
Citation: Basiouni, S.; Tellez-Isaias,

G.; Latorre, J.D.; Graham, B.D.;

Petrone-Garcia, V.M.; El-Seedi, H.R.;

Yalçın, S.; El-Wahab, A.A.; Visscher,

C.; May-Simera, H.L.; et al.

Anti-Inflammatory and Antioxidative

Phytogenic Substances against Secret

Killers in Poultry: Current Status and

Prospects. Vet. Sci. 2023, 10, 55.

https://doi.org/10.3390/

vetsci10010055

Academic Editor: Xinwei Li

Received: 17 September 2022

Revised: 19 November 2022

Accepted: 4 January 2023

Published: 14 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

veterinary
sciences

Review

Anti-Inflammatory and Antioxidative Phytogenic Substances
against Secret Killers in Poultry: Current Status and Prospects
Shereen Basiouni 1,2,* , Guillermo Tellez-Isaias 3 , Juan D. Latorre 3 , Brittany D. Graham 3 ,
Victor M. Petrone-Garcia 4 , Hesham R. El-Seedi 5,6,7, Sakine Yalçın 8 , Amr Abd El-Wahab 9,10 ,
Christian Visscher 9 , Helen L. May-Simera 1, Claudia Huber 11 , Wolfgang Eisenreich 11,* and
Awad A. Shehata 12,13,14

1 Institute of Molecular Physiology, Johannes-Gutenberg University, 55128 Mainz, Germany
2 Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor,

Toukh 13736, Egypt
3 Department of Poultry Science, University of Arkansas Agricultural Experiment Station,

Fayetteville, AR 72701, USA
4 Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM),

Cuautitlan Izcalli 58190, Mexico
5 Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre,

SE 751 24 Uppsala, Sweden
6 International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
7 International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu

Education Department, Jiangsu University, Nanjing 210024, China
8 Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara

University (AU), 06110 Ankara, Turkey
9 Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer

Damm 15, 30173 Hanover, Germany
10 Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura

University, Mansoura 35516, Egypt
11 Structural Biochemistry of Membranes, Bavarian NMR Center, Technical University of Munich (TUM),

D-85747 Garching, Germany
12 Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City,

Sadat City 32897, Egypt
13 Research and Development Section, PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany
14 Prophy-Institute for Applied Prophylaxis, 59159 Bönen, Germany
* Correspondence: sbasioun@uni-mainz.de (S.B.); wolfgang.eisenreich@mytum.de (W.E.)

Simple Summary: Chronic stress and inflammation, known also as “secret killers” in animals, can
lead to lipid peroxidation, protein oxidation and nitration, DNA damage, and finally apoptosis. This
is due to an imbalance between free radical generation and endogenous antioxidant defense, which in
turn possess detrimental impacts on the health and performance of animals. In this review, we discuss
the mechanistic pathways of oxidative stress and inflammation associated with the main secret killers
in poultry, namely heat stress, dysbiosis, leaky gut syndrome, and mycotoxins. Additionally, we shed
light on the potential use, challenges, and future prospects of phytogenic bioactive substances in
mitigating oxidative stress and inflammation in poultry.

Abstract: Chronic stress is recognized as a secret killer in poultry. It is associated with systemic
inflammation due to cytokine release, dysbiosis, and the so-called leaky gut syndrome, which mainly
results from oxidative stress reactions that damage the barrier function of the cells lining the gut wall.
Poultry, especially the genetically selected broiler breeds, frequently suffer from these chronic stress
symptoms when exposed to multiple stressors in their growing environments. Since oxidative stress
reactions and inflammatory damages are multi-stage and long-term processes, overshooting immune
reactions and their down-stream effects also negatively affect the animal’s microbiota, and finally
impair its performance and commercial value. Means to counteract oxidative stress in poultry and
other animals are, therefore, highly welcome. Many phytogenic substances, including flavonoids
and phenolic compounds, are known to exert anti-inflammatory and antioxidant effects. In this
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review, firstly, the main stressors in poultry, such as heat stress, mycotoxins, dysbiosis and diets that
contain oxidized lipids that trigger oxidative stress and inflammation, are discussed, along with the
key transcription factors involved in the related signal transduction pathways. Secondly, the most
promising phytogenic substances and their current applications to ameliorate oxidative stress and
inflammation in poultry are highlighted.

Keywords: poultry; inflammation; oxidative stress; stressors; phytogenic substances

1. Introduction

Mitochondria, commonly referred as the “powerhouse of eukaryotic cells”, are respon-
sible for the production of cellular energy [1]. However, mitochondria are also involved in
numerous additional metabolic processes, such as signaling through mitochondrial reactive
oxygen species (ROS), hormonal signaling, heme synthesis reactions, steroid synthesis,
regulation of membrane permeability, apoptosis-induced cell death, calcium trafficking,
and control of cellular metabolism [2,3]. As a result, mitochondrial damage and subsequent
malfunction are significant contributing factors to a variety of animal diseases, owing to
their influence on cellular metabolism [4,5]. Additionally, ROS can be generated in the
cytosol and other cellular compartments, including the plasma membrane, but also the
nucleus, peroxisome, endoplasmic reticulum (ER), and Golgi apparatus [6–8]. Due to
the high contents of polyunsaturated fatty acids (PUFAs) in these membranes [9], lipid
peroxidation can occur and, as a result, phospholipids become directly damaged and may
also act as a signal for death [10].

Stress, regardless of its source or type (biological, environmental, nutritional, physical,
chemical, or psychological), can lead to inflammation and further malicious downstream
reactions [11–13]. Several synthetic compounds have been developed to significantly
lower inflammation, but most of these drugs are accompanied by unwanted side effects,
especially when used at higher doses and during long-term therapies. Natural compounds
appear to be less compromised by these side effects [14] and, especially in poultry farming,
phytogenic feed additives (PFAs) have attracted considerable interest [15]. Generally, the
utilization of natural feed additives that contain anti-inflammatory phytochemicals has
become very common for the enhancement of productivity, digestive enzymes, nutrient
utilization and as an alternative to antibiotics in livestock species and poultry in particular.
The phytochemical compounds of interest are diverse in their structures and include
polyphenols, flavonoids, terpenoids, alkaloids and plant sterols [16]. In addition to their
anti-inflammatory and antioxidant properties, they may also have a number of other effects,
including anticancer, antimicrobials, anti-diarrheal, and analgesic actions [17], which in
turn enhance the profitability of poultry.

The current review summarizes the most important anti-inflammatory and antioxidant
phytogenic compounds and their uses in poultry. Moreover, this review describes the
current knowledge of how these compounds affect oxidative stress and inflammation
processes, including the key transcription factors involved in signal transduction pathways.

2. Oxidative Stress

During normal oxygen metabolism, cells are continually exposed to free radicals and
other ROS [18], serving as, for example, signaling molecules involved in homeostasis.
Extreme stressors may enhance the levels of ROS, thus leading to lipid peroxidation, cell
membrane and DNA damage, and modification of small GTPases [19,20]. In turn, these
processes pave the way for chronic stress symptoms.
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2.1. Reactive Species

The following two types of reactive species are known: (i) ROS that comprise free
radicals (lipid peroxyl radicals (ROO•), thiyl radicals (•RS), superoxide anion radicals
(O2
•−), and hydroxyl radicals (HO•)), and non-radical species (hydrogen peroxide (H2O2),

single oxygen (1O2), ozone (O3), and lipid peroxides (ROOH)); (ii) reactive nitrogen species
(RNS), including free radicals (nitric oxide (NO·) and nitrogen dioxide (•NO2)), and the
non-radicals (dinitrogen trioxide (N2O3), dinitrogen tetraoxide (N2O4), and peroxynitrite
(ONOO−)). Oxidative stress is also impacted by aggressive metal ions, such as Fe2+/Fe3+

and Cu+/Cu2+ [21,22]. These reactive species are primarily produced by the electron
transport chain in the mitochondria (the main source) and by the nicotinamide adenine
dinucleotide phosphate oxidases (NADPH oxidase or NOX) in the cell membrane, in-
cluding the seven transmembrane enzymes, NOX1–NOX5, dual oxidase 1 (DUOX1), and
DUOX2 [23,24].

2.2. Endogenous Antioxidants

Endogenous antioxidants have the capacity to donate H atoms to counteract the
negative impacts of ROS and RNS [25]. They function at various levels, thereby efficiently
limiting the generation of reactive species and scavenging ROS and RNS using non-catalytic
and catalytic molecules, such as alpha-tocopherol and ascorbic acid. This can also be
accomplished by repairing damaged molecules, by regenerating antioxidants or lipid
radicals, to their original state [25,26]. The main enzymatic antioxidants are superoxide
dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx),
glutathione S-transferase (GST), and ascorbate peroxidase (APX) [27]. The classification of
antioxidants is illustrated in Figure 1.

1 

 

 

Figure 1. Endogenous and exogenous antioxidants. SOD, superoxide dismutase; CAT, catalase; GST,
glutathione S-transferase; APX, ascorbate peroxidase; GSH, glutathione; BHA, butylated hydrox-
yanisole; BHT, butylated hydroxy toluene.

The diverse mechanisms of action of these enzymes are well-known and shall not be
repeated here [28,29]. As a principle, the nuclear factor erythroid 2-related factor 2 (Nrf2)
controls the expression of many antioxidant enzymes. When cells experience oxidative
stress, Nrf2 becomes active, translocates to the nucleus, binds to the antioxidant response
elements (AREs), and thus activates the genes that code for detoxifying enzymes, such as
SOD [30].



Vet. Sci. 2023, 10, 55 4 of 29

Non-enzymatic endogenous antioxidants include vitamins (vitamins C and E), β-
carotene, and glutathione (L-glutamyl-L-cysteinylglycine, GSH) that contains a reactive
thiol (sulfhydryl) group. Vitamin C, a water-soluble antioxidant, predominantly scavenges
oxygen free radicals in the intracellular and extracellular space [31]. It also reacts with
reactive vitamin E radicals, converting them to vitamin E [32]. Vitamin E is an antioxidant
that prevents free radicals from damaging cell membranes and other fat-soluble substances.
Fat-soluble vitamins are the primary defense against oxidant-induced membrane damage.
Vitamin E detoxifies peroxyl radicals, which are formed during lipid peroxidation by
donating an electron to the antioxidant. Vitamin E demonstrates not only antioxidant
actions, but also shields other antioxidants from oxidation. Vitamin E in the most active
form, α-tocopherol, is the main cell’s main membrane-bound antioxidant [32,33].

In contrast, GSH is the most significant hydrophilic antioxidant that protects cells
from exogenous and endogenous ROS and RNS. When GSH reacts with ROS or other
electrophiles, it is oxidized to glutathione disulfide (GSSG). It may then be reduced back to
GSH by GR, which uses NAD(P)H as an electron donor. As a result, the GSH/GSSG ratio
reflects the oxidative status and can interact with redox partners to keep the cell’s redox
balance stable. GSH exhibits antioxidant properties in a variety of ways [34]. By virtue
of the action of glutathione peroxidase (GSH-Px), it detoxifies H2O2 and lipid peroxides.
GSH provides an electron to H2O2 to convert it into H2O and O2 [35]. GSH-Pxs are also
necessary for cell membrane defense against lipid peroxidation. Reduced glutathione
transfers protons to membrane lipids, protecting them from oxidative stress [36].

2.3. Imbalance between Free Radicals and Antioxidants

An imbalance between free radical production and the level of endogenous antioxi-
dants causes oxidative stress in cells, resulting in lipid peroxidation, protein nitration and
oxidation, DNA damage, and finally apoptosis. Under normal redox conditions, various
enzyme systems contribute to redox homeostasis in cells by maintaining physiologically
important ROS at low levels [37]. Although strong antioxidant induction is linked to Nrf2
when this route is triggered by ROS, this response is restricted because ROS also activate
a cell death signaling pathway [38,39]. The increased production of ROS in cells alters or
activates numerous intracellular mechanisms that cause the oxidation of DNA, proteins,
and membrane lipids. Induced lipid peroxidation by ROS significantly contributes to cell
death, including apoptosis [40]. ROS participate in lipid peroxidation, especially the peroxi-
dation of lipids and lipoproteins that are rich in PUFAs. The product of PUFA peroxidation
is 4-hydroxynonenal, which further exacerbates mitochondrial dysfunction, impairs cell
signaling, and causes further oxidative damage to the cell membranes. By producing ROS,
cells are incited to undergo apoptosis via the activation of p53, p38 mitogen-activated pro-
tein kinase (MAPK), caspases, and changes in Bcl-2/Bax expression, apoptosis regulators
that directly control mitochondrial outer membrane permeabilization [41].

In summary, insufficient levels of antioxidants lead to the accumulation of ROS
and RNS, thereby triggering oxidative damage and inflammation [42–44]. In this non-
physiological state, cells secrete inflammatory cytokines and chemokines, which contribute
to attracting other cells to fight against infection and promote tissue regeneration [45].
ROS are also known to activate the nuclear transcription factor (NF-κB) [46], a multi-
directional transcriptional regulatory protein that is closely related to various physiological
and pathological processes, such as oxidative stress, inflammation, immune response, cell
proliferation, transformation, and apoptosis. NF-κB is a key target in receptor-independent
hypothalamic micro-inflammation [47] that is associated with intracellular organelle stress,
including endoplasmic reticulum stress [48] and defective autophagy [49]. Numerous
crucial physiological processes are regulated by NF-κB. However, it has been demonstrated
that excessive NF-κB activation increases the risk of disease, while NF-κB suppression is
associated with risk reduction [50].
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2.4. Biomarkers of Oxidative Stress

Assessment of oxidative stress based on direct ROS and RNS measurement is difficult
due to the short half-life of ROS [51]. However, there are several indirect biomarkers, which
are as follows: (i) biomarkers for lipid peroxidation, such as malondialdehyde (MDA),
thiobarbituric acid reactive substances, isoprostanes, and 4-hydroxyalkenals, including
4-hydroxynonenal [52]. It was suggested that isoprostanes are the best markers for lipid
peroxidation because they are unique end products of the peroxidation of PUFAs [53].
(ii) Biomarkers for protein oxidation, such as carbonyl moieties in the side chains of amino
acids, also exist. These carbonyl moieties can be detected by ELISA techniques, Western
blot, or FPLC/HPLC [54]. (iii) Finally, there are also biomarkers for DNA oxidation, such as
8-hydroxy-2′-deoxyguanosine. DNA damage can also be evaluated by comet assays [55].

3. Factors for Oxidative Stress and Inflammation in Poultry: Secret Killers

In animal farming, a variety of environmental, nutritional, microbiological, and man-
agement factors contribute to oxidative stress. These stressors can be termed as “secret
killers”, since they multiply in malignant states in animals [56]. In this section, we focus
on the most important factors that are relevant to poultry farming, such as heat stress,
dysbiosis and mycotoxins.

During chronic inflammation, an increase in the generation of ROS causes the peroxi-
dation of lipids in cell membranes, as well as mitochondrial and other endomembranes,
finally leading to cell death [57]. When these membranes are damaged over time, it is
not surprising that multiple cells and organs of an organism are affected [58]. Animal
studies [59,60] have established that the complex interactions among diet ingredients, the
gut microbiome, the nervous system, the immune system, and the endocrine system are
crucial for metabolic and gastrointestinal health. Any disturbances in this delicate equilib-
rium, such as chronic oxidative stress, result in mitochondrial dysfunction, with its severe
impacts upon the immune system and microbiota (see below).

Ninety percent of pathological problems are linked to intestinal chronic inflamma-
tion [61]. Disbalance of the gut microbiota has negative effects on the health and biology
of metazoans because the gut integrity, biology, metabolism, nutrition, immunity, and
neuroendocrine system are all dependent on a healthy microbiota [62–67], which is in
constant interaction with the microbiota–brain–gut axis. In conclusion, it is justified to
qualify oxidative stress and intestinal inflammation as the “secret killers” in animal farming,
especially in poultry farming [56,62,68].

3.1. Heat Stress

High temperature is one of the most challenging stressors associated with poultry
production [69,70]. It is a serious problem for poultry reared in tropical and subtropical
regions, as well as in temperate climate zones, including central and eastern Europe [71].
Heat stress occurs when the ambient temperature exceeds the animal’s thermoneutral zone,
and the animal’s physiological capacity to disperse heat through sweating, breathing, or
panting fails to prevent a rise in body temperature [72]. Chickens are susceptible to high
ambient temperatures due to their feathers, lack of skin sweat glands, and high production
of heat, unlike mammals. Chickens lose excess heat by panting to prevent the increase in
their body temperature [73]. Heat stress causes several adverse effects on the intestinal
mucus layer, tight junctions, enteric immune system, and the antioxidant system [74], which
are as follows: (i) a decrease in the size of mucin layers. Heat stress reduces the amount of
goblet cells, as well as the expression and secretion of mucins, leading to the thinning of
mucin protective layers [75]. As a result, their resistance to opportunistic bacteria decreases
and these come in more contact with the intestinal epithelial cells. The following effects
are also caused by heat stress: (ii) disruption of tight junctions, as heat stress alters the
expression of tight junction protein constituents, such as occludin (OCLN), various claudins
(CLDN) and zonula occludens (ZO)-1, -2 and -3 [75,76]; (iii) intestinal barrier dysfunction,
as the intestinal hyperpermeability is increased [77–80]; (iv) endotoxemia and systemic
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inflammation, which results from the translocation of opportunistic bacteria, endotoxins
and lipopolysaccharides (LPS), leading to an increase in pro-inflammatory mediators,
such as interleukins (IL-1β, IL-6) and tumor necrosis factor-α (TNF-α) [81]; v) hepatic
and hypothalamic inflammation, which mainly results from the translocation of microbial-
associated molecular patterns, such as LPS [82]; (vi) redox imbalance between the pro- and
antioxidants in favor of pro-oxidants. Heat stress is a key contributor to systemic oxidative
stress by increasing the levels of pro-oxidants (e.g., ROS). Several studies have revealed
that heat stress leads to higher cellular energy demand, promoting the generation of ROS in
the mitochondria [83,84]. Consequently, oxidative stress occurs in multiple tissues, leading
to cell apoptosis or necrosis [85].

In summary, heat-induced oxidative stress disrupts the intestinal barrier and alters
many cellular processes. Thus, the presence of ROS increases the intestinal permeability,
which facilitates the translocation of bacteria and their molecular patterns (e.g., LPS) from
the gut (leaky gut syndrome) [37] (see also Figure 2).
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Figure 2. Impacts of heat stress on physiological functions, and induction of inflammation and
oxidative stress. OCLN, occludin; CLDN, claudins; ZO, zonula occludens; TLR4, toll-like receptor
4; NF-κB, nuclear factor-kappa B; IL, interleukin; TNFα, tumor necrosis factor α; SOD, superoxide
dismutase 1; GSH, glutathione.

3.2. Dysbiosis

Poultry production relies heavily on the animals’ intestinal health and intestinal
function to maximize nutrient uptake and growth, which in turn are associated with animal
performance. Their gut microbiota mainly consists of bacteria, fungi, and protozoa. As a
result of commensal bacteria, intestinal epithelial cells create ROS, which serve as second
messengers in cellular signaling. Tight junctions between intestinal epithelial cells form a
barrier and prevent the invasion of microorganisms into the host organism [86]. Dysbiosis
refers to the alteration in the composition of the gut microbiota with an imbalanced host–
microbe relationship [87,88]. As a result, this can lead to increasing amounts of microbial
metabolites (see below) that mediate oxidative stress and inflammation (Figure 3).
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Figure 3. Microbial metabolites during dysbiosis-mediated oxidative stress and inflammation. H2S,
hydrogen sulfide; ROS, reactive oxygen species; IL, interleukins; LPS, lipopolysaccharides.

More specifically, ROS are generated in the gut epithelial cells by several ROS stressors
that disrupt the redox balance and cause inflammation, which are as follows [59]: (i) NO
is produced by the gut microbiota in the intestinal tissues via the conversion of nitrite
and nitrate [89]. Excessive production of NO due to dysbiosis generates ROS associated
with cellular damages, e.g., due to the inhibition of the host mitochondrial respiratory
chain [90]. (ii) Some intestinal bacteria such as E. coli produce hydrogen sulfide (H2S) in
high amounts by the degradation of sulfur-containing peptides and amino acids in the gut.
In the case of dysbiosis, the elevated H2S concentration inhibits cytochrome oxidase, which
in turn inhibits the host mitochondrial respiratory chain and leads to the overexpression of
pro-inflammatory factors [91]. However, H2S can also be detoxified by the cecal mucosa by
converting it into thiosulfate, which is subsequently converted by ROS into tetrathionate,
serving as an electron acceptor for salmonellae, as an example. As a result, a new nutrient
niche in the gut is shaped by supporting the growth of more pathogenic bacteria and, thus,
increasing dysbiosis and gut inflammation [92,93]. (iii) The TCA cycle can be stimulated
by short-chain fatty acids (SCFAs), particularly butyrate. In addition, SCFAs can promote
the production of the signaling hormone GLP-1 and the anti-inflammatory IL-10 cytokines
to decrease energy intake [91]. (iv) During dysbiosis, LPS production by Gram-negative
bacteria is increased and induces local and systematic inflammation by the stimulation of
the intestinal epithelial cells and macrophages. As a result, tight junctions are damaged,
leading to leaky gut syndrome [94–99].

3.3. Mycotoxins

Foods, grains, and animal diets are suitable substrates for a wide array of fungi
and molds. In particular, molds such as Aspergillus, Fusarium, and Penicillium species
produce their own strain-specific mycotoxins as secondary metabolites and the mycotoxin-
contaminated diets have to be discarded [100]. Due to significant economic losses, myco-
toxins are a global issue. Aflatoxin B1 (AFB1), deoxynivalenol (DON), nivalenol (NIV),
fumonisin B1 (FB1), ochratoxin A (OTA), and zearalenone (ZEN) are the main mycotox-
ins [101–103] (Figure 4).

In poultry farming, mycotoxins reduce feed intake, feed efficiency, growth perfor-
mance, immunity, and hatchability [104,105]. The toxins increase mortality, organ damage,
carcinogenicity, teratogenicity, and decrease egg production. On a molecular level, myco-
toxins induce the generation of ROS, and thereby contribute to lipid peroxidation [106].
They also alter cellular redox signaling, antioxidant status, and membrane integrity [107].
Mycotoxins, particularly aflatoxin, suppress the intracellular levels of antioxidants Nrf2,
SOD, GPx and CAT [108,109], and, thus, increase lipid peroxidation and reduce GSH
levels [110,111]. The main intracellular endogenous antioxidants and pro-inflammatory
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cytokines that are associated with oxidative stress mediated by the different mycotoxins
(adapted from [112]) are summarized in Table 1.
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Figure 4. The most common mycotoxins that affect poultry. Aflatoxin B1 (AFB1) and fumonisin B1
(FB1) are polar mycotoxins that are more easily adsorbed by adsorbents than non-polar mycotoxins.
Ochratoxin A, T-2 toxin, deoxynivalenol (DON) and zearalenone (ZEN) are non-polar.

Table 1. Modulatory effect of mycotoxins on intracellular antioxidants and pro-inflammatory cytokines.

Mycotoxin Downregulation of Intracellular Antioxidants Upregulation of Pro-Inflammatory Cytokines

AFB1 Nrf2, CAT, GPx; SOD Cytokines, NO; NO2
DON CAT, GPx; SOD AP-1; ERK-MAPK
OTA Nrf2, CAT, GPx; SOD Fenton reaction
ZEN CAT, GPx; SOD CoX-2, cytokines; iNOS
T-2 Nrf2, CAT, GPx, GPx; SOD Cytokines, iNOS; NO

AFB1, aflatoxin B1; DON, deoxynivalenol; NIV, nivalenol; FB1, fumonisin B1; OTA, ochratoxin A; ZEN, zearalenon.
Nrf2, erythroid 2-related factor 2; CAT, catalase; GPx, glutathione peroxidase; SOD, superoxide dismutase; NO,
nitric oxide; NO2, nitrogen dioxide; AP-1, activator protein 1; ERK-MAPK, extracellular signal-regulated kinase-
mitogen-activated protein kinase; CoX-2, cyclooygenase-2; iNOS, inducible nitric oxide synthetase.
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3.4. Diet-Mediated Oxidative Stress

The supplementation of poultry diets with oils that are high in PUFAs is common
as an efficient source of energy and as a means to increase palatability, to improve pellet
quality, and to enhance the absorption of fat-soluble vitamins [113,114]. As mentioned
earlier, PUFAs have a faster oxidation rate than saturated fats, meaning that they will
become rancid more quickly. This is due to the oxidation of the reactive double bonds,
which allows molecular oxygen to react with these moieties [115]. A number of additional
factors, such as light exposure, the presence of catalytic transition metal ions, and high
temperature during feed pelleting and storage, can lead to the production of free radicals,
which in turn lead to lipid autoxidation [116,117]. The oxidation of lipids results in the
production of more reactive substances, which exhibit potentially biological harmful effects
and give the product an undesirable odor [118–121]. Notably, even mild oxidation can
produce biologically reactive and toxic oxidation products. Lipid peroxidation results in
a variety of degradation products, such as peroxides, aldehydes, and polar compounds
that are differentially absorbed and metabolized. Peroxidation varies depending on the
temperature, the duration of the thermal processing steps, and the composition of the oil.
In this regard, feeding poultry with peroxidized oils that contain inadequate supplies of
endogenous antioxidants may lead to in vivo metabolic oxidative stress [122–125]. As a
result of this oxidative stress, ROS and free radical products cannot be converted into less
reactive species by antioxidants and antioxidant enzymes, resulting in tissue-damaging
free radicals that bind to lipids, proteins, and DNA [126] (see above). Indeed, it was
demonstrated that, during the consumption of oxidized oils, reactive aldehydes accumulate
in the stomach, which are adsorbed into the small intestine, where they are concentrated
and metabolized in the liver [127]. Broilers that received oxidized oils had a slower growth
rate, and the animals’ plasma and tissues had higher thiobarbituric acid reactive substances
(TBARS) as a marker of lipid damage and a low quantity of antioxidants [128].

4. Anti-Inflammatory Plants and Their Active Components

PFAs can prevent chronic stress-related disorders in animals, and therefore help in
improving their growth performance, by reducing their total blood cholesterol, and also
by inhibiting C. perfringens and E. coli proliferation in small and large intestines [129,130].
However, there is no “magic bullet” for achieving these goals. Instead, several nutraceu-
ticals are currently used as “alternatives antibiotics” to improve performances and gut
health in animal farming [131]. Especially for commercial poultry, nutraceuticals such
as phytochemicals showed promising effects, improving the intestinal microbial balance,
metabolism, and the integrity of the gut due to their antioxidant, anti-inflammatory, im-
mune modulating, and bactericidal properties [18]. In this section, we discuss polyphenols
and PFAs that serve as a major source of natural antioxidants and/or anti-inflammatory
compounds in poultry.

4.1. Polyphenols

The compound family of polyphenols can be classified into four types, namely
flavonoids, stilbenes, lignans, and phenolic acids. They are found in different parts of many
plants (leaves, bark, stems, roots, fruits, and flowers). The chemical structures of the most
common natural polyphenols are shown in Figure 5.

The antioxidant activities of polyphenols were demonstrated by various in vitro stud-
ies (Table 2). Polyphenols act directly by scavenging free radicals or indirectly through the
activation of the synthesis of ROS-removing enzymes. Specifically, polyphenols scavenge
free radicals via several mechanisms, including the following: (i) H-atom transfer from the
OH group(s) of polyphenols to the free radical(s); (ii) single electron transfer to the free
radicals [132–134]. It was reported that polyphenols can eliminate several ROS and RNS,
such as HO•, ROO•, O2•−, and ONOO−, by these two mechanisms [135]. (iii) The final
mechanism is the chelation of transition metal ions, particularly Fe2+ and Cu2+, to limit the
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formation of HO•. Polyphenols in copper/hydrogen peroxide systems exert pro-oxidant
properties and prevent the formation of HO• [136].
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Polyphenols can also suppress oxidative stress by inducing antioxidant enzymes and
modifying signal transduction pathways to elicit cytoprotective responses, which result in
the improvement of the apparent performances, productivity, and internal physiological
changes in animals [42], as shown in Figure 6. Several polyphenols activate Nrf2, which in
turn stimulates the expression of antioxidant enzymes. Curcumin, for example, increases
the expression of GSH-linked detoxifying enzymes, such as GSTs, GPx, and γ-GCS [137].
The green tea compound epigallocatechin-3-gallate (EGCG) is involved in the protection
of neurons against oxidative stress by the activation of heme oxygenase expression [138].
Additionally, polyphenols inhibit prooxidant enzymes such as xanthine oxidase, protein
kinase C and membrane-associated β-nicotinamide adenine dinucleotide (NAD(P)H) oxi-
dase [139]. Polyphenols also alleviate NO-mediated oxidative stress [140] and prevent the
oxidation of some antioxidants, such as ascorbate and tocopherols [141–143].

As another example, quercetin, a flavonoid compound widely present in vegetables
and fruits, is well-known for its potent antioxidant effects [144]. In animals, quercetin
showed anti-depressant-like actions as a result of its antioxidant, anti-inflammatory, and
neuroprotective effects. The suggested mechanism of this anti-depressive effect is the mod-
ulation of neurotransmitter levels, neurogenesis, and neuronal plasticity via the stimulation
of brain-derived neurotrophic factor tropomyosin receptor kinase B (BNDF/TrkB) signal-
ing. Moreover, quercetin combats depressive-like behaviors by attenuating inflammatory
responses, enhancing the expression of antioxidant enzymes, and, thus, decreasing markers
of oxidative stress [145]. Additionally, silymarin from the milk thistle Silybum marianum
contains a mixture of flavonolignans with strong antioxidant, anti-inflammatory and an-
ticarcinogenic properties. Indeed, silymarin was shown to alleviate zeralenone-induced
hepatotoxicity and reproductive toxicity in rats [146].
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Table 2. Polyphenols as antioxidants in poultry.

Antioxidant Dose Main Findings Reference

Cinnamon bark
essential oil

Commercial broilers
supplemented with
300 mg/kg

- Improvement of the immunological response in broiler chicks
by lowering cecal E. coli and Clostridium spp. counts

- Increase in the height of intestinal villi
- Increase in the superoxide dismutase activity in serum

[147]

Condensed tannins
from grape
seed extract

Commercial broilers
supplemented with 125,
250, 500, 1000 and
2000 mg/kg for 42 days

- The doses of 125 to 250 mg/kg are the optimal doses
- No effects on growth performance or mortality
- Decrease in the malondialdehyde content in muscle tissue
- Increase in the glutathione levels in liver tissues
- Decrease in the serum cholesterol and low-density

lipoprotein levels

[148]

Eucalytus leaves
extract

Layers supplemented
with 0.8 g/kg. Birds
suffered from acute
ethanol-induced
oxidative damage
conditions

- Increase in glutathione peroxidase, superoxide dismutase,
and total antioxidant capacity

- Reduction in oxidative stress and protection of hepatic tissue
[149]

Resveratrol from
Polygonum
cuspidatum

Heat-stressed broilers
supplemented 350 and
500 mg/kg for seven
days (from 28 to
42 days old)

- Improvement of the average daily gain
- Reduction in corticosterone, adrenocorticotropic hormone,

cholesterol, triglycerides, uric acid, malonaldehyde, aspartate
aminotransferase, alanine aminotransferase, and lactate
dehydrogenase levels in serum

- Increase in triiodothyronine, glutathione, alkaline
phosphatase, total superoxide dismutase, catalase, and
glutathione reductase levels in serum

[150]

Resveratrol

Heat-stressed
commercial broiler
supplemented with 0.2,
0.4 and 0.6 g/kg

- Increase in broiler performance
- Increase in growth hormones [151]

Salix spp.

Heat-stressed
commercial broilers
supplemented with
0.025% and 0.05% in
their diet

- Reduction in serum cholesterol, triglycerides, alanine
transaminase and malondialdehyde

- Modulation of gastrointestinal microbiota (increase
in lactobacilli)

[152]

Turmeric rhizome
extract

Commercial broilers
supplemented with
0.1–0.3 g/kg

- Reduction in malondialdehyde
- Enhancement of the antioxidant enzyme activity
- No significant alteration in serum creatinine, total proteins, or

liver enzymes

[153]

Grape
Proanthocyanidins

Commercial broilers
supplemented with 7.5,
15 and 30 mg/kg for
42 days

- Improvement of animal performance, carcass traits, jejunum
morphology and the antioxidant status (increase in
superoxide dismutase and decrease in lipid peroxidation) by
doses of 7.5 and 15 mg/kg of proanthocyanidins

[154]
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Figure 6. Antioxidant effect of polyphenols as natural antioxidants. Polyphenols act as antioxidants
by the following two pathways: (1) scavenging of free radicals (direct) by (i) the transfer of H-atom(s)
from the OH group(s) of polyphenols to the free radical(s), (ii) transfer of single electrons to the
free radicals, and (iii) chelation of transition metal ions, particularly Fe2+ and Cu2+, to limit the
formation of HO•. (2) Activation of the synthesis of ROS-removing enzymes by activation of Nrf2,
which in turn translocates to the nucleus, binds to the antioxidant response elements (AREs), and
thus stimulates antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GPx). This figure was created by Biorender, modified by [153].

4.2. Triterpenes

Triterpenes constitute a large group of secondary metabolites in medicinal plants
and show anti-inflammatory, antiviral, antimicrobial and anti-tumor activities. They have
multiple immune modulatory effects. Some chemical structures of triterpenes with anti-
inflammatory effects are shown in Figures 7 and 8.

As an example, glycyrrhetinic acid was shown to enhance antibody titers in chickens
after vaccination against Newcastle disease [155], and steroidal saponins from Quillaja
saponaria and Yucca schidigera showed anticoccidial effects in broiler chickens at a dose of
250 mg/kg [156]. Ganoderma triterpenoids at a dose of 10 mg/kg were able to reduce the
tissue’s inflammatory status in chickens, exhibiting protective effects on the liver of the
animals exposed to cadmium (140 mg/kg) [157].
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Extracts of Panax ginseng that contained ginsenosides (triterpene saponins) were shown
to ameliorate the adverse effects of heat stress by improving the intestinal barrier integrity
in broilers, possibly by the upregulation of genes that encode tight junction proteins at a
dose of 90 mg ginsenosides/kg feed [158]. The supplementation of chickens with ginseng
improved the animal performance parameters, immunity, and meat quality [159–162]. The
supplementation of chicken feed with ginseng prong powder at a dose of 0.1% or 0.2%
significantly inhibited MDA in chicken breast and leg meat [159]. Additionally, the dietary
supplementation of broilers with 3% of ginseng marc considerably decreased mortality
and blood cholesterol levels and enhanced their carcass traits [154,160]. Similarly, a dose
of 500 mg/kg of feed of dandelion (Taraxacum), rich in the triterpene taraxasterol and its
derivatives, was reported to improve broiler performance by enhancing the tight junction
and intestinal microbiota [163]. The dietary supplementation of 225 mg/kg of red ginseng
root powder improved immune organ weight and increased hemoglobin and leukocytes in
broilers [164].
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4.3. Anti-Inflammatory and Antioxidant Phytogenic Feed Additives Used in Poultry
4.3.1. Boswellia Extracts

Boswellia trees (family Burseraceae) produce frankincense oil. The resin contains
volatile oils (3–8%) and triterpenes (30–60%), especially α- and β-boswellic acids, 11-
keto-boswellic acid (KBA), and 3-acetyl-11-keto-boswellic acid (AKBA) [165] (Figure 8).
Boswellia has an anti-inflammatory impact on the suppression of 5-lipoxygenase (5-LOX),
lowering cytokine levels (Ils and TNF-α), and decreasing ROS production. B. serrata (0.5, 1
and 1.5 g BS/kg diet) was shown to improve the antioxidant status, boost the globulin levels
and SOD, and stimulate the secretion of digestive enzymes (amylase and lipase), while
decreasing total cholesterol, LDL, and MDA in broilers [166]. The addition of Boswellia
(3% and 4%) to broiler chicken diets enhanced the body weight, digestion efficiency, and
carcass traits of the chickens [167]. B. serrata (containing 24% boswellic acids) and Salix
alba (containing 43% of salicin) at a dose of 0.3% in poultry feed for 12 weeks caused
considerably greater antibody titers against the infectious bronchitis virus in Leghorn
chickens. There were no variations in their performance metrics, blood analytes, or IgA
levels. However, a depressive effect, a drop in egg mass, and an increase in water intake
were observed [168].

4.3.2. Cannabis

Cannabis sativa L., C. indica Lam. and C. ruderalis Janisch belong to the Cannabaceae
family of dioecious flowering plants. Due to the cannabinoids included in cannabis, such
as the psychoactive tetrahydrocannabinol (THC) and the non-psychoactive cannabidiol
(CBD) (Figure 8), it has been used for decades as an analgesic, antispasmodic, and anti-
inflammatory drug (CBD) [169]. Phytocannabinoids are synthesized in the glandular
trichomes of the female Cannabis blooms [170]. These bioactive substances bind to the
receptors CB1 (primarily released in the brain), and CB2 (found mainly on immune cells).
It was shown that cannabis functions as an anti-inflammatory agent by upregulating T-
regulatory cells and downregulating cytokine and chemokine release [171]. Additionally,
exogenous cannabinoids have the potential as therapeutic agents for a variety of inflam-
matory disorders. In poultry, the Cannabis seed (0.3% in feed) alone or in combination
with dill (0.3% in feed) was found to promote the intestinal health and serum quality of
commercial broiler chickens [172]. This combination significantly reduced both AST and
ALT concentrations; however, the alkaline phosphatase concentrations were not affected.
CBD alone also showed beneficial effects in animal breeding [169] in chickens at a dose
of 15 g/kg. It was also found that C. sativa extract in combination with nano-selenium
improved gut integrity and influences the response to Clostridia infection [169].

4.3.3. Capsaicin

The primary capsaicinoid in chili pepper is capsaicin, a naturally occurring bioactive
compound (Figure 8). It has attracted considerable scientific interest for its multiple phar-
macological and biological functions, such as its ability to serve as an antioxidant [173]
and anti-inflammatory substance [174]. The phenolic hydroxyl group of capsaicin can
effectively lower the activity of free radicals by transferring hydrogen [175]. Moreover,
the phenolic hydroxy group prevents the production of free radicals that require metal
ions [176]. The anti-inflammatory activities of capsaicin may be explained by its modu-
lation of pro-inflammatory mediators [177]. In rats suffering from gastritis induced by
acetylsalicylic acid, capsaicin reduced the expression of genes that encode for TNF-α, IL-1β,
and IL-6, resulting in a decrease in the infiltration of inflammatory cells [178]. The tendency
of capsaicin to substantially diminish the release of COX-2 mRNA is thought to be the
reason for its anti-inflammatory effects [179].

Additionally, studies have shown that capsaicin suppresses free radical-induced ox-
idative DNA damage, lipid peroxidation, and oxidative degradation pathways [179,180].
The dietary supplementation of capsaicin at a dose of 150 mg/kg stimulated the appetite
of laying ducks, leading to increased feed intake and an improvement in egg production
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performance [181]. The authors suggested that these positive effects of capsaicin could
be attributed to the activation of the calcium signaling pathway and the antioxidant ef-
fects. According to Liu et al., supplementing diets with 80 mg/kg of natural capsaicin
extract could enhance broiler growth performance, nutrient digestibility, antioxidant status,
immunological functions, and carcass traits [179].

4.3.4. Cinnamaldehyde

Cinnamaldehyde (Figure 8) is the principal bioactive component in cinnamon, which
belongs to the family Lauraceae (rowan family). There are only a few species that are
economically important worldwide and these include Cinnamomum zeylanicum, C. cas-
sia, C. burmanni and C. loureiori [182,183]. The ingredients of cinnamon extract, such as
alkaloids, coumarins, curcuminoids, flavonoids, phenols, tannins, terpenoids, volatiles,
and xanthones, are well-known for their biological effects, including their antioxidative,
antimicrobial, and anti-inflammatory properties [182]. Cinnamaldehyde has been shown
to decrease the expression of several cytokines, such as IL-1 β, IL-6, and TNF-α, as well as
iNOS and COX-2, in in vitro studies [184]. Moreover, it stimulated the secretion of IL-10 in
LPS-activated murine macrophage-like cells (J774A.1).

Several in vivo studies confirmed that cinnamaldehyde has anti-inflammatory effects
that, for example, resulted in improved poultry immunity in terms of antigen presentation,
and humoral cellular immune responses [185]. Cinnamaldehyde dosages of 1.2 to 5.0 g/mL
activated macrophages to release larger quantities of NO, while a dose of 0.6 to 2.5 g/mL
inhibited chicken tumor cell proliferation. A dose of 10 and 100 µg/mL of cinnamaldehyde
exhibited anticoccidial effects against E. tenella [186]. In contrast, a cinnamaldehyde dose
of 14.4 mg/kg boosted the expression of pro-inflammatory cytokines IL-1, IL-6, IL-15,
and IFN-γ in vivo. Moreover, it was found that cinnamaldehyde improved the body
weight gain of chickens infected with E. acervulina or E. maxima [186]. More studies
are needed to determine whether cinnamaldehyde has an immunoregulatory effect in a
dose-dependent manner.

4.3.5. Curcumin

Curcuma longa (turmeric), which belongs to the family Zingiberaceae, is widely used as
a spice, food preservative and coloring agent, and for medicinal applications [187]. Since
the 19th century, various Curcuma species have been employed in medicine. The Curcuma
rhizome has an intense yellow color and contains curcumin (70% diferuloylmethane),
15% demethoxycurcumin, and 3% bis-dimethoxycurmarin [188] (Figure 8). Curcumin
was found to have antioxidant [189] and anti-infective activities, lowering the severity of
necrotic enteritis [190], salmonellosis [190,191], aflatoxicosis [192], and coccidiosis [193]. In-
deed, Curcuma is one of the strongest natural antioxidants with anti-inflammatory, antiviral,
antimicrobial, cleansing, anticancer, antioxidant, antiseptic, radioprotective, and cardiopro-
tective effects. It promotes pancreatic and liver functions and has a cleansing impact on the
blood [188]. In chicken macrophages, turmeric extract enhanced the expression of IL-1, IL-6,
IL-12, IL-18, and TNF superfamily 15 [194]. Several studies were also carried out to estimate
the impact of curcuminoids on the immune response of swine [195–198]. Curcuminoid
supplementation markedly decreased the mRNA expression patterns of IL-1β, mucin 2,
COX-2, and p38 MAPK in ileal mucosa [196] and serum TNF-α concentration [197]. In
conclusion, curcumin predominantly alters the p38 MAPK pathway, and thus suppresses
the downstream formation of IL-1β, IL-6, and TNF-α. In broilers, curcumin at a dose of
1000 and 2000 mg/kg feed decreased the lipid profile in the liver and plasma and altered
the expression of genes involved in lipogenesis and lipolysis, including acetyl CoA carboxy-
lase, fatty acid synthase, sterol regulatory element-binding protein 1C, ATP-citrate lyase,
peroxisome proliferator-activated receptor-α, and carnitine palmitoyl transferase-I [199].
Yadav and co-workers found that the antioxidant activities, lesion severity, and shedding of
oocysts in commercial broilers were positively affected by curcumin at a dose of 200 mg/kg
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feed. It was also suggested that curcumin alone or in combination with other bioactive
substances could enhance intestinal health in commercial broilers [198].

4.3.6. Ginger Extracts

Ginger rhizome (Zingiber officinale Roscoe, Zingiberaceae) is believed to be native to
the Indian subcontinent and other regions of Southern Asia. It is a valuable plant with
numerous ethnomedicinal and nutritional properties, and it is frequently employed all over
the world as a spice, flavoring, and herbal remedy [200]. Ginger is rich in many bioactive
substances, including phenolics and terpenes. The phenolic substances, primarily gin-
gerols (Figure 8), shogaols, and paradols, are responsible for numerous bioactivities [201].
Indeed, various reports suggest that ginger and its compounds have antioxidant [202],
anti-inflammatory [203], antibacterial [204], and anticancer [205–207] properties. In poultry
farming, dietary supplementation of ginger powder at a dose of 10 or 20 g/kg feed exhib-
ited an antioxidant effect by increasing SOD, GSH-PX, and the total antioxidant capacity
(T-AOC) but decreased the MDA levels in serum. It also increased the SOD and decreased
MDA levels in the egg yolk in a dose-dependent manner [208]. The antioxidant components
such as gingerols, shogaols, gingerdiols, gingerdiones and some related phenolic ketone
derivatives are probably responsible for the improved antioxidant status of ginger powder
supplementation [208–210]. Ginger inhibited lipid peroxidation by enhancing the oxidative
processes [208].

The ginger extract obtained from Zingiber officinale and Alpinia galanga inhibited the
expression of numerous genes associated with the inflammatory processes [200]. It reduced
prostaglandin synthesis [211] by inhibiting COX-1 and COX-2. Additionally, it also blocks
leukotriene synthesis by suppressing 5-LOX [200]. More recently, it was established that gin-
ger extract enhances the immune system, and boosts the antioxidant and anti-inflammatory
capacities of layers [211].

4.3.7. Piperamides

Black pepper (Piper nigrum), which belongs to the family Piperaceae, is rich in GPx and
glucose-6-phosphate dehydrogenase [212]. Black pepper is employed in Eastern medicine
for the treatment of pain symptoms and infections. The piperine analogue piperlongumine
(Figure 8) has antioxidant properties [213], and can enhance the uptake of selenium, vi-
tamin B complex, beta-carotene, and curcumin [188,214]. Abou-Elkhair et al. found that
dietary supplements with 0.5% black pepper improved the animal performance and health
status of commercial broilers. It has a strong action against free radicals and influences
benzopyrene metabolism through cytochrome P450, which is crucial for the metabolism
and transportation of xenobiotics [215]. The compound promotes the thermogenesis of
lipids [216] and increases the flow of digestive juice [217]. It helps in maintaining the
circulatory system of the liver and provides protection against DNA damage. Piperine also
showed some benefits regarding the ultrastructure of intestinal microvilli and gut motility,
which improved the absorption of micronutrients.

It is also interesting to note that the guineensin extract obtained from black pepper
has anti-inflammatory activity, inhibiting the uptake of endocannabinoids by the cells.
Reynoso-Moreno et al. [218] assessed the effects of guineensin on endotoxemia and acute
inflammation in mice models. The strong pharmacological action of guineinin may also
add to the anti-inflammatory effects of black pepper [188,218].

It was shown that piperlongumine is effective against LPS-induced disrupted en-
dothelial barriers in cell and animal models [219]. It also suppressed IL-6 and TNF-α by
inhibiting the stimulation of NF-κB and extracellular signal-regulated kinase (ERK). In
prostate cancer cells, piperlongumine showed anticancer action, including the suppression
of NF-B activity [220], which in turn diminished the reduction in trafficking of p50 and p65.

In broilers, black pepper supplementation improved their body weight. However, it
did not affect the feed intake, carcass yield, or relative weights of internal organs, including
the liver, gizzard, proventriculus, heart, spleen, thymus, and bursa of Fabricius. In addition,



Vet. Sci. 2023, 10, 55 18 of 29

the serum parameters (total protein, albumin, globulin, glucose, cholesterol, triglyceride,
and liver enzymes) did not exhibit a significant effect [221–223]. In another study, it was
found that body weight gain was not influenced by black pepper supplementation [224]. In
contrast, Al-Kassie and co-workers found that the supplementation of broilers with a mix-
ture of Piper nigrum and Capsicum annum black pepper improved the animal performance
and reduced their blood cholesterol level [225].

4.3.8. Salix Extracts

The bark and leaves of willows (genus: Salix, family: Salicaceae) contain salicin
(Figure 8) and its derivatives, including polyphenols, and flavonoids. The biological activi-
ties of Salix extracts, including its antioxidant, anti-inflammatory, analgesic, and antipyretic
properties, have been repeatedly documented [226]. The underlying mechanism involves
the suppression of TNF-α, IL-1ß, IL-6, cyclooygenase-1 (COX-1), and COX-2 expression.
The efficacy of Salix has also been studied in poultry. Salix babylonica extract improved
animal performance and the heat tolerance of broilers kept under constant heat stress
(35 ◦C) [227].

In commercial broilers, Salix L. bark powder at a dose of 0.05% in their diet exhibited a
lower MDA, GSH, and lipid peroxidation indicator (thiobarbituric acid reactive substances)
in the liver tissues. However, no significant effect of hepatic SOD activity was found. More-
over, Salix L. bark modulated the gut microbiota by increasing Lactobacilli, and decreasing
E. coli and staphylococci [228]. S. alba bark extract (1% of diet) induced hypocholesterolemia
and reduced the proliferation of pathogenic bacteria (Enterobacteriaceae, E. coli and Staphylo-
cocci) in the caecum, but did not show significant differences of the growth performance in
broilers [229].

4.3.9. Thyme

Multiple studies have documented the properties of thyme and its essential oils, par-
ticularly the monoterpenes, thymol and carvacrol (Figure 8), against a variety of disorders.
Thymol and carvacrol possess multi-pharmacological capabilities, including antioxidant
and anti-inflammatory properties. Thyme supplementation at a dose of 2% reduced the
levels of cholesterol, total saturated fatty acids, and MDA, while it increasedω−3 fatty acid
contents in egg yolk. However, it reduced the serum cholesterol and triglyceride levels and
increased antibody titers against sheep red blood cells (SRBC) [230]. Thyme oil reduced
the synthesis and gene expression of TNF-α, IL-1B, and IL-6 in activated macrophages in a
dose-dependent manner, with upregulation of IL-10 secretion [231].

Additionally, it inhibited dendritic cell maturation and stimulation of T cell prolif-
eration in vitro [232]. Among other pathways, thymol was found to inhibit the phospho-
rylation of NF-κB and MAPKs, and downregulated IL-6, TNF-α, iNOS and COX-2 in
LPS-stimulated murine mammary epithelial cells [233]. Thymol at a dose of 10, 20, and
40 µg/mL also prevented the activation of the MAPKs I-B, NF-B p65, ERK, JNK, and p38
in mouse mammary epithelial cells in a dose-dependent manner that had been activated
by LPS [233,234]. The anti-inflammatory properties of thyme suggest that it is suitable
for use in animal production, as shown in the previous studies. In poultry, it has been
demonstrated that thyme oil at a dose of 100 mg/kg also promotes the secretion of digestive
enzymes, which enhances nutrient digestion [235]. However, no significant effects on the
growth performance were observed. Supplementation of the diets with 5 g/kg of thyme oil
reduced the pro-inflammatory mediators and improved the immune system and animal
performance of broilers [234].
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5. Challenges and Future Prospects

Phytogenic compounds have been evaluated as potential alternatives to antimicrobials
in poultry [88]. However, the bioavailability, rate of absorption, and cost-effective delivery
methods for phytogenic compounds make their feasibility and application on a commercial
scale complicated [236]. The efficacy of phytogenic compounds has not been regulated
since most of these compounds are generally accepted as safe by the US Food and Drug Ad-
ministration. As a result, the efficaciousness of polyphenolic compounds derived from the
same origin and manufacturers may vary. For example, the stoichiometry and stability of
flavonoids depend on several factors, including the plant origin and quality, as well on the
method of extraction [237]. Additionally, antioxidants that bear only one hydroxyl group,
such as ferulic acids, do not chelate metals [238]. Although the biochemical structure of
polyphenols results in their high biological activity as antioxidants in vitro, their biological
efficiency in animals is hindered, due to the poor oral bioavailability of the polyphenols,
which is explained by the contradictory findings from both in vivo and in vitro experi-
ments [239,240]. The lower efficiency of polyphenols in vivo could be attributed to the
following several factors [236]: (i) the low uptake and assimilation of polyphenolic sub-
stances may lead to insufficient minimal concentrations in target tissues, meaning they are
not effective as scavengers of free radicals; (ii) the extensive biotransformation that occurs in
the liver and intestinal tract may influence the functional forms of these substances, which
in turn adversely impacts biological activities, including the antioxidant properties [142],
and/or (iii) they may be metabolized and quickly eliminated from the bloodstream [241].
For these reasons, the observed in vivo antioxidant effects could be indirect effects that
occur through the upregulation of antioxidant defenses by the substantial protective effect
in the gastrointestinal tract and their effects on Nrf2 and NF-κB [140]. Therefore, methods
to improve the bioavailability and absorption of polyphenolic compounds, but also of other
phytogenic compounds, urgently require further investigation.

Dietary inclusion of unprotected natural compounds, in particular polyphenolic com-
pounds, is not cost-effective, since most phytogenic compounds are degraded in the upper
small intestine [242]. Mainly driven by this fact, microencapsulation is a promising method
to protect bioactive phytogenic substances from oxidation, and degradation during storage,
and to increase their bioavailability in piglets [243]. This method also reduces the early
degradation of the compound in the small intestine, and thus ensures its delivery to the
lower intestinal tract. For microencapsulation, the following two main carriers have been
described: polymer-based particles and lipid-based particles. Polymer-based particles, such
as polysaccharide protein scaffolds, are stable both thermally and mechanically. They are
also characterized by their nutritional value, affordability, and ease of production. Never-
theless, there are still some limitations due to their low loading capacity, low encapsulation
efficiency, and release into the gastrointestinal tract [244]. An alternative method using
alginate–whey protein as a carrier to increase the delivery of carvacrol in the chicken intes-
tine has been evaluated [245]. Compared to the administration of unprotected carvacrol,
the alginate–whey protein microparticles increased the amount of monoterpene in the
ileum by 17%.

Lipid-based particles demonstrate considerable encapsulation efficiency, loading ca-
pacity, and releasing ability in the gastrointestinal tract. Examples of these particles include
liposomes and vegetable oils. Their low mechanical and thermal stabilities, however,
are a drawback. Liposomes cannot be used for mass production due to their high costs,
challenging preparation procedures, and constrained capacity [246].

Another factor that impacts the bioavailability and absorption of phytogenic sub-
stances that must be considered is the intestinal microbiota. Lactic acid bacteria derived
from chicken cecal contents have been shown to increase the bioavailability of flavonoids
by increasing flavonoid hydrolysis, but this was affected by the carbon source available for
microbial fermentation [247]. Optimizing the method of encapsulation and understanding
the impacts of microbial fermentation on the rate of degradation and kinetics of phytogenic
compounds are also required [236].
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Taken together, the variability due to the volatility of many phytogenic compounds,
the method of encapsulation, and the factors within the hosts need to be considered
when further evaluating these compounds. The evaluation of the antioxidant activities of
different bioactive substances, especially when evaluating the synergistic effects of multiple
compounds, is of major interest.
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