
Published as a conference paper at ICLR 2023

POLICY-BASED SELF-COMPETITION FOR PLANNING
PROBLEMS

Jonathan Pirnay1,2, Quirin Göttl1, Jakob Burger1 & Dominik G. Grimm1,2

1Technical University of Munich, Campus Straubing for Biotechnology and Sustainability
2Weihenstephan-Triesdorf University of Applied Sciences
{jonathan.pirnay,dominik.grimm}@{hswt.de,tum.de}

ABSTRACT

AlphaZero-type algorithms may stop improving on single-player tasks in case the
value network guiding the tree search is unable to approximate the outcome of
an episode sufficiently well. One technique to address this problem is transform-
ing the single-player task through self-competition. The main idea is to com-
pute a scalar baseline from the agent’s historical performances and to reshape an
episode’s reward into a binary output, indicating whether the baseline has been
exceeded or not. However, this baseline only carries limited information for the
agent about strategies how to improve. We leverage the idea of self-competition
and directly incorporate a historical policy into the planning process instead of its
scalar performance. Based on the recently introduced Gumbel AlphaZero (GAZ),
we propose our algorithm GAZ ‘Play-to-Plan’ (GAZ PTP), in which the agent
learns to find strong trajectories by planning against possible strategies of its past
self. We show the effectiveness of our approach in two well-known combina-
torial optimization problems, the Traveling Salesman Problem and the Job-Shop
Scheduling Problem. With only half of the simulation budget for search, GAZ
PTP consistently outperforms all selected single-player variants of GAZ.

1 INTRODUCTION

One of the reasons for the success of AlphaZero (Silver et al., 2017) is the use of a policy and value
network to guide the Monte Carlo tree search (MCTS) to decrease the search tree’s width and depth.
Trained on state-outcome pairs, the value network develops an ’intuition’ to tell from single game
positions which player might win. By normalizing values in the tree to handle changing reward
scales (Schadd et al., 2008; Schrittwieser et al., 2020), AlphaZero’s mechanisms can be applied to
single-agent (or single-player) tasks. Although powerful, the MCTS relies on value approximations
which can be hard to predict (van Hasselt et al., 2016; Pohlen et al., 2018). Furthermore, without
proper normalization, it can be difficult for value function approximators to adapt to small improve-
ments in later stages of training. In recent years there has been an increasing interest in learning
sequential solutions for combinatorial optimization problems (COPs) from zero knowledge via deep
reinforcement learning. Particularly strong results have been achieved with policy gradient meth-
ods by using variants of self-critical training (Rennie et al., 2017; Kool et al., 2018; Kwon et al.,
2020) where it is avoided to learn a value function at all. By baselining the gradient estimate with
the outcome of rolling out a current or historical policy, actions are reinforced by how much better
(or worse) an episode is compared to the rollouts. Something similar is achieved in MCTS-based
algorithms for single-player tasks by computing a scalar baseline from the agent’s historical perfor-
mance. The reward of the original task is reshaped to a binary ±1 outcome indicating whether an
episode has exceeded this baseline or not (Laterre et al., 2018; Schmidt et al., 2019; Mandhane et al.,
2022). This self-competition brings the original single-player task closer to a two-player game and
bypasses the need for in-tree value scaling during training. The scalar baseline against which the
agent is planning must be carefully chosen as it should neither be too difficult nor too easy to out-
perform. Additionally, in complex problems, a single scalar value holds limited information about
the instance at hand and the agent’s strategies for reaching the threshold performance.

In this paper, we follow the idea of self-competition in AlphaZero-style algorithms for determin-
istic single-player sequential planning problems. Inspired by the original powerful ’intuition’ of

1

Published as a conference paper at ICLR 2023

AlphaZero to evaluate board positions, we propose to evaluate states in the value function not by
comparing them against a scalar threshold but directly against states at similar timesteps coming
from a historical version of the agent. The agent learns by reasoning about potential strategies of
its past self. We summarize our contributions as follows: (i) We assume that in a self-competitive
framework, the scalar outcome of a trajectory ζ under some baseline policy is less informative for
tree-based planning than ζ’s intermediate states. Our aim is to put the flexibility of rollouts in self-
critical training into a self-competitive framework while maintaining the policy’s information in
intermediate states of the rollout. We motivate this setup from the viewpoint of advantage baselines,
show that policy improvements are preserved, and arrive at a simple instance of gamification where
two players start from the same initial state, take actions in turn and aim to find a better trajectory
than the opponent. (ii) We propose the algorithm GAZ Play-to-Plan (GAZ PTP) based on Gum-
bel AlphaZero (GAZ), the latest addition to the AlphaZero family, introduced by Danihelka et al.
(2022). An agent plays the above game against a historical version of itself to improve a policy
for the original single-player problem. The idea is to allow only one player in the game to employ
MCTS and compare its states to the opponent’s to guide the search. Policy improvements obtained
through GAZ’s tree search propagate from the game to the original task.

We show the superiority of GAZ PTP over single-player variants of GAZ on two COP classes,
the Traveling Salesman Problem and the standard Job-Shop Scheduling Problem. We compare
GAZ PTP with different single-player variants of GAZ, with and without self-competition. We
consistently outperform all competitors even when granting GAZ PTP only half of the simulation
budget for search. In addition, we reach competitive results for both problem classes compared to
benchmarks in the literature.

2 RELATED WORK

Gumbel AlphaZero In GAZ, Danihelka et al. (2022) redesigned the action selection mechanisms
of AlphaZero and MuZero (Silver et al., 2017; Schrittwieser et al., 2020). At the root node, actions to
explore are sampled without replacement using the Gumbel-Top-k trick (Vieira; Kool et al., 2019b).
Sequential halving (Karnin et al., 2013) is used to distribute the search simulation budget among the
sampled actions. The singular action remaining from the halving procedure is selected as the action
to be taken in the environment. At non-root nodes, action values of unvisited nodes are completed
by a value interpolation, yielding an updated policy. An action is then selected deterministically by
matching this updated policy to the visit count distribution (Grill et al., 2020). This procedure the-
oretically guarantees a policy improvement for correctly estimated action values, both for the root
action selection and the updated policy at non-root nodes. Consequently, the principled search of
GAZ works well even for a small number of simulations, as opposed to AlphaZero, which might
perform poorly if not all actions are visited at the root node. Similarly to MuZero, GAZ normalizes
action values with a min-max normalization based on the values found during the tree search to
handle changing and unbounded reward scales. However, if for example a node value is overesti-
mated, the probability of a good action might be reduced even when all simulations reach the end
of the episode. Additionally, value function approximations might be challenging if the magnitude
of rewards changes over time or must be approximated over long time horizons (van Hasselt et al.,
2016; Pohlen et al., 2018).

Self-critical training Rennie et al. (2017) introduce self-critical training, a policy gradient method
that baselines the REINFORCE (Williams, 1992) gradient estimator with the reward obtained by
rolling out the current policy greedily. As a result, trajectories outperforming the greedy policy are
given positive weight while inferior ones are suppressed. Self-critical training eliminates the need
for learning a value function approximator (and thus all innate training challenges) and reduces the
variance of the gradient estimates. The agent is further provided with an automatically controlled
curriculum to keep improving. Self-critical methods have shown great success in neural combinato-
rial optimization. Kool et al. (2018) use a greedy rollout of a periodically updated best-so-far policy
as a baseline for routing problems. Kwon et al. (2020) and Kool et al. (2019a) bundle the return of
multiple sampled trajectories to baseline the estimator applied to various COPs. The idea of using
rollouts to control the agent’s learning curriculum is hard to transfer one-to-one to MCTS-based
algorithms, as introducing a value network to avoid full Monte Carlo rollouts in the tree search was
exactly one of the great strengths in AlphaZero (Silver et al., 2017).

2

Published as a conference paper at ICLR 2023

Self-competition Literature is abundant on learning by creating competitive environments for
(practical) single-player problems, e.g. Bansal et al. (2017); Sukhbaatar et al. (2018); Zhong et al.
(2019); Xu & Lieberherr (2020); Wang et al. (2020); Göttl et al. (2022). Reward mechanisms based
on self-competition for AlphaZero-type algorithms are different but comparable to self-critical train-
ing in policy gradient methods. A scalar baseline is computed from the agent’s historical perfor-
mance against which the current agent needs to compete. A reward of ±1 is returned at the end of
an episode, depending on whether the trajectory performed better than the baseline, eliminating the
need for value scaling and normalization. An iterative process of improvement is created by contin-
uously or periodically updating the baseline according to the agent’s performance. As in self-critical
training, the baseline provides the agent automatically with the right curriculum to improve. We use
the term self-competition in the context of competing against historical performance to distinguish
from self-play as in board games, where usually the latest agent version is used. Ranked Reward
(Laterre et al., 2018) stores historical rewards in a buffer which is used to calculate a threshold value
based on a predetermined percentile. Mandhane et al. (2022) use an exponential moving average-
based scheme for the threshold and apply self-competition to maximize a constrained objective.
Beloborodov et al. (2020) use a similar approach as Ranked Reward, but also allow non-binary re-
wards in [−1, 1]. The described self-competition based on combining historical performances cannot
differentiate between problem instances. If an instance’s difficulty is higher than usual, in extreme
cases the agent might obtain a reward of −1 even though the found solution is optimal, thus adding
significant noise to the reshaped reward (Bello et al., 2016; Laterre et al., 2018).

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

We consider undiscounted Markov decision processes (MDPs) of finite problem horizon T with state
space S, a finite action space A, a reward function r : S × A → R, and an initial state distribution
ρ0. The goal is to find a state-dependent policy π which maximizes the expected total reward

Gπ := Es0∼ρ0Eζ0∼ηπ(·|s0)

[
T−1∑
t=0

r(st, at)

]
,

where ηπ(·|st) is the distribution over possible trajectories ζt = (st, at, . . . , sT−1, aT−1, sT) ob-
tained by rolling out policy π from state st at timestep t up to the finite horizon T . We use the
subscript t in actions and states to indicate the timestep index. For an action at ∼ π(·|st) in the
trajectory, the state transitions deterministically to st+1 = F (st, at) according to some known de-
terministic state transition function F : S × A → S . We shortly write atst := F (st, at) for a state
transition in the following. With abuse of notation, we write r(ζt) :=

∑T−1−t
l=0 r(st+l, at+l) for the

accumulated return of a trajectory. As usual, we denote by
V π(st) := Eζt∼ηπ(·|st) [r(ζt)] Qπ(st, at) := r(st, at) + Eζt+1∼ηπ(·|atst) [r(ζt+1)]

Aπ(st, at) := Qπ(st, at)− V π(st)

the state-value function, action-value function and advantage function w.r.t. the policy π. Further-
more, for two policies π and µ, we define

V π,µ(st, s
′
l) := Eζt∼ηπ(·|st)

ζ′l∼η
µ(·|s′l)

[r(ζt)− r(ζ ′l)] (1)

as the expected difference in accumulated rewards taken over the joint distribution of ηπ(·|st)
and ηµ(·|s′l). We define Qπ,µ(st, s

′
l; at) := r(st, at) + V π,µ(atst, s

′
l) and Aπ,µ(st, s

′
l; at) :=

Qπ,µ(st, s
′
l; at)− V π,µ(st, s

′
l) analogously.

The following lemma follows directly from the definitions. It tells us that we can work with the
policy µ as with any other scalar baseline, and that policy improvements are preserved. A proof is
given in Appendix A.1.

Lemma 1 Let π, π̃, and µ be state-dependent policies. For any states st, s′l ∈ S and action at ∈ A,
we have

Aπ(st, at) = Aπ,µ(st, s
′
l; at), and (2)[∑

at

π̃(at|st)Qπ(st, at)
]
− V π(st) =

[∑
at

π̃(at|st)Qπ,µ(st, s
′
l; at)

]
− V π,µ(st, s

′
l). (3)

3

Published as a conference paper at ICLR 2023

3.2 MOTIVATION FOR THE TWO-PLAYER GAME

We now consider MDPs with episodic rewards, i.e., we assume r(st, at) = 0 for t < T − 1. The
policy target and action selection within the search tree in GAZ is based on the following policy
update: At some state s, given logits of the form logitπ(a) for an action a predicted by a policy π,
an updated policy π′GAZ is obtained by setting

logitπ
′
GAZ(a) = logitπ(a) + σ(Âπ(s, a)). (4)

Here, σ is some monotonically increasing linear function and Âπ(s, a) := Q̂π(s, a) − V̂ π(s) is an
advantage estimation, where V̂ π(s) is a value approximation based on the output of a value network
and Q̂π(s, a) is a Q-value approximation coming from the tree search statistics (and is set to V̂ π(s)
for unvisited actions). Note that (4) differs from the presentation in Danihelka et al. (2022) due to
the additional assumption that σ is linear, which matches its practical choice (see Appendix A.2 for
a derivation). The update (4) is proven to provide a policy improvement but relies on the correctness
of the value approximations V̂ π .

Our aim is to couple the ideas of self-critical training and self-competition using a historical policy.
Firstly, the baseline should adapt to the difficulty of an instance via rollouts as in self-critical train-
ing. Secondly, we want to avoid losing information about intermediate states of the rollout as when
condensing it to a scalar value.

Consider some initial state s0 ∼ ρ0, policy π, and a historical version µ of π. Let ζgreedy
0 =

(s0, a
′
0, . . . , s

′
T−1, a

′
T−1, s

′
T) be the trajectory obtained by rolling out µ greedily. We propose to

plan against ζgreedy
0 timestep by timestep instead of baselining the episode with r(ζgreedy

0), i.e., we
want to approximate V π,µ(st, s

′
t) for any state st. By Lemma 1, we have for any policy π′∑

at

π′(at|st)Qπ(st, at) ≥ V π(st) ⇐⇒
∑
at

π′(at|st)Qπ,µ(st, s
′
t; at) ≥ V π,µ(st, s

′
t). (5)

So if π′ improves policy π baselined by µ, then π′ improves π in the original MDP. Furthermore,
Âπ(st, at) in (4) can be swapped with an approximation of Âπ,µ(st, s

′
t; at) for the update in GAZ.

Note that V π,µ(st, s
′
t) = Eζt,ζ′t [r(ζt)− r(ζ ′t)] = Eζt,ζ′t [sgn(r(ζt)− r(ζ ′t)) · |r(ζt)− r(ζ ′t)|]. Es-

pecially in later stages of training, improvements might be small and it can be hard to approx-
imate the expected reward difference |r(ζt)− r(ζ ′t)|. Thus, we switch to a binary reward as in
self-competitive methods and arrive at

V π,µsgn (st, s
′
t) := Eζt∼ηπ(·|st)

ζ′t∼η
µ(·|s′t)

[sgn(r(ζt)− r(ζ ′t))] , (6)

the final target output of the value network in the self-competitive formulation. Note that (6) uncou-
ples the network from the explicit requirement to predict the expected outcome of the original MDP
to decide if π is in a more advantageous state at timestep t than µ (for further details, see Appendix
D). We can define Qπ,µsgn analogously to (6) and obtain an improved policy π′ via

logitπ
′
(at) := logitπ(at) + σ(Q̂π,µsgn (st, s

′
t; at)− V̂ π,µsgn (st, s

′
t)). (7)

4 GAZ PLAY-TO-PLAN

4.1 GAME MECHANICS

Given the original MDP, the above discussion generalizes to a two-player zero-sum perfect informa-
tion game with separated states: two players start with identical copies s10 and s−10 , respectively, of
an initial state s0 ∼ ρ0. The superscripts 1 and−1 indicate the first (max-) and second (min-) player,
respectively. Player 1 observes both states (s10, s

−1
0), chooses an action a10 and transitions to the next

state s11 = a10s
1
0. Afterwards, player −1 observes (s11, s

−1
0), chooses action a−10 , and transitions to

state s−11 = a−10 s−10 . Then, player 1 observes (s11, s
−1
1), chooses action a11, and in this manner both

players take turns until they arrive at terminal states s1T and s−1T . Given the resulting trajectory ζp0
for player p ∈ {1,−1}, the outcome z of the game is set to z = 1 if r(ζ10) ≥ r(ζ−10) (player 1 wins)
and z = −1 otherwise (player 1 loses). In case of equality, player 1 wins to discourage player −1
from simply copying moves.

4

Published as a conference paper at ICLR 2023

Algorithm 1: GAZ Play-to-Plan (GAZ PTP) Training
Input: ρ0: initial state distribution; Jarena: set of initial states sampled from ρ0
Input: 0 ≤ γ < 1: self-play parameter
Init policy replay bufferMπ ← ∅ and value replay bufferMV ← ∅
Init parameters θ, ν for policy net πθ : S → ∆A and value net Vν : S × S → [−1, 1]

Init ’best’ parameters θB ← θ
foreach episode do

Sample initial state s0 ∼ ρ0 and set sp0 ← s0 for p = 1,−1
Assign learning actor to player position: l← random({1,−1})

Set greedy actor’s policy µ←
{
πθ with probability γ,
πθB with probability 1− γ

for t = 0, . . . , T − 1 do
for player p = 1,−1 do

if player p 6= l then
Take greedy action apt according to policy µ(spt) and receive new state spt+1

else
Perform policy improvement I with MCTS using Vν(·, ·) and πθ(·) for player p

where in tree, player −p samples (resp. chooses greedily) actions from µ
Receive improved policy Iπ(spt), action apt and new state spt+1

Store (spt , Iπ(spt)) inMπ

Have trajectories ζp ← (sp0, a
p
0, . . . , s

p
T−1, a

p
T−1, s

p
T) for players p ∈ {1,−1}

z ←
{

1 if r(ζ1) ≥ r(ζ−1),

−1 else
. game outcome from perspective of player 1

Store tuples (s1t , s
−1
t , z) and (s−1t , s1t+1,−z) inMV for all timesteps t

Periodically update θB ← θ if
∑
s0∈Jarena

(
r(ζgreedy

0,πθ
)− r(ζgreedy

0,πθB
)
)
> 0

4.2 ALGORITHM

Algorithm 1 summarizes our approach for improving the agent’s performance, and we provide an
illustration in the appendix in Figure 2. In each episode, a ’learning actor’ improves its policy by
playing against a ’greedy actor’, which is a historical greedy version of itself. We elaborate on the
main parts in the following (more details can be found in Appendix B).

Network and training An agent maintains a state-dependent policy network πθ : S → ∆A and
value network Vν : S ×S → [−1, 1] parameterized by θ and ν, respectively, where ∆A is the prob-
ability simplex over actions and Vν serves as a function approximator of (6). The agent generates
experience in each episode for training the networks by playing the game in Section 4.1 against a
frozen historically best policy version πθB of itself. Initially, θ and θB are equal. The networks are
trained from experience replay as in AlphaZero, where we store value targets from the perspective
of both players and only policy targets coming from the learning actor.

Choice of players The learning actor and greedy actor are randomly assigned to player positions
at the beginning of each episode. The greedy actor simply chooses actions greedily according to
its policy πθB . In contrast, the learning actor chooses actions using the search and action selection
mechanism of GAZ to improve its policy and dominate over πθB . We found the policy to become
stronger when the learning actor makes its moves sometimes after and sometimes before the greedy
actor. At test time, we fix the learning actor to the position of player 1.

GAZ tree search for learning actor The learning actor uses MCTS to improve its policy and
dominate over the greedy behavior of πθB . We use the AlphaZero variant (as opposed to MuZero)
in Danihelka et al. (2022) for the search, i.e., we do not learn models for the reward and transition
dynamics. The search tree is built through several simulations, as usual, each consisting of the phases

5

Published as a conference paper at ICLR 2023

selection, expansion, and backpropagation. Each node in the tree is of the form N = (s1, s−1, k),
consisting of both players’ states, where k ∈ {1,−1} indicates which player’s turn it is. Each edge
(N , a) is a node paired with a certain action a. We apply the tree search of GAZ similarly to a
two-player board game, with two major modifications:

(i) Choice of actions: For the sake of explanation, let us assume that l = 1, i.e., the learning
actor takes the position of player 1. In the selection phase, an action is chosen at any node as
follows: If the learning actor is to move, we regularly choose an action according to GAZ’s tree
search rules, which are based on the completed Q-values. If it is the greedy actor’s turn, there
are two ways to use the policy πθB : we either always sample, or always choose greedily an action
from πθB . By sampling a move from πθB , the learning actor is forced to plan not against only one
(possibly suboptimal) greedy trajectory but also against other potential trajectories. This encourages
exploration (see Figure 1 in the experimental results), but a single action of the learning actor can
lead to separate branches in the search tree. On the other hand, greedily choosing an action is
computationally more efficient, as only the states in the trajectory ζgreedy

0,πθB
are needed for comparison

in the MCTS (see Appendix B.6 for notes on efficient implementation). However, if the policy πθB
is too strong or weak, the learning actor might be slow to improve in the beginning.

We refer to the variant of sampling actions for the greedy actor in the tree search as GAZ PTP
’sampled tree’ (GAZ PTP ST) and as GAZ PTP ’greedy tree’ (GAZ PTP GT) in case actions are
chosen greedily.

(ii) Backpropagation: Actions are chosen as above until a leaf edge (N , a) with N = (s1, s−1, k)
is reached. When a leaf edge (N , a) is expanded and k = −l = −1, the learning actor is to move in
the new node Ñ = (s1, as−1, 1). We proceed by querying the policy and value network to obtain
πθ(s

1) and v := Vν(s1, as−1). The new node Ñ is added to the tree and the value approximation v is
backpropagated up the search path. If k = 1, i.e. the turn of the greedy actor in Ñ = (as1, s−1,−1),
we only query the policy network πθB (s−1), choose an action ã from it (sampled or greedy), and
directly expand the edge (Ñ , ã). In particular, we do not backpropagate a value approximation of
state pairs where the greedy actor is to move. Nodes, where it’s the greedy actor’s turn, are similar
to afterstates (Sutton & Barto, 2018), which represent chance transitions in stochastic environments.
We further illustrate the procedure in Appendix B.2.

Arena mode To ensure we always play against the strongest greedy actor, we fix at the beginning
of the training a large enough ’arena’ set of initial states Jarena ∼ ρ0 on which periodically πθ and
πθB are pitted against each other. For each initial state s0 ∈ Jarena, the policies πθ and πθB are
unrolled greedily to obtain the trajectories ζgreedy

0,πθ
and ζgreedy

0,πθB
, respectively. We replace θB with θ if∑

s0∈Jarena

(
r(ζgreedy

0,πθ
)− r(ζgreedy

0,πθB
)
)
> 0.

Self-play parameter The parameters θ, θB might be initialized disadvantageously (worse than
uniformly random play), so that the learning actor generates no useful experience while maintaining
a greedy policy worse than πθB . We especially experienced this behavior when using a small number
of simulations for the tree search. To mitigate this and to stabilize training, we switch to self-play in
an episode with a small nonzero probability γ, i.e., the greedy actor uses the non-stationary policy
πθ instead of πθB .

5 EXPERIMENTS

We evaluate our algorithm on the Traveling Salesman Problem (TSP) and the standard Job-Shop
Scheduling Problem (JSSP). For this purpose, we train the agent on randomly generated instances
to learn heuristics and generalize beyond presented instances.

Experimental goal There is a plethora of deep reinforcement learning approaches for training
heuristic solvers for COPs, including Bello et al. (2016); Deudon et al. (2018); Kool et al. (2018);
Xing et al. (2020); da Costa et al. (2020); Kool et al. (2022) for the TSP and Zhang et al. (2020); Park
et al. (2021a;b); Tassel et al. (2021) for the JSSP. Most of them are problem-specific and especially
concentrate on how to optimize (graph) neural network-based architectures, state representations,

6

Published as a conference paper at ICLR 2023

and reward shaping. Additionally, learned solvers often focus on short evaluation times while ac-
cepting a high number of training instances. Our main goal is to show the performance of GAZ
PTP compared with applying GAZ in a single-player way. Nevertheless, we also present results of
recent learned solvers to put our approach into perspective. An in-depth comparison is difficult for
several reasons. (i) Running MCTS is slower than a single (possibly batch-wise) rollout of a policy
network. As we do not aim to present an optimized learned solver for TSP or JSSP, we omit com-
parisons of inference times. (ii) The network architecture is kept simple to be adjustable for both
problem classes. (iii) We give only episodic rewards, even if there would be (canonical) intermedi-
ate rewards. Furthermore, we do not include heuristics in state representations. (iv) Eventually, the
agent starts from zero knowledge and runs for a comparably lower number of episodes: 100k for
TSP (for comparison, Kool et al. (2018) trains on 128M trajectories), 20k for JSSP (40k trajectories
in Zhang et al. (2020)).

5.1 SINGLE-PLAYER VARIANTS

We compare our approach GAZ PTP with the following single-player GAZ variants:

GAZ Single Vanilla We apply GAZ for single-agent domains to the original MDP. For the value
target, we predict the final outcome of the episode, i.e., we train the value network Vν : S → R on
tuples of the form (st, r(ζ0)) for a trajectory ζ0 = (s0, a0, . . . , aT−1, sT). We transform the Q-
values with a min-max normalization based on the values found inside the tree search to cope with
different reward scales in MCTS (Schrittwieser et al., 2020; Danihelka et al., 2022). For details, see
Appendix C.1.3.

GAZ Single N-Step Same as ’GAZ Single Vanilla’, except: we bootstrap N steps into the future
for the value target, as used in MuZero (Schrittwieser et al., 2020) and its variants (Hubert et al.,
2021; Antonoglou et al., 2022). As we do not assume intermediate rewards, this is equivalent to
predicting the undiscounted root value of the search tree N steps into the future. We set N = 20 in
all instances.

GAZ Greedy Scalar This is a self-competitive version with a scalar baseline, which can differen-
tiate between instances as in a self-critical setting. At the start of each episode, a full greedy rollout
ζgreedy
0 from the initial state s0 is performed with a historical policy to obtain an instance-specific

baseline R := r(ζgreedy
0) ∈ R. At test time, max{R, learning actor’s outcome} is taken as the result

in the original MDP. A listing of the algorithm is provided in Appendix C.1.4.

5.2 GENERAL SETUP

We outline the common experimental setup for both TSP and JSSP. Full details and specifics can be
found in Appendix C.1.

GAZ MCTS We closely follow the original work of Danihelka et al. (2022) for the choice of the
function σ in (4) and the completion of Q-values. The number of simulations allowed from the
search tree’s root node is critical since a higher simulation budget generally yields more accurate
value estimates. Although two edges are expanded in a single simulation in the modified tree search
of GAZ PTP, the learning actor considers only one additional action in the expansion step because
the greedy actor’s moves are considered as environment transitions. Nevertheless, we grant the
single-player variants twice as many simulations at the root node as GAZ PTP in all experiments.

Network architecture The policy and value network share a common encoding part f : S → Rd
mapping states to some latent space Rd. A policy head g : Rd → ∆A and value head h : Rd×Rd →
[−1, 1] are stacked on top of f such that πθ(s) = g(f(s)) and Vν(s, s′) = h(f(s), f(s′)). For both
problems, f is based on the Transformer architecture (Vaswani et al., 2017) and the policy head g
uses a pointing mechanism as in (Bello et al., 2016) and (Kool et al., 2018). For GAZ PTP and all
single-player variants, the architecture of f is identical, and g, h similar (see Appendix C.1.5).

7

Published as a conference paper at ICLR 2023

Table 1: Results for TSP and JSSP. ’Num Sims’ refers to the number of simulations starting from
the root of the search tree.

Method Num Sims Obj. Gap Obj. Gap Obj. Gap

n = 20 n = 50 n = 100

T
SP

Optimal (Concorde) — 3.84 0.00% 5.70 0.00% 7.76 0.00%
Kool et al. (2018) (gr.) — 3.85 0.34% 5.80 1.76% 8.12 4.53%

GAZ Single Vanilla 200 3.86 0.58% 6.06 6.36% 9.87 27.15%
GAZ Single N-Step 200 3.86 0.58% 5.92 3.98% 9.14 17.72%
GAZ Greedy Scalar 200 3.87 0.83% 6.02 5.74% 11.21 44.43%
GAZ PTP ST 100 3.84 0.19% 5.81 1.90% 8.16 5.11%
GAZ PTP GT 100 3.84 0.17% 5.78 1.55 % 8.01 3.16%
GAZ PTP ST greedy1 3.86 0.74% 5.90 3.63% 8.35 7.60%
GAZ PTP GT greedy1 3.86 0.61% 5.82 2.15% 8.10 4.32%

15× 15 20× 20 30× 20

JS
SP

Upper Bound — 1228.9 0.0% 1617.3 0.0% 1921.3 0.0%
Zhang et al. (2020) — 1547.4 26.0% 2128.1 31.6% 2603.9 33.6%

GAZ Single Vanilla 100 1585.8 29.0% 2062.4 27.5% 2579.1 34.4%
GAZ Single N-Step 100 2038.4 66.0% 3604.6 123.0% 4111.2 114.6%
GAZ Greedy Scalar 100 1447.9 17.8% 4721.5 191.9% 6184.3 222.1%
GAZ PTP ST 50 1432.0 16.6% 1973.2 22.0% 2539.1 32.3%
GAZ PTP GT 50 1455.4 18.4% 1961.4 21.3% 2506.7 30.6%
GAZ PTP ST greedy1 1505.7 22.6% 1993.0 23.2% 2601.8 35.6%
GAZ PTP GT greedy1 1478.8 20.3% 2003.7 23.9% 2584.2 34.6%

5.3 RESULTS

Results for TSP and JSSP are summarized in Table 1. For TSP, we also list the greedy results of the
self-critical method of Kool et al. (2018). They train a similar attention model autoregressively with a
greedy rollout baseline. For JSSP, we include the results of the L2D method of Zhang et al. (2020),
who propose a single-agent approach taking advantage of the disjunctive graph representation of
JSSP. There exist optimized approaches for TSP and JSSP, which achieve even better results. Since
it is not our aim to present a new state-of-the-art solver, an exhaustive comparison is not necessary.
All experiments, except for the robustness experiments below, are seeded with 42.

Traveling Salesman Problem The TSP is a fundamental routing problem that, given a graph,
asks for a node permutation (a complete tour) with minimal edge weight. We focus on the two-
dimensional Euclidean case in the unit square [0, 1]2 ⊆ R2, and train on small- to medium-sized
instances with n = 20, 50 and 100 nodes. Tours are constructed sequentially by choosing one node
to visit after the other. We run the agent for 100k episodes (see Appendix C.2 for further details).
We report the average performance of all GAZ variants on the 10,000 test instances of Kool et al.
(2018). Optimality gaps are calculated using optimal solutions found by the Concorde TSP solver
(Applegate et al., 2006). Both GAZ PTP ST and GAZ PTP GT consistently outperform all single-
player variants, and obtain strong results even when simply unrolling the learned policy greedily
(see ’Num Sims = greedy’ in Table 1). GAZ PTP GT yields better results than GAZ PTP ST across
all instances, especially when rolling out the learned policy greedily. While all methods perform
well on n = 20, the single-player variants strongly underperform on n = 50 and n = 100. GAZ
Greedy Scalar fails to improve early in the training process for n = 100.

Job-Shop Scheduling Problem The JSSP is an optimization problem in operations research,
where we are given k jobs consisting of individual operations, which need to be scheduled on m
machines. We focus on the standard case, where there is a bijection between the machines and the
operations of a job. The objective is to find a schedule with a minimum makespan, i.e., the time

1We greedily unroll the policy which was trained with 100 (resp. 50 for JSSP) simulations.

8

Published as a conference paper at ICLR 2023

0 10000 20000 30000 40000 50000
Episodes

5

10

15

20
To

ur
 L

en
gt

h

TSP n = 50
GAZ PTP ST
GAZ PTP GT
GAZ Greedy Scalar
GAZ Single Vanilla
GAZ Single N-Step

0 2000 4000 6000 8000 10000
Episodes

14

16

18

20

22

24

26

M
ak

es
pa

n

JSSP 15x15

0 2000 4000 6000 8000 10000
Episodes

20

25

30

35

40

M
ak

es
pa

n

JSSP 20x20

Figure 1: Mean training performance on TSP and JSSP, run with 4 distinct seeds ∈ {42, 43, 44, 45}.
Shades denote standard errors. We omit the results for GAZ Single N-Step on JSSP for readability.

when all jobs are finished (see Appendix C.3 for details). The size of a problem instance is denoted
by k×m (jobs×machines). To construct a schedule, we iteratively choose unfinished jobs of which
to process the next operation. The agent is run for 20k episodes. We report results on instances of
medium size 15 × 15, 20 × 20, and 30 × 20 of the well-known Taillard benchmark set (Taillard,
1993), consisting of 10 instances for each problem size. Optimality gaps are calculated with respect
to the best upper bounds found in the literature (see Appendix C.3.3). As for TSP, our method out-
performs all single-player variants of GAZ. In contrast to TSP, the performance of GAZ PTP ST and
GAZ PTP GT is comparable. Due to the reduced network evaluations, GAZ PTP GT is generally
more favorable. GAZ Greedy Scalar yields strong results only for 15×15 but fails to learn on larger
instances, similar to GAZ Single N-Step.

Reproducibility We further evaluate the robustness and plausibility on four different seeds for
TSP n = 50 and JSSP 15× 15 and 20× 20 in Figure 1. To lower the computational cost, we reduce
the number of episodes on TSP to 50k and JSSP to 10k, with a simulation budget of 100 for TSP
(70 for JSSP) for single-player variants, and 50 for TSP (35 for JSSP) for GAZ PTP. The different
seeding leads to only small variations in performance for TSP. JSSP is more challenging. Again,
we can observe that GAZ PTP outperforms the single-player variants across all seeds. Especially,
GAZ PTP escapes bad initializations early in the training process and becomes stable. The in-tree
sampling of GAZ PTP ST encourages exploration, leading to swift early improvements.

Value estimates as baselines By comparing pairs of states to guide the tree search, we provide
the network some freedom to model the problem without relying explicitly on predicted expected
objectives. In Appendix D, we compare our approach with using value estimates of a historical
policy as baselines in the advantage function of GAZ’s tree search.

Limitations In contrast to GAZ PTP GT, the search space increases exponentially for the variant
GAZ PTP ST, and an additional network evaluation is needed for πθB (·) in each MCTS simulation
(see Appendix B.6). Nevertheless, our empirical results show that both GAZ PTP variants perform
well in general with a small number of simulations. In this paper, we only consider problem classes
with constant episode length. However, the methodology presented extends to varying episode
lengths: Once a player finishes, only its terminal state is considered in the remaining tree search (i.e.,
within the two-player game, the unfinished player keeps its turn). Furthermore, even though GAZ’s
policy improvements propagate from the two-player setup to the original single-player problem by
Lemma 1, an improved policy does not necessarily imply improved greedy behavior. Especially in
later stages of training, it can take thousands of steps until the distribution of πθ is sharp enough for
updating the parameters θB .

6 CONCLUSION

We introduced GAZ PTP, a self-competitive method combining greedy rollouts as in self-critical
training with the planning dynamics of two-player games. The self-critical transformation of a de-
terministic single-player task does not alter the theoretical policy improvement guarantees obtained
through the principled search of GAZ. Experiments on the TSP and JSSP confirm that our method
learns strong policies in the original task with a low number of search simulations.

9

Published as a conference paper at ICLR 2023

7 REPRODUCIBILITY STATEMENT

We provide information about network architectures, hyperparameters and training details in the
appendix. Our code in PyTorch (Paszke et al., 2017) is available on https://github.com/
grimmlab/policy-based-self-competition.

ACKNOWLEDGMENTS

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – 466387255 – within the Priority Programme ”SPP 2331: Machine Learning in Chemical
Engineering”. The authors gratefully acknowledge the Leibniz Supercomputing Centre for provid-
ing computing time on its Linux-Cluster.

REFERENCES

Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K. Hubert, and David Silver. Plan-
ning in stochastic environments with a learned model. International Conference on Learning
Representations, 2022.

David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. The traveling salesman
problem: a computational study. Princeton university press, 2006.

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent com-
plexity via multi-agent competition. arXiv:1710.03748, 2017.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. International Conference on Learning Representations,
2016.

Dmitrii Beloborodov, Alexander E. Ulanov, Jakob N. Foerster, Shimon Whiteson, and A.I. Lvovsky.
Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization.
Machine Learning: Science and Technology, 2:025009, 2020.

Paulo da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics for
the traveling salesman problem via deep reinforcement learning. Asian Conference on Machine
Learning, 2020.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018.

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning
with gumbel. International Conference on Learning Representations, 2022.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. International conference on the
integration of constraint programming, artificial intelligence, and operations research, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pp. 4171–4186. Association for Computational Linguistics, 2019.

Quirin Göttl, Dominik G. Grimm, and Jakob Burger. Automated synthesis of steady-state continuous
processes using reinforcement learning. Frontiers of Chemical Science and Engineering, 16:288–
302, 2022.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis
Antonoglou, and Rémi Munos. Monte-carlo tree search as regularized policy optimization. Inter-
national Conference on Machine Learning, 2020.

10

https://github.com/grimmlab/policy-based-self-competition
https://github.com/grimmlab/policy-based-self-competition

Published as a conference paper at ICLR 2023

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv:1606.08415, 2016.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. International Con-
ference on Machine Learning, 2021.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
International Conference on Machine Learning, 2013.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! Inter-
national Conference on Learning Representations, 2018.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free!
International Conference on Learning Representations, 2019a.

Wouter Kool, Herke van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. International Conference on
Machine Learning, 2019b.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. arXiv:2102.11756, 2022.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 2020.

Alexandre Laterre, Yunguan Fu, Mohamed K. Jabri, Alain-Sam Cohen, David Kas, Karl Hajjar,
Torbjørn S Dahl, Amine Kerkeni, and Karim Beguir. Ranked reward: Enabling self-play rein-
forcement learning for combinatorial optimization. Advances in Neural Information Processing
Systems 31, 2018.

Kevin Leyton-Brown and Yoav Shoham. Essentials of game theory: A concise multidisciplinary in-
troduction (Synthesis lectures on artificial intelligence and machine learning), volume 1. Morgan
& Claypool Publishers, 2008.

Amol Mandhane, Anton Zhernov, Maribeth Rauh, Chenjie Gu, Miaosen Wang, Flora Xue, Wendy
Shang, Derek Pang, Rene Claus, Ching-Han Chiang, Cheng Chen, Jingning Han, Angie Chen,
Daniel J. Mankowitz, Jackson Broshear, Julian Schrittwieser, Thomas Hubert, Oriol Vinyals,
and Timothy Mann. Muzero with self-competition for rate control in vp9 video compression.
arXiv:2202.06626, 2022.

Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. Schedulenet: Learn to solve multi-agent
scheduling problems with reinforcement learning. arXiv:2106.03051, 2021a.

Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. Learning to
schedule job-shop problems: representation and policy learning using graph neural network and
reinforcement learning. International Journal of Production Research, 59:3360–3377, 2021b.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. Conference on Neural Information Processing System, 2017.

Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Bud-
den, Gabriel Barth-Maron, Hado Van Hasselt, John Quan, Mel Večerı́k, Matteo Hessel, Remi
Munos, and Olivier Pietquin. Observe and look further: Achieving consistent performance on
atari. arXiv:1805.11593, 2018.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel. Self-critical
sequence training for image captioning. IEEE Conference on Computer Vision and Pattern Recog-
nition, 2017.

11

Published as a conference paper at ICLR 2023

Maarten P.D. Schadd, Mark H.M. Winands, H.J. van den Herik, Guillaume M.J.-B. Chaslot, and
Jos W.H.M. Uiterwijk. Single-player monte-carlo tree search. International Conference on Com-
puters and Games, 2008.

Dan Schmidt, Nick Moran, Jonathan S. Rosenfeld, Jonathan Rosenthal, and Jonathan Yedidia. Self-
play learning without a reward metric. arXiv:1912.07557, 2019.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, and David Silver. Mas-
tering atari, go, chess and shogi by planning with a learned model. Nature, 588:604–609, 2020.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550:354–359, 2017.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob Fer-
gus. Intrinsic motivation and automatic curricula via asymmetric self-play. 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction, volume 2. MIT
press, 2018.

Eric Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Re-
search, 64:278–285, 1993.

Pierre Tassel, Martin Gebser, and Konstantin Schekotihin. A reinforcement learning environment
for job-shop scheduling. arXiv:2104.03760, 2021.

Hado P van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver. Learning
values across many orders of magnitude. Advances in Neural Information Processing Systems 29,
2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems 30, 2017.

Tim Vieira. URL https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-andweighted-
reservoir-sampling.

Hui Wang, Mike Preuss, Michael Emmerich, and Aske Plaat. Tackling morpion solitaire with
alphazero-like ranked reward reinforcement learning. 2020 22nd International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2020.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S. Chao.
Learning deep transformer models for machine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 1810–1822, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1176.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Zhihao Xing, Shikui Tu, and Lei Xu. Solve traveling salesman problem by monte carlo tree search
and deep neural network. arXiv:2005.06879, 2020.

Ruiyang Xu and Karl Lieberherr. Learning self-play agents for combinatorial optimization prob-
lems. The Knowledge Engineering Review, 35, 2020.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay S. Tan, and Xu Chi. Learning to dis-
patch for job shop scheduling via deep reinforcement learning. Advances in Neural Information
Processing Systems, 2020.

12

Published as a conference paper at ICLR 2023

Fangwei Zhong, Peng Sun, Wenhan Luo, Tingyun Yan, and Yizhou Wang. Ad-vat+: An asymmetric
dueling mechanism for learning and understanding visual active tracking. IEEE transactions on
pattern analysis and machine intelligence, 43(5):1467–1482, 2019.

A PROOFS

A.1 PROOF OF LEMMA 1

Lemma: Let π, π̃ and µ be state-dependent policies. For any states st, s′l ∈ S and action at ∈ A,
we have

Aπ(st, at) = Aπ,µ(st, s
′
l; at), and[∑

at

π̃(at|st)Qπ(st, at)
]
− V π(st) =

[∑
at

π̃(at|st)Qπ,µ(st, s
′
l; at)

]
− V π,µ(st, s

′
l).

Proof: We recall the definitions for the sake of clarity:

V π,µ(st, s
′
l) := Eζt∼ηπ(·|st)

ζ′l∼η
µ(·|s′l)

[r(ζt)− r(ζ ′l)] Qπ,µ(st, s
′
l; at) := r(st, at) + V π,µ(atst, s

′
l)

Aπ,µ(st, s
′
l; at) := Qπ,µ(st, s

′
l; at)− V π,µ(st, s

′
l)

Note that

V π(st) = Eζt∼ηπ(·|st) [r(ζt)] = Eζ′l∼ηµ(·|s′l)Eζt∼ηπ(·|st) [r(ζt)] (8)

= Eζt∼ηπ(·|st)
ζ′l∼η

µ(·|s′l)
[r(ζt)] , (9)

by the law of iterated expectations and because the realization of a trajectory following π does not
depend on µ and vice versa. Hence by linearity of expectations

V π(st)− V µ(s′l) = Eζt∼ηπ(·|st)
ζ′l∼η

µ(·|s′l)
[r(ζt)− r(ζ ′l)] = V π,µ(st, s

′
l), (10)

and it follows that

Aπ(st, at) = Qπ(st, at)− V π(st) (11)

= Qπ(st, at)− V µ(s′l)− (V π(st)− V µ(s′l)) (12)

= r(st, at) + V π(atst)− V µ(s′l)− (V π(st)− V µ(s′l)) (13)
(10)
= r(st, at) + V π,µ(atst, s

′
l)− V π,µ(st, s

′
l) (14)

= Qπ,µ(st, s
′
l; at)− V π,µ(st, s

′
l) (15)

= Aπ,µ(st, s
′
l; at). (16)

13

Published as a conference paper at ICLR 2023

Furthermore, we have[∑
at

π̃(at|st)Qπ(st, at)
]
− V π(st) =

[∑
at

π̃(at|st)
(
r(st, at) + V π(atst)

)]
− V π(st) (17)

=
[∑
at

π̃(at|st)
(
r(st, at) + V π(atst)− V µ(s′l)

+ V µ(s′l)
)]
− V π(st)

(18)

(10)
=
[∑
at

π̃(at|st)
(
r(st, at) + V π,µ(atst, s

′
l)︸ ︷︷ ︸

=Qπ,µ(st,s′l;at)

+ V µ(s′l)
)]
− V π(st)

(19)

=
[∑
at

π̃(at|st)Qπ,µ(st, s
′
l; at)

]
+
[∑
at

π̃(at|st)V µ(s′l)
]

︸ ︷︷ ︸
=V µ(s′l)

−V π(st)

(20)

=
[∑
at

π̃(at|st)Qπ,µ(st, s
′
l; at)

]
− (V π(st)− V µ(s′l))

(21)

=
[∑
at

π̃(at|st)Qπ,µ(st, s
′
l; at)

]
− V π,µ(st, s

′
l). (22)

�

A.2 DERIVATION OF THE LOGIT UPDATE (4)

In Danihelka et al. (2022), the improved policy π′GAZ is obtained by the logit update

logitπ
′
GAZ(a) := logitπ(a) + σ(Q̂π(s, a)). (23)

Subtracting the constant σ(V̂ π(s)) does not alter the subsequent softmax-output of the logits, so we
can equivalently set

logitπ
′
GAZ(a) = logitπ(a) + σ(Q̂π(s, a))− σ(V̂ π(s))

σ linear
= logitπ(a) + σ(Q̂π(s, a)− V̂ π(s))

(24)

= logitπ(a) + σ(Âπ(s, a)). (25)

B ADDITIONAL ALGORITHM DETAILS

B.1 A NOTE ON SELF-PLAY IN THE TWO-PLAYER GAME

The mechanics of the proposed two-player game differ from classical board games such as chess
or Go, as a player’s action does not influence the opponent’s state. We can interpret trajectories in
the original MDP as strategies in the game: if some trajectory α gives a higher final reward than
trajectory β, its corresponding strategy α weakly dominates strategy β (Leyton-Brown & Shoham,
2008). This is desired and means that playing α will always yield an outcome z at least as good as
playing β, no matter what the opponent does. Usually, in AlphaZero-type self-play for board games,
both players choose their moves utilizing MCTS. By limiting the tree search to the learning actor,
we can distill even incremental policy improvements to the policy network effectively.

B.2 MODIFIED TREE SEARCH

We provide a schematic view of the proposed game in Figure 2, and an illustration of the modi-
fied selection, expansion and backpropagation in Figure 3. As outlined in Section 4.2, we do not

14

Published as a conference paper at ICLR 2023

...

Figure 2: Schematic view of the proposed game in an example instance of the Traveling Salesman
Problem: The learning actor is player 1 (solid outline, blue), the greedy actor is player −1 (dashed
outline, red). The learning actor chooses moves via MCTS, taking into account the states of both
players, whereas the greedy actor moves greedily with respect to only its own state.

(A)

GAZ
with

(B)

Figure 3: Example MCTS for the learning actor, when sampling actions for the greedy actor: In
nodes with solid lines (blue), the learning actor (player 1) is to move, and in nodes with dashed
lines (red), the greedy actor (player -1) is to move. In the selection phase (solid arrows), an action
is selected in solid nodes according to the search principles of GAZ, based on πθ and the completed
Q-values. In nodes with dashed lines, an action is sampled from πθB . Suppose the dashed edge
(A) is expanded in the expansion phase, then it is the greedy actor’s turn in the following node: an
action is sampled from πθB (ã−1s−1) and the corresponding edge (B) is immediately expanded as
well. Only then is the predicted value of the following solid node backpropagated through the search
path.

evaluate state pairs with Vν in nodes where it’s the greedy actor’s turn. This is due to computa-
tional efficiency. Suppose the greedy actor is player −1, and it is the greedy actor’s turn in a node
Ñ = (as1, s−1,−1), which was added to the tree in an expansion step. By the modified tree search,
an action is sampled from πθB (s−1). As the policy only depends on the player’s state, πθB (s−1)
can be reused for the action sampling in a node (s̃1, s−1,−1) for any state s̃1 without additional
network evaluations, as the value function does not need to be queried. This can reduce the number
of network evaluations in subsequent simulations.

This is different from the experiments in Stochastic MuZero (Antonoglou et al., 2022), where the au-
thors report significantly improved results for AlphaZero on Backgammon and 2048 when aQ-value
is learned for afterstates (chance nodes). For GAZ PTP, we did not experience notable improvements
and trade the learned Q-value for increased computational efficiency.

For evaluation at test time, the greedy actor’s moves are not sampled in the tree search but chosen
greedily to increase the search tree’s depth.

B.3 A NOTE ON THE ARENA MODE

As only the sign of the reward difference r(ζ0,πθ)−r(ζ
greedy
0,πθB

) is considered to compute the outcome
of the game, and not its magnitude, training a non-stationary policy through self-play can exhibit

15

Published as a conference paper at ICLR 2023

behavior where the overall performance of a policy in the original MDP gradually degrades, even
though the agent gets better at beating itself. In the optimal case, we would like to replace the frozen
parameters θB with θ, if

Es0∼ρ0Eζ0∼ηπθ (·|s0)[r(ζ0)] > Es0∼ρ0Eζ′0∼ηπθB (·|s0)[r(ζ
′
0)].

This cannot be guaranteed alone by the binary reward in our self-competitive framework. We settle
for a fixed arena set Jarena on which the policies are pitted greedily, to ensure an improved greedy
actor and avoid cycling performance due to stochasticity as far as possible.

B.4 REPLAY BUFFER

Given trajectory ζp0 = (sp0, a
p
0, . . . , s

p
T−1, a

p
T−1, s

p
T) for player p ∈ {1,−1}, training data is stored

in replay buffers at the end of an episode as follows: For the value network, the final game out-
come z is bootstrapped from the perspective of both players, i.e. we store tuples (s1t , s

−1
t , z) and

(s−1t , s1t+1,−z). For the policy network, we store tuples (slt, Iπ(slt)) only for the learning actor
l ∈ {1,−1}, where Iπ(slt) is the improved policy obtained through the GAZ tree search at state slt.

B.5 LOSS FUNCTIONS

We train the value network by minimizing the squared error (Vν(s, s′) − z̃)2 for a sampled tuple
(s, s′, z̃) in the replay buffer, and the policy network by minimizing the Kullback-Leibler divergence
KL(Iπ(s) ‖ πθ(s)) for a tuple (s, Iπ(s)).

B.6 EFFICIENT IMPLEMENTATION OF GAZ PTP GT

Algorithm 1 is a general formulation of our method encompassing both variants in which the greedy
actor samples actions in the search tree in one (GAZ PTP ST) and chooses actions greedily in
the other (GAZ PTP GT). For GAZ PTP GT, only states of the greedy actor encountered in the
trajectory ζgreedy

0,πθB
= (s0, a

′
0, . . . , s

′
T−1, a

′
T−1, s

′
T), are needed in the MCTS for the learning actor.

Furthermore, the policy and value network share in practice an encoding part f : S → Rd such that
Vν(s, s′) = h(f(s), f(s′)) for a value head h : Rd × Rd → [−1, 1] (see Section 5.2). Hence, at the
beginning of an episode, ζgreedy

0,πθB
can be obtained once in advance of the tree search, as the policies πθ

and πθB are independent. The states s0, . . . , s′T−1 can be batched, and their latent representations
f(s0), . . . , f(s′T−1) ∈ Rd can be stored in memory, effectively reducing the number of network
evaluations in each search simulation from two to one (as desired in network-guided MCTS).

C EXPERIMENTAL DETAILS

C.1 GENERAL SETUP

C.1.1 TRAINING LOOP

All algorithmic variants fit into the asynchronous training loop commonly used for MuZero, where a
learning process receives generated trajectories, stores them in a replay buffer, and performs training
steps for the network. Multiple playing processes generate trajectories from initial states randomly
sampled on the fly, using periodically updated network checkpoints from the learning process for
MCTS. We generate experience with 100 playing processes and update the network checkpoint
every 100 training steps in all variants.

C.1.2 GAZ MCTS

Given a node N in the search tree, denote by N(a) the visit count of the edge (N , a) for action a.
We follow Danihelka et al. (2022) for the choice of the monotonically increasing linear function σ
in (4) and set

σ(q) = (cvisit + max
b
N(b)) · cscale · q.

16

Published as a conference paper at ICLR 2023

Algorithm 2: GAZ Greedy Scalar Training
Input: ρ0: initial state distribution
Input: Jarena: set of initial states sampled from ρ0
Init policy replay bufferMπ ← ∅ and value replay bufferMV ← ∅
Init parameters θ, ν for policy net πθ : S → ∆A and value net Vν : S × R→ [−1, 1]

Init ’best’ parameters θB ← θ
foreach episode do

Sample initial state s0 ∼ ρ0
Perform greedy rollout using πθB and obtain R← r(ζgreedy

0,πθB
)

for t = 0, . . . , T − 1 do
Perform policy improvement I with MCTS using Vν(·, R) and policy πθ(·)
Receive improved policy Iπ(st), action at and new state st+1

Store (st, Iπ(st)) inMπ

Have trajectory ζ ← (s0, a0, . . . , sT−1, aT−1, sT)

z ←
{

1 if r(ζ) ≥ R,
−1 else

. outcome as reshaped binary reward

Store tuples (st, R, z) inMV for all timesteps t

Periodically update θB ← θ if
∑
s0∈Jarena

(
r(ζgreedy

0,πθ
)− r(ζgreedy

0,πθB
)
)
> 0

We set the constants to cvisit = 50 and cscale = 1.0, which has shown to be stable across various simu-
lation budgets (Danihelka et al., 2022). We complete the vector ofQ-values using the authors’ value
interpolation proposed in their appendix: For every unvisited action, the Q-value approximation in
(4) is set to V̂ , where

V̂ :=
1

1 +
∑
bN(b)

V +

∑
bN(b)∑

b, s.t. N(b)>0 π(b)

∑
a, s.t. N(a)>0

π(a)Q(a)

 . (26)

Here, V is the value approximation of node N coming from the value network. We abuse the
notation by omitting states (resp. state pairs for GAZ PTP), as (26) is used in all GAZ variants. In
particular, unvisited actions are given zero advantage in (4).

C.1.3 GAZ NORMALIZATION

Rewards in single-player tasks usually have different scales and are not limited to ±1. We follow
Schrittwieser et al. (2020); Danihelka et al. (2022), and perform a min-max normalization in GAZ
Single Vanilla and GAZ Single N-Step (prior to rescaling by σ) on the vector of completed Q-
values with the values observed in the tree up to that point. I.e., the maximum value is given by
maxs∈tree Q̂(s, a) (and analogously for the minimum value). This pushes normalized advantages
into the interval [−1, 1].

C.1.4 GAZ GREEDY SCALAR

We provide a listing of the training algorithm for GAZ Greedy Scalar in Algorithm 2.

C.1.5 GENERAL NETWORK ARCHITECTURE

Feed-forward In the following, a feed-forward network (FF) always refers to a multilayer percep-
tron (MLP) with equal input and output dimensions and one hidden layer of four times the input
dimension, with GELU activation (Hendrycks & Gimpel, 2016).

State encoding We model a state-encoding network f : S → Rd, followed by a policy head
g : Rd → ∆A and a state-value head h, which is of the form h : Rd × Rd → [−1, 1] for GAZ

17

Published as a conference paper at ICLR 2023

PTP. For both TSP and JSSP, f is based on the Transformer architecture and its underlying multi-
head attention (MHA) layers (Vaswani et al., 2017). For some state s ∈ S, the network f outputs a
concatenation of vectors f(s) = [s̃; ã1; . . . , ãm] where s̃ ∈ Rd̃ and ãi ∈ Rd̃ are latent representa-
tions of the state s and actions a1, . . . , am. The network architecture of f is identical for GAZ PTP
and all single-player variants (see C.2.3 and C.3.4).

Value head The value head consists of an MLP with two hidden layers of size d̃ with GELU
activation for TSP (and three hidden layers of size 2d̃ for JSSP). The input and output of the MLP
differ between variants:

• GAZ PTP: We input a concatenation [s̃1; s̃−1] ∈ R2d̃ of latent state vectors for both players.
The output is mapped to [−1, 1] via tanh-activation.

• GAZ Greedy Scalar: We input a concatenation [s̃1;R] ∈ Rd̃+1, where R ∈ R is the
outcome of the greedy rollout. As in GAZ PTP, the output is mapped to [−1, 1] via tanh-
activation.

• GAZ Single Vanilla/N-Step: Only the latent state s̃ ∈ Rd̃ serves as the input, with linear
output.

Policy head For the policy head g, the logit for an action ai ∈ {a1, . . . , am} is computed using
a pointing mechanism based on the attention of s̃ and the ãi’s similarly to (Bello et al., 2016) and
(Kool et al., 2018):

We compute (single-head) attention weights u1, . . . , um ∈ [−C,C] ⊆ R via

ui = C · tanh

(
(WQs̃)T (WK ãi)√

d̃

)
, (27)

with constant C = 10 and learnable linear maps WQ,WK : Rd̃ → Rd̃. The weight ui is interpreted
as the logit for the probability of action ai and is set to −∞ for infeasible (masked) actions.

In GAZ PTP, the above process is performed with w = FF(y)+y instead of s̃, where y = SHA(s̃;
ã1, . . . , ãm)) is a transformation of the vector s̃ through a layer of single-head attention (SHA)
with s̃ as the only query, and keys ã1, . . . , ãm. This is to simplify the task of aligning the state
encoding f for the value and policy head, as in GAZ PTP the value head operates on two separate
state encodings. The same design choice did not make any difference in GAZ Greedy Scalar/Single
Vanilla/N-Step, so we removed it to speed up computation.

C.1.6 HYPERPARAMETERS

Arena episodes are played every 400 episodes in GAZ PTP and GAZ Greedy Scalar. In all exper-
iments, the replay buffer holds data of the latest 2000 episodes. We set the self-play parameter to
γ = 0.2. We use Adam (Kingma & Ba, 2014) as an optimizer, with a constant learning rate of 10−4,
sampling batches of size 256 at each training step. Gradients are clipped to unit L2-norm.

C.2 TSP

C.2.1 ENVIRONMENT

An initial state s0 is given by n nodes, where s0 = {x1, . . . ,xn} ⊆ [0, 1]2 ⊆ R2. An ordered tour is
constructed sequentially by picking one node to visit after the other, iteratively completing a partial
tour. In particular, actions are represented by (unvisited) nodes. The agent decides from which node
it starts the tour.

We take a relative view at timestep t > 0 and represent a state (partial tour) for t > 0 by a tuple
st = (lt,xt,start,xt,end, Xt = {xt1 , . . . ,xtn−t}), where lt is the length of the current partial tour,
xt,start = at−1 is the last node in the partial tour, xt,end = a0 is the first chosen node (and must be
eventually returned to) and Xt is the remaining set of unvisited nodes from which the next action is
picked. The terminal state sT is a complete solution with XT = ∅. The negative length of the full
tour is given as a reward at the end of the episode (and zero rewards in between). All tour lengths

18

Published as a conference paper at ICLR 2023

are scaled by division with
√

2n (the supremum of a possible tour length with n nodes in the unit
square).

C.2.2 DATA GENERATION AND TRAINING

Initial states for training are uniformly sampled on the fly. We fix 300 states for the arena set Jarena,
which is identical for GAZ PTP and GAZ Greedy Scalar. During training, the model is evaluated
periodically on a fixed validation set of 100 states to determine the final model. The final model is
evaluated on the 10,000 instances of Kool et al. (2018), which were generated with the random seed
1234. The agent is run for 100k episodes, keeping a ratio of the number of played episodes to the
number of optimizer steps of approximately 1 to 0.1n. The network architecture is independent of
the number of input nodes, but for comparability, we train it from scratch for each n ∈ {20, 50, 100}.
We sample (at most) 16 actions without replacement at the root of GAZ’s search tree. The simulation
budget in the tree search is 100 for our approach and 200 for all single-player variants.

We augment training data by applying a random reflection, rotation, and linear scaling within the
unit square to states sampled from the replay buffer.

C.2.3 STATE ENCODING NETWORK

The state encoding network f consists of a sequence-to-sequence Transformer architecture similar
to the encoder in Kool et al. (2018). We use a latent dimension of d̃ = 128 in all TSP experiments.
The network is composed of the following components:

• Learnable lookup embeddings Etoken, Estart, Eend, Estart-ind, Eend-ind in Rd̃.

• Affine maps W len,W num : R→ Rd̃ and W node : R2 → Rd̃.

• A simple stack of five Transformer blocks with eight heads in the self-attention and layer
normalization before the MHA and the FF (Wang et al., 2019). The structure of a Trans-
former block is summarized in Figure 4.

We illustrate the encoding procedure in Figure 4. For an intermediate state st =
(lt,xt,start,xt,end, Xt = {xt1 , . . . ,xtn−t}), we construct an input sequence

(Etoken,W len(lt),W
num(n− t),

W node(xt,start) + Estart-ind,W node(xt,end) + Eend-ind,

W node(xt1), . . . ,W node(xtn−t)).

The sequence element corresponding to Etoken is a token representing the state, similar to the class
token in natural language processing (NLP) (Devlin et al., 2019). The two-dimensional nodes are
affinely embedded into Rd̃. As Transformer architectures are invariant to sequence permutations
by design, we add the learnable lookup embeddings Estart-ind, Eend-ind to the start and end nodes
to indicate them. This is comparable to position embeddings in NLP. For an initial state s0, we
use W len(0) for the second sequence element. Further, there are no start and end nodes in the
initial state yet, so we use the learnable embeddings Estart, Eend instead of the affine embeddings
W node(xt,start),W

node(xt,end).

The sequence is passed to the stack of Transformer blocks. For each attention head and pair of
nodes x,y in the sequence, we add a spatial bias wh · ‖x − y‖2 + bh ∈ R to the attention weight
corresponding to x,y, similarly as in Graphormer architectures (Ying et al., 2021).

As outlined in C.1.5, f eventually outputs f(st) = [s̃; ã1; . . . , ãn−t], where s̃ is the first output
sequence element corresponding to the state tokenEtoken, and ãi corresponds to the output sequence
element of the i-th remaining node W node(xti).

The main structural difference to Kool et al. (2018) is that in our case the latent representation of a
state is not computed autoregressively, but is re-done at each state from the partial tour length and
two-dimensional coordinates of remaining nodes.

19

Published as a conference paper at ICLR 2023

Transformer
block

Normalization

MHA

Normalization

FF

+

+

A B

Figure 4: (A) Structure of a Transformer block with pre-normalization. We use layer normalization
for TSP. The Transformer block takes in a sequence of elements in Rd̃ and outputs a sequence in
Rd̃ of the same length. (B) Schematic view of the relative state encoding for TSP experiments: The
agent initially chose to start the tour with the node at the bottom (red). In an intermediate state st, the
last node in the partial tour is the current start node xt,start. The node xt,end corresponds to the initial
node in the tour, as the agent eventually must return to it to complete the tour. A sequence in Rd̃ is
constructed from the state and passed through a stack of Transformer blocks. The output sequence
elements corresponding to the state token Etoken and the unvisited nodes constitute the output of the
network f .

C.3 JSSP

C.3.1 PROBLEM FORMULATION

In the standard JSSP, we are given a set of k jobs J = {j1, . . . , jk}, each consisting of m operations
which need to be scheduled on m machines. Each job ji is a permutation (oi,l)

m
l=1 of the machines,

where oi,l ∈ {1, . . . ,m} indicates on which machine the l-th operation of job ji needs to run.
Finishing an operation takes some processing time pi,l ∈ (0, 1]. The operations of a job must run in
order (precedence constraints), a machine can only process one operation at a time, and there is no
preemption. The objective is to find a schedule with minimum makespan.

C.3.2 ENVIRONMENT

A schedule must satisfy all precedence constraints, and there is a bijection between operations of a
job and the m machines. Thus, we can represent a schedule by a (not necessarily unique) sequence
of jobs (j̃1, . . . , j̃k·m), where j̃i ∈ J is an unfinished job of which the next unscheduled operation
should be scheduled at the earliest time possible. In particular, we can represent feasible actions in
the environment by the set of unfinished jobs, limiting the number of possible actions to k. Note
that a timestep t in the environment corresponds to the t-th chosen action (unfinished job), and is
not equal to the passed processing time in the schedule.

A state st is given by a tuple
((ct,l)

m
l=1, (et,i)

k
i=1, Jt),

where

• ct,l ∈ R≥0 is the finishing time of the latest scheduled operation on the l-th machine
(’machine availability’),

• et,i ∈ R≥0 is the finishing time of the last scheduled operation of a job ji (’job availabil-
ity’), and

• Jt = {jt,1, . . . , jt,nt} ⊆ J is the subset of jobs with unscheduled operations (’unfinished
jobs’).

In particular, we have c0,l = 0, e0,i = 0 and J0 = J at the initial state s0. Let c̃t := minl ct,l in the
following. The negative makespan maxl ct,l is given as a reward at the end of the episode (and zero
rewards in between). Similarly to the TSP environment, we scale the final makespan by division
with 100, so that for all problem sizes the makespan lies roughly in (0, 1). We illustrate the state
representation in Figure 5.

20

Published as a conference paper at ICLR 2023

1

1 1

2 2

3Machine
1

Machine
2

Machine
3

Processing
time

(2, 3, 1) (3, 1, 2) (2, 3, 1)

Transformer
block

A B

Figure 5: (A) Exemplary Gantt chart of an unfinished schedule, illustrating the relative state repre-
sentation for JSSP: We assume an instance with three jobs j1, j2, j3 and three machines. The tuple
below a job indicates on which machines its operations must run. In the depicted unfinished sched-
ule, all three operations of j1, the first operation of j2, and the first two operations of j3 have been
scheduled. The schedule can be represented by the sequence (j2, j1, j1, j1, j3, j3). Dashed lines in-
dicate examples of machine and job availability times. (B) Latent representations for the unfinished
jobs j2, j3 are obtained by passing a sequence of operations to the first stack of Transformer blocks.
Already scheduled operations are masked. The ouput tokens corresponding to Etoken are used as
latent job representations and form part of the sequence on which a second Transformer network
operates.

Table 2: Best solutions for Taillard instances from the literature, ”*” means the solution is optimal.

Ta01 Ta02 Ta03 Ta04 Ta05 Ta06 Ta07 Ta08 Ta09 Ta10
1231∗ 1244∗ 1218∗ 1175∗ 1224∗ 1238∗ 1227∗ 1217∗ 1274∗ 1241∗

Ta21 Ta22 Ta23 Ta24 Ta25 Ta26 Ta27 Ta28 Ta29 Ta30
1642∗ 1600 1557 1644∗ 1595 1643 1680 1603* 1625 1584
Ta41 Ta42 Ta43 Ta44 Ta45 Ta46 Ta47 Ta48 Ta49 Ta50
2005 1937 1846 1979 2000 2006 1889 1937 1961 1923

C.3.3 DATA GENERATION AND TRAINING

For a given number of jobs k and machines m, we generate training data on the fly by randomly
sampling a machine permutation (oi,l)

m
l=1 ∈ Sm for each job ji, and a random processing time

pil ∈ (0, 1] for each operation. We fix 200 instances for Jarena and a small validation set of size
20. We evaluate the model on the 10 benchmark instances of Taillard (Taillard, 1993) for each size:
instances ta01-ta10 (size 15× 15), instances ta21-ta30 (size 20× 20) and instances ta41-ta50 (size
30 × 20). The benchmark instances have integer processing times in [1, 100], which we rescale to
the unit interval by division with 100. We summarize the best upper bounds from the literature in
Table 2, as reported in Zhang et al. (2020). An episode takes k ·m actions, so to reduce computation
time, we limit the simulation budget to 50 for our approach and 100 for all single-player variants,
running the agent for 20k episodes. We keep a ratio of the number of played episodes to the number
of optimizer steps of approximately 1 to 0.02k ·m. We train from scratch for each problem size. As
the action space is rather small (at most k actions at each timestep), we consider all feasible actions
for the simulations at the root of the search tree.

During training, we augment states sampled from the replay buffer by linearly scaling processing
times pi,l, job availability times et,i and machine availability times ct,l with a random scalar in (0, 1).
Furthermore, we shuffle the machines on which operations must be scheduled (e.g. operations on
some machine A are reassigned to some machine B and the other way round).

21

Published as a conference paper at ICLR 2023

C.3.4 STATE ENCODING NETWORK

There are two types of sequences in a problem instance. (i) For each job ji, we have a sequence of
operations, where the order of operations matters. (ii) The entirety of jobs forms a sequence, where
the order does not matter (similar to the sequence of nodes in the TSP). The encoding network f
consists of two stacked Transformer models, where the first one computes a latent representation
for each job separately, and the second one operates on the sequence of these job representations to
compute a state encoding. Both networks operate in a latent space of dimension d̃ = 64.

Job encoding The Transformer network for encoding each job from the sequence of its unfinished
operations consists of:

• Learnable one-dimensional embeddings Pmachine, P operation : {1, . . . ,m} → Rd̃.

• Learnable lookup embedding Ejob in Rd̃.

• Affine maps W op : R2d̃+1 → Rd̃, Wm-avail : Rm → Rd̃, and W j-avail : R→ Rd̃.
• A simple stack of three Transformer blocks with four heads in the self-attention and in-

stance normalization before the MHA and the FF.

Let ji ∈ Jt be an unfinished job. We construct a sequence in Rd̃

(Ejob,

Wm-avail((ct,1 − c̃t, . . . , ct,m − c̃t)),W j-avail(max{0, et,i − c̃t}),
W op([Pmachine(oi,1);P operation(1); pi,1]),

...

W op([Pmachine(oi,m);P operation(m); pi,m]),

which is passed to the stack of Transformer blocks. We mask all operations which have already
been scheduled. The first element in the output sequence corresponding to Ejob is taken as a latent
representation of the job ji, which we denote by jlatent

i ∈ Rd̃.

The job encoding procedure is depicted in Figure 5.

State encoding The network for encoding the state representation from the sequence of latent job
representations consists of:

• Learnable lookup embedding Etoken in Rd̃.

• Affine maps W num,W len : R→ Rd̃, W job : Rd̃ → Rd̃, and Wm-avail-2 : Rm → Rd̃.
• A simple stack of four Transformer blocks with four heads in the self-attention and instance

normalization before the MHA and the FF.

From the set of unfinished jobs Jt = {jt,1, . . . , jt,nt}, we construct a sequence

(Etoken,

W num(nt),W
len(c̃t),W

m-avail-2((ct,1 − c̃t, . . . , ct,m − c̃t)),
W job(jlatent

t,1), · · · ,W job(jlatent
t,nt)),

which is passed to the stack of Transformer blocks. Finally, f outputs f(st) = [s̃; ã1; . . . , ãn−t],
where s̃ is the first output sequence element corresponding to Etoken, and ãi corresponds to the
output sequence element of the i-th unfinished job W job(jlatent

t,i).

D VALUE ESTIMATES AS TIMESTEP-DEPENDENT BASELINES

In this section, we provide more insight into why comparing pairs of states in the value function
instead of directly comparing pairs of predicted values can be beneficial in a self-competitive setting.

22

Published as a conference paper at ICLR 2023

To recall, at some state st for an action at, the policy logit update in GAZ (both for the in-tree action
selection and obtaining a policy training target) is given by

logitπ
′
GAZ(a) = logitπ(a) + σ(Âπ(s, a)),

where Âπ(s, a) = Q̂π(st, at) − V̂ π(st) is an advantage estimation based on the Q-value estimates
from the tree search and value network evaluations (cf. equation (4) in Section 3.2). In the following
discussion, for ease of notation, we denote by π := πθ the current policy of the learning actor, and
by µ := πθB the historical best greedy policy.

As proposed in Section 3.2, in GAZ PTP, we are comparing pairs of states at a timestep t to assess
how good the learning actor performs compared with its historical version. This is achieved by
swapping the term Âπ(st, at) in the logit update with

Âπ,µsgn (st, s
′
t; at) := Q̂π,µsgn (st, s

′
t; at)− V̂ π,µsgn (st, s

′
t),

where the state s′t comes from a (greedy) trajectory of the policy µ (see equation (7)). The sgn in
the subscript indicates that the value network is trained to estimate the sign of the episodic reward
difference in the original MDP (cf. equation (6)). In the self-competitive framework, we are working
with the assumption that predicting the expected episode outcome without sophisticated techniques
can be a hard task. By supplying the value network with training data consisting of state pairs and
binary targets to decide which state is more advantageous, the network is given a certain amount of
freedom in how to model the problem and does not rely explicitly (as e.g. GAZ Single Vanilla) on
the value network’s capability to predict the expected outcome.

In contrast, by explicitly using value predictions, the advantage estimation at a timestep t can also
be formulated as

Âπ,µt (st, at) := Q̂π(st, at)− bµt , (28)
where the baseline bµt is an estimate of Eζ0=(s0,a

′
0,s
′
1,...,s

′
T)∼η

µ(s0) [V µ(s′t)]. In this case, we are
baselining theQ-values from the standard single-player tree search with the expectation of the value
of the historical policy µ at timestep t. This is sensible, as it allows us to compute the estimate
bµt for all timesteps in advance of the learning actor’s episode (similarly to GAZ PTP GT, see B.6)
without the need to reevaluate the states s′i encountered by µ in the tree search. By using bµt , we
maintain the postulated benefit of keeping instance-specific information about the behavior of µ in
intermediate timesteps (via value estimates). Additionally, the MCTS can be run with GAZ in the
standard single-player way, as baselining with bµt fits elegantly into GAZ’s in-tree action selection
and policy improvement mechanisms (see equations (4) and (28)). In the following, we refer to this
method as GAZ Single Timestep Baseline (GAZ Single TB) and consider two ways of obtaining bµt :

(i) (GAZ Single TB Greedy) Let ζgreedy
0 = (s0, a

′
0, . . . , s

′
T−1, a

′
T−1, s

′
T) be the trajectory

obtained by rolling out µ greedily. As a counterpart to GAZ PTP GT, we set

bµt := Vν(s′t),

where Vν : S → R is the learning actor’s (single-player) value network.
(ii) (GAZ Single TB Sampled) For i ∈ {1, . . . , k} for some k ∈ N, we sample trajectories

ζ0,i = (s0, a
′
0,i, . . . , s

′
T−1,i, a

′
T−1,i, s

′
T,i)

using µ, and average over the value network evaluations via

bµt :=
1

k

k∑
i=1

Vν(s′t,i).

We provide a listing of the method in Algorithm 3.

The algorithmic variant GAZ PTP GT is similar to GAZ Single TB Greedy, except that we compare
pairs of states in GAZ PTP GT, and value estimates in GAZ Single TB Greedy. Furthermore, the
number of network evaluations is the same in both variants because only a single greedy rollout of µ
is required. Value estimates (resp. latent states for GAZ PTP GT) can be stored in memory for usage
in the MCTS. We compare the two variants of GAZ Single TB with GAZ Single Vanilla and GAZ
PTP GT in small-scale experiments for TSP 100 (50 search simulations, 20k episodes) and JSSP

23

Published as a conference paper at ICLR 2023

Algorithm 3: GAZ Single TB Training
Input: ρ0: initial state distribution
Input: Jarena: set of initial states sampled from ρ0
Init policy replay bufferMπ ← ∅ and value replay bufferMV ← ∅
Init parameters θ, ν for policy net πθ : S → ∆A and value net Vν : S → R
Init ’best’ parameters θB ← θ
foreach episode do

Sample initial state s0 ∼ ρ0
Obtain T baseline values b0, . . . , bT−1 via

bt ←

{
Vν(s′t) for greedy trajectory ζgreedy

0 . TB Greedy
1
k

∑k
i=1 Vν(s′t,i) for k sampled trajectories ζ0,i . TB Sampled

for t = 0, . . . , T − 1 do
Perform policy improvement I with single-player MCTS using Vν(·) and policy πθ(·),

baselining logit updates with bt, . . . , bT−1 in tree
Receive improved policy Iπ(st), action at and new state st+1

Have trajectory ζ ← (s0, a0, . . . , sT−1, aT−1, sT)
Store (st, Iπ(st)) inMπ for all timesteps t
Store (ζ, r(ζ)) inMV

Periodically update θB ← θ if
∑
s0∈Jarena

(
r(ζgreedy

0,πθ
)− r(ζgreedy

0,πθB
)
)
> 0

Table 3: Results for TSP n = 100 (50 simulations and 20k episodes) and JSSP 15×15 (35 simulations
and 10k episodes). Results are averaged ± standard deviation across three seeds ∈ {42, 43, 44}.
GAZ Single Vanilla fails to learn for seed 44.

TSP n = 100 JSSP 15× 15

Method Obj. Gap Obj. Gap

GAZ PTP GT 8.06 ± 0.04 3.8% ± 0.5% 1505.2 ± 55.7 22.0% ± 3.8%
GAZ Single Vanilla 10.76 ± 0.04 38.6% ± 0.5% 2823.6 ± 1787.5 129.8% ± 145.4%
GAZ Single TB Greedy 10.30 ± 0.19 32.6% ± 2.5% 1532.5 ± 20.3 24.7% ± 1.6%
GAZ Single TB Sampled 10.82 ± 0.20 39.4% ± 2.6% 1910.8 ± 498.3 55.5% ± 40.6%

15 × 15 (35 search simulations, 10k episodes). For GAZ Single TB Sampled, we sample k = 10
trajectories. The results are presented in Table 3.

Even though GAZ Single TB still relies on the value network being able to predict the expected
outcome of an episode sufficiently well, the small-scale experiments indicate that GAZ Single TB
provides a better advantage baseline to form a curriculum for the learning actor than the value
interpolation of GAZ Single Vanilla. GAZ Single TB Greedy in particular obtains comparable
results to GAZ PTP GT for JSSP, and improves faster than GAZ Single Vanilla for TSP. We believe
that GAZ Single TB can provide a much stronger method than the value interpolation (26) of GAZ
for baselining the Q-values in problems where it is ’easier’ to predict the expected outcome of an
episode, or in combination with more sophisticated value prediction techniques, such as the target
scaling techniques proposed in Pohlen et al. (2018) or Implicit Quantile Networks (Dabney et al.,
2018).

24

	Introduction
	Related work
	Preliminaries
	Problem Formulation
	Motivation for the two-player game

	GAZ Play-to-Plan
	Game mechanics
	Algorithm

	Experiments
	Single-player variants
	General setup
	Results

	Conclusion
	Reproducibility statement
	Proofs
	Proof of Lemma 1
	Derivation of the Logit Update (4)

	Additional algorithm details
	A note on self-play in the two-player game
	Modified tree search
	A note on the arena mode
	Replay buffer
	Loss functions
	Efficient implementation of GAZ PTP GT

	Experimental details
	General setup
	Training loop
	GAZ MCTS
	GAZ normalization
	GAZ Greedy Scalar
	General network architecture
	Hyperparameters

	TSP
	Environment
	Data generation and training
	State encoding network

	JSSP
	Problem formulation
	Environment
	Data generation and training
	State encoding network

	Value estimates as timestep-dependent baselines

