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Abstract

In recent years, the market of wireless communication, radar, applications for car-to-car

communication, the internet of things and industry 4.0 has lead to a skyrocketing demand

for high spectral purity signal generation. Maintaining stable radio frequency signals is

key to the new communication standards enabling high-order modulation schemes, and thus

high data transfer rates. High quality factor resonators are required to meet this ever-rising

demand. These can hardly be attained by current complementary metal-oxide-semiconductor

process-compatible devices such as conventional LC-based structures which suffer from

severe inductive cross-coupling and large device footprints. To fill in the gap, modern

micro-electro-mechanical-system devices, like the resonant body transistors, offer excellent

quality factors at high frequencies. Furthermore they can be fabricated monolithically in the

front-end-of-line of the complementary metal-oxide-semiconductor stack with no additional

post-processing. Resonant body transistors are constructed from a periodic series of planar

driving field-effect transistors which resonate mechanically upon electrical excitation which

leads to a modulation of the current in the sensing field-effect transistors.

The thesis aims to gain insights into the fundamental electromechanical behaviour of a

particular resonant body transistor, the so-called resonant fin transistor. The device promises

exceptional figures of merit such as a quality factor of 49 000 at a resonant frequency of

32 GHz. These figures of merit are investigated by simulations and characterisations of fabricated

micro-electro-mechanical-systems, to evaluate the viability of its commercial application.

In the first part of this thesis, the anisotropic material parameters of complementary

metal-oxide-semiconductor technologies are discussed with respect to their importance for this

kind of device with regard to a later theoretical modelling approach.

The theoretical investigation in the second part is carried out using the finite-element method,

which provides the electromechanical framework for the simulation of the resonator. It links

the principles of electrostatic actuation of the mechanical eigenmodes to the piezoresistive

modulation of the charge carrier mobility. Simulations of the front-end-of-line at a fixed

quality factor of 49 000, however, deliver a strongly degraded transconductance several orders

of magnitude lower than anticipated.

In the third part, the mechanical properties of a phononic crystal mirror in the back-end-of-line

are assessed using both analytic and finite-element approaches in a one-, two- and

three-dimensional setup. Here, the importance of band gaps within the mechanical dispersion

relation, which are matched to both frequency and the wave vector of the cavity mode, is discussed

i



in the presence of highly anisotropic mechanical materials. The investigation indicates the

absence of a matched band gap leads to a much lower quality factor of the resonant fin transistor

by several orders of magnitude than originally reported in the literature. The performance of

the resonant fin transistor is also assessed in a combined study of both the front-end-of-line and

back-end-of-line showing an insufficient overall performance making it unsuitable for circuit

applications from a theoretical standpoint.

The final part of this work describes the layout and design process of a resonant fin

transistor on a 16 nm fin field-effect transistor technology node. Due to the high complexity,

new manufacturing techniques are developed and verified. After a successful integration of

the resonant fin transistor, which was confirmed by scanning electron microscope imaging

and high frequency silicon wafer measurements, the overall resonator functionality of the

resonator could not be confirmed. The experimental result thus substantiates the theoretical

investigation and confirms the accuracy of the finite-element method for the analysis of novel

micro-electro-mechanical-systems.
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Zusammenfassung

In den letzten Jahren hat die Entwicklung des Marktes für drahtlose Kommunikation,

Radartechnik, Anwendungen für Auto-zu-Auto Kommunikation, das Internet der Dinge und

die Industrie 4.0 eine massive Nachfrage nach spektral reiner Signalgenerierung ausgelöst.

Die Erzeugung stabiler Hochfrequenzsignale ist für die neuen Kommunikationsstandards,

die hochwertige Modulationsschemata ermöglichen und somit hohe Datenübertragungsraten

gewährleisten, von entscheidender Bedeutung. Um dem kontinuierlich steigenden Bedarf gerecht

zu werden, sind Resonatoren mit hohem Gütefaktor erforderlich. Diese werden jedoch mit den

aktuellen komplementären Metalloxid-Halbleiter kompatiblen Resonatoren wie beispielsweise

traditionelle LC-basierte Strukturen kaum erreicht, da diese unter starker induktiver

Kreuzkopplung und großen Bauteilabmessungen leiden. Um diese Lücke zu schließen, bieten

moderne Mikro-Elektromechanische-Systeme wie zum Beispiel Resonanzkörpertransistoren

hervorragende Gütefaktoren bei hohen Frequenzen. Des Weiteren können sie monolithisch im

Front-End-of-Line des komplementären Metalloxid-Halbleiter Prozesses gefertigt werden, ohne

dass weitere Nachbearbeitungsschritte erforderlich sind. Resonanzkörpertransistoren bestehen

aus einer periodischen Reihe von planaren Antriebsfeldeffekttransistoren, die bei elektrischer

Anregung in eine mechanische Schwingen versetzt werden, was wiederum zu einer Modulation

des Stroms in den Sensorfeldeffekttransistoren führt.

Die Arbeit zielt darauf ab, tiefere Einblicke in das grundlegende elektromechanische Verhalten

eines speziellen Resonanzkörpertransistors, des sogenannten resonanten Fin-Transistors, zu

gewinnen. Der Resonator verspricht hervorragende Leistungsmerkmale wie zum Beispiel eine

Güte von 49 000 bei einer Resonanzfrequenz von 32 GHz. Diese Kennzahlen werden durch

Simulationen und Messungen des gefertigten Mikro-Elektromechanischen-Systems untersucht,

um die Realisierbarkeit einer kommerziellen Nutzung zu evaluieren.

Im ersten Teil dieser Arbeit werden die anisotropen Materialparameter von komplementären

Metalloxid-Halbleiter-Technologien im Hinblick auf ihre Bedeutung für diese Art von Resonator

und im Zusammenhang mit einer späteren theoretischen Modellierung diskutiert.

Die theoretische Untersuchung im zweiten Teil wird mithilfe der Finiten-Elemente-Methode

durchgeführt, die das elektromechanische Rahmenwerk für die Simulation des Resonators

bereitstellt. Sie verknüpft die Prinzipien der elektrostatischen Anregung der mechanischen

Eigenmoden mit der piezoresistiven Modulation der Ladungsträgerbeweglichkeit. Die

Simulationen im Front-End-of-Line bei einer festen Güte von 49 000 liefern jedoch eine stark

degradierte Transkonduktanz, die mehrere Größenordnungen niedriger ausfällt als ursprünglich
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erwartet.

Im dritten Teil der Arbeit werden die mechanischen Eigenschaften eines phononischen

Kristallspiegels im Back-End-of-Line mithilfe analytischer und Finite-Elemente-basierter

Ansätze in ein, zwei und drei Dimensionen betrachtet. Hier wird die Bedeutung von Bandlücken

innerhalb der mechanischen Dispersion, die sowohl mit der Frequenz als auch dem Wellenvektor

der resonanten Mode übereinstimmen, in der Anwesenheit hoch anisotroper mechanischer

Materialien diskutiert. Die Untersuchung deutet auf ein Fehlen einer passenden Bandlücke

hin was zu einer um mehrere Größenordnungen geringeren Güte des resonanten Fin-Transistors

führt als ursprünglich in der Literatur berichtet wurde. Die Funktionalität des Resonators

wird auch in einer kombinierten Studie von dem Front-End-of-Line und Back-End-of-Line

bewertet, welche jedoch eine unzureichende Funktionalität aufzeigt und den Resonator deshalb

aus theoretischer Sicht für Schaltungsanwendungen als ungeeignet identifiziert.

Der Abschluss dieser Arbeit beschreibt den Layout- und Designprozess eines resonanten

Fin-Transistors auf einem 16 nm Fin-Feldeffekttransistor-Technologieknoten. Aufgrund

der hohen Komplexität werden neu entwickelte Fertigungstechniken vorgestellt und

verifiziert. Trotz einer erfolgreichen Integration des resonanten Fin-Transistors, welche durch

Rasterelektronenmikroskopie und hochfrequente Siliziumwafer Messungen überprüft wurde,

konnte die Funktionalität des Resonators letztendlich nicht bestätigt werden. Das experimentelle

Ergebnis untermauert die theoretischen Resultate und bestätigt die Genauigkeit der

Finiten-Elemente-Methode zur Untersuchung neuartiger Mikro-Elektromechanischer-Systeme.
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1
Introduction

In 1947 W. Shockley, J. Bardeen and W. Brattain developed the first working transistor at the Bell

Laboratories [Bardeen and Brattain 1948]. The invention revolutionised electronics as transistors

became omnipresent. Some years later, in 1954, C. S. Smith discovered the piezoresistive effect

in silicon, which ultimately led to the creation of the first semiconductor sensors [Smith 1954].

They outperformed at that time prevalent metal-based solutions and nowadays they still shape

and advance the scope of modern integrated circuits (ICs) [Fischer et al. 2015].

Early implementations of the piezoresistive effect were used in strain and acceleration gauges

where a mechanical deformation leads to a measurable change in conductivity of the material,

also giving them the nowadays widely used name micro-electro-mechanical-systems (MEMSs).

While the basic principles remained unchanged over the last decades since their invention, the

breadth of implementation and complexity increased. In the consumer market, MEMSs are

found in many applications nowadays. Every mobile device contains MEMS serving different

purposes as microphones [Bogue 2013], gyroscopes [Serrano 2013; Patel and McCluskey 2012;

Fischer et al. 2015] or multi-axis accelerometers [Bogue 2013]. In weather stations for home

application, MEMS are integrated as pressure, humidity or thermal sensors [Setiono et al. 2019;

Randjelović et al. 2008; Huang et al. 2015; André et al. 2017; Jaeger et al. 2000]. Their range

of applications is not limited to sensing as they can also manipulate their surroundings and vice

versa. MEMS in micro-mirror arrays mould the flow of light in projectors or heads-up display

applications as small-scale integration and high actuation speeds over a broad light spectrum

are required [Qu 2016].

With the meteoric rise of 6G, radar, car-to-car communication, the internet of things

and industry 4.0, the need for a higher spectral purity signal generation is also rising

[Wikstrom et al. 2020; Reichardt et al. 2012; Lacaita et al. 2007]. Consequently, stable

radio frequency (RF) signals with high spectral purity are vital to enabling these new

communication standards, which is challenging to achieve with conventional LC-based solutions

[Stillmaker and Baas 2017; Lee et al. 2005]. MEMSs are promising candidates to fill the gap in

frequency generation and filtering as their operating frequency and quality factor (Q-factor) is
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Chapter 1 Introduction

far superior to existing solutions [Wikstrom et al. 2020; Reichardt et al. 2012; Lacaita et al. 2007;

Nguyen 2007; Nguyen 2005; Ostman et al. 2006].

Modern solidly mounted MEMS resonators are typically divided into two device classes:

bulk acoustic-wave (BAW) and surface acoustic-wave (SAW) devices. Surface acoustic-wave

resonators use interdigital transducers to create lateral mechanical waves from electric signals

and vice versa. The mechanical waves travel along the surface of a piezoelectric material, such

as LiTaO3 or LiNbO3 [Wu et al. 2016; Zhu et al. 2016; Kourani et al. 2019; Gao et al. 2020;

Gao et al. 2016; Shao et al. 2019; Jiang et al. 2019; Hsu and Lin 2018]. Using interference

of mechanical waves created by multiple transducers, it is possible to design efficient filters

or delay elements within ICs. However, their frequency is typically limited to a few hundred

megahertz which strongly depends on the ratio of the surface wave velocity and the interdigital

transducer pitch [Hashimoto 2012].

The bulk acoustic-wave resonators create a vertical standing wave within the piezoelectric

material, using a top and bottom electrode rather than laterally spaced electrodes at the

device surface. Typical piezoelectric materials involved are AlN, GaN or ZnO [Popa 2015;

Krishnaswamy et al. 2006; Loebl et al. 2004]. Their natural frequency is limited by the thickness

of the active material, which defines the wavelength of the standing mechanical wave. Bulk

acoustic-wave resonators can be manufactured using bulk or surface machining, both of which

are costly procedures and generally considered unfriendly for integration to complementary

metal-oxide-semiconductor (CMOS) technologies [Fischer et al. 2015; Fedder et al. 2008;

Qu 2016]. They can be further differentiated into film bulk acoustic-wave resonators (FBARs)

and solidly mounted resonators (SMRs) [Liu et al. 2020]. Film bulk acoustic-wave resonators

are fabricated using released piezoelectric films, decoupling them acoustically from their

surroundings [Razafimandimby et al. 2013; Popa 2015; Yang, Lu, et al. 2018; Yang et al. 2016;

Reddy and Mohan 2012; Bi and Barber 2008; Krishnaswamy et al. 2006]. Their resonant

frequencies are in the megahertz to low gigahertz range, allowing their deployment within

several 4G and 5G applications. However, their manufacturing requires extensive processing

steps during the release of the thin film structure.

A novel approach avoids the complex processing steps by mounting the thin film directly to

the substrate as a solidly mounted resonator. To minimise acoustic losses in the carrier structure,

they rely on acoustic Bragg mirrors embedded in the substrate [Bi and Barber 2008]. They are

constructed from alternating layers with a high acoustic impedance mismatch, such as tungsten

and SiO2. Under careful optimisation of the involved layer thicknesses, an acoustic mirror at

the resonant frequency of the MEMS can be created [Ruby 2007]. Since bulk acoustic-wave

and surface acoustic-wave are manufactured using deposition and lift-off techniques and CMOS

incompatible materials, they are commonly manufactured as stand-alone devices on external

chips. The required bonding of the external MEMS to the main IC severely limits the performance

[Fischer et al. 2015; Qu 2016; Fedder et al. 2008].

Monolithically integrated resonators greatly benefit the application, such as reduced system
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complexity, form factor and cost, as they can be processed natively within the CMOS process

and thereby improve signal integrity by removing the need for off-chip frequency generation.

CMOS-compatible monolithic MEMS are typically classified into three main process categories:

pre-CMOS, inter-CMOS and post-CMOS, based on the order they are fabricated in conjunction

with the CMOS flow [Fedder et al. 2008]. In the first type, also called "MEMS-first", the

devices are fabricated before the CMOS process in the recess edge of the silicon wafer.

The inter-CMOS or "MEMS-in-the-middle" process interleaves CMOS fabrication steps with

polysilicon deposition and micro-machining. Pre-CMOS and inter-CMOS were originally

designed for accelerometers and gyroscopes. However, dedicated foundries are required due to

the particular procedure, which is one of the main drivers for the increased cost associated with

those options. The post-CMOS or "MEMS-last" process offers more flexibility and reduced

manufacturing cost because the MEMS is fabricated independently after the CMOS flow. This

category can be further divided into additive and subtractive post-CMOS MEMS. The additive

process deposits CMOS-compatible materials on top of the finished IC. The subtractive process

etches existing material to build the MEMS but usually forces stricter design rule checks on the

underlying CMOS IC [Fischer et al. 2015; Qu 2016; Peroulis et al. 2012; Qu 2016; Lu 2009].

Although they are compatible with the CMOS flow, their manufacturing is costly and challenging

[Pachkawade et al. 2013; Valle et al. 2021].

A promising candidate for monolithically integrated MEMS is the unreleased resonant body

transistor (RBT), which contrary to suspended MEMS which often times feature airgaps is

in full contact with the supporting structure in all directions [Razafimandimby et al. 2013;

Weinstein 2009; Bahr et al. 2018]. It combines a mixture of capacitive actuation and active

field-effect transistor (FET) sensing and potentially achieves exceptional transconductances and

Q-factors. Furthermore, its resonant frequencies are over tens of gigahertz due to its small

mechanical feature size while perfectly compatible with the standard CMOS flow. On a modern

fin field-effect transistor (FinFET) platform, it allegedly achieved the largest ever reported Q f

product of 1.57 × 1015.

To further assess the potential of the RBT on a 16 nm FinFET technology node, a thorough

theoretical investigation of the performance using the finite-element method (FEM) and

subsequent on-wafer characterisations of the fabricated devices are carried out in this thesis.

In Chapter 2 the fundamentals of the CMOS process are introduced and an overview of the

back-end-of-line (BEOL) and front-end-of-line (FEOL) is given. The focus is after that shifted

to the novel class of existing RBT devices in planar technologies. Their operation is based on a

mechanical eigenmode within the FEOL confined by index guiding of the substrate wafer and

BEOL phononic crystal. The differential electrostatic actuation and active FET sensing lead

to transconductances in the low micro siemens range, which is improved by several orders of
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Chapter 1 Introduction

magnitude by moving from a planar FET to a vertical FinFET technology.

In Chapter 3 the mechanical properties of typical CMOS materials are introduced to enable

a subsequent use in the FEM. Here the focus is geared towards cubic anisotropic materials

such as silicon and copper, which exhibit a varying mechanical response depending on

their crystallographic orientation. The main elastic parameters, namely Young’s modulus,

shear modulus and Poisson’s ratio, and the wave propagation response in the crystallographic

frame, which are required for later modelling of the resonant fin transistor (RFT), are introduced.

In Chapter 4 the mechanical equations of motion used in the FEM are derived from the

Lagrange equations. Additional concepts, which are required for the investigation of a resonant

structures, such as damping, eigenmodes and various solution methods, are also discussed.

In Chapter 5 the FEOL of the RFT is modelled with the FEM on a simplified three-dimensional

(3D) periodic unit cell. In the first part, the resonant eigenmodes and index guiding properties are

discussed in dependence on the underlying wafer orientation. After establishing a well-guided

RFT mode, the simulation setup is calibrated to capacitive measurements of the structure. To

further reduce the computational complexity symmetry simplifications are discussed in the

presence of anisotropic materials and varying Poisson’s ratios. Different geometrical FinFET

variations are compared for their simulated electromechanical frequency domain response at

various electrical bias and drive conditions. Also discussed is the performance of a larger

simulation volume using multiple parallel resonant gates or a larger number of fins with a

different wiring scheme. In the second part, the transconductance of the RFT is modelled

using the piezoresistive effect of silicon for various wafer orientations and simulation setups.

Ultimately the impact of a varying Q-factor on the transconductance of the simulated RFT is

discussed, as discrepancies to the reported values in the literature exist.

In Chapter 6 the phononic crystal properties of the BEOL in one-dimensional (1D) and

two-dimensional (2D) simulations using equivalent isotropic materials are addressed. Here the

formation of acoustic band gaps tailored to the RFT frequency and propagation wave vector

are discussed for different BEOL stack variants. Using a 2D approximation, the full RFT

is simulated, including the complete CMOS layer and the impact of a matched band gap on

the Q-factor of the RFT. Most simplifications are dropped in a final 3D investigation of the

BEOL, including all mechanical anisotropic effects. Their impact on the band structure and

gap formation is discussed concerning the performance of the RFT. The chapter is concluded

with an analysis of the fundamental Q-factor limits, which further substantiate the observed

discrepancies with existing literature.
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In Chapter 7 the design and fabrication of the RFT in a 16 nm FinFET Technology node

are covered. Here the required process adaptations for the successful structure fabrication

are verified with on-wafer measurements and a scanning electron microscope. Ultimately the

measurement limits and performance of the RFT are compared to the initial theoretical analysis.

The lacking functionality of the RFT, which could ultimately not be verified, is in line with the

foregone theoretical investigations, and thus challenges existing literature.
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2
CMOS Compatible Front-End-of-Line

Micro-Electro-Mechanical-Systems

Contents

2.1 The CMOS Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Front-End-of-Line . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 The Back-End-of-Line . . . . . . . . . . . . . . . . . . . . . 10

2.2 A Fully Integrated CMOS Front-End-of-Line MEMS . . . . . . . . . 11

2.2.1 An Introduction to Phononic Crystals . . . . . . . . . . . . . 11

2.2.2 The Resonant Body Transistor . . . . . . . . . . . . . . . . . 13

2.2.3 The Resonant Fin Transistor . . . . . . . . . . . . . . . . . . 17

The electrical and mechanical properties of the commonly used complementary

metal-oxide-semiconductor (CMOS) layer for standard integrated circuits (ICs) design

are a key building block for the design of novel mechanical resonators. After

the introduction of planar field-effect transistor (FET) and fin field-effect transistor

(FinFET) technologies and their interconnection in the back-end-of-line (BEOL),

the new class of fully monolithic front-end-of-line (FEOL) resonators and their

compatibility with the CMOS process are discussed. Here the working principle

and performance numbers of a resonant body transistor (RBT) on an advanced FinFET

node are introduced.

2.1 The CMOS Layer

Current CMOS implementations contain two regions, the FEOL and BEOL, as sketched in

Figure 2.1(a). The FEOL houses all silicon-based devices, like active FETs, but also passives

such as diodes, resistors and metal-oxide-semiconductor (MOS) capacitors. Multiple metal

layers in the BEOL interconnect these devices. In addition to the wiring between the different

FEOL devices, the BEOL includes metal-based passives like inductors, resistors and capacitors.
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BEOL
FEOL

(a)

Gate
Source Drain

(b) Planar FET

Gate
Source

Drain

(c) FinFET

Figure 2.1: (a) Illustration of a CMOS layer with the FEOL and BEOL. Comparison of a (b) planar FET and (c)
tri-gate FinFET technology node.

2.1.1 The Front-End-of-Line

Starting from the bottom up, the choice of the wafer substrate material determines the later

use case of the devices. In current foundry scale applications crystallographically rotated

p-type doped silicon wafers are dominant for conventional ICs [Thompson et al. 2004;

Saitoh et al. 2008; Jaeger et al. 2013; Gallon et al. 2004]. Other semiconductor solutions

geared toward specific applications also exist. For high-power and high-electron-mobility

transistors (HEMTs), III/V semiconductors are the preferred choice over silicon. For released

micro-electro-mechanical-system (MEMS), differently oriented silicon wafers with beneficial

mechanical properties are also available and for low device leakage and power consumption

silicon-on-insulator wafers prevailed [Xu et al. 2016; André et al. 2017; Chandrahalim et al. 2007;

Gallon et al. 2004].

Using a combination of subtractive and additive processing techniques the FETs are fabricated

directly on the wafer. In older semiconductor technologies the devices and their arrangement

were planar, with the conductive channel being planar beneath the gate, as sketched in

Figure 2.1(b). The feature sizes of the FETs were in the range of 3 µm down to 22 nm

[TSMC 2021; Global Foundries 2021; Samsung 2021]. Historically the feature size or node of

the technology refers to a fraction of the tightest manufacturable pitch between adjacent gates,

typically the half pitch. It substantially influences the IC performance as it mandates the possible

current densities and IC footprint, to name a few [Mendiratta and Tripathi 2020]. Following

Moore’s law and the need for higher integration densities, planar FETs started suffering from

several undesired effects.

Classical constant electric field scaling worked well down to the 130 nm node. Here lateral

dimensions, layer thicknesses and supply voltages are scaled by the same ratio, resulting in

reduced power consumption and increased speed of the CMOS technologies. Increased leakage

currents of thin gate oxides could be mitigated by using thicker dielectrics or materials with a
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higher permittivity known as high-κ dielectrics. Even with these material innovations, further

scaling of planar technologies beyond 28 nm or 22 nm was limited. Shorter gate lengths lead

to increased leakage currents and drain voltage-dependent threshold voltages, also known as

drain-induced barrier lowering (DIBL), as a result of the reduced electrostatic control.

Planar FETs were replaced by vertical tri-gate devices, as sketched in Figure 2.1(c), also known

as FinFETs. The three-dimensional (3D) FinFET structure controls the electron channel from

three sides, which improves electrostatic control and enabled additional scaling for the 16 nm

and beyond technology nodes [Dennard et al. 1974; ITRS 2021]. Since the gate surrounds

the channel on three sides of the fin, it allows the gate to regain complete control over the

channel regardless of the length. All scaling issues of the planar FETs are alleviated, enabling

continued shrinking in newer technology node generations down to 3 nm [Robertson 2005;

Loubet et al. 2017; Parvais et al. 2009]. At the same time, it also offers higher performance

for the same lateral device footprint as the current density strongly increases in comparison to

planar FETs [Tang et al. 2001; Jurczak et al. 2009; Subramanian et al. 2006]. Since the gate

has complete control over the channel behaviour, current FinFET implementations have lightly

doped channels which offer better threshold voltage matching in the event of random doping

fluctuations [Jurczak et al. 2009]. To reduce the amount of dopant diffusion and leakage current

between the channel and the gate, high-κ dielectrics, such as HfO2 [Kavalieros et al. 2006;

ITRS 2021], were introduced. While they also enabled continued technology node shrinks

due to the thinner required layer thickness, the saturation current of the FET, which is directly

proportional to the equivalent dielectric thickness, was also improved [Sze 2014].

In 1954 C. S. Smith discovered a resistivity change in monocrystalline semiconductors,

such as silicon or germanium, when applying an external force. In the presence of stress,

the charge carrier density changes following a volumetric change of the specimen, which

causes a shift of the conduction and valence band [Smith 1954]. It was later used to

further improve the carrier mobility by additional high-strain layers on-top of the FET.

By applying either a tensile or compressive strain along the direction of the channel, the

electron or hole mobility of n-channel metal-oxide-semiconductor (NMOS) and p-channel

metal-oxide-semiconductor (PMOS) devices could be improved. This technique yields an

improved current at the same bias voltage, increasing the current density even further

[Smith 1954; Thompson et al. 2004; Jurczak et al. 2009; Collaert et al. 2016; Verheyen et al. 2006;

Liow et al. 2007; Kavalieros et al. 2006].

Although FinFETs provide solutions to many complications present in planar technologies,

they come with unique problems and challenges. Since the fabrication of semiconductor fins

is a complicated task requiring several etching steps, the surface roughness of the fin top and

side facets can be suboptimal. This leads to an increased carrier scattering in the channel.

Hence, the etching procedures must be tuned precisely and optimised to mitigate this issue

[Lee et al. 2011]. A further drawback originates from the tall aspect ratio, which reduces the

thermal conductivity, and thus intensifies the self-heating of the FinFET. This reduced thermal
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conductivity negatively impacts the reliability of interconnects to the BEOL and the electrical

performance [Liu, Wang, et al. 2014].

In newly emerging technology nodes, the FinFETs will soon be superseded by the

gate-all-around field-effect transistors (GAAFETs), also known as ribbon FETs, with even

better leverage of the vertical integrability as multiple channels are stacked vertically, all of

which are entirely surrounded by the gate [Bae et al. 2018; Loubet et al. 2017].

2.1.2 The Back-End-of-Line

The metallisation layer of the CMOS layer, the BEOL as sketched in Figure 2.1(a), is, in its most

straightforward description, responsible for the interconnection of the aforementioned FEOL

device. For this purpose, patterned metal and oxide layers are alternately deposited on the

FEOL. So-called "vias" handle the vertical connections between different metal layers. On the

surface, the BEOL offers the possibility to interconnect with packages or other chips by bonding

or bumping [Fischer et al. 2015; Lu 2009; ITRS 2021].

To interpose the delicate FEOL dimensions to the comparatively large IC interconnects,

the layer thicknesses and pattern dimensions increase throughout the BEOL, as sketched in

Figure 2.1(a). The lower metal layers have thicknesses in the sub-100 nm range and smaller

associated track widths required to interconnect the small FEOL devices. The track width

specifies the dimensions and spacings of adjacent wires, which is enforced by the design rule

check. For layers further away from the FEOL, the thicknesses and track widths are typically

larger. Also, the track directions, the dominant direction of the wires, are generally orthogonal

in these higher layers, which maximises structural integrity and reduces parasitic capacitances.

The final layers on top of the BEOL have a thickness in the micrometre range to reduce the sheet

resistance and provide higher structural integrity for the wafer packaging.

Originally the BEOL was constructed from SiO2 and aluminium. With the decrease in node

size of the FEOL and the subsequent rise in switching speeds, the BEOL had to be modified to

keep pace [Meindl et al. 2003]. Hence, aluminium was replaced with copper due to its lower sheet

resistance, thus significantly improving the performance [Nitta et al. 2003; Davis et al. 2001].

With further tightening bounds for the interconnection delay, SiO2 with the comparatively large

permittivity of 3.8 was insufficient as it limited the switching speed [Grill 2003; Gambino 2012].

It was thus replaced with a low-κ oxide, such as SiCO:H, with a permittivity of 2−2.8 . SiCO:H

is a high porosity variant of carbon-doped amorphous SiO2 fabricated using plasma-enhanced

chemical vapour deposition [Gambino 2012; McGahay 2010; Narayanan et al. 2002].

The improvements from using copper and SiCO:H are accompanied by more intricate

integration methods. In combination with copper SiCO:H suffers from material diffusion

resulting in reduced breakdown voltages and leakage currents [McGahay 2010]. This behaviour

is mitigated by an additional plasma annealing step which increases the integrity of the

brittle SiCO:H layer surface by forming a thin layer of SiO2. Further deposition of a thin
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copper seed layer with a subsequent fabrication of the entire metal layer alleviates the issue

completely [Gambino 2012; McGahay 2010; Narayanan et al. 2002]. Furthermore, copper

cannot be patterned by reactive ion etching, which was widely used for aluminium, requiring

the introduction of a "dual damascene" process, increasing complexity [Gambino 2012]. In

contrast to aluminium, copper is also a highly anisotropic mechanical material which puts

additional stress on the interconnects. These material properties degrade mechanical reliability,

especially in combination with porous SiCO:H, resulting in an increased failure of vias and higher

complexity packaging methods to bypass this issue [Basavalingappa et al. 2017; Gambino 2012].

Moreover, contamination of the FEOL with copper atoms must be prevented as deep trap

states in the silicon, introduced by the copper atoms, may lead to a complete device failure

[Brotherton et al. 1987].

2.2 A Fully Integrated CMOS Front-End-of-Line MEMS

While the electrical performance of the BEOL is a well-researched field, its periodic arrangement

of the different layers sparked interest in the field of monolithic MEMS design as it also exhibits

unique mechanical properties [Ionescu 2010; Weinstein and Bhave 2010; Bahr et al. 2014;

Bahr et al. 2015; Bahr et al. 2016; Bahr et al. 2018]. In contrast to released MEMS, where

mechanical losses occur predominately at the anchor points, unreleased monolithic devices are in

direct contact with their surrounding. Without appropriate mechanical confinement, they would

suffer from pronounced radiation losses, which impede their performance [Bahr et al. 2015]. One

mitigation approach leverages the periodic arrangement of the BEOL layers to create a phononic

crystal mirror which contributes to the mechanical confinement and leads to high quality factors

(Q-factors) of the monolithic devices [Bahr et al. 2016; Bahr et al. 2015; Khelif and Adibi 2016].

2.2.1 An Introduction to Phononic Crystals

Phononic crystals are artificial materials are constructed from mechanical scatterers arranged in a

periodic matrix. Such a structure possesses a band structure similar to the photonic band structure

in photonic crystals or the electronic band structure in semiconductors [Khelif and Adibi 2016;

Joannopoulos et al. 2008]. It describes the possible vibrational eigenmodes for the different wave

propagation directions supported by the structure. These supported eigenmodes are strongly

affected by the lattice’s elastic properties, periodicity and shape of the scatterers.

The propagation of mechanical waves within the periodic phononic crystal can be described

based on Floquet-Bloch theorem [Khelif and Adibi 2016]. Used on the smallest irreducible unit

cell of the periodic lattice, which is known as the Brillouin zone, the vibrational eigenmodes

of complex systems can be computed using the finite-element method (FEM) by solving the

discretised eigenvalue equation

[K − λM]φ = 0, (2.2.1)
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Figure 2.2: Phononic crystal made from parallel copper wires with the respective unit cell and Brillouin zone.
The corresponding mechanical band structure and band gap are plotted on the right. (Reprinted from
[Bahr 2016].)

where λ = ω2 is an eigenvalue of the system with the angular eigenfrequency ω. The

corresponding mechanical displacement eigenvector is given by φ. K and M are the acoustic

stiffness and mass matrices, respectively [Bathe 2014; Chopra 2012; Liu 2003; Rao 2010]. The

solutions of (2.2.1) along the perimeter of the irreducible Brillouin zone yield the band structure

of the structure, as shown exemplarily in Figure 2.2 for a square copper matrix embedded in

SiO2. The bands describe the dispersion relation of the vibrational eigenmodes concerning

their propagation direction within the phononic crystal. If the acoustic impedance Z = ρc,

where ρ is the density and c the speed of sound, of the scatterers and their surrounding medium

are strongly mismatched, the structure may exhibit so-called band gaps for specific frequency

ranges. Within these band gaps mechanical wave propagation is partially or fully prohibited,

regardless of the incident wave vector and the phononic crystal acts as a perfect mechanical

mirror [Khelif and Adibi 2016].

The formation of the band gaps follows from a destructive interference of the scattered

waves known as the Bragg mechanism. The first gap is typically observed at the frequency

ω = c/a, where c is the wave velocity and a the lattice period [Khelif and Adibi 2016;

Joannopoulos et al. 2008]. The attenuation strength increases with the number of

unit cell repetitions and is strongest close to the centre frequency of the band gap

[Hudeczek and Baumgartner 2020; Khelif and Adibi 2016; Goettler et al. 2010]. Construction

of a wide high-frequency gap is often challenging since the gap width scales inversely with

the lattice pitch, which is again limited by the manufacturing resolution [Bahr et al. 2015;

Khelif and Adibi 2016; Joannopoulos et al. 2008].

Phononic crystals have been successfully deployed in the reduction of anchor losses in released

MEMS structures [Hamelin et al. 2019], improved confinement in surface acoustic-wave devices

[Shao et al. 2019; Jiang et al. 2019; Ziaei-Moayyed et al. 2010] and as biological sensors

[Lucklum et al. 2010]. They were also demonstrated in the BEOL stack of a conventional
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(a)

(b)

Figure 2.3: (a) 2D FEM simulation setup and (b) corresponding y-stress patterns for the resonant mode. (Adapted
from [Bahr 2016].)

CMOS process in recent years. With adequate patterning of the stack, a phononic crystal with a

directional band gap was found, which enabled the manufacturing of the first entirely unreleased

FEOL MEMS with strongly increased figures of merit compared to existing released solutions

[Bahr et al. 2018; Weinstein 2009].

2.2.2 The Resonant Body Transistor

This relatively novel class of unreleased CMOS MEMSs, also known as RBTs, leverages

the full potential of the piezoresistive effect with a combination of electrostatic actuation

and active FET sensing enabled by the phononic crystal. This class of MEMSs promises

increased transduction, resonant frequencies in the double-digit gigahertz realm and increased

Q-factors above 1000. Additionally the full compatibility with the CMOS process is maintained

and additional performance improvements are expected with further technology node shrinks

[Weinstein and Bhave 2010].

RBTs can be manufactured from a periodic arrangement of FET transistors in the FEOL,

forming a waveguide with distinct mechanical eigenmodes [Bahr 2016; Bahr et al. 2016]. The

cross-section of the left half of a RBT design, showing the FEOL cavity and BEOL mirror, is

sketched in Figure 2.3(a). The mechanical target mode of the devices features a stress pattern

with opposing signs in neighbouring FETs of the cavity as plotted in Figure 2.3(b).

Since the waveguide is not released and in contact with the surrounding material in all

directions, the eigenmodes could quickly radiate away reducing the performance [Bao 2015;
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Choudhary and Iniewski 2013; Bahr et al. 2014]. Therefore, a vertical confinement of the

mechanical mode is required in order to minimise losses and improve the Q-factor, which

can be achieved with the help of a matched phononic crystal manufactured in the BEOL. The

best-performing waveguide modes favour the wave vector ky = π/a, where a is the pitch of the

FETs, which ensures a solid mechanical coupling of adjacent FETs. Hence the phononic crystal

must feature a preferably absolute band gap, as sketched in Figure 2.2, for the desired waveguide

mode frequency and wave vector.

However, such patterning as required for the phononic crystal is only possible in the BEOL.

To ensure confinement against substrate losses, the waveguide mode may not couple to the bulk

modes of the substrate material. Bulk modes feature the well-known linear dispersion relation

ω = kc, (2.2.2)

where c is the mechanical wave velocity in the substrate and k is the wave vector

[Khelif and Adibi 2016; Joannopoulos et al. 2008]. A continuum of states exists for all

frequencies above the so-called sound cone (2.2.2) and potential waveguide modes may couple

to those available states and radiate away, reducing the Q-factor, and thus the performance.

To prevent undesired mechanical substrate losses the resonant frequency of the RBT must be

designed with regard to the dispersion relations of the surrounding materials. Thus, the frequency

of the RBT must be sufficiently small to ensure confinement via total internal reflection at the

material interfaces [Khelif and Adibi 2016; Hsu and Lin 2018].

The mechanical eigenmode of the RBTs cavity, formed by the FETs, is driven by internal

electrostatic transduction which is achieved by wiring adjacent FETs as MOS capacitors, which

are biased in strong inversion [Bahr 2016]. The mechanical eigenmode is actuated by modulating

the voltage across the MOS capacitors, which leads to a deformation of the individual FETs. Such

actuation proved to be highly efficient, albeit having a dielectric material within the capacitor

structure, due to the lower spatial separation of the electrodes and higher permittivities involved

[Bahr 2016; Weinstein and Bhave 2007]. This driving principle is applied to the cavity through

differentially wired MOS capacitors within the waveguide. This connection scheme allows the

creation of a strong deformation profile matched to the wave vector of the desired propagating

eigenmode when actuated electrically at the mechanical eigenfrequency of the cavity [Bahr 2016;

Bahr et al. 2016].

Whereas released MEMS often rely on capacitive sensing, RBTs use the piezoresistive

effect of silicon to sense the deformation of the eigenmode as a modulation of the carrier

mobility within the cavity FETs. At the centre of the cavity, shown in Figure 2.3(a), the sensor

is constructed from a differentially wired pair of active FETs. The mechanical eigenmode,

actuated by the driving MOS capacitors, creates a stress profile within the channels, and thus

modulates the carrier mobility at the eigenmode frequency. Here the opposing signs of stress

also lead to a differential modulation. This type of sensing promises excellent performance
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Figure 2.4: Modified Butterworth-Van Dyke model for a capacitive MEMS resonator. (Adapted from
[Choudhary and Iniewski 2013].)

at gigahertz frequencies which has been successfully demonstrated for FETs on different

technology platforms [Weinstein and Bhave 2007; Bahr et al. 2014; Bahr et al. 2018].

The figure of merit of the RBT is the mechanical transconductance

Gm =
isense

vdrive,di f f

= |Ydd21 − Ydd12 | (2.2.3)

which links the required differential actuation voltage vdrive,di f f at the drive MOS capacitors to

the resulting differential current isense at the active sense FETs. This working mode is different

from most established MEMS which typically operate solely within the voltage domain. The

RBT on the other hand converts an input voltage to an output current [Hager et al. 2021;

Hudeczek et al. 2022; Zhu et al. 2016; Razafimandimby et al. 2013; Hamelin et al. 2019].

The transconductance is obtained from the differential admittance parameters for the forward

Ydd21 and reverse Ydd12 directions. Since the device is only functional in the forward direction

by construction, all parasitic effects, as introduced by the wiring, are removed leading to a

self-de-embedded transconductance [Weinstein and Bhave 2007; Bahr 2016].

This behaviour of the RBT, which converts a modulated voltage at the input to a modulation

of the output current, provides additional challenges when modelled in circuits. Capacitive

devices, such as film bulk acoustic-wave resonators, convert an actuation voltage at the input into

a voltage swing at the output of the device. Such operation is typically represented by a modified

Butterworth-Van Dyke (MBVD) model, as depicted in Figure 2.4 [Larson and Bengzon 2013;

Hodge et al. 2017; Choudhary and Iniewski 2013; Jaffe and Smith 1957]. The circuit mimics

the electrical and mechanical behaviour using a motional (Lm, Rm, Cm) and a static arm

(Rs, Cs). The motional inductance Lm, motional resistance Rm and motional capacitance Cm

describe the electromechanical behaviour of the devices including acoustic losses. The static

arm describes the electrical capacitance of the device Cs and the corresponding dielectric

losses Rs. Lastly the contact resistances are modelled by the series resistance Relectrode

[Choudhary and Iniewski 2013].

This model is often times used in circuit applications, due to the low implementation effort,

to model the impedance response of the MEMS in close spectral vicinity to the main resonance.

Although it was proposed to be also applicable for RBTs [Srivastava et al. 2021], which are based

on an active sensing approach, it was shown that the conversion from an alternating voltage at
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(a)

(b)

Figure 2.5: Iterations of the RBT manufactured on IBM’s 32 nm silicon-on-insulator node. The RBTs resonate
at (a) 2.8 GHz with a Q-factor of 252 and (b) 3.252 GHz with a Q-factor of 11 620. (Adapted from
[Bahr et al. 2014; Bahr et al. 2016].)

the device input to an alternating current at the output of the device prevents a direct use of

the modified Butterworth-Van Dyke model without major modifications [Hager et al. 2021;

Bahr 2016]. Furthermore, the modified Butterworth-Van Dyke model is only a simplified

representation and a more rigorous approach, like FEM modelling, is required to obtain physical

insights into the operation principles [Hudeczek et al. 2022].

Initial concepts of the RBT were built on IBM’s 32 nm silicon-on-insulator (SOI) planar

technology. The first designs had a short cavity size with only one pair of driving and sensing

FETs, as shown in Figure 2.5(a). This early implementation delivered a transconductance of

Gm = 0.5 µS at 2.8 GHz with a Q-factor of 252 [Bahr et al. 2014]. However, this performance is

comparable to existing surface acoustic-wave and bulk acoustic-wave solutions, with the added

benefit of being monolithically embedded in the FEOL of the CMOS layer without complex

processing steps. The phononic crystal, which enables the large Q-factor, is built from parallel

copper wires in the BEOL, which is designed to have a directional band gap with a bandwidth of

3.81 GHz and a centre gap frequency of 4.45 GHz. Thus the resonant frequency lies within the

forbidden frequency range of the phononic crystal. A second, supposedly optimised structure,

as shown in Figure 2.5(b), uses a larger cavity size with an increased number of driving MOS

capacitors and achieves a resonant frequency of 3.252 GHz with a strongly increased Q-factor

of 11 620. Surprisingly the optimised structure performs worse, with a transconductance of only

Gm = 96 nS, turning it unusable for oscillator applications in IC design [Hudeczek et al. 2022;

Bahr et al. 2016].

A shortcoming of the early RBT designs was the unfavourable orientation of the individual

FETs within the cavity. Due to the use of planar technology, the mechanical deformation was

mainly vertical, creating only low stress of a few hundred 100 kPa to low MPa in the channels

of the sense FETs. The low stress resulted from a low coupling between adjacent drive FETs
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Figure 2.6: Focused ion beam scanning electron microscope picture of a RFT including top-level wiring.

[Bahr et al. 2014; Bahr et al. 2016]. Furthermore, this technology’s smallest possible device pitch

between adjacent FETs of 165 nm limits the resonant frequency, which is inversely proportional

to the pitch. The above mentioned issues lead to a promising, but still small, transconductance.

2.2.3 The Resonant Fin Transistor

A more recent variation of the RBT, which was manufactured on a 14 nm FinFET technology

node from Global Foundries, is promising a greatly increased mechanical transconductance,

Q-factor and resonant frequency, while maintaining all of the benefits of the planar RBT

[Bahr 2016]. The so-called resonant fin transistor (RFT) was reported with a transconductance

of Gm = 14 mS marking an increase of several orders of magnitude over the planar RBT designs.

At the same time it operates at a much larger frequency of 32 GHz and a Q-factor of 49 000

making it the one of the best performing resonator MEMS to the current date, which is typically

quantified by the frequency product Q f = 1.57 × 1015 Hz−1 [Bahr 2016].

This performance increase is mainly achieved through the change to a FinFET technology

as sketched in Figure 2.1(c). In Figure 2.6 a cross-section of a RFT, which was fabricated in

this work on a 16 nm FinFET node, is shown. The RFT is integrated in the same manner as

the RBT on the planar technology nodes where the resonant mechanical cavity is fabricated in

FEOL of the CMOS stack. However, the periodic waveguide is now formed by hundreds of

adjacent FinFETs, as shown in Figure 2.7(a). The FEOL cavity is split into two different types of

unit cells which are responsible for driving and sensing the mechanical mode. All unit cells, in

contrast to the RBT, share a common gate which spans over all fins in the cavity. The drive unit

cells are connected as MOS capacitors in a differential manner to the two electrical drive phases

drive-plus (DP) and drive-minus (DM), as sketched in Figure 2.7(b). They are responsible to

drive the mechanical eigenmode by electrostatic transduction which was also used for the RBT
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Figure 2.7: (a) Scanning electron microscope image of the RFT cavity in the gate region with the BEOL phononic
crystal (PnC), the FEOL cavity and sketch of the fins. (b) Schematic of the FEOL cavity where each
transistor is matched to three fins in (a). The connections are marked as: drive-plus (DP), drive-minus
(DM), sense-plus (SP), sense-minus (SM), ground (GND) and gate (G).

[Bahr 2016; Bahr et al. 2018]. The actuated mechanical eigenmode propagates through all

fins within the cavity, also the sense unit cell, which is built from a differential pair of active

FinFETs connected to the sense-plus (SP) and sense-minus (SM) phases. These will pick up

the mechanical deformation of the fins as a modulation of the carrier mobility which depends

on the direction and magnitude of stress on the FinFET channels [Thompson et al. 2004;

Ma et al. 2013; Sze 2014]. In a research environment the different connections (drive-plus,

drive-minus, sense-plus, sense-minus and gate) are routed via the BEOL to the surface of

the wafer where they are directly connected to measurement equipment, which is discussed

in Chapter 7. In a productive implementation, for example as resonant fin oscillator, these

connections would be routed internally to other CMOS devices [Hager et al. 2021].

With the transition to a FinFET technology the feature size, and thus the pitch of the periodic

structure is reduced to 48 nm. This leads to an increase of the resonant frequency to 32 GHz

[Bahr et al. 2018]. Similar to the RBT, adjacent FinFETs will contract and expand in a breathing

motion as sketched in Figure 2.8(a) for two adjacent fins. The corresponding dispersion relation

of this differential eigenmode is plotted in Figure 2.8(b). For the waveguide to support the

propagation of the differential eigenmode, the mode must be guided at the Y-point, which lies

at the wave vector ky = π/a, where a is the fin pitch.

The guiding of the mechanical mode at this frequency is challenging and relies both on a

matching phononic crystal in the BEOL, as marked in Figure 2.7(a), as well as total internal

reflection at the boundary to the silicon substrate. Contrary to the RBT, which featured a
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(a) (b)

Figure 2.8: (a) Deformation profile of the RFT eigenmode, with a matched BEOL phononic crystal. (b) Mechanical
dispersion relation of the RFT and substrate.

phononic crystal with an omnidirectional band gap (compare Figures 2.2 and 2.5), this is

not feasible at the required frequency due to limitations of the FinFET technologies. For an

omnidirectional band gap at this frequency sufficiently small lateral patterning of the BEOL is

prevented by the design rule checks of the semiconductor foundries [Bahr et al. 2018]. Those

rules are designed for a yield oriented BEOL regarding the electrical performance and typically

do not consider the use as a mechanical mirror. Nevertheless, the unpatterned BEOL stack, with

the correct layer thicknesses, was reported to feature a partial band gap matching the frequency

and wave vector of the RFT eigenmode, which follows a 2D FEM simulation [Bahr et al. 2018;

Bahr et al. 2014]. Consequently, the deformation strongly decays within the first few layers of

the phononic crystal, as sketched in Figure 2.8(a), which leads to good confinement of the mode.

The guiding effect of the substrate is unchanged between the RBT and RFT, as silicon allows

shielding of the cavity up to several tens of gigahertz at the required wave vector. This effect is

shown in Figure 2.8(b) for a typical band structure of the RFT cavity with the dispersion relations

of the so-called sound cone of the substrate. Propagating modes occurring at the Y-point of the

Brillouin zone, where they can couple to the adjacent fins must reside well beneath the sound

cones of the substrate material at the Brillouin zone edge. Hence the common gate forms a

well-defined waveguide for the RFT mode to propagate through, enabling the strongly increased

Q-factor [Bahr et al. 2018].

While the smaller technology node size enabled the RFT’s superior performance, the electrical

connections to the cavity are more complex at those scales. Ideally, all driving fins of the RFT

are connected alternately to one of the two electrical phases, as sketched for the mechanical

phases (marked by + and - ) and electrical phases (drive-plus and drive-minus) in Figures 2.9(a)

and 2.9(c). Connecting the fins in this manner gives the smallest possible unit cell, containing

only two adjacent fins, and thus yields the highest performance as all of the fins are actuated.

Analogously the sense unit cell at the centre of the cavity also consists of two differentially
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Figure 2.9: (a) Cross-section of the idealised 2-fin unit cell (UC) with the respective (c) drive and (e) sense wiring.
(b) Fabricated 14-fin unit cell (UC) with triple fin contacts and intermediate floating fins with the
respective (d) drive and (f) sense wiring. The fin deformation sketched in (a) and (b) represents the
mechanical RFT mode which is not to scale and + and - denote the mechanical phase of each fin. The
connections are marked as: drive-plus (DP), drive-minus (DM), sense-plus (SP), sense-minus (SM),
ground (GND) and gate (G).

wired fins, as shown in Figure 2.9(e). However, this type of single fin contact is prohibited

in all major foundry FinFET technologies by the design rule check which ensures a yield and

reliability-oriented device layout in the FEOL, which is prohibitive for the best RFT integration.

To bypass this design rule check limitation, a different connection scheme is required

[Bahr et al. 2018]. Rather than connecting adjacent fins to separate phases, fin groups of three

are jointly connected to the same potential. Each group is separated by four electrically floating

fins to the neighbouring groups to account for the minimum contact spacing requirements, which

is shown in Figure 2.10. This cavity layout is the tightest possible integration in a productive

foundry setting that allows sufficient driving of the RFT mode by using the seventh spatial

harmonic of the cavity [Bahr et al. 2018]. Hence the size of the unit cell is increased to 14 fins

as sketched in Figures 2.9(b), 2.9(d) and 2.9(f) for the mechanical phase (marked by + and -)

and electrical drive and sense unit cells, respectively. This scheme is expected to reduce the

performance compared to the 2-fin integration, as within each three-fin contact, only two fins

match the phase from a mechanical point of view. The mechanical phase of the third fin is

the opposite of the electrical phase, and thus impedes a stronger actuation. The same concept

applies to the sensing unit where two fins are in phase and one fin is out of phase. Hence two fins

within each contact group cancel one another, resulting in only two active fins within each 14-fin

unit cell. Nevertheless, the reduction in drive and sense efficiency appears to be inconsequential,
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Figure 2.10: Scanning electron microscope image of the RFT in the contact region showing the BEOL phononic
crystal and 14-fin unit cell configuration RFT. (Reprinted from [Bahr et al. 2018].)
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Figure 2.11: (a) Schematic of the differential RFT wiring. The connections are marked as: drive-plus (DP),
drive-minus (DM), sense-plus (SP), sense-minus (SM), ground (GND) and gate (G). (Adapted from
[Bahr et al. 2018; Weinstein 2018].) (b) Measured mechanical transconductance and phase of the
RFT. (Adapted from [Bahr et al. 2018].)

given the reported performance metric of the device [Bahr et al. 2018].

The respective circuit to drive and sense the RFT is sketched in Figure 2.11(a). Note that

different variations of this circuit are found in the literature, which share some of the same

authors, however, with contradictory designs of the sense unit mechanics [Weinstein 2018;

Bahr et al. 2018; Srivastava et al. 2021; Bahr 2016]. The depicted variant is based on the most

plausible description of an active FET based sensing approach, although the authors often times

switch between active and capacitive sensing approaches without justification.

To drive and sense the mechanical mode the common gate is biased at a constant voltage

of VG = 0.8 V. In order to detect a modulation of the carrier mobility and consequently the

sense current, the sense transistors are supplied with a source bias of Vsense = 200 mV. This

results in a current of Isense = 118 µA within the transistors without going into saturation. Upon

the mechanical deformation of the sense FinFETs, the carrier mobility, and thus the current is
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modulated [Bahr et al. 2018; Thompson et al. 2004; Ma et al. 2013]. Since opposing signs

of stress lead to either an increase or a reduction of the carrier mobility, a sense current isense,

modulated at the frequency of the mechanical eigenmode, is measured.

The remaining FinFETs are responsible for driving the mechanical eigenmode. They are

therefore connected as individual MOS capacitors, which is achieved by shorting the source and

the drain together. All driving MOS capacitors are biased at a constant voltage of Vdrive = 40 mV,

leading to small initial stress in the structure. It causes a small deformation of the drive fins

through the electrostatic force between the gate and the FinFET channels. The differential

eigenmode is then actuated with a drive power of vdrive = −20 dBm, which causes a displacement

from the equilibrium position. If the frequency of the electrical actuation and the eigenmode

coincide, the deformation amplitude within the fins grows and applies an approximately 40 MPa

stress orthogonal to the channel direction within the sense FinFETs [Bahr et al. 2018]. The

resulting mechanical eigenmode propagates through the cavity to the sense transistors resulting in

an increased modulation of the output current due to the stress dependency of the carrier mobility

[Bahr et al. 2018]. The resulting measured and de-embedded mechanical transconductance

(2.2.3) is plotted in Figure 2.11(b). It features a well defined and clean resonance with a peak

transconductance of 14 mS [Bahr et al. 2018].

Although a further publication concerning a theoretical implementation of the RFT exists the

working principle is contradictory to the original publication [Srivastava et al. 2021]. Given the

originally exceptional performance and claimed broad application range, the lack of a replication

of the original results and missing reports of a successful circuit implementation are dubious.

Consequently, to confirm the high figures of merit and potentially unlock the full capabilities

of the RFT, the functionality and behaviour of the RFT must be further investigated. To

fully assess the potential of the RFT, 3D FEM modelling of the mechanics in the FEOL and

BEOL is required to cover the mechanical anisotropic behaviour of silicon and its impact on

the mobility variation [Hager et al. 2021; Hudeczek et al. 2022]. Further, the performance of

the phononic crystal mirror, especially in the absence of lateral patterning and the presence of

strongly anisotropic mechanical materials such as copper, can have a potentially detrimental

effect on the Q-factor [Hudeczek and Baumgartner 2020]. Here, an assessment of the RFT

in the context of an oscillatory circuit for IC applications is essential [Hager et al. 2021;

Hudeczek et al. 2022]. In the context of manufacturability, the transfer to a comparable FinFET

technology node and subsequent characterisation is required to confirm the reported data by

Bahr et al. [Bahr et al. 2018; Hudeczek et al. 2021].
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To enable the modelling of the resonant fin transistor (RFT) using the finite-element

method (FEM) the fundamental mechanical properties of anisotropic cubic materials

deployed in the complementary metal-oxide-semiconductor (CMOS) process are

introduced. The RFT’s mechanical response is mainly described by Young’s and

the shear modulus, Poisson’s ratio and the wave-carrying properties of the involved

materials.

3.1 Hooke’s Law

Hooke’s law describes the deformation of a material subjected to an external force. This force is

directly proportional to the displacement from the equilibrium position for small displacements.

In that sense, the response of a material is described by the linear constitutive stress-strain
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Figure 3.1: Components of the Cauchy stress tensor in 3D. Principal stresses are indicated by σii and shear stresses
by τi j . (Adapted from [Roesler 2007].)

relation1

σi j = Ci j klεkl, i, j, k, l = 1,2,3 (3.1.1)

where the second-order stress [σ] and strain [ε] tensors relate via the fourth-order elasticity

tensor [C]. To calculate the strains from given a stress, the inverse of Hooke’s law

εi j = Si j klσkl (3.1.2)

can be used, which links stress to strain via the compliance tensor [S] = [C]−1 [Nye 1985;

Vannucci 2018; Roesler 2007; Kaselow 2004; Wortman and Evans 1965].

The stress within a material depends on the loaded area and the applied force. For a force F

acting on a surface A, normal stress is denoted by

σ =
F⊥
A

(3.1.3)

and

τ =
F‖
A

(3.1.4)

signifies shear stress. For an infinitesimal small material element in three dimensions, as

sketched in Figure 3.1, the general nomenclature

σi j =
Fj

Ai

, i, j = 1,2,3 (3.1.5)

is used, where the first index indicates the normal vector of the surface and the second

index represents the direction of the force. Following the so-called classical continuum, an

infinitesimal element cannot transfer moments leading to a symmetric stress tensor where

σi j = σji [Roesler 2007; Vannucci 2018]. The resulting six independent components are thus

1The Einstein notation is used when an index appears more than once [Einstein 1916]. It implies summation
over all possible index values, in which case the summation symbol is dropped from the equation: σi j =∑3

k=1

∑3
l=1 Ci jklεkl = Ci jklεkl .
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A F

l0 Δl

(a)

A

F

y

Δx

(b)

Figure 3.2: Load cases for (a) normal and (b) shear stress for a force F acting on the surface A. (Adapted from
[Roesler 2007].)

written as

[σ] =


σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33



=



σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



(3.1.6)

with τi j = σi j . Here the diagonal elements describe normal stresses, and the off-diagonal

elements shear stresses.

If a component is subjected to stress, it may either be displaced rigidly or non-rigidly.

Rigid-body displacements govern translations and rotations of the whole body without causing

internal deformations of the component. Non-rigid deformations result in strains within the

body, causing changes in lengths and angles, as sketched in Figure 3.2. Changes in lengths,

known as normal strains, relate the difference in elongation ∆l from the equilibrium length l0

via

ε =
∆l

l0
. (3.1.7)

Analogously the shear strains describe changes in angles and are given by

γ =
∆x

y
, (3.1.8)

which are caused by deformations ∆x parallel to the surface, which is perpendicular to y. The

general notation for arbitrary small strains within a body is

εi j =
1

2

(
∂ui

∂x j

+

∂u j

∂xi

)
, i, j = 1,2,3 (3.1.9)

where ui denotes a small displacement and xi the three principal axes, respectively. This

notation assumes εi j = γi j/2, which ensures the symmetry of the stress tensor εi j = ε ji and

correct transformational behaviour. The stress tensor is thus written as

[ε] =


ε11 γ12/2 γ13/2
γ21/2 ε22 γ23/2
γ31/2 γ32/2 ε33



=



ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33



(3.1.10)
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which also has a total of six independent components.

The stiffness tensor [C], which describes all linear elastic relations between stress and strain

of material, has 34
= 81 components. Due to the symmetric behaviour of both [σ] and [ε], the

elastic modulus fulfils the relations

Ci j kl = Cjikl = Ci jlk = Ckli j, i, j, k, l = 1,2,3 (3.1.11)

which reduces the 81 components to a maximum of 21 independent magnitudes by minor

symmetry operations [Roesler 2007; Vannucci 2018].

3.2 Voigt’s Notation

Due to the cumbersome handling of higher-order tensors and their respective visualisation,

Voigt’s notation can be used to simplify the tensor notation. It introduces a mapping relation for

the matrix indices

11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6 (3.2.1)

which collapses any pair of tensor indices into a single index such as σi j → σα, εi j → εα and

Ci j kl → Cαβ [Roesler 2007; Zhang et al. 2014; Wortman and Evans 1965; Vannucci 2018].

Consequently, a second-order tensor takes the form of a column vector and a fourth-order tensor

of a quadratic matrix.

Using Voigt’s notation, the second-order stress and strain tensors are rewritten as

[Wortman and Evans 1965; Vannucci 2018]

[σα] = [σ11 σ22 σ33 τ23 τ13 τ12]T and [εα] = [ε11 ε22 ε33 γ23 γ13 γ12]T . (3.2.2)

The prefactor of this notation for the strain components γi j is required to satisfy the stress-energy

density relation

F =
1

2
σi jεi j, i, j = 1,2,3 (3.2.3)

arising from the symmetric stress and strain properties in Hooke’s law [Roesler 2007;

Vannucci 2018].
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Therefore, Hooke’s law is simplified to the well-established matrix form



σ1

σ2

σ3

τ4

τ5

τ6



=



c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

sym c55 c56

c66





ε1

ε2

ε3

γ4

γ5

γ6



(3.2.4)

with its respective inverse



ε1

ε2

ε3

γ4

γ5

γ6



=



s11 s12 s13 s14 s15 s16

s22 s23 s24 s25 s26

s33 s34 s35 s36

s44 s45 s46

sym s55 s56

s66





σ1

σ2

σ3

τ4

τ5

τ6



(3.2.5)

where the stress, strain, stiffness and compliance matrices are represented using Voigt’s notation.

To ensure the conservation of the stress-energy density (3.2.3), prefactors must be added to the

components of the compliance matrix as [Turley and Sines 1971; Vannucci 2018; Brannon 2018;

Nye 1985]:

sαβ =




Si j kl, if both α and β are 1, 2 or 3

2Si j kl, if either α or β are 4, 5 or 6

4Si j kl, if both α and β are 4, 5 or 6.

(3.2.6)

A different convention, which does not rely on additional prefactors in the compliance matrix,

is Kelvin-Mandel’s notation [Dellinger et al. 1998]. It applies the same prefactor of
√

2 to both

shear stress and shear strain components which allows the specific prefactors of the compliance

matrix to be omitted. Consequently, the compliance and stiffness tensors transform identically.

Whereas this notation enables the use of vector algebra conventions, it is strictly prohibited in

Voigt’s notation. However, Voigt’s notation and the engineering convention are well established

in the literature and commercially available software and are thus used in this work.

3.3 Common Elastic Properties

Following the definitions of stress and strain, Hooke’s law takes the simple form

σ = Eε (3.3.1)
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for small displacements, where E is the so-called Young’s modulus. It quantifies the stiffness

of a material in a particular direction. For the generalised case, it is found from

Eα =
σα

εα
=

1

sαα
, α = 1,2,3 (3.3.2)

which relates normal strains to normal stresses in a material.

The orthogonal directions of a body will either contract or expand if it is strained uniaxially.

Poisson’s ratio

ν = −εtran

ε
(3.3.3)

quantifies this phenomenon which relates the strains of two orthogonal directions ε and εtran.

In the generalised form, it is obtained by

ναβ = −εβ
εα
= − sβα

sαα
= − sαβ

sαα
, α , β, α, β = 1,2,3 (3.3.4)

where importantly the relation ναβ , νβα holds [Wortman and Evans 1965; Brantley 1973;

Ting and Chen 2005; Vannucci 2018; Turley and Sines 1971]. Poisson’s ratio obtains scalar

values in the range −1.0 < ναβ < 0.5, where an incompressible material will have a constant

volume with ν = 0.5. Auxetic materials, a material class with special mechanical properties,

may have negative values, and thus exhibit counter-intuitive behaviour. If an auxetic material

is subjected to an external load, the transversal directions expand, whereas in a material with a

positive Poisson’s ratio transversal contraction occurs [Vannucci 2018; Yu et al. 2017].

If material is subjected to pure shear forces, Hooke’s equation takes the form

G =
γ

τ
(3.3.5)

where G is the shear modulus which describes the shear stiffness of a material. In the general

form, it is found via

Gα =
σα

εα
=

1

sαα
, α = 4,5,6 (3.3.6)

which links shear stresses and shear strains [Roesler 2007; Wortman and Evans 1965].

3.4 Crystallographic Reference Frame

To describe arbitrary orthonormal cubic crystal bases and their relative rotation to the principal

crystal axes [100], [010] and [001], a geometric reference frame is required. Here Miller’s

convention defines directions and planes in a crystallographic system that can be used to describe

material properties. Square brackets [hkl] describe a specific direction in crystal space. Angled

brackets 〈hkl〉 denote a family of directions which are covered by the material symmetries,

such as 〈100〉 := [100], [010], [001], [1̄00], [01̄0], [001̄] where 1̄ = −1. Round brackets (hkl)
indicate a specific crystal plane and braces {hkl} describe the corresponding family of planes
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Figure 3.3: Definition of the reference frame convention proposed in [Turley and Sines 1971].

such as {100} := (100), (010), (001), (1̄00), (01̄0), (001̄). In cubic crystals, [hkl] is the normal

direction to its corresponding plane (hkl), which may not be generalised to other material classes

[Vannucci 2018; Roesler 2007].

As proposed by J. Turley and G. Sines, one reference frame notation is based on the Eulerian

angles α, β and θ [Turley and Sines 1971; Healy et al. 2020]. They define a new reference frame

concerning the principal crystal axes as sketched in Figure 3.3. The new orthonormal frame,

indicated by the primed basis vectors x′
1
= [hkl], x′

2
and x′

3
is created by a counter-clockwise

yaw α of the new frame around [001], followed by a subsequent pitch β around the zone axis

[k̄h0]. Furthermore, the meridional tangent (MT) is given by the direction of x′
3

after the pitch

is executed. Lastly, the counter-clockwise roll θ of x′
2

and x′
3

around x′
1

in the (hkl) plane is

measured from the zone axis [k̄h0] or the meridional tangent (MT).
A major benefit of this construction lies in its simplicity to describe orientations of

crystallographic frames and the fact that all reference frames with a common yaw α share

the same zone axis, favouring elastic properties comparisons in various crystal planes

[Turley and Sines 1971; Healy et al. 2020]. Using the Miller indices of the plane normal

direction x′
1
, each coordinate frame is constructed by deriving α and β from the plane normal

direction [hkl]. The subsequent counter-clockwise rotation θ of the basis is signified as (hkl)θ
for the remainder of this work. In the particular case θ = 0°, the superscript is omitted

[Turley and Sines 1971].

3.5 Tensor Basis Transformation

A major drawback of the matrix representation in Voigt’s notation is the impracticability of basis

transformations due to the additional prefactors [Roesler 2007]. To circumvent this problem

transformations are carried out in tensor notation. Here a fourth-order tensor [T] can be
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transformed into a new basis by using the general equation for tensor basis transformations

T ′
i j kl = aima jnakpalqTmnpq, i, j, k, l,m,n, p,q = 1,2,3 (3.5.1)

where aim is the direction cosine between the ith and mth axis of the primed (new) and non-primed

(old) coordinate system [Turley and Sines 1971; Thomas 1966; Knowles and Howie 2014;

Mainprice and Casey 1990]. Analogously, a second-order tensor [t] is transformed via

t′i j = aika jltkl, i, j, k, l = 1,2,3. (3.5.2)

Although specific transformation matrices exist for Voigt’s notation, they have to be assembled

individually for each property of Hooke’s law, which follows from the used prefactors in (3.2.6)

[Zienkiewicz et al. 2013; Bao and Huang 2003]. Hence, when applying Voigt’s notation,

subsequent basis transformations are carried out using the respective tensor rotations given in

(3.5.1) and (3.5.2) [Roesler 2007; Vannucci 2018].

3.6 Isotropic Cubic Materials

In the special case of isotropic elastic materials, all components of the stiffness tensor are

invariant under arbitrary rotations [Roesler 2007; Vannucci 2018; Healy et al. 2020]. One

example of a CMOS-compatible material with almost isotropic properties is tungsten, which is

used both for vias and gate material [Roesler 2007; Gambino 2012]. By imposing additional

rotational conditions, the remaining 21 components of the stiffness tensor are reduced to three

quantities, and the compliance matrix takes the simple form

[c] =



c11 c12 c12

c12 c11 c12

c12 c12 c11

c44

c44

c44



(3.6.1)

where the shear component follows from

c44 =
c11 − c12

2
. (3.6.2)

As all other components vanish, only two independent quantities c11 and c12 remain

[Roesler 2007; Vannucci 2018]. The same applies to the inverse [s] = [c]−1, taking a similar
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form

[s] =



s11 s12 s12

s12 s11 s12

s12 s12 s11

s44

s44

s44



(3.6.3)

with s44 = 2(s11 − s12) and the unique quantities s11 and s12. Both matrices may be divided

into four 3 × 3 sub-matrices, each describing a different effect: The upper right and lower

left sub-matrix relate shear stresses to normal strains. However, as all components vanish,

there is no coupling in-between those in isotropic materials. The lower right sub-matrix relates

shear stresses and shear strains. Considering the diagonal appearance, only components of

the same direction couple. The remaining sub-matrix in the upper left governs the relations

between normal strains and normal stresses. As it is fully occupied, normal stresses cause both

transversal and longitudinal strains [Roesler 2007; Vannucci 2018].

Returning to the definition of isotropic material properties, Young’s modulus (3.3.2) is thus

given by

E =
1

s11

. (3.6.4)

Poisson’s ratio (3.3.4) may be obtained via

ν = − s12

s11

(3.6.5)

and the shear modulus is given by

G =
1

s44

, (3.6.6)

which are all constant in an isotropic material. Young’s and the shear modulus are required to

describe the propagation of elastic waves through continuous isotropic media. Generally, an

isotropic bulk material supports a longitudinal wave, also known as a pressure wave, in any

direction. Its speed of propagation is given by the relation

cl =

√
E

ρ
, (3.6.7)

which depends exclusively on Young’s modulus and material density ρ. Note that this

wave is pseudo-polarised along its propagation direction [Rosenbaum 1988; Kaselow 2004;

Gross and Seelig 2018]. Two transversal waves accompany it, also referred to as shear waves.

Their respective wave speed is obtained via

ct =

√
G

ρ
(3.6.8)
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Table 3.1: Anisotropy factor A, elastic constants c11, c12 and c44 and density ρ for selected CMOS materials.

Material A c11 (GPa) c12 (GPa) c44 (GPa) ρ (kg m−3)
Cu a 3.22 168.0 121.0 75.0 8960

Si b, c, a 1.57 165.7 63.9 79.6 2330

Al a 1.23 108.0 61.0 29.0 2700

W a, d 1.01 523.3 204.5 161.7 19 280

SiCO:H e 1.00 6.6 2.5 2.1 1100

SiO2
f, g 1.00 78.5 16.0 31.2 2200

HfO2
e, g 1.00 278.0 156.9 61.0 9800

TiN e 1.00 227.5 97.5 65.0 4300
a [Roesler 2007] b [Wortman and Evans 1965] c [Dismukes et al. 1964]
d [Featherston and Neighbours 1963] e [Zizka et al. 2016] f [Tomar et al. 2003] g [Robertson 2005]

which considers the shear stiffness of the material and density [Rosenbaum 1988; Kaselow 2004;

Gross and Seelig 2018]. Their polarisation directions are orthogonal to one another while also

being orthogonal to the direction of propagation. As all mechanical properties are invariant with

crystallographic orientation, the wave speeds are also independent of the direction.

3.7 Anisotropic Cubic Materials

Numerous materials used in the CMOS process, for example, silicon and copper, crystallise

into a cubic lattice. As a consequence, the mechanical properties vary spatially and are thus

anisotropic. The cubic crystal lattices possess rotational symmetries of 90◦ multiples around

the 〈100〉 axes. Moreover, additional rotational symmetries of 180◦ and 120◦ multiples exist for

the 〈110〉 and 〈111〉 axes, respectively. As the elasticity tensor must be invariant with the added

symmetry constraints, (3.6.2) is no longer valid since

c44 ,
c11 − c12

2
. (3.7.1)

The elasticity tensor and compliance tensor thus maintain the form given in (3.6.1) and (3.6.3),

however, now with three independent components c11, c12 and c44 and s11, s12 and s44. The

anisotropy factor

A =
2(s11 − s12)

s44

(3.7.2)

quantifies the mechanical difference between an isotropic and an anisotropic material, where

A = 1 indicates isotropy and A > 1 anisotropy [Roesler 2007; Vannucci 2018].

The mechanical properties of selected CMOS materials, both isotropic and anisotropic,

are listed in Table 3.1. Elemental copper, for example, which is used as interconnect

in the back-end-of-line (BEOL), has the largest anisotropy factor of currently deployed

CMOS materials. Also, the silicon substrate exhibits strong anisotropic behaviour, which

influences the mechanical and electrical behaviour of CMOS devices in the front-end-of-line
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(a) Copper (b) Silicon (c) Tungsten

Figure 3.4: Young’s modulus in crystal space for (a) copper, (b) silicon and (c) tungsten. The projections of (100),
(110) and (111) planes are indicated by the solid, dash-dotted and dotted lines respectively.

(FEOL) [Thompson et al. 2004]. Moreover, it is a well-established material for released

monolithic micro-electro-mechanical-system (MEMS) devices, like gyroscopes, accelerometers

and resonators, which often exploit the anisotropic mechanical behaviour [Zhou et al. 2018;

Sieberer et al. 2019; Ziaei-Moayyed et al. 2010; Wang et al. 2011]. All remaining materials

used in the CMOS process are assumed to be of isotropic nature.

3.7.1 Young’s Modulus

As discussed in the previous section, the material properties in anisotropic cubic materials vary

with the crystallographic direction. Following the added symmetry implications on the material

tensors, the inverse of Young’s Modulus (3.3.2) in an arbitrary direction [hkl] is found via

1

E[hkl]
= s′11 = s11 − (2s11 − 2s12 − s44)

(
α2β2

+ α2γ2
+ β2γ2

)
(3.7.3)

where s′
11

is the first component of the compliance matrix. It is transformed into a new basis

with help of the direction cosines

α = cos([hkl], [100]), β = cos([hkl], [010]) and γ = cos([hkl], [001]) (3.7.4)

between the direction of interest [hkl] and the three principal axes [100], [010] and [001] of the

cubic lattice [Wortman and Evans 1965; Brantley 1973; Hopcroft et al. 2010; Zhang et al. 2014;

Muramatsu and Kitamura 1993; Ting and Chen 2005; Nye 1985; Roesler 2007].

Its magnitude is shown for selected cubic CMOS materials for all directions of the unit

sphere in Figure 3.4. It is obtained by sweeping the direction [hkl] in (3.7.3) over the whole unit

sphere. Monocrystalline copper and silicon, which are depicted in Figures 3.4(a) and 3.4(b) with

A = 3.22 and A = 1.57, exhibit varying magnitudes of Young’s modulus in different directions

[Roesler 2007]. The unit sphere is deformed following a clear cubic symmetry. Considering the

lowest-order Miller directions, Young’s modulus assumes its maxima along 〈111〉, its minima
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(a) Plane (100) (b) Plane (110) (c) Plane (111)

Figure 3.5: Projections of the Young’s modulus of copper, silicon and SiO2 in the crystal planes (a) (100), (b) (110)
and (c) (111) in polar coordinates.

along 〈100〉 and features intermediate saddle points in the 〈110〉 directions. Lastly, shown for

reference in Figure 3.4(c) is tungsten, an almost isotropic cubic material with A = 1.01. Thus

Young’s modulus is almost invariant with direction, and thus nearly forms a sphere in crystal

space.

For several applications it is necessary to consider Young’s modulus within a specific crystal

plane. The projections of Young’s modulus for the planes (100), (110) and (111), as indicated

by the solid, dash-dotted and dotted black lines in Figure 3.4, are given in Figure 3.5. Note that

the cubic symmetry makes it sufficient to visualise only one quadrant of each plane. Looking at

the (100) plane in Figure 3.5(a) the minima and saddle point values are easily identified. SiO2 is

shown as an example of an isotropic material for the reason that tungsten is a very stiff material

with E = 411 GPa making a visual comparison difficult. Furthermore, as previously mentioned,

the maximum and minimum values in cubic materials of E are always found in the 〈111〉 and

〈100〉 directions, both visible in the (110) plane shown in Figure 3.5(b).

Interestingly, E is invariant in the {111} planes, as shown by the dotted iso-contour circles

in the surface plots in Figure 3.4 and their respective projections in Figure 3.5(c). This follows

from the relations of the direction cosines α+β+γ = 0 and α2
+β2
+γ2
= 1, which all directions

in {111} satisfy. This consequently leads to a constant value for α2β2
+ α2γ2

+ β2γ2
=

1
4

in

(3.3.2) [Qin et al. 2019]. This isotropic behaviour in the {111} family of planes is beneficial for

several application types of released MEMS as the lateral stiffness for a 〈111〉-oriented silicon

wafer is constant [Wortman and Evans 1965; Qin et al. 2019; Kim et al. 2001; Brantley 1973].

3.7.2 Poisson’s Ratio

Poisson’s ratio was a singular value in the isotropic case, but it varies in anisotropic cubic

materials. Here it strongly impacts the MEMS deformation under various crystallographic

orientations, which must be considered in the modelling [Patel and McCluskey 2012;
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(a) (b) (c)

Figure 3.6: Different load scenarios for the definition of Poisson’s ratio in the presence of a pull l and orthogonal
observation m. For (a) out-of-plane pull and in-plane observation, (b) in-plane pull and in-plane
observation and (c) in-plane pull and out-of-plane observation. The shaded grey rectangle marks the
observation plane.

Hudeczek et al. 2022]. For an arbitrary plane spanned by two orthogonal basis vectors x′
2

and x′
3

with the plane normal vector x′
1
, following the notation by J. Turley and G. Sines, three

different load cases are sketched in Figure 3.6: In the first case, shown in Figure 3.6(a), the pull l

is perpendicular out-of-plane along the plane normal x′
1
, whereas the transversal m may assume

any direction in-plane [Wortman and Evans 1965]. In this case, both directions are orthogonal

by construction. In the second case, depicted in Figure 3.6(b), both the direction of the pull and

its transversal direction are in-plane. However, the orthogonality of both vectors needs to be

maintained at all times. The last case describes the opposite of the first case, with the pull being

in-plane and the transverse direction out-of-plane (compare Figure 3.6(c)), which visualises the

inequality present in (3.3.4). For all scenarios, Poisson’s ratio in a particular crystallographic

direction can be computed with

ν[hkl] = −
s12 + (s11 − s12 − s44/2)

(
α2

1
α2

2
+ β2

1
β2

2
+ γ2

1
γ2

2

)

s11 + (2s11 − 2s12 − s44)
(
α2

1
β2

1
+ β2

1
γ2

1
+ α2

1
γ2

1

) (3.7.5)

where α1, β1 and γ1 are the direction cosines for the direction of pull l and α2, β2 and γ2 for the

respective transversal observation direction m, as sketched in Figure 3.6.

Poisson’s ratio is plotted for several selected crystal planes in Figure 3.7

[Wortman and Evans 1965; Qin et al. 2019; Healy et al. 2020; Rosenbaum 1988]. The projections

are obtained by sweeping the respective load l and observation m directions in (3.7.5) in the

observation plane [hkl], according to the three cases show in Figure 3.6. In Figure 3.7(a), the

first load case (compare Figure 3.6(a)) in (110) is plotted for a fixed load direction l along the

plane normal direction and a rotating observation m in the plane. Poisson’s ratio for copper

and silicon varies strongly in this plane and the maxima occur at the zenith in [001] and the

minima along [1̄10]. By moving the transversal observation direction m towards the zone axis

[1̄10], Poisson’s ratio will decrease until it reaches its minimum. In the case of copper, auxetic

behaviour is observed close to the zone axis, where Poisson’s ratio is negative under the specified

loading conditions [Huang et al. 2014]. Analogously, the load case described in Figure 3.6(b)

35



Chapter 3 Linear Elastic Solid Mechanics in Anisotropic CMOS Materials

(a) Plane (110)
load case Figure 3.6(a)

(b) Plane (100)
load case Figure 3.6(b)

(c) Plane (110)
load case Figure 3.6(c)

Figure 3.7: Poisson’s ratio projections in copper, silicon and SiO2 for various load cases and crystal planes in polar
coordinates.

is shown for (100) in Figure 3.7(b). In this instance both the observation m and load direction l

are rotated together in the observation plane, while maintaining orthogonality between m and l.

In this loading scenario, the minima are again observed in 〈110〉, where copper exhibits auxetic

behaviour. The inequality νi j , ν ji is signified in Figure 3.7(c) for the third load case (compare

Figure 3.6(c)) in (110), where the load and transversal directions are switched in comparison to

Figure 3.7(a).

The visualisation of the isotropic behaviour of Poisson’s ratio in the {111} family of planes

is omitted but can be proven analogously to Young’s modulus. Since α2
1
α2

2
+ β2

1
β2

2
+ γ2

1
γ2

2
=

1
6
,

following from α1α2 + β1β2 + γ1γ2 = 0 in the {111} planes, ν is invariant from the directions

in this plane [Qin et al. 2019].

While this representation only allows an investigation of Poisson’s ratio for a single plane at

a time, obtaining the global extrema requires a different approach. To obtain the maxima and

minima over the whole unit sphere the plane’s normal direction of the first load case (compare

Figure 3.6(a)) is swept over the whole unit sphere [Healy et al. 2020]. For each normal direction

all possible in-plane observation directions are calculated from (3.7.5) and the maximum νmax

and minimum νmin values for each plane are mapped to the respective normal direction of the

plane as plotted in Figure 3.8. The surfaces in Figures 3.8(a) and 3.8(d) and Figures 3.8(b)

and 3.8(e) are associated with the positive values νmax > 0 and νmin > 0 of respectively copper

and silicon. Copper exhibits auxetic behaviour, as shown in Figure 3.8(c) for νmax < 0, for plane

normal directions deviating less than 22° from 〈110〉. Silicon, however, has purely positive

Poisson’s ratios, following from a smaller anisotropy factor. Interestingly all cubic materials

obtain their extremal values, minimum and maximum, in the {110} planes. Furthermore, all

materials exhibit isotropic Poisson’s ratios in {111} following from νmax = νmin in those planes.
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(a) Copper νmax > 0 (b) Copper νmin > 0 (c) Copper νmax < 0

(d) Silicon νmax > 0 (e) Silicon νmin > 0

Figure 3.8: Extremal values of Poisson’s ratio in (a) to (c) copper and (d) to (e) silicon. The Miller directions
indicate the plane’s normal direction (x ′

1
in Figure 3.7) the Poisson’s ratio is evaluated on.

3.7.3 Shear Modulus

The shear modulus is the last property required to describe an anisotropic cubic material. Similar

to Young’s modulus, the inverse of the shear modulus is given by

1

G[hkl]
= s44 + 4

(
s11 − s12 −

s44

2

) (
α2

1α
2
2 + β

2
1β

2
2 + γ

2
1γ

2
2

)
(3.7.6)

which depends on the respectively transformed shear compliance in a particular observation and

corresponding orthogonal direction [Wortman and Evans 1965; Qin et al. 2019; Roesler 2007].

Analogous to Poisson’s ratio, the shear modulus can be calculated for different crystallographic

planes as shown in Figure 3.9. However, since the shear modulus is symmetric with Gi j = G ji

there is no necessity to investigate the load scenario sketched in Figure 3.6(c). The shear

modulus varies strongly depending on the observation plane and load scenarios. Its isotropic

nature in the {111} planes is not shown but follows the same derivation as used for Poisson’s

ratio [Shrikanth et al. 2020].

The global extremal values of the shear modulus, as given in Figure 3.10, may be obtained by

following the same procedure as outlined in Section 3.7.2 for Poisson’s ratio, where the extremal

values of each plane are mapped to the respective normal direction. The shear modulus reaches

its maximum Gmax in all planes associated with the plane normals rotating in {100}, which
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(a) Plane (110)
load cases Figure 3.6(a)

(b) Plane (100)
load cases Figure 3.6(b)

(c) Plane (110)
load cases Figure 3.6(b)

Figure 3.9: Shear modulus of copper, silicon and SiO2 in different crystallographic planes for the load cases shown
in Figure 3.6(a) and Figure 3.6(b) in polar coordinates.

(a) (b)

(c) (d)

Figure 3.10: Extremal values of the shear modulus in (a) and (b) for copper and in (c) and (d) for silicon. The Miller
directions indicate the normal direction x′

1
for the planes on which the shear modulus is evaluated.

occurs for both copper and silicon, as shown in Figures 3.10(a) and 3.10(c). Furthermore, the

smallest values Gmin, as depicted in Figures 3.10(b) and 3.10(d), occur exclusively in the {110}
planes. Moreover, within the {100} and {111} planes, the maximum and minimum shear moduli

are identical for the first load case.
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3.7.4 Elastic Wave Velocities

The elastic material properties are also required to describe mechanical wave phenomena. The

Christoffel equation

[Mi j − c2
pδi j]p j = 0, i, j = 1,2,3 (3.7.7)

describes the propagation of elastic waves through an anisotropic medium where δi j is the

Kronecker delta, cp is the phase velocity and p j are the components of the polarisation vector.

The Christoffel matrix for a monochromatic wave is given by

Mi j = kkCikl j kl, i, j, k, l = 1,2,3 (3.7.8)

where kk are the components of the wave vector [Mainprice and Casey 1990;

Mensch and Rasolofosaon 1997; Jaeken and Cottenier 2016; Healy et al. 2020; Svitek et al. 2014;

Rosenbaum 1988]. The solution to this eigenvalue problem yields three eigenvalues which

describe the phase velocities of the supported waves in anisotropic media. The corresponding

eigenvectors denote the respective polarisation directions. They are associated with the plane

pressure wave, known as P-wave or longitudinal wave, which is accompanied by two shear waves,

called S1-wave and S2-wave or transversal waves, respectively. Note that the polarisation vector

of the longitudinal wave points along the propagation direction, making it pseudo-polarised.

The polarisation directions of the transversal waves are orthogonal to the propagation direction

[Jaeken and Cottenier 2016; Ting 2006a; Mainprice and Casey 1990; Svitek et al. 2014].

Contrary to an isotropic material, which only supports shear waves at a single propagation

velocity, albeit at any polarisation, an anisotropic material supports two mechanical wave

velocities for the same direction of propagation. Their speeds vary for different propagation

directions and are directly related to Young’s and the shear modulus resulting in a similar spatial

dependence (see Figure 3.4), as shown in Figure 3.11. A pressure wave inside an anisotropic

cubic material, as plotted for copper and silicon in Figures 3.11(a) and 3.11(d), will thus have

its largest phase velocity along 〈111〉 as the material’s stiffness is extremal in those directions,

with its lowest speed occurring along 〈100〉, respectively.

The propagation speed of the first shear wave plotted for copper and silicon in Figures 3.11(b)

and 3.11(e) is closely related to the maximum shear stiffness Gmax , and thus has its largest

phase velocity in all directions in the {100} planes, with the slowest velocity along 〈111〉. The

second shear wave, on the other hand, reaches its fastest speed along the principal crystal axes

〈100〉 and will propagate at the slowest velocity along 〈110〉 as it is related to the lowest shear

stiffness Gmin, as shown in Figures 3.11(a) and 3.11(d) for copper and silicon [Ting 2006a;

Jaeken and Cottenier 2016]. Thus they are also referred to as fast and slow shear waves, as one

shear wave propagates faster than the other. For shear waves propagating along the principal axes

where Gmax = Gmin, both shear waves propagate at the same speed [Ting 2006b; Kaselow 2004].

Moreover, shear waves propagate significantly slower than pressure waves in the same direction
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(a) Copper P-wave (b) Copper S1-wave (c) Copper S2-wave

(d) Silicon P-wave (e) Silicon S1-wave (f) Silicon S2-wave

Figure 3.11: Phase velocities pressure and shear waves in (a) to (c) for copper and in (d) to (f) Silicon.

as the material displacement is perpendicular to the direction of propagation which impedes

the energy transfer [Hirose and Lonngren 2010; Graff 1975; Rosenbaum 1988; Rose 2014;

Chen 2015; Svitek et al. 2014].

Summary

Hooke’s law describes the fundamental properties of linear elastic materials. They are required

to model the mechanical response of the RFT, which is constructed from several anisotropic

mechanical materials. Therefore, the main material properties, namely Young’s and the shear

modulus and Poisson’s ratio were introduced. Whereas in isotropic materials, all mechanical

properties are invariant with the crystallographic orientation, anisotropic materials, like silicon

and copper, exhibit a strongly varying response.

Following the cubic crystal symmetry, Young’s modulus, which quantifies the longitudinal

stiffness of a material, obtains its extremal values along 〈001〉 and 〈111〉, marking the respective

minima and maxima. Furthermore, it is isotropic in the {111} planes, which holds for all

material properties of anisotropic cubic materials. In the case of pronounced anisotropic

behaviour, as it occurs in copper, Poisson’s ratio, which relates two orthogonal strains, may

exhibit counter-intuitive auxetic behaviour for directions close to 〈110〉.
Analogously to Young’s modulus, the shear modulus measures the shear stiffness of a material
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subjected to an external shear force. Both also relate to the sound wave velocities in bulk media,

which support the propagation of one longitudinal wave and two transversal waves in any

direction. Here the sound velocities are linked to Young’s modulus, in the case of longitudinal

waves and the maximum and minimum shear modulus to the fast and slow transversal waves,

respectively. For the two distinct propagation directions, 〈001〉 and 〈111〉, both shear waves

propagate at the same wave speed.
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To obtain the mechanical response of a complex system the principles of the finite-element

method (FEM) are discussed. Here the elementwise discretisation, the field variable

interpolation and corresponding shape functions are introduced. Using the strain displacement

and local element matrices, the elemental and global finite-element equations of motion are

assembled from the Lagrange equations and discussed with regard to different analysis methods.

4.1 Geometry Discretisation

For some mechanical problems, especially in structural mechanics, the behaviour can be

described analytically or may be approximated using empirical data [Chopra 2012]. With

an increasing complexity, however, finding an analytical solution is a tedious, if not a hopeless

effort [Chopra 2012; Liu 2003; Bathe 2014; Zienkiewicz et al. 2013; Rao 2010]. Hence,

numerical methods like the finite-difference time-domain (FDTD) method or FEM try to bridge

the gap by discretizing a large complex structure into smaller idealised pieces. Based on

simplified problem descriptions in thee well defined pieces, the overall problem may be solved

numerically. Both finite-difference time-domain and FEM methods can be applied in several

interdisciplinary fields such as structural solid mechanics, electromagnetics and optics, fluids,

plasmas, micro-electro-mechanical-system (MEMS) devices and many more.

43



Chapter 4 The Finite-Element Method
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Figure 4.1: Discretisation in (a) 2D and (b) 3D elements adapted from [Rao 2010]. A FinFET structure meshed
with COMSOL using tetrahedral elements is depicted in (c).

For this work COMSOL1, a commercially available multi-physics FEM simulation software,

was used. It not only enables the simulation of structural problems but it can also handle

coupled multi-physics problems such as electromechanical devices. Excellent derivations of the

FEM can be found in the literature [Zienkiewicz et al. 2013; Bathe 2014; Liu 2003; Rao 2010;

Larson and Bengzon 2013; Felippa 2004] and only a brief summary is given in this work.

At the core of the FEM, as implied by its name, lies the discretisation of the geometry into

smaller elements, which is commonly referred to as meshing. During the meshing procedure

the geometry is approximated in a predefined and consistent manner using finite elements. The

shape of these elements must be selected with regard to the dimensionality and form of the

whole geometry. Whereas for a one-dimensional (1D) problem, the only possible element is

a linear segment bounded by two nodes, two-dimensional (2D) structures can be discretised

with triangles, quadrilaterals or generalised polygons, as sketched in Figure 4.1(a). Carrying

on to 3D problems the simplest possible discretisation element, with the least number of nodes,

is the tetrahedron which is depicted in Figure 4.1(b). However, it is also possible to use

prisms, brick-type elements or generalised quadrilaterals. The meshing procedure is generally

not limited to a single element type but may use different elements as long as compatibility is

maintained. This alludes that elements are connected to neighbouring elements at the nodes and

may not overlap or form gaps inside the structure.

An exemplary mesh of a FinFET structure, using tetrahedral elements only, is shown in

Figure 4.1(c). To improve the accuracy of the solution, thin structures like the high-κ oxide

surrounding the gate in a FinFET process, require a finer mesh resolution, while larger domains

within the structure may be approximated using larger elements. Although a finer mesh yields

a higher accuracy it adversely impacts the computational performance as the required memory

1COMSOL Multiphysics® v. 5.5. www.comsol.com
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First order Second order Third order
Serendipity

Lagrange
Figure 4.2: First, second and third order Serendipity and Lagrange elements for a 2D quadrilateral.

and the solution time scale with the degrees of freedom (DOFs).

The DOFs in a structural mechanics problem are typically given by the number of nodes. For

each node the displacement vector is written as

®Di =



di,1

di,2

...

di,n f



n f =3
=



ui

vi

wi



, (4.1.1)

where di,j are the mechanical displacement components. For a 3D structural problem the DOFs

of a single node are typically n f = 3 as the displacement field variable may move along all three

main axes. The displacement components along the three main axes, in this case the x-axis,

y-axis and z-axis, are then typically given by the three field variables ui, vi and wi [Liu 2003;

Rao 2010; Felippa 2004].

Several nodes are combined into an element as shown for a 2D quadrilateral element in

Figure 4.2 [Ho and Yeh 2006]. In the FEM often two types of elements are used. Serendipity

elements possess only nodes on the edges, whereas Lagrange elements also feature nodes within

the element which is computationally more demanding as the number of nodes, and thus the

total DOFs are increased. The FEM computes the field variables for the nodes of the elements.

To describe the displacement of the whole element the individual displacement vectors of each

node (4.1.1) are collected in the elemental displacement vector

®D(e)
=

[
u1 v1 w1 u2 v2 w2 · · · und vnd wnd

]T

, (4.1.2)

where nd is the number of nodes and the superscript (e) signifies an element local coordinate

system [Liu 2003; Rao 2010]. To find the value of the field variables not only at the nodes but

at any given point within the element so-called shape or basis functions are required.
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4.2 Shape Functions

Using shape functions the displacement vector at any point in the element

®U(x, y, z, t) =
nd∑

i=1

[Ñi(x, y, z)] ®Di(t) = [N(x, y, z)] ®D(e)(t) (4.2.1)

is interpolated from the nodal displacements ®D(e)(t) using the matrix of shape functions

[N(x, y, z)] [Liu 2003; Rao 2010; Bathe 2014; Larson and Bengzon 2013].

The matrix of shape functions

[N(x, y, z)] =
[
[Ñ1(x, y, z)] [Ñ2(x, y, z)] · · · [Ñnd (x, y, z)]

]
(4.2.2)

contains the diagonal sub-matrices

[Ñi(x, y, z)] =



Ni,1(x, y, z)
Ni,2(x, y, z)

. . .

Ni,n f
(x, y, z)



(4.2.3)

where for 3D problems n f = 3 and typically Ni,1 = Ni,2 = Ni,3 = Ni [Liu 2003; Rao 2010].

The shape functions Ni(x, y, z) must adhere to four conditions: Firstly they must be of unity

value at their respective home node i and vanish at all other nodes, which is the interpolation

condition. Secondly, they must vanish outside any element boundary that does not contain

node i, which is called the local support condition. Thirdly, they must fulfil the inter-element

compatibility condition which requires continuity between adjacent elements containing the

same node i. Lastly the completeness condition mandates that the interpolation is able to

represent any linear displacement field or constant value [Zienkiewicz et al. 2013; Liu 2003;

Felippa 2004].

The shape functions can be calculated by assuming that the displacement vector at any point

within the element

®Uh(x, y, z) =
nd∑

i=1

pi(x, y, z)αi = ®pT (x, y, z)®α (4.2.4)

can be approximated from a linear combination of nd linearly-independent basis functions

pi(x, y, z). The coefficient αi for each basis function is defined as

®α =
[
α1 α2 · · · αnd

]T

. (4.2.5)

The required monomials for a 3D problem can be constructed from the Pascal’s pyramid and
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are written as

®p(x, y, z) =
[
1 x y z xy yz zx x2

y
2 z2 · · · xp

y
p zp

]T

(4.2.6)

up to a order p with a total of nd terms [Liu 2003]. Consequently, the element order in Figure 4.2

defines the order of the monomials, and thus the interpolation type. Here the order of the element

should be chosen upon the requirements of the finite-element problem. In solid mechanics, which

includes rotations of objects, linear interpolation causes larger errors compared to quadratic

shape functions, which reduce the error. This, however, comes at an increased computational

cost due to the larger number of nodes, and thus total DOFs [Bauchau and Han 2013].

The coefficients αi are calculated from

®D(e)
= [P]®α (4.2.7)

by enforcing the approximated displacements in (4.2.4) to be equal to the nodal displacements
®D(e) at the respective nodes. Here

[P] =



®pT (x1, y1, z1)
®pT (x2, y2, z2)

...

®pT (xnd, ynd, znd )



(4.2.8)

is the so-called momentum matrix, which is of the size nd × nd , which can be written as

[P] =



p1(x1, y1, z1) p2(x1, y1, z1) · · · pnd (x1, y1, z1)
p1(x2, y2, z2) p2(x2, y2, z2) · · · pnd (x2, y2, z2)

...
...

. . .
...

p1(xnd, ynd, znd ) p2(xnd, ynd, znd ) · · · pnd (xnd, ynd, znd )



(4.2.9)

in its expanded form. Assuming the inverse of the momentum matrix exists the coefficients ®αi

®αT
= [P]−1 ®D(e) (4.2.10)

can be calculated. Substituting this equation in (4.2.4) allows for the calculation of an

approximated displacement
®Uh(x, y, z) = [N(x, y, z)] ®D(e) (4.2.11)
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(a) (b) (c)

Figure 4.3: 1D (a) linear, (b) quadratic and (c) cubic shape functions in the local element coordinate frame.

at any point within the element. The matrix of shape functions is defined as

[N(x, y, z)] = ®pT (x, y, z)[P]−1
=

[
®pT (x, y, z)[P]−1

1
®pT (x, y, z)[P]−1

2
· · · ®pT (x, y, z)[P]−1

nd

]

=

[
[Ñ1(x, y, z)] [Ñ2(x, y, z)] · · · [Ñnd (x, y, z)]

]

(4.2.12)

where [P]−1
i

is the ith column of [P]−1 [Liu 2003; Bathe 2014; Rao 2010]. Using this

methodology the shape functions of the elements can be calculated. They are plotted some

lower orders in Figure 4.3 and Figure 4.4 for 1D and 2D elements in their local element

coordinate systems (ξ) and (ξ, η). While this is a general approach to derive the shape functions

for an element, shortcut methods are widely deployed in finite-element software as they are less

computation intensive [Zienkiewicz et al. 2013; Larson and Bengzon 2013; Rao 2010].
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(a)

(b)

Figure 4.4: 2D (a) linear and (b) quadratic serendipity shape functions for quadrilateral elements in the local element
coordinate frame.

4.3 Construction of the Finite-Element Equations

Following the discretisation of a geometry into elements and the derivation of the element shape

functions the equations of motion can be derived. Therefore the strains

®ε = [B] ®D(e) (4.3.1)

and stresses

®σ = [c]®ε = [c][B] ®D(e) (4.3.2)

are expressed using the strain displacement matrix [B] and the elasticity matrix [c], which was

derived in Chapter 3. The strain displacement matrix writes as

[B] =
[
B1 B2 · · · Bnd

]
(4.3.3)
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where

[Bi] =



∂Ni

∂x
0 0

0
∂Ni

∂y
0

0 0
∂Ni

∂z
∂Ni

∂y
∂Ni

∂x
0

0
∂Ni

∂z
∂Ni

∂y
∂Ni

∂z
0

∂Ni

∂x



. (4.3.4)

is calculated from the shape functions and (3.1.9) [Zienkiewicz et al. 2013; Liu 2003].

Using these expressions the equations of motion can be calculated using either the Eulerian

or Lagrangian formulation. In solid mechanical problems, with small deformations, the

finite-element equations are commonly derived from the Lagrange equations as deformations

are assumed to be volume preserving. They are given by the Lagrange equation

d

dt

∂L

∂ ÛD
− ∂L

∂D
+

∂R

∂ ÛD
= 0 (4.3.5)

where a dot indicates the first derivative with respect to time and

L = T − V +W (4.3.6)

is the Lagrangian function with the kinetic energy T , the potential energy V , the external work W

and the dissipation function R [Rao 2010; Larson and Bengzon 2013; Zienkiewicz et al. 2013].

Applied to a single element they can be written as

T (e)
=

1

2

∭

V

ρ
Û®UT Û®Udv, (4.3.7)

V (e)
=

1

2

∭

V

®εT ®σdv, (4.3.8)

R(e)
=

1

2

∭

V

µ
Û®UT Û®Udv (4.3.9)

and

W (e)
=

∭

V

®UT ®fbdv +

∬

S

®UT ®fsds (4.3.10)

where V is the element volume, S the element surface, Û®U the velocity vector of the nodal field

variables, ρ the density and µ the damping coefficient. The external forces on the element body

and surfaces are given respectively by ®fb and ®fs [Rao 2010; Bathe 2014; Liu 2003].

By substitution of (4.2.1), (4.3.1) and (4.3.2) in (4.3.7) to (4.3.10), the Lagrange components
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can be rewritten as

T (e)
=

1

2

Û®D(e)T [M (e)] Û®D(e), (4.3.11)

V (e)
=

1

2
®D(e)T [K (e)] ®D(e) and (4.3.12)

R(e)
=

1

2

Û®D(e)T [C(e)] Û®D(e). (4.3.13)

From these the local element mass matrix

[M (e)] =
∭

V

ρ[N]T [N]dv (4.3.14)

the local element stiffness matrix

[K (e)] =
∭

V

[B]T [C][B]dv (4.3.15)

and the local element damping matrix

[C(e)] =
∭

V

µ[N]T [N]dv (4.3.16)

are derived. Similar expressions for the elemental nodal body forces

®F(e)
b
= ®D(e)T

∭

V

[N]T ®fbdv (4.3.17)

and the surface forces
®F(e)
s =

®D(e)T
∬

S

[N]T ®fsds (4.3.18)

can be calculated [Rao 2010; Bathe 2014; Larson and Bengzon 2013].

To obtain the set of equations for not just a single element but the complete global structure,

which contains all connected elements, the local element matrices are expanded to the global

matrix size. The expanded matrices take the form

T (g)
=

E∑

e=1

T (e)′, (4.3.19)

V (g)
=

E∑

e=1

V (e)′, (4.3.20)

R(g)
=

E∑

e=1

R(e)′ and (4.3.21)

®F(g)(t) = ®F(g)
c (t) +

E∑

e=1

(
®F(e)′
s (t) + ®F(e)′

b
(t)

)
(4.3.22)
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where the prime indicates a sparse matrix or vector which is expanded to the global matrix size.

The subscript (g) marks the global matrix formulation, E is the total number of elements and
®F(g)
c (t) the force vector of concentrated nodal forces in the global form. This procedure also

yields, analogously to (4.3.11) to (4.3.16), the global formulations of the mass [M (g)], stiffness

[K (g)] and damping [C(g)] matrices [Rao 2010].

Substitution of the global matrices into the Lagrange equations (4.3.5) and (4.3.6) yields the

differential equations of motion for the entire geometry

[M (g)] Ü®D(t) + [C(g)] Û®D(t) + [K (g)] ®D(t) = ®F(g)(t) (4.3.23)

where, Û®D(t) and Ü®D(t) are the velocity and acceleration of the nodal field variables. The discretised

equations of motion are commonly written for simplicity as

M ÜD + C ÛD +KD = F (4.3.24)

which implies the global matrix formulation and time dependencies of the force and displacement

vectors [Larson and Bengzon 2013; Zienkiewicz et al. 2013; Rao 2010; Liu 2003].

4.4 Mechanical Eigenmodes

Using the FEM, the mechanical eigenmodes of a structure can be found by solving the equilibrium

equation of a free undamped dynamic vibration

M ÜD +KD = 0 (4.4.1)

for the nodal displacements. The solution for the displacement is assumed of the form

D = φe jωt (4.4.2)

where φ is the amplitude vector of the nodal displacements and ω is the vibration frequency.

One can rewrite (4.4.1) to obtain the eigenvalue equation

[K − λM]φ = 0 (4.4.3)

where λ = ω2 is an eigenvalue of the system. To find a non-zero solution to the eigenvalue

equation the determinant

det(K − λM) = 0 (4.4.4)

must vanish.

Expanding the above equation leads to a polynomial of order equal to the DOFs with the

roots λ1, λ2, . . . , λnd known as the eigenvalues of the structure. They relate to the natural
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frequencies of vibration, which are supported by the structure’s geometry and material properties.

Each eigenvalue λi is associated with a corresponding eigenvector φi describing the nodal

displacements of the eigenmode. By construction, all eigenvectors are orthogonal. However, in

some cases several eigenvalues may coincide. In this case multiple eigenvectors which satisfy

(4.4.3), and thus have the same eigenvalue, may exist [Bathe 2014; Chopra 2012; Liu 2003;

Rao 2010].

The eigenvalues can also be obtained for a damped structure with the characteristic equation

− ω2MD + jωCD +KD = 0 (4.4.5)

which can be solved by splitting the equation into two first-order equations

[Zienkiewicz et al. 2013; Chen and Taylor 1989]. However, depending on the analysis following

the eigenmode simulation, it is possible to neglect damping during the initial eigenvalue

calculation and consider it at a later stage in the investigation [Lesieutre 2001; Comsol 2019].

4.5 Viscous Damping and Frequency Domain Response

Several approaches exist to introduce damping in solid mechanic finite-element problems with

one common approach using Rayleigh damping, a form of proportional viscous damping

[Lesieutre 2001; Chopra 2012; Larson and Bengzon 2013; Alipour and Zareian 2018;

Chopra and McKenna 2015; Liu 2003; Comsol 2019]. Using the Rayleigh damping formulation,

the damping matrix

C = αM + βK (4.5.1)

is constructed from a linear combination of the known mass and stiffness matrices from

the finite-element formulation. The pre-factors α and β are real-valued scalars found from

experiments or calculations, with the units 1/s and s, respectively. Knowing the damping ratios

of two eigenmodes of the system

ζn =
α

2

1

ωn

+

β

2
ωn (4.5.2)

at their respective frequency ωn the prefactors α and β can be calculated by solving

[Lesieutre 2001; Chopra and McKenna 2015; Alipour and Zareian 2018; Rao 2010]

1

2

[
1/ωi ωi

1/ω j ω j

] [
α

β

]
=

[
ζi

ζ j

]
. (4.5.3)

The damping ratios for the individual modes can be obtained from empirical measurements such

as the ring-down method [Polunin et al. 2015]. With this method, the quality factor (Q-factor)

of a mode can be determined from the decay rate during a transient measurement, which relates
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Figure 4.5: Rayleigh damping formalism using a linear combination of mass and stiffness dependent damping.

to the damping ratio via [Chopra 2012; Brand et al. 2015]

ζ =
1

2Q
. (4.5.4)

Using this approach, the Rayleigh damping coefficients can be computed as plotted in Figure 4.5.

Both the mass and stiffness terms vary with frequency and the sum yields the total damping.

The total damping is bounded at the two known frequencies ωi and ω j to the known values ζi

and ζ j . In a classical application, the under-damping in the region of interest, between ωi and

ω j , is commonly considered the conservative approach, as over-damping may be undesirable

[Chopra 2012]. Note that in the case of a rigid body mode, the Rayleigh damping formulation

introduces unreasonable non-zero damping. Furthermore, modes outside the bounded region are

overdamped and will not respond in an oscillatory manner in an unforced motion. Despite the

drawbacks inherent to the model, Rayleigh damping may provide accurate results when being

considered over a narrow frequency range [Lesieutre 2001; Chopra 2012]. Using Rayleigh

damping the simulations can be adjusted by setting different macroscopic damping values to

mimic the behaviour of the structure.

To obtain the mechanical response of a structure for different excitation frequencies, the

differential finite-element equation (4.3.24) must be considered with a time-varying structural

response

D = D0e jωt (4.5.5)

where D0 is the maximum deflection. The equilibrium equation thus takes the form

− ω2MD + jωCD +KD = F (4.5.6)

after substituting the derivatives [Marfurt 1984; Zhao et al. 2017; Brand et al. 2015]. The

solution to this equation yields a complex-valued displacement, and thus provides both amplitude

and phase information [Comsol 2018; Soares and Mansur 2005]. This method is generally

computation-intensive, especially in weakly damped systems with tight frequency resolution

requirements, as all possible DOFs of the complete structure must be considered.
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4.6 Modal Superposition

4.6 Modal Superposition

The modal superposition principle can be applied to bypass the problem of the high

computational cost associated with the frequency domain response which considers all DOFs.

The system may be simplified if only a few major resonant eigenmodes contribute to the

overall structural response. Rather than solving the frequency spectrum with (4.5.6) for all

possible DOFs, the response can be approximated using a superposition of some uncoupled

structural eigenmodes. Here a few modes may already be sufficient to describe the overall

structural response and the DOFs can be strongly reduced in the process [Zienkiewicz et al. 2013;

Rao 2010].

Starting from the eigenvalue equation (4.4.3), a set of orthogonal eigenmodes which fulfil

φT
i Mφ j = 0, and φT

i Kφ j = 0, i , j . (4.6.1)

can be computed [Comsol 2019]. For representation purposes the eigenvectors φi are gathered

in the matrix of eigenmodes Φ, where each column of represents an eigenvector. It then writes

in matrix form with the mass matrix as

Φ
TMΦ =



m1

m2

. . .

mnd



= Ψ. (4.6.2)

Since the amplitudes of the eigenmodes are arbitrary, they can be normalised using the mass

matrix normalisation, so each mi = 1 of the modal mass matrix, and thus Ψ = I, where I is the

identity matrix. Analogously, the corresponding stiffness matrix can be normalised according

to

Φ
TKΦ =



m1ω
2
1

m2ω
2
2
. . .

mndω
2
nd



= Ω (4.6.3)

where the diagonal entries represent the squares of the modal angular natural frequencies after

mass matrix normalisation [Comsol 2019].

At the core of the modal superposition principle lies the assumption that the total displacement

within a structure can be written as a linear combination of the independent modal eigenvectors

D ≈
n∑

i=1

qiφi (4.6.4)
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where qi is the amplitude vector of the ith mode. In matrix form, the equation can be written as

D = Φq (4.6.5)

where q is a vector containing the modal amplitudes. Substitution of (4.6.5) in (4.3.24) yields

MUÜq + CU Ûq +KUq = F (4.6.6)

and further left-hand side multiplication with ΦT gives

ΨÜq +ΦTCΦ Ûq +Ωq = Fm (4.6.7)

where Fm = Φ
TF is the modal load. The equation may further be simplified as Ψ and Ω are

diagonal matrices. Assuming orthogonality of all eigenvectors, the damping termΦTCΦ can be

expressed by a diagonal matrix ζ r containing an individual damping ratio for each contributing

eigenmode, which is not possible with viscous damping alone. The equation of motion thus

reduces to

Üq + 2ζ rωr
Ûq + ωrq = Fm (4.6.8)

where all linear equations are decoupled, which provides faster computation times compared to

the fully coupled expression [Rao 2010]. The selection and number of modes must be carefully

considered as they substantially impact the solution’s accuracy [Lesieutre 2001; Comsol 2019;

Zienkiewicz et al. 2013; Rao 2010].

Summary

By simplifying a complex geometry into smaller parts its mechanical behaviour can be solved

numerically with the FEM where otherwise no analytic solution is feasible. During the

discretisation the geometry is constructed from nodes which are connected into elements. For

these elements it is possible to derive the differential equations of motion which are interpolated

at arbitrary points within the respective elements using shape functions. For solid mechanical

problems the finite-element equations are typically derived from the Lagrange equations.

The resulting equations of motion allow for the calculation of different characteristics of the

structure, such as the resonant eigenmodes and frequency domain response. For the latter,

damping is crucial, which may be introduced via viscous Rayleigh damping as it allows for a

fine control of the mechanical response.
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Chapter 5 Electromechanical Modelling of the Resonant Fin Transistor

To model the mechanical response of the resonant fin transistor (RFT) the resonant

eigenmodes in the front-end-of-line (FEOL) are investigated on a simplified unit cell

using the finite-element method (FEM). The wave guiding properties of the substrate

and frequency domain response of the structure under electric excitation are modelled

for varying crystallographic orientations. The mechanical performance of the finite

device is then estimated using larger simulation volumes and different connection

schemes. For a later circuit application the electro mechanical performance of the RFT

is modelled using the piezoresistive effect of silicon, yielding an estimated mechanical

transconductance .

5.1 Resonant Eigenmodes

To describe the mechanical behaviour of the RFT and assess its performance and limitations,

an understanding of the mechanical eigenmodes of the structure is essential. They can

be found analytically for simple problems with a small degree of freedom (DOF). For

complex problems, however, numerical methods prevail due to their greater flexibility or the

lack of analytic descriptions. Amongst different approaches such as plane-wave-expansion

(PWE) and finite-difference time-domain (FDTD), the finite-element method (FEM) method

is widely used for mechanical problems, ranging from structural buildings and earthquake

science [Chopra 2012] to mechanical engineering [Rao 2010; Liu 2003; Bathe 2014] and

further to the micro and nano-scale for micro-electro-mechanical-system (MEMS) design

[Choudhary and Iniewski 2013; Bao and Huang 2003; Graczykowski et al. 2012; Shi et al. 2021;

Baghelani et al. 2011; Zhou et al. 2018; Sviličić et al. 2015].

5.1.1 Periodic Structures

A description of the mechanical eigenmodes is essential to describe the resonant behaviour of

the RFT. Those eigenmodes can be found using the FEM as discussed in Section 4.4. It solves

the differential equations of motion for complex structural problems by discretizing the geometry

into smaller finite elements.

With an increasing simulation volume, the DOFs and, consequently, the solution times

increase in a non-linear manner [Pardo et al. 2012]. Many problems may be further simplified to

counteract the long simulation times and improve convergence and solution speed by exploiting

the geometrical symmetries and boundary conditions. A periodic structure with a large

number of repetitions, such as the RFT with 154 consecutive periodic fin field-effect transistors

(FinFETs), may be assumed as infinitely extended in a very simplistic assumption. However,

scattering events at the abrupt termination of a finite structure will lead to increased losses

[Bahr et al. 2015]. By exploiting the periodicity of the cavity, the computational effort can be

drastically lowered since it can be reduced to a small subsection or unit cell of the periodic

structure with a lower DOF than the complete structures.
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5.1 Resonant Eigenmodes

(a) Direct lattice (b) Reciprocal lattice (c) First Brillouin zone

Figure 5.1: (a) 2D direct lattice with the primitive basis vectors. (b) Reciprocal lattice with the primitive basis
vectors and the Brillouin zone marked in grey. (c) First Brillouin zone (grey) and irreducible Brillouin
zone (blue) with the high symmetry points.

With the help of Floquet-Bloch boundary conditions the DOFs of periodic structures can

be reduced, allowing for a computationally more efficient modelling. Any periodic structure

in one-, two-, or three-dimensions may be described by a Bravais lattice. It is formed by a

collection of points with their respective locations given by

R = la1 + ma2 + na3 (5.1.1)

where a1, a2 and a3 are the three primitive basis vectors of the lattice. The lattice is also invariant

under any translation by the integer coefficients l, m and n. It is defined in the real space of

the structure and is commonly referred to as the direct lattice. An exemplary two-dimensional

(2D) square lattice, with spacing a is shown in Figure 5.1(a). Commonly wave propagation

phenomena are studied on the reciprocal lattice with the primitive lattice vectors

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, (5.1.2)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
and (5.1.3)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
(5.1.4)

for a three-dimensional (3D) lattice, which are constructed from the direct lattice vectors

[Jiménez et al. 2021]. Similarly to the direct lattice the reciprocal lattice vectors follow

G = l′b1 + m′b2 + n′b3 (5.1.5)

where l′, m′ and n′ are integers. The direct and reciprocal lattice vectors follow the condition

G · R = 2πN , where N is an integer value. The reciprocal lattice of a square direct lattice is

depicted in Figure 5.1(b), marked in grey is the first Wigner-Seitz cell which is also known as

the Brillouin zone.

In a periodic structure such as a phononic crystal or a periodic waveguide all material
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properties, namely the density

ρ(r + R) = ρ(r) (5.1.6)

and elastic moduli

cαβ(r + R) = cαβ(r), (5.1.7)

are considered periodic on the direct lattice [Khelif and Adibi 2016; Jiménez et al. 2021].

Assuming the displacements to be plane waves

u(r, t) = u(r)e jωt (5.1.8)

whereω is the angular frequency, the Floquet-Bloch theorem allows to rewrite the displacements

as

u(r) = uk(r)e jk·r. (5.1.9)

Here k is the Bloch wave vector and uk(r + R) = uk(r) is a periodic function on the direct

lattice which is valid for all lattice vectors R [Khelif and Adibi 2016; Jiménez et al. 2021;

Joannopoulos et al. 2008].

To obtain the dispersion relation, also known as the band structure, which describes most of

the mechanical properties of the structure, it is sufficient to solve the eigenvalue problem on the

perimeter of the Brillouin zone. It leads to an infinite number of allowed frequencies ωn(k) at

a given wave vector, where n is an integer numbering the bands. The Brillouin zone typically

posses further symmetries which can be exploited to reduce computational cost even further.

The newly derived unit cell is referred to as the irreducible Brillouin zone, which is marked

in blue in Figure 5.1(c) with the so-called high symmetry points Γ, X and M. The obtained

dispersion relation for all wave vectors on the perimeter of the irreducible Brillouin zone is also

known as band structure.

Although the lattice vectors of the direct lattice can point in any direction, without being

parallel, only rectangular lattices are considered in this work. Depicted in Figure 5.2 are

examples of selected one-dimensional (1D), 2D and 3D Brillouin zones with the respective

high-symmetry points which are indicated by capital letters [Setyawan and Curtarolo 2010]. As

indicated by grey lines, the first Brillouin zones may be further reduced by exploiting symmetry

planes giving rise to the irreducible Brillouin zone. It is marked for all reciprocal Wigner-Seitz

cells in colour with their respective high symmetry points. Note the different naming conventions

for some high symmetry points for the different lattice types and dimensions.

In the following study of the eigenmodes and band structures, it is sufficient to obtain

the solutions on the perimeter of the irreducible Brillouin zones as those reflect all

extremal values obtained inside the Brillouin zone, reducing the required simulation resources

[Khelif and Adibi 2016; Joannopoulos et al. 2008; Setyawan and Curtarolo 2010].

In the later band structure studies, it is sufficient to obtain the solutions on the perimeter of

the irreducible Brillouin zone as those reflect all extremal values obtained inside the Brillouin
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(a) 1D linear (b) 2D square (c) 2D rectangular

(d) 3D cubic (e) 3D orthorombic

Figure 5.2: Wigner-Seitz cells for different unit cell configurations with their respective irreducible Brillouin zone
and high symmetry points.

zone [Khelif and Adibi 2016; Joannopoulos et al. 2008; Setyawan and Curtarolo 2010].

5.1.2 Eigenmodes of the Resonant Fin Transistor

As fabricated by Bahr et al. the RFT features 154 consecutive fins which can be approximated

using just a single FinFET with periodic Floquet-Bloch boundary conditions, effectively reducing

the required DOFs down to 1/154 [Bahr et al. 2018]. To further reduce complexity and

separate the resonant behaviour from the phononic crystal, the back-end-of-line (BEOL) mirror

is removed from the simulation. Instead, it is modelled with a solid oxide slab made from SiO2

or SiCO:H. The respective differential unit cells, spanning two adjacent FinFETs, are sketched

in Figures 5.3(a) and 5.3(b). Note that only a single fin is considered in the finite-element

eigenmode analysis. The corresponding Brillouin zone is depicted in Figure 5.3(c). The

FinFETs are modelled to typical 16 nm technology node dimensions comparable to Global

Foundries’ 14 nm node [Bahr et al. 2018]. The fins can be divided into an active transistor

part, covered by the high-κ dielectric and the gate conductor and the inactive part below the

fin, where the gaps between fins are filled by thermally stable SiO2. The gate stack is created

from a thin high-κ HfO2 layer and a work-function material such as TiN. The common gate of

the cavity is made from tungsten, a very stiff, near-isotropic material. Vertically above the gate,

where the BEOL is usually manufactured, the previously mentioned SiO2 and SiCO:H slabs are

used for the simulation. The depicted structures are modelled for a gate length of 36 nm and a

technology-typical gate pitch.

To reflect the RFT’s periodic structure, they are constructed with Floquet-Bloch boundary

conditions along the y-axis. On the facets perpendicular to the x-axis, symmetric boundary

conditions are used. They suppress out-of-plane movements, which leads to the assumption of

an infinite number of parallel gates within the RFT. The impact of a finite number of gates is
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(a) (b) (c)

Figure 5.3: Ideal 2-fin unit cells with (a) a SiO2 and (b) a SiCO:H slab on top of the RFT cavity. (c) Brillouin zone
of the unit cells. ((a) Adapted from [Hudeczek et al. 2022].)

(a) (001) Silicon (b) (001)45 Silicon (c) (011) Silicon (d) (111) Silicon

Figure 5.4: Different wafer orientations with their respective surface-normal, channel and gate directions. (Adapted
from [Hudeczek et al. 2022].)

discussed later in Section 5.3.2. Layers of perfectly matched layers terminate the unit cells along

the z-axis. Those regions absorb all incoming mechanical waves which is a valid assumption as

no reflections in the far distance are expected due to the presence of a thick silicon wafer and

BEOL oxide slab [Joannopoulos et al. 2008; Khelif and Adibi 2016].

As discussed in Chapter 3, monocrystalline silicon exhibits anisotropic mechanical properties.

Therefore, several wafer orientations are modelled to study their impact on the performance of

the RFT. As sketched in Figure 5.4, the four investigated directions are commonly deployed in

integrated circuit (IC) or MEMS design. The first orientation, as illustrated in Figure 5.4(a),

covers the case of a non-rotated standard silicon wafer (100), where the channel points along

the principle axis [100]. Therefore, the RFT’s spatial coordinates align with the silicon wafer’s

principle crystallographic axes. The second orientation (001)45, shown in Figure 5.4(b), is

rotated counter-clockwise by 45° around the wafer’s normal direction [001]. Here the FinFETs’

channels point along [110], which is considered the best orientation for standard complementary

metal-oxide-semiconductor (CMOS) ICs, due to the beneficial susceptibility to uniaxial stress

along the channel, as discussed in more detail in Section 5.5.1 [Thompson et al. 2004;

Saitoh et al. 2008; Jaeger et al. 2013; Gallon et al. 2004]. The third configuration (011),
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(a) (b)

Figure 5.5: FEM simulated band structure along Γ−Y for a top confinement with (a) SiO2 and (b) SiCO:H on a
(001) oriented wafer. Note that (b) was limited to 250 modes for each computed wave vector.

depicted in Figure 5.4(c) is added for completeness and is not commonly used. As sketched

in Figure 5.4(d), the last wafer is (111) oriented with the channel pointing along [1̄1̄2]. This

behaviour is considered beneficial for several types of released MEMS as all material properties

are isotropic in the wafer plane, as discussed in Section 3.7.

Resonant modes, with wave vectors along the y-axis parallel to the cavity, are relevant for the

device’s operation. Therefore, the band structure along Γ−Y has to be considered as modes with

a wave vector matched to the Y-point may couple to the adjacent fins and thereby propagate

through the whole cavity [Khelif and Adibi 2016; Joannopoulos et al. 2008]. Note that the

original publication by Bahr et al. investigates modes within Γ−X as a 2D approximation

with the respective Brillouin zone convention shown in Figure 5.2(b) has been considered

[Bahr et al. 2018]. The dispersion of a single FinFET is computed with the FEM on a (001)
wafer for both oxide variants and shown in Figure 5.5. The colour code quantifies the attenuation

α =
ℑ(ω)
ℜ(ω) (5.1.10)

of each mode calculated from the real ℜ and imaginary ℑ part of the complex-valued

eigenfrequencies ω [Muzar and Stotz 2019]. Note that the attenuation is normalised to the

largest observed value within each simulation. For the first unit cell variant with a SiO2 slab,

plotted in Figure 5.5(a), four guided modes with a low attenuation are observed at the Brillouin

zone edge at Y, as marked by the arrows. These modes are well confined within the gate leading

to a low attenuation, and thus large quality factor (Q-factor). Contrary to the SiO2 slab, the

low-κ SiCO:H oxide does not support well-guided modes, as shown in Figure 5.5(b). Although

four similar modes can be identified, as marked by the arrows, their frequency is shifted, and
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Table 5.1: Resonant frequencies and Q-factors of the four marked guided modes in Figure 5.5.

Mode
SiO2 slab SiCO:H slab

f (GHz) Q-factor f (GHz) Q-factor

1 29.076 2.8 × 109 27.457 68

2 29.585 6.0 × 109 29.258 190

3 33.104 9.6 × 109 30.922 37

4 33.291 1.2 × 109 32.617 131

they are largely attenuated.

This behaviour is consequently reflected in the Q-factor

Q =
ℜ(ω)
2ℑ(ω) (5.1.11)

which is calculated from the complex-valued eigenfrequencies ω [Lifshitz and Roukes 2000;

Brand et al. 2015; Chopra 2012]. The respective values are listed in Table 5.1 for all marked

modes. Interestingly the observed Q-factors for the SiO2 slab are more than several billion,

whereas the SiCO:H slab only supports values in the low tens to hundreds. The huge values

result from the neglected damping within the structure, as the accurate description of material

damping is challenging. Therefore, the Q-factor is a direct measure of confinement of the mode

as it quantifies all energy being deposited in the perfectly matched layers, which terminate the

finite vertical directions of the simulation volume. A large Q-factor indicates a well confined

mechanical mode in the FEOL cavity as only little energy is lost into the perfectly matched

layers. Hence the confinement and guiding properties of the RFT cavity are strongly affected by

the choice of the oxide material within the BEOL. The large difference in the observed Q-factors

of the two oxide variants follows from the mechanical differences (see Table 3.1) and shielding

capabilities.

5.1.3 Index Guiding

Since the BEOL phononic crystal is neglected and the RFT cavity is solely confined by a solid

silicon or oxide slab. The shielding capabilities of those slabs is defined by the sound wave

dispersion relation

ω = kc (5.1.12)

of the respective materials, where c is the wave velocity of either the longitudinal or transversal

waves [Khelif and Adibi 2016; Dobrzyński et al. 2018; Joannopoulos et al. 2008]. As discussed

in Section 3.7.4 the sound wave velocities depend on the crystal orientation and propagation

direction in cubic crystals. Consequently, the wafer orientations lead to different dispersion

relations for both longitudinal and transversal waves within the bulk materials, based on the

sound velocities in Table 5.2. The values have been obtained using the Christoffel equation
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Table 5.2: Mechanical wave velocities in anisotropic bulk silicon and isotropic SiO2 and SiCO:H along the gate
direction for longitudinal (L) and transversal (T) waves. The sound cone (SC) frequencies are given for
the Y point matched to the FinFET pitch.

Material Orientation k-vector
cl ct1 ct2 SC fmax @ Y

(m s−1) (m s−1) (m s−1) L (GHz) T (GHz)

Silicon

(001) [010] 8440.7 5844.9 5844.9 87.924 64.379

(001)45 [1̄10] 9357.0 5844.9 4678.5 97.469 48.739

(011) [011̄] 9357.0 5844.9 4678.5 97.469 48.739

(111) [11̄0] 9357.0 5844.9 4678.5 97.469 48.739

SiO2 isotropic 5848.1 3687.5 3687.5 60.918 38.412

SiCO:H isotropic 2453.7 1377.3 1377.3 25.559 14.347

Figure 5.6: Bulk dispersion relations in anisotropic silicon and isotropic (iso) SiO2 and SiCO:H along the gate
direction Γ−Y for longitudinal and transversal waves.

(3.7.7) for the respective polarisations and propagation directions along Γ−Y. The respective

bulk dispersion relations of anisotropic silicon, SiO2 and SiCO:H are shown in Figure 5.6 for

both longitudinal and transversal waves. The longitudinal wave dispersion relation is marked in

blue, with the two transversal dispersion relations marked in red and green, respectively. The

extent of the Brillouin zone is matched to the FinFET pitch of the RFT, with the respective

directions of propagation in crystal coordinates listed in Table 5.2. A folding of the bands is

observed at the high symmetry points, which follows from the finite extent of the Brillouin zone

[Hudeczek and Baumgartner 2020; Graczykowski et al. 2014; Ku et al. 2010].

For the wafer orientation (001), only one shear wave velocity exists for both transversal

waves. However, for (011), (001)45 and (111) silicon, two distinct shear wave velocities occur

for propagation along Γ−Y, leading to a subsequent splitting in the dispersion relation. A

continuum of states exists for all shear waves with a frequency above the slow shear wave

dispersion as indicated by the shaded region, which also applies to longitudinal and fast shear

waves. These regions are commonly referred to as the sound cones of the material. Any
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Figure 5.7: Band structure and evolution of the guided modes along Γ−Y for different silicon wafer orientations.

resonant mode within the cavity of the RFT with a frequency above one of the sound cones of

the underlying silicon wafer cannot be confined by index guiding as it may couple to the bulk

modes [Khelif and Adibi 2016; Dobrzyński et al. 2018; Joannopoulos et al. 2008].

However, as the sound cone frequencies of all silicon orientations at the Y-point, as listed in

Table 5.2, are larger than the required 32 GHz for the RFT mode, the silicon wafer is capable of

shielding the resonant mode at any of the investigated wafer orientations. The differentiator if a

mechanical mode is confined to the FinFETs is the choice of the BEOL oxide slab on top of the

cavity. Whereas the sound cone of SiO2 is sufficiently large to confine modes up to a frequency of

38.412 GHz, the sound cone of SiCO:H only allows shielding up to a frequency of 14.347 GHz,

for this specific fin pitch. The lower frequency follows from the much lower stiffness of the high

porosity low-κ oxide, which thus has a much lower sound velocity. Consequently, only SiO2 is

capable of shielding the resonant mode if no BEOL metals are considered [Hsu and Lin 2018;

Jiang et al. 2019; Khelif et al. 2010].

The respective dispersion relations for the RFT on all four silicon wafer orientations with a

SiO2 slab are shown in Figure 5.7. The guided modes are well below the calculated sound cone

frequencies for all orientations. Above the sound cone of SiO2 many highly attenuated modes

are found, which allow the cavity modes to couple to the SiO2 slab. Similarly, the sound cone

of silicon can also be discerned from the band structure of the RFT. However, the sound cone

of SiO2 is the limiting factor. Consequently, the underlying wafer orientation choice does not

impede the index guiding properties, and stable guided modes are found for all orientations.

Consequently, the RFT can be built without a phononic crystal on an older technology node

with a SiO2-based BEOL excluding the copper layers. However, this is not sufficient for modern

radio frequency (RF) stacks which are built with SiCO:H as dielectric material, and therefore,

a phononic crystal is mandatory to ensure proper mechanical confinement. This issue signifies
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

Figure 5.8: Displacement amplitudes for the guided modes at the Brillouin zone edge Y on a (001)wafer with a SiO2

BEOL slab. The respective unit cell and band structure are shown in Figure 5.3(a) and Figure 5.5(a).

the importance of a matched phononic crystal mirror for low-κ BEOL stacks, as the successful

operation of RFT is unlikely at these low observed Q-factors. Hence, the RFT is initially

modelled with a SiO2 slab as it supports the formation of guided modes without a phononic

crystal.

Note that the calculated Q-factors of several billion in the case of a SiO2 slab is an upper limit

which just includes the mode guiding related losses [Hamelin et al. 2019; Zhou et al. 2018].

Additional loss mechanisms such as thermoelastic dissipation, the Akhiezer effect, and the

Landau-Rumer regime were neglected as their impact is discussed later in Section 6.5. The

simulation shows that the low-κ oxide slab does not feature well-guided modes, as shown in

Figure 5.5(b), but rather a continuum of highly attenuated and, thereby, lossy modes. However,

the four previously observed modes are still distinguishable at a drastically lower Q-factor of

several tens, as given in Table 5.1. Moreover, the frequency of the respective modes is shifted to

lower frequencies following the choice of the BEOL material and the respective index guiding

properties. The lack of guided modes stems from the lower sound velocities within SiCO:H,

compared to SiO2, resulting in worse index guiding characteristics.

5.1.4 Resonant Mode Shapes

Although the RFT may support several guided modes, as marked in Figure 5.5(a), not all of them

can be actuated electrostatically. Their general effectiveness for the resonator can be assessed

via the displacement profiles of the guided modes, which gives more insight into their behaviour.

The eigenvectors, which represent the possible deformations of the structure, can be obtained

with the FEM. They are shown in Figure 5.8 for the first four guided modes on a (001) wafer with

a SiO2 BEOL slab. The mode shapes are unfolded along the Floquet-Bloch boundary conditions

to cover two adjacent fins for representation purposes, although only one was initially simulated.

They are deformed according to the eigenvector obtained from the simulation where the colour

code represents the strength of the deformation

d =
√

u2
+ v2
+ w2 (5.1.13)
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which is calculated from the displacement components u, v and w, which act along the x-,

y- and z-axis, of the eigenvector [Jiménez et al. 2021; Bathe 2014; Liu 2003]. Note that the

amplitude is arbitrary and not to scale, which follows from normalising mode displacements

during computation.

Due to the electrical excitation driving the metal-oxide-semiconductor (MOS) capacitors,

only modes with a deformation profile matched to the electromechanical actuation forces can be

driven. For a mode to be suitable for the operation of the RFT, the deformation of the eigenmode

must match the electromechanical actuation pattern. The electromechanical force within the

FEOL is created between the channel and gate in the different FinFETs. Therefore, the actuation

pattern is symmetric around each individual fin. The force leads to a deformation of the gate

oxide, and thus a breathing motion of the fins.

Therefore, only the third mode (compare Figure 5.8(c)) can be coupled electrostatically

[Bahr et al. 2018; Hudeczek and Baumgartner 2020; Hudeczek et al. 2022]. It offers a strong

symmetric displacement concerning the individual fins, creating a strong breathing deformation

of the FinFET channels. Moreover, it is well confined to the gate plane. Its frequency of

33.104 GHz on a (100) wafer and its mode shape agrees with the literature-reported values

[Bahr et al. 2018].

The three remaining modes cannot be coupled to electrostatically as their deformation profile

does not match the actuation pattern. The first mode, shown in Figure 5.8(a), exhibits strong

symmetric displacements within the gate spanned by the yz-plane. However, it is asymmetric

concerning the individual fins leading to a waving motion that cannot be driven electrostatically.

The second and fourth mode, depicted in Figures 5.8(b) and 5.8(d), are similar to the first

and third mode. However, they feature additional out-of-plane movements along the channel

direction along the x-axis, manifesting in an undesired waving motion of the gate along the

channel. Following the necessity of a mechanical mode with a symmetric deformation profile

concerning each fin and a symmetric displacement confined to the gate plane, they cannot be

driven, leaving only the third mode as a viable option to serve as the RFT mode [Bahr et al. 2018;

Hudeczek and Baumgartner 2020; Hudeczek et al. 2022].

The deformation profile of the third mode for the three spatial displacements directions u, v

and w is shown in Figure 5.9. The mode has small, although symmetric, displacements along the

channel direction, with the largest displacements occurring along the y- and z-axis, respectively.

To quantify the deformation within the channel the pressure

p = −1

3
σii i = 1,2,3 (5.1.14)

is introduced as an intermediate figure of merit which is calculated from the stress tensor

[Fowler and Ng 2021; Roesler 2007; Gross and Seelig 2018]. Using this figure of merit, all

directional dependencies of the stress are obfuscated and shear contributions are neglected.

However, it allows for quick identification and assessment of the resonant modes. It is plotted in
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(a) Disp. u (b) Disp. v (c) Disp. w (d) Pressure

Figure 5.9: Separated displacement components (a) u, (b) v and (c) w for the third guided mode shown in
Figure 5.8(c). (d) Differential pressure within the FinFET channels.

(a) (b)

Figure 5.10: (a) Variation of the resonant frequency of a reference device with a gate length of 36 nm for
different non-rotated wafer orientations in the first octant in the crystal space. (b) The resonant
frequency shift with increasing gate length for the different wafer orientations. ((b) Adapted from
[Hudeczek et al. 2022].)

Figure 5.9(d), highlighting the differential deformation between adjacent FinFETs. Moreover,

the pressure is concentrated in the channels following the breathing motion of the fins within

the gate plane.

The silicon wafer orientation not only influences the sound cone for index guiding, as described

in Section 5.1.3, but also directly affects the mechanical response. The changed mechanical

properties with the different crystallographic orientations of the underlying anisotropic silicon

wafer manifest in a frequency shift of the guided modes, as shown in Figure 5.7.

The RFT will thus have an altered resonant frequency response depending on the substrate

choice. Following the cubic symmetry of monocrystalline silicon, a broad overview of

the possible frequencies for the previously identified resonant mode of the RFT is given

in Figure 5.10(a) for the first octant of possible wafer orientations. Here the colour code

indicates the resonant frequency of the RFT mode for each wafer orientation. The naming

convention of the wafer normal direction follows the reference frame by J. Turley and G. Sines,
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as discussed in Section 3.4, which is swept across the first octant up to the 5th Miller index order

[Turley and Sines 1971]. Following the notation in Section 3.4, a counter-clockwise rotation

is given by α and the successive pitch of the reference frame by β. Note that only non-rotated

wafers with θ = 0° have been considered. Consequently, several groups of normal directions

share the same channel direction, derived from the zone axis [k̄h0], as indicated by the colour

of the normal direction. The corresponding gate direction is orthogonal to the wafer normal and

channel direction and can be found from the cross-product of those directions.

Interestingly the largest resonant frequencies are obtained for the group sharing the common

channel direction [1̄10], or generally due to the cubic symmetry 〈1̄10〉, for normal wafer

orientations between [111] and [223]. For a further increasing β, however, the frequency

drops quickly by almost 2 GHz within only ∆β = 19.4° between [112] and [115]. Due to the

cubic silicon symmetry, the possible resonant frequencies range from 31.764 − 33.622 GHz,

however, rotated wafers have not been considered, which might add additional possible resonant

frequencies.

Since the RFT is ultimately only fabricated on a single wafer type, typically (001)45 in a

productive IC foundry setting, the frequency is fixed in that regard. Moreover, the RFT is

envisioned as a fully integrated device in the IC process. Hence, the frequency shift with other

wafer orientations is inconsequential for a later application. Nevertheless, the four commonly

presiding orientations (001), (001)45, (011) and (111) are further assessed for comparison. While

the overall shift in frequency with the substrate choice may be disregarded, a general tune-ability

of the frequency on the same substrate is highly beneficial [Lopez et al. 2009].

Typically the resonant frequency of a MEMS relies on the spatial dimensions. In the case

of periodic structures, this is mainly the device pitch, with larger distances resulting in lower

resonant frequencies. This property, however, is fixed in most foundries and may not be varied

across a single wafer. Therefore, only the cavity width, defined by the gate length, can be

adjusted. With an increasing gate length, the resonant frequency drops by 3 GHz, for lengths

between 28-152 nm, as plotted in Figure 5.10(b). The trend is the same for all four investigated

wafer orientations except for the wafer-dependent offset. The shift follows from the out-of-plane

breathing motion of the gate, which affects the shape and frequency of the mode. However,

further investigation is required. Nevertheless, this behaviour could prove beneficial as it allows

the fabrication of RFTs with different resonant frequencies on the same wafer solely by adjusting

the gate length of the device, which adds to the versatility and applicability of the RFT in various

scenarios.

5.2 Frequency Domain Response

Since the eigenmodes are normalised during computation, it is impossible to judge their

effectiveness within the RFT from an eigenmode simulation alone. A fully coupled frequency

domain simulation is required to quantify their performance under electrostatic excitation.
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The previous eigenmode assumptions are based on a lossless system which is unreasonable

in real-world scenarios as such systems do generally not exist. Hence, in terms of damping,

additional friction forces need to be considered. Generally, constructing the damping matrix for a

large structure is challenging and often difficult as knowledge of the involved damping processes

and material properties is lacking, especially in nanostructures. Collecting meaningful material

loss data, the computation and experimental determination of the damping matrix is increasingly

challenging for large-scale problems. Hence a more convenient empirical approach is pursued.

Rather than assigning loss data to every involved material, which typically depends on the

frequency and size of the domain, damping may be introduced instead in the form of a viscous

damping ratio ζ in the equilibrium equation. The introduction of a damping ratio leads to lossy

complex-valued eigenfrequencies. However, it is often an oversimplification of the involved loss

mechanisms [Chopra 2012; Liu 2003; Lesieutre 2001].

With the modal superposition technique, as discussed in Section 4.6, the electromechanical

response of the RFT can be modelled. This is achieved by modelling both the electrical

actuation with sinusoidal drive signals as well as the mechanical response of the structure. The

combined behaviour is assessed in a coupled multi-physics simulation, which is handled by the

finite-element software.

To properly reflect the driving voltages’ differential nature, the unit cell must contain two

adjacent FinFETs, as depicted in Figure 5.3. The RFT is biased with a constant voltage of

VG = 800 mV applied directly to the tungsten gate and work function material TiN. Similarly,

both fins (Si+EPI & SI+ and Si−EPI & SI− in Figure 5.3) are biased at a constant drive voltage

Vdrive = 40 mV. The individual electrical phases, indicated in red and blue, are driven with an

amplitude of vdrive = 30 mV and a phase shift of 180° between adjacent fins, which results in

a differential voltage of vdrive,di f f = 60 mV. Using this approach, lead and contact resistances

are neglected, resulting in an instantaneous voltage response of the structure [Hager et al. 2021;

Hudeczek et al. 2022].

In other literature, the driving force was modelled using a 5 MPa mechanical driving force on

the surface boundaries of the FinFET channels [Srivastava et al. 2021]. However, the origin of

this value is not described. Furthermore, it does not reflect the actual electromechanical force

created within the RFT structure, and thus creates most likely arbitrary results.

All four previously observed guided modes are included in the modal superposition

simulation, and their Q-factor is limited to 1000 via Rayleigh damping to increase numerical

stability. The pressure response, calculated with (5.1.14) from the stress tensor within the

channel, is plotted for the reference device on all four wafer variants in Figure 5.11. The

corresponding spectrum obtained from the modal superposition simulation features a prominent

resonance peak fR at the third eigenmode frequency. No response is observed for all other

previously determined eigenmodes, resulting from the symmetry-forbidden displacements under

electrostatic excitation. Also observed is the frequency shift with varying wafer orientations, as

shown in Figure 5.10(a), resulting in different resonant frequencies and absolute peak pressures.

71



Chapter 5 Electromechanical Modelling of the Resonant Fin Transistor

Figure 5.11: Frequency domain response using the modal superposition technique for the reference device with a
gate length of 36 nm on the four investigated wafer orientations. (Adapted from [Hudeczek et al. 2022].)

Moreover, each resonance is accompanied by a so-called anti-resonance fA, where the

pressure drops to almost zero, caused by destructive interference in the resonant cavity

[Choudhary and Iniewski 2013; Sjövall and Abrahamsson 2008]. From the spectral separation

between the resonance and anti-resonance, the electromechanical coupling factor

k2
e f f =

π2

4

(
fA − fR

fR

)
(5.2.1)

is calculated. It describes the conversion efficiency from electrical to mechanical energy

and vice versa [Choudhary and Iniewski 2013]. A larger separation of the resonance and

anti-resonance hints at an increased coupling efficiency, which is highly desired in MEMS

design. It depends mainly on the material composition and geometry of the structure. For the

four wafer orientations (001), (001)45 and (111) they are 8.64 %, 4.22 %, 2.99 % and 3.53 %,

respectively. Putting this value into perspective, it is four to fivefold the value of established

MEMS designs [Choudhary and Iniewski 2013; Yang, Lu, et al. 2018; Krishnaswamy et al. 2006;

Iqbal and Lee 2018; Zhu et al. 2016; Hui et al. 2013]. However, it is the result of the best-case

approximation using a 2-fin unit cell, with each fin being electrically driven, which is not the

case in the fabricated design as outlined in Section 2.2.3 [Hager et al. 2021].

The prescribed Q-factor is compared to the Q-factor extracted from a frequency response

simulation to verify the simulation setup. The asymmetric shape of the resonance, as shown in

Figure 5.11, is common for high Q-factor systems. It can be described analytically with a Fano

function

F = a + b
2( f − fR) − q fR,BW

2( f − fR) − j fR,BW

, (5.2.2)

where a and b are complex-valued pre-factors, fR the resonant frequency, fR,BW the bandwidth of

the resonance and q the Fano parameter which describes the overall symmetry of the resonance
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(a) (b)

Figure 5.12: (a) The frequency domain response for the reference device with a varying Q-factor. (b) The respective
trend of the peak pressure in resonance. (Adapted from [Hudeczek et al. 2022].)

[Fano 1961; Martınez-Argüello et al. 2015]. Fitting the response spectrum enables a subsequent

determination of the Q-factor from the resonant frequency and bandwidth via Q = fR/ fR,BW . It

perfectly matches the prescribed Q-factor of 1000 by the Rayleigh damping formalism. However,

this procedure yields only information on the main resonance.

A different method recovers the Q-factor of both the resonance and anti-resonance

QR,A =
ωR,A

2

����
∂ϕ

∂ω

����

�����
ω=ωR,A

(5.2.3)

from the slope of the phase ϕ transitions [Lakin 1981]. In resonance, it yields the prescribed

Q-factor QR of 1000. The Q-factor of the anti-resonance QA is slightly larger than in resonance,

which follows from the under-damping caused by the Rayleigh damping mechanism between

the modes of interest. However, little information about the Q-factor of the anti-resonance is

found in the literature, as commonly only the spectral position is relevant for the determination

of the electromechanical coupling strength [Hodge et al. 2017; Yandrapalli et al. 2019; Yang,

Lu, et al. 2018]

Following the linearity of the Rayleigh damping, the Q-factor dependence of the peak pressure

is also linear, as shown in Figure 5.12. While at a low Q-factor of 100, the oscillatory behaviour

is almost suppressed, the peak pressure scales linearly with the prescribed Q-factor. The linear

trend of the absolute pressure in resonance is depicted in Figure 5.12(b). Also, the resonant

frequency in a strongly damped system is shifted according to

ω′R = ωR

√
1 − 2ζ2, (5.2.4)

where ζ is the Rayleigh damping coefficient discussed in Section 4.5. However, for

weakly damped systems with Q-factors above 1000, neither a shift of the resonance nor the

anti-resonance is observed [Hirose and Lonngren 2010; Brand et al. 2015; Chopra 2012;
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Bachmann et al. 1995].

Moreover, as the RFT has a reported Q-factor of 49 000 and the displacement amplitude

is small, the assumption of linear dependence is valid. However, for very small devices, like

graphene nanotubes or large displacement amplitudes, non-linear damping mechanisms increase.

Since the displacement amplitude is small and the RFT may be considered large, the assumption

of a linear damping mechanism is reasonable [Miller et al. 2018; Hudeczek et al. 2022].

Furthermore, this relation can be exploited to further speed up the simulation as the peak

pressure at a Q-factor of 1000 may be scaled to an arbitrary Q-factor by

pnew = p1000
Qnew

1000
(5.2.5)

as long as the damping is sufficiently small. Note that this is only valid in resonance since the

Q-factor changes the resonance width, and thus the scaling produces meaningless results at all

other frequencies [Hudeczek et al. 2022].

In all previous simulations, the n-channel metal-oxide-semiconductor (NMOS) and p-channel

metal-oxide-semiconductor (PMOS) were assumed identical. In reality the geometry of the fins

is almost unchanged but the material composition of the gate stacks differ. The total capacitance

of the stack follows the simplified assumption of a plate capacitance

Cplate =
Aǫ0ǫr

tox

(5.2.6)

where A is the surface area of the channel in the fin, ǫ0 the vacuum permittivity, ǫr the

relative permittivity of the oxide and tox the thickness of the oxide layer [Zheng et al. 2017;

BSIMCMG 2018; Sze 2014]. Since the unit cell is a simplified version of the actual FEOL

gate stack, the exact dimensions of the gate oxide thickness are inaccurate. As a result, the

capacitance is overestimated for both device types. However, as both PMOS and NMOS devices

feature different capacitances, each would require its simulation setup with different spatial

properties. However, this would lead to slightly altered resonant frequencies for both device

types. However, accurate dimensions of the FEOL configuration are not available. Therefore,

both device types are assumed geometrically and material-wise identical for simplicity.

To assess the differences between both device types, the simulations are calibrated to measured

capacitance data, for both NMOS and PMOS devices, by introducing an effective permittivity

for the high-κ oxide layer. The permittivity of ǫr = 25 for HfO2 is therefore scaled to match

the simulation to the measurements, as shown in Figure 5.13. The experimental capacitance

was extracted from a two-port RF S-parameter measurement, in-between 25 − 40 GHz, for both

NMOS and PMOS devices. It was calculated for a single fin from a larger device with four

parallel gates and 30 fins. The scaling factors for the effective permittivities were calculated

to ǫr/ǫnmos = 4.05 and ǫr/ǫpmos = 3.2 for the NMOS and PMOS, respectively. The adjusted

simulated capacitances are in excellent agreement with the experimental data. Both measured
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Figure 5.13: Calibrated MOS capacitance for a single simulated fin and single gate structure to measured
data for both NMOS and PMOS devices at four typical FinFET gate lengths. (Adapted from
[Hudeczek et al. 2022].)

(a) (b)

Figure 5.14: (a) The frequency domain response for the reference device with a varying permittivity ǫr of the
high-κ oxide layer. (b) The respective trend of the peak pressure in resonance. (Adapted from
[Hudeczek et al. 2022].)

and simulated data are fitted with linear regression, showing a good agreement of the trend at

larger gate lengths. After the adjustment, the PMOS has an almost 25 % increased capacitance

over the corresponding NMOS, which follows from the different gate stacks.

The impact of the changed permittivity on the frequency response of the RFT is shown in

Figure 5.14(a) for selected values. The resonant frequency of the RFT is unchanged with an

altered permittivity, which is reasonable as it solely depends on the geometrical and mechanical

material parameters. With an increasing permittivity, the pressure in the FinFETs of the RFT

increases. This change is linear, as shown for the peak values in Figure 5.14(b), which are fitted

with linear regression. This behaviour arises from the linear dependence of the electrostatic

force on the permittivity, which acts on the MOS capacitors [Choudhary and Iniewski 2013].

Interestingly, the frequency of the anti-resonance shifts with an increasing permittivity to

higher frequencies. This shift signifies a reduction in electromechanical coupling efficiency,

which is commonly affected by the static capacitance of the MEMS [Hager et al. 2021;

Choudhary and Iniewski 2013; Hong et al. 2016; Hudeczek et al. 2022]. Following this

adjustment, the PMOS offers a 25 % larger pressure than the NMOS at the same voltage bias

conditions [Hudeczek et al. 2022].
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(a) (b)

Figure 5.15: Peak pressure in the FinFET channel of (a) NMOS and (b) PMOS RFTs for a constant gate voltage
Vgate = 0.8 V and varying drive bias conditions and amplitudes. The bias condition by Bahr et al. is
from [Bahr et al. 2018]. (Adapted from [Hudeczek et al. 2022].)

The simulations up to now used the bias conditions of Bahr et al. which are Vgate = 0.8 V,

Vdrive = 40 mV and vdrive = 30 mV [Bahr et al. 2018]. However, the force within the drive

MOS capacitor depends on the bias conditions, which are varied in the following to find the

optimal bias voltages. To ensure the nominal operation of the sense transistors, the gate voltage

is kept at the voltage of Vgate = 0.8 V for the NMOS RFT and Vgate = 0 V for the PMOS RFT,

respectively. The absolute pressure inside the channel can be improved by optimizing the drive

voltage amplitude and the bias voltage applied to the drive. Here the absolute voltage across the

MOS junction within the gate stack

Vmos = Vgate − Vdrive (5.2.7)

is defined. The resulting fin pressure in NMOS and PMOS devices is shown in Figures 5.15(a)

and 5.15(b) for varying drive and bias voltages. The larger the absolute bias voltage |Vmos |
across the gate oxide, the larger the electromechanical force and, consequently, the pressure that

acts on the channel. The additional modulated voltage at the drive will thus also provide larger

pressures with increasing amplitude since the absolute voltage difference increases. This trend

is limited by the breakdown voltage of the gate oxide Vgate − (Vdrive + |vdrive |) > 1 V, as well

as the forward bias condition of the well-diodes. However, for both NMOS and PMOS, the

gate oxide breakdown condition is reached before the well-diodes open up. Thus, the forbidden

voltage region is indicated by the grey-shaded area, where no operation of the RFT is possible.

When factoring in an additional 50 mV safety margin on the breakdown condition, the optimum

bias point for the highest fin pressure can be found, as marked by a square in Figure 5.15. A

mechanical improvement factor of approximately ten over the bias values used by Bahr et al. can

be achieved by adjusting the bias point to Vdrive = 325 mV for the NMOS and Vdrive = 475 mV

for the PMOS with a modulated amplitude of vdrive = 475 mV for both [Bahr et al. 2018].

However, to maintain comparability, the following simulations are carried out at the initially

proposed bias values.
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(a) (b) (c)

Figure 5.16: Ideal 2-fin unit cells with a SiO2 BEOL (a) showing the full geometry full-gate and (b) a simplified
half-gate variant, exploiting symmetric properties. Also shown in (c) is the respective Brillouin zone.
((a) and (b) adapted from [Hudeczek et al. 2022].)

5.3 Extended Simulation Setups

The previous simulations assumed an idealised connection scheme where every fin is electrically

connected. This connection pattern, however, is not viable as closely spaced contacts are not

possible with the available lithography and processing. Moreover, the previous simulations

reflected an RFT with an infinite number of parallel gates through symmetric boundary

conditions. The DOFs must first be reduced to stay within the available computational resources

to simulate larger structures. These larger structures include a unit cell extended to 14 fins or a

finite number of gates.

5.3.1 Symmetry Simplifications

The used mesh is already optimised for the trade-off between simulation speed and accuracy. A

further increase of the meshing resolution, although it would improve the accuracy, would have

a detrimental influence on the simulation runtime due to memory and CPU limitations. Hence

to maintain the same meshing resolution and sufficiently small DOFs, spatial symmetries of

the simulation can be exploited. While the RFT structure was initially already reduced to its

smallest periodic subpart, being one fin for the eigenmode and two for the frequency domain

simulation, further simplifications are necessary.

The complete RFT is also symmetric concerning the gate plane from a spatial point of view.

Therefore, only half of the unit cell can be modelled using symmetric boundary conditions,

potentially reducing the DOFs by a factor of two, by cutting along the gate symmetry plane, as

shown in Figure 5.16 [Hudeczek et al. 2022]. Whereas the full-gate variant uses Floquet-Bloch

boundary conditions in all lateral directions, the reduced half-gate unit cell is only modelled

with periodic boundary conditions along the gate direction, whereas the channel direction along
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the x-axis is modelled with symmetric boundary conditions. They suppress surface-normal

displacements of the boundary facets along the x-axis while only allowing free deformation in

the corresponding yz-plane.

While this procedure is allowed from a spatial point of view, it poses a challenge in the

presence of anisotropic materials. Following the cubic symmetry of the silicon wafer, the spatial

symmetry plane might not coincide with the cubic symmetry of the material properties leading

to inaccuracies in the simulation. A lossless simplification should be possible if the spatial

and material symmetry planes are identical. This hypothesis is tested with Poisson’s ratio for a

uniaxial displacement along the y-axis, which is expected to be exerted by the electrostatic force

[Hudeczek et al. 2022].

Poisson’s ratio is calculated in the xz-plane for the four investigated wafer orientations shown

in Figures 5.17(a) to 5.17(d). This representation quantifies the displacements in the plane

orthogonal to the loading direction, thus highlighting any asymmetric behaviour caused by the

actuation which occurs along the channel direction. The results are plotted in Figures 5.17(e)

to 5.17(h). The solid lines are calculated analytically with (3.7.5), while the marker values were

simulated with the FEM. While for the first three wafer orientations shown in Figures 5.17(e)

to 5.17(g), the gate deforms equally on both sides under uniaxial stress along the gate, the

fourth configuration features an asymmetric Poisson’s ratio concerning the symmetry plane.

Consequently, the fin will deform stronger towards one side of the gate, creating an asymmetric

deformation profile. The reduced half-gate unit cell does not capture this behaviour, which

suppresses surface-normal displacements. Note that also the selection of the modelled unit

cell half will affect the deformation. As the reduced half-gate unit cell is modelled for the left

half-space, looking from the notch of the wafer onto the xz-plane, Poisson’s ratio is assumed

symmetrical to the left side, as indicated by the dashed line and square markers in Figure 5.17(h).

For uniaxial displacements along the wafer’s normal direction, all Poisson’s ratios are symmetric

concerning the gate plane, which is not shown.

The displacement profiles of the RFT eigenmodes for the half-gate and full-gate unit cell, as

depicted in Figure 5.18 follow the behaviour observed for the Poisson’s ratios in Figure 5.17. The

RFT modes of the full-gate unit cell on the first three wafers orientations, shown in Figures 5.18(a)

to 5.18(c), are symmetric concerning the gate, thereby creating a breathing motion of the gate

and fins. Both the resonant frequency and deformation match well with the respective half-gate

mode displacements, as depicted in Figure 5.18(e) to 5.18(g). This is in line with the symmetric

assumption of Poisson’s ratio in those cases.

A mismatch for the displacement and resonant frequency is observed for the (111) wafer,

shown in Figure 5.18(d) and Figure 5.18(h). The mode exhibits strong anti-symmetric

out-of-plane gate displacements, which force the gate into a wiggling motion. This behaviour

is suppressed in the half-gate unit cell, which manifests in a slightly shifted resonant frequency

and altered deformation pattern.

No difference between the half-gate and full-gate simulations can be discerned for the first
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(a) (001) Silicon (b) (001)45 Silicon (c) (011) Silicon (d) (111) Silicon

(e) (001) Silicon (f) (001)45 Silicon

(g) (011) Silicon (h) (111) Silicon

Figure 5.17: Different wafer orientations (a) to (d) used to calculate the Poisson ratio. The corresponding analytic
(ANA) solution and FEM simulated values of the Poisson ratio in polar coordinates for the half-gate
(HG) and full-gate (FG) assumptions are plotted in (e) to (h).

three wafer orientations. Hence a lossless simplification is possible if the symmetry plane

coincides with one of the symmetry planes of the underlying anisotropic wafer material. Note

that this assumption suppresses all other true out-of-plane gate modes, as shown in Figures 5.8(b)

and 5.8(d). Hence, the gate may only have symmetric rather than anti-symmetric modes

concerning the symmetry plane. This behaviour is also observed in the band structure for the

half-gate unit cell, as depicted in Figure 5.19 for all four wafers. While previously four dominant

guided modes existed (compare Figure 5.7), all out-of-plane gate modes are now suppressed,

leaving only the two guided modes shown in Figures 5.8(a) and 5.8(c). Interestingly, the effect

of the shear sound cone in anisotropic silicon is also suppressed compared to the full-gate

simulation. The limiting sound cone is set by the SiO2 slab, which is still fully present and

unchanged by the simplification, and thus has no further consequences.

The actual extent of the simplification on the frequency response is tested on four wafer

orientations at several device gate lengths. For each configuration, the resonant eigenmode
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(a) (001) Silicon
fR = 33.104 GHz

(b) (001)45 Silicon
fR = 33.377 GHz

(c) (011) Silicon
fR = 33.735 GHz

(d) (111) Silicon
fR = 33.698 GHz

(e) (001) Silicon
fR = 33.104 GHz

(f) (001)45 Silicon
fR = 33.377 GHz

(g) (011) Silicon
fR = 33.735 GHz

(h) (111) Silicon
fR = 33.685 GHz

Figure 5.18: Comparison of displacement profiles and resonant frequencies of the RFT mode for the (a) to (d)
full-gate and the (e) to (h) half-gate simulations on different orientations.

Figure 5.19: Band structure and evolution of the guided modes along Γ−Y for different silicon wafer orientations
using a half-gate simulation.

was simulated and used in a subsequent modal superposition simulation. The resulting peak

pressures and resonant frequencies are compared in Figure 5.20 between both simulation setups

[Hudeczek et al. 2022]. The half-gate and full-gate simulations are almost identical for the first

three wafer orientations (001), (001)45 and (011), with only minor deviations in the low kilopascal

and few hundreds of kilohertz range, as expected from the symmetric Poisson’s ratio. The

deviations for the fourth wafer orientation (111) are larger, with a more pronounced frequency

shift in the megahertz range. However, given the still small absolute change, this may be
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Figure 5.20: A comparison of the full-gate (FG) and half-gate (HG) peak pressures and resonant frequencies for
different gate lengths and wafer orientations is shown in the upper plot. The lower plot shows the
respective differences in peak pressure and frequency between the half-gate and full-gate simulations.

considered negligible. This is justified as already the full-gate unit cell is only an approximation

of the actual FEOL stack, which should lead to a more substantial shift in frequency when

compared to the actual fabricated structure. Nevertheless, symmetry simplification reduces the

DOFs by a factor of two, reducing the involved simulation times without sacrificing the meshing

accuracy.

5.3.2 Finite Number of Parallel Gates

Using the symmetrical simplification, larger simulation volumes can be investigated. In

the previous simulations, the RFT was assumed infinite in all lateral directions by using

Floquet-Bloch and symmetric boundary conditions. This structure did not accurately represent

the fabricated device, which features a finite number of parallel gates surrounded by additional

dummy gates for structural integrity. While the cavity length along the gate may still be

assumed as infinite, the width is limited by a few parallel gates. Consequently, the impact of

a varying number of parallel gates and corresponding protective dummy gates is investigated

with a modified unit cell as sketched in Figure 5.21(a). Analogously to the half-gate unit cell

only half of the cavity width is modelled with a symmetric boundary condition at the centre.

It is based on the 2-fin unit cell but is also finite along the channel direction by introducing

an additional perfectly matched layer along the x-axis, which absorbs all incident mechanical

waves. The depicted unit cell represents a device with ten parallel gates (G1 to G10), where

G1 to G5 are modelled with the chosen symmetry. The simulation also includes three dummy

gates, commonly used in this technology to improve device homogeneity. The fins extend till
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(a) (b)

Figure 5.21: (a) The ideal 2-fin unit cell with a finite number of parallel gates G and dummy gates D using a
symmetric boundary condition at the centre. (b) Respective displacement profile of the RFT mode in
resonance.

the middle of the first dummy gate, which is not electrically active. Due to the increased size

and higher DOFs, the structure exhibits a larger number of guided modes in contrast to the

previously investigated infinite 2-fin unit cell.

While the structure also supports the RFT mode, as shown for the respective displacement

profile in Figure 5.21(b), many parasitic modes at similar frequencies occur with an increasing

number of gates. Here the whole structure may be considered as several weakly coupled

resonators, where each gate contributes to the overall resonance [Jiménez et al. 2021;

Chopra 2012; Khelif and Adibi 2016]. The number of parasitic resonances scales with the

number of parallel gates, as plotted in Figure 5.22. The pressure responses for a different gate

count are computed for the 20 closest modes to the main resonance on a (001)45 wafer, and

the results are plotted in Figure 5.22. The spectra are normalised and centred around the RFT

mode, which was selected using the following criteria: All gates must be in phase, as shown in

Figure 5.21(b). Further, the deformation needs to be symmetric around the individual fins, with

most deformation occurring orthogonal to the channel in the yz-plane. The largest pressure still

occurs for the main resonant mode of the RFT, however, with an increasing number of gates, the

number of parasitic resonances increases, as indicated by the markers. With each additional gate,

an extra spurious resonance emerges, and the spectral distance to the first spurious resonance

decreases. While they are less prominent, they still pose a risk for the RFT as the system may

not successfully lock onto the required mode in a later envisioned IC application. Although 20

modes were included in the simulation not all of them can be coupled to electromechanically as

discussed in Section 5.1.4.

Although the spectral distance between resonance and anti-resonance shrinks with each

additional gate, the electromechanical coupling coefficient remains almost constant as the
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Figure 5.22: Normalised and centred frequency domain response to the main RFT mode for a varying number of
parallel gates. Symbols mark spurious modes.

(a) (b)

Figure 5.23: (a) The change in resonant frequency for an NMOS and PMOS RFT with the number of gates. (b)
The averaged peak pressure within all parallel gates with increasing gate number. ((a) adapted from
[Hudeczek et al. 2022].)

resonant frequency shifts to lower frequencies with each additional gate, as shown in

Figure 5.23(a). The resonant frequency decreases with an increasing number of gates, but

it remains elevated compared to the infinite unit cell. Here reasoning similar to the different

gate lengths applies, where a shorter cavity width yields an increased resonant frequency.

Interestingly, the number of dummy gates, which was swept from one to three, does not affect

the resonant frequency. This follows from the mode shape of the RFT mode, depicted in

Figure 5.21(b), which exhibits a strong deformation profile in the centre of the cavity, which

levels off towards the last true gate G1. Hence, as the fins are recessed beneath the dummy gates,

no displacement transfer occurs, and the deformation fully decays after the first dummy gate.

Unsurprisingly, the NMOS and PMOS feature the same resonant frequency discussed for the
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Finite Finite

(a) Infinite (b) Infinite

Figure 5.24: Comparison of the displacement profiles of the simulation with a finite number of gates against the
infinite unit cell as shown in (a) from the side and (b) from the top. The finite simulation is shown in
the top row, and the infinite unit cell, unfolded at the boundary condition, is shown in the bottom row.

effective permittivities in Section 5.2.

Also of interest is the average pressure inside all active gates, as plotted in Figure 5.23(b).

While at a single finite gate, the pressure is slightly elevated compared to the infinite 2-fin unit

cell, the pressure drops almost linearly with an increasing number of gates. Again the PMOS

is offset by the ratio of the permittivities. Note that the pressure is not identical in all gates, as

observed for the decaying displacement in Figure 5.21(b), only the averaged pressure from all

gates is of interest as the sense transistor is wired with all gates in parallel, effectively averaging

the individual contributions [Hudeczek et al. 2022].

The reduction in pressure arises from the mutual obstruction of movement in neighbouring

gates. As the RFT mode is differential concerning neighbouring fins and symmetric concerning

the gate, as shown in Figure 5.9, the gate is expanding and contracting in a breathing motion.

Since this behaviour occurs in all neighbouring gates simultaneously, adjoining gates above the

same fin contract and expand in phase, which impedes each other’s displacement amplitude.

Looking at the xz-plane cutting through the gates, as shown in the top sketch in Figure 5.24(a),

the decreasing amplitude towards the last true gate is visible. For comparison, the displacement

profile of the infinite unit cell is shown in Figure 5.24(a) after unfolding the displacement of a

single periodic unit cell at the Floquet-Bloch boundary conditions. Similarly, strong out-of-plane

deformations can be observed in the xy-plane for the finite simulation. Note that both simulations

for the infinite and finite unit cell were carried out on a (001)45 wafer, which should exhibit

symmetric displacements around the individual gates without out-of-plane gate displacements,

as discussed in Section 5.3.1. However, due to the mutual obstruction, the gates in the finite

simulation in Figure 5.24(b) are forced to expand laterally along the x-axis which does not occur

in the infinite periodic unit cell. This behaviour is also present when the full cavity width is

modelled without simplifications, as sketched in Figure 5.25 for an RFT with five gates and one

dummy gate (D1 and D′
1
) on either side. Analogously comparing the half-gate and full-gate

unit cells, the symmetric boundary condition at the centre has a negligible impact on the actual

eigenmode shape and resonant frequency.
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Full Full

(a) Simplified (b) Simplified

Figure 5.25: Comparison of the displacement profiles of a structure with a finite number of gates without a
symmetric boundary condition at the centre to a simulation with only half of the structure as shown in
(a) from the side and (b) from the top.

Consequently, fewer parallel gates are preferred to obtain the best performance, with the least

spurious modes and the highest fin pressure. However, a larger RFT provides an increased sense

current which might be beneficial for the experimental detection, as discussed in Section 5.5.3.

5.3.3 Extended 14-Fin Unit Cell

All previous investigations were centred around the ideal 2-fin unit cell, which cannot be

manufactured due to technology constraints. Nevertheless, it provides the upper limit as a

best-case approximation, where each fin is contacted separately. Following the foundry design

rule checks the tightest possible integration scheme, with distinct electrical phases, requires

groups of three adjacent fins to be jointly connected to the same electrical phase. Furthermore,

as required by the minimum spacing distance of electrical FEOL contacts combined with

the electrical phase requirements, neighbouring electrical phases must be separated by four

intermediate electrically floating fins. Consequently, an expanded unit cell with 14 fins, as

sketched in Figure 5.26(a), is required to capture the differential electrostatic actuation principle

and resulting pressures. In this configuration, fins 3, 4 and 5 are connected to the drive-plus and

fins 10, 11 and 12 are connected to the drive-minus, as discussed in Section 2.2.3. Furthermore,

the epitaxial source-drain contacts are omitted on the electrically floating fins. Similarly to the

2-fin unit cell, the structure supports the differential RFT mode, as depicted in Figure 5.26(b).

However, due to the removal of the intermediate epitaxial contacts, the frequency is shifted by a

few megahertz to a lower frequency. Considering the response of a 14-fin unit cell with epitaxial

contacts on every fin, the resonant frequencies are almost identical with. Hence the epitaxial

contacts are included in the 14-fin unit cell to ease comparability. Moreover, more resonant

modes occur due to the increased simulation volume but their spectral distance is in the GHz

region, and they are thus neglected in this investigation.

Due to the new connection scheme, the actuation of the resonant eigenmode is expected

to be degraded since the electrical polarity does not match the mechanical phase for some
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(a) (b)

Figure 5.26: (a) Illustration of the fabricated 14-fin unit cell of the RFT. (b) The respective displacement of the
resonant eigenmode mode in resonance.

Figure 5.27: Comparison of the frequency domain response for an infinite half-gate simulation of a 2-fin and 14-fin
unit cell with their respective Fano fit. (Adapted from [Hager et al. 2021].)

fins [Bahr et al. 2018; Hager et al. 2021; Hudeczek et al. 2022]. This behaviour is also

discussed in Section 2.2.3. As a result of the altered connection scheme, the frequency domain

response of the 14-fin unit cell is strongly degraded compared to the 2-fin unit cell, as shown in

Figure 5.27. While the resonant frequency remains unchanged as expected, the peak pressure

and electromechanical coupling are strongly reduced. Whereas the 2-fin unit cell managed a

peak pressure of 1.328 MPa, the equivalent 14-fin variant only reached 77.665 kPa, equivalent

to a 17-fold reduction, at the same bias conditions. The pressure is evaluated as the average

from the fins 3 to 5, as all fins beneath a common contact are connected in parallel. Therefore,

the pressures from two fins in each three-fin group cancel each other, leaving only one actively

contributing fin. Hence, the resonant mode is only driven by two fins out of 14, resulting in an

overall lower peak pressure. Moreover, the coupling efficiency diminishes to only 0.21 % for the
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14-fin unit cell, which si calculated from the antiresonance fA,14 and resonance frequency fR with

(5.2.1), marking a 20-fold reduction over the ideal 2-fin unit cell with 4.22 % [Hager et al. 2021].

The data is also fitted with a Fano function which yields a Q-factor of 1000 for both unit cells.

Nevertheless, the pressure is only an averaged metric, used as an intermediate figure of merit,

and the RFT was modelled at a strongly reduced Q-factor of 1000 which only partially describes

the performance of the RFT. The trends, however, may be carried over to full piezoresistive

modelling of the transconductance in Section 5.5.3, which gives a better approximation of the

actual performance of the RFT.

5.4 Equivalent Isotropic Materials

Although the eigenmode and frequency response yield valuable information on the performance

of a MEMS, its transient behaviour must also be considered. While the frequency domain

response can be modelled using the modal superposition technique, this is not possible for

the time-dependent simulations. This follows from the limitations of the FEM software which

does not allow a constant voltage bias, which is required for the gate and FinFETs, during a

transient modal superposition simulation. Hence, the transient response of the RFT, subjected

to a sinusoidal signal, must be modelled with all DOFs, drastically increasing simulation time

and memory consumption.

The symmetry simplifications for those simulations are insufficient, as the number of DOFs

must be reduced even further. In those instances, the RFT can be modelled using a 2D

approximation. However, as some of the involved materials are mechanically anisotropic, they

cannot be fully described using lower-dimension approximations. To circumvent this problem

at lower dimensions, equivalent isotropic materials can be constructed for their anisotropic

counterpart from the mean of the Reuss and Voigt averages [Mainprice and Humbert 1994;

Healy et al. 2020; Man and Huang 2011; Luan et al. 2018; Date and Andrews 1969]. The Voigt

averages of Young’s and the shear modulus are defined as

EV = [(c11 + c22 + c33) + 2(c12 + c23 + c31)]/9 (5.4.1)

and

GV = [(c11 + c22 + c33) − (c12 + c23 + c31) + 3(c44 + c55 + c66)]/15 (5.4.2)

which are computed from the components of the compliance tensor. Similarly the Reuss averages

are computed from the components of the stiffness tensor where

ER = 1/[(s11 + s22 + s33) + 2(s12 + s23 + s31)] (5.4.3)
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Table 5.3: Equivalent isotropic (iso) material properties calculated from the mean of the Reuss and Voigt averages.

Material ρ (kg m−3) A c11 (GPa) c12 (GPa) c44 (GPa) cl (m s−1) ct (m s−1) k

Si 2330
1.57 165.7 63.9 79.6

8433.0 5844.9 [001]
9356.2 5094.2 [111]

1.0 186.5 53.5 66.5 8949.2 5344.6 iso

Cu 8960
3.22 168.0 121.0 75.0

4330.1 2893.2 [001]
5139.4 2130.4 [111]

1.0 203.3 109.5 46.9 4763.3 2288.2 iso

SiO2 2200 1.0 78.5 16.0 31.2 5972.1 3765.7 iso

SiCO:H 1100 1.0 6.6 2.5 2.1 2453.7 1377.3 iso

is the Reuss average of Young’s modulus and

GR = 15/[4(s11 + s22 + s33) − 4(s12 + s23 + s31) + 3(s44 + s55 + s66)] (5.4.4)

is the Reuss average of the shear modulus. The Voigt-Reuss-Hill average of the respective

modulus is then calculated from the arithmetic mean. Using the averaged moduli the compliance

tensor of the averaged material is calculated, which is isotropic [Healy et al. 2020].

The respective values for selected materials are given in Table 5.3. For both silicon and copper,

the isotropic approximation overestimates c11 while underestimating c12 and c44. Consequently,

the longitudinal and transversal wave velocities for the isotropic assumption lie within the

extremal values observed for anisotropic materials along [001] and [111], as discussed in

Section 3.7.4. Therefore, the isotropic approximation yields an averaged response of the

anisotropic material.

Using a 2D approximation, the impact of adjacent gates, source-drain contacts and a finite

gate length is neglected. The unit cell of the RFT is modelled identical to the gate cross-section

of the 3D simulation (compare Figure 5.3) as shown in Figure 5.28. To be consistent with the

spatial orientation of the 3D unit cell, shown in for example in Figure 5.16, it is modelled in the

yz-plane, with the channel pointing along the x-axis. Fort both configurations, either with a SiO2

or SiCO:H oxide slab, the band structure is computed in the first irreducible Brillouin zone using

only a single fin. They are plotted with the respective sound cones in Figure 5.29. Unsurprisingly

both 2D approximations support the RFT mode, as indicated by the arrow. However, as a result

of the 2D approximation at a lower frequency as it assumes an infinite gate length. Moreover,

the 2D RFT cannot exhibit out-of-plane modes, which may exist using the full-gate unit cell.

However, as they cannot be excited for symmetry reasons in the 3D simulation their absence

in the 2D simulation is inconsequential, as shown for the half-gate simplification. Lastly, the

splitting of the shear sound cones is lifted as only one shear wave may exist in a 2D isotropic

approximation.

A comparison of the resonant frequencies and Q-factors between the 2D and 3D simulations is

given in Table 5.4. The 2D approximation for both oxide slab variants results in an approximately
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(a) (b) (c)

Figure 5.28: Ideal 2D 2-fin unit cells with (a) a SiO2 and (b) a SiCO:H slab on top of the RFT cavity. (c) Brillouin
zone of the unit cells.

(a) (b)

Figure 5.29: FEM simulated band structure along Γ−Y for a top confinement with (a) SiO2 and (b) SiCO:H using
a 2D approximation.

Table 5.4: Resonant frequencies and Q-factors of the 3D and 2D simulations.

Dimension
SiO2 slab SiCO:H slab

fR (GHz) Q-factor fR (GHz) Q-factor

2D 30.847 6.8 × 1010 28.937 31

3D 33.104 9.6 × 109 30.922 37

3 GHz lower resonant frequency than the reference gate length from the 3D simulation. This

value matches well with the 3D simulation for longer gate lengths (see Figure 5.10(b)), where

the resonant frequency will approach the 2D result for an infinite gate. Again the SiCO:H
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Table 5.5: All simulations consisted of a stationary, eigenfrequency and frequency domain modal simulation. The
eigenfrequency simulation was executed for 15 Modes, and the RFT mode was used in the subsequent
frequency domain simulation. All frequency domain simulations were limited to a Q-factor of 1000 and
401 frequency points.

Dimension Fins Assumption DOFs Time (sec) Simulation fR (GHz) Pressure (MPa)

2D

2 infinite gate 9638
11 modal 30.847 8.314

120 perturb. 30.848 8.112

14 infinite gate 70 966
39 modal 30.876 0.261

484 perturb. 30.861 0.255

3D

2
half-gate 90 636 87

modal 33.377 1.328
full-gate 177 801 185

14
half-gate 585 885 490

modal 33.342 0.078
full-gate 1 144 121 1626

oxide cannot sustain a confined RFT mode, and the observed Q-factors are similar to their

3D counterpart. The Q-factor of the SiO2 variant is approximately one order of magnitude

larger than that obtained from the 3D variant. However, those values are unrealistic as they

are only limited by numerical accuracy. Apart from the lower frequency, the simplified 2D

RFT overestimates the pressure within the FinFET channel by a factor of approximately eight

in frequency domain simulation at the same bias conditions.

Table 5.5 compares DOFs, simulation time, resonant frequency and fin pressure for the

2D and 3D simulations. For the 2D simulations, which assume an infinitely extended gate,

both a modal superposition simulation with only the RFT mode and a harmonic perturbation

simulation considering all DOFs was made. While the resonant frequency and obtained peak

pressure are comparable for both simulation types, the modal simulation is almost 11 times faster,

highlighting the importance of the modal superposition technique for large-scale simulations.

The 3D simulations were carried out for the full-gate and simplified half-gate geometry on a

(100)45 wafer. As previously shown, the half-gate simulation yields an identical pressure and

resonant frequency. Due to the lower DOFs of the half-gate setup, the simulation completes two

to three times faster than the non-simplified geometry. Once more, the overestimated pressure

from the 2-fin unit cell, regardless of the dimension, is quite pronounced and highlights the

importance of a 3D modelling approach.

5.4.1 Transient Response

The transient response is essential for a later application in a resonant fin oscillator. Using

the FEM, the full equilibrium equation (4.3.24) must be considered. Different methods can

be applied to find a solution to this transient problem. The two major techniques involve

discrete time-stepping and implicit formulations [Liu 2003; Zienkiewicz et al. 2013]. The

central difference algorithm, for example, is only conditionally stable. Depending on the used

time step, the solution becomes unstable and will not converge. Here the implicit methods, for
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(a) (b)

Figure 5.30: (a) Pressure and drive voltage during ramp-up. (b) Complete pressure envelope after settling.

example, the Newmark’s or backwards Euler method, offer greater stability and are considered

unconditionally stable since they are independent of the time step size. However, accuracy may

be lower, especially for fast varying external loads. In those instances, a direct method may offer

greater accuracy at the cost of a larger computation time due to the fine time-stepping required.

The performance implications may be quite significant as direct methods often need 100− 1000

fold smaller time-stepping [Liu 2003].

The transient response was simulated for the 2-fin unit cell in 2D. The RFT was damped to

a Q-factor of 1000 and driven with an excitation frequency matched to the resonant frequency,

using the default bias conditions by Bahr et al. [Bahr et al. 2018]. For this simulation, the

indirect methods provided by COMSOL did not succeed, and the direct methods offered better

convergence, although at the cost of a strongly increased solution time. The pressure response

for the ramp-up and settled region when driven with a sinusoidal signal, 180° out-of-phase

between adjacent fins, is plotted in Figure 5.30(a). To quantify the impact of the constant device

bias on the transient result, the stationary solution

KD = F (5.4.5)

was subtracted from the results shown in Figure 5.30 [Rao 2010; Bathe 2014]. To increase

numerical stability and prevent discontinuities in the simulation, the drive voltage amplitude

is ramped up in an adiabatic manner over the course of ten oscillation periods, as shown in

Figure 5.30(a).

As the system is only weakly damped, the resonance amplitude increases slowly, as shown for

the envelope in Figure 5.30(b). At the prescribed Q-factor of 1000, the RFT requires 47.3 ns, or
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Figure 5.31: Transient ramp-up behaviour of a resonator operating at 30 GHz with different damping ratios. The
annotated times mark the 99 % amplitude at the respective Q-factor.

a total of 1459 oscillation periods, to reach 99.9 % of the maximum amplitude. The time

t = log

(
1

1 − A

)
2Q

ωR

(5.4.6)

required to reach a specific amplitude A exclusively depends on the resonant frequency and

Q-factor [Chopra 2012; Bachmann et al. 1995; Hirose and Lonngren 2010; Brand et al. 2015].

This relation is important as the rise time of the RFT to reach full amplitude influences the circuit

design choices. After settling, the pressure amplitude of the transient simulation is identical to

the simulated frequency domain simulation in resonance.

The computation of the transient behaviour at high Q-factors is challenging as time steps must

be chosen sufficiently small while requiring longer simulation times to capture the complete

ramp-up. Thus the behaviour can be estimated using the envelope function

ρ(t) = ±dste
−ζωRt (5.4.7)

where dst is the maximum static deformation and ζ the damping ratio [Chopra 2012;

Brand et al. 2015]. Figure 5.31 shows the rise times of differently damped RFTs, and in

general, any resonators at the given Q-factor and resonant frequency. The different envelope

amplitudes are calculated at 30 GHz and normalised to their respective maximum. Whereas a

resonator with a Q-factor of 10, comparable to well-optimised inductor-based solutions, only

requires 0.5 ns to provide its full amplitude, a device with a Q-factor of 1 × 105, requires

4.75 µs to reach 99 % of the equilibrium amplitude [Neihart et al. 2008]. In the wake of faster

switching times and responsiveness, the RFT with a supposedly high Q-factor of 49 000 requires

2.47 µs, substantially increasing over existing solutions. This issue must be addressed for later

applications, as the device may not be ramped up and down during operation without causing

considerable delays. Lastly, the transient response of a MEMS can be used to experimentally

obtain the Q-factor of the device during ring-down [Polunin et al. 2015].
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Figure 5.32: Frequency domain response of an RFT with ten drive unit cells and one central sense unit cell, driven
at the default bias conditions. fR,UC marks the resonant frequency of the 2 and 14-fin periodic unit
cells.

5.4.2 Finite 2D Cavity

As all previously simulated unit cells were only finite in the vertical or lateral directions along

the channel, the impact of a finite length of the RFT cavity must also be considered. As a

consequence of the infinite simulation setups, the Q-factor is overestimated as losses at the ends

are not considered. In this context, however, it is possible to calculate the actual Q-factor of

the device in a full-scale finite 2D simulation, which is terminated by perfectly matched layers

in all directions. It is based on the 14-fin unit cell wiring scheme and all fins are connected in

groups of three with four intermediate floating fins. Consequently, the pressure is evaluated in

one of the three connected fins in the sense unit cell at the centre of the cavity, analogously to

the 14-fin unit cell. The frequency response spectrum is calculated with a modal superposition

simulation for the 100 closest modes in the vicinity of the RFT mode. The response of a cavity

with ten drive cells, without any artificial damping, is plotted in Figure 5.32. Here the resonant

frequency fR is at a lower frequency when compared with the infinite cavity assumption fR,UC .

Furthermore, additional spurious modes occur at a close spectral distance to the RFT mode. The

behaviour of only the main resonant mode, without other spurious modes, for different cavity

lengths is shown in Figure 5.33(a). With an increasing number of drives, the resonant frequency

shifts towards a lower frequency, as shown in Figure 5.33(b), whereas the cavity’s absolute peak

pressure and Q-factor increase with each additional drive unit cell pair [Hwang et al. 1998].

Due to the complete termination of all dimensions with perfectly matched layers, it is possible

to calculate the actual Q-factor of the cavity. The shortest RFT, with two drive unit cells, is only

at 1167, whereas, for the longest device with 12 drive units, it increases to 45 488. This Q-factor

does not relate to the reported measured Q-factor, despite its similarity, as this simulation does

not consider all involved loss mechanisms.

Nevertheless, it can be used to quantify the relative degradation in-between different physical

cavity lengths. When limiting the longest device with 12 drive unit cells to a Q-factor of 1000,

using Rayleigh damping, the peak pressure is almost identical to the infinite 14-fin unit cell

simulation listed in Table 5.5. Since the 14-fin unit cell and finite simulation yield almost

the same pressure at the same prescribed Q-factor, the assumption of an infinite cavity length
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(a) (b)

Figure 5.33: The frequency response of the finite RFT using the modal superposition technique at the default bias
is given in (a). The corresponding scaling of the Q-factor, absolute pressure and resonant frequency
with different cavity lengths is shown in (b).

is justified. With fewer drive unit cells, the influence of the cavity’s termination increases,

degrading the performance, as shown in Figure 5.33(b).

5.5 Transconductance Modelling

For modelling the drive MOS capacitors, it was sufficient to describe the resonant behaviour

using the averaged channel pressure within the individual FinFETs as an intermediate figure of

merit. While it is a good approximation of the mechanical performance for different geometries

and wafer orientations, it is unsuited describing the sense FinFETs. To adequately describe the

performance of the sensing unit, the electronic transport properties in the presence of external

stress on the transistor must be modelled [Hudeczek et al. 2022].

5.5.1 Piezoresistive Effect in Monocrystalline Silicon

In semiconductors, the carrier mobility of either electrons or holes depends on several effects,

such as the doping concentration, temperature and defect density [Masetti et al. 1983; Sze 2014;

Ma et al. 2011]. In monocrystalline semiconductors, such as silicon or germanium, it also

depends on the external stress acting on the material [Smith 1954]. In the presence of stress, the

charge carrier density changes due to a volumetric change of the specimen, which in turn causes
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Table 5.6: Piezoresistance coefficients of n-type and p-type silicon at 300 K [Smith 1954; Kanda 1982;
Manku and Nathan 1993].

Silicon π11 (Pa−1) π12 (Pa−1) π44 (Pa−1)
n-type −102.2 × 10−11 53.4 × 10−11 −13.6 × 10−11

p-type 6.6 × 10−11 −1.1 × 10−11 138.1 × 10−11

a shift of the conduction and valence band [Smith 1954; Kanda 1982]. This resistivity change

∆ρ

ρ0

∝ Stress (5.5.1)

is directly proportional to the applied stress while being linear up to approximately 20 GPa

[Dhar et al. 2007; Sze 2014]. This effect is used in highly sensitive strain sensors. Continuously

improving strain engineering is used to boost the performance of CMOS technologies, typically

starting around the 90 nm technology nodes. The inexpensive addition of high-stress layers

improved the current densities for NMOS and PMOS transistors [Thompson et al. 2004;

Saitoh et al. 2008; Jaeger et al. 2013; Gallon et al. 2004].

The description of the piezoresistive effect is empirical and follows analogously to the

anisotropic mechanical properties and can be described by a fourth-order piezoresistance tensor.

It is given by a 6 × 6 matrix using Voigt’s notation

[π] =



π11 π12 π12

π12 π11 π12

π12 π12 π11

π44

π44

π44



. (5.5.2)

where the components π11, π12 and π44 were originally obtained through measurements at

300 K. The respective values for n-type and p-type silicon are given in Table 5.6 [Smith 1954;

Kanda 1982; Manku and Nathan 1993]. The construction of the piezoresistance tensor follows

similar principles as required for the compliance matrix where prefactors

Πi j kl =




παβ, if β is 1, 2 or 3

1
2
παβ, if β is 4, 5 or 6

(5.5.3)

are necessary due to the use of Voigt’s notation [Kanda 1982].

Following a phenomenological description of the effect, the material resistivity in the presence

of arbitrarily oriented small stresses changes according to

∆ρi j

ρ0

= Πi j klσkl, i, j, k, l = 1,2,3 (5.5.4)
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where ρ0 is the material’s resistance without external stress [Manku and Nathan 1993;

Ando and Toriyama 2018; Dhar et al. 2007]. Following this description, the carrier mobility

variation is given by
∆µi j

µ0

= −Πi j klσkl, i, j, k, l = 1,2,3 (5.5.5)

where µ0 is the carrier mobility of the material without external stress [Manku and Nathan 1993;

Kanda 1982; Kanda 1991; Doll and Pruitt 2013; Yu et al. 2008].

For low doping concentrations, n-type phosphorous and arsenic doping yield an almost

identical majority electron carrier mobility with µP = 1414 cm2/Vs and µAs = 1417 cm2/Vs,

respectively. The hole mobility using p-type boron doping is µB = 470.5 cm2/Vs, which follows

from the increased effective mass of holes compared to electrons [Sze 2014; Reggiani et al. 2000;

Reggiani et al. 2002; Masetti et al. 1983].

To describe the full extent of the mobility variation within the sense FinFETs the full stress

tensor, extracted from the finite-element simulations, must be considered. It enables the

subsequent calculation of the alternating current within the sense FinFETs under a constant

bias voltage when exposed to the deformation of the RFT mode. As the sense transistors

are biased at a constant voltage, the also constant source-drain current is modulated at the

RFT mode frequency, following from the changed carrier mobility. Using (5.5.5), the FinFET

channel mobility change from source to drain is given by ∆µ11 = ∆µx in the spatial frame

[Wortman and Evans 1965; Manku and Nathan 1993; Kanda 1982]. Herein the change in

channel conductance ∆µx is referred to as ∆µ for the rest of this work, as the current is not

sensitive to other matrix elements of the mobility tensor.

The components given in Table 5.6 were originally obtained through measurements at 300 K.

However, they also depend on the doping concentration N and temperature T via the relation

[Π(N,T)] = P(N,T)[Π(300 K)], (5.5.6)

where P is the piezoresistance factor [Kanda 1982]. It is given by

P(N,T) = 300

T

F′
s+(1/2)(EF/kbT)

Fs+(1/2)(EF/kbT), (5.5.7)

where kb is the Boltzmann constant, Fs+(1/2) the Fermi integral and F′
s+(1/2) is the derivative

as a function of the temperature T and the doping-dependent Fermi energy EF, [Kanda 1982;

Kanda 1991; Doll and Pruitt 2013; Abdelaziz et al. 2014; Oktyabrsky 2022; Zeghbroeck 2021;

Sze 2014]. The Fermi energy for n-type and p-type silicon is shown in Figure 5.34 at selected

temperatures. With increasing doping concentration, the Fermi energy varies linearly on a

logarithmic scale up to densities of N = 1 × 1018 cm−3, where it assimilates to the conduction

or valance band energy, depending on the dopant type. The calculation further assumes the

silicon is neither intrinsic nor degenerate, with all dopants being ionised [Zeghbroeck 2021].
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Figure 5.34: Doping dependent Fermi energy for n-type and p-type silicon. The temperature is varied between 100−
500 K in 100 K steps, where a dash-dotted line indicates 300 K. (Adapted from [Hudeczek et al. 2022].)

Figure 5.35: Doping dependent piezoresistance factor for n-type and p-type silicon. The temperature is varied
between 100 − 500 K in 100 K steps, where a dash-dotted line indicates 300 K. (Adapted from
[Hudeczek et al. 2022].)

With increasing temperatures, the Fermi energy assimilates slower to the band edges [Sze 2014;

Oktyabrsky 2022; Zeghbroeck 2021].

Considering predominantly carrier phonon scattering rather than ionised impurity scattering,

which is a valid assumption for low doping densities (N < 1 × 1019 cm−3), the Fermi integrals

can be calculated analytically with s = −1/2 [Kanda 1982; Doll and Pruitt 2013]:

Fs+(1/2) (EF/kbT) = ln
(
1 + eEF/kbT

)

F′
s+(1/2) (EF/kbT) = 1

1 + e−EF/kbT
.

(5.5.8)

The resulting piezoresistance factor (5.5.7) is plotted for both n-type and p-type silicon in

Figure 5.35. It is near-constant and equal for both n-type and p-type silicon for doping densities

up to N = 1 × 1018 cm−3. For higher doping densities the carrier scattering mechanisms increase

and the piezoresistance factor declines. For temperatures as low as 100 K the piezoresistance

coefficients (5.5.6), and thus the subsequent effect, is increased by a factor of three. With

elevated temperatures, the piezoresistance factor decreases. At room temperature and low
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doping densities, it has a unity value.

The approximated results are in good agreement with experimental data for n-type silicon

with the scattering exponent s = −1/2. For p-type silicon, the approximation is only accurate

for doping concentrations below N = 1 × 1017 cm−3. At higher doping densities a deviation of

−20 % at N = 3 × 1019 cm−3 was found [Kanda 1982].

In recent literature, it was proposed that the shear coefficient π44 for n-type silicon is

independent of the carrier concentration up to 1 × 1020 cm−3, resulting in a slightly modified

expression

[πnmos(P)] =



Pπ11 Pπ12 Pπ12

Pπ12 Pπ11 Pπ12

Pπ12 Pπ12 Pπ11

π44

π44

π44



, (5.5.9)

in contrast to p-type silicon, where the full tensor is modified (5.5.6) [Kanda and Matsuda 2007].

However, as the piezoresistive factor provides almost no enhancement within reasonable

CMOS doping concentrations and real-world applicable temperature ranges, it is assumed as

P = 1 for room-temperature devices. Moreover, current CMOS processes only deploy light

channel doping with N = 1 × 1015 cm−3, staying well within bounds of the accurate region of

the piezoresistance factor [Masetti et al. 1983; Reggiani et al. 2002].

In the special case of uniaxial stress applied to a cubic semiconductor, it is possible to define

two piezoresistance coefficients: For the longitudinal piezoresistance coefficient

Πl = π11 − 2(π11 − π12 − π44)
(
α2

1β
2
1 + β

2
1γ

2
1 + α

2
1γ

2
1

)
(5.5.10)

the stress is parallel to the direction of the electric field and current and αi, βi and γi are the

direction cosines between the direction of interest and the crystal principal axes. Analogously

for the transversal piezoresistance coefficient

Πt = π12 + (π11 − π12 − π44)
(
α2

1α
2
2 + β

2
1β

2
2 + γ

2
1γ

2
2

)
(5.5.11)

the directions of the applied stress and current flow are perpendicular [Kanda 1982; Kanda 1991].

Both coefficients are plotted for the (100) plane in Figure 5.36 for both n- and p-type silicon.

The longitudinal piezoresistance coefficient in Figure 5.36(a) is calculated for the stress rotating

together with the current in (100). In this plane, the absolute piezoresistive coefficient for n-type

silicon reaches its maxima along 〈100〉, with the respective minima along 〈110〉. For p-type

silicon, the maxima and minima are the opposite, pointing along 〈110〉 and 〈100〉, respectively.

Moreover, the signs of the piezoresistance coefficients are opposing, with n-type silicon being

strictly negative and p-type silicon being strictly positive within the {100} planes for the same
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(a) (b)

Figure 5.36: Longitudinal and transversal piezoresistance coefficients for n-type and p-type silicon in (100) for (a)
uniaxial longitudinal stress and (b) transversal stress along [100] in polar coordinates.

sign of stress.

This effect is leveraged in modern CMOS field-effect transistor (FET) designs where

longitudinal stress along the channel can significantly enhance performance. Using a (100)45

silicon wafer, which is currently to be considered the industry standard for ICs, the FET channels

are parallel to the [011] direction. Thus by applying tension on the order of 600 MPa, for example,

by using a high tensile stress layer on top of an NMOS FET device, the source-drain current can

be enhanced more than 15 % at the same bias conditions. These stress levels can be achieved by

appropriate engineering of the nitride-capping layer. Similarly, by compressing the channel of

a PMOS FET device by using strained silicon Si1-xGex for the source-drain implants, the hole

mobility increases beyond 50 % [Thompson et al. 2004]. Furthermore, these process adaptations

are implementable at a comparatively low cost and can selectively be applied to NMOS and

PMOS devices in close vicinity [Ungersboeck et al. 2006; Yang and Cai 2011; Dhar et al. 2007;

Chu et al. 2009].

For the transversal piezoresistance coefficient in Figure 5.36(b), with the stress pointing

along the plane normal [100], the behaviour is opposite to the longitudinal case. However,

for directions close to 〈110〉 the sign of the transversal coefficient for n-type silicon inverts.

Additionally, the absolute enhancement is lower in comparison to longitudinal strain. Similar to

Young’s modulus and Poisson’s ratio, the longitudinal piezoresistive behaviour is also isotropic

in the {111} planes which is not shown.

Calculating the longitudinal coefficient for all directions of the unit sphere shows the global

extrema, as plotted in Figure 5.37. The longitudinal piezoresistance coefficient Πl for n-type

silicon, shown in Figure 5.37(a), is purely negative for all crystal directions, with its respective

maxima and minima pointing along 〈100〉 and 〈111〉. For p-type silicon in Figure 5.37(b), the

piezoresistance coefficient is purely positive, with the directions 〈111〉 and 〈100〉 marking the

maxima and minima, respectively.

Hence, a PMOS FET built on a {112} wafer with the channel pointing along 〈111〉 would
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(a) n-Silicon (b) p-Silicon

Figure 5.37: Extremal values of the piezoresistance coefficients for uniaxial longitudinal stress over the full crystal
space in (a) n-type and (b) p-type silicon.

Figure 5.38: Piezoresistive mobility enhancement for uniaxial stress along with the channel directions [100], [110]
and [111] for n-type and p-type silicon. The grey line was calculated by [Ungersböck 2007] using a
full-band Monte Carlo model (FBMC).

be most susceptible to uniaxial strain along the channel, as mentioned earlier. However, an

NMOS FET built on the same substrate orientation and channel direction would see almost no

enhancement for the same strain direction. The same applies to devices built on {100} wafers,

with channels along 〈100〉, where the PMOS FET would not benefit while the NMOS sees its

most substantial enhancement. A good trade-off is a {100}45 wafer where both devices yield

satisfactory non-vanishing improvements.

Using (5.5.5), the exact mobility enhancement for the FET channel directions parallel to [100],
[110] and [111] can be computed for uniaxial stress along with the same directions, as shown

in Figure 5.38. Following Hooke’s law, positive values relate to tensile and negative values to

compressive stress. For channels oriented along [100], the change in channel mobility µ/µ0

for the n-type FET sees the largest improvement compared to the other channel directions.

On the other hand, p-type devices see only improvements when exposed to compressive
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stress. As previously discussed, the largest improvement occurs in the [111] direction. This

direction signifies the best waver orientation trade-off as both devices get enhanced for the [110]
channel directions, as indicated by the dash-dotted lines. Both device types will see almost no

improvement in all other directions.

The change in channel mobility is also compared to data computed with a full-band monte

carlo simulation (FBMC), which is discussed in more detail in the literature [Ungersböck 2007;

Dhar et al. 2007; Ma et al. 2013]. For small stresses, the piezoresistance model follows the

initial linear trend. However, the FBMC solution levels off at larger stresses, giving rise to

an increasingly large error in the piezoresistance model. Hence, the piezoresistance model

should only be considered for small stresses up to 200 MPa [Bao 2015; Ungersböck 2007;

Rochette et al. 2009; Kanda 1982; Manku and Nathan 1993; Smith 1954; Rochette et al. 2009;

Ando and Toriyama 2018]. For larger stresses, both tensile and compressive, the piezoresistance

model overestimates the carrier mobility due to its linear nature, and the deviations can no

longer be neglected. In this case, a more rigorous method like k · p perturbation theory is

necessary to accurately describe the impact of stress on carrier mobility [Ungersböck 2007;

Ungersboeck et al. 2006; Ma et al. 2011; Ma et al. 2013; Dhar et al. 2007; Ward 2012].

As previously noted, the piezoresistance model is empirical and linearly links stresses and

mobility changes. In cubic semiconductors, like silicon, the carrier mobility, however, is

only linear in the presence of small stresses up to 200 MPa [Ungersböck 2007; Smith 1954;

Kanda 1982; Manku and Nathan 1993; Rochette et al. 2009]. With an increasing stress

magnitude, the actual mobility will level off, saturate, or even degrade, depending on

the crystallographic orientation and stress direction [Ma et al. 2013; Ungersböck 2007].

Consequently, the piezoresistance model will overestimate the mobility change for stresses

above 200 MPa. As all previous simulations at the default bias were carried out with a Q-factor

of 1000, it is possible to derive a maximum Q-factor with (5.2.5), for which the simulations

will yield a pressure below the accuracy limit, as shown in Table 5.7 [Hudeczek et al. 2022].

Following the previous 3D simulations, the largest valid Q-factor for all RFT types, regardless of

the gate lengths, unit cells and wafer orientations, is more than 50 000. Although the 2-fin unit

cell cannot be manufactured, it is included as a best-case reference. For the more realistic 14-fin

unit cell the viable Q-factor limits are over several million. Consequently, the piezoresistance

model should yield accurate results for all Q-factors below the maximum Q-factors listed in

Table 5.7. For larger values, the mobility variation is overestimated, leading to an exaggerated

mechanical transconductance, and thus an overestimated performance figure of merit for the

RFT.

5.5.2 FinFET Mobility Variation

From the stress tensors of the channels of the 2-fin unit cell, the mobility variation is

calculated using (5.5.5). For each wafer orientation, similar to the mechanical properties, the
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Table 5.7: Valid Q-factor range of the piezoresistance model for the infinite unit cells with the resonant peak pressure
scaled to 200 MPa [Hudeczek et al. 2022].

MOS unit cell gate length Q-factor limit (in millions)

type fins (nm) (001) (001)45 (011) (111)

NMOS

2

16 0.12 0.23 0.34 0.28

24 0.10 0.19 0.27 0.23

150 0.06 0.12 0.15 0.13

14

16 2.25 3.56 4.23 3.91

24 1.94 3.22 3.83 3.50

150 1.33 2.33 2.72 2.40

PMOS

2

16 0.09 0.18 0.27 0.22

24 0.08 0.15 0.21 0.18

150 0.05 0.09 0.11 0.10

14

16 1.79 2.85 3.45 3.18

24 1.54 2.58 3.11 2.82

150 1.06 1.86 2.18 1.94

(a) (b)

Figure 5.39: Carrier mobility variation for the 2-fin (a) NMOS and (b)PMOS unit cell at a Q-factor of 1000 on a
(001)45 oriented silicon wafer. ((a) adapted from [Hudeczek et al. 2022].)

piezoresistance tensor must be transformed into the spatial reference frame using the fourth-rank

tensor rotation (3.5.1). The resulting mobility variation is shown in Figure 5.39 for the NMOS

variant at a Q-factor of 1000, actuated at the default bias condition on a (001)45 wafer. For each

gate length, the mobility variation reaches its maximum in resonance. Further, the amplitude

of the variation increases with increasing gate length. This observation is in line with the

behaviour predicted from the averaged pressure figure of merit, which also increased for longer

gate lengths, as shown in Figure 5.20. The PMOS variation plotted in Figure 5.39(b) follows

the same trend. However, the overall mobility enhancement is almost two-fold compared to the

NMOS, which results from the higher susceptibility of the hole mobility to external stress, as

discussed in Section 5.5.1.

The calculation is repeated for both device types on all four wafer orientations, with the

extracted peak amplitudes plotted in Figure 5.40. Interestingly while the mobility variation for

NMOS devices, as depicted in Figure 5.40(a), on the (001)45 wafer increases monotonously from
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(a) NMOS (b) PMOS

Figure 5.40: Mobility variation in the resonance of the 2-fin unit cell at a Q-factor of 1000 for (a) NMOS and (b)
PMOS devices on different silicon substrate orientations. (Adapted from [Hudeczek et al. 2022].)

0.3-0.47 % with larger gate lengths, all other wafer directions level off after reaching a small

plateau at relatively small gate lengths. Furthermore, the (001)45 wafer orientation provides the

best enhancement from all considered orientations, regardless of the RFT gate length. Generally,

the mobility enhancement is below 0.5 % for all wafer variants at a Q-factor of 1000 with default

bias conditions. The overall low mobility enhancement for the NMOS variant follows from

the low susceptibility of electrons to external stress and the low simulated stress components,

regardless of the wafer orientation.

The response of the PMOS device to the RFT mode, as shown in Figure 5.40(b), is strongly

increased for the (001)45 wafer orientation, with a mobility enhancement between 0.8-1.2 %.

Interestingly the (001) and (011) wafers offer virtually no enhancement, while the (111) wafer

only achieves a maximum enhancement below 0.2 %, regardless of the gate length. This result

has a major impact on selecting the underlying wafer orientation, as the PMOS RFT will most

likely not work on certain wafer orientations as no mobility modulation occurs. Since the

standard IC wafer orientation in modern foundry IC design is (001)45, all manufactured NMOS

and PMOS devices are enhanced at best.

As previously discussed, a larger number of parallel gates harms the pressure within the

sensing unit. This is also reflected in the mobility variation on a (001)45 wafer for both NMOS

and PMOS devices, as shown in Figure 5.41. Interestingly, whereas the pressure for a single gate

device outperformed the infinite unit cell (compare Figure 5.23(b)), the mobility variation is on

par with the infinite case. This most likely follows from incorporating the entire stress tensor in

the calculation rather than the averaged pressure metric. With an increasing number of gates,

the mobility enhancement degrades for both NMOS and PMOS, substantiating the claim of the

best performance with a single gate. Analogously to the pressure figure of merit, the number of

dummy gates was swept between 1-3 , which did not impact the mobility variation.

The varied internal mobility leads to an increase or decrease in the absolute current of the

sense FinFET, depending on the phase of the mechanical modulation. The variation is plotted

in Figure 5.42 for the reference NMOS device with a gate length of 36 nm, for varying drain
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Figure 5.41: Mobility variation in the resonance of the 2-fin unit cell at a Q-factor of 1000 with a changing number
of parallel gates on a (001)45 oriented silicon wafer. (Adapted from [Hudeczek et al. 2022].)

Figure 5.42: Simulated alternating current of the reference NMOS device with different internal carrier mobilities
using Spectre [BSIMCMG 2018].

voltages at a constant gate bias VG = 0.8 V. It is calculated from the Spectre FinFET models

with a varied internal carrier mobility parameter [BSIMCMG 2018]. The maximum of the

modulated current occurs at the transition between the transistor’s linear and saturation region,

which is slightly shifting towards larger bias values with an increased mobility change. To

maximise the current response of the sense transistor, a Vsense = 200 mV is chosen as it biases

the FinFETs in saturation for all conditions. This value is identical to the values reported in the

literature [Bahr et al. 2018].

The drain current also depends on the gate length plotted in Figure 5.43(a). The drain current

was simulated with a gate voltage of VG = 0.8 V and the previously determined sense bias. Note

that for the PMOS the respective voltages VG = 0 V for the PMOS Vsense = 600 mV are used. The

overall current decreases for both NMOS and PMOS with increasing channel lengths, caused

by the increased channel resistance at longer gate lengths. Furthermore, the NMOS has an

approximately 25 % larger source-drain current which follows from different carrier mobilities

and stress optimisations [Thomas 1966; Thompson et al. 2004]. Gate lengths within the grey

area are not available in the technology used in this work, and the values are interpolated using

an Akima spline.

Also shown in Figure 5.43(b) is the source-drain current for the reference gate length of 36 nm

with an increasing number of parallel gates, which is almost linear for both device types.
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(a) (b)

Figure 5.43: (a) The simulated sense drain current for a single fin and single gate FinFET for different gate lengths
using Spectre. (b) Scaling of the drain current of the reference FinFET with a single fin with an
increasing number of parallel gates. Values within the grey area in (a) are interpolated using an Akima
spline. (Adapted from [Hudeczek et al. 2022].)

5.5.3 Mechanical Transconductance

The current modulation is calculated using the simulated carrier mobility enhancements and the

sense currents within the sense FinFETs. Focusing only on mobility enhancements due to the

piezoresistive effect, the alternating current in the 2-fin unit cell is calculated with

isense = Isense

∆µ1

µ0

(5.5.12)

where Isense is the current from a single gate and a single FinFET [BSIMCMG 2018;

Hudeczek et al. 2022].

However, as shown by the previous simulations on the average pressure, the 2-fin unit cell

substantially overestimates the pressure. Consequently, the mobility variation must be obtained

from the extended 14-fin unit cell configuration to match the expected behaviour of the real

device. While the stress tensor was extracted from a single channel in the 2-fin unit cell, the

14-fin variant has two pairs of three adjacent connected fins. Hence, focusing only on one

electrical phase, three stress tensors, one for each fin of the common contact, are extracted from

the simulation. The overall enhancement of the sense current within a single contact is thus

found from the sum of the currents in the three fins

isense = Isense
∆µ3

µ0

+ Isense
∆µ4

µ0

+ Isense
∆µ5

µ0

≈ Isense
∆µ3

µ0

. (5.5.13)

However, in contrast to the 2-fin unit cell where one fin was responsible for one electrical phase,

three fins with different mechanical phases contribute to a single electrical phase. Here the outer

two fins 3 and 5 share the same mechanical phase, and the phase of the centre fin 4 is the opposite.

Thus, while the current may be increased within the two outer fins due to the piezoresistive

enhancement, the centre fin has degraded performance or vice versa. Therefore, by assuming a
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(a) NMOS (b) PMOS

Figure 5.44: Mobility variation in resonance of the 14-fin unit cell at a Q-factor of 1000 for (a) NMOS and (b)
PMOS devices on different silicon substrate orientations. (Adapted from [Hudeczek et al. 2022].)

linear response of the mobility to the piezoresistive effect, the current contributions of two fins

will cancel within each electrical contact leaving only on contributing fin [Hudeczek et al. 2022].

The resulting mobility change for the 14-fin unit cell, assuming an average stress tensor over

all three fins, is shown in Figure 5.44 for both NMOS and PMOS RFTs. The overall trends are

identical as described for the 2-fin unit cell (compare Figure 5.40), however, at a much lower

overall enhancement, which is in line with the previously used pressure metric. The performance

of the 2-fin unit cell is precisely a factor of seven larger than that of the 14-fin counterpart. This

matches with the assumption of only one fin contributing per contact, since only a total of two

out of 14 fins are responsible for the mobility variation, whereas all fins of the 2-fin unit cell

contribute. Minor deviations between the 2-fin and 14-fin variants can be discerned for some

gate lengths, which may be ascribed to slightly different mode shapes and potential meshing

inconsistencies. However, their impact is negligible.

Using the differential input amplitude of the drive signal together with the alternating current,

the mechanical transconductance

Gm =

����
isense

vdrive,di f f

���� (5.5.14)

of the RFT is calculated [Bahr et al. 2018; Hudeczek et al. 2022]. It is plotted in Figure 5.45

for both NMOS and PMOS devices and the 2-fin and 14-fin unit cells. It was calculated at the

default bias and drive voltage conditions for a Q-factor of 1000. For either device type and

regardless of the unit cell size, the transconductance is plateauing for small gate lengths up to

approximately 50 nm. For longer gates, the transconductance degrades with further increasing

channel lengths. In the plateauing region, the increase in mobility, as shown in Figure 5.40 and

Figure 5.44, and the decrease in sense current, as depicted in Figure 5.43(a), compensate for

each other. As the mobility enhancement levels with further increasing gate lengths, the overall

transconductance declines due to the reduced current and, consequently, also the alternating

current in the sensing unit. Once again, the 2-fin variant outperforms the 14-fin configuration by

a factor of seven. Furthermore, the transconductance of the PMOS is more than twice the value
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Figure 5.45: Simulated mechanical transconductance for the 2-fin and 14-fin unit cell for both NMOS and PMOS
at a Q-factor of 1000. (Adapted from [Hudeczek et al. 2022].)

Figure 5.46: Scaling of the transconductance at a Q-factor of 1000 and the required power with the number of
parallel gates.

obtained for the NMOS variant, which results from a better susceptibility of the hole mobility to

external stress, although the absolute sense current is lower in the PMOS [Hudeczek et al. 2022].

Consequently, the optimum performance for both device types and unit cell sizes is achieved

for a comparatively short channel length of 36 nm, with the transconductance in the low to

sub-micro siemens range. Note that these values are still simulated at a Q-factor of 1000 and

are thus not indicative of the ultimate performance of the RFT.

The absolute transconductance can further be increased with a larger number of parallel gates,

as shown in Figure 5.46, however, at the expense of increased power consumption and spurious

modes (compare Figure 5.22). Although it was shown that the pressure within the cavity reduces

with each additional gate, it is counteracted by the increasing direct current, and thus also the

alternating current. Therefore, the transconductance increases with the number of parallel gates

before levelling off for many parallel gates. Here a factor of five can be achieved by using ten

parallel gates, regardless of the device type and configuration. However, slightly higher values

are expected for even more gates.

In conjunction with the transconductance, the power demand rises, which is undesired as it

will increase the idle power of the RFT. Comparing the power consumption of the ideal and
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(a) (b)

Figure 5.47: Mechanical transconductance at a Q-factor of 1000 for the 14-fin (a) NMOS and (b) PMOS unit
cell under varying drive bias conditions and amplitudes with a constant gate voltage Vgate = 0.8 V.
(Adapted from [Hudeczek et al. 2022].)

the actual integration, i.e. the 2-fin and 14-fin unit cells, a further drawback of the extended

unit cell configuration is highlighted. While inside the tightest possible integration only two

fins determine the power consumption, six fins are required inside the extended implementation,

which strongly increases the power consumption. While it remains at a comparatively low level

of 44.32 µW and 55.65 µW, for PMOS and NMOS variants with a single gate, it increases to

413.93 µW and 566.64 µW with ten parallel gates. Although the PMOS variant requires lower

power than the NMOS, it outperforms the NMOS due to the increased mobility enhancement,

and thus increased transconductance.

The optimal transconductance depends on several quantities and may be improved by

achieving a larger drain current and subsequent modulated current. However, as shown for the

optimal bias condition in Figure 5.42 a sense bias of Vsense = 200 mV yields the largest possible

enhancement. On the other hand, a smaller differential drive amplitude at the same channel

pressure would also improve the transconductance. However, with a decreasing alternating

drive voltage, the pressure within the FinFET is decreasing (compare Figure 5.15), resulting

in a degraded mobility variation and, consequently transconductance. Hence, the optimal bias

condition, balancing the largest obtainable modulated sense current at the smallest possible

drive voltage, is required. It is shown in Figure 5.47 for both device types. Here the mechanical

transconductance improves with an increasing bias voltage applied across the gate oxide, whereas

the drive voltage amplitude has a negligible impact on the transconductance. This follows from

Figure 5.15, where a linear effect of the drive voltage on the overall pressure within the FinFET

channel was observed. Consequently, the linearity of the piezoresistive effect leads to a linear

modulation of the sense current with the applied drive voltage. Moreover, the peak pressure

increases with a rising voltage Vmos between the gate and the FinFET where the optimum

transconductance is once more limited by the gate oxide’s breakthrough voltage. Here the bias

condition chosen by Bahr et al. is close to the optimal condition, leaving sufficient headroom for

a larger drive amplitude. The previous bias location marked the largest mechanical performance

by using only the pressure figure of merit. However, it performs worse than the bias point
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Figure 5.48: Scaling of the mechanical transconductance of the ideal 2-fin and extended 14-fin unit cells with the
Q-factor. NMOS and PMOS devices are abbreviated respectively with N and P. The performance
reported by Bahr et al. at a Q-factor of 49 000 is marked by a star [Bahr et al. 2018]. (Adapted from
[Hudeczek et al. 2022].)

by Bahr et al. when using mechanical transconductance as figure of merit [Bahr et al. 2018;

Hudeczek et al. 2022].

Returning to the optimal device with a single gate and a reference gate length of 36 nm, the

transconductance obtained at Q-factor of 1000 only reaches 0.9 µS and 0.4 µS for the PMOS

and NMOS, respectively. However, the RFT performance was reported for a Q-factor of almost

50 000. Hence, the performance of the best device is scaled to the larger Q-factor with (5.2.5), as

plotted in Figure 5.48. At a Q-factor of almost 50 000, the transconductance for the 14-fin unit

cells is still in the low micro siemens range with 45 µS for the PMOS and 20 µS for the NMOS

RFT, respectively. This value is three orders of magnitude lower than the reported values of

14 mS by Bahr et al. as indicated by the star [Bahr et al. 2018; Hager et al. 2021].

Although the transconductance can be slightly improved with additional gates, this is unlikely

given the reported current values by Bahr et al. and insufficient to bridge the remaining gap

[Bahr et al. 2018]. The proof-of-concept device is reported with a sense current of Isense =

118 µS, which may be compared to a FinFET with a gate length of approximately 62 nm (compare

Figure 5.43(a)) and a single gate from this investigation. For this configuration, the calculated

transconductance at a Q-factor of 49 000 reaches an even lower transconductance of 38.22 µS

and 18.38 µS for the PMOS and NMOS, respectively. Although no information is given for

the device doping, neither of the here simulated devices supports the reported data by Bahr et

al. [Bahr et al. 2018; Hudeczek et al. 2022].

Interestingly the reported transconductance of 14 mS and the required carrier mobility

enhancement are inconsistent with existing literature [Bahr et al. 2018]. The device, as reported,

is biased at a constant voltage of Vsense = 200 mV, resulting in sense current or Isense = 118 µA.

It was driven with a single-ended port power of −20 dBm which is equal to a differential drive

voltage of vdrive = 63.2 mV. Following the relation

Gm =
isense

vdrive,di f f

=

∆µIsense

vdrive,di f f

(5.5.15)
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a mobility modulation of 750 % is required in the sense FinFETs. Given that the contribution

of two fins cancels the actual mobility enhancement within a single sense contact stems

only from a single FinFET. This increases the required mobility modulation by another

factor of three. Such stress-induced mobility enhancements within silicon are unreported in

literature, with the largest reported enhancements at room temperature being in the 150 %

range. However, those values require uniaxial gigapascal pressures which cannot be achieved

by an electromechanical actuation, as shown by the simulations [Ungersböck 2007; Smith 1954;

Kanda 1982; Manku and Nathan 1993; Rochette et al. 2009]. Furthermore, there are reported

stress values of 7 MPa and 40 MPa in literate, as well as the pressure data provided by this

analysis, all of which only support sub-per cent mobility enhancements at best [Bahr et al. 2018;

Srivastava et al. 2021; Hudeczek et al. 2022; Hager et al. 2021]. Moreover, the stress-induced by

the RFT mode is multi-axial, resulting in a probably lower mobility enhancement than uniaxial

stress of the same magnitude [Sun, Sun, et al. 2007; Sun, Thompson, et al. 2007; Ma et al. 2013].

It should be noted that the outlined modelling approach neglects effects such as a stress-induced

shift of the threshold voltage and altered mobility saturation [Srivastava et al. 2021;

Hudeczek et al. 2022]. Given the size of the discrepancy an improvement by more than

three orders of magnitude is highly unlikely by a more accurate modelling approach. Since the

RFT is fabricated in a technology node a with SiCO:H-based BEOL, an oxide slab is insufficient

to confine the resonant mode due to the lower sound dispersion. It was thus replaced with a SiO2

slab offering excellent confinement by index guiding. Hence the impact of a phononic crystal

mirror on the performance of the RFT is investigated in the next chapter to quantify the potential

performance benefit of using a matched mechanical mirror.

Summary

The resonant behaviour of the RFT was investigated with the FEM. Using an idealised unit

cell, the RFT was simulated without the BEOL phononic crystal on several wafer orientations.

The resonant mode was confined by the index guiding properties of the underlying silicon,

which varied as a consequence of the anisotropic mechanical response. Since the BEOL was

neglected, it was replaced by a SiO2 or SiCO:H slab, however, the latter is incapable to sustain

a well-confined mode within the FEOL due to its mechanical properties.

Following the displacement profiles of the available guided modes, the required RFT mode

was identified by symmetry considerations, which results in differential pressure in adjacent

FinFET channels. By adjusting the channel length of the FinFETs, the resonant frequency may

be tuned by more than 3 GHz, however, it is also affected by the crystallographic orientation of

the underlying wafer.

The performance of the resonant mode was assessed with a frequency domain response

simulation limited to a Q-factor of 1000. Due to the assumption of small deformations within

the cavity, linear viscous Rayleigh damping can be used, which allows a rescaling of the response

110



5.5 Transconductance Modelling

in resonance to an arbitrary Q-factor. Since the unit cell is only an approximation of the actual

FinFET geometry, the capacitance is calibrated to measurement data. To further reduce the

computational cost associated with the FEM simulations, the impact of an anti-symmetric

Poisson’s ratio on the mirror symmetry of the gate plane was investigated and the impact is

negligible for the analysis. Thereby the DOFs can be further reduced which improves the

simulation times.

Furthermore, the impact of varying bias and drive voltages on the mechanical performance

was addressed, where a balance between actuation and bias voltage must be found. By modelling

the fabricated device geometry, the impact of a finite number of parallel resonant gates resulted

in a degradation of the peak pressure as they obstructed the displacement of the neighbouring

gates. Moreover, with the number of parallel gates, the number of spurious modes is increasing,

which poses a risk to the functionality of the RFT. A subsequent simulation of the extended

14-fin unit cell with an adjusted wiring scheme resulted in strong performance degradation and

strongly reduced electromechanical coupling efficiency over the 2-fin unit cell.

In the second part, the mechanical transconductance was modelled from the complete stress

tensor within the channels of the 2-fin and extended 14-fin unit cells. The subsequent mobility

enhancement within the different sense unit was modelled with the piezoresistive effect. External

stress on the FinFET channels, caused by the resonant mode, leads to a variation of the carrier

mobility, and thus a change in the sense current. This process is the most pronounced for both

NMOS and PMOS devices on the commonly used (001)45 wafer orientation, with the other

investigated orientations resulting in much lower or negligible enhancements.

Following the currents in the sense FinFETs, the mechanical transconductance can be

calculated from the resulting alternating current caused by a variation of the carrier mobility.

At the reported Q-factor of 49 000, more than two orders of magnitude lower mechanical

transconductances of 19.6 µS for the NMOS and 44.1 µS for the PMOS were found. This stands

in opposition to the reported transconductance of 14 mS by the first proof-of-concept publication.

Although several simplifications were made for the simulation setups, all of them resulted in

an overestimation of the involved effects, and thus the reported milli siemens transconductances

are highly improbable.
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The phononic crystal properties of the back-end-of-line (BEOL), which are responsible

for confining the resonant mode, are modelled using an isotropic one-dimensional (1D)

and two-dimensional (2D) as well as an anisotropic three-dimensional (3D) approach.

The possible band gaps and their usefulness for successful confinement of the resonant

fin transistor (RFT) cavity are addressed for different BEOL stacks. Following the

BEOL phononic crystal investigation, the BEOL and front-end-of-line (FEOL) are

jointly simulated with the finite-element method (FEM). The performance is lastly put

into perspective when anisotropic materials, such as copper, are present in the phononic

crystal. A discussion of the reported quality factor (Q-factor) and the fundamental

limits caused by the most common loss mechanisms is also given.

6.1 The One-Dimensional Phononic Crystal

As discussed in the previous chapter, the main mechanical mode of the RFT must be confined to

the FEOL to maximise the stress in the sense fin field-effect transistor (FinFET) channels and,

thereby, the mechanical transconductance. To reduce the overall complexity of the investigation
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and study the behaviour of the FEOL, the BEOL phononic crystal was neglected. It was replaced

by a solid oxide slab, either SiO2 or SiCO:H, depending on the BEOL stack-up. Whereas a solid

SiO2 slab was sufficient to shield the mechanical mode via index guiding, and thus to reach a

high Q-factor, the SiCO:H slab resulted in a non-functional device as the main resonant mode

was radiating away from the cavity.

However, as discussed in Section 2.1, modern BEOL stacks predominantly use the low-κ

SiCO:H to improve switching speeds in the integrated circuit (IC) as the RC time constant is

reduced compared to the SiO2 BEOL used in older technology nodes. Therefore, excluding the

interconnecting copper layers above the RFT to improve confinement is not possible, as discussed

in Section 5.1.3. This problem exists not only in the RFT, but occurs in all other monolithic

unreleased micro-electro-mechanical-systems (MEMSs), which are in direct contact with its

surrounding, or solidly mounted resonator devices which suffer from the same confinement

issues [Bahr et al. 2014; Bahr 2016; Hamelin et al. 2019; Knapp et al. 2018].

Although SiCO:H alone is not sufficient, the periodic structure of alternating metal and

oxide layers in the BEOL may exhibit so-called phononic crystal properties that influence wave

propagation at certain frequencies and directions. These effects occur for a largely mismatched

acoustic impedance

Z = ρc (6.1.1)

between the different layers of the stack, where ρ is the material density and c is either the

longitudinal or transversal sound velocity in the respective material [Khelif and Adibi 2016;

Rose 2014; Jiménez et al. 2021; Pennec and Djafari-Rouhani 2016; Khelif et al. 2010;

Joannopoulos et al. 2008]. Whereas a continuous elastic medium supports wave propagation at

any frequency, as discussed in Section 3.7.4, an alternating periodic patterning may introduce

frequency forbidding regions. Those forbidden frequency ranges are called phononic band gaps,

where a wave can not propagate if its frequency and wave vector are enclosed by the phononic

band gaps. They are formed by destructive interference within the different layers of the stack

[Khelif and Adibi 2016; Joannopoulos et al. 2008; Dobrzyński et al. 2018]. Using appropriate

thicknesses of the involved BEOL layers, the centre frequency of the gaps can be shifted. In

a typical semiconductor foundry, the thicknesses of the BEOL layers, however, are predefined

from routing and electrical boundary conditions as products choose a combination of these

available layers based on their requirements which are focused on complexity, performance and

cost. Optimizing phononic crystal properties for a monolithic unreleased MEMS in a foundry

setting is challenging.

Starting with the SiO2-based BEOL, to maintain comparability to the previous chapter, the

dispersion relation of the phononic crystal can be calculated analytically or with the FEM.

Assuming an infinitely extended BEOL with an infinite number of layers, the stack may be

reduced to its smallest unit cell, analogously to the modelling of the RFT. The unit cell and

corresponding Brillouin zone are illustrated in Figures 6.1(a) and 6.1(c). The orientation of the
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(a) (b) (c)

Figure 6.1: The unit cells for calculating the band structure using the interface response theory or FEM of a SiO2

or SiCO:H base BEOL are depicted in (a) and (b). (c) The corresponding Brillouin zone and vector
direction for vertical propagation.

unit cell was chosen following the orientation of the RFT, where the x-axis is parallel to the

channel and the y-axis is pointing along the gate direction. Note that the unit cell is illustrated

in 2D for visual purposes only.

The band structure for vertical propagation along Γ−Z in this unit cell can be computed

analytically using the interface response theory [Djafari-Rouhani and Dobrzynski 1987;

Dobrzynski 1990]. It is useful to define the parameters

Ci = cos(2a(i)α(i)) Si = sin(2a(i)α(i))
Fi = c11,44(i)α(i) αi = ωcl,t(i)−1

(6.1.2)

where a(i) is the half-layer thickness and cl,t(i) is either the longitudinal or transversal wave

velocity of the ith layer, which are given in Table 5.3. c11,44(i) is the elasticity constant for

either longitudinal or transversal waves. For the trivial case of a single-layered super-lattice, the

interface response theory yields the well-known dispersion relation

cos(kau) = C1 (6.1.3)

for a bulk material as described in Section 5.1.3, on the matter of index guiding. Here au =∑n
i=1 a(i) is half the length of the unit cell with n layers [Djafari-Rouhani and Dobrzynski 1987;

Dobrzynski 1990].

For a two-layered super-lattice, the interface response theory expands to
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(6.1.4)

where the roots to this equation yield the 1D dispersion relation of the phononic crystal. The

roots of (6.1.4) for either the wave vector or frequency can be found with the method proposed

in [Rose 2014].

The solution to the problem may also be obtained numerically with the FEM. The 1D band
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(a) (b) (c) (d)

Figure 6.2: Comparison of the 1D band structure of an infinite 1D BEOL, with 50 nm thick copper and SiO2

layers. The complex-valued band structure in (a) is calculated for the Γ-point with k = Γ + ikim, (b) is
computed within Γ−Z, and (c) is computed for the Z-point with k = Z+ ikim. For a finite BEOL stack,
the transmission can be calculated and (d) shows the corresponding transmission loss for a stack with
eight metal layer repetitions.

structure is modelled with a 2D unit cell with Floquet-Bloch boundary conditions on all four sides

[Hudeczek et al. 2021]. The unit cell depicted in Figure 6.1(a) must be modified with a sufficiently

small lateral extension along the y-axis to prevent premature Brillouin zone folding. This effect is

also observed for the band structure of the RFT in Section 5.1.2 and the bulk dispersion once the

FinFET pitch is considered (see Figure 5.5 and Figure 5.6) [Hudeczek and Baumgartner 2020;

Garcıa and Fernández-Álvarez 2015; Yang, Yang, et al. 2018].

It should be noted that copper is a strongly anisotropic material with A = 3.22 (see Table 3.1).

Therefore, analogously to the 2D modelling of the FEOL, the equivalent isotropic material

properties listed in Table 5.3 have to be used in the 1D case.

Both approaches are exercised on a BEOL stack with 50 nm thick copper and SiO2 layers and

the results are compared in Figures 6.2(a) to 6.2(c). Plotted is the real-valued solution within

Γ−Z and the complex solutions at the high symmetry points. The solution of the FEM is marked

by grey circles, with the analytic solution of the longitudinal and transversal waves given in

blue and red, respectively. In contrast to the bulk dispersion, the super-lattice exhibits distinct

bands for propagating modes with longitudinal or transversal polarisation. Between the bands,

regions without supported eigenmodes exist, marked by the shaded areas. Within these gaps, the

propagation of waves, regardless of the wave vector, is suppressed. For some frequency ranges,

both longitudinal and transversal waves are blocked, as indicated by the purple areas, which is

known as full non-polarised band gap. Some of the gaps are only valid for either longitudinal or

transversal waves, which is referred to as a polarised band gap [Hudeczek and Baumgartner 2020;
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6.1 The One-Dimensional Phononic Crystal

Figure 6.3: Transmission loss for longitudinal and transversal waves for a varying number of BEOL metal layers.
The BEOL stack has 50 nm thick copper and SiO2 layers.

Han et al. 2017; Wang et al. 2015; Achaoui et al. 2010; Sotto et al. 2018].

The analytical solution for (6.1.4) and the results computed with FEM within the band

gaps are complex-valued, as shown in Figures 6.2(a) and 6.2(c). In both complex planes, a

solution only exists for frequencies within the band gaps, which leads to an exponential decay of

mechanical waves propagating through the stack [Jiménez et al. 2021; Khelif and Adibi 2016;

Joannopoulos et al. 2008]. Both the analytical solution and the FEM results are in excellent

agreement. Note that artificial modes in the complex planes have been filtered from the

finite-element solution [Hudeczek and Baumgartner 2021].

The band gaps also manifest in the transmittance spectrum of waves through a finite stack.

Using the FEM, a polarised wave is injected in a stack with eight unit cell repetitions. The

resulting transmission loss

TL = −20 log10

(����
uout

uin

����
)

(6.1.5)

is computed from the displacements at the input uin and output uout facets of the stack

[Pennec et al. 2004; Lu et al. 2018]. The results shown in Figure 6.2(d) exhibit a pronounced

spike in the transmission loss for the frequencies within any of the prior calculated longitudinal

or transversal band gaps. In those regions, the propagation of waves is strongly suppressed,

while at all other frequencies the transmittance reaches unity. The overshoot into the negative

values occurs since no damping is present in the simulation. Interestingly, the number of ripples

in-between two adjacent band gaps correlates to the number of layer repetitions, as the system

behaves like several weakly coupled oscillators [Dobrzyński et al. 2018; Jiménez et al. 2021;

Chopra 2012; Khelif and Adibi 2016; Joannopoulos et al. 2008].

Also notable is that the longitudinal and transversal polarisations have different band gaps

according to their independent propagation [Ting 2006a]. Unsurprisingly, the strength of the gap

directly relates to the imaginary part of the complex-valued band structure as it defines the decay

rate of the evanescent modes in the stack [Hudeczek and Baumgartner 2020; Jiménez et al. 2021].

Using a higher number of consecutive layers, the transmission loss of the BEOL, as depicted

in Figure 6.3, can be improved by several orders of magnitude. Each additional layer leads to
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(a) L SiO2 (b) T SiO2

(c) L SiCO:H (d) T SiCO:H

Figure 6.4: Evolution of phononic crystal bands with varying copper and SiO2 layer thickness for (a) longitudinal
and (b) transversal bands calculated with the interface response theory for vertical propagation along
Γ−Z. The uninterrupted pillars for some configurations are artefacts of the calculation where the
algorithm failed to find the roots of the equation.

a stronger attenuation within the band gap. Interestingly, a single copper and oxide layer pair

already leads to a slight attenuation of incident waves. Also notable is the better performance

of gaps with a larger bandwidth, and the largest attenuation is observed close to the centre

frequency of each gap.

This analysis, however, is only valid for a specific BEOL thickness configuration. A preferably

wide and non-polarised band gap is required to shield the RFT at the resonant frequency

successfully. Assuming that the BEOL thicknesses can be freely chosen, the locations of all

possible longitudinal and transversal band gaps are shown in Figures 6.4(a) and 6.4(b). Each

pillar represents a certain thickness configuration, computed using the faster analytic method.
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6.1 The One-Dimensional Phononic Crystal

For the analysis, both the copper and SiO2 thicknesses were swept from 5-200 nm. Within each

pillar, a box indicates the existence of a band in that frequency range where either longitudinal

or transversal waves may propagate through the stack. Interestingly for small copper and SiO2

thicknesses, no phononic gaps, regardless of the frequency, are found. Similarly, for low

frequencies, the investigated BEOL configurations do not exhibit a band gap, leading to the

absence of gaps for many variations. For larger thicknesses and frequencies, however, phononic

band gaps open up, repeating periodically. Here the longitudinal gaps in Figure 6.4(a) vary at

a slower rate than transversal gaps in Figure 6.4(b), following the larger sound velocity, and

thus an increased wavelength of the longitudinal waves. A few uninterrupted pillars can also be

discerned, which are artefacts of the calculation as the algorithm failed to find the roots of the

equation.

The same analysis is repeated for the modern low-κ BEOL stack, with the corresponding

unit cell shown in Figure 6.1(b). As discussed in Section 2.1, the copper and SiCO:H

layers are separated by a thin SiO2 liner layer to prevent diffusion and increase structural

integrity [Kavalieros et al. 2006; ITRS 2021]. Consequently, the unit cell features four layers

and the interface response theory must be expanded [Djafari-Rouhani and Dobrzynski 1987;

Dobrzynski 1990]:
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(6.1.6)

The resulting bands for the SiCO:H-based BEOL are shown for longitudinal and transversal

waves in Figure 6.4(c), respectively. The copper and SiCO:H thicknesses vary between 5-200 nm,

while the liner layer thickness is fixed at 5 nm. Whereas the old SiO2-based BEOL only had

a few distinct band gaps in the investigated parameter range, the low-κ BEOL exhibits a larger

number of phononic band gaps for both wave types. Furthermore, the gaps are separated by

thinner bands leading to fewer forbidden regions for both longitudinal and transversal waves.

This is caused by the much lower Young’s modulus of SiCO:H in comparison to SiO2, which

leads to a larger acoustic impedance mismatch between the copper and oxide layers.

Assuming that the resonant mode of the RFT is exclusively radiating along Γ−Z and the BEOL

thicknesses can be chosen freely, the preceding results are used to find a viable BEOL phononic

crystal configuration. Therefore, slices with a bandwidth of fBW = 1 GHz, to allow for enough

margin for the confinement, and a centre frequency matched to the resonant frequency of the RFT,

are extracted from Figure 6.4. The 2D resonant frequency was simulated to fR = 30.847 GHz
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(a)

(b)

Figure 6.5: Extracted band gaps between 30.35-31.35 GHz for longitudinal and transversal and non-polarised waves
propagating along Γ−Z. (a) For a SiO2 and (b) for a SiCO:H-based BEOL.

for the SiO2-based BEOL and fR = 28.937 GHz for the SiCO:H based BEOL, as discussed in

Section 5.4. The respective slices are plotted in Figure 6.5. The band gaps spanning at least the

required frequency range are indicated in grey. The lighter colour around each gaps perimeter

indicates a gap’s existence, but their bandwidth is reduced as bands appear on either side of the

spectrum. This leads to slight smearing of the band gaps with increasing layer thicknesses as the

bands flatten, which is also visible in Figure 6.4. For longitudinally polarised waves, a band gap

in the desired frequency range may be found for multiple BEOL layer configurations. The gaps

repeat periodically for both layer thicknesses, which follows from the destructive interference

at certain layer configurations. The same behaviour is also observed for transversal polarised

waves, but the gaps are much smaller, and their repetition rate is higher due to the smaller shear

wave velocity. It is possible to derive the non-polarised band gaps plotted in Figure 6.5(a) on

the right by superimposing both polarisations. The number of gaps is strongly reduced, as both

patterns of longitudinal and transversal waves must coincide to form a non-polarised band gap.
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6.2 The Two-Dimensional Phononic Crystal

(a) (b)

Figure 6.6: (a) The 2D band structure of a two-layer BEOL unit cell with a 50 nm thick copper and SiO2 layer. (b)
The respective unit cell and Brillouin zone for the FEM simulation.

Depending on the chosen BEOL stack, a matching band gap might be available, however, due

to the broad extent of the individual bands, only a few very distinct options are possible.

The same applies to the SiCO:H-based BEOL (see Figure 6.5(b)), but due to the thinner bands

the periodic pattern of the band gap changes more rapidly, which leads to fewer unsuited BEOL

configurations. This behaviour can be observed for both longitudinal and transversal waves with

a larger extent of the longitudinal gaps. Superimposing both the longitudinal and transversal

solutions yields substantially more supported BEOL configurations which might be suitable for

the confinement of the RFT mode.

Although suitable BEOL configurations for both variants can be found, the assumption of a

pure vertical radiation pattern along Γ−Z is not entirely valid. As discussed for the FEOL mode

of the RFT in Section 5.1.2, for the mode to propagate through the cavity its wave vector must

be matched to the Y-point of the Brillouin zone. Therefore, the 1D assumption of the BEOL

is insufficient as the incident wave has a non-vanishing contribution along the y-axis parallel to

the gate.

6.2 The Two-Dimensional Phononic Crystal

To account for the lateral wave vector of the FEOL mode, the dimensions of the BEOL unit cell

must be matched to the pitch of the underlying FinFETs, which was also required for the index

guiding properties in Section 5.1.3. As the computation for non-perpendicular incident waves

with the interface response theory is challenging the FEM, which is in excellent agreement with

the analytic solution in the previous investigation, is used instead. The band structure is obtained

by sweeping the wave vector of the Floquet-Bloch boundary conditions along the perimeter of

the Brillouin zone, which is depicted in Figure 6.6(b). At each wave vector, an eigenmode

simulation is carried out and the results are plotted in Figure 6.6(a). Since the eigenmodes are
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computed for each wave vector separately, and no relation between adjacent wave vectors exists

in the FEM, the band structure is originally unsorted and no bands can be identified. To assign

each mode to its corresponding band, the individual eigenmodes are sorted and connected by

exploiting the orthogonality of the eigenvectors for small enough wave vector steps during the

simulation [Darinskii et al. 2007; Lu and Srivastava 2018].

Within the band structure the two exclusively horizontal or vertical propagating regimes along

Γ−Y and Γ−Z can be seen. For lateral propagation along Γ−Y the BEOL is unpatterned, and

thus exhibits no phononic crystal effects. This manifests in a continuum of possible modes

since a possible supported eigenmode of the BEOL exists for each frequency and wave vector.

Those modes are typically referred to as Lamb-waves, but they provide no shielding for the RFT

[Hudeczek and Baumgartner 2020; Su and Ye 2009; Birgani et al. 2015; Birgani et al. 2017;

Mizuno 2019; Giurgiutiu and Haider 2019; Pennec and Djafari-Rouhani 2016].

For vertical propagation along Γ−Z, which has been discussed in the previous section, fewer

polarised band gaps can be discerned compared to the 1D case in Figure 6.2. Here additional

flat bands emerge above a frequency of approximately 50 GHz, which were not present in the

previous 1D case. They result from a larger lateral extent of the Brillouin zone which leads to

the folding of bands at the high symmetry points. Those folded bands extend throughout the

complete band structure leading to a denser dispersion relation and less obvious band gaps.

The existence of the folded bands is problematic as they impede the performance of the

phononic crystal. In Figure 6.7(a) the 2D solution within Γ−Z is computed with the FEM.

Here the previously found purely polarised longitudinal or transversal bands in the 1D analytic

calculations can be matched directly to the FEM solution, as indicated by the red and blue

lines. However, the 1D interface response theory fails to capture the folded bands indicated in

green as they only occur within the FEM simulation which captures a finite lateral extent. A

subsequent transmission loss simulation of a finite stack with the lateral extend now matched to

the FinFET pitch and eight BEOL layer repetitions align nicely with the theoretically predicted

longitudinal and transversal band gaps. However, the folded bands indicated by the green shaded

areas deteriorate the performance of the intersecting band gap by several decibels. Although

their impact on the transmission loss appears only minor, the density of folded bands is expected

to increase with a larger simulation volume encompassing either two, 14, or all 154 fins of the

RFT. The high number of defect bands may thus overpower the polarised band gaps and entirely

suppress any phononic crystal activity. In contrast to pure vertical propagation, as plotted in

Figure 6.7(a), waves with a frequency below approximately 27 GHz for this configuration cannot

propagate.

As mentioned earlier, the existence of band gaps matched to the propagation wave vector of the

RFT mode at the Y point of the Brillouin zone is more important for the confinement. Here the

BEOL provides several band gaps within Y−T as all modes in that direction possess a matching

wave vector, as indicated by the Brillouin zone in Figure 6.6(b). For this propagation direction,

the transmission loss can also be computed with the FEM as plotted in Figure 6.7(b). Although
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(a)

(b)

Figure 6.7: Simulated 2D band structure along (a) Γ−Z and (b) Y−T with the respective transmission loss for
eight-layer repetitions.

the simulation was carried out for both longitudinal and transversal waves, both wave types

produce an almost identical transmission loss. This follows from the mixed polarisation of the

bands within Y−T, which cannot be classified as purely polarised bands as the polarisation

changes between the high symmetry points [Achaoui et al. 2010; Muzar and Stotz 2019;

Wang et al. 2015; Laude et al. 2009; Liu, Tsai, et al. 2014]. Nevertheless, the transmission loss

spectrum matches nicely with the observed band gaps resulting in a strong attenuation of waves

for the particular propagation directions covered by Y−T, regardless of their polarisation.

The observed band gaps within either Γ−Z or Y−T are also only applicable for the

respective wave vectors, making them directional band gaps. For a band gap to be considered

omnidirectional it must apply to all possible propagation directions within the Brillouin zone,

which is impossible for the laterally unpatterned BEOL. Consequently, only the directions Γ−Z

or Y−T may exhibit phononic crystal effects due to the periodic layering in those directions

[Pennec and Djafari-Rouhani 2016; Khelif and Adibi 2016; Joannopoulos et al. 2008].

While the SiO2 BEOL still offered several wide directional band gaps, suitable for the
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(a) (b)

Figure 6.8: (a) The 2D band structure of a four-layer BEOL unit cell with a 50 nm thick copper and SiCO:H layer
which are separated by 5 nm SiO2 liner layers. (b) The respective unit cell and Brillouin zone for the
FEM simulation.

confinement of the RFT, the band structure depicted in Figure 6.8 for the low-κ BEOL is much

denser. Here the same behaviour is observed for the different possible propagation directions,

however, the number of folded bands is strongly increased, making the existence of a matching

band gap less likely.

To find a BEOL thickness configuration with a matching band gap the thickness sweeps

from Section 6.1 are repeated with the FEM for bands within Y−T. The results are plotted in

Figure 6.9(a) for SiO2 and in Figure 6.9(c) for the SiCO:H-based stack. Both variants feature a

large band gap, independent of the involved layer thicknesses, up to approximately 27 GHz for

the SiO2 and 18 GHz for the SiCO:H-based stack. Above the first band, the observed band gap

again exhibits a periodic behaviour with the layer thicknesses, as already observed in the 1D

case.

The respective slices with a bandwidth of fBW = 1 GHz, shown in Figure 6.9(b) and

Figure 6.9(d), are matched to the resonant frequency of the RFT. Interestingly the band gaps

of the SiO2-based phononic crystal show almost no dependence on the oxide layer thickness

in the investigated range up to 200 nm. For the copper layer thickness, a periodic behaviour is

visible, with certain thickness configurations preventing the formation of a band gap, regardless

of the oxide thickness. This behaviour was not observed for the vertical 1D case where almost

no thickness existed preventing a band gap formation for all other thickness combinations with

the other layer. For the low-κ BEOL the extracted slice features a periodic behaviour that

depends on the metal and oxide configuration. Interestingly for both copper and SiCO:H, more

combinations exist which prevent the formation of a band gap regardless of the choice of the

other material thickness.

Although multiple viable BEOL configurations for the confinement of the RFT exist, the

directional dependence remains a major drawback of the laterally unpatterned BEOL. To create

an omnidirectional band gap periodic pattern must be present in all directions of the unit cell
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(a) (b)

(c) (d)

Figure 6.9: The evolution of bands with varying copper and oxide layer thickness for all bands calculated with the
FEM for vertical propagation along Y−T. (a) For a SiO2-based and (c) for a SiCO:H based BEOL.
The extracted band gaps between (b) 30.35-31.35 GHz for the SiO2 and (d) 28.44-29.44 GHz for the
SiCO:H based BEOL.

[Khelif and Adibi 2016; Joannopoulos et al. 2008]. While uninterrupted metal plates can

typically cover the whole RFT, the design rule check mandates strict lateral patterning rules

for adjacent lines. One possibility is to create evenly spaced metal wires as illustrated in

Figure 6.10(a), which are parallel to the channel directions, above the RFT. For those wires,

minimum widths and spacings which the design rule check mandates must be maintained. The

copper wires are embedded in SiCO:H and are covered by a 5 nm thick SiO2 liner layer. An

exemplary band structure for 75 nm thick copper wires with a width of 100 nm and an inter-wire

spacing of 50 nm is plotted in Figure 6.11(a). Other than the previously laterally unpatterned

stack, the resulting band structure features an omnidirectional band gap between approximately
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(a) (b)

Figure 6.10: (a) A patterned BEOL stack with horizontal wires orthogonal to the RFT cavity. (b) The respective
2D unit cell of the BEOL and Brillouin zone.

(a) (b)

Figure 6.11: The band structure of the 2D unit cell depicted in Figure 6.10(b) is plotted in (a) for a copper and
SiCO:H thickness of 75 nm. The copper wires are surrounded by a 5 nm thick SiO2 liner layer and
have a width of 100 nm and inter wire spacing of 50 nm. The possible full band gap configurations are
shown in (b). Note that in this plot the band gaps are marked instead of the bands.

6.5-9.5 GHz. Within this gap, no wave propagates through the structure, independent of the

polarisation or direction. This type of gap is preferable over a directional gap as any type of wave

emitted or reflected from the cavity can be confined, and thus should lead to a larger Q-factor.

However, further simulations are required to assess the impact.

The possible omnidirectional band gap frequencies for copper width and inter-wire spacings

between 25-200 nm have been simulated with the FEM and are plotted in Figure 6.11(b). Note

that in this plot the gaps are represented by the pillars, contrary to the previous representation in

Figure 6.4 and Figure 6.9. For many configurations, a full band gap can be achieved. However,

all of them are found around 10 GHz which is insufficient for the RFT which operates around

30 GHz. Moreover, metal slotting increases the number of bands above the omnidirectional

band gap, reducing the chance for further suited directional band gaps.
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Although other patterns could potentially shift the gaps to larger frequencies, they are unlikely

to be supported by the foundry design rule check and have to be confirmed for the 30 GHz range

[Khelif and Adibi 2016; Joannopoulos et al. 2008; Bahr et al. 2014]. Following the very strict

design rule check rules, especially in the lower metal layers, the formation of an omnidirectional

band gap within Γ−Y−T−Z−Γ which is matched to the RFT frequency, is therefore not feasible.

Consequently, the BEOL phononic crystal above the RFT must be fabricated with closed layers

to enable at-least wider directional band gaps in the required frequency range and matched to

the propagation of the RFT mode.

6.3 Combined Simulation of the Phononic Crystal and

Resonant Cavity

In the previous section, directional band gaps in the layered stack were discussed for both SiO2

and SiCO:H-based BEOLs. If the phononic gaps are matched to the resonant frequency of the

RFT and modal wave vector, they are expected to greatly improve the Q-factor of the MEMS

[Bahr et al. 2018; Bahr 2016; Goettler et al. 2010; Inomata et al. 2022; Liu, Tsai, et al. 2014].

While in the previous investigation the RFT was only simulated in the FEOL, and the BEOL

was replaced by an oxide slab, they are now considered in a joint 2D simulation of the complete

stack. This is necessary as modern low-κ oxides cannot provide sufficient confinement to the

RFT through index guiding.

6.3.1 SiO2-based Back-End-of-Line

Although SiO2 proved to be a good material for high confinement of the RFT via index guiding,

the RFT is now considered in conjunction with different BEOL stack configurations, and the

impact on the performance is assessed. Analogously to the prior investigations the resonant

eigenmodes and dispersion relation of the complete RFT structure are analysed using the

FEM. Several suitable BEOL configurations with a well-matched band gap can be found from

Figure 6.9(b). The chosen configuration features eight metal layer repetitions with 54 nm thick

copper layers separated by 34 nm of SiO2. The resulting dispersion relation along Γ−Y of the

FEOL together with the BEOL is plotted in Figure 6.12 and marked by the coloured dots. Also

indicated by thin grey lines are the four different sound cones, two each for the silicon substrate

and the SiO2 capping layer on top of the BEOL stack. The FEM solution of the individually

considered infinite BEOL unit cell is superimposed in black. Plotted for reference is the analytic

solution of the same stack for pure vertical propagation along Γ−Z, which is indicated in blue

and red for longitudinal and transversal modes, respectively. The folded bands not captured by

the interface response theory are marked in green.

The resonant eigenmode of the RFT cavity is marked by an arrow and resides well within

a phononic crystal band gap of the BEOL along Y−T. The second previously found guided
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Figure 6.12: Band structure of a 2D RFT with eight BEOL copper layers which is superimposed with the band
structure of the infinite BEOL unit cell as well as the analytic solution for longitudinal and transversal
waves along Γ−Z. The copper layers have a thickness of 54 nm which are separated by 34 nm thick
SiO2 layers.

mode is covered by a larger number of additional guided modes in the band structure. The

strongly increased number of eigenmodes throughout the whole spectrum, when compared to

the identical structure without the BEOL in Figure 5.29(a), can be attributed to additional modes

within the BEOL. Whereas the simulation without the BEOL features only two guided modes

beneath the first shear sound cone of SiO2, the dispersion relation of the complete structure has

a larger amount of partially guided modes, which are indicated by their purple colour. Those

modes occur close to the bands of the infinite BEOL simulation in a smeared-out fashion. They

can be attributed to lateral modes propagating within the different layers of the BEOL rather than

the FEOL. This allows them to remain partially guided even above the sound cones of silicon

and SiO2. The smearing of the bands is caused by the extent of the BEOL bands in Y−T, which

is indicated by the grey-shaded areas.

The number of smeared-out bands correlates with the number of BEOL layer repetitions, as

already observed for the transmission loss simulations. In Figure 6.13 the number of BEOL

layers was swept, which did not affect the RFT mode. However, the number of BEOL modes

increased as indicated by the circle. Note that one of the modes within the circle must be

attributed to the asymmetric FEOL mode as shown in Figure 5.8(a) for a 3D simulation, which

can be identified from its deformation profile. While each additional BEOL layer increases

the number of possible supported modes in the structure, not all of them can be actuated for

symmetry reasons or compatibility with the FEOL modes. More importantly, additional layers

increase the transmission loss of the phononic crystal which manifests in the Q-factor of the RFT

mode. The Q-factor increases with an increasing number of layers, as plotted in Figure 6.14.

Interestingly for four or fewer BEOL layers, the Q-factor is lower than achieved through index

guiding using a solid SiO2 slab, which is indicated by a horizontal line. The Q-factor’s slope
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Figure 6.13: Band structure of a 2D RFT with an increasing number of BEOL layers from left to right. The copper
layers have a thickness of 54 nm which are separated by 34 nm thick SiO2 layers.

Figure 6.14: Dependence of the Q-factor on the number of copper layers within the BEOL phononic crystal. The
Q-factors are calculated from the respective setups in Figure 6.12 for SiO2 and Figure 6.18 for SiCO:H.

depends on the relative resonant frequency’s position within the band gap. As shown for the

transmission loss and the complex band structure, for example, in Figure 6.2, the attenuation of

the band gaps decreases towards the edges. Consequently, the best phononic crystal performance

is achieved for a band gap with a centre frequency close to the resonant frequency. Moreover, a

wider band gap also results in an increased Q-factor as the transmission loss is larger than for a

band gap with a lower bandwidth as shown in Figure 6.2. Five or more repetitions are required

to improve the Q-factor further than achieved by only a SiO2 slab without patterning. After

approximately eight metal layers the Q-factor reaches 1 × 1015 with diminishing improvements

with each additional layer. This trend implies that a phononic crystal on an older technology

node might even reduce the performance. It also affects integrability as many of the metal layers

above the RFT cannot be used for routing, which degrades the versatility. However, further

investigation is required.

Note that the observed Q-factors of several trillion are unrealistic since no other damping

mechanisms in the individual materials were considered. Consequently, the absolute values do
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Figure 6.15: Frequency domain response of an RFT combined with a four-layer BEOL using the modal superposition
technique. The copper and SiO2 layers have a respectively 54 nm and 34 nm thickness.

not represent the actual performance but allow a relative comparison of different structures.

The frequency response is simulated for the complete undamped structure with four BEOL

layers with a thickness of 54 nm and 34 nm for the copper and SiO2, respectively. The BEOL

layers were limited to four to maintain a reasonable degree of freedom (DOF) since the spectrum

was simulated using the harmonic perturbation method to capture all involved eigenmodes in the

investigated frequency range. Any artificial damping was omitted in this simulation to quantify

the performance of the BEOL. The corresponding band structure of the BEOL within Y−T,

pressure response, and phase are plotted in Figure 6.15. The spectrum exhibits a pronounced

resonance at the frequency of the RFT, which is marked by a star. The respective deformation

profile is shown in Figure 6.16(b), which is confined to the FEOL with a fast amplitude decay

in the phononic crystal. In the absence of band gaps in the BEOL, which is marked by the grey

shaded areas, spurious modes occur in the pressure spectrum. Here some modes of the RFT

cavity can couple to supported modes of the BEOL, which results in spurious resonances as

marked by triangles, and their deformation profiles are shown in Figures 6.16(a) and 6.16(c).

Contrary to the RFT mode, these modes show a strong deformation with the BEOL stack as they

radiate away from the cavity. Although their amplitude is small they pose a risk to the operation

of the RFT as spurious modes in the close vicinity of the main resonance can lead to an energy

loss [Harrington et al. 2010; Gokhale and Gorman 2018]

On the contrary, a BEOL configuration with 74 nm thick copper and 34 nm thick SiO2 layers

has no band gap at RFT’s resonant frequency, which is visible in Figure 6.9(b). The respective

frequency domain response is plotted in Figure 6.17. Rather than observing a single RFT

resonance at the expected frequency of 30.847 GHz it is split into multiple resonances. They

are marked by downward-facing triangles and are observed near each other. Their deformation

profile, shown in Figure 6.16(e), has large displacements within the FEOL and the BEOL. Due
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(a) N (b) ⋆ (c) H (d) N (e) H (f) ◮

Figure 6.16: The displacement profiles for a 2D RFT with a four-layer BEOL with 54 nm thick copper and 34 nm

thick SiO2 layers are shown in (a) to (c) and correspond to the resonances from Figure 6.15. The
modes shown in (d) to (f) correspond to a BEOL with 74 nm thick copper and 34 nm thick SiO2

layers as Simulated in Figure 6.17. Note that the displacement amplitudes are normalised within each
respective mode and not on the same scale for different modes.

Figure 6.17: Frequency domain response of an RFT combined with a four-layer BEOL using the modal superposition
technique. The copper and SiO2 layers have a thickness of respectively 74 nm and 34 nm.

to the presence of a BEOL bands in this frequency range, which is highlighted by the grey area,

the RFT mode can couple to the several support modes of the BEOL. Interestingly the largest

observed peak pressure is almost identical to the previous case with a matching band gap, which

follows from the SiO2 capping layer on top of the BEOL. Although a FEOL mode can couple to

the BEOL and radiate away, it is ultimately confined via index guiding at the top of the structure,

leading to a reflection of the incident waves.

Also observed are a few weak BEOL modes, which are marked by upwards and

sideways-facing triangles. They are again the result of a supported band where the cavity modes

131



Chapter 6 Confinement Characteristics of a Back-End-of-Line Phononic-Crystal

Figure 6.18: Band structure of a 2D RFT with eight BEOL copper layers which is superimposed with the band
structure of the infinite BEOL unit cell as well as the analytic solution for longitudinal and transversal
waves along Γ−Z. The copper layers have a thickness of 35 nm which are separated by 5 nm thick
SiO2 liner and 65 nm thick SiCO:H layers.

can couple to BEOL, which is also reflected by the deformation profiles in Figures 6.16(d)

and 6.16(f).

This shows that a SiO2-based BEOL phononic crystal is almost inconsequential to the

performance of an RFT as the index guiding capabilities of the involved oxide layers already

result in a well-confined FEOL mode. The addition of a BEOL phononic crystal only increases

the risk of spurious modes in close vicinity to the RFT mode, impeding the performance rather

than improving it. Also, a large number of successive metal layers is required to outperform the

Q-factor obtained via index guiding, reducing the MEMS’s vertical footprint.

6.3.2 SiCO:H-based Back-End-of-Line

While adding a phononic crystal mirror on an older technology node does not yield significant

improvements it is essential for the RFT on more advanced nodes. The RFT cannot be confined

on these nodes via index guiding of the low-κ oxide layer alone. Here the shear sound cone of

SiCO:H is limiting the shielding to frequencies below 14.347 GHz, as listed in Table 5.2, which

is insufficient for the approximately 30 GHz required by the RFT.

Following the foregone band gap analysis, shown in Figure 6.9(d), multiple suitable BEOL

configurations which match the RFT frequency of 28.937 GHz can be found. One configuration

has copper and SiCO:H layers with a thickness of 35 nm and 65 nm, respectively, while the

SiO2 liner layers are 5 nm thick. The resulting band structure of the RFT combined with an

eight-layer BEOL is shown in Figure 6.18. It is again superimposed with the dispersion relation

of the infinite BEOL, indicated by black lines, and the sound cones of both silicon and SiCO:H.

Within Γ−Z the analytic solution for longitudinal and transversal modes are marked in blue and
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red. The folded bands, identified with the FEM, are highlighted in green.

In the previous 2D simulation of the RFT with a solid SiCO:H slab, plotted in Figure 5.29(b),

many unguided leaky modes exist above the shear sound cone. Since the RFT mode was also

within the leaky region it is only poorly guided, which leads to a small Q-factor of 31. By adding

of a phononic crystal with multiple band gaps, several previously leaky modes are now well

confined within the structure which is indicated by black coloured dots at the high symmetry

point Y in Figure 6.18.

Also, in this configuration, the BEOL introduces many additional modes which assimilate

to the solution of the infinite BEOL simulation. The number of modes is again linked to the

number of layers in the stack and they are smeared out by the extent of the bands within Y−T,

as marked by the grey areas. Since the bands are more flat compared to the SiO2-based BEOL

the smearing is less pronounced. As previously found the SiCO:H based BEOL also introduces

more additional bands when compared the SiO2 based stack which leads to narrower band gaps.

Since a band gap well encloses the RFT mode, the Q-factor is improved, as plotted in

Figure 6.14. A single BEOL layer already increases the Q-factor by several orders of magnitude

over the Q-factor achieved by a SiCO:H slab. The Q-factor rises steadily with each additional

layer, and, analogously to the SiO2-based BEOL phononic crystal, levels off after approximately

eight-layer repetitions. It also settles at a slightly increased Q-factor over the SiO2 based

phononic crystal, resulting from a better centring of the RFT mode within the respective band

gap leading to higher confinement.

Although the configuration is similar, comparing this simulation to the band structure shown

in [Bahr et al. 2018] several discrepancies are visible. The presented band structure is claimed

to be simulated with a low-κ BEOL stack on top of the device. However, none of the respective

BEOL bands occurs within the dispersion relation. Although the impact of the reduced sound

cone frequency in SiCO:H is inconsequential, it still may be observed within the band structure

simulation, as shown in Figure 6.18. In the data presented by Bahr et al., only the sound cone of

silicon and none of the BEOL phononic crystal bands are discernible, raising concern about the

band structure being simulated with the provided unit cell or undisclosed data post-processing.

Following the foregone frequency domain analysis, the effectiveness of the band gap is

assessed for the in Figure 6.19. As shown in the band structure plot in Figure 6.18 the RFT

is centred in a wide band gap manifests in a pronounced resonance which is marked by a star.

The additional spurious modes, which couple to the BEOL modes, are indicated by triangles

and diamonds. Also observed is an additional mode, close to one of the BEOL bands, which is

marked by a circle. The respective deformation profiles are shown in Figures 6.20(a) to 6.20(d).

The deformation profile of the RFT mode in Figure 6.20(c) is concentrated mainly to the FEOL of

the device, which leads to a pronounced pressure response in the FinFET channels. Interestingly,

the mode also exhibits strong deformations within the first SiCO:H layer before it is confined

by the phononic crystal. This follows from the sound cone of the first SiCO:H layer, which may

not shield against frequencies above 14.347 GHz. Consequently, the RFT mode can radiate into
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Figure 6.19: Frequency domain response of an RFT combined with a four-layer BEOL using the modal superposition
technique. The copper and SiCO:H layers have a thickness of respectively 60 nm and 70 nm and are
separated by 5 nm SiO2 liner layers.

(a)  (b) H (c)⋆ (d) ◭ (e) H (f) ◭ (g) ◮

Figure 6.20: The displacement profiles for a 2D RFT with a four-layer BEOL with 35 nm thick copper and 65 nm

thick SiCO:H layers are shown in (a) to (d) and correspond to the resonance from Figure 6.19. The
modes shown in (e) to (g) correspond to a BEOL with 60 nm thick copper and 70 nm thick SiCO:H
layers, as plotted in Figure 6.21. All layers are separated by 5 nm thick SiO2 liner layers. Note that the
displacement amplitudes are normalised within each respective mode and are not on the same scale
for the different modes.

the first oxide layer of the BEOL, although a matching band gap exists. The RFT’s performance

is degraded as the mode is not fully confined within the FEOL but leaks into the intermediate

space between the FEOL and BEOL.

The spurious BEOL modes in Figures 6.20(b) and 6.20(d) are mainly confined to the

phononic crystal with small displacements within the FEOL. The additional observed mode in

Figure 6.20(a) appears to be closely related to the BEOL modes with a frequency of 25.12 GHz.

However, it shows a slightly increased deformation in the FEOL. The response, however, does
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Figure 6.21: Frequency domain response of an RFT, combined with a four-layer BEOL, using the modal
superposition technique. The copper and SiCO:H layers have a thickness of respectively 60 nm

and 70 nm and are separated by 5 nm SiO2 liner layers.

not belong to the second guided mode observed in Figure 6.18 at approximately 24.75 GHz

since this mode cannot be excited for symmetry reasons.

Contrary to the SiO2 BEOL, a mismatched band gap suppresses the RFT mode in a frequency

domain simulation, as shown in Figure 6.21, for a BEOL with 60 nm thick copper and 70 nm

thick oxide layers. The liner layers remain unchanged with a thickness of 5 nm. In the absence

of a matching band gap no definite RFT mode can be discerned, but rather several resonances in

the close spectral distance, as indicated by the left-facing triangles. Although the mode profile in

Figure 6.20(f) is similar to the RFT mode it strongly couples to the BEOL, reducing the maximal

pressure response. Furthermore, the frequency of the largest observed peak and anti-resonance

are shifted towards the edge of the band by several megahertz.

As discussed in Chapter 5 both a large Q-factor and large pressures are required within the

sense FinFET for optimal performance. Using an eigenmode simulation of the same structure,

the Q-factor of the largest RFT-like mode was simulated to only 1141. In conjunction with

the low observed kilopascal pressures, the transconductance is not expected to exceed the

nanosiemens regime. This is still a strong overestimation of the result since the 2D simulation

was shown to overestimate the pressure by approximately a factor of eight as listed in Table 5.5.

A change from a 2-fin to a 14-fin unit cell results in another drop in the transconductance by a

factor of seven.

Consequently, the presence of a matched phononic crystal band gap is mandatory as the

simulated transconductance at a Q-factor of 50 000 falls already short of the reported value by

three orders of magnitude. Although the general confinement principles of the BEOL were

confirmed, many effects, such as mechanical anisotropy, have not been considered in this first

2D estimate.
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Table 6.1: Vertical sound wave velocities along k = [001], in spatial coordinates, for selected copper orientations.
The propagation direction k′ is normalised in crystal coordinates. Also given are the explicit solutions
for longitudinal and transversal waves [Ting 2006a; Hudeczek and Baumgartner 2020]. The density of
copper is ρ = 8960 kg m−3.

Orientation
Christoffel equation Explicit expression

cl (m s−1) ct1 (m s−1) ct2 (m s−1) k′ ρc2
l

ρc2
t

(001) 4330.1 2893.2 2893.2 [001]−1/2 c11 c44(×2)
(011) 4949.5 2893.2 1619.5 [022]−1/2 c∗

1
a c44, c44 + Hk2

3
b

(111) 5972.1 3765.7 3765.7 [333]−1/2 c∗
0

c c44 +
1
3

H(×2) b

a c∗1 =
1

2
(c11 + 2γ1), γ1 = c12 + 2c44

b H = c11 − c12 − 2c44, k3 is the third vectorial component of k′

c c∗0 =
1

3
(c11 + 2γ1), γ1 = c12 + 2c44

6.4 The Three-Dimensional Phononic Crystal

In the previous 1D and 2D investigations all involved materials, including copper were assumed

to be isotropic. This assumption is not valid as covered for silicon during the FEOL modelling

of the RFT. Copper, which is used within the BEOL, is an even stronger anisotropic material.

As discussed in Chapter 3, the sound velocities vary with the crystallographic direction.

Consequently, the phononic crystal capabilities of the BEOL depend on the crystallographic

orientation of the involved metal layers. Furthermore, all out-of-plane modes within the BEOL

are suppressed in a 2D investigation, reducing the number of observed modes.

During fabrication, copper crystallises into grains in different phases, which changes the

mechanical properties throughout the individual layers. The three most common orientations

reported in the literature are (001), (011) and (111), with respective probabilities of 21 %, 14 %

and 35 % [Basavalingappa et al. 2017]. The remaining 30 % are occupied by other orientations,

however, at lower percentages of 3 % each, which are neglected for this analysis. In the following

first-principles study, the individual copper sheets are assumed as monocrystalline for simplicity.

As covered in Section 3.7.4, an isotropic material supports the propagation of longitudinal

and two transversal waves. In this case, the transversal wave velocities are identical and all three

quantities are independent of the propagation direction. However, in an anisotropic material,

the wave speeds depend on the direction of propagation. Only shear waves propagating along

either 〈100〉 or 〈111〉 share the same velocities for both the fast and the slow shear wave. The

transversal wave velocities differ for all other directions, with the largest velocity difference

occurring along 〈110〉. This follows from the maximum and minimum shear modulus of copper

discussed in Section 3.7.3.

The wave velocities for the different copper orientations can be obtained with the Christoffel

equation (3.7.7) for an arbitrary propagation direction and are given in Table 6.1 for the three

dominant copper orientations and vertical propagation. Because all three orientations are special

configurations marking either a minimum, saddle point, or maximum of Young’s modulus
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along the direction of propagation (compare Figure 3.4), they can also be acquired by explicit

analytic expressions, which yield identical results to the Christoffel equation [Ting 2006b;

Hudeczek and Baumgartner 2021].

First, the case of vertical propagation for perpendicular incident waves is investigated. The

band structure of all three crystallographic orientations is computed with the interface response

theory (6.1.6) and it is also simulated with the FEM using a unit cell with a sufficiently small

lateral extend to prevent premature Brillouin zone folding. The respective stack is fabricated from

50 nm thick copper and SiCO:H layers, which are separated by 5 nm liner layers. The analytical

solution from (6.1.6) and the FEM simulation. Both results are compared in Figure 6.22. For

all computed dispersion relations, in the first three columns of Figure 6.22, the analytic solution

is given by coloured lines and the finite-element simulation results by grey dots. Here both

solutions are aligned for real- complex-valued solutions for all three copper orientations.

As listed in Table 6.1 for the first orientation (001) in Figure 6.22(a), the two shear velocities

are identical, leading to a two-fold degeneracy of the shear modes T1 and T2. Their polarisation

directions

s1,2 =
1√
2



sin φ

cos φ

0



(6.4.1)

may point along any direction within the (001) plane, where φ is the polarisation angle.

However, the orthogonality of both polarisations must be maintained at all times [Ting 2006a].

The longitudinal wave L is pseudo-polarised along the propagation direction. Also shown in

Figure 6.22(a) is the transmission loss for a finite anisotropic BEOL with four copper layers,

which matches well with the theoretically predicted band gap locations from the band structure

calculation.

For a (011) oriented copper layer the fast and slow shear waves have different propagation

velocities leading to a splitting of the shear modes in the dispersion relation shown in

Figure 6.22(b). The same behaviour is also observed for the sound cones on certain silicon

wafer orientations, as discussed in Section 5.1.3. Due to the special orientation of the copper

layers, the polarisation directions are fixed along

s1 =



1

0

0



s2 =



0

−1

1



(6.4.2)

and both polarisations are again orthogonal [Ting 2006a]. Following the splitting of the

transversal bands, the respective band gaps are only valid for the two distinct polarisation

directions. Due to the changed mechanical response, the bands are also shifted compared to the

prior investigated (001) orientation.

The respective transmission loss computed with the FEM, plotted in Figure 6.22(b), reflects
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(a)

(b)

(c)

Figure 6.22: Comparison of the 1D band structures and transmission losses of a fully 3D BEOL, with 50 nm thick
copper and SiCO:H layers, separated by 5 nm thick SiO2 liner layers. The copper layers are oriented
(a) (001), (a) (011) and (c) (111).

the split of the transversal bands and perfectly agrees with the band structure calculations. The

separated transversal bands consequently lead to a reduction of the observed shear gap width.
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In the case of a transverse wave, with a polarisation direction

s =
1√
2



√
2

1

−1



, (6.4.3)

which matches neither the polarisations of either T1 or T2. For this polarisation the effective

shear gap reduces to the smallest common band gap of both bands, as indicated by the black

line in Figure 6.22(b). Moreover, in the case of an unmatched polarisation the respective

transmission loss of each gap is limited by the lower transmission loss of the two possible

polarization directions [Hudeczek and Baumgartner 2020]. Hence, the primary crystallisation

direction and the relative rotation of the copper layer concerning the underlying MEMS affect

the width and strength of the band gaps.

For the band structure of the last copper orientation (111), as plotted in Figure 6.22(c), the

splitting of the transversal modes is lifted again. Thus both transversal wave velocities coincide

and their polarisation directions may again be along any direction orthogonal to the propagation

direction while maintaining orthogonality between the waves. The corresponding transmission

loss simulation also reflects this in Figure 6.22(c).

Following this analysis the band gap frequencies of both longitudinal and transversal gaps vary

with the crystal orientation of the involved copper layers. However, it is unlikely that all copper

layers will crystallise into the same orientation across the whole BEOL leading to changes in

orientation between successive copper layers. The mechanical behaviour of such a structure is

simulated for a three-layer stack, as shown in Figure 6.23. Each of the three copper layers A,

B, and C feature one of the three main crystallographic orientations 1 → (001), 2 → (011) and

3 → (111). The previously discussed uniform variants are given by black dashed, dash-dotted

and dotted lines, where all three-layers have the same orientations,. They are compared with all

possible orientation combinations of the three involved copper layers.

The regions, which are common band gaps for all three uniform cases, are also band gaps

for arbitrary combinations of copper crystal orientations in different layers. The order of the

orientations in the different layers has almost no influence on the ultimate transmission loss.

This follows from each BEOL unit cell layer having its own band gap frequencies. Hence, in

case of mismatched band gap frequencies, all waves passing through any of the previous layers

are partially blocked by the band gap of a successive layer, and consequently, the stack exhibits

an averaged response [Jiménez et al. 2021]. Due to the partial blocking the overall strength of

each gap is reduced and the averaged response might feature fewer suitable band gaps compared

to a BEOL with only one orientation throughout the whole stack.

Following the worst-case assumption that all metal layers have distinct orientations while

still being monocrystalline, finding a matching band gap is challenging. As shown for the

transmission loss of a BEOL with mixed orientations, the band gaps follow the smallest common

gaps. Consequently, by finding the possible band gaps for each orientation, a superposition of all
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Figure 6.23: Transmission loss simulation for a three-layer stack with different copper orientations A, B and C along
Γ−Z. The copper and SiCO:H layers have a thickness of 50 nm while the SiO2 liner layer has 5 nm.
Each copper layer may assume one of the following three crystallographic orientations: 1 → (001),
2 → (011) and 3 → (111).

results should yield the permanent gaps present regardless of the copper orientation. The overall

pattern is very similar to the 2D approximation of copper (compare Figure 6.4), with a high

periodicity of gaps that are separated by narrow bands, but an additional shear T2 polarisation

exists due to the three dimensional unit cell.

Assuming the resonant frequency fR = 30.922 GHz of the RFT at its default configuration, the

remaining vertical gaps are found by superposition of the three possible copper orientations (001),
(011) and (111). The resulting gaps with a bandwidth of fBW = 1 GHz are plotted in Figure 6.25.

Shown in transparent black is the result of the isotropic 2D assumption using the same layer

thicknesses. The longitudinal gaps do not vary strongly for the different copper orientations,

especially at smaller layer thicknesses. The same was also observed for the transmission loss

of the three-layer stack shown in Figure 6.23. Furthermore, the 2D approximation closely

resembles the true band gap locations.

For the two shear waves T1 and T2 however, the speed of waves varies more between the

different orientations, leading to a more pronounced shift of the observed band gaps. The

overall size of the band gap, from a layer thickness point of view, is therefore reduced. The 2D

approximation fails to capture the band’s shift in a 3D simulation leading to larger band gaps

with fewer variations.

Since the isotropic assumption was computed from the Voigt and Reuss averages it assumes the

averaged locations of all bands from the different anisotropic copper orientations. This behaviour
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L (001) T1 (001) T2 (001)

L (011) T1 (011) T2 (011)

L (111) T1 (111) T2 (111)

Figure 6.24: Evolution of bands with varying anisotropic copper orientations and SiCO:H layer thickness for
longitudinal and transversal bands calculated with the interface response theory for vertical propagation
along Γ−Z. The copper and SiCO:H layers are separated by a 5 nm thick SiO2 liner layers. The
uninterrupted pillars for some configurations are artefacts of the calculation where the algorithm failed
to find the roots of the analytic equation.

is the consequence of the isotropic sound velocities, given in Table 5.3, which are in-between

the extremal values for an anisotropic material. Therefore, the 2D isotropic simulation offers a

good first-order approximation of the involved effects. However, a full 3D analysis is required

to determine the band gap frequencies precisely.

As discussed in Section 6.2, band gaps for pure vertical propagation are inconsequential to

the RFT performance, however, they allow a direct comparison of the involved effects using

both analytical computations and finite-element simulations. To assess the full performance

of the BEOL in 3D, including all folded bands, the BEOL phononic crystal must be modelled
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Figure 6.25: Comparison of the band gaps obtained with equivalent isotropic and anisotropic copper between
30.422-31.422 GHz for longitudinal and transversal waves and non-polarised waves propagating along
Γ−Z. The anisotropic result is merged from the three predominant copper orientations (001), (011)
and (111).

(a) (b)

Figure 6.26: The simulated 3D band structure for a (001) oriented copper layer is shown in (a). The copper and
SiCO:H layers have a thickness of 50 nm and are separated by 5 nm thick SiO2 liner layers. (b) The
corresponding unit cell and Brillouin zone for the FEM simulation. The simulation was capped at 150

modes as indicated by the shaded region.

with the lateral dimensions matched to both the FinFET and gate pitch. The corresponding unit

cell and Brillouin zone for 50 nm thick copper and SiCO:H layers, with 5 nm liner layers, are

sketched in Figure 6.26(b) and the resulting band structure for (001) oriented copper is shown

in Figure 6.26(a). The computation was limited to the gate plane Γ−Y−T−Z−Γ, as only gaps

at the high symmetry point Y are relevant. Due to the high computational effort, the number of

modes was limited to 150, as indicated by the shaded area. Since the RFT frequency is within

the computed range, this limitation can be disregarded. Whereas the 2D simulation of the same

stack, shown in Figure 6.8, already featured a dense web of bands, the 3D simulation is even

denser. Due to the finite extent along the gate and channel and the added second shear wave
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(001) (011) (111)

Figure 6.27: The evolution of bands with varying copper and SiCO:H layer thickness for all bands calculated with
the FEM for vertical propagation along Y−T for the three main copper orientations (a) (001), (b) (011)
and (c) (111).

velocity more folded bands occur. Consequently, no directional band gap occurs within the

required direction Y−T.

This process is repeated for copper and SiCO:H thicknesses between 5-200 nm and all band

gaps within Y−T are extracted. The results for the three predominant copper orientations are

given in Figure 6.27. For all three orientations, the involved bands form a dense structure for

almost any possible thickness configuration. Only at unrealistic small BEOL layer thicknesses for

some band gaps exist, although not at the required frequencies. Moreover, as the superposition

of all possible orientations must be considered no band gap can be found for any frequency

above 20 GHz. Furthermore, approximately 30 % of the possible copper orientations have been

neglected, which would add additional bands which need to be considered.

This has strong implications for the performance of the RFT. Although, as suggested by

literature and discussed in Section 6.2, a laterally unpatterned BEOL exhibits suitable band

gaps for monolithic MEMS confinement, they can only be confirmed with a 2D simulation

[Bahr 2016; Bahr et al. 2018; Bahr et al. 2015]. To incorporate all involved mechanical effects,

such as the anisotropic behaviour of copper, a 3D simulation is mandatory. In this simulation,

no suited band gaps are present and the RFT mode cannot be confined. As also shown for

the 2D simulations, the absence of a matching band gap strongly degrades the already small

transconductance numbers of the RFT. This indicates that the RFT in its reported form is

non-functional as mechanical confinement cannot be ensured and the transconductance will be

small [Hudeczek et al. 2022].

6.5 Fundamental Limits of the Quality Factor

Another potential issue revolves around the Q f product of the proof-of-concept publication.

With Q f = 1.57 × 1015 Hz−1 it marks the highest ever reported figure of merit of silicon-based

MEMS device [Bahr et al. 2018]. While the high resonant frequency depends on the small
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FinFET size, which the previous simulations could confirm, the Q-factor of almost 50 000

remains debatable [Hudeczek et al. 2022]. In a MEMS the Q-factor is determined by the energy

dissipation which can be caused by several effects [Ghaffari et al. 2013]. The Matthiessen’s rule

gives the inverse of the total Q-factor

1

Qtotal

=

n∑

i=1

1

Qi

=

1

QPnC

+

1

QTED

+

1

QAKE

+

1

QLR

+ · · · (6.5.1)

where all n involved damping mechanisms Qi are considered independent of each other

[Brand et al. 2015; Chandorkar et al. 2008; Ghaffari et al. 2013; Ghaffari et al. 2015;

Basu and Bhattacharyya 2011; Rodriguez et al. 2019; Zhou et al. 2018]. Therefore, the overall

achievable Q-factor is limited by the largest source of damping or the smallest involved Q-factor

Qtotal ≈ Qmin of the system.

The effect of thermoelastic dissipation (TED) describes an intrinsic loss mechanism of all

the involved materials, which is described by a coupling of temperature and strain gradients

through the thermal expansion coefficient [Zhou et al. 2018; Lifshitz and Roukes 2000]. It

relies on accurate data and analytic expressions for each geometry, typically only available for

simple suspended single-material systems with a well-defined geometry. These expressions are

inadequate to describe the RFT as it involves several materials and features a rather complex

geometry. Typically it is inversely proportional to the temperature, requiring low temperatures

to minimise the impact as the Q-factor is degraded with rising temperature [Kim et al. 2008;

Chandorkar et al. 2008; Tabrizian et al. 2009; Ghaffari et al. 2015; Shao et al. 2019]. Assuming

a well-designed MEMS, they can be typically disregarded from the analysis, but their actual role

in the RFT requires further investigation as the measurement temperature of the RFT was not

disclosed [Bahr et al. 2018].

However, another fundamental limit of the frequency product solely depends on the material

properties through quantum mechanical phonon scattering, also known as the Akhiezer effect

(AKE). The Akhiezer effect is expected to be the dominant source of damping for resonant

frequencies ωττl < 1, where τl = 67.3 ps is the relaxation time of longitudinal waves in silicon

along the gate direction 〈110〉 [Lambade et al. 1995; Telichko et al. 2015]. For the Akhiezer

effect, the Q f product is given by

QAKE f =
ρc2

l
c2

d

6πγ2kT
(6.5.2)

where the cd is the Debye velocity, γ Grüneisen parameter of silicon, k = 130− 148 W K−1 m−1

the thermal conductivity and T = 300 K the temperature [Stoffels et al. 2010; Goettler et al. 2010;

Lambade et al. 1995; Tabrizian et al. 2009]. For the Grüneisen parameter γ several values are

found in the literature as the quantity is difficult to assess accurately. It typically varies between

0.17–1.5 with the commonly used average γavg = 0.51 [Ghaffari et al. 2013; Brand et al. 2015;
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Chandorkar et al. 2008; Lambade et al. 1995]. The Debye velocity

c−3
d =

2c−3
t + c−3

l

3
(6.5.3)

is calculated from the longitudinal and transversal sound wave velocities in silicon along the

propagation direction [110] parallel to the gate. For a (001)45 rotated wafer they are cl =

9130 m s−1 and ct = 4672 m s−1 which can be calculated using Christoffel’s equation (compare

(3.7.7) and Table 5.2) [Lambade et al. 1995].

The Akhiezer effect, as plotted in Figure 6.28 for the upper and lower limit as well

as the average, imposes a fundamental limit on the Q f product [Ghaffari et al. 2013;

Hamelin et al. 2019; Andriyevsky et al. 2017].

Figure 6.28: Comparison of several silicon-based MEMS figures of merit with the fundamental Q-factor limit
of silicon. The reported value by Bahr et al. is marked by a star. All values are collected from
[Ghaffari et al. 2013; Basu and Bhattacharyya 2011; Bahr et al. 2018; Yang, Hamelin, et al. 2018].

Several high-performing MEMS devices are marked, but most of them rarely exceed the

average Q f product of 2.6 × 1013 Hz−1 for the Akhiezer effect at γ = 0.51. It should be noted

that several of the devices are highly optimised structures with sub-ambient cooling to minimise

thermoelastic dissipation. Furthermore, none of the highlighted devices is manufactured

monolithically or in an unreleased manner. Therefore, the devices mainly suffer from anchor

losses where they are attached to the substrate. However, it has been demonstrated that

these losses can be successfully mitigated with the help of 2D phononic crystals, such as

micro-machined holes in the support membrane leading to highly optimised structures with

little losses [Ziaei-Moayyed et al. 2010; Hamelin et al. 2019; Yang, Hamelin, et al. 2018].

For frequencies above ωττl > 1, the Q f product is limited by the Landau-Rumer (LR)

attenuation. In this region, the acoustic wavelength is smaller than the mean free phonon path.

As a result of three-phonon interactions, the resulting acoustic attenuation is proportional to ω
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leading to a constant Q-factor in this range [Tabrizian et al. 2009]. It is calculated via

QLR f =
30ρc5

d
~

3

π4γ2kbT4
f (6.5.4)

where kb is the Boltzmann constant [Tabrizian et al. 2009; Telichko et al. 2015]. Again, the

top-performing MEMS in Figure 6.28 rarely surpass the average Landau-Rumer attenuation.

Although the MEMS should be limited by the Landau-Rumer attenuation, and may thus surpass

the Akhiezer effect in this frequency range, Q f products above the continued Akhiezer effect

are unreported [Brand et al. 2015].

It should be noted that all the previously discussed damping mechanisms are only valid for

a pure monocrystalline silicon device. However, the RFT is made from several materials with

different mechanical properties which all have to be considered. Here, the material properties

of the metals and oxides might further reduce the upper limit [Gauster 1971; Joshi et al. 2018;

Sanditov and Darmaev 2022].

In the instance of the RFT, assuming a perfectly designed and matched phononic crystal

supporting a Q-factor of 49 000 or higher, the total Q-factor may consequently never surpass

the limit imposed by the Akhiezer effect and Landau-Rumer regime [Goettler et al. 2010;

Brand et al. 2015; Hamelin et al. 2019; Zhou et al. 2018; Rodriguez et al. 2019].

Although the fundamental Akhiezer effect limit in silicon for the average Grüneisen parameter

has been theoretically achieved by using a phononic crystal in a free-standing structure

[Goettler et al. 2010], or via measurements of a suspended crystal disk resonator cooled to

120 K [Hamelin et al. 2019], the verification within unreleased MEMS at room temperature is

still missing. Assuming the average Grüneisen parameter as a baseline, a perfectly matched

phononic crystal, and no temperature dependence of the Q-factor, the RFT is most likely

limited to approximately 10 700 or a Q f product of 34.2 × 1013 Hz−1. The reported values

in of 1.57 × 1015 Hz−1 by [Bahr et al. 2018] are thus highly improbable to be attained at the

RFT frequency, adding to the controversial figures of merit, and consequently, its validity is

challenged [Hudeczek et al. 2022].

Summary

The phononic crystal properties of a SiO2 and SiCO:H-based BEOL stack were approximated

by isotropic 1D and 2D simulations, which were followed by full 3D simulations. The periodic

BEOL stack exhibits phononic crystal effects for a large acoustic impedance mismatch. They

lead to the formation of forbidden frequency regions, known as band gaps, in the dispersion

relation, which may shield the RFT from mechanical losses. Their frequency and shielding

strength depend on the material composition of the BEOL and layer dimensions.

To shield the RFT from undesired losses, a 1D approach is not sufficient as the wave vector of

the resonant eigenmode has to be considered. When the simulation is expanded to 2D suitable
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band gaps within Y−T can be observed. However, additional folded bands emerge due to the unit

cell’s finite dimensions which reduces the likelihood of a matching band gap. Due to the only

vertical patterning of the BEOL, the band gaps are only valid for specific propagation directions

that must be matched to the RFT.

By designing the BEOL to possess a matching band gap, the RFT can be successfully shielded

from undesired radiation losses. This is especially necessary for modern low-κ BEOL stacks

since the guiding properties of the oxides are insufficient. However, in the absence of a matching

band gap, resonant behaviour is suppressed or degraded due to the higher number of spurious

modes.

To capture the anisotropic mechanical properties of the involved copper metal layers a 3D

simulation is required. The phononic crystal will exhibit a different dispersion relation depending

on the crystallographic orientation of the different copper layers. Since those layers crystallise

statistically into different orientations, the overall perceived band gaps are reduced. When

additionally considering the resonator’s lateral dimensions, a large number of folded BEOL

bands occur in the required propagation direction fully suppressing the formation of band gaps.

Therefore, a laterally unpatterned BEOL stack with anisotropic materials such as copper is

unsuited for the confinement of the RFT.

Lastly, the Q-factor is limited by several additional effects, such as the thermoelastic

dissipation, Akhiezer effect and Landau-Rumer attenuation. Those impose an upper limit

for the Q-factor, which solely depends on the involved material properties. Considering all

additional damping mechanisms, the RFT’s reported Q f product is deemed improbable.
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Design and Characterisation of the

Resonant Fin Transistor

Contents

7.1 Device Layout and Fabrication . . . . . . . . . . . . . . . . . . . . . 149

7.2 Process Adaptations and DC Characterisation . . . . . . . . . . . . . 155

7.3 Measurements of the Resonant Fin Transistor . . . . . . . . . . . . . 161

To enable a successful fabrication of the micro-electro-mechanical-system (MEMS) on

a fin field-effect transistor (FinFET) technology the layout of the resonant fin transistor

(RFT) and required process adaptations are introduced. The RFT measurement setup

is discussed. Various measurement results of the realised structures are presented and

compared with the finite-element simulation data and data from the literature.

7.1 Device Layout and Fabrication

The RFT was built on a 16 nm FinFET technology node as part of several test chips. A fixed

back-end-of-line (BEOL) stack with nine metal layers was used for all test chips. Here the metal

layers one to four share the same thicknesses, while layers five to seven are about 10 % thicker.

The last two metal layers, eight and nine, are so-called ultra-thick metals, used to connect to the

wafer surface.

The RFT is fabricated on test chips as part of a shared reticle in a productive foundry flow. The

electrical contacts to the RFT are realised with specialised 4-port radio frequency (RF) pads on

the wafer surface, as sketched in Figure 7.1(a), which are used for on-wafer characterisation. In

a typical productive wafer fabrication flow, the wafers are fabricated with bumps as they are later

packaged for the final assembly. However, bumps provide several challenges for the on-wafer

characterisation, especially in the high gigahertz regime where special RF measurement pads

are preferred.
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(a) (b) (c)

Figure 7.1: (a) 4-port GSGSG measurement pad structure. (b) Complete CMOS layout of the RFT with (c) the
highlighted electrical nets.

As discussed in Chapter 2 and Chapter 5, the RFT follows a differential electrical wiring

scheme for both the drive and sensing mechanism. Those are implemented as shielded

differential RF contacts within the pad. The electrical drive signals plus and minus are

highlighted in Figure 7.1(a) on the right side in red and blue, respectively. They are separated by

a grounded metal shield indicated in grey. The same ground shield is also used to separate the

drive and sense sides from any undesired mutual electrical coupling. On the left side, the sense

phases plus and minus are respectively shown in green and purple. The constant gate voltage is

supplied with a separated pad marked in orange.

At the centre of the pad is the RFT’s main functional layout, referred to as the device under test

(DUT). The overall top-view layout of the DUT and the respective electrical phases are shown in

Figures 7.1(b) and 7.1(c). Starting from the highest metal layer of the BEOL, a strictly differential

electrical wiring scheme is maintained, which seeks to minimise losses and potential cross-talk

of the different phases [Pallas-Areny and Webster 1991; Zhao et al. 2016; Fan et al. 2003]. The

device is also guarded from external electrical influences by a grounded metal shield, spanning

all metal layers, which is marked in grey in Figure 7.1(c) [Kolding et al. 2000].

The coarse wiring on the highest metal layer M8, which is required for the connection to

the pads, is stepped down in size to the last layer M1 for the fine pitch wiring of the cavity,

as shown in Figures 7.2(a) to 7.2(h). To reduce the electrical resistance of the leads, broad or

parallel connections are used where possible. Vertical vias interconnect all layers. Several vias

are placed in parallel and are vertically aligned to reduce the wiring resistance. Also visible in

Figures 7.2(b) to 7.2(g), in the centre of the layout, is the BEOL phononic crystal fabricated from

closed metal plates, as discussed in Chapter 6. Since the fabricated RFT is part of a productive

reticle the BEOL thicknesses are not ideal and two periodic regions exist. The different layer

thicknesses of the BEOL are expected to imped the performance of the RFT, as discussed in

Section 6.4.

On the lowest metal layer M1 the BEOL wiring is connected to the mechanical cavity of the

150



7.1 Device Layout and Fabrication

(a) M8 + VIA7 (b) M7 + VIA6 (c) M6 + VIA5 (d) M5 + VIA4

(e) M4 + VIA3 (f) M3 + VIA2 (g) M2 + VIA1 (h) M1 + VIA0

Figure 7.2: BEOL wiring for the metal layers (h) M1 to (a) M8, with the corresponding vertical interconnects VIA0

to VIA7 to the respective lower layer.

(a) (b)

Figure 7.3: BEOL layout of the RFT (a) with the electrical nets highlighted in (b). The phases are marked as:
drive-plus (DP) in red, drive-minus (DM) in blue, sense-plus (SP) in green, sense-minus (SM) in purple
and gate (G) in orange. The metal shield surrounding the RFT, shown in grey, is grounded.

MEMS in the front-end-of-line (FEOL), which is shown in more detail in Figure 7.3(a). Here

the differential arrangement of both drive and sense phases is highlighted in Figure 7.3(b) for

an exemplary RFT with twelve 14-fin drive unit cells and four parallel gates. The cavity is also

surrounded by a grounded guard ring, which provides a well-defined bulk reference potential

[Dai and Ker 2016; Mikkelsen et al. 2004]. All connections within the BEOL adhere to the

foundry’s design rule check.

As discussed in Chapter 2 and Chapter 5, the ideal integration of the RFT cavity requires

differential electrical contacts for every fin. Those, however, are typically only possible in special

single-fin devices that must adhere to very strict design rule checks, which are not applicable for
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(a) 14-fin drive unit cell (b) 14-fin sense unit cell

Figure 7.4: Top-down sketch of the (a) drive and (b) sense unit cell wiring analogous to the schematic shown in
Figure 2.9.

(a) (b)

Figure 7.5: Filling structures in the BEOL around the (a) RFT core and (b) the full layout.

tens and hundreds of consecutive fins as required for the RFT [Bahr et al. 2018]. Therefore, the

cavity is manufactured from several 14-fin drive unit cells and sense unit cell at the centre, as

sketched in Figure 7.4. Rather than connecting each fin, two groups of three are jointly connected

by a single contact. Both groups are separated by four intermediate electrically floating fins

required for the cavity’s mechanical waveguiding properties. The mechanical mode within the

cavity is driven by electrostatic actuation by using field-effect transistors (FETs) connected as

metal-oxide-semiconductor (MOS) capacitors. They are formed between the FinFET channel

and the gate by shorting both the source and drain together, which is illustrated in Figure 7.4(a).

To sense the modulated current, caused by the stress dependent mobility variation, the sense

unit cell depicted in Figure 7.4(b) is wired as a pair of differential transistors.

Before the foundry can fabricate the design, additional filling structures must be added, both

in the FEOL and BEOL, as sketched exemplarily for the BEOL in Figure 7.5. They are required

to ensure an even mechanical response of the wafer surface during the several polishing stages

in the CMOS process. As the involved metals and oxides respond differently during polishing,

large oxide or metal areas may dish, which causes misalignments in the following lithography
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Table 7.1: Possible layout variations of the RFT. NMOS and PMOS are abbreviated as N and P.

Parameter Value

Drive unit cells 2-12

Sense unit cells 1
Gates 1-32

Type N, P

Length
Pitch

P1 P2 P3 P+

L1 N, P N, P
L2 N, P N, P
L3 N, P N, P
L4 N, P N
L+ N, P

steps [Schwalke 2000]. Therefore, metal dummy shapes are filled in-between the structures

until a specific density across the whole layout is achieved. Although the fill is not in direct

contact with the layout, as all individual shapes are electrically floating, it still may adversely

impact the device performance, especially at elevated frequencies [Tsuchiya and Onodera 2009;

Nan et al. 2007]. Due to the introduction of fill, the effective dielectric thickness between

two metal traces is reduced by introducing electrically floating metal shapes, which increases

coupling. Similarly, which is not shown, the FEOL is filled with dummy shapes. Hence, the

performance of the device has to be considered after the filling routine was carried out, which is

impossible due to computational constraints. However, it should be noted that fill requirements

have to be met at all major foundries and are not exclusive to the used technology node.

As discussed in Chapter 5, several FinFET variants that impact the RFT performance are

listed in Table 7.1. One aspect which strongly affects the quality factor (Q-factor) of the device

is the number of drive unit cells. As discussed in Section 5.4.2, a larger number of drives for a

finite two-dimensional (2D) cavity leads to a higher Q-factor. The upper limit of twelve drive

cells was chosen not to exceed the active area limits of the process. Violating them can result

in manufacturing problems and introduce risk for the integrity of other productive content on

the wafer. Focusing on one sense cell allowed a larger number of drive cells. Also discussed

was the impact of several parallel gates within the RFT cavity, where a larger gate count leads

to a slightly increased mechanical transconductance. The RFT is manufactured as NMOS and

PMOS, where the latter is expected to yield the largest mechanical transconductance due to the

higher susceptibility of the hole mobility to external stress.

Both transistor types can be manufactured in several different gate lengths and pitches, as

shown in Table 7.1 on the right. Note that for the shortest four gate lengths L1 to L4 the pitch

is fixed to the prescribed value P1 to P3. For larger gate lengths L+ the pitch P+ between the

centre of adjacent gates increases with the gate length to provide the required spacing. A change

of the gate pitch was not specifically discussed in the theoretical analysis, however, the three

available pitches only differ slightly and anyhow are forced to change at longer gate lengths,

which is thus indirectly captured by the simulations. As found in the theoretical investigation

of the performance, the reference gate length L2 with pitch P2 is expected to provide the

largest transconductance. However, the deviations of the smaller length are almost negligible.
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(a) (b)

Figure 7.6: (a) The layout of one complete chip with the RFT and process validation structures. (b) Respective die
micrograph after fabrication.

Figure 7.7: Wafer photograph of the fabricated die within a reticle.

Therefore, all devices are fabricated with pitch P 2 as the largest mechanical transconductances

were found for the gate lengths L1 to L4 in the theoretical investigation.

To account for as many of the available possibilities, the layout design process was automated

using so-called parameterised cells, which allow an efficient generation of custom device layouts,

which are not included in the standard process design kit offering of the foundry. Therefore,

many customised layouts can be manufactured on each test chip, and modifications and design

iterations can be implemented in a fast pace.

The different DUTs are combined into a single chip, as shown in Figure 7.6(a). The

corresponding micrograph of the layout after fabrication is shown in Figure 7.6(b). Each

chip may contain several hundred DUTs with typical sizes in the 5-30 µm2 range. Each chip is

part of a common reticle containing multiple other chips with different purposes and layouts.

The reticle dimensions are defined by the size of the lithography masks used in the process. The

mask set, containing all chips on the reticle, is stepped during the illumination across the wafer

and creates identical copies of the chips. A 300 mm wafer may contain tens to a few hundred

reticle shots. Since the RFT is co-fabricated with other chips for different purposes, it has to be

ensured that the layout experiments do not endanger the other structures by manufacturability

problems. An exemplary wafer photograph with multiple reticles is shown in Figure 7.7. In

general, the electrical device performance is dependent on the location of each die on the

wafer, as temperature variations during the material deposition processes lead to varying layer

thicknesses [Su et al. 2016; Zhang et al. 2016; Li et al. 2018; Xu et al. 2016; Ebert et al. 2020].
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(a) (b)

(c) (d)

Figure 7.8: Phase-to-phase resistance of one NMOS RFT at VG = 0.8 V. The signals are abbreviated as follows:
drive-plus (DP), drive-minus (DM), sense-plus (SP), sense-minus (SM), gate (G) and bulk (B) in
accordance with the wiring sketched in Figure 2.11(a) and Figure 7.1(c). Measured data is indicated by
markers and simulated values by solid lines.

7.2 Process Adaptations and DC Characterisation

The first test chip was 6 mm× 5 mm with 145 different DUTs. To be fabricated, the foundry had

to waive several design rule checks regarding contact placement in the FEOL. As a result, only

NMOS devices could be fabricated in the first test chip. Their electrical integrity was tested with

their direct-current characteristics, which yields information about potential wiring shorts in the

BEOL or structural complications within the FEOL might prevent a successful operation. The

RFTs are set to their on-state with VG = 0.8 V and the voltage of each drive and sense pad was

individually swept between 0 V and 1 V. The electrical currents of all five signal pads and the

ground shield were measured during the sweeps. The results are plotted for an exemplary RFT

with four drive cells, a gate length L1, and one gate in Figure 7.8. For the voltage sweeps of both

drive phases plotted in Figures 7.8(a) and 7.8(b) almost symmetric current flow between both

phases, DP and DM, is observed. This indicates a conduction path within the FEOL or BEOL

of the device, which is highly undesired as it prevents the actuation of the drive MOS capacitors.

Furthermore, a small current at the bulk (B) and sense contacts is observed. Similar behaviour
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(a) (b)

Figure 7.9: Phase to phase resistance of the RFT cavity for (a) a full wafer and (b) its statistical evaluation with
radial die location. Each pixel in (a) marks a single DUT.

is observed for the voltage sweeps of the sense pads in Figures 7.8(c) and 7.8(d). Although a

transistor-like behaviour is measured for both phases, additional leakage currents into the drive

phases also occur. As expected, a portion of the current is flowing into the bulk (B) connection

as one side of the differential sense unit is tied to the ground, however, this should account

for almost the whole current flow. Interestingly the leakage current is directed to the directly

adjacent drive phase, for example from sense-minus (SM) to drive-plus (DP) and sense-plus

(SP) to drive-minus (DM). However, it is not equal between both sense phases, which hints at a

varying resistance. The observed shorts were present for all manufactured DUTs and the three

investigated wafers. Only the observed magnitude varies with the location on the wafer. To

allow for a successful actuation of the mechanical eigenmode the root cause of the issue had to

be resolved.

The resistance of the shorts is calculated from the slope of the leakage currents with R = V/I

leading to a resistance of 372Ω between the drive phases drive-plus and drive-minus for the

exemplary device in Figure 7.8. This resistance is mapped for all devices of a wafer, as shown

in Figure 7.9. For the whole wafer the phase-to-phase resistance of ranges between 55 − 905Ω,

using the 25th and 75th percentile. The resistance variation across the wafer follows a doughnut

shape with a clear radial dependence, as shown in Figure 7.9(b). This behaviour and value are

indicative of a semiconductor short. A much lower resistance would be expected from metal

shorts, additionally, no BEOL design rule check were waived, and mask inspection confirmed

correct metal layouts without short. The resistance variation can be attributed to the processing

of the epitaxial contacts deposited using metal-organic chemical vapor deposition (MOCVD).

During fabrication within the metal-organic chemical vapor deposition reactor, the temperature

varies across the wafer leading to an uneven thickness resulting in a distinct circular pattern

[Su et al. 2016; Zhang et al. 2016; Li et al. 2018; Xu et al. 2016; Ebert et al. 2020].

Considering the required processing and device layout, a short occurs during epitaxial
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(a) (b)

Figure 7.10: (a) Shorted fin source-drain epitaxy between the marked drive connections compared to (b) the structure
from Bahr et al. [Bahr et al. 2018].

processing of the RFT cavity’s source-drain contacts (EPI). Consequently, the measured

phase-to-phase resistances of a few hundred ohms is the result from several high-ohmic shorts

which are connected in parallel in the cavity. The number of parallel shorts depends on the

number of drives and parallel gates used in the RFT, with a larger device having a lower

phase-to-phase resistance. Using the device geometry, the resistance of one epitaxial bridge

spanning four fins is calculated to 3.19 − 18.67 kΩ which hints at a strongly varying short.

Assuming a brittle and uneven connection, however, the values are on the order of resistance

values reported in the literature [Goeller et al. 1997; Eyoum and King 2004]. Using the calculated

resistances in a direct-current spectre simulation of the cavity results in a similar response to the

leakage currents, as shown by solid lines in Figure 7.8.

To fully confirm the origin of the short, the cavity was screened using a scanning electron

microscope as shown in Figure 7.10(a). Comparing the structure to the cavity images published

by Bahr et al. in Figure 7.10(b), the point of failure in the cavity, shown in Figure 7.10(a),

is marked by a white box. Whereas in Figure 7.10(b) the individual drive fins are separated

in Global Foundries process, as they have presumably been etched away, which is not the

case for the process used in this work. To create a higher uniformity of the fins, which

should aid performance, the fins were not removed by etching in this work, whereas in the

proof of concept report of the RFT the fins were most likely etched (compare Figure 7.10(b))

[Bahr et al. 2018]. The raised epitaxial source-drain contacts of the individual fins are merged

during fabrication, and thus form a semiconductor bridge between adjacent drive contacts in the

cavity [Bhat et al. 2020].

Consequently, the process has to be modified to enable the fabrication of RFT. The epitaxial

bridges may be suppressed by creating a special pattern on specific photomasks used in the

process flow, which have been fabricated specifically for the RFT [Hudeczek et al. 2021]. The

adaptation was tested on two wafers fabricated back to back with the same layout. The two

wafers are called mask A and mask B, where the first is fabricated with the unmodified and the

latter with the modified mask set, respectively. The modified mask set contains three different
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(a) Open (b) Short (c) W1

(d) Open (e) Short (f) W1

Figure 7.11: Phase-to-phase resistance wafer maps between drive-plus and drive-minus before the mask
modification for (a) a deliberate open, (b) short and (c) a reference structure W1. The respective
wafer maps after the process adaptation are shown in (d) to (f).

patterning schemes, referred to as W1, W2 and W3.

Both mask sets feature a structure designed as a forced electrical short (SH) and open (OP)

to ensure successful implementation of the modification and asses the impact on the remaining

wafer. The open is formed by actively suppressing the fin formation in between the phases,

while the short is created using the old patterning scheme responsible for the shorting in the first

place. The method used to create the forced open structure can not be applied to the RFT as the

intermediate fins between the different drive phases are also suppressed beneath the gate, and

consequently, the desired mechanical eigenmode will not emerge.

The test structures were created for both NMOS and PMOS devices as the epitaxial process

differs for both device types. The measured resistances are shown for a PMOS device in

Figure 7.11 for mask sets A and B, respectively. The forced open (compare Figures 7.11(a)

and 7.11(d)) and short (compare Figures 7.11(b) and 7.11(e)) on both mask sets match the

expected results. The open features a resistance in the gigaohm range, which is indicative of

a complete electrical separation between the drive phases. The short resistance, however, is

in the range of a few hundred ohms, indicating the previously observed merging of fins. The

three test devices W1 to W3 on mask A are fabricated identically without modification, and

thus they mimic the resistance of the forced short structure, as shown exemplarily for W1 in

Figure 7.11(c).

The second mask set B, shown in Figures 7.11(d) to 7.11(f), features the same behaviour for the

forced open and short reference structures. However, after the modification, the devices are now

compared to the forced open, with resistances in the gigaohm range, as shown in Figure 7.11(f)

for device W1. All acquired data for both NMOS and PMOS is shown in Figure 7.12. Note that
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(a) (b)

Figure 7.12: Comparison of the (a) NMOS and (b) PMOS RFT drive phase resistances between drive-plus and
drive-minus before (Mask A) and after (Mask B) the process adaptation. A bad probe contact in (a)
potentially skewed the NMOS data for Mask A during measurement.

during the measurements of the NMOS devices on mask A, a bad contact likely skewed the result.

However, both device types have excellent isolation for the modified mask set B, indicating a

successful implementation. The compatibility and cost of the process modification within the

existing flow were of high importance. As the devised method does not rely on additional masks,

the method can be applied at no additional cost to a productive foundry environment. The wafer

processed with mask B showed unchanged device parameters for normal devices, which also

shows that this is a viable low-cost concept to integrate the device.

The successful modification was also verified with a scanning electron microscope as shown

in Figure 7.13. In Figures 7.13(a) and 7.13(b) the contact and gate cross-section of the fabricated

and simulated RFT is shown before the process was modified. The cross-section of the new

process are shown in Figures 7.13(c) and 7.13(d) for the contact and gate region.

Using the modified process a new test chip with the dimensions 6 mm × 2.25 mm was

designed and fabricated. It features 135 RF RFT devices with 10 de-embedding structures

[Rumiantsev 2014]. The RF DUTs are distributed across three different CMOS compatibility

splits (W1 to W3), resulting in 45 unique RFT cavity designs in the final layout iteration. An

additional 20 non-RF structures were designed for NMOS and PMOS, allowing the process

modification to be monitored within the foundry.

To confirm the electrical integrity of the DUTs several direct-current measurements are

performed on the sense FinFETs and the drive MOS capacitors. The sense FinFET sense-plus

and sense-minus, exhibit healthy drain current behaviour with a varying drain and gate bias

as shown in Figure 7.14 for an exemplary NMOS and PMOS RFT. As both sense FinFETs

yield identical currents, which indicates a good connection to the sense unit cell. Moreover,

the PMOS has a slightly lower current at the same gate length and bias condition, as plotted in

Figure 7.14(b), which was discussed during the theoretical modelling of the RFT in Section 5.5.

The successful connection to the MOS capacitors is confirmed by a forward bias of the bulk

diode, located between the connected fins and the guard ring. As indicated by the arrow, the
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(a) (b)

(c) (d)

Figure 7.13: Cross-sections of the RFT in the (a) contact and (b) gate using the standard process. Cross-sections of
the modified process in the (c) contact and (d) gate.

(a)

(b)

Figure 7.14: Exemplary measurement of the sense and drive connections for a (a) NMOS and (b) PMOS DUT.
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diode opens at approximately ±0.7 V. Furthermore, as the process was adjusted according to

Section 7.2, no shorts occurred between the different electrical phases and negligible electrical

leakage was observed between the different ports.

7.3 Measurements of the Resonant Fin Transistor

The performance was assessed with the finite-element method (FEM) using a best-case

approximation in the theoretical analysis. When the BEOL mirror was neglected and replaced

by a SiO2 slab, the simulated transconductance at a Q-factor 49 000 was 19.6 µS for the NMOS

and 44.1 µS for the PMOS. On the other hand the modern low-κ SiCO:H cannot sustain a

mechanical and must be replaced with a matched phononic crystal mirror in the BEOL. If a

matched mechanical band gap exists in the BEOL, the resonant mode can be confined, and

higher Q-factors might be achievable. However, the existence of a matched band gap could not

be confirmed in a three-dimensional (3D) simulation as the anisotropic mechanical behaviour of

copper and additional folded bands fully suppress their formation. Furthermore, the fundamental

limit of the Q-factor, assuming a perfectly matched phononic crystal and no thermoelastic

dissipation, is limited by Landau-Rumer attenuation to 10 708. This value, however, is largely

overestimated as it assumes a monocrystalline silicon device, and consequently, the simulated

transconductance figures cannot be reached.

The mechanical transconductance

Gm = |Ydd21 − Ydd12 | (7.3.1)

of the MEMS is determined from full differential S-parameter measurements of the DUT and

the resolution limit of the measurements is crucial to resolve the possible nano to micro siemens

transconductances. They were performed with an N5225A parametric network analyser from

Keysight with an integrated true-mode stimulus [Bahr et al. 2018; Weinstein and Bhave 2007].

The measurement setup is illustrated in Figure 7.15(a). The parametric network analyser is

connected via ports 1 and 3 to drive phases drive-plus and drive-minus and ports 2 and 4 to

sense phases sense-minus and sense-plus, respectively. The bias voltages for the drive, sense

and gate are supplied by three 2636B Keithley source measure units. Since the RFT relies on

differential actuation and sensing, the four individual ports are grouped in differential pairs, as

sketched in Figure 7.15(b). The mixed-mode matrix describes the resulting S-parameters

Smm =



Sdd11 Sdd12 Sdc11 Sdc12

Sdd21 Sdd22 Sdc21 Sdc22

Scd11 Scd12 Scc11 Scc12

Scd21 Scd22 Scc21 Scc22



(7.3.2)

where the four indices refer to the mode of sensing and stimulus at the receiving and transmitting
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(a) (b)

Figure 7.15: (a) The 4-port RF measurement setup with the PNA and direct-current sources. (b) The grouping of
single-ended (SE) and mixed-mode (MM) ports on the RFT.

ports. Differential mode signals are denoted by d whereas common mode signals are indicated by

c. The numeric subscripts indicate the port number analogously to the single-ended S-parameters

[Fan et al. 2003; Huynh et al. 2010; Ferrero and Pirola 2006]. Consequently, the differential

forward response of the RFT is described by Sdd21, where a differential stimulus and sense are

performed on the drive (MM 1) and sense (MM 2) ports, respectively.

The measurements are calibrated and de-embedded to remove the impact of all undesired

electrical effects of the probing apparatus and wiring [Rumiantsev 2014]. The calibration

compensates for all influences from the parametric network analyser to the probe tips performed

on commercially available substrates. However, as the probe pitch is too narrow only

single-ended substrates are available, which only account for the direct connections between ports

on opposing probes. For a full mixed-mode calibration, however, loopback through structures

are necessary, which account for the return paths within the same probe. Consequently, a

hybrid SOLR-LRRM calibration algorithm is used, which does not rely on the existence of

loopback through structures, as they are inferred by the other measurements [Rumiantsev 2014;

Hayden 2006]. After calibration the reference plane of the measurements is at the probe tips,

and thus only effects of the pads, on-wafer wiring, and DUT are captured by the measurement.

It should be noted that although the hybrid SOLR-LRRM calibration yields good results in a

mixed-mode application, minor imbalances in the calibration lead to ripples in the measurements.

Those do not occur when the device is measured in a single-ended setup with the ports being

actuated and measured in series. Therefore, all measurements are recorded using a single-ended

approach and the resulting measurements are converted to mixed-mode parameters with the

respective transformation matrices [Fan et al. 2003; Huynh et al. 2010]. The same approach was

also used in all other resonant body transistor (RBT) and RFT publications [Bahr et al. 2018;

Weinstein and Bhave 2010; Bahr et al. 2015].

An additional 4-port de-embedding procedure, carried out after the acquiring the calibrated

measurement data, moves the reference plane from the probe tips closer to the actual DUT in the

FEOL [Koolen et al. 1991; Rumiantsev 2014]. For this approach, two additional structures, an
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electrically shorted and open layout without the RFT in the FEOL, are required. Both structures

possess identical wiring to the RFT DUT. However, they are either shorted on the lowest metal

layer close to the cavity or are not connected to the fin contacts. Using the measurements of

both the open and the DUT, the capacitive impact of the pads and wiring is removed from the

measurement. This procedure, using the impedance parameters of the measurement,

Y ′
DUT = YDUT − YOP (7.3.3)

is called open de-embedding. To also remove the inductive behaviour of the wiring, the

short structure is required. After an initial subtraction of the open capacitance from the short

measurement

Y ′
SH = YSH − YOP (7.3.4)

the inductive impact of the wiring can be removed from the DUT

Z′′
DUT = Z′

DUT − Z′
SH (7.3.5)

using the impedance parameters of the measurement. Note that the admittance, impedance and

S-parameters may be transformed into one-another using the respective transformation matrices

[Frickey 1994].

A different de-embedding technique allows the DUT to be de-embedded using both forward

Sdd21 and reverse Sdd12 measurements of the same structure. This self-de-embedding is possible

as the device may only function in the forward direction. Consequently, all electrical coupling

of the wiring can be subtracted from the forward measurement as it is present and assumed to

be identical in both directions [Weinstein 2009]. Consequently, the definition of mechanical

transconductance (7.3.1) is self-de-embedded by construction [Bahr et al. 2018].

As the theoretically predicted transconductance is in the low nano to micro siemens range,

the noise floor of the DUTs is first assessed for different parametric network analyser drive

powers. All RFTs are biased at the default configuration of VG = 0.8 V, Vsense = 200 mV,

and Vdrive = 40 mV, as the best performance is expected at this bias condition, as shown

in the theoretical analysis. Note that for the PMOS RFT all voltages are inverted. The

mean transconductance is extracted from the measurements between 25-35 GHz of the eight

best-performing DUTs, which is the expected range for the RFT frequency. The results are

plotted for NMOS and PMOS devices in Figure 7.16 as blue and red solid lines. The power was

increased from −26 dBm to −2 dBm as for higher powers the source of the parametric network

analyser is not levelled and gives erroneous measurement results. With an increasing drive

power, the measurement floor reduces, indicating that the background is not an active signal of

the device. The shaded regions mark the standard deviation of the measurement floor for the

best eight performing devices, approximately 1 µS for both NMOS and PMOS devices at the

highest drive power.
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Figure 7.16: Measured transconductance for the ten theoretical best-performing NMOS and PMOS devices.

Table 7.2: Required Q-factors to reach the respective transconductances.

Type
FEM simulation LR attenuation Meas. floor

Gm (µS) Q-factor Gm (µS) Q-factor Gm (µS) Q-factor limit

PMOS 44.1 49 000 9.6 10 708 4.3 4800 *

NMOS 19.6 49 000 4.3 10 708 2.6 6415 *

* This value is theoretically required to reach the specified transconductance detection limit and
does not represent a measured quantity.

Furthermore, by using an additional open or open-short de-embedding the floor of the signal is

slightly increased. As different structures have to be measured for the additional de-embedding,

a degradation of the calibration accuracy and probe contact quality may adversely affect the

ultimate result and slightly increase the noise floor. This shows that the self-de-embedding of

the device offers the best performance while reducing chip area and measurement times.

Also indicated are the theoretical upper limits of the transconductance, which are set either by

the FEM or the Landau-Rumer attenuation. Comparing the lowest possible measurement noise

floor to theoretical values, as done in Table 7.2, highlights the RFT’s inadequate performance.

In the simulations, the transconductance achieved only a few ten micro siemens at a Q-factor of

49 000 which falls short of the reported value of 14 mS by three orders of magnitude. For the RFT

to deliver a transconductance which is on par with the noise floor a Q-factor of 6400 and 4800

would be required for the NMOS and PMOS variants, respectively. Following the discussion of

the fundamental limit of the Q-factor, which may not surpass 10 708, the transconductance is

approximately a factor of two larger than required to protrude through the noise floor.

However, the likelihood of such Q-factors is very small as discussed in Section 6.5 since the

device operates at room temperature and multiple materials are involved. Furthermore, in the

simulations of the BEOL, possible matching mechanical band gaps in the phononic crystal were

ruled out and therefore the Q-factor is reduced to immeasurably small values.

Subsequent measurements of the best-performing RFT between 15-40 GHz substantiated this

assumption. To account for the possibility of a Q-factor in the ten-thousands, although it is not
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(a)

(b)

Figure 7.17: Measured transconductance for a (a) NMOS and (b) PMOS RFT.

supported by the theoretic investigation, the measurements were split into 1.5 GHz segments,

each with 20 000 evenly spaced sample points. Furthermore, as discussed in the theoretical

analysis of the device, the ramp-up behaviour at high Q-factors is slow. Each sample point was

thus recorded with a time delay of 100 µs between the application of the continuous stimulus

and the detection. To further reduce the noise of the measurements intermediate frequency

bandwidth of the parametric network analyser is set to 500 Hz and the data is averaged across

20 consecutive measurements.

The measurements of the best performing NMOS and PMOS devices with a single-ended

drive power of−2 dBm, which were identified by the simulations, are shown in Figure 7.17. Each

features four parallel gates, 12 drive unit cells, and a gate length of 36 nm, which is considered

the best-performing integration. For the NMOS the gate was biased at a constant voltage of

VG = 0.8 V, whereas the sense and drive bias voltages were 200 mV and 40 mV, respectively.

For the PMOS the gate was biased at a constant voltage of VG = −0.8 V, whereas the sense and

drive bias voltages were −200 mV and −40 mV, respectively. The calculated transconductances

are plotted for the forward (FWD) and the reverse (REV) direction as well as self-de-embedded

(FWD-REV). The different segments are indicated by dashed vertical lines. Several small offsets

between adjacent segments are observed which follow from changes in ambient temperature and

possible degradation of the measurement pads.

Within the spectrum of both devices several resonance-like ripples, as marked by arrows, can
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be observed. However, as they appear both in the forward and the reverse direction they are not

caused by the RFT but rather by electrical coupling. Their even spacing by 3.5 GHz for the NMOS

and 3 GHz for the PMOS indicates a higher harmonic behaviour of a wiring-induced effect

occurring at a lower frequency. All ripples are consequently removed by the self de-embedding

resulting in a flat response, marked in black.

The measurements were repeated on several hundred DUTs, distributed across several

designs, wafers and chips. However, the reported resonance at approximately 32 GHz with a

transconductance of 14 mS could not be observed which was predicted by the previous theoretical

investigations.

Summary

The layout of the RFT was showcased on one example device designed using the parameterised

cell approach to create large layout variations. The first test chip iteration highlighted a defect

in the epitaxial processing of the intermediate fins, which resulted in an electrical shorting of

the cavity. This issue was alleviated by a modification of the process, restoring compatibility

and enabling a successful fabrication of the device, which was confirmed by scanning electron

microscope and direct-current measurements.

Following the device fabrication, the mixed-mode measurement setup of the DUTs, with

the required calibration and de-embedding, were discussed. The measurement conditions were

optimised to achieve the highest possible resolution. This comprehensive evaluation included

selecting the best device configurations from the 135 fabricated RFTs and also a optimisation

of the bias and drive conditions, the measurement settings and the de-embedding procedure.

With these optimised conditions, a resolution limit in the micro to nano siemens range for the

transconductance was achieved and no RFT resonance was observed. This characterisation data

disproves a very large transconductance of 14 mS, as reported by Bahr et al. [Bahr et al. 2018].

From the theoretical investigations a signal in the range from 4.3-9.6 µS using the most optimistic

assumptions would lead to a measurable result. However, no functional device could be

identified.

Following these theoretical investigations and the limits from the characterisation results, the

device performance is insufficient for practical circuit applications.
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8
Conclusion and Outlook

The goal of this thesis was to improve the understanding of a novel monolithic

complementary metal-oxide-semiconductor micro-electro-mechanical-system that promises

exceptional performance. Therefore, a complete theoretical analysis using the finite-element

method and subsequent characterisation of fabricated structures was carried out. Due

to its direct compatibility with the standard complementary metal-oxide-semiconductor

fin field-effect transistor process, it was a promising candidate to replace existing

micro-electro-mechanical-system and coil-based solutions and alleviate many of the involved

complications and drawbacks.

To enable a complete electromechanical modelling of the resonant fin transistor, the material

properties of cubic anisotropic materials such as copper and silicon can be described by the

generalised Hooke’s law. In isotropic media, the response is independent of the interaction

direction, which does not apply to anisotropic complementary metal-oxide-semiconductor

materials such as copper and silicon. In those materials, all properties, such as Young’s

and the shear modulus and Poisson’s ratio, exhibit a varying response that depends on the

crystallographic orientation. From Young’s and the shear modulus the wave velocities of

longitudinal and transversal waves within bulk materials can be calculated, which are required

to assess the index guiding properties of the silicon wafer.

With three-dimensional electromechanical finite-element simulations of the resonant fin

transistor geometry, a compatible differential mechanical eigenmode at approximately 32 GHz

within the front-end-of-line was confirmed. The frequency of the resonant mode is affected by

the wafer orientation and geometrical properties, such as the gate length of the fin field-effect

transistor, which enables the co-fabrication of resonant fin transistors with different resonant

frequencies on the same wafer. To enable three-dimensional simulations with the finite-element

method for such a complex nanostructure with the available compute infrastructure, it was

necessary to reduce the degrees of freedom as far as possible. The usage of mirror planes is

a common method to reduce the degree of freedom of the simulations, and the validity of this

approach was studied in the presence of anisotropic mechanical materials such as silicon. For
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the used wafer orientation the spatial symmetry planes coincide with the symmetry planes of

the cubic silicon, enabling a reduction of the degrees of freedom by a factor of two. A physical

silicon implementation needs to use a larger 14-fin unit cell due to lithography and processing

limitations instead of the ideal 2-fin unit cell. The optimisation of the simulations enabled the

simulation of this extended unit cell, and strong degradations in electromechanical coupling and

peak pressure was found.

To analyse the electrical sensing the mechanical transconductance was modelled from the

piezoresistive effect and the full stress tensors within the channels of the fin field-effect

transistors. The variation of the carrier mobility in the presences of external stress was

modelled using the empirical piezoresistive effect. Here a longitudinal compressive strain

along the fin field-effect transistor channels of n-channel metal-oxide-semiconductor devices,

and tensile strain for p-channel metal-oxide-semiconductor devices, resulted in improvement

of the source-drain current. The piezoresistive effect and carrier mobility also depend on the

dopant type and concentration, as well as the temperature. An increased temperature and

doping concentration resulted in a reduced piezoresistive enhancement of the carrier mobility

which ultimately lead to the p-channel metal-oxide-semiconductor outperforming the n-channel

metal-oxide-semiconductor in the theoretical investigation.

In this work, the full strength of the piezoresistive effect is available, as advanced lightly

doped transistors at room temperature on a stress-optimised industry standard (100)45 wafer

orientation are used. The optimum gate length for sensing was identified by simulations. A

degradation of the mobility modulation was observed for the longer gate length leading to a

reduced mechanical transconductance. Therefore, smaller gate lengths provide the required

trade-off between mechanical actuation and carrier mobility variation leading to increased

transconductance values.

Following the forgoing analysis, where lower pressure was obtained than reported in

the literature, the mechanical transconductance is several orders of magnitude lower,

with 44.1 µS and 19.6 µS for the p-channel metal-oxide-semiconductor and n-channel

metal-oxide-semiconductor resonant fin transistor respectively. Both results contradict the

reported transconductance of 14 mS by Bahr et al., which is contradictory as it requires previously

unreported carrier mobility enhancements in excess of 750 % within silicon [Bahr et al. 2018].

The simulations showed that a SiO2-based back-end-of-line provided good index guiding and

high quality factors in simulations. State-of-the-art technologies, like the 16 nm fin field-effect

transistor technology used in this work, transitioned to low-κ oxide materials like SiCO:H. This

type of material class provided a much lower confinement for mechanical waves, leading to a

drastic reduction of the quality factor.

One approach to mitigate this problem is to introduce a phononic crystal that uses the existing

dielectric and metal layers for vertical confinement. The unpatterned back-end-of-line exhibits

phononic crystal effects if the acoustic impedance between adjacent layers is mismatched

which creates forbidden frequency regions where no mechanical wave can propagate. These
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effects are modelled in one dimension for a purely vertical propagation along Γ−Z with the

finite-element method and analytically by the interface response theory for super-lattices, which

are in perfect agreement. Several band gaps can be observed for longitudinal and transversal

waves whose strength increases with a larger number of consecutive layers. Phononic band gaps

in one-dimensional phononic crystals are, however, not sufficient for effective confinement due

to the lateral wave vector of the excited mechanical modes of the resonant fin transistor.

A subsequent simulation of a laterally extended two-dimensional unit cell introduced

additional bands by folding at the Brillouin zone edges, reducing the likelihood of wide

band gaps, which is also reflected in the transmission loss. Moreover, in a low-κ SiCO:H

back-end-of-line stack more bands are observed, further diminishing the shielding capabilities of

the back-end-of-line. A verification of the phononic crystal shielding capabilities was carried out

for a combined front-end-of-line and back-end-of-line in a two-dimensional simulation. Whereas

the quality factor of the resonant fin transistor mode is improved with each additional layer in the

presence of a matched phononic crystal band gap, no functionality is obtained in the absence of a

matching band gap. The anisotropic effect of copper adds further complexity to the investigation

of the band gaps considered in a three-dimensional simulation, where different orientations of

the copper layers strongly influence the band gap formation [Hudeczek and Baumgartner 2021].

Assuming varying crystallographic directions and a back-end-of-line unit cell matched to the

extent of the corresponding front-end-of-line unit cell no band gaps are found above a frequency

of approximately 15 GHz regardless of the wave vector. The findings of the three-dimensional

simulations carried out in this work contradict the measured and simulated results by Bahr

et al., due to the use of an insufficient two-dimensional approximation in this publication

[Bahr et al. 2018; Hudeczek and Baumgartner 2020].

The following analysis of the fundamental limits of the quality factor highlights

another contradiction of the reported values. The total achievable quality factor of a

micro-electro-mechanical-system is limited via Matthiesen’s rule to the smallest quality factor

of all involved damping mechanisms. These include intrinsic loss mechanisms such as

thermoelastic dissipation, the Akhiezer effect, and Landau-Rumer attenuation. The latter is

expected to be the dominant loss process which limits the Q f product to 34.2 × 1013 Hz−1 in

silicon at the frequency of the resonant fin transistor. This limit remains unmatched by currently

top performing and highly optimised micro-electro-mechanical-systems devices reported in

literature to the current date. The resonant fin transistor is claimed to surpass this limit at room

temperature by one order of magnitude with a Q f product of 1.57 × 1015 Hz−1.

To confirm the theoretical findings, the resonant fin transistor was fabricated on a 16 nm

technology node, which resulted in an undesired shorting of the front-end-of-line cavity due

to an incompatibility with the process. This issue was resolved by an adjustment of the

involved process by a unique patterning of the lithography masks [Hudeczek et al. 2021].

This modification enabled a successful fabrication of the resonant fin transistor, as confirmed

with a scanning electron microscope. Subsequent measurements of hundreds of devices under
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test, with different layout parameters confirmed the theoretical findings in this work. Although

the measurement accuracy allowed for the detection of resonances with a transconductance of a

few tens of micro siemens the functionality of the resonant fin transistor could not be confirmed.

Following the work presented here, monolithically integrated complementary

metal-oxide-semiconductor micro-electro-mechanical-system do not provide the anticipated

performance gains, as the required stress levels cannot be achieved by dielectric transduction

[Hudeczek et al. 2022; Hager et al. 2021]. A potential improvement of the figures of

merit requires an exchange of the materials and integration improvements. Materials with

piezoelectric or ferroelectric properties, which have proven successful operation in various

applications, are potential candidates [Ptashnik et al. 2017; Liu et al. 2020; Shao et al. 2019;

Gong and Piazza 2014; Piazza et al. 2007]. Here the concept of the resonant fin transistor

could potentially be transferred to a GaN fin field-effect transistor process, which relies on

a two-dimensional electron gas within the channel for conduction and potentially increased

deformation when leveraging the piezoelectric effect [Im et al. 2014; Patwal et al. 2019;

Patwal 2021]. This, however, does not alleviate the problem of a compatible back-end-of-line

phononic crystal and the fundamental quality factor at the potentially large resonant frequency.

Consequently, designs at much lower operating frequencies are necessary to be potentially

confined by the back-end-of-line phononic crystal. Ultimately this approach voids the

complementary metal-oxide-semiconductor compatibility and re-introduces the negative impact

of the multi-chip approach. A rethinking of the integration of different devices in a single chip,

as envisioned by the flip-chip technique or hyper-integration approach, is thus needed [Lu 2009].
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