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Poly (N-isopropylacrylamide) (PNIPAM) is a famous representative of
thermosensitive polymers. Thermosensitive polymers undergo a phase transition
with lower critical solution temperature. Commonly, their phase behavior is linked
to a conformational collapse above a certain temperature. This thermosensitive
conformational transition is called Coil-Globule transition. In contrast, most other
polymers usually show inverse temperature behavior, i.e., an upper critical solution
temperature, corresponding to a Globule-Coil transition. Besides their numerous
possible applications, thermosensitive polymers are of interest for fundamental
research, because of similarities to macromolecular conformational transitions,
e.g., protein folding. The counter-intuitive behavior of thermosensitive polymers is
commonly associated with solvation effects. Thus, an accurate description of the
solvent is crucial for the investigation of thermosensitive polymers in molecular
simulations. Here, we investigate the influence of the in silico water model on
the thermosensitive Coil-Globule transition in molecular dynamics simulations.
To this end, we performed extensive atomistic simulations of the syndiotactic
PNIPAM 20-mer at multiple temperatures with eight different water models–four
of which are 3-point water models (TIP3P-type) and four are 4-point water models
(TIP4P-type). We found that the thermosensitive Coil-Globule transition is strongly
influenced by the water model in the simulations. Depending on the water model,
the conformational ensemble of the polymer is shifted significantly, which leads
to dramatically different results: The estimated transition temperature may span
between 255 and 350 K. Consequently, depending on the description of the
solvent, the physicochemical and mechanical properties of these polymers, e.g.,
the polymer-solvent affinity and persistence length, vary. These divergent results
originate from the strength of interactions between polymer and solvent, but also
on the bulk state of the solvent. Both these quantities vary between water models.
We found that the Lennard-Jones interaction parameter ϵ of the water model
correlates with the transition temperature of the polymer. Indeed, the quadrupole
moment of the water model shows an even higher correlation with this quantity.
Our results suggest a connection between the phase diagram of the solvent and
the thermosensitive transition of the polymer.
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1 Introduction

Thermosensitive polymers are defined by their atypical phase
behavior. In contrast to most other polymers, they show a phase
transition with lower critical solution temperature (LCST)–i.e.,
the solvent quality is bad above, and good below the transition
temperature (Taylor and Cerankowski, 1975; Aseyev et al., 2011).
Their fascinating phase behavior leads to numerous biomedical
and non-biomedical applications of these polymers, such as gel
actuators, drug delivery systems, or tissue engineering, amongst others
(Hoffman, 1995; Pal et al., 2009). The phase behavior of the (possibly)
most-famous representative of thermosensitive polymers, poly (N-
isopropylacrylamide) (PNIPAM), has been discovered in the late
1960s (Heskins and Guillet, 1968). Yet, the molecular origin of its
LCST behavior is still under debate. Commonly, it is associated
with a conformational change of the polymer chains, i.e., the Coil-
Globule transition. Accordingly, the thermosensitive Coil-Globule
transition describes a conformational collapse of thermosensitive
polymer chains above the LCST (Wu and Wang, 1998). We describe
the Coil-Globule transition in more detail, including visual examples
of both conformational states, in the supplementary information,
section A and L. The Coil-Globule transition is not only interesting by
itself, but–due to similarities to protein folding (hydrophobic collapse)
(Dill, 1985; Inoue et al., 2019)–also facilitates an understanding of
other macromolecular systems. Changes in the solvent conditions,
such as salt, cosolute and cosolvent concentrations, strongly alter
the thermosensitive behavior (Schild et al., 1991; Kunugi et al., 2002).
Thus, it is widely accepted that thermosensitivity is linked to
solvation effects (Hummer, 2007). Indeed, the connection between
thermosensitivity and solvation is already implicitly contained the
Flory-Huggins theory (Flory, 1953). In earlier publications, we have
come to the conclusion that polymer-solvent interactions are of crucial
importance for the energetic balance of the thermosensitive Coil-
Globule transition (Quoika et al., 2020; Quoika et al., 2021), which is
in agreement with the conclusions of other authors (Hummer, 2007;
Bischofberger et al., 2015).

Molecular dynamics (MD) simulations enable the investigation
of temperature-dependent conformational changes with atomic
resolution (Deshmukh et al., 2013). However, it is challenging
to investigate the thermosensitive Coil-Globule transition in
conventional MD simulations, because of the slow timescales of
the process (Boţan et al., 2016; Kang et al., 2016; García and Hasse,
2019; Quoika et al., 2021). Furthermore, simulations over a wide-
range of temperatures are necessary, which leads to a multiplication
of the computational effort–especially at low temperatures, where the
dynamics are generally slow. While the thermosensitive Coil-Globule
transitions has been investigated by means of MD simulations before,
little effort has been put into the systematic analysis of the impact of
the description of the explicit solvent in these simulations. Given the
importance of the solvent for the process, clearly, the water model in
molecular simulations may have an impact on the process. Recently,
Tavagnacco et al. (2022) have shown the general impact of different
water models in molecular simulations of the system. However,

they only investigated two different water models and focused on
the pressure dependence of the Coil-Globule transition. Here, we
present a complementary study on the impact of different water
models on the thermosensitive character of PNIPAM in molecular
simulations.

In this study, we systematically investigate the influence of the
water model on the thermosensitive Coil-Globule transition in MD
simulations. To this end, we performed extensive simulations of
the PNIPAM 20-mer in eight established water models at multiple
temperatures. Half of these are 3-point water models and the other
half are 4-point water models–namely OPC3, SPC, SPCE, TIP3P; and
OPC, TIP4P-2005, TIP4P-EW, TIP4P-ICE, respectively (references
are given in the methods section). To be able to isolate the impact
of the solvent description, we used the same force field parameters
of the polymer in all simulations (OPLS2005 force field). A similar
approach was successfully followed by Hess and van der Vegt (2006)
to analyze the interactions between amino acid analogues and water.
Accordingly, we elucidate the effect of different water models on
the physicochemical properties of thermosensitive polymers and the
Coil-Globule transition and identify systematic differences. Finally,
we provide an explanation of water model-dependent deviations
in the simulations of thermosensitive polymers. Apart from the
here-shown results, we also provide an extensive supplementary
information (SI) with detailed discussion of the influence of
the water model on the thermodynamics of the Coil-Globule
transition.

2 Computational methods

2.1 Model system
poly(N-isopropylacrylamide)

We used poly(N-isopropylacrylamide) (PNIPAM), a well-known
representative of the class of thermosensitive polymers, as model
system. This polymer has been discussed and implemented for
numerous applications (Lanzalaco and Armelin, 2017; Bilardo et al.,
2022). Besides, it has been the object of research in numerous
studies–both experimental (Rizzi et al., 2021; Vdovchenko et al.,
2021; Liu et al., 2022) and computational (Pang et al., 2010;
Bruce et al., 2019; García and Hasse, 2019). We chose to simulate
a 20-mer of PNIPAM, since it is long enough to show a
Coil-Globule transition, while not being unnecessarily long.
This pragmatic choice allowed for a better coverage of the
conformational space than with longer polymer chains (Quoika et al.,
2021).

2.2 Simulation setup

We performed extensive unbiased simulations of the polymer in
pure water. Thus, we used a common and conventional setup for
the simulations of thermosensitive polymers. We prepared extended
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conformations of syndiotactic 20-mers of PNIPAM, with the Maestro
software package (Schrödinger LLC, 2019). Furthermore, we solvated
these structures in cubic boxes of a side length of 7 nm in various
water models (see below). This choice of box size was based
on an estimation of the maximum possible polymer end-to-end
distance. We explain this calculation in more detail in the SI.
Furthermore, we show the distribution of end-to-end distances of
the polymer in our simulations there. After a minimization and
equilibration at the respective temperatures, we performed extensive
independent simulations in the isothermal-isobaric ensemble. The
length of these production runs was chosen depending on the water
model (see below). All simulations have been carried out with the
GROMACS MD-Simulation software package (Abraham et al., 2015).
Independent of the water model we used the atomistic OPLS2005
force field for the polymer (Jorgensen et al., 1996; Kaminski et al.,
2001). This force field is commonly used and has been established
for simulations of PNIPAM (Walter et al., 2010; Podewitz et al., 2019;
Quoika et al., 2021). All additional technical information is given in
the SI, section B.

Depending on the type of water model we simulated at a different
range of temperatures. For 3-point water models we simulated
between 220 and 340 K, whereas for 4-point water models, we
simulated between 270 and 380 K. We made this decision based
on, firstly, the transition temperature in the respective water model,
and secondly, based on the phase diagram of the respective water
model. The transition temperature turned out to be systematically
lower in 3-point then in 4-point water models (see Results and
Discussion). Since the transition temperature on 3-point watermodels
was indeed mostly below the melting temperature of 4-point water
models, we could not perform simulations in the same range of
temperatures for 3- and 4-point waters models. Furthermore, due to
the different temperature range of 3- and 4-point water models, we
adapted different simulation lengths. As convergence generally takes
longer at low temperatures, we simulated 12 μs in all simulations with
3-point water models and 8 μs in all simulations with 4-point water
models.

2.3 Water models

We performed simulations of PNIPAM in eight different rigid
water models. We selected four 3-point and four 4-point water
models. Namely, we chose OPC3 (Izadi and Onufriev, 2016),
SPC(Berendsen et al., 1981), SPCE (Berendsen et al., 1987) and TIP3P
(Jorgensen, 1981) on the one hand; and OPC (Izadi et al., 2014),
TIP4P-2005 (Abascal and Vega, 2005), TIP4P-EW (Horn et al., 2004)
and TIP4P-ICE (Abascal et al., 2005) on the other hand. All these
models have been verified to be useful computationalmodels for water
in macromolecular simulations. Investigating an even larger number
of water models was simply infeasible in terms of computational cost.

In earlier studies, we found that the solvent is strongly bound to
the polymer (Quoika et al., 2020). Furthermore, we reasoned that the
solvent is thereby immobilized at the surface of the polymer. From
that we concluded that the strongly bound water molecules in the
solvation shell of the polymer lead to an entropic penalty. The absolute
value of this penalty depends on the solvation shell volume, which is
different for coil and globule conformations. Generally, it would be
best to directly calculate the entropy of solvation of the two states
and evaluate the difference. However, this is generally challenging to

compute, especially for very flexible molecules or diverse molecular
ensembles. We come back to this topic in the results and discussion
section. It has been shown by Dzugutov (1996) that the bulk entropy
in liquids can be related to the diffusion coefficient.This author showed
a universal relationship between the diffusion coefficient and the two-
particle entropy of monoatomic liquids.Thus, we assume that the bulk
entropy of water in molecular simulations is similarly related to the
translational diffusion coefficient, which has also been investigated by
Saha and Mukherjee (2017). Hence, we calculated the translational
diffusion coefficient of water as a measure of the bulk entropy of
the solvent at different temperatures in different water models. We
calculate the 3-dimensional diffusion coefficient with the Einstein
relation:

D = 1
6
∂
∂t
⟨r(t)2⟩ , (1)

where ⟨r(t)2⟩ is the mean squared displacement of water molecules in
the simulation. We calculated the diffusion coefficient from separate
simulations of pure water, with equivalent simulation setup as the
simulations with polymer.

In the analysis of our results, we evaluated the correlation of
the estimated Coil-Globule transition temperatures (see below) with
various molecular descriptors of the water models. In the course,
we also investigated the quadrupole moment as such descriptor.
Generally, the quadrupole moment is a tensor. However, the
quadrupole moment of water may be approximated by a single
number, QT (Rick, 2004; Abascal and Vega, 2007; Niu et al., 2011;
Stone, 2013; Izadi et al., 2014), which is sometimes referred to as
the tetrahedral quadrupole moment (Carnie and Patey, 1982). In
this common approximation, the linear component (along the dipole
vector) of the traceless quadrupole tensor is neglected, as it is
much smaller. More details may be found in the SI, section C,
where we also provide a table with QT of the here-used water
models.

2.4 Assignment of conformational states

To determine the equilibrium of the conformational transition,
we have to assign arbitrary polymer conformations to either of the
two conformational states, i.e., coil and globule. These states are
defined by their radius of gyration, which is unambiguous with
respect to the conformation. We show examples for coil and globule
conformations in the SI, section A. To assign arbitrary conformations
to one of the two states, we followed the same approach as in
previous studies (Quoika et al., 2021). Accordingly, we classified
polymer conformations by means of a two-state Markov model of
the conformational transition of the polymer. These models were
built, based on the radius of gyration and solvent accessible surface
area (Abbott et al., 2015), as described in Podewitz et al. (2019);
Quoika et al. (2020), Quoika et al. (2021).

2.5 Assessment of the Coil-Globule
transition temperature

We wanted to compare the thermosensitive character of
PNIPAM in different water models. Therefore, we evaluated the
temperature-dependence of the Coil-Globule transition. To this end,
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we determined the Coil-Globule transition temperature, T*, in the
simulations with water models. Thus, we estimated the equilibrium
constant of the Coil-Globule transition at different temperatures
and fitted the temperature-dependence according to the van’t Hoff
equation (van’t Hoff, 1884), as in (Quoika et al., 2021). We provide
an extensive explanation of this fitting procedure in the SI, section
D. Hence, we ascribed every polymer conformation to either of the
conformational states, i.e., coil or globule (see above). Subsequently,
we calculated the equilibrium constant between these two states
as

Keq =
pglob
pcoil
. (2)

The equilibrium constant is related to the free energy of the
process, by Keq (T) = exp(−ΔG° (T)/RT), with ΔG° (T) being the
free energy difference between coil and globule at temperature
T at standard concentration. Thus, by evaluating the equilibrium
constant, we implicitly evaluate the thermodynamics of the
process. As, we simulate single polymer chains in large water
boxes, our simulation conditions correspond to infinite dilution.
Thus, all thermodynamic analysis below corresponds to the
standard state in terms of concentration (unity concentration).
At different concentration, the thermodynamics may potentially
vary. This was shown experimentally, e.g., by Kunugi et al.
(2002).

We quantified the uncertainty of the estimated T* by trajectory
splitting and leave-one-out cross-validation. The results of this leave-
one-out cross-validation are shown in SI, section D.

2.6 Quantification of polymer-solvent
interactions

We expected the polymer-solvent interactions to be of particular
importance for the energetic balance of the Coil-Globule transition.
Thus, we quantified these interactions for every water model. Hence,
we calculated the mean potential energy between polymer and water
in both conformational states (coil and globule) and computed the
difference, as ΔHps(T). To this end, we followed the same approach
as in previous publications (Quoika et al., 2020): To obtain this
potential energy, we calculated the non-bonded interactions between
polymer and solvent for all frames in our simulation. Furthermore, we
separated the trajectory into coil and globule state (see above). Thus,
we obtained a distribution of interaction energies for the two states.
Further, we subtracted the mean interaction energies to obtain the
difference between coil and globule states with respect to the polymer-
solvent interactions. Analogously, we calculated the polymer-polymer
and solvent-solvent interaction energies, ΔHpp and ΔHss. A similar
approach has also been followed by Dalgicdir et al. (2017). Generally,
this analysis corresponds to the thermodynamics at infinite dilution
(see above).

Consistent with earlier studies we found that ΔHps only has a
negligible dependence on temperature (within the investigated range
of temperatures) as long as both states are reasonably well sampled at
the respective temperature (Quoika et al., 2020). Thus, we determined
the average interaction potential between water and polymer, ΔHps, as
the median over all temperatures.

2.7 Polymer-solvent affinity–potential of
mean force

We compared the polymer-solvent affinity in different water
models. To this end, we calculated the potential of mean force between
polymer and water as Boltzmann inversion of the radial distribution
function (Chandler, 1987):

W (r) = −kBT ⋅ ln [g (r)] . (3)

We analyzed the radial distribution function between all heavy
atoms of the polymer and oxygen atoms of water. The resulting
potential of mean force, therefore, originates from interactions
between water and various polymer atom types, e.g., amide oxygen
and nitrogen. The complete set of heavy-atoms of the polymer also
includes the carbon atoms of the polymer. Since the carbon atoms are
less polar than oxygen and nitrogen of the polymer, the interactions
with water are much weaker.

Generally, the potential of mean force between the heavy atoms
of the polymer and the solvent oxygen describes the solvent affinity
of the surface of the polymer. Thus, it is related to the free energy of
solvation. However, as we took a complex conformational ensemble of
the polymer into account, the volume of the solvation shell varies in
our simulation. Thus, it is challenging to estimate absolute values for
solvation free energies from this quantity.

To enable a comparison between simulations, we integrated the
potential of mean force up to a distance of 4.25 Å, which is the second
local maximum in the radial distribution function of this set of atoms.
Below, we refer to this integral of the potential of mean force as
solvent affinity of the polymer surface, ω. Hence, we compared ω(T)
in different water models. This value corresponds to the effective first
solvation shell of the polymer at different temperatures. For clarity, we
show this radial distribution function for an exemplary simulation in
the SI, section F, specifically Supplementary Figures S13, S14. There,
we also provide a more detailed explanation of this quantity.

2.8 Persistence length of the polymer

To compare the influence of the water model in the simulation
on the mechanical properties of the polymer, we calculated the
persistence length of the polymer. To this end, we followed the same
approach as in earlier studies (Quoika et al., 2020). Accordingly, we
calculated the persistence length from the mean bending angle of the
backbone of the polymer. This calculation is explained in more detail
in the SI, section E. As a result, we achieve the persistence length of
the polymer at different temperatures with different water models. We
compared these results to comprehend the temperature-dependence
of the bending flexibility of the polymer with different water models.

3 Results and discussion

3.1 Transition temperature in different water
models

We show the estimated Coil-Globule transition temperatures, T*,
in different water models in Figure 1. While the thermosensitivity
is generally reproduced in all of the here-used water models, we
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FIGURE 1
Coil-Globule transition temperature, T*, in different water models. We show the mean transition temperature with a min./max. uncertainty estimate from
leave-one-out cross-validation. The water models are ordered according to mean T*. 3-point water models are shown in blue, 4-point water models are
shown in orange. These results correspond to infinite dilution. As grey dashed line, we show the experimental transition temperature T* = 303.74 ± 0.05 K,
as reported by Kubota et al. (1990).

found that T* varies significantly. Thus, the apparent thermosensitive
character of the polymer strongly depends on the water model in the
simulations, which agrees with other studies (Tavagnacco et al., 2022).
We find that T* is generally higher for 4-point water models than
for 3-point water models. Furthermore, we notice a particularly high
uncertainty for the estimation of T* in TIP3P. Unfortunately, T* is
particularly low in this water model. It is challenging to achieve highly
accurate results at such low temperatures, because of the increasingly
slow transition time scales. Generally, we invested significantly more
simulation time than most other studies with atomic resolution and
our results are consistent with prior publications (Kang et al., 2016;
Adroher-Benítez et al., 2017; Quoika et al., 2020; Quoika et al., 2021).

Our results suggest that the water model may shift the
temperature-dependent conformational ensemble of the polymer.
Such behavior has only rarely been discussed in the literature
(Rukmani et al., 2019). Clearly, such water model-dependent shift
in the ensemble does not need to occur for all macromolecules
in molecular simulations. However, similar effects may occur
for processes that are particularly sensitive to hydration effects,
alike the (thermosensitive) Coil-Globule transition. For example,
Anandakrishnan et al. (2019) found that protein folding processes
are sensitive to the water model in molecular simulations, and also
other authors came to a similar conclusion (Best and Mittal, 2010).
Furthermore, the behavior of intrinsically disordered proteins (IDPs)
has been shown to be significantly influenced by the water model
in molecular simulations (Henriques et al., 2015; Piana et al., 2015;
Shabane et al., 2019).Moreover, Calvelo et al. (2021) describe an effect
of water models on transmembrane cyclic peptide nanotubes.

Comparing our results with literature values, we notice that
Tavagnacco et al. (2018) also performed simulations of the Coil-
Globule transition of PNIPAM in TIP4P-ICE. However, they observed

a significantly different transition temperature. They report a value
of T* = 303 K, thus, almost 50 K lower than our result. However,
there are a few decisive differences between their simulations and
ours. Firstly, they used an atactic polymer chain in their simulation.
It has been shown that the tacticity may have a significant effect on the
thermosensitive character of polymers Ito and Ishizone (2006); Chiessi
and Paradossi (2016). Secondly, they used a modified version of the
OPLS2005 force field, as implemented by Siu et al. (2012), which may
shift the transition temperature. Lastly, they simulated at a different
degree of polymerization (DP), i.e., they simulated a 30-mer instead of
a 20-mer. It has been shown in experiments that there is a dependence
of the thermosensitive character on the DP. Shan et al. (2009) found
that higher DP leads to lower transition temperatures, which would
be consistent with the comparison of our results with Tavagnacco et al.
(2018).

We compare our results with the measurements of Kubota et al.
(1990), who performed light scattering experiments of PNIPAM.They
report T* = 30.59°C ± 0.05 °C. Based on our results, in combination
with the OPLS2005 force field, TIP4P-EW seems to reproduce the
experimental behavior best. However, this does not allow general
statements of the quality of this water model for the reproduction
of thermosensitive conformational transitions. The here-observed
results originate from the interplay of polymer force field and water
model. As soon as another polymer force field is combined with
TIP4P-EW, T* may shift (Walter et al., 2010; Kamath et al., 2013).
We picked OPLS 2005, as it is a general purpose force field, which
has been established for this system. However, there is evidence that
these polymer force field parameters may need further optimization
(Dalgicdir and van der Vegt, 2019) (further discussion below). This
does not change the conclusions of our study, as we wanted to
make a point about the generally significant impact of the choice of
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FIGURE 2
Persistence length, P, of PNIPAM at different temperatures, T, in different water models. 3-point water models are listed in the left column of the legend;
4-point water model are listed in the middle column of the legend. Here, we show the fitting lines, of linear fits of P in dependence on T. The raw data with
the underlying fits is shown in Supplementary Figure S12. We show the experimentally determined persistence lengths of PNIPAM as black points
(Kutnyanszky et al., 2012). As dashed lines, we show average and range of the experimental measurements as guide to the eye.

water model on such processes as the thermosensitive Coil-Globule
transition.

Apart from the water model, the polymer force field parameters
may also have a critical impact on T* in molecular simulations. For
example, Dalgicdir and van der Vegt (2019) showed that a change in
the partial charges of the polymer leads to a significant shift of T*
of the PNIPAM 40-mer in SPCE. More specifically, they found that
scaling the partial charges of the OPLS force field by a factor of 1.31
leads to such shift. Unfortunately, they do not report a precise value
for the shift of T* due to this change of the charges, but it should be
significantly more than 20 K (Without this modification they did not
find a thermosensitive transition at all, within their investigated range
of temperatures.) Their scaling approach was inspired by studies on
the driving force of the pressure-induced aggregration of PNIPAM
(Mochizuki et al., 2016a) and of the liquid–liquid phase separation
of N-isopropylpropionamide, (Mochizuki et al., 2016b). We want to
stress that these authors scaled all partial charges of the polymer,
since their goal was to investigate the effect of the polar interactions
on the aggregation behavior of these polymers. We would argue that
the partial charges on the amide group are most important for the
Coil-Globule transition of PNIPAM, because of the hydrogen bond
interaction sites. Therefore, the partial charges of these atoms, namely
amide-nitrogen and amide-oxygen, are presumably most critical. In
our framework of explanation, a scaling of the partial charges of the
polymer would lead to a change in two components of the enthalpy,
namely ΔHpp and ΔHps. (Further discussion of these components
of the transition enthalpy is given below.) Accordingly, such scaling
would lead to stronger polymer-polymer interactions, which drive
the transition. However, at the same time, it would lead to stronger
polymer-solvent interactions, which prohibit the transitions. Which

of these effects would be stronger is challenging to predict. Our
assumptionwould be that an increase in partial charges leads to higher
T*, since ΔHps is generally larger in magnitude. This assumption is
in-line with the results of Dalgicdir and van der Vegt (2019). Up to
now, we did not investigate the effect of the polymer force field on T*.
Unfortunately, a systematic investigation of the force field parameters
requires a lot of computational effort, since many long simulations
are necessary (depending on the desired temperature-resolution).
Furthermore, to make general statements, multiple parameter sets
would need to be tested.

3.2 Persistence length

We found that the persistence length, P, and thus, the mechanical
properties of the polymer, depend on the water model as well.
We show P at different temperatures for different water models
in Figure 2. Here, we show the fitting lines of P in dependence
of temperature. The raw data and the underlying linear fits are
shown in Supplementary Figure S12. For all water models, P
decreases, as temperature increases. Accordingly, the flexibility of
the polymer is generally higher at high temperatures, which agrees
with the expectation (Bresler and Frenkel, 1943; Geggier et al., 2011).
Furthermore, we notice that P is systematically higher in 4-point than
in 3-point water models.

Generally, the experimental determination of P is not trivial.
Indeed, the literature data for P of PNIPAM is inconsistent and
controversial (Zhu and Chen, 2019). The results depend on many
factors, such as experimental technique, but also solvent conditions
and especially polymer preparation. Sometimes, authors compare P
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FIGURE 3
Polymer-solvent affinity, ω, in different water models. We quantified this property by the potential of mean force between polymer and solvent. For clarity,
we only show the fitting lines here. The independent linear fits with the raw data can be found in Supplementary Figure S15.

of PNIPAM in hydrogels with P of single polymer chains. We believe
that this is not a fair comparison. Thus, we decided to compare
with Kutnyanszky et al. (2012), as they measure single molecules
of PNIPAM in pure water. They performed single molecule force
spectroscopy experiments on PNIPAM and determined P = 5 ± 2.6 Å.
Furthermore, they found that P does not change significantly between
26°C–40°C (≃ 299–313 K) or at various solvent conditions. Thus,
their reported average value is derived from measurements in various
solvents. In Figure 2, we show their measurements in pure water
for reference. Accordingly, Kutnyanszky et al. (2012) found that the
persistence length is not significantly different below and above the
transition temperature. Unfortunately, these authors did not measure
outside of this temperature range. Also, we did not find any other
experimental study where P of PNIPAM was determined over a
wider range of temperatures. Thus, it is not clear if the temperature-
dependence of P is stronger in our simulations than in experiment,
eventually. According to this comparison, the polymer is stiffer in our
simulations than in experiments, i.e., the polymer shows significantly
higher P, over a wide temperature range. In 3-point water models,
P is only in the experimental range above 300 K. Whereas, in 4-
point water models, this only happens above 330 K and higher.
Hence, with respect to P, the 3-point water models generally yield
better agreement with the experimentally determined property of the
polymer.

3.3 Polymer-solvent interactions

In Figure 3, we show the polymer-solvent affinity, ω, as quantified
by the potential of mean force in the first effective solvation shell. We
find that ω is generally low for 4-point water models, which translates
to high affinity (lower potential of mean force). Thus, the polymer

has, e.g., a particularly high affinity to TIP4P-ICE, while it has a
particularly low affinity to TIP3P, which is consistent with the results
of Tavagnacco et al. (2022). Of course, the polymer-solvent affinity
also depends on the polymer force field (see above). Furthermore, we
realize that the ranking of ω follows almost the same order as T* in
Figure 1.

In addition, we investigated ω of the polymer in different
conformational states. To this end, we calculated the radial
distribution function between polymer and solvent separately for
the conformational ensembles of coil and globule at all temperatures
for all water models. Analogously, we calculated the potential of mean
force and integrated the first effective solvation shell. These results
are shown in Supplementary Figures S16, S17. We found that ω is
generally lower in coil conformations than in globule conformations,
for all water models at all temperatures. While this does not yield a
discrimination between water models, it confirms our conclusions
from earlier studies that coil conformations are stabilized by strong
interactions with the solvent. The preferential interactions between
water and coil conformations leads to the thermosensitive character
of the polymer.

Furthermore, we show the average ΔHps in Figure 4. We notice
that ΔHps generally disfavors the Coil-Globule transition. This agrees
with our expectation, since the favorable polymer-solvent interactions
decrease as the solvation shell volume shrinks. Furthermore, we
calculated equivalent quantities for the polymer-polymer and solvent-
solvent interactions, ΔHpp and ΔHss. Generally, we expect the water
model to have an influence on ΔHps and ΔHss, whereas we expect
ΔHpp to be approximately equal in all water models. We found that
ΔHpp and ΔHss favor the Coil-Globule transition, which agrees with
our expectation. Furthermore, we found that in rough approximation,
ΔHpp ≃ ΔHss. Accordingly, the polymer-polymer and the solvent-
solvent interactions are similar in magnitude, i.e., polymer-polymer
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FIGURE 4
Difference between coil and globule states in interaction potential between polymer and solvent, ΔHps, vs. T*. We show a dashed trend line for this
correlation in grey. Two points–TIP3P and SPC–are not taken into account for this trend. These results correspond to infinite dilution. The here-shown
values correspond to the mean change in potential energy between polymer and solvent, during the Coil-Globule transition of PNIPAM 20-mers in
infinitely dilute solution.

contacts are approx. equally strong than solvent-solvent contacts. This
relation is really only approximately true. (More detailed explanation
in Quoika et al. (2020) and SI, section L). As a trend, we found that
polymer-polymer interactions are actually slightly more favorable.
Depending on the water model, this effect is stronger or less strong.
Again, this is consistent with our findings in previous studies and
agrees with our expectations (Quoika et al., 2020). In contrast, the
polymer-solvent interactions are higher in magnitude, in the order
of, -ΔHps ≈ ΔHpp+ΔHss. A more detailed discussion can be found
in the SI, section L, and in Quoika et al. (2020). Hence, in sum
ΔH is small, but not zero. It is known from experiments that Coil-
Globule transition of PNIPAM is an endothermic process, ΔH > 0
(Tiktopulo et al., 1994). Consistently, we found that ΔH > 0 in all
here-used water models.

We found that ΔHps correlates well with T*, apart from two
outliers–i.e., SPC and TIP3P.These are the two leastmodernmodels in
our set. Our explanation is that the bulk solvent is described differently
in these two models, which has an impact on the free energy of the
Coil-Globule transition as outlined in the following. In earlier studies,
we concluded that a strong immobilization of water molecules at the
polymer surface leads to an entropic penalty (Quoika et al., 2020;
Quoika et al., 2021). Consequently, the magnitude of this entropic
penalty, depends on the immobilization with respect to bulk solvent.
To comprehend and compare the magnitude of this entropic penalty,
we quantified the lifetime of hydrogen bonds in pure solvent. To this
end, we followed an approach described by van der Spoel et al. (2006),
which is described in more detail in the SI, section G. Consistently,
we found that the lifetime of hydrogen bonds in SPC and TIP3P
is lower than in all other water models. These results are shown in
Supplementary Figure S18. Another argument for our hypothesis is

that the diffusion coefficients of SPC and TIP3P vary from the other
water models, as it is known that entropy is linked to the diffusion
coefficient (Dzugutov, 1996; Saha and Mukherjee, 2017). We show the
diffusion coefficient of different water models at various temperatures
in Supplementary Figure S19 and an Arrhenius plot of the diffusion
coefficient in Supplementary Figure S20. Indeed, the lifetimes of
hydrogen bonds in pure solvent and the diffusion coefficients agree
very well. Furthermore, Pascal et al. (2012) also found that the
standard molar entropy of SPC and TIP3P is particularly high. The
deviation of bulk solvent entropy in these two water models leads to
a shift in the energetic balance of the Coil-Globule transition: The
magnitude of the change in solvation entropy associated with the Coil-
Globule transition is shifted in comparison to the other water models.
As a consequence, the balance between entropy and enthalpy is shifted,
which leads to a shift in the transition temperature. The absolute
shift is challenging to predict, since solvation entropy and enthalpic
contributions change simultaneously. However, the shown deviations
agree with our expectation: The particularly high bulk entropy in SPC
and TIP3P lead to a higher entropic penalty for the stabilization of
the coil. Accordingly, the transition temperature is lower in these two
water models. We included a more detailed discussion of this effect in
the SI, section L.

Unfortunately, it is challenging to quantitatively verify our
hypothesis that the change in solvation entropy associated with the
Coil-Globule transition varies between water models. To this end, we
would need to calculate the difference in solvation entropy of both
conformational states (coil and globule) at different temperatures in
different water models. While there are multiple tools available to
compute solvation thermodynamics, these usually require fixed solute
conformations (Nguyen et al., 2012; Velez-Vega et al., 2015; Heinz and
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FIGURE 5
Coil-Globule transition temperature, T*, in different water models vs. the Lennard-Jones parameter, ϵ, of the respective water models. We show the
estimated mean and min./max. of T* from leave-one-out cross-validation. 3-point water models are depicted as triangles, 4-point water models as squares.

Grubmüller, 2021; Waibl et al., 2022). However, in earlier studies, we
found that both conformational states are conformationally diverse
(Quoika et al., 2021). Thus, we would need to perform a thorough
thermodynamic analysis–including solvation thermodynamics–of
many conformations of the polymer for both states to obtain
reasonable ensemble averages. This procedure would need to be
repeated at multiple temperatures with multiple water models. All
in all, this would be a complex and costly analysis, which is,
unfortunately, beyond scope of this article.

We want to emphasize, that ΔHps does not strictly translate into
the general strength of the interactions between polymer and solvent
(Hps). While the interactions between polymer and solvent, Hps, may
be comparably strong for one particular water model, the mean
difference in polymer-solvent interactions, ΔHps, between coil and
globule ensemble may be less strong. Generally, we found that the
interactions between polymer and 4-point water models are stronger
than between polymer and 3-point water models. Still, we found that
the ranking ofHps shows almost the same ranking as T*, similar as for
ΔHps.

3.4 Correlation between the Coil-Globule
transition temperature and force field
parameters of the water model

To comprehend the decisive difference between water models for
the thermosensitive Coil-Globule transition, we were looking for a
descriptor that correlates well with T*. We already developed the
understanding that the shift of T* originates from an interplay of
polymer-solvent and solvent-solvent interactions. Since we did not

change the force field parameters of the polymer, we investigated the
molecular properties of the different water models to this end. In the
following, we discuss the outcome of this investigation.

3.4.1 Charge and dipole moment
Since the dominant interactions between polymer and solvent,

i.e., hydrogen bonds, are of electrostatic nature, we investigated the
correlation between the partial charge on the hydrogen atoms of
the water models and T*, Supplementary Figure S21. We found
a noticeable, yet weak correlation. Accordingly, this quantity does
not yield a straightforward description for the shift of T*, neither.
Nevertheless, we believe that the partial charges of the watermodel are
decisive for the Coil-Globule transition, however not only the values,
but also the (relative) position of the charges. We give some additional
discussion on the impact of the partial charges of the water models on
the energetic balance of the Coil-Globule transition in the SI section L.
Furthermore, we investigated the correlation of the dipole moment of
the water models to T*, Supplementary Figure S22. Surprisingly, we
did not find any substantial correlation.

3.4.2 Lennard-Jones interaction parameters
Further, we investigated the correlation between T* and the

Lennard-Jones (LJ) parameters of the water models. We found that,
while ϵ shows a noticable trend, σ does not show any significant
correlation with T*. This is not surprising, since σ is very similar for
all investigated water models. The correlation of σ and T* may be
observed in SI Supplementary Figure S23. We show the correlation
between ϵ and T* in Figure 5. We recognize that the majority of the
water models scatter at low values for ϵ, between 630 and 680 J/mol
and low T*, between 250 and 305 K. The biggest outlier in this group
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FIGURE 6
Transition temperature, T*, vs. the quadrupole moment, QT, of different water models. We show the estimated mean and min./max. of T*, from
leave-one-out cross-validation. Furthermore, we show 3-point water model as triangles and 4-point water models as squares. These results correspond to
infinite dilution.

is TIP3P as it generally leads to the lowest T* by far. We believe that
this deviation stems from the description of the bulk solvent with
this water model (see above; Section 3.3). In contrast, OPC TIP4P-
2005 and TIP4P-ICE, have significantly higher ϵ and also lead to
significantly higher transition temperatures. In comparison, TIP4P-
EW has a much lower ϵ than the other 4-point water models and thus,
also produces a lowerT*. Furthermore, we notice that TIP4P-2005 and
OPC show a very similar transition temperature, despite having rather
different ϵ. This deviation may possibly be explained by the difference
in bulk entropy of these water models. It is challenging to verify this
hypothesis, yet, our analysis of the lifetimes of hydrogen bonds and of
the diffusion coefficient in bulk solvent hint in the same direction (SI
sections G and H).

In sum, our results indicate that the Lennard-Jones interaction
parameter, ϵ, of the water model has a significant impact on the
thermosensitive Coil-Globule transition. Yet, ϵ alone does not yield
a reliable prediction of T*. Our observations are in good agreement
with studies of conformational ensembles of intrinsically disordered
proteins (IDPs). Shabane et al. (2019) found that water models with
higher ϵ favor less compact conformations of IDPs. Also, Piana et al.
(2015) came to a similar conclusion.

3.5 Coil-Globule transition temperature
correlates with quadrupole moment of
water model

Finally, we found that the quadrupole moment of the water
models,QT , shows a good correlation to T*.This is shown in Figure 6.
We explain this result by the fact that QT captures the strength of
interactions between polymer and solvent, but also in bulk solvent.
It is known that QT is linked to the phase diagram of (in silico)

water (Abascal and Vega, 2007). Hence, we hypothesize that the
Coil-Globule transition thermodynamics may generally be linked
to the phase diagram of the solvent (which may not only be pure
water). Unfortunately, complete phase diagrams are not available for
all investigated water models (by the time we write this manuscript).
Generally, the accurate determination of the phase diagram of water
is not trivial in molecular simulations (Sanz et al., 2004; Xiong et al.,
2020). Thus, it is beyond scope of this study to obtain the phase
diagrams of the newer water models (OPC and OPC3). We want to
remark that, while most of the investigated water models reproduce
the properties of water decently well at 300 K, their performance varies
at substantially different temperatures. Clearly, the parametrization
of a rigid water model that performs well over a wide range of
temperatures is challenging, since water shows many remarkable
properties (Gallo et al., 2016). Possibly, flexible and/or polarizable
water models may perform better over wide temperature ranges
(Lamoureux et al., 2003; Ren and Ponder, 2004). However, as such
simulations are inherently much more costly, this was infeasible for
our study, due to the necessity of extensive sampling.

4 Conclusion

While the thermosensitivity is generally preserved, the water
model substantially changes the thermosensitive character of
polymers in molecular simulations: Only due to the water model,
the Coil-Globule transition temperature of PNIPAM may shift up
to almost 100 K, i.e., between 255–350 K. Generally, we found that
the polymer has higher solvent affinity in coil conformations than
in globule conformations. This is true for all water models and
this is also the reason for the consistent qualitative reproduction
of the thermosensitivity. Thus, we reconfirmed the conclusions of
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our previous studies that the solvent stabilizes coil conformations
at low temperatures. Furthermore, we found that, depending on the
water model, the physicochemical properties of the polymer–such as,
persistence length and polymer-solvent affinity–vary. Interestingly,
we noticed systematic differences between 3-point and 4-point water
models in that respect.

As a rule, the transition temperature correlates well with the
strength of polymer-solvent interactions. There are two exceptions
from this rule, namely SPC and TIP3P. These are the least modern
water models in our set. We hypothesize that these two models
describe the bulk solvent significantly different than the other water
models in our set. Our study of the bulk diffusion and the lifetime
of hydrogen bonds in bulk solvent support this hypothesis. This
would lead to divergent solvation entropy, which is important for
the energetic balance of the thermosensitive Coil-Globule transition.
Furthermore, we found that water models with stronger Lennard-
Jones interaction parameters favor extended conformations of the
polymer, which is in agreement with studies on IDPs. Ultimately,
we found that the quadrupole moment of the water model generally
correlates well with the thermosensitive transition temperature. This
leads to the assumption that the thermosensitivity of the polymer is
linked to the phase diagram of the solvent.
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