
ORIGINAL RESEARCH
published: 02 May 2022

doi: 10.3389/fnbot.2022.883562

Frontiers in Neurorobotics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 883562

Edited by:

Hang Su,

Fondazione Politecnico di Milano, Italy

Reviewed by:

Bo Lu,

Soochow University, China

Dandan Zhang,

Imperial College London, United

Kingdom

Chenming Wu,

Tencent Holdings Limited, China

*Correspondence:

Mingchuan Zhou

mczhou@zju.edu.cn

Received: 25 February 2022

Accepted: 28 March 2022

Published: 02 May 2022

Citation:

Chen L, Jiang Z, Cheng L, Knoll AC

and Zhou M (2022) Deep

Reinforcement Learning Based

Trajectory Planning Under Uncertain

Constraints.

Front. Neurorobot. 16:883562.

doi: 10.3389/fnbot.2022.883562

Deep Reinforcement Learning Based
Trajectory Planning Under Uncertain
Constraints
Lienhung Chen 1, Zhongliang Jiang 1, Long Cheng 2, Alois C. Knoll 1 and Mingchuan Zhou 1,3*

1Department of Computer Science, Technische Universität München, Munich, Germany, 2College of Computer Science and

Artificial Intelligence, Wenzhou University, Wenzhou, China, 3College of Biosystems Engineering and Food Science, Zhejiang

University, Hangzhou, China

With the advance in algorithms, deep reinforcement learning (DRL) offers solutions to

trajectory planning under uncertain environments. Different from traditional trajectory

planning which requires lots of effort to tackle complicated high-dimensional problems,

the recently proposed DRL enables the robot manipulator to autonomously learn

and discover optimal trajectory planning by interacting with the environment. In this

article, we present state-of-the-art DRL-based collision-avoidance trajectory planning for

uncertain environments such as a safe human coexistent environment. Since the robot

manipulator operates in high dimensional continuous state-action spaces, model-free,

policy gradient-based soft actor-critic (SAC), and deep deterministic policy gradient

(DDPG) framework are adapted to our scenario for comparison. In order to assess our

proposal, we simulate a 7-DOF Panda (Franka Emika) robot manipulator in the PyBullet

physics engine and then evaluate its trajectory planning with reward, loss, safe rate,

and accuracy. Finally, our final report shows the effectiveness of state-of-the-art DRL

algorithms for trajectory planning under uncertain environments with zero collision after

5,000 episodes of training.

Keywords: reinforcement learning, neural networks, trajectory planning, collision avoidance, uncertain

environment, robotics

1. INTRODUCTION

Multi-Degree-of-Freedom (Multi-DOF) robotic arm is widely used in a variety of automation
scenarios, including the automotive industry, equipment fabrication, food industry, health care,
and agriculture. In the past, Multi-DOF robotic arms usually operated in isolated, structured
environments, and tasks that need to adapt to actual conditions are often done by humans. Human-
Robot Collaboration (HRC) combines the flexibility of humans and the efficiency of robots, making
manufacturing more flexible and productive (Vysocky and Novak, 2016). However, it is a challenge
for traditional motion planning algorithms to define a safe, collision-free HRC system, since all its
parameters are established based on a specific environment which makes it difficult to adapt new
workspace. Probability Road Map (PRM) and Rapidly-exploring Random Tree (RRT) for instance,
are not suitable for dynamics environments, since they require higher real-time performance of
algorithms to deal with dynamic obstacles, i.e., they need to construct a real-time mapping of
obstacles in the configuration space so as to plan a collision-free path, which is very computationally
expensive (Adiyatov and Varol, 2017; Kurosu et al., 2017; Wei and Ren, 2018; Wittmann et al.,
2020; Jiang et al., 2021; Liu et al., 2021). Another common approach, potential field (PF), has

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.883562
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.883562&domain=pdf&date_stamp=2022-05-02
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mczhou@zju.edu.cn
https://doi.org/10.3389/fnbot.2022.883562
https://www.frontiersin.org/articles/10.3389/fnbot.2022.883562/full

Chen et al. Reinforcement Learning Based Trajectory Planning

less computation and better real-time control compared to PRM
and RRT, however, it often gets stuck in the local minimum, and
has limited performance when the obstacles are in the vicinity of
the target (Flacco et al., 2012; Lu et al., 2018, 2021; Xu et al., 2018;
Melchiorre et al., 2019; Zhou et al., 2019). Therefore, finding an
efficient, safe, and flexible motion planning algorithm is required.
Reinforcement learning (RL) paves an alternative way to solve
these challenges, especially in many high-dimensional tasks or
games, RL can exhibit its outperformance. In DeepMind, it is
even thought to be enough to reach general AI (Shanahan et al.,
2020).

Recently, deep RL, which leverages neural networks as
function approximation, has been proven its effectiveness in
many different kinds of high complexity of robotic control tasks.
Joshi et al. (2020) shows multiple RGB images with double-
deep Q-learning can reach over 80% success rate in different
grasping tasks without training on a large dataset. In Gu et al.
(2017), the robot learns to complete a door opening task with
DDPG and Normalized Advantage Function algorithm (NAF)
with only a few hours of training. Another example shown
in Haarnoja et al. (2018a) with soft Q-learning a robot can
learn how to stack Lego blocks together within 2 h of policy
training. Therefore, we carry out an idea, using the DRL-based
method to tackle complex trajectory planning under uncertain
environments. However, deep RL still faces some challenges: (1)
defining an appropriate reward function is not straightforward,
especially dealing with high dimensional problems, it is easy to
obtain the result we incentivize instead of what we intended.
(2) In simple tasks, normally an RL agent can discover an
optimal policy in a short period, however when encountering
complex tasks it may take a few million training steps to
achieve the desired result. (3) It is hard to prevent an RL agent
from overfitting, to overcome this problem an agent should be
trained on a large distribution of environments, but it’s very
computationally expensive.

In this article, collision-free trajectory planning under
uncertain environments is tackled with state-of-the-art DRL
algorithms. Since the robotic systems are high dimensional
and the state, action space is continuous, model-free Deep
Neural Networks (DNN) approaches for Q- and policy-function
approximations are used, which has shown its effectiveness in
Amarjyoti (2017). Moreover, we expect our approaches to be
more suitable for continuous and stochastic environments as well
as to have higher sample efficiency and stability, we leverage
a combined version, actor-critic based network, which updates
the policy network for better action choices also updates the
value network for more precise evaluation on policy at each step
(Sutton and Barto, 2018). The primary contributions of this paper
are summarized as follows:

• Construct an appropriate dense reward function that includes
distance-to-goal reward and distance between obstacles
reward, and the weight between both rewards is tuned by
comparing the performance across different random seeds,
in order to make sure the robot manipulator can follow
the goal as long as possible, while also avoid collision with
dynamic obstacles.

• Build an uncertain environment in a physics engine to
simulate a human coexistent environment and apply state-
of-the-art DRL algorithms to 7-DOF robots. Then compare
the accuracy, safe rate, and reward of two model-free, policy
gradient-based algorithms, SAC, and DDPG.
• To further improve learning efficiency and stability, the state

space of goal and obstacles are set to relative position and
velocity instead of absolute so that the RL agent can learn the
correlation between the end-effector and obstacles as well as
the goal, as shown in Section 4.

The rest of the article is structured as follows. Section 2
discusses the study related to the traditional trajectory planning
method. Section 3 presents our method and its workflow. Section
4 demonstrates our experiment setup and evaluation of our
proposed approaches. Section 5 gives the conclusion of this
article and future study.

2. RELATED STUDY

There are currently some possible solutions to trajectory
planning and obstacle avoidance. With its probability
completeness and exploration efficiency, the RRT has been
widely applied in Multi-DOF manipulator’s collision-free
trajectory planning. Adiyatov and Varol (2017) introduced
RRT Fixed Nodes Dynamic (RRT*FND), with the procedures
of Reconnect and Regrow in the RRT*FND algorithm, the
manipulator can repair the path with an average of 300 ms when
encountering an invalid path caused by a dynamic obstacle. Wei
and Ren (2018) proposed an improved RRT algorithm, called
Smoothly RRT (S-RRT), to generate a smoother path and more
stable motion when avoiding obstacles which have shown better
exploring speed and exploring efficiency than Basic-RRT and Bi-
RRT. In a dual-arm robot pick-and-place environment, Kurosu
et al. (2017) regard one of the robot arms as a dynamic obstacle,
leveraging the RRT algorithm to effectively avoid collision with
another arm during pick-and-place tasks. Although RRT-based
algorithm has shown its robustness in either dynamic or static
obstacles avoidance, constantly, and randomly moving obstacles
avoidance, still requires more research.

Another common approach for collision avoidance trajectory
planning is the artificial potential field (APF). This method
leverages the PF force of attraction for reaching the goal and
repulsion for avoiding obstacles. Xu et al. (2018) leverage a
similar algorithm to APF, called velocity potential field (VPF), to
avoid collision with a static/dynamic obstacle and a collaborative
robot arm. They use the velocity of the robot instead of the
distance in APF to avoid suffering from local minima problems
when attractive and repulsive forces/velocities confront each
other on the same line. Flacco et al. (2012) leverage a simple
version of APF, a repulsive vector, generated by the distance to
estimate obstacles velocity for collision avoidance. Melchiorre
et al. (2019) also leverage the repulsive vector with the distance
calculated from the point cloud and have also shown its
effectiveness in avoiding collision with static/dynamic obstacles.
However, the PF has limited performance when encountering

Frontiers in Neurorobotics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 883562

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Reinforcement Learning Based Trajectory Planning

two obstacles that are placed too close to each other. For example,
if the goal is in-between or behind two close obstacles, the robot
will neglect the goal and turn away.

The other approach is PRM, which takes random samples
from the configuration space of the robot and finds a collision-
free path between the start and goal nodes. Liu et al. (2021)
proposed a Grid-Local PRM that combined a mapping model,
sampling strategies, lazy collision detection, and a single local
detection method. This proposed method can implement for
dynamic path planning for static/dynamic obstacle avoidance.
Wittmann et al. (2020) introduce the Obstacle-related Sampling
Rejection Probabilistic Roadmap planner (ORSR-PRM). They
leverage PRM for trajectory planning and PF for obstacle
avoidance in real-time. Similar to the PF method, the probability
of generating nodes in between narrow passages is very small, and
hence, no path will be planned through the gap.

To overcome the above problem in traditional path planning
methods, we proposed another method. Instead of finding a
path in configuration space or tackling complicated optimization
problems, we leverage the model-free DRL method that allowed
the manipulator to autonomously learn optimal collision-free
trajectory planning in an uncertain environment.

3. METHODS

The four essential parts of RL are policy, reward function, value
function, and model of the environment. With the idea that
an intelligent agent should learn to take a sequence of actions
that will lead to maximizing cumulative rewards interacting
with the environment. Hence, the agent should exploit what it
has experienced in order to obtain rewards, but also explore in
order to make better action decisions in the future (Sutton and
Barto, 2018). The Basic RL problem is modeled as the Markov
decision process (MDP) with elements St , At , P(St+1|St ,At), γ ,
R(St+1|St ,At), where t represents timestep, St and St+1 represent
the current state and next state, respectively, At stands for the
current action, P(St+1|St ,At) stands for the transition probability
of being in St+1 when taking action At in the current state St ,
and γ ∈ [0, 1) represents discount factor which determines
the importance of future rewards, R(St+1|St ,At) represents the
immediate reward received after transitioning from the current
state St to the next state St+1, due to the taken action At . In MDP,
we assume that the transition probability (or the probability of
moving to the next state St+1) depends on the current state St
and the decision action At . But given St and At , it is conditionally
independent of all previous states and actions.

3.1. Deep Reinforcement Learning
In the case of complex systems such as robotic systems, the
explicit model of the dynamics in the environment associated
with MDP, i.e., transition probability function, is often not
available or difficult to define. Therefore, a model-free-based
method is required. Q-learning is one of the most important
breakthroughs in RL also known as the off-policy Temporal

Difference (TD) control algorithm, defined by

Q(St ,At)←− Q(St ,At)

+ α[Rt+1 + γ max
a

Q(St+1, a)− Q(St ,At)],
(1)

where St and At are state and action in timestep t, respectively. α
stands for learning rate. Rt+1 is the obtained immediate reward
due to the taken action At . a represents the action that has a
maximum Q-value from the state St+1. The optimal action-value
function can be directly approximated by the learned action-
value function Q, which dramatically simplified the analysis of
the algorithm and has been proven for convergence (Sutton and
Barto, 2018).

In traditional Q-learning, we utilize Q-table to help track
states, actions, and corresponding expected rewards. However,
for continuous action and state-space such as robotic systems,
it is infeasible to build up a large table. Therefore, we need a
function approximation for the action-value function Q and a
DNN is one of the efficient and easy techniques to approximate a
non-linear function. However, RL with DNN is pretty unstable,
the weights of the network can oscillate or diverge due to the
high correlation between actions and states. To overcome this
issue, we need to leverage two important techniques, Experience
Replay, and Target Network. By Experience Replay, the agent’s
experience at each time step will be stored in replay memory as
the tuple (St ,At ,Rt+1, St+1), and when the replay memory size
is equal to or bigger than a mini-batch size, we then uniformly
sample the memory randomly for a mini-batch of experience
and use this to learn off-policy, in order to break the correlation
(Lin, 1992). Moreover, to make training more stable, a target
network is used for calculating the estimate of optimal future
value max

a
Q(St+1, a) in the Bellman equation, and hence, the loss

function can be defined as

L(θ) = {[Rt+1 + γ max
a

Q(St+1, a; θtarget)]

− Q(St ,At; θprediction)}
2,

(2)

where θprediction are prediction network’s weights updated in every
iteration, whereas θtarget are the target network’s weights, which
are not trained but periodically synchronized with the parameters
of the prediction Q-network.

3.2. The Proposed DRL-Based Trajectory
Planning for Uncertain Environments
In this section, we define the setup for the DRL framework, such
as the state space S , the action spaceA, and the reward function.

3.2.1. State Space
In our experiment the robot manipulator, we used is 7-
DOF, therefore, if we set joint positions and velocity as the
observations, the learning efficiency of the agent is quite low
(Henderson et al., 2018) or may even be unable to find the
optimal trajectory. To overcome this issue, we instead use the
end-effector position pe and velocity ṗe then calculate inverse
kinematic (IK) to control joint position.Moreover, we use relative
position and velocity to the end-effector instead of obstacles or

Frontiers in Neurorobotics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 883562

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Reinforcement Learning Based Trajectory Planning

FIGURE 1 | The comparison of two different observation spaces set up in the first environment. Both are using soft actor-critic (SAC) and with the same

hyperparameters setting. The orange line is the result using relative position and velocity in observation space, whereas the blue line is using position and velocity. (A)

The safe rate (defined in Section 4.2) of different observation spaces. (B) The accuracy (defined in Section 4.2) of different observation spaces. Each episode

corresponds to 100 time steps.

FIGURE 2 | The comparison between different power (n) of the exponential decay function. (A) The safe rate (defined in Section 4.2) of three different power (n) of the

exponential decay function. (B) The accuracy (defined in Section 4.2) of three different power (n) of the exponential decay using an exponential moving average for

better visualization. The two figures show that n = 35 has better learning efficiency, safe rate, and accuracy.

FIGURE 3 | The comparison between different weights of reward RO. (A) The safe rate (defined in Section 4.2) of three different weights of reward RO. (B) The

accuracy (defined in Section 4.2) of three different weights of reward RO using an exponential moving average for better visualization. The two figures show that

c2 = 15 has better learning efficiency, safe rate, and accuracy.

Frontiers in Neurorobotics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 883562

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Reinforcement Learning Based Trajectory Planning

the goal position p̄o/p̄t and velocity ˙̄po / ˙̄pt , which has shown
faster convergence and higher stability in Figure 1. The above
information is assumed known and obtained from the sensor.
Furthermore, to increase learning efficiency, we constrain the
manipulator in a specific workspace, and hence, the robot will
only explore its reachable area and the area with the goal nearby.
The State-space S is hence defined as

S = {pe, ṗe, p̄t , ˙̄pt , p̄o, ˙̄po}. (3)

3.2.2. Action Space
As we mentioned in section A, we set the end-effector position
as the observation for better learning efficiency. Therefore, we
can reduce the dimension of actions from seven dimensions to
three dimensions with fixed orientations. The action space A is

defined as

A = {1x, 1y, 1z}, (4)

where 1x,1y,1z are bounded between −0.1 and 0.1 such that
we can avoid sudden movements of the robotic arm in every time
step due to excessive output of the action.

3.2.3. Reward Function
The reward function mixes reward variables into a single output
value and provides feedback for an agent to learn what we
incentive. In our case, we expect the robot to follow the goal
as long as possible while avoiding dynamic obstacles. Therefore,
we define the reward function by a weighted sum of two
terms: First, the distance between the end-effector and the goal.
Second, the closest distance between the robot manipulator and

FIGURE 4 | Reward function on the planar section of the workspace. (A) The 3D plot of the reward function. (B) Contour plot of reward function.

FIGURE 5 | The behavior of the manipulator with respect to the distance(m) in one of the episodes (100-time steps). (A) Distance between robot and obstacles as

well as the target (first scenario). (B) Distance between robot and obstacles as well as the target (second scenario).

Frontiers in Neurorobotics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 883562

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Reinforcement Learning Based Trajectory Planning

obstacles. Moreover, we use negative a reward over a positive
so that the robot will try its best to avoid penalties and,
hence, can learn as quickly as possible. The reward function is

defined as

R = −c1RT − c2RO, (5)

FIGURE 6 | From left to right, first, the robot learns to reach the goal. Second, avoid collisions with dynamic obstacles. Third, keep reaching the goal.

FIGURE 7 | Performance comparison of SAC and Deep Deterministic Policy Gradient (DDPG) algorithm in the first environment. (A) Accuracy of different algorithms

shown in error bar line graph. (B) A safe rate of different algorithms in the error bar line graph. (C) The cumulative reward for each episode. (D) Loss for each episode.

Each episode corresponds to 100 time steps.

Frontiers in Neurorobotics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 883562

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Reinforcement Learning Based Trajectory Planning

where RT is the reward obtained from the distance
between the end-effector and the goal using Euclidean
distance (m),

RT =
1

2
d2T , (6)

where dT is the Euclidean distance between the end-
effector and the goal. The reward RO is obtained from
the closest distance (m) between the robot manipulator
and obstacles,

RO = (
a

a+ dO
)n, (7)

where dO is the closest distance from the obstacles computed by
PyBullet. a is set to 1, in order to avoid the denominator equaling
zero when a collision happens. The power of exponential decay
function n = 35 and the weights c2 = 15 are determined
by using trial and error. We set c1 as a fixed value of 500
and tune the parameters n and c2 by evaluating the safe rate,
accuracy, and learning efficiency, as shown in Figures 2, 3

(Since DDPG is more sensitive to parameters, we use DDPG
for comparison; Haarnoja et al., 2018b). In order to show our
reward function has a maximum, we plot our reward function
on the planar section of the workspace, as shown in Figure 4.
Moreover, since the dynamic/static goal and dynamic obstacles
are on the same x-y plane, it can be demonstrated in 3D space

instead of 4D for better visualization. As it can be observed
from Figure 4, the reward decreases as the robot’s end-effector
moves toward obstacles and increases as it moves toward the
goal, and when the end-effector reaches the goal point, the
reward is maximum. The behavior of the robot manipulator
in two environments is also shown in Figure 5. The distance
between the end-effector and goal diminishes as the robot
approaches the goal and when obstacles are close to the body
of the robot, the robot backs off until obstacles move away from
the manipulator.

3.2.4. Deep Deterministic Policy Gradient
Deep deterministic policy gradient (DDPG), introduced in
Lillicrap et al. (2015), is an actor-critic, model-free algorithm
based on the deterministic policy gradient that can operate
over continuous action spaces. Traditionally, in policy gradient-
based algorithms the policy function is always stochastic, i.e.,
it is modeled as a probability distribution over actions given
the current state. In DDPG, the policy function is instead
modeled as a deterministic decision. However, this may lead to
a low exploration issue, and hence, they add additive noise to
the deterministic action to explore the environment, which is
represented as:

µ′(St) = µ(St|θ
µ
t)+N , (8)

FIGURE 8 | Performance comparison of SAC and DDPG algorithm in the second environment. (A) Accuracy of different algorithms shown in error bar line graph. (B)

A safe rate of different algorithms in the error bar line graph. (C) The cumulative reward for each episode. (D) Loss for each episode. Each episode corresponds to

100 time steps.

Frontiers in Neurorobotics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 883562

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Reinforcement Learning Based Trajectory Planning

Algorithm 1 | DDPG-based trajectory planning.

Input: batch size: B, target smoothing coefficient τ , discount
factor: γ , number of training episode: M, timesteps of each
episode: T
Randomly initialize Q network Q(S,A|θQ) and policy network
µ(S|θµ) with weights θQ and θµ

Initialize target Q network Q′ and target policy network µ′ with

weights θQ
′
← θQ, θµ

′
← θµ

Initialize replay buffer D← φ

Input: A set of observation state S = {pe, ṗe, p̄t , ˙̄pt , p̄o, ˙̄po}
Output: A set of optimal policyA = {1x,1y,1z}

for episode = 1,M do

Initialize a random noiseN for action exploration
Receive initial observation state S1
for t = 1, T do

Select action At = µ(St|θ
µ)+Nt according to the

current policy and exploration noise
Execute action At and observe reward Rt and
observe new state St+1

Store transition (St ,At ,Rt , St+1) in D
Sample a random minibatch of B transitions
(Si,Ai,Ri, Si+1) from D

Set yi = Ri + γQ
′[Si+1,µ

′(Si+1|θ
µ′)|θQ

′
]

Update critic by minimizing the loss:
L = 1

B

∑
i[yi − Q(Si,Ai|θ

Q)]2

Update the actor policy using the sampled policy
gradient: ∇θµ J ≈
1
B

∑
i ∇AQ(S,A|θ

Q)|S=Si ,A=µ(Si)∇θµµ(S|θ
µ)|Si

Update the target networks:

θQ
′
←− τθQ + (1− τ)θQ

′

θµ
′
←− τθµ + (1− τ)θµ

′

end for

end for

where µ(St)
′ and N are the exploration policy and additive

noise, here, use an Ornstein-Uhlenbeck process. µ(St|θ
µ
t) and

θ
µ
t are the output action and parameters of the actor-network.
Moreover, the traditional target networks are updated with the
parameters of the trained networks every couple of thousand
steps, which may cause big differences between the two updates.
Therefore, they introduced a soft target update, which is actually
better to make the target networks slowly track the trained
networks, by updating their parameters after each update of the
trained network using a sliding average for both the actor and
the critic:

θ ′ ←− τθ + (1− τ)θ ′, with τ ≪ 1, (9)

where θ and θ ′ represent parameters for the actor- or critic-
network and the target actor- or target critic-network. τ is the
target smoothing coefficient. The Experience Replay mentioned
in Section A is also used here to store past trajectories and
provides samples of them to perform gradient updates for better
learning efficiency. The detailed pseudo algorithm of DDPG-
based trajectory planning is shown in Algorithm 1.

3.2.5. Soft Actor-Critic
Similar to DDPG, soft actor-critic (SAC) introduced in Haarnoja
et al. (2018b), is also an actor-critic, model-free algorithm that
can operate over continuous action spaces, but is based on the
stochastic policy by maximizing the expected reward of the actor
while maximizing entropy, i.e., achieve the goal while acting as
randomly as possible. Hence, the general maximum entropy can
be represented as:

J(π) =

T∑

t=0

E(St ,At)∼ρπ [r(St ,At)+ αH(π(·|St))], (10)

where ρπ and H(π(·|st)) are the policy and the entropy. α is the
temperature parameter for determining the relative importance
of the entropy term against the reward, and hence controls
the stochasticity of the optimal policy. Since SAC is an off-
policy algorithm, the Experience Replay is also used to improve
the learning efficiency. Moreover, in order to decrease the
changes between two updates, the soft target update technique
in Equation (4) is also applied. In Haarnoja et al. (2018b),
they also compare with some other on-policy DRL algorithms,
such as TRPO (Schulman et al., 2015), PPO (Schulman et al.,
2017), or A3C (Mnih et al., 2016), and has shown its higher
sample efficiency. Compare with DDPG, it also has lower
hyperparameter sensitivity and higher stability, which is also
our case shown in Section 4. The detailed pseudo algorithm of
SAC-based trajectory planning is shown in Algorithm 2.

4. EXPERIMENT AND RESULTS

In this section, we show that DDPG and SAC can learn
optimal trajectory planning for dynamic obstacles collision
avoidance. For the evaluation, we compare two different
DRL algorithms with safe rate, accuracy, and reward in two
different environments.

4.1. Environment Setup
In our experiment, we applied the proposed collision avoidance
DDPG and SAC algorithm on a 7-DOF manipulator (Panda
from Franka Emika) simulated in a PyBullet physics engine
and leveraged the RL toolkit Gym. The environment setup
contains a manipulator, a table, a green sphere goal, and three
black sphere obstacles, as shown in Figure 6. Moreover, we
constructed two environments for the evaluation, either a static
goal and dynamic obstacles or a dynamic goal and dynamic
obstacles. Besides, in order to make sure our model can learn
under uncertainty, the starting positions of the goal and three
obstacles are uniformly and randomly sampled in a specific
range, and the goal moving areas are constrained in the robot’s
reachable area.

4.2. Evaluation
We evaluate different DRL algorithms in two defined scenarios
with the safe rate, accuracy, reward, and loss. Each episode
corresponds to 100 time steps, i.e., the robot has to reach the goal
and avoid collision within 100 time steps. The safe rate represents

Frontiers in Neurorobotics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 883562

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Reinforcement Learning Based Trajectory Planning

Algorithm 2 | SAC-based trajectory planning.

Input: batch size: B, target smoothing coefficient τ , discount
factor: γ , number of training episode: M, timesteps of each
episode: T
Randomly initialize Q network Q1, Q2, policy network π and
value network V with weights θ1, θ1, φ and ψ .
Initialize target Q networks Q′1 and Q′2, target value network V ′

with weights θ ′1 ← θ , θ ′2 ← θ and ψ ′ ← ψ

Initialize replay buffer D
Input: A set of observation state S = {pe, ṗe, p̄t , ˙̄pt , p̄o, ˙̄po}
Output: A set of optimal policyA = {1x,1y,1z}

for episode = 1,M do

Receive initial observation state S1
for t = 1, T do

Select action At ∼ πφ(At|St)
Execute action At and observe reward Rt and
observe new state St+1

Store transition (St ,At ,Rt , St+1) in D
Sample a random minibatch of B transitions
(Si,Ai,Ri, Si+1) from D

Update V by minimizing the mean squared error:
∇ψ JV (ψ) =

1
B

∑
i ∇ψVψ (Si)[Vψ (Si)

−minj=1,2 Qθ ′j (Si,Ai)+ logπφ(Ai|Si)]

Update Q by minimizing the soft Bellman residual:
∇θ1,2 JQ(θ1,2) = ∇θ1,2

1
B

∑
i

{[Qθ1 (Si,Ai)− αR(Si,Ai)− γVψ ′ (Si+1)]
2−

[Qθ2 (Si,Ai)− αR(Si,Ai)− γVψ ′ (Si+1)]
2}

Update π by minimizing the expected KL-
divergence:
∇φJπ (φ) = ∇φ

1
B

∑
i[logπφ(Ai|Si)−

minj=1,2 Qθ ′j (Si,Ai)]

Update the target value networks:
ψ ′ ←− τψ + (1− τ)ψ ′

end for

end for

the number of time steps without collision divided by 100 time
steps (one episode),

Safe rate =
number of timesteps without collision

100 timesteps
. (11)

The accuracy stands for a success rate of keeping a distance
between the target within 0.05 m while far away from obstacles,
and 0.12 m while avoiding collision with obstacles (the radius of
obstacles is 0.1 m), therefore, it is not possible to obtain 100% of
accuracy, since it also includes time steps from the rest position
to the target. The accuracy is set as,

Accuracy =
number of timesteps that succeed

100 timesteps
. (12)

The two algorithms’ performances were evaluated in two
different environments using the same set of parameters

respectively, such as learning rate, number of hidden layers, target
smoothing coefficient. The environment settings considered for
the experiments are (1) dynamic goal and dynamic obstacles:
the starting position of both goal and obstacles are uniformly
and randomly sampled in a specific range for each episode,
and moving with constant speed. (2) fixed goal and dynamic
obstacles: the obstacles remain in the same setting as the first one,
but with a fixed goal sampled randomly for each episode.

In each experiment, the safe rate, accuracy, reward, and
loss per episode have been traced during the training process
and compared after 10,000 episodes of 100 time steps each.
The result of the two environments is shown in Figures 7, 8.
From both Figures 7C,D, 8C,D it can be observed that both
algorithms’ cumulative reward converges to their maximum
value, and the losses do not have significant reductions, i.e.,
the robot has learned a stable optimal trajectory planning
under an uncertain environment. Moreover, both Figures 7A,
8A show that SAC performs much more consistently, efficiently,
and higher accuracy, whereas deterministic policy-based DDPG
exhibits high variability between episodes and less stable.
Furthermore, both Figures 7B, 8B demonstrate that SAC can
learn a collision free trajectory with 100% of safe rate within
6,000 episodes, while DDPG still cannot guarantee to reach a
100% of safe rate within 10,000 episodes. Similar results are also
corroborated in Gu et al. (2016) and Haarnoja et al. (2018b). The
reason for that is because the interplay between the deterministic
actor-network and the Q-function makes DDPG unstable and
sensitive to hyperparameters, especially for complex and high-
dimensional tasks, however, DDPG still shows its effectiveness
in both scenarios. Overall, the performance of the stochastic
policy-based SAC is more stable and consistent when dealing
with complex tasks.

5. CONCLUSION AND FUTURE STUDY

In this article, we presented two state-of-the-art off-policy
DRL approaches that can be used to discover optimal
trajectory planning under an uncertain environment. Especially,
stochastic policy-based SAC can achieve an average of 82%
of accuracy in the first scenario and 79% in the second,
moreover, with lower variability between episodes and zero
collision after 5,000 episodes. The results show the clear
potential of the proposed approaches in the application of an
uncertain environment, such as HRC scenarios. The future
study will transfer the trained model from a simulation
environment to real physical robotic manipulators and transfer
the learning skill from simulation to the real environment with
visual sensing.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

Frontiers in Neurorobotics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 883562

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Reinforcement Learning Based Trajectory Planning

AUTHOR CONTRIBUTIONS

LChen implemented the code and draft the manuscript. ZJ
assisted to implement the code and discussed the manuscript.
LCheng assisted to implement the code and discussed the
manuscript. AK guided the research and discussed the results.
MZ guided the research, implemented parts of code, and revised
the manuscript.

FUNDING

This study was supported by the National Natural Science
Foundation of China (Grant Numbers: 32101626 and 61902442)
and ZJU 100 Young Talent Program. This study was supported in
part by the German Research Foundation (DFG) and in part by
the Technical University of Munich (TUM) in the framework of
the Open Access Publishing Program.

REFERENCES

Adiyatov, O., and Varol, H. A. (2017). “A novel RRT*-based algorithm for

motion planning in dynamic environments,” in 2017 IEEE International

Conference on Mechatronics and Automation (ICMA) (Takamatsu), 1416–1421.

doi: 10.1109/ICMA.2017.8016024

Amarjyoti, S. (2017). Deep reinforcement learning for robotic

manipulation-the state of the art. arXiv preprint arXiv:1701.08878.

doi: 10.48550/arXiv.1701.08878

Flacco, F., Kröger, T., De Luca, A., and Khatib, O. (2012). “A depth space

approach to human-robot collision avoidance,” in 2012 IEEE International

Conference on Robotics and Automation (St Paul, MN), 338–345.

doi: 10.1109/ICRA.2012.6225245

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017). “Deep reinforcement learning

for robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE

International Conference on Robotics and Automation (ICRA) (Singapore),

3389–3396. doi: 10.1109/ICRA.2017.7989385

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and Levine, S. (2016). Q-

prop: Sample-efficient policy gradient with an off-policy critic. arXiv preprint

arXiv:1611.02247. doi: 10.48550/arXiv.1611.02247

Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P., and15 Levine, S. (2018a).

“Composable deep reinforcement learning for robotic manipulation,” in 2018

IEEE International Conference on Robotics and Automation (ICRA), 6244–6251.

doi: 10.1109/ICRA.2018.8460756

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018b). “Soft actor-critic: off-

policy maximum entropy deep reinforcement learning with a stochastic actor,”

in International Conference on Machine Learning (Brisbane, QLD), 1861–1870.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D.

(2018). “Deep reinforcement learning that matters,” in Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 32 (Stockholm).

Jiang, Z., Li, Z., Grimm, M., Zhou, M., Esposito, M., Wein, W., et al. (2021).

Autonomous robotic screening of tubular structures based only on real-time

ultrasound imaging feedback. IEEE Trans. Indus. Electron. 69, 7064–7075.

doi: 10.1109/TIE.2021.3095787

Joshi, S., Kumra, S., and Sahin, F. (2020). “Robotic grasping using deep

reinforcement learning,” in 2020 IEEE 16th International Conference on

Automation Science and Engineering (CASE) (Hong Kong), 1461–1466.

doi: 10.1109/CASE48305.2020.9216986

Kurosu, J., Yorozu, A., and Takahashi, M. (2017). Simultaneous dual-

arm motion planning for minimizing operation time. Appl. Sci. 7:1210.

doi: 10.3390/app7121210

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al.

(2015). Continuous control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971. doi: 10.48550/arXiv.1509.02971

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning,

planning and teaching.Mach. Learn. 8, 293–321. doi: 10.1007/BF00992699

Liu, Y., Chen, B., Zhang, X., and Li, R. (2021). Research on the dynamic path

planning of manipulators based on a grid-local probability road map method.

IEEE Access 9, 101186–101196. doi: 10.1109/ACCESS.2021.3098044

Lu, B., Chu, H. K., Huang, K., and Cheng, L. (2018). Vision-based surgical suture

looping through trajectory planning for wound suturing. IEEE Trans. Autom.

Sci. Eng. 16, 542–556. doi: 10.1109/TASE.2018.2840532

Lu, B., Li, B., Chen, W., Jin, Y., Zhao, Z., Dou, Q., et al. (2021). Toward

image-guided automated suture grasping under complex environments: a

learning-enabled and optimization-based holistic framework. IEEE Trans.

Autom. Sci. Eng. 1–15. doi: 10.1109/TASE.2021.3136185

Melchiorre, M., Scimmi, L. S., Pastorelli, S. P., and Mauro, S. (2019). “Collison

avoidance using point cloud data fusion from multiple depth sensors: a

practical approach,” in 2019 23rd International Conference on Mechatronics

Technology (ICMT) (Salerno), 1–6. doi: 10.1109/ICMECT.2019.893

2143

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).

“Asynchronous methods for deep reinforcement learning,” in International

Conference on Machine Learning (New York, NY), 1928–1937.

Schulman, J., Levine, S., Abbeel, P., Jordan,M., andMoritz, P. (2015). “Trust region

policy optimization,” in International Conference on Machine Learning (Lille),

1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

doi: 10.48550/arXiv.1707.06347

Shanahan, M., Crosby, M., Beyret, B., and Cheke, L. (2020). Artificial

intelligence and the common sense of animals. Trends Cogn. Sci. 24, 862–872.

doi: 10.1016/j.tics.2020.09.002

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.

Cambridge, MA; London: MIT Press.

Vysocky, A., and Novak, P. (2016). Human-robot collaboration in industry. MM

Sci. J. 9, 903–906. doi: 10.17973/MMSJ.2016_06_201611

Wei, K., and Ren, B. (2018). A method on dynamic path planning for robotic

manipulator autonomous obstacle avoidance based on an improved RRT

algorithm. Sensors 18:571. doi: 10.3390/s18020571

Wittmann, J., Jankowski, J., Wahrmann, D., and Rixen, D. J. (2020). “Hierarchical

motion planning framework for manipulators in human-centered dynamic

environments,” in 2020 29th IEEE International Conference on Robot

and Human Interactive Communication (RO-MAN) (Naples), 525–532.

doi: 10.1109/RO-MAN47096.2020.9223549

Xu, X., Hu, Y., Zhai, J., Li, L., and Guo, P. (2018). A novel non-

collision trajectory planning algorithm based on velocity potential

field for robotic manipulator. Int. J. Adv. Robot. Syst. 15:172988141

8787075. doi: 10.1177/1729881418787075

Zhou, M., Yu, Q., Huang, K., Mahov, S., Eslami, A., Maier, M., et al. (2019).

Towards robotic-assisted subretinal injection: a hybrid parallel-serial robot

system design and preliminary evaluation. IEEE Trans. Indus. Electron. 67,

6617–6628. doi: 10.1109/TIE.2019.2937041

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Chen, Jiang, Cheng, Knoll and Zhou. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 883562

https://doi.org/10.1109/ICMA.2017.8016024
https://doi.org/10.48550/arXiv.1701.08878
https://doi.org/10.1109/ICRA.2012.6225245
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.48550/arXiv.1611.02247
https://doi.org/10.1109/ICRA.2018.8460756
https://doi.org/10.1109/TIE.2021.3095787
https://doi.org/10.1109/CASE48305.2020.9216986
https://doi.org/10.3390/app7121210
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.1007/BF00992699
https://doi.org/10.1109/ACCESS.2021.3098044
https://doi.org/10.1109/TASE.2018.2840532
https://doi.org/10.1109/TASE.2021.3136185
https://doi.org/10.1109/ICMECT.2019.8932143
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1016/j.tics.2020.09.002
https://doi.org/10.17973/MMSJ.2016_06_201611
https://doi.org/10.3390/s18020571
https://doi.org/10.1109/RO-MAN47096.2020.9223549
https://doi.org/10.1177/1729881418787075
https://doi.org/10.1109/TIE.2019.2937041
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Deep Reinforcement Learning Based Trajectory Planning Under Uncertain Constraints
	1. Introduction
	2. Related Study
	3. Methods
	3.1. Deep Reinforcement Learning
	3.2. The Proposed DRL-Based Trajectory Planning for Uncertain Environments
	3.2.1. State Space
	3.2.2. Action Space
	3.2.3. Reward Function
	3.2.4. Deep Deterministic Policy Gradient
	3.2.5. Soft Actor-Critic

	4. Experiment and Results
	4.1. Environment Setup
	4.2. Evaluation

	5. Conclusion and Future Study
	Data Availability Statement
	Author Contributions
	Funding
	References

