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Abstract

In order to function in highly dynamic environmental conditions, mammals must integrate
sensations, memories, projections of the future, and motor commands. Recent studies in
humans and rodents have shown that neural activity and behavior resulting from the presenta-
tion of identical stimuli are highly heterogeneous. The ability of the brain to process sensory
information is contingent on the functional state of cortical networks yet, the governing
principles of the relationship are insufficiently understood.

This work is dedicated to exploring spontaneous cortical activity, cortical responses to
stimulation as well as effective connectivity as a function of the brain state. Sedation,
surgical-level anesthesia, and dissociation-unconsciousness are induced in a reproducible
manner with the use of medetomidine, isoflurane, and ketamine. In these experimental
conditions, compartmentalized functional cortical activity termed “persistent” state as well
as activity dominated by propagating waves of cortical activation, termed “slow-wave” brain
state can be observed. Combinations of global pharmacological intervention, sensory and
optogenetic stimulations reveal how spontaneous activity, stimulus processing, and effective
connectivity are influenced by the functional state of the cortical network.

A wide-field fluorescence microscope was developed for the purpose of recording cortical
activity in transgenic mice expressing GCaMP6s in pyramidal neurons. This instrument can
access spatio-temporal and frequency domains that bridge the gap between electroencephal-
ography (EEG) and functional magnetic resonance imaging (fMRI). As a point of contrast
to these methods, optical imaging enables genetic control over the neuronal populations that
are being recorded and stimulated.

Spontaneous brain activity is not random, rather it is comprised of internally generated
computational streams, execution of housekeeping tasks, and fluctuations that reflect brain
network architecture. A metric called Brain Pattern Dimensionality (BPD) was developed to
quantify functional cortical network segregation levels and classify functional brain states.
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The transition from isoflurane sedation to surgical-level anesthesia was induced by a stepwise
increase in isoflurane concentration and led to a dose-dependent loss of functional segregation.
Global changes in cortical excitability underlie the gradual transition between sedation and
surgical-level anesthesia. These quantitative findings correspond to the transition from
compartmentalized spontaneous activity, the persistent functional state, to activity dominated
by propagating waves of activation, the slow-wave functional state.

Cortical sensory information processing is essential to generating behavior. Visual and
hind paw simulations were used to study how sensory information processing is modulated
by functional brain states. The responses to stimulation were assessed using topological
complexity. Functional state transitions from the persistent state to slow-wave activity led to
a decrease in the topological complexity of cortical responses to both visual and hind paw
stimulation. During the persistent state, we could differentiate between visual and hind paw
stimulations, visual stimulations showing greater topological complexity. During recordings
with prominent slow-wave activity, brain responses to stimulation became stereotypical and
global and could not be differentiated based on the neuronal networks that were targeted with
specific stimuli.

To study cortical information integration, effective connectivity was characterized with
a perturbational approach using optogenetic stimulation of the red-shifted opsin ChrimsonR
in parallel with GCaMP6s imaging. This implementation enables effective connectivity
to be assessed from genetically tagged neuronal populations with the perturb-and-measure
approach and quantified with a metric called perturbational complexity index (PCI-ST).

The transition from the compartmentalized persistent state to slow-wave activity led
to a progressive decrease in both functional segregation (BPD) and the complexity of
effective connectivity responses (PCI-ST). In contrast, ketamine-induced dissociation-
unconsciousness exhibits high levels of functional segregation as well as stereotypical
responses to optogenetic stimulation. These findings coupled with the observation of a
distinctive 1-3Hz rhythm in the retrosplenial cortex under ketamine provide evidence that
dissociation-unconsciousness represents a functional state that is distinct from the persistent
and slow-wave states.

The trends described above were consistent regardless of the neuronal network stimulated
(somatosensory or visual), indicating that the functional brain state determines the complexity
of cortical information processing.

Conclusively, the work presented here demonstrates that spontaneous activity, stimulus
representations, and effective connectivity are strongly dependent on the functional state of
cortical pyramidal neuron networks. These results call for brain state-informed assessment
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of spontaneous activity recordings as well as task-based studies in animal models and in
humans. The experimental and computational strategies presented here will help ensure
greater consistency in neuroimaging findings and expose cell-type-specific, systems-level
processes relevant to healthy brain function and disease.
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Zusammenfassung

Um unter hochdynamischen Umweltbedingungen operieren zu können, müssen Säugetiere
Empfindungen, Erinnerungen, Zukunftsprojektionen und motorische Befehle integrieren.
Jüngste Studien an Menschen und Nagetieren haben gezeigt, dass die neuronale Aktivität
und das Verhalten bei der Darbietung identischer Reize sehr heterogen sind. Die Fähigkeit
des Gehirns, sensorische Informationen zu verarbeiten, hängt vom Funktionszustand der
kortikalen Netzwerke ab, doch sind die grundlegenden Prinzipien dieser Beziehung nur
unzureichend bekannt.

Diese Arbeit widmet sich der Erforschung der spontanen kortikalen Aktivität, der
kortikalen Reaktionen auf Stimulation sowie der effektiven Konnektivität als Funktion des
Gehirnzustands. Sedierung, Narkose und Dissoziation werden in reproduzierbarer Weise mit
Medetomidin, Isofluran und Ketamin induziert. Unter diesen experimentellen Bedingungen
können sowohl eine kompartimentierte funktionelle Aktivität, die als "persistenter" Zustand
bezeichnet wird, als auch eine Aktivität, die von sich ausbreitenden Wellen kortikaler Akt-
ivierung dominiert wird und als "Slow-Wave"-Gehirnzustand bezeichnet wird, beobachtet
werden. Kombinationen aus globalen pharmakologischen Interventionen, sensorischen
und optogenetischen Stimulationen zeigen, wie spontane Aktivität, Reizverarbeitung und
effektive Konnektivität vom funktionellen Zustand des kortikalen Netzwerks beeinflusst
werden.

Ein Fluoreszenzmikroskop wurde konzipiert, um die kortikale Aktivität von transgenen
Mäusen aufzuzeichnen, die GCaMP6s in pyramidalen Neuronen exprimieren. Dieses Instru-
ment ermöglicht den Zugang zu räumlich-zeitlichen und Frequenzbereichen, die die Lücke
zwischen Elektroenzephalographie (EEG) und funktioneller Magnetresonanztomographie
(fMRI) schließen. Im Gegensatz zu diesen Methoden ermöglicht die optische Bildgebung
die genetische Kontrolle über die aufgezeichneten und stimulierten Neuronenpopulationen.

Spontane Hirnaktivität ist nicht zufällig, sondern setzt sich aus intern generierten Rechen-
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strömen, der Ausführung von Routineaufgaben und Fluktuationen zusammen, die die Net-
zwerkarchitektur des Gehirns widerspiegeln. Es wurde eine Metrik namens Brain Pat-
tern Dimensionality (BPD) entwickelt, um das Niveau der funktionellen kortikalen Net-
zwerksegregation zu quantifizieren und funktionelle Gehirnzustände zu klassifizieren. Der
Übergang von der Isofluran-Sedierung zur chirurgischen Anästhesie wurde durch eine schrit-
tweise Erhöhung der Isofluran-Konzentration induziert und führte zu einem dosisabhängigen
Verlust der Segregation der funktionellen Netzwerken. Globale Veränderungen der kortikalen
Erregbarkeit liegen dem allmählichen Übergang zwischen Sedierung und chirurgischer Anäs-
thesie zugrunde. Diese quantitativen Ergebnisse entsprechen dem Übergang von komplexer
Spontanaktivität, dem persistenten Funktionszustand, zu einer Aktivität, die von langsamen
Wellen dominiert wird, dem slow-wave Funktionszustand.

Die kortikale Verarbeitung sensorischer Informationen ist für die Entstehung von Ver-
halten unerlässlich. Mit Hilfe von visuellen Reizen und Reizen an der Hinterpfote wurde
untersucht, wie die Verarbeitung sensorischer Informationen durch funktionelle Hirnzustände
moduliert wird. Die Reaktionen auf die Stimulation wurden anhand der topologischen Kom-
plexität bewertet. Funktionelle Zustandsübergänge vom persistenten Zustand zur Slow-
Wave-Aktivität führten zu einer Abnahme der topologischen Komplexität der kortikalen
Reaktionen auf visuelle und Hinterpfoten-Stimulation. Während des persistierenden Zustands
konnte zwischen visuellen und Hinterpfoten-Stimulationen unterschieden werden, wobei die
visuellen Stimulationen eine größere topologische Komplexität aufwiesen. Während der
Aufzeichnungen mit ausgeprägter Slow-Wave-Aktivität wurden die Reaktionen des Gehirns
auf die Stimulation stereotyp und global und konnten nicht anhand der neuronalen Netzwerke
unterschieden werden, auf die die spezifischen Stimuli abzielten.

Um die kortikale Informationsintegration zu untersuchen, wurde die effektive Konnekt-
ivität mit einem perturbatorischen Ansatz charakterisiert, der optogenetische Stimulation mit
Hilfe des rotverschobenen Opsins ChrimsonR parallel zur GCaMP6s-Bildgebung verwendet.
Diese Implementierung ermöglicht es, die effektive Konnektivität von genetisch markierten
neuronalen Populationen mit dem Perturbations- und Messansatz zu bewerten und mit einer
Metrik namens Perturbationskomplexitätsindex (PCI-ST) zu quantifizieren.

Der Übergang vom persistierenden Zustand zur Slow-Wave-Aktivität führte zu einer
progressiven Abnahme sowohl der funktionellen Segregation (BPD) als auch der Kom-
plexität der effektiven Konnektivität (PCI-ST). Im Gegensatz dazu weist die ketaminin-
duzierte Dissoziation ein hohes Maß an funktioneller Segregation sowie stereotype Reak-
tionen auf optogenetische Stimulation auf. Diese Befunde sowie die Beobachtung eines
ausgeprägten 1-3Hz-Rhythmus im retrosplenialen Kortex unter Ketamin belegen, dass Dis-
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soziation einen funktionellen Zustand darstellt, der sich von den persistierenden und Slow-
Wave-Zuständenunterscheidet.

Die oben beschriebenen Tendenzen waren unabhängig von dem stimulierten neuronalen
Netzwerk (somatosensorisch oder visuell) konsistent, was darauf hindeutet, dass der funk-
tionelle Zustand des Gehirns die Komplexität der kortikalen Informationsverarbeitung mit-
bestimmt.

Zusammenfassend zeigt die vorgestellte Arbeit, dass spontane Aktivität, Stimulus-
repräsentationen und effektive Konnektivität stark vom funktionellen Zustand kortikaler
pyramidaler Neuronennetzwerke abhängig sind. Diese Ergebnisse erfordern eine
hirnzustandsbezogene Bewertung der Spontanaktivität sowie aufgabenbasierte Studien
in Tiermodellen und beim Menschen. Die hier vorgestellten experimentellen und com-
putergestützten Strategien werden dazu beitragen, eine größere Konsistenz der neuronalen
Bildgebungs-Ergebnissen zu gewährleisten und zelltypspezifische Prozesse auf Systemebene
aufzudecken, die für die Funktion des gesunden Gehirns und für Krankheiten relevant sind.
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1
Introduction

1.1 Functional states of the mammalian brain and their
relevance to neuroscience and medicine

The brain is a convoluted mass of cells, nerve fibers, vasculature, and connective tissue
encased in permanent darkness in the protective bony structure of our skull, yet it allows us
to probe and understand the fundamental laws of nature as well as our daily lives. Ever since
it was realized that the brain is the destination of most sensory pathways and the origin of
most motor signals, the bewildering informational output produced by this organ has puzzled
philosophers and neuroscientists alike. Tremendous progress in the field of neuroscience
has recently been guided by materialist philosophical principles which hold that the brain
is a complex information processing system. Behavior, cognition, and memory formation,
amongst others, are explained by ever-changing informational structures that have a physical
substrate in our interconnected neural network [1].

The overwhelming complexity of the brain results from the billions of neurons and their
even greater number of connections which are tightly integrated into a compact and efficient
machine. To make sense of this intricate organ, neuroscientists have found it useful to think
about the brain as a network where each neuron represents a node that is connected to other
neurons by edges. This geometric abstraction is referred to as the brain connectome [2,3].
The structural connectome refers to the neurons and their wiring i.e. dendrites and axons
while functional connectivity (FC) concerns the analysis of correlated patterns of neuronal
firing.

The study of FC revealed that the brain exhibits a large variety of preferred functional
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1 Introduction

configurations known as brain states. These brain states govern the way mammals process
information and behave in the environment. Brain states can be thought of as points in a
high-dimensional space where the dimensions are represented by neurons, groups of neurons,
or brain regions, and the coordinates of the brain state are indicated by the levels of activation
along the above-mentioned dimensions. If observed for extended periods, single points in this
parameter space form trajectories of preferential brain configurations which cluster together
to form more general functional states such as those during wakefulness, sleep, quiescence,
etc. [4]. It is important to differentiate between states of vigilance and functional brain states
because changes in the brain state do not always translate into observable behavioral changes.

Some of the most general functional brain states include the persistent state present also
during sedation, in which complex mesoscopic network fluctuations give rise to compart-
mentalized network configurations[5], and the slow-wave state, during anesthesia and deep
sleep, in which propagating patterns of global activation dominate cortical activity [6].

Not all possible configurations in this parameter space represent healthy brain states, for
example, a state exhibiting multiband fast activity with suppression of lower frequencies and
high levels of synchronization describes an epileptic seizure [7].

Neurodegenerative and psychiatric diseases lead to wide-ranging alterations in functional
connectivity on a systems-level [8]. Finding efficient therapies for these conditions will
require reverse-engineering the brain and finding interventions that will force the transition
from pathological to healthy functional brain states. Such interventions are already available
for certain conditions, for example, deep brain stimulation for Parkinson’s disease [9] or
inhibition of epileptic seizures in animal models with the use of optogenetics [10].

These therapies are driven by experimentation rather than a precise theoretical model of
the brain network. Taking inspiration from methodology applied in physics i.e. finding the
essential elements of a network and perturbing them to reveal underlying dynamics has been
proposed as a more systematic strategy for making progress in characterizing brain states
[11].
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1.2 Functional and effective connectivity in the study of
functional brain states

Two key concepts guiding strategies for the study of brain states are functional integration and
segregation. There is wide consensus in the neuroscience community that high-level brain
activity necessitates the integration of processing streams from functionally specialized brain
regions [12]. On the other hand, specific tasks have to be processed within spatially-defined
brain regions without interference from neighboring areas, i.e segregation. The study of brain
states has been done traditionally by observing the baseline activity of the brain, spontaneous
activity [11,13].

Functional connectivity is defined as "the temporal coincidence of spatially segregated
neurophysiological events which can be as short as one millisecond" [14]. FC is based on
correlations between spatially segregated brain regions and can be visualized in the form
of a network graph. In this framework we can make use of purely observational data i.e.
spontaneous activity measurements and the application of information theory allows for
measures of segregation and integration to be derived [15,16].

Effective connectivity (EC) refers to "the capacity of a set of neuronal groups to causally
affect the activity of other neuronal groups within the wider network" [14,17]. One way to
estimate EC is to directly activate a brain region and observe the effect of this activation on
the extended network [18].

Understanding how brain states influence cortical information processing will require a
more perturbational approach in which a processing task is presented to the brain in order
to infer its structure and interactions. The application of this idea to the study of brain
states is known as the “perturb and measure” approach [18] and can be used as a surrogate
measurement to estimate EC. This allows us to move beyond statistical dependencies and rule
out more trivial sources of integration such as common drivers of brain activation. Using this
approach cortical representations of stimuli can be described as a function of the respective
brain state. Additionally, local responses to stimulation suggest a lack of integration while
global stereotypical responses point to a loss of segregation [19].

As suggested in the previous section, inducing functional state transitions is essential for
understanding how interventions could be used for the treatment of neuropsychiatric diseases.
The level of arousal is easy to control with the use of anesthetics. While most studies deal
with binary states such as wakefulness versus anesthesia, here, transitional states like sedation
will be investigated so, naturally, a quantitative approach is needed to accurately describe
these less than obvious functional brain configurations.
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1 Introduction

1.3 Motivation for using wide-field optical imaging in mouse
models for the study of brain states

As detailed above, the development of accurate theoretical brain models will depend on precise
functional and structural experimental data. Most of the insights into brain states and their
transitions come from electroencephalography (EEG) and functional magnetic resonance
imaging (fMRI) studies in humans. EEG features millisecond temporal resolution, as it
records electrical potentials from populations of neurons while spatial resolution is limited
to around 150 electrodes. fMRI, on the other hand, is only capable of recording one brain
volume per second while also imaging deep neuronal structures to produce 3-dimensional
(3D) high-resolution activation maps. Both these modalities, however, lack information about
the neuronal populations that are being recorded.

Wide-field optical imaging of fluorescent calcium indicators enables in principle cellular
resolution two-dimensional (2D) images to be acquired at a temporal resolution of about 20
frames per second [20]. Consequently, it is possible for wide-field imaging to access brain
activation streams that are more relevant for active information processing while retaining
high spatial resolution. Crucially wide-field fluorescence microscopy can be combined with
the imaging of transgenic reporter animals which gives certainty as to the genetic identity of
the neuronal population being investigated. Consequently, Wide-field fluorescence imaging
could play an important role in bridging the gap between electrophysiology and fMRI and
provide valuable insights into brain states.

This work will focus on mice. Mouse genetics are well characterized and mice represent
the most versatile mammal species for genetic manipulation and for modeling human disease
currently available to biomedicine [21]. With respect to primates, mouse brains share the
same broad regions, e.g., a cortex divided into two hemispheres, cerebellum, hippocampi,
thalami, basal ganglia, brain stem, etc. "Mice have a similar hierarchical organization
to primates based on largely reciprocal feedforward and feedback connections and similar
connectivity distance rules" [22], however, mouse cortices have fewer functional areas and
their modular parcellation and microarchitecture are different from those of primates [22].
Notwithstanding these differences in size and complexity, studying the mouse brain has been
at the forefront of neuroscientific discoveries and has led to breakthrough treatments in human
brain pathologies [23].

4



1.4 Goal and objectives
The goal of this work is to study functional brain states relevant to neuroscience and medicine
in mouse models. The brain states under investigation are those present in drug-induced
sedation, dissociation-unconsciousness, and anesthesia. As presented above, achieving new
insights in this field will require innovations in imaging data acquisition, genetic manipulation
of the model organism, and the development of novel computational techniques.

To achieve this goal, the objectives of this project can be formulated as follows:

• Design and assemble an optical instrument suited for acquiring fluorescence imaging
data from the whole mouse cortex

• Develop a computational method to quantify functional brain states based only on
imaging data

• Investigate how spontaneous brain activity is influenced by sedation-unconsciousness,
dissociation-unconsciousness, and anesthesia

• Develop a strategy for the coexpression of a fluorescent calcium indicator and an
optogenetic actuator in excitatory cortical neurons

• Investigate how somatosensory, visual and optogenetic cortical responses to stimulation
are influenced by the functional state of cortical networks
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1 Introduction

1.5 Relevance and translational value
This work has been done for the purpose of furthering knowledge about the brain and its
function. The insights and methods that derive from this study have an intrinsic value
for the neuroscience community in the context of basic scientific research. Methodological
advances from this study will aid in the standardization of imaging neuroscience experiments,
particularly in the field of FC and sensory perception. Novel scientific insights from this work
will inform researchers working in the fields of sensory perception, pharmacology, anesthesia,
psychiatry as well as computational neuroscience.

Additionally, all experiments have been done in the mouse, a model organism for human
brain function in health and disease, and thus hold high translational value. All brain states
investigated have great relevance for human medicine. Millions of people receive medical
care in anesthetized or sedated states each year and dissociation is a prominent feature of
numerous psychiatric conditions. Some of the substances used in this study are also used
illegally as drugs of abuse so, understanding the cerebral mechanisms underlying their effects
holds the potential of informing novel treatments for addiction.

As outlined above the raw imaging data in itself can be used for refining existing models
of brain states and transitions. Such future models will allow researchers to carry out
experiments in silico and efficiently test interventions which will lead to novel treatments for
systems-level manifestations of brain disease.
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2
State of the art: wide-field
fluorescence microscopy in the
study of brain states

2.1 From action potentials to pixels - reporters of neuronal
activity

2.1.1 Calcium sensors
Electrical activity has traditionally been used to characterize the molecular, cellular, and
system-wide neurophysiological events that form the basis of cerebral information processing.
The action potential (AP) represents the primary means of communication in the nervous
system. The role of electrical signals as information carriers was first demonstrated by
Galvani in 1791 who was able to trigger muscle contraction in frogs after introducing an
electrical pulse to nerve fibers [24]. The AP was described in the middle of the 20th century
by Hodgkin and Huxley who discovered that voltage-gated ion channels in the giant axon of
squid neurons were responsible for the propagation of electrical potentials [25]. The AP is
initiated in the segment of the axon that is adjacent to the soma [26] and propagates to the
presynaptic terminals where the electrical signal is transduced into a chemical message by
way of neurotransmitter release into the synaptic cleft.

Electrophysiology with implantable electrodes is used to characterize neuronal electrical
activity at the finest spatial and temporal scales. However, the precise identification of the
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neuronal subtype being recorded remains challenging when using electrophysiology alone.
The genetic identification of neuronal cells and their contribution to complex behavior is
essential to modern neuroscience and fluorescent calcium sensors have been developed for
this application.

Intracellular calcium signaling is essential for the homeostasis, gene transcription, and
life cycle regulation of neuronal cells. This second messenger is also central to neuronal
information processing and signal propagation to connected neurons. Owing to the complex
morphology of neurons, Ca2+ transients can be localized to subcellular compartments and act
locally to induce exocytosis of neurotransmitter vesicles in presynaptic terminals and cause
activity-dependent synaptic plasticity in dendritic spines while nuclear Ca2+ concentrations
contribute to gene transcription [27].

This plethora of functions has led to complex cellular machinery for regulating free Ca2+

concentrations, as only free Ca2+ ions are biologically active. Baseline calcium concentrations
in neuronal bodies are 53 - 100 nM [28] while extracellular levels reach 1.5 to 2.0 mM
[29,30]. Ion channels involved in regulating membrane passage of Ca2+ include voltage-
gated calcium channels, nicotinic acetylcholine receptors (nAChR), ionotropic glutamate
receptors, and transient receptor potential type C (TRPC) channels [27]. Internal Ca2+

buffering proteins like parvalbumin, calbindin-D28k, and calretinin have numerous Ca2+

binding sites and together with the endoplasmatic reticulum (the most important source of
intracellular calcium) regulate cytoplasmatic free Ca2+ levels [31]. Apart from buffering in
the cytoplasm, Ca2+ concentrations can be brought down by membrane channels like plasma
membrane calcium ATPase and the sodium-calcium exchanger [31,32].

Action potentials are followed by fast changes in free intracellular calcium concentrations
[33–36] which increase by 43 ± 14 nM after a single action potential [28]. During intense
electrical activity, intracellular concentrations can rise as much as 100 times relative to
baseline levels [32]. Simultaneous electrical recordings and imaging studies after intracellular
injection of calcium-sensitive dyes revealed a strong correlation between APs and calcium
transients [37–40]. It is for this reason that Ca2+ signals are used as a proxy for measuring
neuronal electrical potentials. Calcium sensors are localized in the cytoplasm which provides
a large compartment for indicators to accumulate whereas voltage sensors are confined to
the limited surface of plasma membranes [31,41,42], additionally, the magnitude of the Ca2+

transients after action potentials effectively acts as an AP signal amplifier [32].
It is for these reasons that research into Ca2+ sensors has been taken up by a large

bioengineering community that has produced a myriad of synthetic and genetically encoded
Ca2+ sensors spanning much of the visible spectrum and displaying a wide range of kinetic
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properties.

Figure 2.1: GCaMP6s - fluorescence generation mechanism. After binding to calmodulin, calcium induces
a conformational change of the GCaMP protein and fluorescence with a peak at 510nm is produced as a result.

The earliest calcium sensors were found in marine invertebrates like the jellyfish aequorea
victoria. The bioluminescent protein named aequorin consists of an apoprotein attached to
a chromophore which upon calcium binding to one of three binding sites emits a 470nm
photon [43]. The construct had to be loaded with pipettes and light emission to take place,
coelenterazine had to be co-expressed. Even in the presence of these preconditions photon
yield was low which limited the use of this calcium-sensing protein [44]. A significant
breakthrough in Ca2+ sensor technology came with the engineering of fura-2 which is a
combination of a Ca2+ chelator and a chromophore [45,46]. This is a synthetic fluorescent dye
that, when illuminated with ultraviolet light and bound to Ca2+ emits 505 to 520nm photons.
Fura2 can be used for quantitative measurements of intracellular Ca2+ concentrations and the
high quantum yield made it attractive for in vivo recordings [47]. Progres in synthetic calcium
dyes was closely matched by advances in two-photon microscope imaging technology and for
this application, Oregon Green 488 Bapta-1 AM-ester was preferred because of its superior
behavior in vivo.

Genetically encoded calcium indicators (GECI) represent an attractive alternative to
synthetic dyes because they can be genetically expressed in target cells, thus enabling the
recording of genetically defined neuronal populations. Two major classes of GECI can be dis-
cerned based on their mechanism of fluorescent light generation: FRET-based (Fluorescence
Resonance Energy Transfer) indicators and single-fluorophore constructs [27].

The FRET mechanism necessitates a more complicated design encompassing a donor
and an acceptor fluorophore. When Ca2+ is not present emission is dominated by the donor
while upon Ca2+ binding the receiver fluorophore emits more light thus, calcium levels are
expressed as a ratio between donor and acceptor signals [48].

Single fluorophore constructs have been preferred by the neuroscience community because
of their simpler design and versatility in terms of kinetics, excitation/emission wavelength, and
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brightness. This design strategy has led to the development of the GCaMP calcium indicator
family which presently includes around 19 versions. At the core of the GCaMP structure lies
the enhanced green fluorescent protein (eGFP) beta-barrel to the sides of which calmodulin
(a Ca2+ binding protein) and calmodulin-binding peptide M13 are attached [49,50]. When
Ca2+ attaches to calmodulin-M13 conformational changes in the eGFP fluorophore lead to
an increase in fluorescence. These probes feature dissociation constants ranging from 46
nM (jGCaMP8s) [51] to 6.12 µM (Fast-GCaMP-EF20) [52], dynamic ranges from 4.5 ΔF/F0
(GCaMP1)[50] to 145,5 ΔF/F0 (GCaMP7c)[53] and with responses as fast as 25 ms time to
peak after action potentials [51].

In particular, the GCaMP6s and GCaMP6f versions have been widely adopted by the neur-
oscience community [40]. GCamp6s has lower background fluorescence, 74% of GCaMP3
levels, and 11 fold higher SNR after 1 AP as compared to GCaMP3. The time to peak after 10
AP is longer than for GCaMP6f, 480ms vs. 80ms and the decay of fluorescence signal after
10 AP is also longer as compared to GCaMP6f, 1796ms vs 400ms. GCaMP6s is preferred
for integration in mouse genomes because it is considered that its slower dynamics lower its
calcium buffering effects in neurons in vivo and thus preserves neuronal homeostasis in vivo.

Substantial efforts were also invested in shifting GECI absorption and emission spectra
to the red [54] and near-infrared [55] wavelengths. Having these red-shifted sensors allows
for more robust multiplexing with other indicators of neuronal activity or optogenetic tools
and may also enable imaging with short-wave-infra-red [56] and optoacoustic systems [57].
A comprehensive review covering the multitude of GECI variants can be found in [58].

Despite the rapid progress in calcium sensors, this technology has limitations when
compared to voltage sensing. Notably, calcium imaging fails to capture hyperpolarisation
and sub-threshold depolarization events [42]. Millisecond timescales relevant for capturing
aspects of neuronal information processing and for studying fast-spiking cells such as in-
terneurons are difficult to record with calcium imaging [39,59]. Computational methods for
spike inference from calcium recordings have been put forward and validated under slower
neuronal firing conditions [60–64].

Notwithstanding these shortcomings, calcium sensors are well-matched in terms of signal-
to-noise ratio and acquisition timescales to modern single and multiphoton imaging devices.
The wide palette of bright sensors covering numerous excitation wavelengths and exhibiting
fast kinetics have helped establish calcium reporters of neuronal activity as the workhorse
sensors of optical brain imaging.
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2.1.2 Imaging brain hemodynamics
Normal brain function necessitates high amounts of energy substrate, estimated at 4.81 x
109 ATP/spike/neuron while neurons consume 9.20 x 108 ATP/neuron/s during quiescence
[65]. The brain uses 20% of the total O2 intake making it the most energy-expensive tissue
per unit mass [66]. Most of this energy is spent on synaptic activity and restoring baseline
membrane potentials after an AP [67]. The brain, however, does not possess significant stores
of oxygen and glucose. Intense brain tissue activity leads to a localized increase in cerebral
blood flow which covers higher energetic demands [68]. The coupling of the blood flow to
neuronal activity is known as the neurovascular coupling and was first proposed by Roy and
Sherrington [69].

The precise mechanisms behind the neuro-vascular coupling are still being investigated,
however, consensus has been building around the central role of nitric oxide in the regulation
of this phenomenon. Nitric oxide stimulates the nitric oxide receptor which in turn leads to
the production of cGMP (Guanosinmonophosphat) and cGMP-dependent kinase signaling
resulting in vasodilation [70,71]. Additionally, Ca2+ is released in astrocytic terminals
triggering vasodilation [72]. These two pathways work together to cause vasodilation at
different levels: the nitric oxide mechanism, triggered by neurons seems to act on arterioles
while the astrocytic mechanism involving Ca2+ signaling increases capillary volume [70].

These mechanisms which are critical for maintaining the homeostasis and efficient op-
eration of the brain can be leveraged for inferring brain activity. Hemoglobin is universally
found in mammals as oxygen fearing molecule and because it is naturally occurring, imaging
neurovascular dynamics can be achieved non-invasively without the need for further chemical
or genetic manipulation of the investigated organism. Neuronal firing has to be inferred from
hemodynamic recordings and for this, various mathematical models have been put forward.

These models are subsumed under the umbrella term of hemodynamic response functions
(HRF) and describe how localized increases in neuronal activity affect cerebral blood flow
changes [73]. The main parameters which are included in the modeling of the hemodynamic
response function are the time-to-peak, amplitude, and response duration of the hemodynamic
signals. Mathematical models have been created for describing hemodynamic effects in
different parts of the human brain [74], in subjects spanning all ages [75], and across a
multitude of pathological conditions [76,77]. In preclinical research, great effort has been
invested in characterizing the HRF in rats [78] and mice [79,80] as well as standardizing
experimental protocols for the generation of reproducible experimental results [80].

Despite the progress in our understanding of the metabolic pathways underlying the
neurovascular coupling, deriving precise causal relationships between neuronal firing and
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hemodynamic signals remains a difficult proposition [81]. The complexity and variation in
the shape of vascular responses reflect the intricate nature of the pathways underlying the
coupling of neuronal and vascular activity. Strong evidence suggests that energy-intensive
synaptic events could contribute more to increases in cerebral blood flow than neuronal
action potentials [81]. Energy is being expended in inhibitory and excitatory synapses and
excitatory vs. inhibitory activity cannot be differentiated based on neurovascular responses
[82]. Furthermore, the vascular response itself includes influences from blood flow, blood
oxygenation levels, blood volume, and hematocrit and varies based on the imaging technology
used for acquisition [83].

Notwithstanding these limitations, brain hemodynamic responses have been extensively
used in clinical and preclinical studies to report brain activity in different physiological and
pathological brain states and to infer brain circuit dynamics involved in task performance.
Imaging of hemodynamic parameters can be performed with a large number of imaging
instruments including functional MRI, optical intrinsic imaging (OIS), functional ultrasound,
photoacoustics, and short-wave infrared imaging. Some of these imaging devices have fields
of view that span the entire brain and can be employed in small animal models as well as
in human subjects. It is for these reasons that imaging brain hemodynamics occupies an
important role in modern neuroscience research.

Hemodynamic signal changes can be detected by MRI because relaxation rates of pro-
tons in a given imaging voxel are modulated by the concentration and oxygenation state of
hemoglobin. This so-called Blood-Oxygenation-Level-Dependent contrast (BOLD)[84,85]
is sensitive to changes in vasodilation and has been used in fMRI to create functional con-
nectivity maps in humans and animals.

The abundance of hemoglobin in the rodent brain, around 6.3 mg/ml[86], compensates for
low fMRI sensitivity. Notwithstanding, the BOLD effect remains incompletely characterized
with contributions from cerebral blood volume, cerebral blood flow, and cerebral metabolic
rate of O2 (CMRO) being discussed[87]. As a result, multimodal imaging systems where
fMRI data is co-recorded with PET[88], EEG[89], NIRS[90] and calcium fluorescence
[91,92] have been employed to independently validate and increase the specificity of fMRI
imaging findings.

fMRI in preclinical research is usually limited to experiments that can be carried out in
general anesthesia although procedures for awake measurements in mice [93], rats [94], and
non-human primates [95] have been proposed. Conventional fMRI sequences are limited in
their temporal resolution to 1 brain image/sec, though using lower spatial resolution allows
for data acquisition at 10-20 Hz[96,97].
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The relatively low signal-to-noise ratio is overcome by averaging multiple trials although
learning and anticipating stimuli means that these trials are likely to lead to qualitatively and
quantitatively different activation patterns[98].

2.1.3 Contrast agent delivery methods
Intravenous contrast agent delivery, for functional imaging, can have the goal of bringing a
contrast agent to the bloodstream. In this case, we are dealing with so-called ‘blood pool
agents’ such as superparamagnetic iron oxide nanoparticles [99] or dyes [100]. For optical
imaging, contrast agents should ideally have the peak absorption in the NIR window, far
away from the strong absorbance from hemoglobin. Long circulation time is desired for
hemodynamic imaging which often benefits from contrast agent accumulation in biological
structures of interest.

Suppose contrast agent delivery to neurons after intravenous administration is desired. In
that case, the contrast agents should ideally have high blood-brain barrier (BBB) permeability,
and size preferably below 1nm [101,102]. If these conditions are not satisfied, the BBB can
also be transiently opened with focused ultrasound [103].

Interstitial delivery via intracranial injection is a convenient way of circumventing the
BBB. Only small volumes (1-2 microL) can be administered in this way and have to be
injected at very slow rates (0.1 microL/min) to compensate for slow contrast agent diffusion
in brain tissue [104].

Synthetic contrast agents can benefit from the entire spectrum of chemical and biological
synthesis strategies available for in vitro production. Selective synthetic agents for biological
structures of interest are difficult to produce and, once delivered to the target tissue, often get
degraded over time and are difficult to replenish.

To address these challenges, genetically encoded contrast agents have been proposed.
DNA encoding the contrast agent has to be integrated into genetically defined cells which
then go on to produce the contrast agent usually without the need for external interven-
tion. Transduction, i.e. the modification of the cell’s DNA can be achieved by hereditary
mechanisms or via the administration of viral [105] or non-viral [106] DNA delivery vehicles.

Promoters are DNA sequences that act as ‘begin’ instructions for transcription. The
promoter represents the binding site for RNA polymerase and ancillary transcription factors
and also indicates the direction and DNA strand to be transcribed. The selective use of gene
promoters ensures that a large collection of neuronal or glial cell types can be addressed
[107]. After transduction, the foreign DNA sequence can either be integrated into the host
genome [108] or persist as an episome in the nucleus [109]. Neuronal cells are stable over
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time and do not multiply so this enables the long-term expression of the genetically encoded
contrast agents in the brain.

Viral injections are usually employed for in vivo experiments [104] or alternatively, the
increasingly popular method of intravenous AAV9 administration can be used [110–112].
The AAV9 serotype has been further developed into two variants PHP.B and PHP.eB and
which have been reported to deliver fluorescent signals similar to Ai93 and Ai94 mice if
administered to the bloodstream 4 weeks before imaging [113].

2.1.4 Transgenic mouse reporter lines for calcium brain imaging
The first germline-competent transgenic mouse line dates back 4 decades [114] since then,
transgenic mouse models have become a powerful tool for modeling human and animal dis-
eases and numerous mouse reporter lines have been generated for neuroscience applications.
DNA fragments of interest are typically injected into the pronucleus of a zygote and multiple
copies of the transgenes integrate into the host genome[115]. This technology is conducive
to the transfer of small DNA fragments which are usually based on plasmids as well as large
DNA fragments such as bacterial artificial chromosomes [116]. Foreign DNA integration
can occur at random [117] or at specifically chosen sites that have been shown to enable large
expression levels in numerous neuronal subtypes [117,118]. Transgenic mouse lines have to
be examined for expression levels as well as successful propagation of the foreign gene to
offspring.

The use of transgenic mouse lines as reporters for neuroimaging studies has been made
possible by the development of genetically encoded reporters [119]. Mouse genetics are well
characterized and mice are the most common mammal model for studying brain physiology
thus transgenic mouse lines have been used in neuronal tracing as well as for functional brain
imaging studies. In transgenic mouse lines, long-term neuronal sensor expression can be
achieved over large areas of the brain. Furthermore, expression levels are more consistent
compared to bulk injections and viral transfection [120].

Progress in mouse genetics and sensors for neuronal activity was closely matched by the
engineering of advanced imaging systems such as the two-photon microscope. Fluorescence
imaging routinely relies on calcium sensors as reporters of neuronal activity, this combination
allowing single-cell measurements at high signal-to-noise ratios and high temporal resolution
[35,121–123]. The preferred calcium sensors for the generation of transgenic mouse lines
come from the GCaMP6 family. In applications requiring high signal-to-noise ratios, and
subcellular imaging, GCaMP6s is preferred while for fast neuronal dynamics GCaMP6f is
the sensor of choice [40].
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For cell-type-specific targeting, genetic reporters of neuronal activity can be expressed
in neuronal subtypes under specific promoters. The most straightforward strategy involves
the use of the Thy1 promoter which results in a single gene transgenic mouse. Alternatively,
crossing two mouse lines is necessary for sensor expression under the control of the tetracyc-
line transactivator (tTA) protein in conjunction with the tetracycline operator (tetO) or the
crossing of 3 mouse lines for cre-recombinase and tTA control [113].

The combination of fast and slow calcium sensors and cell-type-specific promoters has
led to the development of several transgenic mouse lines. The simplest design involves the
expression of GCAMP6s in excitatory neurons under Thy1 control [123]. While this mouse
line does not require the breeding of multiple mouse lines for its generation, this reporter
variant does not yield strong fluorescence signals [113].

To address this issue mouse lines expressing both GCaMP6f (Ai93) and 6s (Ai94) under
the control of cre and tTA and the CamKII (calmodulin-dependent protein kinase II) promoter
have been proposed [118]. A popular transgenic GCaMP6s mouse line under the control
of the tTA protein, tetO, and the CamKII promoter (Camk2a-tTA;tetO-GCaMP6s) [124]
requires the crossing of two mouse lines compared to the three crossings necessary for Ai93
and Ai94 while showing only marginally lower Ca2+ fluorescence responses compared to
these latter strains [113].

All calcium sensors also act as Ca2+ buffers, consequently, reporters with high affinity and
fast binding kinetics are likely to alter neuronal Ca2+ homeostasis. The consequences of this
are difficult to assess and the methods employed for these determinations rely on comparing
the electrophysiology and connectivity structure of mouse reporter lines to wild-type strains.
One easily measurable functional anomaly, which may hint at an underlying pathological
burden on the transgenic animals is represented by ictal spikes. This pathological activity
was observed in the Ai93 and Ai94 mouse strains while generalized seizures were only
observed in the Ai93 mouse line. The significance of ictal spikes is unclear as mice did
not show behavioral changes during these events, however generalized seizures could hint at
possible cre or tTA-related toxicity. GCaMP6s expression during development could also be
to blame and it was shown that doxycycline-induced inhibition of GCaMP expression before
7 weeks of age was successful in preventing seizures in most Ai93 mice [120].

Notably, no aberrant activity was reported in the Camk2a-tTA;tetO-GCaMP6s mouse
line [124] which seems to represent an attractive choice of transgenic model given that
the fluorescent GCaMP signal in these mice approaches that recorded in Ai94 mice. The
Camk2a-tTA;tetO-GCaMP6s mouse line exhibits high levels of fluorescence and no abnormal
neuronal activity and was consequently used in this study.
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2.2 Wide-field optical brain imaging
Wide-field optical imaging broadly refers to an optical imaging system that records 2D images
of specific areas or the entire cortex of the mouse over a series of time steps, essentially
generating movies of brain activity. Depending on the molecular sensors leveraged by the
imaging apparatus we can distinguish between wide-field imaging of voltage sensors, calcium
sensors, and blood pool agents (hemoglobin or blood-soluble dyes).

Wide-field imaging was first used for imaging synthetic voltage sensors in the rat brain
[125]. This served as a proof of principle that optical imaging could be used to record
complex brain dynamics in vivo. Voltage-sensitive dyes, however, are difficult to inject into
broad areas of the cortex and produced increases in fluorescence less than 0.5% of baseline
and their fast on/off dynamics were difficult to capture by camera technology [25]. Because
of this, the combination of synthetic voltage-sensitive dyes and wide-field imaging systems
found its use in a limited number of experimental settings. To address these limitations,
genetically encoded voltage indicators were developed and enabled highly detailed spatial
maps of activation of the barrel cortex after whisker stimulation. However, in vivo signals
only increased by 0.1% over baseline after whisker stimulation [126,127].

The lower signal-to-noise ratio of genetically encoded voltage indicators stems from
the fact that these sensors are situated in neuronal membranes and are thus limited in the
maximal concentration achievable. While noise sources are manageable in vitro, motion
and hemodynamic effects play an important role in vivo and still hamper modern wide-field
imaging with genetically encoded voltage sensors [126,128].

Soon after the first wide-field imaging experiments with voltage sensors, it became clear
that changes in reflectance of the exposed cortex contained useful functional information.
This imaging method was termed intrinsic signal imaging because it takes advantage of
an endogenous reporter of neuronal activity, namely hemoglobin [129]. As detailed in the
section on neurovascular coupling, neuronal activation is accompanied by changes in blood
volume, blood flow, and hemoglobin oxygenation levels in the activated areas. It was shown
that hemoglobin exhibits intricate light absorption properties depending on the wavelength
of light used for imaging and the oxygenation level of the protein [130].

The illumination wavelengths are specifically chosen to leverage the light absorption
characteristics of oxygenated and deoxygenated hemoglobin (Fig. 2.1). Red, green, and blue
illumination is required for calculating the concentrations of total hemoglobin, oxygenated
hemoglobin (ΔHbO2), and deoxygenated hemoglobin (ΔHb). At 470 nm illumination
hemoglobin absorption is large regardless of the oxygenation state while 530 nm and 590
nm represent so-called isosbestic wavelengths i.e. wavelengths at which oxygenated and
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deoxygenated hemoglobin absorption is similar. Finally, at 625 nm light absorption is
dominated by deoxygenated Hb [131,132]. Molar concentrations of Hb and HbO2 can be
calculated from 530 and 625 nm, see Fig. 2.2.

Figure 2.2: Illumination wavelengths used in intrinsic signal imaging. The determination of oxygenated
and deoxygenated Hb concentration requires imaging at isosbestic wavelengths (530nm and 590nm) as well as
wavelengths where absorption differs between oxygenated and deoxygenated Hb (470nm and 625 nm).

As discussed in the chapter on hemodynamic imaging, using the neurovascular coupling
does not allow for neuronal events to be imaged directly. An alternative implementation of
wide-field imaging records fluorescence signals in transgenic mice which express genetically
encoded calcium sensors in cortical neurons. This approach can access neuronal activity
directly at high signal-to-noise ratios and high frame rates

Generally, wide-field optical imaging systems consist of a camera-lens assembly and one
or more artificial light sources which provide illumination. In terms of camera technology,
either electron multiplier charge-coupled devices (emCCD) or scientific complementary
metal-oxide-semiconductor (sCMOS) microcircuits can be used as recording devices. In
emCCDs pixels are read out sequentially in a register while for sCMOS the readout mechanism
is localized in each pixel element. For this reason, readout noise is higher for sCMOS than the
emCCD. In practice, the higher the frame rate the higher the noise in the emCCD readout, and
added to that the electron multiplication process also adds noise so that low light sensitivity in
sCMOS and emCCD sensors is comparable [133]. To further lower the noise, both emCCD
and sCMOS sensors are electronically cooled to between 0 and -20 °C which enables higher
frame rates [134].

In terms of light sources, light-emitting diodes (LED) are preferred because of their
lower costs and availability of colors covering the UV to infra-red spectrum. LEDs lack the
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spectral precision of lasers and light generated by these sources has to be optically filtered to
precisely select the wavelengths needed for illumination. In the absence of such filters, the
highly sensitive camera sensors easily pick up unwanted light leading to an artificially high
background signal.

2.2.1 Wide-field calcium sensor fluorescence imaging
Calcium sensors mainly report neuronal spiking activity while achieving high signal-to-noise
ratios and exhibiting slower kinetics than voltage sensors. These properties are well-matched
to scientific camera sensitivity, resolution, and achievable exposure times. In particular,
the development of the GCaMP class of calcium sensors was closely synchronized with
advances in single-photon and multiphoton imaging systems. Advances in transgenic mouse
reporter lines enable imaging of the dorsal cortex over long periods while allowing access to
genetically defined subpopulations of neurons.

Typically the imaging system consists of a scientific camera and multiple LEDs which are
used for excitation of the fluorescent reporter and the correction of physiological noise. The
brain must be illuminated at the excitation wavelength of the fluorophore (which for GCaMP
is around 460±25 nm) while emission light must be filtered to remove unwanted background
illumination (for GCaMP 525 ±25 nm). The emission light will always have lower energy
and a longer wavelength than the excitation light.

Wide-field calcium imaging systems routinely cover fields-of-view of up to 1 cm2 with a
spatial resolution of 10-100 µm/pixel and temporal resolution of up to 100 frames/sec [135].
The imaging depth that can be achieved is dependent on the intensity of the sensor that is
being used as well as the intensity of the excitation light and the geometric distribution of
sources inside the tissue. If all sources are situated at higher depths, fluorescence may still be
recorded even if heavily blurred due to tissue scattering. If fluorescent sources are situated
in both superficial and deep layers images will more strongly reflect the dynamic activity of
the superficial sources [136].

Fluorescence intensity is reported as the percentage change at time point t relative to
a prior time point t0 or relative to a baseline. Fluorophore fluorescence is dependent on
illumination homogeneity, time-dependent confounding factors such as absorption by hemo-
globin, and dark signal arising from intrinsic camera noise as well as ambient light [132,136].
Illumination uniformity can be improved by using collimated LEDs equipped with diffusers
while effects of dark signals can be subtracted on a per-image basis if dark frames were
acquired at the end of the experiment.

An important technical consideration for wide-field calcium imaging is the need to correct
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Figure 2.3: Hemodynamic parameter fluctuations affect calcium fluorescence imaging. A fraction of the
blue excitation light 𝐼1(𝑒𝑥) is absorbed by blood before reaching the fluorophore so that the actual intensity
of the excitation light will be 𝐼2(𝑒𝑥). Similarly, a part of the emission light 𝐼1(𝑒𝑚) is blocked by hemoglobin
before exiting the brain with intensity 𝐼2(𝑒𝑚).

fluorescence data that is contaminated with physiological noise which mainly arises from
motion due to breathing and hemodynamic fluctuations. Excitation light has to travel through
the tissue before reaching the fluorophore and once light is emitted this travels through brain
tissue and air before reaching the camera-lens assembly. The brain is a well-perfused organ
and hemoglobin absorption is heavily dependent on the wavelength of incoming light as well
as the blood oxygenation. If perfusion and blood oxygenation were constant the effects of
bran perfusion on wide-field GCaMP images would be null [132]. However, as described in
the section on neurovascular coupling, increases in brain activity cause hyperemia [87] in the
activated areas leading to time-varying changes in light absorption.

Several strategies have been proposed for the removal of unwanted hemodynamic effects
from the fluorescence data:

• Division of GCaMP imaging data by single-wavelength reflectance data at the emis-
sion wavelength (510nm) corrects for confounding hemodynamic effects by removing
the time-varying absorption effects in the 510nm dataset. Diffuse-reflectance meas-
urements give us an approximation of the absorption by hemoglobin, provided that
it is measured at the emission wavelength. Recording sequential GCaMP images
and reflectance images at the emission wavelength is useful for correcting unwanted
hemodynamic effects in the recorded GCaMP fluorescence data. For this method, the
approximation is made that the pathlength of excitation light (488 nm) is the same
as that of the emission light (510 nm), additionally, the pathlength of the diffuse 510
nm reflection light is assumed to be equal to the sum of the excitation and emission
pathlengths. In this case, contamination removal can be done by the simple division of
the fluorescence ratio by the reflectance ratio[136].
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• Regression of single-wavelength reflectance data at an isosbestic hemoglobin absorp-
tion wavelength represents an alternative to the method above. For this strategy,
correction is being done by using reflectance imaging at 390 - 410 nm wavelength
that also has the property of exhibiting equal absorption for oxygenated and deoxygen-
ated hemoglobin. At these wavelengths, any fluorescence emission from GCaMP is
calcium-independent [137–139]. This type of reflectance imaging estimates changes
in global blood volume in the tissue being imaged. Computationally, linear regression
is done on a pixel-by-pixel basis to remove trends found in the 390-410 nm channel
from the GCaMP fluorescence data [132].

• Using estimated excitation and emission attenuation. GCaMP excitation and emission
attenuation can be used to correct unwanted hemodynamic effects. Practically it is
very difficult to estimate the attenuation at the excitation wavelength of the fluorophore
without using a filter wheel or a second camera for acquisition. It was proposed instead
to use reflectance measured at 530 nm and 630 nm to model the absorption coefficient
at 488 nm [136].

• Hemodynamic effects removal with PCA. If reflectance data was not acquired, PCA can
be used to isolate unwanted physiological noise [140]. When doing PCA it is assumed
that the variance in the original data can be expressed as a sum of temporal components.
Hemodynamic effects are, however, multiplicative so PCA should be performed on the
logarithm of fluorescence data which reduces this problem[135]. Performing PCA on
the logarithm of the fluorescence data yields two components that resemble the temporal
dynamics of GCaMP signal and hemodynamic confounding factors. This method works
best for short recordings in conjunction with noise reduction preprocessing steps such
as low-pass filtering and averaging across trials [140].

2.2.2 Applications of wide-field calcium sensor imaging in
neuroscience

Owing to its good SNR and high sampling rate, wide-field calcium imaging has been
used for the study of information encoding across large cortical regions on a trial-by-trial
basis [137,141,142]. Sensory information was found to be represented in distinct spatio-
temporal patterns across the cortex [124,141–143]. Having the capacity to image most of the
dorsal cortex also proved advantageous in probing the mechanisms underlying learning beha-
vior[143,144]. It was revealed that, during learning, heterogeneous brain activation patterns
become more stereotypical as the task is mastered and patterns are refined to essential activ-
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ation sequences [145,146]. The performance of tasks is dependent on the presence of a brain
state that can sustain complex behavior. Several studies have investigated the characteristic
features of the functional neural network under anesthesia [147–149] and dissociation [139].

Apart from these studies related to information processing and goal-directed learning,
wide-field calcium imaging was also useful in describing the remodeling of resting-state cor-
tical activity patterns after photothrombotic stroke [148], and monitoring wave-like patterns
of activation in models of neurodegenerative disease [150,151].

A limitation of this imaging method is represented by its spatial resolution which is
confined to 2D representations. Photoabsorbers at different depths contribute to varying
degrees to the signal in the final image. If absorbers are located at a fixed depth in the
brain tissue, emitted light will diffuse and lead to a ‘blurred’ image of the sources. The
amount of blurring will ultimately depend on the depth of the fluorescent sources. If the
sources of fluorescence are situated at multiple depths, the superficial ones will have a larger
contribution to the final image to the detriment of the deeper ones.

The absorption of a photon by the fluorescent sensor is isotropic, i.e. photon absorption
can occur regardless of the direction it is traveling. Likewise, fluorescence emission is also
isotropic, meaning that a photon can be emitted by the fluorophore in any direction. This
may lead to an additional blurring of the object that is being imaged although the photons
with shorter paths will have a better chance of contributing to the final signal [136].

Both synthetic and genetically encoded calcium sensors are expressed in neuronal bodies
as well as in the neuropil. Widefield calcium imaging can be done at cellular resolution,
however, cellular bodies will be distinguishable only if they are situated just below the dura
and if imaging is done through a glass window that has been installed after skull removal.
Deeper neuronal bodies will be blurred by scattering effects, regardless of the preparation
strategy [20]. If imaging is done through the skull, the thin layer of bone will scatter these
signals and cellular resolution will be lost entirely. Practically this means that in most
widefield optical imaging applications, signals coming from the neuropil are summed up
with those originating in neuronal bodies to form the final image.

Constraints on this imaging modality are also imposed by the brightness of the calcium
sensors as well as their dynamics. Exposure time and illumination intensity have to be
adapted to the characteristics of the fluorescent signal sources to produce images with high
SNR at acceptable temporal resolution [135]. Calcium sensors mainly report action potential
events, thus subthreshold depolarizations, as well as hyperpolarisations, are not accessible to
this imaging technique [152,153].

To address some of these challenges, wide-field calcium sensor imaging has been carried
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out simultaneously with other neurorecording techniques to enrich and also validate obser-
vations. Two-photon imaging at cellular resolution can be carried out simultaneously with
wide-field imaging to reveal how the temporal activation of single neurons correlates with
cortex-wide activation trends [138]. The same goal can be achieved by combining single-cell
electrical recordings with wide-field imaging [154,155].

3D imaging of the entire mouse brain can be achieved with fMRI and adding 2D fluor-
escence imaging to the system was useful in describing the origin of the BOLD effect by
correlating it to calcium transients in excitatory neurons [92]. High-frequency activity above
10 Hz is difficult to record with wide-field calcium imaging. Combining imaging with elec-
trophysiology can both aid in covering the entire spectrum of neuronal activity and relate the
function of deeper structures to that of the cortex [156,157]. This synergistic approach is
opening new avenues of research while also raising interesting questions for data scientists
because it is not clear what weight to attribute to these observations which are based mainly
on correlations either between deeper brain nuclei or single cells and the wider cortex.

2.3 Manipulating neuronal activity with optogenetics
In 1979 the discoverer of the DNA structure, Francis Crick, stated the biggest factor preventing
progress in neuroscience was the lacking ability to control genetically defined cells in the
brain while the others remained intact. It is desirable to access entire cell populations at once
with high temporal precision and electrophysiological and chemical methods lacked either
the spatial or temporal resolution to accomplish this. Francis Crick speculated that making
brain cells photosensitive would allow neurons to be controlled with light pulses, enabling
cell-type-specific experimentation [158].

The light-sensitive channels and pumps, known as opsins, which enable optogenetics were
discovered in microbes [159,160] and later cloned and transfected into neurons [161]. The
first opsin used for depolarizing neurons, channelrhodopsin-2 is a cation channel sensitive to
blue light around 470nm. Halorhodopsin is a chloride pump that hyperpolarizes neuronal
membranes inhibiting the firing of APs and is sensitive to yellow light around 580 nm
[162,163]. After these initial breakthroughs, a large variety of opsins were developed which
featured faster kinetics that allowed tighter control of neuronal APs [164].

The need for genetic tool multiplexing led to the production of opsins which are sensitive to
different wavelengths of light. Light penetration is a decisive factor in optogenetics. Incoming
photons are scattered by biological tissue and this phenomenon is more pronounced at shorter
wavelengths leading to lower penetration for blue light compared to red [165]. Scattering is
also tissue-dependent, skin scatters less than bone and the scattering of the skull is dependent

22



on the level of mineralization [166]. As detailed in the wide-field imaging chapter, another
factor limiting blue light penetration in tissue is absorption by hemoglobin. All-in-all red light
penetrates deeper into the brain and can enable also non-invasive stimulation experiments
through the intact skull.

Tissue damage is reduced in red light compared to blue. Shorter wavelengths are more
energetic than long ones and when absorbed are more likely to induce phototoxic effects
[167]. Red and infrared light, on the other hand, induce tissue heating which may lead to
cell death. Both in the case of red and blue light, adopting pulsed stimulation schemes helps
mitigate these issues [168]. Another advantage of using red light is that the mouse retina is
dominated by rods and light sensitivity in the red spectrum is two orders of magnitude lower
compared to the blue [169].

Several opsins have been put forward for optogenetic applications in the red, ReaChr [170],
ChrimsonR [171], C1V1[172] representing some of the more popular variants. ChrimsonR
induces strong neuronal responses around 630nm in Drosophila though responses can be
elicited at wavelengths as long as 720nm (with higher light intensity). CrimsonR presents
intermediate activation kinetics enabling modulation of stimulation pulses at around 20 Hz
which makes it suitable for the study of a large spectrum of neuronal subtypes [171]. A strong
motivation for using red-shifted optogenetic actuators is the potential of coexpressing another
opsin for the stimulation of two neuronal populations, or a calcium indicator for all-optical
input/output experiments. In cortical mouse brain slices, ChrimsonR induced spikes only
after irradiation with blue light above 0.5 mW, and this enabled two neuronal populations to
be driven with blue and red light respectively [171].

Optogenetics can be used for the optical dissection of neuronal circuits in the intact brain
in vivo and for establishing the roles of distinct neuronal populations. On the microscopic
scale, the application of optogenetics in vivo in rodents has led to an increased understanding
of the mechanisms underpinning sensory perception, motor functions, memory formation,
and behavior [173]. While the stimulation of neurons can be done with electrodes or
magnetic fields, optogenetics is unique in that it also enables the inhibition of entire neuronal
populations. Through optogenetic stimulation and inhibition, it is possible to disentangle the
identity of cells that are sufficient or necessary for certain behaviors [174].

Whole-brain connectomics also benefited from advances in optogenetics and imaging
technology. Optogenetics allows direct brain stimulation without going through the spinal or
thalamic relays of natural sensory pathways. Structural brain connectivity describes the hard-
wiring of the brain [2] and functional connectivity denotes the temporally correlated neuronal
activity of the whole cortex. More recently, a third type of connectivity has been described:
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effective connectivity. Effective connectivity lies between structural connectivity and FC and
reveals the influence that one region can have on other brain areas [14,175]. Stimulating
brain regions directly, enabled effective connectivity to be studied in vivo. Asymmetries in
connection strength between two regions might be masked by network-wide synchronization
but are revealed with the help of direct brain stimulation using TMS [18] or direct electrical
stimulation with miniaturized electrodes [176].

Optogenetics can improve on these stimulation strategies by allowing genetically defined
neuronal populations to be targeted. Transgenic mice expressing ChR2 under Thy1 promoter
control were investigated with wide-field optical hemodynamic imaging and the responses to
optogenetic stimulation were recorded and analyzed to produce maps of effective connectivity
[177].

An exciting area of research involves bringing together our knowledge of healthy brain
connectivity patterns with the ability to directly manipulate the activity of extended neuronal
networks with optogenetics. It was shown that slow waves during sleep are impaired in
patients and mouse models of Alzheimer’s disease and this cortical rhythm could be restored
by enhancing GABAergic inhibition. Furthermore, restoring the healthy activity patterns was
shown to lower the amyloid burden in the cortex [150].

Slow waves can also be initiated by optogenetic stimulation of ChR2 and it was shown
that this less invasive method applied in mouse models was effective in preventing calcium
overload and plaque deposition [178].

Additionally, optogenetics enables fast interventions which are impossible to achieve by
chemical methods and neuronal inhibition which cannot be carried out through electrical
interventions. In a closed-loop system of optogenetic inhibition, seizures were forecast
based on local electrical activity and optogenetic inhibition of these regions was effective
in preventing generalized epileptic states [10]. Such examples underline the prospects of
forcing transitions from pathological to healthy brain states and offer great promise for the
treatment of psychiatric and neurologic diseases.
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2.4 Functional brain states
The simplest states available to biological systems are activity and rest. These can be viewed
on-off states and can be observed in simple organisms such as algae as a response to sunlight.
Mammals have evolved to be able to function in a wide range of environmental conditions. As
a consequence, they evolved more complex neuronal networks and a broader range of brain
states [179]. Generally, functional brain states refer to distinct and specific characteristics
of the spatiotemporal dynamics of both ongoing, spontaneous activity and stimulus-evoked
activity. Traditionally brain states were linked to vigilance states like wakefulness, sleep, and
anesthesia. These terms have strong functional significance as they indicate the broad range
of behavior that can be expected from subjects when their brains are in the configuration that
is underlying one of these vigilance states. Because not all brain states result in observable
behavioral changes, a clear distinction was made between states of vigilance and functional
brain states [4]. A more concrete definition of brain states is needed to make progress in their
characterization.

A modern definition of brain states that stems from the field of computational neuros-
cience, postulates that brain states “consist of continuously evolving dynamics of widespread
networks that are characterized by condition-dependent self-organization, going through
stable, quasi-stable, high or low activities, and transient arrangements” [11]. This definition
will allow us to make progress in describing and categorizing brain states provided that we
figure out how to best capture and model their dynamic features [180].

It follows that brain states are characterized by high dimensionality. Functional brain
states can be visualized as points in a high-dimensional space where the coordinates represent
groups of neurons and their levels of activation. When observed for longer periods, single
points in this parameter space form clusters that represent general brain states. [4].

Another feature of brain states refers to their continuous evolution. Brain states are
inherently dynamic showing discrete or continuous evolution towards related or different
states. Discrete shifts could be represented by transitions from REM to non-REM state while
continuous changes in the pupil diameter could indicate a progressive change in the level of
alertness [11,181].

Functional states can vary without an obvious external manifestation. An example can
be found in the pathological condition known as “locked-in syndrome”, where subjects are
immobilized but the brain is capable of wake-sleep transitions which are not immediately
obvious to the observer. However, substantial changes in observed behavior have their causal
roots in evolving brain states [4]. It would be desirable to identify the state of the brain based
on measurements of brain activity which are independent of externally observable behavioral
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changes.
Finally, spontaneous variation in the activity of brain networks can give rise to substates

which greatly increases the state space for neuroscientific study. A universally accepted
taxonomy of brain states is not available at the moment and this is partly due to the difficulty
in defining substates and closely related brain states in a clear and workable manner. Thus, in
the next section, the focus will be placed on a limited number of clearly defined brain states.

An interesting point to consider is the necessary spatial and temporal resolution needed
to adequately characterize the complex dynamics which give rise to functional states. Recent
data from the field of perception encoding suggests that the activation of a single pyramidal
neuron in the barrel cortex of rodents can have a significant influence on the behavioral state
of the animal [182]. These findings suggest that it would be desirable to record the activity
of all neurons in the brain network with millisecond resolution. As discussed in the previous
chapters, both molecular sensors of neuronal activity and imaging hardware impose limits
on the spatio-temporal resolution of functional brain recordings. Therefore measuring and
statistically modeling numerous components of the brain network at multiple spatio-temporal
scales is seen as a practical approach to this problem.

In the next sections, I will address broad functional states which have been defined
starting from microscale or mesoscale recordings of brain activity and explore the relationship
between functional brain states and states of vigilance.

2.4.1 Functional states during wakefulness
Brain activity in awake, behaving animals is heterogeneous and highly context-dependent, yet
some overarching functional trends have been characterized. High-amplitude, low-frequency
fluctuations are typically observed when animals are quiet and immobile, while faster and
smaller amplitude activity is recorded during active periods. Transitions between these types
of cortical activity can occur in circumscribed regions or encompass the whole cortex [183].
Furthermore, it was shown that during wakefulness clusters of neurons can transition to
slow-wave activity [184]. These transitions in functional activity can occur on time scales
of milliseconds to seconds and this heterogeneity is also reflected in the observed effects of
cortical stimulation, manifesting through high intrasubjective variability of evoked cortical
responses[185].

Cortical activity emerges from the interactions between firing patterns of individual
cells and can be described across wide temporal and spatial scales. Consequently, different
neurorecording modalities offer different perspectives on the functional organization of cor-
tical activity during the awake state. In the following, these different descriptions will be
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explored to achieve a multi-level overview of the dynamic phenomena.
Intracellular cortical neuronal recordings suggest that, during wakefulness, neurons are

in a predominantly depolarized state [186]. High levels of neuronal excitability lead to sparse
firing rates and complex network configurations[6]. When the electrical activity of multiple
neurons is recorded during wakefulness their firing patterns tend to be desynchronized.
Contrasting with sleep and anesthesia where APs are tightly bundled in periods of high
synchrony [187].

The hallmark of awake brain activity in EEG is represented by high-frequency cortical
rhythms. Wakefulness is described as a state of global neocortical desynchronization, dom-
inated by low-voltage, high-frequency activity. The gamma oscillation is defined as having
a frequency greater than 30 Hz and is closely associated with active information processing.
This type of electrical signal can be observed in the sensorimotor cortex during finger move-
ments and the occipital lobe when subjects have their eyes open and process visual stimuli.
This cortical rhythm is usually short-lived, present in bursts that can last several seconds, and
coexists with lower-frequency oscillations [188].

The coexistence of different frequency components in the same brain region means that
higher frequency oscillations ‘ride’ on top of lower frequency ones. Neuronal spikes need to
be precisely timed to ensure an efficient exchange of information between distantly located
neurons. Neuronal oscillations can be conceptualized as windows for potential neuronal
communication because they not only influence spiking events but also neuronal sensitivity
to incoming electrical signals [189,190]. Given that transmission delays in the brain are
far shorter than the window of opportunity represented by the oscillation cycle length, it
is likely that the reception and sending of information happen within one excitability peak.
This hypothesis is called “communication through coherence” and there is information to
suggest that during the awake periods, the brain can process complex tasks by maximizing
the opportunities for information transfer between functionally connected groups of neurons
[191].

The brain at rest, i.e. when not engaged in an obvious task shows highly correlated
activity between functionally related regions of the left and right hemispheres [13,192]). The
presence of this structured activity supports the idea that the mammal brain reverts to default
modes of information processing when not actively interacting with the environment. The
waxing and waning activity patterns during the awake state exhibit rich temporal dynamics
and are organized in well-defined functional networks [193,194]. This observation comes
from the field of fMRI and was later confirmed by EEG in the theta and alpha frequency
bands (4-12 Hz) [195,196].
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These spontaneous functional connectivity patterns are also present during light seda-
tion [197–199]. During sedation, brain activity is chemically modulated but the underlying
structural connections (i.e. axons, dendrites, larger nerve tracts) remain unchanged. Con-
sequently, it was suggested that the persistence of complex activity during sedation was a
reflection of spontaneous semi-random circulation of neural signals through a network with a
fixed correlation structure. In silico modeling of spontaneous activity seemed to support this
view as it was found that passing noisy reverberations through a whole-brain model produced
activation patterns that matched experimental data acquired in periods when no obvious tasks
were performed [181,200].

The most prominent of the spontaneous activity networks in humans [13,201,202] and
non-human primates [203–205] is the default mode network (DMN). The DMN consists of
brain regions that are more activated during rest periods than while a task is being performed.
A correspondent of this network has also been described in rats [198] and mice [206–208].

Abnormal DMN connectivity has been observed in Alzheimer’s disease, Parkinson’s
disease, depression, schizophrenia, epilepsy, and drug addiction[209–214]. The presence of
this network in other mammal species allows for a mechanistic investigation of these aberrant
findings using all the genetic tools of modern neuroscience. The translational relevance of
these findings from rodents is however unclear given the diminished complexity of the DMN
in these animals.

The existence of this network across species also suggests that baseline brain activity
might have an important physiological role in ensuring the integrity of cortical circuits and
in processing streams of information that do not originate in the outside world. There is
increasing evidence suggesting compartmentalized spontaneous activity is not an exclusive
hallmark of awake brain activity as most animal studies examine the DMN in sedated or even
anesthetized conditions [198].

In humans, the DMN has been associated with self-referential neural processes and
inward-directed lines of thought. It has been observed that external stimuli were leading to
a decrease in the activity of the DMN while inward-oriented activity led to an increase in
default activity. This explanation seems less likely in rodents, such that we must consider
other possible functions of compartmentalized network activity such as the carrying out of
housekeeping tasks or that this type of activity can arise from spontaneous fluctuations in
strongly interconnected networks as suggested by computational studies [181].
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2.4.2 The persistent brain state during sedation
The term sedation refers to a state of diminished vigilance in which subjects show responses
to strong stimulation but are otherwise motionless and appear to be in a sleep-like state
[215]. This vigilance state is typically induced by low doses of gamma-Aminobutyric acid
(GABAA) receptor agonists (for example isoflurane) [216], and alpha-adrenergic receptor
agonists (for example medetomidine) [198].

Medetomidine belongs to the imidazole subgroup of alpha-adrenergic receptor agonists
which is used in clinics for the sedation of ventilated patients as well as for sedating pediatric
and adult patients in preparation for medical procedures and imaging studies [217]. It
induces an α2 receptor-mediated alteration of arousal by mainly targeting neurons in the locus
coeruleus [218] causing hyperpolarization through increased K+ efflux, inhibition of voltage-
sensitive Ca2+ channels, and a reduction of norepinephrine release in these neurons [219].
During wakefulness, the locus coeruleus inhibits the preoptic area of the hypothalamus which
would normally have an inhibitory effect on the ascending arousal centers, thus promoting
the awake state. The hyperpolarization of locus coeruleus neurons by medetomidine also
causes an activation of the preoptic area, promoting a state which is behaviourally similar to
non-REM sleep [216].

During sedation, intracellular recordings show power spectra that closely approximate
those of awake animals, with persistently high levels of neuronal excitability [186]. In
mesoscale recordings, during sedation, compartmentalized spontaneous network activity is
present. In the following, the term ‘persistent brain state’ will be used to denote the presence
of compartmentalized mesoscale network activity.

EEG shows brain activity under medetomidine is dominated by sleep spindles. Spindles
are short bursts of 11-14 Hz [220,221] and are thought to disrupt sensory information
processing in the brain and prevent the return to the state of arousal [221]. These features
led researchers to use medetomidine as a means of achieving “pharmacological sleep”, a
state useful for mechanistically studying the typical oscillations of stage 2 sleep. Compared
to propofol which represents GABA-ergic induced unconsciousness, medetomidine showed
less power and coherence in the Alpha band. Similarly, lower amplitude slow oscillations
were observed in medetomidine compared to propofol [220].

The medetomidine induced persistent brain state is employed in neuroimaging studies
because it preserves patterns of activation that are similar to the awake state [222,223],
though less pronounced negative correlations between cortical areas were observed under
medetomidine with respect to awake recordings [224]. It was observed in mice that under
medetomidine functional connections between the DMN and thalamic networks were pre-
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served while isoflurane activity failed to show these subcortical connections [225]. This
suggests that medetomidine may have an advantage over other anesthetics in preserving the
activity of subcortical networks.

Recordings in the persistent state under medetomidine have also been used for mapping
the cortical and subcortical representation of somatosensory stimuli with fMRI [80,226,227].
The results from these fMRI studies were confirmed using wide-field imaging in transgenic
GCaMP6s mice [148]. Responses to stimulation were localized to specific brain networks
and this differed when compared to the global responses recorded under anesthesia [91].

Experiments in a sedation are lower in complexity compared with awake experiments
where brain reactions are largely dependent on the behavioral context which has to be
laboriously monitored and characterized over the entire duration of the imaging session.
Furthermore, sedation enables complex imaging experiments to be carried out with as little
stress for non-human subjects as possible. Sedation however is not a perfect substitute
for awake experiments since the introduction of a pharmacological agent will modulate
the interactions between brain networks to some degree. It was demonstrated that awake,
spontaneous brain activity differs from the anesthetized in that fewer negative correlations
between related brain regions were present [199]. While urethane and propofol are best suited
for preserving functional brain connectivity, the necessity for intravenous administration of
propofol and terminal experiments in the case of urethane make these two options more
difficult to apply in vivo in small rodents [224].

It should also be stressed that medetomidine sedation is also not a substitute for investig-
ating all aspects of natural sleep since no combination of drugs is currently able to recreate
the complex brain dynamics of sleeping animals [228]. Additionally, while brain activation
patterns in fMRI might look similar in sedation and awake states, fMRI only has access to
lower frequency brain activation patterns. For investigative techniques with high sampling
rates like EEG, the absence of high-frequency rhythms like the Gamma oscillation represents
a major point of difference between the awake and the sedated states [220].

2.4.3 The slow-wave state during anesthesia
Anesthesia is a drug-induced reversible state characterized by unconsciousness, analgesia
(lack of pain perception), akinesia (loss of motor functions), and amnesia (loss of
memory)[228]. The first drug found to induce these complex effects on the human brain was
diethyl ether, (C2H5)2O, a highly volatile, sweet-smelling compound. The potential of this
substance for enabling complex surgeries was recognized by dentist William T. Morton and
chemist Charles Jackson in the middle of the 19th century. The term anesthesia was coined
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by Oliver Wendel Holmes, a professor at the Harward medical school, and stems from the
Greek term anaisthesia which can be translated as lack of sensation [229].

Ether was so successful in rendering patients insensate, that modern variants of this sub-
stance like sevoflurane and isoflurane are still used in selected patients. Modern anesthesia
protocols include injectable agents like propofol in combination with opioid analgesics and
muscle relaxants to achieve unconsciousness, analgesia, akinesia, and amnesia [216]. Inhal-
ation anesthetics like isoflurane exhibit all the effects above without the need for adjuvant
medication [230]. Consequently, these inhalant drugs are used in neuroscience to investigate
brain dynamics in the anesthetized state [230,231].

Inhalant anesthetics from the ether family, like isoflurane, cause increased neuronal in-
hibition and decreased synaptic excitability ultimately leading to a state of increased neuronal
hyperpolarization [232]. These drugs bind to target receptors in the neuronal membrane to act
as allosteric modulators of synaptic transmission. Isoflurane increases GABA-A and Glycine
receptor activity [233] and reduces the activity of glutamate NMDA (N-methyl-D-aspartate)
receptors [234,235]. Isoflurane also elicits a modulatory effect on ion flow through the
membrane inhibiting voltage-gated sodium [236] and potassium [237] channels while aug-
menting the activity of two-pore potassium channels [238]. Long-term potentiation refers to
the ‘strengthening’ of a synapse due to recent patterns of activity and has been proposed as
an essential process underlying memory formation [239]. The amnesic effects of isoflurane
could be mediated by a disruption in long-term potentiation and neuronal ability to store
information [240].

These complex effects on multiple molecular targets cause up-down transitions in neuronal
excitability [230]. Intracellular electrophysiology in cats revealed slow oscillations <1 Hz in
pyramidal neurons during non-REM sleep and quiet wakefulness. These oscillations consist
of a hyperpolarized down state lasting several hundred ms in which the neuron remains in a
quiescent state followed by an up state in which neurons fire multiple action potentials [241].
During up states, the thalamocortical system shows remarkable activation, with neurons firing
at higher rates than in the awake state [242]. Slow waves are observed in thalamocortical
networks, and it was shown that the cortex alone is capable of sustaining this oscillation if
thalamocortical connections are severed [243–245].

In humans, EEG reveals that a “spectral slowing” occurs when inhalant anesthetics are
introduced [246]. The fast rhythms associated with the human awake state are replaced
by alpha oscillations with a coherence peak at 10 Hz, delta oscillations with maximum
coherence at 4.9 Hz, and slow oscillations. Additionally, alpha oscillations seemed to
shift from predominantly occipital locations during the awake state to the frontal lobe after
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sevoflurane-induced loss of responsiveness. This phenomenon which has also been described
for propofol is referred to as “anteriorization” [247].

These EEG changes were also confirmed in rats which indicates rodents may be useful
model animals for systems-level studies of anesthesia-induced brain oscillations. This rodent
model enables the mechanistic investigation of slower cortical rhythms and their possible
role in the loss of consciousness. In rats, the observed oscillations were dependent on the
anesthetic dose. At 1.6% sevoflurane (during induction), increased beta/low gamma activity
in the prefrontal cortex, the parietal cortex, and central thalamus was associated with increased
motor activity. At anesthetic gas concentrations between 1.6 and 2.8%, there was a shift of
the EEG traces to the slow-delta spectral frequencies, and a motionless state accompanied
by a loss of muscle tonus was observed. From 2.2% to 2.8% burst suppression (alternating
high-frequency activity with isoelectric periods) was present. These findings seem to suggest
that slow cortical rhythms together with a marked decrease in fast oscillatory activity may be
the hallmark of EEG activity under anesthesia.

EEG is well suited to investigate electrophysiological events on a systems level. The
spatial discrimination of EEG in rodents is, however, relatively low. In humans, a larger
number of electrodes can be fitted on the scalp and provide more detail about the spatial
characteristics of slow cortical rhythms. In humans, during non-REM sleep, EEG was used
to track the systems-level spatio-temporal features of the slow oscillation. It was demonstrated
that slow oscillations have a distinct point of origin and spread outward from this source with
a speed of 1.2-7 m/sec to eventually encompass the entire cortex [248]. For this reason, the
slow oscillation is also known as slow-wave.

Notably, slow waves are also observed during anesthesia [241,249–252] and can be
distinguished from sleep slow waves by longer off periods and likely place of origin in the
cortex [253].

A mechanistic description of cortical slow waves necessitates cell-type-specific manipu-
lations and a fast readout of brain activity for which the mouse is well suited. Additionally,
repeatable slow waves can be initiated in the desired cortical areas by using brief somato-
sensory stimulation [254,255]. Optogenetic stimulations have also been shown to trigger
slow waves under isoflurane anesthesia in mice.

The role of the thalamus in the generation of slow waves is unclear. After stimulation of
the dorsolateral geniculate thalamic nucleus, a slow wave was first recorded in the occipital
cortex and arrived in the frontal cortex 80 ms and in the thalamus 190 ms later. This would
seem to suggest that the origin of slow waves is in the cortex rather than in the thalamus, a
finding also supported by electrical recordings [244,252]. It could be shown that slow waves
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have a refractory period during which optogenetic and somatosensory stimulation failed to
trigger any functional cortical responses [252].

The high degree of synchrony between spatially and functionally distinct brain regions
may suggest that deeper structures are involved in slow-wave initiation and propagation. At-
tention has been focused recently on the claustrum, a thin sheet-like island of gray matter
located between the insular cortex and the striatum. The claustrum is comprised of large
neurons which send fibers to all cortical regions [256,257] and for this reason, it was hypo-
thesized to play a role in the synchronization of global cortical events such as slow waves.
Channelrhodopsin2 was expressed in excitatory claustral neurons and after optogenetic stim-
ulation, it was revealed that cortical inhibitory interneurons were primarily activated. As
a result, after brief optogenetic stimulation of claustral neurons, a downstate ensued in the
cortex [258].

The speed of cortical slow waves was measured in mice at around 40 mm/sec [252]. This
may indicate that slow-wave dynamics under anesthesia differ from sleep where, at least in
humans, slow waves propagate much faster [248].

Results from mesoscale and macroscale imaging studies appear less clear than those from
implanted electrodes and fiber-photometry. Previous research into functional connectivity
(FC) of the brain in deep anesthesia using fMRI in humans and non-human primates reported
a reduction in functional connectivity [259,260]. Others reported a loss in functional se-
gregation during anesthesia and global synchronized cortical activity [91,197,261]. A study
into transitions from light sedation to anesthesia using fMRI in mice reported a reduction in
homotopic correlations as well as cortical functional network segregation levels [262]. These
findings seem contradictory since the loss of functional segregation would lead to global
activity patterns and these would produce an increase in homotopic correlations.

Functional connectivity during the awake and anesthetized states was investigated with
wide-field optical data collected in transgenic GCaMP6s mice. After the removal of the first
three principal components from imaging data depicting slow waves, the resulting correlation
structure resembled that obtained from awake recordings. Of course, structural connectivity
does not change with the introduction of anesthesia possibly explaining the presence of
activation patterns similar to the awake state [149]. It was also shown that, in awake mice,
cortical waves <1Hz, as well as delta waves, travel from back-to-front and from front-to-back
at different time scales, and the direction of propagation is reversed during anesthesia as
compared with the awake brain. These reversals in propagation trajectory were not observed
in higher frequency ranges [147].

Global slow waves were identified in fMRI datasets from rats [91] and mice [263] with
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the help of ‘ground truth’ fiber-photometry fluorescent calcium indicator recordings. The
fluorescence data was used as a regressor in a general linear model for the analysis of fMRI
data and revealed pancortical increases in cerebral flow as a delayed response to calcium slow
waves.

The prevalence of slower cortical rhythms during anesthesia could be associated with dis-
rupted cortical information flow caused by oscillatory coherence in thalamocortical networks.
Furthermore, cortical slow waves contribute to the fragmentation of cortical activation pat-
terns [264]. The high degree of similarity between cortical rhythms observed under propofol
and sevoflurane suggests that the modulation of GABA-ergic transmission could be an essen-
tial mechanism for explaining the loss of consciousness under sevoflurane [232,265]. Cortical
slow waves are present both during non-REM sleep and anesthesia and both of these are states
that do not allow conscious experiences to form. Furthermore, as outlined above, slow waves
represent stereotypical and global brain responses to heterogeneous somatosensory and op-
togenetic stimulation. Conscious brain responses to stimuli would be expected to have high
degrees of complexity. It is for these reasons that cortical slow waves have been linked to
unconscious brain states.

Most of the data on slow waves comes from electrophysiology and fMRI studies. Elec-
trophysiology is limited in the spatial resolution that is attainable while fMRI represents an
indirect method for recording neuronal activity. For this reason, data from recent publications
on functional connectivity contains contradictory results. It was reasoned that calcium fluor-
escence neuronal recordings from the entire mouse cortex will allow identifying the precise
patterns of neuronal activity responsible for transitions from the persistent to the slow-wave
state.

2.4.4 Dissociation-unconsciousness
Dissociation refers to an altered behavioral state in which the unitary nature of experience
is disrupted. There is a disconnection between thoughts, feelings, memories, sensory ex-
periences, and the sense of self. Most prominently, stimuli are perceived but the affective
responses usually associated with them are absent, nociceptive stimuli, for example, are not
associated with the feeling of pain while visual or auditory stimuli can lead to hallucinations.
Dissociation can be the result of epileptic seizures, trauma, or the use of dissociative drugs
like ketamine [266]. There is mounting evidence that specific neuronal activation patterns
underlie the complex behavioral features of dissociation hinting at a dissociated brain state
[139]. During this work, spontaneous activity and responses to stimulation under ketamine
will be investigated in an effort to strengthen these arguments with quantitative data. The
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concentration of ketamine used ensured a sedation-like state so the brain activity recorded
reflected both dissociation rhythms and ones more common in altered states of vigilance.

Ketamine is an arylcyclohexylamine that has found a wide range of uses in medicine
for its analgesic, hypnotic and dissociative properties [267]. In neuroscience, ketamine has
been used to study the dissociated state [139,268] and as a drug for the induction of auditory
and visual hallucinations in animal models of schizophrenia [269]. Its hallucinogenic and
dissociative properties also make it a popular recreational drug [270].

The principal molecular target of ketamine is the NMDA receptor, a major postsynaptic
binding site of glutamate. Ketamine blocks this receptor by binding to a subunit that is
different than the glutamate binding site. It has been shown that GABAergic interneurons are
targeted first and their activity is diminished. Because these interneurons elicit an inhibitory
effect on cortical pyramidal cells, the net effect of ketamine is the disinhibition of pyramidal
neurons throughout cortical and subcortical areas [268]. It has also been shown that ketamine
increases cortical dopamine levels and this could also be reflected in increased gamma activity
[271]. This disinhibits tightly controlled spatial and temporal activation patterns that usually
govern the awake state and could play a fundamental role in dissociation and the generation
of hallucinations [216]. Analgesic effects are most likely generated through the inhibition of
NMDA receptors in the spinal cord and the dissociative properties of ketamine [272].

The pharmacological properties of ketamine are directly reflected in the electrical patterns
generated by the brain in drug-induced dissociation. Contrary to most other medications used
in anesthesia, ketamine causes an activation of the EEG, featuring prominent oscillations in
the Gamma range [273]. The increased power in this frequency band is most likely caused by
the increased ketamine efficiency in blocking NMDA receptors on fast-spiking interneurons
compared to the same receptors on pyramidal cells [274]. Gamma oscillations can occur
in bursts or in a stable state accompanied by beta waves. The coherence profile gamma
activity may reflect disruptions in neuronal activity which could play a role in generating
hallucinations, however, it is not clear whether it plays a role in causing unconsciousness. In
humans, an increase in coherent theta oscillations and reduced alpha and gamma oscillations
were also present [275]. In rats, gamma activity was increased by 200-400% [276] in the
prefrontal cortex compared to the awake state while power in other bands did not change
significantly [277]. Slow oscillations were also present in alternation with faster rhythms,
and this so-called “saw tooth” pattern was associated with increased doses of ketamine [275].

In mice, it was possible to mechanistically study the molecular underpinnings of brain
rhythms under ketamine. With the help of wide-field GCaMP6 imaging, a 1-3 Hz rhythm
was observed in the retrosplenial cortex after the administration of 50 mg/kg of ketamine.
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Furthermore, this brain rhythm was confined to layer 5 of the cortex and was potentiated
rather than inhibited by optogenetic inactivation of thalamic nuclei [139]. This suggests that
the cortex rather than the thalamus is responsible for initiating and sustaining this oscillation.
It was observed that hyperpolarization-activated cyclic-nucleotide-gated potassium channel 1
(HCN1) was highly expressed in the retrosplenial cortex and its local optogenetic inactivation
in mice led to diminished 1-3 Hz retrosplenial rhythm after ketamine administration.

When this activity was present mice showed dissociation-like behavior with preserved
paw-lick reflexes and diminished jump-to-escape behavior [139]. This indicates that, in this
state, the sensory and motor pathways in these mice were preserved, however, the animals
failed to see the toe pinch as a negative stimulation, which is consistent with dissociated
states in humans. To test whether the layer five 1-3 Hz oscillation played a causal role in
dissociation, both inhibitory and excitatory opsins were expressed in this region and upon
optogenetic stimulation, affective paw-licking and escape behavior were reduced [139].

In a patient suffering from epileptic seizures with dissociation-like auras, a 3.4 Hz oscilla-
tion was identified in the deep posteromedial cortex just before the onset of ictal activity. The
retrosplenial cortex in mice represents the analog of the human posteromedial area. Electrical
stimulation of this area in the patient via the implanted electrodes produced a dissociation-like
state [139].

These findings offer the exciting prospect of linking a circumscribed brain rhythm to
psychiatric and drug-induced dissociative states. However, this finding might be a part of
a more complex picture as suggested by the heterogeneity of EEG brain activity recorded
in this state. Particularly, symptoms of dissociation seemed to be associated with decreases
in alpha-band activity in EEG rather than an increase in delta oscillations [278,279]. The
ketamine dose administered by Vesuna and colleagues in mice (50 mg/kg) is equivalent to
2-3 mg in human subjects and it is well documented that dissociation occurs in humans even
at doses lower than 1 mg/kg in humans. The higher dose in mice might cause changes in the
animal’s state of arousal and these need to be taken into account in the translation of these
observations to humans. More data needs to be generated, both in human and non-human
subjects to strengthen the case for the retrosplenial rhythm as a causal driver for behavioral
aspects present in dissociation [279].

Comparative studies between dissociation-unconsciousness and persistent/slow-wave
activity will shed light on the significance of the characteristic features of functional cortical
activity described above.
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2.4.5 Quantifying and modeling functional brain states
In the sections above imaging and electrophysiological findings thought to underpin functional
brain states have been presented. Different research communities have their specific way of
describing the characteristic features of functional brain activity in a particular state. The
difference in metrics is brought about by the physical limitations of the recording system
used.

It is also apparent that none of the phenomena described above is unique to a particular
functional state i.e. in the awake condition, in which the persistent or desynchronized
brain states occur, small clusters of the cortex can transition into a slow-wave brain state
[184]. The gamma rhythm is subdued in anesthesia, except under ketamine where it is more
prominent even than in the awake state and compartmentalized network dynamics have been
observed both in the awake state and in sedation[275]. There is a need for creating theoretical
frameworks and empirical strategies that allow for common concepts to emerge that will help
to better define brain states.

Furthermore, the brain states described above are textbook examples of brain activity
from wakefulness and profound anesthesia. Both in medical practice and in neuroscience
experiments, researchers are confronted with a continuum of brain states that often occupy
parameter spaces different than those of the classic states described above. The administration
of a psychoactive drug can be done in a gradually increasing concentration and it goes to reason
that the observed brain activation patterns would change in a dose-dependent manner, in this
case, the transitions from the persistent to the slow-waves states have proven very difficult to
model. The oldest anesthetic, ether, had been used as a recreational drug inhaled in small
concentrations for its pleasure-inducing properties before medical professionals realized that
higher doses would render subjects totally insensate. Describing the dose-dependent impact
of psychoactive drugs on the brain network is not trivial and will require the quantification
of brain states and transitions.

Some of the earliest efforts to differentiate between conscious and non-conscious brain
states rely on EEG indices which are based on signal entropy [280] or entail time-domain,
frequency-domain, and bispectral analysis [281,282]. Most of these indices lack a theoretical
foundation or can be loosely associated with integration theories of brain function.

A solid theoretical foundation is needed in order to accurately account for the heterogen-
eous brain activation patterns and dynamics observed in experimental neuroimaging data.
In this endeavor, one can find useful approaches in computational neuroscience. Informa-
tion processing over time and space would have to be captured accurately by computational
routines in order to reverse engineer the brain and discover how behaviors are generated
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[283].
Most in silico brain models include structural and functional information. A feature

of evolving brain states is that they represent functional configurations of a network that
is structurally invariant on time scales relevant to most neuroscience experiments. Not all
possible structural connections are used all the time, so the anatomical data is enriched with
functional information to reveal useful parcellations of the brain that will help simplify the
computational models [284]. Structural/functional whole-brain models aim to explain the
most salient functional features of network activity by optimizing coupling parameters in the
structural data. This approach has been successful in modeling spontaneous brain activity
recorded with fMRI [285].

Another category of theories seeking to explain brain states is based on the importance
of information integration in the brain [282]. Metastability is relevant to modeling brain
dynamics and refers to the balance between segregation and integration. On the one hand,
specialized brain networks need to carry out their functions irrespective of interference while
producing higher-order content is usually achieved by the synchronization and coordination
with other functional areas [286].

Metastability can be conceptualized as a state that lies outside of the natural equilibrium
of the system but persists over long time periods [287]. If we imagine the cortical network
elements as players in an adversarial game, a metastable state refers to an extended period
of winnerless competition [288]. Practically, the phase of brain signals coming from net-
work elements can be leveraged to calculate the synchronizations between brain regions and
produce “probabilistic metastable substrates”. This method called “leading eigenvector dy-
namics analysis” (LEiDA) has been proposed for characterizing dynamical brain states [289]
and is capable of differentiating between sleep [180], awake activity [289], task processing
[290], and hallucinatory states [291]. Models based on metastability offer good perspectives
for describing and capturing functional features that may indicate transitions between brain
states.

Recently, transitions between sleep and wakefulness have been modeled with LEiDA, and
interventions were identified which could force the network to transition between sleep and
wakefulness. Despite these encouraging results, most current brain models are falling short
of predicting such interventions. One limitation of these computational approaches when
modeling the human brain is that they have low spatial and temporal resolutions.

Another theoretical framework based on information integration has been put forward as
a way of explaining how conscious perception is generated. In this framework, information is
defined as “a reduction of uncertainty among a number of alternative outcomes when one of
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them occurs” [292]. The information integration theory (IIT) claims that the architecture of
an information processing system is the decisive factor in its ability to integrate information
[293,294].

To illustrate this the authors consider a digital camera sensor that has 1 million individual
photodiodes and can differentiate between 21 000 000 states (each pixel can have only one
of 2 states: light present vs. absent). However, in this system, the photodiodes are wired in
parallel, not integrating any information. The camera sensor could thus function if all diodes
were mounted individually on separate chips instead of on the same board.

The neuronal network is highly interconnected and capable of information integration.
For this reason, the spectrum of states in a neuronal network cannot be subdivided into the
set of states available in individual neurons. According to G. Tononi, any system that has a
large repertoire of states (i.e. information) and cannot be subdivided into causally independ-
ent subcomponents would be capable of generating experiences. Practically, the amount of
integrated information called phi can be calculated by finding the minimal information bipar-
tition. Next, the number of bits of information flowing between the partitions is calculated
and this represents the phi index [295]. This brute-force approach requires a search through
all possible network bipartitions and allows the calculation of phi for small networks under
200-300 nodes but for larger assemblies, the calculation time rises super-exponentially with
network size and is impractical[296].

The information integration theory can be applied for the assessment of any information
processing system be it biological or synthetic but the mathematical structure of IIT has been
challenged [297,298] and the explanatory power of IIT remains controversial [297,299].

IIT predicts that brain responses to external stimuli should be both widespread and
differentiated. This prediction led to the development of the perturbation complexity index
(PCI) which involves stimulating the brain directly with transcranial magnetic stimulation
and reading out responses with EEG. PCI is a surrogate measure of effective connectivity.

In EEG sources of activation are identified and binarized to form a spatial distribution
of activated brain regions. These images of the cortex are then compressed with the help
of the Lempel-Ziv algorithm which is then normalized by the source entropy to calculate
the PCI. PCI is sensitive to both integration, captured by local versus global responses, and
differentiation evident in complex versus stereotypical responses. PCI was able to differen-
tiate between wakefulness, non-REM sleep, and anesthesia. Furthermore, PCI proved useful
in pathological brain states showing high values in patients with locked-in syndrome, inter-
mediate values in minimally conscious patients, and low values in individuals in vegetative
states [300]. The estimation of brain EEG sources of activation is computationally expensive,
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thus PCI measurements needed to be carried out offline. Recently faster algorithms were
developed which enable PCI to be measured in near-real-time [301].

Topological complexity is increasingly used in brain imaging studies to assess brain
connectivity [302]. For topological complexity measurements, time-varying functional brain
recordings are converted into time-varying topological representations [303] in an effort to
capture the spatial and temporal scales of the observed phenomena. The inputs for this analysis
are represented by 2D images acquired over a set of time steps and aligned to a standard brain
map [304]. The activation function is maped to a 3D data structure for the purpose of
analyzing activation patterns brought about by somatosensory and visual stimulations. The
vascular pattern of superficial veins and arteries of the brain is highly variable between
subjects. Stimulation experiments in transgenic mice typically involve small cohorts thus a
robust approach to topological variability when assessing cortical responses to stimulation is
desired. This method was used to assess the complexity of evoked responses to stimulation.

Predicting how perturbations will influence the activity of functional cortical networks is
a long-standing goal in computational neuroscience. In physics, researchers study complex
dynamical systems by perturbing their components and observing the effects in order to infer
underlying mechanisms. Analogously to physics, it would be desirable for computational
neuroscience to make theoretical predictions that could be tested to confirm theories regarding
brain function.

Network models of the human brain usually rely on structural connectivity information
from diffusion MRI measurements which have a relatively high degree of uncertainty [305]
and functional data from human neuroimaging studies is usually acquired with EEG or fMRI
or a combination of both. These neurorecording methods lack information about the genetic
identity of the neurons which are contributing to signal fluctuations and fMRI signals do not
distinguish between excitatory and inhibitory activity. The uncertainty inherently present in
functional and structural imaging studies could propagate through to the models and affect
their accuracy.

More precise characterizations of brain structure and function can be achieved in rodent
models. Particularly, more functional data is needed on functional state transitions, for ex-
ample regarding the level of arousal. These functional datasets would benefit from structural
connectivity obtained for example by tissue clearing techniques [306,307] or annotated elec-
tron microscopy mouse brain datasets [308]. The entire arsenal of genetic manipulations
is available in mice and is already illuminating the neurocircuit origins of behavior [309].
Mouse brain models based on these rich datasets are coming online and their predictions are
being explored for the purpose of identifying interventions that will force transitions between
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brain states in health and disease [310].
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3
Materials and methods

3.1 Ethics statement
Animal experimentation: Animal husbandry and experimental manipulation were carried
out in accordance with protocols approved by the government of Upper Bavaria.

3.2 Mice
Mice were housed in specific pathogen-free units under a 12-hour light/dark cycle, and food
and water were provided ad libitum.

27 adult male B6 mice (>8 weeks old 30-40g) were used in this study. B6;CBA-
Tg(Camk2atTA)1Mmay/J mice were bred with B6;DBA-Tg(tetO-GCaMP6s) - 2Niell/J)
[124], genotyped for the GCaMP6s gene, and homozygous male mice were selected for
experiments. All GCaMP6s positive animals were generously provided by the A. Stroh
Lab (Univ. Mainz, Germany). 3 mice were used in fiber-photometry experiments. 6
mice underwent fMRI experiments: 3 were used for hind paw stimulation experiments
and 3 for hybrid optogenetic and fMRI experiments. 18 mice were utilized in wide-field
optical imaging experiments: 10 mice underwent viral injections for the expression of the
optogenetic actuator ChrimsonR (5 in the somatosensory cortex and 5 in the visual cortex)
and glass window implantation was carried out 4 weeks after injection. 5 mice underwent
glass window implantation only and received somatosensory and visual stimulation.
Immunohistochemistry was carried out on 3 animals. Indocyanine green (ICG) angiography
was performed on 3 animals.
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3.3 Surgical procedures

3.3.1 Intracranial injections
• 0.1 mg/kg buprenorphine was administered intraperitoneally 30 minutes before the

start of the surgical procedure.
• Isoflurane was used as an anesthetic agent. 3.5% iso. concentration was used for

induction and 1.5-2% for maintenance. Anesthesia depth was checked throughout the
procedure with toe pinch reflexes.

• Temperature regulation was achieved with an electrical heating mat. Body temperature
was maintained around 36.5°C.

• The cornea was hydrated with eye ointment (Bepanthen, Bayer).
• Mice were positioned in a stereotaxic frame, hair was removed and the skin was cleaned

with Betadine (Braun).
• Local skin and periosteum anesthesia was done with a subcutaneous, 50 microL,

lidocaine 2% (Braun) injection.
• A 7 mm incision was made with a scalpel, the fascia was pushed aside, and the skull

was cleared of tissue and passively dried for 3 minutes.
• A 400 µm in diameter burr hole was made with a dental drill.
• A 33 gauge, stainless steel injection cannula (Plastics One) was fastened to the stereo-

taxic arm and lowered about 1mm below the dura mater.
• 1 microL AAV solution was injected over a 7 min period using a syringe pump (PHD

22/2000, Harvard Apparatus).
• The cannula was kept in place 10 minutes after the injection to allow for enhanced

diffusion in the brain.
• Tissue glue (Vetbond, 3M) was used to seal the incision.
• Lidocaine 2% was applied to the skin for local postoperative pain relief.
• 5mg/kg Meloxicam (Metacam 2 mg/ml, Boehringer Ingelheim) was injected subcu-

taneously for systemic anti-inflammatory effect and pain relief.
• Mice were kept on a heated mat and monitored until they regained consciousness.
• A once-daily dose of 5mg/kg Meloxicam was administered subcutaneously for two

days after the procedure to provide postoperative analgesia.

3.3.2 Optical fiber implantation
After viral injection, the encoded proteins are allowed 4 to 8 weeks to express. The glass
fiber implantation procedure was carried out under isoflurane anesthesia.
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• 0.1 mg/kg buprenorphine was administered intraperitoneally 30 minutes before the
start of the surgical procedure.

• The surgery was conducted under isoflurane anesthesia. 3.5% isoflurane concentration
was used for induction and 1.5-2% for maintenance. Anesthesia depth was regularly
checked.

• Body temperature was maintained at around 36.5°C with an electrical heating mat and
drying out of the cornea was prevented through the use of eye ointment (Bepanthen,
Bayer).

• Mice were positioned in a stereotaxic device, after hair removal, the skin was cleaned
with Betadine (Braun) and 50 microL lidocaine 2% (Braun) were injected subcu-
taneously for additional skin and periosteum anesthesia.

• A 7x4 mm in diameter oval incision was made and the fascia and other organic tissue
is removed from the skull.

• A 2x2mm cranial window is made with the dental drill above the viral injection site
• A small groove is made with the dental drill caudally to the craniotomy to ensure that

the glass fiber can be lowered close to the cortex.
• A 400µm in diameter optical fiber with a 45° mirror tip is positioned above the dura

mater and covered with a drop of silicone gel (Kwik-Sil, World Precision Instruments).
This represents a transparent medium that covers the cannula tip.

• The cannula and the exposed skull are covered with dental cement and the skin is
secured to the edge of the dental cement with tissue adhesive (Vetbond, 3M)

• lidocaine 2% was applied to the skin to prevent postoperative pain.
• 5mg/kg Meloxicam (Metacam 2 mg/ml, Boehringer Ingelheim) were injected subcu-

taneously and the animals were allowed to recover on heated mats until conscious.
• 5mg/kg Meloxicam was administered subcutaneously once a day for two days to provide

postoperative analgesia.

3.3.3 Skull window implantation
Alternatively to the optical fiber implantation, a cranial window has to be implanted for
optical imaging. The cranial window implantation is carried out 4-8 weeks after intracranial
viral injection.

• 0.1 mg/kg buprenorphine was administered intraperitoneally 30 minutes before the
start of the surgical procedure.

• Isoflurane was used as an anesthetic agent. 3.5% iso. concentration was used for
induction and 1.5-2% for maintenance. Anesthesia depth was checked throughout the
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procedure with toe pinch reflexes.
• Temperature regulation was achieved with an electrical heating mat. Body temperature

was maintained around 36.5°C.
• The cornea was hydrated with eye ointment (Bepanthen, Bayer).
• Mice were positioned in a stereotaxic frame, hair was removed and the skin was cleaned

with Betadine (Braun).
• Local skin and periosteum anesthesia was done with a subcutaneous 50 microL lido-

caine 2% (Braun) injection.
• An 8x4 mm in diameter oval incision was made and the fascia and other organic tissue

is removed from the skull.
• The skull was gently rubbed with a brush and tin oxide (Sn2O) powder.
• To protect the grass window, a narrow stainless steel frame was glued in place.
• A 10 mm glass window (Labmaker) was glued onto the skull with transparent UV-

curing glue (Loctite 4305).
• The glue was slowly hardened over 10 min with 350 nm light from an LED.
• The skin is secured to the edge of the dental cement with tissue adhesive (Vetbond,

3M) and lidocaine 2% was applied to the skin to prevent postoperative pain.
• 5mg/kg Meloxicam (Metacam 2 mg/ml, Boehringer Ingelheim) were injected subcu-

taneously.
• Animals were allowed to recover on heated mats until spontaneous righting.
• Two doses of 5mg/kg Meloxicam were administered subcutaneously once a day for two

days to provide postoperative analgesia.

3.4 MRI imaging protocols
Imaging is carried out one week after optical fiber implantation. All MRI imaging was done
under isoflurane sedation.

Animal preparation:
• 3.5% iso. concentration was used for induction and 1-2% for maintenance.
• Body temperature was monitored and maintained at around 36.5°C with a heated water

system that is integrated into the MRI mouse holders.
• Breathing rate is monitored via an integrated pressure sensor
• Drying of the cornea was prevented through the use of eye ointment (Bepanthen, Bayer).
• Both resting-state and stimulated datasets were acquired. The stimulation was carried

out with subcutaneously implanted electrodes (15-sec stimulation blocks at 5Hz fre-
quency / at 1mA intensity) or with optogenetic laser pulses (50 ms pulses every 10
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s). The optogenetic stimulation was carried out with a fiber-photometry setup (Doric
Lenses).

• The maximum experiment duration including all preparation steps was 3 hours.
All fMRI data have been acquired using a Bruker Biospec 94/20 small animal MR system

(Bruker BioSpin MRI, Ettlingen, Germany) operating at 400 MHz (9.4 T) equipped with a
two-channel receive-transmit cryogenic phased array coil (Bruker BioSpin AG, Fällanden,
Switzerland).

MRI sequences:
Gradient Echo-Planar Imaging(GE-EPI): FOV = 20 × 13 mm2, MD = 96 × 64, yielding

a voxel dimension of 200 x 200 x 500 µm, flip angle (FA) = 90°, bandwidth = 350 kHz,
TR = 1000 ms, TE = 13 ms, NA = 1, yielding a temporal resolution of 1 s, with interleaved
acquisition of slices. The duration of the image time series was 6 min.

T2-TURBO-RARE: FOV = 20 × 16 mm2, MD = 250 × 200, yielding a voxel dimension
of 80 x 80 x 500 µm, flip angle (FA) = 90°, rare factor=8, bandwidth = 50 kHz, TR = 2500
ms, TE = 33 ms, NA = 2, with interleaved acquisition of slices.

3.5 Fiber photometry
Fiber photometry data was acquired with a fiber photometry setup consisting of a fiber
photometry console (D460-2002, Doric Lenses), a dual-channel LED driver (LED-2, Doric
Lenses), a blue fiber-coupled LED (CLED-465, Doric Lenses) for GCAMP excitation, a red
fiber-coupled LED (M625M2, Thorlabs) for ChrimsonR activation, a beamsplitter/combiner
(FMC5-E1(465-480)-F1(500-540)-E2(555-570) - F2(580-680), Doric Lenses and a New-
port visible femtowatt photoreceiver (NPM-2151-FOA-FC). Cannulas with a 45° mirror tip
were mounted above the cortex and directed light towards neurons expressing GCaMP and
ChrimsonR (MFC-400/430 -0.37 -6mm-ZF1-MA45). Fiber photometry data was recorded
at 1000Hz. Data was acquired symultaneously with fMRI, please see above for animal
preparation.
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3.6 Wide-field optical imaging setup

Figure 3.1: Widefield imaging setup and integrated stimulation devices. Schematic representation of the
widefield imaging setup. The vertical optical path was used for imaging GCaMP and the horizontal path
for hemodynamic imaging. Hemodynamic imaging was done in two configurations: C1 angiography after
intravenous injection of indocyanine green (ICG) micelles and illumination at 780 nm and C2 reflectance
imaging at 395 nm (isosbestic wavelength for hemoglobin). The two cameras and the stimulation devices were
controlled by TTL pulses generated by a fiber-photometry console.

The imaging instrument (Fig. 3.1) supports two light paths: the vertical path optimized
for fluorescent GCaMP6s imaging and the horizontal light path for hemodynamic imaging.
Both light paths contain identical optical elements and identical scientific CMOS (sCMOS)
detectors. Hemodynamic imaging was conducted using two configurations: reflectance
imaging at 395 nm (configuration 1) and fluorescence imaging of ICG micelles as blood pool
agents (configuration 2).

GCaMP imaging (vertical imaging axis)
Illumination: Light was provided by a 3.3 Watt LED (UHP-T-LED-460, Prizmatix) and

was spectrally cleaned with a 480/40 nm bandpass filter (ET 480/40 X, Chroma). The light
was reflected toward the brain with a 495 nm long pass dichroic (T495lpxr-UF1, Chroma).
Fluorescence detection: light emitted by GCaMP6s passed through two emission filters (ET
525/50 M, Chroma). 450nm long-pass filter (FELH0450, Thorlabs) 650 nm short-pass filters
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(FESH0650, Thorlabs) excluded light from 395 nm reflectance imaging and fluorescence ICG
imaging from reaching the GCaMP detection camera. Fluorescence light passed through a
0.5x objective (PlanAPO 0.5x, Leica 10447177), and a zoom lens (Z16 APO, Leica) before
reaching the sCMOS camera (Zyla 5.5, Andor). This configuration enabled exposure times
of 10 ms and spatial resolution of 0.03mm/pixel.

Figure 3.2: Photograph of the wide-field imaging system

Hemodynamic imaging (horizontal imaging axis)
Configuration 1, 395 nm reflectance imaging:
Illumination: 395 nm LED (M395L4, ThorLabs) filtered through a 390 nm filter (FB

390/19, ThorLabs). The cortical surface was illuminated at a 60° angle. Light was reflected
towards the camera with a 425 nm dichroic (DMLP425R, Thorlabs) and filtered by a polarizing
beamsplitter cube (CCM-PBS251/M, Thorlabs). Reflectance light was further filtered by a
390/10 nm filter (FB 390/10, ThorLabs). Reflectance detection: the objective and zoom
lens were identical to the vertical light path and images were captured by a sCMOS camera
(Zyla 5.5, USB3, Andor).
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Figure 3.3: Imaging system spatial resolution. Resolution determination- imaging of a 1951 USAF Resolution
and Distortion Test Target yielded a spatial resolution of 0.03mm/pixel.

Configuration 2, fluorescence ICG micelle imaging:
Illumination: 780 nm LED (M780L3, ThorLabs), light was filtered by 769/41 nm

optical filter (84-105, Edmund Optics). Excitation light was reflected by a 801 nm dichroic
(86-336, Edmund Optics). ICG emission light was filtered by an 832/37 nm filter (84-107,
Edmund Optics). Fluorescence detection: the objective, zoom lens, and sCMOS camera
were identical to configuration 1.

Camera and stimulation device synchronization
A fiber photometry console (D460-2002, Doric Lenses) triggered the cameras LEDs and

stimulation devices. Current was provided to the LEDs by a dual LED driver (D480-2037,
Doric Lenses).

3.7 Stimulation devices
Optogenetics: A Fabry-Perot laser (S4FC637, Thorlabs) coupled to an optical fiber (P1-
630Y-FC-2, Thorlabs) and a collimator (F230FC-B-633, Thorlabs) delivered light to the
cortex. This setup allowed for an unobstructed field of view and a round 1.5 mm2 stimulation
spot in the desired cortical region. Laser intensity was 11-16 mW/mm2 and ensured adequate
ChrimsonR stimulation through the intact skull.

Visual stimulation: white light flashes for visual stimulation were provided by a fiber-
coupled LED (MCWF2, Thorlabs) and were guided through an optical fiber (M98L01,
Thorlabs) in front of the eye.

Electrical stimulation: Stimulation current was provided by stimulus isolator (A365R,
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World Precision Instruments). The hind paw was disinfected with 80% ethanol solution and
two thin platinum-iridium electrodes were implanted subcutaneously. Stimulation current
was set at 1 mA intensity and pulses had a 50 ms duration. After stimulation, the paw was
checked for minor hemorrhage and the skin was again rubbed with 80% ethanol solution.

3.8 Optical imaging protocols
All imaging sessions were conducted after the administration of isoflurane, medetomidine,
or ketamine.

Imaging under isoflurane. Anesthesia induction was carried out with 3.5% isoflurane.
Once fixed in the stereotactic frame, the isoflurane level was reduced to 1%. Eye ointment
(Bepanthen, Bayer) was applied and animals were ventilated with 80% air and 20% O2. Body
temperature was kept to 36.5°C with a heating mat. In each anesthetic level, 5-minute runs of
spontaneous activity and 5-minute runs of stimulated activity were acquired. Subsequently,
the anesthesia level was increased by 0.2% and 5 minutes were allowed to pass for the
higher isoflurane concentration to take effect. These steps were repeated for 5 isoflurane
concentrations: 1%, 1.2%, 1.4%, 1.6% and 1.8%. The total imaging time was 50 minutes.
After imaging, mice were kept on a heated mat until spontaneous righting.

Imaging under medetomidine. Induction with isoflurane was conducted as previously
described. 0.08 mg/kg Medetomidine was diluted in 100 microL saline solution and injected
intraperitoneally while isoflurane was turned off. The first 5-minute recording represents
the transition to medetomidine. Next, one 5-minute spontaneous activity and two 5-minute
sessions of optogenetically initiated brain activity were recorded. Imaging was conducted for
a total duration of 20 minutes. After imaging mice were kept on a heated mat until conscious.

Imaging under ketamine. Induction was performed with isoflurane as described above.
1 minute of spontaneous brain activity under isoflurane was recorded before the ketamine
injection. 100 mg/kg ketamine diluted in 100 microL saline solution was administered i.p.
The imaging experiments lasted 20 minutes. The end of the experiment, animals were
euthanized with ketamine (120 mg/kg) and xylazine (8 mg/kg).
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3.9 Image processing

3.9.1 Wavelet-based Event Separation (WBES) and Brain Pattern
Dimensionality (BPD)

The WBES processing pipeline was developed together with Helmholtz AI and is the result
of work conducted by Dr. Dominik Thalmeyer, Dr. Marie Piraud, Dr. Dominik Jüstel and
myself. The review of the literature, coding, and conceptual development were done by Dr.
Dominik Thalmeyer under the supervision of Dr. Marie Piraud and Dr. Dominik Jüstel.
During the development phase of the analytical method, I held weekly meetings with the
Helmholtz AI team, guiding their efforts so as to reach the scientific goals of this study. In
the latter stages of development, I tested the code on multiple datasets and was involved in
debugging and final adjustments. The development of the BPD metric was based on my
observation that slow wave activity could be characterized by fewer PCA components than
persistent activity. Dr. Dominik Thalmeyer implemented this finding and gave it a rigorous
mathematical formulation. After the method was finalized, I analyzed all datasets included
in this study.

To analyze complex non-linear brain dynamics characteristic of brain states like sedation,
anesthesia, and dissociation we have taken inspiration from the field of fluid dynamics. When
analyzing turbulent flow, proper orthogonal decomposition (POD) is used to decompose a
time series of spatial fields (in a 2D setting this is a video) into a set of static spatial modes
and their temporal variation [311]. Since it is based on PCA (principal components analysis)
the POD can explain most of the variance of the data with only a few modes. However, this
compression into very few distinct modes can lead to different brain activation phenomena
being represented together in the same modes.

Dynamic mode decomposition (DMD) is a spectral decomposition where the data is
represented over many modes since each mode cannot represent a phenomenon that exhibits
frequency modulation or is localized in time [312]. Multi-resolution DMD (mrDMD) is a
method that is based on DMD and was developed to improve the ability to localize patterns
in time [313]. However, this comes with the disadvantage that the data is represented by an
even larger number of modes, which makes it difficult to interpret.

To solve these challenges we propose an image processing pipeline, Wavelet-based Event
Separation processing (WBES) consisting of spectral decomposition with continuous wave-
lets. This allows the separation of raw brain signals in their time and frequency components.
Next, the wavelet modes are embedded into a low-dimensional space using Uniform Manifold
Approximation and Projection (UMAP). The wavelet decomposition results in high numbers
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of redundant modes, thus we clustered the different modes according to visual similarity
[313] in order to obtain interpretable results.

Apart from reducing dimensionality, UMAP embedding, can simplifiy the geometry of
the data and thus, facilitates correct clustering [313]. The clusters are reconstructed into
videos which can be used for connectivity or evoked responses analysis. These sub-videos,
capture different ranges in time and frequency to separate categories of neuronal activity.

PCA is used to further analyze the videos and calculate the brain pattern dimensionality
(BPD) which is a measure of cortical network compartmentalization.

Notations
With 𝑥𝑡,𝑖, 𝑗 we denote the signal at time index 𝑡 and pixel with coordinates 𝑖, 𝑗 of a single

channel (GCaMP or 395 nm). Where t ∈ [1,6000]. If we refer to one of these channels
specifically we denote them as 𝑔𝑡,𝑖, 𝑗 for the GCaMP channel and as ℎ𝑡,𝑖, 𝑗 for the 395 nm
channel. 𝑥𝑡:,𝑖, 𝑗 refers to the entire time-series signal of a pixel, 𝑥𝑡,𝑖:, 𝑗 :, refers to a 2D image at
time point 𝑡 and by 𝑥𝑡:,𝑖:, 𝑗 : we mean an entire video record of a single channel.

Preprocessing: Raw brain images were registered to a 2D top-projection image of the
mouse cortex generated from the Allen Brain Atlas [304]. The mean image of the first
imaging run was affine-transformed in MATLAB (MathWorks), to match the atlas reference
using manually selected control points corresponding to the bregma as well as the edges of
the olfactory bulbs and the cerebellum. The calculated transformation parameters were used
to register all images of all runs in the experiment. The 395nm reflectance images and the
780nm stimulated angiography images were registered in the same way using blood vessels
and the edges of the glass window as landmarks.

Each image was processed to represent the percentage change (Δf/f) to the mean of each
5-minute imaging run.

𝑥𝑡:,𝑖, 𝑗 =
𝑥𝑟𝑎𝑤
𝑡:,𝑖, 𝑗 − `𝑖, 𝑗

`𝑖, 𝑗
· 100

where
`𝑖, 𝑗 = 𝑀𝑒𝑎𝑛

(
𝑥𝑟𝑎𝑤𝑡:,𝑖, 𝑗

)
Continuous wavelet transformation
A continuous wavelet transformation of each pixel’s time series is done first:

𝑥 𝑓 :,𝑡:,𝑖, 𝑗 = 𝑊𝑎𝑣𝑒𝑙𝑒𝑡𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑥𝑡:,𝑖, 𝑗 )

the continuous wavelet transformed signal �̃� 𝑓 :,𝑡:,𝑖, 𝑗 of pixel (𝑖, 𝑗) depends on frequency
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𝑓 and time 𝑡. For the continuous wavelet analysis, we use Morlet wavelets [310]
which are the established waveforms used in other neuroscience applications such as
EEG [311,312]. To perform the wavelet transform we used the python package pycwt
(https://github.com/regeirk/pycwt). Data acquired at 20 Hz was processed with the settings:
time step for the analysis (𝑑𝑡) of 0.05, the fastest time scale (s0) was 0.05 sec., a frequency
step (dj) of 0.5 resulting in 2 sub-octaves per octave and 20 frequency levels (J). These
parameters are listed in Table 3.1. The chosen parameters result in a logarithmically spaced
frequency spectrum with frequencies ranging between 0.02Hz and 16.23Hz.

Parameter Value Comment
dt 0.05[s] time step
dj 0.5 frequency step (logarithmic scale)
s0 0.05[s] fastest time scale
J 20 number of frequency levels
Motherwavelet Morlet(5) wavelet used for the analysis

Table 3.1: Parameters used for the wavelet analysis

Cluster modes
Next we cluster the continuous wavelet transformed data which shows high redundancy.

The clustering algorithm we apply consists of three substeps: normalization of the modes,
dimensionality reduction, and hierarchical clustering.

Normalization of the modes:
The goal of this substep is to make certain that modes with similar spatial patterns are

assigned to the same cluster in spite of variations in their absolute intensities and contrast.

𝑥𝑛𝑜𝑟𝑚𝑡, 𝑓 ,𝑖, 𝑗 =
𝑥𝑖, 𝑗 ,𝑡, 𝑓 · 𝑚𝑎𝑠𝑘𝑖, 𝑗 − 𝑀𝑒𝑎𝑛

(
𝑥 𝑓 ,𝑡,𝑖:, 𝑗 : · 𝑚𝑎𝑠𝑘𝑖:, 𝑗 :

)
𝑆𝑡𝑑

(
𝑥 𝑓 ,𝑡,𝑖:, 𝑗 : · 𝑚𝑎𝑠𝑘𝑖:, 𝑗 :

)
A 2D binary mask (𝑚𝑎𝑠𝑘𝑖:, 𝑗 :). is applied to the movie to exclude contributions to the

mean and standard deviation from pixels located outside the brain.
Dimensionality reduction: wavelet modes are embedded into a low-dimensional space

with UMAP [313].

𝑥𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑
𝑡:, 𝑓 :,𝑘: = 𝑈𝑀𝐴𝑃

(
𝑥𝑛𝑜𝑟𝑚𝑡:, 𝑓 :,𝑖:, 𝑗 :

)
Parameters:
• n _ neighbors represents the size of the local neighborhood, determining how UMAP

balances the local versus global data structure and was set at 30.
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• min_dist refers to the minimum distance between points on the manifold and was set
at 0 allowing for thigh packing of data in clusters. This distance was computed with a
’euclidean’ metric.

• n_components clustering: wavelet modes were embedded on a 5-dimensional manifold.
• n_components plotting: 2-dimensional embedding for plotting.
An overview of the parameters used for UMAP embedding can be found in Table 3.2:

Parameter Value
n-neighbors 30
min-dist 0.0
n-components 5 (for clustering, 2 for plotting)
metric ’euclidean’

Table 3.2: Parameters used for the wavelet analysis

Hierarchical clustering
Apart from reducing dimensionality, UMAP topological data representations simplify

the geometry of the underlying data and thus make it easier for a clustering algorithm to
determine the correct clustering solution. Embedding as a preprocessing for clustering has
the advantage that the distances in a UMAP embedding correspond to the natural distances
of the data along curved data manifolds which is also conducive to clustering.

We apply hierarchical ward-clustering to UMAP-processed wavelet modes using the scipy
package:

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑓 :,𝑡:,𝑙: = 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔

(
𝑥𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑
𝑡:, 𝑓 :,𝑘:

)
The algorithm calculates a hierarchy of clusters. To obtain a concrete clustering from this

hierarchy, there are two possibilities:
• either a target number of clusters is specified, in which case the clusters can be computed

automatically by recursively splitting the hierarchy of clusters until the target number
is reached. In each recursion, the cluster to be divided is chosen such that the distance
between the newly created child clusters is maximized.

• alternatively, during the analysis, it can be manually decided how to extract a clustering
from the cluster hierarchy by defining which clusters to split and which to merge.

The result of clustering is a cluster assignment 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑓 :,𝑡:,𝑙: that maps each wavelet mode,
specified by the frequency 𝑓 and time 𝑡, to a cluster 𝑙:
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𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑓 ,𝑡,𝑙 =

{
1 𝑖 𝑓 𝑚𝑜𝑑𝑒 𝑓 , 𝑡 𝑖𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Recomposition
After we have assigned the wavelet modes into clusters, we obtain the wavelet transform

of a cluster 𝑙 by point-wise multiplication of the original wavelet-transformed video with the
cluster assignment array:

𝑥𝑙𝑓 ,𝑡,𝑖, 𝑗 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑓 ,𝑡,𝑙 · 𝑥 𝑓 ,𝑡,𝑖, 𝑗

Using a pixel-wise inverse wavelet transformation:

𝑥𝑙𝑡:,𝑖, 𝑗 = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑊𝑎𝑣𝑒𝑙𝑒𝑡𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑥𝑙𝑓 :,𝑡:,𝑖, 𝑗 )

we can (re-)construct a video 𝑥𝑙
𝑡:,𝑖, 𝑗 from each cluster 𝑙.

Due to the linearity of the wavelet transformation, this approach divides the original video
into a set of subvideos:

𝑥𝑡:,𝑖:, 𝑗 : =
∑︁
𝑙

𝑥𝑙𝑡:,𝑖:, 𝑗 :

Estimation of data complexity - Brain Pattern Dimensionality (BPD)
Brain states may be characterized by the complexity of their spatio-temporal dynamics

[293]. A strategy for quantifying the complexity of brain activity is to measure the effective
dimensionality of the functional imaging data reflecting cortical activation patterns. The
effective dimensionality of a set of variables represents the number of orthogonal dimensions
that produce the same overall pattern of covariation as the original dataset [318].

From a neuroscience perspective, effective dimensionality can be viewed as a measure
of cortical network segregation since the dimensions correspond to well-characterized func-
tional brain networks. Practically, the higher the effective dimensionality of our imaging
datasets the higher the number of physiological cortical networks which are active in that
particular recording. We have termed the effective dimensionality of our imaging data Brain
Pattern Dimensionality (BPD) to highlight the physiological significance of this index. In
the following, the terms BPD and effective dimensionality can be used interchangeably.

PCA allows to decompose a video into modes:

𝑥𝑡:,𝑖:, 𝑗 : =
∑︁
𝑝

Ψ
𝑝
𝑡: · Φ

𝑝

𝑖, 𝑗
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where Ψ
𝑝
𝑡: denotes the spatial modes and Φ

𝑝

𝑖, 𝑗
are their temporal dynamics. The total

variance of the video averaged over time and space can be written as:

𝑉𝑎𝑟
(
𝑥𝑡:,𝑖, 𝑗

)
=
∑︁
𝑝

_𝑝

PCA component eigenvectors are orthogonal to each other and can be used for the
calculation of effective dimensionality.

The eigenvalues _𝑝 specify the contribution of the respective PCA component to the total
variance. The distribution of power along these eigenvalues determines how many PCA
components are actually needed to describe the data.

To illustrate this, let us consider two concrete examples:
• first, consider that one of the eigenvalues _𝑝 is equal to 1, and the rest have the value

zero. In this case, the data can be accounted for using a single PCA component, i.e.
the data is effectively one-dimensional.

• second, let us suppose that all eigenvalues are equal. In this case, we need all PCA
components to properly describe the data, since none can be disregarded without
losing data. In this case, the effective dimensionality of the data is equal to the full
dimensionality of the videos (i.e., the number of pixels).

In the field of importance sampling, one has weighted samples and wants to know how
many effective unweighted samples these correspond to. Several ways have been developed
that allow in a self-consistent manner to compute an effective sampling size from a set of
weights [319,320]. We use this concept to compute an effective number of dimensions from
a set of weighted dimensions.

BPD is defined as the entropy-based effective PCA dimensionality:

𝐵𝑃𝐷 = −𝑁 − 1
𝑙𝑜𝑔𝑁

×
∑︁
𝑝

_𝑝∑
𝑝 _

𝑝
× 𝑙𝑜𝑔

_𝑝∑
𝑝 _

𝑝
+ 1

BPD estimations depend on removing unwanted physiological noise which artificially
increases imaging data dimensionality so this step should be performed on the neuronal
cluster only.

3.9.2 Network measures of brain connectivity
Functional brain network features were calculated with the Functional Brain Connectivity
toolbox for Matlab [16]. A custom Matlab script was used for extracting the averaged time
series from 40 functional brain regions as defined in the Allan Mouse Brain Atlas [304].
Pearson’s correlation coefficients were calculated to form correlation arrays. Correlation
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arrays were thresholded to 0.7 correlation values for all pharmacological conditions to obtain
adjacency matrices. The network type setting chosen for modeling was “weighted undirected
networks”.

The path length and global efficiency were used to assess functional integration while
functional segregation was characterized by modularity, local efficiency, and clustering coef-
ficient.

The shortest path length between all pairs of nodes is known as the characteristic path
length. It is the most widely employed measure of functional integration and is mostly
influenced by long paths. The average inverse shortest path length is known as the global
efficiency and is primarily influenced by short paths. Local efficiency is a measure that
ranges from 0 to 1, with high values indicating maximum local efficiency in the network.
Modularity refers to the strength of the compartmentalization of a network into modules
(also called groups or communities). Modular networks have numerous connections linking
nodes within modules but few connections between nodes belonging to other modules. The
clustering coefficient describes the tendency of nodes in a graph to cluster together. The
degrees of the network graph represents the average number of edges that are associated with
a network node. Essentially we are calculating the number of above-threshold correlations
per network node.

3.9.3 Topological complexity of responses to visual and paw
stimulations

The aim of topological data analysis is to exploit the complex geometric structures underlying
data that can be represented as point clouds in high-dimensional Euclidean spaces. The
topological complexity (based on cubical persistence measurements) is a non-parametric
framework used for transforming time-varying functional brain imaging recordings into
time-dependent topological features [303]. Imaging data was first processed with our custom
WBES routine to remove physiological artefacts from the images and registered to the Allen
Mouse Brain Atlas [304]. Mouse brains show little macroscopic variance within the same
strain. In spite of this, the distribution, caliber and pattern of superficial blood vessels is
highly variable between mice. Typically, stimulation experiments in transgenic mice entail
small cohorts, consequently a robust approach for extracting relevant topological features
while disregarding the anatomical blood vessel configuration is desired.

The aim was to analyze activation patterns caused by somatosensory, optogenetic, and
visual stimulations. The processing pipeline includes three steps:

• cubical complex conversion: cubical complexes are advantageous for image processing
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because they are equivalent to analyzing functional data directly, representing it in terms
of cubes, squares, edges, and points. Compared to methods that use triangulations, no
additional interpolations are required.

• filtration calculation (to account for individual scales in the data) allows us to calculate
topological features in the form of diagrams, taking into account a wide range of spatial
scales in the data [303]. For each voxel activation values are matched to higher-order
elements (cubes, squares, . . . ) and sorted in ascending order to these values.

• calculation topological descriptors - all values are evaluated for statistical significance.

3.9.4 Perturbation Complexity Index-State Transitions (PCI-ST)
PCI-ST assesses the complexity of brain responses to direct stimulations [301]. The aim
is to quantify the direct impact that activation of one brain region has on other brain areas
by directly stimulating the cortex and analyzing the activation patterns that are generated.
Signals from peripheral receptors pass through multiple relays on their way to the brain and
these modulate signals that reach the cortex. Direct stimulation of the cortex bypasses the
reticulate substance and thalamic nuclei as well as peripheral relays. Local responses to
direct brain stimulation suggest a loss of integration whereas global and stereotypical cortical
activations signify a lack of segregation. PCI can assess both the integration and segregation
in cortical networks.

The perturbational strategy for recording effective connectivity patterns included opto-
genetic stimulation of ChrimsonR [171] and GCaMP6s readout of brain activation [124]. The
resulting functional patterns were then assessed with PCI-ST. Since PCI-ST is a data-driven
computation it is generalizable in principle to any type of evoked brain response [301].

29 responses to stimulation were recorded in each imaging run. These were averaged and
the mean activation movies were reshaped into a 2D arrays (Npixel x Time). The baseline
window included one second before stimulation and the response window lasted three seconds
after optogenetic stimulation. 100 baseline optimization steps were carried out.

Computational steps include:
• Dimensionality reduction with singular value decomposition to account for 99% of the

response amplitude
• Fluorescence-amplitude distance matrix calculations for the baseline window and the

response window
• Generation of contour plots by thresholding the distance matrices. Contours are con-

sidered to signify transitions between states of the cortex.
• An iterative search (100 iterations) was done to find the threshold that maximizes the
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number of transitions in the response window compared to the baseline window.
• PCI-ST is determined by multiplying the number of components after singular vector

decomposition and the average number of state transitions.

3.9.5 Leading Eigenvector Dynamic Analysis (LEiDA) and Probabilistic
Metastable Substates

LEiDA was proposed for the analysis of brain substate switching behavior in time-resolved
functional connectivity data. The LEiDA toolbox for Matlab was used for this analysis
[180,289]. The imaging data were preprocessed as described in the WBES section.

The pipeline for LEiDA computation includes:
• Extraction of averaged time series from 40 functional brain regions as defined in the

Allan Mouse Brain Atlas
• Bandpass-filtering of time-resolved activations between 0.02 and 6 Hz, with a 2nd

order Butterworth filter.
• The exposure time was set to 0.05 sec.
• The phase of fluorescence signals is estimated using the Hilbert transform in Matlab.
• Phase coherence matrices are computed for each time point and leading eigenvectors

are calculated for each phase coherence matrix.
• K-means clustering is used for finding 12 metastable substates. The clustering routine

is repeated 20 times and all k-clustering solutions are analyzed with Dunn’s score.
• FC motif lifetime is defined as the number of consecutive epochs during which the

pattern dominates
• The probability of occurrence is computed.
• The identification of statistically significant differences between experimental condi-

tions is done using statistical analysis: One-way ANOVA followed by Tukey’s multiple
comparisons test.

• Custom-written Matlab scripts were developed for rendering the spatial FC patterns
onto the mouse cortex.

3.9.6 Slow-wave speed determination
Slow waves propagate across the cortex from a distinct point of origin. To be able to compare
the propagation characteristics of slow waves, these have to be triggered in the same cortical
region. The occipital cortex is the best triggering site since slow waves initiated here will
spread toward frontal regions over a distance of 1 cm. Optical imaging data was acquired
at 100 frames/second in 3 animals. A total of 44 visually and 30 optogenetically initiated
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slow waves were imaged. A custom brain mask was used to extract signals from 10 ROI
locations along a line from the occipital to the prefrontal cortex. The ROIs were positioned
0.8 mm apart. To find the time point when slow waves occurred at the location of the ROI,
signals were thresholded at 20% of the maximum fluorescence of each ROI recording. The
propagation speed was determined by linear regression of the time-to-threshold vs. distance
traveled. The estimated speed is indicated by the slope of the regression line.

3.9.7 MRI data analysis
fMRI image processing

Preprocessing was carried out with the SPM12 toolbox for Matlab. All data were aligned
to images coming from the first subject in an experiment, smoothed with a 0.5 x 0.5 x 0.5 mm
Gaussian filter, and motion-corrected. General linear model analysis was carried out either
with a block design or with regressors derived from the calcium fluorescence recordings. The
identification of slow waves for this purpose was done with the use of previously published
routines in Matlab [321]. Group ICA was calculated with the GIFT Toolbox for Matlab and
the infomax algorithm.

Relaxation rate determination for novel contrast agents
Relaxation rates were calculated by fitting a monoexponential function to the measured

sample intensity values using the Image Sequence Analysis Tool, ParaVision 6.0.1 (Bruker
BioSpin MRI GmbH, Ettlingen, Germany).

3.10 Immunohistochemistry
Brains were perfused with 40 ml PBS and afterwards with 30 ml 4% PFA solution. Sub-
sequently, brains were incubated at a temperature of 4°C for a period of 24 hours in 4% PFA
(diluted in MiliQ water). After this fixation step, the brain was incubated for 48 hours in
30% sucrose diluted in water until it sank to the bottom of the falcon. After this, tissues
were placed in 3 ml falcons and frozen at -80°C. 70 µm thick coronal slices were cut on
a cryotome. For permeabilization/blocking brain slices were incubated for 1 hour at room
temperature in a solution of 1% BSA and 0.2% Triton X-100 in PBS. For staining, tissue
samples were incubated at 4°C for 12 hours in an anti-FLAG Cy3 (A9594, Sigma Aldrich)
monoclonal antibody (the ChrimsonR construct was marked with Flag-Tag). The antibody
solution was diluted to a 1:500 ratio in 1% BSA and 0.2% TritonX-100 in PBS. 3 washing
steps followed: for 5 min in PBS and incubated with DAPI solution, 10 mM diluted 1:1000
in 1% BSA and 0.2% Triton X-100 in PBS. After 3 washing steps of 5 minutes with PBS, the
brain slices were mounted on glass slides with Aqua Poly Mount (Polysciences, Warrington,
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PA). Images with specific excitation for Cy5, DAPI, and GCaMP (eGFP) were acquired on
an Axio Scan.Z1 (Zeiss) fluorescence microscope at 20x magnification.

3.11 Statistical analysis
The sizes of the experimental cohorts were determined using standards common in the
field of preclinical neuroscience for in-vivo experiments. Statistics are reported using the
mean ± standard deviation. Statistical tests were used as indicated in the respective figure
legends. Tukey-Kramer tests (α=0.05) were calculated to characterize multiple comparisons
as follow-up tests after One-way and Two-way ANOVA. Statistical tests were performed in
either GraphpadPrism 9.3.1 or Matlab2020.
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4
Results

4.1 Intergating cell-type-specific information with MRI
imaging

4.1.1 Inferring systems-wide cortical activation patterns from local
calcium fluorescence recordings.

The study of functional brain states benefits from imaging modalities that can record the entire
brain. MRI offers well-tested empirical and computational platforms for characterizing brain
activation responses to external stimuli. To infer how stimulus representations change as a
function of the brain state, stimulation experiments were conducted under two concentrations
of isoflurane, 1.4% isoflurane was used to induce a rather compartmentalized functional
state while 1.8% isoflurane induced slow waves Small animal fMRI imaging systems take
advantage of the small bore size which enables strong and homogeneous magnetic fields like
9.4T to be maintained. Still, mouse brains have a volume of 440 mm3 which practically
means that despite the stronger 9.4 T magnetic field, fMRI in small animals has a 5-fold
lower SNR when compared to human brain imaging at 3 T [322]. To compensate for this,
data acquisition was done using a 9.4T MRI system equipped with a cryogenic coil for signal
acquisition (Fig. 4.1 b). This setup enables anatomical scans in brain phantoms at 20 µm
isotropic resolution (Fig. 4.1 a). Compared to room-temperature coils, the cryogenic coils
produce 2.5 times more signal which significantly increases image quality. For in vivo fMRI
the spatial resolution is much lower, each voxel measuring 0.25x0.25x0.55 mm and depicting
a 0.03 mm3 brain volume.
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Figure 4.1: Brain activation patterns after hind paw somatosensory stimulation. a, T2* weighted volu-
metric imaging of a mouse brain phantom, axial view, dashed lines indicate the positions of the coronal slices in
panels d-g. b, Experimental setup, for recording brain responses to hind paw stimulation, data acquisition was
carried out with a cryogenic MRI coil. c, Hind paw stimulation strategy, six 15 second periods of stimulation
were interleaved with 30 seconds of resting-state recording in a so-called “block design” scheme. Stimulation
pulses of 50 ms and 1 mA were delivered at 5 Hz. d, Allen Mouse Brain Atlas images showing the somato-
sensory flont limb (S1-FL) and hind limb (S1-HL) areas where responses to stimulation were expected. e-g,
Activation maps overlaid on coronal fMRI brain slices, from left to right from rostral to caudal. h, Measured
(dotted line) vs. fitted responses to somatosensory stimulation (gray).
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The whole mouse forebrain was imaged with a temporal resolution of 1 imaging
volume/sec. Hind paw stipulation was carried out with 50 ms pulses, with a current intensity
of 1mA and a frequency of 5 Hz. Stimulation was carried out for 15 sec. and these
stimulation periods were alternated with 30-seconds of baseline data acquisition (Fig. 4.1
c). The long stimulation times are meant to ensure a strong hemodynamic response is
generated in the targeted brain regions. During the experiment, animals were sedated with
1.4% isoflurane and their heart rate and temperature were monitored remotely.

3 mice were imaged and the analysis was done with a general linear model implemented
in Statistical Parametric Mapping (SPM12). The measured activation patterns are displayed
in Fig. 4.1 e-g. The level of statistical significance was set at a T-score of the first mouse
was set at T=4.72 and the p threshold was set at 0.05 which was corrected for family-wise
error (FWE). Cortical activation patterns, largely confined to the somatosensory cortices of
both hemispheres were observed in the first mouse. All activation clusters, in this case, had
p<0.0001. In the second mouse, the level for statistical significance was set at T=4.7 and
activation patterns were mostly limited to the contralateral somatosensory cortex to the right
paw which was stimulated (p<0.0001). In the last mouse, the significance threshold was
T=4.6 and responses were predominantly cortical but also in the basal ganglia (p<0.0001).

To independently confirm the results of the GLM analysis and further investigate the
heterogeneous nature of the responses to stimulation, Group ICA analysis (GIFT toolbox
for MATLAB) was used on the same datasets as in the previous figure . ICA revealed 3
components that show activation in the somatosensory cortex (Fig. 4.2, b,d,f). The temporal
activation of the first ICA component (Fig. 4.2 b and c) shows the most similarity to the
predicted responses from the GLM analysis (Fig.4.1 h) the calculated correlation between
these two time courses was, however only 0.26. The distribution of activated areas is bilateral
and mostly confined to the somatosensory S1 region. The second component (Fig. 4.2 d
and e) has a low negative correlation value to the predicted responses from the GLM r=-0.11
and activation patterns are distributed in the somatosensory cortex on the left side and also
more rostrally in the motor regions of the left hemisphere. The third ICA component (Fig.
4.2, f and g) also shows activation in the somatosensory cortex on the left side which is the
contralateral side to the stimulated hind paw. Also in this case there was a weak negative
correlation of -0.12 with the expected activations from the GLM.

Additionally to these components which capture aspects of somatosensory information
processing, there was a further pancortical activation pattern (Fig. 4.2, h and i) which had a
-0.22 correlation strength to the Temporal GLM component. Such a pancortical activation
during isoflurane anesthesia has been associated with the presence of slow cortical waves
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which have a distinct point of origin and spread out over the entire cortex [91].

Figure 4.2: ICA identifies paw stimulation patterns and global activation component. a, Allen Mouse
Brain Atlas images showing the somatosensory region 1 where responses to stimulation were expected. Inde-
pendent components b, d, f, and h, and corresponding time series c, e, g, and i.

The source of the signal variations described above is difficult to ascertain with certainty
from fMRI data alone. For this reason, in human experiments, EEG is employed to provide
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independent validation of the activation events which are responsible for the fMRI activation
patterns. Such empirical setups are difficult to implement in small animal fMRI since the
strong magnetic field is very sensitive to disturbances.

For this reason, fMRI findings were validated using simultaneously acquired calcium
fluorescence transients recorded with a fiber photometry setup (Fig. 4.3 a). The fiber
photometry console was utilized for the acquisition of fluorescence data and for generating
stimulation pulses as well as triggering the fMRI acquisition start. The system also included
2 LEDs, one for stimulation of GCaMP6f and the second one for optogenetic stimulation of
ChrimsonR, a red-shifted optogenetic tool. Light from these two LEDs is combined in one
fiber optic guide with a beam splitter/combiner.

Fluorescent light generated by GCaMP6f is diverted to a femtowatt meter and finally
digitized in the fiber photometry console. This setup enables the optogenetic stimulation and
the recording of neuronal responses from the same cortical region (Fig. 4.3 f). AAV viral
particles coding for GCaMP6f and ChrimsonR were injected into the Somatosensory cortex
of the left hemisphere (Fig. 4.3 b and f) and IHC later confirmed a strong expression of
both constructs (Fig. 4.3 c and d) and an optical fiber with a mirror tip was placed over the
injection site.

The average traces from 30 slow-wave events in 3 mice are shown in Fig. 4.3 e. The
slow-wave activity was triggered under 1.8% isoflurane anesthesia. Responses to hind paw
(black) and optogenetic stimulation (orange) were recorded from the S1 cortex. Both hind
paw (Fig. 4.3 g) and optogenetic stimulation (Fig. 4.3 i) reliably triggered slow-wave events.
Average responses revealed similar amplitudes but slightly different temporal activation for
optogenetic slow waves as opposed to slow waves initiated by hind paw stimulation. The
optogenetic traces contained 2 peaks, the first was immediately after stimulation, and the
second was around 1 second later. The first peak could correspond to local activation which
later causes slow waves to propagate [252].

Optogenetically triggered slow waves averaged a latency of 0.07±0.007 seconds while
hind paw elicited slow waves had latencies of 0.16±0.05 seconds. These measurements were
significantly different with a p<0.0001 (Fig. 4.3 h). The duration of optogenetically initiated
slow waves was 1±0.35 s while the mean duration for hind paw slow waves was 0.86±0.37 s
and the difference was not statistically significant (Fig. 4.3 j).

Next, fMRI data were acquired simultaneously with GCaMP6f fluorescence and repeat-
able slow wave events were elicited by optogenetic stimulation (Fig. 4.4 a). The calcium
traces were processed and slow wave events were isolated [321](Fig. 4.4 d). A total of 330
stimulations in 3 animals were included in the analysis.
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Figure 4.3: Hind paw and optogenetic stimulation trigger slow waves in the anesthetized mice. a,
Fiberphotometry setup for the registration of GCaMP6f fluorescence from cortical neurons and red light
optogenetic stimulation of ChrimsonR. A Fiberphotometry console was employed to control two LEDs for 460
nm GCamp6f illumination and 625 nm stimulation of ChrimsonR. Fluorescence signals in the 500-550 nm
range from GCaMP6f were recorded by a photoreceiver and digitized by the fiber photometry console. Light
integration and separation were enabled by an optical filter cube. b, Transversal T2-weighted MRI sectional
imaging, light was delivered to the brain by a mirror-tipped fiber optic waveguide which was positioned above
the viral injection site. c, Coronal microscopy showing GCaMP6f expression in the right brain hemisphere. d,
ChrimsonR-tdT was expressed in the same region as GCaMP. e, Average signal intensity from 30 stimulations
recorded in the S1 region after somatosensory (black) and optogenetic (red) stimulation. An initial peak in
the optogenetic trace denotes primary neuron activation before a larger amplitude slow wave was initiated. f,
Top-down view of the brain hemispheres showing the viral injection site in the left hemisphere. g, Time trace
recorded after hind paw stimulation (blue vertical lines). h, Slow-wave latency after hind paw and optogenetic
stimulation, 30 stimulations in 3 mice, Mann Whitney test, p<0.0001. i, Time trace recorded after optogenetic
stimulation of ChrimsonR. j, Slow-wave duration after hind paw and optogenetic stimulation, 30 stimulations
in 3 mice Mann Whitney test, p>0.05.
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Figure 4.4: Brain activation patterns elicited by optogenetic stimulation during surgical-level anesthesia.
a, fMRI data were acquired simultaneously with fiber photometry fluorescence. b, 50 ms, 625 nm, 5 mW
stimulation pulses were delivered every 10 sec for the whole duration of the 18 min of recording. c, Binarized
slow-wave vector. d, GCaMP6s trace showing slow-wave activity (blue) and slow-wave identification (orange).
e, Statistically significant activations derived by ICA. f, Activation vector associated with the ICA component
in g.

A pancortical activation pattern was expected because slow-wave events during surgical-
level anesthesia usually cover the entire cortex [241,248] in rats [91] and mice [263]. Group
ICA revealed a pancortical activation pattern and this represents strong evidence that this
activation corresponds to symultaneously recorded slow cortical waves (Fig. 4.4 e and f).

It was demonstrated that in low anesthesia conditions, local activations (revealed with
GLM) coexist with global activation patterns (revealed by group ICA). In low isoflurane
conditions, significant BOLD signal increases were found in the projection areas for the
respective stimulations. During surgical-level anesthesia with isoflurane, hind paw and opto-
genetic stimulations elicited similar responses in the form of slow waves. These experiments
were useful in validating GCaMP6 and Chrimson, molecular tools which would be used
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throughout this study. fMRI however relies on statistical analysis to differentiate between
averaged experimental conditions. Single-trial analysis of stimulation effects are not possible
using this technique so optical imaging was chosen for this application

4.1.2 Exploring genetic contrast mechanisms for MRI
This drawback can be partially overcome by combining MRI measurements with local optical
recordings as shown above. This strategy necessitates an extra step that involves inferring
the relationship between local calcium signals (from fiber photometry) and global brain
hemodynamic readout (from MRI). It would be desirable to have genetically encoded contrast
agents capable of generating signals which could be detected by MRI. The work presented
in this section has been carried out in collaboration with Dr. Mariia Efremova and Dr. Felix
Sigmund.

Ferritin is an intracellular protein that stores iron and releases it in a controlled fashion.
It is produced by almost all living organisms, including bacteria, algae, plants, and animals
and represents the primary intracellular iron-storage protein keeping iron in a soluble and
non-toxic form. Ferritin can be overexpressed in cells in order to generate MRI contrast using
the paramagnetic properties of iron atoms [323]. However, ferritin exhibits weak magnetic
properties and a structure that is not conducive to their improvement.

An alternative route to generating MRI contrast by way of iron accumulation is to build
iron nanoparticles inside bacterial protein nanocompartments called encapsulins [324,325].
Encapsulin nanocompartments, or encapsulin protein cages, are spherical bacterial compart-
ments approximately 25-30 nm in diameter and their function depends on the proteins loaded
into the nanocompartment [326]. A number of different types of proteins have been loaded
into encapsulin nanocompartments, peroxidases and ferritins are the two most common types
of cargo proteins.

In this way, contrast can be obtained after the transfection of cells with the encapsulin
construct and the passive accumulation of an iron nanoparticle inside the protein shell owing
to ferroxidase activity enhanced by coexpression of the iron transporter Zip14. Encapsulins
have been shown to hold as many as 30000 iron atoms which is about 10 times the capacity
of ferritin. This approach has the advantage that the iron nanoparticle is sequestered inside
the encapsulin shell which reduces cellular toxicity [327].

Encapsulin reporter genes from Quasibacillus thermotolerans were expressed in hu-
man hepatocellular carcinoma cell line HepG2, as a two-component system representing
a nanoshell (QtEncFLAG) and a cargo protein that can induce iron oxide biomineralization
(QtIMEF). Cell pellets were scanned in MRI for the determination of T2 and T2* relaxation
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Figure 4.5: MRI relaxometry of HepG2 cells a, R2 and b, R2* values were computed from cell pellets
comprising 8 × 106 cells. c, Iron masses in the same cell pellets determined by inductively coupled plasma
mass spectrometry (ICP-MS). All values represent means ± SD (n = 3) analyzed with an unpaired t-test (***
corresponds to p-value < 0.001, * corresponds to p-value < 0.05). Figure adapted from Efremova et al. 2021.

times and iron masses in the pellets were determined by inductively coupled plasma mass
spectrometry (ICP-MS).

R2 and R2* values of the test sample containing QtIMEF cargo were significantly higher
than the control sample with DD-mScarlet-I-QtSig cargo (R2 = 21.4 ± 0.6 vs. 16.8 ± 0.4 s−1)
and R2* = 64.2 ± 2.0 vs. 45.6 ± 8.6 s−1). This finding was corroborated by the difference in
iron mass between the QtIMEF cargo and the DD-mScarlet-I-QtSig cargo samples tested by
ICP-MS. (Fig. 4.5 ).

Since T2 relaxation is less susceptible to magnetic field inhomogeneity, T2 values were
measured with a T2-weighted multi-slice-multi-echo (MSME) sequence with a TR of 6000
ms. At 9.4T, T2* relaxation is accelerated by even the slightest magnetic field disturbance
which makes T2* determinations especially difficult at this field strength. That is why
measurements were done with an ultra-short echo time (UTE) sequence with a TR of 100
ms, measuring signal from 16 echoes between 0.3 and 50 ms. The ability to acquire data
at just 0.3ms after radiofrequency stimulation is essential for the accurate calculation of the
exponentially decaying MRI signal which is caused by magnetic field inhomogeneity due to
the Fe nanoparticles present in the encapsulin particles that were located in the cell cytoplasm.

Both R2 and R2* were significantly higher in cells expressing encapsulins compared
to control cells indicating that iron biomineralization inside encapsulin nanocompartments
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represents is feasible for the generation of genetic contrast in MRI.
The accumulation of Fe in encapsulin nanocompartments represents a promising mech-

anism for generating MRI contrast through the expression of gene reporters but delivering
an adequate amount of iron to the cytoplasm remains a challenge. This drawback can be
partially overcome in cellular cultures by coexpressing the iron transporter Zip14 and the
supplementation of the growth medium with Fe.

Figure 4.6: MRI spectroscopy of cells shows polyphosphate peak. a, 31P MRI spectroscopy in cells
expressing encapsulins and polyphosphate kinase and accumulating polyP. b, 31P MRI spectroscopy in cells
expressing encapsulins without polyphosphate kinase. c, 31P MRI spectroscopy of a standard solution of 0.5
mM polyP.

An alternative strategy for generating genetically encoded MRI contrast involves the pro-
duction of polyphosphates (polyP) with the enzyme polyphosphate kinase from Escherichia
coli. The polyphosphate kinase catalyzes the synthesis of inorganic polyphosphate (polyP)
from ATP. Because mammalian cells do not contain detectable levels of polyP, it can be
identified by MRI phosphorus MRI spectroscopy after transfection in human cells [328].
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For these experiments, polyphosphate kinase was expressed as a cargo protein in the
encapsulin nanocompartments which were expressed in human embryonic kidney cells. For
this experiment, PolyP is sequestered from the rest of the cytoplasm, and mammalian cells
are protected from the potentially toxic effects of polyP which is not normally found in these
cells.

For initial experiments (not shown here), cell pellets were washed three times with
isotonic NaCl solution removing all growth medium and resuspended in an isotonic NaCl
solution before being pelleted by centrifugation. Subsequently, phosphorus spectroscopy
MRI measurements were carried out and showed a peak at -20 ppm which corresponded to the
chemical shift of the polyP. To prove that this peak was indeed measuring the concentration of
polyphosphates, constructed an MRI phantom with 3 compartments for holding cells which
were encased in a tube filled with distilled water. This setup was necessary to minimize
magnetic susceptibility artifacts. The tubes were loaded with cells expressing encapsulins
that were agglomerating polyP (Fig 4.6 a), control cells expressing encapsulins without the
polyphosphate kinase (Fig 4.6 b), and a standard solution of 0.5 mM polyP (Fig.4.6 c). The
data acquisition was done with a single voxel 31P, ISIS spectroscopy pulse sequence for each
of the samples. The cells expressing polyphosphate kinase inside encapsulins showed a clear
polyP peak at -20 ppm alongside the most prominent phosphocreatine (PCr) around 0 ppm
and the beta-ATP peaks around -10 ppm. Control cells only showed the PCr peak because the
ATP had likely been used up by the time of the measurement (which followed the encapsulin
polyP cell spectroscopy acquisition). Finally, the 0.5 mM polyP solution showed a clear peak
at -20 ppm without PCr or ATP peaks. Localized PolyP signal was measured without any
cross-talk between the samples.

Both iron and polyP work by accumulation and the MRI signal is dependent on the level
of expression of the genetically encoded proteins. This type of contrast is appropriate for
applications concerning tumor cell tracking [327] however, for neuroscience applications
it would be desirable to have dynamic contrast agents which change their properties as a
function of neuronal activation. Such contrast agents are not available at the moment.

This shortcoming can be partially mitigated by integrating calcium sensor imaging with
fMRI. However individual stimulation trials cannot be investigated with fMRI because of
low SNR. For this reason, optical imaging in transgenic mouse models expressing GCaMP6s
in cortical excitatory neurons was used for the main part of the experimental work.
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4.2 Wide-field imaging system captures neuronal activity and
brain hemodynamics

Wide-field optical imaging of transgenic mouse reporter models represents an emerging
preclinical imaging modality that combines fast temporal sampling with high-resolution
imaging to enable access to both high-frequency activation events and highly detailed spatial
brain activation patterns.

As described in the section on hemodynamic imaging, physiological noise contaminates
optical imaging data. Most imaging setups for wide-field optical imaging of the cortex
include one scientific camera and 2 light sources. In this case, imaging the fluorescent sensor
is interleaved with frames that aim to record differences in cerebral blood volume. Practically
this means that the light sources which provide illumination for these two imaging channels
have to be switched on and off for each frame. This limits the maximum temporal resolution
which can be achieved and may also impede experiments where visual responses of the brain
are of interest.

For this reason, a dual-camera wide-field microscope was designed and assembled in the
course of this work. The system includes 2 cameras and three light sources which enable
imaging of GCaMP6s and hemodynamic effects in parallel (Fig. 4.7). The vertical optical axis
is used for imaging GCaMP6s under illumination with a 460 nm blue LED. This imaging axis
is used for all experiments as it delivered information on the calcium transients occurring in
cortical pyramidal neurons at a spatial resolution of 0.03 mm/pixel and a temporal resolution
ranging between 20 and 100 frames/sec (Fig. 4.7 c). Upon inspection of an imaging dataset,
activation in well-characterized neuronal networks is visible, as illustrated in Fig. 4.7 f.

The horizontal imaging axis can be configured to image the cerebral blood volume using
hemoglobin (configuration C1) as well as intravenously injected contrast agents (configuration
C2). These operating modes do not run in parallel as they require different dichroic mirrors
and optical filters, but a change between these configurations is possible within minutes.
Configuration C1 takes advantage of the properties of hemoglobin for hemodynamic imaging.
Illumination is carried out with a 395 nm LED, an isosbestic wavelength at which oxygenated
and deoxygenated hemoglobin absorb light equally. Like this, changes in blood volume can
be mapped independently of the oxygenation state of hemoglobin (Fig. 4.7 d). Configuration
C2 necessitates the intravenous injection of a fluorescent ‘blood pool agent’. For these
experiments, a contrast agent consisting of micelles filled with indocyanine green (ICG) was
injected i.v. A 780 nm LED is used for illumination and this strategy produces highly detailed
images of the venous and arterial cerebral vasculature which is contrasted by the ICG.
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Although the contrast agent is slowly removed from the bloodstream by the reticuloen-
dothelial system which is mostly represented by the liver an injection of 100 µL of contrast
agent enables 30-minute optical recordings.

Figure 4.7: Wide-field optical imaging captures brain neuronal brain activity and hemodynamics a,
Schematic representation of the widefield imaging setup. The vertical light path was used for imaging GCaMP6s
and the horizontal path for hemodynamic imaging. Hemodynamic imaging was done in two configurations: C1
angiography after intravenous injection of indocyanine green (ICG) micelles and illumination at 780 nm and C2
reflectance imaging at 395 nm (isosbestic wavelength for hemoglobin).b, RGB image of the skull window pre-
paration. c, 460 nm stimulated image showing GCaMP fluorescence from B6;CBA-Tg(Camk2atTA)1Mmay/J
x B6;DBA-Tg(tetO-GCaMP6s)2Niell/J) mice. d, 395 nm reflectance image acquired by the horizontal op-
tical axis (configuration 2). e, 780 nm stimulated fluorescence image acquired after intravenous injection
of ICG micelles (configuration 1) producing a brain angiography. In a dynamic imaging series acquired
at 780 nm, time-dependent variations are due to changes in cerebral blood volume. f, Dynamic GCaMP6s
imaging sequence reveals activation of visual somatosensory and motor networks across the dorsal cortex in
B6;CBA-Tg(Camk2atTA)1Mmay/J x B6;DBA-Tg(tetO-GCaMP6s)2Niell/J) mice.
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4.3 Removal of physiological imaging noise with the
Wavelet-based Event Separation processing pipeline

Figure 4.8: Image processing pipeline for the data-driven removal of physiological noise and effective
dimensionality estimation. Imaging data processing pipeline. Raw images from the two cameras were
registered to each other and subsequently to a functional cortical map from the Allen Mouse Brain Atlas. This
step was followed by continuous wavelet analysis and UMAP dimensionality reduction. UMAP clustering was
employed to identify functional activity classes and PCA allowed us to extract the activity of functional networks
from the previously isolated clusters. The final step consists of calculating the Brain Pattern Dimensionality
(BPD) which is equivalent to the effective dimensionality of the imaging data.

A bespoke image processing pipeline, was developed in collaboration with Helmholtz AI,
to characterize populational-level neuronal activation events. The first step was to register
all imaging datasets to a common coordinate framework for the mouse cortex which was
published by the Allen Institute [23]. A total of 40 brain regions, 20 per hemisphere were
included in the brain map. Additionally, the brain map contained information on all regions
displayed in Fig. 4.8 a, so average time traces from these regions were extracted. Correct
registration was checked by visual and hind paw stimulations. The patterns of activation
occurred as expected in the primary visual (V1) (Fig. 4.8 b) and somatosensory 1 hind
limb areas (S1-HL) (Fig. 4.9 c). Both visual and hind paw stimulation produced bilateral
responses and this is in line with previously published results. Notably, in the case of visual
stimulation, the V1 responses are accentuated in the right hemisphere which is contralateral
to the stimulated retina while in the left hemisphere responses are strongest in the visual
association areas bordering V1(Fig. 4.8 b).

Imaging data contains rich temporal, spectral and spatial information, for this reason, our
processing pipeline includes computational steps tailored to extracting information from these
different dimensions. After image registration, followed the continuous wavelet analysis a
data decomposition step that captures both spectral and temporal components. This produces
a large increase in the dimensionality of the dataset such that a dimensionality reduction step
is needed and this was carried out with UMAP. UMAP is a fast algorithm that is designed to
handle large datasets such as those that are routinely used in machine learning applications.
In the resulting UMAP 2D projections (Fig. 4.8 second row, fourth from the left) every point
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represents an imaging frame in frequency and time. Next, clustering is required to isolate
related neuronal events and remove physiological noise.

Figure 4.9: Coregistration of functional imaging data to a cortical mask based on the Allen Mouse
Brain Atlas. a, Brain parcellation mask based on the Allen Institute Atlas, 20 brain regions were taken into
account per hemisphere. M1 - primary motor area, M2 - secondary motor area, HL - hind limb, FL - front
limb, S2 - secondary somatosensory area, MO - mouth, NO - nose, TR - trunk, A - anterior association area,
AL - anterolateral, AM - anteromedial, LM - lateromedial, LI - laterointermediate, PM - posteromedial, RL -
rostrolateral regions of the extrastriate visual areas, AU - auditory, RS - retrosplenial, BC - barrel cortex, V1
- visual area, UN - somatosensory area unassigned.b, Validation of correct registration by visual stimulation:
after stimulation of the left retina, an increase in signal was observed in the primary visual region (V1) of the
contralateral hemisphere. Ipsilateral activation was also observed in visual association areas (LM, AL, and
RL). c, Validation of correct registration by left hind paw stimulation. An increase in signal was observed in
the contralateral hemisphere in the hind limb area (HL) while a weaker response is present also in the HL area
of the ipsilateral hemisphere.

Apart from reducing dimensionality, UMAP, as a preprocessing for clustering has the
advantage that the distances in a UMAP embedding correspond to the natural distances of the
data along curved data manifolds. This can simplify the geometry of the underlying clusters,
and thus, makes it easier for a clustering algorithm to find the correct clustering solution
[313]. The resulting clusters are eventually reconstructed back into videos and a PCA is
conducted in order to calculate BPD, our index for cortical network segregation (Fig. 4.8).

The spatio-temporal components of the GCaMP6s fluorescent signals were investigated
and it was observed that most power was concentrated in frequencies between 0 and 4Hz.
A prominent 8-12Hz component was also observed that was fairly stable during the entire
recording. Previous theoretical work suggests that calcium fluorescence imaging data is
contaminated by signal fluctuations caused by changing cerebral blood volume. Since the
8-12Hz frequency component corresponds well to the mouse heart rate (400-800 beats/min),
the origin of the prominent 8-12Hz signal fluctuations was investigated next (Fig. 4.10 a and
b).
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Figure 4.10: Continuous wavelet analysis reveals a putative 8-12 Hz physiological noise component.
a, 460 nm stimulated GCaMP6s fluorescence image. b, Continuous wavelet analysis of a 5 min GCaMP
imaging sequence reveals complex time-frequency components up to the theta band as well as strong 8-12 Hz
noise. c, 395 nm reflectance imaging. d, Continuous wavelet analysis of a 5 min 395 nm stimulated imaging
sequence shows prominent time-frequency components in the 8-12 Hz band. e, 780 nm fluorescence imaging
of intravenously injected ICG micelles characterizing cerebral blood flow. f, Continuous wavelet analysis of a
5 min 780 nm stimulated imaging sequence shows strong variations in the 8-12 Hz band.

The dual-channel imaging capabilities of the custom-built dual-camera instrument al-
lowed for reflectance imaging at 395 nm wavelengths. 395nm represents an isosbestic point
where oxygenated and deoxygenated hemoglobin have the same absorption rates. In the
395nm imaging dataset, a strong 8-12Hz frequency component was found and this matched
well with the similar frequency band which was described above in the GCaMP dataset (Fig.
4.10 c and d).

Additionally, ground truth data on cerebral blood volume fluctuations was acquired by
imaging a blood pool agent. 100µL of ICG micelle solution was injected intravenously and
imaging was done under 780 nm illumination. ICG fluorescence was recorded at 810nm.
The presence of a strong 8-12Hz component was established and this seemed to correspond
to the findings in the GCaMP channel (Fig. 4.10 e and f).
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Figure 4.11: UMAP-derived clustering isolates physiological noise from neuronal activity. a-c Clustering
results from three representative subjects, from left to right: UMAP 2D projection, showing the hemodynamic
cluster (red), and the neuronal activity cluster (blue); the first PCA component of the hemodynamic cluster
containing signal arising from the brain vasculature; first four PCA components of the neuronal cluster showing
a global component followed by patterns corresponding to frontal, somatosensory and occipital brain networks.

Having a data-driven approach to remove the unwanted physiological noise caused by
CBV changes from calcium fluorescence data is highly desirable since it would improve the
accuracy of downstream quantitative measurements and this can be done with UMAP-derived
clustering. In all mice, the UMAPS contained two very distinctly separated regions, a more
compact region (Fig. 4.11 a-c first panel from the left in red) and a more spread out region
in blue (Fig. 4.11 a-c first panel from the left in red). These data structures were easily and
cleanly separated by hierarchical clustering. The clusters were reconstructed into 3D imaging
datasets (2D images over a series of time steps) and PCA was used to investigate the spatial
and temporal patterns contained herein.

The red and more compact cluster contained very detailed spatial patterns corresponding
to the brain vasculature and this finding was reproducible across animals as illustrated in 3
representative cases in Fig. 4.11 a-c 2nd panel from the left. Apart from this most prominent
pattern, the other PCA components were showing only readout noise which can be amplified
after the expression of the data in percentage change relative to the baseline (Δf/f). In contrast,
the bigger cluster in blue contained a richer spectrum of interpretable PCA components.

Next, time-frequency components of the clusters were investigated with continuous wave-
let analysis. It was observed that the red cluster (Fig. 4.12 a) mainly contains high-frequency
activity in the 8-12Hz range (Fig. 4.12 b) while the bigger blue cluster features most activity
below 4Hz (Fig. 4.12 c). Evidence from Fig. 4.11 and Fig. 4.12 suggests that it is possible
to identify a red cluster containing a spatial pattern that depicts the brain vasculature and the
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temporal and spectral features of this activity fall within the range which is characteristic of
the mouse heart rate of 400-800 beats/min.

Figure 4.12: The hemodynamic cluster contains physiological noise. a, 2D UMAP embedding showing
two distinct clusters from a GCaMP dataset. b, Typical wavelet power spectrum from a GCaMP dataset, the
hemodynamic cluster showing greatest power in the 6-8 Hz band corresponding to the mouse heart rate. c,
Corresponding wavelet power spectrum from a GCaMP dataset from the neuronal cluster with most power
concentrated in the frequency band below 4 Hz. d, Image showing the angiography data acquired under 780 nm
illumination after ICG micelle injection. e, Typical wavelet power spectrum, of ICG angiography image series
showing greatest power in the 6-8 Hz band corresponding to the mouse heart rate f, Bandpower measurements
for 3 ICG angiography datasets: around 80% of bandpower concentrated in the 6-8 Hz frequency range. One
way ANOVA (n=3), 6-8 Hz band vs. 1-4 Hz band p=0.0011; 6-8 Hz band vs 0-1 Hz band p=0.0012. **
corresponds to p-value < 0.01.

Angiography recordings served as a positive control as they contained the most direct
data available to us regarding brain hemodynamics (Fig. 4.12 e). The wavelet decomposition
revealed that most hemodynamic activity was concentrated in the 6-8Hz range matching the
characteristics of the hemodynamic cluster (red) (Fig. 4.12 b).

The bandpower in the 8-12 Hz frequency range was calculated in three mice and it
accounted for 73.82±17.9% of total bandpower in the angiography datasets. In comparison,
the 0-1 and 1-4 Hz intervals contained 9.6±6.9 and 7.9±5.8% of total bandpower respectively.
The 8-12Hz frequency band corresponds to the heart rate of the mouse which ranges from
500 to 800 beats/minute (8.33-11.6 Hz) [329].

For these reasons, the red cluster is referred to as the as the “hemodynamic cluster” and
the blue cluster as the “neuronal cluster”.

Linear regression represents the most frequent method used for physiological noise re-
moval [137]. To compare the results of linear regression (Fig. 4.13) with our data-driven
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method for hemodynamic noise removal (Fig. 4.14), both processing strategies were applied
to the same imaging dataset.

Figure 4.13: Removal of physiological noise with linear regression. a, UMAP of a functional imaging
dataset after regression of 395nm imaging data out of the original GCaMP images showing the hemodynamic
cluster (red) and neuronal cluster (blue). The morphology of the neuronal cluster (blue) seems disrupted after
regression of 395 nm reflection data b, Continuous wavelet analysis of the entire dataset before clustering. c,
Continuous wavelet analysis of the GCAMP dataset after regression of the 395nm dataset showing the 8-12Hz
frequency component was not entirely removed by the regression method. d, Average of entire cortex before
(blue) and after (orange) regression of 395 nm dataset showing good agreement in temporal trajectories. e,
PCA of the high-frequency cluster after regression showing that the hemodynamic PCA pattern was removed
by linear regression.

Reflectance images at 395 nm, an isosbestic hemoglobin wavelength, were co-recorded
and regressed from the GCaMP6s signals. Figure 4.13 shows that while regression is also
effective in removing the hemodynamic noise from the fluorescence data (Fig. 4.13 b-e), it
is not as effective in removing the 8-12 Hz noise component (Fig. 4.13 c). Inspection of
the data post-regression revealed that noise had been introduced by the procedure and the
shape of the neuronal cluster has also been affected (Fig. 4.13, a). Temporal and spatial
smoothing of both the raw GCaMP6s and 395 nm datasets before regression might solve
this issue at the cost of compromising spectral resolution in the delta and theta bands. Our
UMAP-derived clustering method is efficient in removing the 8-12 Hz frequency component
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from the imaging data (Fig. 4.14 b-e) while preserving higher frequency events that are
associated with neuronal activity (Fig. 4.14 c).

Figure 4.14: UMAP clustering efficiently removes physiological noise from the raw GCaMP imaging
data. a, UMAP of a GCaMP functional imaging dataset acquired under 1% isoflurane sedation showing the
hemodynamic cluster (red) and neuronal cluster (blue). b, Continuous wavelet analysis of the entire dataset
before clustering. c, Continuous wavelet analysis of the neuronal cluster showing the 8-12Hz frequency
component associated with physiological noise was efficiently removed. d, Average of entire cortex before
(blue) and after (orange) removal of hemodynamic noise components. e, PCA of the hemodynamic cluster
which was removed showing a clear vascular pattern.
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4.4 Functional network dynamics of spontaneous cortical
activity

4.4.1 Continuous wavelet analysis and UMAP-derived clustering reveal
spatiotemporal and spectral features of spontaneous activity

To assess the characteristics of spontaneous functional network dynamics and the features of
stimulus processing, spontaneous activity recordings (6000 frames at 20 Hz) were interleaved
with stimulated recordings (6000 frames at 20 Hz). Three experiments were carried out
per animal, after the administration of isoflurane, medetomidine, and ketamine (Fig. 4.15
a). For isoflurane experiments, 5 anesthetic concentrations were investigated: 1%, 1.2%,
1.4%, and 1.6% isoflurane. For each concentration, 5 min. of spontaneous activity was
acquired first and followed by five minutes of recordings where either visual, hind paw, or
optogenetic stimulations were applied. Before starting the recording with a new concentration
of isoflurane, 3 minutes were allowed to pass for the animal to stabilize in this new condition.
This strategy allowed us to study the relationship between spontaneous cortical activity and
different anesthetics as well as the dose-dependent effects of isoflurane on brain states. The
same mice were also imaged under medetomidine and ketamine, but these imaging sessions
only included one concentration of the pharmacologic agent. Like this, the amount of data
acquired was maximized while the number of animals used was kept to a minimum. Between
the isoflurane, medetomidine, and ketamine experiments, mice were allowed 1 week to
recover.

After data acquisition, images were registered to a common brain template from the
Allen Mouse Brain Atlas [23]. The continuous wavelet analysis and UMAP dimensionality
reduction followed and after the UMAP calculation data were clustered in 2 clusters. As
detailed in the Materials and Methods section, the compact cluster (Fig. 4.15 b) in red
corresponds to high-frequency noise as well as physiological noise and was not included in
the analysis. Reconstructions of the ‘neuronal’ cluster shown in blue in Fig. 4.15 b were used
for all subsequent computations.

Inspection revealed that regardless of the pharmacological agent used, the depth of anes-
thesia, and the stimulation status of the experiment, 2 clusters were always present and clearly
differentiated. Changes in the shape of the ‘neuronal’ cluster were observed as a function
of brain state (Fig. 4.15 b). During sedation with isoflurane or medetomidine, the neuronal
cluster takes a compact ellipsoid shape. Likewise, under ketamine, the neuronal cluster has
a compact structure. The transition from sedation to anesthesia under isoflurane leads to a
progressive breakup of the neuronal cluster which becomes less dense and poorly defined.
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Figure 4.15: Cluster morphology reflects the functional properties of resting-state brain networks. a,
Schematic of the experimental design, Isoflurane: 5-minute spontaneous recordings were followed by a 2-
minute break and a 5-minute stimulated recording. This sequence was repeated for isoflurane concentrations
from 1% to 1.8%, increasing in 0.2% increments. Imaging under medetomidine and ketamine was performed
in the same animals in separate sessions. b, Representative UMAPs of spontaneous activity from isoflurane,
medetomidine, and ketamine: hemodynamic cluster in red, neuronal cluster in blue.

After wavelet decomposition, the UMAP contains a representation of all frames in the
imaging dataset in frequency and time. Therefore the transition from broadband activity
during sedation to slow-wave activity in anesthesia significantly impacts the spectral features
of the data and this change is reflected in the appearance of the neuronal cluster.

The shape and ‘density’ of the hemodynamic cluster were very similar under all investig-
ated conditions. Anesthesia with isoflurane does not significantly impact the heart rate of the
mice, consequently the hemodynamic cluster remains constant. This seems to indicate that
physiological noise can always be differentiated from neuronal activity with our data-driven
method.

To check the reproducibility of the clustering method, all UMAPS from 10 animals
under isoflurane were plotted and it was confirmed that the change from the sedated to the
anesthetized arousal state induced a breakup of the neuronal cluster in all animals, see Fig.
4.16.
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Figure 4.16: The neuronal cluster changes morphology reflecting the transition from sedation to anes-
thesia under isoflurane. UMAPs were calculated for animals M1-M10 (rows) over increasing concentrations
of iso. from 1% to 1.8% (columns). The transition between brain states induced the degradation of the neuronal
cluster from a dense structure during sedation (iso. 1%) to a more spread out and less dense configuration under
anesthesia (iso. 1.8%)
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Figure 4.17: Subclustering reveals brain state-specific spatial and spectral features. a-c, spontaneous
activity under 1% isoflurane (c), medetomidine (d), and ketamine (e); from left to right: UMAP, hemodynamic
cluster (red), frontal cluster (blue), and occipital cluster (green); average of the frontal cluster; average of the
occipital cluster; lagged correlations from the standard deviation of images in the occipital and frontal clusters,
mean correlation at 0 lag for isoflurane -0.41, medetomidine -0.5, and ketamine -0.33; typical wavelet power
spectrum (Morlet) from averaged retrosplenial cortex signal.

Neuronal clusters from mice under 1% isoflurane (Fig. 4.17, a), medetomidine (Fig.
4.17, b), and ketamine (Fig. 4.17, c) were divided into 2 subclusters, and their spatial and
spectral features were investigated for brain-state-specific activity. A mean of the subclusters
reveals that under isoflurane and medetomidine most activity is concentrated in the frontal
and occipital regions respectively (Fig. 4.17, a, b, 2nd and 3rd from left). Ketamine exhibits
a different spatial pattern of activation with occipital activity concentrated in the retrosplenial
cortex (RSP) of both hemispheres (Fig. 4.17 c 2nd and 3rd from left).

Next, the temporal relationship between these clusters was investigated. The standard
deviation of each image over the entire imaging period was calculated and we cross-correlated
the standard deviation vectors for the frontal and occipital clusters. Minimum correlations
were observed at zero lag for isoflurane (mean correlation -0.41±0.13), medetomidine (-
0.50±0.06), and ketamine (-0.34±0.22). Introducing lag resulted in a symmetric increase in
the correlation between the frontal and occipital clusters, suggesting that frontally-weighted
and occipitally-weighted networks exhibit fluctuating activity and are offset in time by up to
2 seconds (Fig. 4.17 a-c 4th from left). We found a strong 1-3 Hz oscillation in the RSP in
ketamine (Fig. 4.17 e, 5th from left) but not isoflurane (Fig. Fig. 4.17 a, 5th from left) or
medetomidine (Fig. Fig. 4.17 b, 5th from left).
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4.4.2 Brain Pattern Dimensionality
We used pharmacological agents to induce distinct functional brain states. To illustrate, Fig.
4.18 shows averaged activity traces measured from the entire cortex under isoflurane (five
concentrations), medetomidine, and ketamine. During 1% iso. average traces of cortical
activity show high-frequency oscillations coexisting with lower frequency trends (Fig. 4.18,
top row), as isoflurane concentration increases more wave-like patterns start to appear (Fig.
4.18, 1.4% iso.). During surgical-level anesthesia (Fig. 4.18, 1.8% iso.) stereotypical
up-down transitions called slow waves dominate brain activity. Under med. and ket. we
observed higher frequency fluctuations as well as prominent low-frequency components.

Figure 4.18: Exemplary average activity traces for the pharmacologically induced experimental condi-
tions. Averaged activity (right) from the entire cortex under (from top to bottom) 1% iso.,1.2% iso., 1.4% iso.,
1.6% iso., and 1.8% iso. Complex activation patterns in 1% iso., change gradually to slow waves in 1.6 and
1.8% iso. No slow waves were observed in med. and ket.
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Figure 4.19: BPD index is based on physiological brain networks. a, Physiological brain patterns are
extracted with principal component analysis (PCA). b, Explained variance ratio per PCA component computed
from one subject acquired from 1-1.8% isoflurane concentrations (0.2% increments). In high isoflurane
anesthesia conditions, fewer components are needed to explain most of the variance in the dataset.

A global index, BPD was developed to quantify the changes described above. This project
was carried out in collaboration with the Helmholtz AI department, especially Dr. Marie
Piraud and Dr. Dominik Thalmeyer. We conducted principal component analysis (PCA)
(Fig. 4.19 a) of the imaging data and observed that during deep anesthesia, fewer principal
components were required to characterize the overall covariance in the imaging data. To
illustrate this, in Fig. 4.19 b a we plot the explained variance relative to the number of PCA
components. Steeper descent of the logarithmic curve results in lower BPD values for this
dataset. The steeper the descent of this curve, the fewer PCA components are necessary to
characterize the data.

Calculating the effective dimensionality i.e. the minimum number of dimensions needed
to recreate the covariance of the imaging data, provides a metric for quantifying the complexity
of the spatiotemporal activity patterns. The normalized Shannon entropy of the eigenvalue
distribution was computed to assess its information content. If the normalized entropy is
equal to 1 we would need all PCA components to adequately characterize the imaging data,
conversely, if the entropy is zero only one PCA component would be enough to characterize the
dataset [318]. By rescaling the normalized entropy by the total number of PCA components,
we arrive at the quantitative measure BPD.

The principal components correspond to spontaneously occurring physiological brain
networks (Fig. 4.19 b). BPD estimates the level of functional segregation in cortical networks
because the higher the BPD of our imaging datasets the higher the number of physiological
cortical networks which are active in that particular recording and the more complex the
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brain state. BPD can be used to reduce the set of weighted PCA components (the weighting
is the explained variance of PCA components) to a set of unweighted elements, an effective
number of dimensions required to reproduce the overall pattern of covariation in our original
dataset.

Figure 4.20: Accurate BPD measurements depend on the removal of physiological noise. a, UMAP of a
functional imaging dataset acquired in mouse M1 during 1% iso. sedation, no clustering was performed. b, The
evolution of brain BPD over the iso. concentration shows a marked increase during 1.8% vs. 1.6% iso. despite
both conditions featuring slow waves. c, Explained variance ratio over PCA components shows the 1.8% iso.
curve flattening after the 5th PCA component (green line) suggests that noise is heavily featured in this dataset.
d, UMAP of the same dataset as in a, with isolation of the hemodynamic noise cluster (red) and neuronal cluster
(blue). e, When only the dimensionality of the neuronal cluster is calculated, BPD values in 1.6% and 1.8% iso.
are very similar.f, We calculated the total contribution of the neuronal (blue) and hemodynamic (red) clusters
to the variance observed in our imaging data over iso. level. The explained variance for the neuronal cluster
decreases while there is an increase in the variance of the hemodynamic cluster in iso 1.8%, suggesting that
without clustering, physiological noise artificially increases BPD estimations.

The accurate calculation of BPD depends on the suppression of physiological noise, as
noise will artificially increase the dimensionality of brain imaging data so we calculate BPD
after UMAP clustering and physiological noise removal, i.e. we estimate the dimensionality
of the neuronal cluster only (Fig. 4.20 ).

Without physiological noise removal, the evolution of brain BPD over the iso. level
shows a marked increase during 1.8% vs. 1.6% iso. in spite of both conditions featuring slow
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waves (Fig. 4.20 b). The explained variance ratio over PCA components in 1.8% isoflurane
shows a flattening curve after the 5th PCA component (green line) suggesting that noise is
heavily featured in this dataset (Fig. 4.20 c). In 1.8% isoflurane, the explained variance
for the neuronal cluster decreases while there is an increase in the explained variance of the
hemodynamic cluster (Fig. 4.20 f) suggesting that without clustering, physiological noise
artificially increases BPD estimations. When only the dimensionality of the neuronal cluster
is calculated, BPD values in 1.6% and 1.8% are similar (Fig. 4.20 e).

Figure 4.21: Brain Pattern Dimensionality index measures the functional segration level of cortical
networks. a, Brain pattern dimensionality of spontaneous activity recordings. One-way ANOVA repeated
measurements / Tukey’s multiple comparisons test (n=10 iso., n=9 med., n=8 ket.): 1% isoflurane vs. 1.4%
isoflurane p=0.013; medetomidine vs. 1.2% isoflurane p=0.011; medetomidine vs. 1.8% isoflurane p=0.0006;
ketamine vs. 1.8% isoflurane p=0.012. b, Linear regression BAPD vs. clustering coefficient calculated
with graph theory, R-squared=0.68, slope -0.01, F=142.3, p<0.0001. * corresponds to p-value < 0.05, ***
corresponds to p-value < 0.001.

Spontaneous activity was recorded in 10 mice under isoflurane, 9 mice under me-
detomidine and 8 mice under ketamine. The transition from sedation to anesthesia (1%
isoflurane to 1.8% isoflurane) is accompanied by a gradual decrease in BPD (Fig. 4.19, c):
1% isoflurane, 22.2±5.9; 1.2% isoflurane, 16.47±6.1; 1.4% isoflurane, 12.4±3.3; anesthesia
with 1.6% isoflurane, 9±3.2; anesthesia with 1.8% isoflurane, 8.7±3.4. Statistically signi-
ficant differences were found between 1% isoflurane and 1.4% isoflurane (p=0.013), 1.6%
isoflurane (p=0.001) and 1.8% isoflurane (p=0.0006). We do not observe a ‘phase change’
when analyzing BPD values over isoflurane concentrations. Rather, the level of segregation
of spontaneous activity networks decreases from isoflurane 1% to isoflurane 1.4% and stabil-
izes at low values during surgical-level anesthesia with 1.6% and 1.8% isoflurane (Fig. 4.21
a).
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Sedation with medetomidine showed the highest BPD average value of 33.77 but also
the highest SD of 8.9, so when compared to sedation with 1% isoflurane, the means were
not significantly different (p=0.14). Dissociation under ketamine was also indistinguishable
from 1% isoflurane (19.77±5.4 vs. 22.21±5.9, p=0.95) but was significantly different from
anesthesia with 1.6% isoflurane (19.77±5.4 vs. 9.04±3.2, p=0.02) and showed a clear trend
towards significance when compared to sedation with medetomidine (19.77±5.4 vs. 33.7±8.9,
p=0.065).

These results show that the level of resting-state network segregation is similar in isoflur-
ane 1%, ketamine 100 mg/kg, and medetomidine 0.055 mg/kg. Making the differentiation
between these conditions, therefore, requires analyzing the nature of the FC patterns generated
by these drugs which all have different molecular targets.

BPD measures functional segregation levels, to show this, we carried out linear regression
between BPD and a network measure of functional segregation, the clustering coefficient.
There is a moderately strong correlation between these two variables. The clustering coeffi-
cient has its highest values in fully connected networks such as can be found in the slow-wave
state, hence the negative slope between BPD and the clustering coefficient (Fig. 4.21 b).

4.4.3 Complex network connectivity measures
Functional segregation and integration during spontaneous activity can also be characterized
using graph theory. For this, functional imaging data has to be represented in the form of
a network graph. The nodes of the graph are represented by brain regions and the vertices
by the strength of the correlation between time-varying signals from these areas. All data
has been registered to a common coordinate framework [304] and time-varying signals were
extracted from the anatomically distinct areas. This step was followed by the calculation of
Pearson’s correlation coefficient between brain regions to form correlation matrices. Because
the columns and rows of these matrices represent the same cortical areas in identical order
the correlation matrices are symmetrical along the main diagonal (Fig. 4.22).

Correlation matrices were calculated for all subjects and all pharmacological conditions
and representative matrices are shown in Fig. 4.22. In isoflurane 1%, medetomidine, and
ketamine, functional units are revealed by the higher levels of correlation between their
subunits. It was observed that somatomotor brain areas have higher correlations amongst
their subcomponents than with visual areas and vice-versa. This pattern is present within
the left and right hemispheres but also in the case of interhemispheric correlations. This
is expected because there is a high degree of coordination between the activity of ipsi- and
contralateral brain regions. In the case of isoflurane 1.8%, the level of correlation between
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brain areas is very high, approaching 0.95. Notwithstanding, some remnants of the modular
correlation patterns from low isoflurane anesthesia are still present.

Figure 4.22: Brain connectivity analysis reveals functional cortical units. Cortical connectivity matrices
for a, sedation with 1% isoflurane b, sedation with medetomidine c, dissociation with ketamine, and d, surgical-
level anesthesia under 1.8% isoflurane. The x and y axes represent functional brain regions as extracted based
on the Allen Mouse Brain Atlas. Brain regions were sorted in left and right hemispheres so as to enable
comparisons between interhemispheric, right-intrahemispheric, and left-intrahemispheric correlations. Brain
connectivity matrices are symmetrical, so only values under the main diagonal are shown. Red and white
borders indicate somatomotor brain areas and visual brain areas respectively.
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Mean correlation values between all regions of interest were investigated in all pharma-
cological conditions and it was found that all conditions had an average correlation above
0.5.

Under isoflurane, overall correlations increased progressively from concentrations of 1%
to 1.8%. Statistically significant differences were found between isoflurane 1% vs. isoflurane
1.4% (0.77±0.06 vs. 0.88±0.04, p=0.01), isoflurane 1.4% vs. isoflurane 1.6% (0.88±0.04,
vs. 0.92±0.03, p=0.0005), medetomidine vs. isoflurane 1.4% (0.63±0.13, vs. 0.88±0.04,
p=0.01). Medetomidine was not significantly different from isoflurane 1% (p=0.15) and
interestingly, ketamine average correlation values were not significantly different from any of
the other conditions (Fig. 4.23).

Figure 4.23: The average correlation strength between brain regions is dependent on the brain state.
Comparison between average correlation levels in 1% iso., 1.2% iso, 1.4% iso., 1.6% iso., med. and ket.
One-way ANOVA repeated measurements / Tukey’s multiple comparisons test (n=10 iso., n=9 med., n=8 ket.):
1% iso. vs. 1.4% iso. p=0.019; 1.4% iso. vs. 1.6% iso. p=0.03; med. vs. 1.4% iso. p=0.01; med. vs. 1.8%
iso. p=0.002. * corresponds to p-value < 0.05, ** corresponds to p-value < 0.01.

Network measures of integration were calculated next (Fig. 4.24). The degrees of the
network graph represent the average number of edges that are associated with a network
node i.e. the number of above-threshold correlations per network node. The maximum
number of degrees is equal to the maximum number of network nodes, i.e. 40. Using this
metric, it was possible to distinguish between isoflurane 1% and isoflurane 1.4% (30.28±5.6
vs. 38.34±1.3, p=0.01) and medetomidine and isoflurane 1.4% (20.45±8.7 vs. 38.34±1.3
p=0.003). Medetomidine, ketamine, and isoflurane 1% network degrees were not significantly
different (Fig. 4.24 a).

The average inverse shortest path length is known as the global efficiency and is primarily
influenced by short paths. This is a point of difference respective to the path length which
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is more heavily affected by long paths. Significant differences were found between iso. 1%
vs. iso 1.4% (0.76± 0.08 vs. 0.90±0.044, p=0.01) and med. vs. iso. 1.4 (0.61±0.13 vs.
0.90±0.044, p=0.004). Again there were no significant differences between, medetomidine,
isoflurane 1%, and ketamine (Fig. 4.24 b).

Figure 4.24: Complex network measures of functional integration. a, Node degrees across anesthesia
conditions i.e. the average number of connections per network node. One-way ANOVA / Tukey’s multiple
comparisons test (n=10 iso., n=9 med., n=8 ket.); 1% iso. vs 1.4% iso. p=0.016; medetomidine vs. 1.2% iso.
p=0.003.b, global efficiency One-way ANOVA / Tukey’s multiple comparisons test (n=10 iso., n=9 med., n=8
ket.); 1% iso. vs. 1.4% iso. p=0.016; 1.4% iso. vs. 1.6% iso. p=0.043; medetomidine vs. 1.4% iso. p=0.004.
c, Path length One-way ANOVA / Tukey’s multiple comparisons test (n=10 iso., n=9 med., n=8 ket.); 1% iso.
vs. 1.4% iso. p=0.019; medetomidine vs. 1.4% iso. p=0.04. * corresponds to p-value < 0.05, ** corresponds
to p-value < 0.01.

The shortest path length between all pairs of nodes is known as the characteristic path
length and is the most widely employed measure of functional integration. Based on the
path length estimation, it was possible to distinguish between isoflurane 1% vs. isoflurane
1.4% (1.45± 0.22 vs. 1.12±0.08, p=0.01) and medetomidine vs. isoflurane 1.4% (2.08±0.7
vs. 1.12±0.08, p=0.04). It was not possible to statistically distinguish between isoflurane 1%
and medetomidine, furthermore, ketamine was not significantly different with respect to any
of the other conditions investigated (Fig. 4.24 c).

Next, network measures of functional segregation were investigated: modularity (Fig.
4.25 a), clustering coefficient (Fig. 4.25 b), and local efficiency (Fig. 4.25 c). Modularity
refers to the strength of segregation of a network into modules. Networks with high modularity
have high numbers of connections inside modules but few connections between nodes located
in different modules. Modularity was significantly different between isoflurane 1% vs.
isoflurane 1.4% (0.12±0.07 vs. 0.13±0.02, p=0.02) and medetomidine vs. isoflurane 1.4%
(0.28±0.15 vs. 0.13±0.02, p=0.009)(Fig. 4.25 a).

The clustering coefficient measures the degree to which nodes in a graph tend to cluster
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together. This measure was significantly different between isoflurane 1% vs. isoflurane 1.4%
(0.76±0.07 vs. 0.90±0.05, p=0.01) and medetomidine vs. isoflurane 1.4% (0.66±0.11 vs.
0.90±0.05, p=0.007) (Fig. 4.25 b). Local efficiency is a measure that ranges from 0 to 1, with
high values indicating maximum local efficiency in the network. In functional cortical brain
networks, high local efficiency indicates a topological organization indicative of segregated
neural processing. Local efficiency was significantly different between isoflurane 1% vs.
isoflurane 1.4% (0.81±0.05 vs. 0.9±0.04, p=0.01) and medetomidine vs. isoflurane 1.4%
(0.07±0.08 vs. 0.9±0.04, p=0.01)(Fig. 4.25 c).

Figure 4.25: Complex network measures of functional segregation. a, Modularity, One-way ANOVA /
Tukey’s multiple comparisons test (n=10 iso., n=9 med., n=8 ket.); 1% iso. vs. 1.4% iso. p=0.021; medetomidine
vs. 1.4% iso. p=0.009. b, Clustering coefficient One-way ANOVA / Tukey’s multiple comparisons test (n=10
iso., n=9 med., n=8 ket.); 1% iso. vs. 1.4% iso. p=0.012; 1.2% iso. vs. 1.6% iso. p=0.03; 1.4% iso. vs. 1.8%
iso. p=0.03; medetomidine vs. 1.4% iso. p=0.007. c, Local efficiency, One-way ANOVA / Tukey’s multiple
comparisons test (n=10 iso., n=9 med., n=8 ket.); 1% iso. vs. 1.4% iso. p=0.016; 1.2% iso. vs. 1.6% iso.
p=0.015; 1.4% iso. vs. 1.6% iso. p=0.039; medetomidine vs. 1.4% iso. p=0.013. * corresponds to p-value <
0.05, ** corresponds to p-value < 0.01.

4.4.4 Functional connectivity motifs responsible for brain state
transitions

Metastability in a dynamical system refers to an intermediate energy state which is stable
to small perturbations but unstable when larger changes appear in the physical system.
Specialized neuronal networks have to be able to work separately from their neighbors while
also sharing their outputs with connected regions to integrate their activity. For this reason,
in neuroscience, metastability refers to a combination of integration and segregation of
functional neuronal activity which is meant to increase the number of states that are available
to the network at any one time.
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First a global metastability measure was calculated for the entire duration of the dataset
(Fig. 4.26). Subsequently, spatio-temporal metastable patterns were computed for the
purpose of determining the functional connectivity patterns with explanatory power for brain
states and transitions (Fig. 4.26 and 4.28). One strategy for studying metastability involves
characterizing the ability of a region to propagate its feed-forward and recurrent neuronal
activity to other regions in the absence of extrinsic influences [330]. For this analysis brain
region activation was extracted from spontaneous activity recordings.

Figure 4.26: Metastability is dependent on the functional brain state. Metastability over canonic frequency
bands for iso. 1%, med., iso. 1.8%, and ket. One-way ANOVA / Tukey’s multiple comparisons test (n=10
iso., n=9 med., n=8 ket.). Slow-4: iso. 1% vs. ket, p=0.002; med. Vs. iso. 1.8%, p=0.04; med. vs. ket,
p=0.002; Slow 3: iso. 1% vs. iso. 1.8%, p=0.0003; med. vs. iso. 1.8%, p<0.0001. Slow-2: iso. 1% vs.
iso. 1.8%, p=0.0009; med. vs. iso. 1.8%, p=0.0006. Delta: iso. 1% vs. iso. 1.8%, p<0.0001; med. vs. iso.
1.8%, p<0.0001; iso. 1.8% vs. ket, p=0.017; Theta: iso. 1% vs. iso. 1.8%, p<0.0001; med. vs. iso. 1.8%,
p<0.0001; iso. 1.8% vs. ket, p<0.0001. * corresponds to p-value < 0.05, ** corresponds to p-value < 0.01, ***
corresponds to p-value < 0.001, **** corresponds to p-value < 0.0001.

Metastability was calculated for datasets acquired under sedation with isoflurane 1% and
medetomidine, anesthesia under isoflurane 1.8%, and dissociation under ketamine across
canonical frequency bands slow-4, slow-3, slow-2, delta, and theta (Fig. 4.26). In the slow-
4 band, it was possible to differentiate between isoflurane 1% vs. ketamine (0.187±0.04
vs. 0.127±0.032, p=0.03), medetomidine vs. 1.8% isoflurane (0.19±0.03 vs. 0.12±0.05
p=0.045) and medetomidine vs. ketamine (0.19±0.03 vs. 0.12±0.03, p=0.002). In the
slow-3 band isoflurane 1% vs. isoflurane 1.8% (0.17±0.02 vs. 0.08±0.02, p=0.0003) and
medetomidine vs. isoflurane 1.8% (0.19±0.03 vs. 0.08±0.02, p<0.0001) were found to be
statistically significant. Slow-2 band metastability was useful in differentiating isoflurane 1%
vs. isoflurane 1.8% (0.19±0.03 vs. 0.07±0.03, p=0.0009) and medetomidine vs. isoflurane
1.8% (0.18±0.02 vs. 0.08±0.03, p<0.0006). Metastability in the delta band was significantly
different between isoflurane 1% vs. isoflurane 1.8% (0.19±0.03 vs. 0.07±0.027, p<0.0001),
medetomidine vs. isoflurane 1.8% (0.2±0.02 vs. 0.07±0.027, p<0.0001) and isoflurane 1.8%
vs. ketamine (0.07±0.027 vs. 0.16±0.05, p=0.01). In the theta frequency band, isoflurane
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1% vs. isoflurane 1.8% (0.22±0.03 vs. 0.13±0.03, p<0.0001), medetomidine vs. isoflurane
1.8% (0.2±0.008 vs. 0.13±0.03, p<0.0001) and isoflurane 1.8% vs. ketamine (0.07±0.027 vs.
0.16±0.05, p<0.0001) were found to be significantly different. These results show that under
ketamine, metastability in slow frequency domains closely resembles isoflurane anesthesia
while in higher-frequency bands values approach those of medetomidine sedation. The
distinction between 1% isoflurane and 1.8% isoflurane can be made across frequency bands
but it is difficult to differentiate between isoflurane 1% and medetomidine despite these drugs
acting on different molecular targets.

Figure 4.27: LEiDA - fully connected functional motif under isoflurane. a, Spatial representation of the
functional connectivity pattern overlaid on the mouse cortex. Red indicates positive correlations between brain
regions and circle size denotes the strength of the correlation. b, Functional connectivity matrix corresponding
to the fully connected motif. c, Lifetime of the FC pattern in seconds. One-way ANOVA / Tukey’s multiple
comparisons test (n=10). 1% iso. vs. 1.2% iso. p=0.02; 1% iso vs. 1.4% iso, p=0.03; 1% iso vs. anesthesia
1.8% iso, p=0.006; d, Probability of occurrence of the FC pattern in seconds. One-way ANOVA / Tukey’s
multiple comparisons test (n=10). 1% iso. vs. 1.2% iso., p=0.02; 1.2% iso. vs. 1.4% iso., p=0.04; 1.4% iso vs.
anesthesia 1.8% iso, p=0.02; e, Linear regression BPD vs. probability of fully connected motif, slope=-0.01, R
squared = 0.54, F=58.17, p<0.0001. * corresponds to p-value < 0.05, ** corresponds to p-value < 0.01.

Next, leading eigenvector dynamic analysis (LEiDA) was used to investigate the meta-
stable functional connectivity (FC) motifs responsible for the transition between brain states.
For this analysis, the averaged signal from 40 brain regions was extracted from spontaneous
activity recordings under isoflurane to characterize the changes in FC motifs induced by a
brain state transition. LEiDA [289] was followed by the determination of probabilistic meta-
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stable substates [180], and the determination of the lifetime and probability of 12 FC motifs
that had a likelihood of occurrence greater than 1%.

Figure 4.28: Differentiation between brain states with similar levels of functional segregation with LEiDA.
Analysis conducted on n=10 iso., n=9 med., n=8 ket. a, FC motif 1 from upper to lower: FC patterns, first two
panels; Probability of FC motif 1: iso. vs. med. p=0.01; iso. 1% vs. iso. 1.8% p<0.0001; iso. 1.8% vs. med.
p<0.0001; iso. 1.8% vs. ket. p=0.04; Lifetime of FC motif 1: iso. 1% vs med. p=0.22; med. vs. iso. 1.8%
p<0.0015; iso. 1% vs. ket. p=0.01; iso. 1.8% vs. ket p=0.003.b, FC motif 2 from upper to lower: FC patterns,
first two panels; Probability of FC motif 2: iso. 1% vs. iso. 1.8% p=0.0006; iso. 1.8% vs. med. p=0.001;
Lifetime of FC motif 2: iso. 1% vs. med. p=0.0003; iso. 1% vs. iso. 1.8% p=0.001; iso. 1.8% vs. ket.
p=0.02.c, FC motif 3 from upper to lower: FC patterns, first two panels; Probability of FC motif 3: iso. 1% vs.
iso. 1.8% p=0.004; iso. 1.8% vs. med. p=0.0005; med. vs. ket. p=0.02; Lifetime of FC motif 3: iso. 1% vs.
med. p=0.008; med. vs iso. 1.8% p=0.02; iso. 1.8% vs. ket. p=0.003; med. vs. ket. p=0.02; d, FC motif 4
from upper to lower: FC patterns, first two panels; Probability of FC motif 4: iso. 1% vs. iso. 1.8% p=0.0002;
iso. 1.8% vs. med. p=0.02; Lifetime of FC motif 4: iso. 1% vs. med. p=0.0003; med. vs. iso. 1.8%, p=0.03;
iso. 1.8% vs. ket p=0.0003; iso. 1% vs. iso. 1.8%, p=0.001. * corresponds to p-value < 0.05, ** corresponds
to p-value < 0.01. *** corresponds to p-value < 0.001, **** corresponds to p-value < 0.0001.

Amongst these motifs, the one with the longest lifetime and highest probability exhibited
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high correlation values between all functional brain regions (Fig. 4.27, a and b). The
lifetime of this motif increased from 1.68±0.7 s during 1% isoflurane to 8.7±4.4 s during
1.8% isoflurane anesthesia (Fig. 4.27, c) and its probability of occurrence increased from
0.67±0.11 during 1% isoflurane to 0.96±0.02 during 1.8% isoflurane anesthesia (Fig. 4.27,
d).

The relationship between BPD and the likelihood of occurrence of the fully connected
network motif was investigated by linear regression and it was found that BPD values had a
moderate explanatory power for the probability of occurrence of this FC pattern, R-squared=
0.54, F=58.17, p<0.0001 (Fig. 4.27 e).

Similar to isoflurane, the most prevalent functional motif featured high connectivity
between all brain regions (Fig. 4.28 a). Based on the probability of occurrence of the FC
motif 1 it was possible to distinguish between isoflurane 1% and medetomidine (0.67±0.11
vs. 0.44±0.16, p=0.01). The lifetime of FC motif 1 also allowed for the differentiation of
isoflurane 1% from medetomidine (1.6±0.71 sec. vs. 0.44±0.16 sec. p=0.002) and isoflurane
1% from ketamine (1.6±0.71 sec. vs. 0.72±0.20 sec. p=0.01)(Fig. 4.28 a). The lifetime FC
motif 2 enabled the differentiation between isoflurane 1% vs. medetomidine (0.23±0.06 vs.
0.05±0.02, p=0.003) and isoflurane 1% vs. ketamine (0.23±0.06 vs. 0.03±0.02, p=0.02) (Fig.
4.28 b). The lifetime of FC motif 3 was useful in differentiating iso 1% from medetomidine
(0.17±0.05 vs. 0.06±0.02, p=0.008) and medetomidine from ketamine (0.06±0.02 sec. vs.
0.02±0.02 sec., p=0.02) (Fig. 4.28 c). The lifetime of FC motif 4 was significantly different
for isoflurane 1% and medetomidine (0.2±0.05 sec. vs. 0.04 sec. vs. 0.03 sec. p=0.0003)
(Fig. 4.28 d).

The determination of metastable substates with LEiDA can help in the differentiation
between experimental conditions that have similar levels of resting-state network segregation
and this is accomplished by investigating the spatial nature of FC connectivity patterns.
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4.5 Cortical responses to sensory stimulation are dependent
on the functional brain state

Stimulus processing is a key step in the intricate chain of neuronal events that motivates
behavior. Under anesthesia, mammals become insensate to outside influences. The processes
that underlie this phenomenon are not completely understood. In this section, the cortical
representation of sensory stimuli was investigated as a function of the brain state. Brain state
transitions from the persistent state to the slow-waves state were induced with progressively
increasing levels of isoflurane gas. Hind paw stimulation was used to activate somatosensory
networks and visual networks were accessed with light pulses to the retina. Experiments
were done on 5 animals for hind paw and 5 animals for visual stimulation.

4.5.1 Hind paw stimulation
As highlighted in Fig. 4.15, five different concentrations of isoflurane were used to induce
transitions from complex spontaneous activity to slow waves. For each isoflurane concentra-
tion, five-minute baseline recordings were followed by five-minute recordings of stimulated
brain activity. 50 ms electrical pulses with an amplitude of 1mA were delivered every 10
seconds resulting in 30 stimulations per five-minute recording. 30, 10-second intervals after
stimulation were averaged and the data were reconstructed into movies showing the cortical
representations of stimuli. During 1% isoflurane, left hind paw stimulation produced primary
activation in the S1 hind limb (S1-HL) area with a peak activation between 0.3-1 second after
stimulation Fig. 4.29 c). Less pronounced activation in this first phase was observed in board
parasagittal regions as well as the visual areas. After left hind paw stimulation, activation was
strongest in the contralateral hemisphere although strong increases in GCaMP6s fluorescence
were also observed in the ipsilateral S1-HL cortex. Beyond one second, activity in the S1-HL
subdued and gave way to more prominent activity in the associative areas bordering the V1
region. This could indicate the first second after stimulation is primarily dedicated to the local
processing of the stimulus in specialized cortical regions and later activity aims to integrate
information in associative areas.

In contrast to the elaborate patterns of activation described above, during surgical-level
anesthesia with isoflurane, activation levels exceed 10%Δf/f in large parts of the cortex (Fig.
4.29 d). At 0.3 seconds after stimulation, the strongest activation extends from the S1-HL
to the retrosplenial cortex. After this, high levels of global activation take over most of the
cortex at 0.6 seconds. This temporal pattern suggests that activation events are propagating
across the cortex from a point of origin situated in the somatosensory projection areas to
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eventually involve the whole cortex.

Figure 4.29: Spatio-temporal responses to hind paw stimulation under 1% and 1.8% isoflurane. a, Brain
region map HL denotes the hind limb projection areas, and the primary visual areas are marked with V1. b,
30 stimulations with a duration of 50 ms each were averaged and assessed for cortical activation patterns. c,
Imaging time-series form an average of 30 hind paw stimulations during 1% iso. d, Imaging time-series form
an average of 29 hind paw stimulations during 1.8% iso. The time index in sec. is indicated above the brain
activity maps.

Left hind paw stimulation during low isoflurane resulted in activation of the right S1
hind limb area (Fig. 4.30 d upper row, first 2 panels from left), with activation intensity
of 6.3±2.81% (Fig. 4.30 d lower row, first 2 panels from left) and during 1.8% isoflurane
recordings, responses were global (Fig. 4.30 d upper row, 4th and 5th panels from left) with
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Figure 4.30: Cortical responses to stimulation of the left hind paw decrease in complexity with increasing
anesthesia.
a, Changes in brain pattern dimensionality (BPD) as a response to anesthesia and hind paw stimulation n=5.
Two-way ANOVA repeated measurements: 1% iso. vs 1.2% iso. p=0.006; 1.2% iso. hind paw vs. 1.4% iso.
hind paw p=0.02; 1% iso. hind paw vs. 1.4% iso. hind paw p=0,0004.b, Linear regression BPD spontaneous
activity vs. BPD hind paw stimulation, slope=0.62, R squared = 0.58, F=31.85, p<0.0001. c, Hind paw
stimulation: 1 mA, 50 ms long pulses were delivered every 10 sc. resulting in 30 stimulations per imaging
run. d, Upper: binarized response 0.6 sec. after hind paw stimulation for isoflurane 1%, 1.2%, 1.4%, 1.6% and
1.8%. The binarization threshold was set at 50% of maximum activation in the S1 region under 1% isoflurane
and was retained for the subsequent anesthesia levels. Lower: df/f mean normalized fluorescence shaded error
bar traces from the V1 region (n=5). * corresponds to p-value < 0.05, ** corresponds to p-value < 0.01, ***
corresponds to p-value < 0.001.

maximum activation of 6.2±4.3% (Fig. 4.30 d, 4th and 5th panels from left).
The quantitative assessment of the functional state was done with BPD during spontaneous

activity and hind paw stimulation recordings. Left hind paw stimulation during low isoflurane
resulted in activation of the right S1 hind limb area (Fig. 4.30 d upper row, first 2 panels from
left), with activation intensity of 6.3±2.81% Δf/f (Fig. 4.30 d lower row, first 2 panels from
left) and during 1.8% isoflurane recordings, responses were global Δf/f (Fig. 4.30 d upper
row, 4th and 5th panels from left) with maximum activation of 6.2±4.3% (Fig. 4.30 d lower
row, 4th and 5th panels from left). Stimulations in high anesthesia result in the initiation of
slow cortical waves which have a stereotypical character and usually encompass the whole
cortex.

Using BPD it was possible to differentiate between spontaneous activity isoflurane 1% vs.
spontaneous activity isoflurane 1.2% (31.2±6.7 vs 21, p=0.0015), hind paw stimulation 1%
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isoflurane vs. hind paw stimulation 1.4% isoflurane (26.5±4 vs. 13.3±2.5, p=0.0002), 1.2%
isoflurane hind paw vs. 1.4% isoflurane hind paw (22.1±6.4 vs. 13.13±2.5, p=0.02). There
were no statistically significant differences in BPD values between spontaneous activity and
hind paw stimulation recordings at the same isoflurane level.

BPD seems to represent a robust measure of functional network segregation regardless
of brain stimulation. To prove this, linear regression analysis was carried out between BPD
values for spontaneous activity and hind paw recordings (spontaneous activity was always
acquired before stimulated activity for every concentration of isoflurane). BPD values for
spontaneous activity had a moderate explanatory power relative to BPD hind paw stimulation
values with a slope=0.62, R squared = 0.58, F=31.85, and p<0.0001(Fig. 4.30 b).

4.5.2 Visual stimulation
Five-minute spontaneous activity recordings were followed by five-minute recordings of
stimulated brain activity in each isoflurane concentration. 50 ms white light pulses with
an amplitude of 0.5 mW were delivered every 10 seconds resulting in 30 stimulations per
five-minute recording.

Thirty, 10-second intervals after stimulation were averaged and the resulting movies show
the cortical representations of visual stimuli. During 1% isoflurane, left visual stimulation
produced primary activation in the primary visual area (V1) with a peak activation between
0.6-1.5 seconds after stimulation (Fig. 4.31 c). Less pronounced activation in this first phase
was observed in both parasagittal regions as well as the somatosensory cortices. After left
visual stimulation, activation was strongest in the contralateral hemisphere although strong
increases in GCaMP6s fluorescence were also observed in the ipsilateral V1 cortex. After
1.8 seconds, activity in the V1 subdued and gave way to more prominent activity in the
associative areas bordering the V1 region in the somatosensory cortices. In comparison
to hind paw stimulation, visual stimulation showed significant activation of the bordering
associative areas early on indicating different dynamics of information integration.

In contrast to the elaborate patterns of activation described during 1% isoflurane, during
surgical-level anesthesia with isoflurane, activation levels exceed 10%Δf/f in large parts of the
cortex (Fig. 4.31 d). At 0.3 seconds after stimulation, the strongest activation encompassed
the visual cortices. After this, high levels of global activation take over most of the cortex at
0.6 seconds and last till about 1.5 seconds after stimulation. This temporal pattern suggests
that activation events are propagating across the cortex from a point of origin situated in
the somatosensory projection areas to eventually involve the whole cortex. Different from
hind paw stimulation, between 2.1 and 2.7 seconds, strong activation persisted in the V1 area
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contralateral to the stimulation.
Left retina stimulation during 1% iso. resulted in activation of right visual areas (Fig.

4.32 d upper row, first 2 panels from left) with a magnitude of activation of 7.2±2.36% (Fig.
4.32 d lower row, first 2 panels from left) while in 1.8% anesthesia, cortical responses were
global (Fig. 4.32 d upper row, 4th and 5th panels from left) with maximum activation of
18.1±8.9% ( Fig. 4.32 d lower row, first 2 panels from left).

Figure 4.31: Spatio-temporal responses to visual stimulation under 1% and 1,8% isoflurane. a, Brain
region map HL denotes the hind limb projection areas, and the primary visual areas are marked with V1. b,
30 stimulations with a duration of 50 ms each were averaged and assessed for cortical activation patterns. c,
Imaging time-series form an average of 29 visual stimulations during 1% iso. d, Imaging time-series form an
average of 29 visual stimulations during 1.8% iso. The time index in sec. is indicated above the brain activity
maps.
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Figure 4.32: Cortical responses to stimulation of the left retina decrease in complexity with increasing
anesthesia. a, Changes in brain pattern dimensionality (BPD) as a response to iso. concentration and left visual
stimulation n=5. Two-way ANOVA repeated measurements: 1% iso. resting-state vs. 1.2% iso. resting-state
p=0.0025; 1.2% iso. resting-state vs. 1.4% iso. resting-state p=0.01; 1% iso. visual vs 1.4% iso. visual
p=0.0003; 1.2% iso. visual vs. 1.4% iso. visual p=<0.02. b, Linear regression BPD resting-state vs. BPD
hind paw stimulation, slope=0.62, R squared = 0.73, F=62.38, p<0.0001. c, Visual stimulation: white light was
delivered in 50 ms long pulses every 10 sec. resulting in 30 stimulations per imaging run. d, Upper: binarized
response 1 s. after visual stimulation for isoflurane 1%, 1.2%, 1.4%, 1.6% and 1.8%. The binarization threshold
was set at 50% of maximum activation in the V1 region under 1% isoflurane and was retained for the subsequent
anesthesia levels. Lower: df/f mean normalized fluorescence shaded error bar traces from the V1 region (n=5).
* corresponds to p-value < 0.05, ** corresponds to p-value < 0.01, *** corresponds to p-value < 0.001.

Similar to the hind paw experiment, BPD did not change significantly as a function of
brain stimulation but, the effective dimensionality of imaging data was significantly different
between anesthesia levels. It was not possible to differentiate between spontaneous activity
activity isoflurane 1% vs. isoflurane 1.2% (31.2±6.7 vs 21, p=0.0015) and isoflurane 1.2% vs.
isoflurane 1.4% (21±4.3 vs 12.5±4.5, p=0.01). BPD for visual stimulations was significantly
different between isoflurane 1% vs. stimulation isoflurane 1.4% (25.8±6.7 vs. 13.6±0.4
p<0.0001) and isoflurane 1.2% vs. stimulation isoflurane 1.4% (21.25±3.7 vs. 13.6±0.4
p<0.0001)( Fig. 4.32 a).

Linear regression analysis was carried out to establish the relationship between BPD
values for spontaneous activity and hind paw recordings. BPD spontaneous activity values
have a moderate explanatory power relative to BPD hind paw stimulation values( slope=0.62,
R squared = 0.58, F=31.85, p<0.0001)( Fig. 4.32 b).
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4.5.3 Topological features of brain responses to stimulation

Figure 4.33: Topological features of visual and somatosensory stimulation depend on the functional state
of brain networks. topological complexity was computed as explained in the material and methods section
for experimental runs with somatosensory or visual stimulation for increasing concentrations of isoflurane.
Two-way ANOVA repeated measurements (n=145 stimulations visual, n=145 stimulations hind paw): visual
stim. 1% iso. vs. hind paw stim. 1.2% iso. p<0.0001; 1.2% visual stim. iso. vs. hind paw stim. 1.2% iso.
p=<0.0001; visual stim. 1% iso. visual stim. vs. 1.2% iso. hind paw p=0,0004; hind paw stim. 1% iso. hind
paw stim. vs. 1.4% iso. hind paw p<0,0001. *** corresponds to p-value < 0.001, **** corresponds to p-value
< 0.0001.

As described above, inspection revealed that visual and hind paw stimulations under low
concentrations of isoflurane produced more localized responses while the same stimuli under
high concentrations of isoflurane gave rise to stereotypical waves of brain activation.

Topological features, i.e., features assessing the extrema of the response function, from
hind paw and visually stimulated recordings can be used to quantify these effects. Imaging
data were represented as cubical complexes to capture topological features, measuring the
prominence, of all obtained features to infer which datasets contained patterns of activation
that are expressed over the largest range of spatial scales [303].

Topological complexity was calculated for the first three seconds after stimulation, a total
of 30 stimulations for every subject and every isoflurane concentration were included in the
analysis. The total persistence, a summary statistic quantifying the overall topological activity
of recordings, was found to be inversely proportional to the concentration of iso. During
brain state transitions from the persistent state to the slow-wave state, no sharp changes in the
topological features of the cortical responses to stimulation were observed, but rather gradual
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transitions.
Topological complexity was found to be inversely proportional to the concentration of

iso. While the visually elicited activation patterns show significantly higher topological
complexity for low iso. concentrations of 1% and 1.2% , no stimulus-selective difference
were detected for higher iso. concentrations, for which the measure showed a gradual decrease
(Two-way ANOVA with main effect of iso. conc. (F=154.7, p<0.0001), stimulation type
(F=58.6, p<0.0001) and a significant interaction term (F=11.8, p<0.0001) (Fig. 4.33).

For visually stimulated recordings, total persistence was significantly different between
iso. 1% and iso. 1.2% (p=0.0004) and for hind paw stimulation, total persistence was
significantly different between iso. 1% and iso. 1.4% (p<0.0001) (Fig. 4.33).

4.5.4 Data-driven differentiation between recordings with visual and
hind paw stimulation

Next, LEiDA was used to differentiate between recordings with hind paw and visual stimula-
tions. The analysis was done using only recordings under 1% isoflurane since this condition
contained rich and spatially distinct activation patterns after hind paw and visual stimulations.
The first 3 functional connectivity motifs did not differ significantly between the datasets.
These motifs were very useful for differentiating between spontaneous activity under the
different pharmacological conditions which would suggest that these motifs are sensitive to
global changes in neuronal network functional parameters.

Statistically significant differences were found in two FC motifs that exhibited anticorrel-
ations between the somatosensory and visual cortices (Fig. 4.33 c, 6th panel from the left and
Fig. 4.33 d, panels 5 and 6 from the left). The probability of FC motif number 6 allowed the
differentiation between hind paw stimulation, 0.04±0.01, and visual stimulation, 0.01±0.01,
p=0.02. The lifetime of FC motif 5 enables the differentiation between hind paw stimulation,
0.04±0.01, and visual stimulation, 0.01±0.01, p=0.02, Likewise, for motif 6 means for paw
stimulation of 0.25±0.07 and visual stimulation 0.16±0.06 were significantly different with a
p-value of 0.0035.
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Figure 4.34: Differentiation of hind paw from visual stimulation with LEiDA N=5 visual, n=5 hind paw
subjects under 1% iso. were included in the analysis. a, Spatial distribution of functional connectivity motifs 1
to 6. b, Functional connectivity (FC) matrices corresponding to the FC motifs in a. c, Probability of occurrence
of the functional connectivity motifs. Motif 6, permutation htest, paw vs. visual p=0.02. d, Lifetime of the
functional connectivity motifs. Motif 5, permutation htest, paw vs. visual p=0.0034. Motif 6, permutation
htest, paw vs. visual p=0.0035. * corresponds to p-value < 0.05 , ** corresponds to p-value < 0.01.
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4.6 Optogenetic probing of effective connectivity in the cortex

Figure 4.35: Experimental setup for measuring effective connectivity with optogenetic stimulations and
GCaMP6s readout of neuronal activity. a, Schematic of the optogenetic stimulation setup: light from a
fiber-coupled 637 nm laser was collimated to achieve optogenetic stimulation and artifact-free, unobstructed
GCaMP6s recordings upon 460 nm illumination. b, 10-15 mW/mm2 laser stimulation was delivered for 50 ms
every 10 sec. resulting in 30 stimulations per imaging run. c, T2 weighted coronal MRI indicating the viral
injection site in the S1 cortex. d, A coronal mouse brain section was immunostained with an anti-Flag-Cy5
antibody to reveal ChrimsonR positive neurons in red while GCaMP6s positive neurons were imaged using 488
nm illumination and are shown in green.

When assessing functional connectivity, correlations between brain regions may arise as
a consequence of stimulus-locked activity that is driven by a common input or could be
elicited by deeper structures that promote high levels of synchronization. Brain responses to
stimulation may be influenced by the sensitivity of receptors that are outside of the cortical
network and synaptic relays which could modulate cortical responses.

For these reasons, integration in distributed cortical networks is better characterized by
effective connectivity. Effective connectivity denotes the capacity of a set of neuronal groups
to causally affect the activity of other neuronal groups within the wider network [14,17]
consequently one way of studying effective connectivity is to directly stimulate key areas of
the cortical network and quantify the responses to this direct stimulation.
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Figure 4.36: Optimization of ChrimsonR expression for wide-field fluorescence imaging of GCaMP6s
in transgenic mice. a, Wide-field image in a mouse injected with AAV5-hSyn-ChrimsonR-tdT in the right
V1 region (blue dashed oval) yellow star indicates the injection spot. The contralateral V1 region is marked
with a red dashed oval. b, Time trace extracted from the ChrimsonR-tdT V1 area in blue (integration of
blue ROI in panel a) and the control area in red (integration of red ROI in panel a). c, Signal-to-noise ratio
(decibel - dB) between ChrimsonR-tdT injection and control side comparison in 3 animals T-test, p=0.046
(* corresponds to p-value < 0.05) . d, Montage of 30 averaged slow waves showing signal dropout in the
right V1 region after injection with AAV5-hSyn-ChrimsonR-tdT. e, Wide-field image in a mouse injected with
AAV5-hSyn-ChrimsonR-Flag in the right V1 region (blue dashed oval) yellow star indicates the injection spot.
The contralateral V1 region is marked with a red dashed oval. f, Time trace extracted from the ChrimsonR-Flag
V1 area in blue (integration of blue ROI in panel e) and the control area in red (integration of red ROI in panel
e). g, Signal-to-noise ratio (decibel - dB) between ChrimsonR-Flag injection and control side comparison in
3 animals T-test, p>0.05. h, Montage of 30 averaged slow waves showing no signal dropout in the right V1
region after injection with AAV5-hSyn-ChrimsonR-Flag.

For the effective connectivity experiments, the optogenetic actuator ChrimsonR was
expressed either in S1 (5 animals) or V1 (5 animals) regions in transgenic mice expressing
GCaMP6s in cortical pyramidal neurons. ChrimsonR is a transmembrane ion channel that is
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responsive to red light thus, stimulation was carried out with light from a fiber-coupled 637
nm laser. Laser light was collimated in order to maintain the geometric properties of the laser
beam over a distance of at least 15 cm. In this way, optogenetic stimulation was done without
obstructing the field of view of the camera (Fig. 4.35 a). For optogenetic stimulation, 10
mW laser pulses lasting 50 ms were delivered every 10 seconds resulting in 30 stimulations
per five-minute recording (Fig. 4.35 b).

Somatosensory (S1) and visual areas (V1) were stimulated with the laser to match our
natural stimulation experiments. To stimulate cortical neurons with a red laser, ChrimsonR
has to be virally expressed. For this purpose, an adeno-associated virus (AAV) was injected
into the cortex and imaging experiments were carried out 4 weeks after injection (Fig. 4.35 c
and d). The commercially available AAV5-hSyn-ChrimsonR-tdT construct was initially used
for ChrimsonR expression. Upon inspection of the recorded cortical responses, a GCaMP6s
fluorescence signal dropout was observed in the cortical areas where ChrimsonR-tdT was
coexpressed (Fig. 4.36 d).

4.6.1 Optimization of ChrimsonR expression for wide-field imaging
To investigate the cause for the lower fluorescence signals, the signal-to-noise ratio (SNR)
was measured in 3 mice that were injected with AAV5-hSyn-ChrimsonR-tdT in the visual
cortex. SNR values on the side expressing ChrimsonR-tdT were 50% lower in comparison to
SNR values on the contralateral side. The ChrimsonR-tdT ROIs had a mean SNR of 9.4±3.3
while the contralateral side had a mean SNR value of 20.33±5.6 and this difference was
statistically significant with a p=0.04. Inspection of the brain ex vivo revealed that tdTomato
was strongly expressed around the injection site. Lower SNR values could be caused by the
expression of tdTomato interfering with GCaMP6s expression or green GCaMP6s emission
light being absorbed by the red tdTomato fluorophore.

To test this hypothesis, a bespoke AAV that encoded ChrimsonR together with a colorless
Flag tag was designed (AAV5-hSyn-ChrimsonR-Flag). The Flag-Tag is colorless and is
attached to the ChrimsonR channel facing the exterior of the cell. Like this, it was possible
to detect ChrimsonR expression without the need to express an additional fluorophore.

3 mice were injected with AAV5-hSyn-ChrimsonR-Flag and SNR was measured from
an ROI around the injection site (V1 right) and also on the contralateral side (V1 left). SNR
measurements in 3 mice, yielded values of 18.8±1.7 on the ChrimsonR-Flag side (V1 right)
and 19.8 in the contralateral visual cortex (V1 left), the difference between the two means
was not statistically significant. Furthermore, visual inspection did not reveal a significant
signal dropout in the right V1 area in an average movie from 30 slow waves (Fig. 4.36 h).
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4.6.2 Optogenetic stimulation of the somatosensory 1 region (S1)
Effective connectivity was investigated under five concentrations of isoflurane, medetomidine,
and ketamine. Qualitative inspection of optogenetic stimulation results under 1% isoflurane
(Fig. 4.37 a) and 1.8% isoflurane revealed that similar to natural stimulation, brain re-
sponses under low concentrations of isoflurane produced more localized patterns while in
high anesthesia conditions, activations tended to be global and stereotypical.

Figure 4.37: Responses to optogenetic stimulation of the right S1 area under 1% and 1.8% isoflurane. a,
Imaging time-series form an average of 29 optogenetic stimulations of the S1 region during 1% iso. b, Imaging
time-series form an average of 29 optogenetic stimulations of the S1 region during 1.8% iso. The time index in
sec. is indicated above the brain activity maps.

During 1% isoflurane, stimulations produce rapid increases in fluorescence in the S1-HP
region, and marked increases in activation were also observed bilaterally in the frontal motor
regions, barrel cortex, and also in association areas bordering the V1 cortex. The V1 region
itself did not show large fluorescence increases initially but there was later activation here
beginning 1.8 sec. after stimulation. (Fig. 4.37 a).

Activation under 1.8% isoflurane led to fast parasagittal increases in fluorescence with
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strong activity in the retrosplenial cortex. The responses to stimulation were relatively
short-lived, returning to baseline 1.5 sec after stimulation (Fig. 4.37 a).

Figure 4.38: Cortical responses to S1 optogenetic stimulation a, Brain image with the stimulation site
located in the right somatosensory cortex marked with a blue disc. b-g upper, binarized early response to S1
optogenetic stimulation for isoflurane (1%, 1.2%, 1.4%, 1.6%), medetomidine, and ketamine. b-g lower, df/f
mean normalized fluorescence shaded error bar traces from the S1 region (n=5) The binarization threshold was
set at 50% of maximum activation in the S1 region under 1% isoflurane activation and was retained for the
subsequent anesthesia levels.

After optogenetic stimulation in the S1 area, GCaMP6s fluorescence increased by
2.3±0.9% under isoflurane 1% (Fig. 4.38 b), 7.27±2.3% under isoflurane 1.6% (Fig. 4.38 e)
and 2.7±2.4% under medetomidine (Fig. 4.38 f). Ketamine exhibited paradoxical reactions
to optogenetic stimulation, immediately after the laser pulse, GCaMP6s fluorescence
decreased by 4.9±1.9% after S1 optogenetic stimulation ( Fig. 4.38 g).

The level of segregation of functional brain networks was assessed using BPD for spon-
taneous activity and S1 optogenetically stimulated recordings. Optogenetic stimulations
in the S1 region were recorded under medetomidine, ketamine, and 5 levels of isoflurane.
Statistically-significant differences were found between 1% isoflurane spontaneous activity
vs. 1.4% isoflurane spontaneous activity (22.4±6.4 vs. 11.3±2.9, p=0.009), 1% isoflurane
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spontaneous activity vs. medetomidine spontaneous activity (22.4±6.4 vs. 32.3±3, p=0.02),
medetomidine spontaneous activity and ketamine spontaneous activity (32.3±3 vs. 19.7±6.9,
p=0.008), 1% isoflurane optogenetic stimulation vs. 1.4% isoflurane optogenetic stimulation
(23±6 vs. 11.5±3.7, p=0.007). It was not possible to statistically differentiate between stim-
ulated and spontaneous activity based on BPD within the same pharmacological condition
(Fig. 4.39 a).

BPD represents a global measure of functional network segregation and is not directly
assessing the responses to optogenetic activation. PCI-ST (Perturbation Complexity Index -
State Transitions) has been specifically designed to measure the complexity of evoked cortical
responses. For these measurements, data from 30 stimulations within a recording under each
pharmacological condition were averaged and the resulting average stimulation was used
to calculate PCI-ST. The complexity of effective connectivity patterns after S1 optogenetic
stimulation allowed the differentiation of isoflurane 1% vs. isoflurane 1.6% (15.11±7.1 vs.
4.83±1.8, p=0.0018), isoflurane 1.2% vs. medetomidine (8.2±4.6 vs. 19.3±5.3, p=0.015)
and medetomidine vs. ketamine (19.3±5.3 vs. 7.9±1.9, p=0.018) (Fig. 4.39 b).

Figure 4.39: Quantitative assessment of cortical responses to S1 optogenetic stimulation a, Changes
in brain pattern dimensionality (BPD) as a response to anesthesia and S1 optogenetic stimulation. Two-way
ANOVA repeated measurements / Tukey’s multiple comparisons test (n=5 iso., n=4med., n=4 ket): 1% iso. no
stim vs 1.4% iso. no stim p= 0.009; 1% iso. optogen. S1 vs 1.4% iso. optogen. S1 p= 0.007; medetomidine no
stim. vs 1.2% iso. no stim p=<0,0001; medetomidine no stim. vs ketamine no stim p= 0.008. b, Complexity
of brain responses to S1 optogenetic stimulation (PCI-ST), ordinary one-way ANOVA repeated measurements
/ Tukey’s multiple comparisons test (n=5 iso., n=4 med., n=4 ket.): 1% iso. vs. 1.6% iso. p=0.0018; 1.2% iso.
vs medetomidine p=0.0015; medetomidine vs. ketamine p=0.018. * - p-value < 0.05, ** - p-value < 0.01.
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BPD and PCI measurements did not reveal phase transitions in functional network proper-
ties as a response to changes in isoflurane concentration. The values of these indices gradually
decreased from 1% isoflurane to 1.6% isoflurane and plateaued at low values during 1.6%
and 1.8% anesthesia.

Figure 4.40: S1 effective connectivity depends on the functional segregation of spontaneous activity
networks a, We calculated BPD for spontaneous activity and optogenetic runs and PCI for optogenetic runs
(n=5 subj. x 5 iso. levels). b, we performed linear regression to investigate the relationship between
BPD spontaneous activity and BPD optogenetic stimulation (panel b,); BPD optogenetic stimulation and PCI
optogenetic stimulation (panel c,); BPD spontaneous activity and PCI optogenetic stimulation (panel d,);

PCI-ST describes the complexity of brain responses to optogenetic stimulation and BPD
measures the functional segregation level. The relationship between the level of segregation
from spontaneous activity recordings, measured by BPD, and the complexity of effective
connectivity patterns, measured by PCI-ST was investigated next. For this, only isoflurane
data acquired under the five different concentrations were considered.

First, it was assessed whether the optogenetic stimulation had an impact on the level of
segregation of functional networks. Linear regression analysis of the spontaneous activity
BPD and optogenetic stimulation BPD revealed a very strong linear relationship between
these two variables, R squared = 0.90, F=229.3, p<0.0001 (Fig. 4.40 a, first from left). These
results suggest that BPD can be used to accurately assess the functional state of cortical
networks from spontaneous activity as well as task processing imaging datasets (Fig. 4.40
b).

Next, the relationship between the level of segregation of functional networks (BPD) and
the complexity of effective connectivity responses within the same run (PCI-ST) was studied
(Fig. 4.40 a, second from left). Moderate levels of dependence were found between these
two variables for the S1 cohort, R squared = 0.73, F=63.4, p<0.0001 (Fig. 4.40 c).

Spontaneous recordings were always acquired before optogenetically stimulated runs.
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Finally, it was tested whether functional segregation levels of spontaneous activity measured
by BPD are predictive of the complexity of effective connectivity responses measured by
PCI-ST in the imaging run which immediately followed the spontaneous activity acquisition
(Fig. 4.40 a, third from left). Also, in this case, spontaneous activity BPD had moderate
explanatory power for PCI-ST values calculated after optogenetic stimulation for the S1, R
squared = 0.57, F=31.6, p<0.0001 (Fig. 4.40 d).

4.6.3 Optogenetic stimulation of the primary visual area (V1)
The effective connectivity of the primary visual cortex (V1) was investigated under five con-
centrations of isoflurane, medetomidine, and ketamine. Qualitative inspection of optogenetic
stimulation results under 1% isoflurane and 1.8% isoflurane showed that brain responses
to V1 stimulation under low concentrations of isoflurane produced more localized patterns
while in high anesthesia conditions, activations tended to be global and stereotypical(Fig.
4.41).

In 1% isoflurane stimulation produced rapid increases in fluorescence in the V1 region
bilaterally but also in parasagittal areas, the S1, and the barrel cortex. Compared to S1
optogenetic stimulation, initial responses after V1 stimulation seemed to be less widespread.
Activation was also observed in the associative areas bordering the V1 area (Fig. 4.41 a).

Under 1.8% isoflurane, very fast parasagittal increases in fluorescence with strong activity
in the retrosplenial cortex were observed. The responses to stimulation were relatively short-
lived, returning to baseline 1.5 sec after stimulation (Fig. 4.41 b).

The amplitude of responses after optogenetic stimulation was lower than for visual stim-
ulations. Under 1% isoflurane, V1 responses after optogenetic stimulation amounted to
3.17±0.6 (Fig. 4.42 b), during 1.6% isoflurane signals increased by 8.72±5.3% (Fig. 4.42 e),
and an increase of 7.2±3.9% was observed under medetomidine (Fig. 4.42 f). Ketamine ex-
hibited a paradoxical reaction to optogenetic stimulation in the V1 region with an immediate
decrease in GCaMP6s fluorescence of 5.01±3.8%.

The level of segregation of functional brain networks was assessed by BPD for spon-
taneous activity and V1 optogenetically stimulated imaging runs. For the V1 cohort, BPD
allowed the differentiation of 1% isoflurane resting state from 1.6% isoflurane resting state
(21.99±6.2 vs. 8.5±4.1, p=0.04), medetomidine spontaneous activity vs. 1.2% isoflurane
spontaneous activity (34.87±11.1 vs. 18.3±6.8, p=0.006), medetomidine resting state and
ketamine resting state (34.87±11.1 vs. 19.7±4.5, p=0.02), 1% isoflurane optogenetic stimu-
lation from 1.4% isoflurane optogenetic stimulation (26.09±8.8 vs. 11.5±2.2, p=0.02), and
medetomidine optogenetic vs. ketamine optogenetic (31.17±6.9 vs. 17.1±2, p=0.04)(Fig.
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4.43, a).

Figure 4.41: Responses to optogenetic stimulation of the right V1 area are under 1% and 1.8% isoflurane.
a, Imaging time-series form an average of 29 optogenetic stimulations of the V1 region during 1% iso. b, Imaging
time-series form an average of 29 optogenetic stimulations of the V1 region during 1.8% iso. The time index
in sec. is indicated above the brain activity maps

It was not possible to differentiate between stimulated and spontaneous activity based on
BPD within the same pharmacological condition.

The complexity of effective connectivity activation patterns was quantified next, by
calculating the PCI-ST for the V1 cohort. PCI-ST can only be calculated for patterns that
arise after direct brain stimulation, thus spontaneous brain activity cannot be evaluated in this
way. After optogenetic stimulation, PCI-ST values followed a similar trend to BPD for the
respective conditions. After V1 stimulation, statistically significant differences were found
between isoflurane 1% vs. isoflurane 1.6% (19.29±5.3 vs. 4.83±1.7, p=0.0014), isoflurane
1.2% vs. isoflurane 1.6% (14.83±5 vs. 4.83±1.7, p=0.04) and medetomidine vs. isoflurane
1.6% (15.71±5 vs. 4.83±1.7, p=0.02) (Fig. 4.43 b).
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Figure 4.42: Cortical responses to V1 optogenetic stimulation. a, Brain image with the stimulation site
located in the right visual cortex marked with a red disc. b-g upper, binarized early response to V1 optogenetic
stimulation for isoflurane (1%, 1.2%, 1.4%, 1.6%), medetomidine, and ketamine. b-g lower, df/f mean
normalized fluorescence shaded error bar traces from the V1 region (n=5) The binarization threshold was set at
50% of maximum activation in the V1 region under 1% isoflurane activation and was retained for the subsequent
anesthesia levels.

BPD and PCI measurements did not reveal sudden changes in functional network proper-
ties as a response to changes in isoflurane concentration. The values of these indices followed
a gradual descending trend from 1% isoflurane to 1.6% isoflurane and leveled off at low
values during 1.6 and 1.8% anesthesia.

The relationship between the level of segregation of spontaneous activity networks (meas-
ured by BPD), and the complexity of effective connectivity patterns, (measured by PCI-ST)
was studied next. Only isoflurane data was used for this analysis, to avid confounds.

It was tested whether V1 optogenetic stimulation had an impact on the level segregation
of functional networks. For this, a linear regression analysis was performed between the
BPD for spontaneous activity and the corresponding BPD of the optogenetic stimulation data
(Fig. 4.44 a, first from left). Spontaneous activity A strong linear relationship was observed
between these two variables, R squared = 0.85, F=136.3, p<0.0001 (Fig. 4.44 b).
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Figure 4.43: Quantitative assessment of cortical responses to V1 optogenetic stimulation. a, Changes
in brain pattern dimensionality (BPD) as a response to anesthesia and V1 optogenetic stimulation. Two-way
ANOVA repeated measurements / Tukey’s multiple comparisons test (n=5 iso., n=4 med., n=4 ket.). 1%
iso. no stim. vs. 1.6% iso. no stim. p=0.04; medetomidine no stim. vs 1.2% iso. no stim, p=0.006;
1% iso. optogenetic V1 vs 1.4% optogenetic V1 p=0.02; medetomidine no stim. vs. ketamine, no stim
p=0.02; medetomidine optogenetic V1 vs ketamine optogenetic V1 p=0.02; b, Complexity of brain responses
to V1 optogenetic stimulation (PCI-ST), ordinary one-way ANOVA repeated measurements / Tukey’s multiple
comparisons test (n=5 iso., n=4 med., n=4 ket.): 1% iso. vs. 1.6% iso. p=0.001; 1.2% iso. vs 1.6% iso. p=0.04;
medetomidine vs. 1.6% iso. p=0.02. * corresponds to p-value < 0.05, ** corresponds to p-value < 0.01.

The relationship between the level of segregation of functional networks (BPD) and the
complexity of effective connectivity responses within the same run was evaluated (Fig. 4.44
a, second from left). Moderatel strong linear dependence was found between these two
variables for V1 stimulation: R squared = 0.65, F=43.6, p<0.0001 (Fig 4.44 c).

Because spontaneous activity was always acquired before stimulation runs, it was checked
whether the level of segregation of spontaneous activity measured by BPD was predictive of
the complexity of effective connectivity responses measured by PCI-ST (Fig. 4.44 a, third
from left). It was determined that spontaneous activity BPD had moderate explanatory power
for PCI-ST values calculated after optogenetic stimulation for the V1 cohort, R squared =
0.58, F=31.9, p<0.0001 (Fig. 4.44 d).
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Figure 4.44: V1 effective connectivity depends on the functional segregation of spontaneous activity
networks. a, We calculated BPD for resting-state and optogenetic runs and PCI (n=5 subj. x 5 iso.
levels) for optogenetic runs, next we performed linear regression to investigate the relationship between BPD
spontaneous activity and BPD optogenetic stimulation (panel b ); BPD optogenetic stimulation and PCI
optogenetic stimulation (panel c ); BPD resting-state and PCI optogenetic stimulation (panel d).

4.6.4 Data-driven differentiation between recordings with V1 and S1
optogenetic stimulation

Data-driven computational techniques were applied to differentiate between optogenetic stim-
ulations of the S1 and V1 cortices. Only recordings under 1% isoflurane were included in
this analysis since in this condition different activation patterns were observed after S1 paw
and V1 stimulations. For this, LEiDA and probabilistic metastable motifs were calculated
and plotted in Fig. 4.45.

The first 3 functional connectivity motifs did not differ significantly between the datasets.
These motifs proved most powerful when differentiating between spontaneous activity under
the different pharmacological conditions(Fig. 4.28). Statistically significant differences were
found in two FC motifs that exhibited bilateral anticorrelations between the somatosensory
and visual cortices. The probability of FC motif number 5 allowed the differentiation between
S1 stimulation (0.04±0.006) and V1 stimulation (0.02±0.01) p=0.036 (Fig.4.45 c, 5th panel
from the left). The lifetime of FC motif 4 enables the differentiation between S1 stimulation
(0.28±0.04) and V1 stimulation (0.19±0.04), p=0.014, likewise, for motif 5 means for S1 of
0.30±0.05 and V1 stimulation 0.17±0.06 were significantly different with a p-value of 0.0029
(Fig. 4.45 d, panels 4 and 5 from the left).

In addition to this, the 6th FC motif featured anticorrelations between the S1-HL right,
S1-FL right, and S1-TR right while less pronounced anticorrelations were observed also in
the S1-HL and on the left. The lifetime of this FC motif amounted to 0.28±0.08s for S1
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stimulation and 0.17±0.03s for V1 stimulations, p=0.021 (Fig. 4.45 c, 6th panel from the
left). This result was intriguing because the laser stimulation occurred in the S1 region of the
right hemisphere and at this location, anticorrelations were observed.

Figure 4.45: LEiDA followed by probabilistic metastable motif determination can differentiate between
optogenetic stimulations in the S1 and V1 regions under 1% isoflurane (n=5 V1, n=5 S1). a, Spatial
distribution of functional connectivity motifs 1 to 6. b, Functional connectivity (FC) matrices corresponding
to the FC motifs in a. c, Probability of occurrence of the functional connectivity motifs. Motif 5, permutation
htest, paw vs. visual p=0.036. d, Lifetime of the functional connectivity motifs. Motif 4, permutation htest,
paw vs. visual p=0.014. Motif 5, permutation htest, paw vs. visual p=0.0029. Motif 6, permutation htest, paw
vs. visual p=0.021. * corresponds to p-value < 0.05, ** corresponds to p-value < 0.01.
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4.6.5 Optogenetic stimulation under ketamine produces paradoxical
cortical responses

Figure 4.46: Paradoxical responses to optogenetic stimulation under ketamine in the presence of increased
delta band activity. a, Dynamic imaging sequence acquired after optogenetic stimulation of the right visual
cortex at time point 0. b, Time-varying activity levels recorded in the RS cortex showing decreases in GCaMP
fluorescence after optogenetic stimulation (vertical red lines). c, Comparison of delta-band activity in the left
RS and the left M1 region, T-test: RS left 3.5±2.1 dB, M1 left 0.8±0.8 dB, p=0.0063. d, Magnitude scalogram
of RS wavelet decomposition showing a prominent 1-3 Hz oscillation interrupted by low-frequency components
after each optogenetic stimulation (vertical red lines). e, Comparison of delta-band activity in the right RS and
the right M1 region, T-test (n=8): RS right 2.8±1.9 dB, M1 right 0.8±0.8 dB, p=0.009.

An unexpected finding was represented by the brain responses to optogenetic stimulation
under ketamine. In this pharmacological condition, optogenetic stimulation caused a small
increase in activation of the region targeted by the laser pulse followed by a sharp decrease in
GCaMP6s fluorescence across the cortex (Fig. 4.46 a). This low activity state lasted around
3 seconds before fluorescent signals returned to baseline. This activity pattern was highly
reproducible as shown in Fig. 4.46 b from one stimulation to another but also with respect to
the stimulation site. Both S1 (Fig. 4.38 g) and V1 (Fig. 4.42 g) stimulations resulted in this
stereotypical cortical activation.

During spontaneous activity recordings, a characteristic 1-3Hz oscillation was observed in
the retrosplenial cortex (Fig. 4.17) which was present under ketamine but not under isoflurane
or medetomidine. A strong 1-3Hz rhythm was also found during optogenetic recordings in

122



the retrosplenial cortex. Upon optogenetic stimulation, calcium fluorescence signals from
the cortex decreased in intensity and additionally, the 1-3Hz rhythm was paused and replaced
by lower frequency oscillations. A visual representation of this phenomenon can be seen in
the wavelet decomposition of the time-varying signal extracted from the retrosplenial cortex
during an optogenetically stimulated recording (Fig 4.46 d).

This phenomenon was associated with increased bandpower in the 1-3Hz interval during
recordings with optogenetic stimulation. Time-varying activity from the retrosplenial and
primary motor (M1) cortices was extracted and the bandpower in the 1-3Hz range was
compared. The bandpower in the left retrosplenial cortex was significantly higher vs. the left
M1 cortex, 3.4±2.1dB vs. 0.83±0.82dB, p=0.006 (Fig. 4.46 c). The bandpower difference
between the right retrosplenial cortex vs. the right M1 cortex was also statistically significant,
2.8±1.9dB vs. 0.7±0.8dB, p=0.01 (Fig. 4.46 e).

These differences in spectral features of RSP activity were in spite of every stimulation
causing a pausation of the 1-3Hz oscillation.

4.6.6 Optogenetic stimulation causes cortical activations which
recapitulate the features of sensory stimulation during
surgical-level anesthesia

A manifest goal of systems neuroscience is to achieve millisecond control over the activ-
ity of the extended cortical network in order to influence behavior and treat systems-wide
neurological conditions. In previous chapters, we showed how brain activations during 1%
isoflurane conditions differed when S1 and V1 networks were accessed by hind paw/visual
versus optogenetic stimulations.

Brain activations during 1% isoflurane conditions differed when S1 and V1 networks
were accessed by hind paw/visual versus optogenetic stimulations. It was also demonstrated
that under surgical-level anesthesia brain responses were much simpler than during sedation.
During anesthesia, stimulations were causing transitions from on to off states. These off/on
transitions represent the simplest type of state change that one can induce in a dynamic
system. Additionally, this brain activation has the features of a propagating wave [248,252].

For these reasons, it was important to test whether optogenetic stimulations exhibited the
characteristics of traveling cortical waves. The first prerequisite to achieving this goal was to
acquire cortical activity recordings at a high temporal resolution so, in 3 mice, brain activity
during stimulation was recorded at 100 frames per second. Secondly, a way of generating
reproducible slow waves with a known point of origin is needed. Triggering is essential
because slow cortical waves can be initiated in any region of the cortex [248,252]. Slow
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waves were triggered in the visual cortex by stimulation of the retina and by V1 optogenetic
stimulation (Fig. 4.47 a). Like this, slow-wave propagation can be observed over almost 1
cm across the entire posterior to anterior cortical length.

Visual stimulation reliably triggered slow waves (Fig. 4.47 c) and this activity was
initiated in the visual cortex, only to propagate later to the frontal areas (Fig. 4.47 b).
Likewise, optogenetic stimulation was reliably initiating propagating waves (Fig. 4.47 e)
with a starting point in the stimulated V1 region on the right. Activation waves propagated
towards the frontal cortex over a shorter period with respect to visually triggered waves (Fig.
4.47 d).

Figure 4.47: V1 optogenetic and visual stimulations trigger slow waves during isoflurane anesthesia. a,
Wide-field fluorescence imaging setup, GCaMP6s excitation was done with a 460 nm high-powered LED, and
visual stimulation was achieved with a cool white light that was directed through a fiber guide. Optogenetic
light was delivered by a 637 nm laser which was collimated and targeted at the V1 region on the right side.
b, Montage showing slow-wave propagation pattern after visual stimulation, image intensity denotes signal
changes to baseline in percent. c, Fluorescence time trace from the whole cortex after white light stimulation
of the retina, stimulation times are marked in blue dotted vertical lines. d, Montage showing slow-wave
propagation pattern after Optogenetic V1 stimulation, image intensity denotes signal changes to baseline in
percent. e, Fluorescence time trace from the whole cortex after optogenetic V1 stimulation, stimulation times
are marked in blue dotted vertical lines.

Signals from ten equally spaced regions situated between the occipital to the frontal cortex
were extracted (Fig.4.48 a) and the time of arrival of the waves was inferred by calculating
the time index when the signal had reached a 50% of the max intensity for the respective
wave. Next, the time of arrival versus distance traveled was plotted and linear regression was
performed to estimate the speed of the recorded slow waves (Fig. 4.48 d). Visual stimulations
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triggered slow waves with an average speed of 4.9±3.7 cm/s and optogenetically triggered
waves had a speed of 18.77±10.2 cm/s. The difference in speed was found to be statistically
significant, p<0.0001 (Fig. 4.48 e).

Figure 4.48: Slow-wave propagation speed after V1 optogenetic and visual stimulations. a, ROI signal
from occipital to frontal was extracted and used for Wave speed determinations. b, Average time traces over
40 visual stimulations from an occipital ROI (blue) and a frontal ROI (green). c, Average time traces over 40
optogenetic V1 stimulations from an occipital ROI (blue) and a frontal ROI (green). d, Slow-wave speed by
linear fitting time vs. distance traveled, across the 10 ROI from panel f, optogenetic slope 14.55, R squared=0.88,
F=59.53; visual slope 3.55, R squared=0.96, F=194.4. e, Visual vs. optogenetic slow-wave speed comparison,
T-test, n=40, p<0.00001.

4.7 Functional brain state characterization by aggregate
quantitative measurements

It was tested whether quantitative measurements concerning functional brain network se-
gregation (BPD) and the complexity of effective connectivity (PCI) could be used to identify
brain states from functional imaging data (Fig. 4.49).

Data acquired under 1% isoflurane, 1.8% isoflurane, medetomidine, and ketamine were
used for this analysis. For medetomidine and 1% iso. (persistent iso.), high levels of
functional segregation were observed together with complex effective connectivity patterns.
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Figure 4.49: Functional brain state determination using network segregation (BPD) and the complexity
of effective connectivity responses (PCI). Values in the scatter plot represent BPD measurements for entire
5-minuter imaging runs versus the complexity of optogenetically-evoked cortical responses (PCI) in the same
functional states.

During 1.8% isoflurane, low levels of functional network segregation (BPD) were re-
gistered and in this state, effective connectivity responses with low complexity were ob-
served. Qualitative inspection of these recordings revealed that during this condition, slow
waves of propagating neuronal activity dominated. This would suggest that the slow-waves
state is characterized by decreased complexity of both spontaneous activity and responses to
optogenetic stimulation.

During ketamine-induced dissociation-unconsciousness, network segregation levels
(BPD) were comparable to isoflurane 1%, and responses to optogenetic stimulation were
characterized by low complexity (PCI). Two outlying PCI measurements during dissociation
were recorded and these might be due to the difficulty of analyzing responses to optogenetic
stimulation consisting of a general decrease in fluorescence signal (Fig. 4.46). These data
suggest that dissociation unconsciousness could be considered a functional state distinct
from the persistent and slow-wave states.
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5
Discussion

5.1 Inferring systems-wide cortical activation patterns from
local recordings.

fMRI represents a widely used imaging modality for the structural and functional character-
ization of the brain [76,84,87,331]. Assessing the functional state of brain networks benefits
from macroscale recordings which can cover the entire cerebrum. EPI fMRI acquisition
techniques can image the entire mouse brain with a temporal resolution of one brain volume
per second, leveraging the neurovascular coupling to generate BOLD contrast [84].

fMRI data acquisition for preclinical studies has to be carried out under anesthesia
because awake recordings would cause discomfort to the animal subjects due to the restraint
and loud noise caused by fMRI gradient switching. In our experiments, 1.4% inhaled
isoflurane anesthesia was used to induce an unconscious state. In this vigilance state, complex
spontaneous oscillations should be present as a feature of the persistent state.

fMRI was used to characterize brain responses to somatosensory hind paw stimulation.
Cortical activation patterns were concentrated in the somatosensory cortices in two mice
while more widespread cortical and subcortical activation was observed in a third animal
(Fig. 4.1). These results matched previous reports of mouse brain fMRI activation patterns
after hind paw stimulation [80]. ICA, a data-driven feature extraction method was used to
verify these findings. GLM findings of activation in the somatosensory cortex were confirmed
and this was in line with previously published work [80]. ICA also revealed a further pattern
of activation which encompassed the entire cortex (Fig. 4.2).

Other groups observed global activation patterns during isoflurane anesthesia which were
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shown to be caused by propagating slow waves of cortical activity [6,91,263]. Consequently,
cortical slow waves were imaged during 1.8% isoflurane, surgical-level anesthesia. GCaMP6f
was expressed in the S1 cortex and local fluorescence calcium recordings (fiber photometry)
were simultaneously acquired with the EPI. The local fluorescence measurements were used
as a positive control for ensuring that the brain was producing slow waves.

Additionally, the study of slow waves requires a way of triggering reproducible events.
It has been shown that slow waves can be triggered by sensory stimulation as well as
optogenetics [252]. Cortical waves of activation were triggered in the S1 area by hind
paw stimulation as well as by optogenetic stimulation of the red-shifted opsin ChrimsonR.
ChrimsonR stimulation and GCaMP6f readout were done through the same fiber-optic.
Slow-wave latencies for hind paw-generated slow waves were higher than for optogenetically
induced ones. Latencies for both visually and optogenetically triggered slow waves were
previously reported to be around 80 ms [252]. This is in line with my findings upon
optogenetic S1 stimulation, latencies for hind paw stimulation were around 170 ms (Fig. 4.3).
The reason for this higher latency could have to do with higher nerve signal transmission times
from the limb to the brain, processing in relays such as the thalamus, and local processing in
the somatosensory cortex.

These experiments proved that the genetically encoded calcium sensor GCAMP6f and
the transmembrane cation channel ChrimsonR can be used in tandem to provide a readout
of neuronal activity (GCaMP6f) and direct stimulation of those same neurons (ChrimsonR).
This strategy allowed locally acquired calcium fluorescence to be recorded symultaneously
with fMRI and to validate findings of a pancortical BOLD activation component (Fig. 4.4).
ICA can capture non-linear features of functional imaging data and this likely helped reveal
the pancortical activation pattern corresponding to locally recorded slow waves[91].

Two clases of genetically encoded contrast agents were validated during this work,. The
effectiveness of iron accumulating contrast agents was demonstrated in cell experiments
using MRI relaxometry. PolyP accumulating contrast agents were evidentiated with MRI
spectroscopy. The contrast agents were confined inside protein nanoshells thus protecting the
cells from the potentially harmful effects of contrast agent accumulation. The MRI contrast
of these substances is dependent on the amount of iron or polyP which can be produced by
the cells a mechanism that will prove valuable for oncologic applications [327].

For neuroimaging studies, it would be desirable to have dynamic contrast agents which
change their properties depending on the level of neuronal activation. Dynamic contrast
agents are currently not available for MRI but are already established for optical imaging
applications. For this reason, most of the experimental work was done using wide-field
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calcium fluorescence recordings.

5.2 Wide-field optical imaging - a versatile platform for
recording and manipulating mouse brain activity

A custom wide-field fluorescence microscope was developed in the course of this work. This
instrument can record both GCaMP6s fluorescence and brain hemodynamics with a spatial
resolution of 0.03mm per pixel and a temporal resolution of up to 100 frames per second.
The system is fully accessible to modification and can be converted within minutes between
two modes of hemodynamic imaging, recording either 395nm reflectance or fluorescence
imaging after ICG micelle injection (Fig. 4.7).

This flexibility proved valuable because functional calcium imaging datasets contain
physiological noise which is mainly caused by time-varying changes in hemodynamic para-
meters. Using vascular and neuronal contrast, it was possible to identify physiological noise
and computationally remove it using a bespoke image processing pipeline(Fig. 4.14).

A prominent goal of neuroscience is to elucidate how genetically defined neuronal pop-
ulations work together in order to process information and give rise to behavior [124,332].
To achieve this goal genetically defined neuronal populations have to be recorded and their
activity needs to be accessible to manipulation.

Both goals can be achieved with the use of wide-field fluorescence imaging in combination
with optogenetic manipulation of neuronal activity. Progress in mouse reporter lines has led
to the development of several classes of transgenic animals expressing different molecular
sensors which capture various aspects of neuronal activity. In the course of this work,
functional imaging was carried out in transgenic mice expressing GCaMP6s [40], a fluorescent
calcium reporter, in cortical pyramidal neurons [124].

Manipulating the activity of extended cortical networks involves expressing optogenetic
tools in the membranes of the genetically targeted populations of neurons. It is important that
these tools be spectrally separated from the calcium sensors. Thus, the red-shifted excitatory
opsin ChrimsonR was used. This enables us to carry out GCaMP6s imaging with blue light
excitation in parallel with optogenetic stimulation in the red channel(Fig. 4.35).

Cortical information integration can be captured by effective connectivity. Effective
connectivity denotes the capacity of a set of neuronal groups to causally affect the activity
of other neuronal groups within the wider network [14,17]. EC has successfully been
measured in humans by observing the effects of TMS stimulation on EEG activity [18]. This
represents the perturb-and-measure approach and in this study, the cortex was perturbed with
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optogenetics, and brain activity was recorded with calcium imaging(Fig. 4.39 and 4.43).
This represents a novel implementation since, previously, optogenetic stimulation was done
with blue wavelengths (using Channelrhodopsin2) while brain activity readout was done with
optical hemodynamic imaging [177].

Existing AAV vectors for ChrimsonR expression were not perfectly suited for concomitant
expression in GCaMP positive neurons and this was due to the coexpressed fluorescent tag
TdTomato. TdTomato absorbs both blue GCaMP6s excitation light and green GCaMP6s
emission light leading to a loss in GCaMP6s fluorescence. For this reason, TdTomato was
replaced with a colorless Flag-Tag, and this enabled concomitant and artifact-free GCaMP
imaging and optogenetic stimulation (Fig. 4.36). An additional advantage of wide-field
calcium imaging is represented by the high signal-to-noise ratio of this imaging method,
some activation events had a magnitude of up to 30% over baseline. This made subsequent
data processing steps easier.

Furthermore, wide-field fluorescence microscopy is situated between fMRI and EEG in
terms of temporal resolution. As a result, it was possible to use data-driven processing
routines developed for both fMRI [333] and EEG [301] in order to generate relevant insights
from functional data. We have also developed a custom processing pipeline based on wavelet
decomposition, UMAP dimensionality reduction, and hierarchical clustering which allows
us to calculate the level of segregation of functional cortical networks with BPD(Fig. 4.21).

Wide-field optical imaging with genetically encoded calcium sensors is straightforward
in its interpretation and in its implementation. The signals recorded come from action
potential-induced calcium transients in pyramidal neurons and the same population can be
optogenetically stimulated. For this reason, most of the experimental work was done using
wide-field optical imaging with integrated optogenetic stimulation capability.

5.3 Functional integration and segregation during
spontaneous cortical activity

The notion that specific brain functions can be attributed to precisely defined brain regions
has been a central concept driving neuroscience research since the 19th century [334]. This
theory pertaining to cortical organization known as localizationism seemed to be strengthened
by clinical work from Broca and Wernicke that linked impairments in patients to lesions in
anatomically defined brain regions.

Connectionism holds that the activity of a specialized brain region is dependent on its
anatomical connections to other brain areas [335]. In contrast to localization, segregation
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postulates that brain areas are specialized in some aspects of sensory or motor processing and
that these areas are segregated within the cortex. The computational processes underlying
a particular function involve many specialized areas that integrate their outputs to produce
sensations and behaviors [17].

Segregation and integration in resting-state cortical networks were investigated using
data from wide-field optical imaging in transgenic mice expressing GCaMP6s in cortical
pyramidal neurons under CaMKII control. The global variables used for the modulation of
the brain states were anesthesia type and anesthesia depth. States of arousal like sedation were
induced with medetomidine and isoflurane 1%, 1.8% isoflurane was employed for anesthesia
and the injection of ketamine caused dissociation-unconsciousness. Functional transitions
from the persistent to the slow-wave brain state were induced by the increase of inhaled
isoflurane from 1 to 1.8% in 0.2% increments.

Computationally, segregation and integration were assessed using 3 strategies: 1) BPD -
a data-driven computation for estimating the degree of segregation in functional networks, 2)
complex network measures of functional connectivity and 3) measures of metastability and
spatial FC motives.

5.3.1 Assessment of functional network segregation levels with BPD
BPD is a data-driven computation that uses well-characterized functional networks in order to
infer the effective dimensionality of the imaging data. The functional networks are identified
with PCA and represent spatial features corresponding to physiological brain networks (Fig.
4.19). The Shannon entropy of the PCA components’ variance is calculated and rescaled by
the total number of PCA components to arrive at the quantitative measure BPD (Fig. 4.19).

Essentially BPD measures the level of functional segregation in cortical brain networks.
By measuring BPD, we compute the number of dimensions needed in order to reproduce the
overall variance in our original dataset. BPD has a very precise physiological interpretation,
it measures the level of functional segregation in cortical brain networks because the higher
the BPD of our imaging datasets the higher the number of physiological cortical networks
which are active in that particular recording and the more complex the functional brain state.

Low levels of isoflurane and medetomidine exhibit segregated FC networks [6,91,198],
and this activity corresponds to prior descriptions of the persistent cortical state [6], while
surgical-level anesthesia features slow waves, the slow-wave state [6,91,252,253]. It was
shown that the persistent state exhibits high levels of BPD whereas the slow-wave state has
lower levels of functional segregation (Fig. 4.21).

Transitional states spanning from the persistent to the slow-wave state were induced by
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progressively increasing concentrations of inhaled isoflurane. The expectation was to find
clear “phase transitions” in brain activity metrics between these two extremes. Instead,
for isoflurane concentrations from 1% to 1.6%, a gradual decrease in functional networks’
segregation levels was observed. BPD measurements settled at low levels during 1.6%
isoflurane and 1.8% isoflurane. In these later concentrations, slow-wave oscillations were
observed(Fig. 4.19 and Fig. 4.18).

Previously, progressively increasing levels of isoflurane were reported to reduce homo-
topic correlations as well as cortical segregation levels in fMRI mouse recordings. [262].
These findings seem to contradict each other since the loss of functional segregation would
lead to global activity patterns and these would produce an increase in homotopic correla-
tions. It was demonstrated using direct neuronal recordings that increasing doses of isoflurane
lead to brain state transitions from complex spontaneous activity to slow-wave activity. Slow
waves are global propagating patterns of activation and these lead to a loss of brain network
segregation. As will be detailed in the section below slow waves also induce an increase
in homotopic correlations because they often encompass the entire cortex (Fig. 4.22). The
divergence between our findings and those of Bukhari et al. could be explained by the super-
ior temporal resolution which can be achieved in optical imaging vs. MRI (20Hz vs. 1Hz),
which allowed us to capture dynamic cortical phenomena in greater detail.

Another factor that might have contributed to this discrepancy, could be represented by
the complicated data processing pipelines used by Bukhari et al. which include tunable
parameters [262]. Functional connectivity analysis for fMRI [6,80] and optical imaging
[149] often involves global signal removal. This removes an important driver of functional
connectivity and may artificially cause lower homotopic correlations. Such interventions are
not necessary when using BAPD for brain state characterization.

In a previous study, the awake versus slow-wave brain states were investigated using optical
imaging and PCA analysis [149]. In this study, the authors showed that after removing the first
three principal components from datasets with slow-wave activity, the remaining principal
components were similar to those found in the awake state. From a methodological, point
of view, the removal of the first three principal components can be seen as an arbitrary
intervention. Furthermore, these principal components were attributed to slow oscillations
after data inspection and this represents a qualitative assessment rather than one based on
mathematically defined criteria. The more conservative approach is to find measurements
that have explanatory value for the observed phenomena, i.e for transitions from the persistent
to the slow-wave state. BPD offers a quantitative description of functional brain states and
does not rely on tunable parameters or subjective interpretations.
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Yet another approach to measuring and estimating the state of vigilance for wide-field
optical imaging recordings relies on calculating the entropy of spontaneous brain signals
[148]. This method stems from empirical experience and the physiological significance of
such a measurement is unclear. This approach is based on practices from anesthesiology
where practical considerations favor simple measures for the assessment of patients’ EEG
activity which can be implemented online during surgery to infer the vigilance state [282].

While the brain state induced by medetomidine tended to have higher BPD values than 1%
isoflurane, it was not possible to statistically distinguish between the two. Likewise, sedation
with isoflurane 1% was not significantly different from dissociation unconsciousness under
ketamine but there was a clear trend toward statistical significance between sedation with
medetomidine and dissociation- unconsciousness with ketamine.

It was demonstrated that transitions from the persistent state (complex connectivity pat-
terns) to slow-wave activity are accompanied by a reduction of brain activation pattern
complexity as measured by BPD. This seems to support the view that anesthetics induce the
loss of consciousness by replacing complex cortical activity with more stereotypical patterns
of global activation [19].

5.3.2 The Functional network architecture is influenced by the brain
state

Complex network measures of functional connectivity assess functional segregation and
integration by using brain network modeling tools from graph theory [16]. The degrees of
the network together with the global efficiency and path length were used in order to estimate
cortical integration in the brain states investigated (Fig. 4.24). The modularity, clustering
coefficient, and local efficiency are considered (Fig. 4.25).

The segregation and integration metrics did not reveal a clear-cut inflection point during
transitions from the persistent state (compartmentalized spontaneous activity) to the slow-
wave state under isoflurane (Fig. 4.24 and 4.25). This computation served as an independent
validation of the BPD metric. Network measures of FC are computed starting from assump-
tions about the parcellation of the brain in functional regions. Free parameters of the analysis
include a threshold for correlations that are taken into consideration for network modeling
such that weak correlations and negative correlations between brain regions are discarded
[16]. In contrast, BPD assesses brain networks’ segregation directly from imaging datasets
by measuring the effective dimensionality of imaging data and does not include tunable para-
meters. Similar levels of functional network segregation were observed in isoflurane 1%,
medetomidine, and ketamine in spite of spatio-temporal and spectral differences between
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these conditions.
Network measures of functional connectivity during medetomidine and low levels of

isoflurane and ketamine, matched well to a small-world network architecture indicating the
tendency of the cortical network in this state to form partitions, as indicated by high values
of the clustering coefficient, modularity, and local efficiency. Also, integration metrics such
as global efficiency, path length, and degrees were high in these three states. In contrast,
in surgical-level anesthesia with slow waves, the brain network exhibits minimal clustering
tendencies and very high values of both global efficiency and local efficiency matching a
non-differentiated fully connected network.

Our results from graph theory under isoflurane are compatible with previous work in-
volving 3D fMRI functional imaging and fiber photometry in rats. In this work, during
sedation with low concentrations of isoflurane and medetomidine, compartmentalized func-
tional network dynamics were observed, this is the persistent brain state [6]. A modular
small-world network was described in this state [5,6]. In the high isoflurane condition, a
fully connected (non-differentiated) network model best matches our data. This result is
also compatible with our qualitative assessment of the activity during high anesthesia where
mainly slow waves were observed. Previous reports describe slow waves as periods of high
synchrony between all brain regions i.e. periods of very high connectivity between all brain
areas [91,150,248,252].

During high concentrations of isoflurane high global efficiency and lower local efficiency
were reported [6]. In contrast, during high levels of anesthesia, we found both high global
and local efficiency. Furthermore, evidence is presented that definitively disproves previous
results in mice of progressively decreasing homotopic correlations with increasing isoflurane
levels [262]. Increasing the anesthetic concentration leads to slow-wave activity and increased
correlations between all brain regions. The diverging results in our study compared to the
studies cited above could be due to the differences in temporal sampling rate and the frequency
range available to optical imaging vs. fMRI. Also, fMRI recordings represent an indirect
report of neuronal activity mediated by the neurovascular coupling and it was shown that
hemodynamic responses could be affected by high isoflurane concentrations due to induced
vasodilation [336] leading to inaccurate results.

These findings underscore the importance of having direct measurements of neuronal
activity in mice as a control for fMRI studies in more complex mammals.
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5.3.3 Spatio-temporal FC patterns relevant for brain states and
transitions

Metastability is a feature of dynamic systems and refers to a state which falls outside the
natural equilibrium of the system but is present over an extended period of time. The
persistence of states over time is a key feature that distinguishes this type of analysis from
bulk measurements which refer to the entire duration of an experiment. Topological network
communities can give an indication of integration and segregation but do not provide any
information about data processing over time [12].

Following this model, ignition events can be defined as the capacity of a brain area
to propagate its activity to other regions over time. This measurement is suited only for
spontaneous brain activity recordings, as ignition events are intrinsic in nature and do not
have any relation to outside stimuli. This metastability index is calculated by averaging the
level of integration for each intrinsic ignition event in each brain region over all events [330].

This measure of metastability was analized for medetomidine, ketamine, isoflurane 1%,
and isoflurane 1.8% over canonical frequency bands from slow-4 to theta. Medetomidine and
isoflurane 1% showed high metastability levels across frequency bands. Ketamine resembled
iso. 1.8% in low-frequency bands and med./iso. 1% in the delta and theta bands (Fig. 4.26).
These results could be brought about by alternating gamma/theta bursts with slow-delta
frequencies during dissociation-unconsciousness under ketamine as described by EEG [275].

This method has been previously tested on fMRI recordings from human subjects acquired
during wakefulness and deep sleep [330]. This quantitative approach is useful in elucidating
frequency band-specific segregation and integration during spontaneous brain activity under
different anesthetics and also in different anesthetic doses (isoflurane 1% and 1.8%). Fur-
thermore, this method can be applied to neuronal data directly rather than recordings using
the neurovascular coupling.

The quantitative approach presented above produces bulk measurements where spatial
aspects of brain activation are averaged to produce concise summaries of cortical segregation
and integration. Leading Eigenvector Dynamic Analysis (LEiDA) has been developed for the
purpose of calculating spontaneous network switching from functional brain recordings. We
extract time-varying signals from cortical brain areas and calculate the instant phase of brain
signals which are grouped in time-varying phase-coherence matrices. Next, eigenvectors are
calculated for each time point for every subject and every experimental condition. As a sub-
sequent step, these eigenvectors can be clustered to produce probabilistic metastable substates
which represent spatial functional connectivity patterns that have metastable characteristics.

By performing LEiDA followed by probabilistic metastable substate determination
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[180,289] it was possible to identify a functional connectivity motif that has high explanatory
power for the functional state of brain networks. This metastable motif is characterized
by high levels of connectivity between all anatomically-defined brain areas. It underlies
transitions from the persistent state (present in sedation) to the slow-wave state (present in
anesthesia) under isoflurane. In low isoflurane concentrations, this motif has shorter lifetimes
and a lower probability while in high isoflurane conditions, its likelihood of occurrence
increases to 95% (Fig. 4.27).

This metastable pattern is attributable to periods of time when activity in all brain areas
are highly correlated, i.e. periods of high cortical excitability. There is broad consensus
that fluctuations in whole-brain network excitability underlie slow-wave activity [6,241,252].
In this state, periods of baseline cortical activity which are called off states alternate with
intervals of increased neuronal excitability, on states, when action potentials are highly
synchronized across widespread regions of the cortex [244,248,252,337]. During slow-wave
activity, the fully connected metastable motif lasts up to 10 seconds and has a very high
probability of occurrence.

Fluctuations in excitability can be viewed in a more general sense as important constituents
of cortical dynamics during other brain states apart from the slow-wave state. The fully
connected FC motif was found also during the persistent brain state which was induced
with low isoflurane concentrations. The features which make the difference are the lifetime
(around 1 second) and the probability of occurrence (around 67%) in the persistent state.
Having such descriptors allows us to analyze brain activity across different functional states
in a coherent, and mathematically precise way (Fig. 4.27).

Consistent with our BPD measurements in isoflurane conditions, LEiDA did not reveal
sharp transitions between brain states but rather a gradual increase in the probability of the
fully connected FC pattern from isoflurane 1% to isoflurane 1.6% followed by a leveling-
off in 1.6% isoflurane and 1.8% isoflurane. The same trend was observed in our BPD
measurements.

Evidence is presented that global fluctuations of cortical excitability exist more gener-
ally in different states of arousal like medetomidine-induced sedation and ketamine-elicited
dissociation-unconsciousness. This suggests that this FC motif can be seen as a descriptor
that is generalizable also to pharmacological conditions different than isoflurane. Using this
single functional connectivity pattern, it is possible to differentiate between isoflurane 1%,
isoflurane 1.8%, medetomidine, and ketamine (Fig. 4.28). Notably, BPD measurements
indicate that brain activity was most complex under medetomidine and during this condition,
the fully connected motif had the lowest probability of occurrence and the shortest lifetime.
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Apart from the fully connected metastable motif, most of the other functional connectivity
patterns from LEiDA feature anticorrelations between frontal and occipital regions. In Fig.
4.17 it is shown that network activity under isoflurane 1% and medetomidine fluctuates
between frontal and occipital areas on timescales of up to 2 sec. The spatial distribution of
correlated and anti-correlated regions shows remarkable similarity to the functional activity
observed in the frontal and occipital subclusters.

5.4 The role of the functional states for processing sensory
information in the cortex

In order to understand how animals function in their environment, we must understand the
chain of events that leads to behavioral changes. To approach this problem the sequence of
neuronal events that ultimately lead to behavior has to be broken down into its constituent
elements. The first stage in this process is usually motivated by a change in the environment
which is picked up by sensory receptors. After local processing in the peripheral nervous
system and subcortical nuclei, an “edited” version of the captured sensory information is
transmitted to the cortex. Next, the information is processed in the cortex and this step is
influenced by motivation, drive, memories, projections of the future, and the state of arousal.
A decision-making process follows which may or may not be followed by goal-directed motor
activity [338].

This model emphasizes the importance of the arousal state in modulating behavior and for
this reason, it was decided to investigate cortical sensory information processing as a function
of the vigilance state. As shown in section 5.3, heterogeneous functional brain states underlie
states of vigilance. Isoflurane was used to induce transitions from the persistent state to the
slow waves state and the cortical representation of stimuli was observed in order to infer the
features of cortical information processing in these states. This transition was achieved by
gradually increasing the inhaled concentration of isoflurane gas. Simple visual and hind paw
simulations were carried out and brain activations were observed with our optical imaging
system. V1 and S1 cortical areas were accessed, and these regions were also later targeted
with optogenetic stimuli.

Qualitative assessment of the cortical responses to sensory stimulation revealed that under
low isoflurane concentrations, responses were mostly local while under anesthesia stimulation
produced global responses (Fig. 4.29 and 4.31). Under low isoflurane conditions, our findings
of local activations are in line with previous results from the field of fMRI imaging [80].
fMRI reports of localized activity after hind paw stimulation in isoflurane may be dependent
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on the arbitrary step of thresholding statistical scores leading to heterogeneous results.
During surgical-level anesthesia with isoflurane, in the slow waves state, stimulations

give rise to stereotypical brain activation patterns. These types of responses have been
observed with fiber-photometry [252] as well as a combination of fiber-photometry and
fMRI [6,91,263]. In these studies, local calcium transients which are recorded with fiber-
photometry are related to global activation patterns recorded with fMRI.

In wide-field optical imaging, sensory information was mapped over the corresponding
cortical areas responsible for primary processing [135] and sensory-motor integration was
characterized [124,141–143]. However, these studies mainly focused on the processing of
sensory information before the generation of goal-directed behavior and did not include an
assessment of the functional brain state. Studies using wide-field optical imaging for the
investigation of brain states mainly focus on spontaneous cortical dynamics [147,149].

The direct dependence of stimulus processing on the brain state is insufficiently explored.
Brain responses under low [80] and high [91] isoflurane concentrations had been described
by fMRI but the transition between these two extremes remains unexplored.

BPD was used to confirm the link between the functional brain state and the responses
to stimulation. BPD is a generalizable computational tool that can be applied to functional
imaging data in the presence or absence of stimulation. BPD measurements from stimulated
imaging runs revealed a similar trend to the one found in spontaneous recordings. Low
isoflurane concentrations have high BPD values while high concentrations of anesthetic gas
are characterized by low BPD values. BPD values decreased gradually from 1% isoflurane
to 1.6% isoflurane before leveling off at 1.6 and 1.8%. It was also shown that BPD values
for spontaneous activity are useful in predicting the BPD of stimulated datasets (Fig. 4.30
and 4.32). BPD in the resting state had moderate to high explanatory power over BPD in
stimulated runs and the difference between spontaneous activity BPD and BPD during visual
and somatosensory stimulation was not statistically significant within the same concentration
of isoflurane.

This seems to strengthen the view that sensory information processing is superimposed on
a dynamic background representing internally generated computational streams, execution of
housekeeping tasks, and oscillations that reflect brain network architecture [4,181]. Because
stimulation does not significantly increase the dimensionality of imaging datasets, we would
be inclined to think that the cortical activity that is associated with stimulus processing only
represents a small part of the total cortical network fluctuations that occur at any one time in
the extended cortical network.

Our stimulation strategy involved delivering 50ms stimuli every 10 seconds and this
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represents a very sparse stimulation protocol compared to fMRI stimulation procedures
which are usually organized in blocks spanning tens of seconds [80]. It should be tested
whether the more intensive stimulation regime impacts segregation levels in functional brain
networks. Such intense stimulations in fMRI are mainly carried out to ensure that large
hemodynamic responses can be recorded in spite of very high noise levels. Fluorescence
calcium imaging has a much better SNR and this allowed us to record brain responses to
stimulation with a sparser stimulation protocol that matches better natural environmental
stimuli.

BPD is a general computation that does not assess the results of stimulation directly, and
for this reason, the topological features of stimulated imaging recordings were analyzed. The
topological complexity metric refers to the prominence, of stimulation-induced functional
features in order to infer which datasets contained patterns of activation that are expressed
over the largest range of spatial scales (Fig. 4.33) [303]. In our case determining topological
activation features after stimulation is not trivial. The mouse brain images were accurately
aligned and their shape is relatively uniform (owing to their identical genotype), however,
the vascular pattern of superficial veins and arteries is highly variable between subjects.
Stimulation experiments in transgenic mice typically involve small cohorts, thus a robust
approach to topological variability when assessing cortical responses to stimulation is desired.

Visual stimuli had significantly greater topological complexity in 1% ans 1.2% isoflurane
but were not distinguishable during surgical-level anesthesia (Fig. 4.33). Visual and somato-
sensory cortical representations have higher levels of topological complexity at low isoflurane
concentrations compared to surgical-level anesthesia. In more complex brain states, identified
by BPD, cortical activations span a larger number of topological scales. Under anesthesia,
in the slow-wave brain state, responses were simpler, manifesting over a lower number of
spatial scales. This metric quantifies topological features of cortical responses to stimulation
confirming our qualitative assessment that cortical responses during anesthesia were found
to be global and stereotypical.

Topological complexity measurements have previously been used on fMRI data for the
classification of brain activity as a function of the subject’s age and in this case, the stimulation
was represented by participants watching a five-minute video during fMRI measurements
[303]. The use of this computation to reveal the topological features of simpler stimuli in
calcium imaging rather than hemodynamic recordings suggests this data-driven metric could
be used for clarifying features of cortical activity in a wider range of experiments studying
perception and information processing.

It was shown that cortical sensory processing is strongly influenced by the functional
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state of brain networks. Transitions from the persistent brain state to the slow-wave state
lead to a decrease of the complexity of sensory afferent representations in pyramidal neuron
networks. For these reasons, an estimation of the functional brain state should be carried out
as a preprocessing step before other computational routines tailored to the analysis of cortical
activation patterns. Such an analysis could be carried out with BPD as it delivers reliable
measurements of functional network segregation even in the presence of sensory stimulation.

5.5 Effective connectivity is dependent on the functional state
of brain networks

Effective connectivity refers to the capacity of a set of neuronal groups to causally affect the
activity of other neuronal groups within the wider network [14,17]. Attempts at quantifying
information integration mostly rely on functional connectivity. Functional connectivity is
defined as a statistical dependency between spatially remote neuronal activation events and
is established by calculating correlations between the functional activity of neurons or brain
regions over time [17]. Correlations between two brain areas can also occur because of a
third structure that may act as a driver for the initially observed brain areas. This would
artificially increase the apparent information integration.

Sensory/somatosensory stimulation could be used in order to infer the causal relationships
between remote cortical regions, however sensory processing is modulated in peripheral as
well as subcortical structures of the central nervous system before reaching the cortex. These
relays may act as constraints disrupting efforts to assess the impact of one region on other
hubs in the network. For this reason, direct brain stimulation has been proposed as a way of
assessing effective connectivity, defined as the maximum impact that the activation of a brain
area can have on all connected areas of the cortex [18,19]. These experiments are carried out
in human subjects with TMS for brain stimulation and EEG as a readout modality.

Effective connectivity has been measured before in mice using all-optical methods [177].
Optogenetic stimulation was done in transgenic mice expressing channelrhodopsin, an opto-
genetic construct that can be stimulated with blue light. The readout was done with intrinsic
optical imaging making use of the neurovascular coupling for functional readout [177]. This
approach has the disadvantage that optogenetic control is only guaranteed for the neuronal
population being stimulated and not for the brain activation readout. Additionally, our un-
derstanding of the neurovascular coupling remains incomplete and brain responses recorded
like this represent a lowpass filtered version of the actual neuronal activation events. It is
much more desirable to use fast GCaMP imaging in order to record neuronal activity directly

140



and avoid any data losses caused by the transduction of neuronal activations to hemodynamic
signals.

In this work, an all-optical experimental setup for measuring effective connectivity was
introduced. Direct brain stimulation is done using laser activation of the red-shifted op-
togenetic tool ChrimsonR [171] and readout is provided by the widefield optical imaging
system which records fluorescence information from transgenic mice that express GCaMP6s
in cortical pyramidal neurons [124]. This enables us to record effective connectivity patterns
while having complete genetic control over the populations of neurons being stimulated and
recorded. Because GCaMP excitation is done with blue light and ChrimsonR stimulation
necessitates red laser pulses, the functional readout can be done in parallel with optogenetic
stimulation without crosstalk between the channels (Fig. 4.35). Stimulation with red laser
light has the added benefit of deeper penetration in tissue, so stimulation can also be carried
out through the skull without the need for invasive fiber optic guide placement.

The effective connectivity of the S1 and V1 cortices was recorded using optogenetic stim-
ulation. Visual inspection of the results indicates that under low concentrations of isoflurane
and medetomidine (corresponding to the persistent brain state), the patterns produced are
more heterogeneous and less widespread, while during isoflurane anesthesia (the slow-wave
state), wave-like activations were generated (Fig. 4.37 and 4.41).

These observations seem compatible with previously published results after TMS stimula-
tions, during slow-wave sleep in human subjects. In this context, TMS stimulation generated
either slow waves or activation patterns that did not spread beyond the point of stimulation
[18,339]. In our case, optogenetic stimulation produced activations that always spread beyond
the stimulated area in spite of showing variable intensities of activation.

Previous studies in isoflurane-anesthetized mice using calcium fluorescence fiber-
photometry and optogenetic stimulation also reported slow-wave events being triggered
after optogenetic stimulation [252]. Optogenetic stimulation in rats during low isoflurane
anesthesia produced local BOLD responses in the S1 albeit after stimulation blocks that
lasted tens of seconds [340]. A stimulation scheme involving 50 ms laser pulses was used
and this is suitable for both generating slow-wave events in general anesthesia [252] and
measuring the complexity of effective connectivity [300].

Optogenetic stimulations under medetomidine produced similar response complexity to
low isoflurane levels. Both these drugs induce a persistent brain state with rich patterns of
activation in segregated brain networks. Under Ketamine, a reduction in calcium fluorescence
was recorded immediately after stimulation. This represents a reproducible result present
in all mice from the S1 and V1 optogenetic stimulation cohorts (8 animals). Furthermore,
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these paradoxical responses were present concomitantly with increased spectral activity in the
retrosplenial cortex in the 1-3 Hz spectral band (Fig. 4.46). The 1-3 Hz RSP rhythm had been
previously described during spontaneous activity recordings [139] but this is the first report
describing paradoxical response to optogenetic stimulation of pyramidal neurons during
dissociation-unconsciousness. This so-called “saw tooth” appearance of the time-varying
fluorescence signals resembles previously reported EEG findings where the authors report a
periodic interruption of the gamma rhythm which is replaced by slower frequencies[275].

After this initial assessment, the segregation of functional cortical networks was quantified
with BPD. In the case of isoflurane, the trend in BPD values from optogenetic imaging
sessions was similar to spontaneous activity and the natural stimulation recordings with high
values when complex network activity was present (1% iso. and med.) and low levels in
the slow waves state (Fig. 4.39 and 4.43). Again there were no sudden decreases in BPD
but rather gradual loss of cortical network segregation during the transition from low to
high iso. concentrations. Spontaneous activity was always acquired first before S1 or V1
optogenetic recordings and it was impossible to statistically distinguish between segregation
levels (measured by BPD) from spontaneous activity and optogenetically stimulated runs.

Next, the complexity of effective connectivity patterns was investigated using PCI-ST, a
computational routine first developed for effective connectivity data acquired with EEG after
TMS stimulation [301]. Because this measurement is based on a linear data reduction method
(singular vector decomposition) it is applicable, in principle, to any type of functional data
which contains responses to direct cortical stimulation[301].

The complexity of effective connectivity patterns, measured by PCI-ST, decreases pro-
gressively from 1% isoflurane to 1.6% isoflurane, and in 1.6% and 1.8%, PCI-ST reaches
the lowest values. Again no phase transitions in cortical activity were present during the
transition from the persistent state to the slow waves state.

During sedation with medetomidine, the complexity of effective connectivity patterns
is indistinguishable from the isoflurane 1% condition, both conditions feature the persistent
cortical state. Ketamine had lower levels of complexity than isoflurane 1%, though hetero-
geneous values did not allow us to find statistically significant differences (Fig. 4.39 and
4.43).

Previous studies in human subjects showed that with PCI it was possible to distinguish
vigilance states like wakefulness, deep sleep, coma, and anesthesia. Less clear-cut conditions
like minimally conscious states were also identified in this way [300,301]. To our knowledge,
our study represents the first example of a controlled experiment where the arousal state was
gradually manipulated and the progressive breakdown of effective connectivity was quantified
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using neuronal activation data. BPD measures the segregation of cortical networks while
PCI quantifies the complexity of brain responses to optogenetic stimulation.

There seems to be a functional connection between complex functional connectivity pat-
terns being replaced by propagating waves during spontaneous activity and complex effective
connectivity responses breaking down to form stereotypical cortical responses after opto-
genetic stimulation. BPD values measured during the spontaneous recording that preceded
the optogenetically stimulated data acquisition have a moderate explanatory power for PCI
measurements (Fig. 4.40 and 4.44). This suggests a common network mechanism could
mediate the observed effects.

5.6 Effects of psychoactive drugs and their relationship to
functional cortical states

Psychoactive drugs were used to reproducibly induce brain states in order to study spontaneous
activity, stimulus processing, and effective connectivity and find quantitative descriptors
which enable us to develop data-driven computational tools to classify brain states and infer
causal mechanisms responsible for the functional patterns observed. It was reasoned that
both the type of pharmacological agent and the dosage would produce distinctive functional
features.

Isoflurane potentiates GABA-A and Glycine receptor activity [233] and reduces the activ-
ity of glutamate receptors such as NMDA [234,235]. Because of these complex molecular in-
teractions, isoflurane has sedative, anesthetic, and hypnotic properties. In low concentrations,
isoflurane causes sedation as a result of GABA-ergic potentiation while high concentrations
induce surgical-level anesthesia [216]. Previous research has focused on these two states
and found during sedation spontaneous functional network dynamics were preserved and this
is referred to as the “persistent” state. In surgical-level anesthesia propagating waves were
observed and this has been termed the “slow wave” state [6,91].

In order to understand how persistent network activity is replaced by slow waves, brain
activity under five different concentrations of isoflurane was studied. Functional compart-
mentalization was progressively lost between isoflurane 1% and isoflurane 1.6%. This
transition was also accompanied by a change in functional network cortical features which
gradually changed from a modular to a fully connected architecture. Additionally, global
changes in cortical excitability are responsible for the transition from “persistent” to “slow-
wave” brain state under isoflurane. Stimuli during the persistent state cause topologically
complex cortical representations while the slow-wave state features stereotypical traveling
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activations. Furthermore, effective connectivity responses decrease in complexity in a similar
way only to be replaced by traveling waves during surgical-level anesthesia.

The functional brain state transition under isoflurane results in propagating waves in the
resting state, natural stimulation, and optogenetic stimulation. This could imply a common
network mechanism is responsible for the observed changes. During the slow-wave state,
traveling waves represent the loss of the cortex’s ability to contain activation events to
anatomically specialized areas such that all activity becomes global and stereotypical.

A possible mechanism underlying these changes could be represented by the loss of lateral
inhibition. This refers to the neighboring neurons being inhibited by the strong activation
of a particular neuronal cluster, this helps limit the spread of neuronal activity which could
otherwise lead to positive feedback effects and epileptic activity [341,342]. Alternatively,
feedback disruptions between the cortex and deeper structures like the thalamus and claustrum
could lead to inadequate timing of action potentials and potentially to global activation
phenomena. A recent study found evidence that a subpopulation of claustral neurons was
controlling cortical interneuron activity to induce down states during slow-wave activity[258].
The precise mechanism responsible for these effects was not experimentally addressed in this
work and will have to be the subject of future research.

Slow waves, are observed during sleep [243,248] quiet wakefulness [242], and anesthesia
[6,91,252,253]. Although the general features of slow waves during sleep and anesthesia
appear similar [343], during anesthesia longer silent periods are observed and slow waves
are more synchronous [150,253]. Slow waves during anesthesia do not help group spindle
activity which is relevant to memory consolidation during sleep [344]. In spite of these
differences, cortical slow waves recruit the thalamus and hippocampus indicating that they
could play a synchronizing role in wide brain regions during states of unconsciousness [91].

Medetomidine induces an α2 adrenergic receptor-mediated alteration of arousal by mainly
targetting neurons in the locus coeruleus [218] causing a reduction of norepinephrine release
in this area [219]. The hyperpolarization of the locus coeruleus by medetomidine also causes
an activation of the preoptic area, inducing a state which is behaviourally similar to non-REM
sleep, and for this reason, medetomidine is used as a sedative in human medicine. [216].
Medetomidine sedation is used in neuroimaging studies because it preserves the patterns of
activation that make up the DMN [222,223].

Sedation with medetomidine tended to have higher levels of functional network se-
gregation compared to sedation with isoflurane, though the difference was not statistically
significant. The same trend was observed when assessing the functional network measures
which indicate a more pronounced tendency towards functional network clustering under
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medetomidine. Metastability values for medetomidine were also comparable with isoflurane
1% across all frequency bands. Sedation with medetomidine had similar values of response
complexity to optogenetic stimulation compared to isoflurane 1%. These results suggest
that medetomidine tends to produce a more complex brain state than isoflurane 1%. Me-
detomidine seems to preserve compartmentalized functional activity which others have found
to be similar to the awake state [222,223].

Studying the persistent state present under medetomidine is not a substitute for awake
experiments since med. modulates the interactions between brain networks. Fewer negative
correlations between related brain regions were present during medetomidine sedation as
opposed to the awake state [199]. Additionally, the absence of high-frequency rhythms like
the Gamma oscillation represents a major point of difference between the awake and the
sedated states [220]. Notwithstanding, medetomidine sedation is employed in neuroimaging
studies because it preserves lower frequency patterns of activation that are similar to the
awake state [222,223].

Ketamine binds to a subunit of the NMDA receptor that is different from the glutamate
binding site and causes a conformational change that inactivates the receptor. Early after
injection, ketamine blocks interneurons causing disinhibition of the pyramidal neuron net-
work, subsequently, ketamine also inhibits pyramidal neurons leading to a general decrease in
cortical activity [139,275,345]. Ketamine induces dissociative states in mammals and has for
this reason been used in models of psychiatric conditions [139,268,279] as well as a potential
treatment for depressive disorders [345].

Based on BPD, it was not possible to distinguish between sedation with isoflurane 1%
and ketamine, whereas there was a clear trend towards statistical significance when compared
to medetomidine. Network characteristics extracted from spontaneous brain activity under
ketamine were indistinguishable from medetomidine and isoflurane across all computed met-
rics. Intriguingly, metastability measurements show that ketamine resembles medetomidine
in the higher frequency range and 1.8% isoflurane in the lower frequencies.

A prominent 1-3Hz rhythm in the retrosplenial cortex was observed during spontaneous
activity, confirming previously published results [139]. A general decrease in cortical activity
was observed after optogenetic stimulation, a finding that was unique to ketamine. This
result was observed concomitantly with the prominent 1-3Hz retrosplenial rhythm. Upon
optogenetic stimulation, this oscillation was paused and slower frequencies became more
prominent. This type of alternation between low and high amplitude oscillations has been
previously observed with EEG in spontaneous activity recordings [247]. The most plausible
mechanism that could underlie this intriguing finding is the activation of interneurons which
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would have a global effect on the whole network. It is not clear how such activation would
occur but the complex and unequal effects of ketamine on interneurons and pyramidal neurons
described above could potentially play an important role in explaining this finding.

It is clear that ketamine acts on the neural network in a way that is distinctive from
medetomidine and isoflurane leading us to believe that the functional brain state induced by
medetomidine is distinct from both the persistent and slow-wave states. Further study of the
dissociated state will bring new insights into brain physiology and potentially also illuminate
new avenues for the treatment of neuropsychiatric diseases.

From the data presented above, it can be concluded that the pharmacologically induced
brain states studied in this work are highly relevant to our understanding of spontaneously
occurring brain states. However, they recapitulate only some functional features of the
spontaneously occurring brain states and this should be factored into the design of future
experimental work.

5.7 Computational tools for functional cortical state modeling
The discussion above indicates that no single computational metric can deliver satisfactory
insights into spontaneous brain activity, stimulus processing, and effective connectivity fea-
tures as a function of brain state. In the following, the usefulness of the computational tools
that were employed in this study will be assessed.

Brain pattern dimensionality (BPD) is a novel metric developed in the course of this work
for the assessment of functional network segregation. This tool is accurate in classifying
functional cortical states and transitions from the persistent to the slow waves state. This is to
our knowledge the first metric of its kind that is adapted to wide-field fluorescence imaging.

BPD is a data-driven computation that does not include free, tunable parameters and is
thus robust and potentially generalizable to other neurorecording modalities. BPD could be
adapted to 3D functional imaging methods such as fMRI and high-density electrophysiolo-
gical applications. Effective dimensionality can be artificially increased by noise, for this
reason, a strategy for isolating neuronal signals from raw imaging data was also proposed.

BPD was accurate in identifying functional states from spontaneous activity, natural stim-
ulation, and optogenetic stimulation recordings indicating that it could be used to standardize
brain stimulation experiments for the purpose of obtaining more consistent insights into cor-
tical information processing. This step can be done in postprocessing and does not require
additional experimental procedures or the modification of existing imaging and stimulation
protocols. Brain responses to stimulation depend on the functional state so, a functional state
estimation should be included in processing pipelines for brain imaging experiments.
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BPD offers a very concise and easy to interpret summary of the state of segregation of
functional neuronal networks, however, it does not offer specific insights into brain stimulation
responses as it analyzes global cortical activity. It also cannot differentiate between brain
states that have a similar level of complexity, for example between isoflurane sedation and
dissociation-unconsciousness (Fig. 4.21 ). Another drawback is that BPD is not designed to
assess cortical information integration. It could be argued that the principal components used
to assess effective dimensionality already contain some evidence of information integration.
Each principal component contains a value for every pixel in the brain and for every time step
in the imaging sequence and often, multiple anatomically-defined brain regions are present in
the same principal component i.e. integrating information. Also, BPD relies on the extraction
of linear features with PCA and it should be explored if including non-linear features would
add to its accuracy.

Network measures of functional connectivity can assess both integration and segregation
and the computational procedure is generalizable to any functional imaging modality. The
metrics estimated have a clear mathematical description and a physiological interpretation
[16].

However, the procedure relies on prior assumptions and tunable parameters. The first
assumption refers to the choice of nodes, i.e the cortical parcellation in brain regions from
which time-varying signals are extracted. Secondly, Pearson’s correlation between nodes is
calculated and as explained in the effective connectivity section correlations can be artificially
increased in certain conditions. Thirdly, network modeling involves setting a correlation
threshold for the network connections considered meaningful and included in the analysis.
This represents a tunable parameter that is left up to the researcher. Furthermore, negative
correlations are not considered in the analysis and this seems to be due to current limitations
in the theoretical understanding of information theory [16].

Complex network measures of functional connectivity have been developed for spontan-
eous recordings and should not be used on data from stimulated imaging sessions. This
approach is useful as validation for BPD in the characterization of the transitions from seda-
tion to anesthesia under isoflurane. Based on these metrics we could not distinguish between
1% isoflurane, medetomidine, and ketamine(Fig. 4.24 and 4.25).

LEiDA and probabilistic metastable substates assess integration and segregation in a more
detailed way. Functional connectivity motifs are identified and the probability, lifetime, and
switching characteristics are assessed. One important advantage of LEiDA over BPD is that
it has a temporal dimension because metastable features are defined as persisting over time
[333]. Free parameters included in the computation concern the bandpass filter options and
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the number of substates that will be statistically compared. Also, LEiDA, like the network
measures relies on signals extracted from predefined cortical regions.

This analytical tool can be used to evaluate any type of functional brain imaging data, with
or without stimulation and experimental conditions are statistically compared against each
other. It was successful in differentiating between different brain states as well as between
different pharmacological conditions using LEIDA.

Furthermore, it is possible to differentiate between hind paw and visual stimulations and
between V1 and S1 optogenetic stimulations using this computational routine. A drawback
is represented by the high number of substates generated which can make interpretation by
the researcher difficult. In this respect, the spatial renderings of the metastable substates are
very helpful for extracting physiologically meaningful interpretations (Fig. 4.27 and 4.28).

PCI was developed as a metric for assessing the state of consciousness in human subjects
using data on effective connectivity acquired with EEG after direct cortical stimulation
with TMS. In its initial formulation, PCI involved the computation of the EEG sources of
activation after TMS stimulation, the binarization of those sources, and the assessment of
nonredundant information in these images by Lempel-Ziv compression [300]. More recently,
a new computational strategy was put forward and this involves feature extraction with singular
vector decomposition, the calculation of distance matrices, and the iterative thresholding of
these matrices in order to find the maximal difference in “transitions” between baseline
activity and stimulation responses. This latter technique is called PCI-ST and is the one that
was used in this work [301]. Essentially, both methods measure the complexity of effective
connectivity responses and are based on the assumption that, during the conscious state,
cortical responses to stimulation should be more complex compared to the unconsciousness
state.

Effective connectivity contains information on both segregation and integration. Local
responses to stimulation suggest a loss of integration while global but stereotypical activations
point to a loss of segregation [300]. For these measurements, a laborious experimental
procedure has to be carried out. The brain has to be stimulated directly either with TMS or
implanted electrodes and responses have to be recorded with either EEG or LFP. Spontaneous
activity cannot be used for these determinations. Also, PCI was calculated for datasets with
hind paw and visual stimulations and PCI-ST values were not useful for inferring brain state
characteristics.

Methodologically TMS potentials are processed with SVD which is a linear feature
extraction method, and potentially, non-linear data characteristics could be lost in this process.
A single threshold is used in order to determine the number of transitions between the pre-
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and poststimulus periods and the strategy for choosing this threshold is precisely defined.
The stability of this approach especially for small sample sizes is questionable, moreover, a
threshold that could be generalized to other datasets would be more desirable.

Like BPD, PCI-ST is easily interpretable, the higher the value, the more complex the
effective connectivity responses. PCI-ST can successfully differentiate between brain states
during the isoflurane-mediated transition from sedation to anesthesia. States like sedation
with medetomidine and dissociation with ketamine could not always be distinguished from
isoflurane 1% (Fig. 4.39 and 4.43).

In our experience, when assessing the features of a functional brain state, data-driven
computational methods should always be preferred over ones that include tunable parameters.
Next, the choice of method is dictated by the type of data to be analized and the type of
information that needs to be obtained. The conciseness of the metric represents another
consideration to be taken into account.

This work demonstrated how a thorough characterization of spontaneous activity, stimulus
responses, and effective connectivity can be achieved using BPD, network metrics, LEiDA,
and PCI-ST. No single method is successful in capturing all the aspects included in the data
but this is not surprising given the complexity of our experiments. Strong evidence presented
here suggests that an assessment of the functional brain state should be included in the analysis
of functional brain imaging data. BPD could represent a viable alternative for this task due
to its versatility with respect to the types of data that can be assessed.
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6
Conclusion and outlook

6.1 Conclusive summary
The work presented in this thesis concerned the study and quantitative assessment of func-
tional cortical states in mice in an effort to understand their influence on spontaneous brain
activity and information processing. First, I reviewed the state of the art on reporters of
neuronal activity, brain imaging technologies, and functional states of the brain. Next, the
thesis details the material and computational resources used in this work with an emphasis
on the development of the custom wide-field imaging microscope which was used in most
of the experiments presented here. Next, the results were presented and discussed in the
context of current theories of cortical network organization and information processing. Fi-
nally, concrete ways were presented in which this work could be expanded for the purpose of
implementing closed-loop optogenetic stimulation capability.

To summarize we will briefly refer to the objectives formulated in Section 1.4.
Design and assemble an optical instrument suited for acquiring fluorescence imaging

data from the whole mouse cortex. A dual-camera wide-field fluorescence microscope was
designed for imaging neuronal activation events in transgenic mice expressing the fluorescent
calcium sensor GCaMP6s in cortical pyramidal neurons. The imaging system has a spatial
resolution of 0.03mm/pixel and a maximum temporal resolution of 100 frames/sec. The
integrated feature of hemodynamic imaging with 395nm reflectance and ICG fluorescent
blood pool agents allowed us to identify and efficiently remove physiological noise using
a bespoke postprocessing pipeline. Integrated into the setup is a red laser for optogenetic
stimulation, so GCaMP6s imaging can be done simultaneously with optogenetic stimulation
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of the red-shifted opsin ChrimsonR.
Develop a computational method to quantify functional brain states based only on

imaging data. The novel metric Brain Pattern Dimensionality was designed for assessing the
level of functional network segregation based solely on brain imaging datasets. This compu-
tational technique accurately predicts the brain state from spontaneous activity recordings as
well as datasets where sensory or optogenetic stimulation was carried out. Because cortical
data processing is strongly dependent on the brain state, this computational tool could be
used in the future for standardizing functional brain imaging experiments and ensuring more
consistent brain stimulation results.

Investigate how spontaneous brain activity is influenced by sedation-unconsciousness,
dissociation-unconsciousness, and anesthesia. Information integration and segregation
were assessed with BPD, complex network measures of FC, and metastability measures.
No “phase transitions” in functional state metrics were observed during transitions from
the persistent state to the slow-wave state but rather gradual trends towards simpler brain
activation patterns.

There are two hypotheses that seek to explain the effects of anesthesia on the brain.
The first claims anesthesia disrupts cortical networks leading to functional brain regions
becoming less coordinated in their activity. The second holds that anesthesia synchronizes
activity across large brain regions leading to a loss of spatial confinement of brain activity.
This impedes complex information processing and causes a loss of awareness. By studying
the activation of cortical pyramidal neurons we have found evidence supporting the second
hypothesis.

Develop a strategy for the coexpression of a fluorescent calcium indicator and an
optogenetic actuator in excitatory cortical neurons. ChrimsonR which is activated by red
laser light and GCaMP6s which can be stimulated by blue wavelengths were coexpressed
in excitatory cortical neurons. This spectral separation allows to carry out symultaneous
optogenetic stimulations and image calcium transients in pyramidal neurons. This is the
first such implementation for wide-field optical imaging and it enabled the detailed study of
brain responses to optogenetic stimulation as a function of the brain state. The experimental
setup for simultaneous imaging and optogenetic stimulation could be expanded to include
closed-loop spatio-temporal control of activated cortical neural networks.

Investigate how somatosensory, visual and optogenetic cortical responses to stimu-
lation are influenced by the functional state of cortical networks. The somatosensory
and visual cortices were targeted with hind paw, visual and optogenetic stimulations, and
computational strategies were presented for distinguishing between the elicited patterns of
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activation. In functional states induced by medetomidine and isoflurane, the level of func-
tional network segregation was directly proportional to the complexity of brain responses to
optogenetic stimulation. Surprisingly, in ketamine-induced dissociation-unconsciousness, a
general decrease in brain activity after optogenetic stimulation was observed. This finding was
associated with increased 1-3Hz activity in the retrosplenial cortex. In this state, high levels of
functional network segregation and stereotypical responses to stimulation are present. These
findings suggest that ketamine-induced dissociation unconsciousness represents a functional
state distinctive from the persistent and slow-wave states.

The findings resulting from this work were presented in the context of existing descriptions
of functional brain states which are usually regarded by the research community as discrete
categories. We here show that brain states that underlie states of vigilance form a continuum
and pure states such as the persistent or slow waves state are difficult to define precisely.
The central finding of this research is that functional brain states can be characterized by a
set of continuous measurements and the aggregate of these metrics will provide a superior
description of the brain state than qualitative assignment to predefined categories.

More broadly, this thesis presents empirical and computational strategies for all-optical
dissection of mesoscale brain networks that will help expose cell-type-specific mechanisms
relevant to healthy brain function and brain pathologies. The mechanistic understanding
gained from studying the interactions of genetically labeled neuronal populations could form
the basis of theoretical brain models capable of predicting interventions that restore healthy
brain function in cases of neuropsychiatric illness.
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6.2 Outlook and future perspectives

6.2.1 Explaining brain stimulation response variability using
functional brain states

The results presented in this work demonstrate that brain responses to stimulation are hetero-
geneous and strongly depend on the functional state of cortical networks. Experimentation
was conducted under tightly controlled conditions and functional states like the persistent
state, slow-wave state, and dissociation were induced in a reproducible manner with the use
of psychoactive drugs. In this way, brain stimulations could be carried out under conditions
that are not as dynamic as those present during the awake state.

During wakefulness, brain states change on time scales of milliseconds to seconds as
neurons are heavily modulated by the spatiotemporal dynamics of spontaneous network
activity [185]. It was shown in rodents that rapid changes in spontaneous cortical activity
from high-amplitude to low-frequency fluctuations occur when animals shift from quiet
wakefulness to active behavior [183]. Reports in rats indicate that brain state changes can be
global or localized to circumscribed areas of the cortex [184].

These changes in the state of cortical networks are likely to have an impact on cortical
information processing. Intersubjective variability has long been recognized as a challenge
for the replicability of stimulation results after TMS. Intra-individual variability across ex-
perimental sessions and trials is thought to arise from changes in the brain state during
stimulation experiments.

A possible way to overcome these challenges would be to implement closed-loop stim-
ulation systems. These monitor the functional parameters of the brain and adjust the char-
acteristics of brain stimulations to achieve the desired outcome, for example, a brain state.
Such systems have been implemented for TMS and EEG [346] but are challenging to use
in imaging studies because of the high data load. Alternatively, surrogate measurements for
the determination of the arousal state have been proposed. The pupil diameter can serve
as a proxy for the brain state as demonstrated using hybrid fMRI and optical fiber calcium
recordings[347].

A better way to account for brain-state-related effects on stimulation experiments is to
use brain activity to infer the brain state offline for better standardization of brain stimulation
outcomes. BPD was introduced in this work as a computation that can be carried out post-
hoc on spontaneous brain recordings as well as stimulated imaging sessions. It would be
interesting to test whether this strategy for brain state estimation can be carried out using data
from fMRI or electrophysiology recordings.
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6.2.2 Using functional and effective connectivity to illuminate the
mechanisms of brain disease

Functional connectivity has been used to assess cortical information integration and segrega-
tion. Alterations in brain FC have the potential to provide useful biomarkers of systems-level
brain disease. Large fMRI datasets from patient and control groups have been used for the
development of analytical tools for FC assessment.

A variety of measurement strategies have been proposed for the purpose of assessing
static FC, for example calculating correlations between regions of interest and modeling
the features of functional brain networks [16]. For the evaluation of dynamic functional
connectivity, sliding window techniques and intrinsic connectivity states are obtained using
decomposition methods.

Challenges persist in finding FC measures with high diagnostic accuracy and ones that
offer insights into the mechanisms of neuropsychiatric disease. One of the difficulties is
represented by lacking gold standards for diagnostic procedures which are often based on
interviews and symptomatology. The data acquired in patient cohorts often comes from
heterogeneous neurorecording protocols and data analysis relies on feature extraction routines
that produce functional features which can be redundant and may lead to inaccurate results
[348]. For these reasons, FC metrics do not currently constitute major evaluation criteria for
neuropsychiatric disease.

Notwithstanding, abnormal spontaneous functional network dynamics have been observed
in Alzheimer’s disease, Parkinson’s disease, depression, schizophrenia, epilepsy, and drug
addiction[209–214].

Specific oscillations can offer insights into disease progression and underlying mech-
anisms. Sleep slow waves are disrupted in Alzheimer’s disease and may play a role in
impaired memory formation [150]. Slow waves are also impaired in children with attention-
deficit/hyperactivity disorder where they may play a role in synaptic plasticity [349].

Slow-wave activity is associated with the reduction of functional network segregation
levels measured by BPD. Measuring BPD might prove useful in quantifying the disruption
of these rhythms in preclinical trials because BPD can be used to assess functional network
properties across a wide spectrum of brain activity states.

Effective connectivity gives a superior readout of cortical information integration com-
pared to FC [14,18]. Effective connectivity can help diminish some of the bias inherent
in using correlations-based methods for brain function assessment [14,350]. Effective con-
nectivity can provide information about the directionality of signaling pathways and this
feature has been used for the purpose of studying DMN activity in Alzheimer’s disease [351]
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6 Conclusion and outlook

and multiple sclerosis [352].
The calculation of effective connectivity remains challenging and often depends on com-

plex computational routines [14,350]. Measurements of effective connectivity in humans
using perturbational approaches have proved useful in identifying the vigilance state in pa-
tients [300,301] and elucidating brain responses to stimulation during sleep [18].

A more direct strategy for measuring effective connectivity could provide insight into
the mechanisms behind neuropsychiatric diseases. An approach to measuring effective
connectivity with an all-optical method, using optogenetics was presented in this thesis. This
method allows control over the genetic identity of the neuronal populations stimulated (with
the use of ChrimsonR) and recorded (with the use of GCaMP6s). This level of control could
prove useful in elucidating cell-type-specific mechanisms responsible for brain disease.

For our method to be applied in mouse models of brain disease, it would be necessary to
express a fluorescent calcium indicator in cortical neurons. This could be feasibly achieved
with intravenous AAV injections [110] provided that the modification does not alter the
disease phenotype. Using GCaMP reporter mice, it has been shown that stroke affects
functional connectivity patterns over the long term [148]. Studies could be done using our
method for measuring effective connectivity in stroke models, potentially providing useful
insights into information integration poststroke and cortical remodeling.

6.2.3 Perspectives for neuroengineering
"Neural engineering leverages neuroscience and engineering methods to analyze neurological
function as well as to design solutions to problems associated with neurological limitations
and dysfunction" [353]. Acquiring information about brain activation and being able to
modulate the activity of neuronal systems are essential to neuroengineering.

In the course of this project, I have developed a microscope for monitoring calcium tran-
sients across the mouse cortex with the integrated capability of optogenetic brain stimulation.
In its current form, this device has the primary function of revealing the features of effective
connectivity. This system could form the basis of a closed-loop stimulation setup through the
addition of a computer that would analyze stimulation outcomes and compare them against
the desired activation pattern via a loss function. Hardware modifications would be needed
in order to implement this concept. So far, we have used a continuous laser for optogenetic
stimulation which is limited in its maximum output power. This setup is sufficient for point
stimulation but expanding the stimulation to broader areas of the cortex would be desirable
in a closed-loop system. Using a pulsed laser would allow us to achieve higher energies for
stimulation such that sufficient power could be distributed across the whole mouse brain. It
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would be desirable to stimulate multiple brain regions simultaneously and for this micromir-
ror devices could be used to generate spatial patterns of activation with arbitrarily complex
shapes.

Current closed-loop stimulation systems like those implemented in deep brain stimulation
have to deal with a relatively low amount of incoming data from a small number of electrodes.
This data can be analyzed online with existing signal processing tools. In the case of our
microscope, the same speed of processing would have to be ensured but with a much higher
data load consisting of imaging datasets. Potentially this could be achieved with fast neural-
network-based feature extraction that would have to be trained on large volumes of sample
data.

Apart from these hardware changes, a mouse model expressing both ChrimsonR and
GCaMP6s in neurons across the cortex would have to be developed, ensuring the con-
sistent expression of both proteins across multiple animals and across the whole cortex.
Alternatively, strong pan-cortical expression can be achieved by injecting AAV9 constructs
intravenously [110,112].

Following experimental strategies inspired by research in dynamical physical systems, the
activity of the cortex was perturbed with global (psychoactive chemicals) and local (sensory,
and optogenetic) interventions in order to infer underlying network mechanisms. In this
work, it was shown that it is possible to elicit simple transitions i.e. from off to on states, with
optogenetics during anesthesia and the resulting activations travel like slow waves across the
cortex. Slow waves are disrupted in Alzheimer’s disease [150,178,354] and autism [355].
Even simple interventions like restoring slow waves could prove beneficial for the treatment
of systems-level brain disease as demonstrated in mouse models of Alzheimer’s disease
[178,337].

Predicting interventions that force transitions from pathological to healthy brain states is
a long-term goal that will enable and accelerate the discovery of efficient treatment strategies
[11,356]. Achieving this goal will require interdisciplinary research by engineers, chemists,
materials scientists, synthetic biologists, data scientists, neuroscientists, and clinicians.
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