
TECHNISCHE UNIVERSITÄT MÜNCHEN
TUM School of Computation, Information and Technology

Analyzing and Improving the Security of
Trusted Execution Environments

Mathias Morbitzer

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology
der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Jörg Ott

Prüfer*innen der Dissertation: 1. Prof. Dr. Claudia Eckert

2. Prof. Dr. Uwe Baumgarten

Die Dissertation wurde am 03.04.2023 bei der Technischen Universität München eingereicht und
durch die TUM School of Computation, Information and Technology am 26.09.2023 angenom-
men.





Acknowledgements

First of all, I would like to thank my thesis supervisor Prof. Dr. Claudia Eckert for
giving me the possibility to pursue a PhD and Prof. Dr. Uwe Baumgarten for being the
second examiner of this thesis. Also, I would like to thank Dr. Julian Schütte for his
guidance especially in the initial phase of this journey as well as Christian Banse and
Gerd Brost for making sure that I do not get buried by other projects.

Furthermore, I would like to thank my colleagues at Fraunhofer AISEC for the fruitful
discussions and their valuable feedback. With the guilty feeling of forgetting someone,
this includes Georg Bramm and Thomas Bellebaum for their input, everyone I ever
discussed my work with during a coffee break or a meeting, and especially Dr. Martin
Schanzenbach for his detailed feedback on earlier versions of this work.

Additionally, I would like to thank my coauthors, in alphabetical order: Dr. Robert
Buhren, Marko Dorfhuber, Prof. Dr.-Ing. Thomas Eisenbarth, Dr. Felicitas Hetzelt, Dr.
Julian Horsch, Dr. Manuel Huber, Benedikt Kopf, Dr. Sergej Proskurin, Erick Quintanar
Salas, Martin Radev, Jan Wichelmann, Luca Wilke, and Philipp Zieris.

Last but not least, I want to express my sincere gratitude to my parents for their
constant backing over all these years and to Laure for taking this journey with me and
her encouragement, support and patience along the way.

i





Abstract

Modern enterprises increasingly shift potentially critical applications into cloud envi-
ronments. Yet, by outsourcing sensitive code and data into the cloud, enterprises are
required to trust the cloud provider not to meddle with the processed data. To address
such concerns when moving critical tasks into the cloud, the majority of cloud providers
offers users the possibility to deploy Trusted Execution Environments (TEEs). TEEs are a
combination of software and hardware mechanisms which aim to protect their data and
processes from high privileged adversaries. To achieve this goal, TEEs deploy different
protection mechanisms. In this thesis, we investigate the two protection mechanisms
implemented by all TEEs provided by the industry: memory isolation and attestation.

We investigate the memory isolation mechanism by analyzing the impact of missing
memory integrity protection on the isolation, using the example of AMD Secure En-
crypted Virtualization (SEV). SEV aims to achieve its memory isolation by encrypting
the memory of Virtual Machines (VMs) with a unique key. This key is maintained in
hardware, rendering the encrypted memory inaccessible to the cloud provider. Yet, SEV
refrains from protecting the integrity of the encrypted memory. We show how this
missing memory integrity protection can enable a malicious administrator to utilize a
service running within the VM to provide arbitrary decrypted memory content, allowing
to extract secrets from the protected VM within seconds. By describing our attack in
detail, we determine the attack vectors required for a successful exploitation. Among
these attack vectors, we identify the missing Second Level Address Translation integrity
protection to be the most critical. Furthermore, we show that this can be combined with
other attack vectors to affect not only the VM’s confidentiality, but also its integrity. We
achieve this goal by remapping one of the VM’s kernel functions to a payload which we
inject into the VM’s memory by sending it a network packet. This permits us to execute
arbitrary code within SEV-protected VMs.

Having showed how the attacks can be performed, we iterate through the determined
attack vectors to discuss how SEV’s memory isolation could be restored. Most impor-
tantly, we propose a change to SEV which prevents a targeted modification of the Second
Level Address Translation by a malicious hypervisor. Our solution only requires a small
modification to how SEV encrypts the memory of protected VMs. However, it permits
to efficiently prevent a high privileged adversary from performing meaningful modifi-
cations of the VM’s memory by including the guest physical address of the encrypted
data into the encryption.
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Abstract

Afterwards, we discuss improving the attestation mechanism of TEEs by extending
the attestation of the initial state with attestation at run-time. Specifically, we present
an architecture that enables a monitor in a TEE to collect run-time information of an
application running in a different TEE. Based on this architecture, we establish a design
that allows us to use control-flow attestation to ensure the integrity of the application.
By placing all components of our design in TEEs, we are able to not only detect a
compromised application, but also protect ourselves from malicious administrators. We
show the practicability of our design by providing a prototype based on Intel Software
Guard Extensions (SGX), with which we perform a detailed performance evaluation in
Microsoft Azure. Our evaluation shows that the need to transfer information between
TEEs and the additional verification process add considerable overhead. Yet, we are able
to reduce this overhead by securely caching collected information and by performing
the analysis in parallel to executing the application. This shows that our design for
control-flow attestation in TEEs provides a practical solution for cloud users focused on
protecting the integrity of their data and processes at run-time.
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Zusammenfassung

Immer mehr Firmen verlagern kritische Prozesse in die Cloud. Durch die Auslage-
rung von kritischen Programmen und Daten sind die Firmen gezwungen, darauf zu
vertrauen, dass der Cloud-Anbieter diese nicht beeinflusst. Um diese Sorgen bei der
Verlagerung von kritischen Daten in Cloud-Umgebungen zu adressieren, bietet der
Großteil der Cloud-Anbieter die Möglichkeit zur Verwendung von Trusted Execution
Environments (TEEs). Bei TEEs handelt es sich um eine Kombination von Software-
und Hardwaremechanismen, welche das Ziel haben, Daten innerhalb der Umgebung
vor Angreifern mit hohen Privilegien zu schützen. Um dieses Ziel zu erreichen, setzen
TEEs auf verschiedene Schutzmechanismen. In dieser Arbeit beschäftigen wir uns mit
zwei Schutzmechanismen, die in allen von der Industrie angebotenen TEEs zum Einsatz
kommen: Speicherisolierung und Attestierung.

Für die Untersuchung der Speicherisolierung analysieren wir die Auswirkungen von
fehlender Integrität des Arbeitsspeichers auf die Isolierung anhand des Beispiels von
AMD Secure Encrypted Virtualization (SEV). SEV versucht die Speicherisolierung durch
die Verschlüsselung des Arbeitsspeichers von virtuellen Maschinen (VMs) mit einem
separaten Schlüssel zu erreichen. Der hierfür notwendige Schlüssel wird in Hardware
verwaltet, was den verschlüsselten Arbeitsspeicher unzugänglich für den Cloud-Anbieter
macht. Jedoch verzichtet SEV darauf, auch die Integrität des verschlüsselten Arbeitsspei-
chers sicherzustellen.

Wir zeigen dass diese fehlende Integrität es einem Angreifer ermöglicht, einen Service
innerhalb der VM zur Extraktion von beliebigem Inhalt des verschlüsselten Arbeitsspei-
chers im Klartext zu verwenden. Dadurch ist es möglich, innerhalb von Sekunden
kritische Daten aus der geschützten VM zu extrahieren. Anhand der detaillierten Be-
schreibung des Angriffs ermitteln wir, welche Angriffsvektoren für einen erfolgreichen
Angriff notwendig sind. Unter diesen Angriffsvektoren identifizieren wir den fehlen-
den Integritätsschutz der Secondary Level Address Translation als kritischsten Punkt.
Des Weiteren zeigen wir, dass dieser in Kombination mit anderen Angriffsvektoren
auch verwendet werden kann, um nicht nur die Vertraulichkeit der VM, sondern auch
ihre Integrität zu brechen. Wir erreichen dieses Ziel, indem wir die Adresse einer Ker-
nelfunktion innerhalb der VM einem Payload zuordnen, welchen wir mithilfe eines
Netzwerkpakets in die VM einschleusen. Dies erlaubt es uns, beliebigen Code innerhalb
der mit SEV geschützten VM auszuführen.
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Zusammenfassung

Nach der detaillierten Darstellung der Angriffe analysieren wir die einzelnen An-
griffsvektoren und besprechen wie diese behoben werden könnten, um SEV’s Speicheri-
solierung wiederherzustellen. Unser wichtigster Beitrag zu dieser Diskussion ist eine
Modifikation von SEV, welche gezielte Veränderungen der Anordnung des Arbeitsspei-
chers durch einen böswilligen Hypervisor verhindert. Unsere Gegenmaßnahme besteht
aus einer kleinen Modifikation des von SEV verwendeten Verschlüsselungsalgorithmus
mit einer großen Wirkung. Diese kleine Modifikation verhindert die gezielte Verände-
rung der Anordnung des Arbeitsspeichers durch einen Angreifer mit hohen Privilegien
durch die Einbindung der physikalischen Adresse des Gastes in die Verschlüsselung.

Danach beschäftigen wir uns mit der Verbesserung des Attestierungsmechanismus
von TEEs durch die Erweiterung der Attestierung des initialen Status der TEE auf eine
Laufzeitattestierung. Im Detail stellen wir eine Architektur vor, welche es einem Prozess
in einer TEE erlaubt, Laufzeitinformationen über eine Applikation in einer anderen TEE
zu sammeln. Basierend auf dieser Architektur entwickeln wir ein Design, welches es uns
ermöglicht, Kontrollflussattestierung zu verwenden, um die Integrität einer Applikation
sicherzustellen. Die Platzierung aller Komponenten des Designs in TEEs erlaubt uns
nicht nur die Erkennung von Angriffen auf die Applikation, sondern zusätzlich den
Schutz vor Angreifern mit hohen Privilegien. Wir zeigen die Anwendbarkeit unseres
Designs durch die Bereitstellung eines Prototypen basierend auf Intel Software Guard
Extensions (SGX), welchen wir detailliert in Microsoft Azure evaluieren. Unsere Evaluie-
rung zeigt, dass die Notwendigkeit, Informationen zwischen zwei TEEs auszutauschen,
sowie die zusätzliche Verifikation beträchtliche Kosten verursachen. Es ist uns jedoch
möglich, diese Kosten durch die sichere Zwischenspeicherung von gesammelten Infor-
mationen sowie die Parallelisierung der Analyse und der Ausführung der Applikation
zu reduzieren. Dies zeigt, dass unser Design für Kontrollflussattestierung in TEEs eine
praktische Lösung für Cloud-Benutzer darstellt, welche die Integrität ihrer Daten und
Prozesse zur Laufzeit sicherstellen wollen.
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CHAPTER 1

Introduction

Cloud computing has become omnipresent in our everyday life. Although this is
not always obvious to us, we get reminded of this fact when our vacuum cleaners and
door bells refuse to work due to outages in cloud infrastructure [10]. Additionally to
affecting the availability of our household items, cloud computing can also affect the
confidentiality and integrity of our data, which is also often stored in the cloud. Incidents
exposing this often sensitive data underline the risk of storing data in the cloud. To be
precise, 98% of all companies using cloud infrastructure reported that they experienced
at least one data breach within the last 18 months [46].

More than half of these breaches were related to insufficient access management [46].
An example is the Capital One breach, in which attackers gained access to more than
100 million customer accounts and credit card applications [99]. Experts claim that the
breach could have been prevented by applying defense mechanisms such as the principle
of least privilege [59]. This principle dictates that entities such as programs, systems
and objects only receive the minimal number of privileges required to perform their
tasks [134].

To achieve this goal, the entities can be assigned to different, hierarchically structured
protection domains with ascending privileges. While the permissions of the least privi-
leged domain are limited, the highest privileged domain possesses all privileges. An
example for such hierarchical protection domains are the protection rings in the x86
architecture [67]. In this model, the least privileged ring, ring 3, is intended for user-space
applications, which require only a limited amount of permissions. In comparison, the
most privileged ring, ring 0, is meant to host the kernel, which requires higher privileges.
To protect software running in higher privilege rings from lower privileged adversaries,
processes are forbidden to access data from higher privilege rings. However, accessing
data from lower privilege rings is permitted. This prevents user-space applications from
interfering with the kernel, while at the same time giving the kernel the possibility to
manage running applications.

Virtualization follows a similar approach [134]. Using virtualization, the hypervisor,
running in a high privilege domain, hosts a Virtual Machine (VM) running in a lower
privilege domain. By using different privilege domains, the hypervisor is protected from
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Chapter 1 Introduction

a malicious VM. Yet, the hypervisor can still access all of the VM’s data, enabling it to
perform operations such as managing the VM’s memory.

These examples show how hierarchical protection domains allow to protect software
in higher privilege domains from adversaries in lower privilege domains. Yet, in various
scenarios, the lower privileged software additionally may not trust higher privilege layers.
A prime example for this limited trust into higher privilege layers is cloud computing.
Specifically, a large number of enterprises have concerns about the limited ability to
restrict and detect access to data hosted in cloud environments by, for example, a curious
or malicious administrator [72]. While many may not deem their cloud provider to
be malicious, we also need to consider the possibility of an attacker gaining elevated
privileges or exploiting software vulnerabilities in the cloud provider’s infrastructure.
The past has shown that such breaches can happen in the cloud by escaping an isolation
domain [103] or by exploiting bugs in services shared among different users [114].

Furthermore, the need to protect software from higher privilege domains not only
applies to the cloud, but also to our personal devices. This requirement has been
highlighted by the COVID-19 pandemic and the resulting shift to working from home.
Most companies were not prepared for this sudden shift, leading to more than half of
all employees using personal devices when working from home [110]. Yet, in the past,
personal devices being used for business tasks caused attacks compromising data of
tens of thousands of customers [152]. To avoid such attacks, companies have to ensure
the confidentiality and integrity of work-related tasks despite not having administrative
access to the system performing the tasks.

Hence, mechanisms which protect software from higher privilege layers are required
both on personal devices and in cloud environments. For that reason, previous work
proposed the concept of Trusted Execution Environments (TEEs) [138, 96, 27, 47, 35, 145,
87]. TEEs aim to protect data and processes within the TEE from adversaries, even if they
are located at higher privilege layers. To be able to protect against such a strong threat
model, most TEEs make use of a combination of hardware and software mechanisms. In
recent years, the industry also started to provide different TEEs, making them accessible
to a wider audience [17, 34, 75, 120, 69, 64, 8]. Seeing TEEs as a possibility to reduce
their customer’s worries about the limited control over data hosted in the cloud, also
major cloud providers meanwhile support TEEs [126, 76, 48, 71, 121].

To ensure the protection of data and processes within TEEs, such environments
can protect their memory either via logic or cryptographic isolation [129]. Logical
isolation deploys access control mechanisms to prevent high privileged adversaries from
accessing the TEE’s memory. In comparison, cryptographic isolation does not prevent the
adversaries from accessing the TEE’s memory, but instead encrypts the memory with a
key inaccessible to the adversary. Hence, even though being able to access the encrypted
memory, the adversary cannot retrieve its plaintext due to the missing access to the
cryptographic material required for decryption. This allows cryptographic isolation to
prevent an adversary without access to the encryption key from reading or writing
meaningful data from or into the TEE’s memory.
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Due to these safety properties, some TEEs consider memory confidentiality sufficient
to isolate their memory from high privileged adversaries, and refrain from also pro-
tecting the memory’s integrity. An example for such a TEE is AMD Secure Encrypted
Virtualization (SEV) [75]. SEV was introduced in 2016, and aims to protect VMs from
a malicious hypervisor. To achieve this goal, SEV encrypts the VM’s memory with a
key only known to a special co-processor. This encryption aims to isolate the protected
VM’s memory by preventing higher privilege adversaries from extracting or injecting
plaintext.

However, while SEV does provide memory confidentiality, it refrains from providing
memory integrity. This enables high privileged adversaries to modify the encrypted
memory. At the same time, it is difficult for the VM to detect such modifications. One
may think that modifications of encrypted memory can have little impact on the VM’s
security. Due to the encryption, the adversary should not be able to change data in
a meaningful way, being left only with the ability to corrupt the memory. However,
the strong attacker model of a malicious hypervisor gives the adversary numerous
possibilities to analyze the VM’s behavior. For example, the adversary can track the
VM’s memory accesses, control its address translation, observe incoming and outgoing
network traffic, or interrupt the VM’s execution. Despite this great power, the exact
abilities of a malicious hypervisor able to modify encrypted memory have not yet been
investigated.

To fill this gap, we start by analyzing the impact of a high privileged adversary on a
TEE’s memory isolation when the TEE provides memory confidentiality, but no memory
integrity. To be precise, we show that the adversary can use the missing memory integrity
to modify the memory mapping of a VM protected by SEV. Combined with an analysis
of the VM’s memory access behavior, such a modification permits to utilize a service
within the VM to extract plaintext from the VM’s memory. In other words, the missing
memory integrity allows an adversary in control of the hypervisor to circumvent the
VM’s memory isolation by violating its memory confidentiality. We further demonstrate
that modifications of the VM’s memory mapping can even enable the adversary to inject
and execute arbitrary code in the VM. For both attacks, we determine the attack vectors
required for their execution.

Our attacks reveal that a high privileged adversary able to modify the TEE’s memory,
even if encrypted, can circumvent the memory isolation and affect both the confidentiality
and integrity of the TEE’s memory. Hence, memory confidentiality by itself is not
sufficient to cryptographically isolate a TEE’s memory from high privileged adversaries.
Instead, TEEs are required to fend off various attack vectors in order to fully isolate their
memory. Only then, they can ensure the confidentiality and integrity of their data and
processes. Therefore, we discuss different countermeasures that can be taken by either
the VM or SEV and make it possible to prevent the different attack vectors required
for successful exploitation. Our most effective countermeasure is a small modification
to how SEV encrypts the VM’s memory which prevents meaningful remapping of the
VM’s memory. However, a common property of the most efficient solutions is that they
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have to be implemented by the vendor. Hence, we are not able to evaluate the defenses
in practice, but focus on their theoretical aspects.

Knowing how to defend against the described attacks enables TEEs to establish a
full cryptographic memory isolation, warding off high privileged adversaries manip-
ulating their memory at run-time. This allows us to focus on the second protection
mechanism deployed by all TEEs offered by the industry: The attestation of the TEE’s
initial state [129]. The attestation permits the owner or user of the TEE to verify that it
has been launched correctly and that the adversary did not tamper with the provided
image [34, 3]. However, the built-in attestation is not able to detect adversaries exploiting
vulnerabilities in the TEE’s code at run-time. Such vulnerabilities can enable a remote,
low privileged adversary to gain complete control over a TEE. To detect the exploitation
of such software vulnerabilities, previous work proposes to make use of Control-Flow
Attestation (CFA) [1]. CFA analyzes the control flow of a monitored application, the
target, to detect anomalies indicating attacks. For this, all valid control flows of the target
are first collected in an offline phase. Afterwards, in the online phase, the target’s control
flows are recorded and compared to the flows collected in the offline phase. This allows
CFA to detect adversaries modifying the target’s original control flow.

Previous work on CFA already makes use of TEE to protect the CFA mechanisms. Yet,
only recently the scientific community also started to investigate how to perform CFA
when the target itself is running within a TEE [142]. It is exactly this challenge which we
discuss in the third part of our work. To be precise, we present a design which permits to
perform CFA in environments in which high privilege layers are not trusted. To protect
the target from high privileged adversaries, we launch it within a TEE. Additionally, we
use a second TEE to verify the control flows of the target. This enables us to protect from
high privileged adversaries, while at the same time also being able to detect remote
adversaries exploiting software vulnerabilities.

1.1 Research questions

TEEs aim to protect the confidentiality and integrity of code and data within the
environment from high privileged adversaries. To achieve this goal, two protection
mechanisms are implemented by all TEEs provided by the industry: memory isolation
and attestation of the TEE’s initial state [129]. The first mechanism can be implemented
using cryptographic isolation, which encrypts the TEE’s memory with a key inaccessible
to the adversary. However, some TEEs attempt to achieve the cryptographic memory
isolation by only providing memory confidentiality, but refrain from verifying the
integrity of the encrypted memory. Such missing integrity protection can permit an
adversary to break the TEE’s memory isolation, thereby circumventing this essential
protection mechanism.

We demonstrate the practical feasibility of such breaches by presenting attacks from
a high privileged adversary against TEEs that do not include integrity protection in
their cryptographic memory isolation. Being aware of the impact of missing integrity
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1.1 Research questions

protection, we continue by analyzing different approaches on how to prevent the de-
scribed attacks. The discussed approaches enable the TEE to reliably isolate its memory
from high privileged adversaries, thereby ensuring the effectiveness of this essential
protection mechanism.

Afterwards, we focus on the second protection mechanism, the attestation. Current
attestation mechanisms are not able to protect from security vulnerabilities located in
the code running within the TEE. Therefore, we also improve the second protection
mechanism by discussing how to extend it in order to detect the exploitation of software
vulnerabilities within a TEE. In summary, the analysis and improvement of the two
essential protection mechanisms of TEEs, cryptographic memory isolation and the
attestation mechanism, leads us to the investigation of the following research questions:

RQ1: Which Attack Vectors Enable Attacks Against a TEE’s Cryptographic Memory Isolation
Without Memory Integrity? A TEE failing to verify the integrity of its memory can allow
a high privileged adversary to violate cryptographic memory isolation and to launch
certain attacks even in the presence of memory confidentiality. Hence, we want to explore
ways that permit adversaries to attack the TEE despite existing memory encryption. For
the discovered attacks, we intend to identify the attack vectors that enable their execution.
Furthermore, we want to analyze the impact of the attacks on the confidentiality and
integrity of data and processes within the TEE.

RQ2: How Can We Restore Cryptographic Memory Isolation of TEEs Without Memory Integrity?
Based on the attack vectors determined in RQ1, we intend to analyze countermeasures
that prevent them. For this analysis, we want to investigate existing countermeasures
from academia and the industry and also propose our own solutions. For each coun-
termeasure, we intend to analyze its requirements, feasibility, performance impact and
effectiveness. Since the most efficient approaches would have to be implemented by the
vendor, we focus on discussing their theoretical aspects.

RQ3: How Can We Detect the Exploitation of Software Vulnerabilities Within TEEs? With
mechanisms to restore cryptographic memory isolation in place, TEEs provide increased
protection from high privileged adversaries. However, they will not be able to sustain
the confidentiality and integrity of their data and processes in the presence of software
vulnerabilities within the TEE’s code. Hence, we want to explore how we can extend the
built-in attestation mechanisms in order to also detect adversaries exploiting software
vulnerabilities within the TEE.

By investigating these questions, we analyze the two pillars on which all industry-
provided TEEs base their security guarantees: memory isolation and attestation [129].
With the improved security mechanisms in place, TEEs are able to protect themselves
against a wide range of different adversaries, from a malicious hypervisor to a remote
user exploiting vulnerabilities within the TEE’s code.
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Yet, as it is mostly the case in research, the investigation of our research questions
will also yield new research questions that should be investigated by future work. First
of all, our approach to detect the exploitation of software vulnerabilities within TEEs
requires the verifier to be aware of all valid control flows the TEE can execute. Future
work is required to investigate how these control flows can be efficiently collected for
complex programs. Furthermore, the approach is only able to detect a limited set of
non-control data attacks. Such attacks stay within the legitimate control flow, but take
unexpected paths (Section 2.3). Also the detection of non-control data attacks that are
not covered by our attestation mechanism should be investigated by future work. Finally,
we implemented the prototype of our extended attestation mechanism on the TEE Intel
Software Guard Extensions (SGX). Future work could investigate how the mechanism
could be efficiently implemented on other TEEs, such as AMD SEV Secure Nested
Paging (SEV-SNP), under consideration of the TEE’s architecture and its specific security
features.

1.2 Contributions

To address our research questions, we made different contributions to the field of TEEs.
Each contribution addresses one of our three research questions.

1.2.1 Contributions to RQ1

With our first three contributions, we address our first research question. RQ1: Which
attack vectors enable attacks against a TEE’s cryptographic memory isolation without memory
integrity?

C1: Attack Vectors for the Extraction of Secrets from TEEs Missing memory integrity
in TEEs can allow a high privileged adversary to circumvent memory isolation and
to violate the TEE’s confidentiality. Using the example of AMD SEV, we show how a
malicious hypervisor can exploit missing memory integrity to extract memory content
from an SEV-protected VM and analyze the attack vectors that permit the attack. Specifi-
cally, we modify the VM’s memory mapping and utilize a service running in the VM to
return the VM’s unencrypted memory pages instead of the original response. To avoid
extracting the VM’s entire memory, we show how the adversary can focus on memory
pages containing critical information such as TLS, SSH or disk encryption keys. This al-
lows us to extract key material from the SEV-protected VM within a short period of time.

Publications: [107, 106]

C2: Attack Vectors for the Execution of Arbitrary Code Within TEEs Missing memory in-
tegrity in TEE’s can not only affect the TEE’s confidentiality, but also its integrity. Sticking
to the example of AMD SEV, we show how a malicious hypervisor can execute arbitrary
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code within an SEV-protected VM and again determine the underlying attack vectors.
For this, we first identify code within the VM, the execution of which we are able to
trigger from the outside. Next, we inject a network packet containing arbitrary code into
the VM and identify the location of the packet within the VM’s memory. Finally, we
conclude the attack by again modifying the VM’s memory mapping and triggering the
execution of the injected code.

Publication: [109]

C3: Framework for TEE Analysis The previous contributions show that missing mem-
ory integrity can have a serious impact on a TEE’s cryptographic memory isolation
by violating the confidentiality and integrity of its memory. To ease testing TEEs for
such vulnerabilities, we present a framework for the analysis of encrypted VMs1. The
framework supports different analysis methods such as memory access tracking and the
modification of memory mappings. This will facilitate the security evaluation of upcom-
ing technologies such as Intel Trusted Domain Extensions (TDX) [69], IBM Protected
Execution Facility (PEF) [64] and ARM Confidential Computing Architecture (CCA) [8].

Publications: [107, 106, 109]

1.2.2 Contributions to RQ2

Our next contribution investigates our second research question. RQ2: How can we restore
cryptographic memory isolation of TEEs without memory integrity?

C4: Countermeasure Against the Exploitation of TEEs Without Memory Integrity Our previ-
ous contributions show that missing memory integrity can breach a TEE’s cryptographic
memory isolation. To ward off the demonstrated attacks against SEV-protected VMs,
we propose a countermeasure which incorporates the Guest Physical Address (GPA)
into the encryption algorithm. This modification will lead to an erroneous decryption
when the VM accesses other memory content than intended, for example due to a
modified memory mapping. As only the vendor is able to perform such a modification,
we analyze the countermeasure on a theoretical level. Additionally, we discuss other
countermeasures proposed by academia and the industry.

Publications: [107, 109]

1.2.3 Contributions to RQ3

Finally, with our last two contributions, we address our third research question. RQ3:
How can we detect the exploitation of software vulnerabilities within TEEs?

1https://github.com/Fraunhofer-AISEC/severed-framework
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C5: Architecture to Retrieve Run-Time Information of Applications from a TEE Applications
are often dealing with potentially malicious clients aiming to exploit vulnerabilities in
their code. Furthermore, applications hosted in cloud environments are exposed to the
threat of a malicious administrator. The latter can be avoided by making use of TEEs.
Therefore, we discuss how we can enable a TEE to collect run-time information from an
application running outside the TEE based on the example of Intel SGX [34]. This allows
us to detect the exploitation of vulnerabilities in the application, while at the same time
protecting the monitoring process from high privileged adversaries. We further improve
on our concept by presenting an architecture that permits an application to provide
run-time information to the monitor while hosting both the application and the moni-
toring process in a TEE. This architecture allows to retrieve run-time information from
the application, while at the same time protecting the application and the monitoring
process from a malicious administrator.

Publications: [105, 108]

C6: Porting Control-Flow Attestation to TEEs Having enabled a TEE to collect data of
an application running inside another TEE, we show how to use this ability to monitor
the application’s run-time integrity. For this, we use the already established technique
of CFA, and port it to our design which hosts both the application to be attested and
the monitor in TEEs. In order to adapt CFA to our use case, we make the mechanism
transparent to the potentially malicious end user. Additionally, we apply modifications
that allow our CFA mechanism to remain unaffected by Address Space Layout Random-
ization (ASLR). Finally, we present a technique that permits us to detect Data-Oriented
Programming (DOP) attacks by establishing a maximum number of iterations for each
loop. Our final design enables us to detect adversaries exploiting software vulnerabilities
within TEEs, while at the same time protecting both the application and the monitoring
process from a malicious administrator.

Publication: [108]

1.3 Publications

The contributions we describe in this thesis are covered by the following publications.
Some publications contain additional contributions not covered in this thesis.

[107] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel. “SEVered: Subverting AMD’s
Virtual Machine Encryption”. In: European Workshop on Systems Security (EuroSEC).
2018

[106] M. Morbitzer, M. Huber, and J. Horsch. “Extracting Secrets from Encrypted
Virtual Machines”. In: ACM Conference on Data and Application Security and Privacy
(CODASPY). 2019
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[105] M. Morbitzer. “Scanclave: Verifying Application Runtime Integrity in Untrusted
Environments”. In: International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE). 2019

[109] M. Morbitzer, S. Proskurin, M. Radev, M. Dorfhuber, and E. Quintanar Salas.
“SEVerity: Code Injection Attacks against Encrypted Virtual Machines”. In:
USENIX Workshop on Offensive Technologies (WOOT). 2021

[108] M. Morbitzer, B. Kopf, and P. Zieris. “GuaranTEE: Introducing Control-Flow
Attestation for Trusted Execution Environments”. In: IEEE International Conference
on Cloud Computing (CLOUD). 2023

Other publications We also made publications which are related to the topic of this
thesis, but are not core contributions. These publications focus on the tweak mechanism
used for AMD SEV’s cryptographic memory isolation and the impact of malicious
information provided by a high privileged adversary.

In a first publication, we present the first code execution attack against AMD SEV [148].
Specifically, we reverse-engineer the improved tweaking algorithm applied before the
memory is encrypted [75]. With this knowledge, we make use of the missing memory
integrity protection and move encrypted blocks within the machine’s physical memory.
This allows us to create a high-speed encryption oracle, enabling us to execute arbitrary
code within VMs protected by SEV, thereby circumventing its cryptographic memory
isolation.

In a second publication, we investigate different software vulnerabilities in SEV [124].
Specifically, we show that a malicious hypervisor is able to extract cryptographic infor-
mation which the VM passes to the virtio-crypto engine [124]. We also extract and
inject data from and into the VM by setting the reserved bit in the VM’s page tables.
Additionally, by intercepting instructions from the VM to the CPU, we influence the
random number generation in the VM, permitting us to practically disable the VM’s
probabilistic kernel defenses. By using this interception, a malicious hypervisor is able
to execute arbitrary code within an SEV-protected VM.

In a third publication, we analyze the impact of the hypervisor’s ability to provide the
VM with malicious virtual devices [61]. For the analysis, we make use of a combination
of static and dynamic methods. By analyzing 22 drivers in the Linux kernel, we identify
48 vulnerabilities which can be exploited by a malicious hypervisor. To underline the
impact of such vulnerabilities, we provide a Proof of Concept for two of the discovered
bugs, allowing a malicious hypervisor to execute arbitrary code within the protected
VM. While we perform the analysis on AMD SEV, we assume that the bugs also apply
to similar environments, such as Intel TDX.

[148] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth. “SEVurity: No Security
Without Integrity - Breaking Integrity-Free Memory Encryption with Minimal
Assumptions”. In: IEEE Symposium on Security and Privacy (S&P). 2020
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[124] M. Radev and M. Morbitzer. “Exploiting Interfaces of Secure Encrypted Virtual
Machines”. In: Reversing and Offensive-oriented Trends Symposium (ROOTS). 2020

[61] F. Hetzelt, M. Radev, R. Buhren, M. Morbitzer, and J.-P. Seifert. “VIA: a Toolset for
Analyzing Device Interfaces of Protected Virtual Machines”. In: Annual Computer
Security Applications Conference (ACSAC). 2021

1.4 Outline

This thesis is structured as follows. Before describing our contributions in detail, we
discuss the required background in Chapter 2. This background consists of an overview
of the two TEEs we used for our contributions, namely AMD SEV and Intel SGX.
Furthermore, we present the basic concept of CFA, which we deploy in Chapter 6 to
detect run-time attacks on TEEs. Afterwards, we discuss the current state of the art
in Chapter 3 by examining related work. This permits us to identify the missing gaps
which we investigate in this work.

In Chapter 4, we investigate our first research question. Specifically, we present two
attacks against AMD SEV’s cryptographic memory isolation in Sections 4.2 and 4.3.
These attacks allow a high privileged adversary to exploit SEV’s missing memory
integrity in order to violate the confidentiality and integrity of an SEV-protected VM.
For both attacks, we determine the attack vectors required for their successful execution.

Having determined these attack vectors, we continue in Chapter 5 by discussing
possible countermeasures against the different vectors. By doing so, we investigate
our second research question which seeks methods to restore cryptographic memory
isolation. Most importantly, we propose a slight modification to SEV that efficiently
prevents the attacks described in the previous chapter. Additionally, we provide an
overview of the existing countermeasures discussed in different publications and the
different attack vectors they address.

Knowing how to restore cryptographic memory isolation, we investigate our third
research question in Chapter 6. To be precise, we extend the attestation mechanism of
TEEs in Section 6.2 by first presenting an architecture that allows us to collect run-time
information of an application running within a TEE. Then, in Section 6.3, we describe a
design that combines this architecture with CFA to detect an attacker manipulating the
control flow of an application hosted within a TEE. In comparison to the corresponding
publication, the design discussed in this work includes a mechanism that enables us
to detect DOP attacks by determining the maximum number of iterations for every
loop. To underline the practicality of our design, we implemented a prototype, which
we describe in Section 6.4 and evaluate in Section 6.5. We then finalize the chapter by
discussing details of our prototype in Section 6.6.

Finally, we conclude the thesis in Chapter 7 by summarizing our contributions and
discussing possible future work in the field.
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CHAPTER 2

Background

Previous work proposed various Trusted Execution Environments (TEEs) [138, 96, 27,
47, 35, 145, 87] which aim to protect code and data from high privileged adversaries.
Meanwhile, the industry also offers different TEEs, making them available to a wider au-
dience [17, 34, 75, 120, 69, 64, 8]. In this work, we focus on the two protection mechanisms
provided by all of these industry-provided TEEs: memory isolation and attestation [129].
Note that some TEEs may provide additional protection mechanisms for secure I/O or
secure storage. Yet, as these are not supported by all TEEs and are not strictly required
to achieve the TEE’s security guarantees, we focus on memory isolation and attestation.

In this chapter, we discuss the two TEEs which are commercially available at the
time of writing and aim to protect lower privileged software from high privileged
adversaries: AMD Secure Encrypted Virtualization (SEV) [75, 74] and Intel Software
Guard Extensions (SGX) [34]. We use AMD SEV in Chapter 4 to analyze the impact of
missing memory integrity on cryptographic memory isolation. In detail, we show that
the missing integrity can allow an adversary to violate the confidentiality and integrity
of data and processes in TEEs. Afterwards, we use Intel SGX in Chapter 6 to improve
the attestation mechanism of TEEs by implementing our design to detect adversaries
exploiting software vulnerabilities within a TEE. Additionally to discussing these two
TEEs, we also use this background chapter to explain the concept of Control-Flow
Attestation (CFA), which plays an important role in the design we describe in Chapter 6.
Hence, we describe the basic concept of CFA and its limitations, specifically non-control
data attacks.

2.1 AMD SEV

To understand the concept of AMD SEV, we first have to understand the working
principles of virtualization. Virtualization allows to run multiple virtual systems, the
so-called Virtual Machines (VMs), on the same physical system. The VMs are managed
by the hypervisor, a combination of hardware and software mechanisms. One task of the
hypervisor is to assist the VM during execution. If the VM requires assistance, it issues
the VMEXIT instruction, which hands control to the hypervisor. The hypervisor then
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saves the VM’s state, such as registers, and assists the VM, for example by emulating a
CPU instruction. Afterwards, the hypervisor restores the VM’s state and hands control
back to the VM.

Software Hardware

VM

Kernel

GFN6

GFN5

GFN4

GFN3

GFN2

GFN1

Application2

Application1

Hypervisor RAM

SFN7
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Figure 2.1: Memory management in a virtualized environment. Within the VM, applica-
tions access memory via virtual addresses, the GVAs. The mapping between
the GVAs and the location in the VM’s memory, the GPAs, is managed by
the VM. Using SLAT, the hypervisor maps the GPAs to their location in the
system’s memory, the SPA.

The hypervisor is also responsible for providing virtual hardware to the VM, such
as virtual memory. Figure 2.1 depicts how the hypervisor, representing the transition
from software to hardware, manages the VM’s virtual memory. Depicted on the left,
the VM may run different applications, which use virtual addresses to access memory.
The VM maps these virtual addresses, the Guest Virtual Adresses (GVAs), to the Guest
Physical Adresses (GPAs). These GPAs are used by the VM’s kernel to manage the
virtual memory provided by the hypervisor, which is treated as physical memory by
the VM. This memory is split into different pages, the Guest Frame Numbers (GFNs).
In the next step, the hypervisor maps the GFNs to their actual location in the physical
memory, the System Frame Numbers (SFNs). To address data within the physical
memory, the hypervisor uses System Physical Adresses (SPAs), which point to an offset
on a specific SFN. This twofold translation is generally referred to as Second Level
Address Translation (SLAT). In Chapter 4, we show how a malicious hypervisor can
modify the SLAT to remap a GFN to a different SFN. We use this ability to present
our two initial contributions (Section 1.2.1). In the first contribution, we show how the
hypervisor can extract secrets from a VM by modifying the SLAT. Furthermore, in our
second contribution, we use this ability to execute arbitrary code within the VM.

Another task of the hypervisor is to provide the VM with virtual devices for I/O
operations, such as network cards. To exchange data between the physical and the virtual
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device, virtualized environments use frameworks such as virtio [44]. In Section 4.3, we
track the data exchange process via virtio to determine where the VM stores incoming
network packets. For the tracking, it is important to know that the main communication
structure of virtio are the so-called virtqueues. Each virtual device uses at least two
virtqueues: one for receiving data, and one for sending data. The virtio standard defines
two different formats for virtqueues: the traditional split virtqueues, and the newer
packed virtqueues. All VMs we analyzed for the evaluation of our code execution attack
(Section 4.3.4) made use of split virtqueues, which is why in this work we focus on split
virtqueues.

Each split virtqueue comprises three components: the descriptor table, the available ring,
and the used ring. The descriptor table contains, among others, the addresses of buffers
the virtual device in the hypervisor and the driver in the VM can use for data exchange.
When referring to a buffer in the descriptor table, the driver and the device use the
position of the buffer in the descriptor table as an index. The driver in the VM writes
these indexes into the available ring, thereby offering the buffers to the virtual device in
the hypervisor. Once the virtual device has used one or more of the available buffers, it
adds the buffer’s index to the used ring.

driver
virtual
device

VM Hypervisor

available ring
... 1 2 3

used ring
... 1 2

descriptor table
1 buf1 len1

3 buf3 len3
4 buf4 len4

2 buf2 len2

buffers
buf1
buf2
buf3
buf4

1

2

3

4

5

Figure 2.2: Receiving data via split virtqueues. First, the virtual device in the hypervisor
reads the available ring and the descriptor table to determine to which
buffer to add incoming data. Next, the driver in the VM reads the used ring
and the descriptor table to determine the buffer holding the incoming data.
Source: [109].

Figure 2.2 depicts handling of incoming data via a split virtqueue. To enable the VM
to receive data, the driver allocates buffers, adds them to the descriptor table and writes
their respective index into the available ring. When receiving incoming data, the virtual
device reads the available ring to find the next free buffer ( 1 ). Afterwards, the device
writes the data to the buffer ( 2 ) and adds the buffer’s index to the used ring ( 3 ).
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Reading the used ring ( 4 ) allows the driver in the VM to determine from which buffer
to consume the incoming data ( 5 ).

The process for sending data with split virtqueues works vice-versa. First, the driver
puts the outgoing data in one of the buffers indicated in the descriptor table and adds
the buffer’s index into the available ring. Next, the device reads the available ring
to determine from which buffer it can consume the data. Once the device finished
consuming the data, it adds the buffer’s index to the used ring.

For both sending and receiving data, the hypervisor requires access to the VM’s
memory to be able to read and write the buffers used to exchange data. This implies
that the VM has to trust the hypervisor not to extract or modify data in its memory. To
protect from such a threat, AMD introduced Secure Memory Encryption (SME) and
SEV.

SME is a hardware extension for both full and partial memory encryption. This hard-
ware extension links the system’s page tables with its encryption engine to establish an
interface that permits to regulate which memory regions are to be encrypted. Specifically,
AMD dedicates a special bit, the C-bit, of the system’s Page Table Entrys (PTEs) [4] to
indicate whether the associated page should be encrypted. The key for this encryption
is managed by a dedicated ARM-based processor, the Secure Processor (SP), which
generates a new encryption key on each system reset. To encrypt a memory page, the
system sets the C-bit of the respective PTE, causing the SP to encrypt the respective
page via a specially tweaked, high performance AES implementation [75, 148]. The goal
of the tweak is to incorporate the SPA of the data into the encryption. This prevents
attackers from performing known-plaintext attacks by moving cipher-text blocks in the
physical memory. In Chapter 5, we show how the tweak works in detail. Additionally,
we present our contribution C4. This contribution prevents our attacks against the con-
fidentiality and integrity of SEV-protected VMs (Sections 4.2 and 4.3) by proposing a
small modification of the tweak.

A constraint of SME is its limited use in virtualized environments. This is mainly
caused by the fact that the memory of VMs and the underlying hypervisor is encrypted
with the same key. Thus, the hypervisor can access sensitive data of VMs despite full
memory encryption. Addressing this issue is where SEV comes into play.

In Figure 2.3, we give an overview of SEV. Contrary to SME, SEV introduces different
isolation domains, and assigns a unique memory encryption key for every domain [75].
In other words, every isolation domain, including different VMs and the hypervisor
itself, is associated with a unique secret key. Trying to access encrypted memory from
a different isolation domain that is associated with a different key returns garbled
information. As such, the physical memory of isolation domains can only be decrypted
with the secret key of the particular domain to which the memory has been assigned.
Hence, SEV makes use of cryptographic memory isolation to protect its memory. To
the best of our knowledge, there are only few examples of TEEs isolating their memory
via means of cryptographic instead of logic memory isolation [129], the others being
academic works [138, 93]. Being the only industry-provided TEE that uses cryptographic
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Figure 2.3: An overview of AMD SEV. As with traditional virtualization, the hypervisor
maps the GPA to the SPA in RAM. Additionally, the SP encrypts and decrypts
data before it is written or read.

memory isolation makes SEV a very well suited object of investigation to study the
impact of missing memory integrity on cryptographic memory isolation.

SEV’s memory isolation can be activated by setting the C-bit in the VM’s PTEs. This
allows every VM to individually control which pages should be encrypted. If the VM
sets the C-bit for a page, its content will be encrypted with the VM’s key. Such a page
is only accessible in plaintext to the VM, and is therefore referred to as a private page.
By omitting the C-bit, the VM defines shared pages which are also accessible to the
hypervisor. Depending on the C-bit in the hypervisor’s page tables, shared pages can
either be encrypted with the hypervisor’s key, or remain unencrypted. In both cases, the
VM as well as the hypervisor can access the page.

To enable the hypervisor to exchange I/O data with the VM despite memory en-
cryption, SEV leverages bounce buffers [13]. Using bounce buffers, the hypervisor, when
providing data to the VM, copies the data into a buffer on a page shared between the
VM and the hypervisor. Afterwards, the VM copies the data from the shared page to its
destination in the VM’s private memory. During this operation, the memory controller
automatically encrypts the data when writing it to private memory. In comparison,
when the VM wants to provide data to the hypervisor, its device driver first writes
the data into a buffer in private memory. From there, the VM bounces it to a shared
page, on which it will be stored unencrypted, ready to be consumed by the hypervisor.
Using this technique, the VM can communicate with the hypervisor despite the memory
encryption, while at the same time removing the requirement for the hypervisor to be
able to read and write the VM’s memory. In Section 4.3, we track the different steps
of this mechanism to determine where the VM stores incoming network packets. This
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allows us to send a payload to the VM via a network packet and identify its location
within the VM’s encrypted memory.

An issue that remains with SEV is that register contents stored on a VMEXIT may
contain sensitive data, which would leak to the hypervisor [147]. To prevent leakage of
register contents, AMD introduced an iterative extension to SEV, SEV Encrypted State
(SEV-ES) [74]. SEV-ES additionally lends VMs the capability to encrypt and integrity-
protect selected register state every time the VM hands over control to the hypervisor. As
the difference between SEV and SEV-ES solely lies in the encryption of the register state,
we use the term SEV to refer to both technologies. In comparison, the third iteration
of SEV, SEV Secure Nested Paging (SEV-SNP), brings some major changes to the basic
design [3]. Therefore, we explicitly refer to the third iteration as SEV-SNP.

The approach taken by the SEV family to protect an entire VM permits to run
applications in a TEE without requiring developers to perform modifications. This
may very well be the reason why other upcoming TEEs such as Intel Trusted Domain
Extensions (TDX) [69], IBM Protected Execution Facility (PEF) [64] and ARM Confidential
Computing Architecture (CCA) [8] will also protect entire VMs. Our contribution C3
provides a framework to analyze these similar technologies.

A downside of protecting a VM is that it creates a large Trusted Computing Base
(TCB). The TCB consists of all components the TEE is required to trust. When protecting
an entire VM, the TCB includes software such as the kernel and the Operating System
(OS), which may consist of hundreds of millions of lines of code [100, 86]. Intel SGX
therefore takes a different approach and aims to minimize its TCB by only protecting a
single application.

2.2 Intel SGX

Intel SGX was first introduced in 2013 [7, 98, 62]. Its goal is to protect a user-space
application from a high privileged adversary. To achieve this goal, SGX splits the
application into an untrusted part, the Host Application (HA), and a trusted part, the
enclave. The HA is a traditional user-space application, and provides no protection against
a high privileged adversary. It is responsible for performing non-critical operations and
for launching the enclave. During the launch process, the SGX firmware measures all
code and data loaded into the enclave. This measurement enables a remote user to verify
the integrity of the enclave at launch-time using Intel’s remote attestation process [73,
127]. After the enclave is launched, firmware and hardware ensure that its memory
cannot be accessed by a higher privilege layer such as the OS by deploying logical
memory isolation. Specifically, the CPU prevents non-enclave software from accessing
the enclave’s memory [34].

The HA and the enclave communicate over a strictly defined interface, the call gate. To
hand control to the enclave, the HA executes an ecall, which calls a function within the
enclave. If the enclave during its execution needs assistance from the HA, it issues an ocall.
Such assistance is for example necessary to perform I/O operations, as the enclave cannot
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Figure 2.4: An example for the control flow of a server using SGX. The HA receives
encrypted requests and hands them to the enclave using an ecall. The enclave
decrypts the requests, processes them and performs an ocall for logging.

directly interact with the OS. Both ecalls and ocalls require a context switch, making
them expensive operations [146]. Additionally, ocalls flush the Translation Lookaside
Buffer (TLB) for security reasons, further increasing the performance costs [98].

Figure 2.4 shows an example control flow of a service using SGX. The two big rectan-
gles depict the HA on the left, and the enclave on the right. Aside from launching the
enclave, the HA is responsible for performing non-critical operations, such as handling
incoming connections ( 1 ). When the HA receives an encrypted request from a client,
it hands the information to the enclave via an ecall ( 2 ). This ecall has to pass the call
gate, which ensures the correct invocation of the enclave. Next, the enclave decrypts the
request using key material only available within the enclave ( 3 ). Before processing the
request, it logs the request ( 4 ). As logging requires writing to a file, the enclave issues
an ocall, in which the HA stores the logging information on the file system ( 5 ), and
afterwards returns control to the enclave. Note that if the logging information contains
critical data, the enclave can encrypt this data before handing it to the HA. Afterwards,
the enclave creates a response ( 6 ) and encrypts it ( 7 ). When the enclave is finished
handling the response, it returns from the original ecall ( 2 ) to hand control and the
encrypted response back to the HA. The HA can then send this response to the client
( 8 ).

While this process is more complex than traditional request handling, the advantage is
that the key material stays within the enclave, rendering it inaccessible to high privileged
adversaries. This reduces the impact of an attacker gaining control over the environment
in which the service is hosted, for example by escaping an isolation domain [103].
Another advantage of this approach is that even when the network handling process
contains vulnerabilities, this would only provide access to the HA performing this
non-critical operation, but not to the enclave. To gain access to the key material, the
adversary is required to also compromise the enclave.

To detect such a compromise, our contribution C5 describes an architecture to collect
run-time information of an application running within a TEE in Section 6.2. We then
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utilize this architecture for our contribution C6, in which we monitor the run-time
integrity of the application by using CFA. This allows us to improve the attestation
by extending measurements at time of launch with run-time checks. To underline the
practicality of our design, we describe the details of our prototype based on Intel SGX
in Section 6.4.

2.3 Control-Flow Attestation

The goal of CFA is to monitor an application’s control flow to detect attacks that cause
deviation from the normal control flow. This concept was first introduced by Abera et al.
in 2016 [1]. Using CFA, the prover provides a second party, the verifier, with information
about the executed control flow of an application, the target. This information enables the
verifier to determine if the target correctly executed the expected sequence of commands.
To ensure the integrity of the verifier even in the case of a compromised prover, the two
entities are clearly separated.

N1: read input
N2: compare input to password
N3: if they match, get secret data
N4: else get public data
N5: return data

N1

N2

N3 N4

N5
N6

Figure 2.5: An example for legal and illegal control flows in a CFG. Nodes N1–N5

denote executions of code, while the arrows denote the different edges. A
vulnerability in N4 can permit an attacker to illegally redirect control flow to
N3 or to a new node N6. Source: [108].

In order to perform the verification, the verifier first collects all of the target’s legal
control flows to calculate its legitimate Control-Flow Graph (CFG). In the CFG, the
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target’s execution is abstractly represented with nodes representing uninterruptible
instruction sequences and edges representing transitions between nodes. Figure 2.5
shows a CFG consisting of the nodes N1 – N5, and five solid edges marking valid
transitions between the nodes. In this example, the target first reads an input in N1 and
compares it to a stored password in N2. Depending on the result of this comparison, the
target will either continue to N3 if the input and the password match or otherwise to N4.
Finally, both N3 and N4 will hand control to N5, which returns the data fetched in the
previous node.

To create the target’s CFG, the verifier can make use of static or dynamic analysis.
Using static analysis, the verifier analyzes the binary code of the target to calculate the
CFG. However, this approach does not include edges that are calculated at run-time,
such as indirect calls. In comparison, dynamic analysis attempts to avoid such issues by
executing the target, allowing to collect all possible paths of the CFG. For the collection,
the verifier executes the target with different inputs and merges all executed paths to
create the CFG. Yet, using this approach, it is difficult to determine at which point the
target executed all possible control flows at least once. Therefore, efficiently creating
complete CFGs for complex programs is still an open research question. To nevertheless
ensure that all paths of the target have been invoked, one can resort to programs with
reduced complexity.

In the design we describe in Section 6.3, we aim to protect targets with reduced
complexity that are frequently deployed in cloud environments, the so-called microser-
vices [6]. Such microservices split the functionality of a complex multi-functional service
into multiple, simple services with a single functionality. This reduced functionality also
reduces the complexity of each service, simplifying the execution of all legal control
flows for each of them. As an alternative to splitting up the target itself, we can break
down the CFG of a complex target into multiple segments to facilitate the collection of
each segment’s CFG, as suggested by previous work [2, 141].

Now, let us assume that N4 in Figure 2.5 contains a vulnerability which permits an
adversary to read and write arbitrary data memory. This would enable the adversary
to perform a so-called control data attack and, for example, modify a return address on
the stack. With the modified return address, the target might then create a new edge by
jumping directly from N4 to N3. Overwriting the return address would also permit the
adversary to create a new node N6, allowing to execute arbitrary code by performing
Return-Oriented Programming (ROP) [132].

CFA can detect such control data attacks. Once the verifier has created the CFG, the
prover records the execution path of the target and sends it to the verifier. By analyzing
the execution path, the verifier can determine if the recorded path was within the
expected CFG. If this is not the case, the verifier can conclude that the target has been
compromised. The verifier can then trace back the target’s execution path to determine
the first mismatching edge, permitting to locate the node in which the compromise has
first taken effect.
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In our contribution C6, we use CFA to detect attackers modifying the control flow of a
target running in a TEE. Also placing the verifier in a TEE allows us to protect both the
prover and the verifier from high privileged adversary. In Section 6.3, we discuss the
challenges when porting CFA to TEE, and our respective solutions.

Yet, traditional CFA fails to detect attacks that stay within the target’s legitimate CFG,
the so-called non-control data attacks. In comparison to control data attacks, non-control
data attacks stay within the target’s legitimate CFG, but take unexpected paths [119,
28]. An example for such an attack is the modification of a decision-making variable,
such as the password in N2 in Figure 2.5, to circumvent authentication. More advanced
non-control data attacks, the so-called Data-Oriented Programming (DOP) attacks, chain
arbitrary code gadgets while staying within the CFG [63]. Such DOP attacks require
a gadget dispatcher. A gadget dispatcher is a loop containing a control structure which
permits to select the DOP gadgets to be executed. To be able to chain DOP gadgets, the
attacker modifies data such as the loop’s induction variable. Modification of this variable
allows to perform an arbitrary number of loop iterations, executing only specific DOP
gadgets each time. This enables the adversary to perform malicious, Turing-complete
computations while staying within the CFG.

Their compliance with the CFG makes it difficult to detect non-control data attacks.
Previous work proposes bounds checking to detect variables being overwritten, allowing
for the combined detection of non-control data and control data attacks [38]. However, as
a considerable disadvantage, bounds checking adds a significant overhead to every read
and write operation. Another possibility to detect non-control data attacks consists in
storing hashes of critical variables in a trusted area when the variables are written [139].
Afterwards, when the variables are read, a verification mechanism compares the value
of the variable with its stored counterpart to detect modifications. However, also this
approach requires bounds checking in order to detect writes to critical variables via
pointers. In Section 6.3, we show how we can avoid the need for bounds checking by
adopting a lightweight approach which enforces an upper limit on loop iterations at
run-time. This approach allows us to detect DOP attacks by using CFA.
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CHAPTER 3

State of the Art

In this chapter, we discuss related work regarding attacks on Trusted Execution
Environments (TEEs) and their defenses as well as work on memory integrity monitoring.
Our goal is to determine the current state of the art and to identify the missing gaps
which we fill with our work. To achieve this goal, we start with work that describes
attacks on AMD Secure Encrypted Virtualization (SEV) and give an overview of all
published attacks. We then continue with work that discusses defense mechanisms that
could be applied to prevent these attacks. Afterwards, we examine work which aims to
determine the memory integrity of various systems. For each section, we also identify
the gap covered with the contributions in this thesis.

3.1 Attacks Against AMD SEV

When we started analyzing the impact of missing memory integrity on cryptographic
memory isolation, most attacks against TEEs targeted Intel Software Guard Extensions
(SGX). However, to the best of our knowledge, all attacks against SGX are side-channel
attacks [112], which do not exploit vulnerabilities in the TEE itself. Since AMD explicitly
excludes such attacks from SEV’s threat model [3], we instead focus on attacks against
AMD SEV.

Hetzelt and Buhren [60] were the first to perform an in-depth analysis of SEV. In their
work, they use the missing integrity protection and combine it with hypervisor’s ability
to modify the Second Level Address Translation (SLAT) tables. By analyzing system call
sequences, the authors are able to modify the Virtual Machine (VM)’s login information
for an SSH server in order to gain unauthenticated access to the VM. Yet, their attack
has a success rate of only 23%. This low rate is mainly caused by the fact that for the
attack to succeed, the login information of the victim and the attacker have to be stored
on the same offset within a Guest Frame Number (GFN). Another disadvantage is that
the attack requires an in-depth analysis of the target, for example by having access to
a comparable VM. To perform such an analysis, the same authors also discuss using
machine learning to understand the behavior of the VM, which also requires a significant
amount of preparation [20].

21



Chapter 3 State of the Art

Du et al. [41] analyze the encryption algorithm of SEV. They determine that before
encryption, the plaintext is tweaked with static values depending on the System Physical
Address (SPA) on which the data will be stored. This knowledge enables them to gain
access to an SSH server running within the encrypted VM by analyzing cipher blocks.
The tweak values published by the authors are also used by Li et al. [91], who build
a decryption oracle. Specifically, they replace encrypted memory blocks about to be
sent via an SSH connection with arbitrary blocks from the same VM. This allows them
to read the block’s content once the packet was copied out of the VM. Similarly, they
create an encryption oracle by replacing data in the shared memory before it is bounced
to the encrypted memory of the VM. However, a disadvantage of both attacks is that
they require the active use of an SSH server within the target VM. Additionally, both
attacks only apply to the first generation of AMD EPYC CPUs, as we discovered that
the tweaking algorithm was changed in later versions [148].

Werner et al. [147] monitor register values and memory accesses of an encrypted VM
to derive and modify instructions the VM executes. Yet, this approach cannot be applied
to SEV Encrypted State (SEV-ES), as SEV-ES prohibits the hypervisor from accessing the
VM’s register values. In the same work, the authors also use Instruction Based Sampling
to gather information about which applications are running within the encrypted VM.
While this analysis can also be applied to VMs protected with SEV-ES, it has only limited
impact on the VM’s confidentiality, and no impact on its integrity.

Li et al. [90] modify the Address Space Identifier of a VM during a VMEXIT, permitting
them to decrypt the page tables of the target VM. By additionally modifying the VM’s
state, the authors are able to create decryption and encryption oracles. As SEV-ES
prevents such a modification of a VM’s state, their attack cannot be applied to VMs
protected by SEV-ES.

Wilke et al. [149] analyze SEV’s attestation process and discover that the order of
blocks in the initial image does not influence the attestation measurement. Using this
knowledge, they are able to execute arbitrary code within the VM by modifying its image
in order to redirect the execution of code. To permit the detection of such modifications,
AMD updated the attestation process to also include the VM’s memory layout. This
enables the owner of the VM to detect a modified VM image during the attestation
process.

Li et al. [89] monitor the ciphertext of register values the VM stores on a VMEXIT
before handing control to the hypervisor. This permits them to infer the VM’s behavior
and to extract the private keys used by OpenSSL. Similar to Hetzelt et al. [60], the attack
requires access to a comparable VM to acquire the detailed knowledge of the VM and
the target application necessary to perform the behavioral analysis.

Additionally, there exist attacks against the Secure Processor (SP). One of these attacks
uses a bug in the SP to extract the processor’s private key [26]. Similarly, also glitching
can be used to extract vital keys from the SP [21]. Other hardware attacks replace the
firmware, allowing to circumvent the attestation process [116, 22].
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Table 3.1: Overview of all software attacks against SEV and SEV-ES in chronological
order. The table lists the type of attack and its main requirement. The publica-
tions discussed in this chapter as well as in our additional publications are
highlighted in bold.

Work Type of Attack Requirements

Hetzelt and Buhren [60] Control-Flow Modification User Interaction
Du et al. [41] Control-Flow Modification Specific CPU Generation
Morbitzer et al. [107, 106] Data Extraction In-VM Service
Werner et al. [147] Data Extraction No SEV-ES
Li et al. [91] Data Extraction and Injection Specific CPU Generation
Wilke et al. [148] Code Execution Specific CPU Generation
Li et al. [90] Data Extraction No SEV-ES
Radev and Morbitzer [124] Code Execution Software Bugs
Morbitzer et. al [109] Code Execution I/O Channel
Wilke et al. [149] Code Execution Boot Time Access
Li et al. [89] Data Extraction Behavioral Analysis
Buhren et al. [21] Firmware Key Extraction Physical Access
Hetzelt et al. [61] Code Execution Software Bugs

Table 3.1 gives an overview of all software attacks against SEV. In bold, we highlight
the attacks discussed in the following chapter [107, 106, 109] as well as attacks covered
in our additional publications [148, 124, 61]. The overview shows that we were the
first to present a generalized approach for attacks against missing memory integrity by
providing a data extraction attack against SEV-protected VM’s. Additionally, this was
the first attack evaluated on a working SEV-setup. Furthermore, we were able to provide
a total of four code execution attacks [148, 124, 109, 61].

In this work, we systematically analyze the attack vectors that allowed us to execute
our data extraction and code execute attack. Having gained knowledge about the attack
vector will permit us to determine the impact of different countermeasures in Chapter 5.

3.2 Defenses for AMD SEV

Along with the different attacks on SEV, also a number of defense mechanisms have
been proposed and were partially also implemented. From the attacks described in
the previous sections, two code execution attacks were addressed with firmware and
software updates [148, 124].

A countermeasure from Li et al. [91] targets the fact that with SEV, the VM copies
I/O data such as network packets from the shared, unencrypted into private, encrypted
memory before processing it (Section 2.1). This permits a malicious hypervisor to observe
the copy process and to determine to which destination the VM copies the data. To
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eliminate this weakness, the authors suggest to enable the IOMMU to write the data
directly into the VM’s memory using the respective encryption key. However, in this
scenario, the SEV firmware must ensure that higher privileged software does not abuse
this functionality, which will be difficult.

Another attack vector on which multiple attacks rely is the fact that the hypervisor
is able to remap GFNs of an SEV-protected VM to a different System Frame Number
(SFN). To prevent such remapping, the untrusted hypervisor can be liberated from
the task of managing the VM’s memory. Based on this idea, Zhang et. al [154] and Li
et al. [92] propose to split the hypervisor in a trusted and an untrusted part. In their
designs, most tasks are performed by the untrusted part, while the trusted part is, among
others, responsible for memory management. An attacker able to gain control over the
hypervisor will likely only gain control over the untrusted part, as this part performs
a higher number of tasks therefore and has a bigger code base. However, control over
the untrusted part of the hypervisor will not allow to remap a GFN to a different SFN,
as only the trusted part of the hypervisor can perform such modifications. Similarly,
Wu et al. [150] aim to prevent remapping attacks in SEV by introducing an additional
component responsible for managing the VM’s memory. However, both approaches only
outsource trust to other components rather than addressing the attack vector caused by
the missing integrity protection.

In comparison, adding integrity protection for the VM’s memory would eliminate
the pillars of both our attacks as well as others [60, 41, 148, 91, 90]. The best solution
for such a protection would be a full-featured integrity and freshness protection of the
VM’s pages additional to the encryption, as realized in Intel SGX [34]. Therefore, Li et
al. [91] propose to ensure the integrity of the VM’s memory by storing a hash value for
every encrypted block. This approach would permit to detect if data in memory has
been modified before it is used by the VM. However, such integrity protection requires
high amounts of storage to retain all hash values, even though the authors propose to
decrease the storage overhead by using techniques such as Address Independent Seed
Encryption in combination with Bonsai Merkle Trees. Alongside the storage overhead,
such a solution would likely also induce a high performance overhead, as the integrity
of the data would have to be verified on each memory access.

Instead, the latest iteration of SEV, SEV Secure Nested Paging (SEV-SNP), additionally
stores the Guest Physical Address (GPA) to protect the integrity of the VM’s memory [3].
Specifically, SEV-SNP adds a Reverse Map Table (RMP) to the address translation process.
As with SEV and SEV-ES, the VM translates a virtual address to a GPA, and afterwards
the hypervisor uses the SLAT to translate the GPA to the SPA. Yet, in contrast to previous
versions, with SEV-SNP, the SP afterwards verifies the integrity of the translation with
the help of the RMP. To perform this verification, the RMP is indexed using the SPA.
Each entry in the RMP contains among others information to which VM the SPA belongs
to, the matching GPA, and a valid flag. If an attacker modifies the SLAT to map a GPA to
a different SPA, the SP will be able to detect this modification and the address translation
will fault with a #PF exception. This allows SEV-SNP to prevent us from remapping the
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GFNs of protected VMs, thereby stopping both attacks outlined in the following chapter.
Yet, note that this latest version of the SEV family was not yet available when our attacks
were originally developed.

In comparison to these works, we systematically analyze how the various attack
vectors exploited by the attacks can be prevented. For this, we discuss countermeasures
for the different attack vectors which can be taken by both the VM and SEV. Most
importantly, with our contribution C4, we propose a lightweight countermeasure that
prevents a malicious hypervisor from mapping GFNs of a SEV-protected VM to different
SFNs in a targeted manner. Additionally, we compare the countermeasures discussed by
related work with the ones proposed in this thesis.

3.3 Memory Integrity Monitoring

Also a number of integrity monitoring mechanisms have been proposed in the past. Yet,
the only other work we are aware of that performs run-time attestation of TEEs is by
Toffalini et al. [142]. To protect their verifier against attacks from a compromised prover,
the authors move it to a separate host. For the attestation, they assume the target to be
simple enough to be modeled with symbolic execution and insensitive static analysis
they use to extract actions from the target. This static approach cannot include indirect
jumps calculated at run-time.

Other related work either refrains from using TEEs, or only uses them to protect
the monitoring process. In detail, Kil et al. [77] were the first to introduce the notion
of dynamic attestation. To perform their attestation, the authors attest two dynamic
system properties proposed in earlier work. The first property is structural integrity,
which makes use of the fact that dynamic memory objects follow certain patterns [78].
Furthermore, they attest the integrity of global variables by ensuring that they satisfy
data invariants [50]. For their work, the authors assume a trusted Operating System
(OS). Additionally, their prototype only performs its attestation measurements when
the monitored application invokes a system call, giving the attacker the possibility to
bypass the detection.

Also Davi et al. [37] propose an architecture for dynamic integrity measurements.
To monitor the integrity of applications, the authors suggest to use taint analysis and
dynamic tracing. Yet, they leave the detailed implementation of those approaches up to
future work. Furthermore, the authors also require a trusted OS.

Rein [125] monitors the integrity of certain segments of ELF binaries in memory. This
allows to detect attacks such as code injections, code manipulations, and code pointer
modifications in the data segment jump tables. The monitoring is limited to segments
with predictable content, such as the .text or .got segment. Due to this limitation, it
is only possible to detect attacks that modify the application in memory but not code
reuse attacks such as Return-Oriented Programming (ROP).

To detect attacks such as ROP, Abera et al. [1] introduced the concept of Control-Flow
Attestation (CFA). For each legal control flow within the target program, they create a
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hash chain which contains the addresses of every executed basic block. While the hash
chain enables the prover to store an entire control flow in a single hash, it also requires
the verifier to store a hash for every possible flow. Furthermore, they use addresses
to identify basic blocks, which prevents the target from using Address Space Layout
Randomization (ASLR). To ensure the integrity of the hash chain, they implement their
Proof of Concept on a Raspberry Pi 2 using ARM TrustZone. Similar to other works, also
these authors do not consider an attacker to be in control of the OS running the target
program. Furthermore, their design cannot be applied to systems making use of ASLR.

Dessouky et al. [39] build on the work of Abera et al. [1], but implement their design
in hardware. This permits them to reduce the overall overhead and to attest the control
flow without having to instrument the target program. Another hardware-based design
by Zeitouni et al. [153] additionally provides protection from physical attacks. Both
Dessouky et al. [39] and Zeitouni et al. [153] realize the respective advantages by
monitoring all executed instructions. Further work by Dessouky et al. [38] attempts
to reduce the complexity when creating and verifying the Control-Flow Graph (CFG)
by splitting it up into segments. Additionally, their concept allows to detect Data-
Oriented Programming (DOP) attacks by analyzing all accesses to data memory. Yet,
this analysis of all data memory access also causes additional overhead. Furthermore,
all of these concepts require changes to the hardware, which are difficult to apply in
cloud environments.

Abera et al. [2] use CFA to detect misbehavior of devices in distributed systems. In
their work, they only attest critical code, reducing the performance overhead required to
perform CFA. Additionally, they reduce the storage overhead by using multiset hash
functions. Also Conti et al. [33] apply CFA to distributed systems, enabling them to detect
services that perform non-intended operations. They achieve this goal by presenting a
protocol which allows for the attestation of a control flow over multiple devices. Another
design for distributed systems by Koutroumpouchos et al. [83] proposes the application
of Berkeley Packet Filters to extract the CFG from devices.

Sun et al. [139] use CFA to verify the integrity of an operation executed on an
embedded system. To reduce the overhead of the CFA, they split the attestation report
into a trace giving information about forward edges and a hash chain of return values
ensuring backward edge protection. To prevent DOP attacks, the authors store hash
values of critical variables in a trusted area each time the variables are written. On every
read of such a variable, they verify the variable’s value by comparing it to the previously
stored hash. To ensure the inclusion of pointers to critical values, they additionally apply
a memory safety approach which drastically increases the overhead. A limitation of this
design is that its backward edge protection is not compatible with ASLR. Additionally,
their mechanism requires memory safety techniques to detect DOP attacks, causing
additional overhead. Furthermore, again the authors only use TEEs to protect the
recorded measurements, not to protect the target itself.

Control-Flow Integrity (CFI) mechanisms take a slightly different approach and verify
edges before their execution [24, 23, 157]. This requires to store meta data about the legal
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edges, which needs to be protected from an attacker. Existing CFI mechanisms therefore
aim to hide this information. However, previous work showed that CFI can still be
circumvented by overwriting the meta data hidden within the same isolation domain [52,
54, 115]. Considering the much stronger threat model of a malicious administrator,
securely hiding the meta data becomes even more difficult.

Toffalini et al. [141] move the meta data required for the control-flow verification
into the verifier by introducing remote shadow stacks. Furthermore, they reduce the
complexity of the CFG by splitting it into segments and reducing it to only contain nodes
critical for the target’s execution. Similarly, also Zhang et al. [156] move the control-flow
verification into the remote verifier. Additionally, they simplify recorded control flows of
complex systems by skipping certain direct calls and folding control-flow events such as
loops and recursions. As done by previous works, also Toffalini et al. [141] and Zhang
et al. [156] use the kernel as trust anchor, making their design vulnerable to a high
privileged adversary. However, both works also mention CFA under a compromised
operating system as future work, thereby identifying the need for such a solution.

Ge et al. [53] and Azab et al. [9] use ARM TrustZone to monitor the integrity of
a kernel running in the untrusted world from the TEE. TrustZone facilitates such a
monitoring process, as it gives the TEE full control over the untrusted part of the system.
Similarly, Zhang et al. [155] and Petroni et al. [118] use a secure coprocessor for integrity
verification. The mechanisms of these works were designed for administrators wanting
to verify the integrity of their systems. Yet, it is difficult to apply them to scenarios
in which not only a malicious client, but also a malicious administrator needs to be
considered.

What these works have in common is that they are not designed to protect against a
malicious administrator. It is exactly this gap which we aim to close by hosting not only
the monitoring process, but also the process to be monitored in a TEE. Additionally, we
present a previously unpublished, lightweight detection mechanism for DOP attacks
incorporated into the CFA. We achieve this goal by detecting whether the number of
loop iterations exceeds a previously inferred maximum number of iterations.

3.4 Summary

In this chapter, we discussed various attacks on AMD SEV exploiting different attack
vectors. While countermeasures were proposed that may prevent some of these attack
vectors, related work does not provide a systematical analysis of which attack vectors
could be prevented with which countermeasures.

Furthermore, previous work also discussed solutions to monitor the memory integrity
of different targets. However, they rarely consider the threat model of a malicious
administrator, which is of increasing importance especially in cloud environments.
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CHAPTER 4

Analyzing the Impact of Missing Memory Integrity
by Example

By aiming to prevent attacks from high privileged adversaries, Trusted Execution
Environments (TEEs) are exposed to a very strong attacker model. To comprehend the
power of such an attacker, we investigate our first research question in this chapter, RQ1:
Which attack vectors enable attacks against a TEE’s cryptographic memory isolation without
memory integrity?. To identify these attack vectors, we systematically analyze the possibil-
ities of a high privileged adversary targeting a TEE protecting a Virtual Machine (VM).
As concrete example, we use AMD Secure Encrypted Virtualization (SEV) (Section 2.1),
which was the first publicly available TEE of this type. Yet, meanwhile also other TEEs
protecting VMs have emerged, such as Intel Trusted Domain Extensions (TDX) [69], IBM
Protected Execution Facility (PEF) [64] and ARM Confidential Computing Architecture
(CCA) [8]. These TEEs are faced with similar attack vectors, making our analysis also
relevant for these latest developments.

SEV deploys cryptographic memory isolation by giving VMs the ability to encrypt
their memory using a key maintained by a dedicated Secure Processor (SP). Consequently,
without knowing the respective secret key, neither an attacker performing cold boot
attacks nor the hypervisor should be able to reveal the VM’s memory contents. However,
while SEV encrypts the VM’s memory, it does not verify the integrity of the encrypted
memory.

We show that this design choice can have a severe impact on the TEE’s memory
isolation, specifically on the confidentiality and integrity of its memory. In particular, we
present our first two contributions, C1 and C2. While C1 attacks the confidentiality of
SEV-protected VMs, C2 attacks their integrity. Along with the description of the attacks,
we collect the different attack vectors that allow us the execute the attacks. We will use
them in Chapter 5 to discuss different countermeasures aiming to prevent the different
attack vectors.

For both contributions described in this chapter, we combine the elaborated analysis
possibilities of a malicious hypervisor with the exploitation of SEV’s missing memory
integrity. In detail, for one and the other we first identify critical data in the VM’s
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memory by tracking its accesses to memory or disk and observing its network traffic.
These analysis methods represent our first set of attack vectors. Afterwards, we exploit
the fact that while the VM controls the translation from Guest Virtual Adresses (GVAs)
to Guest Physical Adresses (GPAs), the hypervisor remains in charge of mapping the
GPAs to their System Physical Adresses (SPAs) in main memory. In combination with
SEV’s missing integrity protection, this enables us to change the VM’s memory layout
from the hypervisor. This change in memory layout is our most important attack vector.
For C1, we capitalize on this vector and utilize a service in the VM, such as a web server,
to provide us with pages containing valuable secrets of the VM in plaintext. Similarly,
for C2, we let the VM execute a payload we inject via a network packet. We achieve
this by mapping code which we can trigger to be executed from the outside of the VM
to the injected payload. For this attack, we identify two more attack vectors, namely
the hypervisor’s ability to inject interrupts into the VM and SEV’s unprotected DMA
channel. To determine the severity of the attacks, we provide a detailed evaluation of
the described attacks in different scenarios, all showing a very high success rate.

It is important to note that our attacks vectors are no software bugs, but fundamental
vulnerabilities in SEV’s design. In other words, the pillars upon which we base our
attacks are completely independent from implementation details such as the Operat-
ing System (OS) or the I/O virtualization framework. Thus, targeting another OS or
framework would not change the basic steps from any of our attacks.

Along with C1 and C2, we also introduce our third contribution, a framework for
the analysis of encrypted VMs1. The framework allows to perform the different steps
of both attacks we describe in this chapter. This will facilitate the analysis of similar
upcoming TEE technologies such as Intel TDX [69], IBM PEF [64] and ARM CCA [8].

4.1 Attacker Model

For the attacks described in this chapter, we assume the target TEE to be AMD SEV.
Within the SEV environment, the adversary is in control of the hypervisor. Whether
the hypervisor has been compromised or intentionally set up for malicious purposes is
out of scope. Our goal is to breach the confidentiality and integrity of a VM protected
by SEV’s cryptographic memory isolation. This isolation prevents the adversary from
directly reading or writing meaningful data into the VM’s memory.

To be able to breach the VM’s confidentiality (Section 4.2), we assume that the VM
offers a service via a publicly accessible remote connection. An example for such a
service could be an HTTP, SSH, FTP or mail server. The service provides a resource
from the VM’s memory, such as an HTML page or a file offered for download. This
resource can be spread over one or more pages in memory. We use the resource to extract
secrets stored in the VM’s memory which we assume are not protected by additional
mechanisms such as obfuscation. As concrete examples, we target private TLS keys from

1https://github.com/Fraunhofer-AISEC/severed-framework
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the Apache and nginx web server, private SSH keys, and secret Full Disk Encryption
(FDE) keys.

To breach the TEE’s integrity (Section 4.3), we do not require any service inside the
VM, network communication or disk I/O. Instead, we only assume that the attacker
has access to at least parts of the VM’s kernel binary. For the kernel itself, we expect a
Linux kernel, the specific version of which is irrelevant. This is due to the fact that we do
not rely on any vulnerabilities in the kernel, but instead exploit SEV’s missing memory
integrity. Hence, we expect our attack to also work with future versions of the Linux
kernel. For the kernel, we assume that Kernel Address Space Layout Randomization
(KASLR) is enabled. However, our attack will also work without this mechanism. In
fact, missing KASLR would make the attack easier, as we would not have to bypass it
(Section 4.3.1). Aside from running a Linux kernel, we expect the VM to deploy virtio
for communicating with the system’s devices, the specific version of which again is not
important. While we focus on exploiting the network communication channel, we do not
require any service in the VM to attack its integrity. Additionally, we disregard any in-
VM IP or port filtering mechanisms, and are also agnostic to any in-VM services or open
ports. To be precise, we are also not limited to exploiting the network communication
channel, but could for example also target disk I/O. Finally, we rely on AMD’s event
injection interface to execute virtual interrupts at known registered locations.

4.2 Impact of Missing Memory Integrity on the Confidentiality of TEEs

In this section, we want to showcase the extensive control and analysis possibilities
of a malicious hypervisor over a VM, even if it is encrypted. We will see that these
possibilities in combination with security weaknesses, such as AMD SEV’s missing
integrity protection, can allow a malicious administrator to perform attacks against
encrypted VMs. Previous work has already shown that SEV’s missing integrity protection
could enable a high privileged adversary to interfere with the protected VM’s control
flow [60, 41]. In addition to these works, we now present our contribution C1, an attack
that breaches the confidentiality of a VM protected by SEV. Our goals are twofold: For
one, we want to highlight the challenges when aiming to protect against an untrusted
hypervisor and showcase the impact of an attacker that can combine the extensive
analysis possibilities with security weaknesses. Second, we want to identify the required
attack vectors in order to develop and discuss countermeasures that can prevent them.
To perform our memory attack against the VM’s confidentiality, we make use of a service
running in the VM, which uses data stored in the VM’s memory to create its responses.
Specifically, we perform the following three steps depicted in Figure 4.1:

1 Resource Identification. Identify data in the VM’s memory storing information
served by a service, our resource.

2 Secret Identification. Determine the page holding the secret to be extracted, such
as a private TLS or SSH key or a secret FDE key.
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3 Secret Extraction. Modify the Second Level Address Translation (SLAT) to point
the page holding the resource to the page holding the secret, and extract its content.
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Figure 4.1: Attacking the VM’s confidentiality. After identifying a resource and a secret
within the VM’s memory, we modify the SLAT to extract the secret.

In the first step, we use attack vector AV1: Page Access Tracking to track the VM’s page
accesses in order to identify pages accessed by the service when processing a request.
By then combining the access patterns of multiple requests, we are able to identify the
resource. This resource is stored in the VM’s memory and, most importantly, contained
in the response issued by the service. Furthermore, we combine this attack vector with
AV2: Network Monitoring and AV3: Disk Access Monitoring to identify memory pages
holding valuable secrets, such as disk encryption keys or TLS keys. To be precise, we
track the VM’s page accesses while triggering it to access the secret, allowing us to
identify a limited set of candidate pages holding the secret. Finally, we abuse SEV’s
missing integrity protection in AV4: SLAT Remapping and modify the SLAT managing the
mapping between Guest Frame Numbers (GFNs) and System Frame Numbers (SFNs)
( 3 ). Specifically, we map the GFN containing the resource to the SFN containing the
secret to be extracted. This will cause the service to respond with the secret when we
request it to provide the resource.

4.2.1 VM Page Access Tracking

An important attack vector for both our attacks is AV1: Page Access Tracking. For AV1,
we track the pages accessed by the VM, permitting us to identify both the resource and
the secret. To perform this tracking, we modify the Page Table Entry (PTE) in the SLAT
of the respective pages. Specifically, each PTE provides multiple descriptors used for
definition, protection and segmentation [4]. One of those descriptors is the Present (P)
bit, which indicates if the content of the respective page currently resides in memory, or
is swapped out. In case the VM attempts to access a page swapped out of the physical
memory, the hypervisor gets notified to reload the page. We profit from this behavior in
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our access tracking mechanism by clearing the P bit for all of the VM’s pages we want to
track. This will cause every access to a tracked page to trap in the hypervisor, allowing
us to determine which page the VM is about to access. Additionally, we can retrieve
the information whether the VM attempted a read, write or execute access. Having
determined an access to a tracked page, we restore the respective P bit, permitting
the VM to continue its normal operation. Therefore, our access tracking records each
accessed page exactly once.

Similarly, we use the Read/Write (R/W) bit indicating if a page is writable for our
write tracking mechanism. An attempt of the VM to write to a page with a cleared
R/W bit will trap in the hypervisor, which can then perform the appropriate actions.
Therefore, clearing this bit for one of the VM’s pages lets us get notified as soon as the
VM attempts to write to this page. In other words, in comparison to the access tracking,
the write tracking will only cause a trap for a specific type of access, a write access.
Having recorded the trap, we restore the R/W bit in order to allow the VM to continue
its operation.

Our last tracking mechanism is execute tracking. For this mechanism, we make use
of the No Execute (NX) bit marking a page as non-executable. Similar to the write
tracking mechanism, the execute tracking notifies us for one specific type of access. To
be precise, the execute tracking will trap when the VM attempts to fetch instructions
from a tracked page.

In summary, our three different tracking mechanisms allow us to perform access,
write or execute tracking on a given set of the VM’s pages. We included all of them
in our framework for TEE analysis2, our contribution C3. The tracking mechanisms
work on page granularity, which typically corresponds to four kilobyte [4]. To further
increase precision, we could extract the VM’s register contents at each trap to determine
at which offset the VM accesses the page. However, we cannot apply this method to SEV
Encrypted State (SEV-ES), as it encrypts the VM’s registers before handing control to
the hypervisor [74]. Therefore, we refrain from accessing the VM’s registers in order to
provide a general approach that applies to both SEV and SEV-ES.

4.2.2 Resource Identification

Using AV1: Page Access Tracking, we start by identifying the resource in the VM’s memory
used by the service to send responses ( 1 ). To facilitate the subsequent extraction process,
we aim to use a resource fulfilling certain requirements. These requirements include the
size of the resource, concurrent accesses by other parties, and its probability to remain
at the same GFN.

The size of the resource determines whether we can extract all content of a page, and
how many requests we require for extraction. Specifically, to be able to extract data
from all possible page offsets, the resource must cover at least one entire page. Yet, the
resource does not have to be page-aligned and can, for example, cover the second half

2https://github.com/Fraunhofer-AISEC/severed-framework
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of one page and the first half of another page. Nevertheless, it is still preferable to avoid
such resources, as the parts of the pages not covered by the resource might be accessed
concurrently in the VM. Such concurrent accesses may lead to unexpected behavior
during the extraction process. To exclude such behavior, we prefer resources which cover
one or more complete pages.

Another important factor about the resource is its probability to remain at the same
GFN during the whole attack. This probability can be influenced by several factors, such
as the type of resource, the priority of the respective process, and the VM’s memory
pressure. One type of resource are so-called file-backed resources, which cache part of
a file in memory. This attribute plays an important role in situations in which the VM
is low on memory and therefore needs to identify pages it can evict from memory. By
default, Linux systems prioritize file-backed pages over non-file backed pages when
choosing pages for eviction. This behavior increases the probability for file-backed pages
to remain at the same GFN.

During our tests, we found that resources representing the content of a file in memory
are especially convenient. For one, they have the advantage that a sufficiently large file
located in memory always covers at least one memory page. Additionally, they typically
do not share the pages with other data. Therefore, such resources always start at page
offset zero, facilitating extraction.

Having decided on a resource, we identify the resource in the VM’s memory. For this
identification, we have to consider that the resource can be located on a single page, or
on multiple pages. Now, let P be the set of all of the VM’s pages. Then, we define the
unknown set of resource pages as

R := {p ∈ P : Page p contains (part of) the target resource}

To determine R, we activate access tracking on all of the VM’s pages. Next, we send a
request to the service in the VM, triggering an access to the resource. Hence, the resource
page will be among the pages accessed during processing of the request. Yet, we will
also record other pages, such as the ones containing code required to execute the service
or accessed to perform other concurrent activities in the VM.

To identify the resource within this set of pages, we use an iterative approach. This
allows us to adapt the number of iterations depending on the amount of noise by
repeating the following steps n ∈ N times. Additionally, we define the current iteration
of our identification process as i, with 1 ≤ i ≤ n. We start each iteration i by requesting
the resource via the service and recording all pages accessed by the VM while fulfilling
the request:

RQi := {p ∈ P : Page p accessed during request i for target resource}

Since we trigger the access to the resource, our sample set is guaranteed to contain
the resource pages:

R ⊆ RQi
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RQi is typically large (|R| ≪ |RQi|), as it not only contains the resource page, but
also other pages, such as pages containing code for the service and other processes. We
consider all of these other pages as noise, as they directly increase |RQi|. To reduce this
noise, we make use of the fact that each R ⊆ RQi and calculate the set of pages RSi
accessed for every single request. We update this set in each round by intersecting RQi
from the previous set RSi−1:

RSi := RSi−1 ∩ RQi RS0 = RQ1

By updating RSi after each iteration, we are able to filter noise such as pages access
from other processes. In other words, after an appropriate number of iterations, RSi
should only contain pages required to process our request.

After this step, the set is smaller, but will still contain pages that are required to fulfill
the request, but are not part of the resource, such as code pages from the service. To
remove these pages from the set, we track the VM’s page accesses while performing a
similar request without accessing the resource. An example for such a request could
be a different web page from the same service. Again, we track and record all pages
accessed during the request:

NRQi := {p ∈ P : Page p accessed during request i for different resource}

As we do not trigger the access to the resource for this request, NRQi only contains
pages from the target resource if another client accesses the resource during our tracking
operation. Hence, we assume that pages in NRQi are unlikely to contain p ∈ R. Based
on this assumption, we define a set of likely candidates RCi for each round. For this set,
we subtract the pages accessed for a request to a different resource NRQi from the set
RSi containing only pages accessed for every request:

RCi := RSi \ NRQi

This method allows us to filter pages that are part of the service, but do not represent
the resource itself. Next, we gather the candidates from all iterations and their frequency
of occurrence. For this, we make use of multisets, which can contain multiple instances
of each element. In order to differentiate the multiset from the traditional set, we indicate
the multiplicity of each element:

M := {p2
1, p1

2}

To denote the multiplicity of an element p in a multiset M, we use a function from
multiset to integer [104]:

M(p) = { Multiplicity of p in M}

Hence, taken the multiset
M = {p2

1, p1
2}
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the multiplicity of the different elements are

M(p1) = 2

M(p2) = 1

M(p3) = 0

Furthermore, we denote the cardinality of a multiset M with:

|M| = ∑
p∈M

M(p)

Therefore, taken again the multiset

M = {p2
1, p1

2}

we calculate its cardinality with

|M| = M(p1) + M(p2) = 2 + 1 = 3

Next, we define the following operations. As the union of a multiset M with a set S,
we specify the result to be a multiset in which the multiplicity of each element p in the
original multiset is increased by one if p is also contained in the set. Additionally, p is
added to the resulting multiset if it is only contained in S. If p is only contained in M
but not in S, its multiplicity remains the same:

(M ⊎ S)(p) :=
{

M(p) + 1 : p ∈ S
M(p) : p /∈ S

Additionally, we specify the result of an intersection between a multiset M and a set S
to be a multiset in which the multiplicity of each element p is the same as in the original
multiset if p is also contained in the set. Otherwise, we remove p from the resulting
multiset.

(M ∩ S)(p) :=
{

M(p) : p ∈ S
∅ : p /∈ S

Hence, this operation results in elements being intersected when they are not in the
set S. In comparison, when an element appears in the set, its multiplicity will remain
unchanged.

Having established these operations with sets and multisets, we define the multiset of
overall candidates OCi, which provides information about how often we have identified
each page as candidate for the target resource. Following our specifications, we define
OCi as:

OCi := (OCi−1 ⊎ RCi) ∩ RSi OC0 = ∅

With the first term of the equation, (OCi−1 ⊎ RCi), we ensure that all candidate pages
are represented in OCi according to the number of their occurrences as round candidate.
In other words, a page occurring as likely candidate in three rounds would have a
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multiplicity of three. By additionally intersecting the set with RSi, we remove candidates
from previous iterations (p ∈ OCi−1) that we can exclude with the knowledge gained in
the current iteration (p /∈ RSi).

Finally, we calculate for each candidate page p ∈ OCi the probability of it being part
of the target resource based on how often it was a candidate:

Pi[p ∈ R] :=
OCi(p)
|OCi|

Note that if |R| > 1, the probability is distributed between all p ∈ R. Therefore, we
only interpret the probability in relation to the probability of other pages p ∈ OCi.
Using this approach, we calculate the probability Pn[p ∈ R] for each p ∈ OCn after every
iteration, and build a list of candidate pages sorted by probability.

To further clarify our approach, let us go through a simplified example. Let us assume
that during our first iteration (i = 1), we record the following page accesses RQ1 when
requesting the target resource:

RQ1 = {4, 8, 15, 16, 23, 42}

Additionally, we record the page accesses NRQ1 when requesting a different resource:

NRQ1 = {3, 8, 12, 15, 16, 23, 27}

Using this information, we first calculate RS1, which equals RQ1 in the first iteration.

RS1 = RS0 ∩ RQ1 RS0 = RQ1

RS1 = {4, 8, 15, 16, 23, 42} ∩ {4, 8, 15, 16, 23, 42} = {4, 8, 15, 16, 23, 42}

Next, we calculate the list of likely candidates for the first round RC1 by subtracting
NRQ1 from RS1. This allows us to eliminate all pages from the set which are unlikely to
contain the target resource:

RC1 = RS1 \ NRQ1 = {4, 42}

In the last step of the iteration, we add the set of this round’s candidate pages RC1

to the multiset of overall candidates OC0. By using a multiset, we can determine the
number of iterations in which each page has been a candidate. We then intersect this
multiset with the set RS1 of pages accessed to fulfill the first request to the resource.
This enables us to remove candidates which were not contained in RS1 and therefore
cannot represent the target resource:

OC1 = (OC0 ⊎ RC1) ∩ RS1 = (∅ ⊎ {4, 42}) ∩ {4, 8, 15, 16, 23, 42}
= {41, 421} ∩ {4, 8, 15, 16, 23, 42} = {41, 421}
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Having determined the set of overall candidates after the first round OC1, we calculate
the probability of each page p ∈ OC1 being part of the resource. For this calculation, we
compare the multiplicity of the different elements in the multiset OC1 by dividing their
multiplicity by the total number of elements in OC1, which we defined as |OC1|. Note
that after the first round, all pages recorded in the set of overall candidates OC will have
the same multiplicity, namely one. Hence, we determine the same probability for each
page p ∈ OC1 to be part of the resource.

P1[p ∈ R] =
OC1(p)
|OC1|

P1[4 ∈ R] =
1
2
= 0.5

P1[42 ∈ R] =
1
2
= 0.5

During the second iteration (i = 2), we record:

RQ2 = {6, 8, 15, 16, 23, 42}
NRQ2 = {2, 8, 12, 13, 15, 23}

With this information, we calculate RS2, RC2 and OC2:

RS2 = RS1 ∩ RQ2 = {4, 8, 15, 16, 23, 42} ∩ {6, 8, 15, 16, 23, 42} = {8, 15, 16, 23, 42}
RC2 = RS2 \ NRQ2 = {8, 15, 16, 23, 42} \ {2, 8, 12, 13, 15, 23} = {16, 42}
OC2 = (OC1 ⊎ RC2) ∩ RS2 = ({41, 421} ⊎ {16, 42}) ∩ {6, 8, 15, 16, 23, 42}

= {41, 161, 422} ∩ {8, 15, 16, 23, 42} = {161, 422}

To finish the round, we calculate the possibility for each p ∈ OC2 to be part of the
resource. As the different elements now have different multiplicities, we also determine
different probabilities for each page:

P2[p ∈ R] =
OC2(p)
|OC2|

P2[16 ∈ R] =
1
3
= 0.33

P2[42 ∈ R] =
2
3
= 0.67

Hence, after two rounds, we determine page 42 to be the most likely candidate to
represent the resource. This example shows that our method enables us to remove noise
during the sampling phase, allowing us to identify the resource using only a small
number of iterations.
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4.2.3 Secret Identification

Having identified the resource, we could simply remap the GFN containing the resource
to an arbitrary SFN. By afterwards requesting the resource from the service, we would
be able to retrieve the unencrypted content of the respective page. However, the chances
of this arbitrary page containing valuable information are limited. At the same time,
retrieving all of the VM’s pages to identify all secrets would require a high number of re-
quests. Let us assume that the VM’s memory comprises 2 GB, which equals 2,097,152 KB,
and is divided into pages of 4 KB. If the resource spans exactly one page, we would
need 2,097,152/4 = 524,288 requests to extract all of the VM’s pages.

To avoid having to extract such a large number of pages, we instead identify secrets
within the VM’s memory ( 2 ), which we then extract in a targeted fashion. For this
identification, we again make use of AV1: Page Access Tracking, in particular page access
tracking. Additionally, we combine this attack vector with AV2: Network Monitoring and
AV3: Disk Access Monitoring. To be precise, we track all of the VM’s pages until we record
an activity indicating that the VM has recently accessed a secret. We will use AV2 and
AV3 to identify such an activity. Tracking all accessed pages until the activity allows us
to limit the set of pages which can contain the secret to the list of pages tracked before
the activity.

VM

time

HV

time

Critical Window

TrackingStart TrackingEnd

ActivityStart ActivityEndUse1 Usen
...

Figure 4.2: We identify the secret within the VM’s memory by performing page tracking
during an activity for which the VM accesses the secret. To ensure that the
page containing the secret is among the tracked pages, we should avoid to
start tracking in the critical window.

Let us clarify our approach with an example in which we aim to extract a TLS private
key from the VM. To identify the private key within the VM’s memory, we activate page
access tracking on all of the VM’s pages. Next, we wait for an activity indicating that
the VM has recently accessed the private key. In case of the TLS private key, such an
activity can be a successful TLS handshake. The activity of a TLS handshake fulfills
two important criteria. For one, it requires the VM to access the secret, in this case the
private key, to prove its identity. Furthermore, the hypervisor can detect the end of the
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activity, which is the final message in the handshake, with AV2: Network Monitoring.
Another example for a secret in the VM’s memory would a FDE key. The respective
activity would be an access to the encrypted disk, which we can observe with AV3: Disk
Access Monitoring.

Figure 4.2 shows the detailed identification process. While the upper rectangle depicts
the VM, the lower rectangle depicts the hypervisor. Both the VM and the hypervisor
have timelines running in parallel, indicating events in the respective entity. We begin
our secret identification with the observation phase, in which we track accesses to all
of the VM’s pages. We denote the start of this phase with TrackingStart. With the access
tracking, the VM traps into the hypervisor on every page access, depicted by the vertical
arrows.

At some point after TrackingStart, the VM will start the activity requiring it to access
the secret, denoted by ActivityStart. During the activity, the VM accesses the secret once
or multiple times, denoted by Usei to Usen. Due to the page access tracking, we record
the access to the secret. Yet, we are not able to differentiate these specific accesses from
other page accesses.

After a certain amount of page accesses, the VM finishes its activity, denoted by
ActivityEnd. Having chosen an activity with an observable end, we then stop the tracking
process, denoted by TrackingEnd. At this point, we can be sure that at least one of
the tracked pages contains the secret. In other words, this approach permits us to
significantly reduce the number of candidate pages possibly containing the secret.

Yet, we have to keep in mind that we start the tracking at an arbitrary point in time
and that ActivityStart might not be observable from the hypervisor. Hence, it is possible
that we start tracking between the last access to the secret, Usen, and ActivityEnd. This
would cause the list of tracked pages to not contain the page holding the secret. For this
reason, we define the time slot between Usen and TrackingEnd as the critical window. In
case we start the tracking process in this critical window, it would have to be repeated.
However, our experience shows that the chances to start tracking exactly in this slot are
limited. Furthermore, even repeating the targeted extraction multiple times will be more
efficient than extracting the VM’s entire memory.

To sum up, to perform the secret identification ( 2 ), we observe the VM’s behavior
while it accesses the secret to be extracted. This provides us with a list of candidate
pages possibly containing the secret, which is significantly smaller than the complete set
of pages. Although this approach does not identify the exact page containing the secret,
it allows us to drastically reduce the set of candidates.

4.2.4 Secret Extraction

Having gathered the list of pages the VM accessed between ActivityStart and ActivityEnd,
we continue with the secret extraction ( 3 ). In this phase, we first establish the sequence
in which we extract the candidate pages determined in the previous step. The goal of
this sequence is to sort the list of tracked pages according to the probability that they
contain the secret. For this, we make use of our knowledge that ActivityEnd indicates that
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the VM has recently accessed the secret. In other words, pages tracked shortly before
ActivityEnd have a higher chance to contain the secret. Therefore, we reverse the order
of tracked pages, thereby extracting the page accessed just before ActivityEnd with the
highest priority.

The possibilities to further filter and prioritize the list or tracked pages depend on the
secret to be extracted. Sticking to our example of the secret being a TLS private key, we
can assume that the VM performed a read operation on the key. Hence, we can eliminate
all execute accesses from the list, as the secret will not be stored in executable memory.
Yet, there is the possibility that the VM accessed the same page for a write operation
before reading the secret, and only afterwards performed the read operation. In such
a scenario, we would only record the write access, as we only track the first access to
each page (Section 4.2.1). In order not to exclude such scenarios in the search phase, we
instead only reduce the priority of pages with recorded write accesses, and prioritize
pages from which the VM read data.

Having created a probability list of pages holding the resource (Section 4.2.2) and
the sequence in which to extract the candidate pages possibly containing the secret
(Section 4.2.3), we start the extraction process. For this extraction, we make use of our
most important attack vector, AV4: SLAT Remapping. AV4 is the hypervisor’s ability
to remap a GFN to a different SFN. To successfully exploit this attack vector, we first
determine the number of pages r that are at least necessary to store the target resource.
We then take the first r pages of the probability list and repeat the following three steps:

1. Page Remapping. We modify the SLAT entries of the r pages so that their GFNs
point to the first r candidate pages ( 3 ). After the modification, we flush the
corresponding Translation Lookaside Buffer (TLB) entries to ensure the changes
take effect immediately.

2. Data Request. We request the target resource from our service. Since we remapped
the underlying pages for the resource, the service will unintentionally respond
with data from the candidate pages.

3. Data Analysis. We analyze the data contained in the response regarding whether
in contains the secret to be extracted. If this is not the case, we go back to the first
step, and remap the GFNs to the next r pages of the candidate list.

If we receive the original resource for one or more of the r pages replaced in the first
step, the respective pages do not belong to the target resource. In this case we continue
the extraction with the next pages in the probability list from Section 4.2.3.

4.2.5 Evaluation

Having described the three different steps of our attack, we perform a detailed evaluation
in which we measure the performance and precision of all three steps in different
scenarios and with varying noise.
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The SEVered Framework

For the practical evaluation of RQ1: Which attack vectors enable attacks against a TEE’s cryp-
tographic memory isolation without memory integrity?, we created the SEVered framework3,
our contribution C3. The SEVered framework is an extension to Linux’ virtualization
solution Kernel-based Virtual Machine (KVM) [80] that enables an attacker in control
of the hypervisor to exploit various attack vectors described in this chapter. We use
this framework for the evaluation of our attack against the VM’s confidentiality and in
Section 4.3.4 for the evaluation of the attack against the VM’s integrity.

For the evaluation of our attack against the VM’s confidentiality, our framework
provides the ability to perform access and execution tracking additionally to the already
existing write tracking [56]. Additionally, it includes functionality that allows to remap
GFNs to different SFNs by altering the SLAT.

We made our framework publicly available for it to be used not only for our analysis of
AMD SEV, but also of other TEEs protecting VMs, such as Intel TDX [69], IBM PEF [64]
and ARM CCA [8]. While to the best of our knowledge these technologies do provide
effective memory isolation, their resistance against attack vectors such as AV4: SLAT
Remapping can be verified with the help of our framework. Furthermore, it permits to
exploit other attack vectors such as AV1: Page Access Tracking on these TEEs, which could
be useful in combination with other attack vectors not covered in this work.

Setup

We implemented our prototype on a system powered by an AMD EPYC 7251 processor
with SEV enabled. Our system ran Debian Linux with the SEV-enabled kernel in version
4.13.0-rc1 and QEMU 2.9.50, as provided by AMD4. Additionally, we patched the
kernel with our SEVered framework to be able to exploit the different attack vectors.

Our target VM used FDE with the AES-XTS algorithm and a 256 bit key. Within
the VM, we were running two web servers, Apache 2.4.25-3 and nginx 1.10.3-1,
as well as an SSH server, OpenSSH 1:7.4p1-10. As target resource to be served by
these services, we used a 4 KB file spanning exactly one memory page. Additionally, we
introduced different noise levels into our target VM, allowing us to evaluate each step in
a real-world scenario. A noise level of 20 refers to an environment where on average 20
random accesses per second are made to our three services by arbitrary clients.

Resource Identification Evaluation

Using our setup, we first evaluated our resource identification approach ( 1 ) exploiting
AV1: Page Access Tracking. An important factor for the tracking is the noise model that
requests different resources from the VM’s services in order to simulate concurrent
activity by other clients. We call this RQ-noise, as it directly influences |RQi|, the number

3https://github.com/Fraunhofer-AISEC/severed-framework
4https://github.com/AMDESE/AMDSEV
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of pages we record when requesting the resource (Section 4.2.2). Furthermore, the noise
model also generates requests to the resource which we aimed to identify. These requests
are an important factor for our evaluation, as a concurrent access to the resource while
performing the request NRQi to a different resource would cause us to track an access
to the target page for this request. Hence, we call this noise NRQ-noise.

Having the impact of noise in mind, we conducted eight test runs with 100 iterations
on four different noise levels for each of the three services offered by the VM. In each
iteration, we first determined the page containing the resource. Based on this knowledge,
we recorded the set of pages our algorithm identified to as likely contain the resource as
the actual page containing the resource. In other words, the smaller this set, the better
the identification.
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Figure 4.3: Measurements of top set size |T| for increasing number of iterations and
different noise levels. While the X-axes depict the number of iterations, the
Y-axes indicate the respective size of the top set. Source: [107].

Figure 4.3 shows the average size of the set for each service, noise level, and iteration.
We use a logarithmic scale for the Y-axis, as the top set size quickly decreases after a
few iterations. The graphs on the left and in the middle depict that for both Apache and
nginx, the top set size quickly converges to about 3 to 4 candidates one average for all
noise levels. Similarly, also with OpenSSH the top set size converges to an average of
about 2 to 3 candidates with most levels. Only with noise level 50 in OpenSSH we were
not able to identify a small top set within 100 iterations.

These results show that we can apply our identification mechanism to noisy envi-
ronments by dynamically increasing the number of iterations. Table 4.1 summarizes
the number of iterations and time required for every service and noise level until the
top set converges to a size smaller or equal to 5 candidates. For the web servers, the
top set converged in less than ten iterations and ten seconds for the lower noise levels.
Even with the highest noise level, this took less than 23 seconds and required at most 22
iterations. In comparison, for OpenSSH we required between 21 and 46 iterations and
38.85 to 111.09 seconds for the lower noise levels. Only for the highest noise level we
were not able to reduce the set to 5 or less candidates within 100 iterations.

43



Chapter 4 Analyzing the Impact of Missing Memory Integrity by Example

Table 4.1: Number of iterations and time required until top set converges to a size smaller
or equal than 5 for different noise levels. Source: [107].

Noise Level Apache nginx OpenSSH

20 10 (7.4 s) 8 (5.56 s) 21 (38.85 s)
30 10 (7.5 s) 9 (6.62 s) 42 (85.47 s)
40 12 (9.7 s) 13 (13.2 s) 46 (111.09 s)
50 22 (23.0 s) 16 (17.84 s) >100 (>5 min)

Table 4.2: NRQ-noise probability and average recording size for different noise levels
and scenarios. Source: [107].

Noise Level Apache nginx OpenSSH

20 35 % (8,220) 34 % (8,355) 63 % (18,960)
30 49 % (10,860) 51 % (10,360) 78 % (21,475)
40 60 % (13,040) 62 % (12,430) 85 % (23,015)
50 74 % (15,950) 69 % (15,970) 90 % (24,990)

To confirm that our noise model works as intended, we additionally analyzed the
results regarding the contained noise. In particular NRQ-noise is critical, as it removes
the target page from the candidate list of the respective iteration. In Table 4.2, we present
the probability of an iteration being influenced by NRQ-noise. The table also shows
the average recording size. These measurements reveal that our noise model introduces
significant NRQ-noise in up to 90% of the NRQi recordings and strongly increases their
size. Nevertheless, we were able to quickly reduce the number of candidates to 5 or less
for most scenarios and noise levels.

Among the candidate pages, we always identified the last commonly accessed page
to contain the target resource for all services. This observation is comprehensible, as
all services must perform operations, such as opening a socket, before transmitting the
requested content. Together with the small number of candidates, those observations
allowed us to correctly identify the page of our target resource in all our test cases.
These results show that our identification mechanism enables us to quickly identify the
resource in the VM’s memory. Furthermore, the mechanism is robust against noise and
thus applicable in real-world scenarios.

Secret Identification Evaluation

Having identified the resource ( 1 ), our next step is the identification of secrets in the
VM’s memory ( 2 ). We evaluate the secret identification for two different types of keys:
private keys of different services and FDE keys.

To identify the private key of a service, we make use of AV2: Network Monitoring and
the fact that services such as a web server or SSH server use the keys to prove their
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identity during a handshake. This enables us to define ActivityStart as the start of the
handshake. Therefore, Usei represents the service using the key during the handshake.
The exact point in time of Usei depends on the key exchange method. For example,
considering an ECDHE-based key exchange algorithm, the server will access the private
key to sign the curve parameters [15]. In comparison, during an RSA-based key exchange,
the server accesses the key to decrypt the premaster secret encrypted with the server’s
public key [40]. In any case, we are not able to determine when Usei occurs exactly.
Yet, we do know that it will occur between ActivityStart and the end of the handshake.
Hence, we decided to use the change cipher spec packet as indicator for ActivityEnd.
This packet initiates the switch to a different cipher, indicating that the cipher setup has
been completed successfully. While we could also use other packets sent earlier during
the handshake for ActivityEnd, the change cipher spec packet is independent from
the encryption algorithm. Also note that in the private key scenario, we could observe,
or even trigger ActivityStart.

Another valuable secret in the VM’s memory are FDE keys. Such keys are required
as SEV does not protect the virtual hard disk. Therefore, the VM needs to additionally
encrypt its disk to protect it from a malicious hypervisor. The respective encryption key
will remain in the VM’s memory, as it is required for all I/O disk operations. Those are
the two properties on which we capitalize when identifying the FDE key. To be precise,
we define ActivityStart as the start of an I/O disk operation requiring access to the key.
Additionally, we again define the access to the secret itself with Usei. What remains is
the definition of an ActivityEnd which we can observe from the hypervisor. For this, we
make use AV3: Disk Access Monitoring, the fact that the hypervisor is able to monitor
accesses to the VM’s virtual disk. Specifically, we monitor the VM’s disk image, and
wait for an inotify event. This event indicates a successful I/O operation on the VM’s
disk, serving us as ActivityEnd for the identification of the FDE key.

In order to evaluate the precision of our method for both private keys and FDE keys,
we evaluated four different scenarios: extraction of the private key from Apache, nginx
and OpenSSH, and extraction of the VM’s FDE key. To observe the handshake messages
of the services, we made use of tcpdump in combination with libpcap. We patched
libpcap to execute a system call that starts access tracking at the same time as packet
capturing. Additionally, we added a call to stop tracking as soon as we captured the
packet indicating ActivityEnd. For the two TLS servers, this packet was the change
cipher spec packet. In comparison, we used the new keys packet for OpenSSH, which
concludes the SSH handshake. Furthermore, we made use of the inotifywait tool
to observe inotify events, which allowed us to detect disk writes on the VM’s disk
image. We also patched inotifywait to start tracking before watching events and
to stop tracking as soon as an event was observed. By patching both libpcap and
inotifywait, we were able to minimize the time between ActivityEnd and TrackingEnd.

The activities were triggered by the generated noise, which requested a resource from
either Apache or nginx with probability of 300

301 . With a probability of 1
301 , it initiated an

SSH login and kept the session running for two minutes. This distribution simulates a
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real-world scenario, in which SSH traffic will occur less frequently. With this configura-
tion, the average duration before we observe ActivityEnd for the web servers lies between
a few hundreds of milliseconds and a few seconds, depending on the noise level. In
comparison, it may take anywhere between tens of seconds and a few minutes before
we can observe an SSH handshake and conclude the secret identification phase for the
SSH private key.

Using this setup, we performed 2,000 independent iterations of the secret identification
process for each scenario and four different noise levels. While the VM was processing
the incoming requests caused by the noise, we started the access tracking at a random
point in time. After the tracking, we made use of our knowledge that for all four
scenarios, the targeted secrets were read or written by the VM, and therefore located
in non-executable memory. Hence, we performed a postprocessing step in which we
filtered execute-accesses from the list of candidate pages.
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Figure 4.4: Distribution of the reaction times over different noise levels for different
scenarios. While the X-axes depict discretized time steps of one millisecond,
the Y-axes are normalized to one. Source: [106].

Having performed the measurements, we analyzed the time we require to stop the
tracking after the VM’s last access to the secret, Usen. We call this the reaction time. The
smaller the reaction time, the lower the chance of tracking additional pages after Usen.
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In other words, a smaller reaction time improves the accuracy of our secret identification.
The reaction time consists of two parts. The first part is the critical window, which is
the time between Usen and ActivityEnd (Section 4.2.3). As we are required to wait until
the detection of ActivityEnd to stop tracking, we are no able to influence this part of the
reaction time. However, the second part of the reaction time is the time we require to
stop tracking after we detect ActivityEnd. We are able to reduce this part by stopping the
tracking as soon as we detect ActivityEnd.

Figure 4.4 depicts the reaction times for our four different scenarios. In the figure, the
X-axes represent the reaction time in milliseconds. Furthermore, the Y-axes depict the
probability of a reaction time in the respective time slot, discretized to one millisecond. In
each figure, the graphs represent the different noise levels, 1, 9, 17 and 25. Additionally,
the dashed vertical lines show the median reaction time for each noise level.

The diagrams on the top represent the results for the Transport Layer Security (TLS)
handshakes of Apache and nginx. Both indicate a reliable reaction time for the lower
noise levels by showing a clear peak. To be precise, for noise level 1, the reaction time
never exceeded 21 milliseconds for Apache or 22 milliseconds for nginx. However, with
an increased noise level, in which the VM executes a higher amount of concurrent
activities, the measurements are more scattered over time. Specifically, we measured a
reaction time of up to around 50 milliseconds in rare cases for both Apache and nginx.
Yet, the median reaction time increased to only about 16 milliseconds for Apache, and
20 for nginx. This higher median confirms that the point at which the VM executes Usen

becomes more scattered with higher noise. Furthermore, the higher median indicates
that the VM performs a higher number of concurrent activities with higher noise and
hence also accesses a higher number of pages.

The diagram on the bottom left in Figure 4.4 shows that for disk write events, our
implementation achieved a very fast reaction time of one millisecond in the median
for all noise levels. In only a few cases, we measured a slightly higher reaction time.
Another interesting observation is that in contrast to the web server scenarios, the
reaction time was generally independent from the noise level. We attribute this to the
fact that intercepting disk write events is less complex than capturing network packets,
and therefore introduces less delay.

The diagram on the bottom right shows that for SSH handshakes, we measured a
median reaction time of around four milliseconds. Similar to the disk write events, the
measurements were mostly independent from the noise level. In only a few cases, we
encountered a reaction time of about 30 milliseconds.

To further quantify the precision of our approach, we measured the time we required
for the secret identification as well as the median number of tracked pages, depicted
in Table 4.3. For both web servers, the identification time, which is the time between
TrackingStart and TrackingEnd, was between 0.31 and 1.46 seconds. Notably, a higher noise
level decreased the identification time, as we had to wait on average less time before
recording ActivityEnd. The shorter tracking time also decreased the median number of
tracked pages, which we measured to be between 1,691 and 2,085.
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Table 4.3: Time required for the secret identification process for four different scenarios
and noise levels, including the median number of tracked pages.

Scenario Noise Identification Median Number
Level Time [s] of Tracked Pages

1 1.46 2,085
TLS 9 0.37 1,954
(nginx) 17 0.32 1,944

25 0.31 1,965

1 1.42 1,975
TLS 9 0.37 1,707
(Apache) 17 0.33 1,717

25 0.32 1,691

FDE

1 2.43 2,525
9 2.15 3,225
17 2.08 3,432
25 2.04 3,669

SSH

1 193.36 11,093
9 27.23 10,102
17 16.19 10,473
25 14.41 10,846

In comparison, the time required for the identification in the FDE scenario only
decreased slightly with higher noise levels. Therefore, also the median number of
tracked pages did not decrease, but increased from 2,525 with noise level 1 to 3,699 with
level 25.

For SSH, identification on the lowest noise level took the longest, namely 193.36
seconds. This is caused by the fact that our noise generation only rarely triggers SSH
handshakes. Yet, similar to the web servers, the identification time decreased with the
higher noise levels to as little as 14.41 seconds. In comparison, the median number of
pages we tracked remained relatively stable between 10,846 and 11,093.

It is important to note that the median number of tracked pages only indicates the
number of pages we have to extract in the worst case, assuming that we did not start
tracking within the critical window. However, a smart prioritization of the extraction
order will permit us to further reduce the number of pages we have to extract before
being able to determine the secret (Section 4.2.4).

Secret Extraction Evaluation

Having evaluated both the resource and the secret identification, we continue with the
evaluation of the secret extraction. In this phase, we iteratively extract pages from the
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sequence of pages identified during the secret identification and search the content of
the respective page for the secret. To prioritize the sequence, we extract the pages in the
reverse order of which we tracked them (Section 4.2.4).

When searching an extracted page for a secret, we make use of its publicly known
information. Specifically, for the web and SSH servers, we know the server’s public key
and its length. Using for example RSA, the private components are the factors p and q
of known length, which divide the modulus of the public key. Using this knowledge, we
can traverse every chunk of extracted memory and analyze if it contains a contiguous
bit sequence which divides the modulus without remainder. If this is the case, we have
successfully identified either p or q, and are able to also calculate the other factor.

In comparison, when searching the page for the FDE key, we make use of the fact that
the VM’s kernel stores the key in a specific data structure. In this structure, various fields
are filled with values in a certain range, for example with kernel addresses pointing
to other kernel objects. These characteristics allow us to identify the structure in the
VM’s memory. To further increase the possibility for key identification, we capitalize on
the fact that different data in the VM’s memory can enable us to retrieve the FDE key.
Specifically, FDE keys are usually based on AES. Using the AES algorithm, the kernel
derives round keys and keeps them in memory in so-called AES key schedules. Hence,
we can additionally use the statistical properties of such key schedules to identify the
FDE key [58]. Having identified the FDE key either via the AES key schedules or via the
key data structure, we can verify the key by attempting to decrypt the VM’s disk image.

To evaluate the secret extraction, we extracted the private keys from all three services
in the VM, Apache, nginx and OpenSSH, which all had a length of 4,096 bit. Additionally,
we extracted the 256 bit AES-XTS FDE key.

For the memory extraction itself, we used a resource from nginx identified during
the resource identification (Section 4.2.2) We then iteratively remapped the resource to
all pages determined during the secret identification (Section 4.2.3) and extracted the
page by requesting the resource from nginx ( 3 ). In case the targeted secret was located
on the extracted page, we stopped the extraction process. Otherwise, we continued by
extracting and analyzing the next page in the sequence.

Table 4.4 gives an overview of our evaluation results. For each scenario and noise
level, we measured the time required for the extraction. Additionally, we determined the
median number of pages we had to extract to identify the secret and the mean absolute
deviation from this number.

In both web server scenarios, higher noise had an impact on the extraction time, which
ranged from 15.48 to 32.71 seconds. For nginx, we had to extract in the median 102
pages on noise level 1 and 301 pages on level 25 to identify the secret. In other words,
we had to extract between 408 KB and 1,024 KB of the VM’s memory before we were
able to determine the private key. In comparison, for Apache, we required a slightly
higher median of 128 pages, or 512 KB, to extract the private key on noise level 1. Yet,
this number only increased to 171 pages, or 684 KB, on noise level 25. Along with the
median page number increasing for both web servers, also the mean absolute deviation
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Table 4.4: Time required for the secret extraction for four different scenarios and noise
levels, including the median number of extracted pages and the mean absolute
deviation.

Scenario Noise Extraction Median Number Mean Absolute
Level Time [s] of Extracted Pages Deviation

1 17.72 102 5
TLS 9 15.48 116 19
(nginx) 17 18.61 165 69

25 32.71 301 160

1 21.90 128 21
TLS 9 17.95 137 40
(Apache) 17 17.44 154 80

25 18.65 171 109

FDE

1 12.24 70 8
9 9.34 71 9

17 7.84 70 8
25 7.37 69 9

SSH

1 1.33 7 1
9 0.97 7 1

17 0.83 7 1
25 0.80 7 1

increased with the noise level. Nevertheless, in both scenarios, the number of pages we
had to extract was only a fraction of the total number of pages tracked during the secret
identification. It is also worth noting that for both web servers, we measured an average
extraction time of around 123 milliseconds for a single page, with fluctuations in the
scale of a few tens of milliseconds. To following search of the private key within the
extracted memory page took around 50 milliseconds.

In comparison, the extraction time in the FDE key scenario decreased with more noise,
reducing it from 12.24 to 7.37 seconds. Another difference is that the median number
of pages we had to extract remained stable between 69 and 71, corresponding to 276
and 284 KB of memory. As for the web servers scenarios, this numbers represent only a
fraction of the total number of pages tracked during the secret identification. Similar
to the median number of extracted pages, also the mean absolute deviation from the
median stayed stable between 8 and 9. Lastly, searching an extracted page for an FDE
key only took 2 milliseconds. Most of the times, we identified the key as part of the AES
key schedule, and only only in rare cases by the kernel data structure.
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Extracting the private key from the SSH server took between 1.33 seconds with noise
level 1, and 0.80 seconds with level 25. Also the median number of pages we extracted
was not only very small, but additionally remained completely stable at 7. Therefore, also
the mean absolute deviation remained constant at 1. These strong results are especially
important in the SSH scenario, as sshd forks a new process for every SSH connection. As
soon as the process is terminated, the private key will be deleted from memory. In order
words, we have to conclude the secret extraction before the SSH connection is closed.
However, our very fast extraction time of maximum 1.33 seconds facilitates achieving
this goal. Similar to the web servers, searching an extracted memory page for the SSH
server’s private key took around 50 milliseconds.

Another interesting observation is that we were able to extract the secret in 99.99 %
of all test runs for both web servers and the FDE key scenario. In the SSH scenario, we
measured a comparability high success rate of 99.98 %. These results indicate that in the
previous secret identification phase, we started the tracking within the critical window
in only a few cases. Also note that if we start tracking within the critical window, there
is still the possibility of another handshake being processed concurrently and triggering
an access to the secret. This would allow us to determine the private key even when
starting tracking in the critical window of the original handshake. This applies especially
to higher noise levels, in which a high number of handshakes is performed each second.
Hence, the critical window can be smaller especially on higher noise levels.

In summary, our evaluation shows that we were able to identify the resource in less
than 22 iterations for both Apache and nginx on different noise levels (Section 4.2.5).
Additionally, we identified the resource provided by OpenSSH in 46 iterations or less
on most noise levels. Having identified the resource, we were able to drastically reduce
the number of pages possibly containing the secret during the secret identification
(Section 4.2.5) with a very high success rate. In the following secret extraction phase,
we started by extracting the most promising candidate pages. This only required us
to extract kilobytes of memory from the VM’s memory, allowing us to retrieve the
respective secret within seconds.

4.2.6 Discussion

Our evaluation shows that we are able to quickly extract secrets from the memory of
SEV-protected VMs. This confirms that our methods can handle varying amounts of
noise during both the resource and secret identification. In this section, we discuss our
evaluation results regarding their overhead, behavior of the VM, possibilities for reduced
attack times and their general applicability.

Overhead To identify both the resource and the secret, we make use of AV1: Page Access
Tracking. Our page tracking mechanisms causes the VM to trap into to the hypervisor
when attempting to access a tracked page. This additional step will increase the VM’s
overall processing times. However, as our page tracking only triggers a single page fault
for every tracked page, this increase is limited. To be precise, we did not detect any
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noticeable delays in neither the hypervisor nor the VM. Instead, both the hypervisor and
the VM remained stable and responsive even on the highest noise levels. The only effect
from our tracking we were able to detect was a small additional delay in the response
time of both the web servers and the SSH server.

Low Memory In case the VM is low on memory, its kernel might try to free memory. For
this process, the kernel might try to swap out pages, kill processes, or unmap file-backed
pages. Especially the latter is critical for our attack, as it could cause the page originally
containing the secret to be re-used by another process or the kernel itself. Therefore,
although we would still be able to extract the respective page’s memory contents, the
secret may have already been overwritten. Yet, we did not encounter such behavior
during our tests.

Triggering Activities During the secret identification phase, we start tracking at an
arbitrary point in time. Additionally, we refrain from actively triggering the VM to
access the secret in order to interfere as little as possible with the VM’s operations.
Instead, our noise model caused the VM to regularly access the targeted secret. However,
in a real-world scenario, the VM may only rarely access the secret. This could be, for
example, the case in the SSH scenario, where the administrator may only use the service
from time to time. To avoid having to wait for such an interaction, we could also trigger
the VM’s access to the secret. Sticking to the example of the SSH server, we could start
a login procedure to trigger the server to access its private key. This does not require
a valid user account, as the server will already access its private key before the login
procedure in order to prove its identity to the client. Hence, the attacker can initiate a
login and extract the SSH server’s private key before the session will be closed after the
default timeout of two minutes. However, note that actively triggering the access to the
secret may also decrease the attack’s verbosity, and may therefore not always be desired.

Generalization Our approach neither depends on a specific OS running in the VM, nor
a specific service, library versions or hardware. Therefore, we expect our approach to be
easily transferable to other scenarios and configurations. For example, it can be used
to extract confidential code, documents or images. This would only require to slightly
adapt the secret identification process (Section 4.2.3) by identifying an activity indicating
that the VM recently accessed the respective secret. In case such an activity cannot be
identified, it is also possible to skip the secret identification phase. Instead, we could
iteratively extract pages from the VM until the analysis of the retrieved memory page
reveals the secret.

Furthermore, we expect the performance of our attack to only vary slightly with
different hard- or software configurations due to the limited time required to perform
the attack. Specifically, we ran several tests in which we assigned additional memory or
CPU cores to the VM. Additionally, we tested different numbers of worker processes for
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the web servers. In all cases, the performance indicators remained coherent with our
evaluation results over all runs.

Prioritizing Specific Pages To further improve the performance of the secret extraction,
we could perform additional preprocessing steps between the secret identification and
extraction. The details for these steps will depend on the scenario and VM. Considering
the TLS handshake scenarios, we determined the private key to be on a read-accessed
page in 96 % of all evaluation rounds. In comparison, we discovered the private key from
the SSH scenario in 93 % of the rounds on a write-accessed page. Yet, it may depend
on other data located on the same page as the secret whether we first track a read-
or a write access to the respective page. It is therefore difficult to predetermine the
type of access with certainty. Specifically, prioritizing read-accessed pages in the TLS or
write-accessed in the SSH scenario may boost the attack in most cases. Yet, it could also
produce costly outliers for the few cases in which the page containing the secret was
accessed differently than expected.

Utilizing Known Reaction Time We could further optimize the extraction phase by using
our detailed knowledge of the reaction times (Figure 4.4). Considering the web servers
and the SSH server, we encountered a gap of a few milliseconds between Usen and
TrackingEnd in most iterations. In other words, it is likely that the secret was not accessed
in the last moments before we stopped the tracking. Hence, we could decrease the
extraction priority for pages in this time frame. Similarly, the reaction times can also
allow to determine the point in time at which to stop the extraction phase in case no
secret is found. To be precise, for both web servers and the SSH server, the secret was
only rarely accessed more than 30 milliseconds before the end of the tracking. Therefore,
if we extracted all tracked pages until this point and were not able to determine the
secret, this might be an indication that we started tracking inside the critical window
and that it is necessary to restart the secret identification.

4.3 Impact of Missing Memory Integrity on the Integrity of TEEs

In the previous section, we showed how an attacker in control of the hypervisor can
exploit SEV’s missing memory integrity protection to violate the VM’s confidentiality.
For the attack, we determined a total of four attack vectors. In this section, we continue
by showing that this weakness can also affect the VM’s integrity. Specifically, we present
our contribution C2, an attack that permits to execute arbitrary code within an SEV-
protected VM. As with the previous contribution, one of our goals is to highlight the
impact when combining the very strong attacker model of a malicious hypervisor with
security weaknesses such as missing memory integrity. Furthermore, we want to identify
the different attack vectors required to execute the attack in order to systematically
discuss countermeasures in Chapter 5.
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Figure 4.5: Attacking the VM’s integrity. Having determined a trigger, we send a payload
to the VM. After determining the location of the payload, we modify the
SLAT and trigger the execution of the payload.

The basic concept of our integrity analysis is similar to the confidentiality analysis
and again based on AV4: SLAT Remapping. However, instead of remapping a resource
to a secret, we remap code within the VM to a payload we inject from the outside. In
detail, our method consists of the following three steps (Figure 4.5):

1 Trigger Identification. Identify a code region inside the VM, the execution of
which we can trigger from the outside.

2 Payload Destination Identification. Send a network packet with a malicious
payload to the VM and identify its location inside the VM’s memory.

3 Payload Execution. Modify the SLAT in order to point the identified trigger to the
injected payload and trigger its execution.

To identify our trigger ( 1 ), we again make use of AV1: Page Access Tracking to perform
execute tracking (Section 4.2.1) on all of the VM’s GFNs. Next, we exploit a new attack
vector, AV5: Interrupt Injection, and use the hypervisor’s ability to inject a Non-Maskable
Interrupt (NMI) into the VM. An NMI is an interrupt that cannot be ignored or disabled
by the CPU [67]. This interrupt allows us to determine the GFNs holding the NMI
handler and the do_nmi() function, the latter of which we intend to use as trigger.

To identify the location of network packets within the VM’s memory ( 2 ), we make
use of our last attack vector, AV6: Unprotected DMA Channel. This attack vector exploits
the hypervisor’s ability to observe the I/O operation when copying the packet from
the shared into private memory. Combined with detailed knowledge about virtio, this
enables us to determine the exact location of every incoming network packet within the
VM’s memory.

To conclude our attack, we inject a network packet containing our payload at a carefully
calculated offset into the VM. Afterwards, we again exploit AV4: SLAT Remapping and
abuse the missing integrity protection to modify the SLAT managing the mapping
between GFNs and SFNs. Specifically, we map the GFN containing the trigger to the
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SFN of the payload ( 3 ). Finally, by injecting an NMI into the VM, we trigger the
execution of our payload.

Note that we do not limit our attack to virtio or Linux. Even though our work uses
Linux and virtio as concrete examples, the attack vectors upon which we base the attack
are completely independent from the OS, subsystem and driver. Thus, targeting another
OS or subsystem would not change the essence of the three steps ( 1 – 3 ), which
permits us to breach the VM’s integrity.

4.3.1 Trigger Identification

AMD’s virtualization extensions allow the system to pass interrupts directly to the
VM. Alternatively, the hypervisor can decide to intercept an interrupt and subsequently
inject a virtual interrupt into the VM through the event injection interface [4]. Just as real
interrupts, virtual interrupts cause VMs to pause the currently executing code and handle
the incoming event urgently in the associated interrupt handler. Consequently, virtual
interrupts present themselves as good candidates that we can abuse for triggering code
inside a VM. Hence, they represent our next attack vector: AV5: Interrupt Injection. Yet,
most interrupts are vital to the VM’s execution and temporary replacing the interrupt’s
code with our payload would crash the VM. Therefore, we prefer to resort to a specific
interrupt type which is rarely generated, the NMI. Note that alternatively, we could also
resort to injecting other rare interrupts or exceptions, such as the software breakpoint
exception that is generated upon executing the int3 instruction.

At an interrupt, the CPU uses the Interrupt Descriptor Table, a hardware-defined
data structure that registers all interrupt vectors, to locate the NMI handler. Once the
hypervisor injects a virtual NMI into a VM, the hardware immediately interrupts the
VM’s execution and invokes the NMI handler. In the context of our attack, we can abuse
this behavior to initiate the execution of arbitrary code residing at the location of the
registered NMI handler. Specifically, if we remap the GFN of the NMI handler to the
SFN containing our payload (Figure 4.5) and issue a virtual NMI, we will be able to
execute our payload.

Consequently, in order to perform the remapping, we have to identify the GFN
holding the NMI handler ( 1 ). For this, we assume that the hypervisor has access to the
exported symbol information or to the unencrypted image of the VM’s kernel. This is
a valid assumption, as VM images are often provided by the cloud provider and the
unencrypted kernel image usually resides in /boot. By analyzing the kernel image, we
can determine the offset of the NMI handler. We discuss alternatives for determining
the offset in Section 4.3.5. However, Linux systems by default make use of KASLR
to randomize the offset of the kernel image in the VM’s virtual and physical address
space [43, 140]. Fortunately, we can make use of different approaches that allow us to
bypass KASLR and hence determine the GFN of the NMI handler. Specifically, we have
developed the following three methods:
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Manipulating KASLR On modern AMD platforms, the Time Stamp Counter counts the
number of processor-clock cycles since the last reset [4]. The current value of the counter
can be read via the RDTSC instruction. This instruction is used by the Linux kernel
to create entropy at boot time, which is among others required to initialize KASLR.
Using this knowledge, we showed in one of our additional publications that a malicious
hypervisor manipulating the results of the RDTSC instruction at boot time will be able
to pin the KASLR offset [124]. This enables us to guess the KASLR offset used by the
VM. Yet, the manipulation of the RDTSC instruction requires a malicious hypervisor to
actively interfere with the VM at boot time. Additionally, the VM would be able to detect
the static KASLR offset. To circumvent these limitations, we can also resort to techniques
which allow us to infer the KASLR offset at run-time.

Fingerprinting Nested Page Faults When analyzing the VM’s boot processing using
AV1: Page Access Tracking for another additional publication, we observed that the VM’s
memory accesses during system boot are deterministic [148]. This observation can assist
us in bypassing KASLR. Specifically, in the initial stage of the boot process, before the
OS within the VM activates KASLR, the VM exhibits the same GFN access pattern across
reboots. Only once the boot process starts to decompress the kernel image to a random
offset in the VM’s physical memory, the sequence will start to differ. We determined
that the first GFN which differs from this sequence holds the beginning of the kernel
image in the VM’s physical memory. As the beginning of the kernel image is always
aligned on a 2 MB boundary [130], we can safely assume that the start of the image will
always remain at page offset zero.

This method permits the hypervisor to passively analyze the GFN access pattern of
the VM’s early boot stage. Yet, since the attacker does not necessarily have the chance
to observe the bootstrapping phase of the VM, we have developed another alternative
method.

Probing the NMI Handler We can also combine AV1: Page Access Tracking with AV5:
Interrupt Injection to identify the GFN holding the NMI handler. Specifically, performing
execute tracking on all of the VM’s GFNs will cause the VM to trap into the hypervisor
on every instruction fetch. Using this configuration, we use AV5: Interrupt Injection and
inject a virtual NMI into the VM.

Upon resuming the VM, it will directly jump to the respective NMI handler and
immediately trap into the hypervisor, enabling us to locate the GFN of the NMI handler.
Shortly after resuming the VM, it will trap again upon calling the do_nmi() function
responsible for dispatching NMI’s. The second trap is guaranteed by the fact that the
do_nmi() function belongs to a different section than the NMI handler, namely the
.text section instead of the .entry.text section. Therefore, we can be sure that the
functions are located on different GFNs and that after trapping for the NMI handler, the
VM will trap again for the do_nmi() function. In other words, both functions reside on
different GFNs and thus guarantee two consecutive traps.
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Once we have identified the GFN holding the do_nmi() function, all that is left to
determine is the exact offset of the function within the respective GFN. This knowledge
allows us to inject our payload at the same offset, ensuring it will be immediately
executed after we modify the SLAT and trigger its execution. To determine the offset
of the do_nmi() function, we could refer to the VM’s register state available to the
hypervisor on VMEXIT. Yet, on AMD SEV-ES, the system encrypts the VM’s register state
on every VMEXIT and hence obfuscates the offset. Thus, we instead determine the offset
of the do_nmi() function by analyzing the exported symbol information of the VM’s
kernel image.

4.3.2 Payload Destination Identification

The architectural constraints of SEV prohibit devices to apply Direct Memory Access
(DMA) into encrypted VM memory (Section 2.1). This limitation applies to physical as
well as emulated devices, forcing VMs and devices to exchange data through shared
pages. Even though this security-driven design decision aims to protect the system
against DMA attacks [11, 16], it also establishes a vantage point, our AV6: Unprotected
DMA Channel. To be precise, the unprotected DMA channel facilitates attackers to
extract or inject arbitrary data from or to the VM, or to inject arbitrary code into the
VM’s memory without knowing the secret encryption key. While previous attacks have
targeted the former [91], we focus on the latter attack vector. Specifically, we abuse the
exposed network communication channel to inject arbitrary code into the encrypted
memory.

Yet, before injecting the payload, we need to identify where in memory the VM stores
incoming network packets ( 2 ). For this, we record the sequence of GFNs the VM is
writing to when bouncing an incoming network packet from shared into private memory
(Section 2.1). Specifically, after the device in the hypervisor places a network packet into
a buffer in shared memory, we perform access tracking on the GFN holding the buffer.
Hence, the hypervisor gets notified as soon as the VM tries to access the buffer. Having
received this notification, we conclude that the VM is about to read the buffer. Next,
we enable write tracking on all other GFNs. This allows us to collect the sequence of
GFNs the VM is writing to until we can be sure that it has finished bouncing the packet
into the private memory. In order to determine when the VM has finished bouncing the
packet, we abuse the notification system of virtio.

Using virtio, the hypervisor raises an interrupt to notify the driver that it can consume
a buffer. Yet, if the driver is busy processing other data, the virtio specification grants the
driver in the VM the possibility to inform the hypervisor that it does not want to receive
interrupts. In older virtio implementations, the driver informs the device by setting the
VRING_AVAIL_F_NO_INTERRUPT flag. By unsetting the flag, the driver indicates that it
has finished processing the data. In recent virtio implementations, the driver uses a
special index of the available ring, the used_event, to indicate the last consumed buffer.
Once the driver has finished consuming a buffer, it updates the used_event to the
index of the consumed buffer. By monitoring both the VRING_AVAIL_F_NO_INTERRUPT
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flag and the used_event entry, we comply with all virtio versions. This permits us to
determine when the driver has completed processing the packet.
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Figure 4.6: The 32 KB sized packet buffer contains 21 fragments of 0x600 bytes. The size
of 32 KB requires eight GFNs, indicated by the dashed lines. Source: [109].

Having determined the write sequence when bouncing a network packet into the VM,
we next identify which GFN in the sequence contains the packet and at which offset the
packet is located. To determine the exact position of a packet, we have to understand
how virtio manages its buffers. The buffers are allocated in 32 KB chunks of contiguous
memory called a packet buffer. Each packet buffer is divided into multiple fragments of
the same size. Figure 4.6 shows the layout of a packet buffer holding 21 fragments of
0x600 bytes each. The fragments are aligned and padded to 0x600 bytes, with the first
fragment starting at offset 0x0. The dashed lines indicate the eight GFNs holding the
buffer.

It is important to note that within one packet buffer, all fragments have the same
size. Yet, the size of the fragments can be dynamically adjusted to consider the size of
recent network packets [36]. Therefore, the number of fragments per packet buffer can
vary. During our test, we always observed a fragment size of 0x600 bytes. This size
can change when the VM starts to receive larger frames. We can detect changes to the
size of the fragments in the packet buffer by monitoring the length of the buffers in the
virtqueue’s descriptor table.

This knowledge of the packet buffer’s structure allows us to infer which GFNs contain
which fragments, and which fragment starts at which offset. First of all, we know that
the packet buffer is 32 KB aligned in the VM’s memory. Hence, we search the write
sequences performed by the VM when bouncing a packet into private memory for a
GFN which is 32 KB aligned. This GFN represents a candidate for the first GFN of a
newly allocated packet buffer. Knowing that the first GFN contains the start of three
fragments (Figure 4.6), we confirm the candidate by analyzing if the VM also writes to
the GFN when bouncing the following two packets into private memory.

We can repeat this process for the subsequent GFNs in the packet buffer to minimize
false positives. For this, we make again use of our detailed knowledge of the packet
buffer. For example, the second GFN of the packet buffer contains the start of fragments
3, 4 and 5. Therefore, assuming we have correctly identified the first GFN of the packet
buffer, the second, subsequent GFN should be accessed in the fourth, fifth, and sixth
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bouncing sequence. The third GFN containing the start of fragments 6 and 7 should be
accessed in the sixth and seventh bouncing sequence, and so on.

Note that depending on the size of the incoming network packet, the VM may also
access the second GFN in the third sequence. Considering the minimum size of 0x40
bytes for an Ethernet frame [65], the packet stored in the third fragment will not cause a
write access to the second GFN. Yet, a packet larger than 0x400 bytes will cause the VM
to also write data to the second GFN, as the fragment offset of 0xc00 plus the packet
size of 0x400 cross the boundary of the first GFN.

By applying these conditions and adapting them in order to reduce the number of
false positives, we are able to successfully identify the packet buffer within the VM’s
memory. Our tests show that requiring the first ten write sequences of the bounce
buffer to fulfill our conditions eliminates the chance for false positives on all tested VMs.
Having determined the position of the packet buffer, we can also determine the offset of
each fragment by knowing its size. This allows us to predict where the VM will store
prospective incoming network packets.

Also note that the VM copies incoming network packets into the packet buffer before
it applies any processing or filtering. Thus, the VM also stores packets sent to closed or
even firewalled ports in the packet buffer. This enables us to send our payload to closed
or filtered ports and, in comparison to our attack targeting the VM’s confidentiality
(Section 4.2), eliminate the need for any active network service.

4.3.3 Payload Execution

Having determined the trigger point and the location to which we aim to inject our
payload, we finalize the setup and conclude our attack by executing an injected payload
( 3 ). This final step of our attack comprises two stages. First, we inject a payload into
a suitable fragment in the packet buffer. Second, we manipulate the SLAT to remap
the trigger such that its GFN translates to the SFN holding the injected payload, again
exploiting AV4: SLAT Remapping. Finally, after modifying the SLAT, we use AV5: Interrupt
Injection and inject an NMI to execute the payload.

When injecting the payload into a suitable fragment, we have to consider that the trig-
ger and the fragment will likely reside on different page offsets. As such, we must place
the payload into a fragment whose location in memory spans a range that comprises
the needed page offset. In the example depicted in Figure 4.7, the trigger is located at
the page offset 0x700. Thus, we choose to inject the payload to a fragment that starts at
offset 0x600. To position the payload at precisely the same offset as the trigger, we fill
the first 0x100 bytes of the network packet we send to the VM with arbitrary data. Since
the fragment also holds protocol headers of the packet, the arbitrary data only spans the
size of 0x100 bytes minus the size of the protocol headers, such as Ethernet frame, IP
and, TCP or UDP header. After a total of exactly 0x100 bytes, we place our payload to
ensure that the payload and the trigger are located at the same page offset.

For the next step, we again make use of the fact that while SEV’s memory encryption
protects the guest page tables within the VM, the hypervisor remains in charge of the
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Figure 4.7: The system maps the GFN of the page of the trigger to the original SFN
holding do_nmi(). We leverage the SLAT to remap the GFN of the trigger
page to another SFN holding the injected payload. Thus, by injecting an NMI,
we manage to redirect the control flow to our payload. Source: [109].

SLAT. Specifically, once we prepared and injected the payload, we adjust the respective
entry in the SLAT such that the GFN that initially translated to the SFN holding the
trigger translates to the SFN holding the injected payload. That is, once the NMI handler
attempts to call the do_nmi() function, it will instead execute our payload.

4.3.4 Evaluation

To show that our attack breaching the VM’s integrity is effective and OS-agnostic, we
created a proof of concept and evaluated its precision on different VMs.

Setup

Our setup comprised a Debian 11 host running a custom-built Linux kernel v5.6 in-
cluding the unofficial patches for SEV-ES5. The host equipped an 8-core EPYC 3251 CPU
with 64GB of RAM and used QEMU v4.2.50 and KVM to virtualize the targeted VMs.
Furthermore, we extended the host’s kernel with our SEVered framework6 (Section 4.2.5).
Additionally to the functionality already required for our attack on the VM’s confiden-
tiality (Section 4.2), we added code for the exploitation of AV5: Interrupt Injection and
AV6: Unprotected DMA Channel to the framework. Specifically, the framework allows to
inject NMIs into the VM. Hence, we can determine the address of the VM’s interrupt
handler by performing execute tracking on all pages and afterwards injecting an NMI
(Section 4.3.1). Furthermore, we included functionality that exploits the unprotected

5https://github.com/AMDESE/AMDSEV
6https://github.com/Fraunhofer-AISEC/severed-framework
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DMA channel to identify the packet buffer via a combination of memory access and
write tracking.

Having added this functionality to our SEVered framework, we evaluated our attack
by targeting SEV-protected VMs running the following five different Linux distributions
officially supported by AMD [5]: SUSE Linux Enterprise Server (SLES) 15, RedHat
Enterprise Linux (RHEL) 8, Fedora 29, Ubuntu 18.04, and openSUSE-Tumbleweed. To
enable SEV-ES, all VMs were running a custom built kernel in version v5.7.0 with
patches for SEV-ES support5.

Precision Evaluation

To evaluate the precision of our attack, we ran it 1,000 times against all five VMs. Before
every round of the attack, we sent a random number between 0 and 64 packets with
random data to avoid any bias from previous rounds. Afterwards, in every round of
the attack, we identified the GFN of do_nmi() by injecting an NMI and performing
execute tracking (Section 4.3.1). To identify the packet buffer in the VM’s memory, we
sent dummy packets and analyzed the page fault sequence for bouncing the packets
into the VM’s private memory. Once a series of ten page fault sequences fulfilled
our conditions, we deemed the packet buffer identified. While a smaller number may
have increased the performance of the evaluation, the higher number allowed us to
eliminate false positives. Having identified the packet buffer, we sent additional dummy
packets in case the next free fragment was not located on a suitable offset to inject
our payload (Section 4.3.2). The payload itself executed a hypercall with exit reason
0xff, and afterwards issued a RET instruction in order to return to the NMI handler.
Having performed all required preparations, we remapped the GFN of do_nmi() to the
SFN of the payload and triggered its execution. As hypercalls immediately trap into
the hypervisor, we were able to determine the successful execution of the payload by
monitoring for hypercalls with exit reason 0xff. To conclude the round, we connected
to the VM via SSH to ensure that it continued to behave as expected.

To perform the evaluation itself, we filtered any external traffic to the VM in order to
maintain full control over incoming network packets. The main reason for this approach
is the fact that our current implementation analyzes the VM’s page fault sequence after
the VM has bounced the network packet into its private memory. By that time, the VM
might already have received additional packets. The filtering of traffic permits us to
ensure that the VM received the next packet only after we finished analyzing the page
fault sequence. To deal with simultaneously arriving packets and to further improve the
stealthiness of our attack, we can adjust our proof of concept to buffer incoming packets
until we complete the analysis of the page fault sequence.

Note that in a real-world setting, incoming packets would have allowed us to determine
the exact destination of the payload in a stealthy way, without having to inject any
artificial packets. Yet, to avoid having to rely on fluctuating numbers of incoming
network packets, which would have influenced the evaluation results, we have opted for
completely controlling the network traffic.
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Table 4.5: Evaluation details of 1,000 runs of our attack against different VMs protected
by SEV. The table further summarizes an averaged number of the tracked
write accesses to the VM’s memory when bouncing network packets, the
number of the sent packets, and the duration of the attack. Source: [109].

VM Number of Number of Attack Success
Image Write Accesses Sent Packets Duration [s] Rate

SLES 38.52 19.97 2.57 100 %
RHEL 66.78 19.50 2.75 100 %
Fedora 68.74 20.37 3.04 100 %
Ubuntu 43.10 19.89 2.65 100 %
openSUSE 40.57 19.56 2.57 100 %

For each VM, we conducted 1,000 iterations of our attack, achieving a total success rate
of 100 %. Table 4.5 shows the detailed results of our evaluation. In the second column,
we show the average number of write accesses recorded when monitoring the VMs
bouncing a packet from shared to private memory. Their values range from 38.52 for
openSUSE to 68.74 for Fedora.

In the third column, we show the average number of packets we had to send before
we could identify the packet buffer in the VM’s private memory. To ensure that we
always correctly identify the packet buffer, we required 10 consecutive write sequences
to match our conditions. In our test environments, all VMs filled the packet buffer with
21 fragments of 0x600 bytes. Therefore, on average, we had to send 10 packets before a
new packet buffer was allocated. The results in the third column match the expected
value of these 10 packets plus 10 packets to ensure the packet buffer identification was
correct.

The fourth column shows the average time needed to identify the packet buffer ( 2 ),
inject our payload, remap and trigger its execution ( 3 ). The values are almost all below
three seconds, ranging from 2.57 seconds on SLES and openSUSE to 3.04 seconds on
Fedora. From these results, we conclude that while filtering external traffic during the
attack may be noticeable by the VM, the duration is not sufficient to attract specific
attention. Additionally, extending our implementation to buffer incoming packets for a
short period of time instead of filtering external traffic would further increase stealthiness,
as we would not need to send artificial packets. This leaves the VM with the possibility
to analyze page access times to determine if the hypervisor is performing memory
access tracking. However, as we only require a maximum of around three seconds for
our attack, it would be difficult to distinguish between delays caused by access tracking
and other activities, such as migration of the VM.

The last and most important column shows our success rate of 100 % on every single
VM we run our attack against. This confirms the identification of the trigger page
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(Section 4.3.1) and the payload (Section 4.3.2) work as described, enabling us to execute
our attack against different SEV-protected VMs with a success rate of 100 %.

4.3.5 Discussion

Having analyzed the precision of our attack against the VM’s integrity, we discuss details
of our attack as well as possible further improvements.

Kernel Image Availability We assume that the hypervisor has access to the kernel image
to extract the kernel’s symbol information (Section 4.3.1). This is a valid assumption, as
the kernel image typically resides in the unencrypted /boot partition of the VM’s virtual
disk image or, in some situations, can be provided by the hypervisor. In both cases,
the hypervisor gains direct access to the kernel image. In case the VM stores its kernel
image in an encrypted /boot partition, an attacker can make use of other methods to
gain access to the VM’s kernel image. For example, SEV supports and disseminates only
a small set of Linux distributions, each running a specific kernel version that is known
to the public [5]. In other words, assuming the VM’s provider did not compile a custom
Linux kernel, the attacker can download and inspect the provided Linux kernel images
to collect the necessary information to identify the trigger point. Alternatively, we could
apply OS fingerprinting mechanisms [20, 147] to determine the used kernel version.

Bypassing KASLR We showed one approach to practically disable KASLR, and two
approaches to identify the location of the do_nmi() function within the VM’s memory
with KASLR enabled (Section 4.3.1). Both identification approaches work with the most
recent implementation of KASLR. Yet, the granularity of KASLR might change in the
near future. In a recent patch, Accardi [42] proposed to also randomize the offsets of
functions within the kernel image. This would not require any changes to our trigger
point identification (Section 4.3.1) with SEV, as the VM executes its NMI handler directly
after an interrupt is injected. In comparison, using SEV-ES, after injection of an interrupt,
the VM first internally handles the interrupt. This may cause the VM to access different
GFNs before handing control to the NMI handler. To still be able to determine the
location of the NMI handler and the do_nmi() page, we could analyze the page faults
caused by the VM’s internal handler to determine when it finishes execution and hands
control to the NMI handler. Alternatively, we could also resort to machine learning [20]
to determine the location of the do_nmi() function.

Injected Code Size Our prototype injects a small payload which executes a hypercall
that allows us to determine the success of the attack. Furthermore, we also experimented
with payloads up to 78 bytes. Yet, to inflict significant damage, the attacker may prefer to
execute arbitrary code. However, the Maximum Transmission Unit defines the packet size
and presents an obstacle to our approach. Yet, by injecting multiple payload fragments
and using RIP-relative jumps, we can transfer the control flow to other payload segments

63



Chapter 4 Analyzing the Impact of Missing Memory Integrity by Example

located in different fragments. This way, we can inject and execute payloads of a nearly
arbitrary size.

Stealthiness Our prototype is not designed to be stealthy. Yet, with some modifications,
we can reduce its visibility. As part of our attack, we remap the GFN that holds the
do_nmi() function to the SFN holding our injected payload. Since we can cause the
VM to execute the do_nmi() function from outside of the VM, it acts as a trigger for
executing the injected payload. To still ensure consistent VM operation after remapping,
we continue tracking the execution of incoming NMI requests by monitoring execute
accesses to the GFN containing the NMI handler. That is, every time a regular NMI
request occurs, we can restore the original mapping in the SLAT and continue execution.
Yet, walking the SLAT tables to change permissions of GFNs on every NMI event is a slow
operation and can lead to race conditions in multi-virtual CPU (vCPU) environments.
Besides, changes in the VM’s memory are visible to other vCPUs. To accommodate these
issues, we can prepare a set of SLAT tables which define different mappings on the VM’s
physical memory, and rapidly switch among them without revealing the in-memory
artifacts [151, 122, 123]. Since we can individually assign a SLAT table to each vCPU, the
remaining vCPUs would not be able to detect the adjustments in memory.

Another possibility to increase stealthiness is the current approach of sending UDP
packets to a closed port. In particular, this could allow the VM to detect the unusual
amount of suspicious traffic to a closed port and reveal the attack. To further increase
the stealthiness of our prototype, we could fall back to sending less suspicious packets,
such as ARP packets. While ARP packets are limited in size, we can use them to detect
the packet buffer and to fill unsuited packet buffer fragments with dummy packets.

Additional Network Traffic Even though our prototype blocks external traffic to the VM
(Section 4.3.4), we underline that this strategy is not a requirement. On the contrary,
additional network traffic would facilitate detecting the packet buffer in the encrypted
memory. This way, we would not need to add any artificial traffic to observe the sequences
of write accesses of the bounce buffers. The same applies to identifying a suitable
fragment in the packet buffer. For one, it would eliminate the need to send dummy
packets to observe sequences of write accesses during the bounce processes. Furthermore,
we could avoid having to send packets in case the next free fragment is not located at a
suited offset. Hence, analyzing external traffic instead of a stream of artificial packets
increases the stealthiness of the attack. In this scenario, the attacker would have to send
only a single packet with the payload. To avoid issues caused by multiple network
packets received shortly after each other, an improved implementation of our proof of
concept can queue packets until analysis steps such as access page tracking of previous
packets are finished. Hence, our attack can also be applied to VMs with high network
load. However, we opted for an evaluation which did not require artificial network traffic
in our test environment as this could have influenced our evaluation results.
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Generalization While we evaluated our attack by injecting a payload via network pack-
ets, we neither rely on the usage of virtio or Linux, nor the network communication
channel. Even though we use Linux and virtio as concrete examples, the actual vulnera-
bility is entirely independent from the OS, subsystem and driver. Assuming that another
OS, such as Windows, would provide support for SEV, the system would still be archi-
tecturally forced to transfer data from DMA-capable devices into the protected VM’s
memory. The system will achieve this transfer by copying the data from unencrypted to
encrypted memory, which we exploit to inject our payload. Therefore, targeting another
OS, subsystem or driver would not change the fundamentals of the three steps of our
attack.

Yet, SEV is currently only supported by Linux, and most Linux-based virtualization
environments use virtio. For both Linux and virtio, our prototype does not require a
specific version. To be precise, by monitoring virtio’s VRING_AVAIL_F_NO_INTERRUPT
flag as well as its used_event index, it is compatible to older as well as newer versions
of virtio. Additionally, to confirm that we do not impose any requirements on the version
of the VM’s kernel, we tested our attack on different kernel versions between v4.19.43
and v5.7.0. The kernel version is only limited by having to support SEV, which has
been integrated into the Linux mainline kernel v4.16 [85].

4.4 Summary

In this chapter, we investigated our first research question, RQ1: Which attack vectors
enable attacks against a TEE’s cryptographic memory isolation without memory integrity?. For
this investigation, we presented three contributions and established total of six attack
vectors. The first two contributions are attacks showcasing the impact of missing memory
integrity on the example of AMD SEV. Our attacks confirm that cryptographic memory
isolation cannot hold without memory integrity, preventing TEEs from protecting them-
selves from a curious or malicious administrator. To be precise, the first attack exploits
the missing integrity protection to extract confidential data from a VM protected by SEV.
Similarly, the second attack uses the same weakness to execute arbitrary code within the
VM. In a detailed evaluation, we have shown that both attacks work reliably.

The only major requirement for our contribution C1, a data extraction attack, is the
presence of a service within the VM providing a resource to the outside. As VMs are
typically used in cloud environments, they are required to provide such a service to be
able to communicate with the outside world. Our attack uses this service to repeatedly
request one of its resources. By combining this step with AV1: Page Access Tracking, we
can locate the resource within the VM’s memory. Having identified the resource, we
use AV2: Network Monitoring and AV3: Disk Access Monitoring to track the VM’s page
accesses until we detect an event indicating that the VM recently accessed a secret. This
step provides us with a list of pages which are likely to contain the secret. Next, we
make use of AV4: SLAT Remapping in order to systematically retrieve pages from this list.
By simultaneously analyzing the content of the retrieved pages, we are able to quickly
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extract the respective secret from the VM’s memory despite it being protected by SEV. To
demonstrate the feasibility of our approach, we evaluated our prototype with different
services, namely Apache, nginx and OpenSSH. For every service, we tested various levels
of concurrent accesses to evaluate our attack under different realistic noise conditions.
Our results show that we are able to extract confidential information such as private
keys and FDE keys from the protected VM within seconds with a very high success
rate. Additionally, as our attack is independent of the specific service, our method can
easily be adapted to a variety of different attack scenarios. As such, we demonstrate that
a malicious hypervisor still remains able to extract sensitive data from SEV-protected
VMs.

Our contribution C2 is an attack that allows us to inject and execute truly arbitrary
code into SEV-protected VMs. Also this attack builds upon SEV’s missing memory
integrity protection and the resulting AV4: SLAT Remapping. Additionally, it makes
use of AV6: Unprotected DMA Channel, caused by SEV’s inability to perform DMA into
encrypted memory. In comparison to our first attack, our code injection attack does
not require any services running in the VM. Instead, we abuse the fact that Ethernet
frames are pulled into the VM’s memory before any filtering mechanisms can apply.
Also, it suffices if our packets are copied into the VM’s memory only for a short period
of time. To perform the attack, we first identify the location of code within the VM
which we can trigger from the outside using AV5: Interrupt Injection. Next, we inject a
network packet into the VM containing an arbitrary payload and use page tracking to
identify the location of the payload within the VM’s memory. We then remap the GFN
of the trigger to the SFN of the page containing the payload. Finally, we provoke the
execution of the trigger, which will cause the VM to instead execute our payload due to
the modified memory mapping. To evaluate the effectiveness of our approach, we run
our attack against various SEV-protected VMs. Our evaluation demonstrates a success
rate of 100 %, while at the same time only requiring a few seconds. As the data extraction
attack, also this attack is independent from a specific service, OS and subsystem. Hence,
our attack shows that additionally to being able to breach the VM’s confidentiality, a
malicious hypervisor can also interfere with the integrity of an SEV-protected VM.

To determine if upcoming VM-based TEEs correctly verify the integrity of their
memory, our contribution C3 is a framework supporting the different analysis methods
we used for our attacks. For example, the framework permits to track a VM’s memory
accesses or to modify its memory mapping.

Overall, our example attacks highlight that TEEs require to protect the integrity of
their memory to be able to cryptographically isolate their memory from a curious or
malicious administrator. Hence, the current version of SEV also cannot protect against
an adversary gaining administrative access by escaping an isolation domain [143, 136,
30, 31] hosted on the same physical system. In other words, the protection offered by
SEV in its current state is no stronger than those of traditional VMs, as an administrator
will still be able to read or modify the VM’s data. However, this does not imply that SEV
is no security improvement. Instead, different countermeasures could protect against
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the presented attacks, allowing SEV to successfully protect the VM’s confidentiality and
integrity. In the following chapter, we analyze such countermeasures against our attack
vectors.
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CHAPTER 5

Restoring Cryptographic Memory Isolation
without Memory Integrity

In the previous chapter, we discussed two example attacks that violate AMD Secure
Encrypted Virtualization (SEV)’s cryptographic memory isolation. Having determined
the six different attack vectors the attacks rely on, we now continue by discussing
how the cryptographic memory isolation could be restored by remedying one or more
of these vectors. For this investigation, we stick to the example of AMD SEV and
analyze different software and hardware countermeasures against our attacks that can
be applied by both the Virtual Machine (VM) and SEV. Specifically, we first discuss
countermeasures that can be applied by the VM itself without requiring an update of
SEV. These countermeasures are mainly workarounds which do not resolve the most
critical attack vectors, but aim to make the attack more difficult. To effectively resolve
these critical attack vectors, an update to SEV is inevitable. We therefore also discuss
how our attacks could be prevented by modifying SEV. Most importantly, we present
our contribution C4, a countermeasure against AV4: SLAT Remapping. While we already
mentioned the idea for this countermeasures in one of our publications [107], we will
use this chapter to discuss in detail how it could be implemented. For our contribution,
we propose to modify the tweak mechanism applied by SEV’s memory encryption to
also include the Guest Physical Address (GPA). This requires only a small modification
of SEV, while at the same time preventing both our attacks as well as others exploiting
this attack vector [60]. As the modification of the tweak mechanism would have to be
implemented by AMD, we only discuss the countermeasure on a theoretical level.

5.1 Countermeasures by the VM

The first requirement for both attacks is the possibility to perform different variations
of page tracking, AV1: Page Access Tracking (Section 4.2.1). Therefore, preventing a
malicious hypervisor from tracking the VM’s page accesses would prevent both attacks.
In particular, the hypervisor would not be able to identify the Guest Frame Numbers
(GFNs) containing relevant data such as the resource, secret, trigger or payload. In
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order to prevent the hypervisor from performing page tracking, it would be necessary
to revoke its ability to modify Page Table Entrys (PTEs) in the Second Level Address
Translation (SLAT). However, the hypervisor requires this ability to perform memory
management, for example to indicate that a page has been swapped out of main memory.
To the best of our knowledge, the only possibility to address this issue would be to
either split the hypervisor into a trusted and an untrusted part [154, 92] or to introduce
a separate component responsible for memory management [150] (Section 3.2). Yet,
this does not address the attack vector itself, but only moves the trust away from the
hypervisor to a different component.

Instead, the VM could try to reduce the information leaked by its memory access
pattern. This could be achieved using Oblivious RAM (ORAM), which randomizes
data access patterns [55, 84, 137]. Such a randomization would make it harder for
an attacker to identify the page containing the different GFNs. However, a downside
of ORAM is that it requires constant shuffling of the data, causing a high overhead.
Similarly, the VM could try to reduce the information leakage from page faults by
deploying deterministic multiplexing [133]. Using this approach, programs show a
deterministic memory access behavior independent from the input. Applying either
ORAM or deterministic multiplexing to our scenario would complicate the identification
of valuable information within the VM’s memory. However, the VM would nevertheless
be required to access the data, which can be observed by the hypervisor. Therefore, both
approaches would not be able to hide the location of valuable information, but only
complicate the identification of the respective GFNs.

An alternative approach would be to reduce the impact of AV1: Page Access Tracking by
purging critical information as soon as it is no longer required to prevent its extraction
from the VM’s memory. In particular, during our tests we discovered that the private
keys of the web servers as well as the Full Disk Encryption (FDE) keys remained at the
same memory location. In comparison, the SSH daemon forked a new process for every
incoming connection. This fork causes the private key used to establish the connection to
also be located in the memory of the new process. Therefore, as soon as the connection
is closed and the process is terminated, the private key can be purged from memory.
In other words, the extraction of the private key is only possible as long as the SSH
connection remains open, thereby reducing the time frame for a possible attack. However,
our evaluation shows that we require less than 1.5 seconds to extract the private key
from the SSH server. Hence, it is not sufficient to purge the key once the connection is
closed. Instead, the process could overwrite the key as soon as it is no longer required,
which should be the case after successfully completing the SSH handshake. A similar
approach could be taken by the web servers. Yet, for some secrets, such as FDE keys,
purging might not be feasible. To be precise, as the VM requires the key for every disk
I/O operation, it has to remain accessible.

For secrets which need to be accessible permanently, one may consider storing them
outside of the VM’s memory in dedicated hardware. Specifically, as our first attack is
only able to extract secrets from memory, secrets stored for example in a Hardware
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Security Module would be protected from such extraction. Similarly, storing FDE keys
in memory can be avoided by deploying hardware based disk encryption. However, this
countermeasure does not defend against the attack itself, but merely reduces its impact,
as the adversary will not be able to extract the respective secrets from memory. Hence,
this approach should only be seen as a workaround.

Addressing AV2: Network Monitoring, AV3: Disk Access Monitoring and AV5: Interrupt
Injection faces similar limitations as the prevention of AV1: Page Access Tracking. Specif-
ically, the hypervisor requires access to the VM’s network traffic in order to forward
packets to the VM and to the outside world. Similarly, as the hypervisor is also responsi-
ble for providing a virtual disk to the VM, it is difficult to prevent it from monitoring the
VM’s disk accesses. Furthermore, removing the hypervisor’s ability to handle interrupts
would disable an essential virtualization component. Hence, the respective attack vectors
could only be rectified by moving their underlying tasks, which are network, disk and
interrupt management, to other, trusted entities. Yet again, this approach would not
address the attack vector itself, but only move trust to a different component.

Instead of interfering with the foundations of virtualization, countermeasures should
focus on attack vectors specific to SEV, namely AV4: SLAT Remapping and AV6: Un-
protected DMA Channel. To prevent AV4: SLAT Remapping, the VM could attempt to
implement its own integrity protection. For this, it could store integrity measurements
of data in its memory, and verify the respective measurement before using the data.
To ensure the integrity of the measurement itself, it could be stored in a secure loca-
tion outside of the memory, such as a Hardware Security Module. However, such an
approach faces multiple challenges. For once, it requires high amounts of storage to
store all integrity measurements. Additionally, verifying the measurement in software
before each memory access will likely have a high performance impact. Hence, we think
that changes in the design of SEV Encrypted State (SEV-ES) are required in order to
effectively prevent AV4: SLAT Remapping, which we discuss in the next section.

Finally, to prevent AV6: Unprotected DMA Channel, the VM could avoid copying data
from shared to private memory. It could achieve this by performing read operations on
the shared memory, while performing write accesses on private memory. In the example
of an incoming network packet, the VM could decrypt TLS-content to its private memory,
but consume other contents of the packet directly from shared memory. This approach
would make it difficult to determine where in its private memory the VM stores the
decrypted content of the network packet. However, such an approach would require to
modify existing software in order to perform read operations on shared memory, but
write operations to private memory.

5.2 Countermeasures by SEV

The discussion of possible countermeasures that could be performed by the VM indicates
that complete protection from our attacks can only be achieved by modifying the design
of SEV. Specifically, both our attacks rely on AV4: SLAT Remapping and break SEV’s
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cryptographic memory isolation by remapping the VM’s GFNs to different System Frame
Numbers (SFNs). To be precise, our attack against the VM’s confidentiality remaps the
GFN of the resource to the SFN of the secret (Section 4.2). Similarly, to attack the VM’s
integrity, we map the GFN of the trigger to the SFN of the payload (Section 4.3).

To prevent this attack vector, we propose to modify the tweaking mechanism applied
by the Secure Processor (SP) before encrypting data [75]. While we already previously
mentioned the basic idea for this countermeasure [107], we will use the rest of this
section to describe a possible implementation in more detail. Specifically, early versions
of CPUs supporting SEV hold a list of static 128-bit tweak values which are applied to
the plaintext data [41]. Similarly, we discovered for one of our additional publications
that more recent CPUs randomly generate these tweak values on every boot [148]. In
both cases, the goal of this tweak values is to prevent an attacker from moving blocks in
the system’s physical memory [75].

To achieve this goal, the SP XORs the tweak values tj, tj + 1, ..., tn to the original
message m depending on the address a at which the data should be stored. Now, let a
consist of the address bits an−1, an−2, ...a0. Then, the SP applies the following tweak:

T(a) :=
⊕

j∈{i∈Zn :i≥4∧ai=1}
tj

Where tj is the constant tweak value for the respective bit that is either static or
generated at boot. That is, for every bit in the physical address starting from the fourth
bit, the tweak XORs the message with the respective tweak value if the bit is set to 1.
Note that bits 0 – 3 of the address are ignored, as the 128 bit AES-blocks used by the SP
cause plaintext data to be stored in the same ciphertext block independent from these
first four address bits.

The SP then uses this tweak to encrypt data in memory based on the System Physical
Address (SPA) on which the data will be stored. In detail, we were able to reverse engi-
neer the following encryption mechanism for a message m to be stored in memory [148]:

EncK(m, SPA) := AESK(m ⊕ T(SPA))⊕ T(SPA)

Accordingly, when a ciphertext c is read from memory, it is decrypted as follows:

DecK(c, SPA) := AES−1
K (c ⊕ T(SPA))⊕ T(SPA)

This approach prevents an attacker from creating predictable plaintext by moving
blocks in the system’s physical memory. To be precise, as this would change the SPA of
the encrypted data, the SP would apply a different tweak to the decryption, causing it to
return garbled data. However, as we have shown in the previous chapter, the tweak does
not prevent a malicious hypervisor from remapping GFNs to different SFNs. Specifically,
the remapping technique circumvents the protection as it only modifies the GPA, but
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not the SPA of the encrypted data. Therefore, we propose to also include the GPA in the
tweaking mechanism. This could for example be achieved by repeating the tweaking
step with the GPA as input:

EncK(m, SPA, GPA) := AESK(m ⊕ T(SPA)⊕ T(GPA))⊕ T(SPA)⊕ T(GPA)

DecK(c, SPA, GPA) := AES−1
K (c ⊕ T(SPA)⊕ T(GPA))⊕ T(SPA)⊕ T(GPA)

For simplification, the SP could also first XOR the GPA and the SPA, and then use the
result as input for the tweaking function.:

EncK(m, SPA, GPA) := AESK(m ⊕ T(SPA ⊕ GPA))⊕ T(SPA ⊕ GPA)

DecK(c, SPA, GPA) := AES−1
K (c ⊕ T(SPA ⊕ GPA))⊕ T(SPA ⊕ GPA)

This small adjustment allows to incorporate the GPA which the VM aims to access
into the encryption. Considering the example of our attack against the VM’s integrity,
the SP would encrypt the plaintext data mt holding the code for the trigger as follows:

ct =EncK(mt, SPAt, GPAt)

=AESK(mt ⊕ T(SPAt ⊕ GPAt))⊕ T(SPAt ⊕ GPAt)

Where SPAt is the system physical address of the trigger and GPAt the guest physical
address. During decryption, the different XOR operations with the tweak function
neutralize each other, yielding the plaintext:

mt =DecK(ct, SPAt, GPAt)

=AES−1
K (ct ⊕ T(SPAt ⊕ GPAt))⊕ T(SPAt ⊕ GPAt)

=AES−1
K (AESK(mt ⊕ T(SPAt ⊕ GPAt))⊕ T(SPAt ⊕ GPAt)

⊕ T(SPAt ⊕ GPAt))⊕ T(SPAt ⊕ GPAt)

=AES−1
K (AESK(mt ⊕ T(SPAt ⊕ GPAt))⊕ T(SPAt ⊕ GPAt)

=mt

Similarly to the code on the trigger page, the SP would tweak the encryption of the
code mp on the payload page with the respective GPAp and SPAp:

cp =EncK(mp, SPAp, GPAp)

=AESK(mp ⊕ T(SPAp ⊕ GPAp))⊕ T(SPAp ⊕ GPAp)
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When the adversary now attempts to change the SLAT in order for the trigger page to
point to the payload page, the SP would still tweak the encrypted content with SPAp for
decryption. Yet, it would also include GPAt into the tweak instead of GPAp, as the VM
intends to access the trigger page.

mt =DecK(cp, SPAp, GPAt)

=AES−1
K (cp ⊕ T(SPAp ⊕ GPAt))⊕ T(SPAp ⊕ GPAt)

=AES−1
K ((AESK(mp ⊕ T(SPAp ⊕ GPAp))⊕ T(SPAp ⊕ GPAp))

⊕T(SPAp ⊕ GPAt))⊕ T(SPAp ⊕ GPAt)

As T(SPAp ⊕ GPAt)) and T(SPAp ⊕ GPAt) do not neutralize each other, the attempt
to decrypt cp would cause the SP to perform the AES decryption on the ciphertext

(AESK(mp ⊕ T(SPAp ⊕ GPAp))⊕ T(SPAp ⊕ GPAp))⊕ T(SPAp ⊕ GPAt)

and afterwards XOR the result with

T(SPAp ⊕ GPAt)

This creates two challenges for the attacker. For once, without the knowledge of the
tweak values used in the tweak function, it is not possible to determine the result of
the XOR operations. Additionally, even if the results of the XOR operations would be
known, the decryption would nevertheless operate on garbled ciphertext, causing the
decryption to also return garbled data. To determine the outcome of the decryption, the
attacker would require access to the AES key used for the decryption, which is managed
by and only accessible to the SP. Hence, the attacker would have to compromise the SP
in order to circumvent our countermeasure.

In summary, adding the GPA to the tweak mechanism prevents a meaningful modifi-
cation of the VM’s memory via AV4: SLAT Remapping. This prohibits both our attacks
against SEV’s cryptographic memory isolation as well as other attacks that remap the
VM’s memory [60].

5.3 Summary

In this chapter, we investigated RQ2: How can we restore cryptographic memory isolation
of Trusted Execution Environments (TEEs) without memory integrity?. For this research
question, we analyzed which countermeasures could rectify the different attack vectors
required for the attacks we described in the previous chapter. We determined that four of
the attack vectors, namely AV1: Page Access Tracking, AV2: Network Monitoring, AV3: Disk
Access Monitoring and AV5: Interrupt Injection will be challenging to prevent as they are
side effects from basic virtualization tasks. Instead, we proposed a countermeasure for
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Chapter 5 Restoring Cryptographic Memory Isolation without Memory Integrity

AV6: Unprotected DMA Channel and focused on AV4: SLAT Remapping, as the elimination
of this attack vector would prevent both our attacks.

Table 5.1 gives an overview of the countermeasures proposed by related work (Sec-
tion 3.2) as well as in this chapter. The table shows that countermeasures previously
proposed by academia either focus on moving trust away from the hypervisor to other
components [154, 150, 92] or are difficult to implement [91]. Also the different counter-
measures we discussed that can be applied by the VM are challenging to implement
or cannot be considered a long-term solution. Hence, a change to SEV is necessary to
prevent AV4: SLAT Remapping allowing us to circumvent its cryptographic memory
isolation.

To enable such a change, we presented our contribution C4, a modification to SEV
that prevents our attacks. In detail, we propose to include the GPA in the tweaking
mechanism included in the memory encryption. We showed how this slight modification
allows to prevent both our attacks against the VM’s confidentiality and its integrity as
well as others [60]. While we were not able to evaluate our countermeasure in practice,
its practicability was shown by the latest iteration of SEV, SEV Secure Nested Paging
(SEV-SNP), which is taking a similar approach. Specifically, SEV-SNP keeps track of GFN
to SFN mappings, enabling it to detect and prevent remapping attacks as presented in
the previous chapter.

However, also strong integrity protection cannot protect against attackers gaining
control over a TEE due to vulnerabilities in the TEE’s code. Therefore, in the next chapter
we discuss methods to detect such attacks even in the presence of software vulnerabilities
within the TEE.
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CHAPTER 6

Using TEEs to Verify Run-Time Integrity

To ensure their trustworthiness, Trusted Execution Environments (TEEs) provide mech-
anisms to attest their configuration and the integrity of the data used for their launch [3,
34]. However, this attestation mechanism is static, as it only provides information over
the TEE’s state at the time of launch. In other words, the attestation does not allow to
detect an attacker exploiting a vulnerability in the software running within the TEE at
run-time, even if the attestation is performed after the attack.

In order to also detect run-time attacks, we analyze in this chapter how we can create
a dynamic attestation process which also captures the TEE’s run-time information.
By doing so, we investigate our third research question, RQ3: How can we detect the
exploitation of software vulnerabilities within TEEs?. Taking one step at a time, we first
discuss how we can permit a TEE to collect run-time information of an application.
For this, we use a TEE protecting userspace applications, namely Intel Software Guard
Extensions (SGX), in Section 6.2. While SGX has been rumored to be deprecated, Intel
only decided to no support SGX on client platforms, but continues to support server
platforms [70]. Hence, the contributions we discuss in this chapter are also relevant
for up-to-date platforms. In detail, we present our contribution C5, an architecture that
allows a monitoring process to retrieve run-time information from applications. At the
same time, our architecture protects both the application and the monitoring process
from high privileged adversaries by hosting them in TEEs.

In the next step, we analyze how the monitoring process can use the capability to
collect run-time information to detect the exploitation of software vulnerabilities in the
application. To be precise, we present our contribution C6, in which we port Control-
Flow Attestation (CFA) to TEEs. Part of C6 is a technique that enables us to detect
Data-Oriented Programming (DOP) attacks by establishing the maximum number of
iterations for every loop, which we did not previously discuss in any of our publications.
Our final design, which we describe in Section 6.3, permits the monitoring process in
a TEE to detect clients exploiting software vulnerabilities in the application running
in a different TEE. To demonstrate the practicability of our design, we describe our
prototype based on Intel SGX in Section 6.4. We use this prototype to perform a detailed
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performance evaluation in Microsoft Azure in Section 6.5. Finally, we discuss different
aspects of our design and implementation in Section 6.6.

6.1 Attacker Model

For this chapter, we assume a cloud environment providing us with a Virtual Machine
(VM) with full administrative privileges. This VM is running the service which we aim to
protect: our target. As with most services, we have to assume that clients of the target are
potentially malicious. By exploiting vulnerabilities in the target, a malicious client can
gain full control over the target’s memory at a specific point in time. Yet, we assume that
techniques such as Data Execution Prevention [101] protect the target’s code. Using Intel
SGX, this is ensured in version 1 by preventing the Operating System from changing the
enclave’s pages permissions, and in version 2 by requiring the enclave’s permission to
do so [68]. However, the attacker will still have full control over the target’s data memory,
even if the target is running in a TEE. This is caused by the fact that exploiting the target
gives the attacker access to the entire isolation domain. Having this control, the attacker
can perform control data attacks [88, 14, 32] and non-control data attacks (Section 2.3).

As we are hosting the target in a cloud environment, we additionally consider the
possibility of a malicious administrator controlling the software and hardware infras-
tructure. To gain this control, the attacker may have escaped a VM hosted on the same
physical system by exploiting a vulnerability in the hypervisor [143, 136, 30, 31]. Another
possibility might be that the infrastructure has been set up for malicious purposes. Either
way, we deem the exact method with which the attacker gained administrative access
to the infrastructure to be out of scope for this work. More importantly, having control
over the infrastructure allows the malicious administrator to extract and modify data
and processes within our VM. The administrator can either achieve this goal by using
software-based methods, such as Virtual Machine Introspection [51], or hardware-based
methods, such as DMA [11, 16] or cold boot attacks [58]. However, we do not consider
the malicious administrator resorting to advanced physical attacks such as tapping buses
or dismantling the CPU.

6.2 Enabling TEEs to Measure Run-Time Integrity of Applications

Having determined how to ensure the integrity of TEEs even in the presence of a
malicious administrator (Chapter 5), we continue by discussing how we can use such
environments to verify the run-time integrity of applications on the example of Intel
SGX. Figure 6.1 depicts the generic sequence of steps required for such a verification. We
assume that both the application we want to verify, called the target, and the TEE we use
to verify the application, called the VerifyTEE, are running on the same system. While
a possibly malicious client is interacting with the target ( 1 ), the VerifyTEE monitors
the target ( 2 ). The VerifyTEE also stores the results of this monitoring process in the
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Target VerifyTEE

1

2

3

Figure 6.1: Using a TEE to verify the run-time integrity of an application. While the
client interacts with the target, the VerifyTEE monitors and logs the target’s
state. This log can then be accessed by a trusted verifier.

attestation log. This gives a trusted verifier, such as the owner of the target, the possibility
to retrieve information about the target’s current state by fetching the attestation log ( 3 ).

Both the first and the third step do not face major scientific challenges. Specifically, to
establish a communication channel with the target ( 1 ), the client can use any traditional
mechanism such as the creation of a TLS connection. Similarly, mechanisms exist that
enable TEEs to access persistent storage in order to store the attestation log [34, 82]. The
persistently stored attestation log can then be retrieved by a trusted verifier ( 3 ) via a
secure, attested TLS connection [81].

However, monitoring the target from the VerifyTEE ( 2 ) poses two major challenges.
First, the VerifyTEE requires access to the target’s memory or a comparable capabil-
ity to collect information about the target’s current state. Previous work uses ARM
TrustZone [120] to monitor the integrity of an untrusted kernel from the TEE [9, 53].
Using TrustZone facilitates such a monitoring process, as it allows the TEE to access the
memory of the entire system [120]. Yet, we target cloud environments, which to the best
of our knowledge only provide TEEs running in user-space, such as Intel SGX or AMD
Secure Encrypted Virtualization (SEV). Hence, we require a mechanism that permits
such a user-space TEE to collect information about the state of the target running outside
the TEE. The second challenge for the monitoring is to use this capability to collect
information of the target’s current state to determine its integrity. In this section, we
focus on the first challenge and show how a user-space TEE can collect the required
information, which is our contribution C5. In the next section, we capitalize on this
ability by porting CFA to TEEs (Section 6.3).

One possible solution to allow the process of the VerifyTEE to collect data from the
target process would be the creation of a debug bridge. Such a bridge could be created
using ptrace [57] on Linux or the ReadProcessMemory [102] function on Windows. Yet,
an important disadvantage of this approach is that it requires to trust the Operating
System (OS). To be precise, while the OS would not be able to access the VerifyTEE, the
VerifyTEE would still need support from the OS to establish the debug bridge. Although
it would be possible to verify if a debug bridge was established, it would be difficult to
ensure that the OS pointed the bridge to the correct target.
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To reduce the dependency on the OS, we propose a design based on Intel SGX that
does not rely on debug bridges. For this design, we make use of the fact that with SGX,
the Host Application (HA) and the enclave share the same virtual address space [131].
We use this property to launch both the VerifyTEE and the target from the HA. Therefore,
both entities will run in the same process and share the same address space. Despite the
shared address space, the target and the HA will not be able to access the VerifyTEE’s
memory as it is protected by the TEE. However, the shared address space enables the
VerifyTEE to access the target’s memory without requiring any support from the OS.
This permits the VerifyTEE to collect run-time information from the target.

A problem that remains with this approach is that the target itself is not protected
by a TEE and hence exposed to high privileged adversaries. While monitoring by the
VerifyTEE would allow to detect integrity violations of the target, it would be difficult
to ensure its confidentiality. For example, a malicious administrator could still extract
secrets located in the target’s memory. To protect against such a threat, we propose to
also host the target in a TEE, protecting it from high privileged adversaries. Specifically,
we use the same HA to launch two TEEs: the ProveTEE hosting the target, and the
VerifyTEE responsible for ensuring the target’s integrity. This permits us to protect
both the verification mechanism and the target from a malicious administrator. Yet, a
difficulty that arises with this design is that the VerifyTEE is no longer able to access the
target’s memory, as it is now protected by a TEE. To work around this limitation, we
make use of an agent in the ProveTEE, which we call the trampoline. The trampoline is
responsible for collecting information from the target and providing it to the VerifyTEE.
For the latter, we again make use of the fact that as both TEEs are launched by the same
HA, they share the same address space. Therefore, we can establish a shared memory
region between both TEEs which we use to exchange data.

Cloud Environment

ProveTEE

Trampoline

Target

VerifyTEE

Analyzer

Attestation
Log

1

2

3

4

5

Figure 6.2: Overview of our design for C5. One of its two goals is to prevent a malicious
administrator from extracting or modifying critical data, which we aim to
achieve by using two separate TEEs. This separation also helps us to achieve
our second goal, ensuring that a malicious client cannot influence monitoring
results by compromising the target or the ProveTEE. Source: [108].

Figure 6.2 shows our final design aiming to prevent a malicious administrator from
accessing the target and a malicious client from influencing monitoring results. The

80



6.3 Porting Control-Flow Attestation to TEEs

dashed line indicates the cloud environment offered by the cloud provider. Within this
environment, we create two TEEs that enable us to protect our processes from a malicious
administrator, the ProveTEE and the VerifyTEE. The ProveTEE is responsible for hosting
the target, which communicates with possibly malicious clients ( 1 ). Furthermore, it
contains the trampoline, responsible for collecting control-flow information from the
target before the flow gets executed ( 2 ). In comparison, the VerifyTEE hosts the analyzer,
responsible for verifying the data collected by the trampoline ( 3 ). By outsourcing
the verification into a separate TEE, we aim to protect this step from a malicious
client compromising the ProveTEE. After verification, the analyzer stores the result in
the attestation log also located in the VerifyTEE ( 4 ). The VerifyTEE itself is entirely
passive: its tasks are the analysis of monitoring data received from the trampoline
and the provision of the attestation log to the trusted verifier ( 5 ). Furthermore, the
VerifyTEE may be equipped with additional functionalities such as deploying target-
specific mitigations or shutting down the target and its service, which are out of the
scope of this work.

In the following sections, we use this approach to port CFA to TEEs. Specifically, in
Sections 6.3 and 6.4, we describe our design and its implementation in detail. Afterwards,
we evaluate our implementation in Section 6.5 and analyze if we were able to achieve
our goals by discussing possible limitations in Section 6.6.

6.3 Porting Control-Flow Attestation to TEEs

In the previous section, we proposed a design which allows an analyzer running in
the VerifyTEE to monitor the state of a target in the ProveTEE. Now, we continue with
discussing how we can use this ability to verify the target’s integrity at run-time. To
be precise, we make use of CFA to perform the verification (Section 2.3). The concept
of CFA was first proposed by Abera et al. [1] in order to detect control data attacks.
CFA records the control flow of a program and afterwards compares it to a set of
previously determined legal control flows. While this approach permits to detect control
data attacks, recent work additionally aims to detect non-control data attacks [38, 139].
However, most previous work targets embedded systems, focusing on specific challenges
for such environments, such as limited resources. In comparison, cloud environments
have access to a vast amount of resources, while at the same time presenting different
challenges, such as a contrasting usage model. Specifically, while embedded systems are
mainly used by their owners, cloud applications are often designed to provide a service
to autonomous clients. Those clients are often considered untrusted. Hence, performing
CFA in cloud environments requires us to move the attestation procedure away from the
client to other, trusted entities. It is exactly this gap, the absence of CFA designs adapted
to cloud environments, which we aim to close in this section. In detail, we present our
contribution C6, a design in which we port CFA to TEEs.

The main goal of our design is to detect control data and DOP attacks (Section 2.3)
in untrusted cloud environments, posing several challenges to overcome. While pre-
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vious work on CFA mainly focused on embedded systems, our design targets cloud
environments. Although such an environment reduces challenges such as the need to
save resources, new requirements and challenges arise, such as a possibly malicious
administrator. In this section, we identify those challenges and present our respective
solutions that form our design. After giving an overview of our design porting CFA
to TEEs, we continue with explaining the details of its two phases, the offline and the
online phase.

6.3.1 Overview

Most applications that run in cloud environments and communicate with clients repre-
sent some kind of service, such as a signing service for health certificates. These services
are, for example, deployed within the European Union to sign the so-called Digital
Green Certificates providing proof of vaccination against or recovery from COVID-19 or
a negative test result [45]. Such a signing service receives the hash of a newly created
health certificate, signs the hash with its private key, and returns the signature. To avoid
the forging of health certificates, it is important that the service’s private key is equally
protected from a malicious administrator and a malicious client. Our design protects
the target signing service against both types of adversaries: By using TEEs, we prevent
an administrator from accessing the service’s private key. Additionally, we can detect
a malicious client compromising the service. In the event of such a compromise, the
service owner can use the collected information to identify and resolve the vulnerability.
Then, by installing a new private key and revoking health certificates signed with the
old key, the impact of the attack can be minimized. To achieve this protection, we only
require the developer to annotate the start and the end of the CFA, but do not require
any other changes to the target.

Another relevant aspect of signing services is that they only sign newly created health
certificates and are therefore only required to provide a limited throughput. In other
words, their performance is of much lower priority than their security guarantees, which
could be threatened by a malicious client. To protect against such a threat, we move the
attestation away from the client to another, trusted entity. To be precise, previous designs
for CFA require the client to attest the remote execution [1, 39, 153, 141]. In comparison,
we assign this task to a trusted verifier such as the owner of the target, thereby separating
the role of the client from the role of the trusted verifier. This separation serves three
purposes: First, it permits to leave the interface between the client and the service
unchanged, making our design transparent to the client. Second, it allows us to perform
the attestation time-independent from the communication between client and service.
Third, it enables us to perform CFA without requiring any information from the client,
as done for example by previous work to ensure the freshness of the attestation [1, 39,
153, 141, 2, 33, 139].

An additional concern in cloud environments is that we cannot rely on the underlying
infrastructure, as it might be controlled by a malicious administrator. To protect against
this threat, we place both the target and the verifier in a TEE, shielding them from
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high privileged adversaries. By using two different TEEs, we limit the influence of a
malicious client on the verifier after exploiting vulnerabilities in the target. This prevents
an adversary in control of the target from modifying attestation information as it can be
done for Control-Flow Integrity (CFI) [52, 54, 115].

When choosing a TEE, we have to consider that cloud environments are limited in the
choice of available hardware. Furthermore, we are not able to perform any hardware
modifications, requiring us to use the TEE offered by the cloud provider. Hence, we start
by discussing how to port CFA to TEEs based on the generic concepts of TEEs, preserving
the flexibility of which TEE to choose. In Section 6.4, we build on the architecture we
established in Section 6.2 and show how our design can be used on the example of
Intel SGX. However, future work could also implement our design with other TEEs,
for example by using the privilege layers introduced in SEV Secure Nested Paging
(SEV-SNP) [3]. With discuss this possibility in more detail in Section 7.2.

Our design comprises two phases, the offline and the online phase. In the offline phase,
the analyzer learns the target’s control-flow information. This information contains
the target’s Control-Flow Graph (CFG) which we use to detect control data attacks.
Furthermore, it contains the maximum number of iterations for each loop, which we
call the iteration limit, with which we detect DOP attacks (Section 2.3). The subsequent
online phase builds on the five steps we established in the previous section (Section 6.2),
adapted to CFA. In detail, the client sends regular requests to the target ( 1 ), making
our design transparent to the client. While the target is processing the request, the
trampoline records the control-flow information and iteration limit of each loop ( 2 ).
Next, the trampoline forwards the information to the analyzer in the VerifyTEE ( 3 ).
The forwarding prevents an attacker in control of the target, or even the entire ProveTEE,
from tampering with the control-flow analysis. To be precise, it ensures that once the
VerifyTEE received the information, it cannot be modified by a compromised ProveTEE.
The analyzer then uses the control-flow information provided by the trampoline to
compare the collected control flow against the target’s CFG. Additionally, it verifies for
each loop that the number of iterations does not exceeded its iteration limit. Next, the
analyzer stores the result of both checks in the attestation log ( 4 ). Finally, the trusted
verifier can retrieve the attestation log from the VerifyTEE ( 5 ).

6.3.2 Offline Phase

Before being able to verify the target’s control flows in the online phase, we require
an offline phase to prepare the environment. For this preparation, we instrument the
target to regularly pass control to the trampoline. This instrumentation enables the
trampoline to record the target’s executed edges and loop iteration information ( 2 ) and
to provide this information to the analyzer ( 3 ). As we perform the instrumentation at
compile-time, we do not require any high-level modifications. Instead, the developer
only needs to annotate where the attestation of the target’s control flow should start and
end. This makes our instrumentation transparent to the target’s clients, as the interface
between the client and the target remains unchanged.
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Having established a mechanism that allows the trampoline to record the target’s
control flow, we calculate the target’s CFG via dynamic execution. Using this approach,
we send requests to the target until it has executed every control flow path at least
once. To ensure that no malicious paths are followed, we perform this step in a safe
environment without any possibly malicious client interaction. During the dynamic
execution, the analyzer collects all recorded control flows and merges them into the CFG.
Additionally, it determines the iteration limit for each loop.

Yet, determining the point at which a complex target has executed all legal control
flows is still an open research question. Therefore, our design aims to protect targets with
reduced complexity frequently deployed in cloud environments, the so-called microser-
vices [6]. Such microservices split the functionality of a complex multi-functional service
into multiple, simple services with a single functionality. This reduced functionality also
reduces the complexity of each service, simplifying the execution of all legal control
flows for each of them. Alternatively to splitting up the target itself, we can break down
the CFG of a complex target into multiple segments in order to facilitate the collection
of each segment’s CFG [2, 141].

Another difficulty for the creation of the CFG is that most OSs deploy Address Space
Layout Randomization (ASLR) [135]. ASLR causes the target to use different virtual
addresses at every launch, preventing us from using addresses to identify the endpoints
of edges in the CFG. Instead, we identify the endpoints by assigning them unique
identifiers, the CFG IDs, leaving the identification unaffected by ever-changing virtual
addresses.

In order to also detect DOP attacks, we make use of the fact that they require an
increased number of loop iterations during the attack (Section 2.3). To be precise, for
our loop verification, we assign a unique identifier to every loop, the loop ID. We use
this loop ID in the offline phase to assign an iteration limit to each loop. Afterwards,
in the online phase, we transfer the loop ID to the analyzer each time the target enters
a loop and for each subsequent iteration of the loop. This information is sufficient for
the analyzer to detect when a loop exceeds its iteration limit determined in the offline
phase, indicating a DOP attack.

Figure 6.3 shows an example CFG for a signing service, which we annotated with
CFG IDs and loop IDs. The services reads input data in a loop between N1 and N2. This
step requires two different edges, to the endpoints of which we assigned the CFG IDs
1 – 4. For the loop, we assigned the loop ID 1. Each time the service executes the edge
between N2 and N1, we count the number of loop iterations and store the maximum
as iteration limit for the respective loop. For example, let us assume that the maximum
input length the server processes is 256 bit, or 32 byte. In case each execution of N1

reads one byte, the service requires a maximum of 32 loop iterations to read the entire
input. Hence, we would determine an iteration limit of 32 for loop ID 1. Also note that
both endpoints starting from N2 have the same CFG ID. This is due to the fact that
both have the same starting point, which is the loop condition in N2. When the loop is
finished, the service continues to N3, in which it checks if the input has the expected
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N1: read byte from input
N2: continue reading until finished
N3: compare input length to expected length
N4: if they match, sign hash
N5: else create error message
N6: return data

N1

N2
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N4 N5
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iteration limit++

loop ID = 1
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Figure 6.3: CFG annotation in the offline phase. For the endpoint of the edges, we assign
the CFG IDs 1 – 11. Additionally, we assign a loop ID to each loop and
calculate its iteration limit.

length. Depending on the result, the service continues either to N4 or N5. As with N2,
both endpoints starting from N3 have the same starting point, namely the if condition.
Hence, they also share the same CFG ID. After N3, the service either signs the received
hash in N5 or creates an error message in N4. Finally, the data is returned in N6. Again,
both endpoints leading to N6 have the same CFG ID, namely 11. The reason for this is
that both edges lead to the same destination.

By using the CFG IDs, we can determine all valid edges and calculate the target’s full
CFG in the offline phase. Additionally, we are able to determine the iteration limit for
each loop with the help of the loop IDs. In combination, this allows us to detect control
data attacks and DOP attacks. Furthermore, having access to the full CFG, the analyzer
can also identify the node in which the compromise has first shown effect.
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6.3.3 Online Phase

In the subsequent online phase, we perform CFA and loop verification while the target
processes requests from potentially malicious clients. During the online phase, the
target hosted in the ProveTEE waits for requests from clients ( 1 ). For the client, the
additional protections are transparent. Therefore, clients can send the same requests to
the instrumented target as to the original.

While the target processes the request, the trampoline records all CFG IDs and loop
IDs ( 2 ). However, the trampoline itself is not responsible for processing the IDs. This is
due to the fact that it runs in the ProveTEE, next to the target. Therefore, an attacker
gaining control over the target could also tamper with the trampoline. To ensure that
such an attack influences neither the CFA nor the loop verification, we shift these analysis
tasks to the VerifyTEE. Hence, the only task of the trampoline is to forward the collected
IDs to the analyzer in the VerifyTEE ( 3 ). Aside from protecting the analysis, another
advantage of shifting this step to a different TEE is that it reduces the processing time of
the trampoline, as it only forwards the IDs.

Next, the analyzer uses the received CFG IDs to reconstruct the control flow of the
target. By comparing the reconstructed control flow against the target’s CFG created in
the offline phase (Section 6.3.2), the analyzer can detect control data attacks. Specifically, if
two recorded CFG ID do not correspond to an edge also taken in the offline phase, we can
assume that an attacker was able to hijack the target’s control flow. Additionally to the
CFA, the analyzer uses the loop IDs to perform loop verification. To be precise, it counts
the number of loop iterations and compares them to the iteration limit determined in the
offline phase (Section 6.3.2). This allows the analyzer to detect DOP attacks increasing the
number of iterations for a loop. Having finished both the CFA and the loop verification,
the analyzer stores detected violations in the attestation log ( 4 ).

Finally, the VerifyTEE provides the trusted verifier with the contents of the attestation
log ( 5 ), containing all requests that altered the target’s control flow. In the event of such
a request, the owner can then take appropriate actions, such as analyzing and resolving
bugs in the target’s code.

6.4 Implementation

Based on our design, we implemented a prototype using Intel SGX (Section 2.2) as TEE12,
which we discuss in this section. We start by giving on overview of our prototype and
describing how we exchange data between the ProveTEE and VerifyTEE (Section 6.4.1).
Afterwards, we describe our additions to the LLVM compiler framework which permit
us to instrument the target to regularly pass control to the trampoline (Section 6.4.2).
Finally, we discuss the tasks of the two threads among which we split up the work
(Section 6.4.3).

1https://github.com/Fraunhofer-AISEC/guarantee-code
2https://github.com/Fraunhofer-AISEC/guarantee-llvm
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6.4.1 Overview
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Figure 6.4: Overview of our prototype for C6. The shared memory region allows to
transfer the IDs collected by the trampoline to the analyzer in the VerifyTEE.
Furthermore, we distribute the work between two different threads, the
prover thread and the verifier thread.

Figure 6.4 gives an overview of our implementation. The basic building blocks are
the same as in Figure 6.1. However, we introduced two threads between which we
divide the work, the prover thread and the verifier thread. We discuss the tasks of both
threads in detail in Section 6.4.3. Furthermore, we added a shared memory region used
to exchange data between the ProveTEE and the VerifyTEE. This region permits the
TEEs to exchange information without requiring any context switches, thereby reducing
the performance overhead of the communication.

To create the shared memory region, we make use of the fact that SGX TEEs share the
virtual address space with their Host Application (HA) [131]. Therefore, by using the
same HA to launch both the ProveTEE and the VerifyTEE, both TEEs share the same
virtual address space [105]. This enables us to allocate a memory region in the HA which
both the ProveTEE and the VerifyTEE can access, allowing them to exchange collected
IDs. Note that while both TEEs are able to read and write the shared memory, they are
not able to access each other’s memory.

The first step of the prototype is to perform an offline phase, in which it collects all
information necessary to perform CFA and loop verification (Section 6.3.2). Afterwards,
in the online phase, it verifies the target’s control flow and iteration limit of each loop
and provides the verification results to the trusted verifier (Section 6.3.3).

In our implementation, each node in the CFG corresponds to a basic block in the
target’s code. A basic block is a code section with a single entry and a single exit [95].
The basic blocks are connected via edges, the endpoints of which are recorded by the
trampoline. To be precise, the target calls the trampoline each time before entering or
exiting a basic block, providing the CFG ID of the respective endpoint. Similarly, the
trampoline also records the loop IDs for every entry and subsequent iteration of the loop.
On execution of the trampoline, the ID is stored in an ID batch, which acts as a cache.
When the ID batch is full, the trampoline encrypts and stores it in the queue located in
the shared memory region.
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ProverTEE VerifyTEE

hashp = Hash_Init(secret) hashv = Hash_Init(secret)

Key1 = KDF(Keyinit) Key1 = KDF(Keyinit)

BatchNop = 0 BatchNov = 0

hashp = Hash_Update(ID1)

hashp = Hash_Update(ID2)

m = Auth-EncKey1 (ID1, ID2, hashp)

Key2 = KDF(Key1)

BatchNop++

ID1, ID2, hashp = DecKey1 (m)
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EncKey2 (BatchNov)
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Figure 6.5: The exchange of IDs between the ProveTEE and the VerifyTEE. To ensure the
integrity of IDs cached in the ID batches, we use a hash chain. Additionally,
we calculate a new encryption key for every exchange with the help of a KDF
and record the number of the current batch. Source: [108].

Figure 6.5 depicts how we can securely cache the IDs by combining the calculation of
a new key for every data exchange with the tracking of the number of exchanged ID
batches. To ensure the integrity of the cached IDs in the ProveTEE, we make use of a
hash chain. The root of this hash chain is a secret the service owner provides to both
the ProveTEE and the VerifyTEE. When the trampoline caches an ID in the ID batch,
we update the hash in the ProveTEE, hashp, with the new ID. If the ID batch is full, we
combine it with the current value of hashp to form a single message, which we then
encrypt and store in the queue located in the shared memory region. After the VerifyTEE
reads and decrypts the message from the queue, it adds all IDs to its own hash, hashv.
As we initialize both hashp and hashv with the same secret and add the same IDs in the
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same order to both hashes, hashv should equal the value of hashp transmitted with the
batch. To minimize the performance impact of this step, our prototype uses BLAKE3 as
hash algorithm [113].

When exchanging the ID batch via shared memory, we have to keep in mind that the
memory is also accessible to other, untrusted entities such as the HA or the OS. This
means that a malicious administrator could inspect and modify transferred ID batches.
To protect the batches from such attacks, we implement mechanisms which ensure their
confidentiality and integrity. For confidentiality, we provide both TEEs with an initial
encryption key, KeyInit. Both TEEs use this initial key as input to a Key Derivation
Function (KDF) in order to calculate an encryption key. For the following messages, the
encryption key serves as input for the KDF to produce a new key for the next message,
allowing us to calculate a different key for each message. These keys enable us to encrypt
the ID batches and the respective hash values before writing them into shared memory,
ensuring that they cannot be inspected by a malicious administrator. By additionally
calculating a new key for every message, we ensure that an attacker in control of the
ProveTEE is not able to infer previously used keys. We achieve this by calculating the
keys with an irreversible KDF and by deleting old keys after usage. To be precise, we
again make use of BLAKE3, as it is irreversible and already available in our prototype.

To ensure the integrity of the communication, we use AES-GCM for encryption, which
additionally provides integrity protection [97]. AES-GCM requires an Initialization
Vector (IV), which we need to synchronize between the trampoline and the analyzer to
ensure correct encryption and decryption. We achieve this synchronization by managing
an independent 64bit counter, BatchNo, in both the ProveTEE and the VerifyTEE. Note
that for IVs with a different size than 96bit, AES-GCM hashes the IV to create a 96bit
input [97]. Hence, using a 64bit counter does not impact the security of the encryption.

After each encryption or decryption, we increase the respective counter to keep
both counters synchronized. These counters permit us to detect attacks in which the
malicious administrator prevents forwarding of the ID batches. For this detection, the
VerifyTEE regularly acknowledges the receipt of the ID batches. On the other side, the
ProveTEE, having stored a certain number of ID batches into the queue, will wait for
an acknowledgment before continuing to execute the target. We define the frequency
of these acknowledgments as the feedback frequency. In Section 6.5, we analyze the
performance and security impact of different feedback frequencies. Also note that the
feedback from the VerifyTEE to the ProveTEE can cause IVs to be used twice: Once for
the transfer of m from the ProveTEE to the VerifyTEE, and a second time to encrypt the
feedback. However, these two transfers will use different keys, preventing the reuse of
the same combination of IV and key.

6.4.2 Instrumentation

To collect control-flow information from the target, we require it to regularly pass control
to the trampoline before executing control flows. We achieve this by automatically
instrumenting the target during the compilation process. For this instrumentation, we
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rely on the LLVM compiler framework3. The instrumentation serves two purposes:
calculation of the target’s CFG to detect control data attacks and loop verification to
detect DOP attacks (Section 6.3.2).

CFG Calculation To calculate the CFG, we need to determine all edges executed by the
target. Each edge has two endpoints: the exit from a basic block, and the entry into
another basic block, both of which we identify with a unique CFG ID. By analyzing
the recorded CFG IDs, we are able to reconstruct all edges executed by the target and
therefore its full control flow. To collect the CFG IDs, we add calls to the trampoline
on every entry and exit of each basic block. For each of these calls, we assign a unique
CFG ID, which we store directly in the binary of the target. Furthermore, we add code
that reads the ID and stores it in the general purpose register R11 [67], from where the
trampoline can consume it. We chose the R11 register as it is caller-saved and therefore
ensures that we are not overwriting function parameters.

To instrument all entries and exits, we modify two different phases of the LLVM
compilation process: First, we add a pass to the Intermediate Representation (IR) opti-
mization used for mid-level analysis and transformations [19]. In the pass, we add calls
to the trampoline on every direct branch. Specifically, we add calls at the beginning and
the end of each basic block and before and after direct function calls. To assign a unique
CFG ID for each endpoint, we make use of a counter.

Furthermore, we add a pass to the backend that creates the x86-specific code [19]
to instrument all indirect branches. Specifically, we add calls to the trampoline before
and after every indirect function call, before every indirect jump, and before every
return instruction. As before, each trampoline call is associated with a unique CFG ID,
allowing us to identify the endpoints of all executed edges in the target’s control flow.
Additionally, on indirect calls, indirect jumps, and returns we XOR the CFG ID with
the offset between the current instruction pointer and the jump destination to detect
modifications of the jump address. This safeguard permits us to detect jumps from
instrumented into uninstrumented code. Specifically, it causes a modification of the jump
destination to also change the recorded CFG ID, enabling us to detect the modification
even if it points the execution to uninstrumented code. Being able to record all control
flows, we use the offline phase to combine the collected CFG IDs to the target’s CFG.

While it may technically be possible to perform all instrumentations in IR only, the
backend pass permits us to precisely place the calls to the trampoline. For example, let
us consider Return-Oriented Programming (ROP) attacks in which each gadget consists
of the last instructions before a return instruction [132]. To detect such attacks, we
need to place the call to the trampoline as close to the return instruction as possible.
When adding the call in IR, the subsequent code generation in the backend will insert
instructions for stack cleanup between the call and the return instruction. This would
allow these instructions to be executed without invoking the trampoline, providing a
potential ROP gadget which we could not detect. In comparison, using our backend

3https://llvm.org/
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pass, inserting the call during code generation enables us to place the call as close to
the return instruction, or any other indirect branch instruction, as possible. Note that
we do not consider the instructions before direct function calls as possible ROP gadgets
due to the hard-coded function address. Therefore, we refrain from instrumenting direct
function calls in the backend pass and instead instrument them in our IR pass.

Loop Verification The second purpose of the instrumentation is to determine the itera-
tion limit for each loop. For this, our prototype can apply three different methods: Using
annotations provided by the developer, analyzing the canonical induction variable, or
dynamic learning. For all three methods, we first assign each loop a unique loop ID in
an IR pass. The loop ID allows the analyzer in the offline phase to assign an iteration
limit for every loop. Additionally, the analyzer can use the loop ID in the online phase
to compare the number of iterations with the previously determined iteration limit.

To determine the loop’s iteration limit in the offline phase, we first analyze if the
developer annotated the loop in the source code. The annotations give the developer
three possibilities: (i) Statically provide the loop’s iteration limit, (ii) indicate that the
iteration limit should be dynamically learned, or (iii) indicate that the loop should be
ignored. In case the developer statically provided the iteration limit, we use the provided
information and the loop ID as parameters in a call to the trampoline, which we add
to the loop’s preheader [94]. The call in the preheader ensures that the target executes
the trampoline each time it enters the loop. We use this call in the offline phase to
provide the analyzer with information about the iteration limit of the upcoming loop.
In comparison, when the developer indicated that the iteration limit should be learned
dynamically, the call in the preheader only provides the loop ID, triggering the analyzer
to learn the iteration limit in the offline phase. To enable the analyzer to learn the
iteration limit, we add a call to the trampoline to the loop’s backedge [94], which is
executed after each loop iteration. This permits the analyzer to count the number of
iterations for the loop and to store the highest value as the loop’s iteration limit. In
comparison, when the developer indicated that the loop should be ignored, we refrain
from adding a call to the loop’s preheader. This will cause the analyzer not to verify the
loop’s iteration limit, which can be, for example, useful for infinite loops performing an
unknown number of iterations.

When the developer did not provide any annotations, we first attempt to determine the
iteration limit by extracting the maximum value of the canonical induction variable [94].
If this extraction fails, for example due to the lack of such a variable, our prototype
defaults to dynamically learning the loop’s iteration limit as if annotated by the devel-
oper. This strategy liberates the developer from having to annotate every single loop.
Instead, the complementary annotation allows fine-grained control of the automated
determination of the iteration limit. By combining the automatic determination and the
additional control via annotations, we reduce the effort required to adopt our design.
At the same time, we give the developer the possibility to manually configure the loop
verification for specific loops if desired.
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Note that while our prototype is capable of different approaches to determine the
iteration limit in the offline phase, the loop verification in the online phase always follows
the same procedure. Specifically, in the online phase we compare the number of loop
iterations with the iteration limit determined in the offline phase. To count the number
of iterations, we reuse the instrumentation for dynamically learning the iteration limit
in the offline phase. In detail, we call the trampoline in the loop’s backedge, notifying
the analyzer about every iteration.

6.4.3 Execution

Having discussed how we instrument the target, we continue by describing how we
utilize the instrumentation during the execution of our prototype. Specifically, the
instrumentation allows us to collect the target’s valid control flows in the offline phase.
Furthermore, it permits us to verify the target’s control flows in the online phase by
comparing them to the valid control flows collected in the offline phase. To minimize
the impact of this additional verification, we split the tasks into two threads, the prover
thread and the verifier thread, which we also describe in this section.

Our automatic instrumentation (Section 6.4.2) causes the target to regularly pass
control to the trampoline. This enables the trampoline to collect information about the
target’s control flows and to forward this information to the analyzer. In the offline
phase, we use this ability to collect all of the target’s valid control flows via dynamic
execution. To be precise, we created a script which performs a variety of requests4,
causing the target to execute each valid control flow at least once. During processing
of these requests, the analyzer investigates the CFG IDs and calculates the target’s
CFG. Additionally, it stores the iteration limit of each loop, which we determine either
statically or dynamically (Section 6.4.2). Having prepared all the required information,
we switch to the online phase, in which the analyzer uses the collected control-flow
information to detect attacks.

In the online phase, our prototype performs CFA and loop verification for all control
flows between a start and end point annotated by the developer. Those points could
be for example the acceptance and the termination of an incoming connection. The
annotations at the start and end point cause the trampoline to send a special begin or end
tag to the analyzer, triggering it to start or stop the analysis. These additional analysis
tasks unavoidably slow down the processing time of a request. To minimize this impact,
we make use of the high processing power of cloud systems. Specifically, we provision
our VM with multiple vCPUs, thus supporting parallel processing of different tasks. In
order to fully capitalize on this ability, we distribute the prototype’s tasks between two
threads: the prover thread and the verifier thread.

The prover thread is responsible for executing the target to process incoming requests.
Additionally, it executes the trampoline to collect the IDs in batches and to store them in
the shared queue. In detail, within the prover thread, the target waits for and processes

4https://github.com/Fraunhofer-AISEC/guarantee-code/blob/master/GuaranTEE/server_l
earn.sh
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incoming requests ( 1 ). During processing, the thread jumps to the trampoline on every
instrumentation ( 2 ), which caches the recorded CFG ID or loop ID in the ID batch.
When an ID batch is full, the trampoline encrypts it with AES-GCM, using the key
retrieved with the KDF (Section 6.4.1). Afterwards, it stores the encrypted ID batch in
the queue ( 3 ). When the trampoline finished execution, the prover thread returns to
the target to continue processing the request.

In comparison, the verifier thread is responsible for the reconstruction of the target’s
control flow. It reads the IDs provided by the prover thread, validates them against
the control-flow information learned in the offline phase, and stores the validation
result in the attestation log. To fulfill these tasks, the verifier thread reads the encrypted
ID batches from the queue ( 3 ) and decrypts them with the key derived with the
KDF (Section 6.4.1). Next, it forwards the CFG IDs and loop IDs contained in the ID
batches to the analyzer. Using the CFG IDs, the analyzer rebuilds the target’s control
flow and verifies it against the target’s CFG. Additionally, the analyzer uses the loop
IDs to perform loop verification (Section 6.4.2). After the analyzer finished the control
flow analysis and loop verification, the verifier thread stores detected violations in the
attestation log ( 4 ). Afterwards, it checks if new ID batches exist in the queue to continue
the attestation.

The most efficient method to synchronize the two threads would be a mutex [111].
Unfortunately, SGX does not yet support the use of mutexes to synchronize multiple
threads running in different enclaves. Instead, our current implementation has to rely
on atomic operations [49] to add or read ID batches to or from the queue. Additionally,
we use a spinlock [144] while the verifier thread waits for the prover thread to add new
ID batches to an empty queue.

In order to retrieve the analysis and verification results ( 5 ), our prototype allows
the trusted verifier to access the attestation log in a protected manner. For this access,
the verifier confirms the integrity of the VerifyTEE using the static remote attestation
processes of SGX [7, 73, 128]. During this process, the trusted verifier also establishes a
TLS connection, thereby creating an encrypted connection directly into the VerifyTEE [81].
Using this encrypted connection, the verifier can securely retrieve the attestation log.

To summarize, the analyzer uses the offline phase to calculate the target’s CFG and
to collect the iteration limit for each loop. In the online phase, it verifies the target’s
recorded control flow by comparing the CFG IDs with the previously constructed
CFG. Additionally, the analyzer performs loop verification by comparing the recorded
loop iterations with the iteration limit determined in the offline phase. To reduce the
impact of the additional analysis, we split the tasks between the two threads, the prover
thread and the verifier thread. While the prover thread executes the target and collects
its control-flow information, the verifier thread performs the analysis of the collected
information.
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6.5 Evaluation

In order to analyze the overhead of our prototype, we performed a detailed performance
evaluation in a cloud environment. After introducing our setup (Section 6.5.1), we
first discuss the performance of our prototype by using a benchmark (Section 6.5.2).
The benchmark evaluates the performance under extreme conditions, such as a very
high CPU load. In comparison, a regular target, such as a signing service, will also
perform less resource-intensive operations such as waiting for the OS or for incoming
network traffic. This will reduce the overhead of a regular target in comparison to the
evaluated benchmark. To prove this claim, we continue by analyzing the overhead with
a regular target by using the example of our signing service. With the signing service,
we first evaluate the processing times of the different components ( 2 – 4 ) separately
(Section 6.5.3). Additionally, we use the service to perform a detailed performance
evaluation of the entire prototype (Section 6.5.4).

6.5.1 Setup

As target for the evaluation, we created a microservice responsible for signing health
certificates5 (Section 6.3.1). Our signing service receives the SHA256 hash of a newly
created health certificate, signs the hash with its private RSA 2048bit key, and returns
the signature. The service performs this exchange via a secure connection, which we
establish based on code from the SGX-OpenSSL project6. This code allows clients to
establish a TLS channel directly into the TEE. By using annotations, we instructed our
prototype to perform the CFA and loop verification between accepting and terminating
an incoming connection. In total, our signature service consisted of 4,533 instructions,
excluding libraries such as OpenSSL, and the trampoline of 47,542 instructions. To
instrument the target, we compiled it with LLVM version 11.0.0 and our additional IR
and backend pass7.

As traditional time measurements are not available within SGX TEEs [18], we added
an ocall to both TEEs which notifies the HA to start or stop a measurement. By executing
this ocall at the start and at the end of our measurements, we were able to determine
the difference between these two points in time in the HA.

To perform the measurements, we chose Microsoft Azure as cloud environment, which
provides users the possibility to run SGX within VMs [126]. For the VM, we chose a
Standard DC4s_v2 machine running on an Intel Xeon E-2288G CPU, providing four
vCPUs and 16 GiB of memory. Within the VM, we were running the default Ubuntu
18.04 provided by Azure with kernel version 5.4.0-1089-azure and the Linux SGX
DCAP driver in version v1.41.

5https://github.com/Fraunhofer-AISEC/guarantee-code
6https://github.com/sparkly9399/SGX-OpenSSL
7https://github.com/Fraunhofer-AISEC/guarantee-llvm
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6.5.2 Benchmark Performance Evaluation

To determine the throughput of our prototype under high load, we started by deploying
a benchmark as the target before evaluating the performance of our signing service. To
be precise, we made use of the sgx-nbench benchmark8, which is a port of nbench [117]
to SGX. As a baseline, we first ran the benchmark without instrumentation. Then, we
instrumented the target and configured the default values of an ID batch size of 10,000
and a feedback frequency of 10. In Sections 6.5.3 and 6.5.4, we analyze the impact of
different batch sizes and feedback frequencies.

Table 6.1: Comparison of sgx-nbench with and without instrumentation. While the
second column shows the number of iterations per second with the unin-
strumented sgx-nbench, the third and fourth column show the number of
iterations with instrumentation and the respective overhead.
Test Uninstrumented Instrumented Overhead

Numeric Sort 2,387.2 9.9 240x
String Sort 1,285.1 29.6 42x
Bitfield 9.3382 ∗ 108 2.484 ∗ 106 375x
FP Emulation 1,251 10 124x
Fourier 62,574 10,822 5x
Assignment 121.51 0.15 809x
Idea 21,500 52 412x
Huffman 6,509.4 30.4 213x
Neural Net 192.77 1.62 118x
LU Decomposition 4302.4 15.51 276x

Table 6.1 shows the results of both the uninstrumented sgx-nbench target and the
instrumented version with its respective overhead. This overhead varies between 5x
for the Fourier Test and 809x for the Assignment Test. On average, we recorded an
overhead of 261x between the uninstrumented and the instrumented benchmark. Having
determined this relatively high overhead, it is important to note that a benchmark
tests the performance under extreme conditions. To prove that our the overhead of our
prototype drastically decreases with traditional targets, we continue the evaluation by
using our signing service as target. With this target, we evaluate the different components
separately as well as the overhead of the entire prototype.

6.5.3 Component Performance Evaluation

Using our signing service (Section 6.5.1), we continued by evaluating the different
components, namely the instrumented target ( 2 ), the queue ( 3 ), and the analyzer ( 4 ).
To evaluate the throughput of the instrumented target ( 2 ), we simulated 100,000 client

8https://github.com/utds3lab/sgx-nbench

95

https://github.com/utds3lab/sgx-nbench


Chapter 6 Using TEEs to Verify Run-Time Integrity

requests. While processing the requests, the target produced 11.56 IDs per microsecond,
or, in other words, called the trampoline on average every 86.53 ns. We call this frequency
with which the target calls the trampoline the trampoline call frequency.

Next, we determined the throughput of the queue used to transfer IDs from the
trampoline to the analyzer ( 3 ). For this transfer, the trampoline caches the received
IDs in batches (Section 6.4.1). When an ID batch is full, the trampoline encrypts and
stores it into the queue, where the analyzer can read it. Having received and successfully
decrypted the ID batch, the analyzer gives feedback to the trampoline. Determined by
the feedback frequency (Section 6.4.1), the analyzer can be configured to give feedback
only after a certain amount of ID batches has been processed. Using this approach, the
throughput with which we can transfer the IDs from the trampoline to the analyzer
depends on two variables: the ID batch size and the feedback frequency.
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Figure 6.6: Average time required to transfer a single ID from the trampoline to the
analyzer. While the impact of the feedback frequency is limited, the transfer
time drastically decreases with higher batch sizes.

Figure 6.6 gives an overview of the throughput with different ID batch sizes and
feedback frequencies. While the X-axis depicts the different batch sizes, the Y-axis
indicates the average transfer time per ID in nanoseconds. Both axes are in logarithmic
scale. The four different plots indicate the impact of different feedback frequencies on the
transfer time. A feedback frequency of 1 means that the trampoline waits for feedback
from the analyzer after every single ID batch. In comparison, using a frequency of 1,000,
the trampoline only waits for feedback after having transferred 1,000 ID batches.

The four different plots show that the feedback frequency has only limited impact on
the throughput. While a frequency of 1 does cause a higher performance overhead, the
differences between the frequencies 10, 100, and 1,000 are only minor. This difference
becomes negligible in combination with an ID batch size of 100 or more. In comparison,
the ID batch size has a significantly higher impact on the throughput. Using a size of
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1, we needed on average 2,098.11 ns to transfer a single ID with feedback frequency
1, and 665.17 ns with a frequency of 1,000. Yet, we can drastically reduce the transfer
time by increasing the ID batch size. For example, our default configuration of an ID
batch size of 10,000 and a feedback frequency of 10 reduces the transfer time to 37.76 ns.
Yet, as shown in Figure 6.6, after an ID batch size of 1,000, a further increase in size
only marginally improves performance. Hence, we refrained from evaluating greater
batch sizes although technically we could allocate up to 236 bytes of memory for the
enclave [66].

To allow for better interpretation of these results, the dashed gray line in Figure 6.6
indicates the trampoline call frequency, which we previously determined to be 86.53 ns.
All configurations achieving transfer times below this frequency are able to transfer
the IDs to the analyzer faster than the target creates new IDs. With our prototype, we
stay above this frequency for ID batch sizes below 50. Yet, all greater ID batch sizes
transfer the IDs faster than the trampoline call frequency, independent from the feedback
frequency.

Having evaluated the throughput of the target and the queue, we continued by
evaluating the analyzer’s throughput ( 4 ). As we consider the analyzer’s performance
in the offline phase less time-critical, we focused on the evaluation of the online phase.
In the online phase, the analyzer verifies the target’s control flow by comparing the
CFG IDs with the previously recorded CFG. Additionally, it compares the number of
iterations of every loop with its iteration limit. The analyzer performs those checks for all
IDs received between the start and end tag (Section 6.4.3). With our signing service, the
target sends the start tag as soon as the worker thread accepts an incoming connection,
and the end tag when the connection is terminated. This permits us to attest handling
of a request without having to consider other tasks such as the service waiting for a new
connection.

To determine the throughput of the analyzer, we measured the time required to
process the IDs of 100,000 requests. For each request, the analyzer processed around
630 IDs. From these 630 IDs, 90.93% were CFG IDs, and 9.61% loop IDs. Considering
both CFG IDs and loop IDs, the analyzer required on average 9.24 ns to process a single
ID. This is significantly lower than the target’s trampoline call frequency of 86.53 ns. In
other words, the analyzer is able to process incoming IDs faster than they are produced
by the target.

6.5.4 Signing Service Performance Evaluation

After evaluating the components separately, we continued with evaluating the overhead
of the entire prototype using our signing service as target. To quantify the overhead of
our CFA and loop verification, we first prepared a TEE running the uninstrumented
service. Using this TEE, we measured the time required by the service to process an
incoming request. Using this setup, we performed 100,000 valid requests to the service,
which required on average 54.79 µs to process a single request.
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Figure 6.7: Average processing time for a single request per thread. The left graph depicts
the measurements for the prover thread, and the right graph for the verifier
thread.

After measuring the processing time of the uninstrumented target, we evaluated the
processing time of the instrumented target. Specifically, we measured the time required
by the prover thread to process the request, cache the IDs produced by the trampoline,
and store the encrypted ID batches in the queue. Additionally, we determined the
time taken by the verifier thread to read the encrypted ID batches from the queue,
decrypt them, analyze the respective IDs, and store the result in the attestation log.
Note that we are not aware of any possibility in SGX to synchronize multiple threads
running in different enclaves (Section 6.4.3). Therefore, the verifier thread is required
to actively check if new ID batches exist in the queue after it finishes processing the
current batch. In aspiration of an improved synchronization mechanism in the future,
we excluded the time the verifier thread spends actively waiting for new ID batches
from our measurements.

Figure 6.7 depicts the time the prover thread requires to process a single request
on the left and the time the verifier thread requires to validate the control flow on the
right. To determine the impact of different ID batch sizes and feedback frequencies, we
again performed the measurements for different parameter combinations. Specifically,
the X-axes show the different ID batch sizes, while the Y-axes indicate the average
processing time per request. Furthermore, the graphs depict the different feedback
frequencies. Similar to the evaluation of the queue (Section 6.5.3), the feedback frequency
has only limited impact on the processing time. In comparison, the ID batch size has a
higher impact on the processing time. Using a batch size of 1, the prover thread requires
between 876.84 and 379.68 µs to process a single request, depending on the feedback
frequency. Yet, the graph also shows that a higher ID batch size can drastically reduce
this processing time. For example, our default configuration of an ID batch size of
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Table 6.2: Overheads for processing requests in the signing service for different ID batch
sizes and feedback frequencies.

Feedback Frequency
1 10 100 1,000

Batch Size 1 15.00x 14.29x 13.46x 5.93x
Batch Size 10 1.65x 1.44x 0.63x 0.26x
Batch Size 100 0.26x 0.16x 0.08x 0.08x
Batch Size 1,000 0.12x 0.08x 0.07x 0.07x
Batch Size 10,000 0.07x 0.07x 0.06x 0.06x

10,000 and a feedback frequency of 10, which we also used for the evaluation of the
benchmark (Section 6.5.2), reduced the processing time to 58.36 µs. This represents a
0.07x overhead in comparison to the original response time of 54.79 µs. In Table 6.2, we
show the overhead for further configurations. While we recorded a maximum overhead
of 15.00x with both the ID batch size and feedback frequency set to 1, we were able to
reduce the overhead to as little as 0.06x with different parameter combinations. This
proves that while we recorded a considerable overhead under high CPU load, the impact
on the target remains limited for traditional applications such as our signing service.

Compared to the prover thread, the verifier thread requires between 4,038.79 and
3,995.60 µs to process a single request with an ID batch size of 1. Again, the measure-
ments show only a small difference between the different feedback frequencies. However,
similar to the prover thread, we can drastically reduce the processing time per request
by increasing the batch size. For example, the default configuration of an ID batch size
of 10,000 and a feedback frequency of 10 reduces the processing time to 34.52 µs.

In summary, our evaluation shows that both the queue and the analyzer are able to
process the IDs faster than they are collected by the trampoline. This eliminates the risk
of creating a backlog of IDs to be analyzed when processing a large number of requests.
Another conclusion from our evaluation is that the process of transferring IDs from the
ProveTEE to the VerifyTEE can cause a relatively high overhead. However, by caching
IDs in the ProveTEE and parallelizing the execution of the target and the analysis, we
can limit this overhead to as little as 0.06x.

6.6 Discussion

Our design allows for the detection of control data and DOP-like attacks in cloud
environments. In this section, we discuss the attacks we can avoid, and those we cannot
avoid.

Missing Context-Sensitive CFA The current implementation of our prototype verifies
the edges of the control flow, but does not consider its context. This prevents us from
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detecting attacks that mix two different but valid control flows [25]. For example, let us
assume that the target has two valid control flows: A → B → C and D → B → E. If B
contains a vulnerability, the attacker can execute the invalid control flow A → B → E.
In this case, the analyzer would not be able to detect the attack, as it only considers the
edges between two nodes in the CFG, but does not analyze the context of the control flow.
Previous work [1] solves this limitation by storing entire valid control flows instead of
only storing valid edges. Yet, the amount of possible control flows for a target drastically
increases with its complexity. For example, when the target contains a loop, it would
be necessary to store a separate control flow for each valid number of loop iterations.
Instead, we chose to not only support very limit targets and in return to not be able to
detect attacks mixing two different but valid control flows. Future work is required to
determine how context-sensitive CFA can be performed on complex targets.

Detection of Non-Control Data Attacks Our current mechanism is limited to the detection
of DOP-like attacks that increase the number of loop iterations in order to execute
arbitrary code [63]. Therefore, we are not able to detect non-control data attacks which
influence the control flow in other ways, for example by overwriting an authentication
variable. Future work is required to determine how such attacks can be detected without
the need for memory safety.

Integrity of the TEEs Our design relies on both the ProveTEE and the VerifyTEE to
provide confidentiality and integrity protection even in the presence of a malicious
administrator. However, previous research has shown that current implementations of
TEEs can be suspect to attacks which violate these goals [148, 112, 29, 124, 149, 109, 21].
Such attacks will also have an effect on our design, as we would not be able to ensure the
integrity of any of its components. Yet, the respective publications also discuss defense
strategies, which we assume to be deployed.

Malicious HA Launching Modified TEEs Our prototype relies on the untrusted HA to
launch both TEEs and to provide the shared memory holding the queue (Section 6.3.1).
This enables a malicious HA to perform a Denial of Service attack by refusing to launch
one or both TEEs. Unfortunately, it is difficult to prevent such attacks in general. However,
while not being able to prevent them, we can use the built-in static remote attestation for
the respective TEE to determine if both TEEs have been launched [73, 75]. Furthermore,
the static remote attestation permits us to verify whether the TEEs have been launched
without modifications.

Gadgets in Trusted Code Previous work showed that an attacker exploiting a vulnera-
bility within an SGX enclave is able to access a variety of gadgets in trusted code such
as SGX libraries [88, 14]. Our prototype is able to detect such attacks by XORing the
CFG IDs of indirect branches with the offset between the current instruction pointer
and the jump destination (Section 6.4.2). This safeguard allows us to detect an attacker
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overwriting the jump destination to point to trusted code, as this will influence the
recorded CFG ID.

Sending Malicious IDs to the VerifyTEE Another attack an adversary in control of the
ProveTEE could attempt would be to compromise the VerifyTEE by sending it malicious
CFG IDs. To defend against such attacks, we hardened the ID parser in the VerifyTEE
and reduced it to less than 60 lines of code.

Manipulation of Cached IDs To reduce the overhead of transferring IDs from the ProveTEE
to the VerifyTEE, we use ID batches to cache collected IDs. To protect against a compro-
mised ProveTEE modifying or deleting these IDs, we use static attestation to ensure that
the ProveTEE is trustworthy at launch. Hence, an attacker first needs to compromise
the target to gain control over the ProveTEE and to manipulate cached IDs. Yet, before
the target executes a malicious control flow, the trampoline will create at least one ID
identifying the compromise, and add it to the hash chain (Section 6.4.2). When the
attacker finally gains accesses to the ProveTEE, only the current value of hashp already
including these IDs is accessible. To modify or delete these IDs without being detected,
it would be necessary to calculate a hash′p matching the new sequence of IDs, which
requires knowledge of the previous values of the non-reversible hashp. To infer these
previous values, a malicious administrator could attempt to collect previously exchanged
ID batches, which contain previous values of hashp. We protect against this attack vector
by encrypting the ID batches before sending and using an irreversible KDF to calculate
a new encryption key for every exchange. Hence, the attacker will not be able to decrypt
previously sent ID batches even when having access to the current encryption key. This
ensures the integrity of IDs cached in the ID batch even in the presence of a malicious
administrator additionally gaining control over the ProveTEE.

Malicious HA Interfering with Batch Transfer The queue we use to exchange ID batches
between the ProveTEE and the VerifyTEE is located in shared memory. This enables a
malicious administrator to access batches stored in the queue. To prevent inspection
or modification of the ID batches, we encrypt them with AES-GCM (Section 6.4.1). Yet,
an attacker may also attempt to remove the ID batches from the queue before they can
be read by the analyzer. In order to detect such attacks, we make use of the feedback
frequency. Specifically, the feedback frequency states after how many ID batches the
VerifyTEE acknowledges their receipt. If the VerifyTEE does not acknowledge the receipt
of previously sent ID batches, the ProveTEE can conclude that some or all of the collected
IDs are not being verified and halt execution. Similarly, the feedback frequency also helps
detecting a high privileged attacker pausing or stopping the VerifyTEE. To be precise,
if the VerifyTEE does not acknowledge the receipt of previously sent ID batches, the
ProveTEE can conclude that the collected IDs are not being verified and halt execution.

An additional safeguard against the removal of batches from the queue are the
counters we use in the ProveTEE and VerifyTEE as IV for encryption and decryption of
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transmitted ID batches. To be precise, both the ProveTEE and the VerifyTEE increase
their counter used as IV after each use (Section 6.3.1). Therefore, if the VerifyTEE does
not receive an ID batch sent by the ProveTEE, the counters run out of sync. This means
that if a batch is deleted from the queue, the VerifyTEE would attempt to decrypt the
next batch with the wrong IV, detecting that a previous batch was not received.

Malicious HA Launching Multiple TEE Instances Another advantage of using counters as
IV is that they enable us to detect a malicious administrator launching two instances of
the VerifyTEE. In this scenario, the attacker could attempt to forward certain ID batches
indicating attacks to one instance of the VerifyTEE and batches with regular IDs to
another instance. Yet, such an attack would cause the counters in the ProveTEE and the
VerifyTEE serving as IV for AES-GCM to run out of sync, allowing us to detect the attack.
Furthermore, we are also able to detect multiple instances of the ProveTEE. Specifically,
the target in the ProveTEE will be shipped without secrets such as the signature key
required by our signing service. This is the normal procedure for TEE images, as the
untrusted party launching the TEE has access to the image and could therefore retrieve
secrets shipped with the image. Instead, secrets are only provisioned after the TEE is
successfully attested. Therefore, when a malicious entity launches multiple instances of
the ProveTEE, only one instance would be provisioned with the secret. This prevents the
creation of multiple functional instances of the ProveTEE at the same time.

6.7 Summary

In this chapter, we investigated our third research question, RQ3: How can we detect the
exploitation of software vulnerabilities within TEEs?. Taking one step at a time, we first
discussed how we can enable a TEE to collect run-time information from an application
in Section 6.2. For this purpose, we presented our contribution C5, an architecture that
permits a monitoring process running in a TEE to collect run-time information from
an application running in a different TEE. Using the example of Intel SGX, we showed
how the HA can be used to launch both TEEs. This causes both TEEs to share the same
address space, facilitating data exchange between them.

Based on the established architecture, we presented our contribution C6 in Section 6.3.
C6 is a design that performs CFA in TEEs, focused on cloud environments. In our design,
we instrument the application running in a TEE to regularly provide information about
its control flow to a trampoline. This trampoline forwards the collected information to
an analyzer hosted in a different TEE. By using TEEs, we can protect the application and
the CFA mechanism from a malicious administrator. Furthermore, the separation into
two TEEs allows us to protect the CFA mechanism from an attacker compromising the
application. Our improved CFA mechanism not only permits the detection of control
data attacks, but also of certain non-control data attacks increasing the number of loop
iterations, as done for DOP.
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In Section 6.4, we presented our prototype for CFA in TEEs which we implemented
using Intel SGX. Our prototype reduces its performance overhead by deploying a caching
mechanism for the exchange of data between the trampoline and the analyzer. To ensure
that the caching mechanism does not negatively affect the prototype’s security, we
implemented different protection mechanisms. Example mechanisms are the deployment
of a hash chain and the encryption of exchanged data with iteratively updated encryption
keys.

To analyze the performance of our prototype, we provided a detailed evaluation in
Microsoft Azure in Section 6.5. The deployment of a benchmark as target application
shows that the additional verification can require a considerable amount of time under
high CPU load. Yet, we also showed that this effect is weakened on traditional applica-
tions by deploying a signing service as target and evaluating the separate performance
of the components as well as of the entire prototype. In detail, the evaluation of the
signing service showed that by combining our caching mechanism with multithreading,
we were able to limit the overhead in the service’s response time to as little as 0.06x.

Additional to the performance evaluation, we presented a detailed security discussion
(Section 6.6) in which we showed how we defend against various attacks. Furthermore,
we also determined attacks that require future work for efficient prevention, namely
non-control data attacks and attacks modifying the control flow, but using only valid
edges.

Also note that while we implemented our prototype with Intel SGX, our design itself
does not require a specific TEE. Hence, we do not impose any requirements on the
cloud provider aside from the provision of a TEE. This makes our design suitable for the
majority of popular cloud environments, enabling cloud users to ensure the run-time
integrity of their workloads even in such environments.
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CHAPTER 7

Conclusions

In this thesis, we set out to analyze and improve the security of two protection mecha-
nisms of Trusted Execution Environments (TEEs), memory isolation and attestation. Our
first set of contributions analyzed the impact of missing memory integrity on a TEE’s
cryptographic memory isolation on the example of AMD Secure Encrypted Virtualiza-
tion (SEV). With our contributions, we showed that such missing memory integrity can
not only affect the TEE’s confidentiality, but also its integrity. Furthermore, we provided
a framework that allows to also perform the analysis on upcoming TEEs such as Intel
Trusted Domain Extensions (TDX) [69], IBM Protected Execution Facility (PEF) [64]
and ARM Confidential Computing Architecture (CCA) [8]. Having discussed possible
attacks, our next contribution was a countermeasure against attacks exploiting SEV’s
missing memory integrity by modifying the Second Level Address Translation (SLAT).

In order to further improve the security of TEEs, we also discussed approaches for
dynamic attestation, permitting to detect integrity violations at run-time. Specifically,
we presented an architecture that enables a monitor in a TEE to retrieve run-time
information of an application hosted in a different TEE. The architecture not only
allows to gather information of the application’s run-time integrity, but additionally
protects both monitor and application from high privileged adversaries. Based on this
architecture, we presented a design that ports Control-Flow Attestation (CFA) to TEEs,
permitting to detect clients exploiting software vulnerabilities within the TEE at run-time.

Having presented our contributions, we will now discuss how and in which degree
they address our research questions. Finally, we conclude the thesis by identifying open
research questions and possible future work.

7.1 Contributions to Research Questions

The contributions we made in this thesis were motivated by the research questions we
defined in Section 1.1. In this section, we iterate through our research questions and
discuss how we addressed them with our contributions.
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RQ1: Which Attack Vectors Enable Attacks Against a TEE’s Cryptographic Memory Isolation
Without Memory Integrity? To understand the impact caused by missing memory in-
tegrity on cryptographic memory isolation, we performed a security analysis on the
example of AMD SEV, which does not provide such a protection mechanism. Our analy-
sis revealed two attacks against the TEE’s confidentiality and integrity, and identified six
different attack vectors. Out of these six attack vectors, we identified the modification of
the SLAT by the malicious administrator as the most critical one. Another result of our
analysis is a framework which allows for the exploitation of the different attack vectors1.

RQ2: How Can We Restore Cryptographic Memory Isolation of TEEs Without Memory Integrity?
Sticking to the example of SEV, we continued by analyzing different countermeasures
for the previously determined attack vectors. Specifically, we discussed countermeasures
that could be applied by either the Virtual Machine (VM) or SEV itself to protect against
the previously described attacks. Most importantly, we proposed a small modification to
the tweak mechanism applied by the AMD Secure Processor (SP) before encrypting data
in the VM’s memory. In detail, we suggested to incorporate the Guest Physical Address
(GPA) into the tweaking mechanism to protect against a meaningful modification of the
VM’s memory mapping via SLAT modification.

RQ3: How Can We Detect the Exploitation of Software Vulnerabilities Within TEEs? Finally,
we presented an architecture that enables a monitor located in a TEE to collect run-time
information from an application located in another TEE. Based on this architecture, we
proposed a design that makes use of CFA to verify the application’s control flows. In
comparison to previous work, we applied three modifications to our CFA mechanism,
allowing us to improve previous mechanisms and to adapt them to cloud environments.

7.2 Future Work

During the investigation of our research questions, we also identified possible future
work. Most importantly, the research area of run-time integrity deserves further research.

Security Analysis of AMD SEV-SNP In the first part of this thesis, we investigated the
impact of missing integrity protection on cryptographic memory isolation on the example
of AMD SEV. The latest version of SEV, SEV Secure Nested Paging (SEV-SNP), aims
to provide integrity protection by preventing a malicious hypervisor from writing the
memory of the protected VM or modifying its memory mapping [3]. Therefore, we
propose an in-depth security analysis of the protection mechanisms of AMD SEV-SNP.
To be precise, various techniques, such as DRAM disturbance [79] or DMA [11, 16],
could make it possible for a high privileged adversary to modify the VM’s memory.

1https://github.com/Fraunhofer-AISEC/severed-framework
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Therefore, future work is necessary in order to verify if SEV-SNP considers all of those
techniques and protects against them.

Detection of Non-Control Data Attacks Our design porting CFA to TEEs allows to detect
control data attacks and some non-control data attacks. Yet, it is not able to detect all
non-control data attacks. Therefore, future work is required to determine how non-
control data attacks that do not modify the number of loop iterations, but instead, for
example, overwrite an authentication variable, can be detected. Previous work proposes
to protect against such threats by deploying memory safety technologies. However, such
technologies usually incur a high performance penalty, as they require to verify all
memory accesses.

Porting the Design for CFA to different TEEs Our prototype for CFA in TEEs makes use of
Intel Software Guard Extensions (SGX). While our design is generic and can be applied
to all TEEs, a prototype using a different TEE would have to find a method to efficiently
transfer data between the ProveTEE and the VerifyTEE. A potential candidate for an
implementation on a different TEE would be AMD SEV-SNP. Specifically, SEV-SNP
is the first version in the SEV family that provides Virtual Machine Privilege Levels
(VMPLs) [3]. VMPLs allow to separate an SEV-SNP-protected VM into up to four
hardware isolated abstraction layers. The hardware ensures that memory pages assigned
to a specific VMPL cannot be accessed by lower privileged VMPLs. However, VMPLs
are able to access the memory of lower privileged VMPLs. This properties could be
used to port our design for run-time integrity protection of TEEs to SEV-SNP. In detail,
one could place the prover and the verifier functionality in different VMPLs instead of
different TEEs. By placing the verifier in a higher privileged VMPL, it would be able to
access the prover’s memory and to retrieve collected IDs. At the same time, the verifier
would be protected from an adversary gaining control over the prover running in a
lower privileged VMPL. In comparison to our prototype using Intel SGX, this approach
could reduce the overhead required when exchanging IDs, and therefore improve the
overall performance.

Attestation of Complex Programs Another question that remains is how to establish
the Control-Flow Graph (CFG) of complex applications as both static and dynamic
analysis face certain limitations. Specifically, while static analysis cannot include edges
that are calculated at run-time, dynamic analysis makes it difficult to determine the
point at which the target has executed all valid control flows at least once. To facilitate
the attestation of complex programs, future work could investigate the approach of
already considering the complexity of the CFG during the target’s development. This
idea is based on the approach of test-driven development, in which first test cases are
specified [12]. Afterwards, the software is developed in order to pass the test cases.
Similarly, already considering the impact of different decisions on the CFG during
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development may allow to drastically reduce the complexity of the CFG in the final
software, facilitating CFA.
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