
TUM School of Computation, Information and Technology
Technische Universität München

Defending Neural Networks
with Activation Analysis

Philip Sperl
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Abstract

Neural networks are vulnerable to adversarial examples. These inputs differ only slightly
from their benign counterparts, yet they provoke misbehavior within the attacked mod-
els. The perturbations required to craft the examples are humanly imperceptible, making
the detection a difficult task. To protect deep learning-based systems from such evasion
attacks, several countermeasures have been proposed. Yet a general protection scheme
is still missing. Motivated by the wide use of neural networks even in security-critical
environments, in this thesis, we propose a set of defense strategies allowing a protected
application. Inspired by recent advances in neuron-coverage guided testing, we show that
the activation values of neural networks carry robustness-sensitive information. Based
on this insight, we first present a generally applicable and modular architecture allowing
a reliable detection of adversarial examples. We show that this architecture can further
be adapted to be used in anomaly detection. Finally, we present means to leverage an
analysis of the models’ activations during neural-network training. This allows us to
increase robustness and advance neural network defenses.
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Zusammenfassung

Neuronale Netze sind anfällig für Adversarial Examples. Diese Eingaben unterscheiden
sich nur geringfügig von originalen Eingaben, führen jedoch zu einem Fehlverhalten der
angegriffenen Modelle. Die für die Erstellung der Adversarial Examples erforderlichen
Eingabeänderungen sind für den Menschen nicht wahrnehmbar, was die Erkennung er-
schwert. Um Deep-Learning-basierte Systeme vor derartigen Angriffen zu schützen,
wurden bereits verschiedene Gegenmaßnahmen vorgeschlagen. Ein allgemeiner Schutz
fehlt jedoch noch. Motiviert durch den steigenden Einsatz von neuronalen Netzen auch
in sicherheitskritischen Umgebungen, werden in dieser Arbeit eine Reihe von Verteidi-
gungsstrategien vorgeschlagen, die eine geschützte Anwendung ermöglichen. Inspiriert
von den jüngsten Fortschritten im Bereich des Testens neuronaler Netze wird gezeigt,
dass die Aktivierungswerte der Modelle Informationen relevant für deren Robustheit
enthalten. Basierend auf dieser Erkenntnis wird zunächst eine allgemein anwendbare
und modulare Architektur vorgestellt, die eine zuverlässige Erkennung von Adversarial
Examples ermöglicht. Es wird gezeigt, dass diese Architektur weiter angepasst werden
kann, um in der Anomalieerkennung eingesetzt zu werden. Schließlich werden Mittel
vorgestellt, um eine Analyse der Modellaktivierungen während des Trainings neuronaler
Netze zu nutzen. Dies ermöglicht es, die Robustheit zu erhöhen und Abwehrmechanis-
men neuronaler Netze zu verbessern.
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1 Introduction

Machine learning (ML) and especially deep learning (DL) applications transform mod-
ern technologies at an impressive pace. Research progress and the availability of high-
performance hardware enable the training of increasingly complex models. Such DL
models have achieved even super-human results in a broad range of domains: from clas-
sical image classification tasks [3], to outplaying humans in Go [4], or even autonomously
driving cars [5]. Recently published large language models and their capabilities under-
line the advancement of the field.

In numerous scenarios the security and safety of these systems is of crucial importance.
Errors in the ML processing pipeline can affect our daily routine, lead to severe incidents
in the users’ health, or threaten future critical infrastructures. Such errors may not only
stem from inaccuracies in the training phase, but also from intentionally performed
attacks. Hence, the security of systems incorporating DL concepts is a major challenge
for engineers, data scientists, and the research community.

Malicious actions aiming at DL models come in two flavors according to their attack
timing. Poisoning attacks target the training phase, while evasion attacks are performed
in the test phase. For poisoning attacks the attacker induces changes to the training
data set and especially to the labels to provoke misclassifications [6, 7]. As the training
data set is typically not available to attackers, the majority of recent work focuses on
evasion attacks. Here, the attacker manipulates the behavior of the DL model itself such
that intended misclassifications occur. In 2014, Szegedy et al. [8] first demonstrated
that small perturbations on images fed to a deep neural network (DNN) can provoke
such misclassifications. Since then, new attacks and countermeasures against so-called
adversarial examples have been introduced at a fast pace without the discovery of a
fundamental and general defense strategy, yet.

1.1 Motivation

Current defenses against adversarial examples cannot fully avert successful attacks.
State-of-the-art methods either reduce the attack success probability or increase the
required effort for the adversary. Therefore, the question of how to protect neural net-
works (NNs) against adversarial examples is still open. The majority of defenses detect
attacks during run-time or modify the training to enable NNs to classify inputs correctly
even though the inputs were maliciously altered. Both strategies have downsides and
weaknesses which can be exploited. Especially detection approaches can be bypassed
if the attackers are aware of the underlying protection scheme. For example, methods
which detect attacks using features in the input space are prone to miss more advanced

1



1 Introduction

attacks. Here, attackers can easily adapt and incorporate the core ideas of the detection
approach in the generation process of the adversarial examples, circumventing exposure.

This leads to the need of new protective measures and generally a better understanding
of the influencing factors facilitating robustness. In particular, a thorough analysis of
model-centered defenses based on the observation of the NNs’ behavior during run-time
is currently missing. Such approaches might be less sensitive to attackers’ adaptations
and therefore provide a more reliable protection compared to input-oriented schemes.
Input-independent and task-agnostic defense methods could further facilitate the secure
and reliable application of NNs even in exposed systems. Hence, we present methods
which protect NNs by analyzing the models’ behavior. We achieve this by observing
the NNs’ activation values while handling benign and adversarial inputs. Based on this
analysis of the activations, which was previously done only partially, we aim to close the
previously described gap.

1.2 Research Challenge

In this thesis, we investigate the question whether information readily available in NNs
can be used to make the models more robust. Our aim is to provide measures which
increase the resilience against adversarial examples. This poses a challenging task as
methods to generate such samples are highly accessible and current state-of-the-art de-
fenses can oftentimes be bypassed using adaptive attacks. The challenges we are facing
throughout this thesis are threefold. This generally applies to all defense strategies for
NNs. First, the methods should be applicable for a wide range of architectures and
ideally for different types of data. The number of domains and use cases in which NNs
are used is ever increasing. Generally applicable defenses making the models robust and
ultimately leading to certifiable NN-based systems is of high importance for the research
community and model users. Secondly, the computational cost during run-time should
be manageable with currently used hardware and should be within typical budget lim-
its. Defenses usually come at a cost. Yet applying reliable systems resilient to attacks
should ideally be possible in all scenarios. Thirdly, and most importantly, proposed de-
fenses should be robust against adaptive attacks. A large proportion of methods arguing
robustness was not evaluated when facing an omniscient attacker. Inspired by Kerck-
hoffs’s principle, the following should hold true also in the realm of adversarial machine
learning:

A neural-network-based system should be secure and robust even if every-
thing about the system, the model, and the used countermeasures are public
knowledge.

In summary, when presenting defense strategies for neural networks, the following three
challenges arise:

� General applicability to different models and data sets.

� Comparable computational cost compared to unprotected models.
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� Robustness against omniscient adversaries.

Throughout the work on this thesis, we tried to provide defense strategies overcoming
the aforementioned challenges. As a result, four scientific publications emerged building
the foundation of the work at hand [1, 2, 9, 10].

1.3 Research Contribution

In this thesis, we propose modular and effective defense mechanisms against adversarial
examples. The methods are designed with respect to the previously introduced research
challenges. Furthermore, we aim to provide methods using information readily available
in the models to protect. As we have stated above, the methods presented in this thesis
aim to first analyze the models during input processing. Then in the second step, the
defenses take effect and protect the NNs against adversarial examples. More specifically,
based on the analysis of the hidden activations of neural networks we present passive as
well as active methods. This results in adversarial example detection schemes as well as
a robust training method. Our approaches generalize between a broad range of state-
of-the-art attacks and therefore do not only cover contemporary attacks, but will, based
on our experiments, also defend against future attacks which follow similar approaches
as current ones.

1.4 Outline

This thesis is structured as follows: In Chapter 2 we present background information
and summarize state-of-the-art research in adversarial machine learning. This allows us
to present two adversarial defense strategies as well as an anomaly detection method in
Chapter 3. In this chapter, we show that the hidden activation values can be used to
detect attacks using our newly introduced target-alarm architecture. We conclude the
chapter by generalizing the findings to the challenging domain of anomaly detection. All
three methods are based on passively analyzing the available information in the NNs we
want to protect. Complementary, in Chapter 4, we present an active defense method
which is applied during the training of NNs. We show that the activation values can
be used prior to the deployment to make the models inherently more robust. Finally,
in Chapter 6 we summarize our findings, show the connections between our individual
methods, and conclude this thesis by presenting open questions for future research.
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2 Background

In this chapter, we provide an overview of the background needed throughout this thesis.
This includes an introduction to NNs and the implied security risks as well as the most
influential findings on defense strategies.

2.1 Neural Networks

We give a brief introduction to NNs, the learning principles, and their inner workings.
For the interested reader seeking a detailed overview of DL and NNs in particular we
refer to the book by Goodfellow et al. [11].

With NNs we try to approximate complex input-output mappings. Because of the high
number of tunable parameters NNs are applicable even in high-dimensional environments
like image processing. More formally, NNs approximate the function f(x;θ) = ŷ with
θ being the parameters adapted during training, x the input vector, and ŷ the output,
i.e., the prediction of the model. Commonly used NN architectures consist of multiple
layers sequentially processing the inputs. The NN consisting of M layers can therefore
be written as f = fM ◦ fM−1 ◦ . . . ◦ f1. Each layer forwards its processed inputs to
the following one with fi(x;θ) = hi. We denote the output of each layer as hi =
σ(Wi,i−1 ·hi−1+bi). Wi,j and bi build the mapping parameters θ learned in layer i with
respect to layer j. The non-linear activation function σ(·) is applied, for which we call
the outputs hi, activations of layer i. Currently, one of the most widely used activation
functions is ReLU defined as a(x) = max(0,x) [12].

During training, the weights θi are adapted using an optimization algorithm. Here,
the loss L(y, ŷ) is minimized which is defined as the difference between the desired output
y and the current predictions ŷ. Backpropagation allows to adjust the weights to further
decrease the measured loss. The gradients are calculated with ∇θL(y, ŷ). Throughout
this thesis, we mainly consider NNs performing classification tasks. A set of known
classes Y is assumed such that y ∈ {1, 2, . . . |Y|}.

2.2 Adversarial Machine Learning — Security of Neural
Networks

The number of applications and systems based on NNs is ever increasing, so is the interest
of potential attackers trying to influence the produced decisions. Methods which threaten
the security of NNs can be divided into evasion, poisoning, and extraction attacks. In
this thesis, we focus on security measures against evasion attacks which take place during
run time and target trained models. Here, the classification output of the model under
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attack is altered to the attacker’s will. This can be achieved using specifically-crafted
inputs called adversarial examples. In Section 2.2.2 we present a formal description of
such inputs.

Other potential threat vectors out of scope in this thesis are poisoning and information
extraction attacks. Poisoning attacks are initiated during training. The attacker poisons
the training data, e.g., by changing labels of deliberately chosen samples. As a result, the
poisoned models are not able to achieve the same level of accuracy compared to normally
trained counterparts. Alternatively, by feeding specifically-crafted triggers to the model,
attackers are able to provoke chosen classification outputs to their will. Extraction
attacks target either the model weights and architecture or information on the training
data set. State-of-the-art neural networks like GPT-3 may contain billions of parameters
[13]. Training such models requires large amounts of data and computational power.
This results in model parameters being a valuable intellectual property targeted by
attackers. Finally, training sample extraction or membership inference threaten highly
sensitive data and information of potential users.
In the remainder of this section, we present properties of threat models usually consid-

ered during the design of defense methods for NNs. Subsequently, we present the main
threat associated with evasion attacks, so-called adversarial examples. Finally, we show
current attack strategies as well as the latest findings on countermeasures.

2.2.1 Threat Models in Adversarial Machine Learning

When discussing attack and defense methods, the definition of the considered threat
model builds an essential but often neglected part in neural-network robustness analyses.
The threat model describes the conditions under which the respective methods were
designed and tested. Especially for defense strategies, the definition of the threat models
conveys the assumptions under which the method is capable of guaranteeing a certain
level of security. As shown by Carlini et al. [14], the definition of the threat models
discusses the goals, capabilities, and knowledge of the considered adversary. In the
following, we present each aspect in more detail and show the settings typically found
in research. Note that we consider evasion attacks against neural networks executing
classification tasks. For models performing other tasks such as object detection, partially
different threat model settings might be applicable.

1. Goals of the adversary. In general, the attacker aims to influence the classification
decision process of the attacked NNs, either by influencing and reducing the con-
fidence of the decision or even changing the final class output. In the latter case,
the attacker aims to either force the classification to a certain class, i.e., a targeted
attack, or to any class different than the original one, i.e., an untargeted attack.

2. Capabilities of the adversary. The capabilities of an adversary can range from
making changes to the input, to altering the trained network under attack. In
evasion attacks, which are exclusively considered in this thesis, solely changes to
the input are assumed. Hence, the attacker is capable of inducing local, i.e.,
patch-based attacks, or global changes to the inputs forming standard adversarial
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examples. Induced changes are typically constrained by an lp norm measuring the
distance between the original inputs and the corresponding adversarial examples.
In image classification tasks, the l0, l2, or l∞ norms are usually considered. We
introduce the standard metrics in more detail in Section 2.2.2.1.

3. Knowledge of the adversary. The level of the adversary’s knowledge describes the
available information on the complete system under attack and influences the se-
lected attack methods. We distinguish between three cases: In black-box settings,
the attacker is only aware of the input-output relation of the NN. Opposed to that,
in gray-box settings, the attacker has complete knowledge of the NN under attack
and can thus access the gradients which is crucial for the generation of powerful
adversarial examples. Finally, in white-box scenarios, the attacker is additionally
aware of any applied countermeasures and defense methods protecting the NN.
Here, the attacker is omniscient and is therefore capable of directly attacking the
combined system consisting of defense measure and NN in an adaptive manner.
This scenario allows the evaluation of the resulting security level of the protected
network without relying upon the defense method being secret.

2.2.2 Adversarial Examples

Adversarial examples are specifically perturbed inputs, which mislead the networks under
attack resulting in misclassifications. As the perturbations are humanly imperceptible
the adversarial examples look unsuspicious to human observers. Specifically, the changes
induced by the attackers do not change the semantics of the input. More formally,
adversarial examples can be defined as follows:

Let f(x;θ) be a trained NN used for classification tasks and let H(x) be a human
oracle with comparable classification capabilities. Then for a benign input x

f(x;θ) = H(x)

holds. Let x̃ be a slightly perturbed version of x such that ∥x̃− x∥p ⩽ ϵ for some small

ϵ ∈ R+. Here, ∥·∥p denotes the lp-norm. Then, x̃ is an adversarial example if it is
misclassified by the NN while being classified correctly by the human oracle:

H(x) = H(x̃) ∧ f(x;θ) ̸= H(x̃).

Research on adversarial example generation methods is a rapidly evolving field. The
amount of published attack methods exceeds the frame of this thesis. Therefore, in
the following, we introduce the most influential and widely-used attack methods. A
comprehensive overview of state-of-the-art attack methods is given in the survey by
Liu et al. [15].
Before we introduce the most important attack methods in Section 2.2.2.2, we briefly

discuss the different distance metrics typically used in research and their impact on the
resulting adversarial examples. Note, as the majority of published attacks is evaluated
in the image domain, we will introduce the used distance metrics in the context of visual
data.
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2.2.2.1 Distance Metrics

As we have shown in the general introduction of considered threat models and the formal
description of adversarial examples, the distance metrics play an essential role during
the execution of attacks. These distance metrics quantify the similarity between the
adversarial examples and their benign counterparts.

In Section 2.2.2, we have shown that the distance is typically limited using the pa-
rameter ϵ, such that ∥x̃− x∥p ⩽ ϵ. The lp-norm ∥·∥p used here is defined as:

∥z∥p = (

n∑
i=1

|z|p)
1
p .

In the following, we show the three most widely-used distance metrics.

1. l2: The l2 norm quantifies the Euclidean distance between adversarial examples
and their benign counterparts. Hence, it expresses the similarity by calculating the
standard root-mean-square distance. Note, the l2 norm may be small even if all
pixels of an input image were minimally changed during the adversarial example
generation process.

2. l∞: The l∞ norm quantifies the similarity by returning the distance of the maxi-
mally changed input pixel with respect to its initial value. Hence, all pixels of the
input image can be changed up to the defined limit.

3. l0: The l0 norm shows the total number of changed input pixels, independently of
the level of induced change. This distance is currently the less used one.

2.2.2.2 Adversarial Example Attack Methods

L-BFGS Szegedy et al. [8] first demonstrated the vulnerability of NNs to slightly mu-
tated inputs thereafter known as adversarial examples. The authors described the pro-
cess of finding adversarial examples with a minimization problem:

min c · ∥x− x̃∥22 ,

s.t. f(x̃) = l.

To solve this problem, the authors used a box-constrained L-BFGS [16]. Formally, the
authors iteratively minimize the following function with respect to the added perturba-
tions δ:

L(f(x+ δ), l) + c · ∥x− x̃∥22 .

Here, x is the original input. Together with the found perturbations δ, x̃ forms the newly
generated adversarial example such that x̃ = x + δ. Using the prediction of the model
under attack f(x+δ) and the desired target class of the attack l, the effectiveness of the
current perturbation is quantified using a loss function L, typically the cross-entropy.
The second term of the function measures the induced perturbations controlled by the
parameter c.

8



2.2 Adversarial Machine Learning — Security of Neural Networks

FGSM Shortly after Szegedy et al., Goodfellow et al. [17] presented the fast gradient
sign method (FGSM) together with first principles on why adversarial examples exist.
This one-step method changes the intensity (sign) of each pixel of the input image in
order to find adversarial examples:

x̃ = x− ϵ · sign(∇L(f(x), y)).

The loss is calculated with respect to the class output using the original input image and
the corresponding class y. As the method solely uses the signs of the gradient of the used
loss function, the required computational effort is significantly lower compared to other
attacks. The parameter ϵ controls the distance between the original and adversarial
examples measured with the l∞ norm.

BIM Further refining FGSM, Kurakin et al. [18] proposed the basic iterative method
(BIM). Instead of performing one single attack step, for BIM the gradient is reevaluated
after each iteration to perform smaller steps controlled by α:

x̃i = x̃i−1 − clipϵ(α · sign(∇L(f(x̃i−1), y))).

In each step, the samples x̃i−1 are clipped using ϵ to form the resulting adversarial
examples x̃. For the the initial step, the following start point is chosen:

x̃0 = 0.

PGD Similarly to BIM, Madry et al. [19] introduced projected gradient descent (PGD).
Instead of performing the clipping operation, the authors project the adversarial exam-
ples onto the ϵ-ball around the original input sample:

x̃i = x̃i−1 − projϵ(α · sign(∇L(f(x̃i−1), y))).

Furthermore, in the initial step, x̃0 is randomly selected. The authors argue that their
method poses the strongest first order attack.

DeepFool Moosavi-Dezfooli et al. [20] introduced a decision-based attack method called
DeepFool. Instead of relying on the gradient, the authors iteratively push the inputs
towards the decision boundary of the attacked NN. During this untargeted attack, the
NN’s decision boundaries are assumed to be linear. With this simplified assumption,
the boundaries are modeled as a hyperplane. In each attack step, new perturbations are
added to the current adversarial examples, pushing the decision of the attacked NN in
this hyperplane towards the desired class.

JSMA The majority of proposed attack algorithms use the l∞ or l2 norm. In contrast
to that, Papernot et al. [21] proposed the Jacobian-based saliency map attack (JSMA)
which considers the l0 norm. Hence, the attack tries to minimize the amount of changed
input pixels rather than measuring the global absolute change. The attack itself can
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be seen as a greedy algorithm which changes the input pixels with the highest influence
on the model’s decision. To estimate the impact of pixel changes on the classification
output, the authors use the gradients of the models to calculate saliency maps. Higher
values in the saliency map indicate a higher influence on the decision.

C&W The optimization-based C&W attack introduced by Carlini and Wagner [22] is
currently considered to be the most powerful white-box method. Similarly to L-BFGS,
C&W minimizes the distance between the original inputs and the adversarial examples
during the generation process. To find minimally perturbed adversarial examples for
the l2 norm, the following function is minimized with respect to the auxiliary variable
w and the target class l:

min
w

∥∥∥∥12(tanh(w) + 1)− x

∥∥∥∥2
2

+ c · f(1
2
(tanh(w) + 1)).

The objective function f(·) is defined as:

f(x̃) = max(max{Z(x̃)i : i ̸= l} − Z(x̃)l,−κ)).

Z(·) are the logit outputs of the model before applying the softmax function. The
variable κ controls the confidence of the found adversarial examples and is typically
set to κ = 0. The C&W method was initially proposed to successfully attack models
protected with defensive distillation. Creating imperceptible perturbations with C&W
is possible for the l0, l2, and l∞ norm.

Other Attack Methods and Strategies The methods introduced above show the most
influential findings in the research field focusing on attacks. Hence, the shown methods
do not provide a complete overview. Apart from the selected methods, there following
are notable attack approaches.
The one pixel attack introduced by Su et al. [23]. In their publication, the authors

showed that adversarial examples successfully fooling image classification NNs can be
constructed by solely changing one pixel of the original inputs.
In contrast to the above mentioned methods, Moosavi-Dezfooli et al. [24] presented

universal adversarial perturbations. Rather than calculating individual adversarial per-
turbations added to specific inputs, the authors calculated universally applicable per-
turbations such that when added to an arbitrary input, the target network is fooled.
When generating adversarial examples, the gradients of the attack NNs are typically

leveraged to guide the respective optimization process. In case the gradients are not
available, for instance in black-box scenarios or in case the gradients are either hidden
or obfuscated [25], other strategies may be used. For example, the boundary attack,
presented by Brendel et al. [26] does not require the gradients of the attacked NN, nor
its probability distribution. Alternatively, transfer attacks can be used to successfully
fool the models under attack. In this setting, adversarial examples are generated for
a so-called surrogate model controlled by the attacker. Then, in the second step, the
transferability property [8, 17, 27] of the adversarial examples is leveraged to attack

10



2.2 Adversarial Machine Learning — Security of Neural Networks

the original model under attack [28, 29]. Transfer attacks are typically possible for a
wide range of NNs. Yet highly similar surrogate and target models result in a higher
probability of successful attacks.

2.2.3 Defense Methods

Due to the ease of use of adversarial example generation methods and especially the
vulnerability of NNs, the research community is making great efforts towards finding
robust and reliable defense strategies. Based on this necessity, an arms race between
research on attack and defense methods has evolved.

In the following, we present major findings and the most relevant publications in
research investigating defense strategies. Similarly to research on attack methods, in
this thesis we cannot provide a complete overview. For comprehensive summaries we
refer to the surveys by Najafirad et al. [29] and Ren et al. [30].
There exist different approaches in categorizing state-of-the-art defense methods, e.g.,

by distinguishing between reactive or proactive methods [31]. In this thesis, we follow
the categorization by Akhtar and Mian [32] using the following three classes: changes
to the training procedure or input preprocessing, target model modifications, and the
use of an external network add-on. Additionally and out of scope in the context of this
thesis, standard security-related strategies can be followed to ensure a secure operation.
Such methods are unrelated to the models themselves yet make evasion, poisoning, and
extraction attacks less feasible. For example by restricting the access to the model
or limiting the number of queries per user, multi-step adversarial example generation
methods cannot reach their full potential.

2.2.3.1 Changes to the Training Procedure and Input Preprocessing

Adversarial Training An intuitive and widely performed defense technique is to include
adversarial examples in the training phase of the model which is referred to as adver-
sarial training. This is achieved by simply extending the training set with adversarial
examples together with their original labels [33]. Adversarial training is often intro-
duced by authors of attacks as the first strategy to prevent a successful attack [8,17,20].
Madry et al. [19] interpreted adversarial training as a robust optimization problem. The
authors showed that the PGD attack method provides the most robust NNs when used
as the generator in adversarial training. During the iterative and alternating process of
adversarial generation and retraining, the following min-max problem is solved:

min
θ

ρ(θ),where ρ(θ) = E(x,y)∼PD [max
δ∈S
L(f(x+ δ;θ), y)].

PD denotes the data distribution, S the perturbation budget, L the loss function and θ
the trained model parameters. The major downside of adversarial training is the high
computational cost. During the training, adversarial examples need to be computed often
following a multi-step procedure. In recent years, new methods have been proposed to
increase the efficiency by bridging the performance gap between single-step and multi-
step adversarial training [34, 35]. Moreover, Tramer et al. [36] showed the vulnerability
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of adversarially trained models to black-box attacks. Finally, the limited generalization
of the approach needs to be emphasized. Adversarial training only allows the robust
application of the protected models under the consideration of one particular threat
model [14]. For instance, NNs retrained with l∞-constrained methods might still be
vulnerable to l2 attacks.

Input Preprocessing While the changes to the input data in adversarial training are
performed prior to the application of the NNs, the following methods provide robustness
by preprocessing the data during inference. The main goal of the approaches is to
break the adversarial perturbations which were carefully induced by the attackers. For
this purpose, compression algorithms were tested. Dziugaite et al. [37] showed that
adversarial examples created with FGSM can be made ineffective if JPG compression
is applied. Based on this finding, further insights into JPG-based compression defenses
were presented by Guo et al. [38] and Das et al. [39]. Luo et al. [40] proposed to
apply NNs only to certain regions of the input images to decrease the influence of the
adversarial patterns. Similarly, Wang et al. [41] made use of a separately executed
data-transformation module, which partially removes adversarial perturbations.

A set of preprocessing-based defenses further introduced randomized operation steps.
With this measure, the methods try to increase the complexity during the generation
of adversarial examples. This measure especially tries to make adaptive attacks more
difficult. Sharad et al. [42] provide an extensive overview of randomized defense methods
together with their method called randomized squeezing. Based on their comparative
study, the authors conclude that randomized preprocessing methods increase the ro-
bustness of NNs in black-box and gray-box settings, but can be bypassed using adaptive
white-box attacks. For instance, by using the expectation over transformation (EOT) ap-
proach presented by Athalye et al. [43] the attackers are able to incorporate the random-
ized process in their adversarial example generation pipeline. By inducing randomized
transformations during the calculations, the resulting adversarial examples are more ro-
bust and can successfully fool protected NNs. Alternatively, Athalye et al. [25] propose
the backward pass differentiable approximation (BPDA). This method approximates
non-differentiable functions with differentiable operations to improve the calculation of
adversarial examples even for complex preprocessing defenses.

2.2.3.2 Target Model Modifications

An intuitive approach to increase the complexity during the generation of adversarial
examples is to limit the attacker’s access to the model’s gradients referred to as gradient
hiding introduced by Tramer et al. [36]. This leads to standard gradient-based attack
methods not being applicable to directly attack the models. Note that this technique
does not provide protection against black-box or transfer attacks, as shown by Paper-
not et al. [28]. For the interested reader, we refer to the work by Athalye et al. [25]. Here,
the authors show how to attack models for which the gradients are either not available or
were influenced by the applied defense strategy. Interestingly, for some defense methods,
changes to the gradients are not intended by the authors. Athalye et al. refer to this case
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as gradient obfuscation which summarizes changes to the gradients, both intentionally
and unintentionally. In their evaluation, the authors showed that gradient obfuscation
often results in flawed robustness evaluations. This is due to the fact that the models
appear robust in white-box settings, while being vulnerable to black-box attacks.

Based on the distillation technique shown by Hinton et al. [44], Papernot et al. [45]
presented defensive distillation. Using the original model and its outputted probability
vectors during inference, a smaller architecture is trained which is assumed to be less
sensitive and therefore robust to adversarial examples. In their seminal work, Carlini
and Wagner [22] showed that their C&W attack successfully finds adversarial examples
for models protected with defensive distillation.

Finally, related to gradient hiding, Ross and Doshi-Velez [46] introduced gradient
regularization. The authors proposed to penalize the degree of variation of the output
based on changes in the input.

2.2.3.3 Adversarial Example Detection and External Network Add-Ons

In this subsection, we summarize defense strategies which require an additional model or
comparable external components to make the original NNs more robust. As we present
a generally applicable and modular adversarial example detection architecture, here we
focus on publications proposing methods trying to achieve similar goals.

Adversarial Example Detection Adversarial example detection methods range from
simple preprocessing-based approaches, to complex methods investigating the inner
workings of the NNs to protect. In this section, we show the most influential find-
ings in this field. For the interested reader, we refer to the survey of Zhang et al. [47]
which provides a thorough comparison of state-of-the-art methods.

Hendrycks and Gimpel [48] observed that for adversarial examples, a higher weight
is placed on larger principal components in comparison to benign examples. Hence, by
first performing a principal component analysis (PCA), followed by training a simple
classifier using the constructed features, adversarial examples can be detected. Directly
operating in the input domain, Liang et al. [49] modeled adversarial perturbations as
noise added to the original inputs. By applying scalar quantization and smoothing filters,
the authors showed that attacks can be detected.

In a similar spirit, Gong et al. [50] proposed to train a binary classifier which directly
distinguishes between benign and adversarial samples. This simple approach was later
shown by Carlini and Wagner [51] to be easily bypassed using other attack methods and
data sets.

Metzen et al. [52] further improved upon the findings and proposed to train a secondary
classifier using the inner representations of the NN to detect adversarial examples, e.g.,
the outputs of convolutional layers.

Meng et al. [53] proposed MagNet, which evaluates the original data set and analyzes
the manifold of the benign examples. During inference, the samples are compared to
the findings about the manifold. This method is shown by Carlini and Wagner [54] to
be vulnerable against attacks incorporating larger perturbations.
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Similarly, Grosse et al. [55] proposed to use the maximum mean discrepancy test.
With this test, the authors analyze whether two sub-data sets were drawn from the
same distribution to detect adversarial examples.

Xu et al. [56, 57] introduced feature squeezing to detect adversarial examples which
consists of two steps. In the first step, feature squeezing reduces the complexity of the
input images by either performing spatial smoothing or color depth reduction. The
authors argue that for benign samples, the introduced preprocessing steps do not alter
the classification output. In contrast, for adversarial examples, the authors argue that
feature squeezing results in different outputs for benign and adversarial inputs. Hence,
to leverage this intuition, the authors let the original and squeezed inputs be classified
by the target NN. If the distance between the outputs exceeds a predefined threshold,
the samples are assumed to be adversarial.

In their work, Lu et al. [58] argued that adversarial examples produce different patterns
in ReLU-activated layers in the late stages of NNs compared to benign examples. With
their detection method called SafetyNet, the authors leveraged this hypothesis and used
a radial basis function support-vector machine (SVM) to distinguish between original
and adversarial examples.

Other Add-Ons Ever since the seminal paper by Goodfellow et al. [59], generative
adversarial networks (GANs) are widely used and referred to in numerous publications.
Some promising defense methods using GANs are presented by Lee at al. [60], Jin et al.
[61], and Samangouei et al. [62].

Finally, some methods try to implement previously shown preprocessing steps using
external network add-ons as well. Akhtar et al. [63] proposed perturbation rectifying
networks (PRN). PRNs are trained individually and preprocess the input data samples
fed to the original NN. In this preprocessing step, the perturbations are first rectified to
allow the detection of the adversarial examples in a second step.

2.2.3.4 Robustness Certification

In addition to the methods introduced above which provide protection against adversar-
ial examples, certification techniques pose a promising alternative in adversarial machine
learning research [64–68]. At the core of the certification process, the methods try to
guarantee that no adversarial example can be found for a given perturbation budget. As
this thesis introduces adversarial example detection methods, certification approaches
are out of scope. Yet their downsides need to be shortly mentioned, to motivate fu-
ture work and our choice to focus on detection methods for now: The complexity of
the methods and the accompanying computational cost limits their use to certain NN
architectures. Current methods can only provide certificates which are valid for known
samples x ∈ X [14]. Finally, similarly to standard defense research, Ghiasi et al. [69]
presented an adaptive attack strategy successfully bypassing certified defense methods.
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2.2.4 Robustness Quantification

State-of-the-art research still lacks meaningful and generally applicable metrics to assess
the robustness of NNs. Strongly related to this lack is the question on how to properly
measure the imperceptibility and hence quality of adversarial examples. As we have
shown in Section 2.2.2.1, lp-norms are typically used to calculate the distance between
adversarial examples and their benign counterparts. The lp-norms thus act as a proxy
for the quality of the produced adversarial examples. In the majority of cases, this proxy
poses a viable solution, yet it has been shown by Sharif et al. [70] and Sen et al. [71]
that new metrics are needed to cover a wider variety of possible scenarios. As the
two questions introduced above are not yet answered by the research community, in
this thesis, we follow the standard approach of measuring the robustness of NNs and
potentially accompanying defense strategies introduced below.
For this purpose, we first revisit the attack methods introduced in Section 2.2.2.2 and

show a categorization of the approaches. Zhang et al. [47] for example propose to divide
the attacks in gradient-based, decision-based, and optimization-based methods. This
first categorization approach focuses on the adversarial example generation process itself
with respect to the attacked NN and assumed threat model. Alternatively, inspecting the
attacks from the adversarial example imperceptibility perspective, the methods can be
divided into bounded and unbounded ones [72]: For the first category, the attacker selects
a fixed distance ϵ between adversarial and benign samples. As a result, all adversarial
examples produced during the attack will have the selected lp-based distance and hence
visual similarity to their benign counterparts. For the second category, the attacks try to
generate adversarial examples with minimum perturbations as part of the optimization
process. As a result, all adversarial examples produced during the attack will show
individual lp-based distances with respect to their benign counterparts. Based on this
distinction of adversarial attack methods, we introduce the following two approaches to
measure the robustness of NNs and defense methods. X̃ denotes the set of adversarial
examples fooling the attacked NN. X ′ denotes the set of samples which were perturbed
by the chosen attack method yet do not successfully fool the NN.

1. Robustness against bounded attacks: As the attacker invests a constant amount of
perturbation budget in the selected lp space, the robustness of the NNs is assessed
using the attack success rate. For robust models and constant ϵ distances, some of
the attacks may not be successful and thus result in examples which are perturbed
but still classified correctly by the attacked NN.

Attack Success Rate: ASR :=
|X̃ |

|X̃ |+ |X ′|

2. Robustness against unbounded attacks: As the attacker invests an arbitrary amount
of perturbation budget, unbounded attacks should be successful if executed cor-
rectly. In the worst case scenario, the attacks result in visually striking differences
potentially extending to semantic changes of the input. Due to this property, as-
sessing the attack success rate for unbounded attack does not provide valuable
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insights on the robustness of the attacked NNs. Therefore, we quantify the robust-
ness by measuring the required lp perturbations to successfully fool the attacked
NNs. For robust models higher perturbations budgets are required to generate
adversarial examples.

Mean lp Distortion: Dlp :=

∑|X̃ |
i=1 ∥x̃i∥p
|X̃ |

In recent years, progress has been made in establishing new and generally applicable
robustness quantification methods. For instance, Wang et al. [73] proposed CLEVER.
During the calculation of CLEVER, the local Lipschitz constant is estimated to help to
statistically quantify the model’s robustness. Note that this method cannot be applied to
all NN architectures and is only reliable for Lipschitz-continous functions. Furthermore,
in a later evaluation it was shown that CLEVER might overestimate the robustness of
NNs and thus does not provide a lower bound [74]. In 2020, Croce and Hein [75] presented
the AutoAttack benchmark framework. The authors propose to use an ensemble of
parameter-free attacks to empirically estimate the model’s robustness. For this purpose,
the selected attacks range from white-box attacks to gradient-free approaches. With
this selection, the authors try to counteract against overestimated robustness due to
incomplete observations. Orthogonal to the findings of Croce and Hein, Pintor et al.
[76] present an overview of potential attack failures when empirically evaluating the
robustness of NNs. Finally, for the main experimental parts of this thesis, we refer to
the valuable guideline by Carlini et al. [14]. Here, the authors show in great detail how
to properly assess the security of ML models and discuss potential pitfalls during this
process.
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3 Neural Network Activation-based
Adversarial Example and Anomaly
Detection

3.1 Introduction

In this chapter, we present our contributions to the research on methods increasing the
protection of NN-based systems against adversarial examples. We show two detection
methods each allowing a reliable application of non-robust models even in security-
sensitive environments. Furthermore, we show that our modular approaches generalize
to different domains, models to protect, and use cases. In the final section of this
chapter we take a step back and apply our adversarial example detection methods to
the challenging field of anomaly detection.

This chapter is structured as follows: In Section 3.2 we present our modular adversarial
example detection method called DLA [9]. DLA analyzes the activation values of the
model we try to protect using a secondary NN. Using this modular and easily expandable
approach, in Section 3.3 we investigate the question, whether this general structure
can be applied using other sources of information available in the models. To this
end, we present DA3G [2]. Similarly, DA3G increases the protection of NNs against
evasion attacks using a secondary NN detecting attacks. Rather than using the activation
values, DA3G operates the gradients of the NNs. With our findings we show that
the structure presented in DLA can further be expanded and used in different settings
and environments. Finally, in Section 3.4 we leverage our findings to show a generally
applicable anomaly detection method based on the analysis of the hidden activations
of NNs called A3 [1]. With our findings we show that the research fields of adversarial
examples and anomaly detection can profit from each other and further investigations
are highly relevant.

3.2 DLA: Dense-Layer-Analysis for Adversarial Example
Detection

In this section, we present our adversarial example detection method DLA. Parts of
the section are taken verbatim from the original paper “DLA: Dense-Layer-Analysis for
Adversarial Example Detection” published at the 5th IEEE European Symposium on
Security and Privacy 2020 (EuroS&P) [9].
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3.2.1 Motivation

Currently, evasion attacks against NNs subdue corresponding defense methods. Research
in the field of adversarial ML is yet to provide a generally applicable solution to this
problem which motivates the work in this thesis. In this section, we present an adversarial
example detection method called DLA. Our main idea leading to DLA is based on
observing neural activity during classification run-time of the models to protect. We
were inspired by recent findings in the field of NN testing and its interesting prospects.
Pei et al. [77] introduced the idea of neuron coverage, which serves as a metric to guide
testing of NNs. Similar to code coverage in software testing, neuron coverage quantifies
the neurons which were activated by a given input. Since then, further coverage metrics
have been proposed and various testing techniques have made use of them [78,79]. Odena
and Goodfellow [80] reported promising results when applying concepts of coverage-
guided fuzzing to NN testing.

These recent findings indicate that the neuron coverage of DL models provides robustness-
sensitive information potentially beneficial to the robustness. This led us to the main
insight of this section: We empirically show that neuron coverage exhibits a character-
istic behavior when the analyzed model processes adversarial examples. In particular,
adversarial examples provoke a unique pattern in the coverage such that respective inputs
become detectable using a secondary NN. Interestingly, this characteristic is independent
of the attack method and underlying data type, as our results strongly indicate. With
this observation, we optimistically assume that our approach will also defend against yet
unknown attacks.

In summary, in this section we present the following contributions:

� We propose a general and modular end-to-end architecture to detect adversarial
examples generated using different state-of-the-art attack methods.

� We successfully detect adversarial examples in image classification, natural lan-
guage processing (NLP), and DL-based audio processing.

� We implement and evaluate our approach to successfully detect prior unseen ad-
versarial examples using various attack methods.

� We evaluate our method during adaptive attacks.

The rest of this section is structured as follows. In Section 3.2.2, we review related work
and extend Section 2.2.3 by focusing on detection methods. In order to fully describe
the environment in which we can successfully detect adversarial examples we introduce
the threat models we consider throughout this section in Section 3.2.3. We present our
main contribution, a novel concept of detecting evasion attacks on NNs, in Section 3.2.4.
Section 3.2.5 shows our experiments which we thoroughly evaluate and summarize in
Section 3.2.6. To further gain trust in our concept, we perform adaptive white-box
attacks in Section 3.2.7. In Section 3.2.8, we discuss the restrictions of our method as
well as the real-world applicability, transferability, and generalization to future attacks.
Finally, we conclude this section with Section 3.2.9.
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3.2.2 Related Work

In 2017, Feinman et al. [81] detected adversarial examples using two features which
were extracted from dropout neural networks. With these features, a simple logistic
regression is performed building the basis for a binary classifier. The first feature the
authors introduced is the density estimate, based on which the distance between a given
example and the sub-manifold of a class is quantified. For this purpose, the authors
used the feature space of the last hidden layer of the target network. With their second
feature, the Bayesian uncertainty estimate, the authors introduced an alternative feature
to detect adversarial examples missed by the first feature. Here, points are detected
which lie in low-confidence regions of the original input space, indicating an attack.

Similar to our method Ma et al. [82] detect attacks by observing the NN’s hidden
activations. The authors identify two exploitation channels which form the basis of their
detection approach. By extracting provenance and value invariants, attacks are detected
using a one-class SVM.

As our concept is closely related to the works by Feinman et al. [81] and Ma et al. [82]
we briefly stress the main differences and potential advantages provided by our approach.
Both stated frameworks detect adversarial examples by examining the inner processing
of the protected NNs. In contrast to our approach, the authors further process the ex-
tracted information to craft features enabling a detection. Instead, we propose a method
which directly works on the hidden activation values of the dense layers. Opposed to
Feinman et al. [81] and Ma et al. [82], we use a secondary NN for the final detection.
This poses a more intuitive and easy-to-implement solution. Our detection scheme works
out-of-the-box without additional preprocessing or hyperparameter optimization steps.
Furthermore, as our system solely comprises NNs, the detection scheme can be easily
integrated in existing DL pipelines. An advantage of the concept by Ma et al. [82] is
that it does not require adversarial examples during training.

3.2.3 Considered Threat Models

Based on our general introduction to threat models in adversarial machine learning pre-
sented in Section 2.2.1, in this section we summarize the attackers’ capabilities considered
throughout the design and evaluation of DLA. First, we introduce the main threat model
usually considered in literature. Then we show our adaptive-attack setting which is used
to further analyze the robustness of DLA.

3.2.3.1 Main Threat Model: Gray-Box Attacks

In this scenario, the attacker performs evasion attacks and tries to alter the classification
output of our NN in a targeted manner. For this purpose, the attacker uses various state-
of-the-art attack algorithms. The added adversarial perturbations are desired to be
small enough, so they are imperceptible for a human expert which is consistent with the
common definition of adversarial examples shown in Section 2.2.2. Finally, we consider a
white-box scenario with respect to the target NN. The attacker performs simple attacks
on the target NN only, resulting in an overall gray-box setting. In our main setting,
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Figure 3.1: Overview of DLA and the required steps to initialize and perform the adversarial
example detection.

the attacker is thus not aware of the existence and nature of our proposed defense
strategy. With this measure, we provide an unaltered evaluation of the performance of
our detection scheme allowing a comparison to related methods.

3.2.3.2 Adaptive-Attack Threat Model: White-Box Attacks

For the adaptive attacks which we describe in more detail in Section 3.2.7, we switch
sides and adjust the attacker’s knowledge. Here, the adversary is aware of our proposed
defense method and mounts an adaptive attack leveraging this knowledge. Therefore,
the evaluation of our method under this strict setting allows a profound analysis of
DLA’s robustness. The level of overall protection does therefore not rely on our method
being kept secret. This setting is typically found in real-world applications.

3.2.4 Detecting Adversarial Examples by Analyzing Activations

The core idea leading to the design of DLA originates in our hypothesis as initially
shown in Section 3.2.1: Adversarial examples provoke a distinctive behavior of dense-
layer neuron activations such that attacks become detectable. We provide a detailed
description on how to expand and build upon this idea in the following.

Our method is designed to help developers and maintainers of NNs to secure their
models against attacks. Hence, we assume access to the fully trained model as well as
read-only access to the benign training data set. We call the model we protect target
model. Our aim is to create a secure version of this model by adding our detecting scheme
which produces an alarm signal whenever an adversarial example is being processed
by the target. The NN which we use for this task is called alarm model. To train
the alarm model, we generate adversarial examples and extract the dense-layer neuron
coverage of the target model, triggered by benign and adversarial inputs. Using the
extracted coverage, we directly train the alarm model in a supervised manner finally
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Figure 3.2: Summary of the components of the DLA architecture consisting of a target and an
alarm model.

enabling a secure operation of our target model. The individual steps as well as an
overview of our concept and the underlying data flow is visualized in Figure 3.1. Joining
the four steps shown in the figure provides an end-to-end pipeline for fully automated
adversarial example detection. Additionally, for a concise overview on a component-
level, in Figure 3.2 we show the DLA architecture consisting of a target and an alarm
model. The target model classifies inputs while the alarm model judges if the input x
is benign or adversarial. To perform the attack detection, the alarm model observes
the dense-layer activations of the target model triggered by either benign or adversarial
inputs. In the next sections we build upon this initial description of DLA and our
modular architecture to provide further details on the training and deployment process.

3.2.4.1 Adversarial Example Generation

In the first step of DLA’s initialization phase, we generate adversarial examples specif-
ically crafted for our target model. We craft these examples for each class of the data
set in a white-box manner by exploiting all available information. Hence, we try to push
the generated adversarial examples to be misclassified with an equal distribution among
all remaining and therefore false classes. This is a crucial step during the generation
phase in order to cover all possible cases which might occur during the application of
our method in the field. We add the produced adversarial examples to the correspond-
ing benign samples in a separate data set. For the adversarial example generation, we
recommend using a wide range of attack methods, including state-of-the-art techniques.
As we discussed in Section 3.2.2, the attacks do not only differ in success rates but also
in their detectability. By covering the currently strongest attacks we build an contem-
porary learning basis for optimizing our detection approach. Moreover, to cover the
case of black-box attacks, we recommend using transferred adversarial examples as well.
Here, a surrogate target model is used to generate the required adversarial examples.
It is important to note that only mutated examples should be considered which lead to
misclassifications of the original target model.
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3.2.4.2 Dense-Layer Neuron Coverage Extraction

In this step, we observe the target model’s behavior while it processes the benign and ad-
versarial training samples. This is visualized in the second and third steps in Figure 3.1.
Here, the benign and adversarial samples are fed to the trained target model which per-
forms classifications. Since this feature extraction step is not part of the actual function
and objective of the target model, we omit its classification outputs. Instead, we extract
the activation values of all available dense layers and concatenate them to one sequence
for each input sample. The collected activation values are again stored in a separate
data set which we use in the next section to train our alarm model. For further usage,
we adopt the labels to distinguish between adversarial and benign samples. Thus, the
newly created data set holds the target model’s activation value sequences for all benign
and adversarial examples for one specific attack method. This is visualized in the fourth
step in Figure 3.1. We preserve this separation of the activation value sequences, since
we assume the different attack methods to have characteristic impacts on the behavior
of the target and the resulting features. This not only enables us to detect the individual
attacks, but also to assess the impact of the individual crafting methods. As a result,
one might be able to rank the attack methods based on their level of detectability and
potentially fine-tune DLA accordingly.

3.2.4.3 Alarm Model Training

The dense-layer neuron coverage we extract in the previous step builds the basis for
our core concept to detect adversarial examples. We assume that this coverage contains
information about the model, its behavior, and the input. In the following, we present
our architecture for automatically analyzing the extracted information.

Previous work by Feinman et al. [81], as discussed in Section 3.2.2, follows a similar
idea. The authors try to extract information from neural layers and further process
them to detect adversarial images. However, we directly consider the information from
all dense layers of the trained model and provide an end-to-end solution without further
processing steps. Accordingly, we propose to interpret the analysis of the dense-layer fea-
tures as a binary classification which generalizes well over different scenarios and model
architectures: Instead of performing manual feature-crafting steps and distinguishing
between different scenarios, we train an additional NN to perform the required detection
which we call alarm model.

To train the alarm model, we use the features stored in the previously created data set
for each target model and attack method. Therefore, the network is trained to distinguish
between activation values observed during the classification of benign and adversarial
features. This concludes the initialization phase. In the final secure operation phase,
the alarm model performs a binary classification of newly extracted features provoked
by the input samples fed to the target. This enables the adversarial example detection
process running alongside the original classification purpose of the target. Hence, DLA
does not actively alter the main classification process of the target model.
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Figure 3.3: Step-by-step overview of DLA’s training process in the first two columns and the
final attack detection in the right column.

The architecture of the alarm model heavily influences the success of our approach.
Different architectures need to be tested against each other to provide a viable and well
generalizing solution. In Section 3.2.5, we recommend a specific architecture.

We recommend to create one alarm model for each introduced attack method. The
attack methods differ in their approach and complexity and thus influence the neuron
activation patterns distinctively. Hence, using a set of different alarm models allows
us to detect a broader range of attacks. Furthermore, we are able to evaluate the
capability of each alarm model version in detecting different attack methods. This
provides information on the applicability of our concept when detecting future attack
methods.

3.2.4.4 Concept Overview

Figure 3.3 provides a visual overview of DLA showing the required training steps and
the final attack detection provided with our approach. Using a trained target model,
the application of our method in a real-world scenario can be divided into two steps: the
initialization and secure operation phase.

In the initialization phase, we create adversarial examples and perform the feature
extraction steps. With the extracted dense-layer activations, we train our alarm models.
We have discussed the importance of using different attack methods to create the ad-
versarial examples. This may ultimately lead to a group of alarm models, each capable
of detecting adversarial examples created by one specific attack method.

During the secure operation of the target model, we continuously extract the features
during classification of new, unseen samples. The resulting activation sequences are fed
to all available alarm models performing binary classifications. If the alarm models’
outputs indicate attacks, our framework throws an alarm signal and a human expert is
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consulted to evaluate the current input. Here, the maintainer chooses if one assumes
an attack based on one or more alarm signals, majority votes, or all alarm models
synchronously indicating such an event. This use-case-depended choice provides different
levels of protection. In Figure 3.3 we show a single-alarm-model setup of DLA. We
consider this setup throughout this thesis.

3.2.5 Experimental Setup

In the following, we present details regarding our proof-of-concept implementation and
our experimental setup. We evaluate the results in Section 3.2.6.

3.2.5.1 Data Sets

For our main experiments, we considered the MNIST [83] and CIFAR10 [84] image data
sets. Both are widely used in research. This allows a comparison of our method to state-
of-the art defense techniques. Furthermore, the usage of image data sets enables us to
better visualize the adversarial examples and evaluate the performance of different attack
methods on a perceptual level. The MNIST data set consists of 70 000 handwritten digits
ranging from 0 to 9 of which 60 000 build the training set and 10 000 the test set. Each
digit is represented by 28 × 28 gray-scale pixels. CIFAR10 consists of 60 000 colored
images of which again 10 000 images build the test set. Each image is stored using
32× 32× 3 pixels, which makes this data set more difficult to classify.

Additionally, we used a natural language processing (NLP) and an audio data set to
assess the generalization of DLA to other domains. To analyze detectability of adver-
sarial examples in the NLP context, we used the IMDb data set of movie reviews [85].
Both the train and test set contain 25 000 samples each. For both subsets positive and
negative reviews are distributed evenly. The audio examples we considered during our
experiments are drawn from the Mozilla Common Voice (CV) data set [86], which con-
tains 803 hours of recorded human sentences. Contrary to the above mentioned data
sets, the instances in the CV data set are used for speech-to-text conversions rather than
being classified with respect to known classes.

3.2.5.2 Architectural Choices

Target Models Throughout the proof of concept, we used state-of-the-art target mod-
els in order to be consistent with setups usually found in research. In Table 3.1 we
sum up the used models and show their training and test accuracy as well as a short
description of the individual architectures. For MNIST, we chose LeNet5 [87] and a
simple Multi-Layer-Perceptron (MLP) [88], we refer to as KerasExM. For CIFAR10 we
considered ResNet [89] and a deep CNN [90], we refer to as KerasExC. In later sections
we introduce two additional defense methods against adversarial examples. For both as-
sociated experiments, we used nearly identical test setups which can be found in Tables
3.8 and 4.1. In order to allow reproduction of the experiments, we added both overviews
listing the relevant settings and achieved accuracy scores by the used target models.
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In order to evaluate if our method can generally be applied to a wide range of DL
architectures, we additionally conducted experiments using the following two examples
applied for image processing: We included a Long Short Term Memory (LSTM) based
target model. Here, we chose an architecture which achieves on-par results on the MNIST
data set compared to CNNs. Moreover, we considered a capsule network we refer to as
CapsuleNN. First experiments by Frosst et al. [91] indicate that this type of NN may be
more robust to white-box attacks compared to standard CNNs.
For our NLP-based tests, we used an LSTM target model with one embedding layer.

Finally, for the audio experiments we chose DeepSpeech (version 0.4.1) [92] which con-
verts speech to text. Since it is pretrained we did not add its training and test accuracy
to Table 3.1. CapsuleNN and ResNet are trained using Adam [93] while the remaining
models are trained with stochastic gradient descent.

Alarm Model Architecture and Training Throughout this thesis, we used one alarm
model architecture. We chose a neural network with seven layers. The input layer
accepts the concatenated extracted features which are then flattened. As output we
chose a softmax-activated layer consisting of two neurons in order to perform the binary
classification. Therefore, throughout this thesis we did not need to optimize a decision
threshold which influences the trade-off between precision and recall during detection
as can be seen for other methods. Nonetheless, in some cases it might be beneficial to
use one single output neuron. This would again allow a use-case specific fine-tuning of
DLA’s detection performance. As hidden layers, we exclusively chose ReLU-activated
dense layers with the following dimensions: 112, 100, 300, 200, 77. We trained each
alarm model for ten epochs and a batch size of 100 using Adam with a learning rate of
0.001.

During our proof of concept, we exclusively used this well-generalizing alarm model
architecture to detect adversarial examples for MNIST and CIFAR10. With this ap-
proach, we restricted the space of tunable hyperparameters to show the generality and
simplicity of our concept. Neither the used data set nor the applied target model af-
fected our alarm model architecture. It is worth mentioning that in some cases of our
experiments the chosen alarm model suffered from underfitting.

25



3 Neural Network Activation-based Adversarial Example and Anomaly Detection

Table 3.1: Target models we used during the proof-of-concept implementation for DLA. We
give a short summary of each model’s architecture as well as their train and test
accuracy.

Data Model Architecture Accuracy
M
N
IS
T

LeNet5 [87]

– 2 convolutional layers with filter
size 5
– each convolutional layer is fol-
lowed by a max-pooling layer with
size 2
– 2 dense layers after each max-
pooling layer

– train: 97.6%
– test: 98.7%

KerasExM [88]

– 2 convolutional layers with filter
sizes 32 and 64
– each convolutional layer is fol-
lowed by 1 max-pooling layer
– 1 flatten layer and 1 dropout
layer followed by the output dense
layer with 10 neurons

– train: 97.2%
– test: 98.5%

CapsuleNN [94] – 10 capsules each of size 6
– train: 99.2%
– test: 99.1%

LSTM [95]
– 1 LSTM unit followed by two
dense layers with 64 and 32 neu-
rons

– train: 97.5%
– test: 97.8%

C
IF
A
R
10

KerasExC [90]

– 4 convolutional layers with filter
of size 3
– each pair of convolutional layers
is followed by a max-pooling layer
of size 2
– last hidden layer is fully con-
nected with 512 neurons

– train: 85.2%
– test: 79.0%

ResNet [89]
– 3 blocks followed by an average
pooling of size 8
– for further details: [89]

– train: 96.1%
– test: 79.0%

IM
D
b

LSTM (for NLP)
– 1 embedding layer
– 1 dense layer with 64 neurons

– train: 99.6%
– test: 81.0%

M
oz
il
la

C
V

DeepSpeech [92]

– containing 2 parts: a convolu-
tional and a recurrent neural net-
work
– for further details: [92]

– train: –
– test: –
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Original image  FGSM C&W DeepFool BIM PGD
MNIST

CIFAR10

Original image  FGSM C&W DeepFool BIM PGD

Figure 3.4: Adversarial examples for the MNIST and CIFAR10 data sets created with FGSM,
C&W, DF, BIM, and PGD.

3.2.5.3 Attack Methods

We evaluated the detectability of the following attack methods: FGSM, C&W, DeepFool
(DF), PGD, and BIM. The motivation to choose these methods originates in their nature
and popularity. We aimed to consider a diverse set of attacks such that differences in
the basic idea can be seen. For this purpose considered the one-step attack FGSM as
well as the remaining multi-step methods. PGD and BIM are gradient-based approaches
while C&W and DeepFool are optimization and decision-based, respectively. Moreover,
we payed attention to add attacks which differ in strength and complexity. The C&W
attack for instance is currently considered to be the most powerful white-box attack.
Hence, DLA and future adversarial example detection schemes need to be tested against
this method. On the other hand, FGSM was shown to be tractable by multiple defense
strategies. In Figure 3.4 we show a series of adversarial images for both data sets crafted
with the above mentioned techniques. The top images are based on the MNIST data
set and successfully fool the LeNet5 target model. The bottom images are drawn from
the CIFAR10 data set and successfully fool the KerasExC target model. For adversarial
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examples generated for the MNIST data set using FGSM, we already observe apparent
perturbations in the input space. Opposed to that, for the stronger C&W attack, no
difference between the original and adversarial examples is visible.

Alongside the five stated methods, we additionally considered black-box transfer at-
tacks. Here, we created adversarial images in a white-box setup on a surrogate model and
transferred the resulting examples to the actual model under attack. In our evaluations
based on MNIST, we used the LeNet5 and KerasExM as target and surrogate models in
an alternating manner. Similarly, for CIFAR10 we used KerasExC and ResNet.

Since the implementation of the attacks is not part of our concept, we used the Foolbox
framework [96] to craft adversarial examples for MNIST and CIFAR10. To create audio
adversarial examples based on the Common Voice data set, we built upon the findings
by Carlini and Wagner [97]. We used the code provided by the authors. Finally, for
the IMDb data set we created an algorithm to produce adversarial examples, which we
briefly describe in Appendix A.1.1.

3.2.5.4 Experiment Overview

Main Test Scenario We assume ourselves in the position of the trained model’s main-
tainer and try to increase its protection against adversarial examples under the consid-
eration of our main threat model shown in Section 3.2.3.1. Each step we present in the
following was performed for all introduced attack methods. For the sake of simplicity
we show each step only once.

First, we crafted adversarial images using one of the above stated methods. During
this process, we payed attention to the way the data sets have been split beforehand.
Consequently, we created two separate adversarial data sets, based on the train and
test subsets. The samples in the test set simulate inputs fed to the target during an
attack while being used in the field. This allows us to assess detectability of adversarial
examples which are based on unseen benign inputs to rule out a detection bias. To form
the adversarial data sets, we created (60 000, 10 000) adversarial examples for MNIST
and (50 000, 10 000) adversarial examples for CIFAR10. We let the target model classify
all samples in the resulting four data sets and stored the activation sequences accordingly.
Each individual set contains features extracted during the classification of benign and
adversarial samples while we preserved the division between test and training samples.
This allowed a sound evaluation during the proof of concept.

In the second step, we used data sets containing the activation values based on the
benign and adversarial samples to train the alarm model. Hence, for each target model
and attack method, we created one specific alarm model. During testing, we let the
alarm model classify all samples in the activation-value test data set.

To further show the generality of our concept we performed cross-testing experiments.
We therefore evaluated the robustness of our detection approach against new and yet
unseen attack methods. We tested one specific alarm model using the features based
on a different attack. Consequently, we trained the alarm model with activation values
triggered by one specific attack and detected adversarial examples created by another
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attack method. This setting simulates the scenario in which we encounter a new and
yet unknown attack.

Furthermore, we created a combined alarm model. We trained this model using fea-
tures triggered by a set of multiple attacks. Here, we verified if considering diverse
information, based on a wider range of attacks, improves the alarm model’s performance
and provides a stronger detection capability.

Supplementary Experiments We divided our supplementary analysis into four exper-
iments. This set of experiments aimed to further establish confidence in our approach.

In the first part, we used the previously created adversarial images for the MNIST
data set and conducted transfer attacks. Here, we targeted the LSTM neural network
and the capsule network. With this experiment, we investigated whether our approach
can be applied in the context of different DL architectures or not. Both targets contain
dense layers from which we extracted the activation values in order to train our alarm
model.

The following two experiments were conducted using the regular target models classi-
fying MNIST and CIFAR10 images. Both experiments tried to rule out a detection bias.
With the first test we analyzed the behavior of our concept when the inputs consist of
noisy images. Hence, we investigated the possible effect in which DLA may solely be able
to distinguish between clean and perturbed images. We therefore answer the question
whether adversarial examples are detected due to their impact on the attacked target
or due to their nature of containing noise. For this purpose, we created noisy benign
images with the same level of distortion compared to their adversarial counterparts. The
created samples contain noise while being unaltered on a semantic level and are therefore
still classified correctly. We calculated the distances between the original and adversarial
images with respect to the used distance metric of the attack. The resulting data sets
contain original, adversarial, and benign noisy images. To provide comparability, we
preserved the distribution of benign and adversarial examples in this supplementary test
set.

In addition to the previous experiment, in this setting we provide evidence for our
initial hypothesis presented in Section 3.2.4: We argue that adversarial examples provoke
a unique activation pattern in the dense layers which can be exploited to detect attacks.
For this purpose, we analyzed the dense layer activation values of the target models
during misclassification of original, benign inputs. We therefore extracted the according
features and trained an alarm model to detect such incorrectly classified inputs. If our
main hypothesis holds true, misclassified original inputs will not be easily detectable with
DLA. The behavior of the target model should be similar during correct and incorrect
classifications of benign inputs. Solely adversarial examples are assumed to provoke a
distinct and detectable behavior of the targets visible in the activation space.

Finally, in the fourth part, we tested our concept in the context of two additional
types of data sets. We investigated if we are able to detect adversarial examples in
NLP and audio data sets. This test gives first evidence on the applicability in a wider
range of use cases based on different DL-based systems. State-of-the-art defense methods
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mostly focus on image processing target models. Therefore, showing the applicability
of our concept in additional types of data sets poses a significant step towards more
robust defense methods. We introduce the test environment and results in a stand-alone
paragraph in Section 3.2.6.3.

Note that we additionally performed and evaluated adaptive attacks. To emphasize
the importance of this final evaluation, we describe the settings in more detail in Sec-
tion 3.2.7.

Experiment Summary With the following list we summarize our performed experi-
ments and provide an orientation for our subsequent evaluation. In summary, we per-
formed the following experiments:

� Main proof of concept:

– Detecting one specific attack method

– Detecting unseen attack methods

– Detecting multiple attack methods

� Supplementary experiments:

– LSTM and capsule targets

– Noisy inputs

– Misclassified inputs

– Detecting NLP and audio attacks

� Adaptive attacks

3.2.6 Evaluation

We split the evaluation of DLA’s performance under the consideration of our main threat
model into three parts. First, we discuss our analysis of the extracted features and
show their distribution using a representative example. Secondly, we present the main
results accumulated during our experiments shown in Section 3.2.5.4. This includes the
performance of the different alarm models while detecting adversarial examples. Thirdly,
we present the results of our supplementary experiments according to Section 3.2.5.4.

3.2.6.1 Dense-Layer Activation Analysis

As the extracted dense-layer activations are the core of our hypothesis and concept, we
illustrate the major findings during our analysis. In Figure 3.5 we show neuron activation
sequences for the LeNet5 target model and all five attack methods. For better visualiza-
tion we reduced the dimensionality of the data using PCA and t-distributed stochastic
neighbor embedding (t-SNE). The sub-figures show the neuron coverage of the dense
layers during the classification of benign and adversarial images. Gray dots represent
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Figure 3.5: Visualization of the extracted dense-layer activations after dimensionality reduction
using PCA and t-SNE.

benign instances and red crosses indicate adversarial ones. Each column shows the hid-
den activations for one attack method. We can clearly see a difference in the dense-layer
activation patterns with respect to the nature of the inputs. Especially for the visual-
ization using t-SNE. Here, we can see clusters indicating the ten classes of the MNIST
data set. As expected, the adversarial examples fill the gaps between the class-based
clusters. Figuratively speaking, we see the adversarial examples crossing the decisions
boundaries of the attacked neural network. This finding gives first evidence on the verity
of our initial hypothesis that the activations carry important information on the behav-
ior of the target. Furthermore, we can provide a first estimation of the complexity and
detectability of the individual attack methods. The PCA data points of the C&W-based
activation sequences overlap to a higher extent than for the remaining methods. This
suggests a more challenging detection of the adversarial examples confirming the current
assumption of the attack being the most efficient white-box method.

With this initial experiment we argue that the activation values are indeed useful to
detect attacks. Even this simple visualization might already be used to accomplish this
task. Yet, since we provide an end-to-end framework to detect adversarial examples we
directly use the raw extracted activations. We assume a higher level of generalization if
we train our alarm neural networks to perform the detection.

3.2.6.2 Results of the Main Experiments

We quantify the detection capability of DLA using the F1 score. This is due to the fact
that our alarm models contain output layers with two neurons. Hence, the decision of
the alarm models does not depend on a detection threshold. Due to potential imbalances
in the test data sets, we chose the F1 score instead of the standard accuracy as our main
evaluation metric. Furthermore, we present the mean false positive and false negative
rates. These rates can further be optimized according to the underlying use case. As we
have mentioned in Section 3.2.5.2, by changing the alarm model’s architecture to solely
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Table 3.2: F1 scores of the individual DLA alarm models when trained and tested with the
activations extracted using the corresponding attack method. Main results of the
proof-of-concept experiments for DLA.

Data Target
F1 Score of the Alarm Models
Tested with the According Attacks:
FGSM C&W DF PGD BIM

MNIST
LeNet5 0.99 0.98 0.98 0.99 0.99
KerasExM 0.99 0.98 0.98 0.99 0.99

CIFAR10
KerasExC 0.85 0.73 0.86 0.84 0.85
ResNet 0.82 0.73 0.83 0.83 0.83

Table 3.3: Precision and recall of the individual DLA alarm models. Each alarm model is
trained and tested with the features extracted for one attack method. Supporting
the main results of the proof-of-concept evaluation.

Data Target
Precision and Recall of the Alarm Models Tested
with the According Attacks: (prec.; rec.)
FGSM C&W DF PGD BIM

MNIST
LeNet5 1.00; 0.98 0.98; 0.97 0.99; 0.97 1.00; 0.99 1.00; 1.00
KerasExM 1.00; 0.99 0.98; 0.97 0.99; 0.98 1.00; 0.99 0.99; 0.99

CIFAR10
KerasExC 0.87; 0.82 0.72; 0.75 0.87; 0.84 0.85; 0.83 0.86; 0.85
ResNet 0.86; 0.77 0.78; 0.68 0.89; 0.78 0.87; 0.80 0.88; 0.79

contain one neuron in the output layer, an adaptable threshold can be used to influence
the sensitivity of the detection.

Detecting One Specific Attack Method In Table 3.2, we list the F1 scores of the
individual alarm models when tested against their dedicated attack method. We see
a near perfect detection capability for all attack methods and target models with the
MNIST data set. The respective F1 scores range above 0.9. For the CIFAR10 data set we
report competitive results as well. Here, our framework detects the majority of attacks,
posing a viable solution for real-world applications. Due to the higher complexity of
the CIFAR10 images, we report a lower mean performance compared to the MNIST
experiments. In Table 3.3, we show the achieved precision and recall values. We report a
balanced performance of DLA for the individual experiments. A more detailed evaluation
of the error rates is shown below.

Detecting Unseen Attack Methods With our cross-testing experiments we show that
our concept is capable of detecting new, unseen attacks. We trained the alarm model
with features provoked by one attack method and tested it with features based on mul-
tiple attacks. In summary, for both data sets and for each target model we tested six
alarm models. Each alarm model was tested against six attack methods simultaneously.
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Table 3.4: F1 scores of the individual DLA alarm models when detecting all attack methods
simultaneously. Each alarm model was trained with activations provoked by one
attack and tested with a combined feature set including unseen attack methods.

Data Target
F1 Score of the Alarm Models Tested with all
Attacks:
FGSM C&W DF PGD BIM Transf.

MNIST
LeNet5 0.94 0.96 0.96 0.92 0.92 0.96
KerasExM 0.93 0.97 0.96 0.92 0.92 0.97

CIFAR10
KerasExC 0.78 0.66 0.79 0.78 0.79 0.74
ResNet 0.76 0.72 0.78 0.77 0.77 0.57

Table 3.5: F1 scores of the combined DLA alarm models when tested against each attack sep-
arately and all attacks at once.

Data Target
F1 Score of the Combined Alarm Model Tested
with Individual Attacks:
FGSM C&W DF PGD BIM Transf. Comb.

MNIST
LeNet5 0.98 0.97 0.97 0.98 0.98 0.93 0.98
KerasExM 0.98 0.97 0.98 0.98 0.98 0.95 0.98

CIFAR10
KerasExC 0.77 0.74 0.77 0.77 0.77 0.74 0.77
ResNet 0.81 0.69 0.83 0.82 0.82 0.75 0.80

This includes the five attack methods as well as transferred adversarial examples. Five
of the six alarm models we used are trained on the attack methods FGSM, C&W, DF,
PGD, and BIM. The additional alarm models are trained using features extracted during
transfer attacks. In Table 3.4 we summarize the performance of our approach during
this experiment. As an example, for LeNet5 DLA scored an F1 score of 0.94 when
trained with FGSM, yet tested against FGSM, C&W, DF, PGD, BIM, and transferred
adversarial examples. With the results we report a successful detection of adversarial
examples, for which the underlying method has not been known beforehand. Interest-
ingly, the alarm models trained with transferred adversarial examples yield competitive
results. Especially for MNIST, DLA reached an F1 score of 0.96 and 0.97 for the two
target models. For ResNet the performance dropped significantly to 0.57 in this case.
We therefore recommend using specifically crafted adversarial examples targeting the
model one tries to protect.

Detecting Multiple Attack Methods To evaluate if training on a combination of fea-
tures based on multiple attack methods improves the performance of our method, we
created a combined alarm model for each data set. For each target model, the combined
alarm model is trained with features extracted during the evaluation of all attack meth-
ods. Table 3.5 provides an overview of this experiment. The F1 scores show that the
combined alarm models are able to detect all tested adversarial attack methods. Com-
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paring the results to Table 3.2, we can report similar results with the combined models.
As expected, the performance decreased slightly across the experiments. Due to the
combination of attacks, the alarm models are optimized to generalize across a diverse
set of training samples. The advantage of this settings is the fact, that solely one alarm
model needs to be trained, reducing the computational overhead of DLA. In Table 3.5 we
additionally show the F1 scores when detecting all attacks simultaneously. Hence, the
right-most column shows the performance of DLA when trained and tested with a highly
diverse feature set. Again, we report competitive results. Finally, regarding the trade-off
between robustness against multiple attacks and the resulting detection capability we
can recommend using a combined model during the application in the field.

Error Rates During the detection of adversarial examples it is important to evaluate
the error rates which heavily influence the real-world applicability of the system. There-
fore, we performed detection runs on multiple non-overlapping batches using our test
data sets. For MNIST, the mean false positive and false negative rates are 0.01 and
0.02, respectively. Similarly, for CIFAR10 we report mean error rates of 0.14 and 0.21,
respectively. For both settings, our method did not miss a disproportionate amount
of adversarial examples. This is an important finding with regard to the applicability
in a real-world setup. Still further use-case and data-set-depended optimizations are
required. For the interested reader we show all individual results of this experiment
including the mean error rates with the according standard deviations in Table A.1
(Appendix A.1.2).

3.2.6.3 Results of the Supplementary Experiments

LSTM and Capsule Targets During our tests with an LSTM and capsule target net-
work, we were able to detect adversarial images based on the MNIST data set with
F1 scores of 0.93 and 0.94, respectively. The positive results emphasize the applicabil-
ity of our concept for a wide range of neural-network architectures using dense layers.
Furthermore, with this experiment we make first steps towards applying our method
to dense-layer-free target models. Our LSTM target model incorporates two dense lay-
ers after the LSTM unit. Even though the main learning power resides in the LSTM
unit, our framework can leverage the information from the additional dense layers. This
suggests that adding dense layers to dense-layer-free target models again enables the
application of our concept.

Noisy Inputs In Table 3.6, we show the results of the tests containing noisy images.
We performed the experiments for two target models and the FGSM attack method.
The performance of the individual alarm models was decreased by 10% in the worst
case. Even though our method still detected a fair amount of attacks, noise noticeably
reduced the performance of the system. Still, we conclude that DLA does not solely
detect perturbed inputs. This provides evidence that the activations allow an analysis
of the observed target model’s behavior.
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Table 3.6: Performance of DLA when detecting adversarial examples among clean and noisy
benign images.

Data Target Attack F1 Score

MNIST LeNet5 FGSM 0.90

CIFAR10 ResNet FGSM 0.79

Misclassified Inputs In this experiment we evaluated if our approach allows detection of
original but incorrectly classified inputs. We argue that adversarial examples provoke a
distinct pattern in the activation values enabling detection. Hence, successfully training
an alarm model which is designed to detect misclassified inputs would contradict our
main hypothesis. During our experiments with the MNIST and CIFAR10 data sets, we
were not able to train such an alarm model. This indicates that our intuition holds true.
Contrary to adversarial examples, misclassified original inputs provoke a behavior of the
target model similar to the scenario in which correctly classified inputs are handled.
Therefore, DLA does not flag incorrectly classified benign samples as adversarial.

Detecting NLP and Audio Attacks With the following experiments, we evaluated
the general applicability of DLA in different application domains. During this analysis,
we crafted adversarial examples based on an NLP and audio data set. As previously
introduced, we used the IMDb and Mozilla Common Voice data sets.

The process of generating adversarial examples for the two data sets is not part of the
contribution of this thesis. Nevertheless, some basic notes are worth mentioning. With
the IMDb data set, we used Algorithm 1 (Appendix A.1.1) to generate misclassified
movie reviews. Instead of adding or deleting words, we chose to replace words in the
individual instances. With this approach, we preserved the lengths of the classified
sentences and reduced the distance between benign and adversarial examples. Here,
after training DLA, we were able to reliable detect adversarial examples. DLA reached
an F1 score of 0.97.

For the audio data set, we used Carlini and Wagner’s approach to create adversarial
examples [97]. Extracting the features of the audio files leads to neuron activation
sequences of different lengths. This is the result of various sampling rates during the
recording of the original audio samples in the data set. To be able to perform binary
classifications using all feature instances, we used a different alarm model architecture
here. The alarm model contains one LSTM unit followed by one output layer with two
neurons to enable the detection of attacks. For this data set we were able to detect
adversarial examples with an F1 score of 0.86.

3.2.7 Robustness Against Adaptive Attacks

In this section we evaluate adaptive white-box attacks in which the attacker has perfect
knowledge of the target model and our detection method. For this purpose we assume the
second threat model presented in Section 3.2.3.2. As shown by Carlini and Wagner [51],
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the majority of proposed detection methods can easily be bypassed by an adaptive
attack. Therefore, this evaluation should play a major role during the presentation of
new defense strategies. We emphasize the importance by showing the experimental setup
and the according evaluation in this separate section.

3.2.7.1 Experimental Setup for Adaptive Attacks

To perform an adaptive attack against DLA, a few adaptations need to be introduced:
First, we changed the alarm model architecture such that one single linear output neuron
is used. Note that we did not optimize the detection threshold for this output neuron
which might influence the robustness against adaptive attacks. Secondly, we combined
our target and alarm models to one overall network. We use the following function G(x)
to represent this combination of classifier and detector:

G(x)i =

ZF (x)i, if i ≤ N

AD(x) ·max
j

ZF (x)j , if i = N + 1

where AD(x) = (2(maxj ZF (x)j > 0) − 1) · ZD(x) + 1 decides if our secured model will
output an alarm signal or not. The overall system now contains eleven output logits for
which the first ten logits represent the classification output, while the last logit shows
the output of the detector. This formula allows the first ten logits to be negative.
With G(x) we generated adversarial examples for the complete system using the C&W

method. Here, we used the code published together with the paper [98]. We performed
this attack on our four main target models: LeNet5 and KerasExM for MNIST as well
as KerasExC and ResNet for CIFAR10.

3.2.7.2 Evaluation of Adaptive Attacks

To evaluate the robustness of our method against adaptive attacks, we used the mean
l2-distance between adversarial and benign images to either fool the simple target model
or the DLA-based system as well as the attack success rates as metrics. We generated
adversarial images for both systems using the same attack parameters to preserve com-
parability. This allows an estimation of the persisting vulnerability to attacks after the
addition of DLA. The parameters listed in Table A.2 (Appendix A.1.3) are chosen such
that the attacks reached a 100% success rate when targeting the unprotected target
models building the baseline protection level. In Table 3.7 we summarize our results.
The four secured target models required a significantly higher l2-distortion compared to
their unsecured counterparts.
For the MNIST-based LeNet5 target model, our defense method more than doubled

the required mean l2-distance compared to the unsecured models. Furthermore, we
reduced the attack success rate to 44.6%. Similarly, for KerasExM we increased the
mean l2-distance to fool our secured model by 80%. We report an attack success rate of
97.6%.
For CIFAR10 and the KerasExC target model we achieved similar results. When

attacking the simple target model, the mean l2-distance is 0.43. In contrast to that, when
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Table 3.7: Results of the adaptive attacks on DLA.

Data Target
Attack

Success Rate
Mean

l2 Distortion
unsecured secured unsecured secured

MNIST
LeNet5 100.0% 44.6% 2.17 4.42
KerasExM 100.0% 97.6% 1.51 2.72

CIFAR10
KerasExC 100.0% 53.3% 0.43 0.85
ResNet 100.0% 99.7% 0.13 0.38

attacking DLA, the adversarial images show a mean l2-distance of 0.85 with respect to
their benign counterparts. Moreover, only 53.3% of adversarial examples of the adaptive
attack were successful. Concerning our ResNet target model we are able to report a minor
improvement of its protection. This is due to its complexity and size of the resulting
feature space. As mentioned above, we used the same alarm model architecture for all
test scenarios to show the simplicity of our approach. In this case, a bigger alarm model
may be required to cope with the extracted features more efficiently.

With our numerical study we show the robustness of our concept against adaptive
attacks. To support our conclusion, we show the adversarial examples which are able
to fool our secured KerasExM and KerasExC target models in Figure 3.6. For both
data sets we show the original images in the first and the adversarial counterparts in the
second row. We report a significant difference between benign and adversarial images.
The perturbations required to fool our secured systems are clearly visible which enables
a human expert to identify the adversarial examples. This becomes even more clear
when comparing the images to the previously successful adversarial examples in Fig-
ure 3.4. With respect to our introduced threat models, we emphasize that the resulting
adversarial attacks may not be considered successful. In our threat model we restricted
the capabilities of the attacker to mutate the inputs of our target models, such that
the changes are not easily visible to a human expert. This is not fulfilled here. Hence,
we can report a significant improvement in our target models’ protection, even during
white-box adaptive attacks.

3.2.8 Discussion

With the in-depth experiments in this section we show the importance of the dense layers
analysis in future NN defense strategies. In Section 3.2.6, we sum up the most important
results to underline our conclusion. Nonetheless, some aspects regarding detection per-
formance, transferability, and real-world applications, as well as a comparison to related
work require further discussion.

First, we want to discuss the trade-off between false positive and false negative errors
during detection. Without optimizing the detection threshold of the alarm models we
report the false negative rate to be higher than the false positive rate. Hence, we
recommend further use-case specific adaptations before deploying our method in security-
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Figure 3.6: C&W-based adversarial examples during adaptive attacks on DLA. The first two
rows show MNIST-based examples for the KerasExM target model. The lower two
rows are based on CIFAR10 and KerasExC.

sensitive setups. Here, the base-rate fallacy is worth mentioning. The number of false
alarms is often a crucial performance characteristic of attack detection systems [99] and
should not be neglected when aiming to reduce the false negative rate.

Throughout our cross-testing experiments, we evaluated the generality of our method.
We give evidence for the distinct behavior of NNs when confronted with adversarial
examples, independently of the used attack method. This allows two main conclusions:
Future, yet unknown attacks which follow similar approaches as current ones seem de-
tectable using our concept. Furthermore, it allows a ranking of attack methods. This
ranking is based on two findings. First, the difficulty in detecting each attack, expressed
by the F1 score of the respective alarm model. Secondly, by the performance of the
alarm model created for the attack itself when detecting examples crafted with other
attack methods. As an example, if we focus on the C&W attack on the ResNet target
model: We can clearly see that this attack method can only be detected by the alarm
model specifically created for this purpose. Hence, we deduce the C&W attack being
the most powerful method used here. This correlates with current findings in the field
of adversarial attacks and defense strategies. As discussed in Section 3.2.2, the C&W
attack is currently considered to be the most powerful white-box attack.

A possible restriction our approach may suffer from is the architecture of the model
to protect. One could argue that we are not able to detect attacks if the target model
does not incorporate dense layers. This can be ruled out considering the following three
concepts: The maintainer of the target model creates a substitute model which performs
the same task as the target model itself, achieving a similar accuracy. If this substitute
model uses dense layers, we are again able to apply our concept. The positive results
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during our experiments regarding transfer attacks indicate the practicality of this idea.
Alternatively, additional dense layers may be added to the original target model. Our
experiments with LSTM target models indicate the practicability of this idea as well.
The target model contains dense layers after the LSTM unit in which the main learning
power resides. A thorough evaluation of both solutions is out of scope in the context of
this thesis. The third approach to allow the application of DLA together with a wider
range of target model architectures would be the analysis of all activation values. Instead
of specifically selecting the dense layers from which the activations are drawn, training
an alarm model with the activation values of all hidden layers may lead to similar results
as shown in this section. We build upon this idea in Section 3.4.

Finally, we want to emphasize the simplicity of our approach. During our research on
related work, we noticed the defense strategies to be rather counterintuitive and having
several sources of errors when not applied correctly. Our method, in contrast, is easy
to use and seems intuitively reasonable. In addition, our method does not decrease the
accuracy of the model to protect when tested against benign images, which is the case
for some state-of-the-art defense strategies. One important aspect when comparing our
method to related techniques is worth mentioning: We did not optimize our framework
to its full detection capability. Note that we solely used one alarm model architecture
during our main experiments on MNIST and CIFAR10. Furthermore, we did not tune
the training process of the alarm models in relation to each target model. We regard
this as out of scope for this study. Moreover, it shows the simplicity and generality of
our approach. Even with a generic setting, promising and highly competitive results
were achieved. If the user further tunes the settings in a use-case-specific manner,
superior results are achievable. The drawback of this approach is the limited possibility
of comparing our method directly to related work. As related detection schemes are
often optimally adapted to the underlying use case and data set, a direct comparison
would not lead to meaningful conclusions. Therefore, we solely compared our method
to state-of-the-art techniques on a conceptual level.

3.2.9 Conclusion

In this section, we introduce a general end-to-end framework to detect adversarial ex-
amples during classification time called DLA. Our approach consists of two phases.

First, in the training phase we observe the dense-layer activation patterns of the
model to protect. For this purpose, we extract the neuron coverage of the target model
to directly train a secondary NN we call alarm model. This alarm model distinguishes
between activations sequences extracted during the classification of benign and adver-
sarial inputs. This approach is motivated by our main hypothesis that the dense layers
of the target model carry robustness-sensitive information. Thus, the alarm model is
trained to detect malicious activity patterns triggered by adversarial examples during
classification time.

In the second phase, the target model runs in secure operation mode, which is enabled
by enhancing it with our trained alarm model. When the target model classifies new,
unseen inputs, the alarm model runs in parallel and produces an alarm if an adversarial
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example is being processed by the target. This approach leaves all parameters — espe-
cially the accuracy — of the target model untouched, while improving overall application
robustness significantly. In our proof-of-concept implementation, we show the extensive
capability of our approach to detect adversarial examples in image, NLP, and audio
data sets. The evaluation results strongly indicate that we can not only defend with
high accuracy against state-of-the-art adversarial examples, but also against future, yet
unknown attacks which follow similar approaches as current ones. Finally, with adaptive
attacks we show that an attacker needs to induce significantly more adversarial pertur-
bations to attack our detection-enhanced system, compared to attacking the unsecured
target model.

With the insights of this section at hand, two open questions arise which we answer
throughout the remainder of this thesis: Q1: Is our presented target-alarm structure
a generally applicable architecture to increase the level of protection of NNs against
adversarial examples? We have seen that our architecture allows the detection of attacks
based on the analysis of the activations of the NNs. In the following, we present a method
to protect NNs even if the activation values are not available by leveraging a different
source of information.
Q2: How can the insight that the activation values of NNs carry robustness-sensitive

information be leveraged and further be used in the context of robustness and security
in general? We have seen that the activations values can be used to detect attacks
in a hostile environment where attackers are present. In the following, we leave this
environment and deploy our method in the realm of anomaly detection.
Q1 is answered in Section 3.3.
Q2 is answered in Section 3.4.

40



3.3 DA3G: Detecting Adversarial Attacks by Analyzing Gradients

3.3 DA3G: Detecting Adversarial Attacks by Analyzing
Gradients

In this section, we present an additional application mode of our previously introduced
target-alarm architecture. Parts of the section are taken verbatim from the original
paper “DA3G: Detecting Adversarial Attacks by Analysing1 Gradients” published at
the 26th European Symposium on Research in Computer Security (ESORICS) 2021 [2].
This is collaborative work with the co-first author Jan-Philipp Schulze.

3.3.1 Motivation

In Section 3.2 we introduce our adversarial example detection method DLA. We show
that by using our modular structure containing the model to protect (target model) and
an auxiliary detection model (alarm model) we are able to successfully detect evasion
attacks. The main source of information on the current behavior of the target model are
its activation values, automatically analyzed by the alarm model.

In this section, we analyze whether our modular approach can be applied even though
the activation values of the target model are not available. Specifically, we consider Q1
which arose in the previous section: Is our target-alarm structure a generally applica-
ble architecture to increase the level of protection of NNs against adversarial examples?
To answer this question, we use DLA’s architecture, yet provide it with an alternative
source of information. Instead of analyzing the dense-layer activations, we use the gra-
dient of the target models caused by the input samples. With our evaluation we show
that our architecture can indeed be used as a powerful detection approach, either with
the dense-layer activations or the gradient of the target model. Based on this change
of architecture, we call the gradient-driven DLA-based adversarial example detection
method DA3G: detecting adversarial attacks by analyzing gradients. In summary, in
this section we present the following contributions:

� We show that our target-alarm architecture is useful to detect adversarial examples
even when the target’s activations are not available.

� We compare the performance of the gradient-driven DLA version to the original
DLA approach and another state-of-the-art detection method.

� We thoroughly investigate adaptive white-box attacks and find a significant in-
crease of protection compared to unprotected models.

3.3.2 Related Work

With DA3G, we show that our target-alarm structure is a versatile tool allowing a
reliable adversarial example detection. This holds true even if we replace the analysis of

1Note that the original paper was written and published in British English. Yet the contributions in
this thesis are presented in American English.

41



3 Neural Network Activation-based Adversarial Example and Anomaly Detection

the activations by observing the target’s gradient. In the following, we introduce most
related recent findings in this area in more detail.

ML-LOO is currently considered the most accurate detection method presented by
Yang et al. [100]. The authors build upon methods from the field of explainable AI,
namely leave-one-out (LOO). Hence, ML-LOO is tested for the image processing domain.
The importance of each input pixel is quantified by erasing it and measuring the change
in the output prediction of the target model. ML-LOO uses the interquartile range of
the LOO distribution as decision variable. The authors discovered that benign inputs
have a significantly narrower LOO distribution. This translates to the observation that
for benign inputs only a few input pixels are important for the output.

Closely related to our approach of using the gradient within our target-alarm archi-
tecture are the methods Gradient Similarity by Dhaliwal and Shintre [101] and GraN
by Lust and Condurache [102]. Both detection methods use the gradient of a target
model to calculate a set of metrics which are used as input to a logistic regression clas-
sifier. This classifier then acts as the adversarial example detection instance. In GraN,
the authors calculate the layer-wise l1-norm. The authors of Gradient Similarity use
the l2-norm enriched by the cosine similarity to certain training samples. Both sets of
metrics are valuable sources of information to detect known and unknown adversarial
attacks which the authors show with their evaluations. Opposed to Gradient Similarity
and GraN, with DA3G we directly use the raw gradient of the target model instead
of performing a manual feature extracting step. By directly using the raw gradients
without the calculation of predefined metrics, our method uses the entire information
available. Thanks to our target-alarm architecture, DA3G is more flexible and scalable
as it readily integrates with complex NN architectures. Furthermore, in contrast to the
aforementioned research, we consider an adaptive-attack threat model throughout our
evaluation.

Finally, the most related method to DA3G is DLA introduced in Section 3.2. We build
upon the target-alarm structure and instead of using the activation values of the target
we analyze its gradient. To this end, we show that our approach works for a wide range
of data sets and target models even if the activation values are not available. Similarly
to DLA, our evaluation of adaptive white-box attacks shows that DA3G increases the
required resources of attackers to successfully fool the protected models.

3.3.3 Considered Threat Models

Based on our general introduction to threat models in adversarial machine learning
presented in Section 2.2.1, in this section we summarize the considered capabilities of
the attackers for the introduction and evaluation of DA3G.

3.3.3.1 Main Threat Model: Gray-Box Attacks

During gray-box attacks, adversaries have access to the parameters of the NNs and hence
are capable of using the model’s gradients. In our main threat model, the attackers alter
the classification output of the attacked NNs in an untargeted manner. The produced
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adversarial examples are bounded by the l2 and l∞ norm depending on the chosen attack
method. Here, the attackers are not aware of the defense method, however, they have
unrestricted access to the NN under attack, i.e., our target model. We use untargeted
attacks as these pose the less challenging task for the attacker: The target model sug-
gesting any other class than the original one is considered as successful attack. This
setting evaluates DA3G’s detection performance prior to adaptive attacks and allows
comparison to our later introduced baseline methods.

3.3.3.2 Adaptive-Attack Threat Model: White-Box Attacks

In white-box settings, the adversaries are aware of all parameters of the system containing
the NN under attack and the used countermeasures. Thus, attackers aim to bypass the
defense while steering the decision to their desire. These adaptive attacks are known to
circumvent many past defense methods [14, 51, 72] and are therefore a main evaluation
point for DA3G. We use l2 and l∞ bounded attacks and consider targeted attacks using
the least-likely target class [56] similar to Carlini et al. in [51].

3.3.4 Detecting Adversarial Examples using Gradient-driven DLA

In Section 3.2, we have shown that this discrepancy between the adversarial input which
is close to a benign class, and its output which the attacker shifted to a wrong class, is
measurable in the dense-layer activations. Using our DLA architecture we are able to
leverage this information. Complementary, in this section we argue that our architecture
provides means to detect adversarial examples even if the activations are not available.
In this section, we exemplary use the gradient of the attacked NN. Again, instead of man-
ually defining features we leverage DLA’s architecture and directly analyze the available
information in the gradient using a secondary NN, the alarm model. During training,
the true labels of the inputs are available which directly allows the calculation of the
gradients. This does not hold true for the testing phase. Here, the labels of the inputs
are not known. The gradients in this phase are therefore calculated with respect to the
output neuron with the highest activation.

3.3.4.1 DA3G Architecture

As we directly use our DLA architecture, DA3G consists of two NNs: the pretrained
target model ft and the alarm model fa. The alarm model analyzes the target model’s
gradient caused by new yet unseen inputs. As output, it returns a score which increases
with the probability of the input being adversarial. During supervised training, the alarm
model learns to generalize the gradient of the known benign and adversarial samples to
yet unseen inputs. We give an overview of our architecture in Figure 3.7. Note that
solely the information provided to the alarm model differs from our visualization of DLA
in Figure 3.2.
Previous work by Dhaliwal and Shintre [101] and Lust and Condurache [102] has

shown that there are measurable differences in the gradient for benign and adversarial
inputs. In this section, we use this insight to test if our modular architecture provides
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Figure 3.7: Summary of the components of the adapted DLA architecture using gradients as
inputs, here called DA3G, consisting of a target and an alarm model.

means to detect adversarial examples even if the activation values are not available.
Therefore, in the following we give a brief introduction to gradients and how we use
them within our architecture. An NN’s gradient is based on its loss function L(y, y′),
which allows the quantification of the discrepancy between the current output y to the
expected output y′. During inference in which DA3G protects the target model, y′ is
not known. Instead, we use the estimated output ŷ = f̂(x;θ), which is always available
for the pretrained target model. In other words, we compare the predicted output to
the most likely output class.

3.3.4.2 DA3G’s Alarm Model Training

The training procedure is closely related to the one of DLA. In Figure 3.8 we visualize the
required steps to first train the target and alarm models to finally allow the adversarial
example detection. With DA3G, we protect a target model which was pretrained using
the benign training data set. In the initialization phase, the alarm model analyzes
the target’s gradient calculated using benign and specifically crafted adversarial inputs.
Using the gradient, the alarm model is trained in a supervised manner finally being able
to distinguish between benign and adversarial inputs processed by the target model. In
the secure operation phase, the target performs standard classifications while the alarm
model observers the target’s gradient and produces an alarm once attacks are detected.

3.3.5 Experimental Setup

In the following, we describe the settings, which we carefully evaluated DA3G in. This
serves as basis for our evaluation in Section 3.3.6.

3.3.5.1 Data Sets

For easier comparison to prior work, we chose the publicly available and commonly
applied [47] data sets MNIST [83], Fashion-MNIST [103], and CIFAR10 [84]. All three
data sets contain images, differing in complexity and size. Fashion-MNIST is a drop-in
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Figure 3.8: Step-by-step overview of DA3G’s training process in the first two columns and the
final attack detection in the right column.

replacement for MNIST and shows more complex items like clothes and shoes. The data
sets comprise a predefined train and test split, which we used throughout our evaluation.
During the training of DA3G, we introduced a validation set for which we drew 20%
from the training data. As preprocessing step, we scaled input data to the range [0, 1].

3.3.5.2 Architectural Choices

Target Models As target models, we evaluated a set of popular NN architectures,
each serving as classifier for the respective data set. For MNIST and Fashion-MNIST,
we chose the well established and tested LeNet5 architecture together with an example
model provided by Keras which we call KerasExM. Similarly, we trained a ResNet model
and again a Keras example architecture for CIFAR10, called KerasExC. We give an in-
depth overview of the respective architectures and parameters in Table 3.8. During our
experiments with DLA, we used similar target architectures. We therefore use the same
model names. Note that we did not use the identical models and used newly trained
ones throughout this section.

Alarm Models To show the general applicability of DA3G, we used one common ar-
chitecture for the alarm model and all three data sets. Across all experiments, we chose
a simple, fully connected, and SELU-activated [104] NN with the following layer dimen-
sions: 100, 50, 10. We trained the alarm model for 500 epochs using Adam with a
learning rate of 5 · 10−5. The detection decision of the alarm model is produced by one
single linear output neuron which can be controlled by setting a respective threshold. In
order to lower the resource demands of DA3G especially during the training process of
the alarm models, we limited our analysis to the gradient based on the last two target
model layers. We did not perform an evaluation, which layers result in the best detection
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Table 3.8: Target models we used during the proof-of-concept implementation for DA3G. We
give a short summary of each model’s architecture as well as the used training settings
and resulting train and test accuracy.

Data Model Architecture Settings
(F
as
h
io
n
-)

M
N
IS
T LeNet5 [87]

– 2 convolutional layers with filter
sizes 6 and 16
– each convolutional layer is fol-
lowed by a average-pooling layer
– finally, 1 flatten layer and 3 dense
layers with 120, 84, and 10 neurons
each

– learning rate: 0.001
– epochs = 20
– batch size: 128
– test accuracy
MNIST: 98.9%
– test accuracy F-
MNIST: 90.8%

KerasExM [88]

– 2 convolutional layers with filter
sizes 32 and 64
– each convolutional layer is fol-
lowed by 1 max-pooling layer
– finally, a flatten layer, a 0.5
dropout layer, and a dense layers
10 neurons

– learning rate: 0.001
– epochs: 12
– batch size: 128
– test accuracy
MNIST: 99.3%
– test accuracy F-
MNIST: 90.8%

C
IF
A
R
10

KerasExC [90]

– 4 convolutional layers, the first
pair with filter size 32, the second
pair with filter size 64
– max-pooling after each pair
– 0.25 and 0.5 dropout, flatten
layer, and 2 dense layers with 512
and 10 neurons

– learning rate: 0.0005
– epochs: 100
– batch size: 32
– test accuracy: 85.0%

ResNet [89]
– ResNet20, version 1
– for further details: [89]

– epochs: 200
– batch size: 32
– test accuracy: 91.8%

performance, but expect the last two layers to influence the output the most. Future
work might investigate this setting in more detail.

3.3.5.3 Attack Methods

In accordance with common guidelines presented by Carlini et al. [14], we evaluated
DA3G using three attack methods of different types: PGD [19], DeepFool (DF) [20],
and the C&W [22] attack. Because of similarities among attacks of the same type, our
evaluation contains a sufficiently diverse set of methods. We profited from the attack
categorization introduced by Zhang et al. [47]. Here, the authors divided the attacks
into gradient-based, decision-based, and optimization-based methods. PGD represents
gradient-based multi-step attacks, DF decision-based, and C&W optimization-based ap-
proaches. For PGD and DF, we considered both the l2 and l∞ versions of the attacks,

46



3.3 DA3G: Detecting Adversarial Attacks by Analyzing Gradients

while concentrating on the l2 version of the C&W attack. DF and C&W generate ad-
versarial examples in an unbounded manner. Hence, the attacks try to find minimally
altered samples fooling the attacked NN within the given perturbation budget ϵ. PGD,
on the other hand, is a bounded method and therefore generates adversarial examples
x̃ with the property ∥x̃− x∥ ≈ ϵ. For MNIST and Fashion-MNIST, we set ϵ to 0.3 and
4.0 for the l2 and l∞ attacks, respectively. Similarly, for CIFAR10 we set ϵ to 0.03 and
0.9. For all attacks, we selected the parameters such that a 100% success rate is reached
when attacking the unprotected targets.

3.3.5.4 Baseline Methods

During our experiments, we compared the performance of DA3G to our adversarial
example detection method DLA, and to the state-of-the-art method ML-LOO introduced
by Yang et al. [100].

We selected ML-LOO based on the thorough evaluation presented in the survey on
adversarial example detection by Zhang et al. [47]. In this survey, the authors compared
five different methods using three data sets. The authors concluded that ML-LOO pro-
vided the best detection capabilities, outperforming the remaining four methods in the
majority of the evaluated test cases. A drawback of ML-LOO is its required computation
time during training and inference. To mitigate this problem, we concentrated on the
last two layers of each target model as source of information as also done in DA3G. We
trained ML-LOO’s logistic regression models for 1000 iterations each.

As DA3G uses the target-alarm architecture we introduced in Section 3.2, we slightly
adapted DLA and added it to this experiment pipeline. By comparing DA3G to DLA,
we can directly assess the impact of using the gradients instead of the dense-layer ac-
tivations as source of information. Therefore, we are able to investigate and argue the
general applicability of our modular target-alarm structure consisting of NNs only. In
our experiments, we used the same alarm models for DLA and DA3G. We trained DLA’s
alarm models for 50 epochs each, again using Adam with a learning rate of 5 · 10−5. In
contrast to the original implementation of DLA’s alarm models containing two output
neurons, in this section we used single output-neuron models. This allows a direct com-
parison of our two detection methods without the need to individually set detection
thresholds or translating results to a common base.

3.3.5.5 Experiment Overview

We carefully designed a set of experiments to evaluate the performance of DA3G. Each
one considers a different attack surface, where the attacker’s abilities and knowledge
increase. If not stated otherwise, we used 40 000 adversarial examples to train DA3G
and the two baseline methods. In our evaluation, we considered the following four
experiments. For the first three settings, we assumed the gray-box threat model (Sec-
tion 3.3.3.1), while we used the white-box threat model (Section 3.3.3.2) for the final
experiment.
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1. Basic Gray-Box Detection. Detection of the same attack type that DA3G was
trained on. We compared DA3G’s performance against ML-LOO and DLA as
examples of state-of-the-art adversarial detection methods.

2. Combined Gray-Box Detection. Detection of multiple attack types that DA3G
was trained on. Additionally, we evaluated the influence of the number of known
adversarial examples to simulate environments, where it is infeasible to generate a
large amount of training samples.

3. Leave-One-Out Gray-Box Detection. Detection of other kinds of attack methods
than the ones known during training. This measures the protection against yet
unknown attacks.

4. Adaptive White-Box Attacks. Protection against adversaries that are aware of
DA3G and adapt their attack accordingly. This simulates a setting with an omni-
scient attacker, who knows the countermeasures used.

Adaptive Attacks We based our adaptive attacks on the findings of Carlini et al. [51]
and on our attack strategy against DLA which we presented in Section 3.2.7.2. Let Zt(·)
and Za(·) be the output logits of the target and alarm models, respectively. And let N
be the number of output classes, then an adversary attacks the combined function G(·):

G(x)i =

Zt(x)i, if i ≤ N

(Za(x) + 1) ·max
j

Zt(x)j , if i = N + 1

We distinguish between inputs considered benign by the alarm network, i.e., Za(x) <
0, and malicious inputs, i.e., Za(x) > 0. In the respective cases, DA3G’s decision
becomes:

argmax
i

(G(x)i) =

argmax
i

(Zt(x)i), Za(x) < 0

N + 1, Za(x) > 0

The argmax(·) function returns the argument of the maximum within a given domain.
In contrast to our gray-box experiments, here a threshold-independent evaluation is not
possible. Using the formulae introduced above to describe the combination of target and
alarm model results in a threshold of value 0. Naturally, the global detection threshold
of 0 may not be the optimal decision boundary for DA3G. Similarly to our evaluation of
DLA against adaptive attacks, a fine-tuned detection threshold when applying DA3G in
the field may increase its robustness. As we performed targeted white-box attacks, we
omitted DF and evaluated the robustness of DA3G against PGD and the C&W attack.
The alarm models were trained on 40 000 adversarial examples generated with C&W
and both versions of PGD simultaneously using a combined training set.
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3.3.6 Evaluation

In the following, we present the detection performance of DA3G. For the first three
experiments, we show the mean area under the Receiver Operating Characteristic (ROC)
curve for three runs of each experiments. The ROC-curve visualizes the true positive
and false positive rates for a given detector and all possible thresholds. Therefore,
the area under the ROC-curve (AUC) measures the performance independently of an
output threshold, thus allows the general detection capabilities to be judged. For the
adaptive attacks using PGD, we visualize the attack success as a function of the the
attack steps. In the case of adaptive adversaries using C&W, we visualize the required
perturbation budget. We introduced both metrics in relation to the analyzed attack
method in Section 2.2.4.

3.3.6.1 Basic Gray-Box Detection

We started our evaluation with the simplest and most widely considered scenario, the
detection of known attack types. Here, we show that the raw gradient can indeed be
used as main source of information fed to our target-alarm system. Furthermore, we
compare DA3G to our method, DLA, and to another state-of-the-art approach, ML-
LOO. The results are summarized in Table 3.9. We report near perfect results on all
experiments except for PGD on MNIST. Indeed, for DF and C&W, DA3G was the
best performing method across all three data sets beating both baseline methods. The
performance of DA3G was especially striking on F-MNIST, where our method was the
only one achieving a 100% detection score for all three attack types.

Motivated by these results, we further analyzed why DA3G’s performance was lower
for PGD on MNIST. Looking at the gradients, we saw nearly vanishing values when
the PGD-generated adversarial examples were processed by the targets. This was in
stark contrast to the adversarial examples generated with DF and C&W, where the
gradient values showed more variance and higher magnitudes in general. We believe this
phenomenon is similar to the findings of Tramer et al. [72], who showed that PGD allows
the generation of adversarial examples with high confidence when fooling the attacked
models. DA3G uses the loss between the output probabilities and the maximum output
— hence, the loss and thus the gradients vanish for outputs of high confidence, i.e. close
to the arguments of the maxima. MNIST promotes high confidence outputs due to its
low complexity and the fact that the classes are already well separated. Each individual
sample of MNIST is well preprocessed unlike real-world inputs. As we can see in the
results, more realistic and thus complex data sets like F-MNIST and CIFAR10 do not
show the same performance drop for PGD. We conclude that the low detection rate for
PGD is likely inherent to MNIST and not a general problem of DA3G.

The results of our first experiment indicate the validity of our core assumption: Indeed,
the raw gradient can be used as main source of information fed to our target-alarm
system to distinguish between benign inputs and adversarial examples. We observed a
high detection performance across all three attack types especially for more complex data
sets. With the results in this section we already see a high potential for our target-alarm
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Table 3.9: Results for experiment 1 testing DA3G: mean AUC with the according standard
deviation after three runs for the basic gray-box detection. We highlighted the best
result for each experiment.

Data Target Method PGD∞ PGD2 DF∞ DF2 C&W2
M
N
IS
T Le

N
et
5 DA3G .94± 0.00 0.93± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

ML-LOO 1.00± 0.00 1.00± 0.00 0.98± 0.00 0.91± 0.00 0.91± 0.00
DLA 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

K
er
as
Ex
M DA3G 0.94± 0.00 0.93± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

ML-LOO 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.99± 0.00 0.99± 0.00
DLA 0.99± 0.00 0.98± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

F
-M

N
IS
T

Le
N
et
5 DA3G 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

ML-LOO 1.00± 0.00 0.99± 0.00 0.86± 0.00 0.82± 0.00 0.82± 0.00
DLA 1.00± 0.00 1.00± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00

K
er
as
Ex
M DA3G 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

ML-LOO 1.00± 0.00 1.00± 0.00 0.95± 0.00 0.93± 0.00 0.94± 0.00
DLA 10.0± 0.00 1.00± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00

C
IF
A
R
10

K
er
as
Ex
C DA3G 0.98± 0.00 0.97± 0.00 0.98± 0.00 0.98± 0.00 0.98± 0.00

ML-LOO 1.00± 0.00 1.00± 0.00 0.81± 0.00 0.81± 0.00 0.82± 0.00
DLA 1.00± 0.00 1.00± 0.00 0.97± 0.00 0.97± 0.00 0.97± 0.00

R
es
N
et

DA3G 0.99± 0.00 0.99± 0.00 0.99± 0.00 1.00± 0.00 1.00± 0.00
ML-LOO 1.00± 0.00 1.00± 0.00 0.74± 0.00 0.73± 0.00 0.78± 0.00
DLA 1.00± 0.00 1.00± 0.00 0.98± 0.00 0.98± 0.00 0.98± 0.00

structure even when using other sources of information than the dense-layer activations.
Without model-specific adaptations to our initial architecture, replacing the dense-layer
activations with the available gradient information allows a comparable detection of
adversarial examples.

3.3.6.2 Combined Gray-Box Detection

Motivated by our first experiment, we increased the difficulty during the detection of at-
tacks. With our second experiment, we show the performance of DA3G when confronted
with all three attack types at once. We randomly sampled adversarial examples gener-
ated by the different attack methods to train our alarm models. Additionally, to further
investigate the real-world applicability, we show the detection performance as function
of the number of adversarial training samples. For large data sets, it may be infeasible
to generate large amounts of adversarial examples under limited hardware resources. We
summarize the results in Table 3.10.

DA3G followed an intuitive behavior: the more adversarial examples were available
during training, the better the detection performance. Even for 1000 adversarial exam-
ples we saw promising results. We report that DA3G’s detection performance remained
strong when trained on multiple attacks at once. Indeed, we saw near perfect results of
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Table 3.10: Results for experiment 2 testing DA3G: mean AUC with the according standard de-
viation after three runs for the combined gray-box detection using different amounts
of adversarial examples during training.

Data Target 100 1000 10000 40000

MNIST LeNet5 0.65± 0.01 0.84± 0.01 0.94± 0.00 0.96± 0.00
KerasExM 0.56± 0.04 0.89± 0.01 0.98± 0.00 0.99± 0.00

F-MNIST F-LeNet5 0.62± 0.01 0.87± 0.01 0.98± 0.00 0.99± 0.00
F-KerasExM 0.72± 0.02 0.87± 0.00 0.98± 0.00 0.99± 0.00

CIFAR10 KerasExC 0.64± 0.01 0.79± 0.01 0.89± 0.00 0.93± 0.00
ResNet 0.67± 0.01 0.87± 0.00 0.97± 0.00 0.98± 0.00

more than 98% for the more complex target networks across all data sets. This experi-
ment shows that DA3G reliably detects known adversarial attacks of multiple types.

3.3.6.3 Leave-One-Out Gray-Box Detection

In this experiment, we expanded our evaluation to the detection of yet unknown attacks.
We evaluated DA3G in multiple leave-one-out settings. Here, DA3G was trained on two
attack types and subsequently evaluated on adversarial examples produced by the left-
out type. This simulates the real-world scenario in which attackers leverage new attack
strategies. In Table 3.11, we summarize the leave-one-out experiments for all possible
combinations.

Again, we report near perfect results for the majority of combinations. As seen in
our first experiment, DA3G performed especially well when detecting the decision- and
optimization-based attacks DF and C&W. Indeed, the only combination resulting in
inferior performance was the detection of PGD without known examples in the training
data. We believe this is due to the aforementioned observation that PGD-generated ad-
versarial examples have nearly vanishing gradients. Nonetheless, our evaluation showed
that DA3G’s detection performance significantly increased when PGD samples were
part of the training set — without any degradation for the left-out attack type. We
conclude that a gradient-based method should be combined with either a decision- or an
optimization-based attack during training. Then, DA3G allows reliable detection, even
of yet unknown attacks. This again reflects our findings using DLA. For both methods,
our target-alarm architecture provides means to protect NNs against attacks. Our ex-
periments suggest that this is possible even if the adversary uses attack methods not
known during the training of out detectors.

3.3.6.4 Adaptive White-Box Attacks

In our final experiment, we evaluated the robustness increase due to DA3G against an
omniscient adversary. This scenario is especially challenging as both the target model
and our defense method were attacked simultaneously. We closely followed the available
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Table 3.11: Results for experiment 3 testing DA3G: mean AUC with the according standard
deviation after three runs for the leave-one-out gray-box detection.

Data Target Trained With Tested With
PGD∞,2 DF∞,2 C&W2

M
N
IS
T Le

N
et
5 DF∞,2, C&W2 0.66± 0.00 1.00± 0.00 1.00± 0.00

PGD∞,2, C&W2 0.93± 0.00 0.99± 0.00 1.00± 0.00
PGD∞,2, DF∞,2 0.92± 0.00 0.99± 0.00 0.99± 0.00

K
er
as
Ex
M DF∞,2, C&W2 0.45± 0.02 1.00± 0.00 1.00± 0.00

PGD∞,2, C&W2 0.98± 0.00 1.00± 0.00 1.00± 0.00
PGD∞,2, DF∞,2 0.98± 0.00 1.00± 0.00 1.00± 0.00

F
-M

N
IS
T

Le
N
et
5 DF∞,2, C&W2 0.56± 0.01 1.00± 0.00 1.00± 0.00

PGD∞,2, C&W2 0.99± 0.00 0.99± 0.00 0.99± 0.00
PGD∞,2, DF∞,2 0.99± 0.00 0.99± 0.00 0.99± 0.00

K
er
as
Ex
M DF∞,2, C&W2 0.48± 0.02 1.00± 0.00 1.00± 0.00

PGD∞,2, C&W2 0.99± 0.00 0.98± 0.00 0.98± 0.00
PGD∞,2, DF∞,2 0.99± 0.00 0.99± 0.00 0.99± 0.00

C
IF
A
R
10

K
er
as
Ex
C DF∞,2, C&W2 0.59± 0.07 0.98± 0.00 0.98± 0.00

PGD∞,2, C&W2 0.93± 0.00 0.91± 0.01 0.92± 0.00
PGD∞,2, DF∞,2 0.93± 0.00 0.94± 0.00 0.93± 0.00

R
es
N
et

DF∞,2, C&W2 0.63± 0.02 0.99± 0.00 1.00± 0.00
PGD∞,2, C&W2 0.98± 0.00 0.97± 0.00 0.99± 0.00
PGD∞,2, DF∞,2 0.96± 0.01 0.99± 0.00 0.99± 0.00

guidelines in research [14, 51, 72]. The function expressing DA3G’s application was in-
troduced in Section 3.3.5.5. We used this function and performed PGD∞, PGD2, and
C&W2 attacks against it. For a strong adversary, we took special care to optimize the at-
tack hyperparameters. Previous work has shown that especially the attack step size may
further increase the attack success of PGD [75]. Therefore, we evaluated multiple hy-
perparameters to increase the strength of the according adaptive attacks. In Table 3.12,
we list the PGD step sizes chosen for the final models. For the gray-box experiments we
used Foolbox’s default values relative to ϵ. We show our results on MNIST, CIFAR10,
and Fashion-MNIST in Figures 3.9–3.11. The robustness against the bounded PGD
attack is measured using the attack success rate for a fixed perturbation budget. For
the unbounded C&W attack we show the l2 perturbation required for successful attacks.
As general and natural observation we see all adaptive attacks bypassing DA3G after a
certain level of attack effort. Hence, our evaluation does not seem to overestimate the
robustness due to obfuscated gradients [25] or similar effects. We therefore argue that
our attack settings and training parameters are indeed correctly chosen.

Robustness against PGD adaptive attacks As expected, all unprotected target models
could be attacked within the minimum number of steps. The DA3G-protected models
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Table 3.12: PGD step sizes during the adaptive attacks on DA3G.

Data Target PGD2 PGD∞

MNIST LeNet5 0.500/ϵ 0.040/ϵ
KerasExM 0.075/ϵ 0.025/ϵ

F-MNIST F-LeNet5 0.300/ϵ 0.015/ϵ
F-KerasExM 0.200/ϵ 0.015/ϵ

CIFAR10 KerasExC 0.150/ϵ 0.0015/ϵ
ResNet 0.050/ϵ 0.001/ϵ
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Figure 3.9: Adaptive attacks on the MNIST models protected by DA3G. The dashed lines
show the number of C&W steps required such that at least 80% of all attacks on
the protected model were successful.

showed more resilience, either by increasing the attack effort or by generally lowering
the attack success rate even after convergence.

Especially on MNIST and Fashion-MNIST, the differences were striking. For PGD∞,
DA3G could lower the attack success to less than 90% for MNIST under increased at-
tack effort. Our results suggest that the target network architecture has an impact on
the vulnerability of the entire system. For KerasExM, the attack success rate increased
slowly, then converged to 66.8% after 1000 steps. In contrast, the attacker achieved an
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Figure 3.10: Adaptive attacks on the Fashion-MNIST models protected by DA3G. The dashed
lines show the number of C&W steps required such that at least 80% of all attacks
on the protected model were successful.

attack success rate of around 80% on LeNet5. After the attacks have converged, even
doubling the number of steps did not further increase the success rate. We report similar
observations for Fashion-MNIST. Although improving on the unprotected MNIST mod-
els, DA3G seemed more vulnerable to PGD2 attacks. For Fashion-MNIST we report a
similar level of robustness against both PGD versions.

For ResNet on CIFAR10, both PGD2 and PGD∞ reached 100% attack success rates.
In the more resilient case, attacks on KerasExC did not reach perfect success rates. Here,
PGD2 converged to 96.1% after 100 iterations.

Throughout the experiments, strictly more attack steps were needed to achieve suc-
cessful attacks compared to the unprotected case. We conclude that DA3G successfully
increased the level of protection of the NNs and often prevents a notable fraction of the
performed attacks. Furthermore, the adversaries’ attack effort increased considerably
compared to the unprotected case.

Robustness against C&W adaptive attacks For the unbounded C&W attack, we ex-
pressed the level of protection by measuring the required perturbation budget. As seen
in Figures 3.9–3.11 severe levels of perturbation were needed for a successful attack even
after thousands of attack steps. During our evaluation, we saw that the attack did not
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Figure 3.11: Adaptive attacks on the CIFAR10 models protected by DA3G. The dashed lines
show the number of C&W steps required such that at least 80% of all attacks on
the protected model were successful.

reach a perfect success rate immediately, even though the C&W method is unbounded
and thus could alter the input by any extent. In such cases, we calculated the l2 per-
turbations using the successful adversarial attacks only. We saw similar results across
all data sets: Whereas the unprotected model was easily attacked, the distortion needed
for the DA3G-protected model nearly doubled. Depending on the properties of the data
and underlying use case, the increased amount of required perturbations may prevent
the attacker from successfully crafting humanly imperceptible adversarial examples. We
conclude that DA3G improves the robustness against optimization-based attacks and
forces adversaries to induce more changes to the inputs.

3.3.7 Discussion

With DA3G, we present a new end-to-end method that reliably detects adversarial exam-
ples under challenging threat models. Summarizing our evaluation, we report that DA3G
forces potential adversaries to invest more computational power to fool our protected
NNs. For some attacks, even considerable attack effort did not result in overall attack
success. Interestingly, we report a notable difference in the level of protection against
adversaries using either PGD∞ or PGD2. For bounded attacks, the reported success
rates depend on the fixed values of ϵ, quantifying the allowed perturbation budgets. In
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real-world applications, ϵ highly depends on the underlying use case and definition of the
imperceptibility of adversarial examples defined by the assumed threat model. Hence,
we argue that even though DA3G may seem to provide a limited robustness towards
PGD in our experiments, it may find its application in real-world scenarios in which
adversaries face a more limited perturbation space. In our evaluation, we applied DA3G
to a wide range of target networks indicating the applicability independently of the
NN architecture. We envision the detection of, e.g., audio adversarial examples using
sequential target models.

With DA3G, we analyzed whether our target-alarm system can be used to detect
adversarial examples when provided with raw gradients instead of activations. Our
empirical evaluation showed that our architecture is indeed suitable for this task when
using the gradient as main source of information.

3.3.8 Conclusion

In this section, we present an extension to our DLA architecture and provide means to
reliably detect adversarial examples. We replace the analysis of the dense-layer activa-
tions by automatically leveraging the information in the gradient of the network under
test for potential attacks. With our evaluation under challenging threat models, we show
that our architecture allows reliable detection of known and yet unknown attacks even
if the dense-layer activations are not available. We show that adaptive adversaries are
forced to invest significantly more computational effort to successfully craft adversarial
examples when attacking protected NNs using the gradient-driven DLA version. With
our findings, we contribute to the research on adversarial example detection and show
the following two insights: First, using our target-alarm architecture presented in Sec-
tion 3.2 is indeed usable even if the dense-layer activations of the NNs are not available.
This directly answers Q1 presented in Section 3.2.9. Secondly, not only the activation
values of NNs carry robustness-sensitive information, but other sources, in this case the
gradients, can be used in a similar manner.
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3.4 Activation Anomaly Analysis

In this section, we present an additional field of application of our previously introduced
target-alarm architecture. Parts of the section are taken verbatim from the original
paper “Activation Anomaly Analysis” published at the Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (ECML PKDD) 2020 [1]. This
is collaborative work with the co-first author Jan-Philipp Schulze.

3.4.1 Motivation

In Section 3.3 we investigate whether our target-alarm architecture presented in Sec-
tion 3.2 is applicable even if the dense-layer activations of the NNs are not available and
other sources of information are required. To this end, we present DA3G and show that
by analyzing NNs’ gradients and training an auxiliary model the detection of adversarial
examples is possible. In this section, we present our findings on the second question Q2
which arose at the end of Section 3.2.9: Can the activation values of NNs be further
leveraged and used in the context of robustness and security in general? We show that
the contained information indeed can be utilized in the more general and broader field
of anomaly detection.

Anomaly detection is the task of identifying data points that differ from samples con-
sidered normal. Reliable anomaly detection is of great interest especially in the context
of security-sensitive systems. Here, anomalies can indicate attacks on the infrastructure,
fraudulent behavior, or general points of interest. DL methods allow to analyze highly
complex data in an automated manner. Therefore, in recent years, the number of ML
applications using DL concepts to detect anomalies has steadily grown. Yet, anomaly
detection tasks are especially challenging for DL methods due to the inherent class im-
balance. Usually, a higher number of samples considered normal is available during
training. In our work, we develop a new DL-based anomaly detection method showing
superior results compared to state-of-the-art methods. We simulate real-world settings
and only use a handful of anomalous samples.

In DL-based anomaly detection, a popular idea is to use an autoencoder (AE) to pre-
process or reconstruct the data points. By only using normal samples during the training
of the AE, the reconstruction error when processing anomalous samples is assumed to be
higher. This allows the detection of anomalies by evaluating this reconstruction error,
e.g., by using manually set thresholds. In this section, we show that our findings from
our two previous sections can be used to improve state-of-the-art anomaly detection
using AEs. We show that the hidden activations of AEs, but also other types of NN
architectures, are useful to judge if the current input is normal or anomalous. By using
our target-alarm architecture and combining the information of two interrelated NNs,
we achieve strong detection results.

During the conceptual phase, we were again inspired by coverage-guided NN testing
methods. In this promising new research direction, software testing concepts build the
foundation of methods to test DL models. The goal is to identify faulty regions in NNs
responsible for unusual behavior, or errors during run-time. Pei et al. [77] first introduced
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the idea of neuron coverage to guide a testing process. Since then, further improvements
and modifications have been proposed, e.g., by Ma et al. [78] and Sun et al. [79]. In
this section, we build upon recent findings and our insights presented in Section 3.2 to
further generalize the concept by adapting it to the constraints of anomaly detection.
Whereas a high number of samples for benign as well as adversarial inputs are available in
adversarial ML, anomaly detection is a semi-supervised setting with only a few anomaly-
related data points available. Similar to the case of adversarial attacks, we see that target
models behave in a distinguishable manner when processing anomalous inputs. We show
that this behavior is again detectable by analyzing the activation values during run-time
and training an alarm model optimized for this task.

Applying our concept, we empirically show that anomalous samples cause different
hidden activations compared to normal ones. We profit from the target-alarm archi-
tecture originally presented in Section 3.2 and analyze all hidden layers of the target
network using an auxiliary alarm model. In our evaluation we show that our concept
reliably detects anomalies from different data sets and we report superior performance
compared to common baseline methods. In summary, in this section we present the
following contributions:

� We show that our target-alarm architecture is useful in the field of anomaly detec-
tion. Based on the analysis of the hidden activations of NNs using our architecture,
we propose a purely data-driven semi-supervised anomaly detection method we call
A3.

� With our thorough evaluation, we show that the patterns in the activations gener-
alize to new anomaly types even when only a few anomaly examples are available
during training.

� We show that our target-alarm architecture generalizes to different target NN
architectures.

3.4.2 Related Work

Anomaly detection is a topic of active research with a wide range of use cases and
methods. For instance, in network intrusion detection [105], power grids [106], or indus-
trial control systems [107], automated mechanisms improve the security of the overall
system. Thorough overviews of current advances in anomaly detection in general and
DL-based systems in particular can be found in the surveys by Chandola et al. [108] and
Chalapathy and Chawla [109], respectively. In this section we present our method A3,
which we designed for a semi-supervised setting. For this purpose, we follow the surveys’
definitions on this term and the considered scenario. Thus in semi-supervised settings,
some knowledge on anomalous samples is given and we assume the training data set
to consist of normal samples only. In contrast, in unsupervised settings no knowledge
on the nature of any sample is given. This might lead to the occurrence of anomalous
samples even in the training data set. Well-known unsupervised methods are OC-SVM
by Schölkopf et al. [110], or Isolation Forest by Liu et al. [111].
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In DL-based anomaly detection systems, a popular choice are architectures incorpo-
rating AEs, often used as feature extractors. Here, AEs are then combined with classical
ML classifiers like k-nearest neighbor [112], OC-SVMs [113], NN-based classifiers [114],
or Gaussian Mixture Models [115]. Similarly, other feature extraction networks like re-
current NNs have been evaluated [116–118]. To detect anomalies, AEs may also be used
in their purest form: restoring the input under the constraint of small hidden layers, sim-
ilar to classical dimensionality reduction methods like PCA. The reconstruction error is
used to discriminate anomalous samples from normal data points [112, 119]. Research
has further analyzed how to improve the anomaly detection results, e.g., by iteratively
adding human feedback [120,121].

Over the past decade, computing power and data storage have steadily risen. DL
methods profit from the increased amount of training samples. Recent research [122–124]
has studied ways to incorporate known anomalies into DL-based anomaly detection.
They show that even a few anomalous samples, which are usually available in practice,
improve the overall detection performance. In Section 3.4.4.2, we discuss state-of-the-art
frameworks to which we compare A3. With our work, we show that the activations of
NNs differ for normal and anomalous samples. Using our method, we detect known
and even new, yet unseen types of anomalies in different scenarios with high confidence.
With our method, we significantly improve NN-based semi-supervised anomaly detection
systems.

3.4.3 Detecting Anomalies by Analyzing Activations

We based our anomaly detection method A3 on the same hypothesis as the one presented
in Section 3.2. The activation values of NNs carry robustness-sensitive information and
allow an assessment of the behavior of the analyzed model. With this observation, we
empirically showed that the detection of attacks against the observed model is possi-
ble. In the following, we reformulate this initial hypothesis and apply it to the task of
detecting anomalies. We again assume a pretrained neural network. It is fair to ex-
pect that this model was trained using normal and known data only which are part of
the training data set Dtrain. In an anomaly detection task, unknown test samples are
presented to the NN which we summarize by Dtest. Normal samples of this test data
set follow a similar distribution and are of comparable nature as the samples found in
Dtrain. In contrast, anomalies are defined as samples which differs from normal data in
some unspecified and even unknown manner. Hence, we assume that if the pretrained
NN processes anomalies, a distinguishable behavior of the model can be observed by
analyzing its activations compared to the case in which it processes normal samples.

3.4.3.1 A3 Architecture

Based on our hypothesis, here we present our new anomaly detection method A3 which
consists of two parts.

The target model performs a task unrelated to anomaly detection. In accordance to
our assumption, the classes the target was trained on are considered normal. Several
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Figure 3.12: Summary of the components of the adapted DLA architecture to detect anomalies,
here called A3, consisting of a target and an alarm model.

NN architectures can be used to implement the target. As we have seen in Section 3.2
classifiers based on CNNs, LSTMs, and Capsule networks can be protected by analyzing
their activations. Here, we evaluate fully-connected as well as convolutional autoencoders
and classifiers to act as the target in our system.

The alarm model evaluates the activation values of the target model. Using the
available information in the hidden activations of the target, the alarm model decides if
the given sample is normal or anomalous.

Both models are combined to one connected architecture. In the scope of this section,
we fix the target model to its pretrained state and solely train the alarm model to detect
anomalies. Our assumption is that the activations caused by the input show particular
patterns for samples the target model was trained on (i.e., normal samples), and for
other samples (i.e., anomalous samples). The alarm model analyzes the anomaly-related
patterns in the target network’s activations. A high-level overview is given in Figure 3.12.

3.4.3.2 Training and Prediction Objectives

In the following we describe the objectives followed during training, ultimately allowing
the detection of anomalies in the prediction phase. We present a combined overview of
the target training, alarm training, and final anomaly detection in Figure 3.13.

Target Model Training The target model performs a task unrelated to anomaly de-
tection using input x. We propose autoencoders and classifiers to act as targets. Their
original tasks, as well as their objectives during training can be summarized as follows:
Autoencoders try to reconstruct a given input under the constraint of small hidden rep-
resentations such that ftarget : x 7→ x̂. Classifiers predict the class of a given input
sample with respect to known classes such that ftarget : x 7→ ŷ ∈ {1, . . . , |Y|}. According
to our fundamental assumption, all samples used during training are considered normal.
As we use pretrained target models, standard training procedures can be followed and
are thus not presented in more detail in this section.
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Figure 3.13: Step-by-step overview of A3’s training process in the first two columns and the
final anomaly detection in the right column.

Alarm Model Training The alarm model maps the original input sample to an anomaly
score. Following our original target-alarm architecture, it does not operate on the input
directly, but observes the target’s activations caused by the input. Hence, the alarm’s
output ŷ is implicitly dependent on the input, the trained weights, and behavior of the
target. The function approximated by the alarm model can be formalized as follows:

falarm : [htarget,1(x;θtarget), . . . ,htarget,L−1(x;θtarget)] 7→ ŷ ∈ [0, 1].

Note that only the alarm network’s weights θalarm are adapted while the target net-
work’s weights θ⋆

target remain unchanged. With Lx(y, ŷ) being the binary cross-entropy
loss, the overall objective of the A3 training process is defined as:

L(x, y) = Lx(y, ŷ)|ŷ=falarm(x;θ⋆
target,θalarm) + λ · Lx(1, ŷ)|ŷ=falarm(x̄;θ⋆

target,θalarm).

The left term expresses the loss during training if the current sample is normal. Com-
plementary, the right term quantifies the loss based on an anomalous training sample.
The weighting factor λ might be used to counteract the class imbalance apparent during
training. Usually a higher number of normal training samples are available.

Prediction Phase During the prediction phase, the target and the alarm models act
as one combined system, mapping the input to an anomaly score: fdetect : x 7→ ŷ ∈
[0, 1]. The input is processed using the target-alarm pipeline in an automated end-to-end
manner: x is fed to the target model triggering the activation values htarget,i(x;θtarget).
Based on the target’s activations, the alarm model decides whether the input is more
likely to be normal or anomalous.
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3.4.4 Experimental Setup

In the following, we present the details characterizing our experiments and the imple-
mentation of A3.

3.4.4.1 Data Sets

We evaluated the performance of A3 on five publicly available and commonly used data
sets. Our selection allowed us to compare the performance to related work and motivates
that A3 performs well even in complex scenarios.

1. MNIST [83]: common image data set for ML problems with 70 000 images showing
ten handwritten digits.

2. EMNIST [125]: extension to MNIST with handwritten letters.

3. NSL-KDD [126]: common intrusion detection data set with around 150 000 sam-
ples. We use KDDTest+ for testing containing new anomalies not present in the
training set.

4. Credit Card Transactions [127]: anonymized credit card data of around 285 000
transactions of which 492 are fraudulent.

5. CSE-CIC-IDS2018 [128]: large network data set. We omit the DDoS data due to
the high resource demands. Around five million samples remain.

We limited the preprocessing to minmax-scaling of numerical data and 1-Hot-encoding
of categorical data. Samples still containing non-numerical values were omitted. In the
IDS data set, we discarded the IP addresses as well as the flow IDs. Generally, we took
80% of the data for training, 5% for validation, and 15% for testing. If a test set is given,
we used it instead.

3.4.4.2 Baseline Methods

We compared the performance of A3 to four common baseline methods. Note that we
only considered baseline methods that scale to the large amount of data.

1. Autoencoder Reconstruction Threshold: When trained on normal data only, there
is a measurable difference in the reconstruction quality compared to anomalous
samples. We use the mean squared error, i.e., L(x, x̂) = ∥x̂− x∥22, to quantify
this difference. Using a preset threshold on this error, the detection of anomalous
inputs is possible. In the settings in which we used AEs as targets, we used the
very same models as baseline.

2. Isolation Forest (IF): IF is a common unsupervised anomaly detection method by
Liu et al. [111]. Based on the given data, an ensemble of random trees is built.
The average path length is used as anomaly score. We used the implementation
provided by scikit-learn along with the default parameters [129].
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Table 3.13: Dimensionality of the layers used in the target and alarm models for A3. All hidden
layers are activated by ReLU.

Data Set Target Architecture Alarm Architecture

MNIST according to [132] 1000, 500, 200, 75, 1
NSL-KDD 200, 100, 50, 25, 50, 100, 200 1000, 500, 200, 75, 1

IDS 150, 80, 40, 20, 40, 80, 150 1000, 500, 200, 75, 1
CreditCard 50, 25, 10, 5, 10, 25, 50 1000, 500, 200, 75, 1

MNIST & EMNIST according to [133] 1000, 500, 200, 75, 1

3. Deep Autoencoding Gaussian Mixture Model (DAGMM): DAGMM is a state-of-
the-art unsupervised DL-based anomaly detection method by Zong et al. [115].
The authors combine information of an AE with a Gaussian mixture model. For
all experiments, we used the implementation by Nakae with the architecture rec-
ommended for the KDDCUP data set [130].

4. Deviation Networks (DevNet): DevNet is a state-of-the-art semi-supervised DL-
based anomaly detection method by Pang et al. [122]. The anomaly detection is
split between a feature learner and an anomaly score learner, both implemented
with a NN. The anomaly scorer sets normal samples close to a Gaussian prior distri-
bution and enforces a minimum distance to anomalous samples. As recommended
by the authors, we used their default architecture.

3.4.4.3 Implementation Details

An overview of the architectures used for each experiment is given in Table 3.13. For the
AE target models, we chose the first layer to be slightly larger than the dimension of the
input vectors, whereas the hidden representation is smaller. For the sake of simplicity,
we used a common alarm model architecture throughout our experiments. Note that
for the MNIST-related experiments, we considered two publicly available architectures
from Keras [131], a convolutional AE [132] extended by a dropout layer, as well as a
CNN [133]. This underlines the generality of our method. All hidden layers are activated
by ReLU.

Parameter Choices Based on a non-exhaustive parameter search on MNIST, we chose
the following global optimizer settings. We used Adam with a learning rate of 1 ·10−3 for
the target models, and 1 · 10−5 for the alarm models. The training was stopped after 30
and 60 epochs, respectively. No other regularizer than 10% dropout [134] before the last
layer was used. We ran our experiments on an Intel Xeon E5-2640 v4 server accelerated
by an NVIDIA Titan X GPU. To support further research, we open-sourced our code2.

2Code available at: https://github.com/Fraunhofer-AISEC/A3.
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3.4.4.4 Experiment Overview

Anomaly Detection Constraints In the setting of anomaly detection, special con-
straints apply in real-world scenarios. We present the three main challenges based on
which we designed our experimental setup to test the performance of A3. With our
experiments, we show that our method performs well even if considering all constraints
simultaneously.

1. Scarcity of Anomaly Samples. Generally, a high number of training samples are
required to create well-performing DL systems. However, there is a natural imbal-
ance in anomaly detection scenarios: Most data samples are normal, only a few
examples of anomalies are usually found manually. We show that A3 performs well
in this semi-supervised setting.

2. Variable Extent of Abnormality. Anomalous samples are not bound by a common
behavior or magnitude of abnormality. By definition, the only difference is that
anomalies do not resemble normal samples. We show the transferability of A3, i.e.,
using known anomalies during training also allows us to detect unknown anomalies
during testing.

3. Driven by Data, not Expert Knowledge. Anomaly detection algorithms should
be applicable in multiple scenarios, even when no expert knowledge is available.
Performance that is only achievable using domain knowledge may result in inferior
results in real-world applications. We show that A3 generalizes to other settings,
i.e., uses the data itself to distinguish between normal and anomalous behavior
and does not depend on expert knowledge during run time.

Summary of the Performed Experiments We designed three experiments to show that
A3 works well under all three constraints. An overview is given in Table 3.14.

As an initial proof-of-concept experiment, we first tested our hypothesis that the
hidden activations of the targets can indeed be used to detect anomalous samples. This
is not part of the main experiments of this evaluation. Here, we used all available
anomalies during training and only detected known anomaly types during testing. Hence,
the detection of new, yet unseen types of anomalies is not considered in this experiment.

In the following, we describe the three main experiments in more detail. For all three
experiments we used 100 known anomalies during training. This simulates a real-world
application as close as possible. Hence, constraint 1 is considered in all three main
experiments of this evaluation. For all three experiments we also compared our results
to baseline methods, if applicable.

1. Experiment 1: Detection of Known Anomalies. Considering constraint 1, we
evaluated the fundamental assumption our method is based on: The activation
values of the target model contain information useful to distinguish between normal
and anomalous samples. It is important to remember that only the alarm network,
not the target, is trained on the anomaly detection task. We limited the anomaly
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Table 3.14: A3 experiments exploring the detection of known and unknown types of anomalies.
The three experiments are divided with respect to the used data sets.

Exp. Data Normal Train Anomaly ⊆ Test Anomaly

1a MNIST 0, . . . , 5 6, 7 6, 7
1b MNIST 4, . . . , 9 0, 1 0, 1
1c NSL-KDD Normal DoS, Probe DoS, Probe
1d NSL-KDD Normal R2L, U2R R2L, U2R
1e IDS Benign BF, Web, DoS, Infil. BF, Web, DoS, Infil.
1f IDS Benign Bot, Infil., Web, DoS Bot, Infil., Web, DoS
1g CC Normal Fraudulent Fraudulent

2a MNIST 0, . . . , 5 6, 7 6, 7, 8, 9
2b MNIST 4, . . . , 9 0, 1 0, 1, 2, 3
2c NSL-KDD Normal DoS, Probe DoS, Probe, R2L, U2R
2d NSL-KDD Normal R2L, U2R R2L, U2R, DoS, Probe
2e IDS Benign BF, Web, DoS, Infil. BF, Web, DoS, Infil., Bot
2f IDS Benign Bot, Infil., Web, DoS Bot, Infil., Web, DoS, BF

3a (E-)MNIST 0, . . . , 9 A, B, C, D, E A, . . . , E
3b (E-)MNIST 0, . . . , 9 A, B, C, D, E A, . . . , E, V, . . . , Z
3c (E-)MNIST 0, . . . , 9 V, W, X, Y, Z V,. . . , Z
3d (E-)MNIST 0, . . . , 9 V, W, X, Y, Z A, . . . , E, V, . . . , Z

samples to 100 randomly selected instances during training in accordance with the
semi-supervised setting. This limitation may cause some classes to not be present
during training.

2. Experiment 2: Transferability to Unknown Anomalies. Considering constraints
1 and 2, we evaluated the transferability of our fundamental assumption: The acti-
vation values of the target model are inherently different for normal and anomalous
samples. Similar to experiment 1, we evaluated the detection performance bound
by the scarcity of anomaly labels. Furthermore, the test data set contained more
anomaly classes than the alarm network has been trained on. With this experi-
ment, we tried to find anomalies that follow a different nature and data distribution
than the few known samples.

3. Experiment 3: Generality of the Method. Considering constraints 1, 2, and 3,
we evaluated the generality of our fundamental assumption: The activation val-
ues of any type of target network contain information that allows samples to be
distinguished between normal and anomalous samples. We used a publicly avail-
able classifier as target, extracted the activation values, and tested whether these
can be used to detect known as well as unknown anomalies. Hence, we evaluated
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Table 3.15: Proof-of-concept results: Anomaly detection test scores for A3 after ten runs given
all normal and all anomalous samples during training.

Exp. AUC AP Exp. AUC AP Exp. AUC AP

1a 1.00±0.00 1.00±0.00 2a 0.93±0.01 0.92±0.01 3a 1.00±0.00 1.00±0.00
1b 1.00±0.00 1.00±0.00 2b 0.93±0.02 0.92±0.01 3b 1.00±0.00 1.00±0.00
1c 0.98±0.01 0.98±0.01 2c 0.93±0.02 0.95±0.01 3c 1.00±0.00 1.00±0.00
1d 0.85±0.06 0.80±0.05 2d 0.75±0.09 0.82±0.05 3d 1.00±0.00 1.00±0.00
1e 0.98±0.00 0.96±0.00 2e 0.89±0.02 0.85±0.02 - - -
1f 0.98±0.00 0.95±0.00 2f 0.95±0.01 0.93±0.01 - - -
1g 0.98±0.01 .80±0.04 - - - - - -

whether our anomaly detection mechanism can be applied in combination with
already existing target networks deployed in environments of any type.

3.4.5 Evaluation

In the following, we present and evaluate the results measured during our experiments.
As metrics, we chose the average precision (AP) and the area under the ROC curve
(AUC) to be consistent with related work [122]. Whereas the AP quantifies the trade-off
between precision and recall, the AUCmeasures the trade-off between the TPR and FPR.
Both metrics are independent of a detection threshold, and thus give a good overview
of the general detection performance. The scores range between 0 and 1, higher values
indicate a more accurate detection.

3.4.5.1 Proof-Of-Concept Results

In Table 3.15 we show the results of our proof-of-concept experiment. We evaluated three
experimental setups and used all available anomalous samples. For a more compact vi-
sualization in the table, we present the results using three columns for each experimental
setup. In experiment 1 and 2, A3 achieved perfect results in a wide range of settings.
Even in the most challenging setting of experiment 2 in which unknown types of anoma-
lies need to be detected, A3 scored an AUC of above 0.9 in four of the six settings. With
these first results at hand, we confirm our hypothesis: The activation values indeed carry
generally information which can be used to detect anomalous data points. This obser-
vation directly extends our findings on adversarial example detection. Additionally, not
only classifiers can act as target models, but also autoencoders which are designed to
reconstruct a given input.

The amount of used anomalies during training in our proof of concept exceeds the
usually available number of samples. Therefore, for the first two experimental setups
using the MNIST data set we re-run our evaluation while limiting the available anoma-
lous samples during training. In Table 3.16 we summarize the results. We see that the
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Table 3.16: Test results for experiments 1a and 2a using the MNIST data set after ten runs
given all normal samples. In the individual experiments, different amounts of known
anomalies were used during training. This table shows how different amounts of
anomalies influence the performance of A3.

Exp. #Anomalies AUC AP

1a 100 0.99±0.00 0.99±0.00
1a 1000 1.00±0.00 1.00±0.00
1a 5000 1.00±0.00 1.00±0.00
1a 11576 (all) 1.00±0.00 1.00±0.00

2a 100 0.88±0.02 0.87±0.02
2a 1000 0.90±0.01 0.90±0.01
2a 5000 0.92±0.01 0.91±0.01
2a 11576 (all) 0.93±0.01 0.92±0.01

detection performance degrades with a decreasing number of anomalies used in training.
This effect is especially visible for the second experiment in which we detected unknown
types of anomalies. Nonetheless, for this first experiment, we see that using 100 anoma-
lies during training still allows for a reliable detection. We argue that this amount of
labeled anomalies provides an experimental setup close to real-world settings.

3.4.5.2 Main Results

In Table 3.17 we show the main results of our evaluation. This includes the detection
scores for all three experiments and five data sets. We summarize the results for A3

and the baseline methods averaged over ten passes using the test data sets. To simulate
real-life conditions, we limited the amount of available anomalies to 100 randomly chosen
samples of the training set. We find that A3 performs well even under this strict setting.

In experiment 1 we detected known types of anomalies using autoencoder target mod-
els. Here, A3 outperforms the baseline methods in the majority of test cases. We report
a mean AUC and AP of 0.94 and 0.90, respectively. Comparing the results to the other
semi-supervised detection method DevNet, we make the following observations: While
we surpassed DevNet’s results in six of the seven cases, we see similar mean detection
scores. Our mean AUC score is 1% lower, while we achieved a 3% higher mean AP
compared to DevNet. Assessing A3’s results in more detail, we report a comparably
low performance for experiment 1d. A limited diversity of the training set or anoma-
lous training samples not representative for the test set might have contributed to the
performance drop in this case.

In experiment 2 we detected known and unknown types of anomalies using autoencoder
target models. As expected, in this highly competitive case, A3 was outperformed in
the majority of cases. Yet comparing to DevNet, we see only a slightly lower detection
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Table 3.17: A3 anomaly detection test results after ten runs given all normal and 100 anomalous
samples. Black digits indicate the highest scores in each experiment.
A3 AE IF DAGMM DevNet

Epx. AUC AP AUC AP AUC AP AUC AP AUC AP

1a 0.99±0.00 0.99±0.00 0.70±0.03 0.44±0.04 0.57±0.02 0.28±0.02 0.85±0.02 0.70±0.02 0.98±0.00 0.95±0.01
1b 1.00±0.00 1.00±0.00 0.39±0.04 0.25±0.03 0.53±0.01 0.41±0.02 0.63±0.04 0.34±0.03 0.99±0.00 0.98±0.00
1c 0.96±0.01 0.97±0.01 0.96±0.00 0.96±0.01 0.97±0.00 0.98±0.00 0.94±0.01 0.91±0.04 0.95±0.02 0.95±0.02
1d 0.80±0.01 0.75±0.03 0.82±0.03 0.55±0.06 0.84±0.00 0.49±0.02 0.91±0.01 0.59±0.03 0.91±0.03 0.79±0.02
1e 0.94±0.01 0.91±0.01 0.88±0.08 0.75±0.12 0.47±0.04 0.17±0.01 0.90±0.02 0.68±0.06 0.93±0.00 0.90±0.01
1f 0.93±0.00 0.90±0.00 0.86±0.07 0.65±0.13 0.36±0.03 0.14±0.01 0.68±0.12 0.34±0.18 0.90±0.01 0.74±0.04
1g 0.97±0.01 0.78±0.04 0.97±0.01 0.54±0.09 0.97±0.01 0.14±0.04 0.96±0.02 0.35±0.23 0.97±0.01 0.77±0.04

2a 0.88±0.02 0.87±0.02 0.72±0.02 0.63±0.02 0.54±0.01 0.40±0.01 0.74±0.02 0.69±0.02 0.84±0.04 .84±0.03
2b 0.87±0.02 0.87±0.02 0.64±0.03 0.62±0.03 .64±0.01 0.60±0.01 0.71±0.02 0.61±0.01 0.90±0.03 0.90±0.02
2c 0.87±0.03 0.92±0.01 0.93±0.01 0.94±0.01 0.94±0.00 0.96±0.00 0.93±0.01 0.92±0.03 0.90±0.02 0.93±0.01
2d 0.68±0.14 0.77±0.09 0.94±0.00 0.94±0.01 0.94±0.00 0.96±0.00 0.93±0.01 .92±0.03 0.88±0.02 0.89±0.02
2e 0.87±0.04 0.83±0.03 0.92±0.02 0.82±0.07 0.45±0.03 0.20±0.01 0.76±0.08 0.52±0.10 0.90±0.00 0.83±0.01
2f 0.90±0.02 0.88±0.02 0.89±0.06 0.79±0.10 0.45±0.03 0.20±0.01 0.80±0.04 0.56±0.02 0.92±0.00 0.81±0.02

3a 0.99±0.00 0.99±0.00 - - 0.93±0.00 0.85±0.01 0.93±0.01 0.84±0.03 0.99±0.00 0.98±0.00
3b 0.96±0.01 0.97±0.01 - - 0.91±0.01 0.89±0.01 0.95±0.00 0.93±0.01 0.97±0.01 0.97±0.01
3c 0.99±0.00 0.99±0.00 - - 0.89±0.01 0.79±0.02 0.96±0.00 0.91±0.01 0.98±0.01 0.97±0.01
3d 0.96±0.01 0.96±0.01 - - 0.91±0.01 0.89±0.01 0.95±0.00 0.93±0.01 0.96±0.02 0.96±0.02

reliability. A3 achieved a 5% and 1% lower mean AUC and AP score, respectively. Again
with the exception of experiment 2d were parts of the anomalies from experiment 1d
were used we report strong results. With our results we argue that A3 is able to act as
a viable solution in revealing new types of anomalies.

In experiment 3 we detected known and unknown types of anomalies using classifier
target models. Interestingly, in this setting we achieved nearly perfect results even when
detecting unknown types of anomalies. We surpassed all unsupervised baseline methods.
Solely DevNet achieved similarly high results compared to A3.

Finally, we conclude that our fundamental assumption that the hidden activations of
NNs carry information useful to anomaly detection, is well supported. The test results
from experiment 1 show that our method identifies suitable patterns for this task very
well. These patterns generalize well to yet unseen patterns as shown in experiment 2.
Although only parts of the test anomalies are known during training, strong results are
achieved. Whereas we used autoencoders as targets for the aforementioned experiments,
we generalized the setting to classifiers in experiment 3. A reliable anomaly detection
was achieved. We conclude that A3 is able to detect known and yet unknown anomalies
with high confidence, and is flexible enough to adapt to a wide range of environments.

3.4.6 Discussion

In this section, we present A3, an anomaly detection method that analyzes the activations
of NNs. In A3, the alarm model observes the behavior of a target model during run
time. A3 shows strong anomaly detection results for all five analyzed data sets across all
experiments. We empirically show that the activation analysis generalizes to yet unseen
anomalies across different network architectures. With the modularity of our concept,
various architectures may be used as target and alarm models covering numerous types
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of data and use cases. We emphasize the real-life applicability by limiting the amount of
anomaly samples during training. In practice, often a few known anomalies are available,
e.g., by manual exploration or unsupervised methods.
For the interested reader we refer to the Appendix of this thesis for the remaining con-

tributions of our original publication [1]. In Appendix A.2.1 we show an improved A3

architecture allowing even higher anomaly detection scores. As we have shown with the
results of experiment 2, a slight degradation of the performance occurs if new types of
anomalies should be detected. By adding a third component to our target-alarm archi-
tecture we boosted the performance, especially in this demanding setting. A so-called
anomaly network creates artificial anomalies during the training of the alarm model.
With this process, the training set is enriched with valuable counterexamples. Using
this improved architecture we achieved state-of-the-art results across all experiments
and surpassed the baseline methods in the majority of test cases. Finally, we show first
steps towards the applicability of the improved A3 architecture in a fully unsupervised
setting.

3.4.7 Conclusion

We introduce a novel approach for anomaly detection called A3 based on the analysis
of the hidden activation patterns of NNs. This finding directly answers Q2 presented
in Section 3.2.9. Our architecture comprises two parts: a target model unrelated to
the anomaly detection task and an alarm model analyzing the resulting activations of
the target. Our framework works under common assumptions and constraints typically
found in anomaly detection tasks. We assume that anomalous training samples are
scarce, and new types of anomalies exist during deployment. With our evaluation, we
provide strong evidence that our method works on different target network architectures,
and generalizes to yet unseen anomalous samples. Furthermore, we detect anomalies
across different data types with a limited number of labeled anomalies available during
training. We present a valuable semi-supervised DL-based anomaly detection framework
providing a purely data-driven solution for a variety of use cases.
With the insights of this section at hand, an open questions arises which we answer

throughout the remainder of this thesis: Q3: How can the observation that the activation
values of NNs carry information useful to passively detect adversarial examples and
anomalies be further used in an active manner to increase the robustness of NNs? Our
presented passively operating methods allow a reliable detection of attacks, yet require an
initial training phase prior to their deployment. Furthermore, in the case of a successfully
detected attack, external measures are required to again allow a correct classification of
the input. A solution here would be the deployment of an active defense method based
on the already presented insights of this thesis.
Q3 is answered in Section 4.4.
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In this chapter, we present our robust training method for neural networks called entropic
retraining. Parts of the section are taken verbatim from the original paper “Optimizing
Information Loss Towards Robust Neural Networks” published in Dynamic and Novel
Advances in Machine Learning and Intelligent Cyber Security (DYNAMICS) 2020 co-
located with the Annual Computer Security Applications Conference (ACSAC) [10].

4.1 Motivation

In the previous chapter we introduced our adversarial example detection method DLA
based on the analysis of the hidden activations of NNs. Our modular approach enabled us
to further refine and extend the initial ideas to introduce DA3G, an adversarial example
detection technique using the analysis of gradients, as well as A3, a generally applicable
anomaly detection method. In this chapter, we revisit our findings on the analysis of
the hidden activations of NNs and change perspectives: Instead of passively making
pretrained NNs more robust by detecting attacks, we now focus on the training process
itself. With the concepts presented in this chapter we answer Q3: How can the analysis
of NN activations be used in an active manner complementary to our findings shown in
Chapter 3. Based on state-of-the-art research in adversarial training and new advances
in information-theoretic methods to analyze NNs we present our training approach that
we call entropic retraining.

Adversarial training is still considered to be the most effective measure to enhance the
robustness of NNs in an active manner. Here, the training set is extended by adversarial
examples. First findings by Madry et al. [19] suggest that using PGD to generate samples
for training produces the most robust models. Yet, additional research is required to
further improve adversarial training and explore approaches to overcome its natural
downsides, especially the intensive process of generating additional training samples
and the negative effects on the resulting performance of the hardened NNs. Important
first steps in this direction were presented by Shafahi et al. [135] and Wong et al. [34].
Shafahi et al. [135] showed that high levels of robustness can be achieved with adversarial-
example-free training procedures, while Wong et al. [34] revisited adversarial training
using FGSM as the generating method. Both methods shed more light on the well known
robust training method and further try to increase the efficiency and thus reduce the
computational cost of making NNs more secure. In a similar spirit, we present a new
information-theoretic-inspired robust training approach for NNs.
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Motivated by our findings on the hidden activations of NNs presented in Chapter 3, we
analyze whether similar strategies may lead to new findings on robust training methods.
We have seen that the activation values of NNs carry robustness-sensitive information
which were useful in the detection of anomalous data samples and even adversarial
examples. Therefore, in this chapter, we first shed light on adversarial training and
analyze its impacts on NNs. We fuse insights from two intriguing research directions
which gained attention in recent years: activation analysis [1,9] and information-theoretic
concepts to understand NNs [136–140]. Combining these two worlds reveals new insights
in how NNs behave under different circumstances and types of inputs. This fusion leads
to a new training approach, which we call entropic retraining (ER). We empirically
show that this training procedure improves the robustness of NNs against gradient-
based attacks compared to standard training. Interestingly, this approach does not
require adversarial examples and works for various NN architectures and data sets using
the original input data only.
In summary, in this chapter we present the following contributions:

� We analyze the impacts of adversarial training on NNs using information-theoretic-
inspired approaches.

� We leverage the knowledge gained during this analysis and present a new training
method that we call entropic retraining.

� We implement and evaluate our new training method and show a significant im-
provement in robustness for various NN architectures and data sets.

This chapter is structured as follows: In Section 4.2 we present related work and the
fundamental background information needed in this chapter. This includes an overview
of information-theoretic tools used in DL, as well as adversarial training and the notion
of activation analysis introduced in the previous chapter. In Section 4.4 we present
entropic retraining, our robust training method inspired by recent advances in making
adversarial training more efficient and less computationally expensive. We show the
considered threat models in Section 4.3, the experimental setup in Section 4.5, and
finally our thorough evaluation using different NN models and data sets in Section 4.6.
We further investigate the impacts of Entropic Retraining on NNs and discuss potential
pitfalls in Section 4.7. Here, we shed more light on the inner workings of our robust
training approach and show that further research is required in the field of information-
theoretic approaches for analyzing NNs.

4.2 Related Work

Robust Training Approaches in Deep Learning

In Section 2.2.3.1 we introduced adversarial training as the current state-of-the-art de-
fense strategy to make NNs more robust. Madry et al. [19] further improved initial
findings and formalized adversarial training using their PGD attack as a min-max prob-
lem. Even though adversarial training is well researched and evaluated, some aspects
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still remain unclear: for instance, the full impact on the protected NNs and how to fur-
ther improve the concept of adversarial training in general. The trade-off between the
resulting level of robustness and the final accuracy of the model is known, but yet to be
fully understood [141]. Furthermore, the adequate setting of hyperparameters poses an
uncertainty for developers trying to protect their NNs using adversarial training. Here,
the number of epochs, learning rate, or attack parameters need to be defined and are
often set following a laborious empirical approach. Recent work by Shafahi et al. [135]
showed that adversarial training can be further improved and even performed at reduced
cost. The authors reuse the gradient information available during the updates of the
model parameters in normal training. With this approach, the authors achieve a similar
level of robustness compared to PGD-based adversarial training, without the genera-
tion of adversarial examples. Similarly, Wong et al. [34] revisited adversarial training
using FGSM as the generating method. The authors were able to achieve similar lev-
els of robustness compared to PGD-based training yet profiting from the significantly
faster adversarial example generation. Still, to shed more light on adversarial training,
we inspect NNs using information-theoretic-inspired approaches at different robustness
levels.

Information-Theoretic Approaches in Deep Learning

In this paragraph, we briefly present the most related publications on information-
theoretic approaches to study NNs. We focus on work improving the understanding
of NNs in general and the robustness against adversarial examples in particular. In
2000, Tishby et al. [142] introduced the information bottleneck (IB) method solving
the problem of distributional clustering. The findings were further refined, by, among
others, Tishby et al. [136], and used to analyze the training of NNs. Shwartz-Ziv and
Tishby [137] introduced their so-called information planes as a metric describing the
information flow during NN training. The authors analyze the mutual information be-
tween the layers and make the following observations: First, NNs perform a compression
of the inputs to a compact representation. Then, by neglecting or forgetting parts of
the compressed information, NNs achieve better generalization and overall performance.
In 2019, Achille et al. [143] investigated NNs using information-theoretic approaches as
well and made similar observations. The authors find that models which generalize well,
often show a low level of information.

Based on these findings and concepts, we investigate the impacts of adversarial training
on NNs. Closely related in this regard are the contributions by Terzi et al. [140] published
in 2020, showing that adversarial training reduces information in NNs. Using this insight,
the authors empirically demonstrate that robust models show a better transferability
characteristic compared to their unsecured counterparts for the CIFAR10 and CIFAR100
data sets. In this chapter, we profit from this finding and present a new training approach
that we call entropic retraining.
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4.3 Considered Threat Model

Based on our general introduction to threat models in adversarial machine learning pre-
sented in Section 2.2.1, in this section we summarize the considered attacker capabilities
for this chapter. We generally assume untargeted attacks. From a defender-perspective,
this poses a more challenging task compared to targeted attacks. In general, untar-
geted attacks should strictly be easier compared to selecting one specific target class
the decision of the NN should be altered to [14]. Therefore, by assuming this type of
attack, we expect that our experiments as well as the results can be directly transferred
to the targeted attack setting. Furthermore, we solely utilize attack methods which are
bounded by the l2 and l∞ norm. Finally, we assume attackers with white-box access
to the model under attack. Hence, we use specifically crafted adversarial examples to
provoke our models to wrongly classify the inputs. Even though we assume the attack-
ers to be aware of our modified training method, further attack methods targeting the
information-theoretic properties of the models under attack are out of scope in this thesis
and left for future work.

4.4 Entropic Retraining: Activation-Based Training Towards
Robust Neural Networks

In this section, we introduce our main contribution of this chapter: a modified and robust
training approach we call entropic retraining. Based on our adapted loss function and
the optimization goal we show in Section 4.4.3, ER does not rely on the time consuming
and computationally expensive process of generating adversarial examples.

First, we evaluate adversarial training and the behavior of the resulting robust NNs.
For this purpose, in Section 4.4.1 we introduce our evaluation metrics inspired by infor-
mation theory and perform a preliminary analysis. We then transfer our findings to an
adversarial-example-free case and introduce ER.

4.4.1 Concept and Preliminary Analysis

We assess the impact of adversarial and entropic training using two information-theoretic-
inspired values. Mainly, we were inspired by the classical Shannon entropy [144] defined
as:

H(x) = −
∑
i

p(xi) log(p(xi)). (4.1)

In this paper, we directly use the hidden activation values of each layer of the NN. More
precisely, we extract the activation values hi of each layer i ∈ 1, ..,M and calculate E(hi)
as follows:

E(hi) = −
Ni∑
j=1

hj log(hj), (4.2)

with Ni being the number of neurons in layer i. To finally calculate the network-entropy-
related value EN we first normalize E(hi) with respect to the number of neurons in the
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layer and then average the result with respect to the number of layers in the NN:

EN =
1

M

M∑
i=1

1

Ni
E(hi). (4.3)

Moreover, we introduce and evaluate ET , which layer-wise quantifies the differences
in E(hi) and, thus, allows an evaluation of the information-related flow in the NN. More
formally, we define ET as follows:

ET =
1

M − 1

M−1∑
i=1

E(hi)− E(hi+1)

=
1

M − 1
(E(h1)− E(hM ))

(4.4)

Note that we do not normalize E(hi) to calculate ET . We assume that non-normalized
values provide a more useful picture of the information-related flow in this case. This
assumption is based on the following intuition: During the adversarial training process
and while solving the min-max problem introduced in Section 2.2.3.1, some of the weights
might be set to negligible magnitudes. This would lead to neurons with insignificant
impacts on the level of activation in the analyzed layer. Hence, normalizing E(hi) would
hide this effect. Our intuition is inspired by the contribution of Ilyas et al. [145]. The
authors state that models are required to forget some of the non-robust features to be
more robust. This correlates to neglecting the influence of the neurons which are trained
to process these non-robust features. To capture this effect and the overall impact of
adversarial training on the NNs, we do not normalize the components of ET .

In summary, with our newly introduced values EN and ET at hand we evaluate the
information-theoretic-related properties of the NNs during input processing.

4.4.2 Impacts of Adversarial Training

To visualize the impact of adversarial training, we considered the following settings
and model under test (MUT). We used a pretrained LeNet5 CNN [87] model. This
architecture is designed to classify the simple and widely used MNIST data set. For
the sake of readability, we introduce the architecture and data set in more detail in
Section 4.5.2.
After every fifth epoch of adversarial training using the PGD attack, we performed

forward passes using original inputs drawn from the test set and calculated EN and ET .
This allows us to visualize the evolution of both EN and ET , based on changes made to
the NN due to adversarial training. We adversarially trained the MUT for 200 epochs
in total.
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Figure 4.1: Evolution of the robustness during PGD-based adversarial training of the LeNet5
model classifying MNIST when attacked using FGSM.

In Figure 4.1, we show the resulting attack success rate for each instance of the MUT.
To quantify the model’s level of robustness, we generated l∞-bounded (ϵ = 0.3) adversar-
ial examples using FGSM with images randomly drawn from the test set. As expected,
for a higher number of epochs in adversarial training we see a decrease in the attack
success rate, indicating a robustification of the MUT. With Figures 4.2 and 4.3, we vi-
sualize the impact of adversarial training on the same instances of the MUT using the
previously introduced EN and ET . In Figure 4.2, we see a decrease in EN allowing the
following conclusion which strongly corresponds to the contribution of Terzi et al. [140]:

Adversarial training decreases EN .

This effect is already visible after five epochs of adversarial training. Furthermore, a
strong correlation between the evolution of the attack success rate and EN is given. As
stated before and corresponding to previous work by Ilyas et al. [145] and Terzi et al.
[140], adversarial training increases the model’s robustness by boosting the generality of
the MUT at the cost of its initial accuracy shown by Zhang et al. [146].
With Figure 4.3, we report a similar effect when observing ET . The plot shows that

ET increases with a higher level of robustness. Together with the previous observation
of decreasing attack success rates, this suggests a negative correlation between ET and
the level of robustness achieved during adversarial training. This effect is even more
visible for robust models, which brings us to our second observation:

Adversarial training increases ET .
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Figure 4.2: EN for the LeNet5 model classifying the MNIST data set during PGD-based ad-
versarial training.
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Figure 4.3: ET for the LeNet5 model classifying the MNIST data set during PGD-based ad-
versarial training.
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Figure 4.4: EN for the LeNet5 model classifying the MNIST data set during entropic retraining.

4.4.3 Entropic Retraining Objectives

With the above figures and observations at hand, we present the concept of ER. Above,
we observed that adversarial training yields NNs with lower levels of EN and higher lev-
els of ET compared to their normally trained initial instances. Following this insight, we
incorporate ET in the training process and present an adapted loss function. Thus, dur-
ing entropic retraining, we optimize the performance of the model while simultaneously
increasing ET . Formally, we define our adapted loss function as follows:

Ltot = Lscce(y, ŷ) + λ · LT (ET , ÊT ) (4.5)

with

Lscce(y, ŷ) = −
N∑
i=1

yilog(pŷi) (4.6)

being the standard sparse categorical cross-entropy and

LT (ET , ÊT ) = (ÊT − σET )
2

(4.7)

being our newly introduced optimization term. Here, ET is the value of the original
pretrained model, while ÊT is calculated during entropic retraining. The factors λ, σ ∈
R+ are positive hyperparameters set in the optimization process before training. With
our simple extension of the original loss function, ER can be easily performed using
standard NN training approaches. As in standard training, we aim to decrease the
current loss by adapting the weights of the NN accordingly.
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Figure 4.5: ET for the LeNet5 model classifying the MNIST data set during entropic retraining.

4.4.4 Impacts of Entropic Retraining

In this section, we show the impacts of ER with the following experiment: We performed
ER with the same pretrained MUT from above, based on the LeNet5 architecture.
During this process, we calculated EN and ET . To assess the achieved level of robustness
after every fifth epoch, we attacked the resulting instances of the MUT using FGSM and
measured the achieved attack success rates. In Figures 4.4 and 4.5, we show the evolution
of EN and ET , respectively. Compared to adversarial training, we see the same effects for
the resulting model instances. With our experiments we make the following observation,
which is closely related to adversarial training:

Entropic retraining decreases EN .

Moreover:

Entropic retraining increases ET .

This observation suggests that ER has similar effects on EN and ET as adversarial train-
ing. Remarkably, we achieve this solely using the original inputs without the laborious
generation of adversarial examples.
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Figure 4.6: Evolution of the robustness during entropic retraining of the LeNet5 model classi-
fying MNIST when attacked using FGSM.

In Figure 4.6, we show the attack success rates for the model during ER. Again, the
same effect as in the previously performed adversarial training experiment is visible.
The attack success rate decreases with the number of performed ER epochs. With this
observation, we provide first strong indications that an analysis of the NN activations
in an active manner provides means to increase the robustness of the models. More
specifically, investigating the information-theoretic behavior of NNs gives insights on
their level of robustness. By simultaneously optimizing for accuracy and a higher level
of ET , we achieve a robustification of the MUT.

4.5 Experimental Setup

In the following, we empirically confirm our initial observation by extending the proof of
concept with a thorough evaluation. Hence, we introduce details on our implementation,
considered data sets, and evaluated NN architectures. For our prototype implementa-
tion, we used Keras [131] and ran the training procedures on an Intel Xeon E5-2640 v4
server with an NVIDIA Titan X GPU.

4.5.1 Data Sets

We used the MNIST [83], Fashion-MNIST [103], and CIFAR10 [84] image data sets.
Further information on the data sets can be found in Section 3.2.5.1.
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4.5.2 Target Models

Throughout our evaluation we considered four different NN architectures. We are able
to show a robustness increase for all of them. For the sake of comparability and in
order to ease reproducibility, we utilized publicly available and thoroughly evaluated
architectures. For MNIST, we considered the LeNet5 architecture [87] and an example
model provided by Keras [88]. Similarly, for Fashion-MNIST and CIFAR10, we used
an example model provided by Keras [90, 147] for each of the data sets. In Table 4.1,
we summarize the considered NNs and show details regarding their architectures and
the executed training processes. During our experiments with DLA and DA3G, we used
similar target architectures. We therefore use the same model names. Note that we did
not use the identical models and used newly trained ones throughout this section. For
the Keras example models classifying MNIST and CIFAR10 images, we slightly changed
the architectures and neglected the drop-out layers.

4.5.3 Attack Methods

In accordance with common guidelines by Carlini et al. [14] and our remarks on attack
methods presented in Section 3.3.5.3, during the evaluation of entropic retraining we used
the following methods: PGD [19], DeepFool (DF) [20], and C&W [22]. For PGD and
DF, we considered both the l2 and l∞ versions of the attacks. For the C&W attack we
solely used the l2 version. We motivate our choice of attacks based on their performance
and, as stated above, based on their underlying principles. This provides a diversely ex-
ecuted assessment of the quality of our proposed countermeasure. In summary, we again
considered bounded gradient-based multi-step attacks (PGD), decision-based (DF), as
well as optimization-based (C&W) approaches. We used the Foolbox framework [96] to
generate the adversarial examples. For MNIST, we set ϵ to 4.5 and 0.3 for l2 and l∞
bounded attacks, respectively, while we set the values to 1.5 and 0.1 for the Fashion-
MNIST data set. Similarly, for CIFAR10 we limited ϵ to 0.95 and 0.03 for l2 and l∞
bounded attacks, respectively.

4.5.4 Entropic Retraining Settings

In Table 4.2, we summarize the settings we chose for entropic retraining of the four
MUTs. Setting the parameters, we followed an intuitive approach and did not perform
an extensive search. Hereby, we want to show the simplicity of our approach underlining
the ease of use. We used the Adam optimizer to retrain the four models and chose sim-
ilar settings in each case. As the gradient calculation during entropic retraining poses a
rather complex task, we used small batches. With this, we aim to avoid sharper minimiz-
ers during training, which would lead to a decrease in generalization as shown by Keskar
et al. [148]. For the MNIST and Fashion-MNIST models we chose a batch size of four,
while the CIFAR10 model was trained with a batch size of 64. Accordingly, we set the
number of epochs to 200 and 500 for the (Fashion-)MNIST and CIFAR10 experiments,
respectively. Finally, we set the weighting factor σ based on the observations shown in
Section 4.4.2. As we want to increase ET , we chose σ > 1 for all experiments.
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Table 4.1: Target models we used during the proof-of-concept implementation for entropic re-
training. We give a short summary of each model’s architecture as well as the used
training settings and resulting test accuracy.

Model Model Details Training Settings
M
N
IS
T

LeNet5 [87]

– 2 convolutional layers with filter
sizes 5 and 16
– each convolutional layer is fol-
lowed by an average-pooling layer
– finally, 3 dense layers with 120,
84, and 10 neurons each
– no drop-out layers

– opt.: Adam
– l.r.: 0.001
– epochs: 24
– batch size: 64
– test acc.: 99.1%

KerasExM [88]

– 2 convolutional layers with filter
sizes 32 and 64
– followed by 1 max-pooling layer
– finally, 3 dense layers with 512,
84, and 10 neurons each
– no drop-out layers

– opt.: Adam
– l.r.: 0.001
– epochs: 12
– batch size: 128
– test acc.: 99.1%

F
as
h
io
n
-M

N
IS
T

KerasExF [147]

– 2 convolutional layers with filter
sizes 32 and 64
– followed by 1 max-pooling layer
– finally, 2 dense layers with 256
and 10 neurons each
– no drop-out layers

– opt.: Adam
– l.r.: 0.001
– epochs: 10
– batch size: 64
– test acc.: 91.7%

C
IF
A
R
10

KerasExC [90]

– 4 convolutional layers, the first
two with filter of size 32, the second
pair with filter size of 64
– each pair of convolutional layers
is followed by a max-pooling layer
– finally, 6 dense layers with 512,
256, 128, 128, 84, and 10 neurons
each
– no drop-out layers

- opt.: RMSprop
– l.r.: 0.0001
– epochs: 50
– batch size: 32
– using data aug-
mentation
– test acc.: 81.7%

4.5.5 Experiment Overview

In summary, we performed the following experiments to present the performance of our
new robust training method.

First, as a baseline we show the properties of our normally trained models presented
in Table 4.1 in more detail in Section 4.6.1. This includes an analysis of the attack-free
case when classifying unaltered benign inputs and noisy inputs. Furthermore, we show
the robustness of the baseline models against our selection of attack methods. With
these results at hand, in the subsequent sections we are able to quantify the impacts
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Table 4.2: Entropic retraining settings for the considered neural networks.

Data Model Entropic Retraining Settings

MNIST LeNet5

– optimizer: Adam
– learning rate: 0.0009
– epochs: 200
– batch size: 4
– λ: 1; σ: 1.65

KerasExM

– optimizer: Adam
– learning rate: 0.001
– epochs: 200
– batch size: 4
– λ: 1; σ: 1.65

Fashion-MNIST KerasExF

– optimizer: Adam
– learning rate: 0.001
– epochs: 200
– batch size: 4
– λ: 1; σ: 1.5

CIFAR10 KerasExC

– optimizer: Adam
– learning rate: 0.0005
– epochs; 500
– batch size: 64
– λ: 1; σ: 1.01

of entropic retraining more accurately. To create the noisy input images we again used
the Foolbox framework and generated two sets of test images. For the three data sets,
Foolbox generated noise which is added to the original input images. Here, we chose
the noise to be either l2 or l∞ constrained. This allows a direct comparison to the
performance of the NNs when classifying adversarial examples bounded by the same
distance metrics. Hence, in the MNIST setting, for the l2 and l∞ constrained noise
generation we set ϵ to 4.5 and 0.3, respectively. For Fashion-MNIST ϵ was set 1.5 and
0.1. Similarly, in the CIFAR10 setting we chose ϵ to be 0.95 and 0.03.

In the second part of the experiment summarized in Section 4.6.2, we first show
the standard performance, i.e., the accuracy of our models after entropic retraining, in
Section 4.6.2.1. Here, we investigate whether the use of our robust training approach
degrades the accuracy and generalization of the MUTs. Finally, in Section 4.6.2.2 we
show the robustness of the MUTs after entropic retraining. This is the main experi-
ment of this chapter. Throughout this experiment, we did not change any parameters
unrelated to entropic retraining compared to the baseline experiments using the original
models. We divided this experiment into two parts and first assessed the performance
of NNs with softmax-activated outputs before we collected the results for the models
with linear outputs. In our original paper [10], the robustness of the neural networks
was exclusively shown for NNs with softmax-activated outputs. As the calculation of
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Table 4.3: Standard accuracy scores of the original neural networks. Here, identical results are
achieved for softmax-activated and linear outputs.

Data Model
Tested with:
Original l2Noise l∞Noise

MNIST
LeNet5 99.1% 98.9% 98.8%
KerasExM 99.1% 98.7% 98.6%

F.-MNIST KerasExF 91.7% 90.0% 89.6%
CIFAR10 KerasExC 81.7% 80.9% 80.8%

the gradients needed during the attacks may be critical for softmax-activated outputs,
in this thesis, we additionally show the robustness for linear outputs. This provides
a clearer picture of our method’s performance and, for future work, allows an easier
comparison to new methods.

4.6 Evaluation

In this section we present the results of our experiments using entropic retraining. We
divide the evaluation into two parts according to our experiment overview from Sec-
tion 4.5.5. First, we show the results for the baseline models before we present the
results for the models after ER.

4.6.1 Baseline Model Properties

For the following results, we used the pretrained models introduced in Table 4.1.

4.6.1.1 Performance of the Baseline Models

We observed the models’ performance classifying the benign original data, as well as
noisy input images. With this experiment we evaluated whether entropic retraining
increases the sensitivity of the MUTs towards slight but unintentional perturbations. In
Table 4.3 we summarize the resulting accuracy values. For the three data sets and four
MUTs, we observed that noisy images were classified with a similar accuracy compared
to their original counterparts. The impact of noise on the performance of all MUTs was
negligible as it decreased the accuracy scores by less than 5%. We conclude that the
performance of the originally pretrained MUTs is robust towards noise. This suggests
that the considered target models are a viable choice for our experiments.

4.6.1.2 Robustness of the Baseline Models

Next, we evaluated the robustness of the pretrained MUTs by performing attacks with
the three introduced methods. As shown in Section 2.2.4, we quantify the NNs’ robust-
ness by evaluating the attack success rate for PGD while showing the required mean
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Table 4.4: Attack success rates for PGD and mean lp-distances for DF and C&W when attack-
ing the original neural networks with softmax-activated outputs.

Data Model
Attack Success Rate or Mean lp-Distance:
PGD∞ PGD2 DF∞ DF2 C&W2

MNIST
LeNet5 100.0% 99.2% 0.29 4.31 1.72
KerasExM 99.8% 99.5% 0.29 4.28 1.63

Fashion-MNIST KerasExF 100.0% 99.6% 0.07 1.04 0.38
CIFAR10 KerasExC 100.0% 99.8% 0.02 0.50 0.21

Table 4.5: Attack success rates for PGD and mean lp-distances for DF and C&W when attack-
ing the original neural networks with linear outputs.

Data Model
Attack Success Rate or Mean lp-Distance:
PGD∞ PGD2 DF∞ DF2 C&W2

MNIST
LeNet5 99.9% 99.1% 0.13 1.63 1.27
KerasExM 99.8% 99.5% 0.14 1.63 1.24

Fashion-MNIST KerasExF 100.0% 99.6% 0.02 0.35 0.31
CIFAR10 KerasExC 100.0% 99.7% 0.01 0.21 0.19

distortion for DF and C&W. We solely used images which are originally classified cor-
rectly by the MUTs to generate adversarial examples. In the Tables 4.4 and 4.5, we
summarize the results for the models with softmax-activated and linear outputs, re-
spectively. With our experiments, and as also shown in previous work, we see that our
unprotected models were highly vulnerable. For the four MUTs, PGD achieved nearly
perfect scores for all experiments indicating the low level of robustness in this case. For
both, the models with softmax outputs as well as with linear outputs, we see minor
differences in the success of the PGD attack. All attacks achieved a success rate of
over 99%. For the unbounded DF and C&W attacks, we report a notable difference
in achieved attack success depending on the output type. In our experiments we saw
that attacking the models with softmax-activated outputs requires significantly higher
levels of perturbations to fool the targets. This effect is especially striking for the DF2

attack. For the remainder of this chapter, we therefore focus on the robustness of the
linearly outputting models. The interested reader may find the results for the models
with softmax outputs in Appendix A.3.1.
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Table 4.6: Standard accuracy scores of the neural networks (linear outputs) after entropic re-
training.

Data set Model
Tested with:
Original l2–Noise l∞–Noise

MNIST
LeNet5 97.7% 95.8% 95.7%
KerasExM 99.1% 98.4% 98.3%

F.-MNIST KerasExF 90.9% 88.9% 89.0%
CIFAR10 KerasExC 85.0% 84.1% 84.2%

4.6.2 Model Properties after Entropic Retraining

In the following we show the properties of our models after entropic retraining.

4.6.2.1 Performance of the Models after Entropic Retraining

Table 4.6 displays the accuracy scores of the four MUTs when classifying original as
well as noisy inputs. This table complements the results summarized in Table 4.3 which
focuses on the baseline models. LeNet5’s performance decreased by 1% when classifying
the original inputs. When classifying noisy inputs, the accuracy scores decreased by 3%
for both, the l2 and l∞ constrained cases. For both Keras example models, operating on
the MNIST and Fashion-MNIST data sets, entropic retraining had a negligible impact
on the standard accuracy scores. In summary, for all three test cases and each model,
the accuracy decreased by less than 1%. Interestingly, for the CIFAR10 MUT we report
an increase in accuracy of 4% when classifying the original inputs. The same increase
can be seen for noisy input samples. Here, again, the model performed 4% better for
the l2 and l∞ constrained examples.

In summary, we conclude that entropic retraining did not decrease the natural per-
formance of the models and in some cases even allowed higher accuracy values. Fur-
thermore, the robustness against noise did not decrease and the MUTs achieved similar
levels of reliability compared to their initial versions.

4.6.2.2 Robustness of the Models after Entropic Retraining

In the following we present our results on the achieved levels of robustness for our four
MUTs after entropic retraining. As mentioned above, we focused on the models with
linear outputs and show the according results in Table 4.7. This consists of the attack
success rates and mean distortions when attacking our protected models. Additionally,
in Table 4.8 we show the differences of the robustness metrics between the unprotected
models as well as the models after entropic retraining. This allows a direct assessment of
the impact of entropic retraining and emphasizes potential strengths and weaknesses of
our method. Again, for the interested reader, we show the according results for softmax
NNs in Appendix A.3.1.
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Table 4.7: Attack success rates for PGD and mean lp-distances for DF and C&W when attack-
ing the neural networks after entropic retraining with linear outputs.

Data Model
Attack Success Rate or Mean lp–Distance:
PGD∞ PGD2 DF∞ DF2 C&W2

MNIST
LeNet5 18.1% 8.3% 0.09 0.57 0.43
KerasExM 2.4% 1.8% 0.09 1.01 0.79

Fashion-MNIST KerasExF 24.8% 16.5% 0.02 0.21 0.18
CIFAR10 KerasExC 85.2% 73.5% 0.01 0.22 0.17

Table 4.8: Relative change in robustness after entropic retraining for the models with linear
outputs. Black and gray digits indicate a positive or negative impact on the robust-
ness, respectively.

Data Model
Attack Success Rate or Mean lp–Distance:
PGD∞ PGD2 DF∞ DF2 C&W2

MNIST
LeNet5 −82% −92% −29% −65% −66%
KerasExM −98% −98% −36% −37% −36%

Fashion-MNIST KerasExF −75% −83% −17% −39% −42%
CIFAR10 KerasExC −15% −26% 17% 6% −11%

Robustness against PGD We observed an increase in robustness for all data sets and
MUTs when attacked with PGD. For MNIST, only PGD∞ achieved a success rate greater
than 10% when attacking LeNet5. For the remaining scenarios, we saw success rates of
well below 10%. In the case of the MUT classifying Fashion-MNIST examples, we
also report a high level of robustness against PGD. Here, PGD∞ and PGD2 reached a
success rate of 24.8% and 16.5%, respectively. Evaluating the CIFAR10 data set we see
a decrease in the attack success rates as well. PGD∞ and PGD2 achieved success rates
of 85.2% and 73.5%, respectively. This is a decrease in success of 15% for PGD∞ and
of 27% for PGD2.

Robustness against DeepFool and the C&W attack For MNIST and Fashion-MNIST
we observed a lower level of robustness against DF and C&W after entropic retraining.
In this setting, both unbounded attacks required less perturbations to produce adver-
sarial examples. The smallest degradation was observed for KerasExF when attacked
with DF∞. A 17% lower perturbation budget was needed to find adversarial examples
compared to the normally trained models. We observed the highest negative impact for
LeNet5 when attacked with C&W. Adversarial examples required 66% less perturbations
to successfully fool the model. Interestingly, solely for our CIFAR10 model we observed
a higher level of robustness against DF. Entropic retraining forced the attacker to add
17% and 6% more perturbations for DF∞ and DF2, respectively. For the C&W attack
we saw a slight degradation in the robustness of 11%.
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Summary In summary, with our evaluation we report an increase in robustness against
the gradient-based PGD attack without loosing the capability of reliably classifying
original as well as noisy inputs. In contrast to that, we report that entropic retraining
did not increase the robustness of the models against decision-based and optimization-
based attacks especially for MNIST and Fashion-MNIST. For CIFAR10 on the other
hand, we report an increase of robustness against the gradient-based and decision-based
attacks. Solely for the optimization-based C&W attack, a slight degradation of the
robustness was observed.

4.7 Supplementary Analysis of Entropic Retraining

In Section 4.4.4, we show first intuitions on the impact of entropic retraining using EN

and ET . With our thorough experiments and the accompanying evaluation in Sections
4.5 and 4.6, we empirically show the effects of entropic retraining on the robustness and
overall performance of the protected NNs. In this section, we extend our analysis and
further investigate the characteristics of the NNs during and after entropic retraining.
For this purpose, we revisit our experiments presented in Section 4.4.4 for the LeNet5

model classifying MNIST images. Here, we show the mean activation variance of the NN
during forward passes using the test data, while neglecting the input layer, expressed
with:

VN =
1

M − 1

M∑
i=2

V ar(hi). (4.8)

Hence, VN quantifies the mean layer-wise variance of the observed activation values and
visualizes the activity of the NN during classification. We visualize VN for the different
instances of LeNet5 when classifying original MNIST images in Figure 4.7.
We see an increase of VN during entropic retraining. This suggests that entropic re-

training increases the mean variance in the layers’ activations during input handling.
To further explore this effect and to analyze the cause of the increased network vari-
ance, we introduce the activation heatmap of LeNet5 in Figure 4.8. Here, we analyzed
the 84-neuron dense-layer of the MUT during input handling by calculating the mean
activation values in each neuron for different levels of robustness. For this purpose, we
used images drawn from MNIST with label 5 and again performed forward passes. The
mean activation of each neuron of the analyzed layer is color-encoded visualizing its
intensity. Brighter colors indicate a higher mean activation of the respective neuron.
We found that entropic retraining increased the activation values of dense layers in the
NN. Furthermore, the activity of a small number of neurons increased significantly more,
compared to the remaining neurons.
For reference, in Figure 4.9, we show the activation heatmap for the same model

and data during normal training. Here, we observe that the activations did not reach
the same intensity as during entropic retraining. Moreover, we see a higher number of
neurons with relatively high activations compared to the case of entropic retraining.
Combining the insights on the network variance and the activation heatmaps, we argue

that fewer neurons in the layers contributed more to the final decision of our robust NNs
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Figure 4.7: Evolution of the network variance during entropic retraining of the LeNet5 model
classifying MNIST.

compared to their unprotected counterparts. In the unprotected case, the activation
values were more evenly distributed and, therefore, contributed to a similar extent to
the decision process. This suggests, that our robust models worked in a less sensitive
manner compared to their unsecured counterparts.

4.8 Discussion

Our adapted loss function allows an information-theoretic lossy but partially robust
training process for NNs. We show that entropic retraining generalizes well and achieves
promising results when protecting against the bounded and gradient-based PGD attack
for three data sets and different NN architectures. Here, entropic retraining reduced the
achieved attack success rates without the use of adversarial examples during training.
First experiments suggest that our robust NNs work in a less sensitive manner compared
to their unprotected counterparts. Here, additional experiments revealing the full nature
of the neglected information may contribute to the understanding of robust feature
extraction. Especially investigating the question whether entropic retraining is conducive
to obfuscated gradients poses an intriguing question for future work. Our results and
the discrepancy between the protection against gradient-based attacks on the one side,
and optimization and decision-based approaches on the other side points to this effect.

Throughout our experiments, we kept the parameter optimization process as short
as possible. We used similar settings for all four MUTs to show the simplicity of our
approach. A deliberate choice of parameters with respect to the chosen architecture and
use case may further improve the results. For example, the number of epochs heavily
influences the trade-off between robustness and accuracy.
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Figure 4.8: Visualization of the activation values of the LeNet5 model during entropic retrain-
ing. The activations where triggered by MNIST images with label 5.
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Figure 4.9: Visualization of the activation values of the LeNet5 model during normal training.
The activations where triggered by MNIST images with label 5.
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4.9 Conclusion

4.9 Conclusion

In this chapter we present, implement, and evaluate a new training approach for NNs
that we call entropic retraining. Based on our information-theoretic-inspired analysis
of adversarial training and the observed activation patterns, we gain new insights into
the information flow of robust models. By adapting and expanding currently used loss
functions accordingly, in entropic retraining, we optimize for accuracy and robustness
simultaneously. With this approach, we train partially robust neural networks without
the laborious generation of adversarial examples. Our evaluation clearly indicates the
effectiveness of entropic retraining against PGD for multiple data sets and NN archi-
tectures. Furthermore, we answer Q3 presented in Section 3.4.7 and show that our
findings from Section 3.2 that the activation values of NNs carry robustness-sensitive
information, can also be leveraged in an active manner.
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5 Future Work

In Chapters 3 and 4 we presented our passive and active defense methods for NNs as
well as an anomaly detection approach. After the presentation of each individual method
we formulated local research questions which we answered in the subsequent chapters.
These questions posed the next logical steps after the individual contributions and their
impact in the field. In this chapter, we revisit open questions from a global perspective
with respect to the findings of this thesis. This includes practical aspects as well as
questions which partially exceed the research area of adversarial ML. We hope that
this thesis sparks interest and paves the ground for future work on the analysis of the
activations of NNs.

5.1 Selecting Information Sources

In our passive detection schemes the alarm model is responsible for assessing the behavior
of the target model. This is done by either analyzing the target’s activations or gradients.
In this thesis, we present practical suggestions on how to select the layers based on
which the information relevant for the alarm model is extracted. For this selection we
consider the resulting performance of the detection schemes as well as computational
resources available to the defender. Future work may build upon this and answer the
question on how to select the layers the information should be extracted from, potentially
from a general perspective. This may also include an extension of our target-alarm
architecture. More complex systems consisting of a set of models require a deliberate
choice of activation sources to be assessed, in order to allow an efficient detection of
attacks or anomalies.

5.2 Understanding Influencing Factors for Robustness

We empirically show that the activation values of NNs carry robustness-sensitive in-
formation. Exceeding the benefits of passively analyzing the activation values in our
detection schemes as well as actively influencing them in our presented training ap-
proach we see the following open question: How can the activation values, or more
generally, all information available in the NNs be used to assess the robustness of the
models themselves? This specifically includes, next to increasing robustness, measuring
the level of protection against adversarial examples. As we have shown throughout this
thesis, current methods to assess the robustness of NN-based systems consist of observ-
ing the attack success rates or the required perturbation budgets. New methods based
on an analysis of the models themselves, e.g., by observing their activations values could
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5 Future Work

provide means to quantify the robustness of NNs independently of specific attacks and
according implementations.

5.3 Designing Trustworthy Neural-Network-based Systems

Finally, we broaden our view and discuss open questions from a more holistic perspective.
NNs build the foundation of numerous systems based on ML. The characteristics of the
deployed NNs are of crucial importance for the trustworthiness of the overall systems.
Next to the robustness against adversarial examples, properties like fairness, privacy, or
explainability need to be ensured. Through the insights gained in this thesis, we might
be able to advance research in other domains beyond adversarial ML. By facilitating
research on new methods enhancing the aforementioned properties, we believe that our
contributions might have a positive impact on the trustworthiness of NNs and systems
relying on those.
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6 Conclusion

State-of-the-art neural networks are able to solve complex tasks in a wide range of
domains. Typical applications range from object detection in the image domain to text-
to-speech synthesis in the audio domain. The performance of the models is the main
driving force behind the increasing number of systems based on neural networks. Due
to their high number of parameters, approximating functions for high-dimensional data
inputs becomes feasible. The availability of high-performance hardware as well as online
training services further contributes to this effect. Despite their recent success and
widespread use, neural networks are vulnerable to adversarial examples. During evasion
attacks, adversaries induce slight changes to the inputs which alter the classification
output of the attacked system. As the changes are humanly imperceptible, identifying
adversarial examples as such is a challenging task. Furthermore, there is still no definitive
answer to why adversarial examples exist and how to effectively protect models against
attacks. Still, due to their performance, the number of security-sensitive systems relying
on neural networks may significantly increase in the near future.

This motivated the work presented in this thesis resulting in the following main in-
sight: The activations readily available during the input processing of neural networks
carry robustness-sensitive information. Based on an analysis of the activations, we design
passive as well as active defense strategies. This consists of attack detection methods
shown in Chapter 3 and an activation-based training approach shown in Chapter 4.

Leveraging our main insight, we present a generally applicable and modular architec-
ture allowing a reliable detection of adversarial examples. This architecture consists of
two parts: the target neural network we try to protect and an alarm neural network
performing the attack detection. In Section 3.2 we show that the alarm model trained
on the target’s activations is able to identify adversarial examples with high confidence.
We show that our approach is applicable in image, NLP, and audio processing settings.
Furthermore, our results strongly suggest that we cannot only detect state-of-the-art at-
tacks, but also adversarial examples generated with future, yet unknown methods based
on currently known paradigms.

Following the design of our modular approach, we answer the question whether this
architecture can further be leveraged to contribute towards robust neural networks.
To this end, in Section 3.3 we show that our architecture is useful not only using the
models’ activations but also using the targets’ gradients. Here, we use the very same
architecture yet replace the analysis of the activations with an assessment of the gradient.
We therefore show that our architecture is useful even if a model’s activations are not
available. This shows the applicability of our concept for a wide range of neural-network
architectures and setups.
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6 Conclusion

Concluding our investigation of passive activation-based methods, in Section 3.4 we
transfer our findings on adversarial example detection to the field of anomaly detection.
Again using our modular architecture and deliberately choosing appropriate target mod-
els we are able to reliably detect anomalies while outperforming state-of-the-art methods.
With this finding, we propose a new neural-network-based approach supporting data-
processing systems by detecting anomalous samples. By reliably detecting anomalies,
potential malfunctions of the system or even intrusions can be identified.
Complementary to our detection methods, in Section 4.4, we present an activation-

based training method for neural networks. We analyze the activation values exhibited
during training and incorporate the insights into the optimization process of the models.
This active defense strategy may act as an additional layer of protection for our target-
alarm architecture and can be applied independently of any detection method already
in use. By presenting active as well as passive defenses we underline the importance and
benefits of leveraging the information available in the models’ activations.

Based on our results in Chapters 3 and Chapter 4, we show that the activation values
are highly relevant in the context of AI-based systems. With the findings and methods
individually presented in each chapter we contribute to the research on robust neural
networks. By combining the methods in this dissertation, we further show the potential
prospects of automatically analyzing neural networks’ activations during run time and
training. Building upon our simple target-alarm structure may lead to further advances
in adversarial machine learning and anomaly detection. We hope that this thesis inspires
further research investigating our initial findings in the promising field of activation
analysis.
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Sadeghi. DÏoT: A Federated Self-learning Anomaly Detection System for IoT. In
Proceedings of the 39th IEEE International Conference on Distributed Computing
Systems (ICDCS), Dallas, USA, 2019. doi:10.1109/ICDCS.2019.00080.

[117] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff.
LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection. In ICML 2016
Anomaly Detection Workshop, 2016. URL: http://arxiv.org/abs/1607.00148.

[118] J.-P. Schulze, A. Mrowca, E. Ren, H.-A. Loeliger, and K. Böttinger. Context by
Proxy: Identifying Contextual Anomalies Using an Output Proxy. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining - KDD ’19, pages 2059–2068, 2019. doi:10.1145/3292500.3330780.

[119] C. Zhou and R. C. Paffenroth. Anomaly Detection with Robust Deep Autoen-
coders. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017. doi:10.1145/3097983.3098052.

[120] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li. AI2:
Training a Big Data Machine to Defend. In IEEE 2nd International Confer-
ence on Big Data Security on Cloud (BigDataSecurity), IEEE International Con-
ference on High Performance and Smart Computing (HPSC), and IEEE Inter-
national Conference on Intelligent Data and Security (IDS), pages 49–54, 2016.
doi:10.1109/BigDataSecurity-HPSC-IDS.2016.79.

[121] S. Das, W.-K. Wong, T. Dietterich, A. Fern, and A. Emmott. Incorporating Expert
Feedback into Active Anomaly Discovery. In IEEE 16th International Conference
on Data Mining (ICDM), pages 853–858, 2017. doi:10.1109/icdm.2016.0102.

[122] G. Pang, C. Shen, and A. van den Hengel. Deep Anomaly Detection with De-
viation Networks. In Proceedings of the ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 353–362, 2019. doi:

10.1145/3292500.3330871.

[123] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K.-R. Müller,
and M. Kloft. Deep Semi-Supervised Anomaly Detection. In International Con-
ference on Learning Representations (ICLR), 2020. URL: https://openreview.
net/forum?id=HkgH0TEYwH.

[124] G. Pang, C. Shen, H. Jin, and A. van den Hengel. Deep Weakly-supervised
Anomaly Detection. arXiv preprint arXiv:1910.13601, 2019. URL: http://arxiv.
org/abs/1910.13601.

[125] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. EMNIST: Extending MNIST
to handwritten letters. In International Joint Conference on Neural Networks
(IJCNN), pages 2921–2926, 2017. doi:10.1109/IJCNN.2017.7966217.

108

http://dx.doi.org/10.1109/ICDCS.2019.00080
http://arxiv.org/abs/1607.00148
http://dx.doi.org/10.1145/3292500.3330780
http://dx.doi.org/10.1145/3097983.3098052
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.79
http://dx.doi.org/10.1109/icdm.2016.0102
http://dx.doi.org/10.1145/3292500.3330871
http://dx.doi.org/10.1145/3292500.3330871
https://openreview.net/forum?id=HkgH0TEYwH
https://openreview.net/forum?id=HkgH0TEYwH
http://arxiv.org/abs/1910.13601
http://arxiv.org/abs/1910.13601
http://dx.doi.org/10.1109/IJCNN.2017.7966217


BIBLIOGRAPHY

[126] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the
KDD CUP 99 data set. In IEEE Symposium on Computational Intelligence for
Security and Defense Applications, pages 1–6, 2009. doi:10.1109/CISDA.2009.

5356528.

[127] A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. Calibrating Prob-
ability with Undersampling for Unbalanced Classification. In 2015 IEEE Sym-
posium Series on Computational Intelligence, pages 159–166. IEEE, 2015. doi:

10.1109/SSCI.2015.33.

[128] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward Generating a New
Intrusion Detection Dataset and Intrusion Traffic Characterization. In ICISSP
2018 - Proceedings of the 4th International Conference on Information Systems
Security and Privacy, pages 108–116, 2018. doi:10.5220/0006639801080116.

[129] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[130] T. Nakae. DAGMM TF Implementation. Accessed: 2023-03-01. URL: https:
//github.com/tnakae/DAGMM.

[131] F. Chollet et al. Keras, 2015. URL: https://keras.io.

[132] Keras. Building Autoencoders in Keras, 2016. Accessed: 2023-03-01. URL: https:
//blog.keras.io/building-autoencoders-in-keras.html.

[133] Keras. MNIST CNN, 2015. Accessed: 2020-01-13. URL: https://keras.io/
examples/mnist_cnn/.

[134] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Jour-
nal of Machine Learning Research, 15:1929–1958, 2014. URL: https://dl.acm.
org/doi/abs/10.5555/2627435.2670313.

[135] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis,
G. Taylor, and T. Goldstein. Adversarial Training for Free! In Advances in Neural
Information Processing Systems, 2019. URL: https://proceedings.neurips.
cc/paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf.

[136] N. Tishby and N. Zaslavsky. Deep learning and the information bottleneck
principle. In IEEE Information Theory Workshop (ITW), pages 1–5, 2015.
doi:10.1109/ITW.2015.7133169.

[137] R. Shwartz-Ziv and N. Tishby. Opening the Black Box of Deep Neural Networks
via Information. arXiv preprint arXiv:1703.00810, 2017. URL: http://arxiv.
org/abs/1703.00810.

109

http://dx.doi.org/10.1109/CISDA.2009.5356528
http://dx.doi.org/10.1109/CISDA.2009.5356528
http://dx.doi.org/10.1109/SSCI.2015.33
http://dx.doi.org/10.1109/SSCI.2015.33
http://dx.doi.org/10.5220/0006639801080116
https://github.com/tnakae/DAGMM
https://github.com/tnakae/DAGMM
https://keras.io
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://keras.io/examples/mnist_cnn/
https://keras.io/examples/mnist_cnn/
https://dl.acm.org/doi/abs/10.5555/2627435.2670313
https://dl.acm.org/doi/abs/10.5555/2627435.2670313
https://proceedings.neurips.cc/paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf
http://dx.doi.org/10.1109/ITW.2015.7133169
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1703.00810


BIBLIOGRAPHY

[138] M. Gabrie, A. Manoel, C. Luneau, J. Barbier, N. Macris, F. Krza-
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A Appendix

A.1 DLA Appendix

In this section we show supplemental material for Section 3.2 based on our publication
“DLA: Dense-Layer-Analysis for Adversarial Example Detection” [9].

A.1.1 NLP Adversarial Example Generation

With Algorithm 1 we generated adversarial examples for our NLP target model classify-
ing IMDb reviews. The target model performs a binary classification and distinguishes
between positive and negative reviews.

Data: IMDb reviews
Result: Adversarial IMDb reviews
Train a Word2Vec model with all reviews;
Randomly pick one word to start;
while not at the end of this document do

Find N most similar words of current word using Word2Vec;
for substitute ← next most similar word do

Replace the current word with the substitute;
Predict and calculate the margin;
if margin decrease then

break
end

end
if margin < MarginThreshold then

break
else

Recover the current word to the original word;
Move to next word;

end

end
Algorithm 1: Generation of adversarial examples in the IMDb data set containing
movie reviews.
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A.1.2 Confusion Matrix Values

In Table A.1 we show the confusion matrix values of each performed test. Note that we
tested the alarm models against multiple non-overlapping batches of test data to show
the standard deviation of the according results.

Table A.1: Confusion matrix values including error rates for all data sets, target models, and
attack methods. Each result corresponds to the detection of adversarial attack
methods with the specified target model.

Data Target Attack
Performance of the Alarm Models Tested
with the According Attacks:
TPR TNR FPR FNR

MNIST LeNet FGSM 0.98±0.00 1.00±0.00 0.01±0.00 0.02±0.00
C&W 0.97±0.01 0.98±0.00 0.02±0.00 0.03±0.01
DF 0.97±0.01 0.99±0.00 0.01±0.00 0.03±0.01
PGD 0.99±0.00 1.00±0.00 0.01±0.00 0.01±0.00
BIM 0.99±0.00 0.99±0.00 0.01±0.00 0.01±0.00

kerasExM FGSM 0.99±0.00 1.00±0.00 0.01±0.00 0.01±0.00
C&W 0.97±0.01 0.98±0.00 0.02±0.00 0.03±0.01
DF 0.98±0.01 0.99±0.00 0.01±0.00 0.03±0.01
PGD 0.99±0.00 1.00±0.00 0.01±0.00 0.01±0.00
BIM 0.99±0.00 0.99±0.00 0.01±0.00 0.01±0.00

LSTM Transfer 0.89±0.01 0.97±0.00 0.03±0.01 0.11±0.01
CapsuleNN Transfer 0.95±0.02 0.93±0.04 0.07±0.04 0.05±0.02

CIFAR10 kerasExC FGSM 0.82±0.01 0.86±0.02 0.14±0.02 0.18±0.01
C&W 0.75±0.02 0.73±0.01 0.27±0.01 0.25±0.02
DF 0.84±0.01 0.86±0.01 0.14±0.01 0.16±0.01
PGD 0.83±0.01 0.85±0.01 0.15±0.01 0.17±0.01
BIM 0.84±0.01 0.86±0.02 0.14±0.02 0.16±0.01

ResNet FGSM 0.77±0.02 0.85±0.01 0.15±0.01 0.23±0.02
C&W 0.68±0.02 0.74±0.01 0.26±0.01 0.32±0.02
DF 0.78±0.02 0.88±0.01 0.13±0.01 0.22±0.02
PGD 0.80±0.01 0.86±0.01 0.14±0.01 0.20±0.01
BIM 0.79±0.01 0.87±0.01 0.14±0.01 0.21±0.01

NLP and Audio LSTM (NLP) Custom 0.97±0.03 0.96±0.03 0.04±0.03 0.03±0.03
DeepSpeech Carlini 1.00±0.00 0.67±0.07 0.33±0.07 0.00±0.00

A.1.3 C&W Adaptive Attack Parameters

Table A.2 shows the parameters of the C&W attack during the adaptive white-box
attacks for the MNIST and CIFAR10 data sets.
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Table A.2: C&W attack parameters during the adaptive attack for MNIST and CIFAR10.

Parameter Value (MNIST) Value (CIFAR10)

max-iteration 2000 200
batch-size 100 100
learning-rate 0.1 0.01
binary-search-steps 5 3

A.2 A3 Appendix

In this section we show supplemental material for Section 3.4 based on our publication
“Activation Anomaly Analysis” [1].

A.2.1 Improved A3 Architecture

In our original publication, A3 consists of three components. Additionally to our target-
alarm structure, we propose the use of an anomaly network. This generative model
creates artificial anomalies useful during the training of our detector.

Combining the three used models we present an overview of the improved A3 archi-
tecture in Figure A.1.

x & x̄ x̂

Input &
Anomaly Net

Target Net

xalarm
Normal /
Anomalous

Alarm Net

Figure A.1: Improved A3 consists of two connected parts: 1) a target network unrelated
to anomaly detection (e.g., an autoencoder), 2) the anomaly network providing
anomalous samples x̄, and 3) the alarm network judging if the input x is normal.

The training process and the final deployment of our detector can again be divided
into three parts. We show an overview of the required steps in Figure A.2.

A.2.2 Evaluation of the Improved A3 Architecture

A.2.2.1 Experimental Setup

To evaluate the improved A3 architecture we used the very same experiments as shown
in Table 3.14. As an addition to the three experimental setups, we briefly introduce
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Target
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Data
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Hidden
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Hidden
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Figure A.2: Improved A3. Step-by-step overview of the training process including the anomaly
network in the first two columns and the final anomaly detection in the right
column.

a fourth setting. An overview is given in Table A.3. Considering the extreme case of
constraint 1, we conducted first evaluations of the detection performance when no labeled
anomalies are available during training. We used normal samples, as well as the output
of a generative anomaly model. This does not include labeled anomalous samples.

Table A.3: A3 experiments exploring the detection of known and unknown anomalies in an
unsupervised setting.

Exp. Data Normal Train Anomaly ⊆ Test Anomaly

4a MNIST 0, . . . , 5 6, 7 6, 7
4c MNIST 4, . . . , 9 0, 1 0, 1

4b MNIST 0, . . . , 5 6, 7 6, 7, 8, 9
4d MNIST 4, . . . , 9 0, 1 0, 1, 2, 3

A.2.2.2 Anomaly Network Settings

For experiments 1, 2, and 3 we used a simple Gaussian noise generator as anomaly
network. As all inputs are within [0, 1], we fixed the noise parameters to N (.5, 1). For
experiment 4, we chose a variational autoencoder (VAE) [149] with the dense hidden
layers 800, 400, 100, 25, 100, 400, 800. During the training of the target model, it was
adapted to reconstruct the normal samples.
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A.2.2.3 Results: Experiments 1 – 3

In Table A.4, we summarize the results for the improved A3 architecture and the baseline
methods averaged over five passes using the test data sets. Note that not all baseline
methods finished five runs on the IDS data set. To simulate real-life conditions, we
limited the amount of available anomalies to 100 randomly chosen samples of the training
set.

Table A.4: Improved A3 test results after ten runs given all normal, and 100 anomaly samples
using the anomaly network.
A3 AE IF DAGMM DevNet

Epx. AUC AP AUC AP AUC AP AUC AP AUC AP

1a 0.99±0.00 0.99±0.00 0.70±0.03 0.44±0.04 0.57±0.02 0.28±0.02 0.85±0.02 0.70±0.02 0.98±0.00 0.95±0.01
1b 1.00±0.00 1.00±0.00 0.39±0.04 0.25±0.03 0.53±0.01 0.41±0.02 0.63±0.04 0.34±0.03 0.99±0.00 0.98±0.00
1c 0.97±0.01 0.97±0.01 0.96±0.00 0.96±0.01 0.97±0.00 0.98±0.00 0.94±0.01 0.91±0.04 0.95±0.02 0.95±0.02
1d 0.91±0.03 0.71±0.08 0.82±0.03 0.55±0.06 0.84±0.00 0.49±0.02 0.91±0.01 0.59±0.03 0.91±0.03 0.79±0.02
1e 0.95±0.01 0.92±0.01 0.88±0.08 0.75±0.12 0.47±0.04 0.17±0.01 0.90±0.02 0.68±0.06 0.93±0.00 0.90±0.01
1f 0.94±0.01 0.91±0.01 0.86±0.07 0.65±0.13 0.36±0.03 0.14±0.01 0.68±0.12 0.34±0.18 0.90±0.01 0.74±0.04
1g 0.97±0.01 0.77±0.04 0.97±0.01 0.54±0.09 0.97±0.01 0.14±0.04 0.96±0.02 0.35±0.23 0.97±0.01 0.77±0.04

2a 0.88±0.01 0.88±0.01 0.72±0.02 0.63±0.02 0.54±0.01 0.40±0.01 0.74±0.02 0.69±0.02 0.84±0.04 0.84±0.03
2b 0.92±0.02 0.91±0.02 0.64±0.03 0.62±0.03 0.64±0.01 0.60±0.01 0.71±0.02 0.61±0.01 0.90±0.03 0.90±0.02
2c 0.95±0.01 0.96±0.01 0.93±0.01 0.94±0.01 0.94±0.00 0.96±0.00 0.93±0.01 0.92±0.03 0.90±0.02 0.93±0.01
2d 0.94±0.01 0.94±0.03 0.94±0.00 0.94±0.01 .94±0.00 0.96±0.00 0.93±0.01 0.92±0.03 0.88±0.02 0.89±0.02
2e 0.93±0.02 0.88±0.03 0.92±0.02 0.82±0.07 0.45±0.03 0.20±0.01 0.76±0.08 0.52±0.10 0.90±0.00 0.83±0.01
2f 0.95±0.01 0.93±0.01 0.89±0.06 0.79±0.10 0.45±0.03 0.20±0.01 0.80±0.04 0.56±0.02 0.92±0.00 0.81±0.02

3a 0.99±0.00 0.99±0.00 - - 0.93±0.00 0.85±0.01 0.93±0.01 0.84±0.03 0.99±0.00 0.98±0.00
3b 0.96±0.00 0.97±0.00 - - 0.91±0.01 0.89±0.01 0.95±0.00 0.93±0.01 0.97±0.01 0.97±0.01
3c 0.99±0.01 0.99±0.01 - - 0.89±0.01 0.79±0.02 0.96±0.00 0.91±0.01 0.98±0.01 0.97±0.01
3d 0.97±0.01 0.97±0.01 - - 0.91±0.01 0.89±0.01 0.95±0.00 0.93±0.01 0.96±0.02 0.96±0.02

A.2.2.4 Results: Outlook to Unsupervised Anomaly Detection – Experiment 4

Table A.5 summarizes the results for this experiment.

Table A.5: Improved A3 architecture. Test result for experiment 4, where no anomaly samples
were used to train A3.

4a-AUC 4a-AP 4b-AUC 4b-AP 4c-AUC 4c-AP 4d-AUC 4d-AP

0.97±0.01 0.94±0.03 0.91±0.06 0.90±0.06 0.68±0.05 0.49±0.03 0.64±0.04 0.61±0.05
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A Appendix

A.3 Entropic Retraining Appendix

In this section we show supplemental material for Chapter 4 based on our publication
“Optimizing Information Loss Towards Robust Neural Networks” [10].

A.3.1 Robustness of Softmax-Activated Output Neural Networks after
Entropic Retraining

Table A.6 shows the robustness of the tested NNs with softmax outputs after entropic
retraining.

Table A.6: Attack success rates for PGD and mean lp-distances for DF and C&W when attack-
ing the neural networks after entropic retraining with softmax-activated outputs.

Data Model
Attack Success Rate or Mean lp–Distance:
PGD∞ PGD2 DF∞ DF2 C&W2

MNIST
LeNet5 18.0% 8.1% 0.19 1.75 4.33
KerasExM 2.6% 1.8% 0.05 0.23 2.24

Fashion-MNIST KerasExF 24.3% 16.2% 0.05 0.44 0.04
CIFAR10 KerasExC 84.9% 73.2% 0.02 0.64 0.15

Table A.7 shows the differences of the robustness metrics between the unprotected
models as well as the models after entropic retraining. Both sets of models have softmax
outputs.

Table A.7: Relative change in robustness after entropic retraining for the models with softmax
outputs. Black and gray digits indicate a positive or negative impact on the robust-
ness, respectively.

Data Model
Attack Success Rate or Mean lp–Distance:
PGD∞ PGD2 DF∞ DF2 C&W2

MNIST
LeNet5 −82% −92% −35% −59% 152%
KerasExM −97% −98% −83% −94% 37%

Fashion-MNIST KerasExF −76% −84% −38% −58% −91%
CIFAR10 KerasExC −15% −27% 24% 28% −30%
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