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Abstract 

Mountainous regions supply lower elevated regions around the world with fresh water and 

therefore mountains are often called “water towers”. More than half of the world’s population 

depends on the watershed function of mountains. Although rich in fresh water, the demand for 

water resources has a high potential for user conflicts (e.g., drinking, hydropower, irrigation, 

tourism). Additionally, climate change is having a strong impact on the high mountain regions 

with dramatic consequences for the cryosphere (i.e., glacier, snow and permafrost). The 

European Alps are classified as particularly vulnerable and are experiencing an accelerated 

warming since the 1980s. However, insufficient data availability, data quality, and process 

understanding limit the assessment of consequences for the hydrology in high-elevation Alpine 

areas. These limitations significantly reduce the applicability of hydrological models, which are 

required to provide a spatially and temporally highly resolved assessment of possible climate 

induced changes on Alpine hydrology as a whole or its individual components. This 

dissertation comprises of four published research articles which each deals with an important 

component of hydrological modeling in high-elevation Alpine catchments and aims to increase 

its reliability and efficiency within a holistic approach.  

Since every scientific study of time series analysis or modelling depends on observational data, 

the first article examins the quality of hydrometeorological data of two high-elevation Alpine 

catchments and investigats to what extent the data quality influences the model results. We 

observed that inhomogeneties contained in the temperature and precipitation time series that 

drive a hydrological model, have a direct impact on main components of the cryosphere (i.e., 

snow and glacier accumulation and melt). They only indirectly influence the runoff generation, 

since the runoff generation includes superposition effects of a nonlinear hydrological system.  

Another requisite for a comprehensive model calibration and validation is continuous and 

reliable runoff observation data with a low uncertainty in terms of measurement error and 

extrapolation uncertainty (i.e., consideration of rare streamflow events). The second article of 

this dissertation assesses an innovative system for event-based streamflow measurements 

based on automated tracer injections at three contrasting sites in the Alps. In addition to regular 

mean flow measurements, the system was able to detect and measure rare high flow events 

at each site and its measurements revealed a change in the cross-section at one measurement 

site after a high flow event. Another conclusion is that regular maintenance and the 

experimental setup are crucial for the reliability of the system and the reduction of 

measurement errors.  

Due to high non-linearity of hydrological systems, especially in high-elevation catchments, it is 

necessary to optimize and validate hydrological models in a process-based approach. The 
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third article describes the use of highly resolved spatiotemporal snow cover maps, derived 

from optical remote sensing images (i.e., Sentinel 2), to optimize and validate the snow 

redistribution routine of a distributed hydrological model. This area information fills a data gap 

left by in-situ snow measurements, which cannot convey the highly heterogeneous snow cover 

distribution. The optimized snow model was able to reproduce the spatiotemporal dynamic of 

snow cover in a high-elevation Alpine catchment reliably.  

Physically-based and fully distributed hydrological models demand considerable 

computational resources in simulation runs over long timeperiodes (> 30 years) with high 

spatial (25 m) and temporal (1h) resolution. This limits the application of these models, even 

for mesoscale catchments (i.e., up to 100 km²). Article four presents a solution for reducing the 

required computational resources by using a machine learning approach that emulates high-

resolution model results from a coarser resolution model setup (i.e., 100 m and daily). The 

results show a high reliability of the prediction (NSE=0.89) and a significant reduction of 

computational time by 93 %.  

A key aspect in improving the models reliability is the increase of observational data availability 

as well as a thorough evaluation of data quality. Basing the mashine learning approach on a 

physics based reference model ensures the results remain within the models physical limits 

while increasing the overall computational efficiency. Hence, this dissertation advances the 

reliability and efficiency of hydrological modeling in high-elevation Alpine catchments. 
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Zusammenfassung  

Gebirgsregionen versorgen tiefer gelegene Regionen mit Süßwasser auf der ganzen Welt, 

weshalb Berge oft als "Wasserschloss" bezeichnet werden. Mehr als die Hälfte der 

Weltbevölkerung ist von der Einzugsgebietsfunktion der Berge abhängig. Obwohl sie reich an 

Süßwasser sind, birgt die Nachfrage nach Wasserressourcen ein hohes Potenzial für 

Nutzungskonflikte (z. B. Trinkwasserverorgung, Wasserkraft, Bewässerung und Tourismus). 

Darüber hinaus hat der Klimawandel starke Auswirkungen auf die Hochgebirgsregionen mit 

dramatischen Folgen für die Kryosphäre (d.h. Gletscher, Schnee und Permafrost). Die 

europäischen Alpen werden als besonders gefährdet eingestuft und erleben seit den 1980er 

Jahren eine beschleunigte Erwärmung. Unzureichende Datenverfügbarkeit, Datenqualität und 

Prozessverständnis schränken jedoch die Abschätzung der Folgen für die Hydrologie in 

hochalpinen Gebieten nach wie vor ein. Diese Limitierungen haben einen erheblichen Einfluss 

auf die Anwendbarkeit hydrologischer Modelle, um eine räumlich und zeitlich hochaufgelöste 

Untersuchung möglicher klimabedingter Veränderungen auf die einzelnen Komponenten und 

die alpine Hydrologie als Ganzes zu ermöglichen. Diese Dissertation besteht aus vier 

Forschungsartikeln, die sich jeweils mit einem wichtigen Aspekt der hydrologischen 

Modellierung in hochalpinen Einzugsgebieten befassen und darauf abzielen, deren 

Zuverlässigkeit und Effizienz durch einen holistischen Ansatze zu erhöhen. 

Da jede wissenschaftliche Studie, ob Zeitreihenanalyse oder Modellierung, von 

Beobachtungsdaten abhängt, betrachtet der erste Artikel die Qualität hydrometeorologischer 

Daten von zwei hochalpinen Einzugsgebieten und untersucht inwieweit die Datenqualität die 

Modellergebnisse beeinflusst. Wir haben festgestellt, dass Inhomogenitäten in den 

Temperatur- und Niederschlagszeitreihen, die das hydrologische Modell antreiben, einen 

direkten Einfluss auf Teile der Kryosphäre haben (d.h. auf die Akkumulation und Schmelze 

von Schnee und Gletschern). Sie beeinflussen jedoch die Abflussbildung nur indirekt, da die 

Abflussbildung Überlagerungseffekte eines nichtlinearen hydrologischen Systems beinhaltet. 

Eine weitere Voraussetzung für eine umfassende Modellkalibrierung und -validierung sind 

kontinuierliche und zuverlässige Abflusszeitreihen mit einer geringen Unsicherheit in Bezug 

auf Messfehler und Extrapolationsunsicherheit (d.h. Berücksichtigung seltener 

Abflussereignisse). Im zweiten Artikel dieser Dissertation wird ein innovatives System für 

eventbasierte Abflussmessungen, das auf automatesierter Tracer-Injektion basiert, an drei 

unterschiedlichen Standorten in den Alpen getestet. Zusätzlich zu den regelmäßigen 

Messungen bei mittleren Abflussbedingungen war das System in der Lage seltene 

Hochwasserereignisse an jedem Standort zu erkennen und zu messen. Zudem haben die 

Messungen eine Veränderung des Gerinnequerschnitts an einem Messstandort nach einem 

Hochwasserereignis gezeigt. Eine weitere Schlussfolgerung ist, dass die regelmäßige 
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Wartung und der experimentelle Aufbau entscheidend für die Zuverlässigkeit des Systems und 

die Verringerung von Messfehlern sind. 

Aufgrund der hohen Nichtlinearität hydrologischer Systeme, insbesondere in hochalpinen 

Einzugsgebieten, ist es notwendig, hydrologische Modelle mit einem prozessbasierten Ansatz 

zu kalibieren und zu validieren. Der dritte Artikel beschreibt die Nutzung räumlich und zeitlich 

hochaufgelöster Schneekarten, die aus optischen Fernerkundungsbildern (z. B. Sentinel 2) 

abgeleitet wurden, um die Schneeumverfrachtungsroutine eines flächendifferenzierten 

hydrologischen Modells zu optimieren und zu validieren. Mit diesen flächenhaften 

Schneeinformationen wird eine Datenlücke geschlossen, die auf der Limitierung von in-situ 

Schneemessungen die sehr heterogene Schneebedeckung wiederzugeben beruht. Das 

optimierte Schneemodell war in der Lage, die räumlich-zeitliche Dynamik der Schneedecke in 

einem hochalpinen Einzugsgebiet zuverlässig zu reproduzieren. 

Physikalisch-basierte und flächendifferenzierte hydrologische Modelle benötigen bei 

Simulationsläufen über lange Zeiträume (> 30 Jahre) mit hoher räumlicher (25 m) und zeitlicher 

(1h) Auflösung erhebliche Rechenressourcen. Dies schränkt die Anwendung dieser Modelle 

selbst für mesoskalige Einzugsgebiete (d. h. bis zu 100 km²) ein. In Artikel vier wird eine 

Lösung zur Verringerung der erforderlichen Rechenressourcen vorgestellt, der auf einem 

maschinellen Lernenansatz basiert und hochaufgelöste Modellergebnisse aus einem gröber 

aufgelösten Modellsetup (d. h. 100 m und täglich) emuliert. Die Ergebnisse zeigen eine hohe 

Zuverlässigkeit der Prediktionen (NSE=0,89) und eine erhebliche Reduzierung der Rechenzeit 

um 93 %. 

Ein Schlüsselaspekt für eine verbesserte Modellzuverlässigkeit ist eine erhöhte Verfügbarkeit 

von Beobachtungsdaten sowie eine gründliche Prüfung der Datenqualität. Die Verwendung 

eines physikalisch-basierten Referenzmodells als Grundlage für einen maschinellen 

Lernenansatz stellt sicher, dass die Ergebnisse innerhalb der physikalischen Grenzen des 

Refernenzmodells bleiben und gleichzeitig die Gesamtrechenzeit reduzierent wird. Diese 

Dissertation leistet somit einen wichtigen Beitrag, um die Zuverlässigkeit und Effizienz der 

hydrologischen Modellierung in hochgalpinen Einzugsgebieten zu verbessern. 
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1. Introduction 

1.1. Motivation 

Mountainous regions supply a substantial part of fresh water to environmental and human 

water demands all over the globe. More than half of the world’s population depends on the 

watershed function of mountains (Immerzeel et al., 2020). Due to their orography, mountains 

usually have a higher specific discharge (ratio of catchment area and discharge) than lower 

elevated areas and are therefore called the ‘water towers’ of the world. In addition, runoff 

generation in mountainous regions shows a pronounced seasonality due to summer melting 

of snow and glaciers. The meltwater from snow and glaciers provides a relatively constant 

supply of freshwater to the downstream areas over the warm summer months, which are 

otherwise very dry in some regions of the world (e.g., Central Asia) (Barandun et al., 2020, 

2021). In Europe, the Alps are the most relevant water supplying mountain range (Immerzeel 

et al., 2020). Despite the high availability of freshwater, socio-economic conflicts arise over 

water use, e.g., between agriculture and hydropower or between hydropower and tourism 

(Beniston, 2012). The water use conflict is further intensified by the production of machine-

made snow in Alpine areas with intensive ski tourism (Grünewald & Wolfsperger, 2019). The 

water demand for snow-making can surpass 50 % of the communal water consumption during 

the winter season (Vanham, Fleischhacker, & Rauch, 2008). 

Global warming of the climate system is unequivocal and has led to an exceptionally high 

temperature increase of about +2 °C in the Alps between the 19th and early 21st century, which 

is more than twice the rate of the average warming of the Northern hemisphere. Therefore, 

climate change makes the Alps especially vulnerable and intensifies the already existing water 

use conflicts (European Environment Agency, 2009). However, Tudoroiu et al. (2016) detected 

a negative elevation-dependent warming in the Eastern Italian Alps for the period 1975 to 2010. 

Further studies confirm similar patterns of elevation-dependent warming trends in the Alpine 

region (Kuhn & Olefs, 2020; Rottler, Kormann, Francke, & Bronstert, 2019). In addition, the 

warming of the Alpine region was not linear in the 20th century. Battaglia & Protopapas (2012) 

observed a linear warming trend of 0.01°C per year from the beginning of the 20th centuray, 

but around 1980 the warming trend increased dramatically, exceeding the rate of 0.05°C per 

year. There is still no evidence of a decline in the warming trend (Battaglia & Protopapas, 

2012). The impact of climate change on precipitation changes is not as clear as it is on the 

temperature increase in the Alps. Brunetti et al. (2006) detected a slight trend towards an 

increase in the north Alpine region and a significant decrease in the south over the last two 

centuries by analyzing 192 homogenized station series. Additionally, they noticed a regular 

and smooth signal toward an increase in winter and spring precipitation. The investigation of 



2 
 

climate change impact on the precipitation is further complicated by feedback from the North 

Atlantic Oscillation (NAO), which does not affect all Alpine regions equally (Brunetti et al., 

2006). Brugnara & Maugeri (2019) analyzed 18 homogenized daily precipitation series from 

the southern European Alps and detect a negative trend in precipitation frequency over the 

period 1890-2017. This trend is related to a step-like reduction of cyclonic weather types over 

central Europe that occurred around 1940. Strong trends on a decadal scale are related not 

only to the NAO but also to the Atlantic Multidecadal Oscillation (AMO), although the influence 

of the NAO is present only in recent years. Contrarily, trends in heavy precipitation indices do 

not show a coherent pattern in the Alps (Brugnara & Maugeri, 2019). Scherrer et al. (2016) 

found an increase in precipitation intensity (i.e., exceedance of the 99th percentile) in Swiss 

observations over the years 1901-2014/15. Besides the intensity, the seasonal occurrence of 

moderate and extreme precipitation events in the Alps shifted to cooler months (i.e., early 

summer and autumn) (Brönnimann et al., 2018). 

The impact of climate change on snow is much more explicit in the Alps than for precipitation. 

Snow is a major driver of Alpine hydrology as it stores precipitation in solid form over the winter 

period and releases the water in spring/early summer (Matiu et al., 2021). The amount and 

duration of snow in the Alps has a high economic significance in terms of tourism and 

hydropower (Marty, 2008). Multiple studies depict a clear negative trend in snow days due to 

a sudden climate change induced temperature increase at the end of the 1980’s (Marty, 2008; 

Notarnicola, 2022; Olefs, Koch, Schöner, & Marke, 2020). Matiu et al. (2021) detected negative 

trends in monthly snow depth records between 1971 and 2019 in an Alpine-wide analysis form 

most stations from November to May. However, it is not possible to generalize the negative 

trends because the trends vary strongly by region (i.e., climatic forcing zone) and elevation 

(Matiu et al., 2021).  

The Intergovernmental Panel on Climate Change Ipcc (2022) has very high confidence that 

the mass losses of the glaciers and increased permafrost temperature over the last decades 

are caused by global warming. The latest report lists, with high confidence, that the reduction 

in snow cover (i.e., duration, extent and depth), is also a consequence of global warming (Ipcc, 

2022). Depending on the emission scenarios, it is projected that the glacier mass of regions 

with mostly small glaciers (e.g. Central Europe) could decline by more than 80 % of their 

current ice mass by 2100 under the RCP8.5 scenario (medium confidence), and many glaciers 

are projected to disappear regardless of future emissions (very high confidence). Regardless 

of the emissions scenario, snow depth at lower elevations in high mountain regions is likely to 

decrease by about 10-40 % (high confidence) by 2031-2050, compared to 1986-2005. The 

projected decrease is likely about 50-90 % for RCP8.5 scenario for 2081-2100. The runoff 

generation in snow-dominated and glacier-fed high mountain catchments is projected to 
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change regardless of the emission scenario (very high confidence), resulting in an increase of 

average winter runoff (high confidence) and earlier spring peaks (very high confidence). In 

regions with little glacier cover (e.g., European Alps) most glaciers have already passed the 

peak runoff (i.e., ‘peak water’), after which it declines (high confidence) (Ipcc, 2022). Even if 

the temperature increase is limited to +1.5°C, about half of the world's glaciers will disappear 

by 2100 (Rounce et al., 2023). 

Based on these facts, several conclusions can be drawn: i) meteorological observations with 

long temporal coverage show a clear warming trend in the Alpine region, which directly 

propagates into the cryosphere (snow, glaciers, and permafrost). ii) climate change intensifies 

already existing conflicts over the use of water as resources in the Alps. iii) the projected 

climate-induced changes in the cryosphere (e.g., recession of glacier and decrease in snow) 

have a high confidence, especially projections into the first half of the 21st century. 

However, preavious research clearly indicates that a generalization of the climate-induced 

changes in the Alpine region is not possible. It is worth to mention that the detected changes 

dependent on: i) the analyzed variable, i.e., changes in precipitation frequency and intensity 

are less confident as changes in temperature. ii) spatial scale, changes can be regional or 

local. iii) elevation, changes can manifest differently depending on the altitude. iiii) temporal 

scale, changes can be detected in climate periods, decadal periods, annual, seasonal, daily, 

hourly or sub-hourly intervals.  

A further aspect that complicates the study of climate-induced changes in the Alpine region is 

the complex feedback between the individual components of the geosystem (e.g., hydrosphere 

and cryosphere). Moreover, anthropogenic changes in the geosystem (e.g., deforestation, 

reduction of aerosol emission, ski tourism) can lead to a superposition of supposed climate 

change signals (Kuhn & Olefs, 2020; Philipona, 2013; Rottler et al., 2019; Tudoroiu et al., 

2016). Therefore, all individual components of the geosystem, such as the Alpine hydrosphere, 

have to be considered in a holistic approach to identify and quantify climate change-induced 

changes on each individual component.  

1.2. Current state of research in the field of Alpine hydrology 

Before introducing the main research hypothesis and research questions, the current state of 

research regarding the four main topics of this dissertation (i.e., time series analysis, 

automated streamflow measurements, monitoring and modeling of snow cover, and coupling 

hydrological models with machine learning) will be summarized briefly. The current state of 

research is essential for identifying research gaps on which the respective research questions 

are based. 
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1.2.1. Time series analysis 

Hydrometeorological observation data are essential for the understanding of hydrological 

systems and the analysis of potential changes whether natural or anthropogenic. In some 

areas of the Alpine region, hydrometeorological observations already started in the second 

half of the 18th century. Although these records are a valuable treasure, acquiring these 

datasets is very time-consuming due to frequent changes in the geopolitical situation in the 

Alpine region over the last centuries, which have caused the records to be located in various 

different archives. More and more of these records have now been digitalized and published 

(Auer et al., 2007). The HISTALP project collected and performed quality controll on a unique 

dataset of 557 meteorological time series with a monthly resolution. The quality control ensures 

that changes in the measurement record are not falsely detected as climate change signal in 

long climate time series, as changes mainly occur due to changes in relocation, surroundings 

of sites, instruments, time of observations and observers. The first step of homogenization is 

the detection of potential break points in a time series. Metadata from the stations can give 

hints for the existence and reasons of possible inhomogeneities (i.e., break points) in time 

series (Auer et al., 2007). The homogeneity of a time series can be evaluated with two 

procedures, either a relative homogeneity test, in which a time series is compared to 

neighboring series (Auer et al., 2005), or an absolute homogeneity test that detects possible 

inhomogeneities within a time series. The result of relative homogeneity tests is highly 

dependent on the quality of the reference series. Consequently, the relative homogeneity tests 

should always include an absolute test of the reference series (Yozgatligil & Yazici, 2016). 

Additionally, the selection of a minimum coefficient of variation of the ratio between two series 

controls the reliability of test results (Auer et al., 2005).  

While the focus of break detection and homogenization has mainly focused on temperature 

and precipitation series, recent studies have been focusing on snow depth (Buchmann et al., 

2022; Marcolini et al., 2019a; Resch et al., 2022; Schöner, Koch, Matulla, Marty, & Tilg, 2019). 

Li, Yan, Zhu, Freychet, & Tett (2020) generated the first homogenized daily data set of relative 

humidity for China over the period 1960-2017 by means of the MASH method, which stands 

for Multiple Analysis of Series for Homogenization (Szentimrey, 1999). Most (i.e., 92 %) of the 

746 relative humidity series were inhomogeneous, containingat least one break point. Break 

points mainly occurred due to the implementation of automated observation across China in 

the early 2000’s (Li et al., 2020). Homogenized daily solar radiation records are available for 

Spain (Sanchez-Lorenzo, Calbó, & Wild, 2013), Italy (Manara et al., 2016) and China (Yang, 

Wang, & Wild, 2018). The homogenized radiation data enables the detection of dimming and 

brightening in the atmosphere due to anthropogenic aerosol emissions (Manara et al., 2016). 

Lucio-Eceiza, González-Rouco, Navarro, Beltrami, & Conte (2018) checked the quality of 526 

wind speeds records from across northeastern North America. About 16 % of those wind speed 
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records had to be corrected, mainly due to unrealistic low wind speeds (Lucio-Eceiza et al., 

2018). Chen, Saunders, & Whan (2021) developed a workflow for quality control and bias 

adjustment of crowdsourced wind speed observations. Volchak, Sidak, & Parfomuk (2021) 

applied parametric (i.e., Buishand Range Test and Standard Normal Homogeneity Test) and 

non-parametric tests (i.e., Pettitt's Test) for the detection of inhomogeneities in annual 

discharge time series across Belarus. However, the test results generated with parametric 

tests need to be interpreted with caution, since parametric tests actually assume normally 

distributed data without autocorrelation (i.e., serial dependency) between adjacent members 

of the series (Volchak et al., 2021) and this is not the case for runoff time series. Furthermore, 

serial dependency, also called persistence, can be induced by the sampling of data. High-

resolution time series often have stronger persistence than low resolution time series 

(Mudelsee, 2010). Zanchettin, Traverso, & Tomasino (2008) checked an extended discharge 

time series of the Po River for inhomogeneities through basic trend and change point analyses 

and comparison with approximated catchment-averages of precipitation and 

evapotranspiration for the period 1831–2003. They found concurrent changes in the 

persistence (i.e., autocorrelation) of precipitation and discharge data. The analysis of historic 

discharge time series must also be conducted with caution because stage-discharge 

conversion may lead to considerable uncertainty in the discharge estimation even when 

historic stage measurements are accurate and homogeneous (Zanchettin et al., 2008). The 

non-stationarity of the stage-discharge relation considerably affects the quality of the derived 

discharge time series and creates uncertainty for interpretation of climate-induced changes on 

hydrological regime of a river (Farsi, Mahjouri, & Ghasemi, 2020).     

1.2.2. Discharge measurements and rating curves for Alpine creeks 

The hydrological response of small headwater catchments in the Alpine region can be very 

heterogonous due to differences in the degree of glaciation, topography (e.g., orographic 

precipitation), geology and soil (Meißl et al., 2021; Penna et al., 2014; Penna, van Meerveld, 

Zuecco, Dalla Fontana, & Borga, 2016; Penna et al., 2017). However, stream gauges are 

usually located in the main valleys or at the inflow of reservoirs. This is often the case because 

the operation of gauging stations in mountainous regions is associated with a high expenditure 

of time and money. Especially due to the high sediment and coarse bedload transport of glacio-

nival rivers (Comiti et al., 2019), constant maintenance of the gauges is necessary and 

damages caused by extreme discharge events have to be expected. Besides the high 

turbulences impeding hydrometric measurements, the cross-sections are difficult to define and 

are constantly changing (Leibundgut, Maloszewski, & Külls, 2011; Morgenschweis, 2018). In 

addition, creeks in high alpine areas are often located in protected areas, which makes it 

difficult to set up gauging stations, or they are located in inaccessible areas. Nevertheless, the 

operation of additional stream gauges enables the investigation of the hydrological response 
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of small tributaries and is an additional validation source for quality checks (i.e., relative 

homogeneity tests).  

Tracer-based discharge measurements have proven successful for decades in alpine rivers 

and creeks (Allen & Taylor, 1923; Moore, 2004; Østrem, 1964) when the application of 

“conventional” velocity-area methods (e.g., current meter or Acoustic Doppler Current Profiler 

(ADCP)) has not been possible due to difficult meansuring conditions such as strong 

turbulence, unknown cross-section geometry, and high fluctuation of water level 

(Morgenschweis, 2018; Richardson, Sentlinger, Moore, & Zimmermann, 2017). Noncontact 

methods based on remote sensing of water surface velocity using Doppler radars have been 

developed over the past two decades (Son, Kim, Kim, & Roh, 2023; Welber et al., 2016). 

Surface velocity radars can either be mounted permanently or used in a portable configuration. 

Welber et al. (2016) extensively tested a portable surface velocity radar in a field study on 

rivers and creeks with different characteristics in terms of river width, roughness and 

turbulences. They concluded that surface velocity radars can produce results with higher 

uncertainty than conventional intrusive methods because of the limited knowledge of bed 

changes and the value of the velocity coefficient, which represents the ratio between depth-

average and surface velocity. Moreover, the velocity coefficient showed large fluctuations if 

computed on individual verticals, especially in high roughness channels (Welber et al., 2016). 

Hauet, Morlot, & Daubagnan (2018) analyzed a very large sample set (i.e., > 3600) of gaugings 

and determined velocity coefficients for natural and artificial channels. Nevertheless, the use 

of the surface velocity method requires knowledge about the geometry of the cross-section. 

This is not the case for tracer-based flow measurements. Therefore, water-soluble hydrological 

tracers are the predominant flow measurement method in alpine creeks and rivers and can be 

subdivided into three groups: i) salt and other chemical substances, ii) dyes, especially 

fluorescent dyes and iii) radioactive tracers. Selection of a tracer type depends mainly on the 

required tracer properties. Although radioactive tracers have nearly perfect tracer proparties, 

they are rarly usered in hydrologic studies because strict radiation safty regulation make their 

use impossible. In surface waters, salt is usually used as a tracer because salt concentration 

can be easily determined via the electrical conductivity (EC) as both have a linear relation. 

Sodium Chloride (NaCl) is the most commonly used salt tracer since it is relatively cheap, 

available almost everywhere, and highly soluble in water (Morgenschweis, 2018). Moreover, 

salt dilution is very accurate with a measurement error about 5 % if the key assumptions (e.g., 

no salt loss during the measurement) and requirements (e.g., the salt needs to be fully mixed 

across the channel at the point where EC measurements are taken) are met (Richardson, 

Moore, & Zimmermann, 2017; Richardson, Sentlinger, et al., 2017). Hauet (2020) developed 

a first complete framework for uncertainty quantification of salt discharge measurement 

following the GUM (Guide to the expression of uncertainty in measurement) method that take 
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into account all error sources. In general, salt dilution gauging is applicable to a wide range of 

stream sizes, from small first-order streams (Q from 1 to 10 l/s) to large rivers (Q from 100 to 

1000 m³/s) (González-Pinzón, Haggerty, & Dentz, 2013; Richardson, Moore, et al., 2017). 

It can be difficult to obtain a full range of flow measurements for a hydrometric rating curve at 

remote locations of rivers in the Alps. Field visits depend on weather and snow conditions, 

thus, sites are only visited at times when these allow for safe access to the location, which in 

turn often coincides with an environmental situation that displays similar flow conditions at each 

visit. Flow measurements during peak flow events can be especially dangerous (Sentlinger, 

Fraser, & Baddock, 2019). These rare peak events are particularly important for the 

construction of robust and consistent rating curves with a reduced extrapolation uncertainty. 

The rating curve is based on the stage-discharge relation and is an indirect measurement 

method to generate a continuous discharge time series. In the case of natural measurement 

cross-sections in unconsolidated sediments, measurement frequency must be increased to 10 

to 12 measurements per year, in order to validate the rating curve (Morgenschweis, 2018). 

Sentlinger et al. (2017) developed the first automated salt dilution system (AutoSalt) that can 

achieve acceptable results (< 7 % uncertainty) using as little as 100g per m³/s of flow by 

increasing the Signal to Noise Ratio (SNR). An optimized injection dose minimizes potential 

for detrimental effects on the ecology (Wood & Dykes, 2002) and enables more measurements 

per tank filling. The AutoSalt system has already been tested on various smaller streams 

around the world, but discharges were generally in the range of 1 to 10 m³/s. Using the 

AutoSalt, a rating curve can be established in a relativly short timeperiod (1 year) and changes 

in the cross-section can be quickly detected. Due to the extensive ascertainment of the 

measurement error of the system, the error propagation can be taken into account when 

constructing rating curves (Di Baldassarre & Montanari, 2009a; Kiang et al., 2018). 

Nevertheless, discharge data retains a measure of uncertainty and therefore it is useful to 

monitor other hydrological variables that significantly influence runoff generation in high-

elevation Alpine catchments, such as the snow component. 

1.2.3. Modeling and monitoring spatial snow distribution 

Since the discharge of an Alpine catchment is an integrated information of different runoff 

sources (e.g., precipitation, snow and glacier melt) and storages (e.g., glacier, soil and 

geology), a growing number of hydrological modeling studies also consider spatial snow cover 

maps for constraining model parameters and validation of the model results (Hanzer, Helfricht, 

Marke, & Strasser, 2016; Thornton, Brauchli, Mariethoz, & Brunner, 2021; Vionnet et al., 2021; 

Warscher et al., 2013). In contrast to the snow depth measurement, which gives only point 

information, snow cover maps derived from high-resolution optical satellites (e.g., Sentinel 2, 

Landsat) can capture the dynamical spatio-temporal snow distribution in such complex terrain 
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(Gascoin, Grizonnet, Bouchet, Salgues, & Hagolle, 2019). With a much coarser spatial 

resolution (250 m), the MODIS sensor has been providing daily snow cover maps since 2000 

(Matiu, Jacob, & Notarnicola, 2019). This valuable data set allows the investigation of global 

trends in snow cover duration (Notarnicola, 2020, 2022). However, MODIS is not able to 

capture the spatial heterogeneity of snow cover induced by solar radiation in mountainous 

regions (Bouamri et al., 2021). Another valuable information that can be derived from snow 

cover maps are the snow line altitudes (SLAs), which are mainly controlled by temperature, 

precipitation, and solar radiation. Although SLA and snow-covered area are complementary 

metrics, the SLA has a strong potential for understanding local-scale snow cover dynamics 

and their controlling mechanisms (Girona‐ Mata, Miles, Ragettli, & Pellicciotti, 2019). 

Additionally, the SLA is an indicator of the equilibrium line altitude (ELA), which is a key 

parameter for calculating and assessing glacier mass balance (Li, Wang, & Wu, 2022). Hence, 

the end-of-season SLA is needed for hydrological applications and for understanding the 

response of glaciers to climate variability (Racoviteanu, Rittger, & Armstrong, 2019).  

Physically-based hydrological models are typically used to predict snow accumulation and melt 

in mountainous regions and to project the effects of climate change on the runoff generation 

from snow (Krogh et al., 2022; Strasser et al., 2019) and glacier (Beniston et al., 2018; Huss 

et al., 2017; Huss, Jouvet, Farinotti, & Bauder, 2010; Rounce et al., 2023). The spatial variably 

of the snowpack controls the timing and magnitude of the snowmelt runoff. A homogenous 

snowpack generally results in a higher snowmelt peak than a highly heterogeneously 

distributed snowpack since snowmelt rates have large spatial differences (Freudiger, Kohn, 

Seibert, Stahl, & Weiler, 2017). Depending on the complexity of the hydrological model, snow 

redistribution due to wind and gravitational slides (i.e., avalanches) are considered in the snow 

routine. With higher model complexity (e.g., Alpine3D model developed by Lehning et al. 

(2006)), more input data (e.g., local wind fields) are needed, but these are not available for 

every area or period. Therefore, snow redistribution routines are often based on empirical 

assumptions in the hydrological models. Generally, the consideration of snow redistribution 

has improved the simulation of snow patterns and snow water equivalent (SWE) and 

consequently the prediction of discharge in mountainous catchments (Freudiger et al., 2017). 

The almost continuous snow observation products derived from satellite images allow the 

snow distribution routines to be validated not only for individual images of the year (Warscher 

et al., 2013), but also for all seasons (Thornton et al., 2021) and even for multiple years 

(Hofmeister, Arias-Rodriguez, et al., 2022). Painter, Gentile, & Ferraris (2023) calibrated a fine-

scale Cellular Automaton model that describes snow coverage across a high-elevation 

catchment via a randomized parameter search, fitting simulation data against snow cover 

masks estimated from Sentiel-2 satellite images.   
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However, a major limitation of the snow cover maps is the fact that they provide only binary 

information (i.e., snow and no snow). With complex procedures, areal snow depths can be 

generated by means of stereoscopic or active optical (e.g., LIDAR) sensors for individual days 

and specific areas or regions. Based on active microwave sensors (e.g., ALOS 2, Sentinel 1, 

RADARSAT-2, TerraSAR-X), spatial snow depth and snow wetness information can be 

derived with a relative high spatial resolution (up to 1 m). However, the oblique geometry 

viewing of SAR systems amplifies geometric distortions, making interpretation in mountainous 

regions particularly difficult. Areal SWE by means of passive microwave are limited by the 

coarse spatial resolution (around 25 km) and interference of the microwave signal from liquid 

water content in the snow pack at the beginning of the melting period (Largeron et al., 2020). 

Remotely-sensed data is the most natural source of information, as opposed to extrapolated 

insitu snow observations, to constrain snow cover simulations, especially in data scarce 

regions (Largeron et al., 2020). Thus, epistemic uncertainty in the model results can be 

reduced by incorporating snow information from remote sensing products into a multi-objective 

calibration and validation approach. Tiel, Stahl, Freudiger, & Seibert (2020) concluded in a 

comprehensive literature review that in about 50 % of glacio-hydrological models have been 

calibrated and validated using a multi objective approach. In recent years research has 

increased its focus on data assimilation of remote sensing products into physically-based 

models (Alonso-González et al., 2022; Deschamps‐ Berger et al., 2022; ESA, 2023a). The 

combination of snow observations and physically-based snow modeling enables not only 

accurate probabilistic SWE prediction, for instance for runoff and flow predictions, but also a 

better knowledge of physical snowpack properties (Largeron et al., 2020). A disadvantage of 

the high complexity (i.e., consideration of more processes) of physically-based models with 

high spatiotemporal resolution are the increasing computational demands, which is a limitation 

especially for long simulation periods in climate change studies.   

1.2.4. Coupling of physically-based hydrological model and machine 

learning 

Physically-based models mainly construct a simplified watershed system and express the 

interior behavior through solving mathematical equations that represent the hydrological 

process to the best current knowledge. In contrast, data-driven (e.g., machine learning) models 

establish a direct mapping between hydrological variables and extract their relationship from 

historical measured data by the algorithms developed in the fields of statistics, computational 

intelligence, machine learning, and data mining (Young, Liu, & Wu, 2017). Therefore, data-

driven models are highly flexible in adapting data and are amenable to finding unexpected 

patterns (Reichstein et al., 2019). In data scarce regions, physically-based modeling confronts 

a much higher challenge to reach the required accuracy (Young et al., 2017; Yuan & Forshay, 
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2022) However, the predictions from data-driven models may be physically inconsistent or 

implausible, owing to extrapolation or observational biases, for example (Reichstein et al., 

2019). 

Historically, physical modelling and machine learning have often been treated as two different 

fields with very different scientific paradigms (i.e., theory-driven versus data-driven) 

(Reichstein et al., 2019). In recent years, the coupling of physically-based hydrological models 

and machine learning methods has become more and more popular in hydrological studies 

investigating and predicting nonlinear and non-stationary hydrological behavior of complex 

systems (Yuan & Forshay, 2022). The reasons for the coupling are very diverse. The 

integration of machine learning methods can reduce the risk of overfitting of the model 

parameters and enhance the generalization of the models, especially in the case of Support 

Vector Machines (SVM) (Smola & Schölkopf, 2004; Young et al., 2017). Moreover, the 

important hydrological processes involved in a physically-based model can compensate the 

black-box nature of data driven models (Young et al., 2017). This enables direct interpretation 

of the results as well as the potential of extrapolation beyond observed conditions (Reichstein 

et al., 2019). The powerful data-driven methodology can alleviate the difficulty in accurate 

physical modeling. In general, the two methods,based upon different philosophies, 

complement each other with respect to their inherent strengths and limitations (Young et al., 

2017). Reichstein et al. (2019) defined five points of potential synergies between physically-

based and machine learning models:  

1. Improving parametrizations. Machine learning can lean parametrizations to optimally 

describe the ground truth that can be observed or generated from detailed and high-

resolution models through first principles. 

2. Replacing a “physical” sub-model with a machine learning model. Semi-empirical 

sub-models can be replaced by a machine learning model if a sufficient number of 

observations are available. This leads to a hybrid model, which combines the strengths 

of physically modeling (theoretical foundations, interpretable compartments) and 

machine leaning (data-adaptiveness). 

3. Analysis of model-observation mismatch. Machine learning can help to identify, 

visualize and understand the patterns of model error, which allows us also to correct 

model outputs accordingly. This helps to improve the physical model and theory. 

4. Constraining sub-models. The replacement of another (potentially biased) sub-model 

in an offline simulation with the output from a machine learning algorithm can help to 

disentangle model error, which originates from the sub-model of interest from errors of 

coupled sub-models. This simplifies and reduces biases and uncertainties in model 

parameter calibration or the assimilation of observed system state variables. 
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5. Surrogate modeling or emulation. Emulation of the full or specific parts of a physical 

model can be useful for computational efficiency and tractability. Trained machine 

learning emulators can achieve simulation results orders of magnitude faster than the 

original physical model without scarifying much accuracy. This allows for fast sensitivity 

analysis, model parameter calibration, and derivation of confidence intervals for the 

estimates. 

Another clear advantage of the coupling is the high flexibility of the application. Chiogna, 

Marcolini, Liu, Pérez Ciria, & Tuo (2018) coupled the Soil and Water Assessment Tool (SWAT) 

model and Support Vector Regression (SVR) method to predict hydropeaking for the Upper 

Adige watershed in northeast Italy and applied a wavelet method to analyze the price of 

energy. Yuan & Forshay (2022) developed a new hybrid model that integrates the SWAT 

model with a SVR calibration method coupled with discrete wavelet transforms (DWT) to better 

support modeling watersheds with limited data availability. Young et al. (2017) developed a 

hybrid model, which integrates the physically-based HEC-HMS model into the SVR for 

accurate rainfall-runoff modeling with an application in the Chishan Creek basin in southern 

Taiwan. Huang et al. (2022) proposed a hybrid framework by taking the advantages of 

interpretability of physical hydrodynamic modeling and the adaptability of machine learning to 

improve river modeling with complex boundary conditions (i.e., lake-connected river system). 

1.3. Hypothesis and research questions 

Based on the current state of research and the identified research gaps in the field of Alpine 

hydrology, the main research hypothesis of this dissertation was developed: 

A holistic approach of high-resolution spatio-temporal data, comprehensive quality 

assessment of observation data and machine learning constitute an advantage for 

reliable and efficient process-based hydrological modeling in high-elevation Alpine 

catchments. 

In general, the research hypothesis is based on the fact that, on one hand, additional 

observation data is needed to reduce data scarcity to better describe and understand spatio-

temporal variability of snow hydrological processes in complex terrains, and, on the other, to 

consider the quality of already existing observation data before they are used in a hydrological 

model application. The collecting of additional high-resolution data includes the use of a 

inovative automated tracer injection system to collect event-based streamflow data and the 

generation of continuous and high-resolution snow cover maps from Sentinel-2 images. 

Consequently, a reliable and efficient hydrological model for high-elevation catchments can be 

achieved by four aspects: i) forcing with quality controlled observation data, ii) calibration with 

reliable streamflow data iii) process-based multi-objective calibration including snow cover 
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information, and iiii) the coupling with machine learning to reduce the computation time. In 

other words, the uncertainty in the hydrological model results can be reduced because the 

model is forced by homogeneous observation data and is able to reproduce the spatio-

temporal variability of snow hydrological processes. In addition, since the computation time of 

high-resolution (i.e., in space and time) physically-based models can be very high, the 

efficiency was increased by coupling it with a machine learning algorithm. 

The main research hypothesis is subdivided into four research questions correspondent to the 

four research articles. Since this dissertation addresses many different keywords of the field 

of Alpine hydrology (Table 1-1), they are roughly subdivided into three main subgroups 

(namely research area, observational data, and hydrological models) to better highlight the 

links between the individual articles. The group of research area includes Alpine catchments, 

where all four studies are located, and spatio-temporal complexity of snow hydrological 

processes, which is addressed in all articles. In general, all articles discuss the difficulties of 

observing or modeling snow hydrological processes in the complex topography of high-

elevation areas from the point to the catchment scale.  

The category of observational data is divided into the sub-categories of data scarcity, data 

quality, input uncertainty, and uncertainty in the calibration objective. Data scarcity is the main 

limitation and challenge for studies in high-elevation areas, which links all four articles. 

Followed by data quality, as low data quality can further exacerbate data scarcity. Uncertainty 

in the calibration objective is mainly related to discharge and snow observations, which also 

includes the generated snow cover maps from article three. Input uncertainty deals with the 

uncertainty that comes with the meteorological forcing of the hydrological model. The 

uncertainty originates from inhomogeneities in the observed time series or from systematic 

(i.e., epistemic) underestimations in the case of solid precipitation in winter as mentioned in 

the third article. The first article on time series analysis addresses all four sub-categories. 

The last category of hydrological modeling contains three aspects, namely constrain model 

parameters, model efficiency, and model reliability. The subtopic of constraining model 

parameters is only addressed in the third article of the observed and modeled snow cover 

maps. Model efficiency plays an important role in reducing the computational time of the 

physically-based model WaSiM that is discussed in the fourth article. Model reliability is an 

important aspect in all articles except of the article about the automated discharge 

measurement, where no modeling studies were performed.  
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Table 1-1: List of the research questions and addressed keywords. 

 

The following section highlights the motivation for the individual research questions and how 

it is addressed in the corresponding publication.   
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1.3.1. Research question 1: What is the impact of inhomogeneous time 

series on hydrological model results? 

Since long time series (> years) are very likely to be affected by inhomogeneities, it is inevitable 

to check the quality of these before using them in a model application (Beven et al., 2022). 

Unfortunately, this is often not the case in most hydrological model applications. Unchecked 

station data is used, on one hand, as forcing and, on the other, to calibrate and validate the 

models. However, it is not clear to what extent the inhomogeneities can propagate to the model 

results and how reliable a model optimized against possibly inhomogeneous observational is. 

In high-elevation Alpine areas, where station data coverage is often poor and data collection 

is far more difficult than in lower-elevated areas, the quality of fewer time series is even more 

significant for model forcing and model calibration/validation. In the first article (Hofmeister, 

Graziano, et al., 2023), we applied a holistic approach, illustrated in Figure 1-1, to test the 

quality of 59 time series of two high-elevation Alpine catchments (i.e., Martelltal and 

Horlachtal). Before performing the actual quality tests by means of the HyStat software 

(Willems, Dick, Stricker, & Kasper, 2013), we eliminated the seasonality from each time series 

in order to reduce the number of significant autocorrelation coefficients. As conclusion, we 

found that inhomogenities in the model forcing (i.e., temperature and precipitation) influenced 

the cryosphere (i.e., snow and glaciers) directly and the runoff generation indirectly. Due to the 

non-linear behavior of hydrological processes, the asessment of consequences of including or 

excluding suspicious time series in hydrological setups is particularly difficult.  
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Figure 1-1: Workflow of time series quality check from preprocessing to processing (i.e., 
homogeneity, trend and change point detection) by means of the statistical HyStat software 
(Willems et al., 2013). Parametric tests that require normally distributed data are labeld with *. 
Adjusted Mann-Kenndall Tests (labeld with **) are not available in HyStat. 

1.3.2. Research question 2: How beneficial and reliable are automated 

streamflow measurements in high-elevation areas to reduce data 

scarcity? 

In order to reduce the data scarcity and to better investigate runoff generation in high-elevation 

Alpine catchments, event-based streamflow measurements are a key technology to capture 

rare events. In addition, rare events are important for rating curve construction and reducing 

uncertainty in extrapolation range. The main challenges consist in the proper installation and 

the regular maintainence of the automated system, to keep the experimental uncertainty as 

small as possible. In the second article (Hofmeister, Rubens Venegas, et al., 2023), we tested 

and evaluated the benefit and reliability of an automated salt injection system that was 

originally developed in Canada. For this purpose, we installed and assessed three automated 

salt injection systems over two years in three diverse areas of the Alps (i.e., electrical 

background conductivity, drained and glaciated area, and channel geometry). Figure 1-2 

shows an example of one deployed AutoSalt system, the change of temperature compensated 

electrical conductivity (ECT) in stream water due the salt injections, and the stage-discharge 

relationship based on two years of measurements. The blue box in Figure 1-2 illustrates a 
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hydrological extreme event that occurred in a side valley of the Horlachtal (i.e., Grastal) and 

partly destroyed one AutoSalt system in July of 2022. This particular event was analyzed by 

Rom et al. (2023). In the second article, we were able to demonstrate the reliable functioning 

of the system at contrasting sites with a majority (81 %) of small measurement errors (< 7 %) 

and the recording of rare events with peak streamflow of up to 20 m³/s. Moreover, the use of 

the AutoSalt system enables us to detect non-stationarity in the cross-section. 

 

Figure 1-2: Automated salt injection system (AutoSalt) for unsupervised and event-based 
streamflow measurements in Alpine catchments. The extreme event occurred in a side valley 
of the Horlachtal (i.e., Grastal) in July 2022. 

1.3.3. Research question 3: Can we reduce data scarcity of spatial snow 

information in high-elevation Alpine catchments by remote sensing 

data? 

Data scarcity in high-elevation Alpine catchments is not only characterized by a lack of 

observational station data, but also by the spatial coverage in the complex terrains because 

station data mainly represent a lumped information (e.g., meteorological and snow 

observations). However, snow amount and cover is particularly heterogeneously distributed in 

high-elevation areas, which in turn affects, for example, the runoff generation in spring. 

Therefore, spatial snow information is essential for estimating spring runoff or for validating 

hydrological models. The third article (Hofmeister, Arias-Rodriguez, et al., 2022) shows the 

potential of high-resolution snow cover maps derived from optical remote sensing images for: 

i) constraining model parameters that control the gravitational snow redistribution and ii) for 
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validating the spatio-temporal model results (Figure 1-3). The optimized snow model is able to 

reproduce spatio-temporal variability in snow cover duration due to surface energy balance 

dynamics, wind and gravitational redistribution. It can be assumed that the validated 

hydrological model gives more realistic runoff predictions than the model setup without the 

optimization and additional validation by means of observed snow cover maps. Through these 

promising results, we have shown the potential of observed high-resolution snow cover maps 

for consideration in a multi-objective optimization approach, which reduces the uncertainty in 

the model results.  

 

Figure 1-3: Illustration of the research objective to reduce data scarcity of spatial snow 
information in high-elevation Alpine catchments by remote sensing data (grey box). The 
derived snow cover maps are beneficial for the validation of the model results (red box) and 
for constraining the model parameters of a physically-based and distributed snow model (i.e., 
WaSiM).  

1.3.4. Research question 4: How fast and reliable are coupled machine 

learning and physically-based hydrological models? 

Although physically-based hydrological models are powerful to reliably and consistently 

simulate hydrological processes, they may be limited in their applicability because of data 

availability, process representation, or computational time. Coupling physically-based 

hydrological models with machine learning has great potential as it can be used very flexibly. 

The coupling results in synergies that can reduce the respective limitations of the other 
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approach. In the fourth article (Hofmeister, Spadina, & Chiogna, 2022), we coupled WaSiM 

with a Suppport Vector Machine (SVM) to speed up the computational time for long simulation 

runs. Until then, it was still unknown i) how a coupling can work (e.g., surrogate model), ii) how 

large the reduction in computing time is, and iii) how reliable the predictions generated with the 

emulator are (Figure 1-4) for a high-elevation Alpine catchment. Although article four is only a 

case study, we were able to show that coupling with a Support Vector Regression (SVR) 

algorithm provides reliable results and that a significant reduction in computation time is 

possible. Thus, the study is a good foundation for further investigations and tests in other areas 

and for longer time periods. 

 

Figure 1-4: Emulation of a high-resolution hydrological model setup (i.e., 25 m spatial and 
hourly time step) by a Support Vector Machine (SVM) and a courser model setup (i.e., 100 m 
spatial and daily time step). The evaluation of the emulator focuses on time reduction and 
reliability of the model predictions. 

1.4. Research areas 

The research areas of this dissertation are mainly focused on two high-elevation headwater 

catchments in the Central Alps (Kaunertal and Horlachtal) and one in the Southern Alps 

(Martelltal), as illustrated in Figure 1-5. Accordingly, the catchments of the Central Alps are 

located north of the main Alpine divide and the Martelltal south of it. All three catchments 

correspond to the research areas of the SEHAG project funded by the DFG (German Research 
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Foundation) and FWF (Austrian Science Fund). The selection of these three research areas 

was motivated by multiple reasons. They have a similar geology (i.e., metamorphic 

Austroalpine nappes (Schmid, Fügenschuh, Kissling, & Schuster, 2004)), topography and size 

(i.e., ~60 km²). As the three study areas provide similar conditions regarding geology (i.e., 

siliceous metamorphic rocks), topography (i.e., rather steep slopes with a high morphodynamic 

activity) and vegetation, the soil formation is also similar. Soil types range from shallow 

Leptosols to deeper developed Cambisols and Podzols. Differences mainly consist in the 

climate and the glacier coverage. A detailed description of each research area is included in 

the following section.  

 

Figure 1-5: Outlines of the three research areas Horlachtal, Kaunertal and Martelltal (from 
north to south). 

1.4.1. Horlachtal 

Horlachtal, located in the Ötztal part of Tyrol, Austria, is a 55 km² Alpine catchment drained at 

Gasthof Stuibenfall gauge station, with glaciers covering 1.8 % of the catchment area in 2015 

(Buckel & Otto, 2018). The catchment elevation varies from 1484 to 3277 m.a.s.l. and the 

mean elevation is 2443 m.a.s.l. The rock mainly consist of gneiss, mica-schists and scattered 

amphibolites (Schmid et al., 2004). The climate of Horlachtal corresponds to the typical dry 

valley character of the upper Inn basin and the vegetation has a characteristic altitudinal alpine 
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gradation (Rom, Haas, Heckmann, et al., 2023). Since the Horlachtal has a typical geomorphic 

dynamic, some studies have already been conducted to investigate the geomorphic processes 

(Becht, 1995; Geitner & Becht, 1999; Rom, Haas, Heckmann, et al., 2023). Mean annual 

precipitation computed using all available stations (Horlachalm, Leiter, Küthai and Umhausen) 

over the period 1991-2019 is 916 mm with a standard deviation (SD) of ±106 mm. The mean 

annual temperature computed using the same stations over the same period is -0.1 °C with a 

SD of ±0.64 °C. The available stations from Horlachtal and the surrounding area are shown in 

Figure 1-6. 

 

Figure 1-6: Overview map of the Horlachtal with the glacier extents from 2015 (Buckel & Otto, 
2018) and locations of hydrometeorological stations. Green circles indicate the stream gauges 
installed in the SEHAG project. 

The Tiroler Wasserkarft AG (TIWAG) and the Avalanche Warning Service (LWD) are the main 

operators of meteorological stations in Horlachtal and the neighboring valleys. In addition, the 

Central Institution for Meteorology and Geodynamics (ZAMG) runs a meteorological station in 

the main Ötztal at 1035 m.a.s.l. next to Umhausen, which has been recording daily 

meteorological variables since 1946. The highest station is Lampsenspitze Windstation at 

2870 m.a.s.l.. The TIWAG station Leiter has the longest temporal coverage within Horlachtal 

beginning in 1973. From 1990 on, the number of available stations has increased. However, 

stations located at higher elevations (above 2000 m.a.s.l.) are available only from 2010 
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onwards. High-resolution (15 minutes) hydrological observations are available at gauge 

Horlach Fassung and Niederthai Gasthof Stuibenfall from 1985 onwards. At the Horlach 

Fassung, most of the stream water is diverted to the Finstertal reservoir near Kühtai. In the 

framework of the SEHAG project, additional stream gauges were installed at three tributary 

valleys (i.e., Finstertal, Larstigtal and Grastal) in 2019 to better understand the runoff 

generation in these small headwater catchments. 

1.4.2. Kaunertal 

The Kaunertal is part of the Oetztaler Alps and located in the central Alps in Tyrol/Austria. The 

valley has a south-north orientation with an altitudinal range from 1895 m.a.s.l. to 3576 m.a.s.l. 

and is drained by the Fagge river, a tributary of the Upper Inn River system. The research area 

of this study covers the upper Kaunertal south of the Gepatsch reservoir and draines at the 

gauge Gepatschalm with an approximated size of 54 km². The geology is mainly characterized 

by paragneis, orthogneis and interacted amphibolites (Schmid et al., 2004). The mean annual 

temperature computed using the Weisssee station (2540 m.a.sl.) over the 2006-2021 period 

is -0.26 °C with a SD of ±1.15 °C. Mean annual precipitation sum at Weisssee is 813 mm with 

a standard deviation (SD) of ±335 mm over the same period. The runoff regime of the Fagge 

has a glacio-nival characteristic with a long low flow period in winter (November to May) and a 

shorter period of larger discharge fluctuations in summer (June to October). Mean discharge 

of the Fagge at gauge Gepatschalm was 3 m³/s over the period 2009/11 to 2019/12 and the 

maximum hourly discharge was 49.18 m³/s on 22.08.2011. The Gepatsch glacier, the second 

largest glacier of Austria, together with the Weißseeferner, covers approximately 37 % of the 

catchment (Förster et al., 2016). In adition to multiple hydrological (Förster et al., 2016; Rogger 

et al., 2017) and cryospheric investigations (Fey, Schattan, Helfricht, & Schöber, 2019; 

Fleischer et al., 2021; Schattan, Schwaizer, Schöber, & Achleitner, 2020; Schöber et al., 2014; 

Wagner, Brodacz, Krainer, & Winkler, 2020; Wagner, Pauritsch, & Winkler, 2016), a number 

of other processes have been studied in the Kaunertal, such as changes in the sediment 

transport (Baewert & Morche, 2014; Heckmann et al., 2012; Schöber & Hofer, 2018) and in 

the morphodynamics of this high Alpine area (Altmann et al., 2020; Haas, Heckmann, Hilger, 

& Becht, 2012). Within the framework of the SEHAG project, additional stream gauges were 

installed at three sites (i.e., upper Fagge, Riffler creek and Krummgampental) in 2019. The 

reason of the installation was to subdivide the upper Kaunertal in smaller sub-catchments with 

different shares of glacier cover. The hydrometeorological stations as well as the glacier cover 

of the upper Kaunertal from 2015 is shown in Figure 1-7. 
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Figure 1-7: Overview map of the Kaunertal with the glacier extents from 2015 (Buckel & Otto, 
2018) and locations of hydrometeorological stations. Green circles indicate the stream gauges 
installed in the SEHAG project. Precipitation totalizators of the TIWAG are indicated with red 
triangles. 

1.4.3. Martelltal 

Martelltal, situated in South Tyrol, Italy, is a 62 km² Alpine catchment discharging in the artificial 

Zufritt (Giovaretto) reservoir and had a glacier coverage of 15 % in 2019 (Knoflach et al., 2021) 

(see Figure 1-8). The catchment elevation varies from 1838 to 3747 m.a.s.l. and the mean 

elevation is 2814 m.a.s.l.. In Martelltal, para-gneis, mica-schists, phyllites and orthogneis are 

the prevailing metamorphic units (Schmid et al., 2004). The climate in Martelltal is 

characterized by a transition zone of Mediterranean climate and the drier climate of the Central 

Alpine region (Knoflach et al., 2021). Based on the data of the Stausee Zufritt station, we could 

compute a mean annual precipitation of 910 mm with a SD of ±217 mm and a mean annual 

temperature of -1.7 °C with a SD of ±1.21 °C over the period 1973-2020.  
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Figure 1-8: Overview map of the Martelltal with the glacier extents from 2019 (Knoflach et al., 
2021) and locations of hydrometeorological stations. Green circles indicate the stream gauges 
installed in the SEHAG project. 

The meteorological station at Langenferner is operated by the Institute of Atmospheric and 

Cryospheric Sciences of the University of Innsbruck, the Autonomous Province of 

Bozen/Bolzano - South Tyrol runs all other stations. The meteorological station network covers 

a large altitude gradient from 1720 m.a.s.l. (Hintermartell) to 3328 m.a.s.l. (Schöntaufspitze). 

However, temporal coverage of metrological observations is very sparse prior 2005. The Zufritt 

station displays the largest temporal coverage, having measured daily temperature and 

precipitation since 1973. Previous hydrological studies investigating the mass balance of the 

Langenferner glacier (Galos et al., 2017; Galos & Klug, 2015) and the impact of glacier 

shrinking on hydropower production (Puspitarini, François, Zaramella, Brown, & Borga, 2020) 

also focused on this study area. In addition, the catastrophic flood event from 1987 was the 

subject of several vulnerability assessment studies (Totschnig & Fuchs, 2013; Papathoma-

Köhle, Zischg, Fuchs, Glade, & Keiler, 2015). 
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1.5. Hydrological model WaSiM 

The selection of the deterministic, grid-based Water Flow and Balance Simulation Model 

WaSiM (Schulla, 2021) is mainly based on the model requirements within the SEHAG project 

(Sensitivity of high Alpine geosystems to climate change since 1850), in which climate-induced 

changes on the hydrosphere of high-elevation catchments since the last Little Ice Age (LIA) 

are investigated Hence, the hydrological model has to be able to simulate elevation dependent 

(i.e., temperature dependent) hydrological processes such as snow and glacier melt. WaSiM 

is a physically-based model because it simulates water fluxes in the unsaturated zone by 

solving the 1D-Richards equation, evapotranspiration can be computed using the Penman-

Monteith equation as well as snow ablation by solving the energy balance of the snow surface. 

The application of physically-based algorithms is strongly limited by the availability of forcing 

data and spatial information, especially soil texture, horizons and thickness. Applying the 

Penman-Monteith and the energy balance algorithms requires meteorological records of 

relative humidity, wind speed and short wave incoming radiation, in the research areas the 

latter is available, at the earliest, since the beginning of the 1990’s. If these forcing data are 

not available, WaSiM can simulate the evapotranspiration and the snowmelt with less complex 

algorithms such as Hamon or Haude for evapotranspiration and temperature index (T-index) 

based on degree-days for snowmelt. Accordingly, temperature and precipitation observations 

are the minimum input for forcing WaSiM with the lowest model complexity. The use of physics-

based algorithms ensures that model results remain within plausible physical limits even over 

long simulation periods (> 30 years). However, the higher degree of model complexity 

complicates the setup, calibration and validation of a hydrological model as it requires a deep 

understanding about the hydrological cycle and how it is implemented in the model. WaSiM 

has a logical model structure similar to the natural water cycle beginning with the atmosphere 

at the top and the water fluxes in the unsaturated and saturated zone as illustrated in Figure 

1-9. A great advantage of the modular structure is that each user can configure the model 

complexity according to the research question, area, and data availability.  
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Figure 1-9: Model structure of the grid- and physically-based hydrological model WaSiM 
(Schulla, 2021).  

With the implementation of snow redistribution routines by Warscher et al. (2013), WaSiM is 

able to simulate wind-induced snow redistribution and gravitational snow slides that avoid the 

so-called ‘snow-tower’ at the top of mountain ridges. Both redistribution algorithms are not 

event-based, they are designed to simulate the snow distribution at the end of the accumulation 

period in complex topographies. Event-based snow redistribution processes are available, for 

example, in the Alpine3D model (Lehning et al., 2006). Another important argument for the 

selection of WaSiM was the simulation of glacier mass balances as well as glacier dynamics 

(i.e., recession and advance) due to climatic changes. The implemented algorithm is the 

volume-area power law scaling, a widely used method for estimating the future response of 

ice caps and glaciers to environmental change (Bahr, Meier, & Peckham, 1997; Bahr, Pfeffer, 

& Kaser, 2015). Ice and firn melt can be simulated either with an T-index or by including 

radiation after Hock (1999). A new coupling of WaSiM with the explicit ice flow model Open 

Global Glacier Model (OGGM), developed by Maussion et al. (2019), is currently in 

development for a better representation of glacier geometry and ice dynamics (Pesci & Förster, 
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2022). Although not considered in the model configuration for the model runs within the 

SEHAG framework, WaSiM has the option to compute the heat transfer in the snowpack and 

subsurface to simulate permafrost dynamics. The heat transfer model was mainly developed 

and tested in Arctic tundra (Bui, Lu, & Nie, 2020; Debolskiy et al., 2021; Liljedahl et al., 2016).  

Because of the detailed representation of land cover, WaSiM has been used not only for 

climate change studies (Kunstmann, Schneider, Forkel, & Knoche, 2004; Meyer, Blaschek, 

Duttmann, & Ludwig, 2016; Poschlod, Willkofer, & Ludwig, 2020), but also for land use change 

studies (Bormann & Elfert, 2010; Hounkpè, Diekkrüger, Afouda, & Sintondji, 2019) or for 

combined scenarios (Alaoui et al., 2014; Springer, Ludwig, & Kienzle, 2015; Strasser et al., 

2019). Moreover, WaSiM has the capability to consider anthropogenic streamflow 

modifications such as irrigation, reservoirs or water bypasses. The latter was particularly 

relevant for the model setup of Horlachtal as about 80 % of the water from the upper catchment 

are diverted to a neighboring valley.  

A relatively high spatial model discretization of 25 m x 25 m was chosen as a compromise 

between a reasonable computational time for the three research areas and the ability to resolve 

small-scale processes such as snow redistribution and correct deviation of flow paths of Alpine 

creeks. Additionally, it is possible to compare and provide the simulated outputs (e.g., snow 

cover duration) to other subprojects of the SEHAG research unit (e.g., botany, sediment 

transport) as they are conducting their studies on a meter resolution (Knoflach et al., 2021; 

Ramskogler et al., 2023). Moreover, as described in chapter 4, WaSiM is able to reproduce 

small-scale snow redistribution processes with the 25 m x 25 m resolution.  

The model time step of WaSiM was chosen to be 1h in order to simulate diurnal runoff 

generation from snow and glacier melt. Another reason for the 1h time step was the modeling 

and investigation of hydrological extreme events that usually occur in short time windows due 

to quick runoff concentration time (i.e., only a few hours) in the steep headwater catchments.   
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2. Quality assessment of hydrometeorological observational data 

and their influence on hydrological model results in Alpine 

catchments 

 

Hofmeister, Graziano, et al., 20231 

 

Abstract 

Hydrometeorological observational data can be affected by trends, change points and 

inhomogeneities. It is often difficult to identify the cause of these statistical properties of the 

time series and therefore they represent a source of uncertainty that can propagate to the 

hydrological model results. We examine two case studies of high-elevation Alpine catchments 

for which 59 hydrometeorological time series are analyzed to show how often trends, change 

points and inhomogeneities in the time series occur. We consider daily and monthly 

aggregated data, as well as a set of nine homogeneity test, six trend tests and three change 

point tests. The results show that inhomogeneities in meteorological time series have a 

stronger and more direct influence on the cryosphere (snow and glacier processes) than on 

runoff generation. The non-linear behavior of hydrological processes greatly complicates the 

judgement about the consequences of including or excluding suspicious time series in 

hydrological model set-ups. 

  

                                                
1Material from:  
Hofmeister, F., Graziano, F., Marcolini, G., Willems, W., Disse, M., & Chiogna, G. (2023). Quality 
assessment of hydrometeorological observational data and their influence on hydrological model results 
in Alpine catchments. Hydrological Sciences Journal, 02626667.2023.2172335. doi: 
10.1080/02626667.2023.2172335. 
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2.1. Introduction 

The editorial by Cudennec, Lins, Uhlenbrook, & Arheimer (2020) highlighted the importance of 

advancing hydrological sciences of FAIR (i.e., findable, accessible, interoperable, reusable 

data; Wilkinson et al., 2016) and SQUARE data (i.e., those that support quality action and 

research). In fact, errors in hydrological and meteorological time series are often present, and 

it is important to identify them since experimental hydrology is a very challenging discipline. 

Pitfalls in experimental hydrology exist not only in field measurements (Dembélé, Oriani, 

Tumbulto, Mariéthoz, & Schaefli, 2019; Di Baldassarre & Montanari, 2009b; Rasmussen et al., 

2012) but also in laboratory analysis (Orlowski et al., 2018; Penna et al., 2010) and processing 

of remote sensing datasets (Anagnostou et al., 2018; Borga, Degli Esposti, & Norbiato, 2006; 

Di Marco et al., 2020a; Hofmeister, Arias-Rodriguez, et al., 2022). Measurement errors in 

hydrological and meteorological time series not only represent input errors for hydrological 

models but can also challenge hydrological model validation and calibration (Bittner, Richieri, 

& Chiogna, 2021; Brath, Montanari, & Toth, 2004; Mcmillan, Jackson, Clark, Kavetski, & 

Woods, 2010). It has been shown that the uncertainty in meteorological time series in both 

accumulation and ablation phases is a crucial factor for the model performance of snow 

models. The input uncertainties may even be more relevant than the parameter choice and 

model structure of physically-based snow models (Günther, Marke, Essery, & Strasser, 2019). 

The fact that measurement errors can be compensated by parameter calibration (Bárdossy & 

Singh, 2008; Zhang, Li, Huang, Wang, & Cheng, 2016) further increases the importance of 

properly proofing the quality of the available datasets. 

Testing time series is often considered a tedious exercise and it often does not lead to 

publications with high scientific impact, but it is an important prerequisite for robust hydrological 

studies that should be better acknowledged by the scientific community. Moreover, some 

hydrometeorological variables such as temperature, precipitation and discharge (Hänsel, 

Medeiros, Matschullat, Petta, & de Mendonça Silva, 2016; Kocsis, Kovács-Székely, & Anda, 

2020; Shen et al., 2018; Yozgatligil & Yazici, 2016; Whitfield & Pomeroy, 2017; Gudmundsson, 

Do, Leonard, & Westra, 2018; Pandžić et al., 2020) are more often tested than others like snow 

depth, humidity, wind and radiation (Boris Faybishenko et al., 2021; Fiebrich, Morgan, 

McCombs, Hall, & McPherson, 2010; Marcolini et al., 2019b; Schöner et al., 2019). However, 

all hydrometeorological drivers are important to describe the hydrological cycle properly and 

should be carefully validated before being used for hydrological purposes. Despite being 

mathematically sound, available statistical tests for time series analysis still require 

interpretation for practical applications in hydrology. Relevant examples are outliers tests and 

their typical inability to distinguish between (physical) extreme events and (unphysical) 

measurement errors (Crochemore et al., 2020). Moreover, hydrological time series are often 
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autocorrelated with consequences on the significance of the statistical tests (El-Shaarawi & 

Damsleth, 1988; Hirsch, Slack, & Smith, 1982). 

In this work, we illustrate the problem of using suspicious time series (i.e., time series that 

display inhomogeneity, trends or change points) as input for a hydrological model. We consider 

two Alpine catchments, i.e., Horlachtal in Tyrol/Austria and Martelltal in South Tyrol/Italy, in 

which precipitation and temperature time series, respectively, are of suspicious quality. We 

focus on Alpine catchments for four reasons. First, they are sensitive to small changes in 

temperature (Crespi, Matiu, Bertoldi, Petitta, & Zebisch, 2021; Jennings & Molotch, 2019; 

Zampieri, Scoccimarro, Gualdi, & Navarra, 2015). Second, they are typically data-scarce 

regions and therefore excluding a single time series from the hydrological analysis of a 

catchment can be a difficult choice that, in extreme cases, can make performing any analysis 

on the catchment impossible (Hingray, Schaefli, Mezghani, & Hamdi, 2010). In addition, the 

measurement of precipitation and snow depth at higher altitudes (> 2000 m.a.s.l.) is particularly 

prone to error due to strong winds that lead to undercatch of solid precipitation (Kochendorfer 

et al., 2022, 2016; Rasmussen et al., 2012; Sevruk, 1991). Finally, hydrometeorological time 

series in Alpine catchments are spatially heterogeneous and therefore spatial interpolation is 

more complex than in catchments displaying low elevation gradients (Foehn, García 

Hernández, Schaefli, & De Cesare, 2018). However, since well-configured high-resolution 

atmospheric models have become available, a better representation of the spatial and 

temporal precipitation distribution is possible (Lundquist, Hughes, Gutmann, & Kapnick, 2019). 

This is beneficial for runoff and snow simulation results, but these data are often only available 

for a relatively short period. 

The paper is structured as follows. In the Material and methods section, we introduce the study 

areas and the hydrometeorological dataset available for this work. Afterwards, we review the 

statistical tests performed for hydrological time series analysis and we present the grid-based 

Water Flow and Balance Simulation Model (WaSiM) (Schulla, 2021) applied in this study. The 

Results section presents the quality check results for the dataset and the effect of excluding or 

maintaining in the model exercise time series of suspicious quality. In the subsequent 

Discussion, we critically present how to interpret the results of the statistical tests and the 

implications of different statistical anomalies in the time series for hydrological modeling. 

Finally, the conclusion highlights the importance of performing accurate time series analysis 

to obtain accurate and reliable model predictions in Alpine catchments. 
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2.2. Material and methods 

2.2.1. Study area 

2.2.1.1. Horlachtal 

Horlachtal, located in the Ötztal part of Tyrol, Austria, is a 55 km² Alpine catchment drained at 

Gasthof Stuibenfall gauge station, with glaciers covering 1.8 % of the catchment area in 2015 

(Buckel & Otto, 2018). The catchment elevation varies from 1484 to 3277 m.a.s.l. and the 

mean elevation is 2443 m.a.s.l. The climate of Horlachtal corresponds to the typical dry valley 

character of the upper Inn basin. Mean annual precipitation computed using all available 

stations (Horlachalm, Leiter, Küthai and Umhausen) over the period 1991-2019 is 916 mm with 

a standard deviation (SD) of ±106 mm. The mean annual temperature computed using the 

same stations over the same period is -0.1 °C with a SD of ±0.64 °C. The available stations 

from Horlachtal and the surrounding area are shown in Figure 2-1a. 

The Tiroler Wasserkarft AG (TIWAG) and the Avalanche Warning Service (LWD) are the main 

operators of meteorological stations in Horlachtal and the neighboring valleys. In addition, the 

Central Institution for Meteorology and Geodynamics (ZAMG) runs a meteorological station in 

the main Ötztal at 1035 m.a.s.l. next to Umhausen, which recodes daily meteorological 

variables since 1946. The highest station is Lampsenspitze Windstation at 2870 m.a.s.l.. The 

TIWAG station Leiter has the longest temporal coverage within Horlachtal beginning in 1973. 

From 1990 on, the number of available stations increased. However, stations located at higher 

elevations (above 2000 m.a.s.l.) are available only from 2010 onwards. High-resolution (15-

minute) hydrological observations are available at the gauge Horlach Fassung and Niederthai 

Gasthof Stuibenfall from 1985 onwards. 
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Figure 2-1: Overview map of (a) Horlachtal and (b) Martelltal with locations of meteorological 
and hydrological stations and their corresponding observation variables. Station numbers 
correspond to station numbering in the hydrometeorological dataset section, as listed in Table 
2-1. 
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2.2.1.2. Martelltal 

Martelltal, situated in South Tyrol, Italy, is a 62 km² Alpine catchment discharging into the 

artificial Zufritt (Giovaretto) reservoir and had a glacier coverage of 15.6 % in 2015 (see Figure 

2-1b). The catchment elevation varies from 1838 to 3747 m.a.s.l. and the mean elevation is 

2814 m.a.s.l. The climate in Martelltal is characterized by a transition zone of Mediterranean 

climate and the drier climate of the Central Alpine region (Knoflach et al., 2021). Based on data 

from the Stausee Zufritt station, we computed a mean annual precipitation of 910 mm with an 

SD of ±217 mm and a mean annual temperature of -1.7 °C with an SD of ±1.21 °C over the 

period 1973-2020.  

Except for the meteorological station at Langenferner, which is operated by the Institute of 

Atmospheric and Cryospheric Sciences of the University of Innsbruck, the Autonomous 

Province of Bozen/Bolzano - South Tyrol runs all other stations. The meteorological station 

network covers a large altitude gradient, from 1720 m.a.s.l. (Hintermartell) to 3328 m.a.s.l. 

(Schöntaufspitze). However, temporal coverage of metrological observations is very sparse 

before 2005. The Zufritt station displays the largest temporal coverage; it has measured daily 

temperature and precipitation since 1973. Since only daily minimum and maximum 

temperature are recorded at Zufritt station, we computed the daily average by taking the mean 

of both observations, which is a traditional approach in meteorological applications (Bernhardt, 

Carleton, & LaMagna, 2018).  

2.2.2. Hydrometeorological dataset 

In total, 60 time series from 20 stations are available for the two study areas. We reduced the 

total number of time series to 59 from 19 stations because we only analyzed time series that 

cover at least five years. Hydrometeorological variables measured at one station can generate 

multiple time series, if data gaps larger than 14 days are present. We filled smaller data gaps 

(< 14 days) in the time series by linear interpolation with neighboring stations if the correlation 

coefficient was larger than 0.7. Table 2-1 lists information about the analyzed time series. The 

station numbering includes a jump in Table 1 because only short time series (< 5 years) were 

available from the station Langenferner-Felsköpfl, and therefore were excluded from the 

analysis. An additional numbering in the variable column differentiates between multiple time 

series of the same hydrometeorlogical variable belonging to the same station (e.g., 

Hintermartell T 1 and T 2) due to the occurrence of gaps in the recording. The following 

variables are considered: 10 relative humidity time series (H), 10 precipitation time series (P), 

four radiation time series (R), 20 temperature time series (T), eight wind speed time series 

(WS), four snow depth time series (HS) and three discharge time series (Q). For the Horlachtal 

we analyzed 27 time series from eight stations, while for the Martelltal we analyzed 32 time 
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series from 11 stations. A table containing all metadata of the analyzed and not analyzed 

hydrometeorological dataset is provided in the supplemental material A.1.1. 

Table 2-1: Characteristics of the tested hydrometeorological time series. Variables are 
abbreviated as Q = discharge, P = precipitation, WS = wind speed, HS = snow depth, T = 
temperature, H = humidity, R = shortwave incoming radiation. 

Station Name Station 

code 

Variable Number 

of 

years 

Latitude Longitude Elevation 

m.a.s.l. 

Observation 

period 

Provider 

Durraplatt 1 P 16 46.5274 10.7373 1616 1989-2005 Bozen 

Hintermartell 2 H 11 46.5169 10.7269 1720 2009-2020 Bozen 

Hintermartell 2 P 11 46.5169 10.7269 1720 2009-2020 Bozen 

Hintermartell 2 R 5 46.5169 10.7269 1720 2009-2014 Bozen 

Hintermartell 2 T 1 5 46.5169 10.7269 1720 2009-2014 Bozen 

Hintermartell 2 T 2 6 46.5169 10.7269 1720 2014-2020 Bozen 

Hintermartell 2 WS 11 46.5169 10.7269 1720 2009-2020 Bozen 

Horlachalm 3 HS 1 6 47.1577 11.0125 1910 1999-2005 TIWAG 

Horlachalm 3 HS 2 10 47.1577 11.0125 1910 2009-2018 TIWAG 

Horlachalm 3 P 29 47.1577 11.0125 1910 1989-2018 TIWAG 

Horlachalm 3 T 31 47.1577 11.0125 1910 1987-2018 TIWAG 

Horlach Fassung 4 Q 33 47.1577 11.0125 1912 1985-2018 TIWAG 

Kühtai 5 H 29 47.2071 11.0059 1918 1990-2019 TIWAG 

Kühtai 5 P 26 47.2071 11.0059 1918 1990-2016 TIWAG 

Kühtai 5 R 29 47.2071 11.0059 1918 1990-2019 TIWAG 

Kühtai 5 T 29 47.2071 11.0059 1918 1990-2019 TIWAG 

Kühtai 5 WS 25 47.2071 11.0059 1918 1990-2015 TIWAG 

Lampenspitze 

Schneestation 
6 H 11 47.153 11.121 2111 2008-2019 LWD 

Lampenspitze 

Schneestation 
6 R 11 47.153 11.121 2111 2008-2019 LWD 

Lampenspitze 

Schneestation 
6 T 8 47.153 11.121 2111 2011-2019 LWD 
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Lampenspitze 

Windstation 
7 H 10 47.156 11.096 2870 2009-2019 LWD 

Lampenspitze 

Windstation 
7 T 8 47.156 11.096 2870 2011-2019 LWD 

Lampenspitze 

Windstation 
7 WS 10 47.156 11.096 2870 2009-2019 LWD 

Leiter 9 HS 41 47.1228 10.9691 1564 1976-2018 TIWAG 

Leiter 9 P 43 47.1228 10.9691 1564 1976-2019 TIWAG 

Leiter 9 T 1 8 47.1228 10.9691 1564 1991-1999 TIWAG 

Leiter 9 T 2 20 47.1228 10.9691 1564 1999-2019 TIWAG 

Malga Mare 9 P 54 46.4142 10.68 1950 1930-1984 Trentino 

Niederthai 11 Q 33 47.1577 11.0125 1478 1985-2018 TIWAG 

Rossbänke 12 H 18 46.4693 10.8194 2255 2002-2020 Bozen 

Rossbänke 12 T 18 46.4693 10.8194 2255 2002-2020 Bozen 

Rossbänke 12 WS 6 46.4693 10.8194 2255 2013-2019 Bozen 

Schöntaufspitze 13 T 13 46.5029 10.6286 3328 2003-2016 Bozen 

Schöntaufspitze 13 WS 5 46.5029 10.6286 3328 2003-2008 Bozen 

Stausee Zufritt 14 P 47 46.509 10.7251 1851 1972-2019 Bozen 

Stausee Zufritt 14 T 46 46.509 10.7251 1851 1973-2019 Bozen 

Sulden 15 H 5 46.5159 10.5953 1907 2015-2020 Bozen 

Sulden 15 P 7 46.5159 10.5953 1907 2003-2010 Bozen 

Sulden 15 T 1 7 46.5159 10.5953 1907 2003-2010 Bozen 

Sulden 15 T 2 5 46.5159 10.5953 1907 2015-2020 Bozen 

Sulden 

Madritsch 
16 H 17 46.4938 10.6144 2825 2003-2020 Bozen 

Sulden 

Madritsch 
16 HS 11 46.4938 10.6144 2825 2009-2020 Bozen 

Sulden 

Madritsch 
16 T 17 46.4938 10.6144 2825 2003-2020 Bozen 
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Sulden 

Madritsch 
16 WS 6 46.4938 10.6144 2825 2008-2014 Bozen 

Ulten Weißbrunn 17 H 10 46.4868 10.8318 1900 2010-2020 Bozen 

Ulten Weißbrunn 17 P 11 46.4868 10.8318 1900 2004-2015 Bozen 

Ulten Weißbrunn 17 T 1 12 46.4868 10.8318 1900 1990-2002 Bozen 

Ulten Weißbrunn 17 T 2 8 46.4868 10.8318 1900 2002-2010 Bozen 

Ulten Weißbrunn 17 T 3 10 46.4868 10.8318 1900 2010-2020 Bozen 

Umhausen 18 H 73 47.1392 10.9289 1025 1946-2019 ZAMG 

Umhausen 18 P 73 47.1392 10.9289 1025 1946-2019 ZAMG 

Umhausen 18 R 8 47.1392 10.9289 1025 2011-2019 ZAMG 

Umhausen 18 T 1 57 47.1392 10.9289 1025 1946-2003 ZAMG 

Umhausen 18 T 2 16 47.1392 10.9289 1025 2003-2019 ZAMG 

Umhausen 18 WS 73 47.1392 10.9289 1025 1946-2019 ZAMG 

Weißbrunnspitze 19 H 6 46.494 10.774 3253 2012-2018 Bozen 

Weißbrunnspitze 19 T 8 46.494 10.774 3253 2012-2020 Bozen 

Weißbrunnspitze 19 WS 5 46.494 10.774 3253 2013-2018 Bozen 

Zufallhuette 20 Q 6 46.4763 10.6768 2311 2014-2020 Bozen 

2.2.3. Statistical tests 

The preprocessing of the time series includes the aforementioned gap-filling procedure and 

the aggregation to daily and monthly mean (i.e., discharge, temperature, snow depth, humidity 

and wind speed) or sum values (i.e., precipitation and radiation). To reduce the number of 

significant autocorrelation coefficients, we eliminated the deterministic periodic component 

from the time series through the decompose function (version 3.6.2) in R (R Core Team, 2021) 

that is based on moving averages. Before the statistical analysis, we subtracted the computed 

periodicity from each time series. Afterwards we analyzed the time series with periodicity 

eliminated by means of HyStat (Willems et al., 2013), a software program for statistical analysis 

of hydrological time series. In a statistical test, there is usually a null hypothesis, which will 

eventually be rejected based on the evaluation of a test statistic and its comparison with a 

threshold value. The rejection of the null hypothesis is controlled by the significance level α, 

i.e., the probability of rejecting the null hypothesis when it is true, which was set to 0.05 for all 

performed tests. This implies that there might be some false positives in this study, in which 

several tests are performed on observational data. Moreover, when applying statistical tests, 
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one should keep in mind the hypothesis on which they rely. For instance, most tests require 

that the values of a time series are not autocorrelated. Since this hypothesis is often not fulfilled 

for hydrological time series, it can be assumed that the rejection of null hypotheses tends to 

be too frequent (El-Shaarawi & Damsleth, 1988). Although the elimination of periodicity 

reduces the probability of a false rejection of the null hypotheses, trends and stochastic short- 

and long-term (Hurst, 1951) correlated components are present in the time series that can 

influence the test result. While there have been some efforts to adjust a few statistical tests for 

autocorrelation (e.g., Hamed, 2008; Hamed & Rao, 1998; Yue & Wang, 2004), this 

inconvenience is often not explicitly addressed (Yozgatligil & Yazici, 2016).  

2.2.3.1. Homogeneity tests 

The term inhomogeneity is used very differently in the hydrological and water management 

literature. We follow the definition of Dyck (1980), who defines inhomogeneity as a sudden or 

gradual change in hydrologic regime, making the assumption of a common population for the 

sample unrealistic. We can distinguish between relative homogeneity and absolute 

homogeneity tests. Relative homogeneity tests are used to identify whether the changes 

observed in a time series are likely caused by anthropogenic factors (Mestre et al., 2013). In 

this work, we focus only on absolute homogeneity tests, which analyze the internal variability 

of the time series since relative homogeneity tests are not available for all considered 

hydrometeorological variables. In addition, data scarcity in high-elevation catchments makes 

it difficult to find suitable time series pairs, which limits the applicability of relative homogeneity 

tests. Absolute homogeneity tests can be subdivided into parametric tests, where the test 

decision is based on the assumption that the sample corresponds to a defined parametric class 

of distributions, and non-parametric ones, where no such assumption about the distribution of 

the sample is made (Willems et al., 2013). 

In HyStat, six non-parametric tests are implemented (Table 2-2). This includes the 

Kolmogoroff-Smirnov (Berger & Zhou, 2014), the Chi-squared (Pearson, 1900) and the 

Kruskal-Wallis (Wallace, 1959) tests, which verify whether the time series divided into two or 

three segments has different statistical properties. The Kolmogoroff-Smirnov and Chi-squared 

tests are based in the comparison of pairs of elements, while the Kruskal-Wallis test evaluates 

the central tendency of subsegments (in our cases two and three). The Cox-Stuart test (Cox 

& Stuart, 1955) assesses the hypothesis that no trend is present in the location or in the 

dispersion of the time series. Cyclical trends within a time series are checked using the Noether 

test (Noether, 1956). A cycle is understood as successive values grouped into blocks of similar 

tendency (local trends), i.e., phases of steady increase are replaced by similar long phases of 

steady decrease. The t-test and the equality of variance F-test are, in contrast, parametric tests 

(McCuen, 2016; Willems et al., 2013). The null hypothesis of the t-test is that the mean values 
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of the two samples are identical, while the equality of variance F-test tests for identical 

variances. Both tests assume that the samples are normally distributed. In addition, the t-test 

also assumes that the two tested samples have nearly identical variances. Because the 

Kruskal-Wallis test was calculated with two different configurations (for two and three 

subsegments), there are nine homogeneity tests in total.  

Table 2-2: Key information about the performed non-parametric and parametric homogeneity 
tests that were performed. 

Test Null - Hypothesis H0 Important aspects 

Kolmogorov-Smirnov test Identical distributions for 
partial samples 

Non-parametric 

Chi2 test Identical distributions for 
partial samples 

Non-parametric 

Kruskal-Wallis test (2 or 3 
samples) 

Identical central tendency for 
partial samples 

Non-parametric 

Cox-Stuart test - Location No upward/downward trend 
in central tendency 

Non-parametric 

Cox-Stuart test - Dispersion No upward/downward trend 
in dispersion 

Non-parametric 

Noether No cyclical trend in the time 
series 

Non-parametric 

t-test Mean value is constant Assumption: subsamples 
follow a normal distribution 
and have the same variance 

F-test Variance is constant Assumption: subsamples 
follow a normal distribution 

While our recommendation is that the most adequate test should be chosen according to the 

properties of the time series and the hypothesis of the test, one may also want to compare and 

validate the results with other tests requiring stronger or weaker assumptions. In this paper, to 

summarize the results of the nine tests that we performed, we considered a time series reliable 

if no more than half of the null hypotheses (H0) of the homogeneity tests are rejected, and 

considered it inhomogeneous (suspicions) if more than half but fewer than eight H0 are 

rejected. A time series was classified as corrupted if eight or even nine H0 are rejected. 

2.2.3.2. Trend analysis 

The trend analysis aims to detect long-term tendencies in hydrometeorological time series. For 

the detection of the trends, the Mann-Kendall test, the Trend-Noise Ratio (Schönwiese, 2013) 

and the t-test for the slope coefficient were performed (Table 2-3). The Mann-Kendall test 

(Kendall, 1975; Mann, 1945) is a non-parametric test used to detect consistently increasing or 
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decreasing trends over time within the data and is based on an analysis of the sum of the signs 

of differences between all possible pairs within the sample. Because of possible short- and 

long-term autocorrelation we applied three additional trend tests that consider stochastic 

autocorrelation, namely tests for short-term autocorrelated data after Hamed and Rao (1998) 

and Yue and Wang (2004), as well as one for long-term autocorrelated time series (Hamed, 

2008). These adjusted Mann-Kendall tests are available as the R packages modifiedmk 

(Patakamuri & O’Brien, 2021) and HKprocess (Tyralis, 2016). The criterion of the trend-noise-

ratio method is based on the ratio of the trend value to the standard deviation, where the trend 

value is calculated as the difference between the first and last values of a regression equation. 

We computed the trend-noise-ratio with two different algorithms the FQS (minimization of the 

error sum of squares) and the FAS (minimization of the absolute error sum) (Willems et al., 

2013). Consequently, we obtain two different results for this test. Finally, the t-test for the slope 

coefficient is used to check the significant deviation of the slope parameter from zero (Willems 

et al., 2013). While the Mann-Kendall trend test is not affected by the actual distribution of the 

data and is less sensitive to outliers, the parametric trend tests require data to be normally 

distributed and are more sensitive to outliers (Hamed, 2008). 

Table 2-3: Key information about the trend tests performed. AE stands for absolute error. 

Test Null - Hypothesis H0 Important aspects 

Mann-Kendall 
Test (MK) 

There is no significant trend (α 
=0.05) 

Non-parametric test, requires 
uncorrelated data, not affected by the 
distribution of data 

MK after 
Hamed and 
Rao (1998) 

There is no significant trend (α 
=0.05) 

Variance correction approach to 
address the issue of serial short-term 
correlation in trend analysis. ESS with 
an empirical formula 

MK after Yue 
and Wang 
(2004) 

There is no significant trend (α 
=0.05) 

Variance correction approach to 
address the issue of serial short-term 
correlation in trend analysis. ESS with 
Monte Carlo simulations 

MK after 
Hamed 
(2008) 

There is a significant trend based 
on the estimated scaling 
coefficient H 

Considers the effect of long range 
dependence in trend analysis (scaling 
hypothesis for the data) 

Trend-noise 
ratio 

There is no significant trend 
[AE(T/N) > 1 corresponds to α=0.2 
and AE(T/N) > 2 corresponds to 
α=0.05] 

For normally distributed data. Trend 
line approximation with two different 
methods minimization of the error sum 
of squares and minimization of the 
absolute error sum 

t-test for the 
slope 
coefficient 

There is no significant trend (the 
slope coefficient is zero) 

For normally distributed data. This test 
is used to check the significant 
deviation of the slope parameter b from 
zero 
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2.2.3.3. Change points 

The analysis of change points allows us to detect whether the time series present abrupt 

changes in measures like the central tendency. The change point test detects a particular point 

of inhomogeneity in a time series. We applied the Bernier (Bernier, 1994), Pettitt test (Pettitt, 

1979) and local jump method (Willems et al., 2013), as listed in Table 2-4. The Bernier test is 

a parametric approach that identifies the most likely change point as the point of the time series 

corresponding to the maximum cumulative deviation between its logarithmic value and the 

average of all its logarithmic values. The non-parametric Pettitt method computes a sum of 

signs of differences between the values before and after a given location n. The most probable 

change point location will be the one maximizing the sum. Another parametric method is the 

local jump method, which assumes that a time series X can be represented as a 

superimposition of a continuous function g() with a jump function, leading to points of 

discontinuity (Willems et al., 2013). While the Bernier and Pettitt tests can only detect one 

change point per time series, the local jump method can detect multiple change points.  

Table 2-4: Key information about the parametric and non-parametric change point tests that 
were performed. 

Test Null - Hypothesis H0  Important aspects  

Bernier test There is no significant change point Parametric test 

Pettitt test There is no significant change point Non-parametric test 

Local jump methods There is no significant change point Parametric test 

2.2.4. Hydrological model 

We used the physically-based and fully distributed hydrological model WaSiM (version 

10.05.05) as a test case to evaluate to what extent the quality of the meteorological time series 

influences model results. The spatial model resolution of the Horlachtal case study was 25 m 

with daily time steps for the period 1990-10-01 to 2019-12-31. However, the beginning of the 

evaluation period was shifted to 1992-10-01 to consider an initialization phase of the model. 

The spatial and temporal model resolution of the Martelltal case study was the same, but the 

modeling period differed. The simulation period was from 1973-10-01 to 2020-09-30 and the 

beginning of the evaluation was shifted to 1974-10-01 to consider an initialization phase. For 

both case studies, important WaSiM modules are the interpolation of meteorological input, the 

snow module, the evapotranspiration and the soil module. The evapotranspiration was 

computed with Penman-Monteith for Horlachtal and with Hamon (1961) for Martelltal, due to 

their differing data availability. For both case studies, the water dynamics in the unsaturated 

zone were calculated with the Richards equation. Similar to the evapotranspiration, the 

interpolation and snowmelt methods differ due to the available meteorological input data. The 
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larger data availability in Horlachtal in comparison to Martelltal enables the computation of 

snowmelt with the enhanced energy balance approach, where the energy balance is solved at 

the snow pack surface. In addition, gravitational and wind-driven snow redistributions are 

simulated according to Warscher et al. (2013). Since there are no shortwave radiation 

observation data available in Martelltal before 2006, snowmelt was simulated with the classical 

temperature index method based on time-variable snowmelt coefficients (degree-day). For the 

time variable degree-day factors, we used the standard parameter provided in the WaSiM user 

manual (Schulla, 2021). We applied different meteorological interpolation methods dependent 

on the altitudinal distribution of the stations. First, altitude-dependent regression was used to 

determine the mean temperature lapse rate based on the period with the largest data 

availability, i.e., Horlachtal -0.58 K/100 m for 2010-2019 and Martelltal -0.48 K/100 m for 2012-

2020. Secondly, the spatially interpolated temperature based on the nearest neighbor is 

adjusted by respective constant lapse rates for the simulation runs (Horlachtal 1991-2019 and 

Martelltal 1973-2020). The same approach was used to define an appropriate precipitation 

lapse rate for Martelltal with 0.18 mm/100 m for 2012-2020, and to correct the interpolated 

daily precipitation by the constant lapse rate for the simulation run. For the interpolation of 

precipitation in Horlachtal, we used a simple inverse distance weighting (IDW). A 20 % offset 

is added to solid and liquid precipitation in order to account for systematic undercatch, 

especially during snowfall events (Rasmussen et al., 2012). The topography-dependent 

adjustment of radiation and air temperature follows the scheme devised by Oke (2002). Glacier 

melt was simulated with a classical temperature index method in Martelltal, while we could 

apply the extended temperature index method after Hock (1999) for the Horlachtal case study, 

which includes information on the global radiation during each time step on each grid cell in 

order to modify the melt. Moreover, WaSiM is also able to simulate glacier dynamics as a 

growing or shrinking surface after Stahl et al. (2008). Table 2-5 summarizes the main model 

parameters used for the two case studies.  
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Table 2-5: Main WaSiM parameters for meteorological interpolation, snow accumulation and 
ablation. 

Process WaSiM 

parameter 

Description Values 

Horlachtal 

Values 

Martelltal 

Interpolation of 

meteorological 

variables 

rtemp Temperature lapse rate (K/m) -0.0058 -0.0048 

rprec Precipitation lapse rate (mm/m) - 0.001848 

hv,l Lower inversion for altitude dependent 

regression (m.a.s.l.) 

2000 

(Temp) 

2000 

(Temp) 

- 2200 

(Prec) 

hv,u Upper inversion for altitude dependent 

regression (m.a.s.l.) 

2100 

(Temp) 

2100 

(Temp) 

- 2600 

(Prec) 

Correction of 

Precipitation 

Snowa Correction parameters for liquid 

precipitation (-) 

1.2 1.2 

Snowb Correction parameters for solid 

precipitation (-) 

1.2 1.2 

Snow 

accumulation 

T0R Temperature limit for rain (°C) 0 0 

Ttrans ½ of temperature-transient zone for rain-

snow (°C) 

0.5 0.5 

Snow ablation C0 Time-variable degree-day factor 

(mm/d/°C) from January to December 

- 1.4, 1.4, 

1.4, 1.6, 

1.8, 1.9, 

1.9, 1.8, 

1.8, 1.8, 

1.4, 1.4 

T0 Temperature for beginning with snowmelt 

(°C) 

- 0.5 

LWINcorr Correction factor for incoming long-wave 

radiation (-) 

1 - 

LWOUTcorr Correction factor for outgoing long-wave 

radiation (-) 

1 - 
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The WaSiM Horlachtal setup achieved a Nash-Sutcliffe model efficiency coefficient (NSE) of 

0.72, Kling-Gupta efficiency (KGE) of 0.75, Root Mean Square Error (RMSE) of 0.56 m³/s and 

percent bias (PBIAS) of -21.3 % at the stream gauge Horlach Fassung for daily time steps 

over a period from 2006 to 2018. The model performance indices show a systematic 

underestimation of simulated streamflow, which is predominantly due to the precipitation 

underestimation at meteorological station Horlachalm, as shown in the analysis in the following 

results section. The WaSiM Martelltal setup achieved a performance with NSE of 0.75, KGE 

of 0.69, RMSE of 1.27 m³/s and PBIAS of -23 % at the stream gauge Zufallhuette for the period 

2014-2020. The underestimation of simulated streamflow results from the general limitation of 

having only one precipitation station near the catchment outlet to adequately represent the 

spatio-temporal precipitation distribution in this very complex terrain. Since the focus of this 

study was to examine the hydrological response of various meteorological forcings with 

different properties based on our statistical analyses, we did not perform extensive model 

calibration and validation. The model parameters were adopted either from the WaSiM user 

manual (Schulla, 2021) or from previous studies (Förster, Garvelmann, Meißl, & Strasser, 

2018; Hofmeister, Arias-Rodriguez, et al., 2022). Before we analyzed the simulated time 

series, we removed the periodicity from the daily time series with the same method (i.e., 

decompose function) as for the observed time series. 

2.3. Results 

2.3.1. Statistical results – entire dataset 

Figure 2-2 summarizes the main statistical results obtained for the entire dataset. The quality 

of the data increases significantly from daily time series to monthly time series, as illustrated 

in Figure 2-2a, since the null hypothesis for the homogeneity tests is not rejected much more 

often for monthly time series than for daily. Figure 2-2b shows that trends are detected for 25 

time series. However, trends are never detected univocally by all tests. Figure 2-2c shows that 

26 out of the 59 time series have at least one statistically significant change point. In Table 

2-6, we provide the classification of the time series into reliable, suspicious and corrupted for 

each variable and each study area. The most reliable time series in our dataset are those of 

precipitation, which are also generally affected by less short- and long-term autocorrelation in 

comparison to the other variables. All snow depth time series are classified as corrupted. 

Generally, the data collected in Horlachtal seem to be more reliable than the dataset available 

for Martelltal.  

  



43 
 

 

Table 2-6: Total analyzed time series per meteorological variables classified in the three 
categories reliable, suspicious and corrupted, where H is relative humidity, P is precipitation, 
R is radiation, T is temperature, WS is wind speed, HS is snow depth and Q is discharge. The 
number of time series for each valley is given in parentheses (HT for Horlachtal and M for 
Martelltal). 

Variable H P R T WS HS Q Total % 

Reliable 

time  

series 

daily 

1 6 1 3 1 0 0 12 20 

(HT1/M0) (HT2/M4) (HT1/M0) (HT2/M1) (HT1/M0) (HT0/M0) (HT0/M0) (HT7/M5) 

Suspicious 

time series 

7 4 2 12 4 0 2 31 53 

(HT3/M4) (HT2/M2) (HT1/M1) (HT5/M7) (HT0/M4) (HT0/M0) (HT1/M1) (HT20/M27) 

Corrupted 

time series 

2 0 1 5 3 4 1 16 27 

(HT0/M2) (HT0/M0) (HT1/M0) (HT1/M4) (HT2/M1) (HT3/M1) (HT1/M0) (HT8/M8) 

Total 

tested time 

series 

10 10 4 20 8 4 3 59 100 

(HT4/M6) (HT4/M6) (HT3/M1) (HT8/M12) (HT3/M5) (HT3/M1) (HT2/M1) (HT27/M32) 
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Figure 2-2: (a) Non-rejected null hypothesis (H0) of daily (red) and monthly (grey) homogeneity 
tests for each analyzed time series. The red dashed line shows the minimum number of non-
rejected H0 that must be achieved for a daily time series to be considered reliable. (b) Non-
rejected H0 of significant trend tests per monthly time series. (c) Rejected H0 of significant 
change points per monthly time series. 

Figure 2-3 presents the frequencies of the statistical results aggregated for the 

hydrometeorological variables. The comparison of Figure 2-3a and b supports the results 

shown in Figure 2-2a. In fact, the H0 hypothesis of the homogeneity tests is not rejected for 53 

% of the monthly time series, while at the daily scale H0 is generally only not rejected for 

precipitation time series. Moreover, discharge and snow depth can be identified as the 

hydrometeorological variable most prone to the occurrence of inhomogeneities. In general, we 

found that the elimination of periodicity leads to a higher rejection rate in the homogeneity tests 

compared to the test results with the original time series. Figure 2-3c shows that the occurrence 

of trends is particularly present for discharge, snow depth and wind speed. Discharge and 
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snow depth are also the hydrometeorological variables most affected by change points (Figure 

2-3d).  

 

Figure 2-3: (a) Frequencies of non-rejected H0 of homogeneity tests on daily resolution per 
variable and (b) on monthly resolution. Frequencies of (c) non-rejected H0 of significant trend 
tests per variable and (d) rejected H0 of significant change points per variable. 

While specific change point analysis and homogeneity tests have not been developed to 

explicitly consider autocorrelation, some trend tests attempt to do this. Hence, we have tested 

the effect of autocorrelation on the trend test considering only time series longer than 30 years 

(i.e.: snow depth time series of Leiter, two discharge time series from Horlach Fassung and 

Niederthai, temperature time series of Zufritt Stausee and precipitation timer series of 

Horlachalm). The test results are listed in Table 2-7. With the exception of the Leiter snow 

depth time series, for which all test algorithms detected no trend, a significant trend was 

detected for all other time series using the standard Mann-Kendall test. The Mann-Kendall test 

adjusted for long-term autocorrelation after Hamed (2008) only detected a significant trend in 
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the temperature time series of Zufritt Stausee, which was confirmed by the other tests. 

Furthermore, we found significant trends in the discharge time series of Niederthai and 

precipitation of Horlachalm with the adjusted trend test for short-term autocorrelation after 

Hamed and Rao (1998). The second Mann-Kendall adjusted for short-term autocorrelation 

after Yue and Wang (2004) detected significant trends in all time series except snow depth of 

Leiter. However, it should be noted that the discharge at stream gauge Niederthai is 

additionally affected by an artificial upstream water diversion at Horlach Fassung, which means 

that the trend is more likely due to an anthropogenic influence.  

Table 2-7: Significant trends detected by standard Mann-Kendall (MK) test without considering 
autocorrelation and with compensation for autocorrelation after different approaches are 
applied to monthly time series. 

Time series Significant 

trend after MK 

Significant trend 

after Hamed (2008) 

Significant trend 

after Hamed and 

Rao (1998) 

Significant trend 

after Yue and Wang 

(2004)  

Q Niederthai Yes No Yes Yes 

HS Leiter No No No No 

Q Horlach 

Fassung 
Yes No No Yes 

T Zufritt Yes Yes Yes Yes 

P Horlachalm Yes No Yes Yes 

2.3.2. Statistical results – Horlachalm precipitation and Zufritt 

temperature time series 

In the following section, we focus on two specific time series of the database: the Horlachalm 

precipitation (Figure 2-4a) and the Zufritt temperature time series (Figure 2-4c). In the first 

case, the precipitation time series of Horlachalm station showed a significant change point in 

monthly precipitation in November 2000 detected by Bernier and Pettitt tests and a significant 

local jump in October 2007 (see Figure 2-4b). Moreover, half of the trend tests indicate a 

significant positive trend for the monthly precipitation sums. Four out of nine H0 of the 

homogeneity tests were rejected for daily precipitation and the time series was therefore not 

initially recognized as a suspicious case.  

In the second case, the daily temperature time series from the Stausee Zufritt station 

(Martelltal) had only two non-rejected H0 out of nine homogeneity tests and three with monthly 

frequency. Half of the trend tests indicate a significant positive trend in the mean monthly 

temperature as well. In addition, the mean monthly temperature time series has a significant 

change point in August 1987 detected by Bernier and Pettitt as well as a local jump in May 
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2006 (see Figure 2-4d). Comparing the mean monthly temperature before and after the change 

point detected in 1987, we observed a difference in the mean temperature of 1.67°C.  

 

Figure 2-4: (a) Daily and (b) monthly precipitation sum at Horlachalm station as well as (c) daily 
and (d) monthly mean temperature at Zufritt station. The vertical dashed line shows a 
significant change point detected by the Bernier and by Pettitt tests, while the solid line 
indicates a significant local jump. The horizontal line indicates a significant positive trend 
detected by standard Mann-Kendall and t-test estimated with FQS. In addition, estimated 
parameters of the trend equation are given in the respective sub-plot. 

2.3.3. Horlachtal case study 

To assess the impact of suspicions time series on the results of the WaSiM hydrological model, 

we forced the model with and without consideration of the Horlachalm precipitation time series. 

Figure A.1.2a shows the impact of including or excluding the time series for the interpolation 

and computation of the mean catchment precipitation. In contrast to the observed monthly 
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precipitation at the Horlachalm station, there is no significant trend or change point in the 

interpolated precipitation considering or excluding Horlachalm precipitation. The difference 

between the daily mean catchment precipitation computed including the Horlachalm station 

and excluding it ranges from +20 mm to almost -20 mm and the interpolated positive 

precipitation anomalies (green bars) are mostly stronger in the summer period. The impact of 

station selection on the snow water equivalent (SWE) is evident in Figure A.1.2b, where the 

mean catchment precipitation computed without considering the Horlachalm station leads to 

higher SWE peaks than in the case of its consideration. This is particularly relevant for the 

periods 1995-2003 and 2013-2015, where the exclusion of Horlachalm precipitation led to a 

larger snow accumulation and consequently to a longer snow cover duration. In both simulated 

SWE time series, one significant change point was detected by the Bernier and Pettitt tests in 

2004. The difference in mean SWE decreased slightly between the different precipitation 

forcings before (222 mm with Horlachalm and 245 mm without Horlachalm) and after the 

change point (157 mm with Horlachalm and 167 mm without Horlachalm). The t-test detected 

a significant negative trend in both simulated monthly SWE time series. The decrease in 

monthly SWE is larger in the case without Horlachalm (SWE=304-0.441*m, where m indicates 

the time in months) than with Horlachalm (SWE=262-0.338*m), which would correspond to a 

yearly SWE decrease of 5.3 mm without Horlachalm to 4.1 mm with Horlachalm over the period 

1993 to 2019. Moreover, we used the empirical approach of Jonas et al. (2009) to estimate the 

SWE from snow depth observations at Horlachalm station and compared the empirical 

cumulative distribution function (ECDF) with the daily simulated SWE of both model 

configurations (Figure 2-5a). This comparison is particularly valuable to evaluate the snow 

model performance of the configuration without Horlachalm precipitation. Without Horlachalm, 

the model accumulates too much snow and is therefore far from the distribution function of the 

estimated SWE. On the other hand, we can observe that the configuration with Horlachalm 

matches the estimated SWE better, but includes a systematic underestimation of peak SWE, 

although we considered a 20 % undercatch of solid precipitation in the snow model. 



49 
 

 

Figure 2-5: (a) Empirical cumulative distribution function (ECDF) of estimated SWE (dotted 
line) after Jonas et al. (2009) and simulated SWE with (thick solid line) and without Horlachalm 
(thin solid line) at Horlachalm station; and (b) ECDF of observed (dotted line) and simulated 
discharge with (thick solid line) and without Horlachalm (thin solid line) at Horlach Fassung. 

An additional two-sample Kolmogorov-Smirnov test indicated that the simulated discharges do 

have the same pdf (p value of 0.7951), which can explain the small difference in discharges 

(Figure A.1.3 and Figure 2-5b). However, the differences in simulated discharge are present 

in both the mean discharges (1.5 m³/s with Horlachalm and 1.6 m³/s without Horlachalm) and 

the peak flows (24.6 m³/s with Horlachalm and 26.8 m³/s without Horlachalm). The 0.99 

quantile of the discharge pdf, which corresponds to the 100-year return interval, is slightly 

higher for the case without Horlachalm (9.3 m³/s) than for the case with Horlachalm (8.9 m³/s). 

If we take a closer look at the discharge time series of the hydrological year 2002 (Figure 

A.1.3b), we can observe differences during the melting season (June to July) caused by the 

different amounts of SWE and differences in the flood event in August. Such differences also 

occur during other hydrological years. Both simulated discharges contain a significant change 

point (i.e., June 2003) and a slight negative trend. 

According to the cumulative fluxes of the water balance components of Figure 2-6a, there is a 

constant underestimation of total precipitation when the Horlachalm precipitation time series is 

considered in the model forcing, which directly affects the simulated runoff. The simulated 

evapotranspiration sums are only slightly affected by the lower precipitation amounts, 

indicating a system that is mainly energy-limited. The aforementioned underestimation of solid 

precipitation also visible in Figure 2-6b consequently propagates to the runoff generation in 

June and the following months (Figure 2-6c). The timing and magnitude of the snowmelt-

induced runoff are very similar for both configurations from April to June, suggesting a similar 
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temporal and spatial SWE distribution. However, the runoff lines diverge from the runoff peak 

in June onwards due to the lower snow accumulation of the model configuration with 

Horlachalm precipitation. The low flow period from November to April is not affected by the 

differences in snowfall amount or SWE. 

 

Figure 2-6: (a) simulated cumulative water balance components (Prec=precipitation (black), 
Q=runoff (red), Snow=snowfall (cyan), Rain=liquid precipitation (blue) and 
ET=evapotranspiration (green)) with (solid lines) and without (dashed lines) consideration of 
Horlachalm precipitation time series. (b) mean monthly simulated liquid and solid precipitation 
sum and (c) mean monthly SWE (grey) and runoff (red). 

2.3.4. Martelltal case study 

In the Martelltal case, we investigated the influence of a suspicious temperature time series on 

the simulated snow-hydrological response by WaSiM. The homogeneity tests had already 

detected a large inhomogeneity with seven rejected H0 in the daily Zufritt Stausee temperature 

time series; hence, including it in the model significantly affects its output. In fact, a change 
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point around the same year can be identified both in the interpolated catchment temperature 

(1987) and in the simulated SWE time series (1988). The sudden jump in temperature resulted 

in a comparable large difference in simulated mean SWE before (486 mm) and after (311 mm) 

the 1988 change point. In Figure 2-7a, we observe a sudden increase in the temperature in 

the catchment after 1987, which results in a decrease in the average SWE after the change 

point. Moreover, the standard Mann-Kendall and t-test detected a significant positive trend in 

interpolated monthly temperature (T=-3.17+ 0.00473*m), which propagated from the observed 

temperature time series of the Zufritt station. Particularly in the 1970s and the beginning of the 

1980s, snow accumulation exceeds snowmelt. Nevertheless, there is a significant negative 

trend in simulated monthly SWE (SWE=512-0.369*m) detected by standard Mann-Kendall and 

t-test over the period 1973-2020. Since snowmelt is simulated with the degree-day approach 

in this model configuration, the temperature is the critical factor for SWE. The simulated 

discharge shows a significant change point in July 1997, and the standard Mann-Kendall and 

t-test detected a significant positive trend (Q=2.01+1.44E-03*m) in monthly discharge. 
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Figure 2-7: (a) Daily station temperature, (b) interpolated catchment temperature, (c) simulated 
snow water equivalent and (d) discharge relative to the model created using the original 
temperature time series of the Zutritt station. The vertical lines show the change points 
detected by the Bernier and by the Pettitt tests. The horizontal lines show the average of the 
time series before and after the change points. 

We then created an adjusted temperature time series for the Zufritt station by adding 1.67°C, 

which corresponds to the change in the mean before and after the change point, to the daily 

temperature before the change point. We ran the model again with this adjusted time series 

and the obtained results are shown in Figure 2-8. We observe that, as expected, no change 

point was detected in the adjusted temperature time series and the interpolated catchment 

temperature. The correction of the inhomogeneity also shifted the SWE change point from 

1988 to 1994 and reduced the difference in the mean before (SWE 391 mm) and after (SWE 

352 mm) the change point. In contrast to the SWE simulated with the original temperature 

input, only a slight significant negative trend (SWE=391-0.02*m) was detected in modeled 

SWE. There is no trend or change point in monthly simulated discharge. The pdfs of maximum 
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yearly discharges have the same distribution (Kolmogorov-Smirnov test results p value = 

0.6669) and slightly differ in the highest flood events, e.g., HQ100 27.4 m³/s for the original 

case and 29.7 m³/s with adjusted temperature time series. The difference in the high flow 

events can be explained in the case of uncorrected temperature before the 1988 change point 

by a larger share of solid precipitation, which is particularly important for the August 1987 flood 

event. 

 

Figure 2-8: (a) Daily station temperature, (b) interpolated catchment temperature, (c) simulated 
snow water equivalent and (d) discharge relative to the model created using the adjusted 
temperature time series of the Zutritt station. The vertical lines show the change points 
detected by the Bernier and by Pettitt tests. The horizontal lines show the average of the time 
series before and after the change. 

The introduction of an inhomogeneity in the temperature time series can also significantly 

affect the glacier mass balance, as illustrated in Figure A.1.4. In the original case, the glacier 

mass balance shows an increasing trend up to the end of the 1980s, followed by a decreasing 

trend, which slightly stabilized between 2005 and 2015. The glacier mass balance of the 
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adjusted case is characterized by a decreasing trend for the studied period, with a stable period 

between 2003 and 2015. During the European heat wave in 2003, both glacier mass balances 

have the largest losses. The relatively rapid glacier mass balance losses of post-1990 for the 

uncorrected temperature setup are a direct response to the sudden increase in temperature. 

Although the two simulated glacier mass balances reached a maximum absolute difference of 

about 4000 mm in 1988, it was reduced to about 1000 mm at the end of the simulation period 

in 2020. 

The tendency to obtain higher simulated runoff in the original than in the adjusted model setup 

becomes clearer when comparing the seasonal runoff regimes before the 1988 change point 

(Figure A.1.5). The higher runoff is generated by both snowmelt and glacier melt. With a higher 

mean temperature, snowmelt starts earlier and is more intensive in spring. This results in larger 

snowmelt in June, which directly propagates to the runoff response. When the snowmelt rate 

drops in July and is exceeded by the original configuration, the larger glacier melt component 

provides more water for the runoff generation from August to October. The dominant runoff 

component before the 1988 change point is snowmelt for both cases with 932 mm for the 

original and 985 mm for the adjusted setup. The glacier component contributes 366 mm in the 

original and 505 mm in the adjusted configuration in the same period. After the 1988 change 

point, the snowmelt rates (Figure A.1.5b) are almost identical (original 931 mm, adjusted 911 

mm) and slight differences can still be observed in the runoff from July to October, which is a 

consequence of a larger glacier melt contribution with the original temperature time series.  

2.4. Discussion  

2.4.1. Time series analysis – entire dataset 

The analysis of the available time series for the two case studies in the Alps shows that the 

statistical tests considered in this work quite often lead to contrasting results. One reason for 

this is that different statistical tests often rely on different hypotheses and test different 

statistical properties of the time series. Statistical tests should be first chosen considering the 

properties of the time series and whether they satisfy the hypothesis of the test. In many cases, 

such hypotheses (e.g., absence of autocorrelation, normality) are often not satisfied by 

hydrological time series. In this case, a possible approach is to apply multiple tests on the time 

series, so that it can be made clearer whether some issues affect a time series even if we 

change the tested hypothesis.  

However, as a general conclusion, we note that the results of the tests are influenced by the 

temporal resolution of the time series, with monthly time series being less prone to 

inhomogeneity than daily time series. This may be due to several reasons, such as a reduction 

in the significant autocorrelation for monthly time series in comparison to daily time series, the 
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reduced sample size of monthly time series in comparison to daily time series and the error 

compensation effects when data are averaged for longer temporal periods. Particularly 

relevant in our view is the role of autocorrelation that may lead to a higher probability of 

detection of inhomogeneity. In this study, the mean H0 non-rejection rate of daily homogeneity 

tests was 32 % and 66 % for monthly homogeneity tests, respectively. 

Considering the results obtained for the different hydrometeorological variables, we observed 

that discharge and snow depth are the most subject to inhomogeneities, trend and change 

points. This is particularly relevant for hydrological modeling studies, since these two variables 

are commonly used for model calibration and validation. In contrast, precipitation 

measurements did not show particular statistical deficiencies although they are often 

associated with large uncertainties in Alpine areas (e.g., winter solid precipitation is 

systematically underestimated due to strong winds).  

2.4.2. Time series analysis – Horlachalm precipitation and Zufritt 

temperature time series 

For the Horlachalm precipitation, no inhomogeneity was detected in 66 % of the tests at a daily 

resolution, and only the trend and change point analysis highlighted possible problems for this 

station. The adjusted Mann-Kendall tests for short-term autocorrelation confirmed the 

presence of a significant trend in monthly precipitation sums. Only the Mann-Kendall test 

adjusted for long-term autocorrelations detected no significant trend (see Table 2-6). However, 

none of the nearby precipitation stations showed any trend in monthly precipitation sums. From 

this example we can draw two conclusions: (i) using multiple different tests is beneficial to 

evaluate the quality of a time series and (ii) the comparison with nearby stations allows the 

interpretation of detected anomalies. 

This second conclusion is also relevant for the analysis of the temperature time series of 

Stausee Zufritt where the interpretation of the homogeneity, trend and change point results is 

more difficult due to the lack of metadata and a physical explanation for the behavior of the 

time series. The sudden increase in mean temperature and the simultaneous decrease in snow 

depth in the Alpine region at the end of the 1980s has already been identified in previous 

studies (Marty, 2008; Gobiet et al., 2014; Beniston et al., 2018; Olefs et al., 2020; Michael 

Matiu et al., 2021; Pepin et al., 2022). Several studies have examined the reason for the 

elevation dependent warming in the Alpine region at the end of the 1980s (Manara et al., 2015; 

Philipona, 2013; Tudoroiu et al., 2016; Zeng et al., 2015). One explanation is the distinct 

decline of anthropogenic aerosols in Europe since the mid-1980s that lead to solar brightening 

at low elevations (500 m.a.s.l.) whereas the inherently low aerosol concentrations at high 

elevations (2200 m.a.s.l.) led to only minor changes in solar radiation in the Alps (Manara et 

al., 2015; Philipona, 2013; Zeng et al., 2015). Since most of the meteorological stations with 
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long observational records (> 30 years) are located in lower elevation areas, incorrect 

conclusions for the higher-altitude areas (above 2200 m.a.s.l.) may be drawn from observed 

trends in the valleys. This especially concerns the temperature extrapolation from lower 

stations via fixed lapse rates. 

2.4.3. Hydrological model results 

The consideration or exclusion of suspicious time series is a difficult step, since it can make 

the setting up of a hydrological model impossible or lead to the loss of important spatial and 

temporal information. In this work, we presented two practical examples focusing on two main 

hydrometeorological variables: precipitation and temperature. Starting with precipitation, we 

can observe the highly non-linear impact that the exclusion of a station has on the hydrological 

cycle modeled with WaSiM. Although the Horlachalm precipitation time series displays a 

significant positive trend in monthly precipitation sums, the computed monthly SWE time series 

displays a significant negative trend. This negative trend is consistent with the observed 

decreasing snow depth trend at Leiter station in Horlachtal and the results of Matiu et al. 

(2021). The comparison between model results and observations shows that considering the 

precipitation of Horlachalm station is particularly important to simulate the spatio-temporal 

snow accumulation in this area (see Figure 2-5) and to avoid overestimation of snow 

accumulation. Similar to the simulated SWE, the simulated discharge time series contain a 

slight negative trend and a change point. Since the differences in the discharge CDF (Figure 

2-5b) and peak flows are not particularly large, it can be assumed that the small-scale snow 

processes are more sensitive (Figure 2-5a) to changes in the precipitation input than 

discharge. We can explain this result by the fact that, although the glacier coverage is relatively 

low in Horlachtal, the glacier melt can partially compensate for the decrease in snowfall and 

snow melt in the south-oriented side valleys in August and September. This shows that due to 

the complexity of hydrological processes in high-elevation Alpine areas, discharge can only 

partially be used to validate a hydrological model and a multi-objective approach is more 

suitable to assess the correct representation of the complex interaction among the different 

hydrological compartments. 

A similar conclusion can be reached considering the Martelltal case study in which a jump in 

the temperature time series is present. Moreover, in the Martelltal case, we discuss whether 

and how we should correct change points and what the consequences of this choice are. As 

we consider the use of temperature-index models, as expected, we observe important 

differences in snow and glacier dynamics between the Martelltal models. The change point in 

temperature and consequently in SWE did propagate to the simulated discharge as well, 

however, the change point in the discharge occurred with a delay of nine years (i.e., 1997). 

For the case with the adjusted temperature input, the change point in discharge is no longer 
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present and the one in SWE was shifted from 1988 to 1994. Trend detection in the model 

results is also affected by the correction of the change point present in the temperature time 

series. While the original simulated SWE and discharge showed a significant negative and 

positive trend, respectively, only SWE still shows a significant negative trend, although with a 

much gentler slope. Through the adjusted increase in mean temperature before 1988, the 

snowfall lines were shifted to higher altitudes, which led to a higher share of liquid precipitation 

and consequently to a higher peak discharge. Moreover, we should also consider that the 

presence of change points and trends in the available time series affects the spatial 

extrapolation of meteorological input to higher altitudes for the hydrological model. This is 

particularly relevant for Alpine catchments and simulations lasting several decades, where 

observations from low elevations often have to be transferred to higher elevations, through 

fixed lapse rates, even though stations at different elevations may have different change points 

and trends (e.g., Carturan et al., 2019). Again, we suggest that model results should be 

critically examined with the inclusion of additional observational products such as glacier mass 

balances, snow depth and coverage beside river discharge. 

2.5. Conclusion 

Many statistical tests are available to test hydrometeorological time series. Their results are 

often complementary, provide a broader view of the statistical properties and reliability of a 

time series and support its proper use in hydrological analysis and models. Unfortunately, 

contrasting results may emerge when using different tests. This complicates the interpretation 

of the results. Therefore, inhomogeneities, trends and change points should be critically 

evaluated also considering their physical interpretation and comparing them with the behavior 

of nearby correlated stations (e.g., relative homogeneity tests if available for the variable of 

interest).  

We further observed the effect of autocorrelation on the results of many commonly used tests 

(e.g., Mann-Kendall). Although we removed the periodicity from each time series, 

autocorrelation is still pronounced at high temporal resolution (< month) and streamflow, 

temperature and snow depth tend to have higher autocorrelation than precipitation or wind 

speed in the two Alpine case studies. In general, the autocorrelation periodicity leads to a 

larger share of non-rejections of the homogeneity tests. Additionally, the standard Mann-

Kendall test detected more significant trends than the tests adjusted to consider short- and 

long-range autocorrelation. Thus, we recommend not only removing the deterministic periodic 

component from the time series, but also using tests that can account for stochastic 

autocorrelation.  
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The high non-linearity of hydrological processes greatly complicates the judgment about the 

consequences of including or excluding suspicious or even erroneous time series from the 

setup of hydrological models and the evaluation of their results. This problem is particularly 

relevant in data-scarce regions or regions with high spatial variability in hydrometeorological 

variables, such as Alpine catchments. Excluding a time series can lead to a loss of valuable 

spatio-temporal information, with consequences for the simulation results. Therefore, 

maintaining high-quality monitoring networks and testing the available time series before using 

them in hydrological models is necessary to increase the reliability of their results and of the 

outcomes of subsequent interdisciplinary analysis (e.g., vegetation studies, sediment 

transport).  

Finally, the analysis of hydrological model results based only on discharge time series does 

not lead to a broad understanding of the system dynamics since discharge integrates 

information on all hydrological processes. We recommend a multi-objective framework, in 

which at least snow and glacier dynamics are considered in modeling Alpine catchments, to 

better understand the response of the catchment towards changes in the climatic input time 

series. 
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3. Automated streamflow measurements in high-elevation Alpine 

catchments 

 

Hofmeister, Rubens Venegas, et al., 20232 

 

Abstract 

Salt dilution is a well-established streamflow measurement method in creeks, which works 

particularly well downstream of turbulent flow sections as the mixing of the salt tracer is 

enhanced. Usually, salt dilution measurements are performed manually, which considerably 

limits the observations of rare peak flow events. These events are particularly important for 

constructing robust rating curves and avoiding large uncertainties in the extrapolation of 

streamflow values. An additional challenge is the variability of the river cross-section, 

especially after larger discharge events, leading to non-stationary rating curves. Therefore, 

discharge measurements well distributed over time are needed to construct a reliable 

streamflow-water level relationship and to detect changes caused by erosion and deposition 

processes. To overcome these two issues, we used an automated streamflow measuring 

systems at three different sites with contrasting hydrological and hydraulic characteristics in 

the Alps. This system allowed us to measure discharge at nearly maximum flow of the 

observation period (2020-2021) at all three sites and to detect abrupt changes in the rating 

curve by performing event-based salt injections. The uncertainty in the measurements was 

quantified and the streamflow was compared with official gauging stations in the same 

catchment. Based on a very large data set of almost 300 measurements, we were able to 

evaluate the reliability of the system and identify the primary sources of uncertainty in the 

experimental setup. One key aspect was the site selection for the downstream electrical 

conductivity sensors, as measurement location strongly controls the signal-to-noise ratio 

(SNR) in the recorded breakthrough curves. 

  

                                                
2Material from: 
Hofmeister, F., Rubens Venegas, B., Sentlinger, G., Tarantik, M., Blume, T., Disse, M., & Chiogna, G. 

(2023). Automated streamflow measurements in high‐elevation Alpine catchments. River Research and 
Applications, rra.4203. doi: 10.1002/rra.4203. 



60 
 

3.1. Introduction 

Measuring and recording water level and streamflow of rivers is essential for the dimensioning 

of water management facilities and for the rational management of water supply as well as for 

the simulation of hydrological processes with the help of models. While these are basic 

hydrological measurements, they come with additional challenges in Alpine settings: extremely 

dynamic fluctuations in streamflow combined with often unstable stream cross-sections. 

Manual streamflow measurements are generally very limited in these catchments because 

they depend on the frequency of site visits, which are often sparse due to unfavourable weather 

and snow conditions. This is in direct conflict with the here especially pronounced need for 

high-resolution data resulting from the high variability of streamflow in space and time 

(Morgenschweis, 2018), the often short runoff concentration time (Mutzner, Tarolli, Sofia, 

Parlange, & Rinaldo, 2016; Simoni et al., 2011), and distinct seasonal characteristics (i.e., low 

flows in winter and high flows in summer) (Mutzner et al., 2015). Moreover, sub-daily discharge 

variations are typically caused by snow and glacier melt cycles in spring and summer (Mutzner 

et al., 2015; Weijs, Mutzner, & Parlange, 2013). Regular discharge measurements are 

furthermore needed to frequently validate the correctness of the rating curve (i.e., the relation 

between river stage and streamflow) since rating curves are affected by changes in the river 

cross-section caused by high sediment and coarse bedload transport of glacio-nival rivers 

(Comiti et al., 2019; Weijs et al., 2013). Morgenschweis (2018) recommends 10 to 12 discharge 

measurements per year for natural cross-sections with loose sediments. Additionally, regular 

and high-quality streamflow measurements are particularly important to quantify the 

uncertainty in rating curves and to understand better how the uncertainty propagates from the 

measurement to the rating curve (Kiang et al., 2018).   

Tracer-based methods (e.g., salt) have been used for the derivation of rating curves in Alpine 

rivers for many decades (C. M. Allen & Taylor, 1923; Moore, 2005; Østrem, 1964). Although a 

range of water-soluble hydrological tracers can be used (Leibundgut et al., 2011; 

Morgenschweis, 2018), food-grade table salt (NaCl) is preferred as it is generally non-toxic at 

the concentrations typically involved in stream gauging (Morgenschweis, 2018; Resources 

Information Standards Committee (RISC), 2018; Sentlinger et al., 2019). Moreover, the salt 

injection method is a reliable and relatively cheap technique for measuring discharge in small 

streams (Gottardi, Maglionico, & Bolognesi, 2006). Although tracer-based methods are simple 

and relatively easy to use, two main requirements have to be met (i.e., complete mixing of the 

tracer and mass conservation). Limitations can occur in the application for example due to 

absorption of salt tracer in river sections with a lot of aquatic vegetation, stream water 

exfiltration to the groundwater and riparian zone, or delay of the breakthrough curve due to 

pools in the river section (Clow & Fleming, 2008; Moore, 2005). A detailed summary of the 

method and the individual sources of uncertainty can be found in Resources Information 
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Standards Committee (RISC) (2018). If the main requirements are fulfilled, the salt dilution is 

very accurate with a measurement uncertainty about five % (Richardson, Moore, et al., 2017; 

Richardson, Sentlinger, et al., 2017). Hauet (2020) developed a first complete framework for 

uncertainty quantification of salt dilution discharge measurements following the GUM (Guide 

to the expression of uncertainty in measurement) method that takes into account all uncertainty 

sources. Another limitation of the salt dilution method is the measurement of discharges larger 

than 10 m³/s, since the required amount of salt (i.e., between five to 10 kg) can be difficult to 

be diluted and injected within the time of the event (Richardson, Sentlinger, et al., 2017).  

While salt dilution is the discharge measurement method of choice for Alpine systems, we are 

still left with the challenge of monitoring a system with pronounced dynamics and fast 

responses under conditions of limited or difficult accessibility. Our proposed solution for this 

dilemma is the automatization of the salt dilution method. This would remove the need for 

continuous access to the field sites and would provide a much higher data density and thus, 

lower uncertainty of the stage-discharge curve than would be possible with manual 

measurements. 

In this work, we test an automatic salt dilution system for the derivation of robust rating curves 

in three Alpine catchments characterized by different background electrical conductivities, 

glaciated areas, streambed gradients, and ranges of discharge. This innovative measurement 

device allowed us to perform event-based salt injections to capture rare events and to detect 

abrupt changes in the rating curve. To the best of our knowledge, this is the only commercial 

automatic salt injection system available. Moreover, we discuss how uncertainties in the 

measurements can be quantified and reduced.  
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3.2. Material and methods 

3.2.1. Research areas and site descriptions 

The research sites are located in three high-elevation Alpine catchments in Tyrol/Austria 

(Horlachtal and Kaunertal) and South Tyrol/Italy (Martelltal). In addition to the already existing 

stream gauges (triangles in Figure 3-1) operated by the Tiroler Wasserkraft AG (Kaunertal and 

Horlachtal) and the Hydrological Office of South Tyrol (Martelltal), we installed new gauges for 

estimating runoff contribution from side valleys (in the case of Kaunertal and Horlachtal) or at 

the outlet of the upper Martelltal (see Figure 3-1 for locations and setup). Each gauge consists 

of an OTT CTD probe inserted in a two-inch aluminium pipe attached to larger boulders in the 

creek. The measurement sites were selected at river sections with cross-sections that were 

assumed to be stable and not too turbulent flows to increase accuracy of transducer readings. 

Pool location behind larger rock is ideal to protect the probe from turbulences and debris (U.S. 

Environmental Protection Agency (EPA), 2014). The sensors log mean values of water level 

[m], water temperature T [°C] and temperature compensated electrical conductivity ECT 

[µS/cm] to 25 °C at 15-minute resolution. The OTT CTD sensor accuracy of the actual electrical 

conductivity EC [µS/cm] is ±0.5 %, ±0.1°C for temperature and ±0.05 % full scale (FS) for water 

level (OTT, 2023). We installed an automated salt injection system (AutoSalt, Fathom Scientific 

Ltd.) at the same location as the OTT CTDs in order to collect streamflow measurements at 

different water levels by an automatic event-based configuration of the device. The AutoSalt 

in Kaunertal was in operation for one year, while the other sites collected data for two years 

(Table 3-1). The AutoSalt in Horlachtal was moved to another sub-catchment (Grastal) in 2022 

(Figure 3-1c), where it was partly destroyed by an extreme event. 
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Figure 3-1: Overview maps of the three research areas, i.e., (a) Martelltal, (b) Kaunertal and 
(c) Horlachtal, with outer borders and delineation of the sub-catchments (red), as well as the 
drained area of the AutoSalt sites (blue). Green circles indicate locations of the Ott CTD probes 
and the green triangles already existing stream gauges. Lower panel contains corresponding 
pictures of the AutoSalt system. The orange area in (c) Horlachtal delineates the Grastal 
catchment where the AutoSalt was moved to from Finstertal (blue area) in 2022.   

The main differences between the three monitored catchments are the size of the drained 

area, the extent of the glaciated area (Buckel & Otto, 2018; Knoflach et al., 2021), the 

streambed slope and the background ECT (Table 3-1). While the drained area in Martelltal just 

before the inflow of the Plima into the Zufritt/Gioveretto reservoir is about 50 km², the site in 

Kaunertal at the Rifflerbach drains 20 km² and in Horlachtal it is a very small side valley 

(Finstertal) that drains about six km². Since the mean discharge depends directly on the 

drained area, higher amounts of salt are needed for one discharge measurement at Rifflerbach 

and Plima than at Finstertalbach to achieve a noticeable increase in stream ECT. The 

streambed gradient of the streambed along the mixing length ranges from 3.9 % (Plima) to 4.5 
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% (Rifflerbach) and finally to 18 % (Finstertalbach). Further information about the site 

characteristics is listed in Table 3-1. The grading of streamflow measurements, as listed in 

Table 3-1, follows the Resources Information Standards Committee (RISC) (2018) hydrometric 

standards for streamflow measurements. Grade A is for measurements with an uncertainty of 

smaller 7 %, B for the range 7 % to 15 % and C for uncertainty larger than 15 %. 

Table 3-1: Key features of the AutoSalt sites such as drained area [km²], glaciated area [km²], 
elevation of AutoSalt and mean elevation of basin [m a.s.l.], tank volume, distance between 
AutoSalt, ECT and OTT CTD probes, mean slope of the mixing reach, mean background ECT. 
Also included are metadata of the measurements such as total number of measurements, 
highest peak event, proportion of grades (A, B, C) according to Resources Information 
Standards Committee (RISC) (2018) and dose of the salt tracer [g NaCl per m³/s]. 

Valley 

Stream 

Martelltal  

Plima 

Kaunertal 

Rifflerbach 

Horlachtal 

Finstertalbach 

Drained area [km²] 50.4 19.9 6.2 

Glaciated area [km²] 8.15 (2019) 2.45 (2017) 0.0 (2015) 

Elevation of AutoSalt [m a.s.l.] 1917  2192  1982 

Mean elevation of basin [m a.s.l.] 2837 2817 2512 

Tank volume [l] 600 300 300 

Distance between AutoSalt injection 

and ECT sensors [m] 

200 (right); 

210 (left) 

79 (right); 82 

(left) 

57 (right); 67 

(left) 

Distance between AutoSalt injection 

and OTT CTD probes [m] 
181 51 41 

Mean slope of the mixing reach [%] 3.9 4.5 18 

Observation period AutoSalt 
07.2020-

10.2021 

07.2021-

10.2021 

08.2020-

10.2021 

Mean background ECT [µS/cm] 205 174 31 

# of Q measurements 78 40 180 

Highest measured Q [m³/s] 17.1 5.9 2 

Lowest measured Q [m³/s] 1.1 0.5 0.1 

Share grade A [δQ <7 %] 74.4 %  95 %  73.3 %  

Share grade B [>7 % δQ <15 %] 25.6 % 5 % 26.6 % 

Share grade C [δQ >15 %] 0 % 0 % 0 % 

Dose [g NaCl per m³/s] 400 200 400 

3.2.2. Salt dilution method 

The salt dilution method is based on the point injection of a solution of NaCl and the 

measurement of the breakthrough curve of the electrical conductivity downstream (Moore, 
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2005). The method relies on two key assumptions: i) mass conservation of the salt tracer and 

ii) complete mixing of the salt tracer across the stream width at the location of the EC sensors. 

The stream discharge Q (m³/s) can be computed with the following equation: 

𝑄 =
𝑀

𝐶𝐹𝑇∗𝐴𝐵𝐶
        

3-1 

where M is the mass of salt injected (kg), CFT [kg cm m-³*µS-1] is a conversion factor, which is 

the slope of the relation between salt mass concentration in the calibration solution and ECT 

(Richardson, Sentlinger, et al., 2017), used for calculating the Q from the ECT, and ABC 

[s.µS/cm] is the area under the breakthrough curve commonly calculated as: 

𝐴𝐵𝐶 = ∆𝑡 ∑ [𝐸𝐶(𝑡) − 𝐸𝐶𝐵𝐺]𝑛
𝑖=1     

3-2 

where Δt is the recording interval (s), EC(t) is ECT as a function of time recorded downstream 

of the point of salt injection (µS/cm), ECBG is the background ECT of the stream water, and the 

summation is carried out over the duration of salt breakthrough curve. Additional information 

about the salt dilution method are available in many references such as Leibundgut, 

Maloszewski, & Külls (2011) or Moore (2004). 

3.2.3. AutoSalt system 

The automated salt injection system (AutoSalt) is an autonomous flow measurement system 

providing discharge data in turbulent watercourses with high temporal resolution. The system 

usually consists of a control module, a brine tank and stand, a creek pressure transducer 

(sensor accuracy ±0.1 % FS), two high-resolution electrical conductivity sensors (T-HRECS) 

one for each riverbank, and a salt injection system. EC and temperature (T) sensors 

downstream of the injection location log the EC, T, and the temperature compensated ECT to 

25°C. The ECT records of the T-HRECS sensors are stored on individual SD cards. The 

measurements are also transmitted wirelessly using LoRa radios to the AutoSalt control 

module and processed to calculate the streamflow Q and its uncertainty. The uncertainty 

analysis is based on the general framework of the Guide to the expression of Uncertainty in 

Measurement (GUM) (JCGM, 2008) and is described in the supporting information. The 

detailed ECT records (set to five second interval) is also stored in the SD Card on the AutoSalt 

control module for more detailed quality assurance and quality control (QA/QC) analysis. The 

brine is delivered from the tank to the creek by a pump through rigid piping with a mechanical 

flow meter providing feedback on the rate and total amount of brine delivered. The AutoSalt is 

programmed to trigger salt injections on the falling limb of the hydrograph, as the stage is 

generally more stable on the falling limb than on the rising limb. The AutoSalt internally 

calculates Q in real-time on the AutoSalt controller. This automated Q value is a good estimate 

of the measured discharge even though it does not have any QA/QC correcting, for example, 
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for changing background ECT or missing data. Therefore, external post-processing of the 

discharge data and its uncertainty quantification is required (Sentlinger et al., 2019). Further 

information about the AutoSalt system can be found in the latest user manual (Fathom 

Scientific Ltd., 2020a). 

The high sensitivity of the T-HRECS sensors (i.e., EC in 0.001 μS/cm and temperature in 

0.001°C), the high temporal resolution (5 sec), and accuracy (i.e., 0.01 % of reading for both 

EC and temperature) allow to achieve a high signal-to-noise ratio (SNR), thereby requiring less 

salt solution than conventional sensors (Sentlinger et al., 2019). The uncertainty analysis of 

the AutoSalt system is based on standard equations for error propagation (Sentlinger et al., 

2019). The internal grading system of the AutoSalt follows the Resources Information 

Standards Committee (RISC) (2018) hydrometric standards for discharge measurements, 

which was already introduced. The computed uncertainty corresponds to the 95 % confidence 

interval. Additionally, basic information about the uncertainty quantification of the AutoSalt and 

equations is provided in the supporting information. 

Since we collected various observational data with different sensors at different temporal 

resolutions and experimental sites, it is beneficial to give an overview of the collected data 

before presenting the results (Figure 3-2). Moreover, the observation period of the various 

sensors differs. The AutoSalt was only in operation over the summer, whereas the Ott CTD 

recorded throughout the year. We set up a stage-discharge relationship with stage data from 

the AutoSalt and Ott CTD. Thus, there are two stage-discharge relationships per experimental 

site. We estimated the uncertainty in the Ott and AutoSalt water level measurements by 

considering the sensor accuracy and the mean hourly standard deviation of the water level 

measurement during steady flow periods. The equation for calculating the relative accuracy of 

the stage measurements is in the supporting information. 
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Figure 3-2: Overview of collected observational data, its post-processing, and analysis for each 
experimental site. The blue box represents the measurements collected with the AutoSalt, and 
the green box with the Ott CTD gauge.  

Table 3-2 lists the quality check measures we used to evaluate the reliability and quality of the 

AutoSalt’s measurements. With the ECT measurements from left and right riverbank, we 

checked whether the salt tracer is completely mixed, which is one main prerequisite for a 

reliable salt tracer measurement. The equation to calculate the uncertainty due to incomplete 

mixing is given in the supporting information. Additionally, the comparison also allows for 

checking the influence of air bubbles (i.e., aeration) at the ECT measurement sites. With an 

additional high-pass filter, it is possible to increase the SNR of the ECT breakthrough curves. 

The redundant stage measurements allow us to quality check the water level measurements 

and to verify the stage-discharge relationships of each experimental site for possible 

inconsistencies, such as a change in the cross-section. In addition, we performed a plausibility 

check with the measurements from the AutoSalt by comparing the discharge measurements 

with data from official gauging stations and performing manual measurements during each site 

visit. Based on the continuous Ott CTD stage measurements, we assess the recorded peak 

events with respect to their probability of occurrence. 
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Table 3-2: Performed quality checks to test the reliability of the AutoSalt and quality of the 
collected automatic discharge measurement. 

Quality checks Implemented quality check measure 

Test for incomplete mixing of salt 

tracer 

Comparison of the measured values by two EC 

sensors on the left and right river bank  

Test for change in the cross-section Rank correlation of the measured river stage values 

at two different cross-sections within the mixing length 

Test for noise in stage data caused 

by wave action 

Rank correlation of the measured river stage values 

at two different cross-sections within the mixing length 

Test for noise in EC data caused by 

aeration 

Comparison of the measured values by two EC 

sensors on the left and right river bank 

Use of a high-pass filter on the breakthrough curve  

Plausibility check of discharge 

values 

Rank correlation with official gauging stations 

Comparison with manual measurements  

Assessment of peak events Comparison between continuous Ott CTD river stage 

measurements and event-based AutoSalt recordings 

3.3. Results 

3.3.1. Recorded events by the AutoSalt 

The system performed 298 measurements in total, with discharges ranging from 0.1 m3/s to 

17.1 m3/s (see also Table 3-1 for more details). The largest amount of discharge 

measurements (180) were generated at Finstertalbach since it has the smallest drainage area 

with a mean discharge of 0.7 m³/s and hence requires the smallest volume of brine injection. 

The AutoSalt system at Rifflerbach was only in operation in 2021 and collected 40 discharge 

measurements with a mean discharge of 2.6 m³/s. The Martelltal AutoSalt collected 78 

discharge measurements with a mean discharge of 4.8 m³/s. The average relative uncertainty 

of Q, estimated by the aforementioned uncertainty quantification framework, is 6.2 % at Plima, 

4.1 % at Rifflerbach, and 5.4 % at Finstertalbach.  

The default dose of the AutoSalt is 200 g per m³/s. However, for a higher background ECT or 

longer transient times, larger doses are recommended. For short transient times and lower 

background ECT, the dose can be reduced. At Rifflerbach, we used the default dose of 200 g 

per m³/s and increased the dose to 400 g per m³/s at Finstertal and Plima. The increase of the 

dose at Plima was necessary due to the relatively long distance between injection and ECT 

recording of about 200 m and the high mean background ECT (205 μS/cm).  

Despite the higher dose at Plima, the ECT peaks were only about 10 μS/cm above the 

background ECT as can be seen in Figure 3-3a. It was possible to derive discharge 
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measurements with lower uncertainty during the peak flow event that occurred end of August 

2020 due to the clear ECT signal (i.e., high SNR). However, the ECT signal shows several small 

spikes during the rising limb of the breakthrough curve and a slight increase in the background 

ECT (Figure 3-3b). The AutoSalt system performed six discharge measurements during this 

particular peak event (Figure 3-3a). 

At Rifflerbach, we were able to collect 11 measurements during a peak event, which occurred 

at the end of July 2021 (Figure 3-3c). Despite the lower dose of 200 g per m³/s and a partly 

noisy background ECT, the ECT peaks are well recognizable. The mean ECT at Rifflerbach was 

174 μS/cm during the measurement period 2021. The snapshot shows a clear peak of about 

30 µS/cm above the background ECT with hardly any spikes in the signal (Figure 3-3d).  

We can observe the highest relative change in ECT (> 70 %) for injections at the Finstertal 

(Figure 3-3e) since the background ECT is relatively low with 31 µS/cm (Figure 3-3f). Therefore, 

the ECT peaks of the injections are clearly visible. However, the background ECT signal starts 

to oscillate when the water level and discharge increase (Figure 3-3e). The ECT peaks are still 

clearly visible, but the stronger oscillations make the processing of the measurements more 

difficult and lead to higher uncertainty. Therefore, we have decided to set the dose to 400 g 

per m³/s at Finstertal.  
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Figure 3-3: Snapshot of measured discharge (blue dots) and ECT (orange line) at each site (a) 
Plima, (c) Rifflerbach, and (e) Finstertalbach, as well as a detailed snapshot of an exemplary 
ECT breakthrough curve (green dots) of the corresponding sites. 

At each experimental site, the AutoSalt pressure sensor at the site of the injection and the 

downstream Ott CTD sensor both record the water level at the same 15-minute time interval. 

Depending on the length of the mixing section and flow velocity, there may be a deviation 

between injection and recording at the downstream sensors of up to five minutes, as in the 

example of the Plima. Each streamflow measurement of the AutoSalt can be linked with two 

stage observations, one performed with the Ott CTD sensor, and the other with the AutoSalt 

sensor. We compared the relationship between the two stage measurements in the supporting 

information (Figure A.2.6), and we can observe that they are highly correlated (Kendall tau of 

0.72 at Plima, 0.74 at Rifflerbach, and 0.81 at Finstertalbach). The Kendall rank coefficient is 
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a non-parametric test and, hence, does not rely on any assumptions concerning the 

distributions (Kendall, 1938).  

The left panel of Figure 3-4 shows the stage-discharge relationship at all three sites, including 

the measurement uncertainties of discharge and water level at the downstream Ott CTD river 

section and the right panel at the AutoSalt section. In addition to the different channel 

geometry, the stage-discharge relationship also differs because of the aforementioned timing 

of the measurements and the prevalence of turbulence or wave action at the measurement 

site, which can lead to noise in the stage signal. The Ott CTD pressure transducer is only 

located at the deepest point of the cross-section at Finstertal. At the other sites, the sensor is 

not recording the lowest stages in winter. The AutoSalts were not in operation when performing 

some manual streamflow measurements. This is why a few manual streamflow measurements 

are only linked with the Ott CTD stage (left panel of Figure 3-4). Manual and automated 

measurements do not display particular anomalies and agree with each other. The uncertainty 

of water level and discharge increases during larger discharge events, especially at the 

Rifflerbach (Figure 3-4c). In addition, a jump in the stage-discharge relationship at 0.3 m water 

level can be seen in the case of Rifflerbach due to cross-section widening where the Ott CTD 

probe is located (Figure 3-4c). A change in the geometry of the control-section where the Ott 

CTD probe is located between 2020 and 2021 is already visible at mean discharges at Plima 

(Figure 3-4a). The cross-section at the AutoSalt is more stable and does not show a change 

(Figure 3-4b). 
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Figure 3-4: The left (right) panels show the stage-discharge relationship of the salt dilution 
measurements with stage recorded by Ott CTD (AutoSalt stage), including the measurement 
uncertainties at the three sites (a-b) Plima, (c-d) Rifflerbach and (e-f) Finstertalbach. AS - 
AutoSalt measurements. 

In order to assess at which discharge condition the AutoSalt recorded the most streamflow 

measurements we analysed the percentage of measurements during frequent water levels and 

discharges, which corresponds to the 25 to 75 percentile of the continuous stage observation 

recorded by Ott CTDs (Figure 3-5). At Plima, most measurements (55 %) were collected during 

frequent water levels and discharges. Most measurements were collected during higher water 

levels at Rifflerbach (43 %) and Finstertalbach (28 %). Consequently, lower stages (<0.25 m) 

are underrepresented at Rifflerbach and Finstertalbach. The pronounced seasonality of runoff 

in high-elevation catchments is the reason for the underrepresentation of low flows, as the 

AutoSalt is not in operation during the winter period. The percentile of the recorded peak event 

is 0.99 at Plima, 0.98 at Rifflerbach, and 0.99 at Finstertalbach. Accordingly, the recorded 

streamflow peaks are slightly lower than the recorded maximum stage peaks in the respective 

observation period. 
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Figure 3-5: The Boxplot shows the Ott CTD stage during the observation period and the stages 
at which AutoSalt measurements (red dots) were taken at each site (a) Plima, (b) Rifflerbach 
and (c) Finstertalbach.   

3.3.2. Quality of the AutoSalt measurements 

Since the measurement uncertainty is available for each riverbank in addition to streamflow, 

we examined whether there is a systematic correlation between streamflow magnitude and 

uncertainty or a difference between the left and right bank. The left panels of Figure 3-6 

illustrate the dependence of discharge uncertainty on discharge magnitude for both stream 

banks separately (i.e., the right or left bank from orographic view). Generally, the uncertainty 

is mostly below five %. Larger measurement uncertainty (> 10 %) occur sporadically at certain 

discharges and not always on both river banks. There is no systematic correlation between 

discharge magnitude and uncertainty (i.e., Kendall tau of 0.36 at Plima, 0.24 at Riffler, and 

0.07 at Finstertal). Rather, the SNR at different water levels and the presence of turbulences 

is decisive for a low measurement uncertainty. The right panels of Figure 3-6 show the 

observed discharge by the already existing stream gauges and the discharge recorded by the 

AutoSalt. The discharges of the already existing gauges are not based on simultaneous 

measurements but are extracted from the discharge time series available at 15-minute 

resolution or 10-minute resolution in the case of Plima. Since we do not have the rating curves 

of the existing gauges, we cannot make any statement about the uncertainty regarding the 

discharge time series. The highest agreement (Kendall tau of 0.86) was found for the official 
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discharge observations at Horlach Fassung and AutoSalt at the Finstertal site (Figure 3-6f), 

which is located only about 65 meters upstream of the Horlach Fassung gauge. For the Plima, 

the official stream gauge is about 3.8 km upstream of the AutoSalt injection site. There is 

predominantly only good agreement at lower and medium discharges (< 7 m³/s) (Figure 3-6b). 

At higher discharges, the scatter increases. Nevertheless, a Kendall tau correlation coefficient 

of 0.8 is achieved. At the Riffler stream, the distance between the two discharge observation 

sites is smaller (about 1.3 km) than at the Plima. However, the discharge magnitudes recorded 

at the Gepatschalm gauge and the AutoSalt injection site differ significantly (Figure 3-6d), 

which results in a Kendall tau of 0.76. The reason for the discrepancy is the larger share of the 

glaciated area at the Gepatschalm gauge compared to the AutoSalt site. 

 
Figure 3-6: The left panels show the uncertainty of the discharge measurements of the 
AutoSalt observed at the right (blue dots) or left (red dots) bank at the respective experimental 
sites (a) Plima, (c) Rifflerbach, and (e) Finstertalbach. The right panels show the observed 
discharge by the already existing stream gauges vs. the discharge recorded by the AutoSalt 
at the respective sites and when the AutoSalt performed a measurement (b) Plima, (d) 
Rifflerbach, and (f) Finstertalbach. 
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We moved the Finstertal AutoSalt to another sub-catchment (Grastal) of Horlachtal in order to 

collect discharge measurements to efficiently set up a stage-discharge relationship at 

Grastalbach in 2022. The Grastal is characterized by steep topography and a high activity of 

debris flows (Rom, Haas, Heckmann, et al., 2023). The AutoSalt started to perform discharge 

measurements in mid of July 2022 (Figure 3-7). About one week after installation, the system 

was partly destroyed by an extreme event. A storm event has triggered not only a fast flood 

wave but also activated debris flow, which transported debris into the creek (Rom, Haas, 

Hofmeister, et al., 2023). The highest observed peak in the stage of the downstream Ott CTD 

probe was reached in less than two hours (i.e., time to peak). The AutoSalt made an injection 

at the highest peak, but at this point, the injection hose and the pressure transducer of the 

AutoSalt were torn away by the debris flow. Therefore, we cannot compute the discharge of 

the peak flow. Nonetheless, thanks to the continuous monitoring of the device, we can estimate 

the time of the change in the cross-section and assume that the change occurred during the 

peak flow of the first event of July 19. 

 
Figure 3-7: AutoSalt monitoring of a combined extreme event of flood and debris flow in a high-
elevation catchment (Grastal) in July 2022. The graph shows the recorded downstream stage 
and ECT of an Ott CTD probe as well as the salt injections performed by the AutoSalt. The 
change in the river channel as a result of this event can be seen by comparing the two photos. 

3.4. Discussion 

3.4.1. Recording of peak flow  

The AutoSalt system recorded close to the peak discharges at all experimental sites in the 

observational period. However, it is unclear how reliably the AutoSalt works at discharges > 

20 m³/s. The extreme case at the Grastalbach demonstrates the risk associated with these 

events, which would make the manual acquisition of any data impossible, while the AutoSalt 

system was able to retrieve some important information, like the rate of increase in the water 

the level. The collected high discharge events are especially important for the construction of 

robust rating curves. The highest discharge measurements were made slightly below peak 

water levels since the AutoSalt performs the measurements on the falling limb of the 
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hydrograph. We observed some variability in the highest recorded discharge values at similar 

water levels, as seen, for example, at Rifflerbach (Figure 3-4c and d. In addition, the 

pronounced noise in the stage measurements at Finstertalbach (Figure A.2.7) also leads to 

scatter in the stage-discharge relationship (Figure 3-4e and f). The reason for the noisy stage 

signal at Finstertalbach is the relatively high streambed gradient (i.e., 18 %) that results in a 

highly turbulent flow with pronounced wave action at the measurement sites. The two other 

experimental sites have distinctive lower streambed gradients (i.e., 3.9 % at Plima and 4.5 % 

at Rifflerbach) that result in less turbulent flow (Figure A.2.7). 

Another important aspect of measuring peak flow events with the AutoSalt is the time interval 

between two injections. The default interval between two consecutive injections is 1.5 h, which 

ensures that the tracer measurements do not interfere with each other. Under good mixing 

conditions (e.g., high flow velocity and turbulence), the time interval can be reduced to allow a 

higher number of measurements during a peak flow event. At Rifflerbach, for instance, the 

breakthrough time was about three minutes, as shown in Figure 3-3d. Therefore, we reduced 

the interval to 0.5 h. Although the system is autonomous and can be operated remotely, site 

visits should be at least monthly to ensure reliable operation of the system by checking the 

system’s functionality and calibrate the system (e.g., brine concentration, flow meter, ECT 

sensors) if necessary. 

3.4.2. Changes in cross-section 

The large number of discharge measurements recorded by the AutoSalt allows us to identify 

changes in the cross-section from one year to another, as is the case at Plima (Figure 3-4a). 

This will enable us to quality-check the rating curve and have a valid rating curve for each 

observational year or before and after each relevant hydrological event that can modify the 

river cross-section. We could only observe the change in the cross-section at the downstream 

river section, where the Ott CTD is located, and not at the injection site (Figure 3-4b), showing 

the possibility of very local effects that can lead to uncertain streamflow observations. Even 

after the complete change of a cross-section, as was the case at Grastalbach, the AutoSalt 

systems enable a quick and efficient collection of discharge measurements for setting up a 

new stage-discharge relationship. 

Moreover, we can detect segments within the stage-discharge relationship between mean and 

high flow conditions, specifically for the Rifflerbach at about 0.3 m stage (Figure 3-4c). The 

segments can be considered in the construction of a three-segment rating curve with an 

optimal rating curve fit for low, mean, and high flow conditions (Horner, Le Coz, Renard, 

Branger, & Lagouy, 2022).  
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3.4.3. Contrasting experimental sites 

We obtained good results with the AutoSalt at all three experimental sites, which differ strongly 

concerning discharge and stage range, glaciated area, channel geometry, and background 

ECT. As mentioned, the injection quantity depends directly on the expected streamflow 

quantity, which in turn depends on the catchment size. Thus, the AutoSalt is well suited for 

smaller catchments (<10 km2) since a larger number of measurements are possible with one 

reservoir filling (i.e., 300 L). However, it is also possible to upgrade the system (e.g., 600 L), 

as we did at the Plima in 2021. Accordingly, it is possible to perform about 60 injections with a 

dose of 400 g per m³/s for a high-elevation catchment with 50 km² and a mean discharge of 

about five m³/s. The range of collected discharge measurements was largest at Plima (from 

1.1 to 17.1 m³/s), followed by Riffler (from 0.5 to 5.9 m³/s) and Finstertal (from 0.1 to two m³/s).  

It turned out that the selection of the sites for the ECT sensors is essential for controlling the 

SNR and hence the measurement uncertainty, as shown in the left panels of Figure 3-3. We 

installed the sensors as close as possible to the riverbed (but ensured that there was no 

sediment accumulation inside the sensor casing) to reduce the influence of aeration and 

prevent the sensors from falling dry at low flows. Nevertheless, it cannot be ruled out that the 

flow behavior changes depending on the water level, resulting in increased turbulence and 

consequently introducing noise in the data due to waves and aeration, as was the case at the 

Finstertal site with the steepest streambed gradient (i.e., 18 %). Depending on the background 

ECT and turbulences at ECT monitoring sites, the injection dose can be increased to achieve 

a higher SNR. In the end, the selection of the injection dose is a compromise between the 

efficient use of the salt brine and a sufficiently high SNR, which allows a relatively low 

measurement uncertainty (<7 %). Since unstable background ECT, as seen in Figure 3-3b, can 

lead to higher uncertainties in the discharge measurements, we have considered its 

uncertainty in the post-processing (i.e., the deviation between pre and post background ECT). 

This is particularly relevant when a measurement extends over several minutes while the 

background ECT changes quickly, like at Plima (Figure 3-3a). 

While we performed regular manual measurements at each site visit, these were often at very 

similar streamflow conditions (Figure 3-4). Nevertheless, they are very helpful in verifying the 

automated measurements since they have less uncertainty in the injected mass. In some 

cases, the manual measurements can deviate from the stage-discharge relationship, as visible 

at Rifflerbach (Figure 3-4c). At low discharges with low turbulence, there may be deviations 

because of incomplete lateral mixing of the salt tracer. 

It is noticeable how ECT drops abruptly during larger precipitation events at all three measuring 

sites (Figure 3-3a). The natural background ECT in streams as a predictor for discharge was 

already observed in previous studies (Cano-Paoli, Chiogna, & Bellin, 2019; Chang, Mewes, & 
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Hartmann, 2022; Weijs et al., 2013), and therefore the collected continuous ECT values of the 

Autosalt system and of the Ott CTD probe could be further used beyond the event-based 

observations to generate ECT based gauging station.  

3.5. Conclusion 

By using the AutoSalt, it was possible to perform continuous and event-based streamflow 

measurements in high-elevation Alpine areas at very different locations. Rare peak discharges 

of almost 20 m³/s were measured with the system. The mean measurement uncertainty of the 

almost 300 measurements is in the majority (81 %) below 7 %. Larger measurement 

uncertainties resulted from low SNR due to turbulence at the ECT measurement sites. The low 

SNR occurred particularly at the experimental site with the largest streambed gradient (i.e., 18 

%), where turbulence and wave action affected ECT and stage measurements independent of 

the discharge magnitude. In addition, the noise in the stage observations transfers to the stage-

discharge relationship. Consequently, we could only find a correlation between the 

measurement quality and the streambed gradient as the only site-specific characteristic. 

Moreover, we could not find a systematic correlation between discharge magnitude and 

measurement uncertainty. Therefore, the sensor locations should be thoroughly selected in 

river sections with a high streambed gradient to establish a reliable stage-discharge 

relationship at creeks in high-elevation catchments. Another benefit of the collected 

measurements of the system was the detection of non-stationarity in the cross-section, which 

is a particular challenge for establishing reliable stage-discharge relationships on creeks with 

natural cross-section. 
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4. Intercomparison of Sentinel-2 and modelled snow cover maps in 

a high-elevation Alpine catchment 

 

Hofmeister, Arias-Rodriguez, et al., 20223 

 

Abstract 

Modelling runoff generation in high-elevation Alpine catchments requires detailed knowledge 

on the spatio-temporal distribution of snow storage. With Sentinel-2 MultiSpectral Instrument 

(MSI), it is possible to map snow cover with a high temporal and spatial resolution. In contrast 

to the coarse MODIS data, Sentinel-2 MSI enables the investigation of small-scale differences 

in snow cover duration in complex terrains due to gravitational redistribution (slope), energy 

balance and wind-driven redistribution (aspect). In this study, we describe the generation of 

high-resolution spatial and temporal snow cover data sets from Sentinel-2 images for a high-

elevation Alpine catchment and discuss how the data contribute to our understanding of the 

spatio-temporal snow cover distribution. The quality of snow and cloud detection is evaluated 

against in-situ snow observations and against other snow and cloud products. The main 

problem was in the false detection of snow in the presence of clouds and in topographically 

shaded areas. We then seek to explore the potential of the generated high-resolution snow 

cover maps in calibrating the gravitational snow redistribution module of a physically-based 

snow model, especially for an area with a very data-scarce point snow observation network. 

Generally, the calibrated snow model is able to simulate both the mean snow cover duration 

with a high F1 accuracy score of > 0.9 and the fractional snow-covered area with a correlation 

coefficient of 0.98. The snow model is also able to reproduce spatio-temporal variability in 

snow cover duration due to surface energy balance dynamics, wind and gravitational 

redistribution. 

  

                                                
3Material from: 
Hofmeister, F., Arias-Rodriguez, L. F., Premier, V., Marin, C., Notarnicola, C., Disse, M., & Chiogna, G. 
(2022). Intercomparison of Sentinel-2 and modelled snow cover maps in a high-elevation Alpine 
catchment. Journal of Hydrology X, 15, 100123. doi: 10.1016/j.hydroa.2022.100123. 
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4.1. Introduction 

Alpine snow cover and its subsequent melt can dominate local to regional climate and 

hydrology in both high-latitude areas (Gascoin et al., 2019) and the world’s mountainous 

regions (Dozier & Painter, 2004). In the European Alps, snow is the major driver of Alpine 

hydrology, storing water during the winter season and releasing it in the spring and summer, 

with impacts on water supply, agriculture and hydropower production (Matiu et al., 2021). 

Moreover, ongoing climate change in the Alps affects the abundance of snow (Matiu et al., 

2021). Finally, snow accumulation and melting processes also depend on topographical 

parameters such as slope and aspect, which are linked to incoming solar radiation, 

gravitational transport and wind redistribution (López-Moreno & Stähli, 2008; Grünewald & 

Lehning, 2011; López-Moreno et al., 2014; Grünewald, Bühler, & Lehning, 2014; Pedersen et 

al., 2016; Gurung et al., 2017; Mott, Vionnet, & Grünewald, 2018; Saydi & Ding, 2020; Vionnet 

et al., 2021). Therefore, to calibrate and validate models capable of properly capturing snow 

dynamics in such a complex environment requires accurate observed snow cover maps.  

The standard source of information regarding snow cover is a network of automatic and manual 

ground-based meteorological stations that perform daily or sub-daily observations, mostly of 

snow depth (Romanov, Gutman, & Csiszar, 2000). However, in-situ snow observations are 

generally insufficient for characterizing the high spatial variability of the snow pack in 

mountainous regions (Gascoin et al., 2019) and are often only suitable for making qualitative 

comparisons with hydrological model results (Tuo, Marcolini, Disse, & Chiogna, 2018). 

Moreover, field measurements are sparse in both space and time and they are subject to 

several sources of error (Rasmussen et al., 2012; Marcolini et al., 2019a). Furthermore, only 

few snow observation stations operate at altitudes above 2000 m, which complicates the 

investigation of altitudinal gradients (Matiu et al., 2019). Despite these limitations, snow depth 

ground observations are very valuable when it comes to evaluate snow detection quality using 

remote sensing products (e.g. Foppa et al., 2005; Gascoin et al., 2020; Barrou Dumont et al., 

2021). 

Since the launch of the first Landsat satellite in the 1970s, remote sensing has become a key 

tool for mapping snow cover and revealing snow properties at multiple spatial and temporal 

resolutions (Romanov et al., 2000; Dozier & Painter, 2004). Snow can be characterized by 

many variables, such as the snow-covered area (SCA), fractional area (fSCA), albedo, liquid 

water content, snow depth or snow water equivalent (Frei et al., 2012). In remote sensing 

applications, snow cover is mainly investigated using SCA and fSCA products on the scale of 

entire mountain ranges like the Alps or Pyrenees (Gascoin et al., 2019). Remote sensing 

products supply information about snow-covered areas across elevations, but they have 

problems with correct snow detection in cloudy conditions. Consequently, when it comes to 
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improving a snow detection algorithm, the main challenge is to reduce misclassification of 

cloud as snow (Gascoin et al., 2019). Another difficulty is in the detection of snow in dense 

forest areas, where the ground is obstructed by the canopy. This is particularly the case with 

evergreen conifer forests in Alpine regions (Di Marco et al. 2020). Besides the influence of 

forests, topographical features such as steep, shady slopes can impact the detection of snow 

by optical remote sensing products (Gascoin et al., 2019).  

Moreover, there is a trade-off between spatial resolution and swath width (i.e. the acquisition 

strip of a satellite), which influences the observation frequency (Dozier & Painter, 2004). 

Despite these limitations, spatial snow information derived from satellite data has been used 

for decades for various purposes, including hydrology and water resource management 

(Rango, Wergin, & Erbe, 1996; Hall, Foster, DiGirolamo, & Riggs, 2012; Brown et al., 2014; 

Kääb et al., 2016; Fassnacht et al., 2017). The application of MODIS data to derive snow cover 

information on a daily or twice-daily basis, depending on the geographical location, is very 

widespread (Matiu et al., 2019), but their spatial resolution of 500 m is too coarse for 

hydrological applications in mountain regions, where snow cover properties can vary on scales 

of 10 m to 100 m (Blöschl, 1999; Gascoin et al., 2019; Vionnet et al., 2021). In fact, although 

Gurung et al. (2017) used snow cover maps made with MODIS to investigate the effect of 

topography on the SCA in very large basins (> 30,000 km²), Bouamri et al. (2021) 

demonstrated that MODIS is not capable of capturing the spatial heterogeneity of snow cover 

induced by solar radiation, because it does not capture spatial variability below 500 m. This 

limits the usage of MODIS snow cover maps for calibrating and evaluating spatially distributed 

snow models (Bouamri et al., 2021). 

High-resolution (30 m) snow cover maps can be generated from Landsat images, but the low 

temporal revisit time of the Landsat mission (16 days) is a significant limitation to snow cover 

monitoring, and, moreover, data availability can be considerably reduced by cloudiness. The 

launch of the second Copernicus Sentinel-2 satellite in 2017 has made it possible to map the 

extent of snow cover at a 20 m resolution, with a revisit time of 5 days (Gascoin et al., 2019). 

The high-resolution spatial and temporal data collected by Sentinel-2 MultiSpectral Instrument 

(MSI) are important for enabling detailed investigations of snow cover and snow redistribution 

processes on the catchment scale (Foppa et al., 2005). 

Sentinel-2 data can therefore not only be used to evaluate the parametrizations of snow melt 

and redistribution in physically-based models, but also to actually act or contribute to the 

objective function used for model calibration (Mott, Schirmer, Bavay, Grünewald, & Lehning, 

2010). In general, the challenge with physically-based snow models - even without considering 

snow redistribution processes - is that with increasing catchment size and simultaneous high 

grid discretization, computation times increase significantly when, for example, multi-layer 
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snow models are applied for long periods, i.e. climate change studies. The computational effort 

increases even more when mechanistic snow redistribution approaches in physically-based 

models are applied at the catchment scale (Thornton et al., 2021). Hence, snow redistribution 

approaches are mainly based on empirical assumptions in hydrological models and have 

different levels of complexity. A research gap thus exists between the development of process-

based snow redistribution models, i.e., based on a mechanistic snow redistribution routine 

(Freudiger et al., 2017), and their experimental validation (Warscher et al., 2013; Schöber et 

al., 2014; Frey & Holzmann, 2015). Recently, Vionnet et al. (2021) used the Canadian 

Hydrological Model (CHM) to simulate small-scale variabilities in snow accumulation caused 

by gravitational redistributions (avalanches) and blowing-snow transport (saltation and 

suspension), and among others factors. By driving the CHM with spatial high-resolution (50 m) 

wind fields, it was possible to account for the influence of topographical features due to wind 

speed and direction. The simulated snow accumulation was evaluated using high-resolution 

airborne light detection and ranging (lidar) snow depth data and snow persistence indexes 

derived from remotely sensed imagery. Although the CHM was able to simulate the small-

scale variability of snow accumulation, there is still the need for optimization snowdrift-

permitting models for large scale application (≥ 1000 km²), in particular the representation of 

subgrid topographic effects on snow transport (Vionnet et al., 2021). Besides the limitation of 

physically-based and fully distributed snow models on the catchment scale due to their heavy 

computational requirements (Thornton et al., 2021), detailed model input data (e.g. local wind 

fields) are needed when wind-driven snow redistribution is simulated with models based on 

semi-empirical parameterizations of the physics of snow transport (Essery, Li, & Pomeroy, 

1999; Durand, Guyomarc’h, Mérindol, & Corripio, 2005; Liston et al., 2007; Pomeroy et al., 

2007) or even with models resolving the 3D turbulent-diffusion equation (Gauer, 1998; 

Lehning, Löwe, Ryser, & Raderschall, 2008; Sauter et al., 2013; Schneiderbauer & Prokop, 

2011; Vionnet et al., 2014) for blown snow particles in the atmosphere (Mott et al., 2018; 

Vionnet et al., 2021). Although SCA from satellite products have been used in various studies 

to calibrate spatially distributed snow models to improve model-internal consistency 

(Duethmann, Peters, Blume, Vorogushyn, & Güntner, 2014; Freudiger et al., 2017; Thornton 

et al., 2021), to the best of our knowledge, satellite data have rarely been used to calibrate 

snow redistribution routines, which are often only calibrated against observed discharge 

(Warscher et al., 2013; Frey & Holzmann, 2015). In a recent publication, Thornton et al. (2021) 

also considered parameter optimization of gravitational redistribution in a novel calibration 

approach for an energy balance-based snow model including snow cover maps derived from 

Landsat-8.  

In this work, we aim to develop a high-resolution, spatial and temporal method of deriving snow 

cover and, further, to calibrate and evaluate the WaSiM (Water Flow and Balance Simulation 
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Model) snow module (Schulla, 2021). Hence, the objective is to perform a process-oriented 

analysis of gravitational snow redistribution and energy balance to accurately estimate the 

snow cover extent. Therefore, we generated two alternative high-resolution snow cover 

products from Sentinel-2 images for a high-elevation Alpine catchment with a very sparse snow 

observation network. The use of two products, allows us to acknowledge the uncertainty 

affecting also satellite products and to consider it in the calibration of the model. To 

accommodate cloud coverage, each of the two snow cover products used a different snow and 

cloud detection algorithm and we quantified the difference between the resulting snow cover 

properties. Cloud detection enables the inclusion of partially clouded Sentinel-2 images in the 

snow cover dataset by setting clouded areas to no data. Even with cloud cover, these images 

may contain valuable information beyond the cloud extent regarding the snow cover evolution 

during the melting season and during the onset of snow accumulation. Finally, snow cover 

maps with high spatial and temporal resolutions allow an accurate analysis of the effect of 

topographical features (elevation, slope and aspect) on the snow cover duration and provide 

useful information for assessing simulated snow cover maps from a physically-based 

hydrological model for a period of five years.  

The main novelties of this paper consist in the application of two different, i.e. one unsupervised 

and one supervised, snow and cloud detection algorithms for Sentinel-2 images, their use for 

hydrological model calibration in a topographically complex region, including an assessment 

of the differences between the two products and an investigation of the effects of topography 

(elevation, slope and aspect) on mean snow cover duration. 

4.2. Data and methods 

4.2.1. Research area and in-situ snow observation 

The upper Martell valley (Martelltal, Val Martello) is an Alpine valley with a SW-NE orientation 

located in the upper Adige catchment in South Tyrol (Italy), covering an area of 65 km². To 

evaluate the satellite products, the research area was slightly expanded to the west to include 

the snow observations collected at the Madritsch station located in the neighbouring Sulden 

valley. The upper Martell valley has an elevation range of 1840 m a.s.l. to 3760 m a.s.l. with a 

mean altitude of 2814 m a.s.l. (Sonny, 2017), and the dominant land cover classes are bare 

rock (41 %), sparse vegetation (34 %) and glaciers (19 %) (Environment European Agency 

CLC Corine 2018). Coniferous forest covers only 6 % of the catchment at elevations lower 

than 2370 m a.s.l.. Along the ridges, extremely steep slopes with inclinations of more than 60° 

(highlighted in red in the overview map Figure 4-1) can be found throughout the area. The 

main river of the upper Martell valley is the Plima, which flows into the Zufritt (Gioveretto) 

reservoir. The runoff regime is dominated by glaciers and snow melt, with high flows during 
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the spring and summer and low flows during winter (Puspitarini et al., 2020). There are also 

107 lakes of proglacial origin in the catchment. Previous hydrological studies investigating the 

mass balance of the Langenferner glacier (Galos et al., 2017; Galos & Klug, 2015) and the 

impact of glacier shrinking on hydropower production (Puspitarini et al., 2020) also focused on 

this study area. In addition, the catastrophic flood event from 1987 was the subject of several 

vulnerability assessment studies (Totschnig & Fuchs, 2013; Papathoma-Köhle et al., 2015). 

 
Figure 4-1: Map of the research area, the upper Martell valley in South Tyrol (Italy), showing 
in-situ snow observation stations (full names) and meteorological stations (abbreviations) 
(Source layer: Esri, Garmin, USGS, NPS, NOAA). 

There is only a sparse observation network of meteorological stations covering the upper 

Martell valley. The station at the Langenferner (LA) glacier is the only one located inside the 

upper Martell valley. At the Zufall snow station, snow surveys are performed manually at 

weekly intervals during the winter period. Continuous snow depth observations are available 

from the Madritsch, Zufritt and Rossbaenke stations from various elevations and valleys. The 

investigation period of this study covers the period with most available station data from 

October 2014 to September 2020. Table 4-1 gives detailed information of the in-situ snow 

observations and meteorological stations and the latter are used as model forcing in the 

hydrological model WaSiM. 
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Table 4-1: Meteorological and snow observation stations. Measured variables: P = 
Precipitation, T = Temperature, WS = Wind speed, H = Humidity, R = Radiation, SD = Snow 
depth. 

Station Acro

nym 

Elevation 

[m a.s.l.] 

Latitude Longitude Measured 

variables 

Resolution Temporal 

coverage 

Valley Provi

der 

Madrisch - 2825 46.4938 10.6144 

P, T, WS, 

H, R, SD 10-min 2000-2020 Sulden 1 

Rossbänke - 2255 

46.4693

51 10.819436 

T, H, WS, 

SD 10-min 2015-2020 Ulten 1 

Zufall - 2265 

46.4812

9 10.67802 SD 

Weekly 

(manual) 2004-2020 Martell 1 

Zufritt - 1851 

46.5090

63 10.725072 P, T, SD Daily 1980-2020 Martell 1 

Hintermartell HI 1720 46.5169 10.7269 

P, T, WS, 

H, R 10-min 2009-2020 Martell 1 

Langenferner-

Felsköpfl LA 2967 

46.4724

5 10.61391 

P, T, WS, 

H, R 10-min 2012-2020 Martell 2 

Schöntauf-

spitze SC 3328 46.5029 10.6286 T, WS 10-min 1998-2020 Martell 1 

Sulden SU 1907 46.5159 10.5953 

P, T, WS, 

H, R 10-min 1987-2020 Sulden 1 

Ulten 

Weißbrunn UL 1900 46.4868 10.8318 P, T, H, R 10-min 1987-2020 Ulten 1 

Weißbrunn-

spitze WE 3252 46.494 10.774 T, H, WS 10-min 2012-2020 Ulten 1 

Provider 1) Autonomous Province of Bozen/Bolzano - South Tyrol 

Provider 2) Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck 

4.2.2. Methods 

Two snow and cloud detection approaches, named TUM (unsupervised algorithm) and Eurac 

(supervised algorithm), respectively, are applied to identify the snow covered area in the 

catchment over the study period. These data sets are compared to the hydrological model 

WaSiM results with different parametrizations of snow redistribution (i.e. default and optimized 

parameters). Figure 4-2 gives a comprehensive overview of the individual processing steps 

used in the observed and simulated snow cover maps. 
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Figure 4-2: General workflows for observed and simulated snow cover maps. 

4.2.2.1. TUM approach for Sentinel-2 snow cover map 

Covering most of the period June 2015 to October 2020, 439 Sentinel-2 Level-1C images were 

downloaded with the R toolbox Sen2r (Ranghetti, Boschetti, Nutini, & Busetto, 2020) for the 

area of interest (AOI) including all seasons of the year. The Level-1C product type provides 

Top of the Atmosphere reflectance in cartographic geometry projected in UTM/WGS84 

(European Space Agency, 2021). The spectral bands, central wavelength and spatial 

resolution of the Sentinel-2 MultiSpectral Instrument (MSI) are listed in the supplementary 

material of (Hofmeister, Notarnicola, et al., 2022). Using equation 4-1, the Normalized 

Difference Snow Index (NDSI) was calculated for each image, after resampling band 11 from 

20 m to 10 m resolution (Cimpianu, 2018). The NDSI uses the distinct reflection signature of 

snow surfaces with very high reflectance in the visible spectrum and strong absorption in the 

short-wave infrared range (Gascoin et al., 2019).  
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𝑁𝐷𝑆𝐼 =  

𝑔𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝑔𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
 4-1 

where green corresponds to Sentinel-2 band 3 (wavelength: 0.560 µm) and SWIR is short-

wave infrared represented by band 11 (wavelength: 1.610 µm). An NDSI pixel is classified as 

snow if the NDSI value is larger than 0.4 (Dozier, 1989). Larger NDSI values are classified as 

snow-free. The NDSI threshold was the same for all images. Several cloud detection 

approaches have been developed for Sentinel-2 images, such as Sen2Cor, Idepix, Fmask, 

MAJA and Sentinel Hub’s Cloud Detector (Menekay, 2019). In this study, cloud detection was 

performed using cloud masks created by the Identification of Pixel Properties algorithms 

(Idepix) from the Sentinel Application Platform (SNAP v7.0) (European Space Agency, 2019) 

at 60 m spatial resolution. Idepix is a single-scene method and therefore suitable for cloud 

detection over changing terrain conditions, such as snow accumulation and melt. Since it is 

available as an SNAP plugin, it is very user-friendly, fast and effective at providing cloud 

masks. Idepix combines cloud masks with sun geometry to search regions of maximum 

probability for cloud-shadow pixels. In the projected region of potential cloud shadow, the cloud 

mask is shifted along the illumination path towards the surface reflectance minimum. Idepix 

can identify different types of pixels, such as semi-transparent clouds, fully opaque clouds, 

cirrus clouds, cloud shadows and even mountain shadows. This study employs Idepix_Cloud 

classification, which includes cloud pixels identified with full confidence as well as pixels 

identified with uncertainty as clouds. Clouded pixels were set to no data.  

The snow and cloud maps were masked to the extent of the area of interest and resampled 

with the nearest neighbour method to the same spatial resolution as that of the hydrological 

model (25 m). We excluded highly clouded (> 80 %) images from further analysis, which 

reduced the total number of images to 366. Following an initial assessment of the cloud maps, 

we observed that the cloud maps generated with Idepix tended to overestimate cloudiness due 

to mountain shadows, since low illuminated areas with low spectral reflectance are 

misclassified as clouds. Therefore, only cloud covered areas for which no snow was detected 

by the NDSI were set to no data. This enables the snow detection under clouds thanks to semi-

transparency in SWIR, which would otherwise be masked by the Idepix cloud mask. In addition, 

the cloud masks are very conservative, since they are calculated with a coarser resolution (60 

m) compared to the snow maps (20 m), which would mask out too many pixels, especially in 

the peripheral areas of the clouds, for which the snow detection might be correct (Serco Italia 

SPA, 2017). Water bodies were also set to no data, since their reflectance is often very similar 

to that of a snow surface (Dozier, 1989). 

To test the utility of atmospheric correction over satellite imagery for snow cover detection, a 

set of atmospherically corrected Sentinel-2 images (September 2018 - October 2019) was 

analysed and compared against the methods used. The correction was applied using ‘Second 
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Simulation of the Satellite Signal in the Solar Spectrum’ (6S), as developed by Vermote et al. 

(1997), which uses Radiative Transfer Models (RTMs) to simulate the passage of solar 

radiation across the atmosphere. The 6S algorithm is adapted to a Python (Py6S) interface 

(Wilson, 2012) and was implemented recently for use with the Google Earth Engine (Murphy, 

2018) via a Python API and Docker container. 

4.2.2.2. Eurac approach for Sentinel-2 snow cover map 

The Eurac snow algorithm also takes the Sentinel-2 Level-1C data as its input. As pre-

processing step, the Sentinel-2 images are scaled from digital number (DN) to reflectance 

values using the quantification value provided in the Sentinel-2 metadata (i.e., equal to 10,000 

for all the considered images). Thus, all bands are reprojected and resampled to the final model 

resolution of 25 m using cubic interpolation. The classification algorithm consists of two steps: 

i) cloud detection; and ii) snow detection. In both cases, a support vector machine (SVM) 

classifier is trained with an active learning (AL) procedure. By dividing the procedure into two 

steps, it is possible to exploit the most representative features of each of the two classification 

problems. The AL procedure allows us to speed up the learning curve of the classification by 

asking the user to specify the label of the most uncertain pixels. For cloud detection, when a 

pixel is classified as cloud or no-cloud, all spectral bands of the Sentinel-2 are considered 

except for those at 60 m resolution (i.e. bands 1, 9 and 10). Moreover, the Eurac approach 

uses additional features, such as the normalized difference vegetation index (NDVI), 

calculated as the normalized difference between near the infrared (NIR) and red bands in 

addition to the NDSI, which have been shown to introduce benefits into the classification (Tarrio 

et al., 2020).  

For snow detection, there are three possible classes: snow, snow-free and hard shadow. The 

difference between shadow and hard shadows is defined in terms of energy recorded by the 

sensor. If the recorded energy is too low to distinguish between snow and snow-free areas, 

i.e. the signal-to-noise ratio (SNR) of the sensor is too low, we call it hard shadow. This is 

generally the case when the sun is low on the horizon, which is from approximately mid-

November to mid-February at the latitude of the Martell valley, and the terrain is particularly 

steep. In order to define a threshold under which the recorded energy by the sensor is too low, 

we selected samples for which the human photo-interpreter cannot distinguish whether the 

pixel is snow or snow free. Low reflectance situations, generally associated with dark areas 

e.g., turbid lake, shadow by cloud or terrain, flooded areas, etc., are excluded from snow 

detection from state of the art and operational algorithms applying thresholds on the visible 

bands e.g., MODIS snow cover product version 6 (Riggs & Hall, 2015). The shadow detection 

is performed with a SVM classifier together with the snow detection after masking out the 

clouds. In addition to the spectral bands and features also used for cloud detection, the 
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classifier includes illumination angle as a further input feature. The illumination angle is 

calculated from the solar zenith and the solar azimuth angle (Riano, Chuvieco, Salas, & 

Aguado, 2003) and enables better mitigation of the effect of the differences in the solar 

illumination during the year.  

The SVM has been trained in order to emphasize the presence of snow also in mixed 

conditions. This is done by assigning the class snow to those pixels whose spectral 

characteristics can be attributed to the presence of snow by a careful visual inspection. For 

both SVM models (snow and cloud), we used a radial basis function kernel and performed a 

model parameters selection according to a grid search strategy to identify the regularization 

parameter C and the kernel coefficient gamma. The grid is initialized with a user-defined range. 

The model selection start with a coarse grid and then given the obtained results is refined 

around the values of C and gamma that perform the best. The best values are selected by 

evaluating the mean and standard deviation of the over accuracy calculated in a cross-

validation strategy with k folder (k=5). For the cloud detection, we collected 173 training points 

(97 “cloud free” samples and 76 “cloud” samples). The selected parameters are C equal to 

9.885 and gamma equal to 0.896. The number of selected support vectors is 98. The accuracy 

from the cross validation is 0.82 and the standard deviation is 0.1 by considering the 5-folds. 

The low accuracy during the training shows the difficulty in the cloud discrimination during 

winter condition with the spectral bands provided by Sentinel-2 sensor. For the snow detection, 

we considered three classes of training samples. We collected 177 “snow free” samples, 264 

“snow” samples and 138 “shadow” samples, for a total amount of 579 samples. The selected 

C value is 30.018 and gamma is 0.0003. The number of support vectors was 445 and the 

accuracy from the cross validation is 0.98 with a standard deviation of 0.1. The samples are 

collected initially from two scenes and then we adopted an iterative active learning procedure 

to collect new samples. The active learning procedure ask the user the labels of the most 

uncertain samples, i.e., the ones with computed probabilities for the assigned class are low. 

The probability was calculated according to Lin et al. (2007). 

It should be mentioned that at the time of the analyses for this publication, the Eurac approach 

is still in the final stage of the development but it was applied already once in a previous study 

(Ebner et al., 2021). The Eurac approach was chosen to verify the TUM snow detection results 

because the supervised algorithm should be more accurate than the unsupervised TUM 

product. As in the TUM method, water bodies were set to no data. 

4.2.2.3. Snow cover simulation with WaSiM 

The snow module of the physically-based hydrological model WaSiM (version 10.04.07) 

(Schulla, 2021) was used as an example for demonstrating the benefits of high-resolution snow 

cover maps in calibrating simulated snow redistribution. For snow melt simulation, the energy 
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balance approach, including gravitational snow redistribution, was selected, as originally 

implemented by Warscher et al. (2013). We also tested the effect of wind-driven snow 

redistribution (Warscher et al., 2013; Schulla, 2019). Canopy snow interception was not 

considered in this study because of the small proportion of coniferous forest (6 %). The multi-

layer snow model was deactivated to keep the computational time reasonable, limit the number 

of calibration parameters and avoid the need to define multiple soil and snow parameters. The 

topography-dependent adjustment of radiation and air temperature follows the scheme 

devised by Oke (2002). The parametrization of the snow accumulation and gravitational snow 

redistribution Table 4-2 originates in part from the WaSiM user manual (Schulla, 2021) and 

Förster et al. (2018), whereas the correction factor for incoming long-wave radiation 

(LWINcorr) was slightly increased from 1.0 to 1.1 considering the observations available for 

May and June. The equations for energy balance approach, Psnow, LWINcorr and 

LWOUTcorr can be found in the WaSiM user manual, which is available in the supplementary 

material (Hofmeister, Notarnicola, et al., 2022). To account for solid precipitation undercatch 

of rain gauges, we used a wind-dependent snow correction factor (Snowb) of 0.1 s/m, as also 

used by Förster et al. (2018) and confirmed by Kochendorfer et al. (2016).  

Gravitational snow redistribution is based on a computationally efficient, mass-conserving 

algorithm that parameterizes the gravitational transport and deposition developed by Gruber 

(2007) and later implemented in WaSiM by Warscher et al. (2013). Four parameter grids that 

specify the sliding fractions for each of the cardinal directions (N, E, S, W) were generated 

using the WaSiM preprocessing tool Tanalys. Total outflow from the gravitational model (Mout) 

is determined by equation 4-2: 

 

𝑀𝑜𝑢𝑡 = [

𝑓𝑒𝑟𝑜𝑠𝑖𝑜𝑛 × 𝑀𝑖𝑛 − 𝐷𝑔𝑟𝑎𝑣, 𝑖𝑓 𝑖 ≥ 𝑖𝑒𝑟𝑜𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑆𝑊𝐸 > 0
𝑀𝑖𝑛 − 𝐷𝑔𝑟𝑎𝑣, 𝑖𝑓 𝑖 ≥ 𝑖𝑒𝑟𝑜𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑆𝑊𝐸 = 0

𝑀𝑖𝑛 − 𝐷𝑔𝑟𝑎𝑣, 𝑖𝑓 𝑖 < 𝑖𝑒𝑟𝑜𝑠𝑖𝑜𝑛
] 4-2 

where Min is the inflowing mass from all other neighbouring cells [mm], SWE is the snow water 

equivalent in the current cell [mm], ferosion is the erosion factor, which depends on the time 

step, i is the local slope, ierosion is the lower inclination limit for snow erosion [°] depending on 

the spatial resolution and Dgrav is the deposition in the current cell [mm]. The current snow 

deposition in a cell Dgrav is defined by equations 4-3 and 4-4: 

 
𝐷𝑔𝑟𝑎𝑣 = {

𝑀𝑖𝑛,   𝑖𝑓 𝑀𝑖𝑛 < 𝐷𝑚𝑎𝑥, 𝑔𝑟𝑎𝑣
𝐷𝑚𝑎𝑥, 𝑔𝑟𝑎𝑣, 𝑖𝑓 𝑀𝑖𝑛 ≥ 𝐷𝑚𝑎𝑥, 𝑔𝑟𝑎𝑣

} 4-3 

 

𝐷𝑚𝑎𝑥, 𝑔𝑟𝑎𝑣 = {
(1 −

𝑖

𝑖𝑙𝑖𝑚
× 𝐷𝑙𝑖𝑚) , 𝑖𝑓 𝑖 < 𝑖𝑙𝑖𝑚

0, 𝑖𝑓 ≥ 𝑖𝑙𝑖𝑚
} 

4-4 

where Dlim is the upper deposition mass limit [mm], e.g. the maximum amount of snow that 

would be deposited on horizontal terrain, and ilim is the upper slope limit [°] at which all 
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inflowing masses will be transported to the next downslope cell(s). In this work, we show how 

ierosion and ferosion can be calibrated to improve the model’s performance using Sentinel-2 

snow cover data.  

Wind-driven snow redistribution can also be simulated with WaSiM. However, the approach 

implemented is in fact a kind of snow precipitation correction, by which areas sheltered from 

the main wind direction receive an increased snow fall and areas exposed to the main wind 

direction receive a reduced snow fall amount. Which cells are exposed or sheltered is 

estimated using the directed sky view factor (SVFdir). For this study, the main wind direction 

was set to south west (180° to 270°) which corresponds with the main wind direction of the 

Langenferner meteorological station (mean wind direction 229° ± 54°) for the snow 

accumulation period (October to May). The snow precipitation is corrected by equation 4-5: 

 𝑃𝑠𝑛𝑜𝑤 =  𝑃𝑠𝑛𝑜𝑤 + 𝐶𝑤𝑖𝑛𝑑 × 𝑃𝑠𝑛𝑜𝑤 4-5 

where Psnow is the solid precipitation and Cwind is the correction factor, which is determined 

by equation 4-6: 

 𝐶𝑤𝑖𝑛𝑑 =  𝑒 × (𝐷𝑚𝑎𝑥 × (1 − 𝑆𝑉𝐹𝑑𝑖𝑟) − 1 ) + 𝑐𝑚𝑖𝑛 4-6 

where e is a linear elevation weighting factor, SVFdir is the directed sky view factor, Dmax is 

the maximum possible deposition, and cmin is the minimum correction factor for shifting cwind 

to a more or less solid precipitation correction. The parameter e ranges from 0 at the lowest 

elevated pixel to 1 at the highest pixel and linearly scales the amount of snow redistribution 

(Warscher, 2014). The impact on the mean snow cover duration was tested on different spatial 

scales by performing different model simulations with and without activated wind-driven snow 

redistribution.  
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Table 4-2: WaSiM parameters for snow accumulation, gravitational slides, ablation and wind 
driven redistribution. 

Process WaSiM 

Parameter 

Description Values 

Snow 

accumulation 

T0R Temperature limit for rain (°C) 0 

Ttrans ½ of temperature-transient zone for rain-snow (°C) 0.5 

Snowb Wind-dependent snow precipitation correction (s m-1) 0.1 

Gravitational 

redistribution 

ilim  Maximum deposition slope (°) 55 

Dlim Scaling for maximum deposition (mm) 2 

ierosion Minimum slope for creating slides (°) 50* 

ferosion Fraction of snow pack that forms the slide (-) 0.002* 

Snow ablation LWINcorr Correction factor for incoming long-wave radiation (-) 1.1 

LWOUTcorr Correction factor for outgoing long-wave radiation (-) 1.0 

Wind 

redistribution 

start azimuth 

end azimuth 

cmin 

1st quantile of wind direction (°) 

3rd quantile of wind direction (°) 

Minimum correction factor (-) 

180 

270 

0.3 

*These parameters have been optimized. See Section 3.3 for more information.  

The time series of all meteorological stations, illustrated in Figure 4-1 and listed in Table 4-1, 

are spatially interpolated with an elevation-dependent regression (i.e. temperature, wind speed 

and humidity) and inverse distance weighting (IDW) for precipitation and solar radiation. The 

simulation period covers six years from 2014/10/01 to 2020/09/30 in hourly time steps. 

However, the simulated snow maps were only saved as daily means. The selection of the 

spatial resolution (25 m) was a compromise between the level of detail and the computational 

demand. Previous hydrological applications of WaSiM used a 50 m spatial and 1h temporal 

resolution for Alpine catchments (Kraller et al., 2012; Warscher et al., 2013; Förster et al., 

2018) or even 25 m in the most recent application (Thornton et al., 2021). Two different 

exceedance threshold values (0 mm and 5 mm SWE) for classification as either snow or no 

snow were tested. 

To ensure consistency in the comparison with the observed snow maps, clouded areas (from 

the TUM product) and water bodies were set to no data in the snow cover maps produced by 

WaSiM. Since the dynamic glacier model of WaSiM requires a comprehensive calibration, 

which increases the model complexity, it was not activated, and glaciered areas were set to 

constantly snow covered in the simulated snow maps. Although glaciers are a key contributor 

to runoff generation in this area, the focus of this study is to examine the spatio-temporal 

variability of the snowpack. Glaciered areas were derived for each year from the cloudless 

snow cover map for August or September taken from the Eurac product, since the TUM product 

showed an tendency of false snow detection on some very steep (> 60°) north-facing slopes, 

which would partly lead to wrong glacier delineation.  
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4.2.2.4. Analysis of observed snow cover maps 

The quality of snow/no snow detection is evaluated against the in-situ snow observation by 

calculating the accuracy score F1 (equation 4-8) based on the confusion matrix in Table 4-3. 

The F1 score divides the sum of all true positive (TP) and true negative (TN) matches by the 

total population (n). Accuracy was only computed at three snow observation stations with 

continuous snow depth recordings.  

Table 4-3: Confusion matrix for evaluating the detected and simulated snow cover. 

 Observed snow Observed no snow 

Detected/simulated snow True positive (TP) False positive (FP) 

Detected/simulated no snow False negative (FN) True negative (TN) 

4.2.2.5. Analysis of topographical feature on observed and simulated snow 

cover 

The influence of topographic characteristics, e.g. elevation, slope or aspect, on the observed 

and simulated mean snow cover duration is analysed such that all grid cells with the same 

topographical characteristics (e.g. elevation, slope and exposition) are aggregated to mean 

snow cover duration over the entire period of 6 years following equation 4-7. The snow cover 

duration SCD [d] for each pixel of the domain in an hydrological year was computed following 

Dietz et al. (2012): 

𝑆𝐶𝐷 =  
365.25

𝑁
∑(𝑠𝑖)

𝑁

𝑖=1

 4-7 

where N is the number of days with Sentinel-2 recorded data, beginning with 1 October and 

ending with 30 September of the next year. On average, the length of a year is 365.25 days 

considering leap years. si refers to the cloud-free daily snow cover data set recorded to values 

one for snow and zero for snow-free area. Accordingly, we calculated the mean and standard 

deviation of snow cover duration of all pixels of the 366 snow cover maps with respect to the 

three topographical feature classes (i.e. aggregation of elevation in ten meter classes, slope 

and exposition in three degree classes).  

4.2.2.6. Comparison of observed and simulated snow cover maps 

A pixel by pixel spatial analysis was performed to evaluate the simulated snow cover maps 

against the two different observed snow maps at the catchment scale. Two additional 

performance measures are thus introduced: the F2 score (equation 4-9) and the F3 score 

(equation 4-10), which are often used to evaluate binary classifications (Aronica, Bates, & 

Horritt, 2002; Warscher et al., 2013; Thornton et al., 2021). The range of the F1 and F2 scores 

is from zero to one while F3 ranges from -∞ to one. All scores are 1 if the simulated snow cover 

perfectly matches the observed one. The F1 score tends to show the highest performance 
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values, since it takes only true positives and true negatives into account, and these are usually 

high during winter and summer. F2 and F3 exclude true no snow pixels and are therefore more 

sensitive to differences in snow cover (Warscher et al., 2013). F3 is even more sensitive to 

snow extent than F2 due to the subtraction of the false positives in the numerator.  

F1 score 𝐹1 =  
∑ 𝑇𝑃𝑛

𝑖=1 + ∑ 𝑇𝑁𝑛
𝑖=1

𝑛
 4-8 

 

F2 score 𝐹2 =  
∑ 𝑇𝑃𝑛

𝑖=1

∑ 𝑇𝑃𝑛
𝑖=1 + ∑ 𝐹𝑃𝑛

𝑖=1 + ∑ 𝐹𝑁𝑛
𝑖=1

 4-9 

 

F3 score 𝐹3 =  
∑ 𝑇𝑃𝑛

𝑖=1 − ∑ 𝐹𝑃𝑛
𝑖=1

∑ 𝑇𝑃𝑛
𝑖=1 + ∑ 𝐹𝑃𝑛

𝑖=1 + ∑ 𝐹𝑁𝑛
𝑖=1

 4-10 

For a further spatial comparison of observed and simulated snow products, the fractional snow-

covered area (fSCA) is also considered. fSCA is defined as the ratio between the number of 

pixels classified as snow-covered and the total number of pixels excluding clouds and lakes 

(Di Marco et al., 2020b), as shown in equation 4-11:  

𝑓𝑆𝐶𝐴 =  
𝑁𝑠𝑛𝑜𝑤

𝑁𝑡𝑜𝑡 − 𝑁𝑐𝑙𝑜𝑢𝑑𝑠
 4-11 

where Nsnow is the number of snow cover pixels according to the Sentinel-2 dataset or 

WaSiM, Ntot is the total number of pixels representing the overall catchment area, and Nclouds 

are the pixels classified as cloud and water bodies. 

4.3. Results 

4.3.1. Comparison of cloud detection by TUM and Eurac  

In terms of the empirical cumulative cloud detection frequency, Eurac detects a higher 

proportion of cloud within the range of 15 % to 80 % areal coverage than the TUM product 

(Figure 4-3a). However, both products are able to detect complete cloud cover and clear sky 

situations equally well. Besides cirrus (high-altitude clouds) and other clouds, the image 

processing algorithms also include topographic shadows, which are of particular interest in 

complex terrains such as the upper Martell valley. The ability to detect topographic shadows 

is especially important in mid-latitude areas during the winter period, where the solar elevation 

is very low, typically below 20° (Gascoin et al., 2020). Differences between the two approaches 

and their limitations in terms of cloud and shadow detection are illustrated in an example for 

January 27 2017, when no clouds were present in the AOI (Figure 4-3b). However, the low 

inclination angle of the sun produces extensive shading in the southern and eastern parts of 

the AOI. Cloud detection by TUM (Figure 4-3c) falsely classifies some snow-free ridges or 
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snow-free steep slopes as clouds. On the other hand, the Eurac method (Figure 4-3d) detects 

more shaded areas in the south eastern area. However, both approaches fail to fully detect 

the topographic shadows on the forested southern valley bottom, which are classified as snow-

covered regions.  

 

Figure 4-3: Empirical cumulative frequency of cloud detection by TUM and Eurac for the whole 
data set (a), Sentinel-2 false colour composition (SWIR/NIR/RED) in 20 m resolution for one 
case study on January 27 2017, showing the AOI boundary (red line) (b) and the cloud and 
snow detection by TUM (c) and by Eurac (d) in 25 m resolution, for the said date. No data 
pixels were considered as cloud or shadow by the algorithms. White circles in panel d indicate 
main differences between TUM and Eurac in detecting topographic shadows. 

4.3.2. In-situ comparisons of snow cover detection by TUM and Eurac  

The quality of snow detection was tested against three snow observation stations for various 

snow depth thresholds that differentiate between snow and no snow. The detection accuracy 

was calculated by the F1 score (equation 4-8). Snow detection varies not only according to the 
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chosen detection method (TUM or Eurac) but also according to the observation sites (Figure 

4-4 and supplementary table A.3.7 in Hofmeister, Notarnicola, et al. (2022)). The most 

accurate score (F1 > 0.97) was obtained with both products for snow depth thresholds ranging 

between 4 cm and 15 cm for the Rossbaenke station, which is surrounded by grassland. Both 

TUM and Eurac attained a similar detection accuracy at the Madritsch station, however 

decreasing with increasing snow depth threshold. The highest accuracy of 0.96 (TUM) and 

0.97 (Eurac) is reached at a snow depth threshold of 1 cm. Due to the station’s relatively high-

altitude (2825 m a.s.l.), the land cover of the surrounding area is mainly composed of gravel 

and debris. Therefore, it can be assumed that there is no interference between the spectral 

characteristics of the snow cover and those of the vegetation. The main differences between 

the snow detection products are observed for the lowest snow observation station of Zufritt, 

which is surrounded by forest and grassland. Whereas the TUM product has a detection 

accuracy larger than 0.91 for snow depth thresholds between one and ten cm, the detection 

accuracy of the Eurac product does not exceed 0.83 for the same threshold range. The lowest 

performance is probably due to the presence of permanently mixed pixels, such as forest and 

grassland. In fact, the spectral characteristics of these pixels do not show a snow presence 

greater than 50 % (see 4.2.2.2). In this case, a canopy correction is required to prevent error. 

The optimum snow detection accuracy of 0.95 for TUM and 0.92 for Eurac based on all stations 

was found at a 4 cm threshold, showing that, in general, a larger snow quantity, i.e. a closed 

snow cover with a few centimetres depth (~4 cm), is needed on the ground to enable better 

identification of snow from Sentinel-2 images.  

 

Figure 4-4: Snow detection accuracy obtained with TUM (a) and Eurac (b) at three snow 
observation stations for different snow depth thresholds, shown on a log scale. 

We also tested two different exceedance thresholds for simulated SWE (0 mm and 5 mm) in 

order to convert SWE to binary snow cover maps. The commonly used exceedance threshold 



97 
 

of 5 mm (Warscher et al., 2013; Schulla, 2019; Thornton et al., 2021) attained a slightly higher 

F1 prediction accuracy of 0.95, compared to 0.92 for 0 mm at the Madritsch snow observation 

station. However, since only one snow observation station with continuous snow depth 

recording is located in the research area, it is not possible to make any general statements 

about the robustness of the exceedance threshold.  

4.3.3. Calibration and analysis of snow redistribution as modelled by 

WaSiM 

Topographical analysis not only allows the impact of topographic features such as elevation, 

slope and aspect on the mean snow cover duration to be investigated, but also enables a 

process-orientated evaluation of the simulation results and calibration of the gravitational 

redistribution simulated by WaSiM with respect to different slope gradients. A total of four 

simulation results were analysed with different snow redistributions (Table 4-4). Simulations A 

and C were performed with the default WaSiM parametrization of ierosion (minimum slope for 

creating slides) and ferosion (fraction of snow pack that forms a slide), while simulations B and 

C used optimized parameters. For this analysis, all pixel values of all 366 snow cover maps 

were aggregated by each topographic feature class (elevation, slope and exposure) and the 

mean and average standard deviation of the snow cover duration (SCD) was estimated for 

each class (Figure 4-5), as explained in section 4.2.2.5. Although the elevation gradient of the 

mean snow cover duration and the standard deviation bands (quantified for one mean standard 

deviation) are very similar for both observation and simulation in the range 2300 to 3500 m 

a.s.l., distinct differences can be observed in the lower (< 2300 m a.s.l.) elevation zones. The 

Eurac snow maps distinctly show lower mean snow cover duration values than TUM and 

WaSiM, accompanied by broadening of standard deviation band at the valley bottom (< 2300 

m a.s.l.) due to the presence of forest and a higher mountain shadow detection (supplementary 

Figure A.3.6 in Hofmeister et al. (2022)). Although the TUM product also displays higher 

variance in the low elevation range, it shows better agreement with the simulated snow cover 

duration. In the elevation range from 2800 to 3400 m a.s.l., relatively wide standard deviation 

bands indicate a large spatial heterogeneity in mean SCD. Mean SCD varies only slightly for 

the highest elevation bands (> 3500 m a.s.l.). 

The impact of ierosion on the mean SCD is visible on the slope feature class in Figure 4-5. We 

can observe that an ierosion value of 45° does not reproduce the turning point in the mean 

SCD, as it is present in both the TUM and Eurac products. Hence, an analysis of the satellite 

data enables us to determine the value of ierosion by applying a grid search approach to find 

the minimum distance between the peak of mean SCD at slopes between 40° to 50° in 

observation and model results. The optimum ierosion value was found at 50°. The ferosion 

parameter was lowered in 0.001 steps from the default value (0.007) to 0.001 and the best 
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parameter (0.002) determined taking into account the best combination of mean Pearson 

correlation (0.73) and RMSE (mean SCD of 25.7 [d]) with ierosion set to 50° (see 

supplementary Figure A.3.8 in Hofmeister, Notarnicola, et al. (2022)). Wind-driven snow 

redistribution was activated for the simulation runs C and D.  

Table 4-4: WaSiM configurations for topographical analysis.  

WaSiM 

Configuration 

Simulation A Simulation B Simulation C Simulation D 

ierosion 

ferosion 

45°  

0.007 

50° 

0.002 

45° 

0.007 

50° 

0.002 

Wind redistribution No No Yes Yes 

The small differences in performance of the simulated snow cover duration in the highest 

elevation zones (> 3500 m a.s.l.) can be explained by the steeper topography, in which more 

snow is redistributed by gravitational slides. The greatest simulated gravitational redistribution 

occurs with the default parametrization of ferosion (Figure 4-5a) in this elevation zone. In 

contrast, the optimized gravitational redistribution (Figure 4-5b) shows better agreement with 

the observed mean SCD. The activation of wind-driven redistribution leads to a distinct 

reduction in the mean snow cover duration in the range from 2800 to 3500 m a.s.l. (Figure 

4-5b and d). 

The effect of gravitational redistribution is most clearly visible on slope gradients steeper than 

30°. With the default parametrization of ierosion (45°) and ferosion (0.007), WaSiM relocates 

snow from steep slopes (> 45°) to flatter areas, which results in very low snow cover durations 

for slopes above 45°, accompanied by a sudden change in the standard deviation (Figure 4-5a 

and c). The wind-driven redistribution has barely any detectable effect on the simulated mean 

snow cover duration on the slope feature class, with the exception of the steepest slopes (> 

60°), for which a small increase can be observed (Figure 4-5b and d). 

The final topographical characteristic to be evaluated is aspect (exposure). The mean SCD on 

areas of different exposure depends mainly on the incoming solar radiation (topographical 

shadowing) and on wind-driven snow redistribution. The influence of exposure on the mean 

SCD is clearly visible in Figure 4-5, with the highest values (> 250 d) on north- and north east-

facing slopes and the lowest (< 200 d) on south-facing slopes. As with the slopes, the relatively 

large standard deviation bands indicate a high variability of SCD in areas with similar exposure. 

Although the mean SCD shape is very similar for the TUM and Eurac products, a systematic 

offset between both products (overall mean of SCD by TUM 241 d and Eurac 226 d) is present, 

which is more pronounced with the northern exposure. This can be explained by the 

differences in cloud and mountain shadow detection by the products. While the Eurac cloud 

product shows no influence of aspect with a constant overall mean cloud coverage of around 
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20 %, the TUM product detects more clouds on south-facing areas (overall mean cloud 

coverage of 20 %) than on north-facing ones (overall mean cloud coverage of 14 %) 

(supplementary Figure A.3.6 in Hofmeister, Notarnicola, et al. (2022)). Activated wind-driven 

redistribution leads to better agreement between the observed and simulated mean snow 

cover durations on areas from east to west exposure (Figure 4-5d). In the following 

comparison, we will refer only to the best WaSiM setup with the optimized gravitational snow 

and activated wind redistribution (configuration D). 

 

Figure 4-5: Topographical analysis of observed and simulated mean snow cover durations with 
default parametrization of gravitational redistribution and without wind redistribution (a), with 
optimized parametrization of gravitational redistribution and without wind redistribution (b), with 
default parametrization of gravitational redistribution and activated wind redistribution (c) and 
with optimized parametrization of gravitational redistribution and activated wind redistribution 
(d) over elevation, slope and aspect plus corresponding mean standard deviation. 
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4.3.4. Comparison and accuracy of observed and simulated snow cover 

products 

The cumulative snow and no snow frequency curves show a strong similarity in the snow 

detection and simulated values (Figure 4-6a). The cumulative no snow frequency curves 

diverge with no snow coverage < 10 % in the lower elevation ranges of the AOI. Although the 

frequency response with snow detection is quite similar, there is a systematic offset between 

the snow detected by TUM and Eurac from 10 % to 90 % areal coverage. Eurac tends to detect 

a lower snow cover probability than TUM. This is because the Eurac classification was trained 

with the majority of mixed pixels being considered as snow-free. The simulated snow cover 

frequencies follow the same response as the detections, but the model has a slight tendency 

to overestimate the snow covered area within the 60 % to 90 % areal coverage range. 

Overall accuracy scores for both TUM and Eurac snow detection are very high (F1 = 0.97, F2 

= 0.91, F3 = 0.9), only dropping in August to 0.8 for F2 and F3 respectively, as can be seen in 

Figure 4-6b. The overall accuracy scores of TUM-WaSiM (F1 = 0.93, F2 = 0.83, F3 = 0.75) 

and Eurac-WaSiM (F1 = 0.93, F2 = 0.83, F3 = 0.71) provide further evidence that the model is 

able to simulate the spatial snow distribution in the research area well. Comparison of the 

mean scores on a monthly scale reveals the part of the season in which the model has a 

reduced accuracy in the snow cover distribution simulation. The critical months are the 

beginning of the accumulation periods (October, with an overall mean fSCA of 45 % (Eurac), 

57 % (TUM) and 56 % (WaSiM)) and ablation (June, with an overall mean fSCA of 52 % 

(Eurac), 55 % (TUM) and 58 % (WaSiM)), although they still have a mean F1 score of above 

0.8. The F2 and F3 scores exclude the no snow pixels and accordingly result in lower scores 

(Warscher et al., 2013). 
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Figure 4-6: Empirical cumulative frequencies of no snow and snow (a) and mean monthly 
accuracy of observed and simulated snow cover areas (b). 

4.3.5. Comparison of snow cover frequencies and fractional snow-

covered area (fSCA) 

Differences between observed and simulated snow cover days (SCDs) at the pixel scale were 

investigated in more detail for each hydrological year (1 Oct. - 30 Sept.), as illustrated in Figure 

4-7. In general, the hydrological years 2016 and 2017 had a shorter snow coverage period 

than the subsequent three years (2018, 2019 and 2020). The lower snow coverage in 2016 

and 2017 results in better visual agreement between the two snow observation products. 

However, the relatively high standard deviations (> 74 d) given in Table 4-5 indicate a greater 

variance in the snow cover days within the AOI. WaSiM simulates a higher snow cover duration 

for both years, which also results in a slightly lower standard deviation of SCDs (< 73 d). A 

distinct tendency towards overestimation of the SCDs can be observed, especially for the 

hydrological year 2016. 

For the snow rich years 2018, 2019 and 2020, TUM shows a higher frequency of mean SCDs 

in the range above 250 d than Eurac. In terms of the observed and simulated SCDs, the WaSiM 

results are more similar to those of TUM snow detection for the corresponding period than they 

are to those of Eurac. With increasing mean SCDs, the standard deviation decreases, 

indicating a lower heterogeneity in the snow cover duration. The overall mean gives the mean 

and standard deviation of each snow product for the whole investigation period 2016-2020. 

The overall mean SCDs of 236 d confirms the tendency of Eurac to underestimate the snow 

cover duration as compared with TUM (251 d) and WaSiM (258 d) and also shows the highest 
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variability in snow cover duration, with a mean standard deviation of 64 d. The standard 

deviation shows that the snow cover duration varies greatly from year to year and declines in 

snowy winters with long snow cover durations (such as in 2018/2019). Moreover, the standard 

deviation of SCDs obtained from WaSiM is systematically lower than the one observed without 

taking canopy interference into consideration. 

Table 4-5: List of means and standard deviations (SD) of snow cover days (SCDs) for the 
different snow products and for each hydrological year.  

Hydrological 

year 

Mean SCDs 

Eurac 

Mean SCDs 

TUM 

Mean SCDs 

WaSiM 

SD SCDs 

Eurac 

SD SCDs 

TUM 

SD SCDs 

WaSiM 

2016 221.16 233.20 261.94 77.04 75.99 72.20 

2017 206.89 222.55 230.27 74.10 74.33 66.39 

2018 218.20 241.58 240.49 63.57 61.59 63.73 

2019 275.96 288.79 289.06 50.57 43.62 40.17 

2020 256.23 269.78 270.42 55.67 51.44 47.83 

Overall mean 235.69 251.18 258.44 64.19 61.40 58.07 

Figure 4-7 shows the comparison among the frequencies of snow cover days and reveals the 

tendency of WaSiM to underestimate the snow cover duration in the 360 SCDs bin and to 

overestimate it in the following bin (> 360 SCDs) corresponding to perpetual snow cover. 

Moreover, WaSiM simulation results in a longer snow cover duration than the two observation 

products for the classes 260 d and 270 d in the extreme winter 2018/2019.  



103 
 

 

Figure 4-7: Frequencies of observed and simulated snow cover days (SCDs) in bins of 10 
SCDs for each hydrological year and as average means. 

Given that the frequency of snow cover days does not allow any spatial comparison between 

the two approaches and the simulated maps, Figure 4-8 compares case studies for a 

hydrological year with (2020) and without (2019) good agreement. Eurac shows differences in 

snow detection at the valley bottom in forested areas and on steep slopes for both winters 

(2019 and 2020), these often being set to no data due to the presence of shadows. Moreover, 

the presence of clouds impacts snow and ice detection on the glaciered areas. The TUM snow 

cover product mostly has problems with overestimations of snow cover at the bottom of steep 

north-facing slopes. Topographical features such as ridges and slopes are highly visible in 

both products, as is interference from vegetation, especially with respect to the year 2020. As 

snow cover duration increases, topographical features become less visible, as is the case for 

2019. However, Eurac also underestimates the snow cover days on the forested valley bottom 
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in the snow rich year 2019 when compared with TUM. The hydrological model WaSiM is well 

able to simulate the spatial distribution of snow cover days for both seasons, but overestimates 

the snow cover duration at the valley bottom and to some extent at the highest elevations (> 

3000 m a.s.l.) for the snow rich year 2019. The main topographical features (ridges and slopes) 

are also represented by the model. Activated wind redistribution leads to a longer snow cover 

duration on north east-facing slopes, which are also partially present in the observation 

products. In contrast, WaSiM underestimates the snow cover duration in west-facing areas 

due to wind-driven snow erosion, as is the case for the Madritsch snow station and the 

surrounding area. Canopy snow interception was not considered in the model and is therefore 

not discernible in the valley bottom. 

 

Figure 4-8: Observed and simulated snow cover maps for 2019 (above) and 2020 (below). 

The fractional snow-covered area (fSCA) of the two observation products and the simulation 

results were evaluated for a more quantitative comparison. The fSCA shows strong seasonality 
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in all products (Figure 4-9). Although the simulated snow coverage given by WaSiM is in line 

with that observed by Eurac, there are larger fSCA in the ablation period (June and July) of the 

years 2016 (+14.2 %), 2017 (+3.2 %) and 2020 (+8.6 %) but also for new snow events in 

August and September of the years 2017 (+8.5 %) and to some extent 2018 (+5.5 %). This 

pattern is mainly present when comparing WaSiM with TUM for some dates of the years 2016 

and 2017. However, these differences are not as pronounced as for the Eurac product. As an 

overall mean, WaSiM overestimates the Eurac fSCA by 5.1 % and slightly underestimates the 

TUM fSCA by 0.6 % during the ablation period (June and July). The overall Pearson correlation 

of fractional snow-covered areas is 0.98 for Eurac and WaSiM and 0.98 for TUM and WaSiM. 

 

Figure 4-9: Fractional snow-covered area (fSCA) for each image and snow product, comparing 
Eurac and WaSiM (a) and TUM and WaSiM (b). 
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4.4. Discussion 

4.4.1. Cloud detection by TUM and Eurac 

In this work, we tested the extent to which a simple snow and cloud detection approach (TUM) 

performs in a complex terrain and determined what limitations might occur. Previous 

evaluations have found that Idepix overclassifies possible cloud shadow pixels (Alvera-

Azcárate et al., 2021). Although Idepix has been tested for a wide selection of regions, it still 

has limitations and weaknesses in cloud detection that have not been completely resolved. 

The main difficulties are in its ability to distinguish between cloud and snow/ice and to detect 

optically very thin clouds (Brockmann Consult GmbH, 2017). In a visual inspection for the years 

2015 and 2016 based on Idepix cloud products, we observed that snow was systematically 

falsely classified as cloud in clear sky situations during the winter due to the presence of 

topographical shadows (see supplementary Figure A.3.9 in Hofmeister et al. (2022)), which 

would lead to an underestimation of snow cover if the erroneously detected clouds are set to 

no data. Snow detection by NDSI was therefore given a higher confidence rating than cloud 

detection by Idepix and clouded areas were only set to no data when the binary snow detection 

value was zero. This resulted in false snow detection for a few pixels on steep shaded slopes 

with low illumination. This effect is also shown by TUM on the slope feature class (Figure 4-5), 

where the variance in the mean snow cover duration increased for very steep slopes (> 60°) 

when compared to Eurac. The complementation by the Idepix Mountain_Shadow layer might 

reduce false snow and cloud detection on steep and shaded slopes.  

The Eurac algorithm is based on an ML approach that uses multi-temporal training samples. 

Even if the samples are collected over a large variety of scenes, including different illumination 

conditions, a single model is used and the quality of the classification still depends on the 

conditions of the scene. This is mainly due to the limited spectral information provided by 

Sentinel-2, which is insufficient for solving all ambiguities. Unlike the single-scene cloud 

detection of Idepix, the Eurac product is able to classify mountain shadows on north-facing 

slopes, as can be seen in the case study on cloud detection in Figure 4-3d. Additionally, it has 

the highest snow detection confidence, even in steep terrain, as can be concluded from the 

narrow uncertainty band in Figure 4-5. Since it uses an active learning approach, the cloud 

and snow detection quality relies on the user selecting the appropriate training pixels. It is 

sometimes difficult to visually assign the correct class to pixels showing mixed characteristics, 

such as shadowed or forested areas. In these pixels, the classifier usually returns an uncertain 

probability (i.e. around 50 %) of the pixel belonging to the snow class. In general, cloud 

detection by both Idepix and ML requires deeper investigation over forested areas in Alpine 

catchments. Moreover, a comparison with other available remote sensing snow cover products 

(e.g. Gascoin et al., 2019; Di Marco et al., 2020) may be beneficial for the future. 
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4.4.2. Validation of snow detection quality through in-situ snow 

observation 

The individual selection of a snow depth threshold is recommended when comparing remote 

sensing and ground snow cover information. In fact, each snow observation site has its own 

characteristics, such as elevation, aspect, exposure to wind, and land cover, that influence this 

comparison. Due to the additional interference between vegetation and snow cover detection, 

validation by in-situ snow observation is more accurate for sites located above the forest line. 

Moreover, the mixed pixel issue of different spectral signatures can impact the binary snow 

and no snow information. For small snow depth thresholds (< 4 cm), a high snow detection 

sensitivity can be observed at the Rossbaenke site due to interference of grass cover with the 

snow (Figure 4-4). One way of reducing this error would be to filter the snow depth 

observations to avoid noise caused by the ground (i.e. grass). Nevertheless, a good level of 

accuracy can be achieved for lower lying sites that are surrounded by coniferous forest and 

grassland, as is the case for the TUM snow product. Barrou Dumont et al. (2021) found an 

optimal threshold value even at 1 cm snow depth by analysing a very large data set of 1764 

in-situ snow observation stations. Differences in the snow cover detection accuracy by 

Sentinel-2 was also noted to be dependent on the land cover type. It was also found that the 

differences in the accuracy of snow cover detection by Sentinel-2 depend on the type of land 

cover. In particular, lower accuracies were obtained in closed forests and near water bodies 

(Barrou Dumont et al., 2021). Nevertheless, systematic false detection, such as in topographic 

shadows, can only be detected by comparing with another snow and cloud detection method, 

since most snow observation stations are located in flat terrain and are not shaded. 

Comparison between simulated SWE and in-situ snow observation at Madritsch undermined 

the use of the commonly used SWE threshold of 5 mm to distinguish between snow and no 

snow. However, this only represents a point comparison at a single station. It might well be 

that the threshold sensitivity varies from site to site. 

In a small case study (September 2018 - October 2019), we tested the utility and effect of 

atmospheric correction on snow detection with Sentinel-2. From this evaluation, 

atmospherically (AC) and non-atmospherically (nAC) corrected results mostly differ on lower 

elevated areas. Using the AC dataset, snow detection accuracy increased for the Madritsch 

observation station (from 0.85 to 0.94 at a 4 cm threshold) but decreased for the lower lying 

Zufritt station (from 0.78 to 0.74 at a 4 cm threshold). The full figure is available in the 

supplementary material (A.3.10 in Hofmeister, Notarnicola, et al. (2022)). Major differences 

can be seen in the topographical analysis, where the use of the AC dataset led to 

underestimation of snow at lower valley locations. In this elevation range, AC shows a stronger 

similarity to the Eurac product (supplementary Figure A.3.11 in Hofmeister, Notarnicola, et al. 
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(2022)). In contrast, AC overestimates the snow cover duration in the 2500 to 3500 m elevation 

range. Moreover, the performance in southern to north western areas no longer agrees with 

Eurac. 

For this analysis, AC is useful for improving snow detection on the point scale, as is the case 

for the Madritsch station, but leads to underestimation of the snow cover duration at lower 

elevations (< 2500 m) with weaker illumination and in areas with a southern to western aspect, 

such as the Zufritt station. Comparing the gains and losses in accuracy for both stations, we 

conclude that it is important to critically evaluate the area studied in order to decide whether to 

use an AC. The application of these and other AC algorithms may significantly improve 

accuracy, although, in some instances, its use does not appear to offer sufficiently significant 

improvements to justify the larger time requirements and higher computational demand for 

detecting snow cover. 

4.4.3. Topographical analysis and optimized WaSiM setup 

The topographical analysis revealed differences between the snow cover observations from 

Sentinel-2 and simulation with the standard WaSiM setup for snow redistribution (Figure 4-5). 

Both snow observation products and the snow model are able to reproduce the increase in 

mean snow cover duration with increasing altitude. Larger differences can be observed in 

particular for lower lying areas (< 2200 m a.s.l.). The significant underestimation of snow cover 

duration by Eurac is due to its difficulties in detecting snow in forested areas compared to TUM 

and WaSiM. The large standard deviation of the observation products undermine the large 

variance in snow detection for the corresponding elevation zone, as one elevation zone can 

include pixels with different slopes, aspects and land cover.  

The overestimation of gravitational redistribution can be reduced by optimizing the erosion 

factor (ferosion) (Figure 4-5a and b) for the corresponding elevation zone. The simulation of 

gravitational redistribution is particularly important for avoiding so called “snow towers” at the 

peaks and ridges. Since the ferosion parameter depends on the model time step, it must be 

recalibrated if, for instance, the model is run with a daily time step. In general, changes in the 

erosion factor within the range 0.001 to 0.007 with an hourly model time step significantly 

affected the model results on slope gradients steeper than 30°. Besides the erosion factor, the 

ierosion parameter, which determines the threshold for commencing gravitational redistribution 

was adjusted from 45° to 50° (Figure 4-5a and b). There is no change in the slight 

overestimation of the simulated mean snow cover duration on slopes from 40° to 50°, even 

after parameter optimization. It is therefore assumed that with larger snow accumulations, the 

snowmelt is delayed by the surface energy balance model. The activation of wind-driven snow 

redistribution impacts mainly the mean snow cover duration on steep slopes with inclines of 
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over 60° due to the intense snow accumulation in this class (Figure 4-5d). This shows the 

limitation of a global erosion factor that is constant in space and time.  

Moving to a larger scale, the deficits on the slope feature class are levelled out when comparing 

the mean snow cover duration against aspect. Several previous studies have determined the 

effect of aspect on snow cover duration. South-facing slopes receive more solar radiation, 

which leads to more rapid snow melt and a shorter snow cover duration than on north-facing 

slopes in the northern hemisphere (López-Moreno & Stähli, 2008; Bouamri et al., 2021). The 

two observation products mainly differ for north and north west exposed areas, where TUM 

tends to detect more snow. This is partly due to false positives in shaded areas and lower 

cloud detection in north-facing areas (supplementary Figure A.3.6 in Hofmeister, Notarnicola, 

et al. (2022)). Although WaSiM was able to adjust the radiation and temperature with respect 

to the topography, it was determined that the mean snow cover duration was overestimated 

for south-facing areas (Figure 4-5a and b). This overestimation can be reduced by taking into 

consideration the wind-driven redistribution with a constant south-westerly wind direction 

(Figure 4-5d). Generally, north-west to north-east located areas indicate the largest spatial 

variability of mean SCD. Though the simulated mean snow cover duration improved on the 

catchment scale, this simple approach is unable to consider minor or major differences in wind 

fields and speeds. Comparing the dispersion of standard deviation of all topographical 

features, it can be seen that the features with the largest spatial variability are slope and 

aspect. 

4.4.4. Accuracy and frequencies of observed and simulated snow cover 

and fSCA 

Slight differences in the cumulative frequencies of no snow detection occurred mainly for the 

lower elevation zones, where TUM detects more snow areas than Eurac. It may be that Eurac 

underestimates snow cover in forest areas (Figure 4-4b) and TUM falsely detects snow in 

areas with low illumination. Since the canopy snow interception model of WaSiM was not 

activated, the model tends to overestimate mean snow cover durations when compared to 

observation products at the same elevations (Figure 4-5). Besides the systematic offset in 

cumulative snow detection frequencies between TUM and Eurac from 10 % to 90 % areal 

coverage, both approaches agree very well on the presence or absence of full snow coverage 

(Figure 4-6a). The simulated snow covered area approaches the Eurac product for low snow 

coverage since the glacier extents originate from this product. WaSiM tends to overestimate 

snow coverages of between 50 % and 95 % when compared to the observation products. It 

follows from the distinct decrease in all three accuracy scores in Figure 4-6b that WaSiM has 

difficulties in simulating the snow cover recession in the snow melt period (from May to July). 

The delayed snow cover recession results in an overestimation of the snow cover for these 
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months, which is also evident from an analysis of the fractional snow-covered area (Figure 

4-9). This delay can have different reasons. For instance, the long-wave incoming and 

outgoing parameters (LWINcorr and LWOUTcorr) need a fine tuning based on the snow cover 

recession during the ablation period (May to July). Consideration of the snow-covered area in 

a multi-objective calibration approach would improve the model performance on the catchment 

scale. In addition, the use of a multi-layer snow model could enhance the simulation of 

snowmelt by additionally considering heat transfer in the snow pack, especially for snow rich 

winters (e.g. 2018/2019). However, the multi-layer snow model requires additional calibration 

parameters to characterize generally unknown soil properties, as well as a new calibration, as 

a compact snow pack without a layered snow model reacts quite differently to warming or 

cooling than a layered snow pack (Schulla, 2021).  

4.5. Conclusion 

This study presented the potential and limitations using Sentinel-2 images for observing snow 

cover with a high temporal and spatial resolution in a complex mountainous terrain. We also 

highlighted the additional benefit of using observation data in the process-oriented calibration 

of a physically-based snow model. To increase the available data, Sentinel-2 images with up 

to 80% cloud cover were also considered, as they can contain valuable spatial information 

regarding snow distribution. This requires comprehensive cloud detection to avoid false 

detection of either snow or no snow. Cloud detection was performed using the Idepix pixel 

classification algorithm in SNAP for the TUM product. We tested the snow and cloud detection 

quality against in-situ snow observation on the point scale and also against Eurac, a second 

snow and cloud product that is based on a supervised algorithm. Both observation products 

generally attained a very high overall F1 accuracy score (> 0.9) with respect to the in-situ 

station data. The advantages of using two different approaches are that it makes it possible 

both to perform an intercomparison and validation of the respective results and to identify the 

limitations of the two approaches. Moreover, the use of two products enables us to estimate 

the range of uncertainty in snow mapping with high-resolution optical remote sensing data. 

Although both observation products provide consistent estimates of the mean snow cover 

above the tree line (> 2300 m a.s.l.), distinct differences were observed for the slope feature 

class. The Idepix tool in particular tends to make false detections of snow and cloud on steep 

north-facing slopes (> 60°) and to falsely classify snow as cloud in some clear sky situations 

in winter. In contrast, the active learning approach of Eurac underestimates snow cover in 

evergreen forest areas unless explicit training pixels are selected. The limitation of optical 

remote sensing products for snow detection under the canopy is a generally well known 

problem, which is why only the snow cover of high-altitude regions is usually analysed 
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(Gascoin et al., 2019). Future research will be on assessing fractional snow cover in forested 

areas using optical remote sensing products (Gascoin et al., 2020).  

Unlike the coarse MODIS data (Bouamri et al., 2021), Sentinel-2 enables the investigation of 

small-scale differences in snow cover duration in complex terrains due to gravitational 

redistribution (slope), energy balance and wind-driven redistribution (aspect). This makes it 

possible to calibrate and validate the physically-based snow model of WaSiM in a process-

oriented manner on different scales (point, slope and catchment scale) with high spatial 

resolution (25 m). Depending on the scale and elevation, each snow detection approach has 

its advantages; for instance, TUM performs better at the forested valley bottom, while Eurac is 

more reliable at detecting snow on very steep slopes (> 60°). Nevertheless, the two snow 

detection approaches should be validated with other observational data (e.g. LiDAR) and 

compared to other algorithms to further investigate the robustness of these approaches.  

The spatial comparison of observed and simulated snow cover durations revealed limited 

WaSiM capabilities on steep slopes (> 25°) with the default parametrization, which cloud be 

partially overcome by calibrating the gravitational redistribution. Moreover, it was shown that 

the mean snow cover duration computed with WaSiM at different exposures is not only 

dependent on the incoming solar radiation but also on the wind-driven snow redistribution. The 

optimized WaSiM model was able to simulate both the mean snow cover duration with a high 

F1 accuracy score of > 0.9 and the fractional snow-covered area with a very high correlation 

coefficient of 0.98. Although hydrological analysis would greatly profit from spatially distributed 

and highly resolved in time information about SWE, the approach that we propose allows us 

to constrain two important model parameters for the WaSiM model by considering only snow 

cover information. Our work therefore provides a robust methodology with which it is possible 

to collect spatio-temporal snow cover information to calibrate empirical gravitational snow 

redistribution models, and hence enables multi-objective calibration and validation for 

hydrological model applications in high-elevation Alpine catchments for further studies. We 

can hypothesis that calibrated WaSiM model results will also provide more accurate SWE 

estimation and consequently discharge predictions. Such hypothesis should be tested in a 

multi-objective optimization framework and under the consideration of further observational 

data, such as SWE and discharge time series. Moreover, snow cover model results can find 

application beyond the field of hydrology and are of interest for ecological studies (Qi, Wang, 

Ma, Zhang, & Yang, 2021; Wan et al., 2014) as well as for the evaluation of the sustainability 

of winter tourism (Ebner et al., 2021). Although we did not include glaciers in this study, it is 

possible to derive further cryospheric products from Sentinel-2 (e.g. glacier extents, snow line 

on glacier and glacier albedo) to calibrate and validate also glacier modules in hydrological 

models. 
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5. Coupling support vector machine and physically-based 

hydrological modeling for reducing the computational time in 

climate change studies 

 

Hofmeister, Spadina, & Chiogna, 20224 

 

Abstract 

Hydrological modeling of Alpine catchments is particularly challenging due to the high 

variability of hydrological processes in space and time. Although physically-based and fully-

distributed hydrological models, such as WaSiM, are able to simulate these small-scale 

variabilities, the computational time for running a model on hourly time step and 25 m grid 

resolution in mesoscale catchments (10-100 km²) is significantly high. This becomes 

particularly relevant when large time periods (> 30 years) are to be simulated for climate 

change studies. Therefore, we applied Support Vector Regression (SVR) to reproduce the 

results of a high-resolution WaSiM model (25 m grid, hourly time step) using as an input a 

coarse spatial (100 m grid) and temporal (daily) resolution of the model and hourly 

meteorological time series. As a result, the computational time was reduced by 93 % for the 

model setup with hourly time step and 25 m grid resolution. The quality of the SVR results was 

quantified through different indicators: Root Mean Squared Error (RMSE), Standard deviation 

Ratio of RMSE (RSR), Nash-Sutcliffe Efficiency (NSE) and logarithmic NSE (logNSE). 

Additionally, the SVR results were compared with the flow duration curve. All indicators show 

an excellent performance (e.g., NSE=0.89) of the SVR in reproducing WaSiM results. We 

tested the robustness of the SVR also considering different data, such as meteorological inputs 

from different stations and simulated discharges of sub-catchments. Except for the cases of 

small sub-catchments with little glacier contribution, very good performance levels were 

achieved. 

  

                                                
4Material from: 
Hofmeister, F., Spadina, A., & Chiogna, G. (2022). Coupling Support Vector Machine and physically-
based hydrological modeling for reducing the computational time in climate change studies. 
Proceedings of the 39th IAHR World Congress, 4827–4836. International Association for Hydro-
Environment Engineering and Research (IAHR). doi: 10.3850/IAHR-39WC252171192022902. 
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5.1. Introduction 

The consideration of physical processes at high spatial and temporal resolution in the field of 

hydrological modeling is still limited by the computational resources, especially when it comes 

to long simulation runs (> 30 years) on the catchment scale. This is one of the reasons why 

data-driven machine learning (ML) approaches have been a popular method for runoff 

modeling in recent years (Mohammadi, 2021). Most of the ML applications (e.g. support vector 

regression SVR) in hydrological research aim to directly reproduce or predict discharge. 

Parisouj et al. (2020) employed three different ML algorithms (SVR, Artificial Neural Network 

with backpropagation (ANN-BP), and Extreme Learning Machine (ELM)) for streamflow 

predictions at different rivers and concluded that SVR had the best performance among the 

three models for both daily and monthly scales. Already previous studies mentioned that SVR 

achieves much better simulation accuracy than ANN in hydrological predictions (Lafdani, Nia, 

& Ahmadi, 2013; M. Liu & Lu, 2014; Maity, Bhagwat, & Bhatnagar, 2010; Parisouj et al., 2020; 

Wang, Chau, Cheng, & Qiu, 2009). Liu et al. (2015) coupled a discrete wavelet transform with 

a SVR model for more reliable daily stream flow predictions. Moreover, SVR was used to 

forecast reservoir inflows during typhoon periods (Lin, Wang, & Chen, 2016). SVR can also be 

used to reproduce hydropeaking in response to energy price fluctuations and day of the week, 

which allows to mimic the management strategy of the reservoir without a specific knowledge 

of the management rules (Chiogna et al., 2018). Chiang et al. (2022) compared rainfall-runoff 

model results of a physically-based hydrological model with the results of a SVR approach. 

The SVR model estimated the rainfall-runoff relationship reasonably well independently of the 

time series length of the inputs. In contrast, the physically-based model needed more 

parameter optimization and inference processes to achieve the same performance level as the 

SVR model (Chiang et al., 2022). 

However, to our knowledge, no SVR method has been applied as surrogate model to 

reproduce the model results of a physically-based hydrological model with high spatial (25 m) 

and temporal (1 h) resolution to reduce the computational time. As inputs for the SVR, we used 

the simulation results of the hydrological model WaSiM (Schulla, 2021) with a coarser spatial 

(100 m) and temporal (daily) resolution and hourly meteorological time series. Compared to 

the original computational time when running WaSiM with the high spatial resolution of 25 m 

for a 54 km² large catchment, it was possible to reduce the computational time by 93 % while 

achieving very good goodness of fit criteria.   
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5.2. Materials and methods 

5.2.1. Research area 

The Kaunertal is part of the Oetztaler Alps and located in the central Alps in Tyrol/Austria. The 

valley has a south-north orientation with an altitudinal range from 1895 m.a.s.l. to 3576 m.a.s.l. 

and is drained by the Fagge river, a tributary of the Upper Inn River system. The research area 

of this study covers the upper Kaunertal south of the Gepatsch reservoir closed at the gauge 

Gepatschalm with an approximated size of 54 km². The runoff regime of the Fagge has a 

glacio-nival characteristic with a long low flow period in winter (November to May) and a shorter 

period of larger discharge fluctuations in summer (June to October). Mean discharge of the 

Fagge at gauge Gepatschalm was 3 m³/s over the period 2009/11 to 2019/12 and maximum 

hourly discharge was 49.18 m³/s on 22.08.2011. The Gepatsch glacier, the second largest 

glacier of Austria, covers together with the Weißseeferner approximately 37 % of the 

catchment (Förster et al., 2016). Besides of multiple hydrological (Förster et al., 2016; Rogger 

et al., 2017) and cryospheric investigations (Fey et al., 2019; Fleischer et al., 2021; Schattan 

et al., 2020; Schöber et al., 2014; Wagner et al., 2020, 2016), a number of other processes 

were studied in the Kaunertal, such as changes in the sediment transport (Baewert & Morche, 

2014; Heckmann et al., 2012; Schöber & Hofer, 2018) and in the morphodynamics of this high 

Alpine area (Altmann et al., 2020; Haas et al., 2012). 

The study area with glacier coverage from 2009 and the corresponding WaSiM sub-

catchments are shown in Figure 5-1 for two different model discretization 25 m and a coarser 

of 100 m. Glacier coverage and digital elevation model (DEM) were generated within the 

PROSA project (High-resolution measurements of morphodynamics in rapidly changing 

PROglacial Systems of the Alps). The DEM is based on multi-temporal airborne laser scanning 

data (ALS data), which have been generated during flights in 2012. 
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Figure 5-1: The research area upper Kaunertal with different spatial model resolutions 25 m 
(a) and 100 m (b) and the corresponding sub-catchments implemented in WaSiM. Colored 
points indicate the meteorological stations Weißsee (red) and Gepatschalm (green), where the 
stream gauge is also located. The meteorological station Dammfuß is located about 6.4 km 
north of Gepatschalm and is therefore not visible on the map. All stations are operated by 
TIWAG. 

5.2.2. Support Vector Regression 

Before building a Machine Learning model (ML), it is necessary to collect and preprocess the 

input data, which are afterwards subdivided in training xi and testing data yi. Support Vector 

Regression (SVR) deals with regression problems. The problem consists in finding the best 

function that maps the m-dimensional input X ∈ Rm into the output Y ∈ R. The input-output 

relationship f(X) of SVR can be either linear or non-linear. In this latter case, the training inputs 

xi are mapped into a feature space F where the problem has a linear nature. This is done by 

means of a map function Φ(X) → F; in this way, the problem has a linear nature and can be 

solved as for the linear case (T.-M. Huang, Kecman, & Kopriva, 2006; Smola & Schölkopf, 

2004).  

The most commonly applied kernel functions are polynomial and Gaussian. We used the latter 

because of its ability to shorten the computational time and to improve the generalization 

performance (Dibike, Velickov, Solomatine, & Abbott, 2001; Maity et al., 2010).  For solving 

the SVR, we used two different approaches, which are implemented and available in MATLAB 

(MATLAB r2021a). The first approach fits an exact SVR model (fitrsvm) by applying a Gaussian 

kernel function linear or polynomial while the second approach fits a Gaussian kernel 

regression model (fitrkernel) using random feature expansion, which results in an 

approximation of the kernel function.  
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The SVR requires further to define the model hyperparameters. According to Huang et al. 

(2006), we calibrated the most important parameters ε, C and the kernel scale, i.e. the variance 

of the Gaussian kernel, which control the smoothness of f(X). 

5.2.3. Hydrological model WaSiM 

The grid-based deterministic Water Flow and Balance Simulation Model WaSiM (Schulla, 

2021) was already applied in various studies for hydrological investigations in Alpine or pre-

Alpine catchments (Förster et al., 2018; Kraller et al., 2012; Strasser et al., 2019; Thornton et 

al., 2021; Warscher et al., 2013). WaSiM has a modular structure and offers several algorithms 

for the simulation of specific processes depending on the application requirements and data 

availability. Main model components, which were applied in this study (WaSiM version 

10.04.07), are the simulation of the soil water flows in the unsaturated zone based on the 

process-orientated Richards approach, interpolation of meteorological input with inverse 

distance weighting (IDW) for precipitation and radiation and with elevation dependent 

regression for temperature, wind speed and humidity. Moreover, evapotranspiration was 

simulated with Penman-Monteith, snow and glacier melt with empirical degree-day-factor 

approach and consideration of gravitational snow redistribution. The WaSiM parameters are 

mainly based on default values from the WaSiM user manual (Schulla, 2021), while the 

vegetation and soil parametrization are derived from previous studies within the framework of 

the PROSA project. We considered a two years warm up period (2009 to 2011) as initialization 

phase and the hydrological year from October 1 to September 30 for all evaluations. 

5.2.4. Data preprocessing 

The input data for the SVR are the hourly and daily meteorological time series (temperature, 

precipitation, wind speed, radiation and humidity) and the daily simulated WaSiM discharge 

computed using a 100 m grid resolution. The training period of SVR was from 01.10.2011 to 

30.09.2016 and testing from 01.10.2016 to 30.09.2018. Since WaSiM interpolates missing 

data in the meteorological input based on other station data, data gaps had to be interpolated 

in advanced with the same interpolation approaches to ensure consistency in the input data 

between WaSiM and SVR.  

5.2.5. Input selection 

In order to select which parameter should be used to train the SVR, the correlation coefficients 

between different meteorological inputs from different stations were computed. Considering 

location, data quality and availability of the time series, we selected meteorological input from 

the Weißsee station. Besides the daily simulated discharge of WaSiM and the hourly and daily 

WaSiM inputs, other inputs relevant for hydrological processes such as average temperature 

and radiation of the day before controlling snowmelt and the precipitation in the mean runoff 

concentration time of the catchment were considered. In addition, the month number was 
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included because of the strong seasonality of the hydrological processes in Alpine catchments. 

Different combinations of these parameters were used to train the support vectors while 

changing the three hyperparameters, one at a time. Afterwards, the performance of trained 

SVRs was tested in the validation time and the most promising combination of inputs was 

selected. The performance of the SVRs was measured with the root mean square error 

(RMSE) and the results for the hyperparameter kernel scale, which tuned out to be the most 

sensitive hyperparameter, are listed in Table 5-1 for fitrsvm and Table 5-2 for fitrkernel. As 

observed value in the RMSE function, we used the hourly discharge generated with the 25 m 

grid WaSiM. 

Table 5-1: RMSE [m³/s] values for the inputs selection for the fitrsvm function in training and 
validation period. Qd is daily discharge from WaSiM in 100 m grid resolution, P precipitation, 
T temperature, conc t and d before mean value of the input in the concentration time and in 
the day before respectively. 

Combination Inputs 

Dammfuss 

Train. Val. 

Gepatschalm 

Train. Val. 

Weißsee 

Train. Val. 

1 Qd, P, Pconc t, T, Tconc t, month 1.28 1.15 1.20 1.11 1.02 0.99 

2 Qd, P, Pconc t, T, Td before, month 1.28 1.20 1.22 1.13 1.00 1.01 

3 Qd, P, T, Td before, month 1.35 1.23 1.31 1.18 1.14 1.08 

4 Qd, P, T, month 1.39 1.25 1.36 1.23 1.19 1.11 

5 Qd, P, T 1.33 1.22 1.28 1.16 1.09 1.05 

6 Qd, P, T, Td before 1.41 1.37 1.37 1.37 1.21 1.26 

7 Qd, T, Td before 1.41 1.24 1.36 1.19 1.21 1.07 

8 Qd, P, Pconc t 1.83 1.78 1.82 1.79 1.81 1.76 

9 Qd, rad, radd before - - - - 0.56 3.26 

Best input combination for fitrsvm is number four with daily discharge, precipitation and 

temperature measured at the Weißsee station, and month number. The motivation in this 

choice lies in the small change of RMSE between training and validation period and a low 

number of inputs, as well as on the results obtained by changing the other two 

hyperparameters (results not shown). Thus, the RMSE difference between training and 

validation for the C hyperparameter is greater for the combination five (RMSE 1.08) than for 

combination four (RMSE 0.43). 
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Table 5-2: RMSE [m³/s] values for the inputs selection for the fitrkernel function in training and 
validation period. Qd is daily discharge from WaSiM in 100 m grid resolution, P precipitation, 
T temperature, conc t and d before mean value of the input in the concentration time and in 
the day before respectively. 

Combination Inputs 

Dammfuss 

Train. Val. 

Gepatschalm 

Train. Val. 

Weißsee 

Train. Val. 

1 Qd, P, Pconc t, T, Tconc t, month 1.27 1.14 1.20 1.09 1.03 0.99 

2 Qd, P, Pconc t, T, Td before, month 1.28 1.17 1.22 1.12 1.00 0.97 

3 Qd, P, T, Td before, month 1.28 1.19 1.25 1.15 1.06 1.03 

4 Qd, P, T, month 1.41 1.25 1.39 1.23 1.23 1.10 

5 Qd, P, Pconct, T, Td before, month 1.38 1.21 1.34 1.14 1.16 1.04 

6 Qd, P, T 1.46 1.25 1.42 1.22 1.29 1.11 

7 Qd, P, T, Td before 1.45 1.22 1.40 1.16 1.26 1.06 

8 Qd, T, Td before 1.47 1.26 1.42 1.19 1.31 1.12 

9 Qd, P, Pconc t 1.90 1.69 1.90 1.70 1.89 1.69 

5.2.6. Training and testing of SVR 

We applied the gridsearch and k-fold cross validation as training strategies for the two SVR 

models in a five year long training period (2011-2016). Gridsearch consists in trying possible 

combinations of the three hyperparameters, ε, C and kernel scale, and pick the best performing 

combination (Hsu, Chang, & Lin, 2016) using a grid for the definition of the parameter values. 

The values of the hyperparameters where chosen in a way that for each of them there was an 

exponentially growing sequence covering the entire range of the parameters. The best 

combination was used as an indicator of the "best" region of the grid and on that region a finer 

grid search was conducted. These steps were repeated until the performance of the SVR 

converged. 

For each combination of hyperparameters, the SVR is trained with k-fold cross validation in 

order to prevent overfitting (Hsu et al., 2016). In k-fold cross validation, the dataset is used to 

produce k subsets, k - 1 subsets are used to train the SVR and the remaining one is used to 

test its performance. This step is done k times, keeping fixed hyperparameters and changing 

the subset used for testing, in a way that at the end each subset is used once to test the 

performance. The chosen objective function is RMSE. The dataset of the research area 

Kaunertal was subdivided in five parts, each corresponding to one year of training period. In 

order to assess the performance on the entire dataset the k RMSE values are averaged. After 
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several refinements of the grid the optimal hyperparameters were found, these are listed in 

Table 5-3 for both fitrsvm and fitrkernel. 

Table 5-3: Optimal hyperparameters of the trained SVR models. 

Hyperparameter fitrsvm fitrkernel 

   ε 0.0226*100.775 0.2262*10-0.01748 

C 103.4 103.20508 

kernal Scale 101.775 101.41408 

   

5.2.7. Baseflow correction 

In order to avoid low flow oscillations generated by the two SVR models, we applied a constant 

baseflow correction. The discharges were substituted with a constant in the low flow periods 

(winter), which was based on the average of the WaSiM simulated discharge in the low flow 

periods during the training period and was then substituted to the baseflow computed by SVR 

machines in both training and validation period. 

5.3. Results and discussion  

5.3.1. Validation of the SVR models 

For validating the SVR models, we computed multiple goodness of fit criteria (GoF) such as 

the RMSE, its standardized version RSR, Nash-Sutcliffe efficiency (NSE) and the logNSE over 

the entire period from 2009/11 to 2019/12. In order to compute the GoF, the simulated hourly 

discharge of WaSiM in 25 m grid resolution is considered as observed value and the hourly 

discharge reproduced by the SVR as simulated value. The calculated GoF are listed in Table 

5-4. 

Table 5-4: Performance of the SVR models reproducing hourly discharge by WaSiM in 25 m 
grid resolution. 

GoF fitrsvm 

2009/11-2019/12 

fitrkernel 

2009/11-2019/12 

RMSE [m³/s] 1.23 1.17 

RSR [-] 0.34 0.33 

NSE [-] 0.88 0.89 

logNSE [-] 0.92 0.92 
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According to the GoF, the SVR model built with the fitrkernel function achieved slightly better 

model performance than the fitrsvm function. The SVR model based on the fitrkernel function 

has a better representation of higher discharge values as can be seen for some peak flows in 

Figure 5-2 for the training period. The difference in predicting high flow events between the 

two functions is hardly visible, yet present, in the cumulative frequency function (CDF) plots of 

Figure 5-3. 

 

 

Figure 5-2: Hydrographs of simulated hourly discharge by WaSiM (blue line) and the one 
reproduced by the SVR models fitrsvm (subplot a) and fitrkernel (subplot b). The yellow area 
represents the training period of the SVR models. 

In the training period, the maximum discharge value simulated by WaSiM is 34.32 m³/s and 

the maximum values computed by fitrsvm and fitrkernel are 32.31 m³/s and 33.31 m³/s 

respectively. The reason for both the SVR models underestimating the highest peak might be 

that only relatively few extremely high discharge values were available to train the SVR 

machine in the five years of the training period (01.10.2011 to 30.09.2016), in which only three 

high flow events (05.07.2015, 15.07.2015 and 05.08.2015) with mean hourly discharges larger 

than 30 m³/s were simulated by WaSiM.  
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8  

Figure 5-3: Cumulative distribution function (CDF) of hourly discharge by WaSiM and the SVR 
models with fitrsvm (a) and fitrkernel (b). 

The magnitude-squared wavelet coherence is a measure of the correlation between signals in 

the time-frequency plane and allows the analysis of nonstationary signals. The SVR models 

are highly coherent with the WaSiM model simulations during the melting period, while the 

coherence decrease for scales smaller than one week in the winter period (Figure 5-4). 

However, the wavelet analysis of both the simulated discharge by WaSiM and the reproduced 

one by the SVR models reviled that none of them presents periodicities at these scales and 

this observation can explain the lack of coherence observed in Figure 5-4.  

 

Figure 5-4: Wavelet coherence between the WaSiM simulated discharge and the discharge 
reproduced by the SVR models fitrsvm (a) and fitrkernel (b) in hourly resolution. The direction 
of arrows corresponds to the phase lag on the unit circle. 

5.3.2. Reduction of computational time 

The finer spatial grid resolution of the 25 m WaSiM setup has a significant higher spatial 

discretization than the 100 m grid version. Consequently, the computational time for running 
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WaSiM with 25 m spatial and one hour temporal resolution increases by factor of nine in 

comparison to the WaSiM simulations, which consider daily temporal resolution and 100 m 

grid. The SVR models aim at reproducing the hourly discharge simulated by WaSiM with 25 m 

spatial resolution using as input the variables reported in Table 5-1 and Table 5-2. The SVR 

simulations allows to reproduce the highly resolved WaSiM model with a computational time 

reduction of 93 % (Table 5-5). We used an ordinary computer (Intel(R) Core(TM) i7-8565U 

CPU @ 1.80GHz 1.99 GHz) to estimate the computational time listed in Table 5-5.  

Table 5-5: Comparison of computational times for one year simulation of hourly discharge and 
25 m grid resolution with WaSiM. 

WaSiM configuration Computational 

time [s] 

Time reduction including daily 

WaSiM with 100 m grid [%] 

25 m grid 

resolution 

WaSiM 17,259 - 

fitrsvm 2.1 -93 

fitrkernel 0.2 -93 

5.3.3. Meteorological input from other stations 

Although the meteorological observations of the Weißsee station have proven to be the best 

input for the SVR models (see section 5.2.5), we tested the sensitivity of the SVR model 

performance to meteorological inputs from other stations. The performance of the SVR trained 

with temperature and precipitation from the Dammfuß station (1651 m.a.s.l.) resulted in values 

slightly worse than those produced by Weißsee station, while the SVR trained with temperature 

and precipitation from the Gepatschalm station (1950 m.a.s.l.) is slightly better than for the 

Dammfuss. This can be explained by the higher correlation coefficient between observed 

precipitation at Gepatschalm and Weißsee station (0.81) than at Dammfuß and Weißsee with 

a correlation coefficient of only 0.61. Nevertheless, this demonstrates the adaptability of the 

SVR models to different meteorological inputs and the relative low influence on the reproduced 

discharge. 

5.3.4. Discharge of sub-catchments 

While we have only evaluated the SVR model results for the outlet of the catchment in the 

previous sections, we also wanted to test the abilities of the SVR models to reproduce the 

simulated discharge by WaSiM for sub-catchments (shown in Figure 5-1). For this, we trained 

the SVR models with the daily discharge of each of the seven sub-catchments computed using 

the 100 m resolution model as input and gave the hourly 25 m resolution discharge of the 

corresponding sub-catchment as output. Generally, we observed a better model performance 
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for larger sub-catchments and in particularly when they contained a significant share of glacier 

coverage. 

5.4. Conclusion 

The aim of this study was to reduce the computational time required to obtain hourly discharge 

values at high spatial resolution based on daily simulated discharge at coarse spatial resolution 

by WaSiM. Thus, we applied two different Support Vector Regression (SVR) functions, which 

are able to achieve this goal by reducing the computational time for one year of hourly 

discharge from 4 hours and 48 minutes (WaSiM at an hourly scale and 25 m grid resolution) 

to less than 30 minutes with both fitrsvm and fitrkernel (see Table 5-5). This time includes the 

time needed to run one year of WaSiM simulation at a daily time scale and 100 m grid 

resolution. 

All goodness of fit (GoF) criteria indicate a very good ability of both SVR functions to reproduce 

hourly discharge by WaSiM (see Table 5-4). However, when comparing the performance of 

the two functions in more detail, fitrkernel achieved slightly better GoF criteria. Furthermore, 

the shorter computational time of fitrkernel had a substantial impact on the time required for 

performing k-fold and gridsearch in the calibration of the hyperparameters. Additionally, the 

SVR models are not only able to adapt to slightly different meteorological inputs, but also to 

successfully reproduce the discharge values simulated with the hydrological model with finer 

spatial grid (25 m).  

Difficulties consist in the reproduction of baseflow by the SVR models during the winter period, 

for which they produced oscillations in the discharge. We have overcome this issue by a 

constant baseflow for the winter period. Moreover, the SVR models underestimated the highest 

discharges, probably due to the low representation of peak events in the training period. The 

low and high flow reproduction can be addressed by training two different support vector 

regressions one for low flow periods and one for high flow periods. This strategy might lead to 

a better representation of the different dynamics of the two periods. In addition, the appropriate 

objective functions have to be selected depending on the season, i.e. logNSE for low flow and 

NSE, RSR and RSME for summer. 

Based on the very good abilities of SVR models to reproduce hourly discharge, further 

research has to show whether SVR models are also able to reproduce hourly values of other 

hydrological processes such as snow melt or soil moisture. 
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6. Conclusion 

Although, the topics of the research articles are varied, they are linked and address important 

research questions that help to test the overall research hypothesis of this dissertation, which 

is that a holistic approach of high-resolution spatio-temporal data, comprehensive quality 

assessment of observation data, and machine learning constitute an advantage for reliable 

and efficient process-based hydrological modeling in high-elevation Alpine catchments. In the 

studies of this dissertation we showed, on one hand, the importance of quality control of 

observation time series and, on the other, the benefits of high-resolution snow cover maps for 

obtaining reliable model results. In order to increase the model reliably, a process-based multi-

objective optimization is highly recommended for high-elevation catchments. Besides the snow 

cover information, high-resolution and event-based streamflow observations are essential in a 

multi-objective optimization framework. Innovative and automated measurement systems can 

provide streamflow observations with low measurement uncertainty (< 7 %) in turbulent creeks 

of high-elevation catchments. Consequently, both datasets of collected observational data 

(i.e., event-based streamflow and snow cover maps) address one of the twenty-three unsolved 

questions in hydrology (Blöschl et al., 2019), which is: How can we use innovative technologies 

to measure surface and subsurface properties, states and fluxes at a range of spatial and 

temporal scales? To overcome the limitation of physically-based distributed hydrological 

models, regarding high computational requirements, we used machine learning as a surrogate 

model to speed up simulation times significantly while achieving high reliability of the predicted 

results (NSE=0.89). Thus, we can conclude that model reliability and efficiency are not 

contradictory and can be increased by different methodical approaches. In the following 

section, first, a summary and conclusion of the key findings is given followed by an outlook to 

future research.   

6.1. Summary 

Hydrometeorological observation data is still the most important data basis for the investigation 

of the hydrological system. However, especially for longer time series that cover years or even 

decades, inhomogeneities can occur for different reasons (e.g., change of the location or 

measurement instrument) (McMillan, Westerberg, & Krueger, 2018). In the first article of this 

dissertation, we analyzed the quality of hydrometeorological time series from two high-

elevation Alpine catchments and investigated how inhomogeneity can affect the results of a 

hydrological model. As it turned out, around 50 % of the time series are suspicious and 27 % 

corrupted. Only 20 % of the time series were found to be reliable. Although, we removed the 

periodicity as a main component of deterministic autocorrelation, short- and long-

autocorrelation can still influence the statistical test result of rank correlation methods, as it is 
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the case for the often applied Mann-Kendall trend test. Another requirement for parametric 

homogeneity tests is that the time series is normally distributed, which is not the case for all 

studied hydrometeorological variables. With the two case studies of an inhomogeneous 

precipitation and temperature time series, we were able to show that the inhomogeneities 

propagate directly to main components of the cryosphere (i.e., snow and glacier accumulation 

and melt) but only indirectly to the runoff generation when using them as model forcing, since 

the runoff generation includes superposition effects from the nonlinear hydrological system. 

Thus, the answer to the first research question – What is the impact of inhomogeneous time 

series on hydrological model results? – is that the impact of inhomogeneous time series differs 

highly between the hydrological components. Hence, the quality of the time series needs to be 

checked before the modeling to reduce the uncertainty in the model results. Based on the 

discussion in article one, it is beneficial to consider both absolute and relative homogeneity 

tests in the quality control of the hydrometeorological time series whenever possible. 

Continuous and high-quality discharge time series are essential for water management, design 

of infrastructure and research. In high-elevation areas, the operation of stream gauges and 

construction of reliable rating curves is particularly challenging due to difficult measuring 

conditions (e.g., natural cross-section, sediment and bedrock transport, ice jam). Using the 

AutoSalt system, we were able to collect about 300 measurements in different Alpine 

catchments with heterogeneous characteristics (e.g., glaciated area, discharge range, 

background ECT) within two years. Through an accurate installation and calibration of the 

system, mean measurement uncertainty was below 7 %. However, we found limitations in the 

experimental setup, especially regarding the installation of the ECT probes. In highly turbulent 

flow sections (i.e., wave action and air bubbles), as it was the case for the river section with 

the highest streambed gradient (i.e., 18 %), a low SNR resulted in higher measurement 

uncertainty. Since turbulences in Alpine creeks vary depending on the water level, it is 

challenging to find sites with a stable ECT signal, as water level fluctuates also greatly (approx. 

1 m to 1.5 m) within measurement periods. Consequently, there is a predicament between 

turbulent flow, which enhances mixing of the tracer, and the choice of suitable measurement 

locations for installing the measurement probes with the least possible disturbance (i.e., 

turbulence and wave action). Redundant measurements of water level and ECT have been 

benefitial to reduce aleatory uncertainty caused by aforementioned interference. Furthermore, 

one of the AutoSalt systems was partly destroyed during an extreme event. This shows the 

limitation of the system in gauging peak flows when they have a high percentage of debris 

flow. However, the AutoSalt also allows to quickly re-establish a new stage-discharge relation 

when the measurement site has been destroyed and the cross-section completely changed. 

Moreover, the use of the AutoSalt system enables us to detect non-stationarity in the cross-

section from year to year or before and after peak events. Although the installation and 
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operation of the AutoSalt is quite time-consuming, the benefit of the system measuring rare 

peak events with a high level of accuracy outweighs the costs and efforts. Therefore, the 

second research question – how beneficial and reliable are automated stream discharge 

measurements in high-elevation areas to reduce data scarcity? – can be answered positively 

because the collected streamflow data provides valuable information and reduces data scarcity 

in high-elevation areas. 

For process-based model calibration and validation in high-elevation Alpine catchments, snow 

information is particularly important. Snow observations from stations give valuable information 

of snow depth at the point scale. However, the station information does not consider the high 

heterogeneity of snow amount and cover duration in complex terrain, which limits the spatio-

temporal validation of the distributed model output. In the third article, we were able to bridge 

the gap between the point and catchment scale regarding snow cover observations by means 

of optical remote sensing. Although the idea of snow observations from space is not new, the 

innovation was in the use of two different algorithms to derive continuous high-resolution snow 

cover maps in one case study for a period of five years. This allowed us to validate the two 

products against each other and a couple of snow observation stations. We found main 

constrains in the detection of snow cover in the canopy and in topographic shadows during 

low illumination conditions (i.e., winter period). In addition, the observed snow cover maps 

were used to calibrate and validate the snow cover simulation of a physically-based and 

distributed snow model. We achieved a high accuracy (i.e., F1 score of > 0.9) with the 

calibrated snow model, which predicted the fractional snow-covered area well with a 

correlation coefficient of 0.98. We were thus able to show that, on one hand, Sentinel 2 can 

observe spatio-temporal variability in snow cover duration due to energy balance dynamics, 

wind and gravitational redistribution and, on the other, WaSiM can predict the corresponding 

spatio-temporal variability. Thus, it can be concluded that we can reduce the data scarcity in 

high-elevation catchments, but there is no single remote sensing product that provides all 

necessary snow information (e.g., snow extant, SWE, liquid and solid fraction) in high temporal 

and spatial resolution. Therefore, the answer to the third research question – can we reduce 

data scarcity of spatial snow information in high-elevation Alpine catchments by remote 

sensing data? – is yes followed by a but, as the binary snow cover maps are an important 

component for reliable small-scale snow observations that includes the limitations mentioned 

before. 

Although the computational capacities constantly increase, the high computational demand of 

fully distributed and physically-based hydrological models is still one of the main limitations for 

long simulation runs (> 30 years) with a high spatio-temporal resolution. An increase in 

computational efficiency of hydrological models can be achieved either by code parallelization 
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or by reduced order modeling (i.e., ROM). Since the code parallelization of the non-linear 

hydrological processes with their complex feedback effects is not trivial and high-performance 

clusters are not always available, reduced order models (i.e., low-dimensional surrogate 

models) can be used to replace the full system model (Paniconi & Putti, 2015). By coupling 

WaSiM with a Support Vector Machine, as discussed in article four, we were able to show that 

the high-resolution WaSiM (i.e., 25 m and hourly time step) results can be predicted with a 

high degree of reliability (NSE=0.89) and a significant reduction in computational time of 93 % 

based on a coarser WaSiM model discretization (i.e., 100 m and daily time step). Thus, both 

parts of the fourth research question – how fast and reliable are coupled machine learning and 

physically-based hydrological models? – can be answered positively. The results are quite 

promising because one of the main limitations of fully distributed hydrological models could be 

significantly reduced without a strong decrease in the reliability of the prediction results. 

Difficulties consist, on one hand, in the runoff prediction of smaller sub-catchments with a low 

proportion of glaciated area and, on the other, in the prediction of base flow in the winter period. 

In addition, it is unclear how reliable the predictions are over a longer simulation period (e.g., 

30 years). Since the prediction of rare extreme events depends on the selection of the training 

data extent, the chosen five-year period is rather short in order to train the SVM for long 

simulation runs (> 30 years). Nevertheless, article four is a good foundation for further 

investigations and tests in other areas and for longer time periods. 

6.2. Outlook 

The individual studies address important research questions in the field of Alpine hydrology, 

but of course are limited in their scope and cannot address all open research questions. 

Therefore, an outlook for further research is given in the following section. Further research 

can also arise from further elaboration of the addressed research questions of the individual 

articles. 

A general research question for further studies is the spatio-temporal generalization of the 

presented methods to other catchments, areas or regions and to other periods and temporal 

durations. For instance, the comparison of observed and modeled snow cover maps for other 

high-elevation areas with similar characteristics (e.g., complex topography). In addition, the 

long-term performance of the simulated snow distribution of WaSiM can be evaluated in order 

to check if the preferential snow deposition leads to glaciation in areas that are not glaciated. 

Since the snow accumulation and cover duration on glaciers control glacier melt (i.e., timing 

and amount), the snow storage is a critical boundary condition for the glacier model 

initialization. This boundary information can either be obtained from spatial snow observation 

data or estimated by a sensitivity study to find an optimal initialization time. Not considered in 

this dissertation, but highly important is the consideration of glacier dynamic in these high-
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elevation catchments, especially in Martelltal and Kaunertal. If hydrological models include a 

glacier routine, it is usually based on simple empirical approaches (e.g., volume-area scaling 

or delta h) (Tiel et al., 2020). However, it is unclear to what extent these approaches can 

reproduce the observed glacier dynamics over longer periods (> 30 years). Another question 

is whether the empirical approaches have to be re-initialized and re-calibrated due to 

inconsistency of the model parameters and transient boundary conditions after a certain 

simulation time, which can be constrained by the availability of observation data. Although the 

primary aim of glacio-hydrological modeling studies is to assess future climate change impacts, 

long-term changes have rarely been taken into account in model performance evaluations (Tiel 

et al., 2020). Depending on the complexity of the research question and data availability, the 

implementation of glacier routines that consider the ice dynamics may be necessary (Pesci & 

Förster, 2022; Wortmann, Bolch, Su, & Krysanova, 2019). 

The availability of global satellite-based products enables a better model calibration and 

validation. However, main challenges consist in the overview of the available products, their 

quality, and their limitations. The processing of satellite data is very resource and time 

consuming, and requires expert knowledge. Therefore, it is advisable to use already available 

and validated products when possible. For example, the Theia data center provides already 

processed snow cover maps from high-resolution optical satellites (i.e., Landsat and Sentinel 

2) for the European mountains (Gascoin et al., 2019). Leading tech companies in the Big Data 

field or space agencies not only provide large storage facilities for downloading remote sensing 

data, but provide also clusters for the direct processing of the data, such as Earth Engine by 

Google (Google, 2023) and Copernicus Open Access Hub by ESA (ESA, 2023b). Another way 

of using snow information from remote sensing is their assimilation in distributed snow models, 

which is gaining more and more popularity because it can be used for more reliable monitoring 

and predictions of snow storage on a very large scale (e.g., European Alps), as recently 

developed in the framework of the EO4Alps-Snow project (ESA, 2023a). In the future, 

integrated solutions with assimilation of both snow and meteorological observations in a 

coupled atmosphere/snow model systems are likely to provide the most robust estimates of 

snow conditions, in particular SWE, at scales of practical and scientific interest (Largeron et 

al., 2020). In order to close the gap between point and areal SWE observations, promising 

advances in the application of active radar from Sentinel 1 (band X and Ku) have been 

published by Tsang et al. (2022) recently. However, limitations exist in the complex volume 

and surface scattering of the radar signal in and on the snow pack, and the complicated 

feedbacks in the forest. Therefore, ground-based measurements are still the most reliable 

method to collect snow information, which in turn can be used to validate and improve remote 

sensing products.  
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Comprehensive homogeneity testing of hydrometeorological time series is well established in 

the climate research community, however, it is often not explicitly considered in hydrological 

modeling studies, in which meteorological records serve as forcing and discharge records as 

calibration and validation objective (McMillan, Coxon, Sikorska‐ Senoner, & Westerberg, 

2022; McMillan et al., 2018). The focus of model input uncertainty studies is usually on 

uncertainty in precipitation data, which is the strongest predictor of runoff. Whereas uncertainty 

analyses of hydrological modeling studies are particularly concerned with the spatiotemporal 

resolution of precipitation records (Bárdossy, Kilsby, Birkinshaw, Wang, & Anwar, 2022; 

McMillan et al., 2022) rather than the actual measurement error in the observed data. Beven 

et al. (2022) recommend that quality assurance of all available data must be carefully 

performed. Ideally, data should be checked for consistency and errors before a model is run. 

Since there is a multitude of different statistical tests and methods (e.g., relative and absolute 

homogeneity tests) for quality control of time series, as already described in the introduction 

of this dissertation, it is rather difficult to establish a standardized quality control procedure in 

the field of hydrology. Since 2005, the WMO has regularly published multiple guides for the 

establishment of national standardized quality management services in the field of 

hydrometeorology, which have been adopted into the ISO standards (WMO, 2017). 

Additionally, WMO published a guide for the homogenization of meteorological time series in 

2020 (WMO, 2020). At the same time, the scientific development of quality assurance and 

quality control concepts is progressing continuously. Modified bootstrap approaches (e.g., 

moving block bootstrap MBB), which generate artificial resamples of a time series, can be used 

for the quality control of measurement series under the consideration of autocorrelation and 

deviations from Gaussian distribution (Mudelsee, 2010, 2019). Faybishenko et al. (2022) 

developed a framework to perform the entire quality assurance and quality control process for 

a variety of hydrometeorological variables in the R programming environment. The developed 

statistical framework and methods are suitable for both real-time and post-data-collection 

quality control analysis. However, this tool does not consider the comparison of neighboring 

stations for a relative homogeneity check, which is essential for investigating the reason for 

the inhomogeneity (i.e., anthropogenic factors or climate change). Particularly important in 

assessing the cause of detected inhomogeneity is the metadata, which should include all 

changes to the experimental setup such as relocation or change of a sensor. Unfortunately, 

these are not always available. Therefore, the collection of high-quality observational data that 

meet the WMO criteria and the documentation of changes in the measurement setup remain 

the most important data basis for all studies from time series analysis to data driven and 

hydrological model applications. 

High-resolution streamflow observations with a low relative error (< 7 %) are essential for 

hydrological studies in high-elevation Alpine catchments. Operators of gauging stations of 
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Alpine creeks faces a variety of challenges, such as continuous or sudden changes in the 

natural cross-section at the gauge site. Therefore, regular and event-based streamflow 

measurements are of great importance for assessing the validity of a rating curve and for 

reducing uncertainty in the extrapolation range of the rating curve. Due to the highly turbulent 

flow, tracer-based streamflow measurements are still the only method to measure the 

streamflow reliably. An alternative for reliable streamflow estimations are high-resolution flow 

field data that describe the presence and interaction of flow velocity and coherent structures. 

Contactless UAV-based velocity measurement provides a new source of velocity field data for 

measurements of extreme hydrological events at a safe distance, and could allow for 

measurements of inaccessible areas (Thumser, Haas, Tuhtan, Fuentes-Pérez, & Toming, 

2017). However, the contactless UAV is limited by timing of the site visit and weather condition 

during an extreme event. In addition, UAV surveys can only take place during daylight hours. 

Based on these facts, automated and stand-alone measurement systems are superior for the 

high-resolution recording of hydrological extreme events in high-elevation catchments. 

Furthermore, it is possible to use the AutoSalt measurements in a real time flood warning and 

forecasting framework via remote data transmission. This can increase the reliability of early 

warnings of dangerous runoff events in Alpine headwater catchments with sizes up to 60 km², 

which is similar to drainage area of the upper Marttelltal. Since the AutoSalt is a rather complex 

system that requires expert knowledge in the installation, operation, and processing of the 

measurements, it is necessary to establish knowledge transfer between the system developers 

and researcher, on the one hand, and the potential users from the public and private sector, 

on the other.   

The emulation of a physically-based model by machine learning enables a fast and efficient 

sensitivity analysis, parameter optimization, and the estimation of confidence intervals (i.e., 

uncertainty quantification) (Reichstein et al., 2019). Besides of the applied SVR in article four, 

long-short term memory (LSTM) networks have great potential for characterizing the input-

output conversion relationship of complex nonlinear numerical simulations and can be used as 

surrogate model of the simulation model. The LSTM method provides reliable predictions 

especially for large data sets (Li, Lu, & Luo, 2021).  

The focus of this dissertation was mainly on the surface processes of Alpine hydrology (from 

the atmosphere, via snow cover to runoff). However, runoff generation in high-elevation 

catchments, especially during the low flow period in winter, is not directly fed by liquid 

precipitation, snow or glacier melt. The storage of liquid precipitation, snow and glacier melt 

components in the subsurface (e.g., sediments, soils, bedrock) and the delayed runoff 

contribution is still a major unknown in the research field of Alpine hydrology (Arnoux, Halloran, 

Berdat, & Hunkeler, 2020; Hayashi, 2020). Due to the rapid change of the geosystem of the 
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high-elevation areas (Heckmann & Morche, 2019), groundwater dynamics are not stationary 

and underlay transient boundary conditions (Müller, Lane, & Schaefli, 2022). Due to the high 

relevance of thís research topic, it was also included in the twenty-three unsolved questions in 

hydrology (Blöschl et al., 2019) and formulated as followed: How will cold region runoff and 

groundwater change in a warmer climate (e.g. with glacier melt and permafrost thaw)? The 

role of groundwater storage and dynamics can be investigated and quantified by the collection 

and analysis of stable isotopes on the catchment scale (Chiogna et al., 2014; Engel et al., 

2019; Penna et al., 2017; Zuecco et al., 2018). However, the allocation of storage to specific 

hydrological units remains unclear (Müller et al., 2022). For this, the installation of piezometers 

along the river channel and in flat areas allow the observation of the river-groundwater 

interaction and the seasonal dynamic of the groundwater storage (Kobierska, Jonas, Kirchner, 

& Bernasconi, 2015; Müller et al., 2022). Another method for characterizing seasonal 

groundwater storage in alpine catchments is the application of time‐lapse gravimetry (Arnoux 

et al., 2020). Distributed and physically-based hydrogeological models can unravel the 

surface-groundwater interaction in high-elevation catchments and the importance of glacier 

and snow melt contribution to groundwater recharge (Müller, Roncoroni, Mancini, Lane, & 

Schaefli, 2023). The hydrological subproject of the DFG SEHAG 2 research group (Chiogna & 

Schaefli, 2021) uses a combined approach of field observation (isotope samling and 

piezometer) and physically-based hydrogeological model to investigate the impact of climate 

change on groundwater storage in high-elevation Alpine catchments. The main hypothesis to 

be tested is: Distributed hydrological models can unravel the increased importance of 

groundwater for high Alpine environments under climate change. The potential changes are 

investigated in an ensemble approach (i.e., driven by different climate models) up to the year 

2050. 

Consequently, the holistic approach developed in this dissertation has to be extended to 

include other key components of the Alpine hydrology such as glacier processes and 

groundwater storage. However, one should also critically evaluate the relevance and 

spatiotemporal occurrence of individual processes for answering a given research question 

before the extension. Depending on this evaluation, the model complexity (i.e., empirical, 

conceptual or physically-based) and spatiotemporal resolution can be chosen. In turn, the 

selection of boundary conditions depends on the selected model complexity. In addition, the 

choice of model complexity should take into account the uncertainty resulting from either the 

lack of model complexity (i.e., structural uncertainty) or the lack of information to define or 

constrain the parameters of a model (i.e., parameter uncertainty). Furthermore, the complexity 

of the research question also defines which interdisciplinary cooperation is necessary and 

useful to answer the research question. Eventually, the complexity of the research question 

also depends on the availability and quality of observational data.  
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Article supplementary materials 

A.1. Supplementary material to chapter 2  

 

Hofmeister, Graziano, et al., 20235 

A.1.1: Metadata of all available hydrometeorological time series from Horachtal and Martelltal. 
A segment of a time series was included in the analysis, if it covered at least five years of 
observation. Number of analyzed segments are indicated in brackets.  

Station 
Name 

Station 
code 

Variable Number of 
segments 
(analysed) 

Latitude Longitude Elevation 
m a.s.l. 

Obs. 
period 

Provid
er 

Durrapl
att 

1 P 2 (1) 46.5274 10.7373 1616 1989-
2005 

Bozen 

Durrapl
att 

1 T 5 (0) 46.5274 10.7373 1616 1990-
2005 

Bozen 

Hinterm
artell 

2 H 1 (1) 46.5169 10.7269 1720 2009-
2020 

Bozen 

Hinterm
artell 

2 P 1 (1) 46.5169 10.7269 1720 2009-
2020 

Bozen 

Hinterm

artell 
2 R 1 (1) 46.5169 10.7269 1720 2009-

2020 
Bozen 

Hinterm
artell 

2 T 2 (2) 46.5169 10.7269 1720 2009-
2020 

Bozen 

Hinterm
artell 

2 WS 1 (1) 46.5169 10.7269 1720 2009-
2020 

Bozen 

Horlach
alm 

3 HS 4 (2) 47.1577 11.0125 1910 1988-
2018 

TIWAG 

Horlach
alm 

3 P 1 (1) 47.1577 11.0125 1910 1989-
2018 

TIWAG 

Horlach

alm 
3 T 1 (1) 47.1577 11.0125 1910 1987-

2018 
TIWAG 

Horlach 
Fassun
g 

4 Q 1 (1) 47.1577 11.0125 1912 1985-

2018 
TIWAG 

Kühtai 5 H 1 (1) 47.2071 11.0059 1918 1990-

2019 
TIWAG 

Kühtai 5 P 2 (1) 47.2071 11.0059 1918 1990-
2019 

TIWAG 

                                                
5Material from: 
Hofmeister, F., Graziano, F., Marcolini, G., Willems, W., Disse, M., & Chiogna, G. (2023). Quality 
assessment of hydrometeorological observational data and their influence on hydrological model results 
in Alpine catchments. Hydrological Sciences Journal, 02626667.2023.2172335. doi: 
10.1080/02626667.2023.2172335. 
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Kühtai 5 R 1 (1) 47.2071 11.0059 1918 1990-
2019 

TIWAG 

Kühtai 5 T 1 (1) 47.2071 11.0059 1918 1990-
2019 

TIWAG 

Kühtai 5 WS 2 (1) 47.2071 11.0059 1918 1990-

2019 
TIWAG 

Lampe
nspitze 
Schnee
station 

6 H 1 (1) 47.153 11.121 2111 2008-

2019 
LWD 

Lampe
nspitze 
Schnee
station 

6 R 1 (1) 47.153 11.121 2111 2008-
2019 

LWD 

Lampe
nspitze 
Schnee

station 

6 T 1 (1) 47.153 11.121 2111 2011-
2019 

LWD 

Lampe
nspitze 
Windst
ation 

7 H 2 (1) 47.156 11.096 2870 2008-
2019 

LWD 

Lampe
nspitze 
Windst
ation 

7 T 1 (1) 47.156 11.096 2870 2011-
2019 

LWD 

Lampe
nspitze 
Windst

ation 

7 WS 2 (1) 47.156 11.096 2870 2008-
2019 

LWD 

Langen
ferner-
Felsköp
fl 

8 H 1 (0) 46.4725 10.6139 2967 2015-
2019 

ACINN 

Langen
ferner-
Felsköp
fl 

8 P 1 (0) 46.4725 10.6139 2967 2015-

2019 
ACINN 

Langen
ferner-
Felsköp
fl 

8 R 1 (0) 46.4725 10.6139 2967 2015-
2019 

ACINN 

Langen
ferner-
Felsköp
fl 

8 T 1 (0) 46.4725 10.6139 2967 2015-
2019 

ACINN 

Langen
ferner-
Felsköp
fl 

8 WS 1 (0) 46.4725 10.6139 2967 2015-

2019 
ACINN 

Leiter 9 P 1 (1) 47.1228 10.9691 1564 1976-
2019 

TIWAG 
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Leiter 9 T 5 (2) 47.1228 10.9691 1564 1988-
2019 

TIWAG 

Leiter 9 HS 1 (1) 47.1228 10.9691 1564 1976-
2019 

TIWAG 

Malga 

Mare 
10 P 1 (1) 46.4142 10.68 1950 1930-

1984 
Trentino 

Niedert

hai 
11 Q 1 (1) 47.1577 11.0125 1478 1985-

2018 
TIWAG 

Rossbä
nke 

12 H 1 (1) 46.4693 10.8194 2255 2022-
2020 

Bozen 

Rossbä
nke 

12 T 1 (1) 46.4693 10.8194 2255 2022-
2020 

Bozen 

Rossbä
nke 

12 WS 3 (1) 46.4693 10.8194 2255 2022-
2020 

Bozen 

Schönt
aufspitz
e 

13 T 2 (1) 46.5029 10.6286 3328 2003-
2020 

Bozen 

Schönt
aufspitz
e 

13 WS 4 (1) 46.5029 10.6286 3328 2003-
2020 

Bozen 

Stause
e Zufritt 

14 P 1 (1) 46.509 10.7251 1851 1972-
2019 

Bozen 

Stause
e Zufritt 

14 T 1 (1) 46.509 10.7251 1851 1973-
2019 

Bozen 

Sulden 15 H 2 (1) 46.5159 10.5953 1907 2010-

2020 
Bozen 

Sulden 15 P 5 (1) 46.5159 10.5953 1907 2003-
2020 

Bozen 

Sulden 15 R 2 (0) 46.5159 10.5953 1907 2010-
2020 

Bozen 

Sulden 15 T 3 (2) 46.5159 10.5953 1907 2003-
2020 

Bozen 

Sulden 
Madrits
ch 

16 H 4 (1) 46.4938 10.6144 2825 2000-
2020 

Bozen 

Sulden 
Madrits
ch 

16 HS 6 (1) 46.4938 10.6144 2825 2000-
2020 

Bozen 

Sulden 
Madrits
ch 

16 T 1 (1) 46.4938 10.6144 2825 2003-
2020 

Bozen 

Sulden 
Madrits
ch 

16 WS 1 (1) 46.4938 10.6144 2825 2008-
2020 

Bozen 

Ulten 
Weißbr
unn 

17 H 1 (1) 46.4868 10.8318 1900 2010-
2020 

Bozen 
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Ulten 
Weißbr
unn 

17 P 4 (1) 46.4868 10.8318 1900 2003-
2020 

Bozen 

Ulten 
Weißbr
unn 

17 R 1 (0) 46.4868 10.8318 1900 2010-
2020 

Bozen 

Ulten 
Weißbr
unn 

17 T 4 (3) 46.4868 10.8318 1900 1987-
2020 

Bozen 

Umhau
sen 

18 H 1 (1) 47.1392 10.9289 1025 1946-
2019 

ZAMG 

Umhau
sen 

18 P 1 (1) 47.1392 10.9289 1025 1946-
2019 

ZAMG 

Umhau
sen 

18 R 1 (1) 47.1392 10.9289 1025 2011-
2019 

ZAMG 

Umhau

sen 
18 T 2(2) 47.1392 10.9289 1025 1946-

2019 
ZAMG 

Umhau

sen 
18 WS 1 (1) 47.1392 10.9289 1025 1946-

2019 
ZAMG 

Weißbr
unnspit

ze 

19 H 1 (1) 46.494 10.774 3253 2012-
2020 

Bozen 

Weißbr
unnspit

ze 

19 T 1 (1) 46.494 10.774 3253 2012-
2020 

Bozen 

Weißbr
unnspit

ze 

19 WS 3 (1) 46.494 10.774 3253 2012-
2020 

Bozen 

Zufallh

uette 
20 Q 1 (1) 46.4763 10.6768 2311 2014-

2020 
Bozen 

 

  



175 
 

 

A.1.2: (A) Simulated daily positive (green) and negative (purple) precipitation anomaly through 
consideration of Horlachalm precipitation and (B) simulated snow water equivalent with (blue) 
and without (orange) considering Horlachalm precipitation. The vertical black line shows a 
significant change point detected by the Bernier and by the Pettitt tests. 

 

A.1.3: (A) simulated daily discharge at the catchment outlet with (blue) and without (orange) 
considering Horlachalm precipitation and (B) detailed snap shot of the hydrological year 2002. 
The vertical black line shows a significant change point detected by the Bernier and by the 
Pettitt tests. 
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A.1.4: Simulated glacier mass balance using the original (red line) or the adjusted (blue line) 
temperature time series for the Zutritt station. 

 

A.1.5: Simulated mean monthly runoff, glacier and snowmelt (A) before the change point in 
1988, (B) after the change point and (C) over the entire period (1974-2020). 
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A.2. Supplementary material to chapter 3 

 

Hofmeister, Rubens Venegas, et al., 20236 

The uncertainty analysis of the AutoSalt system is based on standard formula for error 

propagation proposed by the general framework of the Guide to the expression of Uncertainty 

in Measurement, GUM (JCGM, 2008). The relative uncertainty in discharge computed from an 

injection of dry salt can be expressed as (Sentlinger et al., 2019): 

(𝛿𝑄)2 = (
𝜕𝑄

𝜕𝑀
)

2
(𝛿𝑀)2 + (

𝜕𝑄

𝜕 ∑[𝐸𝐶(𝑡)−𝐸𝐶𝐵𝐺]
)

2
(𝛿 ∑[𝐸𝐶(𝑡) − 𝐸𝐶𝐵𝐺])2 + (

𝜕𝑄

𝜕𝑑𝑡
)

2
(𝛿𝑑𝑡)2 +

(
𝜕𝑄

𝜕𝐶𝐹𝑇
)

2
(𝛿𝐶𝐹𝑇)2          

A.2.1 

where δQ represents the relative error in Q, which results from the uncertainty in the injected 

mass δM, followed by the uncertainty in the measurement of the difference between EC(t) and 

background conductivity ECBG, the measurement time δdt and the uncertainty in the constant 

δCFT. The uncertainty in time is essentially zero and can be ignored. The uncertainty in the 

mass of salt injected has two uncertainty components: 1) the brine concentration (salt content) 

and 2) the volume of the brine. The brine concentration, which usually has a concentration of 

20% salt (NaCl) content, is measured with an optical refractometer at each site visit. The 

accuracy of brine volume depends on the accuracy of the flow meter. With a well-calibrated 

configuration, the uncertainty associated with the salt mass is < 4 %. The noise in the 

measurement signal that is represented by the standard error of the mean of ECBG is computed 

with the following equation (Sentlinger et al., 2019): 

    𝛿(𝐸𝐶(𝑡) − 𝐸𝐶𝐵𝐺) =
𝜎

√𝑛
       

A.2.2 

where σ is the standard deviation of all ECBG measurements (pre- and post-tracer injection) 

and n is the total sample size. Ten samples before and after the wave should reduce the 

estimate of the mean ECBG to 0.14 % of the sample σ. 30 should reduce the noise to 0.03 %. 

The larger n is, the lower the uncertainty in the derived discharge until the stream’s natural 

drifting begins to increase σ. When the noise is smaller than the sensor resolution, half of the 

sensor resolution should be used as uncertainty. Another uncertainty source is associated with 

the constant CFT (Sentlinger et al., 2019), which was explored in detail by Richardson, 

Sentlinger, et al. (2017). Since all T-HRECS probes are properly calibrated, the uncertainty 

                                                
6Material from: 
Hofmeister, F., Rubens Venegas, B., Sentlinger, G., Tarantik, M., Blume, T., Disse, M., & Chiogna, G. 

(2023). Automated streamflow measurements in high‐elevation Alpine catchments. River Research and 
Applications, rra.4203. doi: 10.1002/rra.4203. 
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associated with CFT is limited to 2.8 %. Fathom Scientific Ltd provides detailed documentation 

about T-HRECS calibration on its website (Fathom Scientific Ltd., 2020b). Uncertainty resulting 

from incomplete mixing of the tracer is not included in equation A.2.1, but considered in an 

indirect way by comparing the uncertainty of estimated Q from the left and right bank following 

equation A.2.3 (Sentlinger et al., 2019): 

   
𝛿�̅�

�̅�
= 𝑚𝑎𝑥 [𝑄𝑈𝑛𝑐𝐿𝐵, 𝑄𝑈𝑛𝑐𝑅𝐵,

𝑎𝑏𝑠(𝑄𝐿𝐵−𝑄𝑅𝐵)

�̅�
]     

A.2.3 

where �̅� is the average of the left and right bank derived Q, QLB, and QRB respectively. QUncLB 

and QUncRB are the independent uncertainty estimates for each bank derived with equation 

A.2.1. If the difference in the derived discharges is greater than the sum of independent 

estimates of uncertainty for each bank then incomplete mixing is assumed and the 

measurement reach length should be adjusted (Sentlinger et al., 2019).  

We estimated the uncertainty in the Ott and AQA water level measurements by considering 

the sensor accuracy and the mean hourly standard deviation of the water level measurement 

during steady flow periods, which indicates the variability (i.e., noise) in the stage records. The 

equation for calculating the relative accuracy of the stage measurements is: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑡𝑎𝑔𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝜇(𝜎_ℎ𝑜𝑢𝑟𝑙𝑦(𝑠𝑡𝑎𝑔𝑒))

𝜇(𝑠𝑡𝑎𝑔𝑒)
∗ (100 + 𝑠𝑒𝑛𝑠𝑜𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑦)  

   
A.2.4 

μ is a the arithmetic mean, σ is the hourly standard deviation of the 15-min stage time series, 

and the sensor accuracy is 0.05 % for the OTT and 0.1 % for the AutoSalt. We computed the 

relative stage accuracy for one respective measurement period and listed the results in Table 

A.2.5. 

A.2.5: Relative stage accuracy at each experimental site computed with equation A.2.4. 

Site Relative stage uncertainty 

Ott* [%] 

Relative stage uncertainty 

AutoSalt** [%] 

Period 

Lower Plima 2.32 2.2 2020 

Riffler 2 1.26 2021 

Finstertal 1 0.57 2020 

*including the sensor accuracy of 0.05% 

**including the sensor accuracy of 0.1% 
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Since the AutoSalt pressure sensor at the site of the injection and the downstream Ott CTD 

sensor both record the water level at the same 15-minute time interval, we compared the 

relationship between the two for all three experimental sites Figure A.2.6. The distance 

between the AutoSalt and the Ott CTD sensor is 181 m at the Plima, 51 m at Rifflerbach, and 

41 m at Finstertal. Thus, the properties of the stream cross-section (e.g., geometry) of the 

respective gauging sites differ. In general, Figure A.2.6 shows a good agreement between the 

stage records at the different river sections. The rank correlation between the stage records is 

lowest for Plima and Rifflerbach (Kendall tau of 0.72 and 0.74), whereas the experimental site 

at Finstertal has the highest correlation with a Kendall tau of 0.81. 

 

A.2.6: Stage records and sensor error that corresponds the sensor accuracy of ±0.05 % at the 
Ott and AutoSalt location in 15-minute time interval at each site (a) Plima, (b) Rifflerbach and 
(c) Finstertalbach. 

Figure A.2.7 compares the water level records of the two sensors (i.e., Ott CTD and AutoSalt) 

during the highest event in the corresponding observation period. The noise in the stage signal 

is particularly evident at the Finstertalbach, which has the highest streambed gradient (i.e., 18 

%) among the three creeks. The other two streams show little indication of noise in the two 

stage records. 
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A.2.7: Stage records of Ott (black line) and AutoSalt (red line) at each site (a) Plima, (b) 
Rifflerbach and (c) Finstertalbach during the highest discharge event in the respective 
observation period. 

The lower part of the aluminium pipes, which protects and holds the sensors of the Ott CTDs 

at the same height, has a few holes to allow a constant water exchange. To prevent the pipe 

and the sensor from being filled up with sediments, we installed the pipe approx. 5 cm above 

the riverbed. This ensures that no sediment is deposited and affects the measurements (stage, 

temperature, and ECT). We check the sensors at each site visit, which is about once a month 

during the summer period. This includes cleaning the pressure capillary and resetting the 

pressure level to zero if necessary. In addition, the sensor time is checked and adjusted if 

necessary. Once a year, we replace the lithium batteries. In case of increased wave action, 

we set the measuring interval of the pressure measurement to a few minutes (approx. 3 

minutes) to reduce the noise in the stage signal. 

The AutoSalt performs the measurements on the falling limb of the hydrograph. Although the 

stage is generally more stable on the falling limb, we cannot exclude that the high streamflow 

measurements are affected by the hysteresis effect, especially if there are multiple peaks 

(Martínez-Carreras et al., 2016). The hysteresis effect is caused by the fact that in the case of 

an approaching flood, the flow in the rising limb of a flood wave is greater than in the falling 
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limb at the same water level as a result of the greater water level gradient (Morgenschweis, 

2018). According to the Jones (1916) formula, the hysteresis effect increases with a higher 

stage gradient and also with a lower bed slope. Therefore, it seems unlikely that hysteresis is 

strong in these steep Alpine streams. Nevertheless, the hysteresis effect can be checked 

based on the Jones (1916) formula as recently done by Perret, Lang, & Le Coz (2022). 
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A.3. Supplementary material to chapter 4 

 

Hofmeister, Arias-Rodriguez, et al., 20227 

A.3.1: Spectral bands and resolutions of the Sentinel-2A MultiSpectral Instrument (MSI) 
(Satellite Imaging Corporation, 2021). 

Sentine-2 Bands Central Wavelength (µm) Resolution (m) 

Band 1 - Costal aerosol 0.443 60 

Band 2 - Blue 0.490 10 

Band 3 - Green 0.560 10 

Band 4 - Red 0.665 10 

Band 5 - Vegetation Red Edge 0.705 20 

Band 6 - Vegetation Red Edge 0.740 20 

Band 7 - Vegetation Red Edge 0.783 20 

Band 8 - near-infrared 0.842 10 

Band 8A - Vegetation Red Edge  0.865 20 

Band 9 - Water vapour 0.945 60 

Band 10 - short-wave infrared - Cirrus 1.375 60 

Band 11 - short-wave infrared 1.610 20 

Band 12 - short-wave infrared 2.190 20 

The energy balance approach considers all energy fluxes into and out of the snow pack using 

equation A.3.2: 

 𝑄 + 𝐻 + 𝐸 + 𝐴 + 𝐺 + 𝑀𝑎𝑒 = 0  

A.3.2 

where Q is the short-wave and long-wave radiation balance [W/m²], H is the sensible heat flux 

[W/m²], E is the latent heat flux [W/m²], A is the advective heat flux by precipitation [W/m²], G 

is the ground heat flux and set to constant 2 W/m², and Mae is the energy available for melting 

and/or sublimation.  

The fraction of snow on the total precipitation is calculated after equation A.3.3:  

 𝑃𝑠𝑛𝑜𝑤 =  
𝑇0𝑅+𝑇𝑡𝑟𝑎𝑛𝑠−𝑇

2×𝑇𝑡𝑟𝑎𝑛𝑠
 for (T0R-Ttrans) < T < (T0r + Ttrans)  

A.3.3 

where Psnow is the fraction of snow on the total precipitation (range 0 to 1), T is the air 

temperature in °C, T0R is the temperature at which 50 % of the precipitation falls as snow [°C] 

and Ttrans is half of the temperature-transition range from snow to rain [°C].  

  

                                                
7Material from: 
Hofmeister, F., Arias-Rodriguez, L. F., Premier, V., Marin, C., Notarnicola, C., Disse, M., & Chiogna, G. 
(2022). Intercomparison of Sentinel-2 and modelled snow cover maps in a high-elevation Alpine 
catchment. Journal of Hydrology X, 15, 100123. doi: 10.1016/j.hydroa.2022.100123. 
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The only parameters of the energy balance to be calibrated are the correction factors for 

incoming and outgoing long-wave radiation in equations A.3.4 and A.3.5: 

 𝐿𝑊𝑖𝑛 =  𝜎 × 𝐿𝑊𝐼𝑁𝑐𝑜𝑟𝑟 × 𝑇𝑎𝑖𝑟4  × (0.61 + 0.05 √𝑒) × (1 + 𝑐𝑏 × 𝐶𝐿2)   

A.3.4 

where σ is the Stefan-Boltzmann constant (0.567×10-8 W/(m²K4)), LWINcorr is the correction 

factor for incoming long-wave radiation, Tair is the air temperature [K], e is the vapour pressure 

[Pa], cb is the factor for accounting for cloudiness (0.24 if precipitation; 0.08 for cloudiness < 

0.2; 0.17 for cloudiness between 0.2 and 0.6, 0.2 for cloudiness > 0.6) and CL is the cloudiness 

which is calculated in the evaporation model depending on global radiation. The outgoing long-

wave radiation is calculated by equation A.3.5: 

 𝐿𝑊𝑜𝑢𝑡 =  −𝜎 × 𝐿𝑊𝑂𝑈𝑇𝑐𝑜𝑟𝑟 ×  𝑇𝑠𝑢𝑟𝑓4   

A.3.5 

where σ is the Stefan-Boltzmann constant (0.567×10-8 W/(m²K4)), LWOUTcorr is the correction 

factor for outgoing long-wave radiation, Tsurf is the surface temperature [K] (273.16 K where 

Tair ≥ 0 and snow pack temperature where Tair < 0). 

 
A.3.6: Cloud detection by TUM and Eurac against topographical features (elevation in one 
meter steps, slope and exposition in one degree steps) plus mean standard deviation as 
shaded areas. 
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A.3.7: Snow detection accuracy of TUM and Eurac at the three snow observation stations and 
for different snow depth thresholds. 

Thres-

hold 

TUM 

Zufritt 

Eurac 

Zufritt 

TUM 

Madritsc

h 

Eurac 

Madritsc

h 

TUM 

Ross-

baenke 

Eurac 

Ross-

baenke 

TUM 

mean 

Eurac 

mean 

1 cm 0.92 0.83 0.96 0.97 0.86 0.84 0.91 0.88 

2 cm 0.92 0.83 0.95 0.97 0.88 0.87 0.92 0.89 

3 cm 0.92 0.83 0.94 0.96 0.96 0.96 0.94 0.92 

4 cm 0.92 0.83 0.94 0.96 0.98 0.99 0.95 0.92 

5 cm 0.93 0.84 0.93 0.94 0.98 0.98 0.94 0.92 

6 cm 0.93 0.84 0.93 0.94 0.98 0.98 0.94 0.92 

7 cm 0.94 0.84 0.92 0.94 0.98 0.98 0.95 0.92 

8 cm 0.93 0.85 0.92 0.94 0.98 0.98 0.94 0.92 

9 cm 0.93 0.85 0.91 0.93 0.97 0.98 0.94 0.92 

10 cm 0.92 0.85 0.91 0.93 0.97 0.98 0.94 0.92 

15 cm 0.91 0.84 0.89 0.91 0.97 0.98 0.93 0.91 

20 cm 0.89 0.84 0.88 0.9 0.95 0.95 0.91 0.9 

30 cm 0.89 0.87 0.83 0.85 0.9 0.91 0.87 0.88 

50 cm 0.87 0.86 0.75 0.76 0.81 0.83 0.81 0.82 

 

 
A.3.8: Heatmap (a) Pearson correlation and (b) Root Mean Square Error (RMSE) of optimized 
ferosion parameter on the slope scale for each observation product (TUM and Eurac) and as 
an average of both products as well as for different ierosion values (45° and 50°). 
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A.3.9: Sentinel-2 false colour image (SWIR/NIR/RED) of 2016-01-03 in 20 m resolution, Idepix 
cloud detection (60 m) and TUM and Eurac snow product (25 m) for the said date. No data 
pixels were considered as cloud or shadow by the algorithms. 
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A.3.10: Accuracy of TUM snow detection at in-situ snow observation stations without 
atmospheric correction (a) and with atmospheric correction (b) for the hydrological year 2019. 

  

A.3.11: Mean snow cover duration over changes in elevation, slope and aspect without 
atmospherically corrected TUM product (a) and with atmospheric correction (b) for the 
hydrological year 2019. 


