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Background: White matter hyperintensities (WMH), a biomarker of small

vessel disease, are often found in Alzheimer’s disease (AD) and their advanced

detection and quantification can be beneficial for research and clinical

applications. To investigate WMH in large-scale multicenter studies on

cognitive impairment and AD, appropriate automated WMH segmentation

algorithms are required. This study aimed to compare the performance

of segmentation tools and provide information on their application in

multicenter research.

Methods: We used a pseudo-randomly selected dataset (n = 50) from

the DZNE-multicenter observational Longitudinal Cognitive Impairment and

Dementia Study (DELCODE) that included 3D fluid-attenuated inversion

recovery (FLAIR) images from participants across the cognitive continuum.

Performances of top-rated algorithms for automated WMH segmentation

[Brain Intensity Abnormality Classification Algorithm (BIANCA), lesion

segmentation toolbox (LST), lesion growth algorithm (LGA), LST lesion

prediction algorithm (LPA), pgs, and sysu_media] were compared to manual

reference segmentation (RS).

Results: Across tools, segmentation performance was moderate for global

WMH volume and number of detected lesions. After retraining on a

DELCODE subset, the deep learning algorithm sysu_media showed the

highest performances with an average Dice’s coefficient of 0.702 (±0.109

SD) for volume and a mean F1-score of 0.642 (±0.109 SD) for the number

of lesions. The intra-class correlation was excellent for all algorithms (>0.9)

but BIANCA (0.835). Performance improved with high WMH burden and varied

across brain regions.

Conclusion: To conclude, the deep learning algorithm, when retrained,

performed well in the multicenter context. Nevertheless, the performance was

close to traditional methods. We provide methodological recommendations

for future studies using automated WMH segmentation to quantify and assess

WMH along the continuum of cognitive impairment and AD dementia.

KEYWORDS

white matter hyperintensities segmentation, evaluation, FLAIR, deep learning, aging,
Alzheimer’s disease

Frontiers in Psychiatry 02 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1010273
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-1010273 January 6, 2023 Time: 18:53 # 3

Gaubert et al. 10.3389/fpsyt.2022.1010273

Introduction

White matter hyperintensities (WMH) of presumed
vascular origin are defined as bright foci in cerebral white
matter (WM) on magnetic resonance imaging (MRI) T2-
weighted or fluid-attenuated inversion recovery (FLAIR)
images (1). WMH are found prominently in older adults and
in patients diagnosed with cerebral small vessel disease and
neurodegenerative diseases, such as Alzheimer’s disease (AD)
(1, 2). Generally associated with covert neurological, cognitive
and physical conditions (1), WMH appear to play an important
role in AD (3, 4). Manual segmentation is currently considered
the best method to quantify these abnormalities. However, this
procedure is a time-consuming task prone to errors (5).

To overcome these drawbacks, many tools have been
developed to automatically detect and segment WMH [see
Supplementary Information from Vanderbecq et al. for a recent
review (6)]. The algorithms applied by these tools include
Markov random fields (7), support vector machines (8) or
K-nearest neighbors (9). Recently, a new class of algorithms
has emerged based on deep neural networks, yielding top-
ranking results in the recent Medical Image Computing and
Computer Assisted Intervention (MICCAI) challenge on WMH
segmentation (10). Nevertheless, the choice of a relevant method
for WMH detection is difficult with a variety of available tools
and evaluation criteria. Moreover, most of the original studies
tested the methods on images acquired from a single MRI
scanner, such that robustness and reliability still need to be
proven for multicenter data.

Regular challenges, as provided by the MICCAI society,
constitute an excellent competition for state-of-the-art
segmentation techniques on well-documented datasets. For
example, the last MICCAI challenge on WMH segmentation
(10) used a manually segmented dataset in a multicenter
context. Unfortunately, the WMH segmentation tools most
frequently used in research studies are often neglected in the
MICCAI challenge, thus limiting our understanding of the
evolution and performance of new tools compared to already
published ones. Recent studies compared multiple automatic
WMH segmentation tools using multicenter databases (6, 11,
12). With a rigorous methodology, Heinen et al. (11) showed
best performances for k-nearest neighbor classification with
tissue type priors (kNN-TMP) (13) and, to a lesser extent,
for lesion growth algorithm (LGA) (7) and lesion prediction
algorithm (LPA) (14), both included in lesion segmentation
toolbox (LST). Vanderbecq et al. (6) showed that a new
algorithm using deep learning performed well on a research
dataset, especially when retrained, and that more traditional
algorithms worked best on a clinical dataset. Finally, Khademi
et al. (12) observed better performances for new algorithms
compared to partial volume average modeling or LST LPA
algorithms. In general, it thus appears that algorithms using
deep learning methods may outperform more traditional

tools. Notably though, existing studies have often used the
default parameters for all tools, which can obscure the real
potential of the segmentation methods (6, 11). Moreover, the
description of the manual WMH segmentation is often scarce,
without reference to guidelines, thus impeding accessibility and
reproducibility of findings (15).

The objective of the present study was to provide evidence
on broadly applicable tools to automatically segment WMH in
a multicenter context on cognitive impairment and dementia.
To this end, we relied on 50 manual reference WMH
segmentations of FLAIR images from the German multicenter
observational DZNE-Longitudinal Cognitive Impairment and
Dementia Study [DELCODE (16)]. We assessed and compared
five automated segmentation tools: three are extensively used
in the literature, namely the Brain Intensity Abnormality
Classification Algorithm (BIANCA) (9), LST LGA (7) and
LST LPA (14), while the two others are based on neural
networks, namely pgs (17) and sysu_media (18). The latter
are the two highest ranked tools in the MICCAI challenge on
WMH segmentations at the time of this study. Moreover, to
compare the impact of training on segmentation performance,
sysu_media was assessed with two training configurations:
the default, originating from MICCAI challenge and a tuned
model obtained from retraining the neural network parameters
using an independent subset comprising 20 manual reference
segmentations (RS) based on the DELCODE study. Evaluation
of performances of the WMH segmentation algorithms was
based on objective measures related to the three measures
of interest to describe WMH according to the standards for
reporting vascular changes in neuroimaging (STRIVE): volume,
number of lesions and their location (1).

Materials and methods

Study sample

Fifty older adults (≥60 years) were pseudo-randomly
selected from the cohort of the German multicenter longitudinal
observational DELCODE study. The detailed protocol of this
study is described in a previous report (16). DELCODE was
registered at the German Clinical Trials Register DRKS00007966
(2015/05/04) and approved by the local ethics committees of
all participating institutions in accordance with the Declaration
of Helsinki. The DELCODE study was approved under a
harmonized vote, in which the approval process is coordinated
by the ethical committee of the medical faculty of the
University of Bonn (Ethik-Kommission der Medizinische
Fakultät, Rheinische Friedrich-Wilhelms-Universität, Bonn,
Germany; Registration number: 117/13) in charge. Any change
of the protocol and the consents have to be approved by
all ethic committees. The participants were selected from
different diagnostic groups across the cognitive continuum of
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TABLE 1 Demographic characteristics of the selected DELCODE
dataset used in this study.

Sample characteristics N = 50

Age 71.16 (5.80) [61.13 80.90]

Sex

Female 29 (58%)

Male 21 (42%)

Years of education 13.60 (3.14) [8 20]

Group

HC 12 (24%)

SCD 13 (26%)

MCI 13 (26%)

AD 12 (24%)

Mean (SD) [range] for numerical variables. Frequency (%) for categorical variables. HC,
healthy control; SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD,
Alzheimer’s Disease; SD, standard deviation.

Alzheimer’s disease meeting the diagnostic criteria for cognitive
healthy (HC), subjective cognitive decline (SCD), mild cognitive
impartment (MCI) or AD dementia. Demographic information
is summarized inTable 1. Briefly, the average age was 71.16 years
[range: (61.13–80.9)], the male/female ratio was 21/29, the
average years of education was 13.6 [range: (8–20)] and the
number of HC, SCD, MCI, and AD participants were 12, 13,
13, and 12, respectively. For this study, participants from each
diagnostic group were matched by age, sex, level of education,
and assessment site. All participants received detailed study
instructions and gave written informed consent prior to study
participation.

Since two segmentation tools required a training dataset
(BIANCA and sysu_media), the dataset of 50 participants were
split into two subsets: 20 subjects were randomly selected as
training subset, while the other 30 subjects were used for the
performance evaluation of the tools solely. For both subsets, the
numbers of subjects from each site were equally distributed.

MRI acquisition

All participants underwent an MRI acquisition on a 3
Tesla Siemens Healthineers scanner (Erlangen, Germany) in
one of the 10 recruitment sites associated to the DELCODE
study. Scanners comprised 3 Magnetom Trio TIM systems, 2
Magnetom Verio systems, 1 Magnetom Prisma system, and 4
Magnetom Skyra systems. As described previously, the MRI
protocols were standardized across all sites (16). The acquisition
protocol included a T1-weighted (T1w) 3D magnetization
prepared rapid gradient echo imaging (MPRAGE) and a 3D
FLAIR scans. For the 3D T1w sequence, the acquisition
parameters were the following: repetition time (TR) = 2.5 s, echo
time (TE) = 4.33 ms, flip angle = 7◦, resolution = 1× 1× 1 mm3,

matrix = 256 × 256, 192 slices. For the 3D FLAIR sequence, the
acquisition parameters were as follows: TR = 5 s, TE = 394 ms,
inversion time = 1.8 s, resolution = 1 × 1 × 1 mm3,
matrix = 256× 256, 192 slices.

Reference segmentation procedure

Manual segmentations were performed on FLAIR images
of the 50 participants (thereafter named RS) by one trained
rater (I.Z.) after a phase of iterative pre-training on a set of
pre-selected images under the supervision of methodological
and/or clinical experts (M.W., C.L., and A.G.-C.) following
existing neuroimaging standards (1). The rater was blinded
to the diagnosis status of participants and study site. The
segmentation was performed using ITK-SNAP version 3.6.01

(19) on raw FLAIR and T1w images. The step-by-step manual
WMH segmentation protocol was carefully documented to
ensure reproducibility and is available from the corresponding
authors on reasonable request. Briefly, after checking the quality
of the FLAIR and T1w images, the image contrast was adjusted
based on one clearly visible WMH. Then, paintbrush mode (or
polygon mode for larger clusters) was used to manually delineate
each voxel corresponding to WMH. For large WMH areas, the
“Active contour segmentation” mode was used to automatically
delineate the contours of the lesion before manually checking
carefully the contours of the lesions in all slices. Of note,
lesions were checked in all orientations (axial, sagittal, and
coronal). In accordance to STRIVE (1), the following general
rules were applied: WM regions were segmented only, using
additionally the T1w scans for more precision on cerebral
compartments when needed; cerebrum was segmented only,
excluding brainstem, cerebellum and non-brain tissues such as
meninges; choroid plexus was excluded as well; interventricular
lesions were segmented only on the level of the corpus callosum,
but not in the septum.

Automated WMH segmentation
methods

Five freely available algorithms have been used to
automatically segment WMH on either individual FLAIR
or both T1w and FLAIR images. Three algorithms mostly
used in the literature were tested: BIANCA (9), part of FMRIB
software library (FSL) toolbox, and LGA (7) and LPA (14), both
part of LST, an extension for Statistical Parametric Mapping
(SPM).2 The two other tools were the best rated algorithms of
the 2017 MICCAI challenge on WMH segmentation challenge

1 itksnap.org

2 https://www.fil.ion.ucl.ac.uk/spm/
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at the date of today3: pgs algorithm which used UNet with
highlighted foreground (17) and sysu_media algorithm based
on two-channel U-Net (18).

The BIANCA algorithm is directly implemented in FSL
version 6.0.4. The input of BIANCA was a FLAIR image only.
Brains were extracted and a light bias correction was applied by
using FSL BET (20) (with option –f .2 and –B). For the LST, we
used the version 2.0.15 with SPM12 release 7,487 running on
Matlab R2018a (MathWorks, Natick, USA). LST LGA requires a
T1w and FLAIR images, the latter being automatically registered
to the corresponding T1w image by LST. LST LPA supports two
modalities and both variations were tested: either FLAIR only,
or T1w and FLAIR images as inputs. Again, for the latter, a
registration from FLAIR space to T1w space is automatically
performed by the toolbox. No other preprocessing was included
for LST LGA or LPA. pgs and sysu_media toolboxes can be
found online on Docker Hub under the name wmhchallenge/pgs
and wmhchallenge/sysu_media, respectively. For pgs algorithm,
a T1w and a FLAIR images are required. Thus, a registration
with individual FLAIR images as reference and T1w images
as image to move were performed using SPM “Estimate and
Reslice” module with default parameters prior to the use of pgs
algorithm. No other preprocessing was included. The model
weights used for pgs were the same as used during the MICCAI
challenge [see Kuijf et al. (10) for more details]. For sysu_media,
only FLAIR image were mandatory as an input. sysu_media
also required a training dataset. The algorithm was thus tested
with two variations: either with the default training dataset from
MICCAI challenge as for pgs, or with the training subset based
on DELCODE data (see above). For the first one, no additional
preprocessing was performed. To retrain the sysu_media UNet,
all brain images from both DELCODE training and test subsets
have been brain-extracted and lightly bias corrected using FSL
BET (20) (option –f .2 and –B) and, then noise corrected using
the spatial adaptive non-local means filtering (21) implemented
in the Computational Anatomy Toolbox (CAT12.6, version
1450).4 For the training process, the same pre- and post-
processing and ensemble model as in the original paper was
used, but no data augmentation. The same UNet is trained
shuffling the training data at the beginning of every epoch. Each
of the three ensemble models is saved after 100 epochs or for loss
value < 0.30. By loss-function > 0.99, the training of the model
is restarted. Other hyperparameters were a batch size of 30 and
a learning rate of 0.0002. An implementation of the sysu_media
algorithm based on the Python framework Nipype (22) was
developed for the analysis with the DELCODE-retrained UNet.
This version is available together with the DELCODE weights as
an open-source package on GitHub (23).5

3 https://wmh.isi.uu.nl/results/

4 http://www.neuro.uni-jena.de/cat/

5 https://github.com/0rC0/WMHpypes

A summary of the variations and final parameters used for
all algorithms can be found inTable 2. Moreover, the evaluations
of the best parameter sets are displayed in Supplementary
material.

Determination of parameters

Two types of parameters were evaluated to improve WMH
segmentation in the DELCODE training subset. The default
options available for each tool represented the first type of tuned
parameters (hyperparameters). For BIANCA, as described in
the online user guide, a WM mask was used to remove non-
WM voxels from the segmentation results. The individual
WM masks were computed using T1w images and registered
to FLAIR space using FSL Flirt with 12 degrees of freedom.
The output of the affine registration was a tissue probability
map with decimal values ranging from 0 (background) to
1 (WM). The thresholding of these maps was thus tested
with values ranging from 0.05 to 0.80 with a step of 0.05.
For LST LGA, a threshold for the initial lesion map is
required (named kappa). Following the recommendations of the
software guideline, we tested values ranging from 0.10 to 0.80
with a step of 0.05.

The second set of parameters tested is related to
thresholding the WMH probability map output of the tools. We
thus tested values ranging from 0 to 0.95 with a step of 0.05 on
each iteration. The final best parameter sets for each tool are
reported in Table 2.

Of note, all the output maps from most tools as well as
the manual segmentation were in FLAIR space. For the LST
LGA and LST LPA with T1w + FLAIR input, the output
probability maps were projected back from T1w space to FLAIR
space prior to WMH thresholding using the SPM module
“Estimate and Reslice” with default parameters except for the
interpolation set to trilinear. Finally, clusters with less than 10
contiguous voxels (3D-connectivity of 26 voxels) were removed
from all binary maps.

Performance measures and statistical
analysis

After computing the final binary masks of WMH in the
DELCODE test subset, the performance of each algorithm was
evaluated using different metrics. For volume-based measures,
the Sørensen-Dice similarity coefficient (DSC), sensitivity and
precision was calculated. With RSvol the volume of WMH
load in the RS, ASvol the volume of WMH load of the tested
automatic segmentation (AS), and TPvol the volume of the
intersection between RSvol and ASvol (also called true positives
or hits), the following formulas were applied:
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– Sørensen- DSC:

2× TPvol
RSvol + ASvol

– Sensitivity:
TPvol
RSvol

– Precision:
TPvol
ASvol

In accordance to these measures, a high sensitivity
associated to a lower precision reflects an over-segmentation,
while a high precision associated to a lower sensitivity reflects
an under-segmentation. The DSC is a summary of these two
indexes into a global similarity descriptor. The range of all
these indices is comprised between 0 for poor performance (no
overlap between RS and AS) and 1 for excellent performance
(complete overlap of RS and AS).

The ICC between RSvol and ASvol was also calculated
based on two-way random effects, absolute agreement, single
rater or ICC (2, 1) as defined in Shrout and Fleiss (24) and
Koo and Li (25). All these indexes were computed in the
whole brain. Since the location of the WMH lesions is also a
measure of interest for WMH, DSC, sensitivity and precision
were also computed in 6 regions of interest (ROI), namely the
frontal, insular, occipital, parietal and temporal cortices and the
corpus callosum based on Hammersmith atlas (26). A complete
description of these regions can be found in the Supplementary
material.

Besides lesion location and volume, another measure of
interest accordingly to STRIVE (1) is the number of WM lesions
in the brain. Thus, an algorithm inspired by Commowick et al.
(5) was developed to compute the number of lesions correctly
detected (TPlesion): a true detection in AS was found if any lesion

in AS was overlapping the lesion in RS in at least 10% of the
number of voxels of the lesion in RS and if this overlap was
covering a maximum of 70% of the voxels of the lesion in AS.
As for the volume-based performance evaluation, three indices
were computed:

– Lesion F1-score (DSC-like score):

2× TPlesion
RSlesion + ASlesion

– Lesion sensitivity:

TPlesion
RSlesion

– Lesion precision:

TPlesion
ASlesion

where RSlesion and ASlesion are the numbers of lesions found in
the reference and AS, respectively.

Finally, to compare the impact of high WMH burden
vs. low WMH burden on the accuracy of segmentation,
the test subset was split into two equally large subgroups
based on global WMH volumes in the RS. A first subgroup
of low WMH load included the 10 subjects with the
lower global WMH load [mean of 1.65 mL, 0.86 SD,
range (0.63–3.30)]. And a second subgroup of high WMH
load included the 10 subjects with more extensive global
WMH load [mean of 20.22 mL, 14.09 SD, range (8.70–
52.68)].

All measures (DSC, sensitivity, precision, and ICC) were
categorized into excellent for values above 0.90, good for values
between 0.75 and 0.90, moderate for values between 0.50 and
0.75 and poor for values < 0.50 following the classification for
ICC proposed by Koo and Li (25).

TABLE 2 Description of the tools used and their main parameters.

Name Modalities used Commentaries Hyper-parameters PM threshold

BIANCA FLAIR Preprocessing included except for
WM mask computing

Lesion/non-lesion points: 2.000/10.000; WM
mask threshold: 0.30

0.60

LST LGA T1w, FLAIR Preprocessing included κ = 0.10 0.35

LST LPA FLAIR Preprocessing included None 0.10

LST LPA T1w, FLAIR Preprocessing included None 0.15

pgs T1w, FLAIR Training dataset from MICCAI
challenge coregistration T1w to
FLAIR

None 0.15

sysu_media (default) FLAIR Training dataset from MICCAI
challenge

None 0.65

sysu_media (retrained) FLAIR Preprocessing: brain extraction,
SANLM training dataset with 20
participants from DELCODE

None 0.45

PM, probability map; WM, white matter; T1w, T1-weighted image; FLAIR, fluid-attenuated inversion recovery image; SANLM, spatially adaptive non-local means noise correction;
MICCAI, the medical image computing and computer assisted intervention; LST LGA/-LPA, lesion segmentation toolbox for SPM using lesion growth algorithm/lesion prediction
algorithms; BIANCA, brain intensity abnormality classification algorithm.
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Results

Volume-based results

An overview of the results is provided in Table 3 and
illustrated in Figure 1. The average similarity coefficient (DSC)
was moderate for all segmentation tools with values ranging
from 0.602 (± 0.169 SD) for LST LGA to 0.702 (± 0.109) for
sysu_media retrained on the DELCODE subset. The sensitivity
was moderate with LST LPA performing the best with 0.714
(± 0.190) followed by sysu_media retrained on the DELCODE
subset, while LST LGA had the lowest performance with 0.562
(± 0.200). The precision was moderate to good with the best
performances for pgs with 0.768 (± 0.151) closely followed
by sysu_media retrained on the DELCODE subset with 0.741
(± 0.190) and BIANCA with 0.731 (± 0.179) with the lowest
performance measured for sysu_media trained on the MICCAI
dataset with 0.665 (± 0.202). Of note, for all these metrics, the
variability was consistently the lowest for sysu_media retrained
on the DELCODE subset. The resemblance between the RS
and each AS characterized by the ICC was good for BIANCA
(mean ICC: 0.835) and excellent for all other methods (all mean
values > 0.9).

Number of lesions

The average global score (F1-score) was moderate with
best performances for sysu_media retrained on the DELCODE
subset with a mean F1-score of 0.642 (± 0.109 SD) closely
followed by pgs with 0.635 (± 0.162) and the lowest
performance for LST LGA with 0.466 (± 0.113). The average
sensitivity to detect lesions of all methods was poor to moderate,
with value ranging from 0.372 (± 0.112) for LST LGA to
0.631 (± 0.187) for sysu_media trained on the MICCAI dataset,
closely followed by pgs with 0.624 (± 0.182). The average
precision was generally good or moderate for all methods with
best performance for sysu_media trained on the DELCODE
subset with 0.761 (± 0.145) closely followed by LST LPA with
FLAIR only and 0.753 (± 0.198) and the lowest performance
measured for sysu_media trained on the MICCAI dataset
with 0.536 (± 0.165). Again, the variability of all metrics
was the lowest for sysu_media retrained on the DELCODE
subset, but for sensitivity for which LST LGA had the lowest
value. All results presented in this section are displayed in
Table 3.

Performances in ROIs

When looking at the average DSC, sensitivity and precision
in the 6 ROIs, we observed that performances of LST LGA,
LST LPA and sysu_media retrained on the DELCODE subset
were generally better in the corpus callosum compared to the

same measures in the other ROIs or at the whole brain level.
Specifically, these measures reached above or close to 0.8 for LST
LPA with FLAIR and sysu_media retrained on the DELCODE
subset. Inversely, these algorithms had the poorest performances
in the insular cortex and to a lesser extent in the parietal and
temporal cortices compared to the same measures at the whole
brain level or in the other ROIs, especially for LST LGA having
a DSC and sensitivity below or around 0.5 in these regions.
BIANCA had performances similar to the whole brain measures
in all ROIs (performances above 0.65), except for the insular
and temporal cortices. The sysu_media trained on the MICCAI
dataset and pgs had poorest global performances in the corpus
callosum compared to the same measures in the other ROIs
or at the whole brain level, with sensitivity and DSC values
below 0.5, but good precision. Inversely, these algorithms had
best performances in the insular cortex with all measures above
0.65. All results presented in this section are summarized in
Supplementary material.

High vs. low global WMH burden

At volume level, the average DSC, sensitivities and
precisions were generally higher in the high WMH load group
than in the low WMH load group for all methods, with a
difference of at least 0.1 reaching more than 0.3 for all indices
in sysu_media trained on the MICCAI dataset. When looking at
the level of lesions, the observations were more heterogeneous.
Except for pgs and sysu_media trained on the MICCAI dataset,
where we observed a notable increase in DSC, sensitivity and
precision in the high WMH load group compared to the
low WMH load group, all other algorithms showed either
similar results between the two subgroups or a decrease of
all performance metrics in the high WMH load group vs. the
low WMH load group. All results presented in this section are
displayed in Table 4.

Discussion

The objective of the present study was to give an overview of
the performances of automatic WMH segmentation tools in the
memory clinic context, notably by comparing more traditional
tools and new deep learning algorithms in a multicenter sample
of cognitive impairment and dementia [DELCODE study (16)].
Our results showed that the new class of algorithms based on
a deep learning approach (pgs, sysu_media) performed only
marginally better or in the same range as some of the more
established tools (LST LPA, FSL BIANCA). Best performances
and lowest variability were generally achieved for sysu_media,
retrained on the DELCODE subset, compared to other tools
considered in this evaluation. Even if the overall performances
were quite moderate (best DSC is around 0.7), all methods
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TABLE 3 Performances of all algorithms compared to the reference segmentation at volume- and lesion- level.

Whole brain volumes Lesions

Method Global WMH
volume (ml)

DSC Sensitivity Precision ICC Number F1-score Sensitivity Precision

Reference 8.9± 11.4 NA NA NA NA 45.2± 31.6 NA NA NA

BIANCA 6.9± 6.7 0.691± 0.124 0.687± 0.144 0.731± 0.179 0.835 38.8± 21.4 0.578± 0.119 0.573± 0.133 0.619± 0.166

LST LGA 7.4± 9.6 0.602± 0.169 0.562± 0.200 0.690± 0.129 0.943 24.5± 15.9 0.466± 0.113 0.372± 0.112 0.671± 0.164

LST LPA FLAIR only 9.5± 11.7 0.683± 0.114 0.714± 0.190 0.709± 0.150 0.925 32.4± 22.2 0.543± 0.143 0.490± 0.163 0.681± 0.199

LST LPA
T1w + FLAIR

9.0± 11.1 0.632± 0.138 0.642± 0.222 0.696± 0.127 0.907 27.1± 19.5 0.536± 0.167 0.450± 0.181 0.753± 0.198

pgs 7.3± 9.6 0.651± 0.192 0.594± 0.214 0.768± 0.151 0.959 42.5± 30.4 0.635± 0.162 0.624± 0.182 0.669± 0.166

sysu media (default) 8.2± 10.5 0.626± 0.193 0.610± 0.210 0.665± 0.202 0.981 50.7± 28.3 0.569± 0.151 0.631± 0.187 0.536± 0.165

sysu media (retrained) 7.7± 8.1 0.702± 0.109 0.695± 0.160 0.741± 0.109 0.914 34.4± 25.0 0.642± 0.109 0.576± 0.136 0.761± 0.145

Average and standard deviation are displayed. mL, milliliter; DSC, Sørensen-Dice similarity coefficient; ICC, intra-class correlation; T1w, T1-weighted image; FLAIR, fluid-attenuated
inversion recovery image; LST LGA/-LPA, lesion segmentation toolbox for SPM using lesion growth algorithm/lesion prediction algorithm; BIANCA, brain intensity abnormality
classification algorithm; NA, not applicable. Best performance for each evaluation measaures are displayed in bold.

showed an excellent volume consistency compared with the
RS. After discussing advantages and challenges of the evaluated
tools, we provide recommendations for future studies including
automated WMH detection in a multicenter context.

A comparison with the past literature on the evaluation
of automatic WMH segmentation tools is complex due to
multiple factors, including differences in algorithms being
evaluated, disparate data (in terms of quantity and quality)
used for evaluation, parameters of the tools tuned or not,
and heterogeneous evaluation measures being reported (27). In
this study, we thus computed performance measures already
implemented in previous studies (6, 11, 12) to enhance
comparison across studies and to get simple but efficient
performance indices widely used in clinical and research
practice. Thus, it is to note first that the initial performance
estimations of tools are often evaluated in a single center,
with tuned parameters leading to better performances, and
thus cannot be generalized to other datasets. For example,
the high performances reported in the original paper of LST
LGA (7) were not replicated in a series of comparative studies
(6, 11). Of note, LST LGA was developed in the context of
multiple sclerosis, not for WMH of presumed vascular origin.
Even if WMH are visually similar, underlying pathologies are
not the same and anatomical location may differ, especially
for small lesions.

In general, our results are consistent with previous studies
using similar approaches. Indeed, Heinen et al. (11) observed
best performances for kNN-TMP and to a lesser extent for
LST LPA (with FLAIR only) over other methods such as LST
LGA. Unfortunately, no algorithm using deep learning was
evaluated in this paper. Another previous study (6) compared
traditional and deep learning algorithms and obtained best
performances for the deep learning methods [NicMSlesion (28)]
and the LST LPA, depending on the dataset that was assessed

(resp. research or clinical setting). Interestingly, for the deep
learning algorithm, the authors observed significantly better
performances when retraining was performed using a subset
of the evaluated dataset, compared with the default training
dataset. We observed the same with our evaluation. This
observation is not surprising, but it highlights the importance
of the retraining approach (even with a small sample, 20 images
here) on study datasets to achieve optimized segmentation
results for deep learning algorithms. Moreover, Vanderbecq
et al. (6) showed that with the deep learning tool, the variability
in the WMH segmentations among participants could be large
(for the research dataset) or narrow (for the clinical dataset). In
our comparison, the variability of our performance measures
was the smallest for sysu_media, retrained on the DELCODE
subset. This observation highlights the capacity of deep learning
algorithms to provide more consistent results. This narrow
variability is especially important for multicenter cohorts, where
acquisition and reconstruction parameters may vary between
centers, notably in terms of scanner manufacturer, field strength,
signal-to-noise ratio, sequences parameters or even pathology
levels. However, more studies are needed to increase our
knowledge about the effect of these parameters on the accuracy
of automated WMH segmentations.

In addition, segmentation performances were evaluated
using the total number of lesions and their location. These
two measures of interest as derived from the STRIVE criteria
(Table 3) (1) often not reported in comparisons of automated
WMH segmentation tools. Here, we used a more refined
method for the detection of lesions present in the manual
RS (5), to go beyond mere counting of the number of
lesions (29). As expected from our results for global WMH
volumes, the performances across the different tools for the
detection of the total number of lesions were moderate. Overall,
sysu_media retrained on the DELCODE subset performed the
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FIGURE 1

Distribution of performances of all algorithms with DSC (top), sensitivity (middle), and precision (bottom) at volume level. The median, the
25–75 percentiles and all individual values are represented. DSC, Sørensen-Dice similarity coefficient; T1w, T1-weighted image; FLAIR,
fluid-attenuated inversion recovery image; BIANCA, brain intensity abnormality classification algorithm; LST LGA/-LPA, lesion segmentation
toolbox for SPM using lesion growth algorithm/lesion prediction algorithms.
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TABLE 4 Performances of all algorithms in the subgroups based on WMH load (10 subjects with lowest vs. 10 subjects with highest) compared to
the reference segmentation at volume- and lesion- level.

Method Subgroup Whole brain volumes Lesions

DSC Sensitivity Precision F1-score Sensitivity Precision

BIANCA Low 0.582± 0.123 0.668± 0.170 0.532± 0.126 0.522± 0.137 0.590± 0.166 0.493± 0.157

High 0.752± 0.096 0.668± 0.157 0.894± 0.060 0.593± 0.103 0.575± 0.125 0.642± 0.132

LST LGA Low 0.444± 0.192 0.416± 0.249 0.563± 0.098 0.482± 0.120 0.379± 0.120 0.691± 0.134

High 0.690± 0.089 0.637± 0.146 0.785± 0.097 0.415± 0.105 0.348± 0.115 0.585± 0.195

LST LPA FLAIR only Low 0.610± 0.111 0.631± 0.234 0.674± 0.148 0.569± 0.144 0.528± 0.205 0.703± 0.206

High 0.708± 0.125 0.763± 0.183 0.716± 0.183 0.469± 0.143 0.454± 0.145 0.563± 0.216

LST LPA T1w + FLAIR Low 0.524± 0.154 0.518± 0.267 0.660± 0.112 0.590± 0.184 0.500± 0.237 0.839± 0.137

High 0.680± 0.116 0.721± 0.207 0.705± 0.157 0.454± 0.162 0.408± 0.146 0.582± 0.218

pgs Low 0.482± 0.202 0.432± 0.211 0.615± 0.158 0.502± 0.144 0.501± 0.203 0.557± 0.169

High 0.773± 0.133 0.717± 0.180 0.883± 0.059 0.713± 0.159 0.680± 0.155 0.751± 0.166

sysu_media (default) Low 0.442± 0.202 0.438± 0.210 0.457± 0.199 0.439± 0.150 0.537± 0.274 0.395± 0.143

High 0.766± 0.107 0.743± 0.164 0.826± 0.075 0.633± 0.119 0.654± 0.128 0.623± 0.133

sysu_media (retrained) Low 0.608± 0.120 0.623± 0.212 0.648± 0.085 0.635± 0.125 0.573± 0.194 0.759± 0.103

High 0.753± 0.081 0.712± 0.147 0.829± 0.090 0.637± 0.099 0.591± 0.111 0.727± 0.165

Mean and standard deviation are displayed. DSC, Sørensen-Dice similarity coefficient; T1w, T1-weighted image; FLAIR, fluid-attenuated inversion recovery image; BIANCA, brain
intensity abnormality classification algorithm; LST LGA/-LPA, lesion segmentation toolbox for SPM using lesion growth algorithm/lesion prediction algorithms.

best, closely followed by pgs. In both cases, a high precision
was coupled with lower sensitivity, a behavior that was found
for all algorithms but sysu_media (trained on the MICCAI
dataset). This pattern reflects the capacity of these algorithms
to detect fewer lesions than expected, resulting in an under-
estimation of the lesions. Overall, both precision and sensitivity
have to be evaluated in line with all parameters to have
an impression of the overall performance of each algorithm.
Second, we also found that the location of the lesion is
important, especially because of the underlying nature of the
tissue. For example, a study reported different magnetization
transfer ratio in frontal than in occipital WMH, which may
reflect either a different stage of tissue damage or possibly
different underlying tissue damage (30). Our results essentially
demonstrate that all parts of the brain are not segmented with
the same quality and the performances varied with the tools
used. These results highlight that it seems to be difficult for
most of the tools to segment all regions with a consistent
high accuracy. This issue may be related to the presence of
image distortions due to bias fields inherent to MR imaging,
since most of the WMH segmentation tools rely on voxel
intensity.

Furthermore, we studied the impact of high vs. low WMH
burden on the quality of automated WMH segmentations, by
splitting our test subset (n = 30) post hoc into two subgroups.
Our results confirm previous observations reporting better
performances for the higher compared to lower WMH load
for all tools (6, 11, 12) at the global volume level. This result
is most probably positively biased by performance measures,

which give more weight to large compared to small lesions.
Interestingly, similar to an earlier study (12), we observed
an improvement with the deep learning tool sysu_media
(retrained on the DELCODE subset) for the detection of small
lesions, while the results are more disparate for the other
tools. These good performances for the retrained sysu_media
for lesions of different sizes may be due to the fact that
deep learning methods are capable of incorporating a high
degree of feature combinations, such as the location or
shape of the lesions than voxel intensities solely as for non-
deep learning.

Finally, we want to provide recommendations for future
studies on WMH and their segmentation by automatic tools.
First, studies should include a clear definition of WMH.
Accordingly to Frey et al. (15), only 18% of articles on
WMH reported an explicit definition. The situation is getting
slightly better since the introduction of the consensus criteria
from STRIVE (1). The lack of clear reference leads to
a real difficulty in understanding the processes underlying
WMH and makes it almost impossible to reproduce previous
results. Second, the image quality and data preprocessing
procedures are central points to get accurate measures of
WMH. It is true for mono-centric studies, but even more for
multicenter studies since different MR systems and sequence
parameters are commonly used. A standardized or at least
harmonized protocol should thus be implemented in any multi-
center study to minimize the variability of image quality.
After image acquisition, some preprocessing may be applied
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to optimize subsequent WMH segmentation. However, pre-
processing might also introduce negative effects that one
needs to be aware of, such as fading away of the border of
the lesions due to too strong bias correction [see Figure 10
of Wardlaw et al. (31) for a compelling example]. Our
results also suggested better segmentation results for LST
LPA with FLAIR only as input compared to the same
algorithm with T1w + FLAIR images, potentially suggesting
a loss of information through registration due to repeated
interpolation and/or rounding of image intensity values. Third,
other methodological considerations may help to increase the
accuracy of automated segmentations. One interesting point
to consider could be the addition of an individual WM mask,
which could improve the segmentation by masking out non-
WM areas. This mask should be checked carefully, since
traditional brain compartment segmentation tools may consider
WMH as belonging to the nearly similar voxel intensity of GM
and thus exclude them from a WM mask (32). However, recently
some efforts were made by the developers of neuroimaging
software to classify WMH into a distinct tissue class, for
instance, for FreeSurfer (33).

Overall, our results suggest that the choice of the automated
WMH segmentation tool is important, including the advantages
and drawbacks of each specific tool for the desired context. As
we have shown in our study, some tools may provide more
reliable results for specific brain regions or may be able to
better detect small lesions, while others may not. When applying
such tools, we further recommend to explicitly state the specific
name and version used, since the field of WMH segmentation
is in constant evolution and so are the related tools. The
initial parameters of the tools (such as the kappa threshold
for LST LGA) but also the threshold of the output probability
maps should also be tuned according to the studied dataset.
Indeed, default values of tools should be adapted to better fit
own specifications that may vary from the original publication.
Finally, the model parameters should be optimized by retraining
when using deep learning algorithms to improve the WMH
segmentation results as shown above.

A few limitations to our study need to be reported. First,
we used only one trained rater for the RS. Some studies have
shown that the inter-rater reliability may be low for WMH
detection (34). However, this problem was mostly found in
studies published before the consensus definitions of WMH
as described by the STRIVE criteria (1). Indeed, more recent
studies tend to have a reduced variability between and/or
within raters [inter/intra-rater ICC > 0.97 (6, 11)]. This
led us to the decision that one trained rater with quality
assurance using a step-by-step manual segmentation protocol
and continuous monitoring by experts would be sufficient
in our study. Second, we acknowledge that the number of
participants in our dataset may be low. The limitation here
was notably due to the time required to segment each FLAIR
image manually, which was more than 8 h for those participants

with heavy WMH burden. We thus wanted to focus more
on a qualitative dataset, extremely carefully segmented and
documented, than on a quantitative dataset realized quickly at
the expense of good quality. At the end, using only 2 participants
per DELCODE center for the training subset, we show that the
deep learning method sysu_media performed best and with the
lowest variability for most of the measures. Hence, the size of
a given training dataset may not be such an issue compared to
the importance of giving the algorithm a chance to adapt to the
properties of the sample and desired segmentation performance.
Nevertheless, the quality of segmentation per scanner could
not be evaluated with such small groups. Furthermore, all
images were solely acquired on Siemens scanners using a
harmonized protocol. Thus, we acknowledge that our results
may not be replicable with other machines and differing
protocols between images. Of note, a previous study showed that
performances of LST-LGA and Bianca (and LST-LPA to a lesser
extent) algorithms were particularly robust to different scanners
(6). We also decided not to apply final masking to exclude
regions excluded in the manual segmentation (see “Reference
segmentation procedure” section). We acknowledge that this
decision might unfairly bias the results in favor of methods
with a retrained dataset. Finally, the choice of measures for
the evaluation of performances is always a matter of debate.
Some efforts have been made to propose guidelines with metrics
suitable for the evaluation of segmentation (35). But in practice,
it is always difficult to use multiple results in a single paper
without overwhelming readers with too much information,
especially when the evaluation is not only globally, but at
multiple levels, as in our study. We thus favored to use simple
reliable metrics also used in many other comparative studies
and applied these metrics not only at the whole brain voxel
level, but also in relation to the total number of WMH lesions
and their location.

To summarize, we showed that deep learning algorithms,
especially when retrained, performed the best in the present
multicenter context of cognitive impairment and AD
dementia. Nevertheless, their performances remain close
to traditional methods.
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