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Abstract

Multi- and even Manycore Processor System on Chips (MPSoCs) are becoming increas-
ingly prevalent in embedded systems. However, despite their technical and economic
advantages they are only hesitantly adopted in safety-critical embedded application
domains such as avionics and automotive. Safety-critical applications typically have
fault-tolerance and (hard) real-time requirements which are difficult to guarantee on
an MPSoC that runs multiple applications. A key issue is the potential interference of
different applications on shared resources such as memory or the on-chip interconnect.
Isolation of different applications is especially challenging in mixed-critical systems that
run both safety-critical and Best Effort (BE) applications.

This thesis contributes to the ongoing research of safely using MPSoCs in safety- and
mixed-critical systems by developing both the concept for and architecture of a Net-
work on Chip (NoC) that provides both fault-tolerance and hard real-time guarantees to
safety-critical communication while also implementing isolation between different criti-
cal traffic streams and critical and BE communication. The basis is a hybrid NoC that
uses Time-Division Multiplexing (TDM) for critical, and packet switching for BE traffic.
Fault-tolerance of the critical communication is implemented by adopting protection
switching to NoCs. Two disjoint paths are reserved for each critical communication
channel. In case one path is affected by a fault, the other path is still fully opera-
tional. Three different protection switching versions are compared—1:n, 1:1, and 1+1
protection—and their respective advantages and disadvantages are evaluated and dis-
cussed. The proposed NoC architecture is implemented in hardware on an FPGA and
the synthesis results are compared to related work. A comparison shows that the hybrid
NoC router with protection switching uses up to 48% fewer LUTs and 46% fewer regis-
ters than a state-of-the-art packet switched router that provides throughput guarantees
(but not fault tolerance) in a mixed-critical system. Furthermore, two systems using
the hybrid NoC are implemented: an evaluation system with 8x8 nodes to evaluate the
performance of the NoC for different traffic scenarios, and a demonstrator system with
4x4 nodes to showcase the capabilities of protection switching in NoC with an interactive
system.

In addition to the concept and architecture of the hybrid NoC with protection switch-
ing, mapping strategies that consider protection switching and—for a given set of critical
applications—increase the available bandwidth for the BE applications in order to use
the NoC resources most efficiently and maximize the overall achievable network uti-
lization are developed and evaluated. The different mapping strategies are evaluated
in hardware with the evaluation system implemented on FPGA. The results show that
evenly spreading out the critical applications across the entire system and evenly spread-
ing out the critical traffic across all links is most beneficial for the BE communication.
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Abstract

It is formally proven that—between the three protection switching versions compared—
1+1 protection has the lowest worst-case latency. Additionally, 1+1 protection requires
a lower hardware overhead than both 1:n and 1:1 protection. It is shown that 1+1
protection has a worse adverse effect on the BE traffic performance than both 1:n and
1:1 protection have but that this effect can be mitigated and often even be nullified by
good mapping strategies. In comparison to related work even 1+1 protection achieves
very competitive traffic injection rates of up to ∼ 23%–31% in an 8x8 NoC, depending
on the traffic scenario. It is concluded, that 1+1 protection is the most suited protection
switching version to be used in mixed-critical MPSoCs.

To the best of my knowledge, the work presented in this thesis is the first one that
considers a NoC that provides both fault-tolerance and hard real-time communication
to critical applications in a mixed-critical MPSoC with a holistic approach.
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1 Introduction

The year is 2025. You are on a plane, on your way to a conference in Copen-
hagen, Denmark. The flight is a bit rough. Nothing too serious. For the third
time in a row the screens of the in-flight entertainment system go black. You
sigh and take out your laptop to review your slides. After making some minor
changes the program freezes. “Have you tried turning it off an on again?” says
the man next to you. At the same time, cosmic rays cause a bit-flip in the flight
computer calculating the plane’s altitude. Nothing happens.
The plane lands safely. You board the fully automated metro into the city and
decide to listen to some music. At some point the music breaks up. Bad con-
nection. “Not my day”, you think.
After a smooth ride you exit the train and call a taxi to bring you to your hotel.
One of the new taxis. Fully automated. It starts to rain and the visibility is
getting worse. A fast cyclist approaches from the right. The car breaks just
in time. You curse at the reckless cyclist but the car safely brings you to your
destination without anyone being harmed.

We live in a fast-paced world that is quickly changing, surrounded by a multitude
of embedded systems doing their work. Most of the time we do not even notice them.
Unless something goes wrong, in which case we are annoyed. Or harmed. Or dead.

One of the fastest changing industries, regarding the use of electronics, is the auto-
motive industry. Over the last decades, the amount of electronic devices in cars has
drastically increased and is expected to account for ∼ 50% of the total cost of a new
car in the year 2030—as shown in Figure 1.1 [1]. This trend is mostly driven by the
increasing amount of Advanced Driver-Assistance System (ADAS) in today’s and future
cars and will be pushed further by the current motion towards autonomous driving. It
is expected that by the year 2030 more than 80 million cars will have adopted at least
Level 1 autonomous driving, which refers to driver support systems such as adaptive
cruise control or lane-following assistance (cf. Figure 1.2) [2].

While a failure of an assistance system is merely an inconvenience for the driver—who
must always be able to take over control—a failure in a system that is currently in full
control of the car (i.e., Level 3 and above) can have dire consequences. Just as the
flight-computer, or other essential systems of modern airplanes or autonomous trains,
these systems must be hardened to tolerate faults—be they originated in hardware or
software—and protected against malicious intent. These requirements are not just “ar-
bitrarily” set by researchers, politicians, or the industry, but are requested by consumers
themselves. In a study in Europe from 2015 most participants expected “maximal safety”
from future cars (95.4% “fully” or “mostly” agreed), more than anything else (“maximal
safety” was followed by “affordable mobility” with 90.5%, “comfort” with 89.9%, and
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Figure 1.1: Automotive electronics cost as a percentage of total car cost worldwide from 1970
to 2030 (* forecast) [1]
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Figure 1.2: Global market size of ADAS & autonomous driving systems (* forecast) [2]

“environmental sustainability” with 88.1%) [4]. The consequence is that future cars will
not only require more computational power in general but that they will also contain
more safety-critical systems which must not fail or, at the very least, must handle an
occurring fault in a way that ensures the safe halt of the vehicle.

For decades, Moore’s law [5] was the main driver of increased computing performance
with the number of transistors per chip area doubling roughly every 18 months. In
combination with Dennard scaling [6] this meant an exponential growth of both overall
performance and performance per Watt and enabled ever increasing processor clock
speeds. Around the year 2005, however, Dennard scaling broke down and it was no longer
feasible to further increase the clock speed of processors for mainstream computing.
Instead, performance increase was achieved by moving towards multicore systems, which
had a fundamental impact on the way software is developed in order to benefit from
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the performance gains [7]. Not all applications can utilize the additional computing
resources equally well and the possible speedup is ultimately limited by Amdahl’s law
[8]. Furthermore, the failure of Dennard scaling lead to the occurrence of “Dark Silicon”,
meaning not all transistors of a chip can simultaneously be powered at operating voltage
for a given thermal design power constraint [9]. One way this was addressed was by
going from homogeneous multicore systems to heterogeneous ones. By adding different
kinds of processing elements and specialized hardware accelerators, applications can be
executed more efficiently but, again, this affects how software must be implemented [10].
One recent example for such a system in mainstream computing is Apple’s M1 System
on Chip (SoC) which provides four high-performance cores and four high-efficiency cores
[11].

A similar trend as the one described in mainstream computing has occurred in em-
bedded systems—albeit slightly delayed—and lead to a transition from “simple” SoCs
to Manycore Processor System on Chips (MPSoCs) that house tens and, in the near
future, potentially up to hundreds of individual processing elements. Such MPSoCs of-
fer great performance and can meet the ever increasing need for computational power
in the automotive industry, as described above. Furthermore, they allow to implement
different applications on a single device which helps to limit the hardware cost and power
consumption of the system. However, using MPSoCs in safety-critical environments is
problematic for various reasons. The question of if and how MPSoCs could be utilized
in safety-critical applications in the automotive, railway, avionics, and industry domain
lead to the ARAMiS research project [12]. The work presented in this thesis is supported
by the follow-up project ARAMiS II.

A safety-critical system, as the name suggests, must ideally be safe to operate at any
given time no matter the current state or input of the system. What exactly being safe
to operate means typically depends on the environment where a system is deployed. At
the very least it means that significant harm to people or the environment is prevented
by any means necessary (or reasonable). This means that both hardware and software
of such systems must be hardened against faults. Furthermore, such systems must be
extensively tested in order to make sure that invalid states either never occur or are
handled appropriately (basically, making them valid states). Although guidelines for
the implementation of these systems exists—such as the ISO 26262 regulating functional
safety for road vehicles [13]—this is a tedious task even for small systems. Because of
this, the typical present approach of implementing such systems is to keep them relatively
simple and static—e.g., by avoiding dynamic memory allocation or task mapping—and
completely isolated from other applications, which also means using dedicated SoCs.

When multiple safety-critical applications are implemented on a single MPSoC there
is a new problem: the potential unintended interaction or interference between different
applications, e.g., because they compete for access to certain resources such as a memory
interface to an external DDR memory. Even if all applications have their dedicated
address space, competing access can lead to contention which causes congestion and
changes the timing behavior of the applications. Since the potential interference of
all applications must be analyzed and tested this means that verification and testing
becomes much more complex. The development becomes evermore challenging with
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Figure 1.3: Different parts of an MPSoC communicating via a shared interconnect

growing number of applications and, even more so, if non-critical applications are also
implemented on the same system resulting in a mixed-critical MPSoC.

1.1 Problem Statement

Ideally, the developers of each individual applications—safety-critical or not—should be
able to develop their application completely independent from the others. This means
that measures must be taken to implement appropriate isolation between different ap-
plications and ensure that each application has access to the resources it needs (or is
assigned to). Regarding the processing resources it seems reasonable to implement iso-
lation by statically assigning each application—or at least the safety-critical ones—to a
fixed set of cores and/or accelerators. This approach will be assumed throughout this
thesis unless stated otherwise. A possible way of implementing isolation in I/O interfaces
is, e.g., I/O virtualization. A similar approach is possible for an interface to an external
DDR memory. Another approach for a limited amount of applications would be to use
multiple such interfaces, one exclusive for each safety-critical application. One of the
open challenges, however, is isolation in the shared on-chip interconnect of the MPSoC
(cf. Figure 1.3).

For decades, a single shared bus was used as a simple and convenient way of connecting
the different components of a computing system to the Central Processing Unit (CPU).
Similarly, this approach is commonly used in SoCs which contain a limited amount of
processing and other elements. The downside of a single shared bus, however, is that
the available communication bandwidth does not scale up with increasing amount of bus
masters—i.e., the number of CPUs or other processing elements in general—whereas the

4



1.2 Contributions

required bandwidth does increase, meaning the bus quickly becomes a performance bot-
tleneck. Increasing cache sizes can mitigate but not avoid this problem. Early approaches
to address this bottleneck include hierarchical buses and crossbars which both alleviate
the problem for a limited amount of processing elements but do not scale well to the
expected amount of tens or even hundreds of cores in future MPSoCs.

An approach where the total bandwidth does scale well with the number of processing
elements is the Network on Chip (NoC). In a NoC each network node is only directly
connected to a limited amount of neighboring nodes. Messages to other than neighboring
nodes are sent over multiple hops to their destination. The number of connections—and,
thereby, the total available bandwidth—grows with the number of nodes which makes
NoCs the ideal on-chip interconnect for large-scale MPSoCs. In order to be utilized in a
safety-critical or mixed-critical system, however, the NoC must ensure isolation between
communication of different applications. Furthermore, service guarantees such as a max-
imum latency and a minimum bandwidth must be provided, at least to the safety-critical
communication, and lastly, the critical communication must be fault-tolerant.

Different approaches and implementations have been proposed for NoCs in general
and to address the challenges of traffic isolation, service guarantees, and fault-tolerance
in particular. However, to the best of the author’s knowledge, no approach addressing
all three of these challenges combined has been proposed so far.

1.2 Contributions

The goal of this work is to develop a NoC that provides efficient on-chip communication
in safety-critical and mixed-critical MPSoCs. Specifically, the thesis describes three
contributions:

� The development of a concept for a NoC that provides traffic isolation, hard real-
time guarantees, and fault-tolerance to communication of safety-critical applica-
tions in mixed-critical systems. Traffic isolation and hard real-time guarantees are
achieved by using Time-Division Multiplexing (TDM) for critical communication
and packet switching for all other communication. Fault tolerance is achieved by
introducing protection switching to NoCs.

� The design of the architecture of the hybrid NoC described above, as well as the
design of two systems using the hybrid NoC: an evaluation system enabling the
evaluation of protection switching in NoC in hardware, and a demonstrator system
to showcase the traffic isolation and fault-tolerance of the NoC with an interactive
system.

� The development—and particularly the evaluation—of efficient mapping strategies
that maximize the communication bandwidth available to the applications in an
MPSoC using the proposed NoC. These mapping strategies enable a more efficient
use of the network resources, thereby increasing the maintainable flit injection rate
and achievable NoC utilization.
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Three different protection switching versions are considered for the concept of the
hybrid NoC and are compared regarding their expected hardware and power overhead,
their respective worst-case latency in case of a fault occurring in the NoC, and their
effect on the packet switched traffic. The concept is first evaluated with cycle accurate
simulations—with the results first published in [14]—and later with an evaluation system
implemented in hardware. The proposed mapping strategies—first presented in [15] and
[3]—are used to create task and channel mappings for different traffic scenarios and
TDM slot table sizes in an 8x8 NoC. These mappings are then evaluated and compared
to each other by running tests in hardware and monitoring the latencies of the packet
switched traffic as well as the flit injection rate at which the NoC saturates. The results
were published in [16] and [17]. The results presented in this thesis show that:

� The proposed hybrid TDM and packet switched NoC using protection switching
is a powerful option for on-chip communication in mixed-critical MPSoCs.

� Despite being hybrid, the proposed NoC router is smaller than a comparable state-
of-the-art packet switched router while allowing for competitive flit injection rates
before the NoC saturates.

� The strategy with which a given set of critical applications and their communica-
tion channels is mapped to a system that uses the proposed NoC has a significant
effect on the overall achievable flit injection rate and network utilization. A good
mapping strategy can, in the best case, almost entirely cancel out the adverse effect
the TDM traffic has on the packet switched traffic.

The work presented in this thesis is supported by the German BMBF research project
ARAMiS II with funding ID 01 IS 16025.

1.3 Outline

The remainder of this thesis is structured as follows. The necessary NoC concepts and
basics that the contributions of this thesis are based on as well as the current state
of the art are described in Chapter 2. The main contribution of this thesis—i.e., the
concept for the NoC providing traffic isolation, hard real-time guarantees, and fault-
tolerance to safety-critical communication—is presented in Chapter 3. This chapter also
provides a formal analysis of the worst-case latencies of the different protection switching
versions as well as the development of mapping strategies designed to improve the NoC
utilization. Chapter 4 presents the design of the architecture of the hybrid NoC as well
as two different systems using the NoC and their hardware implementation. Chapter 5
discusses the Field-Programmable Gate Array (FPGA)-based evaluation of the mapping
strategies proposed in Chapter 3. Lastly, Chapter 6 concludes the thesis and gives an
outlook to future work.
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2 Background and Related Work

The main contributions of this thesis are the concept and architecture of a fault-tolerant
NoC that provides hard real-time guarantees to critical traffic in an MPSoC as well
as the development and evaluation of task and channel mapping strategies with the
goal of increasing the available network bandwidth for Best Effort (BE) traffic in order
to maximize the achievable total network utilization. Before the subsequent chapters
describe and discuss the details of said contributions, this chapter covers the necessary
basics of both on-chip communication in general and NoC in particular, including a
description of different types of NoCs. Afterwards, an overview over related work is
given, divided into three different topics: guaranteed service in NoCs, fault-tolerance in
NoCs, and task and channel mapping in NoCs. Lastly, a brief discussion on functional
safety is presented.

2.1 On-Chip Interconnect Basics

For decades, single shared buses have been the de facto standard for computer commu-
nication, both off-chip and on-chip, and even today they are the basic building block
that is used for on-chip communication in many SoCs and MPSoCs [18]. A shared bus
is often favored due to its simplicity. It can either be implemented with a single wire
as a serial bus or, more typically, with a set of wires as a parallel bus. A shared bus
is typically subdivided into individual address and data buses—possibly with individual
wires for both read and write transfers—and different configuration signals. Depending
on the bus protocol and the widths of the individual address and data buses, a shared
bus can easily consist of several hundred individual wires. A single shared bus—shown
in Figure 2.1a—is an efficient way of connecting modules in systems with only few initia-
tors or bus masters (ideally just one) and multiple target modules (i.e., bus slaves) [19].
However, a single shared bus does not scale well and quickly becomes a performance bot-
tleneck in systems with multiple bus masters. Furthermore, increased chip sizes result
in larger wire length which limits the clock speed at which the bus can operate.

Driven by multiple factors—most notably technology scaling, the breakdown of Den-
nard scaling, and the “power wall”—most computing systems, both desktop and em-
bedded, have moved from single processor systems to multi processor systems in the
last two decades [18]. This development made it necessary to find new approaches for
on-chip communication that are better suited to handle the increased communication
requirements. A logical first approach is to use multiple buses instead of a single shared
bus which lead to, e.g., the hierarchical bus and the split bus, shown in figures 2.1b
and 2.1c respectively. Both topologies allow for multiple bus transactions in parallel as
long as a transaction only involves the local bus segment. The hierarchical bus with bus
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Figure 2.1: Shared buses

bridges is a more complex approach. The bridges can provide buffers for the interaction
between different bus segments as well as—if necessary—clock domain crossing which
allows different buses to operate at different clock speeds or bus-width conversions in
case the bridged buses use different widths. The split bus, on the other hand, is typically
implemented with a simple tri-state buffer between the bus segments which requires less
hardware but does also not provide as much flexibility as a bridge [20, 21].

Systems that require a high amount of parallel transfers can use a full bus crossbar (or
bus matrix) as depicted in Figure 2.2a. A full bus crossbar—also called a point-to-point
bus—is essentially an individual connection from each master node to each target node.
It is easy to see that this comes with large hardware overhead—both in terms of wiring
and logic—as each target node needs arbitration logic in case several master nodes want
to initiate a data transfer at the same time. Variations are sometimes used in order to
decrease the hardware overhead, e.g., by using a shared address bus but a bus matrix for
the data bus, or by only implementing those connections that are needed in a deployed
system—if known beforehand—which results in partial bus crossbar.

A different well known topology is the ring bus which consists of a number of unidi-
rectional point-to-point connections that are arranged in a circular manner, often with
an additional ring bus in opposite direction to decrease the maximum distance between
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Figure 2.2: Buses allowing for a high amount of parallel transfers

any two nodes. Messages are forwarded through one or more of these connections until
reaching their designated destination.

An approach that is commonly used in modern SoCs is a hybrid topology where some
components are grouped together and connected to a shared bus segment or a bus cross-
bar. This allows more flexible designs and makes it easier to implement logical clusters
and different clock domains. An example for such an on-chip interconnect composed of
multiple buses and crossbars is depicted in Figure 2.2b.

A bus is traditionally a broadcast medium with all connected components listening but
only the designated modules reacting to a transaction. Both the bus crossbar and the ring
bus are already a clear step away from this paradigm since they both only consist of point-
to-point connections. Over the years, many different on-chip interconnect topologies
emerged using a mix of shared buses and point-to-point connections, often individually
tailored to specific use cases. The move towards NoC is essentially a gradual evolution
of the bus-based on-chip interconnects rather than a dramatic and sudden paradigm
shift [19]. Many of the emerged interconnects can already be classified as NoCs and—
especially in case of large SoCs with multiple shared buses and bus crossbars—the terms
“on-chip interconnect” and “NoC” are often used interchangeably.

As previously mentioned, the reason for the evolution of on-chip interconnects lays in
the ever increasing number of processing elements and the resulting demand for more
transaction parallelism. But even a full bus crossbar or ring bus only scales to a certain
point at which the hardware cost (in case of the former) or the communication laten-
cies (in case of the latter) become too large. One of the first works proposing on-chip
interconnection networks with a modular design was presented in [22] which laid the
foundation for what is now referred to as mesh NoC: an on-chip interconnect that, de-
pending on the topology used, scales approximately linearly with the number of nodes
in a system. The following sections will give an introduction to the mesh NoC basics
and discuss different types of mesh NoCs.
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One example for the described development of on-chip interconnects can be found
when looking at the evolution of Intel processors. With multiple cores, a single shared
bus was no longer sufficient to move the on-chip data fast enough which lead to the
utilization of a ring bus starting with the second generation of Intel Core processors
code-named Sandy Bridge [23]. However, with a further increasing number of cores the
ring bus once again became a bottleneck which first lead to the utilization of a second
ring and later—with even more cores—to an architecture with a mesh interconnect in
modern Xeon processors [24].

2.2 Mesh NoC Basics

Mesh NoCs have been a research topic for about two decades now and many different ap-
proaches and topologies have been proposed, evaluated, and in some cases implemented
in various research and commercial devices. This makes it impossible to cover every
aspect of mesh NoCs in this thesis. Instead, this and the following sections give an in-
troduction to mesh NoCs and discuss the basics that are required in order to comprehend
the following chapters. For a comprehensive introduction to mesh NoCs the interested
reader is directed to additional sources such as [18, 19, 25]. For the remainder of this
thesis NoC refers to a mesh NoC unless stated otherwise.

As the name suggests, NoCs are an attempt to apply principles from large-scale net-
works to on-chip communication. The basic building blocks of a NoC-based system are
nodes, routers (or switches), and links. Routers have multiple input and output ports,
which are connected to other routers by links. Together, they build the actual NoC.
Nodes can contain processing elements—e.g., CPUs, Digital Signal Processors (DSPs),
or special accelerators—shared memory blocks, I/O ports for off-chip communication,
or a combination of different components which are then often connected by a local
bus. Each node also contains a Network Interface (NI) (sometimes also called Network
Adapter (NA)) which connects the node to a router, thereby serving as gateway to the
NoC. Figure 2.3 shows an example of a NoC with its components1.

Similar to a full bus crossbar or a ring bus, NoCs consist of many point-to-point con-
nections. These point-to-point connections are unidirectional connections between the
routers as well as between each NI and its neighboring router. Two unidirectional point-
to-point connections in opposing directions are typically combined to (and depicted as)
a single bidirectional connection over which information can be transmitted concurrently
in both directions (cf. Figure 2.3). Inside the routers, a crossbar switch is used to con-
nect the incoming and outgoing connections as needed. As such, NoCs are essentially
a very specific combination of point-to-point connections and crossbars to connect the
different modules of a SoC.

In contrast to buses—no matter if simple shared buses, full bus crossbars, or ring
buses—NoC links are not subdivided into address and data links and only have a few
additional signals, e.g., to indicate valid data or implement flow control. As a result, NoC
links typically have fewer wires than buses. Furthermore, different nodes or modules are

1The depicted NoC topology would be considered irregular.
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Figure 2.3: Example mesh NoC with nodes, routers, links, and network interfaces

not accessed with a memory address as is done in buses. Instead, messages are sent
through the NoC according to a specific protocol (depending on the type of NoC) which
will be covered in the following Sections. The main purpose of the NI is to translate the
bus protocol that is used within a node to the NoC protocol and vice versa.

Different NoC topologies have been proposed and evaluated over the years and are
divided into three general categories: direct networks, indirect networks, and irregular
networks. Among the most common ones are direct network topologies, four of which
are presented in the following. Direct networks have the property that with a growing
number of nodes the number of routers and links also increases which, in turn, increases
the total available bandwidth [18]. The major trade-off is between connectivity (resulting
in lower latency and higher total bandwidth) and cost. Among the simplest direct
topologies are the fully connected mesh NoC and the ring NoC (shown in figures 2.4a
and 2.4b), as they are essentially equivalent to the full bus crossbar and the ring bus
respectively. Both are viable solutions for a small amount of nodes (typically within the
single digit range) but don’t scale well for a larger amount of nodes. The point-to-point
topology does not scale well due to the quickly increasing cost and the ring topology due
to the quickly increasing communication latency.

Two very popular topologies are the 2D mesh NoC and torus NoC, shown in figures
2.5a and 2.5b respectively. In a 2D mesh, each router is connected to two, three, or
four neighboring routers depending on whether it is located at a corner, edge, or in the
center (i.e., not at a corner or edge) of the NoC. All links have the same length which is
advantageous for the physical design of the network. The size of the NoC as well as the
total available bandwidth scales linearly with the number of nodes. A disadvantage is
that the connectivity of the corner and edge routers—and thereby the nodes—is lower
than for the central routers. Furthermore, communication latency can become an issue
for very large meshes as the average distance between any two nodes increases (although
much slower than, e.g., with a ring topology). Both factors also typically lead to a higher
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Figure 2.4: Simple NoC topologies

network utilization and possible congestion in the center of the NoC which should ideally
be compensated by suitable routing algorithms.

The disadvantages of a 2D mesh can be mitigated with a torus topology. Here, there
are no corner or edge routers, meaning every router is a central router. This leads to a
more equal utilization of the available links and, furthermore, to a lower latency than
that in a mesh. However, a torus has the disadvantage that more (costly) wiring is
needed, from each side fo the chip to the opposite one. This also means that the links
are not all equally long which negatively affects the maximum clock speed at which the
NoC can operate. However, another advantage, which both mesh and torus topology
share, is that routing is fairly simple and can easily be implemented in hardware.

As can be seen in Figure 2.5, both mesh and torus have a tiled layout which simplifies
chip design and is another reason for their popularity. Due to this tiled layout, nodes are
also called tiles. In a tiled NoC, the directions in which information can travel are referred
to by the four cardinal directions: north, east, south, and west. Accordingly, (central)
routers have five input and output ports: northern, eastern, southern, western, and local
port, the last of which is connected to the NI of the local node. For the remainder of this
thesis the focus will be put on the 2D mesh topology—as it is one of the more popular
ones—and MPSoCs that use a 2D mesh NoC for on-chip communication.

Besides their topology, NoCs can be categorized regarding their switching strategy
and routing algorithm. The following sections will give an overview over the different
approaches and their respective traits.

2.2.1 Switching Techniques

The nodes in a NoC generate and send messages of varying length to one another. How
these messages are organized and how they flow through the NoC is determined by
the switching technique or strategy. The two main techniques are packet switching and
circuit switching. Both techniques share a few commonalities regarding data organization
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Figure 2.5: Tiled NoC topologies

on link level but are, besides these, fundamentally different. The commonalities are
described in the following paragraph.

In both, NoCs that use packet switching and NoCs that use circuit switching, data
is transferred between the routers via links which have a fixed bit width. The width of
the links determines the most basic unit of data in a NoC: the phit (physical unit). A
phit is the amount of data that is transferred over a link in a single clock cycle. In order
to avoid buffer overruns, the data transfer between two routers is synchronized on link
level with so called flits (flow control units). A flit consists of at least one phit but can
also comprise multiple phits. How these phits and flits flow though the NoC depends on
the switching technique used. The individual traits of both packet and circuit switching
are covered in the following sections 2.2.2 and 2.2.3. Hybrid approaches are introduced
in Section 2.2.5.

2.2.2 Packet Switching

With packet switching, each message is partitioned into data packets—consisting of one
or more flits—which are then sent out as individual entities. Each packet has its own
header flit which contains at least the routing information for that packet and possibly
additional information such as a traffic class or control data. The header flit is typically
followed by a number of body flits and a tail flit marking the end of the packet. The
body and tail flits carry the payload, i.e., (part of) the message. Some NoCs also use
single flit packets, e.g., for control messages.

Figure 2.6 shows the hierarchy of message, packet, flit, and phit. In this example
packets can be up to four flits long, including the header flit, and each flit consists of
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Figure 2.6: Hierarchy of messages, packets, flits, and phits

four phits. However, in most NoCs flits and phits are the same size which effectively
removes phits from the hierarchy and makes flits the smallest data unit. One example
for a special case is Nostrum, where one packet equals one flit which equals one phit (all
three are determined by the link width which is 128 bit) [26]. For the remainder of this
thesis flits are assumed to be the smallest data unit in a NoC unless stated otherwise.

Each packet is individually routed through the NoC according to the applied routing
algorithm (discussed in Section 2.2.6). This means that different packets from the same
source to the same destination can potentially take different paths and experience differ-
ent latencies which, in turn, could lead to packet reordering. Packets are sent out by the
NI as soon as they are created, no matter the state of the NoC2. This means that they
will both cause and experience congestion in the network which can greatly increase the
latency of a packet (congestion is further discussed in Section 2.2.7). The consequence
is that it is very difficult in packet switched NoCs to give any Quality of Service (QoS)
guarantees such as bound latency or a minimum bandwidth.

Figure 2.7 shows an overview over a typical simple packet switched router and its
components. The main components are an input buffer—typically in the form of a simple
First In, First Out (buffer) (FIFO)—a routing computation module at each input port, a
switch fabric connecting the input ports to the output ports, and an arbiter. The routing
computation module determines the output port to which an incoming packet will be
forwarded. This can be as simple as a static lookup table or more complex to implement
dynamic routing. The arbiter is responsible for resolving possible contention in case
multiple packets are routed to the same output port at the same time. More elaborate
designs are possible and can help to increase the throughput or reduce congestion (e.g., by
introducing pipelining of different processing steps such as routing computation, switch
allocation, etc., cf. [25]).

There are three different packet switching schemes: store and forward, virtual cut
through, and wormhole switching. The first two are virtually never used in NoC since
a packet is only ever sent to the subsequent (or downstream) router if that router has
enough buffer space to receive the entire packet3. This leads to large buffer requirements

2Unless this is prevented by suitable measures, as is discussed in Section 2.2.7.
3Once again, Nostrum is a special case using store and forward switching but with only single flit

packets. [26]
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Figure 2.7: Simple packet switched router

and, in case of store and forward, additionally to a high latency. Hence, these two
switching schemes will not be further discussed here.

Most packet switched NoCs use wormhole switching (e.g., [27, 28, 29]). With wormhole
switching, a flit can be sent to the downstream router if that router has at least buffer
space for that one flit. This means that the minimum buffer requirements for each
input port of a router are reduced to just one flit4. However, the consequence is that a
single packet is typically stretched across multiple routers (stretched through the NoC
like a worm, hence the name). If a packet is blocked due to no buffer space being free
at a downstream router, several links occupied by the packet are blocked as well which
increases interference with other packets and, thereby, leads to a higher congestion in the
NoC. Additionally, this can lead to deadlocks (both congestion and deadlocks are further
discussed in Section 2.2.7). One common way to mitigate link blocking is to use Virtual
Channels (VCs) (sometimes referred to as virtual links) [25]. VCs are implemented
by instantiating multiple buffer queues in parallel which are then multiplexed on the
physical link. If one VC is blocked it is still possible to transmit packets on another one.
The downside, however, is that this can drastically increase the size of the routers due
to the additional buffer queues and necessary arbitration logic.

Typically, the largest parts of a packet switched NoC router are the buffers which not
only results in large area requirements but also a considerable power consumption [30].
Bufferless NoCs have been proposed as a way to reduce the size and power consumption
of the routers [31, 32]. In a bufferless NoC, flits are only stored at each router for a single
clock cycle and then immediately forwarded (or dropped) in the next cycle. Therefore,
each input port of a router has only a single register stage holding one flit. The downside
of bufferless NoCs is that they are only efficient for relatively low amounts of traffic.

4Ideally, the buffer size is at least two flits in order to avoid stop-and-go behavior and allow the full
bandwidth to be used [25].
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Overall, packet switching is a very popular switching strategy due to its great flexi-
bility and relatively simple implementation of a basic NoC. In general, packets are sent
individually and without knowledge about the status of the NoC which makes them
suitable for systems in which the communication patterns and traffic loads are dynamic
or not entirely known at design time. However, giving QoS guarantees is very difficult
in packet switched NoCs—as will be discussed in Section 2.2.7—which makes it difficult
to use them in safety-critical systems.

2.2.3 Circuit Switching

The origins of circuit switching go back to the early analog telephone networks where
lines were physically switched in order to establish an electrical circuit between two
telephones [33]. The lines used were reserved for the duration of the call and, thereby,
blocked for all other communication. Similarly, with circuit switching used in a computer
network or NoC, a communication channel is established by reserving a physical path—
made up of a series of routers and links—between a source and destination node prior to
any data being sent. Channels are typically established on-demand. One possible way of
setting up a channel in a NoC is by sending a special header flit along a path and reserving
the traversed links [18, 34]. If the channel is successfully set up, an acknowledgement
is sent back to the initiating node to signal that the transmission can start. Once the
transmission has finished, the channel is typically torn down by another special flit.

In contrast to packet switching, circuit switching does not require packetization of
the messages sent. All flits of a message follow the same previously set up path. This
not only makes header flits unnecessary but also ensures that all flits arrive in the same
order that they were sent in. For the hierarchy depicted in Figure 2.6 this means that
the packet layer is removed and the entire bandwidth of a communication channel can
be used for the payload.

Circuit switching makes it easily possible to give QoS guarantees—at least once a
channel has been established—since the entire bandwidth of the links is reserved for
the channel, leading to low latency transfers. In contrast to packet switching, a message
must wait initially until a channel as been set up—instead of being sent out right away—
but experiences minimal latency afterwards. This makes it ideal for the transmission
of larger amounts of data where the initial delay is less relevant. Circuit switching can
also be a good choice when data is sent very often and/or the communication pattern
is relatively static and known beforehand (e.g., known at design time, or known to be
periodic so a channel can already be established right before it is needed). However,
during the transmission, no other channel can use the reserved links which means the
approach does not scale well with growing NoC size [18]. For this reason pure circuit
switching is practically not used in NoCs [19]. An exception, however, is the SoCBUS
[35].

An alternative to pure circuit switching—and a way to mitigate its drawbacks—is
virtual circuit switching. There are two ways of implementing virtual circuit switching.
One way is to use multiple buffers for each link, similar to mitigating the drawbacks of
wormhole switching in packet switched NoCs by using VCs. NoCs that use this type
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of virtual circuit switching include [36, 37]. This approach, however, also leads to large
routers due to the additional buffers and to potentially very high worst-case latencies
of the flits sent, even if a specific bandwidth can be guaranteed. At least the latency
issue, though, can partially be addressed by using advantageous scheduling of the input
buffers (e.g., [38]).

The other way of implementing virtual circuit switching is by only using a single-flit-
buffer for each link and employing TDM throughout the NoC to schedule the usage of
links between different virtual circuits. This switching scheme makes it easy to provide
end-to-end QoS guarantees—specifically regarding the worst-case latency—and results
in very small, cheap, and fast routers [39]. Virtual circuit switching using TDM plays
a crucial role in the NoC presented in this thesis and will, therefore, be discussed in
further detail in the following Section 2.2.4.

2.2.4 TDM NoCs

The first NoC using TDM to implement virtual circuit switching was the Æthereal
NoC [40, 41, 42]. The Æthereal NoC uses “contention-free routing, or pipelined time-
division-multiplexed circuit switching” in order to provide QoS to critical traffic. For
the remainder of this thesis this principle will simply be referred to as TDM NoC.

In a TDM NoC, each network node (i.e., router and NI) has a slot table T with
S slots that stores the routing information for each output and each time slot. All
nodes cycle through their slot tables synchronously. In each time slot t, the output
ports of the routers forward flits from a defined input port according to the slot table
entry for that slot. A connection (or TDM channel) is set up by configuring consecu-
tive slot tables along a path to forward flits in subsequent time slots t + 1, beginning
and ending with the sending and receiving NI respectively. As a consequence, TDM
channels are inherently unidirectional, meaning that two individual channels—one per
communication direction—must be set up in cases where a bidirectional communication
is necessary. TDM NoCs typically require the NoC to be fully synchronous, meaning all
routers and NIs must be in the same clock domain. This might be problematic for large
designs, as will be discussed in Section 2.2.7. It is, however, also possible to use TDM
in mesochronous or even asynchronous NoCs as well [43, 44, 45].

Figure 2.8 shows the basic principle of a TDM NoC with two TDM channels: a and b
(for simplification, only the slot table columns that are being used are depicted). In this
example, the slot table size is four which means up to four different TDM channels can
theoretically share any given link, with each channel being able to use 25% of the link’s
total bandwidth5. However, in the example shown channel a uses two slots, meaning it
can use up tp 50% of the link’s total bandwidth.

A slot can have a duration of multiple clock cycles or just one. If it lasts for multiple
cycles, flits are sent over a TDM channel in blocks, which propagate through the NoC
in a store and forward fashion. This, however, increases the buffer requirements in

5The total number of possible NoC channels is of course higher and is usually limited by the size of the
network as well as the number of applications and their mapping.
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Figure 2.8: Basic TDM scheme with two channels a and b (local links not shown)

the routers. Therefore, a slot duration of just one clock cycle will be assumed for the
remainder of this thesis.

With a duration of just one cycle, the input buffers at each router can be reduced
to a single register stage making the routers very small. Figure 2.9 shows an overview
over the resulting TDM NoC router. As can be seen, the router is much simpler than
its packet switched counterpart depicted in Figure 2.7. Once injected, a flit will take
exactly as many cycles to reach its destination as the destination is hops away. The NIs
write/read flits to/from the network according to their slot tables. Messages sent from
one node to another only ever face (a deterministic) delay at the sending NI.

TDM NoCs are advantageous for safety-critical traffic since the pipelined forwarding
guarantees a deterministic latency. Furthermore, since a fixed number of slots is assigned
to a channel the connection also has a guaranteed bandwidth and is isolated from other
channels, thereby ensuring QoS by design. It is up to the developer to ensure that
the traffic generation rate of a sending node does not exceed the amount of bandwidth
reserved for that node. Contentions cannot occur in a TDM NoC since the time slots
for each connection are reserved in advance. The disadvantage, however, is that the
reserved bandwidth of a channel is typically overprovisioned which in turn leads to an
underutilization of the network as a whole since reserved resources cannot be used by
other connections, even if they are not used at a time. This is a general disadvantage of
circuit switched NoCs and it is particularly problematic for dynamic and unpredictable
traffic patterns. For these reasons, packet switched NoCs are generally more popular.

One of the main design parameters of TDM NoCs is the slot table size. Larger slot
tables allow for more flexibility when reserving slots for TDM channels since bandwidth
can be reserved in smaller quantities. With a slot table size of four, e.g., each channel
is assigned at least 25% of the available link bandwidth, even if much less is used. The
unused bandwidth cannot be used by other channels and is, therefore, lost. A larger
slot table also allows more channels to share a single link. However, large slot tables
can increase the router size considerably. Furthermore, large slot tables negatively affect
the message latency (this is further discussed in Section 3.3). Therefore, a trade-off has
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to be made when defining the size of the slot table between flexibility and bandwidth
reservation granularity on the one hand and cost and message latency on the other hand.

There are other ways of implementing a TDM NoC than the one described above.
One such way is by removing the slot tables from the routers and only keeping the slot
tables in the NIs. This, however, means that a) a slot must have a duration of multiple
clock cycles and b) routing information (in form of a header) must be added to the flits
sent, essentially resulting in a packet switched NoC. The difference to a typical packet
switched NoC is that the NIs only sent packets in reserved slots—according to their slot
table—which eliminates contention in the routers.

Slot Table Configuration

One important aspect of any NoC that uses TDM is the question of how to configure the
slot tables in the routers and NIs. This question is also tied to the general architecture
and use case of the NoC and, hence, different approaches exist.

The most rigid approach would be a completely static configuration that is defined
at design time and cannot be altered once the system is deployed. This has the ad-
vantage that it comes with low complexity and guarantees that a TDM channel cannot
accidentally be overwritten. However, although there may be some use cases where this
static configuration is acceptable, or even desired, most systems will need the flexibility
to adjust the communication channels after deployment.

If the slot tables must be adjustable at runtime they must have an interface for the
configuration and they must somehow be connected to the entity (or entities) configuring
the tables. Generally, there are two different approaches to configure the slot tables:
centralized or distributed. Furthermore, there are four different general approaches of
connecting the slot tables to the configuring entity (or entities): by using an overlay
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network, probe-based, direct wiring to a central entity, or by using packet switched
traffic6.

Distributed Configuration

In systems with distributed configuration the sending NIs typically try to configure a
specific path without having prior knowledge of the slot tables in the system. The
configuration can be done by either using packet switched traffic—if available—or probe-
based, as proposed in [34].

Distributed configuration scales well since no global knowledge is necessary. Individual
NIs can set up a TDM channel when needed and tear it down when it is no longer needed.
However, the drawback is that it cannot be guaranteed that a TDM channel can be set
up or how long it will take to find a free path (i.e., unless the channels are already defined
at design time and only set up by the NIs at start time). Hence, this method is unsuited
for systems with safety-critical hard real-time traffic.

Centralized Configuration

Systems with centralized slot table configuration have a central NoC manager unit that
has global knowledge of the configuration of all slot tables and that can configure the
tables. This NoC manager can, e.g., be one of the processing nodes in the system or
a dedicated hardware module. With its global knowledge, the NoC manager can find
optimal or near-optimal paths for each TDM channel and immediately knows whether
or not an additional channel can be mapped. Furthermore, with additional knowledge of
the status of the NoC links the manager can quickly react to any faults in the network.
The disadvantage of a central management unit is that it limits the scalability of the
system [40]. It is possible to overcome this limitation by using multiple management
units, however, this increases the complexity and means that a single manager no longer
has global knowledge of the system.

The NoC manager can be connected to the slot tables either with direct wiring, with
an overlay network, or by using packet switched traffic. Direct wiring—as depicted
in Figure 2.10a—generally does not scale well and is, therefore, only a sensible choice
in relatively small systems. An overlay network increases scalability but comes with
additional hardware cost. However, the overlay network can be much simpler than the
main NoC and, e.g., use smaller links and operate at a lower frequency. An example
for an overlay network is shown in Figure 2.10b. There is also no need for the overlay
network to be fully connected. Instead, other topologies such as a spanning tree can
be used [46]. Lastly, packet switching can be used in hybrid NoCs (further discussed in
the following Section 2.2.5). This has the advantage that existing infrastructure can be
used.

In addition to the connection to the slot tables, a connection to the nodes is necessary
which can be implemented in a similar way. This connection is necessary in order for
the nodes to be able to request TDM channels. Even if the channels are not requested

6Only possible if the NoC also supports packet switching, cf. Section 2.2.5.
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Figure 2.10: Central configuration with a NoC manager

but automatically set up at system start time, the NoC manager must signal the NIs
when the channels are set up and they can start sending data.

Centralized configuration is generally better suited for systems that require QoS since
all decisions are made by a single privileged entity.

2.2.5 Hybrid NoCs

Both packet switching and circuit switching have their strengths and weaknesses. Packet
switched NoCs are very flexible but the implementation of QoS is typically costly. Circuit
switched NoCs, on the other hand, can easily implement QoS but are less flexible and
often suffer from underutilization. It is, hence, an obvious approach to try and combine
both switching techniques in order to mitigate the downsides of either. The result is a
hybrid NoC.

There are many different hybrid NoCs that can and have been proposed and imple-
mented. One approach, e.g., combines Spatial-Division Multiplexing (SDM) with TDM
and packet switching, another one uses circuit switching for important messages along-
side packet switching [47, 48]. The previously mentioned Æthereal NoC also defines a
configuration as a hybrid NoC [40]. This section describes a hybrid TDM and packet
switched NoC that is similar to the ones proposed in [40] and [49]. The described NoC
builds the basis for one of the main contributions of this thesis: a fault-tolerant NoC
that provides hard real-time guarantees to critical traffic in a MPSoC.

To implement both virtual circuit switching with TDM and packet switching, the
routers of the NoC are essentially divided into two parts, one handling the TDM traffic,
the other one handling the packet switched traffic. A structural overview over a hybrid
router is given in Figure 2.11. Incoming flits are identified as either TDM or packet
switched flits and then forwarded accordingly. TDM flits are stored in the register stage
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of the input port. Packet switched flits are added to the buffer queue for packet switched
traffic and the header flits are inspected to determine the next hop of the packet. In each
cycle, the slot table configures the switch fabric according to the connections that are
reserved for TDM traffic, if any. The arbiter then configures any remaining connections
that can be used by the packet switched traffic while resolving occurring contention and
ensuring bandwidth is fairly shared between all input ports. It is important to note
that the TDM routing is still contention-free since a scheduled TDM flit has always
precedence over packet switched traffic and two TDM flits can never collide by design.

The use of a hybrid NoC increases the overall network utilization compared to a pure
TDM NoC since the packet switched flits can fill the otherwise free time slots. This
also means, packet switched traffic can use paths on which no additional TDM channel
would be possible. This is the case if enough slots are free on each link along a path but
the slots are not consecutive, thereby making a TDM connection impossible7. Packet
switched traffic can even use reserved but unoccupied TDM slots, a technique known as
time-slot stealing [49]. An example of this practice is shown in Figure 2.12. In addition
to the TDM channels a and b, packet switched traffic traverses the link from router
R1 to router R2. The packet switched traffic not only uses the unassigned slot in the
routing table (slot 1) but also the slots of channel a (slots 0 and 2) whenever the slots
are not used for TDM traffic. It should be noted, though, that this practice weakens
the isolation between the TDM and packet switched traffic to a certain degree. The
TDM traffic will always be able to use the full bandwidth that has been reserved but
the packet switched traffic might be able to observe traffic patterns of the TDM traffic,
potentially enabling side-channel attacks [50, 51]. Time-slot stealing should therefore
not be allowed for TDM channels that are used for secure communication.

There are different incentives to use a hybrid TDM and packet switched NoC over a
pure TDM or packet switched NoC. The hybrid approach allows it to individually use
the best suited switching technique for each application in a system. TDM can be used
to give QoS guarantees to critical applications or to temporarily speed up large transfers

7This is a problem that is related to the mapping of TDM channels and will be discussed in Section 3.5.2.
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Figure 2.12: Hybrid NoC with TDM and packet switched traffic (local links not shown)

(e.g., [49]). Packet switching, on the other hand, can be used for dynamic workloads
and BE applications and increases the overall flexibility and network utilization.

The downside of a hybrid TDM and packet switched NoC is that the hybrid router
is more complex than either of the simple routers depicted in figures 2.7 and 2.9 re-
spectively. The reason is obvious: the hybrid router must implement the logic to handle
both types of traffic and additionally implement logic to arbitrate between the two traffic
types. However, many packet switched NoCs go great lengths to increase performance
by using VCs or implement QoS to varying degrees, thereby greatly increasing the size
of the routers. In contrast, the packet switched part of the described hybrid NoC can be
very basic since TDM can be used to give QoS guarantees. Therefore, the hybrid TDM
and packet switched router can even be smaller than a state-of-the-art packet switched
router (an example is presented in Section 4.4.1). In general, a system developer has
great freedom regarding the complexity of the packet switched part of the hybrid NoC
(e.g., number of virtual channels, traffic classes, routing scheme, etc.).

2.2.6 Routing Algorithms

The routing algorithm of a NoC determines how packets (or circuits) are routed through
the network, i.e., which path(s) can be taken. The selection of an algorithm has an effect
on different metrics of the NoC such as power consumption, area cost, robustness, and
performance. Routing algorithms can broadly be classified as static or dynamic routing,
distributed or source routing, and minimal or non-minimal routing [18, 19].

Static and Dynamic Routing

With static routing (also called deterministic or oblivious routing) the paths between any
two source and destination nodes are determined at design time. These predefined paths
are always taken regardless of the current state of the NoC (i.e., regardless of current link
load or contentions). It is possible to split data among multiple paths in a predefined
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manner but often only a single path is defined for any given source/destination pair
(which has the advantage that out of order delivery is avoided). Static routing has the
advantage that it is typically very cheap to implement in hardware. However, static
routing algorithms typically suffer from poor load balancing since it is not possible to
react to congestion.

One of the most common static routing algorithms used in 2D mesh NoCs is XY
routing (or, more general, dimension-order routing [52]). Here, flits first travel along
the X-axis of the mesh (horizontally) until the reach the same column as their destina-
tion node. They then travel along the Y-axis(vertically) until reaching the destination.
Despite its shortcomings (most notably the poor load balancing), XY routing is widely
used since it is very cheap to implement and it avoids deadlocks (further discussed in
Section 2.2.7) [19].

In contrast to static routing, dynamic (or adaptive) routing algorithms base their
routing decisions on the current status of the NoC which leads to better load balancing
and an overall higher link utilization since congested links can be avoided. This means
that the path from a source to a destination node can change over time. However, this
also means that packet reordering can become an issue. Dynamic routing algorithms
are more difficult to implement than static ones and require monitoring of the NoC. An
example for a dynamic routing algorithm is presented in [53].

Distributed and Source Routing

The routing algorithms—both static and dynamic—can be further differentiated depend-
ing on where the routing information is stored or the routing decision is made. When
using distributed routing in a packet switched NoC, each header flit contains information
about the destination node (i.e., the identifier or, in a 2D mesh, the XY coordinates of
the destination node). Using this information, each router decides independently what
the next hop of the flit(s) will be. This can either be implemented with precomputed
routing tables or by executing a hardware function.

Routing tables are typically a good solution for static routing algorithms and relatively
small NoCs as they can grow considerably with increasing NoC size. Implementing a
hardware function, on the other hand, typically leads to router sizes that are independent
from the NoC size. An example for an algorithms that can easily be implemented in
hardware is static XY routing. In this case each router can compare the destination
coordinates to its own coordinates and then forward flits accordingly.

TDM NoCs typically also use distributed routing in form of slot tables in the routers,
making header flits unnecessary. In contrast to the routing tables used for distributed
routing in packet switched NoCs the slot tables do not necessarily grow in size in larger
NoCs.

When using source routing, the route of the flits that are sent are determined at the
sending NI. Similar to distributed routing this can be implemented using either routing
tables or implementing a hardware function (or even a software function in a processing
element). In this case, the header flit holds the information about the path that is taken
through the NoC. This is typically done by storing the number of the output port that
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is taken at each router along the way. Each router extracts the information about the
output port and rotates the routing information in the header for the next router. This
leads to a very compact router design and a router size that is independent from the
size of the NoC.

Source routing is typically only used in packet switched NoCs due to the requirement
of a header flit. However, it can also be used in a TDM NoC. As an example, source
routing is used for TDM traffic in one of the configurations defined by the Æthereal NoC
in which the slot tables are removed from the routers and only the slot tables in the NIs
remain [40].

The downside of source routing is that it requires larger link widths with increasing
NoC size since the number of required bits to store the routing information grows linearly
with the maximum hop distance. In a 2D mesh topology, 3 bits are required for each
hop to encode the five possible output ports (four outgoing links to neighboring routers
plus the local link). This means that, e.g., in an 8x8 mesh NoC—which has a maximum
hop distance of 15—a link width of 45 bits would be required. Hence, source routing
does not scale well with growing NoC size.

Minimal and Non-Minimal Distance Routing

Routing algorithms can be further classified depending on whether or not they allow
non-minimal distance paths to be taken. A typical example for an algorithm that only
allows minimal distance paths is XY routing (which is even more strict since only exactly
one path is allowed). Allowing non-minimal distance paths gives greater flexibility and
can, e.g., allow to avoid congested links (i.e., if dynamic routing is used). However,
non-minimal distance routing algorithms are typically more complex to implement than
minimal distance algorithms and can lead to a power overhead.

2.2.7 Challenges in NoC Design

In addition to the major aspects of NoCs described in the previous sections, this section
briefly covers some of the challenges that can occur when designing a NoC. Furthermore,
common approaches to address these challenges are discussed.

Deadlocks and Livelocks

One problem that especially packet switched NoCs using wormhole switching are prone
to are deadlocks [54]. When a deadlock occurs, one or more packets are blocked and
waiting for an event that cannot happen. This typically happens when multiple packets
are blocked by each other in a circular manner. An example can be seen in Figure 2.13.
Here, packet p1 is blocked by packet p2, which itself is blocked by p3 which again is
blocked by p4 which is blocked by p1. The result is a situation in which all packets are
blocked indefinitely.

There are two different ways to address deadlocks. They can either be resolved once
they occur using deadlock recovery or they can be avoided from forming in the first
place using deadlock avoidance. Examples for deadlock recovery are presented in [55]
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Figure 2.13: Deadlock situation

and [56]. More common, however, is the approach of deadlock avoidance. Deadlock
avoidance is typically the responsibility of the chosen routing algorithm. In order to avoid
deadlocks, the routing algorithm must make circular dependencies like the one depicted
in Figure 2.13 impossible. This is typically done by building a dependency graph of the
shared network resources and—statically or dynamically—analyzing whether the graph
is cyclic.

An example for deadlock avoidance is based on the turn model which prohibits packets
from taking certain turns in a router [57]. There are eight possible turns in a 2D mesh
NoC, shown in Figure 2.14a: north-east (NE), north-west (NW), south-east (SW), south-
west (SW), east-north (EN), east-south (ES), west-north (WN), and west-south (WS).
By restricting the allowed turns to only a specific sub-set of these turns it is possible to
guarantee that circular dependencies cannot occur.

One of the more restrictive routing algorithms based on the turn model to guarantee
deadlock freedom is, once again, XY routing. XY routing—as shown in Figure 2.14b—
prohibits four out of eight possible turns: SW, SE, NW, and NE. The remaining turns
can never cause a circular dependency. Even adaptive routing algorithms are possible
with the turn model. An example for this is west first routing which only prohibits
two out of eight possible turns (as shown in Figure 2.14c). Using VCs can also aid
in avoiding deadlocks and, furthermore, increase the overall network throughput by
reducing blocking of packets [57]. However, the number of VCs needed to completely
solve the deadlock problem is large which in turn leads to large and costly routers [58].

A different type of deadlock—although occurring only relatively rarely under typi-
cal circumstances—is the so-called message dependent deadlock [59, 60]. It occurs when
messages build circular dependencies, virtually creating turns which are normally forbid-
den. One way of addressing this issue is by suitable end-to-end flow control mechanisms.
Another way that has been proposed is by dropping selected packets [61].
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Figure 2.14: Deadlock avoidance based on the turn model

Another potential problem are livelocks. A livelock can occur when adaptive routing
is used and a packet is routed through the NoC indefinitely without ever reaching its
destination. One scenario in which this can happen is when deflective routing is used
(e.g., [26]). With deflective routing, a flit must always be forwarded in the next cycle
due to a lack of buffers in the routers. If the desired output port is not free, the flit
must be forwarded to another port. This can potentially lead to the flit never reaching
its destination. However, such livelock scenarios can typically be avoided by applying
priority rules.

Congestion and Flow Control

A typical problem in packet switched NoCs is contention and—as a direct consequence—
congestion. Contention occurs when two or more packets try to access the same shared
resource (link and/or buffer) at the same time. In this case, all but one of the packets
must wait until the requested resource is free. Following packets are also stalled leading
to congestion and potentially head-of-line blocking (meaning a following packet has to
wait although the shared resource that it requests would be free) [25]. The stalled packets
may themselves block shared resources down the line that other packets request. This
worsens the situation and can now also affect packets that would not even traverse the
router where the initial contention occurred resulting in secondary congestion [19].

A similar problem occurs if a pair of communicating nodes is not balanced regarding
their respective traffic generation and consumption rates. If a source node generates
and injects messages faster than the sink node can consume the messages the result is
backpressure. This causes congestion much in the same way contention does.

Both congestion caused by contention and backpressure have a severe impact on the
performance of a NoC and should, therefore, be avoided. Congestion is avoided or at
least mitigated by congestion control techniques whereas backpressure is avoided by
end-to-end flow control, both of which are briefly discussed in the following paragraphs.

Congestion control can be divided into two categories: congestion control with and
without resource reservation [19]. Congestion control without resource reservation can be
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achieved by dropping packets, avoiding congested links or routers by actively rerouting
traffic around them, or limiting the flit injection rate into the NoC. Dropping packets
is usually not used in NoCs since lossless communication is typically assumed. Fur-
thermore, dropping packets can lead to an even higher congestion, thereby reducing
the achievable utilization of a network [62]. However, some bufferless NoCs use packet
dropping on contention (e.g., [31]). Another approach drops only individual flits of a
packet—thereby compromising the integrity of a packet—and later recovering lost infor-
mation with coding techniques [63].

When dynamic routing is used, routers can actively avoid links that are congested
or on which contention occurs and forward incoming packets to other output ports
instead (in order to avoid congestion). An example for this approach is Nostrum which
uses deflection routing [26]. In general, deflection routing—or “hot-potato” routing—is
commonly used in bufferless NoCs [64, 65]. Furthermore, if knowledge about congestion
is shared with neighboring routers and propagated through the NoC it is possible to
avoid congested routers entirely (e.g., [66, 67]). Lastly, congestion can be limited by
limiting the flit injection rate of the NIs [68, 69]. This can be done either statically or
dynamically based on measurements done with monitors in the NoC (e.g., [70, 71]).

The described congestion control techniques without resource reservation are inher-
ently reactive but cannot avoid congestion to occur in the first place. In order to avoid
congestion it is necessary to reserve resources in advance. Some packet switched NoCs
with resource reservation use global scheduling [72], looped containers [26], or reserve
resources on-demand [73].

Contention and congestion are problems that typically occur in packet switched NoCs
but are (mostly) not an issue in circuit switched and TDM NoCs. TDM—and by exten-
sion circuit switching in general—can be considered the most rigid form of congestion
control, especially if static scheduling is used. Once a communication channel is es-
tablished, contention is completely eliminated from the NoC which is why it is easily
possible to give QoS guarantees in TDM NoCs. However, contention can occur in TDM
NoCs that dynamically set up and tear down connections at runtime in case two nodes
want to establish a communication channel using the same resources at the same time.

Flow control determines how resources are allocated when packets or flits traverse
the NoC. It can be viewed as either a problem of resource allocation or of contention
resolution [52]. Flow control is applied on two layers: on data link layer for flow control
between the routers and on network or transport layer for end-to-end flow control.

Data link layer flow control allocates router resources and ensures that a receiving
router (or NI) has enough free buffer space to store the flit(s) sent. Three typical link
layer flow control protocols are STALL/GO, T-Error, and ACK/NACK, which all vary
in complexity, performance, and level of fault-tolerance [19, 18]. A very simple one is
the STALL/GO protocol. It only uses two control wires in addition to the data wires:
one going forward and signaling if a flit is valid and one going backwards and signaling
whether the buffer of the receiving router is full and the transmission must be stalled.

Data link layer flow control cannot avoid contention or congestion, but is used to
handle contention by ensuring that no data is lost. A special case are TDM NoCs which
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do not require control flow on the link layer since resources are reserved beforehand and
it is guaranteed that each flit will be forwarded in the next cycle.

End-to-end flow control on network or transport layer is used to eliminate congestion
caused by backpressure. This can, e.g., be achieved with, credit-based flow control of
sliding windows [19, 25]. Examples using credit-based end-to-end flow control are SPIN
[74], QNoC [75], and the Æthereal NoC for the packet switched BE traffic [40].

Although TDM NoCs do not require link layer flow control they typically do need
some form of flow control on the network or transport layer in order to ensure that
enough buffer space is available on the receiver’s side. Otherwise, flits would be dropped
in the receiving NI if the receiving buffers are full. However, if it can be ensured by
design that the traffic generation and injection rate of a sending node never exceeds the
consumption rate of a receiving node it would be possible to refrain from using flow
control.

Quality of Service

An issue that is directly connected to congestion and flow control—as well as the overall
NoC architecture and applied routing algorithms—is QoS. QoS is a common network
term that denotes network services that are provided by a network or required by applica-
tions. Typical QoS metrics are bandwidth (or Guaranteed Throughput (GT)), latency,
latency variation (jitter), or loss rate [76, 19]. The provided or required QoS can be
categorized, e.g., by average values or worst-case bounds.

Different application types require different levels of QoS. Video or audio streams,
e.g., typically require high bandwidth and low jitter, but can tolerate long latencies.
Data accesses due to cache misses, on the other hand, require low latencies but are
more lenient on jitter [77]. Traffic from different types of applications can be categorized
in different traffic classes with common QoS requirements (as, e.g., done in [77] and
[75]). NoCs, on the other hand, typically offer at least two different service classes, each
providing different QoS guarantees (two service classes typically means one Guaranteed
Service (GS) class and one BE class). Traffic of the different traffic classes can then use
the service class that best serves their requirements.

Most publications on NoCs refer to their offered service classes as traffic classes. Hence,
for the remainder of this thesis and unless otherwise specified traffic class denotes a
service class provided by a NoC.

The number of traffic classes that a NoC should provide is, in general, up to the
developer and highly depends on the intended use case of the system and the number
and types of applications that will communicate over the NoC. QNoC [75], e.g., pro-
vides four traffic classes, whereas the Æthereal NoC [40] offers just two (i.e., in hybrid
configuration). Providing more than two traffic classes can lead to problems itself since,
naturally, only one highest priority can exist making all other classes BE relative to
this class which, in turn, makes it difficult to give (hard) QoS guarantees. Furthermore,
mechanisms should be employed to avoid complete starvation of the lower traffic classes
unless absolutely necessary (i.e., the entire bandwidth is used by applications with higher
QoS requirements).
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In general, giving hard (100%) QoS guarantees is only possible using resource reser-
vation [19]. Relatively few NoCs have been implemented providing hard QoS. Examples
include the Æthereal NoC [40] and Mango [78]. When hard QoS guarantees cannot
be given it is only possible to give statistical guarantees assuming a particular average
traffic load.

QoS typically assumes a fault free network which is why fault-tolerance is usually not
considered when implementing QoS guarantees. Hence, mechanisms for fault-tolerance
will be discussed in a separate section.

Clocking

In order for a NoC to function properly, the transmission of flits between the routers and
NIs of the NoC must be synchronized. For simplification, a globally synchronous NoC has
implicitly been assumed in the previous sections and will be assumed for the remainder
of this thesis unless otherwise specified. However, the clock related challenges when
implementing a NoC are discussed in this section and typical approaches to overcome
these challenges are presented.

A fully synchronous system requires a single global clock which can only be realized
with a global clock tree. However, with shrinking feature sizes and a growing complexity
of modern SoC designs these clock trees become very large and complex, and account
for a considerable amount of the total power dissipation [79]. Therefore, a globally
synchronous system is often not feasible or desirable. A principle to overcome this issue
are Globally Asynchronous Locally Synchronous (GALS) systems in which synchronicity
is maintained only locally in different clock domains [80]. This, of course, causes issues
for the on-chip communication and specifically the NoC.

A GALS system may use a global clock to derive local clocks to maintain local syn-
chronicity. Two of these local clock domains can have the same frequency but the phases
of the derived clocks typically differ, making them mesochronous. This phase difference,
however, is constant in a mesochronous system. If the local clocks are not derived from
a global clock but instead created locally, the system is plesiochronous. In this case
the frequencies of two clocks will never be exactly the same which leads to an unknown
phase difference that shifts over time. SoCs are typically not plesiochronous since it is
more convenient to derive local clocks from one common clock. Therefore, this case will
not be further considered here.

Communication in a GALS system can be challenging. Different approaches, most
notably one using a self-timed ring, have been proposed in [81]. If a fully synchronous
NoC is not feasible, a mesochronous or asynchronous NoC can be used, e.g., by using
tokens between the routers. This is even possible for TDM NoCs as has been showed,
in [43, 44, 45].

Faults in NoCs

As mentioned in a previous section, QoS implementations focus on metrics such as
bandwidth and latency but typically assume a fault free NoC. However, as with any
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other part of a SoC, faults can and do occur, especially with the ever shrinking feature
sizes of modern systems. Therefore, this section gives an overview over possible faults
that must be considered in a NoC and discusses the relevant terminology. A more
comprehensive discussion is presented in [82].

There are different physical failure mechanisms that can cause a malfunction at the
lowest layer of a NoC, i.e., in a transistor or wire, leading to a fault. If this fault changes
information in comparison to the fault-free case it manifests in an error, otherwise it is
masked8. If an error propagates to the output of a hardware module it is said to have
cause a failure. Similar to a fault, an error can be masked in which case it does not
cause a failure. At the next higher level of abstraction a failure is seen as a fault which,
again, may lead to an error which may lead to a failure.

The set of faults that is considered in a model constitutes the fault model. A very
common fault model in digital circuits is, e.g., the stuck-at model that considers the
outputs of logic gates to be stuck at either ‘1’ (stuck-at-1) or ‘0’ (stuck-at-0). While low-
level fault models often consider the physical failure mechanisms that initially cause a
fault, high-level fault models typically consider functional faults in individual hardware
(sub-)modules. Higher level fault models are often necessary in complex systems in
which considering all possible physically caused faults is not feasible. As an example, a
high-level fault model for a NoC could consider entire routers to be faulty, whereas fault
models with a lower abstraction level could consider faults in individual router ports or
other sub-modules.

Faults are typically categorized as being either transient, intermittent, or permanent
faults [83]. Transient faults occur randomly for one or multiple cycles and are often
caused by radiation. Intermittent faults are similar to transient faults in that faults only
occur temporarily. Three criteria are proposed in [83] in order to distinguish intermittent
faults from transient faults: 1.) “an intermittent fault occurs repeatedly at the same
location”, 2.) “errors induced by intermittents tend to occur in bursts when the fault
is activated” 3.) “replacement of the offending circuit removes the intermittent fault”.
Permanent faults, as the name suggests, permanently occur under the same conditions.
They can either be caused by an electrical short or broken connection—causing stuck-at
faults—or by delay causing setup or hold timing violations (even if these timing violations
only occur under certain conditions, e.g., a series of two specific words).

The physical failure mechanisms that cause faults on the lowest layer are not unique to
NoCs but instead affect all modern digital circuits. Therefore, they are only briefly de-
scribed here. The most notable mechanisms are radiation, electromagnetic interference,
electrostatic discharge, and aging.

Radiation induced faults—also called soft-errors—are a typical example for transient
faults and are mostly caused by alpha particles and cosmic rays creating high-energy
neutrons in the atmosphere [83, 84, 85]. These particles can cause bitflips in DRAM
or SRAM cells—called Single Event Upset (SEU)—or a wire or logic gate to change
its logic level—called Single Event Transient (SET). The probability for this to happen

8An example for a masked fault would be if a fault causes a wire to propagate ’0’ but the information
to propagate is ’0’ anyway.
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depends on the critical charge that is necessary for a bitflip. Hence, shrinking feature
sizes and lower supply voltage increase the probability of SEUs [86]. It has been shown
that the probability of SETs in logic elements increases even faster with scaling [87, 88].

Electromagnetic interference is typically caused by crosstalk between long parallel
wires [89]. Due to capacitive and inductive coupling effects the long wires affect each
other and can cause increased signal delay or damped voltage oscillations. Naturally,
NoCs are very susceptible to crosstalk on the links between the routers. Similar to
radiation induced faults, crosstalk becomes increasingly problematic with technology
scaling [89, 90]. Electromagnetic interference causes intermittent or permanent faults,
depending on whether or not a specific condition will always cause a fault.

Electrostatic discharge can cause strong electric currents in a SoC. These currents
can, e.g., cause oxide breakdown in CMOS transistors or fusing of wires, thereby causing
permanent faults. With technology scaling lower currents suffice to cause damage and
the problem becomes harder to analyze and control [91]. However, the internal circuitry
of a SoC is typically not affected since protection against electrostatic discharge is placed
at the pins of the chip.

Aging causes the performance of a CMOS circuit to degrade over time. This is due to
multiple effects such as hot carrier injection and electromigration, to only name two [92,
93]. When the performance of the circuits degrades, aging typically causes intermittent
faults at first and later permanent faults.

Another effect that plays a role in the probability of faults occurring is process variation
(or variability). Due to natural variation of the dimensions of wires and transistors no
two devices will ever have the exact same physical properties. Process variation affects
the four aforementioned failure mechanisms and leads to differences in the probability of
faults. If, e.g., the charge that a DRAM cell holds is slightly smaller than intended the
critical charge that causes a SEU is smaller, thereby increasing the probability of a fault.
Process variation becomes more problematic with technology scaling and a significant
amount of effort is spent to keep it as small as possible [94, 95].

The different possible faults that can occur in a NoC must be addressed by suit-
able mechanisms in order to implement fault-tolerance. Various approaches have been
proposed in the past, which will be discussed in Section 2.3.2.

2.3 Related Work

The previous sections gave an introduction to on-chip communication in general and
NoCs in particular, thereby laying the foundation for the remainder of this thesis. Dif-
ferent NoC principles as well as common terminology were introduced and typical chal-
lenges were discussed. Based on this introduction, this section discusses related work
and state-of-the-art research to approach these challenges.

Three different topics are discussed and integrated in this thesis that are typically
considered separately: implementing QoS in NoC, fault-tolerance in NoC, and mapping
strategies in NoC. Therefore, the related work in these field is presented in the following
in designated sub-sections.
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2.3.1 QoS in NoCs

Many different approaches exist to implement QoS guarantees in NoCs in general and
NoCs for mixed-critical systems in particular. Most of these approaches consider packet
switched NoCs, often using VCs. However, some also consider circuit switched or hybrid
NoCs.

A wormhole NoC protocol for mixed-criticality systems is proposed in [28]. Two
levels of criticality are defined and credit-based flow control with VCs is used. When
contention occurs and threatens to cause a missed deadline for critical traffic, the NoC
enters a state of graceful degradation in which only critical traffic is served. Ahmadian et
al. describe an extension layer for existing NoCs in [96, 97]. Two different traffic types
are differentiated and time-triggered guardian windows are used to ensure absence of
interference between the two traffic types. This, however, comes with significant source
rate limitation to avoid congestion. A packet switched router design for mixed-critical
systems is proposed in [98]. The approach uses n + 1 VCs: n for critical traffic flows
that share a link and 1 for BE traffic. Round robin arbitration is used between the n
critical VCs while priority arbitration is used between critical and BE traffic.

Millberg et al. use looped containers to create virtual circuits for GS traffic in a
packet switched NoC [26]. Routes for GS traffic are determined at design time but their
bandwidth can be adjusted at runtime. A NoC design providing service guarantees and
targeting GALS systems is the MANGO clockless NoC [37]. Here, VCs are used to
separate different GS connections.

Tobuschat and Ernst propose a novel approach on traffic prioritization in [99]. They
use four VCs: three for BE traffic and a shared one for GT traffic. BE traffic is given
priority over GT traffic as long as no deadline is missed. This increases the achievable
BE injection rate. Kostrzewa et al. introduce a Resource Manager (RM) to a packet
switched NoCs to ensure QoS [73]. The RM distributes link bandwidth and access to
shared resources to the applications of a system, ensuring the requirements by critical
applications are met. The approach is further developed to increase NoC utilization and
improve DRAM access [100, 101].

QoSinNoC, a framework to find NoC layouts matching given system-level requirements
is presented by Avramenko et al. in [102]. A focus lies on enabling the utilization of
NoCs in certifiable systems for avionics. They divide the system into critical and non-
critical application domains. This division, however, is slightly relaxed by allowing
non-critical traffic to pass through critical domains as long as different router ports are
used. Picornell et al. apply a TDM schedule to a packet switched NoC to ensure that
only one node in the NoC injects a packet in each cycle [103]. In combination with
delay cycles on selected paths, they ensure that no contention can occur. This, however,
comes at the price of low overall injection rates, especially with increasing NoC size. A
lightweight real-time NoC with focus on FPGA implementation is presented in [104]. A
bufferless NoC with deflection routing is used. By prioritizing deflections and regulating
the injection rate an upper worst-case latency is guaranteed. The approach is further
improved in [105].

33



2 Background and Related Work

Two different approaches apply TDM scheduling to VCs in a packet switched NoC to
implement traffic isolation while keeping the maximum latency low. SurfNoC achieves
this by scheduling application domains in a pipelined fashion in X and Y directions
[106]. PhaseNoC further reduces the latency by removing delay cycles when switching
dimensions but has rigid limitations regarding the number of application domains [38].
An improved version allows for more flexible scheduling [107].

Packet switched NoCs must typically rely on the use of VCs to implement QoS—which
requires larger routers—or significantly limit the injection rate. The number of VCs has
a particularly severe impact on the worst-case latency, as shown in [29]. This usually
makes it necessary to use some form of priority scheduling to give QoS guarantees to
critical traffic. Many approaches are very limited in the number of criticality levels
they can handle. In many cases, only two different levels (critical and non-critical) are
available but traffic streams from different critical applications can still interfere with
each other.

A different approach to implement QoS is to use a TDM NoC, which was first proposed
and then further developed by Goossens et al. [40, 108]. The Æthereal NoC defines
different configurations, either as pure TDM NoC with static scheduling or as hybrid
NoC with additional packet switching for BE traffic. Two other approaches based on the
Æthereal NoC are aelite and dAElite, which both only use TDM traffic [109, 46]. aelite
focuses on scalability and uses mesochronous or asynchronous links. dAElite describes
multicasts and connection setup in TDM NoCs.

With Argo, Kasapaki et al. introduce a hard real-time NoC for GALS systems [43, 44].
Based on Argo, an extension to allow reconfiguration for mode changes at runtime is
proposed in [110]. XNoC, a TDM NoC with a predictable path (de-)activation time is
presented in [111]. A non-intrusive reconfiguration process is proposed that uses two slot
tables that can be switched between within one clock cycle. Furthermore, a distributed
control plane is proposed to improve scalability.

A hybrid NoC combining SDM and TDM with packet switching is presented in [47].
The NoC consists of a packet switched and a circuit switched sub-network which do not
share links. The circuit switched sub-network is used for real-time traffic and provides
several parallel links (SDM) each with their own TDM schedule in order to increase
path diversity and improve resource usage. Other hybrid TDM and packet switched
NoCs typically focus on improving power efficiency or network utilization rather than
implementing QoS (e.g., [49, 112]). These NoCs schedule TDM connections dynamically
on demand but cannot guarantee that a requested connection is successfully set up.
This makes it impossible to give (hard) real-time guarantees since this would require the
critical connections to be reserved and mapped at compile time [113].

While different approaches exist to implement QoS for critical traffic in mixed-critical
systems, the approach described in Chapter 3 is, to the best of the author’s knowledge,
the first one that not only provides hard real-time guarantees and strong traffic isolation
but also fault-tolerance to critical traffic streams.
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2.3.2 Fault-Tolerance in NoCs

In general, implementing fault-tolerance requires some form of redundancy: spatial or
modular redundancy, temporal redundancy, or information redundancy. Spatial redun-
dancy is achieved by providing redundant components to replace faulty ones, temporal
redundancy is achieved by reexecution of a faulty operation or transmission, and informa-
tion redundancy is achieved by adding information that can be used for error-correction.
Not all forms of redundancy are equally well suited to address transient, intermittent, or
permanent faults [82]. Temporal redundancy is a convenient way of addressing transient
or intermittent faults but can, by itself, not cope with permanent faults. Spatial redun-
dancy, on the other hand, is well suited for permanent faults. Information redundancy
can help with all types of faults and is often combined with another form of redundancy.
Particularly information redundancy in form of coding is often used for fault-detection
(e.g., parity bits).

Radetzki et al. give a comprehensive overview over different methods to achieve fault-
tolerance in NoCs and categorize the different approaches into those working on the
data link, network, or transport layer [82]. Hence, this section will only cover a few
selected common approaches and the interested reader is directed to this paper for a
more in-depth overview.

A typical approach on the link layer to both detect and correct transient faults is
temporal redundancy in form of multisampling (e.g., [114, 115]). The data is sampled
multiple times with a time interval. In combination with Triple Modular Redundancy
(TMR) single faults can not just be detected but also corrected. Another approach
using temporal redundancy are hop-to-hop retransmissions between the routers (e.g.,
[116, 117]).

A typical approach to implement fault-tolerance with information redundancy is cod-
ing (e.g., [118, 119]). Coding can either be used for the entire packet or just for the
header flit or control signals in order to reduce the cost [120]. Furthermore, coding can
be used to avoid or reduce crosstalk on the link wires [121].

A widely used form of spatial redundancy is TMR which can be applied at various
points in a NoC. TMR can effectively mask single errors but comes with a hardware
overhead of more than 200%, including the voter. Therefore, TMR is typically only
used for critical parts such as the control signals (e.g., [116, 122]). In other approaches,
the physical links are duplicated ([123]), or parts of the router logic are hardened with
TMR ([115]).

An approach to use information redundancy on the network layer is stochastic com-
munication [124]. Packets are duplicated and—with a certain probability—sent over
different paths, potentially flooding the entire NoC. An improvement is random walk
where only a predefined number of duplicates is created [125].

Spatial redundancy on the network layer is typically given by design, especially in NoCs
with 2D mesh or torus topology. Enabling this redundancy to be used for fault-tolerance
is, therefore, mainly a matter of utilizing dynamic routing algorithms while considering
faults in the NoC. An comprehensive comparison of several such fault-tolerant routing
algorithms is presented in [82].
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On the transport layer, temporal redundancy can be achieved with retransmissions—
similar to the link layer—for end-to-end fault-tolerance [116]. This approach alone,
however, is only suitable for transient faults and only allows to determine that a fault
has occurred somewhere along the path without revealing where exactly it is located.
Lehtonen et al. analyze different coding methods for error correction that can be applied
to achieve fault-tolerance on transport layer in [126]. These coding methods can also
handle a single bit permanent fault.

An approach to implement spatial redundancy on the transport layer is proposed by
Murali et al. [127]. They use a multi-path routing strategy to address permanent faults
in the NoC. Fault-tolerance of the NI—a topic often overlooked—is addressed by Fiorin
et al. [128]. Error detection and correction codes are used to protect lookup tables, Finite
State Machines (FSMs), and FIFOs, while TMR is used for remaining components. A
different approach is taken in [129] where each NI has two local ports—a primary and a
secondary one—which allows to compensate for a permanent fault on the primary port.

A common method to find faulty components not at runtime but instead at system
start time is the Built-In Self-Test (BIST). Different approaches of using BIST for the
NoC have been presented (e.g., [130, 131, 132]). However, by design a BIST is not suited
to deal with transient or intermittent faults, or permanent faults occurring at runtime.

Many of the approaches listed focus on packet switched NoCs but some are applicable
in other NoC types as well. However, most of the approaches do not consider traffic iso-
lation between critical and non-critical traffic and, to the best of the author’s knowledge,
none of the approaches considers hard real-time constraints.

2.3.3 Task and Channel Mapping in NoCs

Mapping tasks on NoC-based MPSoCs has been an important research topic for about
two decades. For instance, Lei and Kumar proposed a two-step genetic algorithm to
map task graphs to a NoC architecture in [133]. They consider a packet switched NoC
and the goal of the mapping is to minimize the execution time of the tasks.

A congestion-aware dynamic task mapping based on heuristics using channel and path
loads has been proposed in [134]. The NoC considered uses packet switching and the
goal is to reduce congestion throughout the NoC to reduce link load and packet latency.
Another dynamic runtime task mapping heuristic that is not just congestion- but also
energy-aware is presented in [135]. Applications are represented by task graphs and
each task is mapped as close to its parent task as possible while also considering load
balancing between different NoC links.

An example of mapping research including fault-tolerance requirements can be found
in [136]. A two-stage mapping scheme is proposed. First, a static genetic algorithm is
used to find multiple mapping solutions, then, an optimal mapping solutions is selected
at runtime.

These works propose different task mapping methodologies for a number of different
purposes. However, none of these works considers mapping in TDM NoCs.

Lu and Jantsch discuss the configuration of virtual circuits in TDM NoCs in [137].
They formulate the configuration problem and discuss algorithms to find valid TDM
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configurations that fulfill given requirements (e.g., bandwidth or latency). Static slot
tables that are configured at design time are assumed.

In [138] integer linear programming is used to find feasible mappings for TDM channels
in a NoC-based system. Reconfigurations are possible at runtime by means of an overlay
network. A centralized resource allocation approach for TDM NoCs is presented by Chen
et al. [139, 112]. The approach uses a centralized hardware accelerator to quickly find
connections base on a trellis graph which allows to search all possible connections in
parallel. The assumed used case is a system in which TDM connections are set up and
torn down frequently at runtime.

A mapping algorithm for applications in a multi-FPGA system is described by Hiron-
aka et al. [140]. The different FPGAs communicate via optical fibers employing TDM.
However, the work does not consider the actual slots reserved.

While different task and channel mapping approaches exist, none of these approaches
consider efficient mapping of TDM connections while at the same time maximizing the
available remaining bandwidth for BE applications, which is one of the contributions of
this thesis.

2.4 Protection Switching

Protection switching is a principle for fault-tolerant communication that was developed
for circuit switched connection-oriented layer networks and specifically SONET/SDH
[141, 142]. The principle will be utilized throughout this thesis and is, therefore, intro-
duced and described in this section.

The basic idea of protection switching is to define a physically disjoint alternative,
or backup, path for each connection. In case of a fault on one path, the other path
is still fully operational. Three different protection switching versions are commonly
known: 1:1, 1:n, and 1+1 protection. The principle of these different protection switching
versions is depicted in Figure 2.15. The following paragraphs give an overview over the
three versions.

1:n Protection

With 1:n protection—shown in Figure 2.15 on the left—there is one alternative path
that is shared between n communication channels. As a consequence, this protection
switching version can compensate one faulty path between the n connections. For the
remainder of this thesis the actively used path will be referred to as the primary path,
whereas the alternative and currently unused path will be referred to as the secondary
path.

When a fault occurs on a primary path both sender and receiver must switch to the
secondary path. This implies that a) a fault must be detected on the receiver’s side (or
along the path)9, and b) there must be a feedback channel in order to perform the switch

9This, of course, is generally necessary to achieve fault-tolerance, which is why it will not always
explicitly be mentioned for the remainder of this thesis.
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Protection
switching
function

Figure 2.15: Concept of 1:n (left), 1:1 (middle), and 1+1 protection (right)

on the sender’s side. Furthermore, the secondary path must be checked to ensure it is
fault free even when it is not being used for data transmission.

A superset of 1:n protection is m:n protection where n connections share m secondary
paths. This way, it is possible to compensate for up to m faults between n connections.

Protection switching naturally comes with a certain hardware overhead. Besides the
additional physical path and the feedback channel, some administration logic and syn-
chronization is needed to implement the switching from the primary to the secondary
path.

1:1 Protection

With 1:1 (or (1:1)n) protection, each communication channel has its own designated
secondary path. This means, that each connection can tolerate a fault. The concept
of 1:1 protection is depicted in Figure 2.15 in the middle. Just as with 1:n protection,
the switch from the primary to the secondary path needs to be synchronized between
the sender and the receiver and, therefore, a feedback channel to the sender is needed.
For both 1:1 and 1:n protection the secondary path may be used to carry extra traffic
(unprotected) for as long as the primary channel is fully operational.

1+1 Protection

With 1+1 protection, both paths are actively used for data transmission, as shown
in Figure 2.15 on the right, meaning both paths act as primary paths. This has the
advantage that no feedback channel is required since the switch is only done on the
receiver’s side. The protection switching function on the sender’s side is essentially no
longer necessary, as indicated in Figure 2.15. The data simply needs to be forwarded to
both paths.

As with 1:1 protection, each connection can tolerate one fault. In comparison to 1:n
and 1:1 protection, 1+1 protection is simpler to implement due to its lower complexity.
However, actively using both paths has the disadvantage that the alternative path cannot
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be used for uncritical extra traffic which is possible with both 1:1 and 1:n protection as
long as no fault occurs.

2.5 Discussion on Functional Safety

As mentioned in Chapter 1, the research presented in this thesis is supported by the
ARAMiS II research project which researched the use of multicore systems in safety- and
mixed-critical applications, specifically in the automotive, railway, avionics, and industry
domain. Depending on where a safety-critical system is deployed, a fault or otherwise
unintended behavior in such a system can potentially have catastrophic consequences
including loss of life or severe and long lasting environmental effects (e.g., in utility
facilities such as nuclear power plants). Hence, the highest emphasis in a safety-critical
system is put on functional safety while cost and power efficiency are often of lower
priority10. This, however, begs the question: what is considered safe?

The truth of the matter is that there is no definitive answer to this question because
there cannot be. No system can be made 100% safe in the sense that it can never fail and
will always fulfill its task no matter the conditions. For instance, TMR is a proven and
common way of implementing fault-tolerance—which is usually required for a system to
be considered safe—but it can only compensate for faults in a single one of the replicated
modules. Furthermore, fault-tolerance is typically given on an end-to-end basis—e.g., a
specific processing chain—but there is often an instance before or after this processing
chain that needs to be considered as well. In the case of TMR this includes the voter
module, the original source of the data being processed, and the following instance that
handles the processed data. Hence, whether or not a system is considered safe depends
on the frame of reference that is defined, the fault model that is assumed, and whether
the residual failure chance is considered to be acceptable.

This is where safety standards become important. Safety standards give guidelines
to help determine the level of confidence in a system necessary for it to be considered
safe. This is, in essence, a trade-off between the cost of implementing a certain level
of confidence and the cost that would come with a—potentially catastrophic—failure of
that system. As a consequence, the more harm a system failure would or could cause,
the more effort—and money—is spent on minimizing the chance of that system to fail.
This is the reason why, to this day, the safety requirements in the avionics domain are
much higher than in the automotive domain.

A commonly known safety standard is the ISO 26262 which regulates functional safety
for road vehicles [13]. The standard defines functional safety as “absence of unreasonable
risk due to hazards caused by malfunctioning behaviour of E/E systems”. What is and
is not “reasonable”, once again, depends on the frame of reference which can and has
changed over time. In this context, the research presented in this thesis naturally cannot
by itself guarantee a system to be safe. Instead, it aspires to contribute to the process of

10Nevertheless, these costs are anything but irrelevant which is why a considerable amount of research,
including this thesis, is dedicated to ensuring safety with as little hardware and power overhead as
possible.
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pushing the boundaries of minimizing the residual failure chance of safety-critical systems
while keeping the required hardware and power overhead within reasonable limits.

2.6 Summary

Continuous technology scaling—as predicted by Moore’s Law—has lead to various chal-
lenges in chip design such as the “power wall” and the “designer productivity gap”.
These challenges made a paradigm shift necessary and lead to the development of MP-
SoCs. This type of SoC can incorporate a vast number of different components—such as
CPUs, DSPs, or custom accelerators—which all need to communicate with each other.
However, traditional means of on-chip communication—most importantly buses—do not
scale well and are, therefore, not suited to meet the communication demands in modern
MPSoCs.

To overcome this communication bottleneck, new concepts for on-chip communication
were proposed which lead to the advent of NoCs. As the name suggests, a NoC is
essentially a miniaturized version of a computer network in which messages are forwarded
by routers until they reach their destination. One of the most popular NoC topologies
is the 2D mesh. The reason is that in a 2D mesh the number of links and, thereby, the
number of possible parallel transactions as well as the total available bandwidth scales
up with the number of nodes communicating via the NoC.

There are two different general types of NoCs: packet switched and circuit switched
NoCs, each with different advantages and disadvantages. In circuit switched NoCs re-
sources are reserved before being used for communication to avoid contention. In packet
switched NoCs information is sent in packets which can interfere with each other leading
to contention that needs to be dealt with. A special sub-category of circuit switched
NoCs are TDM NoCs in which resources are only reserved for a certain number of time
slots. This still ensures freedom of contention but does not fully block a given resource—
i.e., a link—for other traffic. Packet switched NoCs typically offer greater flexibility but
providing communication guarantees—such as latency or bandwidth—is relatively diffi-
cult. Circuit switched NoCs, on the other hand, are well suited to provide guarantees
and are typically cheaper to implement. However, they lack the flexibility that packet
switched NoCs offer. To overcome the weaknesses and combine the strengths, hybrid
NoCs combining the two types can be an option but are typically more complex.

In general, NoCs face similar challenges as larger scale computer networks do—e.g.,
congestion and flow control—but also face some new challenges such as clocking issues.
Since NoCs can account for a considerable amount of chip area and power consumption
it is generally desirable to keep the complexity relatively low. This means that, often,
solutions to these challenges used in larger scale computer networks are not directly
applicable in NoCs which is why NoC research was and is a very active field. An
overview over related work in two of the, arguably, most important fields was given in
Section 2.3: QoS in NoCs and fault-tolerance in NoCs. It was concluded that there is
currently now work that adequately combines these two fields.
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2.6 Summary

Based on a solid understanding of on-chip communication via NoCs and the relevant
related work, the following chapter presents the main contributions of this thesis, most
notably an approach to not only provide fault-tolerant but also hard real-time capable
means of communication to safety-critical applications in a mixed-critical MPSoC.
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3 Protection Switching Concept for
Efficient Fault-Tolerance in NoC

This chapter presents the main contribution of this thesis: the concept for a NoC pro-
viding both fault-tolerant and hard real-time capable means of communication to safety-
critical applications in a mixed-critical system. The concept is based on the combination
of a hybrid TDM and packet switched NoC with protection switching. Three different
protection switching versions are considered and compared regarding their worst-case
latency and expected hardware overhead. A proof of concept with cycle-accurate simu-
lations of a hardware model of the NoC is presented and evaluated. Furthermore, the
challenge of mapping the critical applications and their communication channels to the
NoC is discussed. Different mapping strategies are developed which are designed to
utilize the NoC resources most efficiently in order to maximize the available bandwidth
for the BE traffic. These strategies are then later evaluated in Chapter 5. Parts of this
chapter have been published in [14] and [17].

3.1 Target System and Use Case

There is a vast number of different systems—specifically MPSoCs—and applications that
require scalable means of on-chip communication between different building blocks such
as processing cores, memory, or I/O. However, different systems can have entirely differ-
ent requirements regarding throughput, latency, or robustness. Hence, it is important
to define the target system and use case that the NoC design proposed in this thesis is
intended for, before designing it.

Safety-critical systems in avionics traditionally rely heavily on TMR (e.g., [143]). For
an aircraft, the hardware and power overhead is well justifiable given that hundreds of
people all rely on the same system to operate safely. With the increasing number of
safety-critical systems in automotive on the other hand—heavily driven by the develop-
ment of autonomous driving—the immense cost of TMR is not as easily justifiable. The
reason is that the additional cost per passenger is much higher than in avionics. This
does not just mean higher costs for the hardware itself but also a much higher power
consumption which directly translates to higher fuel consumption and, thereby, CO2

emissions which—with respect to the ongoing climate crisis—should be kept as low as
possible. One way of doing this is by consolidating multiple functions in a single MPSoC
instead of, e.g., using multiple SoCs. This not only means that different applications of
potentially different levels of criticality now share at least parts of the same resources—
making it a mixed-critical system—but also that fault-tolerance mechanisms must now
be built into the MPSoC itself instead of using multiple SoCs in parallel. All this directly
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affects the considerations necessary when designing one of the largest shared resources
of a modern MPSoC: the NoC.

As stated in Chapter 1, the NoC is intended for safety- and mixed-critical systems
in which at least the critical applications must not fail at runtime. Furthermore, al-
though in principle applicable in other domains such as avionics, the NoC is designed
with automotive domain and its current and upcoming requirements in mind. In this
environment, it can be assumed that the critical applications are known either at system
design time or—at the very least—at compile time of the system’s software. Further-
more, it is assumed that the critical applications are static in nature in the sense that
they are not dynamically started or stopped during runtime (i.e., while a vehicle is in
motion). Moreover, the behavior of the critical applications—specifically their commu-
nication patterns and both bandwidth and latency requirements—is known at compile
time and does not change at runtime1.

On the other hand, it can be assumed that BE applications might be dynamically
started and stopped on demand at runtime2. Their number, exact behavior, and com-
munication patters are not necessarily known at compile time. Therefore, BE applica-
tions can be executed to the system’s ability, but it cannot be guaranteed that resources
are always available.

In summary, the target system is a mixed-critical NoC-based MPSoC with safety-
critical applications that do not dynamically change at runtime and whose behavior
is predictable and known at compile time, and BE applications that can dynamically
be started and stopped at runtime and whose behavior might not always be known in
advance.

3.1.1 Requirements

With the target system defined it is possible to derive the requirements which the NoC
must fulfill.

Multiple applications run on the same platform which means that the NoC must sup-
port multiple—ideally an arbitrary number of—critical data streams in parallel. Each
critical data stream must be isolated, not only from the other critical data streams
but also the BE traffic in order to be protected against faulty or malicious behavior of
other applications running on the same system. Furthermore, the NoC must provide
fault-tolerance for the critical communication and ensure that all data sent is delivered
uncorrupted and in-order. Additionally, the critical communication must provide de-
terministic bandwidth and latency guarantees in order to enable the implementation of
hard real-time applications in the system. Last but not least, the NoC should provide
sufficiently flexible communication for BE applications that are started and stopped at
system runtime.

In summary, the requirements are as follows:

1Or if the behavior changes at runtime then it does so in a way that is known beforehand and can and
has been accounted for at compile time.

2Examples could be third party applications that passengers might want to use during transit or
generally a vehicles infotainment system.
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� Multiple concurrent critical data streams.

� Isolation between different critical traffic streams.

� Isolation between critical traffic and BE traffic.

� Fault-tolerance of critical communication.

� In-order delivery of critical traffic.

� QoS guarantees for critical traffic (i.e., deterministic bandwidth and latency guar-
antees).

� Flexible communication for BE applications.

3.1.2 The Fault Model

Whenever fault-tolerance is discussed it is important to define the fault model that
is assumed. As described in Section 2.2.7, the fault-model is the set of faults that is
considered in a model. Fault models can consider physical faults on the lowest level of
a system, or they can be more abstract and consider, e.g., entire modules to be faulty
without considering the original cause of that failure.

Rambo et al. present a comprehensive Failure Mode and Effects Analysis (FMEA) for
a packet switched NoC for mixed critical systems in [144]. The NoC presented in this
thesis is a hybrid TDM and packet switched NoC which uses TDM for critical traffic. In
contrast to the work presented in [144], only the faults that can corrupt the critical TDM
traffic are of interest. This means, the biggest threat—other than faults affecting the
data path of the TDM flits—are faults in the slot tables and the TDM cycle counters,
which must both be addressed by appropriate measures. However, a full FMEA is not
in the scope of this thesis.

For simplification, only faults that corrupt the flits of a TDM channel are considered
in the scope of this thesis, but not the status flags (cf. Section 4.2.1.1), slot tables, or
cycle counters. Common mode faults affecting power supply or clock distribution are
also out of the scope of this thesis. Furthermore, it is assumed that faults affecting the
flits can be detected through suitable measures (as will be discussed in Section 4.2.1.1).
Beside these simplifications, it is assumed that faults can affect any parts of a TDM
path between the NIs (i.e., wires, registers, and logic) and that they can be transient,
intermittent, or permanent in nature. This means, the fault model essentially considers
faults on an abstract level on the transport layer (end-to-end on a TDM path). However,
an essential part of the approach presented in this thesis is that the hybrid NoC router
is designed in a modular fashion with independent sub-modules, meaning that no single
fault on the physical layer—e.g., stuck-at faults—can affect multiple input or output
ports nor the wiring between them. In that regard, the fault model considers faults on
individual links and input/output ports of the NoC routers (i.e., faults on the data link
layer). Lastly, it is assumed that faults occur only sporadically and that the chance
of two faults occurring on different TDM paths at the same time is negligible. For
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completeness, possible approaches to harden the slot tables, cycle counters, and status
flags against faults will be briefly touched on as future work in Section 6.1.

3.1.3 Fault-Tolerant and Fail-Operational Systems

A term that has gained increased attention in recent years, specifically in the automotive
domain, is that of the fail-operational system. This begs the question what exactly qual-
ifies a system as fail-operational and how it differentiates from a fault-tolerant system.
Unfortunately, there is no clear answer to this question as different works use different
interpretations of the term and often fail-operational and fault-tolerant are treated as
synonyms. Therefore, a brief discussion of the two terms is presented here, followed by
a definition of how the terms are used throughout this thesis.

Generally speaking, fault-tolerance tries to mask faults or errors that occur on a
specific layer of abstraction (regarding their respective fault model) in order to prevent
them from manifesting as failures (which would be considered a fault on the next higher
layer of abstraction, cf. Section 2.2.7 or [82]). Hence, the focus is on preventing failures
from manifesting. A fault-tolerant system is, therefore, fully functional in the presence of
faults (i.e., as long as the number of faults stays within the limits the fault-tolerance has
been designed for). A fail-operational system, on the other hand, focuses on handling
faults and errors that have manifested into failures, often on system level. How such
a failure is handled can vary widely and whether or not the system must remain fully
functional to be considered fail-operational is not universally agreed upon.

A term that is sometimes used alongside fail-operational is graceful degradation. Grace-
ful degradation means that a system can no longer maintain all its functions but, instead,
focuses either on keeping the important ones running (e.g., safety-critical functions), or
on maintaining all functions but with reduced quality (e.g., lower bandwidth, higher
latency, etc.). A system can be considered fail-operational when it reacts to a failure by
entering a state of graceful degradation in which the safety-critical functionality of the
system is maintained while reducing or stopping other functionality.

The NoC presented in this thesis is designed to provide fault-tolerant and hard real-
time capable means of communication to safety-critical applications in a mixed-critical
system. However, the “fault-tolerant” in this context is only with respect to the safety-
critical communication but not with respect to the NoC as a whole. As will be discussed
in Section 3.2, faults can corrupt BE traffic, meaning the NoC itself is not fault-tolerant—
meaning it would be fully functional in the presence of a fault—but fail-operational by
maintaining the safety-critical communication. This means: even if a fault causes parts
of the NoC to fail, the critical communication in the NoC remains fully operational.

3.1.4 A Word on Security

The NoC presented in this thesis is designed to support the implementation of functional
safety in safety-critical applications. A related topic that can have an impact on the
functional safety is the security of a system, the difference being that security deals
with hardening a system against malicious intent. Security in NoCs is an active field
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of research where, e.g., side-channel attacks or even hardware trojans are a concern
[51, 145]. Although the work presented in this thesis could potentially also be deployed
in a system where security is a concern—possibly with some alterations—the topic of
security is explicitly not in the scope of this thesis. However, a short discussion regarding
traffic isolation and side-channel attacks will be presented in Section 4.2.1.3.

3.2 Fail-Operational Hard Real-Time NoC Concept

This section describes the first main contribution of this thesis: the concept for a NoC
providing fault-tolerant communication with hard real-time guarantees to safety-critical
applications in a mixed-critical MPSoC while meeting all the requirements laid out in
Section 3.1.1.

3.2.1 Basic NoC Concepts

As described in sections 2.2.2 and 2.2.3, both packet and circuit switching have different
strengths and weaknesses respectively. Generally, packet switching offers great flexibility
but makes it difficult to give QoS guarantees. Circuit switching, on the other hand, is
well suited to provide QoS guarantees but is less flexible and often suffers from under-
utilization of the available resources. Both switching types can be combined to form a
hybrid NoC combining the strengths of the two individual types.

The basis of the NoC presented in this thesis is a hybrid TDM and packet switched NoC
similar to the one described in Section 2.2.5, including time-slot stealing. TDM traffic
is used for the critical communication in the system whereas packet switching is used
for non-critical BE traffic. By using TDM for critical traffic, several of the requirements
laid out in Section 3.1.1 are already met. Specifically, the support of multiple concurrent
critical data streams (all with the same priority), isolation of the critical traffic stream
from other traffic (critical or non-critical), and QoS guarantees for critical traffic (i.e.,
once a TDM channel has been set up). Using packet switching for non-critical traffic,
on the other hand, offers great flexibility to BE applications.

A critical part of providing QoS guarantees in a TDM NoC is the way a communication
channel is set up. As discussed in Section 2.2.4, there are essentially two different
approaches for the slot table configuration necessary for setting up TDM channels—
distributed configuration and centralized configuration—and it was concluded that a
centralized configuration—although limited in scalability—is the approach better suited
to give QoS guarantees. Therefore, a centralized configuration is the approach taken
in the scope of this thesis. However, depending on the implementation, centralized
configuration alone does not guarantee hard real-time capabilities. The configuration
policy and the way in which the central entity is connected to the individual slot tables
are just as important.

Typically, the slot table configuration in TDM NoCs is either static or dynamic,
meaning TDM channels are either completely fixed and cannot be adjusted or they are
completely dynamic and are temporarily created on demand and torn down right after.
The former lacks flexibility while the latter is unsuited for safety-critical environments
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since guarantees can be given once a TDM channel is set up but no guarantees whatsoever
can be given regarding how long it will take to set up a channel or if a channel can be
set up at all. As an example, if packet switched traffic is used to connect a central NoC
manager to the slot tables, the BE traffic would interfere with the configuration packets.
But even if a dedicated and high priority traffic class would be used for configuration
packets or, better yet, direct wiring or an overlay network would be used for slot table
configuration, different requests and channel configurations would interfere with each
other, thereby making QoS guarantees very difficult to implement.

In order to both ensure QoS and keeping some flexibility, the hybrid NoC presented in
this thesis uses a semi-static configuration of the TDM channels. This means the TDM
channels are defined at compile time of the software and configured at system start time.
After the initial configuration, the channels are only reconfigured to react to faults, as
will be explained in the following Section 3.2.4. This means, the TDM channels are
long-lived—as opposed to set up on demand and torn down after—but the system still
has the flexibility to alter the channels when needed, e.g., when the system is updated.

With this configuration policy, the question of how the central NoC manager is con-
nected to the slot tables is less significant since reconfigurations should only happen
very rarely at runtime. Even using packet switching without a dedicated traffic class for
configuration packets would be feasible when—at system start time—the TDM channel
configuration is done first before any other BE traffic is allowed. However, the approach
to implement fault-tolerance for the critical communication—described in the following
Section 3.2.2—has an influence on which ways of connecting the NoC manager to the
slot tables are suitable, which is why this aspect will be discussed at a later point in
Section 3.2.3.

3.2.2 Protection Switching in NoC

The approach taken in this thesis to implement fault-tolerance for safety-critical com-
munication is by adapting protection switching to NoCs. With protection switching, two
(or more) disjoint paths are provided for each communication channel. In case a fault
occurs on one of the paths it is possible to immediately switch to the backup path. As
described in Section 2.4, the concept of protection switching was originally designed for
wide area networks. Therefore, some adjustments are necessary when applying protec-
tion switching to the hybrid NoC described in the previous Section 3.2.1.

In large scale networks, a disjoint path typically means a redundant physical wire
or optical fiber. Similarly, in a NoC with a 2D mesh topology—which is inherently
redundant—two paths are disjoint as long as they do not share any links or routing nodes.
This poses a problem since in conventional NoCs at least the sender’s and receiver’s local
router and link will be shared, even if messages are sent via otherwise disjoint paths.

In order to provide two fully disjoint paths between the NIs of any two tiles it is neces-
sary to add a second link to connect each NI to its respective local router. Additionally,
the input and output ports of the routers must be sufficiently independent from each
other to ensure that no single fault can affect more than one input or output port of a
router. This is done by designing the router in a modular fashion with fully independent
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Figure 3.1: Overview of the hybrid router design supporting protection switching

input and output ports respectively. Each output port has its own slot table and arbiter
for BE traffic. Furthermore, the switch fabric is designed in a way that a single fault
can only ever affect the connection between a single input-output pair. As a result, this
means that two TDM channels are disjoint even if they traverse the same router as long
as they use different input and output ports respectively. A structural overview over a
hybrid router supporting protection switching is given in Figure 3.1.

With the additional local link, the adaption of 1+1 and 1:1 protection to the hybrid
NoC is, in principle, fairly straightforward: in both cases two disjoint paths are reserved
using TDM, with 1+1 protection using both paths and 1:1 protection only using one path
at a time. In both cases, paths can fully or partially be shared with paths from other
TDM channels since different slots are reserved in the slot tables. All TDM paths are
configured—meaning the corresponding slots are reserved in the slot tables—at system
start time, including the secondary paths for 1:1 protection. Since time-slot stealing is
allowed, the unused paths can be utilized by packet switched BE traffic, but not by other
TDM channels.

The difference between 1:1 and 1:n protection is a bit more subtle than just sharing
a common backup wire. With TDM, two paths overlap when they have an overlap in
at least one slot in the table of at least one router along their path. This means that
the overlapping slots cannot be configured at system start time since it is not yet known
which TDM channel might need these slots for its secondary path. A consequence is
that switching to the secondary path will take longer than with 1:1 protection since at
least parts of the path must first be configured at runtime.

Figure 3.2 shows how the three protection switching versions work in a TDM NoC.
The figure shows two TDM channels with two disjoint paths each. In all three cases, two
paths of the channels share the link between the local routers of tile C and B. However,
for 1+1 and 1:1 protection these paths don’t overlap and can be used simultaneously
whereas for 1:n protection the two secondary paths overlap in slot 1 of the eastern
outgoing port of the local router of tile C, meaning that only one of the TDM channels
can use this slot for its secondary path.
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Figure 3.2: 1:n (left), 1:1 (middle), and 1+1 protection (right) in a TDM NoC

It should be noted that all three examples in Figure 3.2 can, in the worst case, only
tolerate one fault between the two channels if the fault occurs on the link between
the local routers of tile C and B. This is because the fault hits both channels at the
same time. However, the difference between the switching versions becomes clear when
considering a fault on the primary path of one of the channels (or on the path that does
not share a link with a path of the other channel in case of 1+1 protection). In this
case, only the channel that is hit by the fault loses its fault-tolerance—but continues
to be operational—when using either 1+1 or 1:1 protection, whereas the other channel
keeps its fault-tolerance. With 1:n protection, on the other hand, both TDM channels
lose their fault-tolerance.

All three protection switching versions have different properties and consequential
requirements regarding their implementation in NoC. One of the main contributions of
this thesis is to evaluate which of the versions is best suited to implement fault-tolerance
for safety-critical traffic in MPSoCs.

3.2.3 Overlay Network

As discussed in Section 2.4, for two of the three protection switching versions—1:n and
1:1 protection—the switching is done on the sender’s side which requires a feedback
channel from the point where a fault is detected (typically the receiver) back to the
sender (in this case the sending NI). Furthermore, and as discussed in Section 3.2.1, a
central NoC manager is used to configure the TDM channels. This NoC manager must
be connected to the slot tables in the system (and must, in case of 1:n protection, also be
notified about faults in order to configure the secondary paths). Both can be achieved
via an overlay network.

The other two potential options mentioned in Section 3.2.1 are to use either direct
wiring or packet switching for this feedback channel and the connection between the NoC
manager and the slot tables. Using packet switching is problematic since it undermines
the isolation of critical and BE traffic. But even if these flits are given higher priority,
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using the hybrid NoC itself for the feedback channel means the message sent back could
be corrupted by the very fault it tries to report. Direct wiring, on the other hand,
does not scale well as discussed in Section 2.2.4. Furthermore, if direct wiring is used
to connect the NoC manager to the slot tables and NIs, the feedback channel to the
sending NI also has to be via the NoC manager, thereby making it a single point of
failure. This, of course, is anyhow the case—specifically for 1:n protection—and will,
therefore, be further discussed in Section 3.2.4.

In contrast to 1:n and 1:1 protection, 1+1 protection does not necessarily require a
feedback channel. Yet still, the NoC manager must be able to configure the slot tables
of the system. Since it is part of this thesis to determine which protection switching
version is best suited to be used in NoCs—and for the reasons mentioned above—an
overlay network will be considered for the feedback channel required by both 1:n and
1:1 protection, and for the configuration of the slot tables.

To achieve fault-tolerance of the TDM communication in the hybrid NoC this overlay
network must itself be fault tolerant. This seems to just shift the original problem of
implementing fault-tolerance to a different level. However, this overlay network has much
lower requirements in terms of throughput and concurrency since it only has to forward
very few messages. Therefore, a high degree of redundancy—even TMR—comes at a
much lower cost. For the time being—and for the simulation based proof of concept in
Section 3.4—it will be assumed that a suitable overlay network exists and can be used.

3.2.4 Maintaining Fault-Tolerance

Fault-tolerance with protection switching can tolerate at least one fault occurring on a
critical channel. Even multiple faults can be tolerated as long as only one of the two
paths of a channel is affected. The critical communication is maintained and critical
applications remain fully operational. However, after switching the communication to
the secondary path the TDM channel is no longer fault tolerant.

Operating the system in a non fault-tolerant state might be acceptable for a limited
period of time. For instance, an autonomous driving system might bring the car to a
safe halt in a location where it is convenient or the system could take other actions such
as reducing speed, informing the passengers, and handing over the control of the car
to a passenger. To continue operation long term, however, it is necessary to bring the
communication back to a fault-tolerant state.

Bringing an operational but no longer fault-tolerant TDM channel back to a fault-
tolerant state can be done by reconfiguring individual TDM paths at runtime. For this
purpose, a set of additional backup paths could already be pre-computed at compile
time. Alternatively, the central NoC manager could try to find an alternative path at
runtime considering the current state of the NoC. Setting up this new backup path
should be done in a timely manner, but the time frame can be a bit more lenient since
normal operation of the system is ensured in the meantime. If no new backup path can
be found—or there are other problems in the system, e.g., a fault in the NoC manager—
the system could take further actions such as the ones described above. Figure 3.3 shows
an overview over the described concept.
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Figure 3.3: Concept for maintaining fault-tolerance

The central NoC manager plays a crucial role in the overall operation of the NoC and
could, therefore, be seen as a single point of failure. However, it is only directly involved
in switching from the primary to the secondary path when 1:n protection is used since
it must configure at least parts of the secondary path. In this case, measures to harden
the NoC manager against faults are imperative. On the other hand, for both 1:1 and
1+1 protection the NoC manager is not directly involved in switching paths. Therefore,
fault-tolerance of the NoC manager is not vital, only that a fault can be detected and
reacted to accordingly. All paths are set up at system start time before the normal
operation of the system starts. If a fault is detected in the NoC manager at this time—
e.g., by means of a BIST—the system will not start its normal operation. If a fault is
detected at a later point—e.g., when a TDM channel is no longer fault-tolerant—the
system could react the same way it would if no new backup path could be found. The
fact that the NoC manager is vital if 1:n protection is used is a first argument against
using that version of protection switching in NoCs.

3.2.5 Path Synchronization

An important aspect of the fault-tolerance concept presented in this thesis is that it is
completely transparent to the safety-critical applications using it. This means that, with
or without a fault, all data sent must arrive at its destination within a given time frame,
in correct order, and with neither data lost nor delivered twice.

When using 1:1 or 1:n protection the receiving NI will only ever receive data on one
path at a time. However, the data stream can be cut off by an occurring fault at an
arbitrary time, even mid-message. In order to prevent data loss, a cut-off message must
be sent again on the secondary path. This means, all messages must be stored in the
sending NI until it can be assumed that they have been fully received without a fault.
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Ideally, only the faulty flits would be sent over the secondary path and the receiving
NI could immediately add them to the input buffer. However, determining which flits
exactly must be re-sent is non-trivial since it depends on multiple factors such as the
path length, the slots that are reserved, and the current cycle. Therefore, it is more
feasible to re-sent an entire message. The receiving NI, on the other hand, must be able
to distinguish new flits from flits that have already been received before without a fault.

To solve this issue some kind of message synchronization between the two paths is
necessary. This can be done by periodically inserting checkpoints into the data stream.
Checkpoints are special flits—similar to header flits in a packet switched NoC—that
divide the data stream into data units. The receiving NI uses the checkpoints to dis-
tinguish new data units from duplicates, which are discarded. The sending NI, on the
other hand, keeps the sent data units in its internal buffer until it can be assumed that a
data unit has been received fault free. This is the case if both the worst-case latency for
sending a data unit and the latency of the feedback channel have passed since the data
unit has been sent (cf. Section 3.3). Different ways of implementing these checkpoints
are discussed in Section 4.2.1.1.

With 1+1 protection the sending NI does not have to store the messages after sending.
However, the receiving NI must decide which incoming flits it forwards to the input buffer
and which ones it discards3. In general, corresponding flits do not arrive in the same
clock cycle on the two incoming links. With a slot table size of S and s reserved slots for a
TDM channel there can be a gap of up to S−s cycles between sending two corresponding
flits over the two links. If the two paths are not equidistant the gap between the two flits
can even be larger than S at the receiving NI. An example of this is shown in Figure 3.4a.
Here, if a flit is sent out from node A on path 1 in slot 0 it will arrive at node B two
cycles later in slot 2. The same flit is sent out on path 2 in slot 3 but due to the longer
path it will arrive four cycles later in slot 3 of the next TDM period. At this time, a
second flit can already have been sent and received via path 1. In this case, the gap
between receiving the first flit on path 1 and path 2 is five cycles, which is more than
the size of the slot table.

It cannot generally be assumed that a flit will always arrive first on one link since this
depends on the time slot in which a message is enqueued (and ready to be sent out) at
the sending NI. In the example shown in Figure 3.4a this would, in fact, be the case as
flits will always be received on path 1 first. Depending on when a message is enqueued
path 1 can be up to two flits ahead of path 2. However, with a small change of the
reserved slots this is no longer the case. If slot 1 is reserved for path 2, instead of slot
3, flits can first be received on either path, depending on when a message is enqueued.
This is shown in Figure 3.4b. In this case, if a flit is ready to be sent out in slot 0 it will
first be received on path 1. If it is ready to be sent out in slot 1 it will first be received
on path 2.

In case of 1+1 protection it would be possible to simply count the number of flits that
have been received on both paths in order to forward the correct flits to the input buffer
and discard duplicates. However, this approach breaks down when reconfigurations are

3Given that both data streams are fault free.
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Figure 3.4: Change of flit distance at receiving NI for 1+1 protection due to different path
length, slot reservation, and time of enqueuing a message

done at runtime. In this case, no flits would be received on the faulty path for the
duration of the reconfiguration, meaning the receiving NI has no way of determining
which flits correspond to one another once both paths are active again. This issue can
be solved much the same way as the path synchronization for 1:1 and 1:n protection:
by dividing the data stream into data units and adding checkpoints to the data stream.
When a data unit has been received without a fault it can be forwarded to the input
buffer, faulty or duplicate data units are discarded.

Adding checkpoints to the data stream naturally increases the number of flits sent
and, thereby, the bandwidth requirement of TDM channels. This must be considered
when reserving the time slots for each channel. The distance between two checkpoints is
a trade-off between overhead of flits sent and buffer space in the NIs. With a distance of
1—meaning there is only one data flit between two checkpoints—the flit overhead is 100%
and the required channel bandwidth must be twice as high as without checkpoints. The
larger the distance between two checkpoints the lower the required bandwidth overhead
but the more flits must be stored in the receiving NI before they can be forwarded (or
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discarded). This trade-off will be further discussed in Section 4.2.1.2 where a hardware
architecture is presented.

3.3 Worst-Case Timing Analysis

In this section, a formal analysis of the worst-case latencies of TDM channels in general
and the three protection switching versions in particular is presented.

There are five parameters that affect the worst-case latency of a message sent over a
TDM channel: the latency per hop, the number of hops N , the size of the slot table S,
the number of slots s assigned to the channel, and the number of flits f of the message.

The latency per hop is typically 1 cycle in a TDM NoC and will, therefore, not
be considered any further4. The number of hops will typically be relatively low with
the proposed concept since the critical applications are mapped at compile time which
allows to optimize for short paths. But even if the applications would be spread out
and a system with a 16x16 NoC mesh were to be considered—which is well beyond any
system currently deployed in automotive and avionics—the largest hop-count between
any two tiles would be 31 and, thereby, cause a latency of just 31 cycles.

A major system design parameter is the slot table size S which is defined at sys-
tem design time and typically cannot be changed afterwards5. S limits the number of
TDM channels that can share a single link and, at the same time, defines the mini-
mal bandwidth BWmin that can be assigned to a channel by determining the quan-
tization of the available bandwidth BW : BWmin = BW/S. The number of slots s
assigned to a TDM channel defines the maximum bandwidth BWmax the channel can
use (BWmax = s ·BWmin) but also has an influence on the worst-case latency of both a
single flit as well as a message composed of multiple flits.

Once a TDM flit is injected into the NoC its latency is exactly N + 1 cycles (one cycle
per hop plus one cycle until it reaches the receiving NI). Additionally, a flit might have
to wait for up to S − s cycles at the sending NI before it can be injected into the NoC.
This means, the worst-case latency C1 in cycles for a single flit is:

C1 = (S − s) + (N + 1), ∀s, S,N ∈ N+, s ≤ S (3.1)

For better readability, the domain and constraints of the parameters are not listed
for each of the following formulas but are instead listed in Table 3.1 along with all
parameters used throughout this section.

When sending a message with multiple flits the latency heavily depends on the slot
table size S, the number of reserved slots s, and the number of flits f . On the other
hand, the effect that the number of hops N has on the total worst-case latency decreases
with an increasing number of flits f . The reason is that only s flits can be sent out every
S cycles. As stated in Equation 3.1 the first flit must, in the worst case, wait for S − s

4If the latency per hop is more than 1 it simply becomes a multiplier for the number of hops N .
5A system with configurable slot table size is proposed in [49]. However, the upper bound must still be

defined at system design time and adjusting the slot table size at runtime causes all slot tables to be
wiped, thereby making the approach unsuited for safety-critical applications.
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cycles. Afterwards, flits can be sent out in the following s− 1 cycles before the next flit
must wait another S − s cycles.

In the simplest case with just one slot assigned to the TDM channel (s = 1) the flits
following the first flit cause an additional delay of S · (f − 1) cycles, causing a total
worst-case latency C2 of:

C2 = (S − 1) + (N + 1) + (S · (f − 1)) = S · f + N (3.2)

It is immediately obvious that with growing S and f the hop-count N has only little
effect on the worst-case latency. Equation 3.2 can be further generalized to also include
cases where more than one slot is reserved for a channel. After the first flit, s flits can
be sent every S cycles for as long as at least s flits remain, afterwards, the remaining
flit(s) can be sent out in the following cycle(s). Equation 3.3 determines the worst-case
latency for TDM channels in general (i.e., without protection switching and with no
fault occurring). Even with multiple slots assigned to a TDM channel, the hop-count
only has a minor influence on the overall worst-case latency when multiple flits are sent,
especially with a large slot table.

CTDM = (S − s) + (N + 1) +

(
S ·
⌊
f − 1

s

⌋
+ (f − 1) mod s

)
(3.3)

When protection switching is used, the worst-case latency of the different protection
switching versions must consider an occurring fault on the primary path (or one of the
paths in case of 1+1 protection). Since checkpoints are added to the data stream the
parameter f must be redefined to include these checkpoint flits. With a checkpoint
distance of d—meaning one checkpoint is added for every d data flits—the number of
checkpoint flits c that are added is:

c =
⌈m
d

⌉
(3.4)

with m being the number of data flits in the message sent. The total number of flits
sent when using protection switching is therefore:

f = m + c (3.5)

For 1+1 protection, the worst-case latency is equal to CTDM—but with the definition
of Equation 3.5 for f—if and only if the two paths are equidistant. Otherwise, Equa-
tion 3.3 must be applied to both paths individually to determine the worst-case latencies
CpathA and CpathB of the two paths. The overall worst-case latency is then:

C1+1 = max{CpathA, CpathB} (3.6)

The worst-case latency is lowest for d = m since this results in only one checkpoint flit be-
ing added to the data stream. However—depending on the checkpoint implementation—
this leads to large receiving buffers in the NIs, as will be discussed in Section 4.2.1.2.
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For both 1:1 and 1:n protection an additional parameter must be considered: the
latency F caused by the feedback channel via the overlay network mentioned in Sec-
tion 3.2.3. Furthermore, the additional latency P to configure the secondary channel
in case of 1:n protection must be considered as well. For simplification the following
considerations assume equidistant paths.

The worst-case scenario is that the last flit of a data unit gets corrupted by a fault
in which case the entire unit must be discarded and re-transmitted. This means that,
contrary to 1+1 protection, the worst-case latency for 1:1 and 1:n protection is highest
for d = m. For this case, the worst-case latency is given with Equation 3.7 (with
P = 0 for 1:1 protection). Even with instantaneous feedback channel (F = 0) and path
configuration (P = 0) the worst-case latency is almost twice as high as CTDM :

C3 = (2CTDM − 1) + F + P (3.7)

The worst-case latency of 1:1 and 1:n protection can be reduced by choosing a lower
checkpoint distance in order to reduce the amount of data that must be re-transmitted.
The baseline worst-case latency for both 1:1 and 1:n protection is the fault free trans-
mission CTDM with the definition of f given in equation 3.5. The worst-case latency
CDU of a single data unit can be determined similar to CTDM by replacing f with d+ 1
in Equation 3.3:

CDU = (S − s) + (N + 1) +

(
S ·
⌊
d

s

⌋
+ d mod s

)
(3.8)

Both protection switching versions require a re-transmission of all flits since the last
safe checkpoint over the secondary path. A checkpoint can be considered safe if at least
CDU + F cycles have passed since its injection without a fault being reported via the
overlay network. Accordingly, the worst-case latency CT for triggering a switch in case
a data unit is affected by a fault is:

CT = CDU + F − 1 (3.9)

With this, the worst-case latency for 1:1 protection is:

C1:1 = CTDM + CDU + F − 1 = CTDM + CT (3.10)

And the worst-case latency for 1:n protection is:

C1:n = C1:1 + P (3.11)

In case the two paths are not equidistant, CTDM and CDU must be determined for the
shorter path—assuming the shorter path is used as primary path—and the difference in
the number of hops of the two paths must be added.
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Domain /
Symbol Meaning Constraint

Cx worst-case latency in clock cycles Cx ∈ N+

S slot table size S ∈ N+

s number of reserved slots s ∈ N+, s ≤ S
N distance in number of hops N ∈ N+

f number of flits sent f ∈ N+

c number of checkpoint flits c ∈ N+

m number of data flits in a message m ∈ N+

d number of data flits per checkpoint flit d ∈ N+

F latency for feedback path in clock cycles F ∈ N+

P latency for path config. in clock cycles P ∈ N0

Table 3.1: Parameter list for formal analysis

3.3.1 Comparison of Switching Versions

Equations 3.6, 3.10, and 3.11 show that—out of the three protection switching versions—
1+1 protection has the lowest and 1:n protection the highest worst-case latency. The
worst-case latency of 1+1 protection is virtually equal to the worst-case latency of a
TDM channel without protection switching. The worst-case latencies of 1:1 and 1:n
protection can be more than twice as high, depending on the checkpoint distance d, and
depending on the additional latencies from F and P .

Both parameters F and P are implementation dependent and can only be approxi-
mated here. However, it can be assumed that both parameters will—in the worst case—
grow linearly with the number of hops, thereby making short paths more desirable. For
both 1:1 and 1:n protection the worst-case latency can be reduced by inserting more
checkpoints into the data stream (meaning, lowering d) whereas for 1+1 protection it
is advantageous to insert fewer checkpoints. When designing a system using protection
switching, the tolerable worst-case latency of the applications must be considered when
deciding which protection switching version to use, how to dimension S, s, d, and N ,
and how to implement the overlay network which determines F and P .

3.4 Proof of Concept

The previous sections of this chapter described the concept for a fault-tolerant hard real-
time NoC using protection switching and provided a formal analysis of the worst-case
latencies for the different protection switching versions. Based on these sections, this
section describes the experimental setup and the simulations that have been done in
order to allow a first evaluation of the proposed concept.

Both the fault-tolerance and the hard real-time capability of the safety-critical traffic
are given by design—as described in the previous sections 3.2.2 and 3.3—and would, for
itself, not need to be tested in a simulation. Instead, these first simulations are intended
to evaluate the impact that the TDM traffic has on the packet switched BE traffic as
well as the overall network utilization. Furthermore, the simulations provide a basis for
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Figure 3.5: Task Graphs used to represent critical applications

a first comparison of the different switching versions. A more in-depth hardware-based
evaluation is later presented in Chapter 5.

3.4.1 Experimental Setup

In order to accurately evaluate the impact the TDM traffic has on the BE traffic cycle-
accurate simulations were made. The simulations were done with an 8x8 NoC mesh of
hybrid routers implemented in SystemVerilog Hardware Description Language (HDL).
The architecture of the packet switched part of the router is kept very simple: static
XY routing is used and the router does not provide virtual channels. The slot table
size for TDM is set to 8. The simulation of the NoC mesh is done with Synopsys VCS.
The remaining parts of the system (i.e., the NIs, the overlay network, the central NoC
manager, the processing tiles, and the processes running on them) are abstracted in a
testbench created with cocotb [146] and Python.

4 randomly chosen task graphs—shown in Figure 3.5—were used to represent a set of
critical applications for the simulations. All graphs have one source and one sink vertex,
are directed, acyclic, and have vertices with a degree of up to 3. Two different mapping
scenarios—shown in figures 3.6 and 3.7 respectively—were simulated, each with different
TDM injection rates and different protection switching schemes.

The two mapping scenarios differ greatly in number of critical tiles and distribution of
the critical traffic. In the first scenario, 11 task graphs—taken from the set of randomly
chosen task graphs—are spread across the entire 8x8 system in a way that almost all
nodes are part of a critical task graph and, therefore, produce and/or consume critical
TDM traffic. An average flit generation rate of both 5% and 10% per node was simulated
for the TDM traffic, meaning that, on average, 3.2 respectively 6.4 flits are generated
in each clock cycle in all nodes combined. However, since not all nodes generate TDM
traffic, the generation rate of a single node can be significantly higher. Furthermore, these
generation rates describe the net traffic, meaning that the injection rates are effectively
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Figure 3.6: Scenario 1 - 11 task graphs Figure 3.7: Scenario 2 - 3 task graphs

twice as high for 1+1 protection. Figure 3.6 shows the logical connections representing
the channels that are configured for the critical communication (each connection has a
disjoint primary and a secondary path, not shown in the figure). In the first scenario, all
tiles generate and consume uniform random BE traffic to measure the effect the TDM
traffic has on the packet switched traffic. It is important to note that this is purely for
testing and would typically not be done in a deployed system since it violates isolation
of critical and non-critical applications in the processing tiles.

In the second scenario, 3 task graphs are mapped to just 16 nodes, clustered in a
4x4 corner of the system, as shown in Figure 3.7. The critical tiles do not generate
or consume BE traffic. Instead, uniform random BE traffic is sent and received by
the remaining 48 tiles, meaning the critical and BE applications are isolated from one
another. In this scenario, due to the dense mapping and lower amount of critical tiles
that generate traffic, only an average per-node TDM flit generation rate of 5% could
be achieved—meaning a total average of 3.2 flits per cycle. However, this means the 16
participating critical nodes have an average per-node injection rate of 20%—40% for 1+1
protection—since only a quarter of the NoC is used. The critical traffic is only located
in the 4x4 corner of the system. The BE traffic, on the other hand, still traverses the
critical region of the system—due to the XY routing—which means it is still affected by
the critical traffic.

These two very different scenarios were chosen to test protection switching in NoC
under two completely different conditions (high density of critical nodes on one hand
and high amount of overall traffic generated and injected into the NoC on the other
hand) and to get a first impression of the effects on the BE traffic. The results are a
first point of reference for comparison with a more in-depth evaluation being presented
in Chapter 5.
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In the simulations, the BE packets have an average size of 30 flits and each router has
an input buffer that can hold 16 flits. Per-tile BE flit generation rates of 10% to 30% are
simulated in 2.5% steps to measure at which point the network saturates. When a BE
packet is generated in the testbench, a timestamp is added to the packet which, upon
arrival of the packet at its destination, is used to determine the latency of that packet.
The packet is then enqueued at the sending NI which will eventually inject it into the NoC
mesh. In the simulation, these outgoing queues have a virtually infinite length (limited
only be the memory of the machine running the simulation), meaning that the queue can
grow indefinitely if the packet generation rate exceeds the maintainable injection rate.
As a consequence, this also means that the packet latency grows indefinitely if the packet
generation rate exceeds the injection rate. This is, of course, impossible in a real system.
However, using infinite queues is useful to quantify the results of the simulations by using
both the average packet latency and the average number of enqueued packets per node
as an indicator to determine if the NoC is saturated and rank different simulation results
by how severe the saturation is.

Each simulation runs for 100 000 cycles after a warm-up period of 10 000 cycles, after
which the link load has stabilized. Typically, longer simulations would be preferred to
increase confidence in the obtained results. However, the cycle accurate simulation of
an entire 8x8 NoC is a compute-intensive task which can take several hours for each
run—even for just 110 000 cycles—which is why the runtime was limited for this first
proof of concept.

3.4.2 Simulation Results

Three major metrics were monitored during the simulation runs and were used to evalu-
ate the results: the utilization of each individual link for both TDM and packet switched
traffic, the number of BE packets in the outgoing queues of each tile, and the latency
from generation of each BE packet until its delivery. For both scenarios, simulations in
which only BE traffic was generated and injected into the NoC were run as a baseline
reference.

Scenario 1

Figure 3.8 shows the average BE packet latencies for scenario 1. Several observations
can be made here. First, it can be seen that all curves progress the way one would expect
in a NoC with slowly increasing latencies for lower generation rates and then a sudden
steep increase once the network saturates. For the reference simulations, saturation is
reached when going from a 22.5% to a 25% flit generation rate. The simulations with
TDM traffic and protection switching reach saturation at lower BE flit generation rates
which is of little surprise since the overall amount of traffic in the NoC is larger.

The second observation that can be made is that the BE packet latencies are higher
the more TDM traffic is present, which could also be expected. The simulations of
1:n and 1:1 protection with a 5% TDM flit generation rate are almost identical and
always have slightly higher BE packet latencies than the reference simulations. Next,
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Figure 3.8: Average BE packet latency - Scenario 1

the simulations of 1:n and 1:1 protection with a 10% as well as 1+1 protection with a
5% TDM flit generation rate are almost identical until saturation is reached. They all
show higher BE packet latencies than the simulations of 1:n and 1:1 protection with
a 5% TDM flit generation rate. The reason for the similar progression of these three
curves is that they all inject the same amount of TDM flits into the NoC. The difference
of the curves for 1:n/1:1 protection with 5% TDM flit generation rate and the curves for
1:n/1:1 protection with 10% and 1+1 protection with with 5% TDM flit generation rate
can be explained by the fact that these differences occur at higher BE flit generation
rates when the network is already in saturation. Once this is the case, small differences
in the traffic generation triggered by the random number generators of the testbench can
lead to big differences in the observed latencies, especially with the current test setup
and the limited number of simulated clock cycles. Lastly, the simulation runs of 1+1
protection with a 10% TDM flit generation rate show the highest average BE packet
latencies and reach saturation at the lowest BE flit generation rates of all simulations.

Since the link utilization of the individual links as well as the number of packets in
the outgoing queues of each tile were monitored during each simulation it is possible to
create a heatmap for each simulation. Figure 3.9 shows the heatmaps of four reference
simulation runs with different BE generation rates. The link utilization shows the average
utilization of a link for the entire simulation (not including the warm-up period). It is
important to note that in the heatmap a link is considered to be utilized when a flit
actually traverses the link as opposed to when the link is blocked by a flit that could be
sent but cannot yet be received by the downstream router due to backpressure.

To determine a meaningful value for the number of elements in the outgoing queue
of a tile is not as straightforward. The number of elements in a queue will typically
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(a) 20% BE generation rate (b) 22.5% BE generation rate

(c) 25% BE generation rate (d) 27.5% BE generation rate

Figure 3.9: Heatmaps scenario 1 - reference simulation runs with the average utilization of each
link and the average minimal queue length of each tile
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(a) TDM utilization (b) Total utilization

Figure 3.10: Heatmaps scenario 1 - 1+1 protection, 10% TDM, 17.5% BE flit generation rate

vary greatly during a simulation run depending on the traffic pattern and, therefore,
simply calculating the average across the entire run has little significance. Instead, it is
important to know if, overall, the injection rate can keep up with the generation rate.
Therefore, time windows were determined and the average of the minimal queue lengths
in each window was calculated and added to the heatmap. If the value is zero or close to
zero it can be concluded that the injection rate can, overall, keep up with the generation
rate. On the other hand, if the value is significantly larger than zero—typically around
20 or more, depending on the number of tiles—it can be concluded that the injection rate
is lower than the generation rate and the queue will grow in length indefinitely which
indicates that the network is saturated. The higher the average minimum queue length
the faster the queue grows in length. It should be noted that the coloring visualizing
the average minimal queue length of the tiles in Figure 3.9 is not linear to account for
the fact that even relatively low numbers already indicate saturation.

Overall, Figure 3.9 shows the expected behavior of a packet switched NoC with XY
routing. The links in the middle of the network face a higher utilization due to the
routing algorithm. With growing flit generation rates the tiles in the corners are the
first ones that are affected by saturation, followed by the tiles at the edges of the NoC.
As can also be seen, the achievable link utilization typically stays below 50%.

Figure 3.10 shows two heatmaps of a simulation run with 1+1 protection and a 10%
TDM flit generation rate. The figure shows both the utilization caused by just the TDM
traffic and the total utilization. In this simulation, the NoC is close to being saturated
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Figure 3.11: Average total network utilization - Scenario 1

which causes some of the tiles to have an average minimum queue length greater than
zero. The heatmaps show that the TDM traffic causes bottlenecks for the BE traffic
on some of the links which in turn cause backpressure and network saturation at higher
BE flit generation rates. However, the heatmaps also show that the total utilization
of individual links can go as high as 74.8% which is much higher than any sustainable
link utilization in the reference simulations. Furthermore, the combination of TDM and
packet switched traffic seems to allow a higher overall utilization of the NoC.

This hypothesis is supported by Figure 3.11 which shows the average total network
utilization of the different simulation runs. The figure shows that the utilization of
the NoC grows linearly with increasing flit generation rates until saturation is reached
and the amount of injected BE flits is limited due to backpressure. As can be seen,
the achievable network utilization is significantly higher when using TDM and packet
switched traffic in combination.

It is important to keep in mind that Figure 3.8 only considers BE flit generation rates
and, thereby, shows only half the picture. Figure 3.12 shows the total flit generation
rates of the individual simulation runs on the X-axis, meaning that the curves of the
simulations with protection switching are shifted to the right compared to Figure 3.8.
As can be seen, the simulations with TDM traffic allow for a higher overall flit injection
before the network saturates, even when using 1+1 protection. This comparison is not
entirely fair since most of the TDM channels in scenario 1 have a hop count of just
2 or 3 which is significantly lower than the average hop count of the uniform random
packet switched BE traffic. However, it indicates that the bandwidth cost that protec-
tion switching has for the BE traffic is not as high as suggested by Figure 3.8. Since
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Figure 3.12: Average BE packet latency - Scenario 1, total flit generation rate

simulations of a single scenario do not allow for a conclusive answer, this will be further
investigated in Chapter 5.

Scenario 2

The simulations of scenario 2 show very different results than the ones from scenario 1.
In this scenario the system is divided into critical tiles generating and consuming TDM
traffic and non-critical tiles generating and consuming BE traffic. Figure 3.13 shows the
average BE packet latencies for the different simulations. As can be seen, the network
saturates at the same BE generation rate regardless of whether or not TDM traffic is
present. Furthermore, the NoC saturates at a lower BE generation rate in comparison
to the simulations of scenario 1, especially when looking at the reference simulations. It
is important to keep in mind, though, that the generation rate is given with regards to
the total number of tiles. Since only 48 of the 64 tiles generate BE traffic this means
that the BE tiles can maintain an injection rate of 20% and only cause saturation at
higher generation rates. However, this is still a considerably lower rate than could be
achieved with scenario 1.

The reason for this earlier saturation can be seen in Figure 3.14. The static XY
routing causes an uneven utilization of the links in the NoC. For instance, packets from
the south-west quarter of the system have a very high chance of having a destination
in the eastern half of the system which causes a high utilization on the links from the
south-west quarter to the south-east quarter. On the other hand, packets from the
north-east quarter of the system have an equal chance of having their destination be in
the south-west and south-east quarter, meaning that the links away from the north-east
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Figure 3.13: Average BE packet latency - Scenario 2

quarter are much more evenly utilized. With increasing traffic generation rates, this
uneven link utilization eventually causes backpressure—especially on the links from the
south-west quarter to the east and from the south-east quarter to the north—which first
affects the tiles in the south-west quarter.

The fact that the TDM traffic has only little effect on the BE traffic in scenario 2
can be explained much the same way. Figure 3.15 shows the link utilization caused
by both TDM traffic alone and TDM and BE traffic combined. As can be seen, the
only BE packets that can be affected by the TDM traffic are the ones sent form the
north-east quarter to the south-west quarter of the system. Since the backpressure on
the links from the south-west quarter to the east is responsible for the saturation, the
only effect that the TDM traffic has is a slight increase of the average latency of the BE
packets. Furthermore, the results show once again that the achievable utilization rate of
individual links can be much higher with TDM and BE traffic combined than with BE
traffic alone, going as high as 82.2% in scenario 2.

Similar to scenario 1, Figure 3.13 only considers the BE flit generation rate and not
the overall achievable flit generation rate. The packet latencies with regards to the total
flit generation rate is shown in Figure 3.16. Once again, the achievable flit injection rate
is higher with a combination of TDM and BE traffic. However, it is still much lower
than for scenario 1.

The results of the simulations for scenario 1 and 2 show that strictly dividing a system
into a critical and non-critical application domain can be tricky and even disadvanta-
geous. In scenario 2, part of the BE traffic is traversing the critical domain which is
acceptable since the isolation of the critical traffic from the BE traffic is ensured by TDM.
Another approach to dividing the system into different application domains would be
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(a) 15% BE generation rate (b) 17.5% BE generation rate

Figure 3.14: Heatmaps scenario 2 - reference simulation runs

(a) TDM utilization (b) Total utilization

Figure 3.15: Heatmaps scenario 2 - 1+1 protection, 5% TDM, 15% BE flit generation rate
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to only use rectangular arrays, which would be preferable for the BE traffic due to the
XY routing. However, this heavily limits the possible mappings of the critical and non-
critical applications in a system. In the 8x8 system, e.g., it would mean that the number
of both critical and non-critical tiles should be a multiple of 8 in order to divide the sys-
tem row- or column-wise. This can lead to problems when mapping the TDM channels,
especially due to protection switching and the two disjoint paths required. On the other
hand, the simulation results of scenario 1 indicate that it is preferable to spread out the
critical traffic. This has another advantageous effect on the protection switching since
in means that a permanent fault on a single link has a lower chance of affecting more
than one TDM path, thereby increasing overall resilience.

In conclusion, the simulations show that the concept of protection switching in NoC
works and that it can even help to increase the overall network utilization. The results
suggest that, although the TDM traffic generally has an adverse effect on the available
BE bandwidth, this effect is more than outweighed by the additional bandwidth for
the critical TDM traffic. Even 1+1 protection seems to be a viable choice regarding
its effect on the BE traffic, especially when considering its lower worst-case latency
compared to both 1:1 and 1:n protection. However, more tests with a greater number
of different scenarios are necessary to confirm or disprove these preliminary findings.
Furthermore, since the two scenarios showed very different effects on the BE traffic,
strategies to minimize the adverse effect on the BE traffic and, thereby, maximize the
achievable network utilization should be researched. Therefore, the following Section 3.5
will propose different approaches of improving the network utilization. These approaches
are then later evaluated in-depth in Chapter 5.
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3.5 Improving Network Utilization

The proof of concept described in the previous Section 3.4 showed the general feasibility
of protection switching in NoC and its effect on the packet switched traffic in a hybrid
NoC. However, this first preliminary simulation based evaluation demonstrated that the
safety-critical TDM traffic does have an adverse effect on the packet switched BE traffic
and that bottlenecks can easily occur on individual links which cause the whole network
to saturate at a comparably low rate. The simulations also showed that different appli-
cation scenarios—or, more general, the way in which a given set of critical applications
and their communication channels are mapped to the tiles and links of a system—have
a severe influence on the amount of packet switched traffic that can be injected before
the network saturates.

This begs the question of how to best map a given set of safety-critical applications
with given bandwidth and latency requirements to a system in order to maximize the
available bandwidth for BE applications and, thereby, the overall network utilization? In
order to find an answer to this question different mapping strategies are proposed in the
following Section 3.5.1. These mapping strategies can be used to map a given set of TDM
channels to a system while considering protection switching requirements (i.e., mapping
two disjoint paths for each channel) as well as various additional constraints that can
be defined. The intention of the mapping strategies is to consistently find mappings
that are beneficial for the packet-switched BE traffic and, thereby, maximize the overall
achievable network utilization. The proposed strategies will later be evaluated in-depth
in Chapter 5.

Parts of this section have been published in [3, 16, 17].

3.5.1 Mapping Strategies

A common approach of mapping critical and non-critical applications in a NoC-based
mixed-critical MPSoC is to partition the NoC into critical and non-critical areas (e.g.,
[147, 102]). The reason is that this makes it easier to guarantee traffic isolation between
the different traffic types. However, since this traffic isolation is already guaranteed by
using TDM for the critical communication, partitioning the NoC in such a way is not
necessary and there is generally more freedom when mapping the applications to the
system6.

In order to find strategies that, when followed, consistently produce good mappings
it is important to first define what makes a mapping measurably good (or better or
worse than another mapping). The goal in this thesis is to maximize the maintainable
generation (and injection) rate of uniform random packet switched BE traffic for a given
set of critical applications in a system, without the NoC going into saturation. For the
remainder of this thesis the generation rate of uniform random packet switched BE traffic
at which a given mapping causes the NoC to go into saturation will be referred to as the
saturation rate of that mapping. Hence, the higher the saturation rate of a mapping,
the more bandwidth is available for the BE traffic and the better the mapping. An

6Which does not mean the task is simple (cf. Section 3.5.2).
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additional parameter that can be used to compare two mappings is the average latency
from generation until delivery of a BE packet. This is especially useful to compare two
mappings that achieve the same saturation rate.

This definition of good mappings, although intuitive, has a major flaw. In order
to accurately determine both the saturation rate and the average packet latency it is
necessary to test the mapping either in an implemented system or, at the very least, in
a simulation. Both options pose a major inconvenience and, depending on the method
chosen, can require a considerable amount of time and resources. Ideally, a mapping
should have one or more quantifiable attributes that allow to infer its saturation rate—
or at the very least an estimation of it—as well as a direct comparison of different
mappings, without running tests or simulations. Four such attributes are defined in the
scope of this thesis and are used as optimization objectives (minimization) for a mapping
algorithm designed to find good mappings (cf. Section 3.5.3):

� O1 : total number of reserved slots

� O2 : standard deviation (SD) of reserved slots per link

� O3 : SD of TDM path lengths

� O4 : SD of number of critical tasks per row and column

All four optimization objectives directly affect how the critical applications and the TDM
channels are mapped. However, the packet switched BE traffic—which the objectives
are intended to improve—can only be considered indirectly. The reasoning behind these
four optimization objectives is explained in the following.

O1: total number of reserved slots Minimizing the total number of reserved slots is
an intuitive approach of trying to minimize the affect the TDM traffic has on the BE
traffic. By minimizing the resources that are reserved for the TDM traffic more slots
are free to be used by the packet switched traffic even if the TDM channels would use
every slot that is assigned to them in every single TDM period. This objective naturally
causes the critical applications to be mapped in clusters since the TDM path length will
be minimal. However, individual clusters are not necessarily next to each other.

O2: SD of reserved slots per link By minimizing the standard deviation of the re-
served slots per link it is ensured that all links are—more or less—evenly used by the
TDM traffic. The intention of this objective is to avoid the creation of artificial bottle-
necks by the TDM traffic. This objective, naturally, results in mappings that reserve a
larger amount of slots for the TDM channels than mappings created by optimizing for
O1. Furthermore, the TDM path length will generally be longer, especially when only
few TDM channels are present. In essence, while O1 typically results in the critical
applications being clustered, O2 typically spreads them out as much as possible.
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Strategy Optimization Goal (minimize)

S1 total number of slots (O1 )
S2 SD of used slots per link (O2 )
S3 SD of channel path lengths (O3 )
S4 SD of number of critical tasks per row and column (O4 )
S5 simultaneous optimization of O1 and O2
S6 simultaneous optimization of O2 and O4
S7 simultaneous optimization of O1, O2, and O4

Table 3.2: Mapping strategies

O3: SD of TDM path length Minimizing the standard deviation of the TDM paths
means that all paths will have a similar length. This also means that all TDM channels
have a similar worst-case latency. However, the main intention of O3 is to spread the
critical applications across the system, similar to O2. In contrast to O2, this spreading
should only occur with growing number of paths. As the total number of paths increases
it is no longer possible to keep all paths short and the critical applications are spread
out resulting in similar path lengths. With only a small number of TDM paths, on the
other hand, all paths can be kept similarly short which should lead to small clusters of
the critical applications.

O4: SD of number of critical tasks per row and column By minimizing the standard
deviation of the number of critical tiles in each row and column of the tiled system, this
optimization objective produces mappings that evenly spread the critical applications
across the system. Since all tiles that do not run a critical application are BE tiles, this
objective also minimizes the standard deviation of the number of BE tiles in each row
and column. Hence, this objective is the only one that directly affects the mapping of
the BE tiles. It is also the only one that does not directly consider the mapping of the
TDM paths throughout the NoC, i.e., the reserved resources on the links. The intention
of this objective is to map the BE applications in a way that is beneficial for the static
XY routing used by the packet switching in order to avoid bottlenecks created by the
BE traffic itself.

The different optimization objectives can be used to define mapping strategies by
optimizing for one or more of the objectives. Seven mapping strategies are defined and
evaluated in the scope of this thesis. The strategies are listed in Table 3.2.

Strategies S1 to S4 are single-objective strategies that produce mappings respectively
optimizing for O1 to O4. S5 to S7 are multi-objective strategies that combine different
optimization objectives. S5 combines O1 and O2 with the intent to avoid the creation of
bottlenecks for the BE traffic while at the same limiting the amount of reserved resources.
S6 combines O2 and O4 to define a strategy that considers both the mapping of the
applications as well as the paths throughout the NoC. And finally, S7 extends S6 by
additionally limiting the amount of reserved resources. The reason for choosing these
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particular multi-objective optimizations is based on the evaluation of the single-objective
optimizations and will be discussed in Section 5.2.1. Whether or not these strategies
work in the intended way and reliably produce good mappings will be evaluated in
Chapter 5 through tests performed in hardware on an FPGA.

3.5.2 Mapping Challenge

Mapping a given set of TDM channels to a TDM NoC is no trivial task to begin with,
even without considering protection switching. The task becomes more challenging with
increasing number of channels and decreasing slot table size, the latter meaning fewer
channels can share a link. Depending on the mapping strategy, even the order in which
channels are mapped can affect whether or not a set of channels can be mapped.

A simplified example with a slot table size of just two is shown in Figure 3.17a. In this
example, the first free slot for a given path is chosen7. If the three paths are mapped
in the order a, b, c, then path c cannot be mapped even though enough bandwidth is
available on each link. The reason is that the free slots on the two links shown are not
in consecutive cycles. If, however, path c is mapped first—shown in Figure 3.17b—then
all three paths can be mapped.

In the example shown, the mapping of path c is initially neither blocked by just path
a or b alone but by the combination of the two. Another solution in this particular
scenario might be to shift the reserved slots of path b by one slot (i.e., use slot 1 in R2
and slot 0 in R3 for path b). However, this shift might be hindered by additional paths
that share links with path b which are not shown in the figure. In this case, the mapping
of path c might be blocked by a combination of multiple different paths—some of which
it does not even share links with—although enough bandwidth would be free on all links
that would be used by it.

The example is, admittedly, very simple and pessimistic but illustrates the complexity
of mapping TDM channels to a system. Similar—but more complex—examples can be
found even for larger slot tables and more sophisticated mapping strategies.

The described mapping challenge becomes even more difficult in the scope of this thesis
since protection switching must be considered. This not only means that the amount of
TDM paths is twice as high as without protection switching—i.e., twice as high as the
number of channels—but also that one half of the paths affect (i.e., reduce) the mapping
possibilities of the other half of the paths, since each pair of paths has the same source
and destination tile but must use disjoint routes through the NoC. An algorithm creating
mappings from a given set of TDM channels must consider these mapping challenges.
Additionally, it should be able to not just find any valid mapping but also consider a
specific mapping strategy, as described in the previous Section 3.5.1.

7It is assumed here that the paths are already determined, e.g., following XY routing or following other
mapping strategies such as the ones described in Section 3.5.1, but the slots for each path must still
be determined.
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Figure 3.17: The order in which TDM paths are mapped can affect the success of a mapping

3.5.3 Mapping Algorithm

The mappings of the two application scenarios evaluated in Section 3.4 was done by
hand which is a tedious, time consuming, and error-prone task. In order to enable the
evaluation of a large number of different traffic scenarios and mapping strategies it is
necessary to automate this task by implementing a suitable mapping algorithm. The
mapping algorithm used to create the mappings that are evaluated in Chapter 5 will be
briefly introduced in the following.

For full transparency and disclosure: while both the definition of the optimization
objectives and the mapping solution space exploration are contributions in the scope
of this thesis, the algorithmic approach to finding these optimized mappings and the
implementation of the mapping tool are NOT the author’s contribution but have been
done by Nguyen Anh Vu Doan. Therefore, the algorithm itself is only briefly covered in
this thesis. For more details, the interested reader is directed to [3].

When representing both the NoC mesh and the critical applications to be mapped as
graphs, mapping the channels to the NoC can be considered as similar to a subgraph
matching problem. This problem is NP-complete, meaning it has a huge solution space.
The requirement of two disjoint paths makes this problem even more complex. An
exhaustive search is, therefore, not feasible which is why an approximate method was
chosen for the mapping algorithm.
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3.6 Summary

The mapping algorithms works in two steps. As a first step, an initial set of feasible
mappings with disjoint paths that fulfill the application’s bandwidth requirements is
generated with a semi-greedy heuristic. In contrast to a typical greedy heuristic, the
decisions of a semi-greedy heuristic are not deterministic but instead allow for a certain
degree of randomness. In the second step, the initial set of mappings is used as a basis for
a subsequent optimization process. The optimization is done with a genetic algorithm,
specifically Non-dominated Sorting Genetic Algorithm (NSGA)-II (an extension of the
original NSGA), which allows multi-objective optimization [148]. During the iterative
optimization process in step two, new mappings are created through crossover and mu-
tation operations which are designed in a way to ensure that the generated offspring(s)
only contain feasible mappings. An overview over the mapping algorithm is given in
Figure 3.18.

Figure 3.18: Mapping algorithm flowchart [3]

3.6 Summary

Mixed-critical MPSoCs require a scalable means of on-chip communication which must
satisfy a number of requirements. Most importantly, the critical communication must
provide hard real-time guarantees, be fault-tolerant, and guarantee isolation from other
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critical and non-critical traffic as well as in-order delivery. The type of system considered
in the scope of this thesis is a mixed-critical NoC-based MPSoC with safety-critical
applications that behave predictably and that can be statically mapped at compile time,
and BE applications with potentially unknown behavior that are dynamically started
and stopped during system runtime. The fault model considered assumes that a fault
can corrupt the flits of a TDM channel by affecting any parts of the channel between the
sending and receiving NIs—i.e., wires, registers, and logic—and that this flit corruption
is detectable by suitable means. Furthermore, the faults considered can be transient,
intermittent, or permanent in nature.

The concept presented in this thesis us to use a hybrid NoC with TDM for critical
traffic and packet switching for BE traffic. Using TDM for critical traffic not only allows
to give hard real-time guarantees but also enforces isolation between different TDM
channels as well as between critical and BE traffic. Fault-tolerance of the critical traffic
is guaranteed by adopting protection switching. This is done by providing two disjoint
paths for each TDM channel—a primary and a secondary path. To enable disjoint paths
and remove the local link of the tiles as single points of failure, a second local link is
added connecting the tiles to the NoC. If one of the paths is affected by a fault, the other
one—and thereby the channel as a whole—is still fully operational, but the channel is
no longer fault-tolerant. To return to a fault-tolerant state, a new disjoint path can be
found and configured at runtime.

Three different protection switching versions are proposed in the scope of this thesis:
1:n, 1:1, and 1+1 protection. The different versions are evaluated regarding their esti-
mated hardware overhead and by means of a formal timing analysis. The preliminary
conclusion is that 1+1 protection—although using more resources and leaving less band-
width for BE traffic—is the most promising candidate of the three protection switching
versions.

A first proof on concept and evaluation is given based on a cycle accurate simulation
of two different traffic scenarios. The simulations confirm that the TDM traffic has an
adverse effect on the packet switched BE traffic. However, this adverse effect is tolerable
and using a combination of both TDM and packet switched traffic can even increase the
overall available bandwidth and achievable network utilization.

Different mapping strategies are proposed to maximize the available bandwidth for the
BE traffic. Four different optimization objectives are introduced and used to define seven
mapping strategies. The strategies are intended to reliably produce good mappings, i.e.,
mappings that allow for the most amount of BE traffic to be injected into the NoC before
causing network saturation. Whether or not these strategies work in the intended way
will be evaluated in Chapter 5. To enable this evaluation, a hardware architecture of
the proposed NoC using protection switching is presented in Chapter 4.
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With the concept for the hybrid NoC with protection switching being defined, this
chapter describes the design of the architecture of the NoC and an implementation on
FPGA. Furthermore, the architecture and implementation of two different systems using
the hybrid NoC are presented.

One system—the evaluation system—is used for a more in-depth evaluation of the
three protection switching versions. This is required in order to truly evaluate the effect
that the safety-critical TDM traffic has on the packet switched BE traffic. Furthermore,
the different mapping strategies proposed in Section 3.5.1 must be evaluated by deter-
mining both saturation rate and average packet latency of the BE traffic for a variety
of different traffic scenarios. Such a Solution Space Exploration (SSE) of the possible
mappings for a given traffic scenario would take a prohibitive amount of time to perform
using cycle accurate simulations. Hence, a manycore system with the hybrid NoC imple-
mented on an FPGA is used which allows to run a large amount of tests in a relatively
short amount of time. The evaluation is presented in the subsequent Chapter 5.

The other system—the demonstrator system—is part of an interactive demonstrator
that was developed and implemented for the ARAMiS II research project. This system
demonstrates the traffic isolation and fault-tolerance of protection switching in NoC. It
is connected to a host-PC enabling interactions with the demonstrator via a Graphical
User Interface (GUI).

For both systems, synthesis results are presented which allows to evaluate the hard-
ware requirements of protection switching in NoC. The results are also compared to
the hardware cost of a state-of-the-art packet switched NoC which provides throughput
guarantees (but not fault tolerance) in a mixed-critical system.

4.1 Baseline System Architecture

Implementing hardware is hard and designing the system architecture of an entire MP-
SoC from scratch is a time consuming task that is way out of the scope of this thesis.
Therefore, an already existing framework, Open Tiled Manycore System-on-Chip (Op-
TiMSoC), is used as a basis for the architecture of the two systems [149]. OpTiMSoC
is an open source framework which allows to design and implement MPSoCs with rel-
ative ease. Systems build with OpTiMSoC can be either simulated with Verilator or
synthesized for an FPGA.

The framework provides processing tiles with a configurable number of processing
cores, a local memory, and a NI to connect the tiles to the NoC. The different com-
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ponents of a processing tile are connected by a local wishbone bus. A processing tile
can contain up to four OpenRISC cores—a relatively small and simple processing unit
[150]. Furthermore, the framework provides a basic packet switched NoC and a debug
sub-system that allows to control and debug the implemented manycore system.

For the two systems designed and implemented in the scope of this thesis OpTiMSoC
was extended by replacing the packet switched NoC with the hybrid NoC described in
Chapter 3—including the NIs—and implementing additional modules. The architectures
of these additional modules are described in Section 4.2. Furthermore, optional clock-
domain-crossing was implemented to enable GALS designs.

Both the evaluation system and the demonstrator system are implemented on the “Xil-
inx Virtex UltraScale FPGA VCU108 Evaluation Kit” which contains a Xilinx Virtex
Ultrascale FPGA (XCVU095). The FPGA has 1176 thousand logic cells, 768 DPS slices,
and 60.8 Mbit on-chip memory. Additionally, the VCU108 provides 8GB of DDR4 mem-
ory and a large variety of off-chip interfaces. Information about the VCU108 evaluation
kit is available online [151].

4.1.1 The Debug Sub-system

OpTiMSoC uses Open SoC Debug (OSD) as debug sub-system [152, 153]. OSD enables
communication between the different modules of a generated system and a host-PC
and is used for controlling and debugging the system. Currently, the debug sub-system
is the only way to get information in and out of a system created with OpTiMSoC.
Specifically, the sub-system is used to load the software into the local memory of the
processing tiles, reset and start the system, and trace the behavior of the software
during runtime including text output. OSD is also used for the communication with the
modules implemented in the scope of this thesis and, therefore, its general structure is
briefly described in this section.

OSD is divided into a hardware and a software part—implemented on system side
and host-PC side respectively—and provides the infrastructure that allows the different
hardware modules on system side and the software modules on the host-PC to commu-
nicate with one another. The hardware modules are connected to a Debug Interconnect
(DI) which has the form of a 16 bit wide packet switched ring NoC. This DI is connected
to all debug modules in the system as well as a host interface module which serves as
an off-chip gateway. Details of the data exchange between the system and the host-PC
differ depending on the used off-chip interface (e.g., Universal Asynchronous Receiver
Transmitter (UART) or Universal Serial Bus (USB)). The debug sub-system uses the
Generic Logic Interfacing Project (GLIP), a collection of off-chip communication inter-
faces which allows the off-chip interface to be treated like a FIFO without having to
worry about the implementation details [154]. For the two systems implemented in the
scope of this thesis USB 3.0 is used as off-chip interface.

The software part of OSD is implemented in C but provides an interface to the Python
programming language. This allows to create a software connecting to and communicat-
ing with a specific system on a high level of abstraction with relative ease. The Python
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interface also simplifies the implementation of host debug modules which are typically
created to interact with a corresponding hardware debug module.

OpTiMSoC provides a basic project with 2x2 processing tiles and two cores per tile as
a reference design. Figure 4.1 shows a simplified overview over this reference design with
the debug sub-system. Note that not all debug modules and their specific functions are
shown in this figure. For a more detailed introduction the interested reader is directed
to [152, 153].

Limitations

Although OSD is a convenient solution for the communication between the implemented
system and the host-PC it has some limitations which are briefly covered here.

One limitation is the width of the DI which is currently hard-coded to 16 bits and
cannot easily be changed. This means that if a debug module has, e.g., registers that
are wider than 16 bits the data must be serialized in order to be sent over the DI.
Furthermore, the DI uses debug packets with a maximum size of 12 flits, three of which
are used for source, destination, and packet type (cf. [152]). This means that larger
messages must be divided into multiple packets which limits the bandwidth that is
available for payload data to 75% of the DI’s total bandwidth.

As mentioned above, the DI is a packet switched NoC with a ring topology. Conse-
quently, it can quickly become a bottleneck with growing system size and it is impossible
to give hard real-time guarantees. This must be considered for the architecture of the
debug modules for the evaluation system and designing a suitable test setup for the
intended SSE. Furthermore, this has consequences for the demonstrator system which
will be further discussed in Section 4.3.2.
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4.2 Module Architecture

The following sections describe the architecture of the hardware modules designed and
implemented in the scope of this thesis, both for the NoC itself as well as the additional
modules necessary for the evaluation system and the demonstrator system.

4.2.1 Network Components

First, the architecture and design choices of the different modules that build the hybrid
NoC are discussed, as well as some modules necessary for testing.

4.2.1.1 Data Exchange Format

Before designing the individual hardware modules it is important to define the format
or handshake that is used to exchange data between the NIs and routers. In addition
to the flits some flag signals are required in order to interpret the flits correctly and to
implement flow control which is important for the packet switched traffic.

The first flag that is necessary is a valid flag indicating that a flit is being transmitted
over a link. This flag is needed for both pure TDM and packet switched NoCs. A pure
TDM NoC would only need this one flag since the data transfer is streaming based and
it is up to the application to define logical data structures, messages, etc.

A packet in a packet switched NoC typically consists of a header flit, multiple body
flits, and a tail flit. The header flit holds information about the packet such as source,
destination, path, packet class, etc. This is the only strictly necessary flit1. The body
and tail flits carry the payload of the packet with the only difference between body and
tail flit being that the latter one terminates the packet which is typically indicated by a
last flag. The header flit can either be indicated by an additional flag or it can implicitly
be identified by being the first valid flit after a tail flit as indicated by the last flag (or the
first valid flit all together). The latter version is used for the architecture in this chapter.
Lastly, a router needs to know if the downstream router has enough free buffer space to
receive a flit. This information can be provided by a ready flag from the downstream
router to the upstream router2. In summary, three flags are used for the packet switched
traffic: a valid, a last, and a ready flag.

For the hybrid NoC it is necessary to have two individual valid flags for both TDM and
packet switched traffic in order to tell them apart. Furthermore, the use of checkpoints
for the protection switching and the resulting division of the TDM traffic stream into
data units—as described in Section 3.2.5—makes it necessary to identify these checkpoint
flits. Similar to indicating the header flits for packet switched traffic this can be done in
two different ways: either by indicating the checkpoint directly with a checkpoint flag,
or indirectly by indicating the last flit of a data unit—i.e., the last flit before a new
checkpoint—with a last flag. Both versions were implemented and evaluated and their

1Some NoCs use single flit messages that are either used for configuration, handshakes, or directly carry
a small payload.

2Some NoCs use more flow control that requires additional flags, such as credit based flow control, but
at the very least a single ready flag is needed.
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respective implications are discussed in Section 4.2.1.2. For both versions the last flag
that is also required for the packet switched traffic can be utilized, thereby bringing the
total number of required flags to four.

In Section 3.1.2 it was mentioned that faults must be detected through suitable mea-
sures. For the implementation presented in this thesis parity bits are used to enable
fault detection. Specifically, one parity bit is used for each byte of a flit resulting in four
parity bits per link for the 32 bit wide hybrid NoC implemented for both the demon-
strator and the evaluation system. The parity bits for each TDM flit are calculated at
the sending NI—using odd parity—and are then sent alongside the flit. The receiving
NI then checks if the odd parity holds true for each byte and the corresponding parity
bit. This simple yet effective implementation of fault detection can detect up to four
faults per flit, provided they affect different bytes. However, the fault detection mech-
anism is orthogonal to the contribution of this thesis and more complex fault detection
mechanism could be utilized as well, if needed. Figure 4.2 shows a unidirectional link of
the hybrid NoC as used in the two systems designed in the scope of this thesis with all
its flags.

Faults on the flag signals have a high chance of having severe consequences since
they directly affect the traffic flow, meaning they should be hardened against faults by
suitable measures. However, as stated in Section 3.1.2, such faults are out of the scope
of this thesis and are only briefly touched on as future work in Section 6.1.

4.2.1.2 Network Interface

The NI is—next to the router—one of the two main components of the hybrid NoC
architecture and is arguably the most crucial one since it implements the protection
switching function. The CPU of a tile—or other components—can access the NI via the
tile internal 32 bit wide wishbone bus. Internally, the NI is divided into a packet switched
and a TDM part with the former providing a single endpoint for packet switched traffic
and the latter providing multiple TDM endpoints each supporting an outgoing and an
incoming TDM channel. The number of TDM endpoints provided is a design parameter
that can be adjusted depending on the requirements of the applications. Traffic can be
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sent out on an endpoint by writing to its output buffer and traffic that has been received
on an endpoint can be read from its input buffer. The dimensioning of these buffers will
be discussed further down. When data has been received on an endpoint, an Interrupt
Request (IRQ) is issued to indicate that data can be read from the input buffer. Two
different IRQs are used in order to prioritize the critical over the non-critical traffic:
TDM IRQ—a combined IRQ for the TDM endpoints—and BE IRQ—the IRQ for the
BE endpoint.

The TDM endpoints are implemented to support 1+1 protection but with the option
to switch one path off. The reason is that both 1:n and 1:1 protection have a similar
effect on the BE traffic since they both only use one path at a time3. By being able
to switch one path off, the same implementation can be used to evaluate the effect of
the TDM traffic on the BE traffic for both 1:n/1:1 protection on one hand and 1+1
protection on the other hand.

The TDM endpoints must implement the protection switching function, i.e., take care
of sending out the flits over both paths—potentially in different cycles—and ensuring
that only correctly received flits are forwarded to the input buffer (and only once). As
described in Section 3.2.5, checkpoints are periodically inserted into the data stream by
a checkpoint insertion logic to implement the path synchronization at the receiving NI.
When sending out a flit, a parity bit is added for each byte of the flit in order to enable
fault detection. On the receiving side, the parity bits of the received flit are calculated
again and compared to the received parity bits to check for faults.

Typically, a flit will not be sent out on both paths of a TDM channel in the same
clock cycle since this would greatly limit the mapping possibilities. Hence, flits must
be buffered until they have been sent out on both paths. This could be done with two
individual out-queues—one for each path—with a minimum size of S/2 for a slot table
size of S (one queue can never be more than S/2 flits ahead of the other queue). However,
this would result in a large buffer overhead. Instead, a custom FIFO architecture with
two individual read ports and pointers is used for the implementation. This design
results in a relatively low hardware overhead that is mostly independent from the size
of the FIFO.

As described in the previous Section 4.2.1.1, two different versions of path synchro-
nization with checkpoints were implemented and both have different consequences for
the implementation of the NI. With version 1, the data units of the TDM traffic are
treated similar to packets of the packet switched traffic. The checkpoint acts as header
of a data unit and the last flit of a data unit is indicated by a last flag. This is im-
plemented with two individual in-queues in the TDM endpoints. Once an entire data
unit has been received on a link without a fault and been stored in the corresponding
in-queue the checkpoint evaluation logic checks if the received checkpoint matches the
next expected checkpoint. On a positive check the data unit is written to the input
buffer of the endpoint, otherwise the data unit is discarded.

31:n protection would potentially allow to pack TDM channels more densely and, thereby, allow more
TDM channels to be mapped to a system in comparison to 1:1 and 1+1 protection. However, the
number of TDM channels that can be mapped to a system will rarely be the limiting factor when
mapping critical applications to a system, as will be discussed in Section 5.4.
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With version 1, the receiving NI only switches between paths on a data unit granu-
larity. An entire data unit is either accepted or discarded. Consequently, the checkpoint
of a data unit is its sequence number (“wrapped around” on an overflow). However, the
two individual in-queues cause a hardware overhead, even if the buffers are kept small.
The design parameter affecting the minimal size of these queues is the number of data
flits d that is sent between two consecutive checkpoints, which should be kept small for
this implementation. A small d, however, increases the bandwidth requirements for the
TDM traffic (cf. Section 3.2.5).

Version 2 of the path synchronization with checkpoints treats the TDM traffic as a
continuous stream of flits and allows the receiving NI to switch between paths on a flit
granularity. Consequently, the checkpoint of a data unit is the sequence number of the
next flit (“wrapped around” on an overflow). Two local counters must keep track of the
number of flits received on both paths and an additional counter needs to keep track
of the number of flits that have been written to the input buffer. This implementation
requires more logic for the checkpoint evaluation and handling of corner cases—such as
updating checkpoints of a path that has been reconfigured at runtime—but does not
need any additional in-queues. On the other hand, version 2 path synchronization can
cause a higher load on the local bus—particularly with fast execution of the application’s
Interrupt Service Routine (ISR) or reaction of a hardware module reading from the NI—
since the IRQ will be set even if only a single flit has been received. Furthermore, if a
transient error corrupts a single flit on a path that is ahead of the other one, the receiving
NI will—correctly—discard the flit and wait for the fault free flit on the other path. If,
however, the first path stays ahead of the second one, the receiving NI will never be
able to switch back to the first path even if flits on the other path are corrupted4. It
is, therefore, important to allow the two paths to catch up with each other in regular
intervals5.

Both synchronization implementations support all three protection switching versions
on the receiving side. At the sending side it is possible to use 1:n/1:1 protection instead of
1+1 protection by continuously draining the read port of the out-queue of the deactivated
path.

Four slot tables—one for each outgoing and incoming link—store the TDM configuration—
i.e., which endpoint, if any, is connected to which link in each cycle—and control a
multiplexer for each outgoing and de-multiplexer for each incoming link. When a slot
is reserved for a TDM channel, the slot table will connect the output or input of the
corresponding TDM endpoint to the reserved outgoing or incoming link. Slots can be
reserved independently for both links and directions, meaning that different endpoints
can send/receive on different links in the same cycle.

The packet switched traffic is only used for BE traffic, meaning that fault-tolerance
is not necessary. Therefore, no parity bits are used for BE traffic and BE traffic is
only sent/received on link 0. This helps to reduce the resource overhead of using two

41+1 protection is assumed in this example.
5In reality, this should rarely be a problem since TDM channels can typically not utilize 100% of the

link’s total bandwidth, as will be discussed further down.
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Figure 4.3: Hybrid NI with protection switching

links between each tile and the adjacent router. Whenever a slot on link 0—outgoing or
incoming—is not reserved for or used by TDM traffic, BE traffic can be served in that
direction. Only one endpoint is provided for BE traffic since that endpoint can be used
for different traffic streams.

Figure 4.3 shows the architecture of the NI with its sub-modules6 (the fault detection
based on parity bits is not shown in the figure). In order to enable a GALS design,
the NI provides clock-domain-crossing FIFOs in the endpoints which result in additional
logic.

Discussion: Design Choices and Buffer Dimensions

As discussed in Section 2.2.5, using TDM for the critical traffic allows to give hard real-
time guarantees. However, this guarantee can only be given between two endpoints of a
TDM connection, i.e., the two NIs. In order to give hard real-time guarantees between
two communicating applications it is necessary to also consider writing to and reading
form the NI. Although this is out of the scope of this thesis, the following paragraphs
provide a discussion about the general problem, possible solutions, the design choices
made for the implementation in the scope of this thesis, and the implications this has
for the buffer sizes of the NIs.

As described in the previous section, data is sent out and received over the different
endpoints by writing to and reading from their respective output and input buffers. Both
requires processing time and is, thereby, time consuming especially for larger chunks

6This is the design implementing version 2 of the path synchronization. Version 1 would require two
individual in-queues before the checkpoint evaluation of the TDM endpoints.
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of data. This additional processing time must be considered when implementing an
application. The most critical situation is a buffer overrun on the input buffer of a
TDM endpoint. Since incoming TDM traffic cannot be stalled, this inevitably results
in data loss which must be avoided at all cost. Therefore, the TDM IRQ that is set
whenever TDM traffic is ready to be read from an endpoint of the NI must have the
highest priority.

In the current implementation the TDM IRQ is a logical OR combination of the
individual IRQs of all TDM endpoints. When reading from the NI, the ISR that is
executed must first determine which endpoint has data to be read. This is done by
reading a bit vector from the NI which holds all individual IRQs7. It is then up to
the developer to implement an appropriate arbitration scheme between the different
endpoints inside the ISR. Similarly, it is up to the developer to ensure that the application
can keep up with the amount of traffic that is received by the NI. Particularly, the
developer must ensure that incoming data is always drained fast enough from each
input buffer in order to avoid a buffer overrun. At the same time, an application must
still have enough remaining time to do all required processing on the received data as
well as sending out whatever responses or messages to subsequent processing nodes are
necessary. Overall, the tile internal bus and the performance of the processing element
are most likely to be the limiting factor regarding the maximum bandwidth for both
incoming and outgoing traffic. This is especially the case if the NoC is clocked at a
higher speed than the tile.

In order to avoid buffer overruns the buffer size was chosen to be rather large for the
two implemented systems presented in this thesis. For both the input and output buffers
of each endpoint a size of 512 flits was chosen, resulting in a buffer size of 2KiB (with
a flit size of 32 bit). This not only gives a large safety margin to avoid buffer overruns
but also allows to effectively utilize the FPGA’s Block RAM (BRAM) modules, thereby
helping to minimize the required hardware resources of the implementation—i.e., the
number of logic and register cells of the FPGA.

Naturally, large in-buffers can only temporarily mitigate times when traffic is received
with a higher bandwidth than it is drained with. In order to guarantee that no buffer
overruns can occur in the two implemented systems two different approaches were taken.
The evaluation system generates and consumes data in special hardware modules which
use the same clock as the NoC does. Furthermore, the combined amount of incoming
and outgoing traffic of a tile is never higher than the bandwidth of the local bus. In the
demonstrator system the amount of data that is sent over a TDM channel is limited in
software and new data is only sent when the input buffer is known to be empty (further
described in Section 4.3.2).

A possible way to decrease the processing power that is required—or blocked—by
actively writing data to and reading it from the NI would be to utilize Direct Memory
Access (DMA). A common approach is to attach a dedicated DMA controller to a bus

7This effectively limits the possible number of TDM endpoints in the current implementation to 32. A
possible way to overcome this limitation would, e.g., be to use additional bit vectors or to implement
arbitration directly in the NI.
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that takes care of moving large data chunks without direct involvement of the CPU.
This way, data could be sent via the NoC by initiating a DMA transfer from the local
memory to the outgoing buffer of an endpoint. On the receiving side the NI would then
have to initiate a DMA transfer into the local memory and set an IRQ once the transfer
is finished.

In [155] it was proposed to add a DMA controller directly to the NI and utilize a
dual read port memory in order to minimize the required buffer space and make DMA
transfers over the NoC possible. The approach is promising but cannot directly be
used with protection switching. A way of enabling DMA transfers for the hybrid NoC
with protection switching was evaluated and could significantly improve the achievable
transfer rate and overall performance but lead to increased complexity and hardware
requirements and is, therefore, not part of the final architecture presented in this thesis
[156].

Another situation that must be avoided is a critical task running on a processing tile
being interrupted by faulty or malicious BE traffic. To ensure this, the BE IRQ should be
disabled on tiles running critical applications. However, this rises another undesirable,
although non-critical, issue regarding the BE traffic. If packet switched traffic is sent
to a tile, be it intentionally or as a result of a fault, but is never read from the NI,
backpressure will sooner or later block parts of the NoC for BE traffic. In order to
avoid this, the endpoints of a NI can be enabled or disabled (which is the default). Flits
received by a disabled endpoint will simply be discarded. This means that the software
running on a processing tile must enable the endpoints it intends to use as well as enable
the corresponding IRQs.

This leads to the question of how to know when the receiver of a message has finished
its startup routine and is ready to receive data. This question, however, is out of the
scope of this thesis. In the current implementation—which is similar to how this is
handled in OpTiMSoC—a special configuration message can be sent to the BE endpoint
of a remote NI. A response to this message will be generated and sent back in hardware
in case the BE endpoint is enabled. A similar system could be implemented for the
TDM traffic.

4.2.1.3 Network Router

The design of the hybrid NoC router is fairly straightforward as it largely follows the ar-
chitecture depicted in Figure 3.1 (described in Section 3.2.2). The packet switched traffic
is implemented with static XY routing, without virtual channels, and with round-robin
arbitration between different input ports that request the same output port. Wormhole
switching is used which means that the BE buffer size at the input ports is independent
from the packet length and could be as low as just two flits8. The input buffer size is a
design parameter that can be defined at synthesis time.

Figure 4.4 shows an overview over the router architecture. The input port splits
the traffic into TDM and packet switched parts. The TDM traffic can optionally be

8Two flits is the minimum in order to enable continuous transmission of flits.
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Figure 4.4: Hybrid router architecture

checked by a Fault Detection Module (FDM) which is described in the Section 4.2.1.5.
This, however, is only used in the demonstrator system as for protection switching it is
sufficient to check for faults in the receiving NI. The packet switched traffic is added to
the BE queue and the output port of a packet is determined. A request is then issued
to the output port to which the packet must be forwarded9.

The switch fabric is split into two planes: one for the TDM traffic and one for the
packet switched traffic. It is implemented as a set of wires that connect all input ports
with all output ports. A connection from an input port to an output port is made active
by multiplexers in the output ports. In principle, this design also allows multicasts from
one input port to multiple output ports (for the packet switched traffic this is currently
not supported by the input ports, for TDM traffic this is supported but out of the scope
of this thesis).

The slot table in the output port determines from which input port a TDM flit is stored
in the register stage. If a valid flit is stored in the register stage then this flit is forwarded
to the downstream router in the next clock cycle. Otherwise, the packet switched BE
traffic is served. The arbiter in the output port arbitrates between competing requests
for packet switched traffic from different input ports. A small buffer stage is used to
reduce the critical path length.

Port 5 is special in that it does not support packet switched traffic. This port is con-
nected to the second local link which is only required for the protection switching. The
router is implemented in the depicted modular way for two reasons. First and foremost,
the design ensures that no single fault in one of the sub-modules or the connecting wires
can affect more than one input or output port. Second, the design allows to remove
individual ports that are unconnected. This significantly reduces the size of routers at
the edges and corners of a 2D mesh NoC.

In the current design, the main resources that are shared between the TDM and the
packet switched traffic are the links between the routers. It would also be possible to use
two completely separate NoCs instead which are only connected by the NIs in the tiles.

9A packet cannot be forwared to the same port it arrived on.
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However, in a typical MPSoC the wires between the routers have a considerable length
and, hence, both a significant area requirement and power consumption. Furthermore,
this implementation would mean that the TDM NoC would experience the typical un-
derutilization which in this case could not be used by the BE traffic, thereby lowering
the combined utilization of the two NoCs. It is, therefore, the authors believe that the
hybrid approach, potentially with additional features for the BE part, is more suitable
for communication in mixed-critical MPSoCs. A possible improvement of the design
would be to use a single switch fabric for both traffic types which would be possible with
adjustments in both the input and output ports. This, however, is out of the scope of
this thesis.

Traffic Isolation The implementation of the router output port directly supports time-
slot stealing as packet switched traffic will be served whenever no valid TDM flit is stored
in the register stage. However, as mentioned in Section 2.2.5 this practice weakens
the traffic isolation between the TDM traffic and the packet switched BE traffic and
potentially opens a vulnerability to side-channel attacks. This, could be avoided by
forbidding time-slot stealing entirely. Another way would be to slightly adjusting the
implementation of the output port and the slot table in order to provide a secure TDM
traffic class for which time-slot stealing is deactivated. This could be achieved by a
special flag in each slot of the slot table that, when set, would disable time-slot stealing
for this slot. This way, the reserved slot would be blocked for packet switched traffic
whether it is being used or not.

4.2.1.4 NoC Control Module

As described in Section 2.2.4, there are generally two different possibilities to configure
a TDM NoC: distributed or centralized. A centralized NoC manager—the NoC Control
Module (NCM)—is used for the configuration of the hybrid NoC in the scope of this
thesis. The NCM is directly wired to all slot tables of the routers and NIs of the system.
This solution does not scale well but is sufficient to demonstrate and evaluate the capa-
bilities of the hybrid NoC with protection switching. The NCM is designed as an OSD
debug module that is connected to the DI, thereby allowing direct communication with a
host-PC. A corresponding host debug module to interact with the NCM is implemented
in Python on the host-PC.

Other than slot table configuration the NCM has four additional functions: en-
abling/disabling individual links for the endpoints of the NIs, monitoring the traffic on
all links of the system, monitoring the FDMs (described in the following Section 4.2.1.5),
and enabling/disabling the Fault Injection Modules (FIMs) (described in Section 4.2.2.4).
Monitoring both the FDMs and the traffic on the links as well as controlling the FIMs is
only necessary for the evaluation system and the demonstrator system designed in the
scope of this thesis. These functions would not be required in a deployed system. All
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tasks are handled in different sub-modules of the NCM10. Figure 4.5 gives an overview
over the NCM.

To configure a slot table the host-PC sends a configuration message to the slot table
configuration sub-module of the NCM via the debug sub-system. This message defines
a specific slot in a slot table that is to be configured as well as the configuration to be
written to this slot. After a TDM channel has been fully configured it must be enabled.
To so do, another configuration message is sent and the links that are used—only one
link for 1:1 or 1:n protection and both links for 1+1 protection—are enabled in the
endpoint of the sending NI. This is necessary for two reasons. First, it ensures that no
data is sent before the channel is configured—which would result in data being lost—and
second, it configures the sending endpoint to drain the unused out-queue which would
otherwise block the transmission. When a TDM path must be reconfigured—e.g., due
to a fault—the path must first be disabled in the sending endpoint and must only be
re-enabled once the reconfiguration is finished.

Injecting faults works similar to configuring TDM channels by sending a dedicated
debug message for every link on which a fault should be injected. This, however, is only
used by the demonstrator system in order to interact with the system and demonstrate
the fault tolerance of the critical communication.

To monitor the network utilization, the traffic monitor sub-module simply collects and
accumulates the status of the valid flags for both TDM and packet switched traffic for
each link and in each clock cycle. The consequence for the packet switched traffic is that
the module does not count the amount of transmitted BE flits but rather the amount of
cycles in which a link is blocked by a packet switched flit. This is intentional as it allows
to identify links that are heavily affected by backpressure. The sub-module is used by
both the evaluation and the demonstrator system. Naturally, monitoring the utilization
of each link results in a high amount of data that must be sent off-chip via the debug

10Slot table configuration and link enabling/disabling is integrated in a single sub-module.
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sub-system. To not overload this system the information is only sent out periodically
for the demonstrator system (every 250ms). For the evaluation system the information
is collected for each test and only sent out once at the end of a test.

Lastly, the fault monitor records and accumulates the amount of faults that are de-
tected by the FDMs in the system. Just as the fault configuration sub-module this
module is only used for the demonstrator system. Similar to the traffic monitor used
in the demonstrator system the number of recorded faults is sent out only periodically
(every 250ms).

4.2.1.5 Fault Detection Module

As described in Section 4.2.1.1, parity bits are used to enable fault detection. The FDMs
are, therefore, just realized as a series of XOR gates checking the parity of each byte
in a flit and the corresponding parity bit line. One such FDM must be instantiated for
each incoming link of each NI in order to enable end-to-end fault detection. However,
for the demonstrator system a FDM is additionally instantiated in each input port of
each router. This way it is possible to detect the exact link on which a fault occurred.

4.2.2 Additional Modules

The modules described in this section are not part of the hybrid NoC but are additional
modules required by either the evaluation system or the demonstrator system.

4.2.2.1 Traffic Generator Module

The evaluation system is implemented for the SSE of different system parameters and
mapping strategies. It is intended to verify or falsify the initial results obtained from
the simulations in Section 3.4.2 as well as evaluate the mapping strategies defined in
Section 3.5.1. In order to enable this evaluation it is crucial to reliably generate traffic
with a defined generation rate in the tiles of the system. The generation rate must be
adjustable at runtime in sufficiently small steps (a step width of 1% is commonly used
in related work and is, therefore, also chosen for the evaluation system). Additionally,
it must be possible to track the average latency of the BE packets sent over the NoC in
number of clock cycles. Both tasks are very difficult to reliably achieve in software.

In order to gain meaningful results the evaluation must be conducted with a sufficiently
large NoC. Just as for the simulation a system size of 8x8 tiles is used. However, a
system with 64 OpenRISC cores and sufficient local memory to run an application to
generate and consume traffic would be too large for the selected UltraScale FPGA. For
these reasons, a special Traffic Generator Module (TGM) is used in order to accurately
generate and consume traffic as well as keep track of packet latencies in hardware.

The TGM replaces the processing core and local memory of each tile and is directly
connected to the NI using the wishbone bus. This way, a generator tile is created that is
used in the evaluation system instead of the usual processing tile. From the perspective
of the NI the TGM must behave the same way as a CPU would. To enable the SSE
of mapping algorithms and obtain results that are comparable to the ones from the
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Figure 4.6: Generator tile overview

simulation described in Section 3.4.2 the TGM must work in a similar way. Specifically,
the module must:

� be able to generate random uniform packet switched BE traffic,

� be able to generate TDM traffic for multiple TDM channels,

� send the generated traffic out and read received traffic via the NI,

� keep track of generated and consumed traffic as well as packet latencies,

� allow traffic generation rates to be configurable at runtime,

� and report all gathered statistics back to the host-PC.

All these functions are implemented in different sub-modules of the TGM. Figure 4.6
shows the architecture of the generator tile with the TGM, its sub-modules, and the NI.

The core function of the TGM—the generation of traffic—is implemented in multiple
generator blocks. One of these blocks generates BE traffic, the other (configurable num-
ber of) blocks each generate traffic for one TDM channel. Each generator block contains
a Flit Generator (FG) that can be configured to generate flits with different generation
rates. The individual FGs of the generator blocks are configured by the host-PC via a
special configuration decoder module. A bus access module acts as arbiter and forwards
the generated traffic to the corresponding endpoints of the NI. This module also reads
received traffic from the NI—if either the BE or TDM IRQ are set—and forwards the
traffic to a consumption block. The consumption block evaluates the received flits and de-
termines the type (TDM or BE), source, and latency of the message. Finally, a statistics
collector module gathers the information about both the generated and received traffic
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and sends the results out to the host-PC. These sub-modules will be further described
on the following pages. The TGM is an OSD debug module and is connected to the DI
to allow communication with the host-PC.

Generator Block

The generator blocks are the heart of the TGM. Since the reliable traffic generation
is crucial for obtaining meaningful results—particularly the generation of sufficiently
uniform random background traffic—this sub-module is described in greater detail.

Each block generates either TDM or packet switched BE traffic that is then injected
into the NoC. The blocks each contain a FG that manages the traffic generation. For
TDM traffic the generation is relatively trivial as the flits can simply be generated with
a steady rate—e.g., 5 messages of 8 flits every 400 clock cycles for a generation rate
of 10%11—and a simple FSM can output the flits to the bus access module. However,
this method cannot be used for the uniform random packet switched BE traffic which
typically does not show such steady behavior. Therefore, each BE FG is equipped with
a configurable Random Number Generator (RNG) and additionally has a FIFO buffer
to which the generated flits are written12. The following paragraphs mainly focus on the
RNG as it is used in the BE FG.

Generating random numbers on an FPGA is no trivial matter [157]. RNGs are divided
into two categories: true random number generators and pseudo random number gen-
erators. Pseudo random number generators are algorithms that produce, as the name
suggests, no truly random sequence of numbers but instead a deterministic sequence
based on an initial value, the seed. True random number generators, on the other hand,
generate a truly random sequence of numbers based on measurements of a physical
phenomenon such as thermal noise. Generating true random numbers on an FPGA is
generally possible but typically requires a considerable amount of logic, or many clock
cycles, or both (e.g., [158, 159]). This is not feasible for the evaluation system since
each generator block needs its own RNG. However, true random number sequences are
typically only necessary for cryptographic use cases which the evaluation system is not.
Therefore, a pseudo RNG is used for the traffic generation. To ensure that not all FGs
generate the same traffic, each RNG is seeded with a different value that is randomly
created on the host-PC13

The core of the FG’s RNG is a 32 bit wide Linear-Feedback Shift Register (LFSR)
with the maximum length feedback polynomial described in [160]. XOR-feedback is
used which means that the LFSR must be seeded with a non-zero value (all bits zero is
a ‘forbidden’ state for XOR-feedback since it constitutes a locked state). Once started—

11The checkpoints are ignored in this example. To consider the checkpoints it is necessary to determine
how many checkpoints will be inserted for a given number of flits and to then adjust the number of
generated flits in order to achieve a desired injection rate.

12To be exact, the RNG is also used in the TDM FG but only steady rates are used in the scope of this
thesis which is why the FIFO is omitted in order to reduce the resource requirements.

13This, of course, only shifts the problem of generating sufficiently randomized number sequences. How-
ever, every modern PC provides well tested libraries to generate such sequences.
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and seeded with a value other than ‘0’—the LFSR cycles through all 232 − 1 possible
non-zero values in a pseudo random order determined by the feedback polynomial.

One problem when generating (pseudo) random numbers is ensuring the even distri-
bution of all possible values for an arbitrary range of numbers. A brief example: When
using a 4 bit LFSR with the maximum length feedback polynomial and XNOR-feedback,
it (pseudo randomly) cycles through the values 0 to 14 (all bits ‘1’ is the forbidden state
for XNOR-feedback). The distribution of the numbers 0 to 14 is even. However, if only
random numbers from 0 to 9 are needed there is a problem. One possibility would be to
wait for the next valid number that is in the desired range. This would result in a delay
which might not be tolerable for some applications (e.g., for random traffic generation it
would result in a lower generation rate caused by the delay cycles). Another possibility
would be to “cut off” any numbers higher than the upper limit of a desired range. This,
however, means that the numbers are no longer evenly distributed. For the mentioned
example this would mean that the numbers 10 to 14 would be treated as 9, thereby
giving the number 9 a probability of 6

15 = 0, 4 and all other numbers a probability of
1
15 = 0.06.

A very common approach in software is to use the modulo operation in order to
determine the reminder of an integer division, thereby limiting a random number to an
arbitrary range. With r = n mod u follows r ∈ [0, u], ∀n ∈ N, u ∈ N+. However, the
distribution of r is only even if n can get infinitely large. For the mentioned example a 10
to 14 would result in a 0 to 4. This, again, violates the even distribution of numbers by
giving the numbers 0 to 4 a probability of 2

15 = 0.13 and the numbers 5 to 9 a probability
of 1

15 = 0.06.
For the RNG of the FG, the problem of even distribution of the generated random

numbers is addressed in two ways:

1. The LFSR has a (much) larger range than the random number(s) created from it.

2. Random ranges are limited to ranges that cover a power of 2 number of numbers
(e.g., 0 to 255 or 10 to 41).

For the reminder of this thesis an XOR-feedback is assumed for LFSRs unless otherwise
specified.

When a maximum length feedback polynomial is used, an n-bit LFSR cycles through
all possible 2n − 1 possible non-zero values. However, it is often desirable to have
random ranges start with zero. One way of achieving this with the mentioned LFSR
is by dimensioning it for a larger range than needed and only using some of the bits.
An example would be a 4 bit LFSR that is used to generate a 3 bit random number.
The three low bits can have all eight values from 0 to 7. However, since the 4 bit LFSR
can only cycle through the fifteen values from 1 to 15 the three bit value cannot be
zero when the Most Significant Bit (MSB) is set. This means that in a full cycle, zero
will appear only half as often as any other number which, again, results in an uneven
distribution of the generated numbers. This effect, however, can be weakened by making
the LFSR even larger. With two additional bits any non-zero value appears 33% more
often than zero (4 times vs 3 times in one full cycle) and with ten additional bits the

93



4 Hybrid NoC Architecture Design and Implementation

additional percentage is less than 0.01%. This can still make a difference—especially for
long sequences of random numbers and depending on the application—but is negligible
for the evaluation in the scope of this thesis.

As mentioned above, a 32 bit wide LFSR is used in the FG’s RNG. The rate at
which traffic is generated can generally be controlled with three different parameters:
the number of flits in a packet (or message), the number of packets per burst, and the
number of cycles before the next burst is generated. The LFSR is used to create random
numbers for two of these parameters: the number of packets in a burst and the wait
cycles until the next burst. A fixed packet length of 15 flits is used in the scope of this
thesis since the other two parameters are sufficient to achieve the desired generation
rates.

The lower 22 bits of the LFSR are used to generate the wait cycles until the next burst,
the upper 10 bits are used to generate the burst length. To enable different ranges of
the generated random numbers, a bit vector can be configured as a mask for both of
these parameters. Furthermore, an offset can be defined that is added to the randomly
generated numbers. This enables the generation of virtually arbitrary ranges of random
numbers as long as the range covers a power of 2 number of numbers. It is even possible
to configure the FG to generate bursts with a fixed size and a fixed periodicity by setting
both masks to zero and setting the offset to the desired value.

When the FG is enabled and starts traffic generation, the RNG reads the current
random value for the wait cycles from the LFSR and starts a wait counter. Once the
wait counter matches the previously read value, both the random number for the burst
size and the next random number for the wait cycles are read from the LFSR and the
wait counter is restarted. The random number for the burst size is then used by the FG
to generate the individual flits.

Depending on the configuration it is possible that the generation of a new burst is
triggered before the previous one is fully generated, thereby causing a super -burst. In
order to avoid the new burst “overwriting” the old burst—which would lead to a lower
generation rate—a small FIFO is used in the FG to buffer the burst size. Naturally, this
buffer can overflow either due to being too small, having “bad luck” with the random
numbers, or because the configured generation rate is over 100% (which is possible
and must be avoided). Another cause of overruns is backpressure from the NoC. For
BE traffic this is an indicator that the traffic injection rate cannot keep up with the
traffic generation rate. For TDM traffic this happens when the traffic generation rate is
higher than the bandwidth that has been reserved for a TDM channel. Therefore, buffer
overruns are monitored by the statistics collector module. During all of the test runs
evaluated in Chapter 5 such overruns did never occur for TDM traffic.

Figure 4.7 shows the architecture of the RNG and the LFSR used. In combination
with the offset, the implementation allows for burst lengths of up to 211 − 2 = 2046
packets and wait periods between two bursts of up to 223 − 2 = 8 388 606 cycles. These
possible ranges are more than enough for the SSE and allow to configure the desired
traffic generation rates with sufficient precision.

The FG contains an FSM that generates the individual packets/messages of a traffic
burst. The FSM adds a timestamp which is read from a timestamp counter that is
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started when the traffic generation starts. For the BE FG, the FSM must also generate
the header flit which contains the source and destination of the packet. All possible
destinations—i.e., IDs of the BE tiles—are stored in a central list in the test setup
module (described in Section 4.2.2.2). The destinations are stored in the list in random
order and each FG has an individual pointer pointing to an entry in this list. Each
pointer is seeded with a different random value when the FG is configured and the
pointer is incremented—or wrapped around from the last to the first list element—in
each cycle where the Least Significant Bit (LSB) of the RNG’s LFSR is ‘1’.

To account for different traffic types, the FG can generate bursts in two different ways.
The destination is either determined once for all packets of a burst, or individually for
every single packet. The former—hereafter called burst mode—is the typical burst where
all packets are sent to the same destination. The latter—hereafter called batch mode—
results in most packets of a burst being sent to different destinations, thereby mimicking
a system that uses a lot of multicasts or broadcasts.

In the simulation in Section 3.4 the buffer queues of the sending NIs could grow
infinitely large (i.e., the size was only limited by the capacity of the hardware on which
the simulation was executed). This meant that the average latency between packet
generation and delivery would eventually grow infinitely large as well. Naturally, this
is not possible for a hardware implementation. The FIFO queues in the BE generator
blocks can only have a finite size—512 flits in the implemented system—which means
that buffer overruns will eventually occur if traffic is continuously generated at a higher
rate than what can be injected into the NoC. This means that the latency will not
grow indefinitely—in contrast to the simulations—and instead will eventually reach a
maximum. However, the latency will still show a steep increase around the point at which
the traffic injection rate can no longer keep up with the generation rate. Furthermore,
the buffer overruns serve as an additional indicator that the saturation rate is reached.
Therefore, these buffer overruns are also monitored by the statistics collector module.
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Configuration Decoder

The configuration decoder module decodes messages from the host-PC and configures the
FGs in the generator blocks accordingly. Specifically, the seed, masks, and offsets in the
RNGs are configured. Furthermore, the module writes the seed value to the destination
pointer of the BE FG and enables or disables the individual generator blocks.

Bus Access Module (Arbiter)

The bus access module handles the read and write accesses to the NI via the wishbone
bus. Furthermore, it arbitrates write requests to the NI from the different generator
blocks and read requests from the NI triggered by the TDM and BE IRQs. The arbiter
must ensure that the critical TDM traffic is served first and that buffer overruns in the
receiving TDM endpoints are avoided. Therefore, TDM traffic must have precedence
over BE traffic and reads from the NI must have precedence over writes to it14. The
priority of the different accesses to the NI is as follows:

TDM read > TDMwrite > BEread > BEwrite (4.1)

This has the consequence that incoming traffic can starve outgoing traffic. Hence, care
must be taken when setting up a test in order to ensure that this does not happen
continuously (i.e., it must be ensured that the sum of the incoming and generated traffic
in one tile does not exceed the capacity of the wishbone bus).

Arbitration must also be implemented for write requests to the NI from different TDM
generator blocks as well as read requests from different TDM endpoints of the NI. For
both cases round-robin arbitration is used. This ensures that all incoming or outgoing
TDM connections have the same priority and cannot block each other indefinitely.

Consumption Block

The consumption block evaluates the received packets and messages in order to extract
the information of interest that is then recorded by the statistics collector module. For
both TDM and packet switched traffic the latency is determined. This is done by
adding the two’s complement of the received timestamp to the current timestamp. The
timestamp is a 32 bit value which means that latencies of up to 232 − 1 cycles are
correctly determined. This is sufficient since a) longer tests are never run in the scope
of this thesis and b) even if longer tests would be run, latencies of this magnitude would
be extremely unlikely due to the finite buffer in the BE generator block.

The other extracted information is the endpoint on which a message has been received
for TDM traffic and the source of a packet for the packet switched traffic.

14In the evaluation presented in Section 5 each tile will only ever generate and receive either TDM or
BE traffic. However, the TGM is designed in a way that would allow both traffic types concurrently.
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Statistics Collector Module

The statistics collector module records the information gathered during a test run. The
following data is recorded:

� Number of generated TDM messages and BE packets

� Number of overruns that occurred in each generator block

� Number of received TDM messages and BE packets

� Accumulation of all latencies for both the received TDM messages and BE packets

� Lowest and highest TDM latency and endpoint the respective message has been
received on

� Lowest and highest BE latency and source tile the respective packet has been sent
by

Recording this data, naturally, requires a lot of register space. To save some register
space, the latencies of the received packets and messages are simply accumulated. The
average latency must then be determined on the host-PC in a post-processing step.

The statistics collector module has a special start recording input to trigger the collec-
tion of data. This is used to define a warm-up period in which the generator blocks are
enabled but no data is being recorded. Since the amount of data collectively recorded
by all TGMs is considerable—especially in the implemented 8x8 system—sending data
to the host-PC during a run would exceed the capabilities of the debug sub-system
(cf. Section 4.1.1). Hence, the recorded data is sent out only once after a test run is
finished.

4.2.2.2 Test Setup Module

The Test Setup Module is the second additional module used for the evaluation system.
It is implemented as OSD debug module and globally controls when a test run is started,
when recording of the statistics is started, and when a test is stopped. This is done by
controlling two signals that are connected to all TGMs. One simultaneously enables the
traffic generation in all FGs, the other enables the recording in the statistics modules.
To do so, the module uses a 32 bit wide counter and two 32 bit wide registers to store
both the cycle in which recording starts and the cycle in which the test run ends. When
the test ends both signals are de-asserted which triggers the transmission of the recorded
data to the host-PC.

In addition to controlling the tests, the module also houses the central destination
table that is used by the BE FGs.
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Figure 4.8: I/O tile overview

4.2.2.3 I/O Tile

OpTiMSoC does currently not provide a way to communicate with the software running
on the processing tiles via the NoC. The software is loaded to the tile’s local memory
via the debug sub-system and then runs to completion, or indefinitely. The programs
running on different tiles can interact with each other via the NoC but they can only
be observed by the host-PC. To enable communication between the host-PC and the
applications of the demonstrator system over the NoC a special I/O tile is used.

The I/O tile contains an OSD debug module which uses the debug sub-system for
communication with the host-PC. This debug module is, in essence, a bridge module
between the DI and the NoC (more specifically, the NI). From the NoC’s point of view
the module is an I/O tile that directly forwards the messages sent to it to the host-PC
(and from where messages sent by the host-PC are injected into the NoC). From the
host-PC’s point of view it is a debug module that is accessed via the debug sub-system
and is used to send TDM and BE messages to the tiles via the NoC (and receive them).
Figure 4.8 shows the architecture of the I/O tile and its sub-modules.

As described in Section 4.1.1, the debug sub-system has its limitations. Most impor-
tantly, the DI is only 16 bit wide whereas the NoC and the wishbone interface to the
NI are 32 bit wide. Moreover, the debug packets sent via the DI cannot be more than
12 flits long and three of these flits are used for the debug packet information. This
means that a) each NoC flit must be packed into two debug flits and b) NoC messages
or packets that do not fit in a single debug packet must be split into multiple debug
packets. Both these tasks are implemented in separate sub-modules, one unpacking the
messages and packets received via the DI, and one packing the messages and packets
received from the NoC.

A special configuration flit is added to each debug packet that is sent to or from the
I/O tile. This flit holds the information about the traffic type of the packet or message
(TDM or packet switched) and which endpoint of the NI the packet or message should

98



4.2 Module Architecture

be written to or has been received by. Additionally, this flit is also used for a special
configuration message to enable and disable the individual endpoints of the NI in the I/O
tile. In both directions—i.e., writing to and reading from the NI—this flit is extracted
and added in separate sub-modules.

The arbiter works in a similar way as the arbiter in the TGM with TDM being
prioritized over BE and reads being prioritized over writes.

Using the debug sub-system for the I/O tile and the communication between the
host-PC and the software running on the system has two notable downsides (other than
the necessary conversions). The DI is not designed for huge traffic loads and is easily
congested if high traffic loads are sent continuously. This not only affects the maximum
bandwidth available for the communication via the I/O tile but can also affect the
communication with other debug modules. However, the bandwidth is sufficient for the
demonstrator system described in Section 4.3.2.

The other downside is that by implementing the I/O tile with a debug module the
strict isolation of critical and non-critical traffic is violated. This is caused by the
fact that both traffic types use the same off-chip interface and both are sent over the
DI. Even though TDM traffic is prioritized when writing to and reading from the NI,
head-of-line blocking is a problem (i.e., TDM messages waiting to be written to the NI
are blocked by BE packets that are ahead of them and cannot be served). This can
happen if backpressure from the packet switched part of the NoC stalls traffic all the
way to the receiving buffers of the I/O tile or even into the DI. Similarly, TDM traffic
can be blocked by traffic from other debug modules. How this issue is handled in the
demonstrator system is described in Section 4.3.2. In a deployed system, though, it
would be necessary to ensure strict isolation of the two traffic types for the off-chip
interface as well as any other involved paths and modules.

4.2.2.4 Fault Injection Module

The second additional module for the demonstrator system is the FIM. For testing and
demonstration, it is necessary to reliably force faults on individual links on demand. The
main purpose of the FIM—other than testing the protection switching—is to demon-
strate how a faulty link affects the packet switched BE traffic, i.e., by causing misrouting
or even a deadlock. However, when forcing a stuck at fault on a random bit of a link, or
even flipping a random bit, the fault is masked surprisingly often. Therefore, the FIM
flips a different bit in every cycle. This, of course, is not a fault that would typically
occur in any system but the approach works well for the purpose of the demonstrator.

The FIM is a purely combinatorial module in order to not change the behavior the
NoC. A simple shift register builds the core of the module. A single bit is shifted
through the register and wrapped around from the MSB to the LSB. The bits from
the shift register are gated with an enable signal (logical AND) and then XORed with
the bits from the link in order to flip one bit. The FIM is only used in the interactive
demonstrator system, where it is instantiated on every link.
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4.2.2.5 Traffic Control Module

The last additional module used for the demonstrator system is a traffic control module
that is instantiated in each tile of the system. The module is implemented as OSD debug
module and has two functions. First, it passively observes the traffic that is written to
and read from the NI by monitoring the bus activity. If a message or packet is written
to or read from the NI the surveillance module records this activity and stores the
destination or source for BE packets or the endpoint for TDM messages. Furthermore,
the module also performs a simple fault detection to determine the number of faulty
incoming BE packets. To enable this fault detection only the lower 16 bits of a packet
are used for the payload and this payload is mirrored to the upper 16 bits (meaning fault
detection is enabled through data redundancy.). Since faults are injected by the FIMs
by flipping a single bit, faults can be detected by using a bit-wise XOR operation on the
lower and upper 16 bits. It must be noted that this is purely for demonstration purposes.
The recorded data is sent to the host-PC periodically (every 250ms). Tracing the number
of sent, received, and faulty packets in hardware has the advantage that it is unintrusive,
meaning the measurement does not affect the traffic generation or consumption.

The second function of the traffic control module is to control the traffic generation
of the BE tiles in the demonstrator system. For this purpose, the module provides
several configuration registers that are mapped into the address space of the CPU and
are accessible via the local wishbone bus. These registers control the traffic generation
by determining how often traffic bursts should be generated and how long they should
be. For both parameters a range can be defined which is used to generate a random value
for the parameter. A seed register is provided defining the seed for the software RNG.
Furthermore, a register is provided with a bitmap that defines all valid destinations for
the generated BE packets.

These registers can directly be configured via the debug sub-system, thereby bypass-
ing the NoC. This approach has the advantages that the BE applications can still be
controlled when they cannot be reached via the NoC due to congestion or faults. This
also avoids possible head-of-line blocking in the I/O tile caused by blocked configuration
packets sent to the BE applications (cf. Section 4.2.2.3).

When a new value is written to one of the memory mapped registers an IRQ is raised
informing the application running on the CPU. The application can then read the up-
dated values via the bus. The architecture of the traffic control module is shown in
Figure 4.9.

4.3 System Architecture

Using OpTiMSoC and the additional modules described in the previous Section 4.2, two
different manycore systems were designed and implemented in the scope of this thesis:
an evaluation system used for the SSE of different system parameters and mapping
strategies, and a demonstrator system used to showcase the capabilities of protection
switching in NoC with an interactive example. The following sections describe these two
systems in more detail.
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Figure 4.9: Traffic control module overview

4.3.1 Evaluation System

Just as for the simulated system described in Section 3.4.1 a size of 8x8 tiles is used for
the evaluation system. The system is composed of 64 generator tiles connected by the
hybrid NoC, the test setup module and the network control module (cf. sections 4.2.1.4,
4.2.2.1, 4.2.2.2). The generator tiles, the NoC, and the debug sub-system are all in the
same clock domain and are clocked at 100MHz. Figure 4.10 shows the architecture of
the evaluation system.

In order run tests on the evaluation system a software implemented in Python is used
on the host-PC. This test runner reads a special configuration file defining the tests
that are to be executed (i.e., application scenario and mappings, cf. sections 5.1.2 and
5.1.3). The file also defines for how many cycles each test is run, how long the warm-up
period is, and how often each test is executed with different seeds. The test runner then
connects to the evaluation system implemented on the FPGA and reads the slot table
size of the system. Next, all mappings—generated by the mapping algorithms described
in Section 3.5.3—that match the defined tests and the slot table size are gathered and
the tests are executed. For each individual test run the test runner does the following:

� Reset the system

� Set up all TDM paths and enable the respective endpoints and links

� Configure all generator tiles and set different seeds for all RNGs

� Configure the central BE destination table in random order

� Start the test by configuring warm-up period and test duration

� Wait for recorded test data from generator tiles and NCM

� Do necessary post-processing

� Write recorded data to a file

The test runner is only responsible for setting up a test and storing the data gathered
during a test. During the test execution there is no interaction between the test runner
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Figure 4.10: 8x8 Evaluation System Architecture

and the evaluation system. This is important in order to avoid the bottleneck of the
debug sub-system and the off-chip interface during the test which would affect the test
execution.

4.3.2 Demonstrator System

The purpose of the demonstrator system is to showcase the capabilities of protection
switching in NoC with an example use case in an interactive system. Specifically, the
demonstrator is designed to show three aspects of the concept: fault-tolerance, traffic
isolation, and (hard) real-time capabilities. To do so it is necessary to have both critical
and non-critical applications in the system. Furthermore, the system must be sufficiently
large to allow path diversity for protection switching.

The demonstrator system is composed of 15 processing tiles and an I/O tile which are
all connected by a hybrid 4x4 NoC mesh. Each processing tile contains an OpenRISC
core, a local memory, and a NI. Furthermore, four OSD debug modules are instantiated
in each processing tile to trace the software and the core registers, load the software
into the local memory, and to trace the sent/received packets/messages and control
the traffic generation. The architecture of the processing tile and its sub-modules are
shown in Figure 4.11 OpTiMSoC allows to either use BRAM for the local memory or
map the memory to external DDR memory in case the available BRAM is insufficient.
In the demonstrator system, BRAM is used for the critical processing tiles—for better
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Figure 4.11: Processing tile of the demonstrator system

performance—while external memory is used for the BE tiles since not enough BRAM
is available for all processing tiles. For the synthesis results in Section 4.4, however, all
local memories are mapped to external DDR memory for better comparability.

A pedestrian detection algorithm (based on a simple support vector machine) is used
to represent a critical application. Six of the processing tiles are defined to be critical tiles
which each run the pedestrian detection algorithm. The host-PC sends individual frames
to the critical tiles via the I/O tile and the NoC using TDM and protection switching.
The algorithm then executes the pedestrian detection and sends the calculated result
(i.e., pedestrian or not) back to the host-PC which displays the result and sends a new
frame to the tile it got an answer from. The frames used for the demonstrator are taken
from the Daimler Mono Pedestrian Classification Benchmark Dataset [161, 162]

The nine non-critical processing tiles produce and consume packet switched BE traffic
as background traffic. By default, uniform random traffic is generated but each tile can
also be configured to only send traffic to a sub-set of all other BE tiles. The software
running on both the critical and non-critical tiles is implemented bare metal in C, i.e.,
without any underlying operating system.

A demonstrator runner is implemented in Python on the host-PC. The demonstrator
runner connects to the demonstrator system—more precisely, to the debug sub-system—
and displays a GUI that allows to configure the demonstrator system and control the
pedestrian detection. Furthermore, a local server is started that can be accessed with
a browser in order to display an interactive monitoring GUI. This GUI can be used to
inspect the NoC—including individual links—force the injection of faults in the NoC,
re-configure TDM paths, and configure the BE traffic generation. The two GUIs are
shown in figure 4.12a and 4.12b respectively.

As described in Section 4.1.1, the debug sub-system has its limitations regarding the
available bandwidth and can quickly become a bottleneck with growing system size and
when large amounts of data are sent. In the demonstrator system there are basically
two large traffic streams: the frames that are sent to the critical tiles via the I/O tile
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(a) Pedestrian detection GUI (b) Monitoring GUI

Figure 4.12: Demonstrator GUI

(the answer that is sent back is very short) and the statistics and utilization data sent
by the traffic control modules and the NCM to the host-PC. To avoid that these two
major traffic streams block each other, the I/O tile is the first module on the debug ring
after the off-chip gateway (the host interface module) and the NCM is the last module
before the gateway.

The demonstrator system has three different clock domains to showcase the possible
use in a GALS system. The non-critical tiles and the debug sub-system are clocked
at 50MHz, the critical tiles are clocked at 75MHz, and the hybrid NoC is clocked at
100MHz. Due to the limitations of the debug sub-system and the performance of the
OpenRISC cores, the achievable frames per second per core is limited to around 7. The
consequence is that the amount of TDM traffic in the NoC is relatively low. Nevertheless,
the demonstrator effectively shows that the critical communication is unaffected by any
single fault and that even heavy congestion in the NoC caused by BE traffic has no effect
on the critical traffic. Figure 4.13 shows an overview over the demonstrator system and
the connected host-PC. A video describing the demonstrator and showing it in action is
available online [163].

4.4 Synthesis Results

Both the evaluation and the demonstrator system were synthesized with different pa-
rameters to enable the SSE of different system parameters and mapping strategies, and
to evaluate how the parameters affect the overall resource requirements. In both cases
the data link width of the hybrid NoC is 32 bit (not counting parity bits and status
flags, cf., Section 4.2.1.1). The evaluation system was synthesized with a slot table size
of 4, 8, 16, 32, and 64 to enable the evaluation of a large number of different mappings.
Furthermore, router input buffer sizes for the packet switched traffic of 8, 16, and 32 flits
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Figure 4.13: 4x4 Demonstrator System with host-PC

were synthesized. The evaluation system uses version 1 of the data path synchronization
in the NI which requires two individual in-queues (cf. Section 4.2.1.2). The demonstra-
tor system was synthesized with a slot table size of both 16 and 128 and router input
buffer size of 8 flits. This system uses version 2 of the data path synchronization in
the NI. In order to not distort the results for the hybrid NoC, the demonstrator sys-
tem was synthesized without FIMs and FDMs in the routers for the comparison in this
section. Both systems were synthesized with three TDM endpoints in the NIs with the
exception of the NI in the I/O tile of the demonstrator system which has 15 TDM end-
points. An overview over the synthesis results is presented and discussed in the following
paragraphs.

All syntheses were done with Xilinx Vivado for a Xilinx Virtex Ultrascale FPGA
(XCVU095). One peculiarity of Vivado is that, while optimizing a design, it some-
times moves logic between different (sub-)modules or combines logic from different (sub-
)modules in a single Look-Up Table (LUT). This is very convenient, of course, for de-
creasing the overall resource requirements of a design but makes it difficult to determine
the exact size of a particular (sub-)module. Hence, the results presented in this section
are a good first indicator but must be taken with a grain of salt. However, to reduce
this uncertainty the average resource requirements are given for each module that is
instantiated more than once (e.g., for all NoC routers, NIs, etc.). The average is always
rounded up to the next integer (with the exception of BRAM where half a block can be
used).

Table 4.1 shows an overview over the synthesis results for the demonstrator system
with a slot table size of 16. The routers have two local links each in order to enable
protection switching. The number of ports that are synthesized to connect a router to
its neighbors depends on the position of the router: 2 for a corner router (R2 ), 3 for
an edge router (R3 ), and 4 for a central router (R4 ). The table also lists the synthesis
results for the BE and TDM endpoints (EP BE and EP TDM ) and for a NI with three
TDM endpoints. Furthermore, the table shows the synthesis results for the OpenRISC
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Unit R2 R3 R4 EP BE EP TDM

#LUTs 819 1394 1960 409 387
#Registers 660 854 1048 400 668
#BRAM - - - 1 1

Unit NI OR core PT NoC 4x4 Sys 4x4

#LUTs 2189 4517 10 900 22 256 226 737
#Registers 2564 2788 11517 13 661 244 452
#BRAM 4 10.5 14.5 - 293

Table 4.1: Demonstrator system synthesis results for a slot table size of 16

NoC 4x4 Sys 4x4
Unit ST16 ST128 (ST128) (ST128)

#LUTs 55 139 29 646 254 844
#Registers 55 394 40 779 287 848
#BRAM - - - 293

Table 4.2: Synthesis results of a single router slot table with size 16 (ST16) and 128 (ST128),
and both the 4x4 NoC and 4x4 system with slot table size 128

(OR) core, the processing tile (PT ), the 4x4 NoC (not including the NIs), and the entire
demonstrator system. It should be noted that the OpenRISC core is fairly small and
that certain features such as a data cache are deactivated to further reduce the size.
The hybrid NoC accounts for ∼ 9.8% of the overall LUT and ∼ 5.6% of the overall
register requirements of the demonstrator system, not counting the NIs. Including the
NIs, the NoC accounts for ∼ 27.9% of the overall LUT and ∼ 25.7% of the overall
register requirements15. It should be noted, though, that particularly the design of the
NI could be further improved—similar to [155]—in order to utilize the tile local memory
for the buffers in the different endpoints. This way, the resource requirements of the
NI could be further reduced. This, however, is out of the scope of this thesis. Overall,
the demonstrator system uses ∼ 42% of the FPGA’s LUTs and ∼ 23% of the FPGA’s
registers.

Table 4.2 shows the synthesis results for a single router slot table of the demonstrator
system with size 16 and 128 respectively. Furthermore, it shows how a slot table size of
128 affects the overall size of both the 4x4 NoC and the entire demonstrator system. As
can be seen, the larger slot table has a considerable effect and changes the contribution
the NoC has to the overall resource requirements to ∼ 11.6% of the overall LUT and
∼ 14.2% of the overall register requirements, not including the NIs. However, even a
slot table size of 128 is still affordable. Furthermore, it should be noted that a slot table
size of more than 16 should rarely be necessary, as will be discussed in Section 5.2.1.

15The NI in the I/O tile has 15 TDM endpoints and is, hence, much larger than the NI listed in Table 4.1.
This has been considered in the values given.
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Unit EP TDM NI GT NoC 8x8 Sys 8x8

#LUTs 609 2695 4450 104 196 437 957
#Registers 694 2645 4328 68 079 370 206
#BRAM 2 7 8 - 513

Table 4.3: Evaluation system synthesis results for a slot table size of 16

Lastly, Table 4.3 shows the synthesis results for the evaluation system with a slot
table size of 16 and a router input buffer size of 8 flits. Since the path synchronization
is implemented differently in the NI (cf. Section 4.2.1.2) the TDM endpoint is slightly
larger than in the demonstrator system. The NoC accounts for ∼ 23.8% of the overall
LUT and ∼ 18.4% of the overall register requirements of the evaluation system, not
including the NIs (∼ 63.2% and ∼ 64.1% respectively including the NIs). This is of little
surprise as the traffic generator module is much smaller than an OpenRISC core and
the entire system is designed to evaluate the NoC. Overall, the evaluation system uses
∼ 81% of the FPGA’s LUTs and ∼ 34% of the FPGA’s registers.

4.4.1 Comparison with State of the Art

A direct comparison of different implementations is often difficult, not least because few
publications provide synthesis results and the ones that do typically only consider either
the NoC routers or the NIs but not both. In this section, the synthesis results of the
hybrid NoC router are compared to two router implementations presented in [99]—which
use packet switching with virtual channels to provide GS in a mixed-critical system and
can be considered state of the art—for a comparison with a purely packet switched NoC.

A 2x2 NoC composed of four corner routers is used for the comparison. The hybrid 2x2
NoC uses a total of 3276 LUTs and 2640 registers. The smallest router implementation
described in [99] has two VCs and uses 5132 LUTs and 3874 registers for a 2x2 NoC. A
version with three VCs uses 6346 LUTs and 4875 registers. Hence, the hybrid TDM and
packet switched router proposed in this thesis requires ∼ 36% fewer LUTs and ∼ 31%
fewer registers than the purely packet switched router with two VCs and ∼ 48% fewer
LUTs and ∼ 46% fewer registers than the version with three VCs. This is despite the
additional local link for the TDM traffic which is required for the protection switching.
The reason is that the implementation of the packet switching can be very basic and
does not require VCs or QoS since TDM is used for critical traffic. However, the hybrid
NoC comes at the expense of lager NIs which must handle the TDM channels and the
protection switching.

4.5 Summary

An extensive SSE of different system parameters and mapping strategies for a given
traffic scenario requires a prohibitive amount of time with cycle-accurate simulations.
Instead, an evaluation system for the exploration was designed and implemented on
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an FPGA. Furthermore, an interactive demonstrator system was developed and imple-
mented for the ARAMiS II research project. This demonstrator showcases the capabil-
ities of protection switching in NoC and the traffic isolation between the critical TDM
traffic and the packet switched BE traffic.

The basis for the two implemented systems is OpTiMSoC, an open source framework
for implementing tiled manycore systems. For the design of both the evaluation and
the demonstrator system, the packet switched NoC of OpTiMSoC was replaced with
the hybrid NoC described in Section 3.2. Furthermore, several additional modules were
developed to enable testing with the evaluation system and interaction with the software
running in the demonstrator system.

Synthesis shows that the NoC has reasonable resource requirements. A comparison
with a state-of-the-art packet switched router shows that the hybrid NoC router requires
∼ 36%–48% fewer LUTs and ∼ 31%–46% fewer registers. In the following Chapter 5
the described evaluation system is used for the evaluation of the mapping strategies
proposed in Section 3.5.1.
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The conclusion of the simulation-based evaluation of protection switching in NoC in Sec-
tion 3.4 was that the concept works, that the adverse effect protection switching has on
the BE traffic is affordable, and that it can even help to improve the overall network uti-
lization. However, the evaluation only considered two different mapping scenarios. More
tests with a greater number of mappings are necessary for a comprehensive evaluation.
Furthermore, the mapping strategies described in Section 3.5.1—which are intended to
maximize the available bandwidth for the BE applications—must be evaluated to deter-
mine if they work in the intended way and consistently produce good mappings. Both
takes a prohibitive amount of time with the cycle-accurate simulation-based approach
that has been used for the proof of concept.

In this chapter, an in-depth evaluation of protection switching in NoC and the mapping
strategies described in Section 3.5.1 is presented. The evaluation is based on tests
performed with the evaluation system described in Section 4.3.1 which is implemented
on the “Xilinx Virtex UltraScale FPGA VCU108 Evaluation Kit” which contains a Xilinx
Virtex Ultrascale FPGA (XCVU095). Goal of the FPGA-based evaluation is:

� to verify or falsify the preliminary results from the simulation-based evaluation
presented in Section 3.4,

� to evaluate the different protection switching versions and compare them to each
other based on a larger number of different mapping scenarios, and

� to evaluate the effectiveness of the mapping strategies proposed in Section 3.5.1 to
consistently produce good mappings.

Evaluation results similar to the ones presented in this chapter have previously been
published in [16, 17]. However, additional tests with different parameters have been
added in this thesis and all test cases described in these publications have been re-run
for consistency. This, naturally, causes slight differences in the results. The new and
additional results, however, show the same trend as the ones presented in [16, 17] and,
hence, further support the conclusions drawn in these publications.

5.1 Experimental Setup

Before the evaluation results are presented and discussed, this section describes the
experimental setup, the system parameters of the evaluation system, and the application
scenarios—or mapping scenarios—that are used.
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5.1.1 System Definition

The evaluation system—both the hardware part implemented on the FPGA and the
test runner implemented in software on the host-PC—is described in Section 4.3.1. The
hardware part consists of 64 generator tiles that are connected by an 8x8 NoC. Similar
to the proof of concept simulations in Section 3.4 different task graphs are mapped to
the system to represent critical applications. Tiles that are part of a critical application
produce and/or consume TDM traffic according to their task graph. The remaining tiles
are BE tiles and produce/consume uniform random packet switched BE traffic (uniform
random between the BE tiles of the mapping).

The BE FGs of the generator tiles are configured to generate traffic in bursts of 0–15
packets. Each packet has a fixed size of 15 flits. Different traffic generation rates are
achieved by configuring different random intervals between bursts in the RNGs of the
FGs (e.g., 307–818 cycles for a generation rate of 20%).

The TDM FGs are configured to produce traffic with a steady rate. This, of course,
is typically only the case for streaming-like applications. However, hard real-time ap-
plications often have rigid intervals between messages. Furthermore, even if traffic is
generated in a more bursty manner it is drained with a steady rate according to the
amount of slots that are reserved for the connection. It is up to the developer to ensure
that the reserved bandwidth—i.e., the number of reserved slots—is at all times sufficient
for the application.

To evaluate both the effect of protection switching on the BE traffic in general and
the effectiveness of the mapping strategies under different circumstances, the system was
implemented in four different basic versions. The first version uses generator modules
operating in batch mode, meaning that the destination is determined individually for
each packet of a generated BE burst (cf. 4.2.2.1). This version is representative for
systems in which the BE applications generate a lot of multicasts or broadcasts, e.g.,
caused by cache coherence protocols. The input buffers of the NoC routers have a size
of 8 flits.

The second, third, and fourth version all use generator modules in burst mode, mean-
ing that the destination is determined once for all packets of a burst. These versions are
representative for systems in which the BE applications primarily generate singlecasts.
Naturally, the average packet latency will be higher for these systems and the saturation
rate will typically be lower than for the first version. To assess how much—if at all—a
larger input buffer in the NoC routers can alleviate this effect, and how this affects the
mapping strategies, three systems were implemented with an input buffer size of 8, 16,
and 32 flits respectively. All four basic systems are listed in Table 5.1.

Each of these four systems was synthesized with five different slot table sizes—4, 8,
16, 32, and 64—to assess how the slot table size affects the quality of the generated
mappings1. This results in tests being run on 20 different hardware configurations (com-
binations of slot table size and basic evaluation system version). Mappings for each of
the five slot table sizes were created for different applications scenarios (cf. the follow-

1In general, small slot tables are favorable regarding the overall size and power consumption of the
NoC but limit the amount of possible mappings since fewer TDM channels can share a single link.
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Evaluation BE NoC router
system generator buffer size

Version 1 batch mode 8
Version 2 burst mode 8
Version 3 burst mode 16
Version 4 burst mode 32

Table 5.1: Evaluation system - basic versions

P1

P2

P3

P4

P1

P2P3P4

P5P6

P7 P8

Figure 5.1: Task graphs A (left) and B

ing Section 5.1.2) to evaluate how well the different mapping strategies perform under
different constraints. Each mapping was then tested on each of the four systems.

5.1.2 Application Scenarios

An important aspect of the evaluation are the application scenarios that are assumed.
Real-life application scenarios and their traffic patterns vary greatly and it is impos-
sible to consider every possible scenario. Nevertheless, the evaluation of the mapping
strategies and protection switching in general should include a certain range of differ-
ent traffic scenarios. To achieve this, two different task graphs are defined to represent
critical applications: a smaller one with 4 nodes and 5 edges (graph A) and a larger one
with exactly twice the amount of nodes and edges (graph B). Both graphs are shown in
Figure 5.1.

For the evaluation it is assumed that no more than half of the processing tiles in a
mixed-critical system will run safety-critical applications in order to leave enough spare
resources for both BE applications but also resources to potentially migrate to in case
of a fault in one of the processing tiles (the latter, however, is out of the scope of this
thesis but will be briefly discussed as future work in Section 6.1). Using the mapping
algorithm described in Section 3.5.3 graph A was mapped 2, 4, 6, and 8 times to the 8x8
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system and graph B was mapped 1, 2, 3, and 4 times. This allows to evaluate how well
the mapping strategies perform with different amounts of critical tiles—specifically with
8, 16, 24, and 32 critical tiles—and whether the size of the graph has a significant impact
on the quality of the mapping (i.e., the achieved saturation rate). Furthermore, for each
of these combinations of task graphs, mappings with different bandwidth requirements
were created: for a TDM traffic generation rate of 5%, 10%, 15%, 20%, and 25% per
sending node. This results in a total of 40 different example application scenarios. The
generation rate is to be understood as the net generation rate of each sending node of a
task graph, meaning, e.g., with a generation rate of 10% P1 to P3 of graph A generate
10% traffic each, evenly divided between the outgoing edges. Note that the flit injection
rate of the critical tiles is twice their generation rate when 1+1 protection is used.

5.1.3 Mappings

For each of the 40 example application scenarios mappings were created for the five
different slot table sizes: 4, 8, 16, 32, and 64. The mappings were created with two
active paths for 1+1 protection and one active path for 1:1/1:n protection since they
both have the same effect on the BE traffic. This resulted in a total of 400 different
example application scenario, slot table size, and protection switching combinations as
the basis for comparison.

With the algorithm described in Section 3.5.3 mappings were generated for all of the
400 combinations with a multi-objective optimization of the optimization objectives O1
to O4 described in Section 3.5.1. All optimizations were run 5 times independently for
1500 iterations and then combined to a single 4-dimensional Pareto front. The seven
different mapping strategies listed in Table 3.2, each following a given optimization
direction, were used to select mappings from this Pareto front. Strategies S1 to S4
respectively follow the direction of the single objectives O1 to O4. Strategies S5 to S7
follow the direction defined by the normalized weighted sum of multiple objectives: O1
& O2 for S5, O2 & O4 for S6, and O1, O2, & O4 for S7. The used weights are assumed
to be equal.

For each strategy five samples were selected following the optimization direction: the
best one (sample 1), the worst one (sample 5), and linearly three samples in between.
This allows to determine if there is a correlation between a given mapping strategy and
the effect on the BE traffic performance.

In addition to the mappings generated with the strategies S1 to S7, the saturation
rates for systems with 8x7, 8x6, 8x5, and 8x4 BE tiles was evaluated. This allows a
comparison of the mapping strategies to the common approach of virtually splitting the
system into a critical and a non-critical application domain (hereafter called ‘split region’
systems). Furthermore, the saturation rate of a system with 8x8 BE tiles was evaluated
for a baseline comparison.

For each of the mappings generated by the strategies S1 to S7 tests were run both
without TDM traffic—to determine the baseline saturation rate of that mapping—and
with TDM traffic. Furthermore, an additional test was run in which, in addition to the
already reserved slots, as many additional slots as possible are reserved for each TDM
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(a) S1 - connections (b) S1 - used paths (c) S7 - connections (d) S7 - used paths

Figure 5.2: Different mappings of four times graph B with a slot table size of 16, a TDM
generation rate of 25%, and 1+1 protection

channel (naturally, how many additional slots can be reserved, if any, varies between
mappings and channels). The intention of this extended TDM “mapping”2, hereafter
referred to as “TDM+ traffic” is to determine if it makes sense to reserve as many slots as
possible to a critical connection in order to reduce the time in which the packet switched
BE traffic is blocked, or if this has a worse effect on the BE traffic.

Two examples of different mappings generated by using different strategies are shown
in Figure 5.2. Figures 5.2a and 5.2b respectively show the logical connections and the
used paths for a mapping generated by using strategy S1, and figures 5.2c and 5.2d
show the same for a mapping generated by using strategy S7. Both mappings map
four instances of graph B to a NoC with a slot table size of 16 and for a TDM traffic
generation rate of 25% and 1+1 protection. As can be seen, the generated mappings
differ greatly both in how the graphs are clustered or spread out and in the amount of
links that are used.

For each mapping, as well as the split region systems and the 8x8 reference runs, the
saturation rate was determined by running tests with increasing BE traffic generation
rate. Each configuration was run 10 times with different random seeds in the FGs and
the average value is used for the evaluation. Each test was run for 10 000 000 cycles after
a warm-up period of 100 000 cycles. Longer runs did not change the results significantly.
BE traffic generation rates between 1% and 35% were tested in 1% steps. However,
a larger step size was used for lower generation rates that did not cause the NoC to
saturate and the 1% step size was used around the saturation rate (with the exception
of the split region and the reference tests for which all generation rates were tested).
This way, on average only 8–9 different BE generation rates had to be tested for each
mapping—instead of 35—which significantly reduced the number of test runs. Overall,
a total of 13 737 910 individual tests were run. Due to the FPGA implementation, an
average of ∼ 4.5 tests could be run per second.

An important question is when the NoC can be considered to be in saturation. One
possibility would be to define an average latency for the packet switched traffic as indi-
cator. However, this makes it difficult to compare the different basic systems listed in

2Technically it’s not a different mapping, just the same mapping but with additional resources reserved.
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Table 5.1 since the systems with the BE FGs operating in burst mode and larger NoC
router input buffers naturally have a higher average latency. Hence, for the evaluation
presented in this thesis the NoC is considered to be saturated when the traffic injection
rate cannot keep up with the traffic generation rate in the FGs. This is indicated by
buffer overruns in the generators (cf. Section 4.2.2.1).

For the evaluation in this chapter the threshold after which the NoC is considered to
be in saturation is when, on average, each BE tile had an overrun of one packet. The
FIFO buffer of the BE FGs can hold 64 packets and the burst queue holds 8 bursts
of length 1–15, meaning it can be considered an additional buffer with a size of 8–225
packets. Furthermore, the output buffer of the BE endpoint in the NI can hold 17
packets, meaning that 89–306 BE packets are buffered in a generator tile before a buffer
overrun would occur. This, however, is a relatively low amount of packets compared to
the total number of packets generated during a run. For example, at a traffic generation
rate of 25% each BE tile generates, on average, 10 100 000/4 = 2 525 000 flits during a
run which results in 168 333.3 packets. This means that, at this rate, the NoC would be
considered to be saturated when the traffic injection rate is ∼ 0.01%–0.05% lower than
the generation rate.

5.2 Mapping Strategy Evaluation

Figure 5.3 shows the measured latencies—ten runs for each generation rate, each with
different random seeds—of both the reference system with 64 tiles generating BE traffic
and the different split region systems for all four basic versions of the evaluation system.
The dotted vertical lines depict the saturation rate, at which the average number of buffer
overruns in the generator tiles exceeds 1 per BE tile. The results show that the spread of
the latencies for different random seeds is mostly fairly low and only gets larger towards
the saturation rate. The results also show that the system with the FGs operating in
batch mode has the highest saturation rates which is of little surprise since the BE is,
naturally, spread out more. The three systems operating in burst mode all achieve lower
saturation rates but the rates consistently increase with growing NoC router buffer size.
In all four systems, the reference runs with 8x8 BE tiles achieve the lowest saturation
rate whereas the smallest split region—8x4 BE tiles—achieves the highest saturation
rate. The reason is that in the smaller systems packets have, on average, a shorter path
to travel and, therefore, less interference with other packets.

In the following sections 5.2.1 and 5.2.2 the mapping strategies will first be evalu-
ated for both 1+1 protection on one hand and 1:1/1:n protection on the other hand.
Afterwards, and based on the evaluation results, the protection switching versions are
compared in Section 5.3.

5.2.1 Mapping Strategies for 1+1 Protection

As a first step, a fidelity check of the mapping strategies is done by comparing the results
of the samples of each strategy individually. For each parameter combination of task
graph (A or B), number of graphs, TDM traffic generation rate, and slot table size,

114



5.2 Mapping Strategy Evaluation

5 10 15 20 25 30 35
BE generation rate [%]

50

100

150

200

250

300

350

400

450

500

550

600

La
te

nc
y 

[c
yc

le
s]

8x8 BE tiles
8x7 BE tiles
8x6 BE tiles
8x5 BE tiles
8x4 BE tiles

(a) Batch mode - buffer size 8
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(b) Burst mode - buffer size 8
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(c) Burst mode - buffer size 16

5 10 15 20 25 30 35
BE generation rate [%]

50

100

150

200

250

300

350

400

450

500

550

600

La
te

nc
y 

[c
yc

le
s]

8x8 BE tiles
8x7 BE tiles
8x6 BE tiles
8x5 BE tiles
8x4 BE tiles

(d) Burst mode - buffer size 32

Figure 5.3: Latencies of the 8x8 reference and split region systems for the four basic system
versions

the five samples of a strategy are ranked. The higher the saturation rate of a sample
and the lower the average latency at that rate—in case two samples have the same
saturation rate—the better. Figure 5.4 shows a histogram for each sample number,
showing the number of times a sample got ranked 1 to 5 (best to worst). In case of
a correlation between a mapping strategy and the BE performance, the histogram for
sample n should have a peak at rank n. The histograms shows the results from all
four basic system versions as they all show a similar trend3. The same is done for the
remaining figures in this chapter, unless stated otherwise. The individual histograms
can be seen in figures A.2 and A.3 in the Appendix.

When looking at the single-objective mapping strategies S1 to S4 the histograms
suggest a correlation for S2 and S4 but no correlation for S1 and S3. In case of S1
the middle sample 2–4 seem to be ranked higher than the supposedly best and worst

3The differences between the mapping strategies tend to be larger when using batch mode, but the
trend is the same across all basic system versions.
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Figure 5.5: Overall comparison of 1+1 mapping strategies

samples 1 and 5. This suggests that the extremes—both minimizing or maximizing the
number of reserved slots—have a negative effect on the BE traffic. S3, on the other
hand, does not seem to be very consistent at all. The three multi-objective strategies
were defined based on the results of the single-objective mapping strategies. Since S3
does not show a correlation and S2 arguably shows the best correlation out of the four,
all multi-objective optimizations that include objective O2 and exclude objective O3
are defined as mapping strategies. As can be seen, in contrast to the single-objective
strategies, the multi-objective strategies S5 to S7 all show a strong correlation between
the sample number and the BE traffic performance, particularly S6 and S7.

For the remainder of this section only sample 1—the allegedly best mapping of each
strategy—is used to directly compare the strategies to each other. For this comparison,
only the saturation rate of each mapping is compared, without additionally considering
the average latency at the saturation rate. Figure 5.5 shows a histogram of the difference
in percent to the highest saturation rate that is achieved for each parameter combina-
tion and for all strategies (the individual histograms can be seen in Figure A.1 in the
Appendix).

Several observations can be made from this histogram. First, it shows that, overall,
the majority of the mappings are relatively close to the best mapping. Second, there
is no single best strategy that guarantees to always produce the best or at least a near
optimal mapping. This could be interpreted as an indicator that the proposed mapping
strategies only have a minor influence on the achievable saturation rate. However, the
results clearly show that both S6 and S7 in particular have a high tendency to be at
least close to the best saturation rate and only a low tendency to have a difference to
the highest saturation rate of more than 3%. S2, S4, and S5 all still show fairly decent
results and only S1 and S3 have a high tendency to be among the worst mappings. This
is consistent with the observations made in Figure 5.4.

As a next step, a more fine-grained comparison of the mapping strategies is done
with subsets of the overall results in order to determine for which traffic scenarios the
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Figure 5.6: Detailed comparison of 1+1 mapping strategies

mapping strategies work best. This is done by grouping the mappings according to the
number of critical tiles and the TDM generation rate. Figure 5.6 shows a matrix for
each of the mapping strategies S1 to S7. The first value in each cell (subset) shows
the average difference between the saturation rate of a mapping created with a given
strategy and the highest saturation rate of all strategies. A strategy that always achieves
the highest saturation rate (for a subset) will have an average difference of 0.0. This
value allows a relative comparison of the strategies for a certain subset of the mappings
(i.e., a certain number of critical tiles and amount of TDM traffic). The second value
(in brackets) shows the average absolute saturation rate of the mappings generated with
each strategy for a parameter subset. This value allows a comparison of the mapping
strategies and the reference and split region runs shown in Figure 5.3. Furthermore,
this value allows to determine the overall maintainable traffic generation rate, i.e., BE
traffic and TDM traffic combined. As can be seen, the mapping strategies show large
differences in their performance across the parameter space.

Figure 5.6 shows that, between the single-objective strategies S1 to S4, S4 performs
the best for TDM traffic generation rates up to 15%. For these rates, S4 shows little
sensitivity to the number of critical tiles. S2 shows good results for 8 and 16 critical tiles
and, in comparison to the other strategies, especially for high amounts of TDM traffic.
S1 actually produces relatively good mappings for high amounts of TDM traffic. This is
in contrast to the overall comparison of the strategies in Figure 5.5 where S1 performed
relatively poorly. S3, however, shows no particular strengths and seems to only yield
reasonable mappings for low amounts of TDM traffic and few critical tiles (parameter
subsets for which the differences between the mappings are smaller to begin with).
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The multi-objective mapping strategies S5 to S7 show that it can be very beneficial
to combine strategies. S5 combines the strengths of S1 and S2 and, in some cases,
even amplifies them, particularly for high amounts of TDM traffic. This is surprising
since S1 aims to minimize the number of reserved TDM slots—which typically leads
to clustering the critical applications—while S2 aims to use the same amount of TDM
slots on each link, which tends to spread out the critical applications and requires more
reserved slots, thereby standing in conflict to S1. However, as the evaluation of the
samples in Figure 5.4 showed, both maximizing and minimizing the number of reserved
TDM slots proved to have a negative effect on the BE traffic. In combination, S2 seems
to counteract the tendency of S1 to pick the extreme case of minimizing the reserved
slots.

Both S6 and S7 show very good results for TDM traffic generation rates of up to 20%.
For both strategies the number of critical tiles seems to have little effect on the quality
of the mappings for these generation rates. S7 even produces reasonable results for 25%
TDM traffic generation rate and up to 24 critical tiles and, thereby, proves to be the
most consistent strategy for a large variety of parameter combinations, which is also
reflected in Figure 5.5. In fact, between the two example mappings shown in Figure 5.2
the mapping generated with S7 consistently achieves a higher saturation rate than then
one generated with S1, even though way more slots are reserved and the TDM paths
are much longer. In the worst case (burst mode with a router buffer size of 8) the S7
mapping achieves a 1% higher saturation rate (22% vs 21%) but in the best case (batch
mode with router buffer size 8) the S7 mapping achieves a 4% higher saturation rate
(29% vs 25%).

Comparison to Split Regions

When comparing the saturation rates of the mappings generated by strategies S1 to S7 to
the saturation rates of the split region systems shown in Figure 5.3 it is obvious that for
many subsets the split regions achieve a higher saturation rate4. This is not surprising
since, due to the 1+1 protection, the amount of TDM traffic injected into the NoC is
twice as high as the generated TDM traffic. This means, for TDM generation rates of
15% and higher, the critical tiles inject more traffic into the NoC than is maintainable
for most of the BE only systems. Only the 8x6, 8x5, and 8x4 split system in batch
mode achieve saturation rates higher than 30%. The degradation of the maintainable
BE generation rate is the price for giving fault-tolerance and hard real-time guarantees
to the critical applications. However, Figure 5.6 also shows that, for some application
scenarios, the proposed strategies can even achieve higher saturation rates than the
split region systems. Particularly S6 and S7 achieve very competitive results for a high
number of critical tiles (24 and 32) and a low TDM traffic generation rate (5% or 10%).

Another interesting comparison is between the test runs without TDM traffic and the
split region systems. Figure 5.7 shows the same matrix as Figure 5.6, only for the runs
without TDM traffic. The figure shows that optimization goal O4 seems to work in the

4For better comparability, the interested reader can find a detailed comparison of the 1+1 mapping
strategies for each basic system individually in the Appendix (figures A.4, A.5, A.6, and A.7).
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Figure 5.7: Detailed comparison of 1+1 mapping strategies - baseline runs without TDM traffic

intended way which is directly affecting the mapping of the BE tiles (cf. Section 3.5.1).
Furthermore, the combination with objective O2 further improves the generated map-
pings, as shown by the results of S6 and S7. This is interesting in case the critical
applications only produce low amounts of traffic overall but require very low latencies,
meaning the TDM channels must be designed for a high bandwidth (cf. Section 3.3).
In such a system, the BE applications can efficiently make use of the available network
resources in periods where no TDM traffic is being sent.

One important aspect when comparing the mappings generated with the mapping
strategies to the split region systems is that, due to the 1+1 protection, splitting the
system into two application domains is often not possible. For instance, the mapping
algorithm could not find any feasible mappings for split regions, a TDM traffic generation
rate of 25%, and systems with a slot table size of 4 or 8. Even for a generation rate of
20% and a slot table size of 16 the algorithm typically needed several attempts and a
long time to find a feasible mapping. Furthermore, it is generally not possible to split the
system in an 8x7 and an 8x1 domain for 8 or fewer critical tiles because this would make
it impossible to use disjoint paths with no path traversing the BE domain. Other shapes
of split regions would lead to BE traffic traversing the critical regions if XY routing is
used. Hence, it can be beneficial and is in some cases even necessary to avoid a strict
separation of critical and BE regions.
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5.2 Mapping Strategy Evaluation

Effect of Slot Table and Task Graph Sizes

To evaluate the effect of the slot table size on the quality of the generated mappings the
histogram in Figure 5.5 is split into five histograms, one for each slot table size. The
resulting histograms are shown in Figure 5.8. As can be seen, the overall trend of the
different mapping strategies is the same for all slot table sizes. However, the differences
between the strategies is less pronounced for the slot table size 4. The reason is that
with a small slot table the mapping algorithm has less flexibility to move TDM paths
and, therefore, less potential of optimizing a mapping according to the defined strategy.
Nevertheless, both mapping strategies S6 and S7 remain good choices for all different
slot table sizes.

In general, a smaller slot table size is preferable from chip area and power consumption
perspective. However, it should be large enough to give the mapping algorithm sufficient
freedom for optimization. It should also be noted that generating optimized mappings
for a slot table of size 4 took about 2–10 times as long (in some cases up to ∼ 40 hours)
as the ones for a slot table size of 16 or more5. During the experiments that were done
in the scope of this thesis a slot table size of 16 proofed to be a good trade-off and larger
slot table sizes were never necessary, including the split region mappings with a TDM
traffic generation rate of 25% and 1+1 protection.

To evaluate the effect of the task graph size on the saturation rate of a mapping,
the mappings of the smaller task graphs (A) are compared to the larger task graphs
(B). Overall, in ∼ 46.3% of all cases the mappings of graph A achieved a higher satu-
ration rate, in ∼ 26.1% graph B achieved the higher saturation rate, and in ∼ 27.6%
they achieved the same saturation rate. These percentages change slightly for different
mapping strategies and parameter combinations but the overall trend remains the same.
This suggests that smaller graphs can be mapped more easily and give more freedom to
the mapping algorithm but do not affect the mapping strategy otherwise.

TDM+ Traffic

As a last step, the effect of the TDM+ traffic is evaluated, for which—in addition to the
already reserved slots of a mapping—as many additional slots as possible are reserved
for each TDM channel. This is done by comparing the saturation rate differences of
both the runs with TDM and TDM+ traffic to the reference runs of the same mapping
without TDM traffic. Figure 5.9 shows a histogram with the saturation rate differences.
As can be seen, the differences are, overall, relatively small. However, the normal TDM
traffic runs are typically slightly closer to the reference runs, meaning they achieve a
higher saturation rate than the TDM+ traffic runs. In ∼ 79.8% of all cases both TDM
and TDM+ traffic achieve the same saturation rate. However, in ∼ 15.2% of all cases
TDM achieves the higher saturation rate whereas the same happens for TDM+ traffic
in only ∼ 5.0% of all cases. These percentages do not change significantly for different

5This is arguably not a big issue for the target system and use case defined in Section 3.1 since mappings
are only generated offline and infrequently, but is an interesting observation that should be kept in
mind if mappings are to be generated at runtime.
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Figure 5.9: Difference of TDM and TDM+ saturation rates to reference (w/o TDM) for 1+1
mappings

mapping strategies, parameter combinations, or basic system versions. Hence, it can be
concluded that reserving more slots than necessary should be avoided since it typically
has no benefits for the critical applications but has an adverse effect on the BE traffic
performance significantly more often than it has a positive effect.

5.2.2 Mapping Strategies for 1:1 / 1:n Protection

Similar to the 1+1 protection mappings, the samples of the 1:1/1:n protection mappings
are compared as a first step. Figure 5.10a shows the histograms with the rankings of
the different samples. The results differ greatly from the results for the 1+1 protection
mapping and don’t show a clear correlation for most of the strategies.

One distinct feature is the peak at position five of sample one of strategies S1, S2,
and S5, which shows that the supposedly best sample was ranked last in most cases.
Looking at S1, the histograms actually show a clear negative correlation and also sug-
gest a negative correlation for S2. Combined, this also explains the results for S5, the
combination of S1 and S2. For the other mapping strategies, no clear correlation can be
seen. However, another distinct feature is the peak at position five of sample five of the
strategies S4 and S6, which shows that the supposedly worst sample was ranked last in
most cases. Overall, S4 still seems to work reasonably well considering that samples 1–3
all have a (small) peak in the first three positions and samples 4 and 5 both have their
peak at the expected position.

An explanation for the histograms—particularly the ones for S4 and S6—could be
that, with the exception of the worst mappings (i.e., sample 5), the samples all achieve
very similar, if not the same, saturation rates. In this case they are ranked according
to the average latency at the saturation rate and very small differences can distort the
histograms. This is supported by the histograms shown in Figure 5.10b which show the
saturation rate difference of each sample to the best sample. As can be seen, for both
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Figure 5.11: Overall comparison of 1:1/1:n mapping strategies

S4 and S6 sample 0 most often achieves the same saturation rate as the best sample or
is at least close. For samples 2–5 the number of times the sample has a more than 2%
lower saturation rate than the best increases. Interestingly, a similar observation can
be made for strategies S3 and S7. Only for S1, S2, and S5 this trend is reversed which
confirm the observations from Figure 5.10a.

For the remainder of this section, and similar to the 1+1 mapping evaluation, only
sample 1—the allegedly best mapping of each strategy—is used to directly compare the
strategies to each other. Figure 5.11 shows a histogram of the difference in percent
to the highest saturation rate that is achieved for each parameter combination and for
all strategies (the individual histograms for all basic system versions can be seen in
Figure A.8 in the Appendix). The first observation that can be made here is that both
S4 and particularly S6 achieve saturation rates that most often either match or come
close to the highest saturation rate and only rarely have a difference of more than 3%.
This is consistent with the observations from figures 5.10a and 5.10b. Furthermore, S7
also achieves fairly good saturation rates. The big surprise, however, is that S3 suddenly
consistently produces good mappings with only a small chance of having a difference
to the highest saturation rate of more than 3%. Overall, the histogram shows that the
differences of the achieved saturation rates for strategies S3, S4, S6, and S7 are generally
smaller than for the 1+1 mappings (cf. Figure 5.5). For strategies S1, S2, and S5, on
the other hand, the histogram shows that they do not seem to work very well for 1:1/1:n
protection and the generated mappings have a high chance of having a much lower
saturation rate than the best mapping. This too is consistent with the observations
from figures 5.10a and 5.10b.

Figure 5.12 shows a more fine-grained comparison of the mapping strategies for subsets
of the overall results. This comparison confirms the observations from the histograms.
Strategies S3, S4, S6, and S7 all consistently generate relatively good mappings. S3
only seems to struggle with high TDM traffic rates and 32 critical tiles. S6 and S7 once
again show that it can be very beneficial to combine strategies as they both are most
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Figure 5.12: Detailed comparison of 1:1/1:n mapping strategies

consistent across all subsets of parameters. Strategies S1, S2, and S5, on the other hand,
do not seem to produce good mappings, particularly for a larger number of critical tiles.
In conclusion it can be said that, while S7 seems to have a slight edge over S6 for 1+1
mappings the opposite seems to be the case for 1:1/1:n mappings. Nevertheless, both
strategies are good options and are the most consistent between strategies S1–S7.

A general observation that can be made when comparing figures 5.12 and 5.6 is that
the 1:1/1:n mappings mostly achieve a higher saturation rate than the corresponding
1+1 mappings. The only exception are some of the mappings with a low TDM traffic
generation rate. Compared to the 1+1 mappings the achievable saturation rate also
decreases less with increasing TDM traffic generation rates. This is of little surprise
since the amount of TDM traffic that can interfere with the BE traffic is cut in half.

Comparison to Split Regions

The comparison to the split region systems is very similar to the comparison of the 1+1
mappings to the split regions which is why an extensive but repetitive comparison is
omitted here. In general, the achievable saturation rates of the 1:1/1:n mappings are
typically lower than the ones of the split region systems. However, the saturation rates
are naturally closer than for the 1+1 mappings, especially for high amounts of TDM
traffic. For better comparability, the interested reader can find a detailed comparison
of the 1:1/1:n mapping strategies for each basic system individually in the Appendix
(figures A.9, A.10, A.11, and A.12). Overall, similar conclusions can be drawn as for
the 1+1 mappings: Spreading out the critical applications has an adverse effect on the
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BE traffic but also allows BE traffic to efficiently utilize resources in times where they
are not used for critical communication. Furthermore, in some cases it is not possible to
find feasible TDM channel mappings when splitting the system into different application
domains.

Effect of Slot Table and Task Graph Sizes

Analogous to the evaluation of the 1+1 mapping strategies, Figure 5.13 shows five his-
tograms with the results of the mapping strategies for the different slot table sizes.
Overall, similar observations can be made here. The mapping algorithm has more dif-
ficulties optimizing mappings for a slot table size of 4. This can especially be seen at
the example of S7. However, in contrast to the 1+1 mappings a slot table size of 8
already seems to give sufficient freedom to the mapping algorithms in order to optimize
the mappings according to the defined strategy, especially when disregarding strategies
S1, S2, and S5.

The effect of the task graph size on the saturation rate of a mapping is similar to
the 1+1 mappings but even more pronounced in favor of graph A. Overall, in ∼ 57.0%
of all cases the mappings of graph A achieved a higher saturation rate, in ∼ 14.2%
graph B achieved the higher saturation rate, and in ∼ 28.8% they achieved the same
saturation rate. Again, these percentages change slightly for different mapping strategies
and parameter combinations but the overall trend remains the same and confirms the
findings from the 1+1 mappings.

TDM+ Traffic

As a last step, the effect of the TDM+ traffic is evaluated for the 1:1/1:n mappings.
Again, the results are similar to the 1+1 mappings. However, since the amount of
TDM traffic is only half that of the 1+1 mappings the differences to the reference runs
without TDM traffic are much lower, as can be seen in Figure 5.14. Nevertheless, the
normal TDM traffic typically achieves a slightly higher saturation rate than the TDM+

traffic. Overall, in ∼ 84.5% of all cases both TDM and TDM+ traffic achieve the same
saturation rate, in ∼ 9.5% TDM achieves the higher saturation rate and in ∼ 6.0%
TDM+ traffic achieves the higher saturation rate. Again, these percentages do not
change significantly for different mapping strategies, parameter combinations, or basic
system versions. Although the ratio is different than for the 1+1 mappings the TDM+

traffic still has an adverse effect on the BE traffic significantly more often than it has
a positive effect. Hence, the same conclusion can be drawn as for the 1+1 mappings:
reserving more slots than necessary for the critical traffic should be avoided.

5.3 Protection Switching Comparison

In this section the protection switching versions 1:n, 1:1, and 1+1 are compared based
on the results of the FPGA-based evaluation in the previous Section 5.2 in order to
reevaluate the assessments made in Section 3.4.2. The protection switching versions
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Figure 5.14: Difference of TDM and TDM+ saturation rates to reference (w/o TDM) for
1:1/1:n mappings

are compared based on their effect on the BE traffic in Section 5.3.1, and then their
respective latency, hardware, and power overhead are discussed in Section 5.3.2.

5.3.1 Effect on BE Traffic

For the comparison of the effect that the protection switching versions—1+1 on the one
hand and 1:1/1:n on the other hand—have on the BE traffic, the different mapping
strategies are not considered as they have already been evaluated and discussed in sec-
tions 5.2.1 and 5.2.2 respectively. Instead, for each traffic scenario the mapping with the
highest saturation rate for 1+1 protection is compared to the mapping with the highest
saturation rate for 1:1/1:n protection. The greater the difference between the saturation
rates is, the stronger the adverse effect of the 1+1 protection on the BE traffic.

Overall, 1+1 protection was compared to 1:1/1:n protection for 200 different applica-
tion scenario and constraint combinations for all four basic system versions, resulting in
a total of 800 comparisons. Figure 5.15 shows the histogram with the saturation rate
differences from 1+1 protection to 1:1/1:n protection. As expected, mappings with 1+1
protection typically have a lower saturation rate than mappings with 1:1/1:n protec-
tion6. However, in most cases the differences are relatively low. Across all comparisons,
the 1+1 mappings saturated, on average, only at a ∼ 1.0% lower BE generation rate
than the 1:1/1:n mappings. The worst case was a 8% lower saturation rate (one occa-
sion) and in only 14 cases the difference was more than 4%. In ∼ 94.6% of all cases 1+1
protection had no more than a 3% lower saturation rate and in ∼ 86.9% of all cases no
more than 2%. This shows that the adverse effect that 1+1 protection has on the BE

6On rare occasions the 1+1 mappings actually achieved a higher saturation rate. However, these
occasions were counted as a difference of ‘0’ as the 1+1 mapping could also be used for 1:1/1:n
protection by simply only using one path at a time.
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Figure 5.15: Saturation rate difference between 1+1 mappings and 1:1/1:n mappings

traffic can in most cases effectively be mitigated and in many cases even be nullified by
good mapping strategies.

For a more fine-grained evaluation, the mappings are compared for different param-
eter subsets, similar to the evaluation in sections 5.2.1 and 5.2.2. Figure 5.16 shows
the average total saturation rate for both 1+1 protection (upper number) and 1:1/1:n
protection (lower number) for each combination of number of critical tiles and TDM
traffic generation rate. The color coding of the cells show the average difference between
the saturation rates achieved by the mappings for the different switching versions. The
figure shows that the switching versions achieve almost the same saturation rates for
most of the parameter subsets—particularly for low amounts of TDM traffic and/or few
critical tiles. 1+1 protection only affects the the BE traffic more heavily with both a
high number of critical tiles and a high TDM traffic generation rate. However, many
safety-critical hard real-time applications do not exchange or produce large amounts of
traffic but instead only sent relatively short messages (e.g., control messages or periodic
sensor data). This means that for many use cases the difference of the saturation rates
of both 1+1 and 1:1/1:n protection is negligible.

An interesting observation that can be made from Figure 5.16 is that BE traffic seems
to interfere more with itself than TDM traffic interferes with BE traffic. This can be
seen when comparing the saturation rates for a TDM traffic generation rate of both 20%
and 25% and an increasing number of critical tiles. With more critical tiles, fewer tiles
generate and inject BE traffic which increases the available bandwidth for each BE tile.
For low TDM traffic generation rates this is of little surprise as less traffic is injected
into the NoC overall. However, with 1+1 protection the TDM traffic injection rate is
twice the generation rate which means that for a generation rate of 20% and 25% each
critical tile that generates traffic has an injection rate 40% and 50% respectively. Yet,
the achievable BE injection rates increase with growing number of critical tiles even for
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Figure 5.16: Detailed comparison of the protection switching versions. Average total saturation
rate of 1+1 protection (top number) and 1:1/1:n protection (bottom number).

1+1 protection and a TDM traffic generation rate of 20% and 25%. The reason is that
the TDM traffic typically only reduces the available bandwidth for the BE traffic on a
link, but never blocks it entirely. This reduces backpressure and causes fewer BE packets
to be blocked throughout the NoC.

Overall, it can be concluded that the FPGA-based evaluation supports the preliminary
findings of the proof of concept in Section 3.4: The performance cost of the BE traffic
when using protection switching is more than outweighed by the additional bandwidth
for the critical TDM traffic—especially when using good mapping strategies—and that
even the additional adverse effect of 1+1 protection on the BE traffic is well affordable.

5.3.2 Latency, Hardware, and Power Overhead

In this last part of the comparison, the additional latency, hardware, and power overheads
that can be expected for each protection switching version are discussed.

The worst-case latencies of the three protection switching versions have been analyzed
and compared in sections 3.3 and 3.3.1 respectively. In essence, 1+1 protection has the
lowest worst-case latency which is virtually equal to the worst-case latency of a TDM
channel without protection switching (and assuming no faults can occur on that un-
protected channel). The worst-case latencies of both 1:1 and 1:n protection can easily
be more than twice as high, depending on the checkpoint distance and the additional
latencies for both the feedback channel to the sending NI and for the potentially nec-
essary configuration of the secondary path in case of 1:n protection. Especially the
last two parameters—latency caused by the feedback channel and the configuration of
the secondary path—depend on the implementation of the overlay network. Overall, it
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can be assumed, though, that 1+1 protection has the lowest worst-case latency and 1:n
protection hat the highest worst-case latency.

Both 1:1 and 1:n protection require an overlay network which, as discussed in Sec-
tion 3.2.3, must be fault-tolerant itself. For both versions, it might be possible to
save some resources in the NIs—in comparison to the NI architecture presented in
Section 4.2.1.2 which supports 1+1 protection—by using a single in- and out-queue,
however, both versions require larger buffers in the NIs to store messages that have been
sent, until it can be assumed that they have been received without faults. 1+1 protec-
tion, on the other hand, does not require such an overlay network and additional buffers.
Hence, without considering a specific implementation of the overlay network, it can be
assumed that the hardware overhead is lower for 1+1 protection.

On the other hand, the power overhead of 1+1 protection in comparison with 1:1 and
1:n protection can be expected to be at least 100% since every flit is sent twice (100%
if both paths have the same length, otherwise it will be more). However, this overhead
only affects the critical TDM traffic in the NoC. Compared to the packet switched BE
traffic the power consumption of the TDM traffic is much lower to begin with since no
buffer queues are used in the routers, just single register stages. Furthermore, it can
be assumed that the overlay network that is necessary for 1:1 and 1:/n protection also
causes additional power dissipation, even if it is dormant for the majority of time. Hence,
it can be assumed that the power overhead of 1+1 protection is not considerably higher
than the one of 1:1 and 1:n protection, if at all.

5.4 Discussion

In this final part a brief summarizing discussion on the different protection switching
versions and their advantages and disadvantages is presented together with a comparison
to different related work which also addresses the challenge of implementing GS in NoCs
for mixed-critical systems.

The FPGA-based evaluation has shown that, overall, all three protection switching
versions can achieve good saturation rates and are suitable candidates to implement
fault-tolerant and hard real-time capable communication in mixed-critical MPSoCs. The
question is: which of the three protection switching versions is most suited?

Both 1:1 and 1:n protection have the same effect on the BE traffic. However, the
worst-case latency of 1:n protection is (potentially much) higher than the one of 1:1
protection and with the additional step of configuring the secondary path there are
more steps in which something can go wrong. Furthermore, since finding mappings for
1:1 (and 1+1) protection is not difficult, at least for slot tables of size 8 and higher, there
is no need for different critical connections to share the same backup path. Hence, 1:1
is to be favored over 1:n protection.

Between 1:1 and 1+1 protection, 1:1 protection has a lower adverse effect on the BE
traffic and, potentially, a lower power overhead. On the other hand 1+1 protection
has a lower worst-case latency and hardware overhead. The question is, which is more
important? It is the author’s opinion that 1+1 protection is the better choice for multiple
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Approach NoC Size Saturation Rate

QoSinNoC [102] 4x4 24%–36%
Forward Pressure [99] 8x8 22.2%–26.7%
CDG-Driven Strong Isolation[50] 4x4 10%–17.5%
DCFNoC [103] 3x3 / 6x6 12% / 3%
1+1 protection 8x8 23.1%–31.8%

Table 5.2: Different approaches of implementing GS in NoCs for mixed-critical systems

reasons. First, the evaluation of the proposed mapping strategies showed that good
mapping strategies can mitigate or even nullify the additional adverse effect that 1+1
protection has on the BE traffic. Particularly the multi-objective strategies S6 and S7
consistently produce good mappings. Furthermore, it is important to keep in mind
that protection switching is intended to be used in safety-critical systems where fault-
tolerance and hard real-time guarantees are of the highest priority. Since with 1+1
protection no feedback channel and re-sending in case of a fault is needed there is yet
one less step during which faults can occur. Hence, even if 1+1 should have a higher
power (or even hardware) overhead it should still be preferred over 1:1 protection.

For a similar reason the critical applications and traffic should be spread out across
the system even if splitting the system into critical and non-critical domain would be
possible and spreading out the critical applications has an adverse effect on the BE
traffic. With the critical communication spread out, there is a much lower chance that
a single fault affects multiple TDM paths at once, which increases the overall resilience
of the system and would make it easier to search for new alternative paths at runtime
(cf. Section 3.2.4).

Overall, even the saturation rates that are achieved by the 1+1 mappings are quite
competitive when comparing them to other approaches of implementing GS in NoCs for
mixed-critical systems. Simulations of a 4x4 NoC presented in [102] result in saturation
rates between 24%–36%. In [99], simulations of an 8x8 NoC with two overlapping critical
data streams and a combined link utilization of 50% on these overlapping links result
in saturation rates between 22.2%–26.7%. The approach proposed in [50] was evaluated
with simulations of a 4x4 NoC and reached saturation rates of 10%–17.5%, depending
on the traffic scenario and the number of application domains. And in [103], results
obtained with an RTL simulator showed saturation rates of 3%–12%, depending on the
NoC size (12% in a 3x3 NoC, 3% in a 6x6 NoC). The results, including the ones for 1+1
protection, are summarized in Table 5.27.

7The 1+1 protection results are taken from Figure 5.16. The values vary between the four basic system
versions and go from 20.8%–29.3% in the worst case to 26.8%–35.0% in the best case (cf. Figure A.13
in the Appendix).
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5.5 Summary

Since a comprehensive validation of the preliminary findings in Section 3.4 and evaluation
of the mapping strategies proposed in Section 3.5.1 on the basis of a large number of dif-
ferent application scenarios would require a prohibitive amount of time in simulation, an
FPGA-based evaluation is done. Four different basic system versions are implemented—
with different router buffer sizes and BE traffic behavior—and each system is synthesized
with five different slot table sizes: 4, 8, 16, 32, and 64.

Two task graphs are defined to represent critical applications and are combined in a
total of 40 different example application scenarios. For each of these scenarios, mappings
are created according to the mapping strategies S1–S7 for both 1+1 protection on the
one hand and 1:1/1:n protection on the other hand. For each mapping, the saturation
rate—i.e., the rate at which the BE flit injection rate cannot keep up with the generation
rate—is determined by running tests with increasing BE generation rates. Furthermore,
the saturation rate of a system with 8x8 BE tiles as well as the saturation rates of
different split region systems with 8x4, 8x5, 8x6, and 8x7 BE tiles are determined for
comparison.

The mapping strategies are first evaluated for 1+1 protection and 1:1/1:n protection
individually and afterwards compared to each other. Also, the effect that both the slot
table size and the task graph size of the critical applications have on the quality of the
mappings is evaluated. The results show that especially the multi-objective strategies
S6 and S7 consistently produce good mappings with a relatively high saturation rate.
Furthermore, the results show that the 1:1/1:n mappings generally achieve higher sat-
uration rates—which is unsurprising since less TDM traffic is being injected into the
NoC—but that good mappings can help to mitigate and in many cases even nullify the
adverse effect that 1+1 protection has on the BE traffic.

It is concluded that 1+1 protection, despite its slightly lower saturation rates and
potentially larger power overhead, is the protection switching version that is best suited
to implement fault-tolerant and hard real-time capable communication in mixed-critical
MPSoCs. A final comparison with related work that addresses the implementation of
GS in NoCs for mixed-critical systems shows that even 1+1 protection can achieve very
competitive saturation rates.
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In recent years, the demand for computational power in safety-critical systems—such
as in the avionics and, particularly, the automotive domain—has increased drastically.
In case of automotive, this demand is mostly driven by an increasing amount of ADAS
and the movement towards autonomous driving. This increased demand motivated the
ARAMiS (and ARAMiS II) research project with the goal of answering the question if
and how MPSoCs could safely be used in safety-critical environments and, potentially,
even in mixed-critical systems which implement both safety-critical and non-critical
applications on the same chip. The work in this thesis was motivated by the question of
which features a NoC for such a mixed-critical MPSoC would have to provide, how such
a NoC could be implemented, and how the resources of such a NoC could be utilized
most efficiently.

Today, a vast amount of research and related work exists on the topic of NoCs in
general. A large part of this research is dedicated to either maximizing the perfor-
mance or minimizing the cost of NoCs. Less work, however, exists on the topic of
fault-tolerance and mixed-critical communication in NoCs—particularly addressing hard
real-time guarantees—and, to the best of the author’s knowledge, no work yet exists that
considers both in a holistic approach. The work presented in this thesis closes this gap.

The target system that is assumed in the scope of this thesis is a mixed-critical MPSoC.
The critical applications are assumed to be known either at system design time or at
compile time of the software and static in nature, meaning they are not dynamically
started and stopped during runtime and their behavior is known. The BE applications,
on the other hand, can be started and stopped dynamically and their behavior is not
known beforehand. For such a system, the requirements that a NoC must meet are
determined. Most notably, the NoC must support multiple concurrent critical traffic
streams while providing isolation between the different traffic streams and BE traffic,
provide fault-tolerance to the critical communication, guarantee in-order delivery, and
give QoS guarantees to critical communication.

The approach presented in this thesis is based on a hybrid TDM and packet switched
NoC. TDM is used for critical traffic while packet switching is used for non-critical BE
traffic. In contrast to other works that use TDM in NoC, the TDM channels are semi-
static, meaning they are configured at system start time and then only adjusted when
necessary, e.g., due to a fault. This way, both QoS guarantees and traffic isolation can
be provided to the critical communication. Using packet switching for the BE traffic, on
the other hand, allows the BE traffic to utilize the bandwidth that is not or cannot be
used by the TDM traffic and gives maximum flexibility to the BE communication.

The main contribution of this thesis is the adoption of protection switching to NoCs
in order to implement fault-tolerant communication. In essence, two disjoint paths are
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defined for each communication channel and in case of a fault on one of the paths the
other is still fully functional. Protection switching is exclusively used for the critical
TDM traffic. Three different protection switching versions are considered: 1:n, 1:1, and
1+1 protection. The necessary adjustments are introduced and discussed, most notably a
second local link connecting each NI to its neighboring NoC router, and checkpoints that
are used for path synchronization. A worst-case timing analysis of the three protection
switching versions is provided which is the basis for a first comparison.

A proof of concept based on cycle accurate simulations with an 8x8 NoC and two
different application scenarios showed that the approach works and enabled a first eval-
uation of the protection switching versions and their effect on the packet switched BE
traffic. All three protection switching versions have an adverse effect on the performance
(i.e., the available bandwidth and average latency) of the BE traffic which was to be ex-
pected since more traffic is generated overall. This adverse effect is worst in case of 1+1
protection since every critical flit is sent twice. However, the simulations also showed
that the achievable traffic injection rate of both TDM and BE traffic combined is higher
than for BE traffic alone.

The second contribution is the design of the architecture of the hybrid NoC as well
as two systems using the hybrid NoC: an evaluation system used to further evaluate the
protection switching versions as well as different mapping strategies, and a demonstrator
system to showcase the capabilities of protection switching in NoC with an example use
case in an interactive system. Both systems are implemented on an FPGA.

The evaluation system uses special generator tiles that can be configured to generate
both TDM and BE traffic with a certain rate, either statically or dynamically based on
random numbers. These generator tiles not only allow tests to run without direct inter-
action of a host-PC—which would make precise timing virtually impossible—but also
enable the evaluation of an 8x8 NoC in hardware since they are smaller than processing
elements which would prohibit such a large design due to the limited resources of the
FPGA. The demonstrator system consists of a 4x4 NoC with 15 processing tiles and
an I/O tile which is used for the communication with a host-PC. The host-PC sends
individual images to some of the processing tiles which run a pedestrian detection algo-
rithm to represent safety-critical applications. Furthermore, the host-PC provides a GUI
which allows users to inject faults in the NoC to test the fault-tolerance of the critical
communication, reconfigure TDM paths at runtime, and control the generation of BE
background traffic to demonstrate the traffic isolation.

For both systems synthesis results are presented. The results show that the NoC is
relatively small despite providing both TDM and packet switched traffic. In compari-
son to a state-of-the-art purely packet switched NoC that is designed to provide QoS
guarantees the routers of the hybrid NoC with protection switching require ∼ 36%–48%
fewer LUTs and ∼ 31%–46% fewer registers (depending on whether the hybrid router is
compared to the packet switched router version with 2 or with 3 VCs). The reason is
that the implementation of the packet switched traffic can be kept very basic and, e.g.,
does not require different VCs since no guarantees must be given to the packet switched
traffic.
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The third contribution is the definition and, particularly, the evaluation of seven
different mapping strategies—especially the ones using multi-objective optimizations—
that are designed to maximize the available bandwidth for the BE applications for a
given set of safety-critical applications in order to use the hybrid NoC most efficiently.
The mapping strategies are based on four different optimization goals which are used
to define four single-objective and three multi-objective mapping strategies. In order to
evaluate these strategies, a larger number of tests than the ones for the proof of concept
and with a larger number of different application scenarios is necessary. Since this would
take a prohibitive amount of time with the cycle-accurate simulations that were done
for the proof of concept, these tests were done with the evaluation system implemented
on FPGA.

The FPGA-based evaluation of the the mapping strategies showed that evenly spread-
ing out the critical applications across all rows and columns of a tiled MPSoC while at
the same time evenly spreading out the critical TDM traffic across all links of the NoC—
potentially while additionally minimizing the number of slots that are overall reserved
for the TDM traffic—consistently results in mappings that are most beneficial for the
packet switched BE traffic. This strategy works well for both 1+1 protection on the one
hand and 1:1/1:n protection on the other hand, although differences to worse mapping
strategies are more pronounced for 1+1 protection due to the higher amount of TDM
traffic. The results show that the slot table size has only little influence on the quality
of the mapping as long as it is large enough to enable optimizations to be made (a slot
table size of 8–16 seems to be a good trade-off).

A comparison of the different protection switching versions confirms that 1+1 protec-
tion has a worse adverse effect on the BE traffic than both 1:1 and 1:n protection have,
but that this effect can be mitigated and in many cases even be nullified by using a good
mapping strategy. A comparison to related work shows that even 1+1 protection allows
for very competitive BE traffic injection rates of up to ∼ 23%–31% in an 8x8 NoC, de-
pending on the traffic scenario. The conclusion is that 1+1 protection is the protection
switching version that is best suited to be used in mixed-critical MPSoCs since it does
not require a special overlay network—which would pose an additional challenge and
potential point of failure—and since it has a (much) lower worst-case latency than both
1:1 and 1:n protection.

6.1 Outlook

This thesis describes, to the best of the author’s knowledge, the first NoC that pro-
vides both fault-tolerance and hard real-time communication to critical applications in
a mixed-critical MPSoC in a holistic approach. Nevertheless, there are several different
directions for potential future research on the topic.

In this thesis, only faults that corrupt the flits of a TDM channel are considered and
faults that affect the status flags, slot tables, or cycle counters of the slot tables are left
aside. This aspect should be addressed in future work. For the status flags, a simple and
proven approach would be to use two wires with a differential signal for each flag, for
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error detection, or to use TMR for error correction. However, it might also be possible
to encode the different possible flag combinations that can occur with fewer signals and
use, e.g., hamming codes for fault-detection and correction in order to lower the overall
hardware overhead. A similar approach could be used to detect and maybe also correct
faults that occur in slot tables. Corruption of the cycle counters that point to the current
slot in the slot tables is a major threat as this permanently affects all connections that
are configured in the slot table. However, since each slot table has its own cycle counter
there already is a high degree of redundancy in each NoC router and NI. A possible
approach would be some kind of voting system in each router and NI that could be
used to automatically correct faulty cycle counters, thereby implementing a self-healing
property.

Naturally, the NoC is only one part of the system that can be affected by faults. While
fault-tolerance of other resources, specifically processing elements, is a whole other topic
on its own, it would be interesting to consider runtime task migration from one processing
tile to another to react to faults in a tile. By extending the approach of protection
switching, specific backup tiles could be determined at compile time together with backup
paths that would be used for the migration itself and the normal operation afterwards.
These backup tiles could be used normally by BE applications until a migration of a
critical task becomes necessary. Interesting considerations would be the consequences
for the worst-case latencies in case of a fault and possible adjustments to the mapping
algorithm in order to find feasible mappings. A possible way of implementing such a
task migration without running out of slots in the slot tables could be to use a secondary
“shadow” slot table that can be switched to and that holds connection configurations
that are only needed temporarily. Such shadow slot tables could generally be used for
changes in modes of operation.

Another interesting topic would be a lightweight version of the mapping algorithm
and an implementation of a central NoC manager which can find and configure backup
paths at runtime in order to return from a non-fault-tolerant state to a fault-tolerant
state after a fault occurred.

So far, the protection switching only considers disjoint paths between a single sender
and receiver. An investigation of possibilities to use protection switching with multicasts
and broadcasts would be compelling. Also, the necessary extension of the mapping al-
gorithm and reevaluation of the mapping strategies in multicast and broadcast scenarios
would be an interesting challenge. Similarly, protection switching in NoCs with different
topologies such as torus or star could be investigated, or how protection switching effects
packet switched traffic that uses adaptive routing algorithms.

One aspect that remains a challenge for TDM traffic in general is the access to heavily
shared resources such as DDR memory interfaces or I/O tiles. This is typically addressed
by using larger slot tables which, naturally, comes with a larger hardware overhead.
Other works use multiple interfaces in parallel. Overall, this is an area with a lot of
potential for improvement. A possible approach could be to use larger slot tables in the
NIs and smaller ones in routers. This would limit the possible mappings of the TDM
channels but could help reduce the hardware cost.
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Lastly, the mapping strategies could be further improved and refined to lower the
chance of a bad mapping being produced. This could, e.g., be done by actively con-
sidering the routing algorithm of the packet switched traffic and analyzing potential
bottlenecks depending on the location of the BE tiles.
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(a) Batch mode - buffer size 8
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(b) Burst mode - buffer size 8
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(c) Burst mode - buffer size 16
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(d) Burst mode - buffer size 32

Figure A.1: Overall comparison of 1+1 mapping strategies - all basic system versions
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Figure A.4: Detailed comparison of 1+1 mapping strategies - batch mode, buffer size 8
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Figure A.5: Detailed comparison of 1+1 mapping strategies - burst mode, buffer size 8
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Figure A.6: Detailed comparison of 1+1 mapping strategies - burst mode, buffer size 16
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Figure A.7: Detailed comparison of 1+1 mapping strategies - burst mode, buffer size 32
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(a) Batch mode - buffer size 8
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(b) Burst mode - buffer size 8
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(c) Burst mode - buffer size 16
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(d) Burst mode - buffer size 32

Figure A.8: Overall comparison of 1:1/1:n mapping strategies - all basic system versions
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Figure A.9: Detailed comparison of 1:1/1:n mapping strategies - batch mode, buffer size 8
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Figure A.10: Detailed comparison of 1:1/1:n mapping strategies - burst mode, buffer size 8
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Figure A.11: Detailed comparison of 1:1/1:n mapping strategies - burst mode, buffer size 16
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Figure A.12: Detailed comparison of 1:1/1:n mapping strategies - burst mode, buffer size 32
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(a) Batch mode - buffer size 8
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(b) Burst mode - buffer size 8
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(c) Burst mode - buffer size 16
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(d) Burst mode - buffer size 32

Figure A.13: Detailed comparison of the protection switching versions - all basic system ver-
sions
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