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Abstract

This thesis explains how vibroacoustic systems made out of a combination of acoustic cavi-
ties, linear elastic solids and porous absorbers along with the relevant boundary and coupling
conditions can be mapped using the Finite Element Method (FEM). This includes acoustic
metamaterials, which are characterized as structures that exhibit physical behaviour not ob-
served in natural structures. Details are given on how to account for porous absorbers in the
model. Different formulations of the so-called Johnson–Champoux–Allard model (JCAM)
are presented and compared on exemplary systems. In addition to the existing formulations,
a simplified version of the JCAM is introduced, which provides sufficiently accurate results
for many applications, but generates significantly less computational effort than a full model.
Building on a FEM model of one repetitive segment, this thesis describes how the wave prop-
agation along a periodic structure and the sound transmission through a periodic structure
can be computed using the Wave Finite Element Method (WFEM). Thereby the structures’
periodicity is introduced by periodic boundary conditions. Besides the description of exist-
ing strategies, a novel approach to compute the sound transmission through and absorption
of periodic structures with elastic frame porous boundary layers modelled by the JCAM is
introduced. Compared to approaches in the literature, the proposed methodology simultane-
ously fulfils the following criteria: the elastic deformations of the pore framework are taken
into account, the system can not only be excited by normal incident but also by inclined
plane waves, the reflected part of the exciting wave is imaged and complex inclusion ge-
ometries within the porous layer can be taken into account. Using the modelling approaches
presented, this thesis investigates the impact of inclusions and secondary vibrational systems
on the dispersion characteristics of periodic metamaterials.

Keywords:
Finite Element Method, Johnson–Champoux–Allard model, Metamaterials, Porous media,
Periodic structures, Sound transmission and absorption, Wave Finite Element Method, Wave
propagation
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1 Introduction

1.1 Characterization of the term metamaterial

To begin this work, the term metamaterial shall be specified. In general the term metama-
terial describes a structure having either specifically designed geometric characteristics or a
material composition leading to physical behaviour that cannot be observed among usual
systems. Examples are systems that expand under compression or suppress signal propaga-
tion for certain excitation frequencies. Often, the mode of action of acoustic metamaterials
is based on the concept of negative effective density and/or negative effective stiffness. [Lee
and Wright 2016] discusses these phenomena using simple examples.

In the context of this thesis the term metamaterial is used in conjunction with infinite
periodic structures consisting of repetitive unit cells, whereby the unit cell is the smallest
segment whose sequencing results in the periodic structure. By appropriately shaping the
unit cell, so called stop bands, being frequency ranges where no free wave propagation occurs,
can be observed. According to [Claeys et al 2013; Sheng and Chan 2005] the occurrence of
these stop bands can be explained by two different approaches: First, destructive interference
between transmitted and reflected waves can impede wave propagation in certain frequency
ranges. Second, stop bands can be caused by local resonances which, for example, are
induced by adding tuned mass dampers to the structure of the unit cell.

1.2 Motivation

Current issues such as climate change and scarcity of raw materials present us with new
stakes. In order to meet these challenges, the industry is striving for slender designs. These
require fewer raw materials for production compared to bulkier components. In addition,
lighter vehicles and aircraft also mean lower energy consumption and thus lower carbon
emissions, which is an important goal in view of global warming.
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Unfortunately, light weight designs can often be easily set in vibration and thus can suf-
fer from unfavourable vibroacoustic properties due to the high stiffness-to-mass ratio. To
improve the vibrational performance without increasing the mass, slender and adjustable
vibration reduction measures are required. Current research shows that acoustic metamate-
rials provide possibilities to tackle those requirements.

Various studies show that modifications of the unit cell lead to a manipulation of the wave
propagation along a periodic structure. The following is a brief overview of relevant literature
that has contributed to the motivation of this thesis.

[Claeys et al 2013] shows that a periodic assembly of tuned mass dampers (TMDs) on a
plate can cause stop bands. The numerical simulations are performed using the Wave Fi-
nite Element Method (WFEM). The TMDs are modelled as discrete mass spring systems.
[Claeys et al 2017] confirms this outcome employing a more realistic continuous model for
the resonator both numerically using the WFEM and experimentally. The frequency range
of the observed stop bands depends on the characteristics of the TMD, i.e. mass, spring
stiffness and damping. [Miksch et al 2019] uses the WFEM to take a closer look at this
behaviour and describes how TMDs affect the decay characteristics of waves that propa-
gate in periodic structures. [Chronopoulos et al 2015] employs analytical approaches and
the WFEM to model periodic structures equipped with negative stiffness oscillators. Care is
taken to ensure that the structures under investigation are capable of bearing static loads. It
is shown that the negative stiffness oscillators can be tuned to maximise the damping within
the system for a targeted frequency range.

There are already many publications investigating how, for certain frequency ranges, the
absorption of porous layers can be improved by embedding inclusions. While the thickness
of a porous layer without inclusions has to equal at least one quarter of the wavelength
of the excitation in order to attenuate it effectively [Deckers et al 2016], various authors
observe absorption peaks below the quarter-wavelength frequency for porous layers with pe-
riodic inclusions. Most often the pore framework is assumed to be rigid. Except [Boutin
and Becot 2015] who uses a special homogenization approach and [Kidner et al 2006] who
performs only experimental studies, all publications cited below model the porous domain
numerically using the Johnson–Champoux–Allard model (JCAM). [Kidner et al 2006] proves
experimentally that the insertion loss of a porous layer can be enhanced at low frequencies
by embedding mass inclusions. It is shown that the inclusions act as local resonators in-
creasing the structures’ impedance. By adapting the position of the inclusion within the
porous layer, the resonance frequency can be tuned. [Groby et al 2008] studies the acoustic
behaviour of a rigid frame porous layer with periodically distributed macroscopic circular
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aluminium and acrylic inclusions. In the implementation the multipole method is used in
combination with the transfer matrix method. Stop bands in the audible frequency range are
observed. [Groby et al 2011] analyses the absorption characteristics of a rigidly backed porous
layer with circular inclusions employing the mode-matching method. The pore framework
and the inclusions are assumed to be motionless. With one inclusion per period a nearly
complete absorption peak below the quarter-wavelength resonance is observed. Additional
absorption peaks occur with multiple inclusions per period. The results are interpreted via
the occurrence of trapped modes between inclusions and rigid backing. [Nennig et al 2012]
investigates a rigidly backed multilayer rigid frame porous structure with periodic inclusions
using the mode-matching method. Here, as well, an improvement of the absorption behaviour
due to the inclusions is found. Further, it is observed that open geometries behave more
favourably compared to closed geometries. In addition to a validation with other numerical
models, the calculation results are confirmed experimentally on an example structure. [La-
garrigue et al 2013] analyses the absorption potential of a porous metamaterial with slotted
ring shaped inclusions. The solid phase of the porous domain and the inclusion are assumed
to be motionless and the structure is backed by a rigid wall. The energy dissipation within
the porous layer is enhanced by low frequency resonances of the inclusion and the excitation
of a trapped mode between inclusion and rigid backing. Thereby the frequency range for
which almost complete absorption is observed is wider, if the position of the slit of adja-
cent inclusions varies. The investigations are carried out numerically employing the Finite
Element Method (FEM) and the Bloch Theorem. The results are confirmed experimentally
on reference configurations. [Groby et al 2014] studies the adsorption potential of rigidly
backed rigid frame porous media with rigid inclusions of different shape. The numerical in-
vestigations are carried out using the FEM. The periodicity is mapped by periodic boundary
conditions according to the Bloch Theorem. For all studied inclusion shapes a low frequency
absorption peak due to the excitation of a trapped mode between rigid backing and inclusion
is observed. The absorption enhancement thereby mainly depends on the filling fraction of
the inclusion and the flow resistivity and thickness of the porous layer. For convex inclu-
sions, the low frequency absorption characteristics are not affected by the inclusion shape
itself, but only by the filling fraction and the position of the inclusion within the porous
layer. For non-convex ring torus inclusions a lower filling fraction is necessary to achieve a
nearly total absorption peak than for the studied convex inclusion shapes. [Boutin and Becot
2015] shows that embedding Helmholtz resonators in rigid frame porous media (i.e. creating
double porosity porous media) leads to favourable absorption characteristics in the lower
frequency range. The numeric computations are carried out using a special homogenization
method. The results are confirmed experimentally. [Deckers et al 2016] studies the impact of
rigid circular inclusions as well as rigid C-shaped inclusions, whose aperture angle is chosen
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to minimize the transmission coefficient, on the absorption capacity of a rigid frame porous
layer. To map the studied geometries, the Wave Based Method is used in combination with
a multi-level approach. For the investigated geometries a frequency dependent improvement
of the absorption behaviour is found in comparison to a porous layer of the same thickness
without inclusions. [Magliacano et al 2020] studies the wave propagation along rigid frame
porous metamaterials with rigid cylindrical inclusions using the shift cell technique. For the
analysed configuration the inclusions induce an increased transmission loss over the whole
frequency range considered.

Up to now only few authors consider the deformations of the pore framework of porous
metamaterials. [Zielinski 2007] studies the impact of mass inclusions on the acoustic ab-
sorption within a rigidly backed porous layer. The porous domain is mapped by the mixed
displacement-pressure formulation of the JCAM. The studied metamaterial is modelled nu-
merically using the FEM. The structure is excited by a normal incident plane wave. Thus,
it is sufficient to model only one unit cell. The mass inclusions enhance the absorption of
the porous layer in the mid frequency range. For a low-frequency range, however, a dete-
rioration of the absorption is observed as a result of the inclusions. It is also found that
the results are hardly affected by whether the inclusions are modelled as elastic continua or
point masses. [Weisser et al 2016] analyses the absorption potential of rigidly backed elastic
frame porous absorbers with elastic inclusions. Both filled and empty cylindrical inclusions
are considered. For the numerical simulation the mode matching approach together with
the Bloch wave representation and the multiple scattering theory is employed. The porous
domain is modelled using the displacement based formulation of the JCAM. For the empty
cylindrical inclusion a wide absorption band in the mid frequency range and an absorption
peak at very low frequencies are observed. [Ahsani et al 2020] excites a rigidly backed elastic
frame porous metamaterial with discrete mass inclusions by a normal incident plane wave.
The porous domain is modelled employing the mixed displacement pressure formulation of
the JCAM. It is shown that the observed absorption peaks are induced by the mass-spring
effect. As a result of an optimization, a super-cell with multiple inclusions leading to a broad
band absorption is found. The FEM is used as numerical solution approach.

The above-mentioned literature leaves space for the following main points of investigation
for the present work:

• Is it possible to induce stop bands in linear elastic plates by embedding inclusions? If
yes, do the stop bands resulting from the inclusions mainly result from the irregular
mass distribution along the structure? Can an influence of the shape of the inclusion
be detected and quantified?
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• Will embedding inclusions containing TMDs in a material layer increase the noise
reduction potential of the structure? Has the orientation of the TMDs an impact on
the dispersion characteristic? Can waves inside the structure be deflected purposefully
by adapting the orientation of the TMDs?

• When studying porous metamaterials: What happens when both the pore framework
and the inclusions, up to now almost exclusively assumed to be rigid, are modelled
elastically? Can previous observations be reproduced or do further phenomena occur?

Studying those points of investigation requires an efficient numerical method for mapping
the dispersion properties of periodic metamaterials. This thesis employs the Wave Finite
Element Method as it allows to study metamaterials with complex unit cell geometries and
material compositions with reasonable computational effort. Elastic frame porous materials
are represented using the Johnson-Champoux-Allard Model (JCAM).

1.3 Outline of the thesis

In this thesis vibroacoustic systems consisting of acoustic cavities, linear elastic structures
and porous absorbers are modelled in the frequency domain using the FEM. An efficient
approach to compute the wave propagation along periodic structures is described and a con-
cept to compute the sound transmission through and absorption of periodic metamaterials
with porous components is introduced. The potential of the modelling strategies is demon-
strated on different numerical examples. The examples prove that periodic metamaterials
with specific dispersion properties can be designed via a proper choice of unit cell geometry
and material composition.

Chapter 2 starts with explaining why the FEM depicts an appropriate method to model the
dynamic behaviour of vibroacoustic systems in the frequency domain. The general approach
of the FEM is introduced. The method is specified on the example of a two dimensional sys-
tem that is structured into quadrilateral elements. FEM formulations for acoustic and linear
elastic elements along with the respective coupling and boundary conditions are given.

Chapter 3 deals with the numeric representation of porous domains. An overview of different
mapping concepts is given. Among them, the JCAM is described in more detail. FEM
representations for different formulations of the JCAM are given. A simplified formulation
of the JCAM is introduced, which captures the dispersion characteristics in the low-frequency
range, but involves a significantly lower calculation effort. It is explained how supports and
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excitations of the porous domain can be introduced into a FEM model. Furthermore, the
coupling conditions between porous media and other domains are treated in detail. Finally,
the different formulations of the JCAM are compared on two numerical examples.

Chapter 4 introduces the WFEM as efficient concept to analyse the dispersion characteris-
tics of periodic structures. Two approaches for evaluating the wave propagation along the
structure are given. Subsequently it is described how the sound transmission through and
absorption of periodic structures can be computed using the WFEM. The existing approach
is extended for the case of periodic structures with porous boundary layers.

Chapter 5 applies the solution strategies presented in Chapter 4 on numerical examples.
The focus of the numerical studies lies in evaluating the impact of inclusions and secondary
vibrational systems on the wave propagation in periodic metamaterials.

Chapter 6 concludes this thesis summing up the research objectives achieved. In addition,
an overview is given of which promising research topics could be developed on the basis of
the present work.

1.4 Main contributions

This work differentiates itself from previous research done in the field with respect to the
following aspects:

• Using a two-dimensional domain as an example, this thesis summarizes all the necessary
elemental, boundary and coupling contributions needed to model vibroacoustic systems
consisting of acoustic cavities, linear elastic structures, and porous absorbers using
FEM in one document.

• This thesis discusses how porous absorbers can be integrated into a FEM model. The
JCAM serves as a mathematical model for the description of porous media. The dif-
ferent formulations of the JCAM are compared in more detail than in the existing
literature in this area. In addition, a simplified version of the JCAM is introduced,
which provides sufficiently accurate results for many applications, but generates sig-
nificantly less computational effort than the full model.

• A novel approach to compute the sound transmission through and absorption of pe-
riodic structures with elastic frame porous boundary layers modelled by the classical
formulation of the JCAM is introduced. The approach is verified taking reference to
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examples from the literature and its performance is demonstrated on numerical exam-
ples. In contrast to the existing approaches in the literature, the proposed approach
fulfils all of the following criteria simultaneously: the deformation of the pore frame-
work is considered, the system can not only be excited by normal incident but also by
inclined plane waves, the reflected part of the exciting wave is imaged and complex
inclusion geometries within the porous layer can be taken into account.

• Building on existing literature, this thesis examines how inclusions and secondary vi-
brational systems can be used as a measure to manipulate the dispersion characteristics
and the vibroacoustic behaviour of periodic metamaterials in general.
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2 Finite Element modelling of

vibroacoustic systems

2.1 Introduction

For analysing the characteristics of vibroacoustic systems an efficient numerical solution
scheme is needed. In the literature different procedures are proposed for this. The individual
methods differ, among other things, with respect to the frequency range in which they can
be usefully applied and with respect to the complexity of the geometries that can be mapped
efficiently. The preferred variant depends on the respective application case. An overview
over different methods is for example given in [Ochmann et al 2017]. A selection of solution
schemes is summarized below.

One option is to model the system or parts of it using the Integral Transform Method
as done in [Buchschmid 2011]. Here the system of coupled partial differential equations
underlying the structure under consideration is first transformed into a system of decoupled
partial differential equations using the Helmholtz theorem, which states that a continuous
vector field can be represented as a superposition of a rotation-free and a source-free field.
Performing a Fourier Transform from the original to the image space, a system of decoupled
ordinary differential equations is obtained, which can be solved by using the corresponding
boundary conditions in the image space. For simple geometries, the analytical solution of
the system of differential equations in the original space can be determined by an inverse
Fourier Transform. However, the Integral Transform Method is only usefully applicable for
structures with limited geometrical complexity and accordingly only suitable for the analysis
of acoustic metamaterials with simple geometries.

Another possibility to describe the dynamic behaviour of vibroacoustic systems is the Wave
Based Method. As described in [Deckers et al 2014] the domain is structured into a limited
number of convex subdomains. The number of subdomains thereby does not depend on
the considered excitation frequency. The dynamic response variables are represented by
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a frequency dependent number of wave functions, which represent an exact solution of the
underlying differential equations and whose contribution factors are determined by a residual
consideration at the boundaries of the domain. The degrees of freedom (DOFs) in the Wave
Based Method are those contribution factors. As the domain discretisation is frequency
independent, the method represents an efficient solution procedure for large frequency ranges,
but is usually not able to map areas of high geometric complexity with reasonable effort.
To cope with this issue, multi-level approaches [Atak 2014; Deckers et al 2016] or hybrid
methods coupling p.e. Wave Based Method and FEM can be used [Jonckheere et al 2013;
Deckers et al 2017]. [Deckers et al 2012; Lee et al 2016] show that the Wave Based Method
can be employed to model porous materials.

In addition, there are a number of other methods such as the Boundary Element Method
used for example in [Tanneau et al 2006]. It has the advantage that only a discretisation
of the edges of the domain is required, but solving the resulting densely populated sys-
tems of equations is often associated with a higher computational effort compared to other
methods.

In frequency ranges with a high mode density, which is typically the case in the high-
frequency range, the Statistical Energy Analysis [Lyon and DeJong 1995] and the Transfer
Matrix Method [Allard and Atalla 2009] have been applied to determine average quantities.
However, the potential to determine quantities with high spatial resolution is limited.

In the context of this thesis the characteristics of vibroacoustic systems with complex ge-
ometries shall be evaluated over a large frequency range. The FEM, being one of the most
common methods for modelling dynamic systems, meets these requirements. With it, struc-
tures of almost any geometrical complexity can be investigated with reasonable effort. In
order to efficiently analyse their dynamic behaviour over larger frequency ranges, approaches
to reduce the computational effort can be embedded. In the case of periodic structures, this
can be done p.e. by applying the Bloch Theorem. The corresponding method will be dis-
cussed later in this thesis. In this chapter, the general principle of the FEM is summarized,
followed by explaining how acoustic and structural domains are modelled using the FEM
and how those domains are bounded and coupled.

2.2 General approach

At this point it should be emphasized that all analyses in this work are carried out in the
frequency domain. A steady state harmonic excitation of the structures is assumed.
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Using a FEM approach, a system’s dynamic behaviour can be expressed by its equation of
motion under steady state harmonic loading:

(K + iωC − ω2M)q = f , (2.1)

with the system’s stiffness, damping and mass matrices K, C and M. q contains the state
variables at the nodes and f corresponds to the right hand side contributions. The system
is formulated in the frequency domain with ω being the angular frequency and i =

√
−1 is

the imaginary unit. Viscous damping is assumed. The individual entries in equation (2.1)
are composed of elemental, boundary and interface contributions.

This section summarizes the steps necessary to investigate a system numerically using the
FEM. While problem-specific steps will be taken up later in the thesis, this section will go
into more detail on how the initially continuous system is transformed into a discrete one.
The corresponding step is referred to as discretisation.

2.2.1 Overview

• Definition of the system
Here the structure to be analysed, in our case the vibroacoustic system, is specified
concerning its geometry, material composition and boundary conditions.

• Meshing
Next, the geometry is divided into a finite number of elements. Depending on the
element type, a specific number of nodes is created. The density of the mesh must
be chosen in such a way that the relevant properties of the system can be represented
appropriately by the FEM model. While too coarsely meshed models will not resolve
the dynamic characteristics correctly, a too high number of elements corresponds to
an oversized computation effort. Using an appropriate meshing one can model almost
arbitrarily shaped finite structures using the FEM.

Figure 2.1 shows how the mesh density affects the results of the computation. One
wavelength of the continuous deformation pattern of a one-dimensional structure shall
be mapped by nodal values. Linear shape functions are used, meaning that the course
of the deformation pattern between the nodes is assumed to be linear. One can see that
when using three equidistant nodes per wavelength (blue dots), the deformation pattern
can not be reproduced (blue curve). Doubling the mesh density by adding the green
nodes (now using five nodes per wavelength), the deformation pattern (green curve)
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can be reproduced. Using nine nodes per wavelength (adding the orange nodes), the
approximation further improves (orange curve). For an equal mesh density replacing
the linear shape functions by higher order shape functions would lead to a better
approximation of the deformation pattern.

wavelength

Figure 2.1: Deformation pattern of one-dimensional structure (- - -) and approximation of it using linear
shape functions with different numbers of equidistant nodes per wavelength: three nodes per
wavelength (—), five nodes per wavelength (—) and nine nodes per wavelength (—).

• Computation of elemental, boundary and interface contributions
At the element level, the contributions of the individual elements to the overall system
are determined. This step can be broken down into the following substeps:

– Definition of the differential equation characterizing the respective system part,
its boundaries and interfaces with other domains.

– Derivation of the weak integral form of the differential equation using e.g. the
method of weighted residuals or the principle of virtual work.

– Discretisation: Transformation of the continuous system into a discrete one by
approximating the primary variables using shape functions.

– Introduction of the shape functions into the weak integral form.

– Derivation of elemental, boundary and interface representations.

• Assembling
The matrix representation of the complete structure is computed by assembling the
contributions corresponding to the individual elements, boundaries and interfaces. In
the case of a conformal mesh the assembling process is done in such a way that the
continuity of the state variables and the equilibrium of forces are fulfilled at the common
nodes of adjacent elements. In the context of this work, conformal meshes are assumed.
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If individual substructures are discretised differently, they can be coupled using so-
called mortar approaches [Wohlmuth 2000].

• Solving for unknowns
Finally, the matrix representation of the complete structure (e.g. equation (2.1)) can
be solved for the application dependent unknowns.

• Convergence study
After the solving step it is important to check whether the result has converged. If
a reference solution is available (e.g. from the literature or from an analytical calcu-
lation), it is checked whether the simulation result and the reference solution match.
If this is not the case, either the meshing or the choice of the shape functions has to
be adjusted. If no reference solution is available, the mesh is refined step by step (or
alternatively the degree of the shape functions is increased) until the solution does not
change beyond a certain measure. If this is the case, it is assumed that the solution
has converged. If the wavelengths of the oscillations in which the system is set under a
given load can be estimated in advance, this can be used to predict the required mesh
density.

• Derivation of secondary variables
Secondary variables can be post-processed from the converged solution. It should be
noted that the convergence of secondary variables is usually poorer than that of the
primary variables and that further convergence studies may be necessary.

2.2.2 Discretisation

After summarizing the individual steps of a FEM analysis, this section describes how a
continuous state variable q is transferred into discrete values at the element’s nodes via
approximating the course of q by shape functions. The procedure will be explained by the
example of a two-dimensional domain that is meshed by quadrilateral elements with four
nodes. Both, the case of q being a scalar as well as a vectorial quantity is treated. The
content is based on [Zienkiewicz et al 2005]; corresponding formulations for other element
types and shape functions of other order than considered here can be found there.

For the problem under consideration, two different element types must be addressed: While
the interior of the structure is meshed by quadrilateral elements with four nodes, boundaries
and interfaces with other domains are represented by one-dimensional line elements with two
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nodes. Below the focus is put on two-dimensional quadrilateral elements; the procedure for
one-dimensional line elements is analogous.

To treat all elements within a FEM model in a standardized way, the isoparametric concept
is applied. Thereby a coordinate transformation from the original coordinate system (x,y)
to elemental coordinates (ξ, η) is performed (see figure 2.2), with (ξ, η) being defined in the
range [−1,1]. Mathematically, the base change is mapped via the Jacobian matrix of the
element.

x

y η

ξ

1

3

2

4

1
2

4

3

Figure 2.2: Element in original (left) and elemental (right) coordinates.

Mapping the geometry of the element on a new basis, also the state variable has to be
transformed from original to elemental coordinates: q(x,y) → q(ξ, η). The elemental shape
functions Ni used for approximating the course of q are directly defined in elemental coor-
dinates and have to meet the following requirement:

Ni(ξj, ηj) =

1 i = j

0 i ̸= j
; (2.2)

(ξj, ηj) are the elemental coordinates of node j. Using bilinear shape functions for the
considered two-dimensional element with four nodes results in:

N1 = (1 − ξ)(1 − η)/4,

N2 = (1 + ξ)(1 − η)/4,

N3 = (1 + ξ)(1 + η)/4,

N4 = (1 − ξ)(1 + η)/4.

(2.3)
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The state variable q(ξ, η) can be expressed using those shape functions:

q(ξ, η) ≈
4∑

i=1
Ni(ξ, η)qi. (2.4)

Analogously the following set of linear shape functions for one-dimensional line elements
delimited by two nodes A and B using ξ as boundary coordinate is introduced:

NA = (1 − ξ)/2
NB = (1 + ξ)/2,

(2.5)

resulting in

q(ξ) ≈
∑

i=A,B
Ni(ξ)qi. (2.6)

The chosen set of shape functions has to be able to model the characteristics of the system
appropriately. Also higher order shape functions can be used. Generally the mesh density
and the order of the shape functions have to be adapted to each other to map the dynamic
characteristics of the system of observation. As for an increasing frequency of observation the
characteristic wavelength decreases, either the element size has to be reduced (h-refinement)
or the polynomial order of the shape functions has to be increased (p-refinement) [Paolini
et al 2018; Winter 2018]. While a p-refinement offers the advantage that no new mesh has
to be created for higher frequencies, the element formulation has to be interfered with on a
deeper level, since the shape functions are altered. Therefore, the h-refinement is basically
the more user-friendly option. Independent of the refinement approach the calculation effort
increases with an increasing frequency of observation. Performing a convergence study on
the desired quantity gives conclusion on the appropriate discretisation for the problem of
investigation.

Within this thesis both, scalar and vectorial state variables are dealt with. Therefore, it
is specified in more detail how a scalar pressure field qp and a vectorial displacement field
qu are discretised using the shape functions introduced above. A further distinction is
made between two-dimensional elements for the interior Ω and one-dimensional elements for
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boundaries and interfaces Γ. We get:

qpΩ(ξ, η) ≈
[
N1 N2 N3 N4

]
︸ ︷︷ ︸

NpΩ

[
p1 p2 p3 p4

]⊤
, (2.7)

qpΓ(ξ) ≈
[
NA NB

]
︸ ︷︷ ︸

NpΓ

[
pA pB

]⊤
, (2.8)

and

quΩ(ξ, η) ≈

N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4


︸ ︷︷ ︸

NuΩ


u1

u2

u3

u4

 , (2.9)

quΓ(ξ) ≈

NA 0 NB 0
0 NA 0 NB


︸ ︷︷ ︸

NuΓ

uA

uB

 ; (2.10)

with

ui =
ui,x

ui,y

 . (2.11)

2.3 Problem description

A vibroacoustic domain typically consists of a structural part and an acoustic fluid. In
a numerical model, not only the individual subdomains, but also the interaction between
them must be modelled. As FEM models are finite per definition, we need to specify the
behaviour at the system boundaries. Figure 2.3 exemplarily shows the structure of a vi-
broacoustic system. The structural part Ωe corresponds to a linear elastic continuum; the
acoustic domain is termed Ωa. The two subdomains are coupled at the interface Γae. On the
domain’s boundaries either the primary variable (Dirichlet boundary condition, ΓeD, ΓaD)
or a secondary variable (Neumann boundary condition, ΓeN, ΓaN) is prescribed. While the
Dirichlet boundary condition defines entries of q, a Neumann boundary condition results in
a contribution to the right hand side vector f . For the acoustic fluid a third type of boundary
condition will be considered in this thesis: as described in more detail in section 2.4.2, for a
simple radiation pattern, the Robin boundary condition ΓaR can be used to model radiation
towards infinity. Here, the normal impedance Za, expressed by the ratio of normal velocity
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and pressure, is imposed at the boundary. To map partially unlimited fluid areas, Za at the
Robin boundary is set equal to the impedance within the fluid domain.

ΓaN

Γae

ΓeD

ΓeN

ΓaR

ΓaD

Ωe Ωa

Figure 2.3: Vibroacoustic domain and its boundaries.

Following, the shape functions introduced in section 2.2.2 are used for deriving the elemental
matrix representations and boundary and coupling contributions for the vibroacoustic system
specified in figure 2.3.

2.4 Acoustic fluid

In the context of this thesis an acoustic fluid is defined as a medium that can only transmit
normal stresses. The wave propagation takes place solely in the form of compressional waves
being oscillations of the acoustic pressure pa. The wave speed in the acoustic fluid is given as
cP =

√
Ea
ρa

, with the fluid’s bulk modulus Ea and density ρa. The Helmholtz equation is an
ordinary differential equation and can be derived setting up the material law, the kinematics
and the equilibrium at a reference fluid volume. A detailed derivation can be found in [Möser
2005]. It characterizes the wave propagation in acoustic fluids in the frequency domain:

1
ρa

∆pa + ω2 1
Ea

pa = 0. (2.12)

∆ is the Laplace operator assigning the divergence of its gradient to the function it is applied
on. The index □a expresses the affiliation of a variable to an acoustic fluid. It is assumed that
only small oscillations occur and therefore nonlinear effects do not have to be considered.
Furthermore, the acoustic fluid is supposed to be inviscid and adiabatic.
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2.4.1 Finite Element model for the acoustic domain

To obtain the elemental matrices needed for a FE analysis, the weak form or variational
formulation of equation (2.12) is needed. [Zienkiewicz et al 2005] states that the weak form
can be derived from the differential equation using the method of weighted residuals by
performing the following steps:

• Multiply the differential equation by a suitable weighting function.

• Integrate the resulting expression over the problem domain.

• Simplify the expression using integration by parts.

• Insert the boundary conditions.

While equation (2.12) shall be fulfilled at each point within the modelled domain, its weak
form only requires fulfilment on average over the element to be described.

Applying the steps introduced above, the weak form of the Helmholtz equation is given as

∫
Ωa

(
1
ρa

∇pa · ∇δpa − ω2

Ea
paδpa

)
dΩa −

∫
Γa

1
ρa

∂pa

∂na
δpadΓa = 0, (2.13)

with

∂pa

∂na
= ∇pa · na. (2.14)

na is the normal vector pointing outwards of the acoustic domain and the admissible variation
δpa is employed as weighting function. The scalar product of two vector fields a and b is
denoted by a · b. A detailed derivation of equation (2.13) can be found in [Franck 2009] or
[Ochmann et al 2017].

In the following equation (2.13) is used for deriving the elemental matrices for a two-
dimensional acoustic element with four nodes. The acoustic pressure pa being the scalar
state variable results in one degree of freedom (DOF) per node regardless of the dimen-
sionality of the problem. Applying the Galerkin approach, both the state variable and the
weighting function are approximated by the same shape functions (see [Zienkiewicz et al
2005]). When using the shape functions introduced in section 2.2.2, the reference frame has
to be transformed from original to elemental respectively boundary coordinates. The base
change results in an alteration of the integral’s limits and is mathematically represented by
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the Jacobian matrix. We can find the elemental mass and stiffness matrix corresponding to
the acoustic fluid:

Kae =
∫

Ωae

1
ρa

(∇NpΩ)⊤∇NpΩ dΩae , (2.15)

Mae =
∫

Ωae

1
Ea

N⊤
pΩNpΩ dΩae . (2.16)

Ωae is the area occupied by a two-dimensional acoustic element. In a FE implementation the
integrals above are usually evaluated using a numerical integration scheme like the Gaussian
quadrature. Details on that can be found in [Bathe 2002].

2.4.2 Boundary conditions of the acoustic domain

Besides modelling the acoustic domain itself, we also need to specify its boundaries. In
the context of this thesis we differ between three different boundary conditions being the
Dirichlet, Neumann and Robin boundary condition.

Dirichlet boundary condition

The Dirichlet boundary condition prescribes the value of the primary variable at the respec-
tive boundary. In the case of an acoustic fluid, the acoustic pressure pa is preset to the value
pΓ:

pa − pΓ = 0 on ΓaD. (2.17)

pΓ = 0 models a fully reflecting boundary. One option to employ a Dirichlet boundary
condition into a FEM implementation is to restructure equation (2.1) so that along the
Dirichlet boundary ΓaD the state variable is given and the right hand side is searched for.

Neumann boundary condition

Prescribing a secondary variable, either the normal displacement ua,n or the normal velocity
va,n is given at a Neumann boundary ΓaN of an acoustic fluid. In the case of harmonic
oscillations, those variables can be transferred into each other via va,n = iωua,n. Setting
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ua,n respectively va,n to zero corresponds to a fully reflecting boundary. We can express the
Neumann boundary condition as

1
ρaω2

∂pa

∂na
− ua,n = 0 on ΓaN. (2.18)

Introducing equation (2.18) in the boundary representation in equation (2.13) we can find
the right hand side contribution mapping the Neumann boundary condition:

fae =
∫

Γae

ω2N⊤
pΓua,n dΓae . (2.19)

Γae is the one-dimensional boundary of a two-dimensional acoustic element.

Robin boundary condition

A simple way to model radiating boundaries is the Robin boundary condition. While being
rather easy to implement, the Robin boundary condition has the drawback that it is only
able to depict a very simple radiation pattern. The waves leaving the acoustic domain have
to impinge normally on the Robin boundary. Otherwise, more complex reflection patterns
will disturb the simulation outcome.

Along a Robin boundary, the normal impedance Za is set to the value ZΓ:

Za − ZΓ = 0 on ΓaR, (2.20)

with

Za = −iωρa pa

(
∂pa

∂na

)−1

. (2.21)

Modelling a radiating boundary, the impedance at the Robin boundary condition is set equal
to the impedance of the acoustic domain: ZΓ =

√
ρaEa. Inserting the relations above in the

boundary representation in equation (2.13), we can model the Robin boundary condition via
a contribution to the damping matrix:

Cae =
∫

Γae

1√
ρaEa

N⊤
pΓNpΓ dΓae . (2.22)

As the Robin boundary condition goes along with strong modelling limits and only provides
a realistic representation of free radiation within these limits, other approaches are needed
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cope with modelling more complex radiation patterns. Within the scope of this work, a
suitable approach which also maps a possible change in the shape of the radiating boundary
is proposed in section 4.4. [Ochmann et al 2017] gives an overview over existing methods for
modelling (partially) unlimited acoustic fluid domains. One option are perfectly matched
layers [Harari et al 2000; Shirron and Giddings 2006]. Here, a secondary domain adjoins
the acoustic fluid. Within this secondary domain the incoming waves are absorbed without
reflecting parts back into the primary fluid domain.

2.5 Linear elastic solid

When modelling structural elements within the framework of this thesis, linear elastic and
isotropic material behaviour is assumed. Under this assumption the Lamé equation de-
scribes the dynamic characteristics of the solid in the frequency domain in form of a partial
differential equation:

(λe + µe) ∇div ue + µe∇2ue + ω2ρeue = 0, (2.23)

with the solid density ρe and displacement vector ue. λe and µe are the first and second
Lamé parameter corresponding to the solid and are related to the solid’s Young’s modulus
Ee and Poisson’s ratio νe via

λe = Eeνe

(1 + νe)(1 − 2νe)
, (2.24)

µe = Ee

2(1 + νe)
. (2.25)

The index □e expresses the affiliation of a variable to a linear elastic solid. A derivation of
equation (2.23) can be found for example in [Hackenberg 2016].

Unlike acoustic fluids, solids can also transmit shear forces. As a consequence, besides
longitudinal waves also shear waves emerge within unlimited solid domains. While for lon-
gitudinal waves the oscillation takes place in the propagation direction, for shear waves the
oscillation is perpendicular to the direction in which the wave propagates. In the case of spa-
tially limited structures like plates and beams, the relevant wave types are quasi-longitudinal
waves and dispersive bending waves. Transverse contractions due to longitudinal strain dif-
ferentiate quasi longitudinal waves from longitudinal waves. In bending waves the particles
oscillate perpendicular to the propagation direction and undergo a rotation at the same
time. In contrast to the other wave types, the wave speed of bending waves is frequency
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dependent (dispersive). The partial differential equation used for the model defines the as-
sumptions made for the propagation pattern of the bending waves. While the Kirchhoff
and also the Euler-Bernoulli theory neglect shear deformation, shear deformation is mapped
by the Reissner-Mindlin and the Timoshenko theory [Zienkiewicz et al 2005; Spura 2019].
Table 2.1 contains the wave speeds and propagation patterns corresponding to the different
wave types in elastic solids. According to [Cremer and Heckl 2013] we need to differentiate
between plates that are spatially limited in one direction and beams being spatially limited
in two directions for bending and quasi-longitudinal waves. h is the height of the spatially
limited structure and Ie is the second moment of inertia corresponding to a beam’s cross
section.

Shear wave cS =
√

µe
ρe

Longitudinal
wave

cL =
√

(λe+2µe)
ρe

Bending wave1 cB,plate = 4
√

ω2 Eeh3

12ρeh(1−ν2
e )

cB,beam = 4
√

ω2 EeIe
ρeh

Quasi-
longitudinal
wave

cQ,plate =
√

Ee
ρe(1−ν2

e )

cQ,beam =
√

Ee
ρe

Table 2.1: Wave speeds and propagation patterns corresponding to wave types emerging in elastic solids;
blue arrows mark propagation direction, orange arrows mark respective direction of oscillation.

1The given relations result from the Kirchhoff respectively the Euler-Bernoulli theory and is valid under
consideration of the corresponding model limits.
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2.5.1 Finite Element model for the structural domain

Same as for the acoustic fluid, we need the weak form of equation (2.23) to derive the
elemental matrices corresponding to the solid. It can be easily obtained applying the principle
of virtual work on a reference volume. The virtual work is composed of the virtual work
corresponding to the internal forces (δWI), inertia effects (δWT) and external forces (δWE)
and shall be zero for a structure that is in equilibrium. The virtual work formulated according
to the coordinate directions considered in the model is given by

∫
Ωe

σe : δεe dΩe

︸ ︷︷ ︸
δWI

−
∫
Ωe

ω2ρeue × δuedΩe

︸ ︷︷ ︸
δWT

−
∫
Γe

σene × δue dΓe

︸ ︷︷ ︸
δWE

= 0. (2.26)

For the two-dimensional problems considered in the context of this work, one equation
results for a virtual displacement along the x-axis as well as a second equation for a virtual
displacement along the y-axis, with

σe : δεe =
∑
ij

σeij
δεeij

. (2.27)

σe and εe correspond to the stress and strain tensor within the structural domain; ne is
defined as normal vector pointing outwards of the elastic domain. The state variable cor-
responding to the solid is the displacement vector ue, resulting in two DOFs per node for
two-dimensional problems and three DOFs per node for three-dimensional problems. The
component wise multiplication of two vector fields a and b is denoted by a × b and defined
by a × b = c with ci = aibi.

Based on equation (2.26), we can find the elemental matrices corresponding to a linear elastic
solid according to [Zienkiewicz et al 2005]:

Kee =
∫

Ωee

B⊤EeB dΩee , (2.28)

Mee =
∫

Ωee

ρeN⊤
uΩNuΩ dΩee . (2.29)

Ωee is the area occupied by a two-dimensional structural element. Using the bilinear shape
functions defined in equation (2.3), we can deduce the strain-displacement matrix B for a
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two-dimensional element with four nodes:

B =


∂N1
∂x

0 ∂N2
∂x

0 ∂N3
∂x

0 ∂N4
∂x

0
0 ∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y
0 ∂N4

∂y
∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x

∂N3
∂y

∂N3
∂x

∂N4
∂y

∂N4
∂x

 . (2.30)

For two-dimensional problems, we need to make an assumption concerning the third dimen-
sion. Modelling thin structures like beams, the stresses perpendicular to the two-dimensional
plane are set to zero. This assumption is called plane stress. If the extension of the struc-
ture perpendicular to the modelled plane is comparably large, we can assume plane strain
meaning that the strains corresponding to this direction vanish. Depending on whether the
structure is in plane stress or plane strain, we can define the elasticity matrix according to
[Zienkiewicz et al 2005]:

Ee = Ee

(1 − ν2)


1 ν 0
ν 1 0
0 0 1−ν

2

 (2.31)

for plane stress and

Ee = Ee

(1 + ν)(1 − 2ν)


1 − ν ν 0

ν 1 − ν 0
0 0 1−2ν

2

 (2.32)

for plane strain.

2.5.2 Boundary conditions of the structural domain

For solids, we differentiate between Dirichlet and Neumann boundary conditions. A Dirich-
let boundary condition prescribes the displacement ue to a certain value uΓ on the solid
boundary ΓeD:

ue − uΓ = 0 on ΓeD. (2.33)

Supports are mapped by setting the respective displacement DOF to zero (uΓi = 0). Similarly
to the acoustic fluid, we can employ this boundary condition by restructuring equation
(2.1).
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The solids Neumann boundary condition can be expressed by

σe − σΓ = 0 on ΓeN, (2.34)

where σΓ is the prescribed value of the stresses σe along ΓeN. Substituting equation (2.34)
into the surface integral in equation (2.26), we can compute the right hand side contributions
at the Neumann boundary of the structural domain according to:

fee =
∫

Γee

N⊤
uΓσΓne dΓee (2.35)

Γee is the one-dimensional boundary of a two-dimensional structural element. fee corresponds
to the load vector on the element’s boundary. The individual entries are the nodal loads
in the direction of the two coordinate axes. Accordingly, fee can also be defined directly by
prescribing the nodal loads instead of the stress value σΓ along the Neumann boundary. A
free edge corresponds to a Neumann boundary where the stress (respectively nodal load)
value is set to zero.

2.6 Coupling between solid and fluid domain

In order to describe the dynamic behaviour of systems consisting of both fluid and solid
domains in a FE model, the coupling of these components must be represented. The com-
plexity of the coupling model depends on the respective application case. For example, if
the wind effect on a building is to be modelled, it is often sufficient to model the wind as
an external loading on the building. An influence of the building deflections on the wind
effect can be neglected under given circumstances. For vibroacoustic problems, however,
this consideration is insufficient. Here, both the effects of pressure fluctuations in the fluid
on the dynamic processes of the structure and the influence of structural vibrations on the
pressure distribution in the fluid must be taken into account.

Accounting for the mutual coupling of the two constituents results in coupling terms in the
mass and stiffness matrix of the coupled system. Deriving those coupling terms, we need to
ensure that the equilibrium of forces is fulfilled along the coupling interface Γae:

σena + pana = 0 on Γae. (2.36)

Besides that, the continuity of displacements has to be enforced along Γae. For steady state
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harmonic oscillations the continuity equation is given by

ue · na − 1
ρaω2

∂pa

∂na
= 0 on Γae. (2.37)

Next, we formulate the boundary integral along the coupling interface Γae. As the coupling
interface is a common boundary of the acoustic fluid and the solid, we need to consider the
boundary integrals from equations (2.13) and (2.26). Inserting (2.36) and (2.37) leads to:

IΓae,1 = −
∫

Γae

1
ρa

∂pa

∂na
δpadΓae = −

∫
Γae

ω2ue · naδpadΓae,

IΓae,2 = +
∫

Γae

σena × δue dΓae = −
∫

Γae

pana × δue dΓae.

The sign change of the first boundary integral, which corresponds to the solid, results from
the deviating definition of the direction of the normal vector.

Though mathematically inconsistent, as common in the reference literature, the individual
boundary integrals are summarized in one term for the sake of brevity:

IΓae = −
∫

Γae

ω2ue · naδpadΓae

︸ ︷︷ ︸
scalar contribution

−
∫

Γae

pana × δue dΓae

︸ ︷︷ ︸
vector contribution

. (2.38)

It should be noted that the boundary term shown above cannot be simplified further, since
it is composed of a scalar and a vector contribution quantity.

Approximating the primary variables and their admissible variations by the shape functions
introduced in equation (2.5), the coupling contributions to the mass and stiffness matrix can
be derived:

Kaee = −
∫

Γaee

N⊤
uΓnaNpΓdΓaee (2.39)

Maee = −K⊤
aee . (2.40)

With Γaee being the coupling interface on element level.

To conclude this section, we will take a closer look at equation (2.1). For a coupled system
of acoustic fluid and solid, we can split equation (2.1) up into the following components:

Ka 0
Kae Ke

+ iω
Ca 0

0 0

− ω2

Ma Mae

0 Me

pa

ue

 =
 fa

fe,

 (2.41)
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With the indices □a and □e denoting terms related to the fluid, respectively the solid.
The index □ae marks the components responsible for the coupling of the two constituents.
The individual components in equation (2.41) are obtained by assembling the elemental,
boundary and interface contributions introduced previously in this chapter. The assembling
process is carried out in such a way that the continuity of the state variables at the transitions
between the individual elements is fulfilled.

In the scope of this thesis undamped wave propagation in the acoustic fluid is assumed.
Therefore, the only part in the damping matrix belonging to the acoustic fluid results from
the Robin boundary condition. One way to represent damping within the structure is to
use a hysteretic proportional damping model. It can be implemented via a complex Young’s
modulus:

Eη,e = Ee(1 + iηe), (2.42)

with ηe as damping coefficient for the structural domain. Thereby the introduction of the
complex Young’s modulus Eη,e has the consequence that also dependent quantities such as
the two Lamé parameters become complex. Modelling the damping in the linear elastic solid
via a complex Young’s modulus, damping is included in the (thus complex valued) stiffness
matrix and there are no corresponding entries in the damping matrix. [Adhikari 2001] gives
an overview over other damping models employed for structural vibration in literature.

2.7 Conclusion

This chapter distinguishes the FEM from other numerical solution strategies and explains its
basic principle using the example of two-dimensional elements with four nodes. The element
matrices are derived for acoustic fluid and linear elastic structural elements. In addition, it
is discussed how different boundary conditions can be considered in a FE implementation.
Finally, it is described how the mutual coupling between acoustic fluid and linear elastic
solid can be represented. Based on the content of this chapter, it is possible to map complex
vibroacoustic systems consisting of fluid and structural components with a FEM model.



27

3 Characterization of porous materials

3.1 Introduction

The term porous material characterizes a heterogeneous structure consisting of at least two
phases: p.e. a solid frame and an interstitial fluid. In the context of acoustics the fluid
phase is the air and we assume that the pore framework is fully saturated and that the solid
frame behaves linearly elastic. Figure 3.1 (left) shows the structure of a two-phase porous
material.

fluid phase

solid frame

sealed pore

Figure 3.1: Porous domain modelled as statistical multiphase continuum.

Due to their favourable dissipation properties in the mid and high frequency range, porous
materials are often used as noise reduction measures. The dissipation in porous media
is mainly induced by frictional effects between the two phases and periodic temperature
fluctuations in the fluid phase [Cremer and Müller 1982; Buchschmid 2011]. The efficiency
of porous absorbers strongly depends on their dynamic properties and their geometry. For
instance, the flow resistance should be large enough to introduce dissipation effects, but
shouldn’t be too large so that the acoustic sound waves enter the absorber rather than being
reflected [Fuchs 2010]. Furthermore, the thickness of a rigidly supported porous absorber
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has to be equal to or greater than about one quarter of the wavelength in the adjacent sound
field in order to damp the excitation efficiently [Deckers et al 2016].

In order to analyse the dissipation mechanisms and dispersion characteristics of porous
(meta-)materials, one has to describe the behaviour of the porous domain analytically.
Thereby it is important to model the effects of the fluid-structure interaction and wave
propagation in the porous medium properly. [Schanz 2001] identifies three key mechanisms
characterizing the fluid-structure interaction in porous media: Increasing the pore pressure
leads to a deflection of the solid phase; deforming the solid phase leads to a modification of
the pore pressure if the fluid cannot escape the pore framework; energy dissipation is intro-
duced by relative motion between solid and fluid phase. Due to the occurring fluid-structure
interaction the wave propagation in porous media differs from the wave propagation in ho-
mogeneous domains. We can observe three different wave types, being one shear and two
compressional waves, whose characteristics depend on the type of coupling between solid and
fluid phase [Hörlin 2004]. Compared to that, one shear wave and one compressional wave
exist in infinite homogeneous solids, and only one compressional waves emerges in acoustic
fluids.

In theory the behaviour of porous materials could be mapped using the derivations in chapter
2 modelling the constituents separately on the area they occupy and coupling them via
appropriate coupling conditions. This would require accurate modelling of the geometry
of the pore framework coming up with the disadvantage that a very fine discretisation is
needed in the case of a numerical implementation using the FEM. Moreover, in very few
applications the exact geometry of the pore framework is known. Instead, the material
distribution is usually expressed in terms of the proportion of pores in the total volume.
Thus, in practice there are more efficient modelling approaches. The literature refers to
two major approaches providing a mathematical description of porous media: the Theory of
Porous Media (TPM) and the Biot Theory (BT) [de Boer 2000]. As visualized by figure 3.1,
both theories model porous media as statistical multiphase continua [Schanz 2003; Ehlers
1996]. Each location within the porous domain is assumed to be simultaneously occupied by
fluid and solid phase. The interaction between the constituents is considered as statistical
volume interaction modelled by theory specific parameters [Hörlin 2004]. The ratio of the
volume fractions of the two constituents is introduced by the porosity ϕ. It is defined as
ϕ = Vf

Vt
, where Vf is the volume fraction occupied by the fluid phase and Vt is the total volume

corresponding to the porous domain. As illustrated in Fig. 3.1, one usually distinguishes
between the fluid in the interconnected and the sealed pores. Since the fluid in the sealed
pores is not able to move independently from the solid frame, it is assigned to the solid
phase. Consequently, the fluid phase only includes the fluid in the interconnected or open
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pores. The description as statistical multiphase continuum is evident for porous absorbers
as those can hardly be produced with exact a priori defined shape of the solid frame. It is
valid since the wavelengths in porous media are significantly larger than the pore dimensions
[Jonckheere et al 2013]. Furthermore, at scales larger than the size of the pores, the material
is assumed to be homogeneous and isotropic [Mechel 2008], meaning that the pores are
distributed equally over the porous domain.

The TPM is based on concepts of continuum mechanics and thermodynamics and dates
back to [Fillunger 1913]. The BT on the other hand is empirically based [Schanz 2003].
It dates back to [von Terzaghi 1923] and was enhanced in [Biot 1955, 1956b,a]. In case of
incompressible constituents one can find a compliance of both theories [Schanz 2003]. During
the last decades the original BT was adapted for vibroacoustic applications. In order to take
into account frequency dependent thermal and viscous effects, the thermal characteristic
length [Johnson et al 1986, 1987] and the viscous characteristic length [Champoux and Allard
1991] were introduced to the parameter set. The so called Johnson–Champoux–Allard model
(JCAM) [Allard and Atalla 2009] is state of the art for vibroacoustic applications and will be
used in the context of this thesis. [Deckers et al 2015] reviews the JCAM together with other
commonly used models for porous domains and gives an overview over numerical modelling
strategies applicable for mapping porous media.

Following the introduction, this chapter presents the JCAM. Different options of imple-
menting the JCAM into a FEM analysis are presented and compared on simple numerical
examples.

3.2 Johnson-Champoux-Allard Model for porous materials

The content of this section is based on [Allard and Atalla 2009], which can be considered
as reference source for the JCAM. Using the JCAM, the porous domain is characterized by
a certain set of parameters. Table 3.1 sums up those parameters and assigns them to the
solid frame, the fluid phase and their interaction (labelled as porous domain). The model
assumes a linear elastic pore framework, but can also be adapted to represent a rigid or limp
solid phase.

In order to describe the complex behaviour of the porous multiphase continuum, the JCAM
introduces the equivalent bulk modulus of the fluid phase K̃f and the viscous drag b̃, which
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Solid frame ρs
[

kg
m3

]
Density

λs, µs [Pa] Lamé coefficients
ηs [−] Damping ratio

Fluid phase ρf
[

kg
m3

]
Density

η
[

Ns
m2

]
Viscosity

P0 [Pa] Standard pressure
γ [−] Heat capacity

Pr [−] Prandtl number
Porous domain Φ [−] Porosity

α∞ [−] Tortuosity
σ

[
Ns
m4

]
Flow resistivity

Λ [m] Viscous length
Λ′ [m] Thermal length

Table 3.1: Material parameters corresponding to porous domain.

are both complex and frequency dependent:

K̃f = γP0

γ − (γ − 1)
[
1 + 8η

iωP rΛ′2ρf

(
1 + iωP rΛ′2ρf

16η

) 1
2

]−1 , (3.1)

b̃ = σΦ2
[
1 + 4iωα2

∞ηρf

σ2Λ2Φ2

] 1
2

. (3.2)

In the context of this thesis □̃ marks frequency dependent quantities.

According to [Mechel 2008], the wave speeds cP1,2 of the two compressional waves and cS of
the shear wave propagating in porous materials are given as

cP1,2 =
 2a

ω
(
b ±

√
b2 − 4ac

)
 1

2

, (3.3)

cS =
√

µ̃ρ̃f

ωc
, (3.4)
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with

a = P̃ R̃ − Q̃2, (3.5)
b = ρ̃sR̃ + ρ̃fP̃ − 2ρ̃sfQ̃, (3.6)
c = ρ̃sρ̃f − ρ̃2

sf, (3.7)

and

Ã = λη,s + (1 − ϕ)2

ϕ
K̃f, (3.8)

P̃ = Ã + 2µη,s, (3.9)
Q̃ = (1 − ϕ)K̃f, (3.10)
R̃ = ϕK̃f. (3.11)

The complex Lamé coefficients considering the damping of the solid frame are given as

λη,s = λs(1 + iηs), (3.12)
µη,s = µs(1 + iηs). (3.13)

The equivalent densities contained in the above equations map viscous and inertial effects
within the porous domain and are defined as follows:

ρ̃sf = ϕρf(1 − α∞) + i b̃

ω
, (3.14)

ρ̃s = (1 − ϕ)ρs − ρ̃sf, (3.15)
ρ̃f = ϕρf − ρ̃sf. (3.16)

By computing the wavelengths in the porous medium, the discretisation required for a FEM
model can be estimated. [Dauchez et al 2001] shows that for one-dimensional applications
the same mesh criteria apply for porous media as for single-phase materials. It is found
that, using linear shape functions, reliable results can be obtained with six elements per
wavelength. For multidimensional problems, it is observed that porous elements generally
converge more slowly than acoustic or elastic elements and require a higher number of nodes
per wavelength. A general criterion of how many nodes per wavelength are required could
not be found.
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3.3 Finite Element model for porous materials

In addition to the theory for the description of the porous domain, on has to choose the set
of unknowns for the underlying system of differential equations. Different options and their
application dependent benefits and drawbacks are specified in the following. The respective
systems of differential equations are presented in their weak form to be processed for a
solution with the FEM. As in chapter 2, the elemental solutions and coupling terms are
derived for a two-dimensional system that is meshed using quadrilateral elements with four
nodes. Solutions for other element types and three-dimensional considerations can be set up
analogously.

3.3.1 Classical displacement based formulation

The most classical version of the JCAM is the displacement based formulation (or classi-
cal formulation). All expressions that refer exclusively to this formulation are marked by
the superscript □c. The dynamic behaviour of the porous domain is displayed by the dis-
placements of the solid phase us and the fluid phase uf. The pore pressure in the fluid
domain can be post-processed from these parameters. The displacement based formulation
leads to four DOFs per node for two-dimensional and to six DOFs for three-dimensional
FEM-applications.

Equations (3.17) display the equation system characterizing the porous domain in the clas-
sical formulation:

div σs + ω2 (ρ̃sus + ρ̃sfuf) = 0, (3.17a)

div σf + ω2 (ρ̃sfus + ρ̃fuf) = 0. (3.17b)

The equation system is formulated in the frequency domain with ω as circular frequency.
σs and σf are the stresses in the solid and fluid phase. The stresses in the fluid phase are
related to the pore pressure pf via

σf = −ϕpfI. (3.18)

I is the identity matrix corresponding to the dimensionality of the problem. Compared to
the stresses in the solid, the fluid stresses do not have shear components and the normal
stresses (in this case principal stresses) are equal.
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A FE formulation based on the classical formulation of the BT was first introduced by [Kang
and Bolton 1995]. Here, also the coupling conditions of a porous domain and an acoustic
fluid were established. Corresponding formulations for the JCAM are given in [Allard and
Atalla 2009] or [Rumpler 2012]. Equations (3.19) show the weak form of equations (3.17)
from which the element matrices can be derived:

∫
Ωp

(
σs : δεs − ω2ρ̃sus × δus − ω2ρ̃sfuf × δus

)
dΩp −

∫
Γp

σsnp × δus dΓp = 0, (3.19a)

∫
Ωp

(
σf : δεf − ω2ρ̃fuf × δuf − ω2ρ̃sfus × δuf

)
dΩp −

∫
Γp

σfnp × δuf dΓp = 0. (3.19b)

εs and εf are the strains in the solid, respectively the fluid phase and np is the normal vector
pointing outwards of the porous domain.

Approximating both the solid and fluid displacements by the shape functions introduced
in section 2.2.2, we can find the elemental stiffness and mass matrix corresponding to the
displacement based formulation in the reference frame of elemental coordinates:

K̃c
pe

=
K̃c

se K̃c
sfe

K̃c
sfe K̃c

fe

 , (3.20)

M̃c
pe

=
M̃c

se M̃c
sfe

M̃c
sfe M̃c

fe

 . (3.21)

The individual submatrices are obtained as follows:

K̃c
se =

∫
Ωpe

B⊤ẼsB dΩpe , (3.22)

K̃c
fe =

∫
Ωpe

B⊤ẼfB dΩpe , (3.23)

K̃c
sfe =

∫
Ωpe

B⊤ẼsfB dΩpe , (3.24)

M̃c
se =

∫
Ωpe

ρ̃sN⊤
uΩNuΩ dΩpe , (3.25)

M̃c
fe =

∫
Ωpe

ρ̃fN⊤
uΩNuΩ dΩpe , (3.26)

M̃c
sfe =

∫
Ωpe

ρ̃sfN⊤
uΩNuΩ dΩpe , (3.27)
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with Ωpe corresponding to the area occupied by a two-dimensional porous element and

Ẽs = 2µη,s E1 + Ã E2, (3.28)
Ẽf = R̃ E2, (3.29)
Ẽsf = Q̃ E2, (3.30)

where

E1 =


1 0 0
0 1 0
0 0 1

2

 , (3.31)

E2 =


1 1 0
1 1 0
0 0 0

 . (3.32)

The strain-displacement matrix B is the same as in the case of the linear elastic solid and
given in equation (2.30).

At this point it should be noted that the matrices defined in equations (3.22)-(3.27) are
all complex and frequency dependent. If, as intended in this thesis, a vibroacoustic system
with porous components is to be investigated over a larger frequency range, the elemental
matrices must be re-calculated and re-assembled for each frequency considered. To avoid
the computational effort involved, [Rumpler et al 2012] express the frequency dependence
via prefactors of frequency independent matrices:

K̃c
pe

− ω2M̃c
pe

= Kc,(1)
pe

+ (K̃f − P0)Kc,(2)
pe

+ iωb̃Cc
pe

− ω2Mc
pe

. (3.33)

The individual matrices are defined as follows:

Kc,(1)
pe

=


∫

Ωpe

B⊤E(1)
s B dΩpe

∫
Ωpe

B⊤E(1)
sf B dΩpe∫

Ωpe

B⊤E(1)
sf B dΩpe

∫
Ωpe

B⊤E(1)
f B dΩpe

 , (3.34)

Kc,(2)
pe

=


∫

Ωpe

B⊤E(2)
s B dΩpe

∫
Ωpe

B⊤E(2)
sf B dΩpe∫

Ωpe

B⊤E(2)
sf B dΩpe

∫
Ωpe

B⊤E(2)
f B dΩpe

 , (3.35)
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Cc
pe

=


∫

Ωpe

N⊤
uΩNuΩ dΩpe −

∫
Ωpe

N⊤
uΩNuΩ dΩpe

−
∫

Ωpe

N⊤
uΩNuΩ dΩpe

∫
Ωpe

N⊤
uΩNuΩ dΩpe

 , (3.36)

Mc
pe

=


∫

Ωpe

(
(1 − ϕ)ρs + ϕρf α∞

)
N⊤

uΩNuΩ dΩpe −
∫

Ωpe

ϕρf(α∞ − 1)N⊤
uΩNuΩ dΩpe

−
∫

Ωpe

ϕρf (α∞ − 1)N⊤
uΩNuΩ dΩpe

∫
Ωpe

ϕρf α∞N⊤
uΩNuΩ dΩpe

 , (3.37)

with

E(1)
s = 2µη,s E1 +

(
λη,s + (1 − ϕ)2

ϕ
P0

)
E2, (3.38)

E(1)
f = ϕP0 E2, (3.39)

E(1)
sf = (1 − ϕ)P0 E2, (3.40)

E(2)
s = (1 − ϕ)2

ϕ
E2, (3.41)

E(2)
f = ϕ E2, (3.42)

E(2)
sf = (1 − ϕ) E2. (3.43)

Using this approach, the individual elemental matrices need to be evaluated and assembled
only once. Solely the prefactors have to be re-evaluated for each frequency. The disadvantage
of the method shown is that, compared to the standard approach, more individual matrices
must be set up. Furthermore, the formulation cannot be integrated into a standard FEM
code easily, since here only one stiffness, mass and possibly also a damping matrix is specified
for each element type.

Another option to efficiently cope with the frequency dependent parameters of the JCAM
is proposed by [Panneton and Atalla 1997]. Instead of working with the parameters K̃f

and b̃, [Panneton and Atalla 1997] employ their Taylor series expansion with respect to the
evolution point ω = 0. Only the constant and linear term are included in the solution.
Contributions of higher order are neglected. This leads to:

K̃c∗
f = P0 + iω2P0(γ − 1)

γH1
, (3.44)
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b̃c∗ = σΦ2 + iωσΦ2

2H2
(3.45)

with

H1 = 16η

PrΛ′2ρf
, (3.46)

H2 = σ2Λ2ϕ2

4α2
∞ηρf

. (3.47)

[Panneton and Atalla 1997] shows that using K̃c∗
f and b̃c∗ instead of K̃f and b̃ approximates

the reference formulation very well for ω
H1

≪ 1 ∩ ω
H2

≪ 1.

Substituting the parameters K̃c∗
f and b̃c∗ into the approach proposed by [Rumpler et al 2012],

we obtain the following formulation, which will be referred to as reduced classical formulation:

K̃c
pe

− ω2M̃c
pe

≈ Kc,(1)
pe

+ iωCc∗
pe

− ω2Mc∗
pe

, (3.48)

with

Cc∗
pe

= 2P0(γ − 1)
γH1

Kc,(2)
pe

+ σΦ2 Cc
pe

, (3.49)

Mc∗
pe

= σΦ2

2H2
Cc

pe
+ Mc

pe
. (3.50)

All matrices included in the reduced classical formulation are frequency independent. Fur-
thermore, the formulation can be easily implemented into a standard FE code.

The simplified procedure for dealing with the frequency dependent parameters proposed in
equation (3.48) is compared with the full model in section 3.5 on two different numerical
examples.

3.3.2 Mixed displacement-pressure formulation

The mixed displacement-pressure formulation (or simply mixed formulation) of the JCAM
employs the solid displacements us and the pore pressure pf as DOFs. Compared to the
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classical formulation, this leads to a reduced number of unknowns per node and accordingly
to smaller system matrices for the same mesh resolution. While two-dimensional problems
involve three DOFs per node, one needs to consider four DOFs per node for three-dimensional
FEM-applications. All expressions that refer exclusively to the mixed formulation are marked
by the superscript □m.

The governing differential equations for the mixed formulation were derived by [Atalla et al
1998] who introduces

∇pf = ω2

ϕ
(ρ̃fuf + ρ̃sfus) (3.51)

into equations (3.17). As a result we get

div σ̂s + ω2ρ̃us + γ̃ ∇ pf = 0, (3.52a)

∆pf + ω2 ρ̃f

R̃
pf − ω2 ρ̃f

ϕ2 γ̃ div us = 0, (3.52b)

which no longer contains the fluid displacements uf as DOF. σ̂s is the in vacuo stress tensor
of the solid phase and given as

σ̂s = σs + ϕ
Q̃

R̃
pfI. (3.53)

The auxiliary variables ρ̃ and γ̃ introduced in equations (3.52) are defined as follows:

ρ̃ = ρ̃s − ρ̃sf
2

ρ̃f
, (3.54)

γ̃ = ϕ

(
ρ̃sf

ρ̃f
− Q̃

R̃

)
. (3.55)

Based on equations (3.52), [Atalla et al 1998] derives the weak integral representation of the
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mixed formulation:
∫

Ωp

(
σ̂s : δεs − ω2ρ̃ us × δus − γ̃∇ pf × δus

)
dΩp −

∫
Γp

σ̂snp × δus dΓp = 0, (3.56a)

∫
Ωp

(
ϕ2

ρ̃f
∇pf · ∇δpf − ω2 ϕ2

R̃
pfδpf − ω2γ̃us · ∇δpf

)
dΩp

+
∫
Γp

(
ω2γ̃ us,n − ϕ2

ρ̃f

∂pf

∂np

)
δpf dΓp = 0. (3.56b)

Introducing the shape functions for scalar and vectorial state variables given in section 2.2.2,
we can formulate the elemental matrices:

K̃m
pe

=
Km

se K̃m
sfe

0 K̃m
fe

 , (3.57)

M̃m
pe

=
M̃m

se 0
M̃m

sfe M̃m
fe

 , (3.58)

(3.59)

with

Km
se =

∫
Ωpe

B⊤(2µη,sE1 + λη,sE2)B dΩpe , (3.60)

K̃m
fe =

∫
Ωpe

ϕ2

ρ̃f
(∇NpΩ)⊤∇NpΩ dΩpe , (3.61)

K̃m
sfe = −M̃m

sfe
⊤ = −

∫
Ωpe

γ̃N⊤
uΩ(∇NpΩ) dΩpe , (3.62)

M̃m
se =

∫
Ωpe

ρ̃ N⊤
uΩNuΩ dΩpe , (3.63)

M̃m
fe =

∫
Ωpe

ϕ2

R̃
N⊤

pΩNpΩ dΩpe . (3.64)

Compared to the classical formulation, the mixed formulation introduces asymmetric el-
emental matrices, whose storage is associated with a higher effort compared to symmetric
matrices. Moreover, certain efficient solution methods for vibroacoustic systems require sym-
metric elemental matrices and cannot be applied here [Rumpler 2012]. These disadvantages
are opposed to the advantage of a smaller number of unknowns per node.
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3.3.3 New mixed formulation

Restructuring equations (3.56), [Atalla et al 2001] introduces an altered weak integral form
of the mixed formulation, which shall be referred to as new mixed formulation in the context
of this thesis:

∫
Ωp

(
σ̂s : δεs − ω2ρ̃ us × δus − ϕ

α̃
∇pf × δus) − ϕ

(
1 + Q̃

R̃

)
(pf∇ × δus

)
dΩp

−
∫
Γp

σtnp × δus dΓp = 0, (3.65a)

∫
Ωp

(
ϕ2

ω2ρ̃f
∇pf · ∇δpf − ϕ2

R̃
pfδpf − ϕ

α̃
us · ∇δpf − ϕ

(
1 + Q̃

R̃

)
∇ · usδpf

)
dΩp

−
∫
Γp

ϕ (uf · np − us · np) δpf dΓp = 0, (3.65b)

with

ϕ

α̃
= γ̃ + ϕ

(
1 + Q̃

R̃

)
. (3.66)

The elemental matrices according to the new mixed formulation are given as

K̃m*
pe

=
K̃m

se K̃m*
sfe

0 K̃m
fe

 , (3.67)

M̃m*
pe

=
M̃m

se 0
M̃m*

sfe M̃m
fe

 , (3.68)

with

K̃m*
sfe = −M̃m*

sfe
⊤ = −

∫
Ωpe

(
ϕ

α̃
N⊤

uΩ(∇NpΩ) + ϕ

(
1 + Q̃

R̃

)
(∇⊤NuΩ)⊤NpΩ

)
dΩpe . (3.69)

Compared to the original mixed formulation (equations (3.56)), the new mixed formulation
(equations (3.65)) provides simplified coupling conditions between porous and linear elastic
structural domains.
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3.3.4 Equivalent fluid model

A possibility to represent the porous medium in a simplified way is the use of an equivalent
fluid model. Here, the porous medium is treated like a fluid with modified material proper-
ties. Same as for the acoustic fluid, the pressure (in this case the pore pressure) is the only
DOF per node, independent of the dimensionality of the problem under consideration. The
wave propagation in the porous medium is mapped only by the compressional wave in the
fluid. In the modelling process, a distinction is made between whether a rigid or a limp pore
framework is assumed. In addition to reducing the computational effort due to the lower
number of DOFs, the equivalent fluid models can prevent numerical problems in the limiting
cases of a particularly stiff or soft pore framework. [Panneton 2007] provides an overview of
when and if so, which equivalent fluid model should be used.

Rigid frame porous media

Assuming a rigid frame porous medium can be a valid choice for metal foams or in general
porous media where the solid phase has a high stiffness. The equivalent fluid model can be
derived from the mixed formulation (equations (3.52)) by setting the solid displacements to
zero (us = 0). As a result we obtain the following differential equation for rigid frame porous
media:

1
ρ̃f

∆pf + ω2 1
R̃

pf = 0. (3.70)

The structure of this equation is the same as of the differential equation for the acoustic fluid
(equation (2.12)), with more complex material parameters being used for the equivalent fluid
model. The weak formulation of equation (3.70) as well as the boundary conditions for the
equivalent fluid model can therefore be derived according to section 2.4.

At this point it is important to note that the equivalent fluid model in equation (3.70) is
not able to model rigid body modes. If, for example, the porous material can slide freely
along an edge in the application scenario, this behaviour is not reproduced and can lead to
unrealistic simulation results, especially in the low frequency range.

Limp frame porous media

Limp frame porous media have a very soft pore structure. An example are soft fibrous layers
or soft sponges. According to [Panneton 2007], we can assume that counteract to excitations
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the stress field falls to zero. Introducing σ̂s = 0 into equation (3.52), we can eliminate
the solid displacements, leading to the following differential equation for limp frame porous
media:(

1
ρ̃f

+ γ̃2

ϕ2ρ̃

)
∆pf + ω2 1

R̃
pf = 0. (3.71)

Unlike equation (3.70), rigid body motions are also represented here. A FEM model based
on equation (3.71) can be found in analogy to section 2.4.

3.3.5 Total displacement formulation

In order to provide a comprehensive overview of common formulations, it is necessary to
also refer to a formulation introduced by [Dazel et al 2007], which employs an alternative set
of unknowns for the porous domain. In addition to the solid displacements us, the so called
total displacements ut are used as DOFs for the porous domain. Therefore, this formulation
is also referred to as total displacement formulation. The total displacements thereby are
given as linear combination of solid and fluid displacements:

ut = (1 − ϕ)us + ϕuf. (3.72)

Likewise the classical formulation, the total displacement formulation introduces four DOFs
per node for two-dimensional, and six DOFs per node for three-dimensional problems. The
corresponding system of differential equations characterizing the porous domain is given
in [Dazel et al 2007] and shall not be specified here. A weak formulation for the total
displacement formulation can be found in [Dazel et al 2009].

According to [Dazel et al 2009], a significant advantage of the total displacement formulation
results from the associated block-diagonal stiffness matrix, which in turn implies a decoupling
of the elastic forces. [Dazel et al 2009] presents numerical solution strategies that exploit
the decoupling of the elastic forces to reduce the computational cost for modelling porous
media based on a FEM model. [Dazel et al 2007] shows that, compared to the formulations
presented so far, the surface impedance and the transmission and reflection coefficient of the
porous domain are easier to calculate when using the total displacement formulation, since
the corresponding expressions can be rewritten in a simpler form.

Though the total displacement formulation was implemented as part of this work, it was not
studied further.
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3.3.6 Overview over different formulations

Table 3.2 gives an overview over the different formulations of the JCAM used within the
scope of this thesis. In addition to the respective DOFs, it compares the underlying partial
differential equation and its weak form, which forms the basis for the FEM model. The table
makes no reference to the reduced classical formulation, as it is based on the same equations
as the standard classical formulation. However, instead of the complex frequency dependent
material parameters, only the first two terms of their Taylor expansion around the evolution
point ω = 0 are used in the model, which in turn leads to frequency independent elemental
matrices. Since it is not examined in greater detail in this work, no reference is made to the
total displacement formulation at this point.

3.3.7 Application of the JCAM for modelling single-phase materials

The JCAM is an empirically based material model that has been specifically developed to
represent the vibroacoustic properties of highly porous media. It is not suitable for modelling
single-phase elastic structures and acoustic fluids, even if the porosity is chosen appropriately.
For the following reasons, simply inserting Φ → 0 (single-phase elastic structure) respectively
Φ → 1 (single-phase acoustic fluid) into the JCAM does not lead to convergence to the
respective single-phase models: Since the coupling factors of fluid and solid DOFs do not
disappear in the limit cases, an assumption would have to be made regarding the redundant
DOF. In addition, the JCAM suffers from diverging material coefficients due to vanishing
denominators for the limit case Φ → 0. For the classical formulation this problem could,
however, be solved by applying L’Hôpital’s rule.

3.4 Coupling and boundary conditions for porous media

To model complex vibroacoustic systems with porous components as shown in figure 3.2, one
has to specify the depicted boundary and coupling conditions. Since in the case of porous
media the primary variables are depending on the respective formulation, the boundary
conditions of the porous domain along the boundary Γp are broken down into excitations
and supports. An assignment to Neumann and Dirichlet boundary conditions can be made
according to the considered formulation, taking into account the respective DOFs.
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Along the coupling edges between porous medium and other domains (acoustic domain,
elastic domain, secondary porous domain and impermeable membrane) continuity and equi-
librium must be fulfilled. Besides enforcing the continuity of the primary variable of the
domain adjacent to the porous medium, the continuity of mass flow has to be ensured.
Thus, for the coupling between porous medium and acoustic fluid, elastic structure or mem-
brane, three coupling conditions result: One for the equilibrium, one for the continuity of
the primary variable and one for a continuous mass flow. For the coupling between porous
medium and secondary porous domain, four conditions are obtained, since the secondary
porous domain has two primary variables.

Γp

Γpp

ΓaN

Γae

Γpe

Γpa

Γpm

ΓeD

ΓeN

ΓaR

ΓaD

porous domain

elastic domain

acoustic domain

secondary porous domain

impermeable membrane

Figure 3.2: Coupled vibroacoustic system consisting of linear elastic, acoustic and porous domain.

First the conditions to be fulfilled at the boundary and coupling interfaces are specified.
Afterwards it is described how these conditions are taken into account in a FEM model.
The expressions below are based on [Debergue et al 1999] and [Allard and Atalla 2009].

3.4.1 Excitations

One option to excite the porous domain is to impose a certain pressure field pΓ at the
boundary Γp. The following set of equations has to be fulfilled along the respective boundary:

σtnp + pΓnp = 0

pf − pΓ = 0

 on Γp, (3.73)
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with

σt = σs + σf = σs − ϕpfI. (3.74)

The first condition in equation (3.73) ensures the equilibrium of the stresses, the second one
the continuity of the pressure.

Imposing a pressure field corresponds to a Neumann boundary condition for the classical
formulation, as in this case a secondary variable is prescribed along the boundary. Using the
mixed formulation no clear assignment is possible. In fact, this kind of excitation results in
a Dirichlet boundary condition for the fluid phase and a Neumann boundary condition for
the solid phase when the mixed (or new mixed) formulation is used.

The second possibility to apply an excitation directly to the porous medium is to prescribe
a displacement field uΓ along the boundary Γp, resulting in the following set of boundary
conditions:

us − uΓ = 0

us · np − uf · np = 0

 on Γp. (3.75)

Enforcing the conditions above, the continuity between imposed displacement field and solid
phase displacement as well as the continuity between normal displacements of solid and fluid
phase are ensured along the excited boundary Γp.

Prescribing a displacement field corresponds to a Dirichlet boundary condition for the clas-
sical formulation, as the involved primary variables are fluid and solid phase displacements.
Again, for the mixed (or new mixed) formulation no unique categorisation is possible.

3.4.2 Supports

A fixed edge is represented by the following boundary conditions:

us = 0

uf · np = 0

 on Γp. (3.76)

Along a rigid boundary both, solid phase displacements and the normal displacements of
the fluid phase fall to zero. An unique classification as Dirichlet boundary condition is only
possible in the case of the classical formulation.
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The case where only the displacement perpendicular to the edge is blocked by the bearing,
but a displacement tangential to the edge is allowed, can be expressed by

us · np = 0
uf · np = 0

 on Γp. (3.77)

This is referred to as sliding edge condition. It corresponds to a Dirichlet boundary condition
for the classical formulation and cannot be classified as a Dirichlet or Neumann boundary
condition for the mixed (or new mixed) formulation.

A possibility to approximate the special case of a free radiating boundary is presented in
[Debergue et al 1999]. [Debergue et al 1999] proposes to use a simplified model that does not
take into account the complex coupling mechanism between the porous layer and the adjacent
infinite acoustic fluid. The model considers a plate being coupled to the porous layer, which
in turn is connected to an infinite acoustic fluid. It is assumed that the impedance of the
solid phase of the porous medium is significantly higher than that of the infinite acoustic fluid
and that consequently only the elastic deformations of the porous layer have an influence
on the plate vibrations. This way, the impact of the infinite acoustic fluid on the porous
layer is neglected and the system of porous medium and plate can be considered to vibrate
in vacuum. Since this case is not relevant for the present work, it will not be discussed in
more detail. A novel approach for modelling a radiating porous layer that also takes into
account shape changes of the radiating boundary is proposed in the context of this work in
section 4.4.4.

3.4.3 Poroelastic-elastic coupling

At the coupling interface Γpe between a porous and an elastic domain the following three
coupling conditions need to be considered:

σtnp − σenp = 0

us − ue = 0

us · np − uf · np = 0

 on Γpe. (3.78)

The first equation ensures the equilibrium of the normal stresses. The second one provides
the continuity of the solid phase displacements and the displacements of the elastic structure.
The third condition expresses that there is no relative mass flow over the coupling interface
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Γpe. It replaces the continuity of mass flow, respectively can be considered as a special case
of it. The model used here for the elastic domain is presented in section 2.5.

In the context of this work, only the case in which porous and elastic domain are bonded
is considered. [Rumpler 2012] also introduces the case where the displacements of the two
coupling domains are only coupled in the direction perpendicular to the coupling edge. The
displacements along the coupling edge are independent of each other. This is referred to as
sliding interface and will not be discussed further in the scope of this thesis.

3.4.4 Poroelastic-acoustic coupling

The mutual coupling between a porous domain and an acoustic fluid is characterized by the
following set of conditions along the common interface Γpa:

σtnp + panp = 0

pf − pa = 0
1

ρaω2
∂pa

∂np
− (1 − ϕ)us · np − ϕuf · np = 0


on Γpa. (3.79)

The first equation considers the equilibrium of the normal stresses. The second equation
expresses the continuity of pressure, which is the primary variable (DOF) of the acoustic
fluid. The third equation ensures the continuity of mass flow by enforcing that the relative
normal displacement of the multiphase continuum and the normal displacements the acoustic
fluid are equal. The acoustic fluid itself is characterized in section 2.4.

3.4.5 Poroelastic-poroelastic coupling

Furthermore, the coupling of two porous domains with different material properties is con-
sidered. Along their common interface Γpp the following conditions shall be fulfilled:

σt1np1 − σt2np1 = 0

us1 − us2 = 0

pf1 − pf2 = 0
ϕ1 (uf1 − us1) · np1 − ϕ2 (uf2 − us2) · np1 = 0


on Γpp. (3.80)

The individual domains are identified by the indices □1 and □2. The first condition ex-
presses the equilibrium of the normal stresses. As the secondary porous domain adjacent
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to the porous domain also has two primary variables, two equations are required to express
the continuity of DOFs: The second equation considers the continuity of the solid phase
displacements; the third equation considers the continuity of the pore pressure. Enforcing
the fourth condition, a continuous mass flow across Γpp is ensured.

3.4.6 Poroelastic-membrane coupling

Finally, we consider the case where a limp, impermeable membrane having a certain surface
density m is attached to the porous domain. This results in the following conditions along
the interface Γpm:

σtnp − tm = 0

us − um = 0

us · np − uf · np = 0

 on Γpm, (3.81)

with um being the displacements and tm the exterior traction forces corresponding to the
membrane. Again, the first condition considers the continuity of normal stresses. The
continuity of displacements is ensured by the second condition. The third equation expresses
that there is no mass flow across Γpm.

The weak integral form of the membrane itself is given by
∫

Γsm

ω2m um × δumdΓpm +
∫

Γpm

tm × δumdΓpm +
∫

Γpm

fm × δumdΓpm = 0, (3.82)

with fm being the membrane’s load vector. In comparison to the other domains, no lateral
extension is assigned to the membrane. Thus, it is represented by one-dimensional elements
for two-dimensional problems. Introducing the continuity of the displacements us = um in
equation (3.82), we can interpret the membrane as additional mass applied on pore frame-
work at the boundary nodes.

3.4.7 Numerical implementation

This section gives conclusion on how the boundary and coupling conditions introduced above
are implemented for the different formulations of the porous domain. The following expres-
sions are obtained by substituting the previously introduced boundary and coupling condi-
tions into the boundary integrals of the weak formulation(s) of the adjacent domain(s). Once
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again the procedure is shown on the example of a two-dimensional system that is meshed
using quadrilateral elements.

Classical formulation

• Excitations
As mentioned earlier, the imposition of a pressure field pΓ corresponds to a Neumann
boundary condition when the classical formulation is used. As a result, we get a right
hand side contribution for the solid and fluid phase:

f c
se = −(1 − ϕ)

∫
Γpe

N⊤
uΓpΓnp dΓpe , (3.83)

f c
fe = −ϕ

∫
Γpe

N⊤
uΓpΓnp dΓpe , (3.84)

with Γpe being the one-dimensional boundary of a two-dimensional porous element.

The Dirchilet boundary condition of imposing a displacement field uΓ can be considered
analogously as described in section 2.5.2 for the case of a linear elastic structural
domain.

• Supports
Since they represent Dirichlet boundary conditions when using the classical formu-
lation, the fixed and sliding boundary conditions are implemented like a Dirichlet
boundary condition of a linear elastic structural domain (see section 2.5.2).

• Poroelastic-elastic coupling
Using the classical formulation for the porous domain, the boundary integral Ic

Γpe along
the coupling interface Γpe is given as

Ic
Γpe = −

∫
Γpe

σsnp × δus dΓpe −
∫

Γpe

σfnp × δuf dΓpe +
∫

Γpe

σenp × δue dΓpe. (3.85)

Introducing the equilibrium condition of equation (3.78) into equation (3.85), IΓpe

vanishes. The continuity conditions of equation (3.78) are taken into account in the
assembling procedure.

• Poroelastic-acoustic coupling
Coupling a porous domain represented by the classical formulation and an acoustic
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fluid results in the following boundary integral, which is composed of a vector and a
scalar contribution:

Ic
Γpa = −

∫
Γpa

σsnp × δus dΓpa −
∫

Γpa

σfnp × δuf dΓpa

︸ ︷︷ ︸
vector contribution

+
∫

Γpa

1
ρa

∂pa

∂na
δpa dΓpa

︸ ︷︷ ︸
scalar contribution

. (3.86)

Inserting equation (3.79) into the expression above, we can derive the contributions to
the mass and stiffness matrix mapping the mutual coupling:

Kc
pae

=
Kc

sae

Kc
fae

 =


(1 − ϕ)

∫
Γpae

N⊤
uΓnpNpΓdΓpae

ϕ
∫

Γpae

N⊤
uΓnpNpΓdΓpae

 , (3.87)

Mc
pae

=
[
Mc

sae Mc
fae

]
= −Kc⊤

pae
, (3.88)

with Γpae being the one-dimensional interface between two-dimensional porous and
acoustic elements.

• Poroelastic-poroelastic coupling
The boundary integral along the coupling interface Γpp reads:

Ic
Γpp = −

∫
Γpp

σs1np1 × δus1 dΓpp −
∫

Γpp

σf1np1 × δuf1 dΓpp

+
∫

Γpp

σs2np1 × δus2 dΓpp +
∫

Γpp

σf2np1 × δuf2 dΓpp.
(3.89)

Inserting the boundary conditions introduced in equation (3.80), Ic
Γpp vanishes. Only

the continuity of the displacement fields has to be considered in the assembling proce-
dure.

• Poroelastic-membrane coupling
Summing up the individual boundary representations, we get the boundary integral
along Γpm:

Ic
Γpm = −

∫
Γpm

σsnp × δus dΓpm −
∫

Γpm

σfnp × δuf dΓpm

+
∫

Γpm

ω2m um × δumdΓpm +
∫

Γpm

tm × δumdΓpm +
∫

Γpm

fm × δumdΓpm.
(3.90)

Introducing equations (3.81), we can find that the coupling between porous domain
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and membrane results in a contribution to the mass matrix and the right hand side
vector of the solid phase:

Mc
sme = −

∫
Γpme

mN⊤
uΓNuΓ dΓpme , (3.91)

f c
sme = −

∫
Γpme

N⊤
uΓfm dΓpme ; (3.92)

Γpme is the one-dimensional coupling interface between porous medium and membrane
on element level.

In addition to the coupling contributions above, the continuity of the normal displace-
ments of solid and fluid phase us · np = uf · np has to be enforced in the assembling
procedure.

• Coupled vibroacoustic system
In the case where the porous domain is represented by the classical formulation, setting
up equation (2.1) for the vibroacoustic system sketched in figure 3.2 results in



Ka 0 0 0
Kae Ke 0 0
Kc

sa 0
Kc

fa 0 K̃c
p

− ω2


Ma Mae Mc

sa Mc
fa

0 Me 0 0
0 0 M̃c

s + Mc
sm M̃c

sf

0 0 M̃c
sf M̃c

f






pa

ue

us

uf

 =


fa

fe

f c
s + f c

sm

f c
f

 . (3.93)

The yet non-symmetric representation can be transferred into a symmetric equation
system by dividing the first row, which corresponds to the acoustic fluid, by ω2. To
abbreviate the expression, an acoustic fluid without Robin boundary is assumed here.
The system of equations can be extended analogously to equation (2.41) if the free
radiation at an edge of the acoustic fluid is to be modelled.

Mixed formulation

According to [Debergue et al 1999], we can simplify the boundary and coupling contribu-
tions involved with the mixed formulation by rewriting the boundary integrals contained in
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equations (3.56) in the following way:

Im
Γp = −

∫
Γp

(σtnp × δus + pfnp × δus) dΓp

︸ ︷︷ ︸
vector contribution

−
∫
Γp

(us · npδpf + ϕ (uf · np − us · np) δpf) dΓp

︸ ︷︷ ︸
scalar contribution

,
(3.94)

when using ϕ
(
1 + Q̃

R̃

)
≈ 1, which, according to [Allard and Atalla 2009], holds for typical

sound-absorbing porous materials. Im
Γp summarizes the boundary integrals from the solid and

fluid equation and consequently consists of vector and scalar contributions. As a consequence,
all boundary integrals formulated in this section along the coupling interfaces consist of scalar
and vector contributions as well. A specification of these will be omitted in the following.

• Excitations
Prescribing a pressure field pΓ at the edge of a porous domain which is modelled by
the mixed formulation is a Dirichlet boundary condition for the fluid phase. It can be
employed like described in section 2.4.2 for an acoustic fluid. Even though imposing
pΓ is a Neumann boundary condition for the solid phase, we don’t have to consider a
right hand side contribution as Im

Γp vanishes when inserting the boundary conditions
contained in equations (3.73).

Imposing a displacement field uΓ corresponds to a Dirichlet boundary condition for
the solid phase and is treated in analogy to section 2.5.2. For the fluid phase, this
excitation is a Neumann boundary condition and results in the following right hand
side contribution:

fm
fe =

∫
Γpe

N⊤
pΓ (uΓ · np) dΓpe . (3.95)

• Supports
For both fixed and sliding edge supports, Im

Γp vanishes and only the Dirichlet boundary
conditions of the solid phase have to be considered in analogy to section 2.5.2.
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• Poroelastic-elastic coupling
The boundary integral Im

Γpe corresponding to the mixed formulation reads

Im
Γpe = −

∫
Γpe

(us · npδpf + ϕ (uf · np − us · np) δpf) dΓpe

−
∫

Γpe

(σtnp × δus + pfnp × δus) dΓpe +
∫

Γpe

σenp × ue dΓpe.
(3.96)

Inserting the boundary conditions given along the interface between porous and struc-
tural domain, we can derive a symmetrical coupling contribution to the stiffness matrix:

Km
fee = −

∫
Γpae

N⊤
uΓnpNpΓdΓpae . (3.97)

Additionally, us = ue has to be ensured by the assembling procedure.

• Poroelastic-acoustic coupling
Using the mixed formulation, we can derive the coupling contributions between porous
domain and acoustic fluid based on the following boundary integral:

Im
Γpa = −

∫
Γpa

(σtnp × δus + pfnp × δus) dΓpa

−
∫

Γpa

(us · npδpf + ϕ (uf · np − us · np) δpf) dΓpa +
∫

Γpa

1
ρa

∂pa

∂na
δpa dΓpa.

(3.98)

Inserting equations (3.79) into equation (3.98), Im
Γpa vanishes. Thus, only pf = pa has

to be considered in the assembling procedure.

• Poroelastic-poroelastic coupling
Im

Γpp corresponding to the mixed formulation reads:

Im
Γpp = −

∫
Γpp

(σt1np1 × δus1 + pf1np1 × δus1) dΓpp

−
∫

Γpp

(us1 · np1δpf1 + ϕ1 (uf1 · np1 − us1 · np1) δpf1) dΓpp

+
∫

Γpp

(σt2np1 × δus2 + pf2np1 × δus2) dΓpp

+
∫

Γpp

(us2 · np1δpf2 + ϕ2 (uf2 · np1 − us2 · np1) δpf2) dΓpp.

(3.99)



54 3 Characterization of porous materials

Inserting the respective coupling conditions for the interface Γpp, Im
Γpp vanishes. The

continuity of solid displacements and pore pressure is to be fulfilled in the assembling
procedure.

• Poroelastic-membrane coupling
Coupling a membrane to a porous domain represented by the mixed formulation results
in the following boundary integral:

Im
Γpm = −

∫
Γpm

(σtnp × δus + pfnp × δus) dΓpm

−
∫

Γpm

(us · npδpf + ϕ (uf · np − us · np) δpf) dΓpm

+
∫

Γpm

ω2m um × δumdΓpm +
∫

Γpm

tm × δumdΓpm +
∫

Γpm

fm × δumdΓpm.

(3.100)

Inserting equation (3.81), we can find that the mutual coupling is represented by a
symmetrical coupling contribution to the stiffness matrix of the porous domain and a
contribution to the mass matrix and the right hand side vector of the solid phase:

Km
pme

= −
∫

Γpae

N⊤
uΓnpNpΓdΓpae , (3.101)

Mm
sme = −

∫
Γpme

mN⊤
uΓNuΓ dΓpme , (3.102)

fm
sme = −

∫
Γpme

N⊤
uΓfm dΓpme . (3.103)

• Coupled vibroacoustic system
The equation of motion for a coupled vibroacoustic system with porous components
modelled with the mixed formulation reads:




Ka 0 0 0
Kae Ke 0 Km

fe

0 0 Km
s K̃m

sf + Km
pm

0 Km
fe

⊤ Km
pm

⊤ K̃m
f

− ω2


Ma Mae 0 0
0 Me 0 0
0 0 M̃m

s + Mm
sm 0

0 0 M̃m
sf M̃m

f






pa

ue

us

pf

 =


fa

fe

fm
sm

fm
f

 .

(3.104)

Again, no Robin boundary along the acoustic fluid is considered here.

While, as explained in detail in [Debergue et al 1999], implementing boundary and
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coupling conditions takes less effort when modelling the porous domain with the mixed
formulation than when using the classical formulation, we can not derive a symmetric
system of equations here.

New mixed formulation

Using the new mixed formulation introduced by [Atalla et al 2001], the effort for imple-
menting coupling and boundary conditions can be further reduced. Exception to this is the
coupling between a porous domain and an acoustic fluid, which requires less effort when us-
ing the original mixed formulation. The boundary integral corresponding to the new mixed
formulation can be read from equations (3.65):

Im*
Γp = −

∫
Γp

σtnp × δus dΓp

︸ ︷︷ ︸
vector contribution

−
∫
Γp

ϕ (uf · np − us · np) δpf dΓp

︸ ︷︷ ︸
scalar contribution

.
(3.105)

The term corresponds to an abbreviated version of the expression for the original mixed
formulation and also includes vector and scalar contributions.

Below, only the resulting contributions corresponding to the individual boundaries and cou-
plings are named. The individual boundary intergrals along the interfaces are set up analo-
gously to the classical and mixed formulation and are not explicitly displayed here.

• Excitations
In comparison to the original mixed formulation, prescribing a pressure field pΓ results
in a right hand side contribution for the solid phase fse in addition to the Dirichlet
boundary condition for the pore pressure pf, with

fm*
se =

∫
Γpe

N⊤
uΓpΓnp dΓpe . (3.106)

Imposing uΓ along the boundary of the porous domain, the boundary integral vanishes
and we only need to implement the corresponding Dirchlet boundary condition for the
solid phase.

• Supports
As the boundary integral vanishes for both, fixed and sliding edge supports, only the
corresponding Dirichlet boundary conditions for the solid phase have to be modelled.
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• Poroelastic-elastic coupling
Using the new mixed formulation, the boundary integral along the interface between
porous and structural domain vanishes. This corresponds to a natural coupling. Only
the continuity of displacements up = ue has to be ensured by the assembling procedure.

• Poroelastic-acoustic coupling
In addition to the continuity of pressure that is fulfilled by the assembling procedure, we
need to add symmetric coupling contributions to the stiffness matrix when coupling an
acoustic fluid with a porous domain which is represented by the new mixed formulation:

Km*
sae = −

∫
Γpae

N⊤
uΓnpNpΓdΓpae . (3.107)

• Poroelastic-poroelastic coupling
Coupling two porous domains that are both represented by the new mixed formulation,
we only need to ensure the continuity of solid displacements and pore pressure along
the interface in the assembling procedure.

• Poroelastic-membrane coupling
Using the new mixed formulation for the porous domain, the coupling with a membrane
results in a contribution to the mass matrix and the right hand side of the solid phase:

Mm*
sme = −

∫
Γpme

mN⊤
uΓNuΓ dΓpme , (3.108)

fm*
sme = −

∫
Γpme

N⊤
uΓfm dΓpme . (3.109)

• Coupled vibroacoustic system
Modelling the porous components with the new mixed formulation, we can derive the
following system of equations for a coupled vibroacoustic system:




Ka 0 Km*

sa
⊤ 0

Kae Ke 0 0
Km*

sa 0 Km
s K̃m*

sf

0 0 0 K̃m
f

− ω2


Ma Mae 0 0
0 Me 0 0
0 0 M̃m

s + Mm*
sm 0

0 0 M̃m*
sf M̃m

f






pa

ue

us

pf

 =


fa

fe

fm*
s + fm*

sm

0

 .

(3.110)
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We can conclude that the overall effort for implementing coupling and boundary condi-
tions of a vibroacoustic system can be reduced, when using the new mixed formulation
instead of the original mixed formulation. Solely the implementation of the coupling
between the porous domain and the acoustic fluid is more complex.

Overview over implementation of coupling and boundary conditions

Table 3.3 gives an overview over the effort involved for implementing the coupling and
boundary conditions according to the classical, mixed and new mixed formulation. Since
the equivalent fluid models can be considered as reduced versions of the mixed formulation,
introducing only the pore pressure as DOF and thus leading to simplified coupling conditions,
they are not explicitly discussed here. Further, no reference is made to the total displacement
formulation, as it isn’t used to model porous domains in the context of this thesis.

Classical
formulation1

Mixed
formulation

New mixed
formulation
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it
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ns

E
xc
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ns

Imposed
pressure field

Right hand side
contribution

Imposition of
resp. Dirichlet BC

Imposition of
resp. Dirichlet BC
and right hand
side contribution

Imposed
displacement
field

Imposition of
resp. Dirichlet BC

Imposition of
resp. Dirichlet BC
and right hand
side contribution

Imposition of
resp. Dirichlet BC

Su
pp

or
ts Fixed edge

Imposition of resp. Dirichlet BC
Sliding edge

C
ou

pl
in

g
co

nd
it

io
ns

2 Poroelastic-elastic
coupling -

Coupling
contributions to
elemental
matrices

-

Poroelastic-acoustic
coupling

Coupling
contributions to
elemental
matrices

-

Coupling
contributions to
elemental
matrices

Poroelastic-poroelastic
coupling -

Poroelastic-membrane
coupling

Right hand side contribution and coupling contributions to
elemental matrices

Table 3.3: Overview over implementation of coupling and boundary conditions.
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3.5 Comparison of the formulations on test configurations

The different formulations of the JCAM introduced in section 3.3 are now compared on two
two-dimensional application cases. First, the test test configurations are defined. To show
the effect of the investigated absorber configurations, the test cavity is also analysed for
the case where no absorber is installed. After validating the calculation results referring to
the literature, the calculation results obtained from the different formulations are compared.
In the interpretation, particular focus is put on the approximation error introduced by the
reduced classical formulation.

3.5.1 Definition of the test configurations

To compare the different formulations of the JCAM introduced in section 3.3, the two two-
dimensional application cases depicted in figure 3.3 are defined. Both configurations consist
of an acoustic cavity that is coupled to a porous absorber. The dimensions of the coupled
systems are the same. The systems are excited by prescribing the amplitude of the displace-
ment in the left lower corner of the acoustic cavity to the value 3 · 10−5 m. The displacement
is assumed to decline linearly from the left lower corner to the neighbouring boundary nodes.
The remaining part of the outer edges of the acoustic cavities are assumed to be fully re-
flecting. The porous layers are supported by fixed edge conditions at their backs and sliding
edge conditions on their sides.

Since the relevant wave propagation patterns in the system are difficult to estimate due
to complex reflections on the rigid side walls of the cavity, the required node density is
determined via stepwise refinement of the mesh. It is found that the solution converges
over the considered frequency range from 0 to 2000 Hz when the geometries are meshed
with quadrilateral elements with an edge length of 0.002 m. As an estimate for the shortest
wavelength in the system, the slower compressional wave in the porous absorber determined
via equation (3.3) is divided by the highest excitation frequency. For the mesh used, this
results in about a minimum of four nodes per wavelength. Since equation (3.3) assumes
wave propagation in an infinitely extended, three-dimensional porous medium, this can, if
at all, only be classified as a rough estimation.

1The reduced classical formulation is based on the same equations as the standard classical formulation
and therefore generally involves the same coupling effort. As a simplification of the frequency dependent
quantities is performed, elemental matrices and also the coupling contributions to them are frequency inde-
pendent.

2In addition to the respective contributions to right hand side and elemental matrices, the continuity of
DOFs along all coupling interfaces has to be ensured in the assembling step.
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0.20 m 0.05 m

0.02 m

0.13 m

acoustic cavity
porous absorber

corner excitation

0.20 m 0.05 m

Figure 3.3: Test configurations for comparison of different JCAM formulations.

For both application cases the material parameters of the porous absorber are given in table
3.4. The fluid in the acoustic cavity and the pores is air.

Solid frame ρs = 750 kg
m3

λs = 487.5 · 103 Pa
µs = 325 · 103 Pa
ηs = 0

Fluid phase ρf = 1.21 kg
m3

η = 1.84 · 10−8 N s
m2

P0 = 101 · 103 Pa
γ = 1.4
Pr = 0.71

Porous domain Φ = 0.96
α∞ = 1.7
σ = 32 · 103 N s

m4

Λ = 90 · 10−6 m
Λ′ = 165 · 10−6 m

Table 3.4: Material parameters of porous absorber.

To allow a comparison to the reference literature, the different formulations of the JCAM
are compared using the respective value of the mean quadratic pressure in the cavity Lp:

Lp = 10 log

∫
Ωa

p2
adΩa

p2
ref
∫

Ωa

dΩa
, (3.111)



60 3 Characterization of porous materials

with pref = 20 · 10−6 Pa as reference sound pressure in the air.

3.5.2 Analysis of the test cavity without absorber

In a first step, the course of the mean quadratic pressure in the cavity is computed for
the case where no absorbers are installed. For this step, the area occupied by the porous
absorber is replaced by an acoustic fluid. The result is given in figure 3.4. The peaks in the
course of Lp can be attributed to the eigen-tones of the cavity.
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Figure 3.4: Mean quadratic pressure in cavity without porous absorber (—); (—) mark eigen-tones of
acoustic cavity.

According to [Cremer and Müller 1982] the eigen-tones of a rectangular acoustic cavity with
rigid boundaries are given by

froom = cair

2

√√√√(nx

lx

)2
+
(

ny

ly

)2

+
(

nz

lz

)2
, (3.112)

with the cavity’s dimensions lx, ly and lz. cair is the wave speed in the air. The individual
eigen-tones correspond to different combinations of the counting variables nx, ny and nz. For
the studied configuration lx = 0.25 m and ly = 0.15 m. As we consider a two-dimensional
acoustic cavity, the contribution corresponding to the z-direction vanishes.

The analytical values of the eigen-tones of the studied cavity in the frequency range from
0 to 2000 Hz, determined using equation (3.112), are marked with green lines in figure 3.4.
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They lie exactly in the peaks of the Lp-curve, which proves that the simulation outcome is
plausible. As a supplement, figure 3.5 shows the distribution of the acoustic pressure within
the cavity for the eigen-tones.

Figure 3.5: Pressure distribution within acoustic cavity for eigen-tones in frequency range from 0 to
2000 Hz.

3.5.3 Comparison with reference solution

The system with porous absorber along one edge is also studied in [Rumpler et al 2013].
Since [Rumpler et al 2013] evaluates the mean quadratic pressure in the cavity, Lp is also
determined here and later serves as a reference variable for comparing the different formula-
tions. As depicted in figure 3.6, the course of the mean quadratic pressure can be reproduced
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and thus the calculation results are considered plausible. Same as in the reference solution,
the classical formulation is used to model the porous absorber.
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Figure 3.6: Mean quadratic pressure in cavity with porous absorber at one edge (—) and reference solu-
tion given in [Rumpler et al 2013] (- - -); absorber is modelled using classical formulation.

3.5.4 Comparison of the different formulations

Now, the different formulations of the JCAM are compared using the two test configurations.
In advance, the test configurations are compared with each other. Figure 3.7 shows the
mean quadratic pressure in the cavity for the two test configurations. The porous absorber
is modelled using the classical formulation. In addition to the test configurations, the case
of the acoustic cavity without porous absorber is depicted. Here, the area occupied by the
porous absorber is replaced by an acoustic fluid. We can see that especially the eigen-tones
of the acoustic cavity (peaks in the respective Lp-curve) are damped by introducing porous
absorbers. For the configuration with porous absorbers along two edges, the damping is
enhanced in comparison to the case with a porous absorber at one edge.
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Figure 3.7: Mean quadratic pressure in cavity without porous absorber (—), with porous absorber at one
edge (- - -) and with porous absorber at two edges (—); absorbers are modelled using classical
formulation.

Cavity with absorber at one edge

Figure 3.8 shows the mean quadratic pressure in the cavity corresponding to the studied
formulations for the configuration with a porous absorber at one edge.
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Figure 3.8: Mean quadratic pressure in cavity with porous absorber at one edge for classical formulation
(—), reduced classical formulation (· · ·), mixed formulation (—), new mixed formulation (· · ·),
rigid equivalent fluid (—) and limp equivalent fluid (—).
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Figure 3.9 shows the absolute value of the deviation between the results obtained with the
different formulations and the result obtained using the classical formulation, which is chosen
to serve as reference result. The results corresponding to classical, mixed and new mixed
formulation coincide. The reduced classical formulation provides good results especially
for the frequency range below 550 Hz. Also for higher frequencies the course of Lp can be
reproduced quite well. Larger deviations occur when using the rigid or limp equivalent fluid
model. This shows that both the assumption of a rigid and a limp pore framework cannot
accurately represent the behaviour of the elastic solid phase. Since the chosen support of
the porous absorber does not allow for rigid body modes anyway, the limp equivalent fluid
model cannot establish itself here compared to rigid equivalent fluid model.
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Figure 3.9: For acoustic cavity with porous layer at one edge: deviation between Lp corresponding to
classical formulation and reduced classical formulation (···), mixed formulation (—), new mixed
formulation (· · ·), rigid equivalent fluid (—), limp equivalent fluid (—).

In particular, at the frequencies at which fluid and solid displacements are of similar scale,
the equivalent fluid models differ from the other formulations. As shown in figure 3.10,
this is the case for an excitation frequency of 1700 Hz, where the largest deviation between
multiphase and equivalent fluid models occurs. If in this case the elastic deformation of the
solid is not mapped, also the displacement pattern in the fluid cannot be reproduced, which
explains the deviation between the equivalent fluid models and the other formulations.

If, on the other hand, the fluid displacements are significantly larger than those of the pore
framework, the agreement between multiphase models and equivalent fluid models is quite
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good. This is the case for an excitation frequency of 1530 Hz. Figure 3.11 proves that here
the fluid motion dominates the displacement pattern within the absorber.

Figure 3.10: Deformation of absorber at
1700 Hz; left: displacement of
solid phase of porous absorber;
right: displacement of fluid phase
of porous absorber.

Figure 3.11: Deformation of absorber at
1530 Hz; left: displacement of
solid phase of porous absorber;
right: displacement of fluid phase
of porous absorber.

Cavity with absorbers at two edges

Figure 3.12 depicts the course of Lp corresponding to the studied formulations for the config-
uration where porous absorbers are mounted along two edges of the acoustic cavity. Figure
3.13 gives the deviation between the classical formulation and the other ones. The result is
consistent with the observations made on the example with the acoustic cavity and a porous
absorber along one edge. The small mismatch between classical formulation and coinciding
mixed and new mixed formulation can be attributed to numerical inaccuracies. The negli-
gible deviation was to be expected, since it can also be observed in the comparison between
mixed and classical formulation made in [Atalla et al 1998], where the mixed formulation in
the form used here is introduced. In comparison to the case with porous absorber at one
edge, the upper limit for the excitation frequency up to which the reduced classical formula-
tion almost coincides with the reference solution is lower and corresponds to about 500 Hz.
This observation can be attributed to the higher complexity of the second application case.
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Figure 3.12: Mean quadratic pressure in cavity with porous absorbers at two edges for classical formula-
tion (—), reduced classical formulation (· · ·), mixed formulation (—), new mixed formulation
(· · ·), rigid equivalent fluid (—) and limp equivalent fluid (—).
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Figure 3.13: For acoustic cavity with porous layers at two edges: deviation between Lp corresponding
to classical formulation and reduced classical formulation (· · ·), mixed formulation (—), new
mixed formulation (· · ·), rigid equivalent fluid (—), limp equivalent fluid (—).
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3.5.5 Evaluation of the approximation error introduced by the reduced

classical formulation

The results obtained with the reduced classical formulation are now to be examined in more
detail. Therefore, the error introduced by the linearisation of K̃f and b̃ is studied for the given
material parameters. Figures 3.14 and 3.15 show the error introduced by the linearisation of
the equivalent bulk modulus of the fluid phase and the viscous drag. Thereby the deviation
of the linearised variable a∗ compared to the correct value a is computed via Re(a)−Re(a∗)

Re(a) for
the real part, via Im(a)−Im(a∗)

Im(a) for the imaginary part and via |a|−|a∗|
|a| for the absolute value.
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Figure 3.14: Deviation of linearised equivalent
bulk modulus from exact solu-
tion: real part (—), imaginary part
(- - -) and absolute value (—); (—)
marks dimensionless frequency
ratio for f = 500 Hz.
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Figure 3.15: Deviation of linearised viscous
drag from exact solution: real part
(—), imaginary part (- - -) and
absolute value (—); (—) marks
dimensionless frequency ratio for
f = 500 Hz.

The approximation error introduced by linearising K̃f is higher than for the linearisation of
b̃. We can also see that for the bulk modulus the deviation from the exact value is bigger for
the imaginary part than for the real part. From the fact that the deviation of the absolute
value is of the same magnitude as the deviation of the real part, it can be concluded that the
real part of both bulk modulus and viscous drag is bigger than the imaginary part. Within
figures 3.14 and 3.15 an orange line marks the value of the respective material dependent
dimensionless frequency ratio for f = 500 Hz. For the test configurations investigated, the
reduced classical formulation almost coincides with the reference solution below this upper
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frequency limit. For frequencies higher than 500 Hz, the linearised parameters deviate more
strongly from the exact ones, which is reflected in a poorer agreement of the calculation
results. A frequency of 500 Hz corresponds to ω

H1
= 0.25 and ω

H2
= 0.11. H1 and H2 are

material dependent parameters which are defined in equations (3.46) and (3.47). [Panneton
and Atalla 1997] observe a good approximation to the reference solution for ω

H1
≪ 1∩ ω

H2
≪ 1,

which is consistent with the observations made in the context of this thesis.

3.5.6 Summary

The following conclusions are drawn from the comparison of the formulations conducted
above:

• The difference between the results obtained with the classical formulation and the
mixed formulation is negligible.

• The classical formulation involves more DOFs than the mixed formulation and leads to
larger systems of equations. This disadvantage can be compensated, depending on the
application, by the fact that the classical formulation leads, compared to the mixed
formulation, to symmetric system matrices.

• Since the coupling between the mixed formulation and the acoustic fluid is natural,
for the configurations considered a lower coupling effort is involved for the mixed
formulation compared to the classical formulation.

• The mixed and the new mixed formulation lead to the same result, but the coupling
effort for the new mixed formulation is higher for the considered configurations.

• Especially for low frequencies the reduced classical formulation is a good alternative.
For the studied configurations it performs best for ω

H1
< 0.25 ∩ ω

H2
< 0.11, whereby

H1 and H2 are material dependent parameters. The advantage here is that the system
matrices do not have to be recalculated for each frequency considered. For the mixed
formulation no comparably simple reduced form can be derived.

• For the considered configurations neither the limp nor the rigid equivalent fluid model
is able to approach the elastic behaviour of the solid phase accurately. They only
provide a rough approximation of the result obtained with the classical formulation.
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3.6 Conclusion

This chapter introduces the JCAM for modelling porous absorbers. Besides the classical
formulation, which uses the displacements of fluid and solid phase as DOFs, two different
variants of the mixed formulation, in which the pore pressure serves as unknown instead
of the fluid displacements, are explained. In addition, a reduced version of the classical
formulation for application in the low-frequency range is presented. It has the advantage
that the system matrices do not have to be recalculated for each frequency considered.
Further, two equivalent fluid models are shown, one assuming a rigid and the other one a
limp pore framework. It is explained how FEM formulations for porous media can be derived
from the different formulations. In addition, the relevant boundary and coupling conditions
of porous media modelled according to the different formulations and their implementation
into a FEM model are treated in detail. Finally, the different formulations are compared on
two test configurations.
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4 Modelling strategies for periodic

structures

4.1 Introduction

The geometry of the metamaterials that are investigated in the context of this thesis is
periodic. Since the structure is finite in reality, theoretically the edges of the metamaterial
need to be modelled as well. From a certain dimension, however, an infinitely periodic
structure can be assumed and boundary effects can be neglected. This chapter deals with
the efficient representation of infinitely extended periodic structures. The wave propagation
along the structure and also the wave transmission through the structure is considered.
The derivations in this chapter refer to two-dimensional problems with one-dimensional
periodicity, but can easily be extended for three-dimensional applications with two- or three-
dimensional periodicity.

4.2 Basic theory

Using the Wave Finite Element Method (WFEM) periodic structures can be analysed based
on a FEM model of one single repetitive section also termed unit cell. The periodicity is
introduced via specific coupling conditions at the cell boundaries. The characteristics of
those coupling conditions emerge from the so called Bloch Theorem (see section 4.2.3).

The method dates back to [Brillouin 1946] and was enhanced by [Mead 1973; Orris and
Petyt 1974; Langley 1993; Mace et al 2005]. [Duhamel et al 2006] extends the method for
mapping also finite systems. Besides studying the free wave propagation along periodic
structures, the response of finite structures due to spatially limited loads [Duhamel et al
2006] and the sound transmission through the structure [Yang et al 2017; Errico et al 2019]
can be examined. [Serra et al 2015] applies the WFEM for analysing elastic frame porous
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structures. According to [Zhou et al 2015; Van Belle et al 2020], the efficiency of the method
can be further enhanced by embedding model order reduction strategies like the Component
Mode Synthesis (CMS). The CMS itself was introduced by [Hurty 1960] and is most often
used in the version given in [Craig Jr and Bampton 1968]. The sensitivity of the WFEM
towards numerical errors is analysed in [Mace and Manconi 2008; Waki et al 2009].

4.2.1 Selection of the unit cell

When studying periodic structures using the WFEM, the unit cell of the structure has to
be specified. The unit cell generally corresponds to the smallest possible section whose
sequencing results in the periodic structure. Often there are several possibilities to choose
the unit cell.

Figure 4.1 shows there different unit cells which, when horizontally strung together, all
correspond to the same periodic structure. While the first two unit cells could be used as an
input for a WFEM analysis, the third unit cell is not a valid choice as, after discretisation, not
every right boundary node will have a corresponding left boundary node. Taking reference
to [Zhou et al 2015], for most approaches of the WFEM the second unit cell enables a more
efficient analysis than the first one does. This is because by using the same discretisation,
the number of boundary nodes in the first cell is higher than in the second one. As shown in
the following sections, the computation effort is, for most of the evaluation schemes, mainly
influenced by the number of boundary nodes.

Figure 4.1: Selection of optimal unit cell.

4.2.2 Characterization of the unit cell

Without applying the periodicity conditions yet, the cell itself can be characterized by the
equation of motion under steady state harmonic loading with a frequency of ω, which is
given in equation (2.1). The matrices K, C and M contained therein can be derived using
any standard FEM implementation. The unit cell can be of complex shape and material
composition. In the scope of this thesis, it is required that number and vertical position of
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the nodes at the left and right boundary of the cell coincide. The entries of the right hand
side vector f depend on the respective application case.

[Collet et al 2011; Magliacano et al 2020] propose a novel method termed shift cell operator
technique instead of the conventional WFEM approach. Here, the periodicity is integrated
into the element formulation of the elements of which the unit cell is composed. Although it
can be shown that this approach results in a reduction of the computational effort compared
to the conventional WFEM, the disadvantage arises that the unit cell cannot be represented
using a standard FEM implementation. Therefore, the conventional WFEM is used in the
context of this work.

4.2.3 Introduction of the periodicity

The periodicity of the structure is described using the Bloch Theorem, which is also known
as Floquet theorem. Originally applied to problems in the field of quantum mechanics [Bloch
1929], the theoretical considerations can be transferred to structural dynamics. It states that
the response function of a periodic structure is given by the response function of a single
unit cell and an exponential term which describes the change in amplitude and phase as the
waves travel from one cell to the next. Thereby the relative change in amplitude and phase
between adjacent cells does not depend on the position of these cells within the periodic
structure [Brillouin 1946]. The relation between the response functions of two adjacent cells
can be expressed as

q(x + Lx) = q(x)µ = q(x)e−iκLx ; (4.1)

with q depicting the degrees of freedom of the unit cell. Lx is the length of the unit cell and
µ the propagation constant. The wavenumber κ is a complex unity and can be expressed
as κ = κr + iκi. Depending on the value of κ, the exponential term can be assigned to
three different propagation characteristics. While κi = 0 results in undamped waves, κr = 0
corresponds to evanescent waves, being near fields that do not undergo any spatial oscillation
but decay straight away. Damped oscillating waves, termed as attenuating waves, occur if
both κi ̸= 0 and κr ̸= 0. The different types of waves are shown in figure 4.2. While the
propagation characteristics of the waves are determined by the absolute values of κr and κi,
the sign of κr and κi determines the propagation direction.
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Evanescent wavePropagating wave Attenuating wave
Figure 4.2: Distinction of waves regarding to their propagation characteristics.

4.3 Wave propagation along the structure

In certain application cases, it is necessary to investigate what kind of waves propagate along
the structure in a given frequency range. As already introduced, specific unit cell designs
can lead to stop bands being frequency ranges where no undamped waves propagate along
the structure. To exploit this property in the design of vibroacoustic systems, it is necessary
to compute the location of these stop bands. Depending on the seeked complexity of the
result, two different approaches are possible. Both approaches and also the considered types
of problems are specified in this section.

4.3.1 Problem description

The considered system is a periodic metamaterial as exemplarily shown in figure 4.3. The
cell is two-dimensional and can have almost any material composition and geometry. The
structure is periodic with respect to the x-direction.

Lx

∞∞

x

y

Figure 4.3: Periodic metamaterial.

The nodes of the unit cell model are subsequently distinguished into nodes at the left and
right coupling interface and internal nodes using the indices □L, □R and □I.
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4.3.2 Inverse approach

One common approach of the WFEM is called inverse approach. It derives the dispersion
characteristics of periodic structures solving for the frequency at a given wavenumber. Using
this approach, only undamped waves are taken into account. This way, stop bands can be
detected easily. However, no conclusions can be drawn about the wave characteristics within
the stop bands.

In the context of this work, we assume that there is no damping within the material when
carrying out analyses using the inverse approach. Considering only propagating waves, κi

vanishes and the propagation constant can be simplified:

µ = e−iκrLx . (4.2)

Using the Bloch Theorem, we can find the following relation between DOFs and right hand
side contributions at the left and right boundary of the unit cell:

uR = µuL, (4.3)
fR = −µfL. (4.4)

Inserting equation (4.3) and (4.4) into equation (2.1) and assuming that the internal nodes
are not loaded by external forces (fI = 0), we can derive the following eigenvalue problem:

(Kred − ω2Mred)ured = 0, (4.5)

with Kred = RHKR, Mred = RHMR and ured = [uL uI]⊤. The reduction matrix R is
defined as

R =


I 0
0 I
µI 0

 , (4.6)

where I is the identity matrix. The superscript □H marks the complex conjugate transpose
of a matrix. Equation (4.5) is solved for the frequency at a given wavenumber.

As the elemental matrices corresponding to porous media usually are frequency dependent,
the inverse approach does not depict an appropriate method to study the dispersion char-
acteristics of periodic structures with porous components. An exception to this arises when
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the porous materials are modelled on the basis of equation (3.48) using the reduced classical
formulation, i.e. when the frequency dependence of the model parameters for the porous
domain is strongly simplified.

4.3.3 Direct approach

Contrary to the inverse approach, the direct approach takes all kind of waves into considera-
tion. Here, an eigenvalue problem is derived which is solved for the wavenumber for a given
frequency.

Introducing the dynamic stiffness matrix D = K+iωC−ω2M, we can reformulate equation
(2.1):


DLL DLR DLI

DRL DRR DRI

DIL DIR DII




qL

qR

qI

 =


fL

fR

fI

 =


fL

fR

0

 . (4.7)

The fact that the internal nodes are not loaded by external forces (fI = 0) allows us to
condense the internal DOFs from the system of equations:D̂LL D̂LR

D̂RL D̂RR

qL

qR

 =
fL

fR

 , (4.8)

with

D̂LL = DLL − DLID−1
II DIL, (4.9a)

D̂LR = DLR − DLID−1
II DIR, (4.9b)

D̂RL = DRL − DRID−1
II DIL, (4.9c)

D̂RR = DRR − DRID−1
II DIR. (4.9d)

Using equation (4.3) and (4.4) and requiring the continuity of displacements and equilibrium
of forces at the interface between two adjacent cells, we can derive the following eigenvalue
problem:

T

qL

fL

 = µ

qL

fL

 ; (4.10)
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the transfer matrix T is given as

T =
 −D̂−1

LRD̂LL D̂−1
LR

−D̂RL + D̂RRD̂−1
LRD̂LL −D̂RRD̂−1

LR

 . (4.11)

As the orders of magnitude of DOFs and right hand side contributions vary considerably,
the transfer matrix might suffer from ill conditioning issues. Options to solve this problem
are given in [Zhong and Williams 1995] and [Duhamel et al 2006].

The direct approach is also applicable to periodic structures with porous components. How-
ever, it should be noted that without applying a simplification on the frequency dependency
of the material parameters, the system matrices must be recalculated for each frequency of
investigation and, depending on the chosen formulation, may not be symmetric.

4.4 Sound transmission through the structure

Within more recent contributions, the WFEM is employed to evaluate the sound transmission
through periodic structures. While [Yang et al 2017; Errico et al 2019] already used the
WFEM to compute the sound transmission through complex three-dimensional panels, to
the knowledge of the author the method hasn’t been used yet for elastic frame porous panels
modelled by the classical formulation of the JCAM.

The approaches in section 4.3 investigate what kind of waves evolve along a two-dimensional
structure with one-dimensional periodicity. For this purpose, eigenvalue problems were
solved either for the frequency for known wavenumbers, or for the wavenumbers under spec-
ification of the frequency. The theory behind does not require any certain relation between
the wavelength of the determinable wave solutions and the dimensions of the unit cell. In
comparison, no eigenvalue problems are solved in the scope of section 4.4. Here, the deforma-
tion of the structure under a given load, which is defined by its amplitude and wavenumber,
is determined. From this, the absorption, reflection and transmission coefficients are com-
puted. Similar to section 4.3, it is not necessary that the wavelength of the excitation has a
certain relation to the dimensions of the unit cell.

After introducing the two-dimensional system of observation, this section summarizes how
the sound transmission through non porous and also porous structures can be computed
using the WFEM.
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4.4.1 Problem description

The system of observation is a two-dimensional periodic structure of arbitrary material
composition as shown in figure 4.4. A semi-infinite acoustic fluid is coupled to the top and
bottom of the structure.

∞ ∞

Lx

Θ
y

x

h

incident plane wave

Figure 4.4: Periodic metamaterial with incident inclined plane wave.

The structure is excited by an inclined plane wave. Depending on the investigated structure,
parts of the incident wave are reflected, transmitted and absorbed. For a time harmonic ex-
citation, the functions of incident, reflected and transmitted wave are given in the frequency
domain as

pi(x,y) = pie
i(−kxx+kyy), (4.12)

pr(x,y) = pre
i(−kxx−kyy), (4.13)

pt(x,y) = pte
i(−kxx+kyy). (4.14)

kx and ky are the wavenumbers in x- and y- direction and can be derived from the properties
of the semi-infinite acoustic fluid and the inclination Θ of the incident wave by decomposing
the wavenumber k:

k = ω

√
ρa

Ea
(4.15)

kx = k sin(Θ) (4.16)

ky =
√

k2 − kx
2 (4.17)

The pressure field in the upper fluid domain is composed of the incident and reflected wave
and given as −(pi(x,y) + pr(x,y)). The pressure field in the lower fluid is pt(x,y). We can
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compute the pressure field at the metamaterials top pa(x,0) and bottom pa(x, − h) as

pa(x,0) = −(pi(x,0) + pr(x,0)) = − (pi + pr) e−ikxx, (4.18)
pa(x, − h) = pt(x, − h) = pte

i(−kxx−kyh), (4.19)

where h is the thickness of the periodic structure.

The aim of the solution strategies proposed below is to determine the reflected and transmit-
ted part of the incident wave (i.e. pr and pt for a given value of pi). The strategies apply for
periodic structures of constant thickness, but can be extended for structures with thickness
variations.

4.4.2 General pre-processing

This sections contains the pre-processing necessary to calculate the sound transmission loss
through a structure using the WFEM, regardless of whether the boundary layers are porous
or not. Following the steps summarized here, it is shown how the excitation by an inclined
plane wave and the coupling to the semi-infinite acoustic domains are introduced into the
modelling process. The corresponding steps depend on the material of the boundary layers.

Presorting the system of equations

Similar to section 4.3, the periodic structure is modelled using the WFEM. The unit cell
is again characterized by its equation of motion under steady state harmonic loading. The
DOFs are now distinguished into DOFs corresponding to left □L, right □R, upper and lower
boundary □B and internal □I nodes, leading to the following representation:

DLL DLR DLB DLI

DRL DRR DBB DRI

DBL DBR DBB DBI

DIL DIR DIB DII




qL

qR

qB

qI

 =


fL

fR

fB

fI

+


eL

eR

eB

eI

 , (4.20)

whereby the right hand side is split up into internal reactions f and excitations e. The
corner nodes are assigned to the left and right nodes, but require special treatment as
the excitation and coupling to the fluid domain needs to be considered in addition to the
periodicity conditions.
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In analogy to section 4.3.3, the unloaded internal DOFs (fI, eI = 0) can be condensed from
the system of equations:

D̂LL D̂LR D̂LB

D̂RL D̂RR D̂BB

D̂BL D̂BR D̂BB


︸ ︷︷ ︸

D̂


qL

qR

qB

 =


fL

fR

0

+


eL

eR

eB

 . (4.21)

In equation (4.21), also the internal reactions corresponding to the top and bottom nodes
are assumed to vanish (fB = 0).

Application of the Bloch Theorem

Applying Bloch’s theorem according to equations (4.3) and (4.4), we can further condense
the system of equations:

ΛL


D̂LL D̂LR D̂LB

D̂RL D̂RR D̂BB

D̂BL D̂BR D̂BB

ΛR

qL

qB

 = ΛL


eL

eR

eB

 , (4.22)

with

ΛL =
I 1

µ
I 0

0 0 I

 (4.23)

and

ΛR =


I 0

µI 0
0 I

 . (4.24)

The excitation vector e maps the excitation and the coupling to the fluid domain. Its entries
depend on whether the boundary layers are linear elastic or porous and will be specified in
the following sections.
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4.4.3 Linear elastic boundary layers

First, the top and bottom layer of the periodic structure are assumed to be linear elastic
(i.e. non porous). In this case, the nodal DOFs at the top and bottom surface of the unit
cell are the displacements in x- and y-direction (ue,x and ue,y). [Yang et al 2017; Errico et al
2019] show how the sound transmission through three-dimensional periodic structures can
be determined using the WFEM. This section applies the proposed solution approach on
two-dimensional periodic structures and presents the theory in a modified way.

Excitation and coupling to the fluid domain

In analogy to section 2.6, two coupling conditions must be satisfied at the interface between
the periodic structure and the semi-infinite fluid domain. The first one ensures the continuity
of displacements:

1
ρaω2

δpa

δy
= ue,y. (4.25)

Inserting the pressure fields in the upper and lower fluid domain, we can derive the following
expressions:

pi − pr = iρaω
2

kye−ikxx
ue,y(x,0) along the upper interface y = 0 and (4.26)

pt = − iρaω
2

kyei(−kxx−kyh) ue,y(x, − h) for the lower interface y = −h. (4.27)

Second, we have to enforce the equilibrium of forces at the coupling interfaces: σy = −pa.
This results in

σy(x,0) = −pa(x,0), (4.28)
σy(x, − h) = −pa(x, − h). (4.29)

Inserting equations (4.26) and (4.27) into equations (4.28) and (4.29), we can express the
acoustic excitation and the coupling between fluid domain and periodic structure via equiv-
alent normal stresses at the unit cell’s top and bottom surface:

σy(x,0) = 2pie
−ikxx − Daue,y(x,0), (4.30)

σy(x, − h) = Daue,y(x, − h), (4.31)
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whereby Da = iρaω2

ky
is the equivalent fluid density.

Integrating the equivalent normal stresses over the top and bottom surface of the unit cell, we
can compute the equivalent excitation vector to be applied on the unit cell. Assuming piece-
wise constant equivalent normal stresses, the integration can be simplified to a multiplication
by the nodal intake surface ∆x. As a result we get:

eL

eR

eB

 = e1 + diag(e2)


qL

qR

qB

 , (4.32)

with

e1,x(x,y) = 0, (4.33)

e1,y(x,y) =

2pie
−ikxx∆x y = 0,

0 y ̸= 0,
(4.34)

and

e2,x(x,y) = 0, (4.35)

e2,y(x,y) =


−Da∆x y = 0,

Da∆x y = −h,

0 else.

(4.36)

Formulation of the equation system to be solved

Introducing equation (4.32) into equation (4.22) leads to

ΛL
[
D̂ − diag(e2)

]
ΛR

qL

qB

 = ΛLe1, (4.37)

which shall be solved for q for a given excitation.

For the special case where the bottom of the unit cell is not coupled to a semi-infinite acoustic
fluid but supported by a rigid backing, the DOFs at the bottom vanish and the corresponding
rows and columns in equation (4.37) may be removed.
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Post-processing of the sound transmission loss and absorption coefficient

Having solved equation (4.37) for the vector of DOFs q, we can compute pr and pt using
equations (4.26) and (4.27). Out of that the sound transmission loss T can be computed as

T = −10 log
(
τ(Θ)

)
, (4.38)

with the power transmission coefficient being defined by

τ(Θ) = |p2
t |

|p2
i |

. (4.39)

If the bottom of the unit cell is supported by a rigid backing, τ(Θ) = 0 and T is not searched
for.

The reflection coefficient is given as

r(Θ) = |p2
r |

|p2
i |

. (4.40)

Knowing both, transmission and reflection coefficient, we can compute the absorption coef-
ficient:

α(Θ) = 1 − τ(Θ) − r(Θ). (4.41)

4.4.4 Porous boundary layers

The top and bottom layer of the periodic structure now consist out of porous material. The
porous domain is modelled using the classical formulation of the JCAM, as for the given
application case the coupling to the semi-infinite fluid domains is more straight forward and
the symmetry of the system matrix could later on be exploited to reduce the computational
effort. Using the classical formulation results in four nodal DOFs at the unit cells top and
bottom surface for the considered two-dimensional problem: the displacements in x- and
y-direction corresponding to the solid (us,x and us,y) and fluid phase (uf,x and uf,y).
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Excitation and coupling to the fluid domain

In comparison to linear elastic boundary layers, modelling the excitation and the coupling
to the semi-infinite fluid layers is more complex. Again, we need to enforce the continuity of
displacements along the interface between the periodic structure and the semi-infinite fluid
domains:

1
ρaω2

δpa

δy
= (1 − ϕ)us,y + ϕuf,y, (4.42)

which leads to

pi − pr = Da
1

e−ikxx

(
(1 − ϕ) us,y (x,0) + ϕuf,y (x,0)

)
, (4.43)

pt = −Da
1

ei(−kxx−kyh)

(
(1 − ϕ)us,y(x, − h) + ϕuf,y(x, − h)

)
. (4.44)

The equilibrium of forces is expressed by

σs,y = −(1 − ϕ)pa, (4.45)
σf,y = −ϕpa. (4.46)

Introducing equations (4.43) and (4.44) into equations (4.45) and (4.46), we can find the
equivalent normal stresses at the unit cells top (y = 0) and bottom (y = −h) surface:

σs,y(x,0) = (1 − ϕ)
(
2pie

−ikxx − Da((1 − ϕ)us,y(x,0) + ϕuf,y(x,0))
)

, (4.47)

σf,y(x,0) = ϕ

1 − ϕ
σs,y(x,0), (4.48)

σs,y(x, − h) = (1 − ϕ)
(
Da((1 − ϕ)us,y(x, − h) + ϕuf,y(x, − h))

)
, (4.49)

σf,y(x, − h) = ϕ

1 − ϕ
σs,y(x, − h), (4.50)

mapping both, the excitation by an inclined plane wave at the upper boundary and the
coupling to the semi-infinite fluid domains.

The nodal excitations in y-direction can be computed from the normal stresses via integration
with respect to x. Same as above, this can be approached by a multiplication with the nodal
intake surface ∆x. We get:
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es,y(x,0) = (1−ϕ)2pie
−ikxx∆x −(1 − ϕ)2Daus,y(x,0)∆x −(ϕ − ϕ2)Dauf,y(x,0)∆x, (4.51)

ef,y(x,0) = ϕ2pie
−ikxx∆x −ϕ2Dauf,y(x,0)∆x −(ϕ − ϕ2)Daus,y(x,0)∆x, (4.52)

es,y(x, − h) = (1−ϕ)2Daus,y(x,−h)∆x +(ϕ − ϕ2)Dauf,y(x, − h)∆x, (4.53)

ef,y(x, − h) = ϕ2Dauf,y(x, − h)∆x +(ϕ − ϕ2)Daus,y(x, − h)∆x. (4.54)

︸ ︷︷ ︸
Right hand side
contribution to ê

︸ ︷︷ ︸
Left hand side
contribution to
diagonal of D̂e

︸ ︷︷ ︸
Left hand side
contribution to

off-diagonal of D̂e

We can express the right hand side vector as
eL

eR

eB

 = ê + D̂e


qL

qR

qB

 , (4.55)

where the non-zero components of ê and D̂e are given in equations (4.51)-(4.54).

Formulation of the equation system to be solved

Inserting equation (4.55) into equation(4.22), we find

ΛL
[
D̂ − D̂e

]
ΛR

qL

qB

 = ΛLê. (4.56)

The system of equations depicted above is solved for q for a given excitation by an inclined,
plane acoustic wave. From q the reflection, transmission and absorption coefficient and the
sound transmission loss can be post-processed in analogy to section 4.4.3.

Supports at the bottom interface can be considered by eliminating the respective DOFs
from equation (4.56). Combing the strategies presented above, we can evaluate the sound
transmission through periodic structures where one of the coupling interfaces with the semi-
infinite fluids is porous and the other one is elastic.



4.5 Conclusion 85

4.5 Conclusion

This chapter explains how the dispersion characteristics of periodic structures can be evalu-
ated using the WFEM. Making use of the Bloch theorem, the periodic structure is represented
by a FEM model of a single unit cell. Two approaches for studying the wave propagation
along the periodic structure are given: the inverse and the direct approach. The inverse
approach solves for the frequency ranges in which propagating waves emerge. The frequency
ranges to which no propagating waves are assigned are referred to as stop bands. The di-
rect approach also takes into account damped and evanescent waves and therefore generally
involves a higher computational effort than the inverse approach. In addition to that, this
chapter shows how the WFEM can be employed to compute the sound transmission through
periodic structures. Hereby the existing strategy for elastic unit cells is extended to peri-
odic structures consisting of porous material modelled by the classical formulation of the
JCAM.
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5 Numerical studies

5.1 Introduction

As proved by the literature review in the introduction of this thesis, periodic metamaterials
show favourable dispersion characteristics for many application cases. After having intro-
duced numerical solutions strategies for efficiently analysing the vibroacoustic behaviour of
periodic metamaterials in the previous chapters, this chapter verifies the presented solution
approaches and performs numerical studies on exemplary designs. Thereby one main point of
investigation is the evaluation of the impact of inclusions and secondary vibrational systems
on the dispersion characteristics of linear elastic plates. In addition, the potential of the
proposed solution methods is demonstrated by two different examples. First, the influence
of point mass inclusions on the absorption of porous layers is determined. Furthermore, it
is shown that inclusions can manipulate the sound transmission through two-shell walls.

5.2 Stop band behaviour of periodic metamaterials

This set of numerical studies investigates how inclusions within the unit cell affect the wave
propagation along a periodic metamaterial. First, the impact of the inclusion shape on
the emerging stop band pattern is analysed. Second, tuned mass dampers (TMDs) are
embedded into the inclusion and the impact of the TMD orientation on the wave propagation
is evaluated. Parts of the work presented below were already published in [Weber et al 2019]
and [Weber et al 2020].

For all calculations displayed within the scope of this section, the unit cell consists of alu-
minum; the employed material parameters are given in table 5.1. The two-dimensional cells
all are of height H = 0.04 m and length Lx = 0.06 m. The structures are analysed in a
frequency range up to 45 kHz. As the focus is put on the investigation of the stop band
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patterns corresponding to the studied unit cell designs, the computations are carried out
using the inverse approach of the WFEM.

Young’s modulus Ee = 70 GPa
Density ρe = 2699 kg

m3

Poisson’s ratio νe = 0.34
Table 5.1: Material parameters of aluminium.

5.2.1 Preliminary study

In the course of a preliminary study, the results obtained with the selected solution method
are checked for plausibility. In addition, it is explained how dispersion characteristics are
visualized in the scope of this thesis. For this purpose, the wave propagation corresponding
to a unit cell without inclusion is studied using the inverse approach of the WFEM.
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Figure 5.1: Dispersion curves for homogeneous unit cell (—); auxiliary line (- - -) and markers for certain
combinations of phase and frequency □□□, for which deformation pattern is plotted in figure 5.2.
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Figure 5.2: Deformed shape of homogeneous periodic structure for a) ( π
2 rad, 5.33 kHz),

b) ( π
2 rad, 20.68 kHz) and c) ( π

2 rad, 30.09 kHz).

Figure 5.1 shows the cell’s dispersion characteristics in a frequency range from 0 to 45 kHz.
The phase κRLx depicts the phase shift as the wave travels from one unit cell to the next. The
so-called dispersion curves or frequency bands visualize for which combinations of frequency
and phase propagating waves emerge. The shape of the dispersion curves gives conclusion
on the corresponding wave type. For higher frequencies, for which complex propagation
patterns can be observed, an evaluation of the deformed geometry provides clear information
about the wave type. For the studied two-dimensional periodic structure of finite height H,
dispersive bending waves and non dispersive quasi-longitudinal waves emerge. With the
material composition and geometry not varying along Lx, it is evident that no stop bands
occurs.

Two dispersion curves in figure 5.1 start from the origin. The bending wave being dispersive,
the slope of the corresponding dispersion curve is not constant. Thus the lower curve depicts
the bending wave. The other band with approximately constant slope corresponds to the
quasi-longitudinal wave. From the slope we can deduce the wave speed cQ = 5090 m

s , which
only deviates by less than half a percent from the theoretically expected value that can be
computed using the respective formula in table 2.1. Thus, the computation outcome can be
considered plausible.

Figure 5.2 shows the deformed periodic structure for the combinations of phase and frequency
marked on the dispersion curves in figure 5.1. The deformation patterns confirm that the two
curves starting from the origin correspond to bending wave respectively quasi-longitudinal
wave. The slope of the third band, which adjoins the curve assigned to the bending wave, is
approximately constant. Only with the auxiliary line with constant slope inserted in figure
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5.1, it can be seen that this curve also belongs to a dispersive wave. Figure 5.2 confirms that
the third band represents the bending wave for higher frequencies. On the basis of figure
5.1, it can be said that for the configuration under consideration, for higher frequencies a
lower dispersivity of the bending wave can be observed. This suggests that above a certain
frequency range, the ordinary bending theory can no longer be used to assess the system’s
dispersion characteristics.

5.2.2 Impact of the inclusion shape

This section studies the influence of the inclusion shape on the wave propagation within the
periodic structure. In a first step, the dispersion characteristics corresponding to the three
inclusion shapes given in figure 5.3 are computed.

H

Lx

H

Lx

H

Lx

hhh

a) b) c)

Figure 5.3: First set of inclusion shapes: a) circle, b) rectangle, c) rhombus.

The geometry of the circular, rectangular and rhombic inclusion is given by their height
h = 0.02 m and area A = 3.14 · 10−4 m2. All inclusions are positioned in the centre of the
unit cell. To study only the influence of the shape and not that of the mass loss caused by
the inclusion, all inclusion shapes are attributed with the same height and area.

The dispersion characteristics of the unit cells are given in figures 5.4 to 5.6. For all config-
urations a stop band is observed, with the width depending on the shape of the inclusion.
Figure 5.7 compares the stop band location and width. The stop band corresponding to cir-
cular and rectangular inclusion is similar; the smallest stop band is obtained for the rhombic
inclusion.

In order to relate the stop band width to the geometry of the unit cell, we take a look at the
mass distribution of the examined cell geometries. The mass distributions over the length
of the cells are visualized in figure 5.8. The mass density corresponds to the product of the
material’s density and the material filled height (total height minus local inclusion height).
The average mass density is given by E(X) = ρe

(HLx)−A
Lx

.
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Figure 5.4: Dispersion curves for unit cell with
circular inclusion.

0 1 2 3

Phase [rad]

0

1

2

3

4

F
re

q
u
e
n
c
y
 [
H

z
]

104

Figure 5.5: Dispersion curves for unit cell with
rectangular inclusion.
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Figure 5.6: Dispersion curves for unit cell with rhombic inclusion.

The uniformity of the mass distribution can be quantified by the value of the variance of the
mass distribution:

Var(X) =
∫ Lx

0
(X − E(X))2dx. (5.1)

X is the mass density and E(X) the average mass density. The smaller the value of Var(X),
the more uniform is the mass distribution over the length of the cell. Table 5.2 contains the
variances corresponding to the set of inclusion shapes under investigation. For the unit cells
studied, it can be stated that the more uniform the mass distribution along the unit cell,
and accordingly the smaller Var(X), the smaller the stop band.
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Figure 5.7: Comparison of stop band width for different inclusion types: circle (—), rectangle (—) and
rhombus (—).
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Figure 5.8: Distribution of mass with respect to x: circle (—), rectangle (—) and rhombus (—); (- - -) marks
average mass density.

Inclusion shape Variance [kg2

m3 ]
Circle 26.87
Rectangle 33.22
Rhombus 18.53

Table 5.2: Variance of mass distribution corresponding to first set of unit cells.
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To investigate this observation in more detail, a second set of unit cells is examined. Their
geometry is specified in figure 5.9. Now, not only unit cells with inclusions but also with
notches are considered. The inclusions are located in the centre of the cell. The radius r

determines the size of the circular inclusions and notches. The height h and the width b

indicate the size of the rectangular inclusions and notches.
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Lx

2r

h

r

h
2

b
h
2

r

Figure 5.9: Second set of cell geometries; left: inclusions; right: notches.

The variance of mass distribution corresponding to the rectangular inclusion/notch may be
expressed by

Var(X)□ = ρe
2h2

(
b − b2

Lx

)
. (5.2)

First, the dispersion characteristics of unit cells with rectangular inclusions and notches of
different sizes are analysed; b is altered, while h = 0.02 m. For the limit cases b = 0 and
b = Lx no stop band emerges. The first case corresponds to a homogeneous unit cell without
inclusion, while for the second case two stacked but unconnected homogeneous layers are
considered.

In figure 5.10 both the variance in mass distribution and the stop band width are plotted for
rectangular inclusions with b = [0, Lx]. Hereby the stop band width corresponds to the total
frequency range between 0 and 45 kHz were no undamped waves emerge. If there is more
than one stop band, the total stop band width is obtained by summing up the individual
stop band widths. It can be observed that both the variance in mass distribution and the
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stop band width rise for increasing values of b from zero to a maximum value and then
return to zero. The difference is that the maximum is reached for unequal values of b. It
can be concluded that although the stop band tends to increase with an increasing variance,
this statement is not generally true. For example, the variance increases from b = 0.02 m to
b = 0.03 m, but the observed stop band is smaller.
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Figure 5.10: Correlation between variance in mass distribution and stop band width for unit cell with rect-
angular inclusion.
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Figure 5.11: Correlation between variance in mass distribution and stop band width for unit cell with rect-
angular notch.
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Figure 5.11 shows the correlation between the variance in mass distribution and the stop band
width for rectangular notches. One can observe a similar behaviour as with the rectangular
inclusions.

Next, the dispersion characteristics of unit cells with differently shaped inclusions/notches
but the same variance in mass distribution are evaluated. We choose a circular inclu-
sion/notch of radius r = 0.01 m, resulting in a variance in mass distribution of 26.86 kg2

m3 .
We adapt the dimensions of a rectangular inclusion/notch to match the variance in mass
distribution and the total mass of the unit cells with circular inclusion/notch.

Figure 5.12 shows the dispersion curves corresponding to the unit cell with circular inclusion
and notch. We observe a stop band for both, the circular inclusion and the circular notch,
whereby the stop band corresponding to the notch is smaller and located in a higher frequency
range than the stop band corresponding to the inclusion.
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Figure 5.12: Dispersion curves for unit cell with circular inclusion (—) and circular notch (- - -); for combi-
nations of phase and frequency marked by □□□, deformation pattern is plotted in figure 5.15.

Figure 5.13 compares the dispersion characteristics of the unit cells with rectangular inclusion
and rectangular notch. Again the stop band corresponding to the notch is located in a higher
frequency range, but the stop band width is of similar size as of the one corresponding to
the inclusion.

Figure 5.14 summarizes the stop band width and location corresponding to the studied
geometries. As stated before, all geometries induce the same total unit cell mass and the same
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variance in mass distribution. The circular inclusion leads to the broadest stop band, while
the circular notch results in the smallest stop band. The stop band widths corresponding to
rectangular inclusion and notch are of similar sizes, and centred around frequencies similar to
those of the corresponding circular shapes. We conclude that not only the mass distribution
along the cell but also the inclusion/notch shape itself has an impact on the dispersion
characteristics of the periodic structure and in particular on the stop band width.
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Figure 5.13: Dispersion curves for unit cell with rectangular inclusion (—) and rectangular notch (- - -);
for combinations of phase and frequency marked by □□□, deformation pattern is plotted in
figure 5.16.
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Figure 5.14: Stop band location and width of unit cells with differently shaped inclusions but equal variance
in mass distribution.
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To further study the impact of the cell design on the stop band location, we take a look
at the deformed periodic structures for the locations marked with a box on the dispersion
curves in figures 5.12 and 5.13. Figure 5.15 a) visualizes the deformed structure for a unit
cell with circular inclusion just below the stop band. We can see that the wavelength of
the observed quasi longitudinal wave roughly equals twice the length of the unit cell. For
higher frequencies, the wave will be trapped between the inclusions leading to the observed
stop band. Plotting the deformed shape of the periodic structure with circular notches for
the same frequency (figure 5.15 c) and d)), we can see that for both, bending and quasi
longitudinal wave, the wavelength is not an integer multiple of the cell length. We can state
that for equal frequencies, the wavelength of the waves propagating along the structure with
circular inclusions is smaller than the one of the waves propagating along the structure with
circular notches. As a result, the frequency range in which a stop band due to destructive
interference occurs is shifted towards higher frequencies (figure 5.15 b)). As illustrated in
figure 5.16, this observation can be transferred to the periodic structure with rectangular
inclusions and notches.

Figure 5.15: Deformed shape of periodic structure with circular inclusion for a) (π rad, 26.63 kHz) and
circular notch for b) (0 rad, 34.54 kHz), c) (1.31 rad, 26.63 kHz), d) (2.28 rad, 26.63 kHz).

From the performed numerical investigations on the impact of the inclusion shape on the
dispersion patterns one can draw the following conclusions:

• For inclusions of the same area, the shape of the inclusion has an impact on the
dispersion characteristics.

• In the performed numerical studies a higher variance in mass distribution does not
necessarily lead to a broader stop band. Still, a higher variance in mass distribution
tends to result in a wider stop band.
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• For cell configurations with the same variance in mass distribution, the shape of the
inclusion has an impact on the stop band location and width. Within the analysed
geometries, the circular inclusion leads to a broader stop band than the rectangular
inclusion and notch and the circular notch. In addition, the stop bands corresponding
to the notches are located at higher frequency ranges than the ones corresponding to
the inclusions.

Figure 5.16: Deformed shape of periodic structure with rectangular inclusion for a) (π rad, 27.79 kHz) and
rectangular notch for b) (0.89 rad, 27.79 kHz), c) (2.41 rad, 27.79 kHz), d) (π rad, 32.30 kHz).

5.2.3 Impact of subsystems within the inclusions

Now the influence of the alignment of a TMD within the inclusion on the wave propagation
in the periodic metamaterial is evaluated. For this analysis, a unit cell with circular inclusion
with a radius of 0.01 m is chosen. Figure 5.17 shows the TMD-alignments to be considered.

φ
mm

k

k
k

k

k

k

a) b)

Figure 5.17: Spring alignments to be considered: a) single-spring inclined by angle φ, b) double-spring.

As the damping is set to zero, the TMDs are modeled by spring(s) and a concentrated mass.
In addition to a TMD with a spring which is inclined by an angle φ, a configuration with two
orthogonal springs (termed as double-spring) is examined. The mass is located in the centre
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of the spring(s). It is assumed that the mass is only able to move along the direction of
the spring(s). The material configuration of mass and spring(s) will not be changed during
the investigations. While the mass equals Aρe = 0.85 kg, which is the mass that has been
removed from the unit cell due to embedding the inclusion, the spring stiffness is chosen as
1.20 GN

m . The first eigenfrequency of all TMD configurations is given by fTMD = 1
2π

√
2k
m

and
equals 8457 Hz.

Figure 5.18 compares the dispersion characteristics of a cell with circular inclusion without
TMD and with TMD which is inclined by φ = π

4 rad. A straight dotted line marks the
eigenfrequency of the TMD. It can be seen that both, the bending and quasi longitudinal
wave are deflected due to the TMD. Furthermore, figure 5.18 shows that for the chosen
material parameters the TMD particularly affects the frequency range below the stop band.
Consequently, in the following we will concentrate on that frequency range.
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Figure 5.18: Dispersion curves for unit cell with circular inclusion without TMD (- - -) and with single-spring
TMD inclined by π

4 rad (—); (- · -) marks eigenfrequency of TMD.

Figures 5.19 and 5.20 display the dispersion characteristics with a TMD inclined by φ = 0
rad and φ = π

2 rad. While a horizontal TMD only deflects the quasi longitudinal wave, a
vertical TMD only modifies the band corresponding to the bending wave. Figure 5.21 shows
that those limit cases merge into one another when varying φ between 0 rad and π

2 rad.
Furthermore, figure 5.22 verifies that, as the system is symmetric, an inclination φ of π

4 rad
and −π

4 rad will lead to the same result. This statement holds for all pairs ±φ.
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Figure 5.19: Dispersion curves for unit cell
with circular inclusion without TMD
(- - -) and with single-spring TMD
inclined by 0 rad (—); (- · -) marks
eigenfrequency of TMD.
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Figure 5.20: Dispersion curves for unit cell
with circular inclusion without TMD
(- - -) and with single-spring TMD
inclined by π

2 rad (—); (- · -) marks
eigenfrequency of TMD.

The observed behaviour can be explained taking reference to the direction of particle motion
corresponding to the different wave types. The part of wave energy transferred into the TMD
will increase with increasing compliance of the direction of wave motion and spring force.
While the forces within a horizontal spring coincide with the direction of particle motion of
quasi longitudinal waves, the forces within a vertical spring match the direction of particle
motion corresponding to bending waves.
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Figure 5.21: Dispersion curves for unit cell with circular inclusion and single-spring TMD inclined by 0 rad
(—), π

8 rad (- - -), π
4 rad (- - -), 3π

8 rad (- - -) and π
2 rad (—); (- · -) marks eigenfrequency of

TMD.
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Figure 5.22: Dispersion curves for unit cell with
circular inclusion and single-spring
TMD inclined by π

4 rad (- - -) and
− π

4 rad (- - -); (- · -) marks eigen-
frequency of TMD.
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Figure 5.23: Dispersion curves for unit cell
with circular inclusion with single-
spring TMD inclined by 0 rad (- - -)
and π

2 rad (- · -) and with double-
spring TMD (· · ·).
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Figure 5.24: Dispersion curves for unit cell with circular inclusion and regular double-spring TMD (—) and
double-spring TMD inclined by − π

4 rad (- - -); (- · -) marks eigenfrequency of TMD.

As introduced in figure 5.17, in addition to a single-spring TMD, a TMD consisting of a
double-spring system is considered. Figure 5.23 compares the dispersion curves correspond-
ing to the double-spring configuration shown in figure 5.17 to those of TMDs with single
springs inclined by φ = 0 rad and φ = π

2 rad. While for single-spring TMDs no total stop
band at the eigenfrequency of the TMD is observed, for the double-spring system a stop band
at the eigenfrequency occurs. Spring forces in direction of the particle motion corresponding
to both, quasi longitudinal and bending wave explain the observed behaviour.

As long as the two springs have the same spring stiffness and are orthogonal with respect to
each other, the portion of spring stiffness in horizontal and vertical direction is not modified
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by an inclination of the double-spring. Figure 5.24 confirms that inclining the double-spring
system will not change the dispersion curves in the area of the eigenfrequency of the TMD.

Investigating the influence of the TMD alignment on the dispersion characteristics of the
studied metamaterials with inclusions leads to the following conclusions:

• Varying the inclination of a single-spring TMD, waves can be influenced purposefully.

• For the configurations studied, a double-spring system is required to obtain a total
stop band at the eigenfrequency of the TMD.

5.3 Sound transmission characteristics of periodic

metamaterials

In this section, the sound transmission and absorption of exemplary elastic and porous
structures is analysed using the WFEM.

5.3.1 Preliminary study

The purpose of this preliminary study is to verify the plausibility of the results obtained
with the in solution strategies presented in section 4.4.

Sound transmission through linear elastic structure

First, the sound transmission loss through a plate with infinite lateral extension is computed
using the WFEM. The height of the plate is defined to be 0.003 m. The plate’s material
parameters are given in table 5.3. The same example was also used in [Yang 2018] for
verifying the computation results. An analytical solution for the depicted problem is given
in [Fahy and Gardonio 2007].

Young’s modulus Ee = 2 · 1011 Pa
Density ρe = 7800 kg

m3

Poisson’s ratio νe = 0
Table 5.3: Material parameters of studied plate.
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Figure 5.25 shows the transmission loss for the plate being excited by a plane wave that is
inclined by an angle of 50°. Both, the outcome of the WFEM approach and the analytical
solution are given and a good agreement of the results can be observed.
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Figure 5.25: Transmission loss through plate for excitation with plane wave inclined by 50°: analytical
solution (—), WFEM (∗ ∗ ∗).

The dip in the transmission loss corresponds to the coincidence frequency. Here, the lateral
wavenumber of the excitation corresponds to the wavenumber of the bending wave within
the plate. Thus, the plate is set into resonance. The dynamic stiffness of the plate is zero,
resulting in a vanishing transmission loss.

Surface impedance of porous layer

To evaluate the results obtained with the solution approach suggested in section 4.4.4, the
surface impedance of a porous layer with infinite lateral extension supported by a rigid
backing is computed. The thickness h of the porous layer corresponds to 0.1 m; the material
parameters are given in table 5.4. The structure is excited by a normal incidence plane wave.
The problem is sketched in figure 5.26.

Equation (4.56) can be solved for the normal solid and fluid displacements at the top of the
porous layer under the given excitation. From that the surface impedance can be computed
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via

Zn = 1
iω(Φuf,n + (1 − Φ)us,n) . (5.3)

A reference solution to this problem is given in [Atalla et al 1998].

∞ ∞

y

x

h

normal incident plane wave

Figure 5.26: Porous layer excited by normal incident plane wave.

Solid frame ρs = 2167 kg
m3

λs = 0 Pa
µs = 2200 · 103 Pa
ηs = 0.1

Fluid phase ρf = 1.21 kg
m3

η = 1.84 · 10−8 N s
m2

P0 = 101 · 103 Pa
γ = 1.4
Pr = 0.71

Porous domain Φ = 0.94
α∞ = 1.06
σ = 40 · 103 N s

m4

Λ = 56 · 10−6 m
Λ′ = 110 · 10−6 m

Table 5.4: Material parameters of porous absorber.

Figures 5.27 and 5.28 show the real and imaginary part of the surface impedance of the
studied porous layer according to different solution approaches. The value of the reference
solution given in [Atalla et al 1998] deviates from the results obtained using the WFEM. Only
the basic course of the curves, including the position of the peaks, is the same. Especially
for frequencies below 500 Hz, the deviation of the results obtained with the WFEM using
classical and reduced classical formulation are small. Thus, in this lower frequency range
using the reduced classical formulation is an appropriate strategy to save computational
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effort. Figures 5.29 and 5.30 give detailed insight into the simplification of the material model
introduced when using the reduced classical formulation instead of the classical formulation.
We can see, that the approximation error introduced by the linarisation of the bulk modulus
is much higher than the error introduced by the linarisation of the viscous drag. Within
figures 5.29 and 5.30 an orange line marks the value of the respective material dependent
dimensionless frequency ratio for f = 500 Hz. The reduced classical formulation performs
best for ω

H1
< 0.11 ∩ ω

H2
< 0.07. H1 and H2 are material dependent parameters which are

defined in equations (3.46) and (3.47).
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Figure 5.27: Real part of surface impedance
of porous layer according to
[Atalla et al 1998] (∗ ∗ ∗), WFEM
with classical formulation (—),
WFEM with reduced classical for-
mulation (· · ·) and unit cell model
with fixed lateral displacements
and pr = 0 (—).
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Figure 5.28: Imaginary part of surface
impedance of porous layer
according to [Atalla et al 1998]
(∗ ∗ ∗), WFEM with classical
formulation (—), WFEM with
reduced classical formulation (· · ·)
and unit cell model with fixed
lateral displacements and pr = 0
(—).

To explain the quantitative deviation between WFEM and reference solution another calcu-
lation is performed. As input geometry we use the unit cell that we also use for the WFEM
analysis. Instead of applying periodic boundary conditions, we set all lateral displacements
to zero. The normal incidence plane wave is considered as right hand side for the top nodes.
The reflection of the wave is not considered in the model (pr = 0). Computing the surface
impedance for the described model gives almost exactly the same result as given in [Atalla
et al 1998]. On this basis, we assume that the difference between the reference solution and
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the WFEM is because the reference solution neglects that a part of the incoming wave is
reflected. Thus, the calculation result obtained by the WFEM would correspond to a more
realistic model than the reference solution. Since the deviation from the reference solution
can be explained, the calculation results obtained by the WFEM approach are classified as
plausible.
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Figure 5.29: Deviation of linearised equivalent
bulk modulus from exact solu-
tion: real part (—), imaginary
part (- - -) and absolute value
(—); (—) marks dimensionless fre-
quency ratio for f = 500 Hz.
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Figure 5.30: Deviation of linearised viscous
drag from exact solution: real part
(—), imaginary part (- - -) and
absolute value (—); (—) marks
dimensionless frequency ratio for
f = 500 Hz.

5.3.2 Impact of inclusions on the sound transmission loss through

linear elastic structures

In this section, the unit cells shown in figure 5.3 are examined again. Material and dimensions
correspond to section 5.2.2. This time, not the wave propagation along the structure, but
the sound transmission through the structure is studied. The structures are all exited by a
plane wave inclined by an angle of π

4 rad.

Figure 5.31 shows the transmission loss computed for the studied cell geometries for a fre-
quency range between 100 and 1000 Hz. For comparison, the transmission loss corresponding
to a structure of the same height and material but without inclusion is given.
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The dip in the respective transmission loss curve marks the limit frequency (or coincidence
frequency) at oblique incidence with Θ = π

4 rad. At this frequency, the horizontal component
of the wavelength of the excitation corresponds to the wavelength of the bending wave
propagating within the structure. Thus, the bending wave is excited easily and with high
amplitude [Lerch et al 2009]. The strong oscillations within the structure lead to a low
transmission loss at this frequency.
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Figure 5.31: Transmission loss for excitation with plane wave inclined by π
4 rad and structure with circular

inclusions (—), rectangular inclusions (—), rhombic inclusions (—) and without inclusions
(—); frequency range between 100 and 1000 Hz.

For the limit case of Θ = π
2 rad, [Müller and Möser 2004] gives an analytical expression for

estimating the limit frequency of plate like structures:

fc ≈ 6.4 · 103

h

√
ρe

Ee
; (5.4)

with h corresponding to the thickness of the plate.

For an oblique incident excitation, [Lerch et al 2009] states that at the limit frequency

cB = cair

sin(Θ) . (5.5)

From table 2.1 we know that

cB = A
√

ω, (5.6)

where A is given by the dimensions of the structure and the material it is made of. The
expression for A depends on if the studied geometry corresponds to a plate or a beam.



5.3 Sound transmission characteristics of periodic metamaterials 107

With ω = 2πf we find that for normal incidence

A
√

2πfc = cair, (5.7)

and for oblique incidence

A
√

2πfc,Θ = cair

sin(Θ) . (5.8)

Solving equation (5.7) and (5.8) for cair and setting the results equal, we can find the following
relationship between the coincidence frequency at oblique incidence fc,Θ and fc:

fc,Θ = fc

sin(Θ)2 . (5.9)

For the homogeneous structure without inclusions, we can find fc,Θ = 628.35 Hz. The value
of the numerical solution is slightly higher. This mismatch results from the fact that equation
(5.9) gives only an approximative value for the coincidence frequency at oblique incidence
for thin plate like structures. Still, the analytical estimation of the limit frequency shows
that the result of the numerical calculation is plausible.

Overall, for the frequency range shown in figure 5.31, the impact of the inclusions is small
compared to the structure without inclusions, as only the coincidence frequency is shifted
slightly towards lower frequencies. We can see that for structures of the same mass, the
inclusion shape has an impact on the value of the coincidence frequency. The coincidence
frequency corresponding to the structure with rectangular inclusions is higher than the one
for the structures with circular and rhombic inclusions. For the structures with circular and
rhombic inclusions, the coincidence frequency fc,Θ is almost the same when excited by a
plane wave inclined by an angle of π

4 rad.

Knowing that the coincidence frequency is proportional to the quotient of mass and stiffness
(equation (5.4)), we would expect that the reduction in mass due to the inclusion leads
to a significant reduction of the coincidence frequency. But, as embedding the inclusion
at the same time lowers the structures stiffness, we only observe a slight reduction of the
coincidence frequency. The inclusions leading to a reduction of the coincidence frequency
tells that the impact of the reduction in mass predominates the effect of the reduced stiffness.
As the reduction in mass is the same for all inclusion shapes, the difference in the coincidence
frequency is determined by the reduction in stiffness which is not necessarily the same for
the considered inclusion shapes.
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To show that the coincidence frequency is not only affected by the mass of the structure, an
additional analysis is performed. The system with inclusions is replaced by a homogeneous
structure of the same thickness and mass. This gives an equivalent density of ρeq = 2346 kg

m3 .
Figure 5.32 shows the transmission loss corresponding to this configuration. Here, besides
the result of the WFEM calculation, the result of an analytical expression given in [Fahy and
Gardonio 2007] is depicted. As expected, only taking into account the mass reduction due
to the inclusions (without simultaneous consideration of the reduction in stiffness) leads to a
lower coincidence frequency. The discrepancy between numerical and analytical calculation
can be explained by the fact that the analytical solution covers only rather thin plate like
structures. The configuration considered here is obviously at the border of the application
range of the plate theory.

Figure 5.33 shows the transmission loss for the different inclusion geometries and the homo-
geneous structure for a frequency range between 100 and 45 000 Hz. For frequencies above
2500 Hz, there is a clear impact of the inclusions. In comparison to the homogeneous struc-
ture, multiple peaks and dips in the course of the transmission loss can be seen for all studied
inclusion geometries. The frequency dips can be attributed to higher order resonances. For
frequencies above 20 000 Hz, the transmission loss of the structures with inclusions is smaller
than for the homogeneous structure. According to [Müller and Möser 2004], the reduction of
the transmission loss due to the inclusions results from resonances of the limiting parts of the
inclusions and thickness resonances of the structure induced by the reduction in stiffness.
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Figure 5.32: Transmission loss for excitation with plane wave inclined by π
4 rad for homogeneous structure

with full density (—) and reduced equivalent density (- - -); black curve corresponds to WFEM
results, green curve to analytical solution given in [Fahy and Gardonio 2007].
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Figure 5.33: Transmission loss for excitation with plane wave inclined by π
4 rad and structure with circular

inclusions (—), rectangular inclusions (—), rhombic inclusions (—) and without inclusions
(—); upper and lower limits of stop bands computed for different inclusion shapes in section
5.2.2 are marked by dashed vertical lines.

Also in the frequency ranges where stop bands were observed when studying the wave propa-
gation along the structure in section 5.2.2, the transmission loss is lowered due the inclusions.
However, no dips in the transmission loss curve (higher order resonances) occur in the stop
band areas. It can be concluded that an inclusion design that effectively suppresses the prop-
agation of structure borne sound in certain frequency ranges, can suffer from an increase in
airborne sound transmission in these frequency ranges.

5.3.3 Dispersion characteristics of periodically structured porous

metamaterials

To demonstrate the possibilities offered by the approach suggested in section 4.4.4, the
dispersion characteristics of two different porous metamaterials with inclusions are studied.
First, the impact of point mass inclusions on the sound absorption of a rigidly backed porous
layer is evaluated. Next, it is studied whether the sound transmission through two-shell walls
can be manipulated by inclusions.
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Absorption characteristics of porous absorber with mass inclusions

Subsequently, the absorption characteristics of the porous metamaterial depicted in figure
5.34 are evaluated. The unit cell is quadratic with an edge length of 0.02 m. Small mass
inclusions with negligible spatial extension are located at the height hm. The material
parameters of the porous domain are given in table 3.4. The inclusions have a mass of
m = 0.004 kg. This corresponds to a steel rod with a radius of 0.4 mm. In the FEM model,
the mass inclusions are represented by concentrated mass elements. [Zielinski 2007] proves
that for small mass inclusions within porous media this representation is almost equivalent
to the employment of small elastic subdomains. The structure is excited by a plane wave
inclined by an angle of Θ = π

4 rad.

∞ ∞

Lx

Θ

y

x

h

incident plane wave

hm

Figure 5.34: Porous metamaterial with concentrated mass inclusions.

Compared to [Zielinski 2007] and [Ahsani et al 2020], where a comparable structure is excited
by a normal incident plane wave, in this work an oblique incident wave is modelled to be able
to represent additional phenomena that may occur. Figure 5.35 compares the absorption
coefficient of the rigidly backed porous layer without inclusions for the excitation with a
normal incident plane wave and a plane wave inclined by Θ = π

4 rad. The frequency of
the major absorption dip is the same. As the oblique incident wave excites additional wave
patterns, additional absorption maxima and minima can be observed within the considered
frequency range.
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Figure 5.35: Absorption coefficient of porous layer without inclusions for Θ = π
4 rad (- - -) and Θ = 0 rad

(—).

Figure 5.36 shows the absorption coefficient for the rigidly backed porous layer with mass
inclusions at different heights. For comparison, the absorption coefficient of the structure
without inclusions is also given. It can be seen that the absorption dip that occurs at 2380 Hz
for the configuration without inclusions is replaced by two absorption dips left and right to
the original one when embedding inclusions into the porous layer. The spacing of these new
absorption dips depends on the location of the inclusion within the unit cell. It is observed
that the greater hm, the larger the distance of these absorption dips. The mass inclusion
can be understood as an equivalent oscillator. The higher the inclusion is located within the
unit cell, the lower the spring stiffness.

In figure 5.36, the frequency for which the thickness of the porous layer equals one quarter
of the vertical component of the wavelength of the excitation is marked. According to
[Deckers et al 2016], the excitation in an adjacent sound field is damped efficiently by a rigidly
supported porous absorber above this frequency. The course of the absorption coefficient
confirms this statement.

As also shown in [Zielinski 2007] and [Ahsani et al 2020], the inclusions result in both,
frequency ranges with improved and deteriorated absorption. [Ahsani et al 2020] shows that
by optimizing the inclusion configuration, it is possible to improve the absorption over a
wide frequency range. This is not the subject of this work. The aim here only is to show the
broad range of possible applications of the numerical solution method introduced in section
4.4.4.
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Figure 5.36: Absorption coefficient of porous metamaterial with concentrated mass inclusions at different
heights: hm = 0.015 m (—), hm = 0.010 m (—), hm = 0.005 m (—) and without inclusions (-
- -); (—) marks frequency for which thickness of porous layer equals one quarter of vertical
component of wavelength of excitation.

Sound transmission through two-shell wall with inclusions

Figure 5.37 shows the geometry of a two-shell wall with circular inclusions. The inclusions
are located in the centre of the unit cell. For the following computations, the dimensions
specified in table 5.5 are employed. The dimensions of the two-shell wall itself correspond to
a typical structure as found, for example, in [Müller and Möser 2004]. The insulation layer
consists of glass wool with the material parameters for the JCAM being specified in table
5.4. The outer shells are gypsum board walls. The material properties are summarized in
table 5.6 and were taken from [Späh and Lutz 2015]. The sound transmission through the
structure is computed for the excitation with a plane wave inclined by an angle of Θ = π

4

rad.

Length of unit cell Lx = 0.05 m
Thickness of outer shells hs = 0.0125 m
Thickness of insulation layer ha = 0.05 m
Radius of inclusion r = 0.01 m
Table 5.5: Dimensions of two-shell wall with inclusions.
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Figure 5.37: Two-shell wall with inclusions.

Young’s modulus Ee = 1.7 GPa
Density ρe = 696 kg

m3

Poisson’s ratio νe = 0.2
Table 5.6: Material parameters of gypsum board.

According to [Fasold and Veres 2003], the two-shell wall without inclusions can be interpreted
as a system of two masses connected by a spring. The outer cells are the masses and
the insulation layer acts as spring. The inclusions within the insulation layer can be seen
as intermediate masses. The first dip in the transmission loss curve corresponds to the
resonance frequency of the system. Here, the outer walls are oscillating in antiphase [Lerch
et al 2009].

Figure 5.38 compares the transmission loss of three different configurations: a two-shell wall
without inclusions, a two-shell wall with inclusions made of aluminium and a two-shell wall
with inclusions made of gypsum board. We can see that the resonance frequency is shifted
towards higher frequencies for the configurations with inclusions. Below the resonance fre-
quency, the transmission loss is slightly higher for the configurations with inclusions, whereby
the aluminium inclusions lead to a higher transmission loss than the gypsum board inclu-
sions. Above the resonance frequency, we can find frequency ranges where the inclusions
lead to an improvement of the transmission loss, but also frequency ranges where the trans-
mission loss for the configurations with inclusions is lower than for the configuration without
inclusions. On average, the transmission loss is higher for the configurations with inclusions
than for the configuration without inclusions. It can be stated that the transmission loss
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curve is changed as a result of the inclusions and that the filling material of the inclusions
has an impact on the sound transmission.
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Figure 5.38: Transmission loss of two-shell wall: with aluminium inclusions (- - -), with gypsum board in-
clusions (—) and without inclusions (—); □□□ marks frequencies for which deformation pattern
is plotted in figures 5.39-5.41.

Figures 5.39-5.41 show the deformed periodic structure for the frequencies marked in figure
5.38. In accordance to [Lerch et al 2009], we can see the antiphase oscillation of the two
outer shells at the resonance frequencies of the systems in figures 5.39-5.41 a). The marked
maxima of the transmission loss can be explained by low deformations of the systems (de-
formation patterns b)). While the upper part of the systems is slightly deformed, the lower
part undergoes almost no deformation. In [Fasold and Veres 2003] it is indicated that the
transmission loss dips in the higher frequency range correspond to cavity resonances within
the insulation layer. This is confirmed by the deformation patterns c) in figures 5.39-5.41.

The influence of the filling of the inclusions on the transmission curve and also the deforma-
tion patterns of the studied metamaterial designs show that it is important to consider the
elastic deformations of the inclusion itself and of the solid phase of the porous layer in the
model. In comparison to most approaches from the literature, this is possible in the solution
procedure shown in the context of this thesis.

The research results presented here indicate the potential for detailed follow-up parameter
studies investigating the correlation between the sound transmission and the inclusion shape,
size, location, spacing and filling material. Based on these results, it would be possible
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to design inclusions tailored to specific applications in order to optimize the vibroacoustic
properties of two-shell walls.

Figure 5.39: Deformation pattern of two-shell wall without inclusions for different frequencies: a) 684 Hz,
b) 2618 Hz and c) 2093 Hz; for porous domain solid phase displacements are depicted.
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Figure 5.40: Deformation pattern of two-shell wall with aluminium inclusions for different frequencies: a)
780 Hz, b) 1568 Hz and c) 2737 Hz; for porous domain solid phase displacements are de-
picted.



5.4 Conclusion 117

Figure 5.41: Deformation pattern of two-shell wall with gypsum board inclusions for different frequencies:
a) 756 Hz, b) 2451 Hz and c) 3024 Hz; for porous domain solid phase displacements are
depicted.

5.4 Conclusion

This chapter verifies the solution strategies proposed in chapter 4 (and their numerical
implementation) by comparing the results for reference configurations from the literature.
The potential of inclusions and local resonators to improve the vibroacoustic properties of
dynamic systems is demonstrated using several example designs. It is noticeable that the
optimization of airborne sound transmission and structure-borne sound propagation can
often be interests that are difficult to combine and a metamaterial design may not be able
to meet both requirements optimally at the same time.



118

6 Conclusion

6.1 Summary of the presented modelling strategies for

acoustic metamaterials

This thesis starts with explaining how vibroacoustic systems consisting of acoustic cavities,
linear elastic solids and porous absorbers can be modelled numerically using the FEM. Spe-
cial attention was paid to the mapping of boundary and coupling conditions. In the context
of this thesis, the JCAM serves as material model for the porous domain. Existing formu-
lations of the JCAM are presented and compared along with a novel simplified formulation.
It is shown that while involving significantly less computational effort than a full model, this
simplified version provides sufficiently accurate results for many applications. Subsequently,
it is explained how the wave propagation along a periodic structure and the sound trans-
mission through a periodic structure can be computed on the basis of a FEM model of a
unit cell and periodic boundary conditions using the WFEM. Thereby this thesis introduces
a novel approach to compute the sound transmission through and absorption of periodic
structures with elastic frame porous boundary layers. Using the approach shown, it is possi-
ble to analyse the dispersion properties of acoustic metamaterials with complex geometries
and porous components. In comparison to the approaches existing in the literature, the
proposed method meets all of the following requirements at the same time: the elastic solid
displacements of the absorber are mapped, the system can not only be excited by normal
incident but also by inclined plane waves and the reflection of the incident wave at the top
of the structure is represented.
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6.2 Main findings of the numerical studies on exemplary

structures

This sections summarizes the main findings obtained in the numerical studies carried out in
the context of this thesis.

Wave propagation along periodic structures with inclusions

• A correlation between the variance in mass distribution along the unit cell and the
stop band width can be found.

• For configurations with the same variance in mass distribution, the stop band location
and width is influenced by the inclusion shape.

• Resonators within the inclusions can be used to deflect the waves propagating within
the structures. Here, the relationship between the direction of oscillation of the res-
onator and the direction of wave motion of the respective wave type is decisive.

Sound transmission through periodic structures with inclusions

• Not only the wave propagation along the structure but also the sound transmission
through the structure is influenced by the inclusions.

• For the studied configurations, the coincidence frequency was slightly shifted for the
configurations with inclusions in comparison to the structure without inclusions.

• For all studied configurations with inclusions, the sound transmission loss in the fre-
quency range of the stop bands was smaller than for the configuration without inclu-
sions. Thus, we can conclude that an inclusion design that impedes structure borne
noise propagation in a certain frequency range may suffer from unfavourable sound
transmission characteristics in this frequency range compared to a structure without
inclusions.
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Dispersion characteristics of porous absorbers with inclusions

• Mass inclusions can be used to manipulate the low frequency absorption of porous
absorbers. The mass inclusion acts like a single-mass oscillator, with the spring stiffness
given by the material thickness below the mass. The higher the inclusion within the
porous layer, the lower the spring stiffness of the oscillator and the lower its resonance
frequency. Thus, the height of the inclusion within the porous layer is decisive for the
course of the absorption coefficient.

• The sound transmission through two-shell walls can be altered by embedding inclusions
into the insulation layer. With the same shape and position of the inclusion, the
filling material of the inclusion has an influence on the course of the transmission loss.
This indicates that it is necessary to take into account the elastic deformations of the
inclusion itself and of the solid phase of the porous layer in the model.

6.3 Outlook

Building on this work, a variety of interesting research topics emerge. The following is a
summary of the most promising topics from the author’s point of view.

• The solution strategies shown can be used to perform more detailed parameter studies
to investigate p.e. the influence of resonant inclusions in porous absorbers. Among
others, it could be studied to what extent the coincidence frequency of two-shell walls
can be manipulated by enclosed vibrating systems. Thereby it should be examined
which characteristics of the inclusion (e.g. mass, position, shape, spacing) affect the
sound transmission of the structure and how. For the special application case of a
two-shell wall, it should also be investigated whether it is necessary to represent the
interior absorbing layer via the JCAM or whether, in this case, a consideration via
simple spring elements represents the dynamic behaviour sufficiently accurately. Here,
the additional question on how to determine the equivalent spring constant for the
porous absorber arises.

• Model order reduction could be integrated into the strategies proposed in chapter 4.4
for the calculation of the sound transmission using the WFEM. As shown in [Zhou et al
2015] and [Van Belle et al 2020] for the conventional WFEM, this could considerably
reduce the computational effort and it would be possible to analyse significantly more
designs in a shorter time.
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• If only the secondary system, e.g. the inclusion, is to be varied for a constant basic
structure, substructuring approaches could be used. In this case, only the element
matrices for the secondary system would have to be set up again if a new design is to
be investigated.

• After improving the efficiency of the solution strategies shown by suitable approaches,
optimization methods could be used with the aid of which an optimum geometry and
material distribution can be found for the respective application under the specification
of a certain design space.

• Following [Duhamel et al 2006], it could be investigated how the proposed solution
strategies have to be adapted so that spatially bounded systems can be represented in
addition to infinitely periodic structures. Thereby special attention has to be paid to
how boundary effects can be mapped.

• Having increased the efficiency of the solution approach, it would be reasonable to
transfer the two-dimensional observations made so far to more realistic, but also more
costly, three-dimensional models. Here, it should be investigated whether the same
dynamic characteristics appear and whether additional phenomena occur.
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