they produce the output. Our goal is to alter the NEAT algo-
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rithm such that it can work on specific TWEANNs that represent networks of gates or
instructions. This way we can still make use of the mentioned nature-inspired features
of NEAT and also receive an implementable network for our masked implementations.
Typically, NEAT includes weights, biases, responses, activation and aggregation func-
tions that all are defined for floating-point values. The output of a single node gene is
then determined using these values (see equation 5.9). However, continuous activation
functions, or correctional bias are only relevant for conventional neural networks.

output = activation(bias+ (response ∗ aggregation(inputs))) (5.9)

In our use case, we want to emulate networks of gates/instructions and therefore,
output-oriented operations based on floating-point values are not applicable to our prob-
lem. This is why the first step in customizing the NEAT algorithm was to remove all
float-based calculations or to replace them with fitting discrete operations. As stated
before, we wanted NEAT to work on node networks of instructions – or more general –
logical expressions that are interconnected through connection genes. We limited the
connection weights to 0 and 1. A weight of 0 results in the corresponding input being
disabled, while a 1 allows the input signal to reach the node. The possible node aggre-
gations have been restricted to a set of well-defined logical expressions, allowing us to
evolve genomes that are essentially gate netlists. After we remove the unnecessary float
parts from the output equation 5.9, we can simplify it as seen in equation 5.10.

output = aggregation(inputs) (5.10)

After that modification, the output of a node gene is only determined by the aggre-
gation function, which is carried out on the corresponding inputs. We implemented
custom aggregation functions to realize our gate networks. If a node, for example, holds
a XOR aggregation and features two 1-bit inputs, it literally represents a XOR gate in
the form of a node gene. Our defined aggregation functions are transferable to ARM
assembly instructions, either directly or after a transformation. This way, we make sure
that the evolved networks can be incorporated into software implementations. We define
aggregation functions for XOR, OR, AND, NOR, NAND and NOT. This allows us to exploit the
neuroevolution techniques from NEAT to search for logic gate networks in general. Note
that the underlying NEAT algorithm and its genetic nature remained unchanged in this
step, since only output functions for the nodes and the floating point-based properties
were altered to fit our Boolean use case.

For our masked adder use case, we define a genome g as an encoding of a Boolean
NEAT network N . N consists of a series of node genes ngx and connection genes cgx.
Node genes are defined by their node type, nt (which can be input, hidden or output) and
a unique ID, nid. A connection gene has three properties, the two nodes it is connected
to, nid1 and nid2, and a weight, cw, which can be either 0 for disabled or 1 for enabled.
The NEAT algorithm operates on a number of encoded Boolean networks. This set of
genomes is referred to as a population p. Each genome of the current population is a
member m. All of our individual in- and outputs of a network are exactly 1-bit wide.
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5.4.3.2 The Fitness Evaluation

To evaluate our modifications, we needed to test the NEAT implementation within our
problem setting. Therefore, the adder problem first has to be defined in the NEAT
configuration and setup. Our goal is to evolve a masked full adder with two shares per
in- and output value. This is suitable for an ARX implementation that shall be protected
against 1st-order attacks. With that same security level as the most recent related work
from Jungk et al., we also make sure to have a solid base for a fair comparison [194].
Contrary to related work, we do not focus on the problem of masking individual parts of a
PPA. We define a 1st-order masked full adder as our design goal. We search for a masked
representation of the complete full adder, instead of trying to secure certain structures
of a 32-bit adder. In this way, we can evolve an adder model as a whole. However,
working with a full adder comes with the downside that its masked representation will
only be useful in bitsliced implementations of e.g. ARX ciphers. Anyway, the rather
small number of 64 possible input vectors allows us to check for full correctness of
evolved genomes. This would obviously be computationally impossible in a reasonable
time frame for e.g. a KSA with 232 inputs.

We specify the inputs of our adder as a0, a1, b0, b1, cin0 and cin1 and the outputs as
s0, s1, cout0 and cout1, while v0 and v1 represent the shares of the variable v. In the con-
figuration of the NEAT implementation, we include these variables and the truth table
of the full adder. This way, the NEAT algorithm is capable of checking the correctness
of the evolved networks during runtime. The correctness check is done by feeding each
adder candidate all 26 possible inputs. Since the algorithm knows which output values
should be produced for each input vector, it can judge the correctness (fitness) of the
network for the defined problem.

In the standard setting, the neat-python library implements a scalar fitness value.
This value is calculated for every genome of the population in every iteration. More
specifically, the fitness is the output of the user-defined fitness function, which is applied
n times per algorithm iteration (for a population of nmembers). This evaluation happens
prior to the selection phase. Typically, the networks are then sorted according to their
fitness values and only the top b percent of genomes in that sorted list are allowed to
proceed to the next algorithm step. For the fitness value, the developer also specifies a
termination threshold. The fitness function is defined such that this threshold can only
be reached by a perfect network. In case a perfect solution occurs during the algorithm
execution, the threshold is met and the algorithm terminates and presents the solution
network [208].

Our fitness threshold is set to 0. In the fitness evaluation, every network is stimulated
with all possible inputs. We then observe the output values and compare them to the
full adder truth table. Since the in- and outputs are available in a shared representation,
we check if cout0 ⊕ cout1 equals cout and s0 ⊕ s1 equals s for the given input vector. We
allow each network to have a starting fitness value of 0. However, for every wrong output
bit, 1 is subtracted from the initial fitness. With 64 input stimuli and 2 output bits,
the minimal adder fitness of a network is -128. Only if a network delivers the correct
2-bit output for every input vector, no degradation of the fitness takes place. This is the
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only case in which a network manages to maintain the fitness goal of 0 – which means
it represents a perfect shared full adder. With this fitness evaluation and the Boolean
aggregation functions, we can evolve a shared full adder. However, this strategy does not
yet include any kind of leakage analysis, which means it is very likely that any evolved
solution is prone to standard DPA or CPA attacks as presented in sections 5.1.2 and
5.1.3.
To be able to evaluate the distance-based leakage of our networks, we introduce a

second fitness value. This leakage fitness is also set to a threshold goal of 0. The leakage
fitness function is based on the method published by Gross et al. in 2019 [209]. Note that
we refer to a shared input, when mentioning an input vector consisting of the six input
shares and a secret input, when considering the 3-bit input vector, obtained from the XOR
operations on the 6-bit input. We build a leakage table with a single row per possible
shared input. These shared inputs are then grouped by secret inputs, i.e. the input
vectors a0 = a1 = b0 = b1 = cin0 = cin1 = 1 and a0 = a1 = b0 = b1 = cin0 = cin1 = 0
are put into the same secret input group since for both the secret inputs are the same
(a = b = cin = 0). Then, the output value at every node of the network is calculated and
saved. We compare the Hamming weight of these outputs for every secret input group.
In case the Hamming weight is equal among all groups, we can state that there is no
distance-based leakage originating from that node output. This can be concluded because
an equal Hamming weight implies the statistical independence between the secret inputs
and the power consumption at that intermediate node. As an example, assume an adder
network with 16 nodes/gates (t0 to t15). To check the leakage at the first node (t0),
we stimulate this node with all possible shared input vectors. As mentioned before, we
group all shared inputs that translate to the same secret input. Lastly, we measure the
Hamming weight of the output truth table (of t0) and compare if weights are equally
distributed, regardless of the secret input.
We apply the secret input grouping and Hamming weight check for every intermediate

node in a genome. The leakage fitness is initialized with the value 0. In our full adder use
case, we have 23 possible (unshared) secret inputs, i.e. we also have 8 Hamming weight
groups. This means 8 Hamming weights are compared at every intermediate point of
the network. In case we find one unequal Hamming weight for any secret input group,
we subtract the value 1 from the leakage fitness value. This subtraction happens for
every detected unequal Hamming weight throughout every node in the whole network.
With this strategy, we can reach a minimal leakage fitness of −(8 ∗n) in a network with
n intermediate nodes. As with our adder correctness fitness, the perfect leakage fitness
is 0, this is why the threshold is also set to that value. Since the fitness value is set with
the target value at startup, a perfect network has to maintain that setting. Because
the fitness value is only lowered, if we detect different Hamming weights (i.e. leakage)
for the secret input groups, the leakage fitness of 0 can be reached when the Hamming
weight is equal at every intermediate node. If this goal is met, the Hamming weights of
the intermediate values are independent of the secret inputs in the whole network.
In table 5.3, we show an example of a Hamming weight distribution table for a full

adder network. This table is created for each network during the leakage evaluation. In
this example, it contains the same Hamming weights at every intermediate node/gate
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Secret Inputs t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

0, 0, 0 4 6 4 4 6 4 4 4 4 4 6 6 4 4 4 4

0, 0, 1 4 6 4 4 6 4 4 4 4 4 6 6 4 4 4 4

0, 1, 0 4 6 4 4 6 4 4 4 4 4 6 6 4 4 4 4

0, 1, 1 4 6 4 4 6 4 4 4 4 4 6 6 4 4 4 4

1, 0, 0 4 6 4 4 6 4 4 4 4 4 6 6 4 4 4 4

1, 0, 1 4 6 4 4 6 4 4 4 4 4 6 6 4 4 4 4

1, 1, 0 4 6 4 4 6 4 4 4 4 4 6 6 4 4 4 4

1, 1, 1 4 6 4 4 6 4 4 4 4 4 6 6 4 4 4 4

Table 5.3: Each cell represents the sum of the Hamming weights of the output of one gate
(column) grouped by the same secret input (row)

Shared Inputs Secret Inputs Output
a0 a1 b0 b1 c0 c1 a b c a0 ⊕ b0

0 0 0 0 0 0

0 0 0

0
0 0 0 0 1 1 0
0 0 1 1 0 0 1
1 1 0 0 0 0 1
0 0 1 1 1 1 1
1 1 0 0 1 1 1
1 1 1 1 0 0 0
1 1 1 1 1 1 0

Truth Table Hamming Weight 4

Table 5.4: Snippet of the truth table input grouping for a single XOR node

of the network, meaning this network does not leak secret information according to our
definition. Due to the completely even Hamming weight distribution, this network would
reach a perfect leakage fitness of 0. Note that each column tn of the table specifies the
Hamming weights per secret input at the intermediate node n.

To further clarify the process of grouping the inputs and measuring the Hamming
weights, we depict the assignment of shared inputs to a secret input group in table 5.4.
Here, we assume a node carrying out a XOR operation, directly on the two inputs a0 and
b0. We list all corresponding shared inputs to the secret input vector (0,0,0) together
with the truth table for the node output and the Hamming weight. This grouping and
evaluation is done for all 64 and 8 shared or secret input vectors, respectively. In order
to achieve 1st-order side-channel resistance, the measured Hamming weight has to be
equal for every secret input at a particular node output (i.e. column in table 5.3).

To conclude this section, we briefly summarize the properties of our two fitness func-
tions in table 5.5. The Value Interval represents the possible range of values, one can
expect for each fitness part. The upper bound (0 for both) indicates the fitness goal is
reached by the corresponding network. With the definitions of the two thresholds and
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Function Name Value Name Goal Value Interval

Adder Fitness add fit model a correct
adder for all
inputs [−128, 0]

Leakage Fitness leak fit no distance-based
1st-order leakage [−(8 ∗ n), 0] with n being

the number of
intermediate nodes
in the network.

Table 5.5: Overview of defined fitness functions for the masked adder problem

their corresponding functions, we modeled the requirements for our target genome. For
a network to be eligible for the ARX adder use case, it has to be correct (indicated by an
adder fitness of 0) and free from Hamming weight-based leakage (indicated by a leakage
fitness of 0). Fulfilling only one of the goals completely is not sufficient, because the
resulting network would either leak secret information or not provide adder function-
ality in every input case. Naturally, during the evolution of the networks with NEAT,
non-perfect networks will be the majority, especially in the first instantiations of the
genetic algorithm. Therefore, it is important that the most promising members of the
population are identified and allowed to reproduce in the upcoming iteration.

5.4.3.3 The Selection Strategy

While the two fitness values are necessary for our use case, the use of both leads to a
much harder problem. Having two fitness targets transforms the problem to a Multi-
Objective Optimization (MOO) task. This means it is harder to judge which network
should be allowed to proceed during the selection phase. In a single-objective setup, we
can simply sort the genomes by their fitness values and then cut off a certain percentage
of the lowest performing networks. However, if we encounter more than one goal, the
question is how the members should be sorted before dismissing a part of the population.
We experimented with different reproduction approaches to find the most efficient MOO
pattern for our problem.

One idea in the field of MOO is to calculate a weighted sum of the n objectives and use
that sum as a reproduction indicator in the genetic algorithm. In such a setup, we would
sum the adder fitness and the leakage fitness together to obtain one scalar value, which
then serves as a combined fitness that indicates the overall fitness of a genome [210]. The
problem with this approach is that the importance of each objective needs to be defined
a priori, meaning a weight for each fitness is to be set to reflect how strong an objective
should contribute to the summed fitness. Before the sum is created, each objective value
is multiplied by an individual weight. For our masked full adder setup, the weighted sum
would be calculated as seen in equation 5.11, with w1 and w2 representing the weights
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for the two fitnesses. If we considered each objective to be equally important, we would
need to set w1 = w2.

fitness = addfit ∗ w1 + leakfit ∗ w2 (5.11)

An issue with this approach lays in the process of finding the right weights for the
different objectives. If we prioritize the adder fitness, the algorithm might converge to a
structure fulfilling the adder correctness, but this solution might then have a low leakage
fitness. This is especially difficult to handle when the algorithm finds a fully correct but
leaking adder network. When the adder fitness is of higher priority, the reproduction
logic would not allow a less leaking structure to proceed to the next iteration, if the
leakage reduction results in less adder fitness. A similar effect can be observed when the
leakage fitness is heavily weighted. The genetic algorithm might then find non-leaking
logical networks which are however not representing an addition for all possible inputs. If
we reach such a situation due to non-optimal weighting or other factors, we observe that
the evolution of the network stagnates at a specific fitness vector, meaning the top fitness
vector of the whole population does not further improve over several iterations. Since this
stagnation is a common issue in MOO problems, where different objectives compete with
each other, research suggests different algorithm tweaks to support converging towards
a solution in such scenarios [211][212][213].
Another reproduction method proposed for MOO is the Nondominated Sorting Genen-

tic Algorithm II (NSGA-II) [2]. NSGA-II is based on the idea of extracting the most
suitable genomes of the parent and the current population with the help of a special
sorting algorithm, taking into account the dominance of a network and its distance to
other members. In detail, first the two populations are regarded as one population of the
size 2 ∗ popsize. Through using Pareto-optimal search, NSGA-II finds various nondomi-
nated candidates clustered in fronts. A population member is defined as nondominated
and part of the Pareto-front if there exists no other member in the current population
who is equally fit in all objectives and fitter in at least one objective. If we apply this
relation to our adder problem and define the combined population as M , a member of
M as m and the nondominated genome as n, a member n is part of a Pareto-front if it
fulfills equation 5.12. 1

∄m ∈M((addfit(m) ≥ addfit(n) ∧ leakfit(m) ≥ leakfit(n))∧
(addfit(m) > addfit(n) ∨ leakfit(m) > leakfit(n))) (5.12)

NSGA-II is clustering the population members in multiple fronts if the first front is
not already exceeding the desired population size for the next evolution cycle. This
is achieved by removing the candidates of previously identified Pareto-fronts from the
search space for subsequent Pareto-fronts. After the nondominated sorting, the fitter

1

Symbol Meaning

∄ there is no
∈ is member of
∧ logical and
∨ logical or
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upper half of the combined population is transferred to the next iteration. If the end
of the least fit transferred front is not directly at the population size barrier, crowded
distance sorting is applied to that front. This second sorting step is calculating how
similar solutions within one front are by comparing their fitness vectors to each other. If
there exist multiple genomes with similar fitness values, they are identified as a crowd.
Since NSGA-II is regarding little differences in fitness as little overall difference, only the
members of the front that are most distant from each other are kept in the next iteration,
if the population size needs to be reduced. This results in all but one member of a crowd
being potentially eliminated. Figure 5.6 provides a graphical representation of the main
selection principles of NSGA-II. In this figure, we denote the two combined populations
as Pt and Qt. The transition from the initial double population to the clustered bar in
the middle illustrates the nondominated sorting. Each front Fn represents a Pareto front.
In the transition from the clustered middle to the rightmost bar, the crowded-distance
sorting is applied. In this step, a part of the front F3 is rejected. This is necessary to
reduce the size of the resulting population Pt+1. This population serves as an input to
the next NSGA-II iteration.

Figure 5.6: Non-dominated (first step) and crowded distance sorting (second step) of the
NSGA-II selection [2]

Another rather unconventional selection method is called novelty search. What distin-
guishes this approach from the ones mentioned before is that it steps away from the idea
of basing reproduction (only) on the fitness vector of a genome. Instead, the researchers
propose to measure the novelty of a candidate and judge it upon this value [214]. This
way, the most innovative networks will be advanced into the next iteration, while (some
of) the most fit genomes will be eliminated. This strategy rewards networks that deviate
from the mass. How the novelty is defined, depends on the specific problem. Sometimes
it might correlate with the fitness of a candidate and for other structures it might be
completely independent. Obviously, the goal is to define novelty such that it is different
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from the fitness evaluation. If not, novelty search will yield similar results as conventional
fitness-based approaches.

Risi et al. illustrate NEAT paired with novelty search in a game-based setup. In their
example, an agent has to navigate through a maze with the goal to reach a certain target.
Once the agent touches a wall, it crashes (fails) and it is again seeded at the starting
point. Here, a novelty score can be derived from the taken path of every agent and every
iteration. For example, if a candidate tries to take a novel path but crashes immediately,
its novelty score would still be very high, resulting in a selection for the next round. In
a fitness-based setting, only the early crash would be considered, regardless of how it
happened. Then, the selection routine would likely dismiss such an agent, since an early
crash and great distance from the target results in a low fitness. In figure 5.7, we depict
a maze agent example, similar to the one from the Risi et al. experiment [214]. The pink
rectangle marks the starting point of each agent. The goal is to reach the end point (blue
rectangle) without touching a wall of the maze. Conventional selection methods based on
fitness would rank the agents (circles) according to their proximity to the target. Hence,
in this example, the gray agents would be preferred and allowed to reproduce in the next
iteration. Novelty search however rewards novel approaches that deviate from the paths
that the majority of genomes chooses. In this example, the yellow agents would reach
a higher novelty score because their behavior is regarded as innovative compared to the
average agent. Note that when novelty search is utilized, the yellow genomes would be
selected for the next iteration, despite they finish farther away from the target than
the gray ones. The designers of novelty search argue that this selection strategy can be
more efficient in non-trivial fitness landscapes that lead to stagnation with conventional
approaches. Especially when small alternations of genomes result in big jumps in fitness,
novelty search can be a promising alternative to fitness-based evolution techniques.

Figure 5.7: Target-seeking agents navigating through a maze structure

While the novelty approach is easy to fit onto the maze problem, defining novelty
for our use case is more demanding. We are operating on Boolean networks and we
do not have a fixed target or a comparable maze-like structure. Moreover, we cannot
completely abandon the fitness function(s), because we need them to ensure that our
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resulting network is a correctly formed adder. Without evaluating the adder and leakage
fitness, we have no way of judging the genomes at all. The only information we can use
in our evaluations, is the Hamming weight distribution at the intermediate states and
the output vector produced for each input. However, we can still use this information to
manufacture a partly novelty-based selection. For example, we can save an output tuple
(cout, s) per input stimulation for every network. For every network, we can store a vector
of 64 of these output tuples ((cout, s)0,..,(cout, s)63), one for every input stimulus. As a
65th value, we can add the leakage fitness associated with the evaluated network. Then
we can count the occurrences of every output vector/leakage combination and reward
the networks with those combinations that have rarely been seen within the current
population or even across iterations. With that strategy, we can manage to mount
a hybrid novelty-fitness technique on our masked adder problem. With the leakage
measurement, we still include a part of our fitness function, while the output matrix is
exploited to integrate the novelty portion into the selection phase.

5.4.4 Optimizing Masked Addition with Guided Exhaustive Search

Related work shows that optimal 1st-order Boolean masks for single operations can be
found by exhaustive search [193, 215]. The execution time however depends heavily on
the input size, the target platform and the included instructions. The maximum search
space can be estimated by calculating the number of columns inside the produced truth
table. This column size is defined by 2(2

(n·m)) , with n being the number of inputs and m
representing the number of shares. Every expression combination based on the inputs
will create one of these columns, so the search for a valid masking can be translated to
a search of n columns that deliver the desired unmasked output.

If we for example consider a 1st-order masked AND operation, a basic exhaustive search
algorithm provides an optimal six-instruction-long implementation after 11539239 iter-
ations. For this problem, the set of possible input combinations has a size of 216 for
this two-input AND gate with two shares. However, if we try to solve our masked full
adder problem, we are faced with three inputs and two shares, leading to a total number
of 264 combinations. This problem space can no longer be evaluated in an acceptable
time frame on a standard personal computer, meaning no solution can be delivered after
several days of processing.

Still, we will present a modified exhaustive search approach for our full adder problem
as an alternative to the neuroevolutional technique. This technique is more similar
to the related work that we just discussed and can be applied to our problem after
some modifications. Although we change the searching technique, we do not shift our
optimization goal. Instead of focusing on parts of a PPA, we search for a 1st-order
masked full adder. This allows us to evaluate two things: On the one hand, we can
analyze if the full adder target yields better or worse results compared to the PPA-based
related research and on the other hand, we can investigate if a neuroevolutional approach
can outperform conventional methods in this masking use case.

While the following exhaustive search algorithm is fundamentally different from the
genetic operations happening within NEAT, we still adopt some properties from our

79



5 Side-Channel Attacks and Countermeasures for LWC

machine-leaning setup. First, we also include the leakage detection mechanism, in which
the uniformity of the Hamming weight distribution is checked with the help of a table,
grouped by secret input (see table 5.3) [209]. We are able to conduct this leakage
evaluation since we calculate and store a truth table column of the outputs of every
node during runtime. Despite this additional feature, our first representation of the
exhaustive search algorithm is a modified version of the one from Biryukov et al., of
course setup to fit our full adder problem [193]. This unguided version produces a large
truth table, where all possible input combinations meeting the leakage requirements are
saved in columns. Every node of the network is represented by a tuple (n, f, x, y), with
n being a 64-bit integer value that encodes the 1-bit node output corresponding to the
set of input values. f specifies the logical operation (e.g. AND) that is carried out on
the input columns. The values x and y are indices of the two operand input columns
stored in the truth table. The output n of the current node is defined by f(tx, ty), with
tx and ty representing the columns at positions x and y in the truth table t. This data
structure allows us to derive the performed operations that led to the column values in
the truth table.

When the search algorithm is initiated, we fill the truth table with six columns, includ-
ing the identity function of the shared adder inputs. In every iteration, more columns
are added to the truth table. We combine any available columns with every available
operation. We only exclude those that do not fulfill our leakage requirement regarding
the uniform Hamming weight distribution. If we find a column that is logically identical
to one we have already produced, this new column is disregarded. That is because due
to the growing nature of the algorithm, the older combination has to have reached the
same result with less cost (i.e. instructions). In case XORing two columns results in one
of the desired outputs s or cout, that search output is marked as reached. When all
search outputs have been found, the algorithm terminates.

5.4.5 Results

In this section, we will present the resulting adder networks found with our two different
approaches, neuroevolution with a genetic algorithm and guided exhaustive search. Note
that in both searching strategies, we restricted the gate/node count to 21, since using
the most recent techniques from related work, one can build a masked full adder with
22 instructions. While this makes our problem harder, we can guarantee that if we find
a result, it will represent a more efficient full adder than one that can be created with
the current state-of-the-art.

In the NEAT setup, the most crucial part of the algorithm was the selection strategy.
We implemented all different MOO methods mentioned in section 5.4.3.3. We could
not reach desirable results with standard fitness-based techniques like weighted sum or
the Pareto selection within NSGA-II. The two fitness goals, (adder) correctness and
1st-order protection were working too much against each other, so we either terminated
with a non-leakage free adder or a protected structure that was not correct in the sense
of the full adder definition.
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Since in our use case a small mutation of network can result in a large (logical)
change, we finally moved our selection towards novelty search. Consider a genome with
an AND aggregation at an intermediate node. If during the mating phase this aggregation
function is changed e.g. to an OR gate, this can lead to a completely different output
and therefore largely affects the correctness, i.e. adder fitness. This is also true for a
mutation of a connection, which could e.g. be represented by a rerouting of an input
line. We modelled a variant of novelty search which fits our Boolean problem, in order
to respect this non-continuous behavior of the system. We keep the leakage fitness from
the other selection techniques and replace the adder fitness with a list of output vectors
produced per input stimulation. We save the combination of outputs and the leakage
fitness in a tuple. During each algorithm iteration, the number of occurrences of these
tuples is then saved. We keep these measurements stored across iterations and can
hence evaluate how often a certain output/leakage tuple has already been created since
the start of the algorithm execution. We rate the novelty of a network upon how often
its tuple has been counted in the past. The lower the occurrence count, the higher the
novelty score. The population of networks is sorted by this novelty value and the top
n genomes with the highest novelty rating are allowed to proceed into the next phase.
If networks have an equal novelty rating, they are then conventionally sorted by their
adder fitness, leakage fitness and lastly by their size (networks with fewer nodes are
preferred). This way we prefer correct structures to leakage-free networks, but only if
they have the same novelty score.

With this novelty search selection, we recognize better performance compared to
the previously implemented MOO evaluations. This modification allows us to evolve
genomes with an (adder, leakage) fitness vector of (0, -4), i.e. the algorithm is capable
of finding full adders, but they still leak secret information. The leakage score is how-
ever also close to the optimal, considered that a leakage fitness of -4 means that only
four uneven Hamming weights in the whole network lead to leakage. Often, this leakage
originates from a single intermediate node.

Because the fitness of our best solutions was already very close to optimal, we in-
troduced a second NEAT run with the goal to apply error correction to the previously
evolved network. Our best solutions showed leakage only at one node, that was as well
only contributing to a single output share (cout0 or cout1). This means the basic novelty
search algorithm found an applicable solution for 3 out of 4 outputs. With that knowl-
edge, we set up a second NEAT stage with the goal of finding a network that produces
the single output without causing leakage. Since the network already reaches full cor-
rectness with an adder fitness of 0, we know which exact outputs have to be calculated
by the network for our missing share. We initiate a second NEAT run with the goal
to find a logically equivalent network part for the single share that does not introduce
leakage. In this network, we can make use of all six inputs, but have to find only one
leakage-free output, instead of four. This simpler problem in the second-stage can be
fully solved by our modified NEAT algorithm, again while using novelty search. When
we find a leakage-free logical clone for the share in question, we can replace this path
of the old network with the new representation. With this approach, we eliminate the
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remaining leakage and maintain the correctness of the previous network – resulting in a
masked adder network with the fitness vector (0, 0).

Figures 5.8 and 5.9 depict the result networks from our first NEAT run and the second
error-correcting stage. Both gate nets are valid adders, the one in figure 5.8, however,
does not lead to a uniform Hamming weight distribution at the intermediate node 10.
Since node 10 is only contributing to output share cout1, we can instantiate a second
NEAT run to find a leakage-free logical twin of the path to output cout1. Figure 5.9
shows the adder network with the patched part for this share. This circuit consisting
of 14 gates is a correct full adder with no 1st-order leakage according to our evaluation
explained in section 5.4.3.2.

Figure 5.8: Shared full adder with distance-based leakage at node 10
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Figure 5.9: First-order leakage-free shared full adder network

Our configuration file for the NEAT implementation can be found in appendix B. We
limit mutations to at most one per network/iteration in order to avoid too significant
changes at a time. A mutation can be either deleting a connection, adding a connection,
deleting a node, adding a node or altering the logical function of a node. We utilize a
custom method to specify how nodes should be initially connected when the networks are
spawned. This method is mentioned in the configuration file (neat double) and makes
sure that first each node is connected to exactly two inputs. While this can change
during evolution, this way we can preset the networks towards two-input gate circuits.

We can slightly modify our result network such that it matches the relaxed TI require-
ments set by Jungk et al. in their side-channel research [194]. This way, we manage
to form a solution that has very similar properties as related work and create a fair
baseline for a (performance) comparison. We need to substitute the NAND aggregation
of gate 20 with a XOR. That is possible because this gate never receives two zeros as an
input and regarding the rest of the inputs a XOR and a NAND gate are logically identical.
The reason why an input vector of (0, 0) is never occurring at this gate, is that its two
inputs are outputs of a NAND and OR aggregations that share a single input. With the
gates 1 and 20 now being a XOR operation, we can more easily observe that these gates
are collapsing 4 non-uniform output shares into 2 uniformly distributed output shares
in the adder network. This collapsing layer is required for software TIs as introduced by
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Jungk et al. and because of this gate modification we can state that our network is also
a representation of such a software TI.

With the ideas of the software TI in mind, we now look into which results we can
achieve with our non-neuroevolution-based algorithm. In the form described in section
5.4.4, the exhaustive search algorithm still takes a large number of iterations and exceeds
the available dynamic memory on a modern personal computer after hours of runtime.
To reduce the search space, i.e. the number of necessary iterations, we use the fact that
the adder output s can be obtained with XOR gates only. We only need to be careful to
not combine two shares of the same variable to not introduce leakage into the calculation
of s0 and s1. We divide the inputs in two groups, one group containing the first share
x0 of each input x and one group including all second shares x1 of the inputs. Then,
all possible XOR input combinations across the two groups are calculated. That results
in 114 layers, of which each can represent a column in our truth table. We call this set
of XOR-networks the linear expansion layer. This layer contains multiple valid gate nets
to calculate the output s. However, we will determine which one of these we use after
we have knowledge of the whole network. Later, we choose the input combination that
allows us to reuse the most gates for other operations. This way, we can minimize the
number of required gates.

In the search for the next adder layer, we include the XOR-columns as a baseline. We
perform a single iteration, in which we expand the set of allowed bitwise instructions.
For example, for an ARM Thumb-2 target, these operations are EOR, AND, ORR, BIC and
ORN. Since in this iteration also non-linear input combinations can occur, we call the
resulting columns the non-linear layer. After this step is performed, we can already
produce a non-uniform output for cout, which is split into four shares.

We recall the definition of a software TI from Jungk et al. and run another algorithm
iteration to find expressions that collapse this non-uniform four-share representation into
a uniform two-share output. In this phase, as in the linear expansion step, we only allow
linear XOR combinations. The columns of this share collapsing layer contain a solution
for a uniform two-share output cout. Starting from the solution for cout, we can now
inspect the truth table backwards and construct the 1st-order secure full adder network
with the information stored in the table tuples mentioned in section 5.4.4. The described
searching procedure is presented in algorithm 1. Note that the availableInputs structure
contains the truth table columns in the format (n, f, x, y), as it was introduced in the
previous section. These tuples need to be preset with (i, none, none, none) for every
input share i. The algorithm represents the optimized 3-layered search technique that
was just explained.

The most efficient adder found with the depicted search algorithm requires 12 instruc-
tions, of which 11 are used to compute cout. This adder is defined in algorithm 2, the
gate network is shown in figure 5.10. The unnumbered NOT gate does not translate to an
additional instruction, since ARM offers the BIC instruction that performs an AND and
a NOT operation in one cycle.
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Algorithm 1 Layered search algorithm for masked full adder

Require:
a = a0 ⊕ a1; b = b0 ⊕ b1; cin = c0 ⊕ c1
operations = EOR,AND,ORR,BIC,ORN

Ensure:
s = s0 ⊕ s1; cout = c0 ⊕ c1

1: availableInputs← (a0, a1, b0, b1, cin0, cin1) ▷ init array of inputs
2: maxNetworkSize = 21 ▷ upper bound, less gates than related work
3: networkSize = 0

4: FindNextLayer(EOR, availableInputs) ▷ get linear linear

5: while networkSize < maxNetworkSize and cout not found do
6: findNextLayer(operations, availableInputs) ▷ build non-linear part
7: end while
8: if cout was found then
9: findNextLayer(EOR, availableInputs) ▷ find share collapsing

10: else
11: unsuccessful termination
12: end if

13: function findNextLayer(instructions, inputs)
14: for inputPair in inputs do
15: in0, in1 ← inputPair
16: for instruction in instructions do
17: newNode← (output, instruction, in0, in1)
18: if newNode does not leak and newNode is no logical duplicate then
19: availableInputs = availableInputs+ newNode
20: end if
21: end for
22: end for
23: networkSize = networkSize+ 1
24: end function
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Algorithm 2 2-shares masked full adder

Require: b = a0 ⊕ a1; b = b0 ⊕ b1; cin = c0 ⊕ c1
Ensure: s = s0 ⊕ s1; cout = c0 ⊕ c1
1: t1 ← a1 ⊕ c1
2: t2 ← c0 ⊕ t1
3: t3 ← a1 ⊕ b1
4: t4 ← a0 ⊕ b1
5: t5 ← a1 ⊕ b0
6: t6 ← t4 ⊕ t2
7: t7 ← t5 ∧ t2
8: t8 ← t4 ∧ ¬t2
9: t9 ← t3 ∨ a0

10: t10 ← a0 ∧ b0
11: t11 ← t9 ⊕ t10
12: t12 ← t8 ⊕ t7
13: s0 = b0; s1 = t6
14: c0 = t11; c1 = t12

Figure 5.10: First-order leakage-free shared full adder network implemented using 12 ARM
Thumb-2 instructions
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5.4.6 Application to Software Encryption

The primary goal of this research is to optimize the protected addition, which should
eventually lead to better performing masked software implementations of lightweight
ARX ciphers. In order to use and evaluate our developed adders, we have to translate the
gate networks in assembly implementations. Since we target an ARM implementation,
we have to substitute logical expressions that are not available on this architecture with
appropriate instructions. We rearrange the structure of the neuroevolved network such
that we can use the BIC (AND NOT) and the ORR (OR NOT) instruction instead of a NAND

and a NOR gate, respectively. Moreover, we apply DeMorgan’s laws to achieve the most
efficient ARM assembly representation from the masked gate network. Obviously, we
could have limited our search algorithm(s) to exact ARM instructions only to be able to
directly use the resulting instruction network in an assembly implementation. However,
with the more broad logic gate approach, we get a more generic solution, which could
be adapted for multiple instruction sets.

We depict the ARM Thumb-2 assembly implementations of the neuroevolved and the
exhaustive search-based masked full adder in Listings 5.1 and 5.2.

1 // r2 , r3 are share s o f A
2 // r4 , r5 are share s o f B
3 // r0 , r1 are share s o f C
4 eor r6 , r2 , r4 // gate 13
5 and r2 , r4 // gate 12
6 eor r4 , r3 // gate 10
7 eor r7 , r3 , r5 // gate 8
8 eor r4 , r1 // gate 16
9 eor r5 , r0 // gate 5

10 or r r0 , r7 // gate 19
11 eor r8 , r5 , r1 // gate 7
12 and r4 , r7 // gate 18
13 and r1 , r6 , r8 // gate 11
14 b i c r0 , r4 // gate 20 , output C1
15 or r r1 , r2 // gate 6
16 eor r6 , r8 // gate 3 , output S1
17 eor r1 , r5 // gate 1 , output C0
18 // r0 , r1 are the output car ry share s
19 // r3 , r6 are the output sum share s

Listing 5.1: ARM assembly implementation of our full adder evolved with NEAT and novelty
search. Gate numbers in comments reference Figure 5.9.

1 // r2 , r3 are share s o f A
2 // r4 , r5 are share s o f B
3 // r0 , r1 are share s o f C
4
5 // l i n e a r expansion l ay e r
6 eor r1 , r3 // gate 1
7 eor r0 , r1 // gate 2
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8 eor r1 , r5 , r3 // gate 3
9 eor r5 , r2 // gate 4

10 eor r3 , r4 // gate 5
11 eor r6 , r5 , r0 // gate 6 , output S1
12 // non−l i n e a r l ay e r
13 and r3 , r0 // gate 7
14 b i c r0 , r5 , r0 // gate 8
15 oor r1 , r2 // gate 9
16 and r2 , r4 // gate 10
17 // share c o l l a p s e l ay e r
18 eor r1 , r2 // gate 11 , output C0
19 eor r0 , r3 // gate 12 , output C1
20
21 // r0 , r1 are output car ry share s
22 // r4 , r6 i s the new output sum share

Listing 5.2: ARM assembly implementation of our full adder developed with guided exhaustive
search. Gate numbers in comments reference Figure 5.10.

5.4.6.1 Shared Bitsliced Adder Implementation

The most popular ARX algorithms use a bit width of 32 in their addition operations.
This means our shared full adder has to be applied 32 times in a bitsliced implementation.
While bitsliced implementations are useful to avoid timing attacks on AES, they are not
common for ARX ciphers [216]. This is due to the property that ARX designs can
usually be implemented in constant-time per se, and are therefore inherently protected
against timing attacks. So in general, our bitsliced approach will have a performance
disadvantage compared to non-bitsliced related work, because the slicing before and the
combination of the bits after the addition naturally introduces an overhead.

To produce a n-bit adder, we have to cycle through n iterations of the shared full
adder. In our implementation, we assume that the shares for a and b can be read from
memory and that output s can be stored into the registers of a, effectively overwriting
the previously stored shares. In the first sliced iteration, the input carry bit cin will
always be 0, which requires its two shares (cout0 and cout1) to be equal. However, setting
both input shares of cin to 0 violates the uniformity property of the inputs. Therefore,
the two shares need to be initialized with the same random value. This amount of
required randomness is expected and equal to related work [194]. The bitsliced adder is
implemented such that the output (cout0, cout1) of iteration i becomes the input (cin0,
cin1) of iteration i+ 1. Note that the registers of the input and output carry shares are
the same in the assembly implementations, meaning no extra mov instruction is required
to move the outputs into the registers of the next inputs.

5.4.6.2 Benchmarking

Similar as in our LWC MCU benchmarking, we analyze the performance of our two
adder solutions in a full ARX implementation. Therefore, we provide 1st-order masked
implementations of two popular lightweight ARX designs: ChaCha20 and CRAX. CRAX
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represents a novel block cipher based on the Alzette ARX-box that is also used in the
NIST LWC finalist algorithm Sparkle [217]. ChaCha20 is a well-researched symmetric
cipher that is often referred to as an alternative to AES and has been standardized for
use in the TLS protocol in RFC 8439 [218].

Note that all of the evaluated implementations in this section, ours and the ones
from related work, are only protected against distance-based 1st-order leakage. Other
leakage sources, that can be relevant in practice, are not taken into account in these
implementations. We followed this strategy to be able to provide implementations that
are easily comparable to the latest related work (which does not protect against non-
distance-based leakage as well).

The presented speed benchmarks (see figure 5.12) have been carried out on a target
device for LWC, the STM32F103 MCU including an ARM Cortex-M3 chip. We measure
how many cycles the device needs to encrypt a payload of 512 bytes with different
implementations of the ARX cipher(s). We provide performance benchmarks for the
following ARX variants:

• ChaCha20 (unprotected, with our NEAT adder, with our exhaustive search adder,
with the masking from Jungk et al. [194])

• CRAX (unprotected, with our NEAT adder, with our exhaustive search adder,
with the masking from Jungk et al. [194])

For our bitsliced implementations, we show the cycle count including and excluding
the overhead caused by bitslicing. Note that these implementations will perform worse
in case the input size is not a multiple of 32 bits. This additional penalty is caused by
the inherent design principle of bistliced implementations. However, the performance of
bitsliced implementations rises with a greater plaintext size. This leads to bitsliced vari-
ants outperforming conventional implementations even for non-optimal input lengths,
when the input size is large enough (> 1KB).

We illustrate this behavior in figure 5.11. One can observe that our best bitsliced
adder implementation (plotted in orange) performs worse than related work for certain
small input sizes that do not allow for great parallelization of the slices. However, the
advantage of the more efficient masked adder operation grows with a growing input size,
leading to higher speeds of our adder implementations, which eventually outperform
related work (plotted in blue) for larger message sizes.
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Figure 5.11: Throughput comparison of protected ChaCha20 implementations

If we compare our two approaches to each other, we can see the same tendencies for
both ARX ciphers. The implementation with the exhaustive search adder runs faster
than the one with the neurevolved solution. This is expected, since the former con-
tains a masked adder featuring 12 instructions and the latter contains one requiring
14 instructions. The performance difference is however not as big as one might imag-
ine. The reason for this result is that the adder only represents a small amount of the
whole ARX cipher implementation. The other operations within the cipher design and
the bitslicing routines also contribute largely to the cycle count, which results in a 2-
instruction-difference per (bitsliced) addition being noticeable but not crucial. All in
all, the version including the exhaustive search adder requires 2.8% percent less cycles
than our own competitor in the CRAX use case, and 2.2% percent less cycles in the
ChaCha20 benchmark.
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Figure 5.12: Speed benchmark results for different ARX implementations

91



5 Side-Channel Attacks and Countermeasures for LWC

Implementation Code Memory

Unprotected 3174 228

Best Boolean Masked Bitsliced 1024 2260

Jungk et al. Masked 1212 316

Table 5.6: Code size and memory requirements in bytes for a 512-byte encryption with different
ChaCha20 implementations

If we take a look a how much penalty the protection of the implementations causes in
the 512 byte use case, we recognize a penalty factor of 12.1 for our best masked CRAX
implementation and a penalty factor of 34.9 with our best ChaCha20 implementation.
We can however reach a speed up of 33% and 26% with our protected implementations
compared to the related work from Jungk et al., respectively. Still, the masking penalty
is significantly higher in comparison to the one measured for a comparable 2-share im-
plementation of Ascon. In the ChaCha20 example, the 1st-order protection is 6.1× as
costly as for Ascon. The masking of CRAX slows down the implementation roughly
twice as much as it is the case for the NIST LWC candidate.

We finally compare the memory footprints of different ChaCha20 implementations in
table 5.6. While the code size of our bitsliced approach is lower than in related work,
our implementation requires much more dynamic memory during execution. This is a
general downside of bitsliced designs. Since bitslicing heavily exploits parallelism, many
values have to be held in memory. In our ChaCha implementation, we e.g. process eight
blocks in parallel on the 32-bit ARM core.

5.4.7 Leakage Evaluation

We conduct a simulated leakage assessment of our implementations to validate our pro-
tection techniques. Similar to related work, we run a fixed vs. random t-test (see section
5.3.2) in a simulation environment [193]. We choose MAPS as an evaluation tool, be-
cause it has been developed for the ARM Cortex-M3 MCU and has been used in related
scenarios in the past [3]. Then, we generate two sets of traces, one with a constant and
one with random plaintexts, while the key remains the same for all captures. Figure 5.13
shows the result of the fixed vs. random t-test. MAPS cannot detect any distance-based
leakage in our ChaCha20 implementation.
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Figure 5.13: Plot of the t-test performed across 1000000 power traces of the ChaCha20 encryp-
tion simulated in MAPS, with pipeline leakage simulation disabled [3]

5.4.8 Side-Channel Leakage in Practice

Even if the leakage simulation with MAPS shows no distance-based leakage in our im-
plementation, it is still possible that sensitive values are exposed when the algorithm is
executed on real hardware. This is because there are more leakage sources than Ham-
ming weight/distance leakage on an embedded chip. These hardware related leakages
are caused by e.g. leftover values in the pipeline or memory registers like the Memory
Data Register (MDR) and the Memory Address Register (MAR).
More specifically, when evaluating the leakage of a software encryption algorithm on

real hardware, the following additional leakage sources need to be taken into considera-
tion:

• Pipeline leakage

• Memory registers leakage (MAR, read MDR, write MDR)

• Leakage caused by branch prediction and speculative execution

To evaluate our implementation against all these leakage sources, we set up another
t-test with real-world data, captured on actual hardware. We execute our ChaCha20
implementation on the STM32F103 MCU. Power traces are acquired using a Picoscope
6000E sampling at 2.5 GHz using a 10:1 300MHz oscilloscope probe. We use a shunt
resistor with 22Ω resistance between the power supply and the MCU. Moreover, all
bypass capacitors were removed from the MCU and placed on the power supply side of
the shunt to ensure maximal bandwidth of the acquired traces.
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Figure 5.14 shows the result of the t-test for our ChaCha20 implementation that
showed no distance-based leakage on MAPS (see figure 5.13). Clearly, this software
still leaks sensitive information through other sources. Note that while we only show
this hardware t-test for our standard masked implementation for comparison reasons,
the implementations from related work also show similar leakage patterns. This leakage
occurs since none of these implementations is additionally guarded against advanced
micro-architectural leakage.
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Figure 5.14: t-test result plot of our standard masked ChaCha20 implementation, featuring
power traces acquired on the STM32F103

The main source of pipeline leakages is the reuse of the A and B registers, which
are used as inputs for the ALU. For removing these leakages, the Thumb instruction
oor.n r0,r0 is inserted between instructions to overwrite the ALU registers. We found
that in some cases an additional nop.n instruction is required to further separate stages
of the pipeline. Obviously, the addition of these instructions introduces a large penalty
in both the speed and size of the algorithm.

Since inputs and output of the adder are loaded and stored from and to the memory
of the MCU, the MDRs can also be a source of leakage. In Cortex-M3 processors, load
and store operations use two different MDRs, so the leakage of each must be considered
independently. For removing the leakage from the read MDR used in the load operation,
it is sufficient to reorder the load of the inputs in such a way that the two shares of the
same secret input are not read consecutively, so the input shares are read in the order
a0, b0, a1, b1. Overwriting the write MDR can be done by simply writing a constant value
in an unused location in the stack.

Finally, we found that leakage happened when the destination address of the branch
was a multiple of 4 and/or when the address of the branch instruction was not a multiple
of 4. Our hypothesis for this is that the limited speculative execution of the Cortex-
M3 would attempt loading registers in early stages of the pipeline when branches are
incorrectly predicted, causing leakage.
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After implementing countermeasures for all the described sources of leakage, the num-
ber of cycles per iteration of the proposed bitsliced masked implementation almost dou-
bles. However, the implementation of these countermeasures could likely be optimized
more, leading to less additional penalty. Unfortunately, the latest related work does
not provide masked implementations that are also guarded against e.g. pipeline-based
leakage, i.e. we cannot conduct another performance comparison including the better
protected variant.
Figure 5.15 shows the t-test plot featuring the traces acquired from the STM32F103

running our ChaCha20 implementation, including the countermeasures described above.
As we can see, the introduced countermeasures eliminate any kind of leakage, which
results in a true 1st-order secure implementation of the ARX cipher ChaCha20.
A complete ARM Thumb-2 assembly implementation of one of our shared bitsliced

32-bit adders with countermeasures against memory and pipeline-based leakage can be
found in appendix C.
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Figure 5.15: t-test result plot of our masked ChaCha20 implementation (incl. additional coun-
termeasures), featuring power traces acquired on the STM32F103

The evaluation in a real-world scenario reveals that leakage-free can mean two different
things in theory and practice. While dependency-based leakage assessments – as used by
related work and our own search algorithms – help in detecting distance-based leakage,
additional countermeasures have to be taken into account to ensure no leakage is induced
by other hardware-related effects. Recognizing and eliminating these additional leakage
sources without conducting specific experiments on the target hardware poses a difficult
challenge in the field of side-channel research.
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Battery-powered Environments

As discussed in previous chapters, typically three metrics are evaluated when bench-
marking software implementations of (cryptographic) algorithms: speed, binary size
and RAM utilization. While computing power and memory capabilities are usually very
limited on resource-constraint platforms, in certain use cases also the energy consump-
tion of a device can have a high priority. This is especially true for environments in
which no permanent electricity can be supplied and where the target systems have to be
available for many consecutive years.
Often, the appointed embedded systems have to be powered by a battery that guar-

antees a certain minimum lifetime before maintenance or replacement is required. In
these scenarios, the device can be placed in remote locations that are not always easily
accessible after the installation process. Examples for such setups are various kinds of
sensors, e.g. temperature or humidity sensors in the nature, as well as water meters or
other monitoring devices in industrial facilities. Depending on the use case, these de-
vices have to have a (wireless) interface to be able to transmit or receive data concerning
operation modes or measurement results. To enable that, usually well-established wire-
less protocols are adapted. These again might require the transmission to meet certain
security goals, especially if the information is sent over the air.

6.1 Cryptography in Energy-constraint Infrastructures

When the communication demands protection due to the used protocol or the require-
ment of the scenario, cryptography is needed within the protocol stack. As of now,
typically a mode of AES is standardized for many communication protocols. However, if
we focus on battery-powered and low-performing embedded systems with long lifespans,
LWC ciphers could present an alternative to the current standard for symmetric encryp-
tion. When the energy consumption of a system is highly prioritized, rather than its
processing speed or low memory footprint, the design and implementation of its firmware
still plays an important rule. Even if obviously the chosen hardware platform and its real-
ization also has a great impact on power consumption, the use of energy-saving operation
modes and efficient software implementations also contributes to the power consumption.
When protected data transfer or storage is required, the applied cryptography causes a
part of this power drain. Therefore, such secured energy-constraint environments present
potential future real-world targets for the winner of the LWC competition. The obvious
question is, if exchanging ciphers and implementations of cryptographic algorithms has
enough impact on the whole system that a change results in a reproducible difference in
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power consumption. This is especially interesting in these scenarios, since a lower power
consumption could yield in a longer lifetime of the battery and therefore the complete
system.

6.2 Energy Consumption of NIST LWC Ciphers in an Industrial
Use Case

In the following section, we will introduce a test setup to evaluate the contribution of the
LWC candidates to the overall power consumption of an embedded system. In order to
conduct a meaningful comparison, we select hardware components applied in industrial
products and emulate the firmware and other system parts of a suitable use case for
lightweight ciphers. We will first describe the general environment of the chosen use
case, before we give some details regarding the applied protocol and its cryptography
building blocks. Then, our test setup and measurement routines are shown, along with
the utilized hardware. Lastly, we will explain the design and implementation of the exact
use case and conclude the section with the presentation of the results.

6.2.1 Smart Meters in Water Supply

Typically, water or electric meters are smart IoT devices that are connected to some
kind of larger network. In this domain, this is the case to allow trusted parties to
access consumption data or even manage the systems from a remote location. While
the latter requires advanced hardware and software to be able to provide a reachable
administration interface, the former read-only functionality can be realized with a much
simpler embedded platform.

Nowadays, modern water meters incorporate a radio interface that can send out data
as defined in the firmware of the system. In water metering for private households, this is
used to periodically transmit consumption data wirelessly. The transmitted data can be
captured by authorized supply companies that possess a certain receiver, which can for
example be placed in a maintenance car passing a nearby road. Sometimes even garbage
collection vehicles are equipped with read-out equipment and can therefore periodically
collect consumption data when being on duty [219]. Similar communication models
are also used for other smart devices in private homes, such as smoke detectors or air
conditioning sensors.

However, water meters or sensors are also part of industrial systems. For example,
sensors can monitor flow control in pipes to detect leakages or measure the quality of
transported water or other liquids. For such use cases, these devices can be incorporated
in critical infrastructures and have to be installed in hardly accessible locations. Similar
to regular water meters, electricity to operate the system can then often not be provided,
meaning a battery-powered setup is required. Moreover, the communication cannot
be established over a wired connection, so a wireless data transmission needs to be
introduced.
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6.2.2 The Wireless Meter-Bus Protocol

For scenarios, in which low-power, wireless and secure data transmission is required
for metering, the Wireless Meter-Bus (wM-Bus) protocol was developed as an addition
to the standard (wired) Meter-Bus (M-Bus) specification first introduced in the 1990s.
The wired and wireless variants of the protocol have been standardized in the European
norm DIN EN 13757. The wM-Bus communication is detailed in part 4 of this specifica-
tion [220]. The standard has been largely adapted by the Open Metering System Group
in their open specification for metering communication [221].

The wM-Bus protocol is used for exchanging data with meters, sensors or other em-
bedded IoT devices in the private and industrial domain. The corresponding standard
parts define the physical and link layers, as well as the application protocols and the
remote readout process for wired and wireless scenarios. In general, the radio modules
operate on the license-free frequency bands 868 MHz, 433 MHz and 169 MHz in wM-Bus
communication. The data rate varies between 300 bit/s and 16,5 kbit/s. Both the exact
frequency and data rate are dependent on the mode of operation. Six groups of modes
are specified in the DIN EN 13757-4.

Stationary mode (S) describes the communication between a meter and a stationary
or mobile system. There exist unidirectional (S1, S1-m) and bidirectional (S2) variants
of this mode. S1 is optimized for battery-powered meters, while S1-m is particularly
suitable for mobile receivers. S2 is a more generic mode, allowing for sending and receiv-
ing data. Frequent transmit mode (T) also offers a uni- and bidirectional communication
setting (T1 and T2). T1 is designed for sending single meter values periodically in order
to support drive-by readout. In mode T2, the meter transmits a short message frequently
but waits for a response. If a response is received, a bidirectional channel is established
and more data can be exchanged. In frequent receive mode (R2), a meter waits for a
wake-up message from a communication party. If such a message is received, a bidirec-
tional communication is setup. This mode enables readout devices to extract metering
data from multiple stations in parallel. Compact mode (C) offers similar features as
frequent transmit mode, however, it supports a more energy-efficient data exchange,
i.e. more data can be transmitted with consuming the equal amount of energy. Both
corresponding sub-modes (C1 and C2) are well-suited for drive-by readout. There exist
two more less used modes, which operate on lower frequencies (433 MHz and 169 MHz)
in order to allow for longer range communications. Frequent receive and transmit mode
(F) defines a sub-mode (F2-m) in which the meter again waits for a wake-up message
from a transceiver, similar to mode R2. The narrowband mode (N) is also used for meter
reading and is specifically optimized for narrowband communication on 169 MHz.

Regardless of the chosen mode, the wM-Bus protocol operates in a master-slave prin-
ciple. Typically, a readout or management device acts as the master, while the meters or
sensors represent a group of slaves. The master hardware can also function as a gateway
that accumulates and processes data from multiple slaves, before it transfers it to further
systems. Every transmitted frame is based on a structure consisting of the following six
different layers.
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Physical Layer (PHY) In this layer, the physical specifications of the bus are defined.
This includes electrical regulations, the appointed cables for wiring, data rates, trans-
mission intervals and bandwidths, as well as the frequency ranges for wireless modes.
Moreover, minimum time delays between transmissions and access windows for bidi-
rectional communication are covered by the physical layer. The Open Metering Group
specification also defines a length interval for the preamble, which initiates the wM-Bus
frame transmission [221].

Data Link Layer (DLL) The data link layer is preceded by a synchronization pattern
and the preamble and represents the first layer that contains variable data, depending
on the purpose and rest of the frame. The data link layer consists at least of one 10-byte
block. This first block starts with a length field that defines the length of the following
frame. Another byte is taken by the control field (C-field), which describes the type of
the frame. Examples of frame types are SDR-NR, which stands for Send/No Reply and
is used for periodically sent consumption data from the meter, or SDR-UD (Send User
Data), which is a standard send command transmitted from the master to a slave. The
C-field is superseded by a 2-byte manufacturer ID and 4-byte serial number. The last
two bytes of the DLL block indicate the version of the device and its type (e.g. water
meter). The optional second block can consist of several kinds of non-application data.
Any additional block contains a control information field (CI-field) that specifies the
type of the following data. Except the last block, every subsequent block has a size of 16
bytes. Every data block (including the first 10-byte block) incorporates a 2-byte Cyclic
Redundancy Check (CRC) trailer for error detection.

Extended Link Layer (ELL) The extended link layer is an additional frame part used
in wireless communication. DIN EN 13757-4 specifies five different variants of this
layer, while the open metering specification only lists two different types, a short and a
long version of the ELL. Both versions start with a CI-field that indicates the kind of
ELL. In the short variant, only a communication control field (CC-field) and an access
counter are included. The long ELL additionally contains a receiver address consisting
of a manufacturer ID, a device ID, a version and a device type. The CC-field specifies
constraints regarding the communication, e.g. if messages will be repeated or if the data
channel shall be bidirectional. The access counter is a single number that is increased
with every transmitted frame and therefore provides information on how many messages
have already been sent from the device.

Authentication and Fragmentation Layer (AFL) This layer is defined in part 7 of DIN
EN 13757. It starts with a CI-field indicating the beginning of an AFL. This is followed
by a length specifier for remaining bytes in this layer, as well as a fragmentation control
field (AFL.FCL). The FCL-field contains information on how many fragments are part
of the AFL and if these contain a frame counter or a MAC for message authentication.
The subsequent message control field (AFL.MCL) indicates the authentication type,
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Security Mode Properties

0 no encryption

2 Data Encryption Standard (DES) with Initialization Vector (IV)=0

3 DES with IV̸=0

5 AES-CBC-128 with IV̸=0

7 AES-CBC-128 with IV=0

8 AES-CTR-128 with CMAC

9 AES-GCM-128

10 AES-CCM-128

Table 6.1: Overview over defined security modes according to DIN EN 13757-7 (condensed) [4]

e.g. AES-CMAC-128 with 16 bytes of tag length. Furthermore, the AFL consists of the
calculated MAC over associated data (if applicable) and a message counter [4].

Transport Layer (TPL) The first byte of the transport layer is a CI-field that declares
the header type of the following data. The metering standards define a short and a
long header, it is also possible that a transport layer block is sent without any header.
Header-less messages are only used for unencrypted M-Bus messages, a short TPL header
is only used in wireless communication, the long header is applied in both protocols. The
main difference between the short and long header lays in the additional manufacturer
information. The long header contains a manufacturer ID and the device type, in addi-
tion to the status byte, an access number and the configuration field, which are present
in both headers. The status byte stores information on the health of the device and is
used for reporting any arising error states. The configuration field specifies the security
mode for the sent message. DIN EN 13757-7 describes various security modes, some of
them also support AEAD. Table 6.1 gives an overview over the possible security mode
configurations in the TPL.

The following data is dependent on the selected security mode. For security mode 9
(AES-GCM) length fields for the encrypted and unencrypted payload are superseded by
a message counter, the payload from the application layer and the authentication tag.

Application Layer (APL) The application layer contains the (encrypted) payload of the
wM-Bus message. In a meter readout use case, this payload is structured in triplets of a
Data Information Field (DIF), a Value Information Field (VIF) and a value. Each triplet
is called a Data Record (DR). The DIF specifies the type of data (e.g. temperature),
the VIF contains further data information (e.g. the unit, °C) and the third field holds
the corresponding value (e.g. 58). The APL can have multiple DRs that are interrupted
by CRC bytes after every 16 bytes of application data. When the payload is encrypted,
the data will be padded to match the block size of AES.

101



6 Use Case: Lightweight Cryptography in Battery-powered Environments

6.2.3 Use Case

We wanted to build a close-to-industry use case for testing the LWC candidates in a
real-world environment. In general, we focus on the scenario of a battery-powered water
meter, which periodically sends consumption data over a wireless interface. We studied
product specifications and communication descriptions to investigate how the wM-Bus
messages from such devices are typically crafted and how (often) they are transferred.
We model our use case after a popular water meter device sold by a well-known German
meter company.

In particular, we define the following communication and evaluation properties for our
analysis:

• A wM-Bus message is periodically sent every 8 seconds.

• The transferred data is static and its content is modelled according to the commu-
nication description of a well-established water meter.

• The payload of the application layer is encrypted with AES-GCM (security mode
9) to provide a high security level suitable for critical infrastructures.

• The default AEAD algorithm is exchanged with implementations of the NIST
LWC candidates to evaluate their impact on the energy consumption of the whole
system.

• The MCU under test and its peripherals are put in standby mode when no data
is transmitted to achieve a low power consumption.

• The measurement device senses the current drain of one operation cycle (wake up,
transmit, standby) at a time.

• The cycle measurement is repeated 50 times in order to be able to calculate a
meaningful average consumption.

To create a static and realistic wM-Bus message, we build the data up layer by layer
according to DIN EN 13757 and copy the DRs from the specification of an actual water
meter. The detailed structure of the plaintext message is depicted in table 6.2. In
our example evaluation, we target authenticated encryption of the payload without any
additional MAC calculation for associated data. CRC bytes are not included since
the integrity checksums are directly calculated in hardware. Every byte of the APL
is encrypted prior to the transmission and an authentication tag is appended at the
end of the message to support authenticated encryption. The DRs contain information
regarding the following values: telegram count (number of messages sent by the meter),
total consumed water volume, four due dates for inspections and replacement, flow rate,
remaining battery lifetime, temperature and two logging data sets. Depending on the
type of data, the value size varies between one and four bytes.
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Data content Length Layer

Data length 1 byte DLL

Message type 1 byte DLL

Manufacturer ID 2 bytes DLL

Serial number 4 bytes DLL

Version 1 byte DLL

Device type 1 byte DLL

Layer type 1 byte ELL

Communication type 1 byte ELL

Access counter 1 byte ELL

Layer specification 1 byte AFL

Length of AFL 1 byte AFL

Fragmentation info 2 bytes AFL

Message configuration (incl. authentication type) 1 byte AFL

Message counter 4 bytes AFL

Layer header type 1 byte TPL

Access counter 1 byte TPL

Status 1 byte TPL

Security configuration (mode 9 for AES-GCM) 2 bytes TPL

Length of encrypted data 1 byte TPL

Length of unencrypted data 1 byte TPL

Message counter 4 bytes TPL

Payload, containing 11 DIF/VIF/Value triplets 64 bytes APL

Table 6.2: Structure of used wM-Bus message in the energy evaluation
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6.2.4 Hardware Setup

As a basic MCU platform, we use an STM32L053R8 board featuring an ARM Cortex
M0+ core, 64 KB of flash memory and 8 KB of RAM. The 32-bit chip is running at
a frequency of 32 MHz. It supports different low-power modes and is used for energy-
sensitive applications, e.g. in Long Range (LoRa) sensor nodes.1 We removed/desoldered
all unnecessary hardware parts (e.g. resistors and capacitors) in order to minimize the
power drain of the system. To be able to wirelessly send out M-Bus messages, we added
a Semtech SX12622 core to the setup, which is connected via a Serial Peripheral Interface
(SPI) to the main MCU. The SX1262 is a sub-1-GHz transceiver that was developed for
long-range data exchange with an efficient energy footprint. The co-processor is featuring
checksum (CRC) calculation in hardware and is capable of modulating the transmitted
signal as required for wM-Bus. It can be configured to send on the 434 MHz frequency
band, the definition of the protocol and the creation of suitable messages has to be
handled by the developer in software. This allows the user to apply the module in
different use cases, e.g. for wM-Bus and LoRa communication.

To accurately measure the energy consumption of the setup, we used a Nordic Power
Profiler Kit II3 to power the test platform. This device was built to accurately measure
the power drain of a target system and can as well be used as a power source in parallel.
It allows measuring currents as low as 200 nA and has a maximum sampling rate of 100
ks/s. It also provides an API which lets the developer control the measurement process
via a scripting language, automatically.

6.2.5 Test Framework

The test setup is built similarly to the speed test case from the main benchmarking
framework. This is because the requirements for both test cases are strongly overlapping.
Again, any available 3rd round implementation shall be tested and the programming of
the flash, the test execution and the result collection shall happen automatically. In
the energy measurement test case, this is even more critical since a test for a single
implementation runs through 50 test cycles, each lasting 8 seconds, according to the
definition in subsection 6.2.3. This means, testing one binary takes 50 ∗ 8s = 400s =
6min40s without the compilation/flashing process taken into account. Considering 100+
implementations, the whole energy benchmark takes more than 11 hours. Therefore,
building a reliable and highly-automated test procedure is of high importance.

For the energy test case, a template for the STM32L053 had to be developed. As in the
main benchmarking framework, this acts as a runtime environment for the test case itself.
It implements the initialization of the MCU and the radio module, the interface to the
cryptographic operations and routines to send the data and put the devices into standby
mode when necessary. The implementation of the low-power modes is essential in this
use case in order to bring the test case as close as possible to industry practices. The

1https://www.dragino.com/products/lora-lorawan-end-node/item/128-lsn50.html
2https://www.semtech.com/products/wireless-rf/lora-core/sx1262
3https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
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firmware part of the framework is accompanied by dedicated testing scripts that start
and control the individual tests and collect the results upon their termination. These
scripts implement the instrumentation of the power profiling device, the compilation
of the binaries and the programming of the flash memory, which is realized through a
serial interface. The current drain is measured constantly through the 8 second cycle,
including the data preparation, encryption, transmission and standby phase. The energy
consumption is then calculated using the measured current over time. Figure 6.1 pictures
the design of and the data flow within the testing procedure. The complete process –
from the compilation until the result collection – happens in an automated manner.
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Figure 6.1: Design and data flow of the energy measurement setup

6.2.6 Results

We collect energy consumption data for every implementation available for the 3rd round
candidates. The STM32L0 is flashed with every binary one after the other. Once
the flashing process is finished, the testing routine is started. This includes the wake-
up of the MCU and the radio module, the preparation of the wM-Bus message, its
encryption/authentication with the implementation under test and the sending of the
(partly) encrypted data. After the transmission has finished, the devices enter the
standby mode until the cycle timer is triggered and the next sending procedure is started.
A wM-Bus message is sent every 8 seconds, which mimics the behavior of an actual water
meter. Per implementation, we execute the described cycle 50 times. The current drain
per cycle is measured and from there, the consumed energy in Joule is calculated by
using the current, the device voltage and the elapsed time.

To be able to make a statement regarding the energy consumption overhead caused
by the cryptography, we also measure the current drain for a firmware that contains no
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6 Use Case: Lightweight Cryptography in Battery-powered Environments

cipher implementation at all. Similar like in our binary size benchmarks, we introduce
a NoCrypt ”algorithm” that only copies the plaintext in the ciphertext array when
the encryption interface is called. The energy consumption of the NoCrypt firmware
serves as a minimal baseline and can be used to judge the additional power drained by
encryption with different ciphers. Besides the measurement for NoCrypt, we include an
energy benchmark for AES-GCM, for which we integrate the same implementation as
in our speed and memory test cases. The bar plot in figure 6.3 shows the results for the
best ranking implementation for each finalist. With this depiction, we follow the result
presentation from the other test cases and only provide the best result in this test per
candidate.

We can observe that the average energy consumption does not vary a lot in between
most candidates. Besides the firmware compiled with Elephant draining more than
three times as much power as the one with the best implementation, the finalists’ results
are close together. Xoodyak provides the most energy-efficient implementation, but
is tightly followed by TinyJAMBU, Sparkle, GIFT-COFB and Ascon. AES-GCM
ranks sixth, while Isap reaches the second to last spot. The minimal energy over-
head per cycle compared to NoCrypt is 14 µJ. Overall, the differences in energy are
minute, when comparing them in the big picture. The Xoodyak firmware consumes
445µJ∗7.5∗60∗24∗365

106
= 1754.19J per year. If we assume a water meter with a battery

containing 30.000 J, this battery would (theoretically) last for 30.000J
1754.19 = 17.10 years,

assuming consistent discharging without considering any side effects. The same calcu-
lation for AES-GCM yields a yearly consumption of 1793.61J and a lifetime of 16.73
years. This means – in this simplified scenario – the device could run ca. 4.5 months
more with the LWC algorithm before the battery is entirely discharged.
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Figure 6.2: Sampled current drain from startup of the device until going back to standby. The
included AEAD cipher is AES-GCM.
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6.2 Energy Consumption of NIST LWC Ciphers in an Industrial Use Case

This comparably little impact of the cipher can be explained when taking a detailed
look at the power drain of the embedded system in the smart metering use case. While
the chosen cipher implementation definitely has an impact on the power consumption,
this impact is shadowed by the high currents drained by the transmission of the message.
In figure 6.2, we can recognize the device wake-up and configuration phase, together
with the data preparation and encryption. These operations explain the little peaks
(<< 2mA) between 10 and 52 ms after starting up. The single big peak (> 15mA) shows
the current consumption during the message transmission. Even if this high amount of
current is only needed for a short amount of time, it obviously highly influences the
average power drained over one cycle. After the termination of the sending procedure,
the current drops to a minimum of 5µA due to the hardware entering ultra-low-power
modes. While comparing the power consumption only during the encryption process of
the implementations would probably lead to easier measurable performance differences,
our approach highlights the impact of selecting different LWC cipher implementations
for a real-world industrial use case.
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Figure 6.3: Average energy consumption of the best implementation per finalist. The measure-
ment reflects the energy consumed for one eight-second-long cycle including wake
up, encryption, transmission and standby phases.

Naturally, the speed of an implementation correlates with its energy consumption [222,
223, 224]. Whenever significantly fewer instructions need to be executed for an algo-
rithm, its energy footprint will usually be smaller. To evaluate if there are any especially
energy-efficient implementations that limit the prevalence of this correlation, we qual-
itatively compare the speed of the candidates and their ranking in the industrial use
case benchmark. In that way, we can also estimate if results from benchmarks in syn-
thetic test environments are comparable to those obtained in close-to-industry settings.
In our speed benchmarks, we do not support a platform with the same Cortex-M0+
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MCU as found on the STM32L0. The closest low-power device in our framework is
the STM32F103, it however features an ARM Cortex-M3 MCU that implements a dif-
ferent pipeline than the Cortex-M0+. Since these architectural differences can highly
impact the performance of an implementation, we resort to the speed benchmark rank-
ing provided by NIST itself. Their testbed includes an Arduino MKR Zero MCU that
makes use of an ARM Cortex M0+ chip with similar characteristics as the one fea-
tured on the STM32L0 evaluation board. We can extract the following cipher ranking
for the encryption/authentication of 64 bytes (without AD) from the NIST results:
1)TinyJAMBU 2)Sparkle 3)Xoodyak 4)GIFT-COFB 5)Ascon 6)AES-GCM 7)Ro-
mulus 8)Grain-128AEAD 9)PHOTON-Beetle 10)Isap 11)Elephant. In the NIST speed
comparison for the appropriate input size, the same five candidates rank in the first half,
although in a slightly different order as in our energy benchmark. AES-GCM occupies
the same spot in both result sets, as well as Romulus, Grain-128AEAD, PHOTON-
Beetle, ISAP and Elephant. While this is of course only a qualitative comparison, it
shows that no cipher is especially energy-efficient while being comparatively slow or vice
versa. This generally confirms a strong correlation between speed and energy consump-
tion of an algorithm.
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7 Conclusion and Outlook

In this thesis, we contributed to the analysis of lightweight symmetric ciphers within
the NIST LWC project. We designed and implemented an open-source and transparent
evaluation platform for software implementations of LWC ciphers (CB1). Moreover, we
discussed and modelled our requirements and constraints to support a fair comparison
of the algorithms (CB2).

We evaluated the performance of NIST LWC ciphers under various aspects. The first
benchmarking study analyzed the speed and memory footprints of software implementa-
tions on different MCUs. We have observed that the optimization level of an implemen-
tation and the tailoring for certain use cases can significantly influence the performance.
However, still the same group of ciphers almost always ended up in top ranking spots
across platforms and test cases. Moreover, we can conclude that AES-GCM is regularly
outperformed by some NIST LWC candidates, while it also regularly beats some of the
finalists (CB3).

Furthermore, our side-channel analyses have shown that efficient protection against
implementation attacks poses a tough challenge. Standard leakage detection methods
are helpful in finding distance-based leakage, however, this is insufficient in case an actu-
ally leakage-free implementation is required for an embedded system. For this use case,
one has to conduct further leakage analysis on the target device to recognize and be
able to eliminate other leakage sources. The protection of ARX ciphers continues to be
a costly challenge. We have found that even with optimized protection techniques, the
penalty for masking ARX structures – in particular the addition – is still very high. In
comparison to masking e.g. sponge-based ciphers, this performance drop remains signif-
icantly higher, which represents a disadvantage of ARX ciphers (CB4). Moreover, our
search for efficiently masked adders revealed that such Boolean optimization problems
can be solved using techniques from the field of neural networks and genetic algorithms.
However, we have found that modified conventional searching methods still yield better
results, at least for our problem setup.

Lastly, this work provided benchmarking figures for LWC cipher implementations in
an industrial use case. In our wM-Bus experiment, we noticed that, while the LWC
finalists partly deliver better performance than AES-GCM, the difference is tiny and
not significant in this use case (CB5). Additionally, this experiment confirmed that
there is a high correlation between the speed of a cipher implementation and its energy
consumption. For all finalists, we observed that they (generally) reflect their measured
speed also in the energy benchmark. Even if the LWC candidates were not crucially more
efficient than AES-GCM in our use case, their use might make sense for other scenarios.
In a use case in which the speed, memory or energy footprint of the cryptographic
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7 Conclusion and Outlook

algorithm has a high(er) influence on the performance of the whole system, employing a
suitable LWC cipher instead of AES-GCM might result in an advantageous difference.

Regarding the NIST LWC competition, it will be interesting to see which cipher NIST
will select as the winner in the near future. Furthermore, the following standardization
process and the possible adoption of the novel algorithm in other regulations will be
challenging. It will be especially exciting to observe when and how the new cryptosystem
will be applied in industrial projects. It will definitely take time and more performance
and security testing to build trust on the new cipher. Nevertheless, there will likely occur
practical use cases in which the LWC cipher is significantly more suitable than a variant
of AES, which could then lead to a spread of the lightweight algorithm. Side-channel
protection might only be required in a small subset of those use cases. However, in
hardening scenarios, it is especially important to conduct further research. As we have
shown in our studies, it is not enough to apply simulated leakage analysis only. For
industrial use, it is required to take measurements on the actual target hardware. The
area of conflict between high-performance implementations and actual protection against
side-channel attacks still represents an interesting field of research for the future. Here,
a further analysis of the application of neuroevolutional techniques could be a rewarding
path to follow. All in all, the appropriate evaluation, optimization and selection of
ciphers, regarding their performance and security level, will remain a relevant topic in
both academia and industry – especially when it comes to building secure connected
systems.
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Triathlon of lightweight block ciphers for the internet of things. Journal of Cryp-
tographic Engineering, 07 2015. doi:10.1007/s13389-018-0193-x.

[145] K. Le Gouguec and P. Huynh. FELICS-AE: A framework to benchmark lightweight
autheticated block ciphers. In 3rd Lightweight Cryptography Workshop at NIST,
2019.

[146] R. Weatherley. Lightweight cryptography primitives, 2021. https://rweather.

github.io/lightweight-crypto/performance.html (visited on March 25,
2023).

[147] Y. Nir and A. Langley. Chacha20 and Poly1305 for IETF protocols. Technical
report, 2018.

[148] F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, and B. Viguier. As-
sembly or optimized C for lightweight cryptography on RISC-V? In International
Conference on Cryptology and Network Security, pages 526–545. Springer, 2020.

[149] NIST. Microcontroller Benchmarking, 2021. https://github.com/usnistgov/

Lightweight-Cryptography-Benchmarking/ (visited on March 25, 2023).

[150] O. Hyncica, P. Kucera, P. Honzik, and P. Fiedler. Performance evaluation of sym-
metric cryptography in embedded systems. In Proceedings of the 6th IEEE Inter-
national Conference on Intelligent Data Acquisition and Advanced Computing Sys-
tems, volume 1, pages 277–282, Sep. 2011. doi:10.1109/IDAACS.2011.6072756.

[151] H. Tschofenig and M. Pegourie-Gonnard. Performance of state-of-the-art cryptog-
raphy on ARM-based microprocessors. 1st Lightweight Cryptography Workshop at
NIST, 2015.

[152] J.-P. Kaps, W. Diehl, M. Tempelmeier, F. Farahmand, E. Homsirikamol, and
K. Gaj. A comprehensive framework for fair and efficient benchmarking of hard-
ware implementations of lightweight cryptography. Cryptology ePrint Archive,
2019. https://eprint.iacr.org/2019/1273 (visited on March 25, 2023).

[153] M. Khairallah. Lightweight Cryptography ASIC Benchmarking, 2021. https:

//github.com/mustafa-khairallah/lwc-aead-rtl (visited on March 25, 2023).

122

https://eprint.iacr.org/2016/740
https://eprint.iacr.org/2016/740
http://bench.cr.yp.to
http://dx.doi.org/10.1007/s13389-018-0193-x
https://rweather.github.io/lightweight-crypto/performance.html
https://rweather.github.io/lightweight-crypto/performance.html
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking/
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking/
http://dx.doi.org/10.1109/IDAACS.2011.6072756
https://eprint.iacr.org/2019/1273
https://github.com/mustafa-khairallah/lwc-aead-rtl
https://github.com/mustafa-khairallah/lwc-aead-rtl


BIBLIOGRAPHY

[154] M. Aagaard and N. Zidaric. ASIC benchmarking of round 2 candidates in the NIST
lightweight cryptography standardization process: (preliminary results). Cryptol-
ogy ePrint Archive, 2021. https://eprint.iacr.org/2021/049 (visited on March
25, 2023).

[155] C. Rupp. Requirements Engineering-der Einsatz einer natürlichsprachlichen Meth-
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A Overview of the Characteristics of NIST LWC candidates

The following table displays key properties of the primary variants of all NIST LWC algorithms. The state, key, block/rate
(abbreviated as Bl./Ra.), tag and security margin are presented in bits. The number of rounds is sometimes dependent on
variable factors such as the input size. In this case, we mention the minimum number of rounds in the main operation. When
more than one number is listed in this column, this refers to a call of the round function in different phases of the algorithm
(e.g. during initialization and finalization).

Name Variant Type Primitive Mode Rounds State Key Bl./Ra. Tag Security

ACE ACE-AE-128 Sponge sLiSCP Duplex 8 320 128 64 128 128
ASCON ASCON-128 Sponge ASCON Monkey Duplex 12, 6 320 128 64 128 128
Bleep64 Bleep64 Stream BeepBeep 127 128 64 128
CiliPadi CiliPadi-Mild Sponge LED Monkey Duplex 18, 16 256 128 64 64 128
CLAE CLAE LWE 16 128 128
CLX CLX-128 Sponge CLX Duplex 1152 160 128 160 64 112
COMET COMET-128 AES-128/128 Block AES CTR/Beetle 10 128 128 128 128 128
DryGASCON DryGASCON128 Sponge ASCON Dry Sponge 11, 7 320 128 128 128 128
Elephant Dumbo Block Spongent CTR 80 160 128 160 64 112
ESTATE ESTATE-TweAES-128 Block Tweakable AES OFB 8 128 128 128 128 128
FlexAEAD FlexAEAD128b064 Block FlexAE 8 64 128 64 64 168
ForkAE PAEF-ForkSkinny-128-288 Block SKINNY PAEF 25, 31, 31 128 128 128 128 112
Fountain Fountain-AE Stream 384 256 128 1 128 112
GAGE/InGAGE InGAGE Sponge ASCON Monkey Duplex 32, 16 232 128 8 128 116
GIFT-COFB GIFT-COFB Block GIFT-128 COFB 40 192 128 128 128 128
Gimli Gimli Sponge Gimli-CIPHER Duplex 24 384 256 128 128 128
Grain-128AEAD Grain-128AEADv2 Stream 384 256 128 1 64 128
HERN/HERON HERN Stream 512, 128 256 128 1 128 128
HyENA HyENA Block GIFT-128 CFB/PFB 40 128 128 128 128 128
ISAP ISAP-A-128A Sponge ASCON ISAP 12, 1, 6, 12 320 128 64 128 128
KNOT KNOT-AEAD Sponge KNOT Monkey Duplex 52, 28, 32 256 128 64 64 128



Name Variant Type Primitive Mode Rounds State Key Bl./Ra. Tag Security

LAEM LAEM-SIMON-128/128 Block SIMON ECB 68 128 128 128 128 126
Lilliput-AE Lilliput-TBC-II-128 Block Lilliput-TBC SCT-2 32 128 128 128 128 127
LOTUS/LOCUS TweGIFT-64 LOTUS-AEAD Block Tweakable GIFT OTR 28 64 128 64 64 128
mixFeed mixFeed Block AES mixFeed 10 128 128 128 128 112
ORANGE ORANGE Sponge PHOTON ORANGE-Zest 12 384 128 256 128 128
Oribatida Oribatida-256-64 Sponge SIMON Duplex 34 256 128 128 128 128
PHOTON-Beetle PHOTON-Beetle-AEAD-128 Sponge PHOTON Beetle 12 256 128 128 256 121
Pyjamask Pyjamask Block Pyjamask OCB 14 128 128 128 128 128
Qameleon qameleon12812896gpv1 Block Tweakable QARMA PANORAMA 30 128 256 128 128 224
Quartet Quartet Stream ASCON 24 256 128 1 128 112
REMUS REMUS-N1 Block Tweakable SKINNY COFB 40 128 128 128 128 128
Romulus Romulus-N Block Tweakable SKINNY COFB 40 384 128 128 128 128
SAEAES SAEAES128-64-128 Block AES SAEB 10 128 128 128 128 112
Saturnin Saturnin Block Saturnin CTR 20 256 256 256 256 224
Shamash Shamash Sponge Shamash Duplex 12, 9 320 128 128 128 126
SIMPLE SIMPLE128-GIFT Block GIFT-128 CTR 40 128 128 128 128 128
SIV-Rijndael256 SIV-Rijndael256-AEAD Block Rijndael256 SIV 14 256 128 256 256 128
SIV-TEM-PHOTON SIV-TEM-PHOTON-AEAD Block Tweakable PHOTON SIV 20 256 128 256 256 128
SKINNY SKINNY-128-384 Block SKINNY OCB 56 128 128 128 128 128
SNEIK SNEIKEN128 Sponge SNEIK BLNK2 6 512 128 384 128 128
SPARKLE Schwaemm256-128 Sponge SPARKLE Beetle 11, 7 384 128 256 128 120
SPIX SPIX Sponge sLiSCP Monkey Duplex 18, 9 256 128 64 128 128
SpoC SpoC-64 Sponge sLiSCP Beetle 6, 18 192 128 64 64 120
Spook Spook Sponge Shadow-512 Sponge One-Pass 12 512 128 256 128 121
Subterranean 2.0 Subterranean-SAE Sponge Subterranean Duplex 8 257 128 33 128 128
SUNDAE-GIFT SUNDAE-GIFT Block GIFT-128 SUNDAE 40 128 128 128 128 128
Sycon Sycon-AEAD-128-r64 Sponge Sycon Monkey Duplex 14, 7 320 128 64 128 128
TGIF TGIF-N1 Block Twekable TGIF COFB 72 128 128 128 128 128
TinyJAMBU TinyJAMBU-128 Block TinyJAMBU JAMBU 1024 128 128 32 64 112
Triad Triad-AE Stream 1024 256 128 1 64 128
TRIFLE TRIFLE-BC Block TRIFLE TRIFLE 50 128 128 128 128 128
WAGE WAGE-AE-128 Stream 111 259 128 1 128 128
XOODYAK XOODYAK Sponge XOODOO Cyclist 12 384 128 352 128 128
Yarará Yarará Sponge Yarará Duplex 10, 6 256 128 64 128 128



B Configuration File Used by neat-python

1 [NEAT]
2 f i t n e s s c r i t e r i o n = max
3 a dd f i t g o a l = 0
4 l e a k f i t g o a l = 0
5 pop s i z e = 300
6 r e s e t o n e x t i n c t i o n = True
7
8 [BNGenome ]
9 # use aggregat ion to r e a l i z e gate s

10 agg r e g a t i o n d e f au l t = xor
11 agg r ega t i on op t i on s = nand nor and or
12 aggrega t i on muta te ra t e = 0.05
13
14 # genome compa t i b i l i t y opt ions
15 c omp a t i b i l i t y d i s j o i n t c o e f f i c i e n t = 1 .0
16 c ompa t i b i l i t y w e i g h t c o e f f i c i e n t = 2 .0
17
18 # connect ion add/remove r a t e s
19 conn add prob = 0 .5
20 conn de l e t e p rob = 0 .5
21
22 # node add/remove r a t e s
23 node add prob = 0 .5
24 node de l e t e p rob = 0 .5
25
26 # connect ion enable opt ions
27 enab l ed de f au l t = True
28 enab led mutate rate = 0.05
29
30 # Do not a l low feed back in network
31 f e ed fo rward = True
32 i n i t i a l c o n n e c t i o n = neat double
33
34 # network parameters
35 num inputs = 6
36 num hidden = 5
37 num outputs = 4
38
39 [ De fau l tSpec i e sSe t ]
40 c ompa t i b i l i t y t h r e s ho l d = 3
41
42 [ De fau l tStagnat ion ]
43 s p e c i e s f i t n e s s f u n c = max
44 max stagnation = 15
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45 s p e c i e s e l i t i sm = 2
46
47 [ DefaultReproduct ion ]
48 e l i t i sm = 2
49 s u r v i v a l t h r e s h o l d = 0 .1
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1 . s e c t i o n . t ex t
2 . cpu cortex−m3
3 . thumb
4 . syntax un i f i e d
5
6 // Macros f o r c l e a r i n g the p i p e l i n e .
7 // Both r equ i r e r0 to have no cryptograph ic mate r i a l .
8 . macro CLEAR PIPELINE 1
9 or r . n r0 , r0

10 . endm
11
12 . macro CLEAR PIPELINE 2
13 or r . n r0 , r0
14 nop . n
15 . endm
16
17 . a l i g n 4
18 . g l oba l b i t s l i c e d f u l l a d d e r
19 . type b i t s l i c e d f u l l a d d e r , %func t i on
20 . thumb func
21 // [ r0 , #(4∗n ) ] f o r 0 <= n < 32 i s the (n+1)−th s l i c e o f share 0 o f A
22 // [ r0 , #(128 + 4∗n ) ] f o r 0 <= n < 32 i s the (n+1)−th s l i c e o f share 1 o f A
23 // [ r0 , #(256 + 4∗n ) ] f o r 0 <= n < 32 i s the (n+1)−th s l i c e o f share 0 o f B
24 // [ r0 , #(384 + 4∗n ) ] f o r 0 <= n < 32 i s the (n+1)−th s l i c e o f share 1 o f B
25 // r1 i s the random r e f r e s h mask
26 b i t s l i c e d f u l l a d d e r :
27 push .w { r4−r9 , l r }
28 // Zero a l l temporary r e g i s t e r s
29 // ( t h i s can be opt imized out i f i t i s ensured that the i n i t i a l va lue s
30 // o f the se r e g i s t e r s do not l ead to p i p e l i n e or r e g i s t e r −r euse l eakage )
31 mov . n r2 ,#0
32 mov . n r3 ,#32
33 mov . n r4 ,#0
34 mov . n r5 ,#0
35 mov . n r6 ,#0
36 mov . n r7 ,#0
37 mov . n r9 , r3
38 sub . n sp ,#4
39 s t r . n r0 , [ sp ,#0] // Clear wr i t e MDR
40 . a l i g n 2
41 mov . n r5 , r1
42 a dd n e x t s l i c e :
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43 mov . n r8 , r0
44 l d r .w r3 , [ r0 ,#128]
45 l d r .w r4 , [ r0 ,#384]
46 l d r . n r6 , [ r0 ,#0]
47 l d r .w r7 , [ r0 ,#256]
48 l d r . n r0 , [ sp ,#0] // Clear read MDR
49
50 // Fu l l adder implementat ions s t a r t s here
51 // This can be rep laced with a l t e r n a t e
52 // f u l l adder implementat ions
53
54 // r6 , r3 are share s o f A
55 // r7 , r4 are share s o f B
56 // r1 , r5 are share s o f C
57 // r2 i s used as s c ra t ch space
58 // r8 w i l l output the new share
59 eor .w r8 , r6 , r7
60 CLEAR PIPELINE 1
61 and . n r6 , r7
62 CLEAR PIPELINE 2
63 eor . n r7 , r3
64 CLEAR PIPELINE 2
65 eor . n r3 , r4
66 CLEAR PIPELINE 2
67 eor . n r7 , r5
68 CLEAR PIPELINE 2
69 eor . n r4 , r1
70 CLEAR PIPELINE 2
71 or r . n r1 , r3
72 eor . n r2 , r2
73 eor .w r2 , r4 , r5
74 CLEAR PIPELINE 2
75 and . n r7 , r3
76 CLEAR PIPELINE 2
77 and .w r5 , r8 , r2
78 CLEAR PIPELINE 2
79 b i c . n r1 , r7
80 CLEAR PIPELINE 2
81 or r . n r5 , r6
82 CLEAR PIPELINE 2
83 eor .w r8 , r2
84 CLEAR PIPELINE 2
85 eor . n r5 , r4
86 CLEAR PIPELINE 2
87
88 // r1 , r5 are share s o f the output car ry
89 // r8 i s the second share o f the output sum
90
91 // End o f f u l l adder implementation
92
93 s t r .w r8 , [ r0 ] ,#4
94 s t r . n r0 , [ sp ,#0] // Clear wr i t e MDR
95 cmp .w r9 ,#1
96 sub .w r9 ,#1
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97 . a l i g n 2
98 bne . n a dd n e x t s l i c e
99 nop .w

100 add . n sp ,#4
101 pop .w { r4−r9 , pc}
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