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Abstract: Forests on oceanic islands, such as the Azores archipelago, enable interesting dendroclimatic
research, given their pronounced climatic gradients over short geographical distances, despite the
less pronounced seasonality. The Lauraceae play an essential ecological role in Macaronesian natural
forests. An example is Laurus azorica (Seub.) Franco, a relevant species given its high frequency and
physiognomic dominance in Azorean laurel forests. This study aims to quantify climate–growth
relationships in L. azorica using a dendroecological approach. We sampled four stands at São Miguel
and two stands at Terceira islands, for a total of 206 trees. Following standard dendrochronological
methods and rigorous sample selection procedures, we obtained relatively low rbar values and high
temporal autocorrelation. Using a stepwise Random Forest analysis followed by Generalized Linear
Models calculation, we found prominent effects of present and previous year temperature, but a
low precipitation signal on growth rings, with some model variation between stands. Our results
agreed with previous observations for broad-leaved species with diffuse porous wood, contributing
to increase the baseline dendroecological knowledge about Azorean forests. Due to the high levels
of within- and between-stand variation, and to refine the climatic signal analysis, complementary
approaches should be explored in the future.

Keywords: Azores; dendroclimatology; generalized linear models; laurel forest; Macaronesia; random
forest

1. Introduction

Oceanic islands, particularly those of volcanic origin, are usually distinguished by their
peculiar and heterogeneous environments [1–4]. These ecosystems have been the focus of
research in biogeography, plant ecology, and, more recently, dendrochronology. Orographic
precipitation regimes and complex topography lead to considerable spatial variation in
temperature and water availability, facilitating studies of climate–growth relationships
across environmental gradients [4–7], and allowing us to better understand the potential
impact of a shifting climate on island species. Nevertheless, wood anatomy and growth
dynamics of forest trees in oceanic islands remain largely underexplored [8–15], particu-
larly in Macaronesia [10,11,13,14,16–19], a biogeographic region including North Atlantic
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archipelagos that encompass a wide breadth of climatic conditions. Those archipelagos
constitute a hotspot of plant diversity, with laurel forests and the Lauraceae having im-
portant ecological roles due to their widespread distribution and predominance in many
plant communities [4,20]. In this type of ecosystem, water balance, depending on pre-
cipitation, temperature, and relative humidity, is generally viewed as a key factor with
impacts on functional diversity, species richness and tree growth [21]. Together with other
environmental variables, water availability directly affects photosynthesis and carbon as-
similation, required for tree-ring width increment [22–25]. Despite often not being included
in dendroclimatological analyses, additional factors may also affect tree growth, including
topography, soil nutrient availability, competition, herbivory/phytophagy and natural
disturbance [4,26,27].

The climate of the Azores, one of the Macaronesian archipelagos, is oceanic temperate,
with high relative humidity, mild summers and winters, low daily and annual thermal
amplitude, and precipitation evenly distributed throughout the year, although scarcer
in summer [28,29]. Meanwhile, a steep altitudinal gradient is clearly expressed in the
Azorean natural vegetation belts, with different types of zonal woodlands, forests, and
scrubland [1,2,30]. Submontane laurel forest was likely much more common in the past, but
still represents one of the more common types of natural extant forests [1,2]. The Lauraceae
are represented in the Azores by Laurus azorica (Seub.) Franco, the dominant species in
submontane laurel forests, which is also present in four other zonal natural forest and
woodland types [1,2,30].

Previous studies addressed tree-ring growth in the Lauraceae. In Macaronesia growth
rings generally showed an abrupt transition between thin and thick cell walls, characteriz-
ing early and latewood, and, in some cases, a delimiting marginal parenchyma band [31,32].
In Tenerife, Laurus novocanariensis Rivas Mart., Lousã, Fern.Prieto, E.Díaz, J.C.Costa &
C.Aguiar showed a diffuse porous wood structure, with the entire cross-section of the
stem being functional in terms of water transport, thereby reducing tree susceptibility
to conditions of transient water limitation [33]. For this species, García-López et al. [34]
found synchronous annual tree-rings, robust tree-ring chronologies, and positive cor-
relations with annual precipitation. Outside Macaronesia, Reis-Avila and Oliveira [31]
identified growth ring boundaries delimited by radially flattened fibers with thickened cell
walls in the wood of Nectandra amazonum Nees and Ocotea porosa (Nees & Mart.) Barroso.
Granato-Souza et al. [35] found that Nectandra oppositifolia Nees & Mart trees responded syn-
chronously but negatively to high temperatures in the summer of the previous year and to
high precipitation in the current year growing season. Moreover, previous research has also
determined that several Lauraceae exhibit synchronous and climate-sensitive growth dy-
namics, and are therefore appropriate for dendrochronological analyses [31,33–35], raising
the same possibility for L. azorica.

The Azorean natural forests provide critical ecosystem services, including habitat
provisioning for biodiversity and carbon storage [30], but also protection against soil erosion
and enhanced capabilities of water intersection and infiltration [30,36–38]. However, no
estimates of annual tree growth are available, impeding more precise estimations of annual
carbon sequestration. Only a few studies have recently addressed dendrochronological
topics devoted to Azorean trees [10,11,39–42], both introduced—Pittosporum undulatum
Vent. (Pittosporaceae), Pinus pinaster Aiton (Pinaceae)—and native—Juniperus brevifolia
(Seub.) Antoine (Cupressaceae), Ilex azorica Gand. (Aquifoliaceae) [43]. Câmara [44]
estimated tree ages in two stands of laurel forest within a protected area, and Rego et al. [45]
analyzed growth rings in a laurel forest invaded by Clethra arborea Aiton (Clethraceae).
More recently, Matos et al. [14] described the growth ring anatomy and the relationship
between dendrometric traits and the number of growth rings in L. azorica, confirming
the diffuse porous structure of the wood, with solitary or randomly clustered distributed
vessels, oriented perpendicularly to the distinct ring boundaries [14,46]. This suggests a
water transport efficiency similar to that reported for L. novocanariensis [33], despite the
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low risk of cavitation in the Azores, due to high water availability, except during the driest
summer months at low-elevation sites.

Given the structural importance of the Lauraceae in Macaronesia [31–34], the need to
enhance estimations of annual carbon sequestration, and the absence of climate–growth
relationship studies for that family in the Azores, our research aimed to use dendroecologi-
cal approaches to determine the basic climate–growth relationships in Laurus azorica. We
compiled a large dataset of annually resolved ring width measurements derived from core
samples collected from 203 trees in disjunct forest stands. We used a sequential combination
of Random Forest and Generalized Linear Models to determine the relationships between
radial growth and potential climate drivers. Thus, the main objective of the study was
to investigate the limiting climatic factors affecting the radial growth of L. azorica. We
addressed the following hypotheses: (1) based on a previous study, L. azorica will show
distinctive tree-ring boundaries that will allow an accurate climate–growth relationship
assessment; (2) the effect of previous year climate variables will be relevant because ring-
porous broadleaved species are known to build their early wood before the onset of the
growing season, from carbohydrates stored from the previous growing season (e.g., [47,48]);
and (3) given the high relative humidity and annual precipitation of the archipelago [28,29],
temperature will be the main limiting factor that affects tree growth, as previously shown
for other Lauraceae species (e.g., [31]) and other studies in the Azores (e.g., [14,43]).

2. Materials and Methods
2.1. Study Area

The Azores is a Portuguese archipelago, located in the North Atlantic Ocean (36◦55′–39◦43′ N
and 25◦00′–31◦15′ W) within a complex tectonic setting, near the triple junction between the
Eurasian, Nubian, and North American plates [49]. Included in Macaronesia, it comprises
nine volcanic islands (Figure 1) with a total land surface of 2323 km2 [50]. The age of
islands varies from 0.186 My for Pico island [51] to 6.01 My for Santa Maria island [52]. The
climate in the archipelago is predominantly temperate (type C), namely Cfb (temperate
with no dry season and with a mild summer), according to the Köppen–Geiger climate
classification system (data from 1971 to 2000 [29]). Depending on the climatic conditions,
particularly wind, water balance, and radiation, Azorean forests are distributed along eight
vegetation belts, where plant species dominance and co-dominance change with altitude
(see Elias et al. [1] for a full description). Despite the considerable changes that occurred in
the Azorean land use in the 1950s, with subsequent replacement of the natural forests by
crops and pastureland [53], the zonal vegetation is nowadays distributed as a continuum,
with some niche partitioning between dominant species [2].

In this study, we limited sampling to Laurus submontane forest stands [1] occurring
on two islands—São Miguel and Terceira—where the target species is dominant. A total
of six stands were selected, allowing sampling across an altitudinal gradient to capture a
wide range of environmental and climatic conditions (Figure 1): four stands at São Miguel
Island—Pinhal da Paz (PP), Lombadas (LO), Povoação (PO) and Nordeste (NO)—and
two at Terceira Island—Caldeira do Guilherme Moniz (GM) and Matela (MT). Selected
stands were dominated by Laurus azorica, although mixed with several Azorean native
trees, namely Picconia azorica (Tutin) Knobl (Oleaceae) and Morella faya Aiton (Wilbur)
(Myricaceae) at the lower altitudes, and Juniperus brevifolia and Ilex azorica at higher altitudes.
Invasive species were also present, including Pittosporum undulatum, Clethra arborea and
Hedychium gardnerianum Sheppard ex Ker Gawl (Zingiberaceae) [1,30].

Selected forest stands differed slightly in terms of species composition and soil characteristics.
Caldeira do Guilherme Moniz (GM)—A stand located at a medium-elevation site

(455 m), with annual mean temperature of 15.8 ◦C, annual precipitation of 1471 mm, almost
flat terrain, and a vitric andosol containing more than 60% of unweathered pyroclastic
material [54]. A large L. azorica population with young and old trees that occur sponta-
neously in a well preserved Laurus submontane forest with other native tree species, such
as Morella faya, Erica azorica Hochst. ex Seub. (Ericaceae), Ilex azorica, and many native
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fern species such as Woodwardia radicans (L.) Sm. (Blechnaceae), Culcita macrocarpa C.Presl.
(Culcitaceae), and Dryopteris spp. (Dryopteridaceae).
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included in the study (Terceira and São Miguel) are highlighted, and circles indicate Laurus azorica
sampled sites.

Matela (MT)—A stand located at a medium-elevation site (400 m), with annual mean
temperature of 16.2 ◦C, annual precipitation of 1327 mm, almost flat terrain, and a ferrugi-
nous andosol, composed of trachytic pyroclastic material with a thin ferruginous layer [54].
A small L. azorica population with young and old trees that occur spontaneously in the
remaining mosaics of natural vegetation with Morella faya and Juniperus brevifolia.

Pinhal da Paz (PP)—A stand located at a relatively low-elevation site (320 m), with
annual mean temperature of 16.4 ◦C, annual precipitation of 1330 mm, somewhat rocky
terrain, and a shallow allophanic regosol [55]. A small population of relatively young
L. azorica trees that occur spontaneously in a forest recreation park with Cryptomeria japonica
(Thunb. ex L.f.) D.Don (Cupressaceae) and other introduced species, such as Pittosporum
undulatum. Laurus azorica trees were essentially located at a smooth hillside partly invaded
by Hedychium gardnerianum.

Lombadas (LO)—A stand located at a relatively high-elevation site (600 m), with
annual mean temperature of 15.2 ◦C, annual precipitation of 1459 mm, steep terrain (20–30◦

slope), and an unsaturated ferruginous andosol [55]. A large L. azorica population with
young and old trees that occur spontaneously, in the remaining natural vegetation pockets,
representing a transition between a Laurus submontane forest and a Juniperus-Ilex wood-
land, with Morella faya, Erica azorica, Viburnum treleasei Gand. (Adoxaceae), Ilex azorica,



Forests 2023, 14, 166 5 of 22

Juniperus brevifolia, and many native fern species such as Woodwardia radicans and Cul-
cita macrocarpa. Cryptomeria japonica stands occur nearby as well as some invasion by
Pittosporum undulatum and Hedychium gardnerianum.

Povoação (PO)—A stand located at a medium-elevation site (470 m), with annual mean
temperature of 15.3 ◦C, annual precipitation of 1352 mm, slightly sloped terrain (10◦ slope),
and an allophanic ferruginous regosol [55]. A small L. azorica population with relatively
old trees that occur spontaneously in a valley, with small patches of natural vegetation,
representing Laurus submontane forest, with other native trees, such as Morella faya and
Erica azorica, and some native ferns, such as Woodwardia radicans and Culcita macrocarpa.
Cryptomeria japonica stands occur nearby as well as some invasion by Pittosporum undulatum
and Hedychium gardnerianum.

Nordeste (NO)—A stand located at a relatively high-elevation site (590 m), with
annual mean temperature of 15.1 ◦C, annual precipitation of 1434 mm, moderately steep
terrain (10–20◦ slope), and a shallow allophanic ferruginous regosol [55]. A large L. azorica
population with young and old trees that occur spontaneously in a mountain area, a large
cover of natural vegetation, corresponding to a Laurus submontane forest, in some cases in
a transition to a Juniperus-Ilex woodland, with Morella faya, Erica azorica, Viburnum treleasei,
Ilex azorica, Juniperus brevifolia, and many native fern species such as Woodwardia radicans,
Culcita macrocarpa, and Dryopteris spp. Cryptomeria japonica stands also occur nearby as well
as some invasion by Pittosporum undulatum, Clethra arborea, and Hedychium gardnerianum.

2.2. Target Species—Laurus azorica

Distributed in tropical and subtropical climates, Lauraceae is a large family of tree taxa,
including approximately 45 genera and 2850 species [56]. This family has an important
ecological role in Macaronesia as one of the plant families structuring the laurel forest
ecosystems in the Azores, Madeira, and on the Canary Islands [20], also contributing to the
species richness of this biome [57]. Regarding its economic value, this family offers a wide
range of applications, including high-quality timber and non-timber resources as spices
and essential oils [58]. Individuals of the Azorean endemic Laurus azorica are recognized
by a vertical trunk branching usually at a short distance from the base, with alternate
glabrous leaves, but with hairy young leaves and shoots (Figure 2). According to the IUCN
(International Union for Conservation of Nature) red list category and criteria, L. azorica
is currently classified as a species of “Least Concern”, with the population trend being
stable even though available habitats are severely fragmented [59]. In the archipelago, this
species is present in four zonal vegetation types [1], mainly in Laurus submontane forests
(300–600 m), but also in lowland laurel forests and montane woodlands. It can also be
found in lava flows, coastal and mountain scrubland, and forested wetlands [60].

2.3. Sample Collection and Data Preparation

Field work was performed mainly in summer, between 2018 and 2022. Two to four wood
cores were sampled per tree, resulting in 206 trees and 415 samples. At least 30 individual
trees (large, adult trees were prioritized) were randomly sampled at each site, avoiding trees
with any evidence of trunk, stem, or canopy damage. Wood cores were collected using a
5 mm diameter Pressler borer and kept in paper straws to prevent damage. Dendrometric
traits, including diameter at breast height (dbh) and tree height, were measured.

In the laboratory, we followed standard dendrochronological techniques [11,61]. In-
crement core samples were air dried, mounted, and glued into wood supports. Cores
were then sanded with progressively finer grades of abrasive paper (up to grid 600) until
a proper polished surface was obtained. Ready-to-measure images of wood increment
cores were taken using a LEICA S9I Stereozoom stereomicroscope with an incorporated
10 M.P. camera (Leica Microsystems Inc., Buffalo Grove, IL, USA), keeping a 50% overlap of
sequential images to enable reliable stitching, which was performed with the open-source
software Fiji—ImageJ [62].
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2.4. Tree-Ring Data Collection and Analysis

Measurements of annual tree-ring widths (TRW) were performed using Cybis CooRecorder
(v. 9.3.1) to an accuracy of 0.01 mm. After converting measurements into .rwl files on Cybis
CDendro (v. 9.3.1), visual cross-dating was performed on the PAST5 (SCIEM) software.
To ensure the quality of the alignments on the cross-dating procedure, GLK (Gleichläu-
figkeit) [63,64], T-test, and Pearson’s correlation coefficient statistics were used. Samples
that could not be satisfactorily cross-dated were eliminated from further analysis.

The detrending procedure was applied to each individual tree-ring series using the
package “dplR” for R software [65]. The procedure consisted of fitting a cubic smoothing
spline with a 50% frequency response cut-off at 25 years to each individual ring width
series [66–68]:

yt = β0 +
p

∑
j=1

f j
(

xtj
)

β j + ε (1)

where xtj is the raw time series, fj is the smoothing spline function (i.e., a degree 3 polyno-
mial), β represents the regression coefficients, and ε represents the residuals. The response
period was chosen given the length of the shorter chronology, which allows a more flexible
approach. Subsequently, tree-ring indices (TRWi) were pre-whitened to remove short-term
persistence (related to biological carry-over effect of trees) from tree-ring series. More-
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over, 25% of the individual chronologies with the lowest correlation coefficients (within
the site chronology) were removed to enhance the signal of the mean site chronologies.
A TRWi chronology for each study site was built, averaging residual tree-ring series, to
preserve climatic information while reducing the effect of autocorrelation [69,70], and using
Tukey’s biweight robust mean to reduce the influence of outliers [70–72]. Throughout the
chronology building process, 131 samples were removed from further analysis.

Different measures were used to ensure chronology quality. Firstly, we used mean
inter-series correlation (rbar), as described in Wigley et al. [73], as a measure of the strength
of the common growth “signal” within the chronologies. Secondly, we used subsample
signal strength (SSS) to evaluate the loss of explanatory power due to a decreasing sample
size back in time, calculated as:

SSS = (n × (1 + (N − 1) × rbar))/(N × (1 + (n − 1) × rbar)), (2)

where n and N are the number of cores or trees in the subsample and sample, respectively,
and rbar is the mean inter-series correlation. Only the portion of each chronology with
SSS ≥ 0.85 was used in modeling [74]. Thirdly, we used autocorrelation (AC1) to retrieve
the carry-over effects of previous years, calculated using the acf() function in R. Finally,
we used a bootstrap procedure to estimate the standard deviation (SD) of each stand-
level mean chronology (N = 6). Specifically, for each stand, a total of 1000 replicate mean
chronologies were generated based on a random selection of 75% of the available individual
tree chronologies. A corresponding SD (for each stand) was then computed from the
1000 replicates (Figure S1). This was used to further evaluate the consistency of the mean
chronologies (e.g., [11]).

2.5. Dendroclimatic Models
2.5.1. Climatic Variables

Exact coordinates (centroid of each forest stand) obtained from sample sites were used
to download minimum, maximum, and mean monthly temperature and monthly precipita-
tion from the CHELSA timeseries dataset [75,76] with a spatial resolution of 30 arc seconds
(ca. 1 km2). Different combinations of explanatory climatic variables were used for model-
ing (Table 1). In the case of seasonal values, we considered winter (December–February),
spring (March–May), summer (June–August), and autumn (September–October), based
on climate studies for the archipelago [28,29]. A detailed description of the climate at
our study sites, based on the CHELSA database [75,76], is summarized and graphically
represented in Figure S2.

2.5.2. Modeling Approaches

The relationship between TRWi and climatic variables was modeled by applying a
sequential combination of Random Forest (RF)—which belongs to the group of machine
learning algorithms—and Generalized Linear Models (GLMs), two methods that have been
successfully used in growth ring analyses (e.g., [77–80]). A diagram with the analysis flow
is presented in Figure 3.

RF is a flexible modeling tool that can accommodate binary, categorical, and high-
dimensional data, while providing measures of predictor variable importance [81,82]. In
this study, this method was used to determine climatic variable importance as a first step of
climate–growth ring analysis [77,78,83,84]. Furthermore, RF models are nonparametric and
can, therefore, consider nonlinear relationships and interactions between variables. RF is
often used as an exploratory tool, as this method can identify relationships and interactions
between variables without specifying their form a priori [85].

Afterwards, we incorporated the most important climatic terms (as selected by RF) in
Generalized Linear Models to estimate the strength and direction of their effects on annual
radial increment (i.e., tree-ring width, TRWi):

yt = β0 + βXt + ε (3)
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where yt is the response variable (TRWi), β0 is the intercept (model constant), βXt is a vector
of regression coefficients and independent climatic variables, and ε represents the residuals.

To summarize, RF was used as a pre-step to calculate variable importance and reduce
the number of potential predictor variables to be used in GLMs, while the latter were used
to retrieve the direction of the effect of the selected variables.

Table 1. List of climatic variables used in models to explain the climate–growth relationships in six
Laurus azorica forest stands in two Azores islands—Terceira and São Miguel.

Climate Variable Year Variable

Temperature

Current

Mean annual temperature
Mean annual minimum temperature
Mean annual maximum temperature

Mean winter temperature
Mean spring temperature

Mean summer temperature
Mean autumn temperature

Mean winter minimum temperature
Mean spring minimum temperature

Mean summer minimum temperature
Mean autumn minimum temperature
Mean winter maximum temperature
Mean spring maximum temperature

Mean summer maximum
temperature

Mean autumn maximum temperature
Monthly mean temperature

Monthly minimum temperature
Monthly maximum temperature

Previous

Mean annual temperature
Mean annual minimum temperature
Mean annual maximum temperature

Monthly mean temperature
Monthly minimum temperature
Monthly maximum temperature

Precipitation
Current

Annual precipitation
Winter precipitation
Spring precipitation

Summer precipitation
Autumn precipitation
Monthly precipitation

Previous
Annual precipitation
Monthly precipitation

2.5.3. Model Implementation and Variable Selection

Globally, we calculated 77 models, with 11 different models for the composite and
each of the individual site chronologies (Table 2): nine different models in the first step of
the RF, one optimal model in the second step of RF, and one reduced GLM.

RF models were calculated both for the whole dataset (composite chronology—CC,
where we included the six growth ring chronologies) and for each individual site chronology.
We used the randomForest() function from package “randomForest” for R software [81],
with 10,000 trees per run, with an optimal value for the mtry parameter (with respect to out-
of-bag error estimate—[81]) that was calculated for each model using the tuneRF() function.

In the first RF step, we calculated a saturated model, including all the available
climatic variables from the present and the previous year, and nine other models based on
temperature and/or precipitation from the current and/or the previous years, both for the
composite and the individual site chronologies (Table 2). After this step, we retained only
those climatic variables with an importance value above 10%, which were used to feed the
second RF step.
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Figure 3. Flow diagram summarizing calculations of all dendroclimatic models used to explain
the climate–growth relationships in six Laurus azorica forest stands in two Azores islands—Terceira
and São Miguel. (1) RF modeling was used to inform the selection of the best explanatory climatic
variables; (2) GLMs were used to estimate the direction and strength of the climatic variables on
annual radial increment. Italic text indicates the selection parameters used at each step.

The second RF step allowed to build models (designated as “optimal”) including only
those climatic variables with an importance value close to or above 20% (Table 2).

These climatic variables were used to feed the GLM analysis that was implemented
using the glm() and stepAIC() functions in R, both for the composite and the individual
site chronologies. To select the most parsimonious and informative GLMs we used the
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following criteria (see [86–90]): (i) a corrected version (AICc) of Akaike Information Crite-
rion (AIC) [91], to address possible overfitting due to low sample size; (ii) a comparison
of that value with the AIC of the null model; (iii) adjusted R2, an estimate of model fit,
calculated as the percentage of the sum of squares explained by the model [92]; and (iv) the
significance of the regression coefficients (p < 0.05).

Table 2. List of all RF models and GLMs calculated to explain the climate–growth relationships in six
Laurus azorica forest stands in two Azores islands—Terceira and São Miguel. The models included
climatic data from the current year, from the previous year, or from both. The dependent variables
corresponded to the composite or to the individual site chronologies.

Number Model Current Previous Both

Random Forest Step 1
1 Saturated model (All variables) x
2 Partially saturated model (All variables) x
3 Partially saturated model (All variables) x
4 Temperature model x
5 Temperature model x
6 Temperature model x
7 Precipitation model x
8 Precipitation model x
9 Precipitation model x

Random Forest Step 2
10 Optimal model (Selected variables) x x x

GLMs
11 Reduced model (Selected variables) x x x

3. Results
3.1. Site Chronologies

Chronology length varied from 48 years (1974 to 2019) in Lombadas—São Miguel
to 67 years (1953 to 2020) in Povoação—São Miguel. First-order autocorrelation ranged
from 0.20 to 0.53 and rbar values ranged from 0.12 to 0.28. The complete assessment of the
tree-ring series is summarized in Figure 4.

3.2. Climate–Growth Relationships

Based on computed SSS values for each site, climate–growth models were fitted for
the period 1987 to 2018 (Figure 5).

Considering the results from the RF analyses (see Tables S1 and S2 for a full descrip-
tion), current and previous year temperatures were the main and most consistent drivers
affecting radial growth (Table 3). Spring and early summer were the most important sea-
sonal periods according to most models, particularly the composite model. The magnitude
of the spring and early summer temperature effects varied by stand and ranged from
positive to negative but was positive for the composite chronology. The second step of RF
originated models with percentages of explained variance ranging from 16.92% to 48.38%
(Table S3).

The GLM results also revealed a prominent effect of current or previous year temper-
atures for all chronologies (except for MT). Late spring and early summer temperature
effects were detected in five of the six site chronologies (Tables 4 and S3). In the reduced
models, possible precipitation effects were detected only in two cases: August precipitation
with a positive effect on MT, and May precipitation with a negative effect on LO.
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Figure 4. General characterization of the sampled sites at two Azores islands (Terceira and São
Miguel), and basic parameters of the site chronologies used to study the climate–growth relationship
in six Laurus azorica forest stands. Sampled sites are highlighted, including locality abbreviation,
elevation (m), annual mean temperature (T), annual precipitation (P), number of trees (N Trees),
total number of wood cores (N1), number of wood cores used in the dendroecological analysis (N2),
average maximum tree height (Hmax), average diameter at breast height (DBH), mean inter-series
correlation (Rbar), and the first-order autocorrelation (AC1).

Table 3. Modeling of climate–growth relationships in six Laurus azorica stands in two Azores islands,
Terceira and São Miguel. Summary of the effects of the climatic variables retained in models both
for the composite and for each individual site chronologies, after two steps of RF analysis. Direction
of the effect (+ and -) was based on GLM results. Climatic variables were retained based on the
respective importance value: above 10% in the first RF step; close to or above 20% in the second
RF step.

ClimVar CC GM MT PP LO PO NO ClimVar CC GM MT PP LO PO NO
T4 + TminPre6 +
T6 - - TminPre7 -
T10 - TminPre10 +

Tmin3 + TminPre12 +
Tmin5 + + TmaxPre6 + - +

Tmin10 + - TmaxPre10 +
Tmax3 - P1 +
Tmax5 - - P9 +
Tmax6 Ppre4 +
Tpre2 - Ppre5 -
Tpre6 + Ppre8 +
Tpre10 + Ppre10 +

TminPre2 -

Note: + positive effect, − negative effect; T = temperature for different months (1–12); P = precipitation for
different months (1–12); suffix Pre = previous year temperatures or previous year precipitation. CC, model for the
composite chronology; GM to NO, models for each individual site chronology.
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Figure 5. Spaghetti plots of Laurus azorica tree-ring indices for two populations at Terceira Island and
four populations at São Miguel Island, Azores. Mean chronology—bold line; red dashed vertical
lines—SSS ≥ 0.85; blue dashed vertical lines—cut-off used for modeling; LO site—purple dashed
vertical line with SSS ≥ 0.85 and the cut-off used for modeling coinciding.

Table 4. Modeling of climate–growth relationships in six Laurus azorica stands in two Azores islands,
Terceira and São Miguel. Performance of the reduced GLMs for the composite and for each individual
chronology. Regression coefficients of each explanatory variable, AIC, AICc, null model AIC, and
adjusted R2.

Chronology Model Coefficients AIC AICc Null Model AIC R2

CC
Tmin5 *** +0.23618

317.02 317.234 349.084 0.171TmaxPre6 ** +0.11627

GM
Tmax6 *** −0.29387

15.592 17.074 27.623 0.386TmaxPre6 ** −0.22347
MT Ppre8 * +0.002231 11.588 12.445 14.284 0.125

PP
Tmin5 *** +0.6203

70.255 71.736 81.250 0.366TminPre6 * +0.4827

LO
T6 * −0.0882183 −13.663 −12.182 −8.901 0.230Ppre5 * −0.0008316

PO
TminPre7 * −0.14009 −7.3785 −5.897 7.716 0.442TminPre10 *** +0.12668

NO
Tpre6 * +0.05826 −45.015 −43.534 −37.001 0.304TminPre2 ** −0.06556

Note: + positive effect, − negative effect; * p = 0.05, ** p = 0.01, *** p = 0.001; T = temperature for different
months (1–12); P = precipitation for different months (1–12); suffix Pre = previous year temperatures or previous
year precipitation.
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4. Discussion
4.1. Chronology Evaluation

We were able to reliably and accurately delineate and cross-date annual growth
patterns in all L. azorica tree core samples. However, the relatively low rbar values suggest
that the growth of individual trees within each stand was not strongly synchronized. Similar
results have also been reported for the Azorean endemic trees Juniperus brevifolia [11] and
Ilex azorica [43], a common outcome in regions with low thermal amplitude and low
seasonality (e.g., [93–96]). Stands at Terceira Island showed higher rbar values than most
of the sites at São Miguel Island, which suggests that other factors might be affecting or
disturbing individual tree growth [27,97,98], including competition due to the presence of
invasive plants that are more common in São Miguel natural forests [1,30].

Chronology length differed among stands due to the different ages of the forest stands,
as natural forests have been deeply disturbed in the Azores, some being secondary and
not primordial forests [1]. For example, most of the Laurus submontane forests have been
replaced by pastureland, exotic woodland, or production forests [1]. Likewise, developed
chronologies were relatively short, with a maximum of 67 years. Considerable changes
have occurred in the Azorean soil cover, starting with human settlement and intensifying
in the 1950s, which influenced the distribution and age of the extant natural forests [53].

4.2. Modeling Constraints

Our stepwise approach to RF allowed selecting a range of explanatory climatic vari-
ables corresponding to importance values above 20% and providing a reasonable percent-
age of explained variance comparing to previous studies (e.g., [99–101]). The GLM approach
was also previously used in other studies from the Azores archipelago (e.g., [14,41,43]).
Moreover, although delivering a useful estimation of the direction of the effect, the final
GLMs did not show a relevant improvement in terms of model evaluation statistics (AICc
and adjusted R2) compared to the climatic variables selected in the second step of RF. A
possible explanation is the fact that RF is a versatile, robust, and stable analysis. Apart from
being a straightforward method in terms of the simplicity of its parameters, it generates
low bias and moderate variance [102–104]. This error reduction is related to the random
selection of the elements used for the induction of each tree, reducing the correlation
between individual models, and providing predictions with greater stability [103,105].
RF models provided an indication of the importance of specific climatic variables for
tree growth [77,78,83,84], while GLMs provided more explicit information describing the
strength and direction of these effects. However, our GLM regression analyses only con-
sidered linear additive effects and were arguably sensitive to outliers [106,107], although
showing consistency with RF results. Hence, the discussion of the modeling results will
consider a global evaluation based on the two complementary approaches—RF and GLM.

4.3. Climate–Growth Relationships—Temperature Effect

The overall composite chronology (metapopulation) helped us to understand simi-
larities among sampled stands and the overall effect of the climatic variables on L. azorica
radial growth in the Azores. The models derived for the composite chronology showed
that growth rings in L. azorica were predominantly sensitive to current and previous year
spring temperatures. As a ring-porous species, L. azorica xylem vessels include distinct
pits in tangential section, which allows water transport between individual vessels. Pit
structure together with diffusely distributed xylem vessels may function to reduce tree
susceptibility to environmental stressors, including drought [14,108]. Thus, this mecha-
nism, together with warmer temperatures in late spring and early summer, may enhance
photosynthetic performance for the rest of the growing season, potentiating carbon up-
take and positively affecting tree growth (e.g., [108–110]). Nonetheless, the role of carbon
storage in the previous year is still an open question that requires experimental studies
(see [111,112]). Additionally, submontane and montane forests in the Azores are usually
associated with high levels of occult or horizontal precipitation, intercepted by the vegeta-
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tion cover [113,114]. This ensures water availability that, together with warm temperatures,
may favor radial growth [115,116].

Further explanation for our results might be related to an earlier onset of cambial
activity and cell differentiation during relatively warm spring conditions. In fact, the
flowering season in Laurus azorica might start as early as November or December, extending
until April, followed by a fruiting season that extends into summer and autumn [117].
Thus, warmer spring and early summer months might extend the length of the growing,
flowering, and fruiting seasons, and, consequently, the length of the total period available
for wood production in a given year [118].

An exception to this pattern, in some cases (composite, GM, MT and LO), was the
negative effect of high summer temperatures, particularly of maximum temperature. This
suggests that extremely high temperatures might affect tree growth due to water imbal-
ance [115,116]. Despite the positive impulse associated with high temperatures at the
beginning of the growing season, the subsequent negative effect of extremely high summer
temperatures has been reported for other broadleaved species (e.g., [119,120]) and for the
Azorean tree Ilex azorica [43]. Summer water stress has been shown to affect radial growth
rate [121–123]. Indeed, extremely high summer temperatures increase evapotranspiration
and reduce water availability, prompting stomatal closure. This will decrease photosyn-
thetic activity, carbohydrate storage, and, consequently, reduce cambial activity [124–126].
Within the Lauraceae, extensive studies at Brazil Atlantic Forest with Nectandra spp. re-
ported that warmer summers suppressed tree growth due to water stress and increased
evapotranspiration [31,35,127].

4.4. Climate–Growth Relationships—Precipitation Effect

Globally, no relevant effect of precipitation was found, except in MT and PO, where a
positive effect of late spring and summer precipitation was observed, related to the water
balance required for tree growth during the drier months [128], as previously observed in
other broadleaved species (e.g., [129–131]). In fact, the archipelago presents high relative
humidity and a precipitation evenly distributed throughout the year, except during the
driest summer months [28,29].

4.5. Climate–Growth Relationships—Previous Year Effect

We found an effect of climatic variables from the previous year on growth rings,
which has been previously reported for diffuse porous species (e.g., [47,48]). Research in
boreal, temperate, and tropical forests, with a broad range of tree taxa, has also reported
relationships between tree growth and previous year climatic variables (e.g., [132–134]).
This so-called legacy effect is controlled by several interactions between the environment
and tree physiology [71]. It also suggests lagged physiological effects persevering longer
than the current year [135–137]. For example, non-structural carbohydrate (NSC) alloca-
tion and storage might affect tree growth in the following years [135,138–142]. Warmer
temperatures at the end of the growing season (as it happens in the Azores archipelago)
can extend its length. Thereby, the NSC stock that will be available for the next growing
season will be increased (e.g., [109,110]). However, NSC accumulation in L. azorica has not
been investigated.

4.6. Climate–Growth Relationships—Differences among Sites

We obtained slightly different climate–growth relationships among sites that can be
linked to different site conditions (i.e., elevation) existing in the archipelago (see [1,2]), pos-
sible competition with other native or exotic species (e.g., [26,143–145]), differences between
the microclimates (e.g., [146,147]), and high variability within stands (low rbar values).

Regarding stand characteristics (soil type, slope, and species composition), the most
abundant soil types were ferruginous andosols (present in MT, LO, PO, and NO) and
shallow allophanic regosols (present in PP, PO, and NO), except for GM, with a vitric
andosol. Ferruginous andosols have low water infiltration capacity [55], which could
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reduce water availability for trees at four of the studied stands. Sloped terrain was mostly
found at São Miguel Island stands (PP, LO, PO, and NO), while species composition was
relatively homogeneous in all stands, with the presence of exotic species and, consequently,
possible competition. Despite some local variation, laurel forests in the Azores generally
occur in similar environmental conditions, with a considerable amount of organic matter
on soils, even for very shallow regosols (see [30]). In fact, no relevant environmental
differences have been found between laurel forests on different Azores islands in previous
studies, except for some local variation in plant community composition [1,30]. Therefore,
the establishment of a direct link between differences in climate–growth relationships and
stand characteristics is not possible at this stage.

Biotic factors also mediate growth responses to climate (e.g., [148,149]), even though
our data transformations (i.e., detrending) should have removed most of these biotic effects.
Nevertheless, it seems likely that there may be residual growth variance that is attributed
to competition or age (e.g., [26,142,144]). Matos et al. [14] also found differences in radial
growth rate between different stands of L. azorica at different elevations. Other studies
addressing one tree species at different elevations also found distinct climate–growth
relationships among sites (e.g., [150–152]). Moreover, different responses of tree growth
to climate have also been found at the intra-individual scale (e.g., [153]). Furthermore,
different populations could have become locally adapted or acclimated. Many studies show
that both local adaptation and acclimation are quite common in plant species (e.g., [153,154]).
However, experimental studies would be needed to confirm differentiation among L. azorica
populations (e.g., [154–158]).

Our results emphasize the importance of modeling under different site conditions to
better encompass the various situations and factors affecting growth ring width and its
inherent variation.

5. Conclusions

Our study demonstrated the possibility of developing reliable tree-ring chronologies
of a key species of the Azorean laurel forest ecosystems, showing that the relationship
between tree-ring widths and climate parameters is mainly connected to temperature of
the current and previous years. Hence, this work, together with recent studies dealing with
other important laurel forest trees [11,43], contributes to building baseline climate–growth
relationships in an island forest under low climatic seasonality. Furthermore, future den-
drochronological studies could be applied to other relevant native or introduced species
(e.g., [10,11]), or to other Macaronesian islands (e.g., [13,16–19,34]). Nonetheless, due to the
high levels of within-stand variation, and to refine the climate–growth analysis, different
approaches and proxies will have to be explored in the future, including early and latewood
vessel area [159,160] since most native species are angiosperms. Moreover, other insights
(e.g., site characteristics and physiological processes) could be tested in future works to
refine the relation between climate and radial tree growth in the Azores archipelago.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f14020166/s1, Figure S1: Bootstrapped mean chronology for all
studied sites. Years on x axis and tree-ring indices (TRWi) on y axis; Figure S2: Average temperatures
(lines) and monthly precipitation (bars) for all study sites. Data were extracted from CHELSA
timeseries dataset with a spatial resolution of 30-degree seconds; Table S1: Results from the first RF
step (various combinations of climatic variables, i.e., temperature and precipitation from current
and/or previous year) for composite and site chronologies, with the respective variable importance
(%IncMSE). Those variables that were selected for the second step of RF are marked in green;
Table S2: Results from second RF step (based on the variables selected on the first RF step), for
composite and site chronologies, with the respective variable importance (%IncMSE) and increase in
node purity (IncNodePurity). Those variables that were selected for the GLM analysis are marked in
green; Table S3: Performance of all RF and GLM tested models (based on the variables selected on
the second RF step) for composite and site chronologies, with the respective regression coefficients
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for each explanatory variable, AIC, AICc, null model AIC, adjusted R2, mean of squared residuals,
and % of explained variance.
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