
 

Technische Universität München 

TUM School of Engineering and Design 

 

 

 

Study of Motorcycle Dynamics for the Improvement of the 

Stability of Weave and Wobble Eigenmodes 

 

 
Francesco Passigato  

 

 

 

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen 

Universität München zur Erlangung eines 

                           Doktors der Ingenieurwissenschaften  (Dr. -Ing.) 

genehmigten Dissertation. 

 

 

Vorsitz:                     Prof. Dr.-Ing. Wolfgang A. Wall 

Prüfer*innen der Dissertation: 

 

1.     Prof. Dr. -Ing. Markus Lienkamp 

2.     Assoc. Prof. Dr. Silvio Sorrentino  

 

Die Dissertation wurde am 05.05.2023 bei der Technischen Universität München eingereicht 

und durch die/den TUM School of Engineering and Design am 09.08.2023 angenommen. 

 

 





3

"Se volete far impazzire un fisico,
chidetegli come funziona una bicicletta."

("If you want to drive mad a physicist,
ask how a bicycle works.")

Stefano Oss, 2013, University of Trento, Physics Lecture
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1 Introduction and Motivation

Since 1817, when the first prototype of a bicycle was proposed [1], single-track vehicles–in
particular those powered by motors–have become a common vehicle for private transportation.
In the last 5–10 years and particularly in wealthy lands, the motorcycle has been increasingly
used for leisure [2], therefore partly losing its original function as bare transportation system.
The deciding aspects that contributed to the affirmation of motorcycles as a hobby are the driving
experience and the sense of freedom [3, 4]. Therefore, to build successful products that satisfy
the increasing expectation of the customers, the motorcycle manufacturers have to invest in
improving the motorcycles performances. This trend can be recognized in the increase in engine
power in every market segment: today’s middle class motorcycles possess a power that some
years ago would be reserved for sport motorcycles [5]. To manage this higher performance, an
increasing effort has to be devoted to the optimization of driving dynamics, which is therefore
fundamental in the development process.

More recently, electric mobility has massively gained importance and has affected the motorcycle
market, which is demonstrated by the steadily increasing number of electric scooters and motor-
cycles [6]. Compared to conventional motorcycles, electric two-wheel vehicles are characterized
by a different overall mass and mass distribution. Since changes in mass distribution strongly
affect the motorcycle dynamics [7–9], the development of electric motorcycles is posing new
challenges to motorcycle manufacturers, who have to ensure good driving dynamics while
working with a substantially new platform.

From this brief introduction, it is evident that the improvement of the driving dynamics is deter-
minant in the development of motorcycles. The concept of driving dynamics involves several
aspects, which range from more subjective sensations to concrete engineering definitions.
Considering the more technical aspects, driving dynamics involve acceleration and braking,
maneuverability [10], controllability [11] and stability [12]. The stability is a key aspect of mo-
torcycle dynamics, which also influences the previous ones. First of all, as opposed to cars,
motorcycles are unstable systems at certain speeds and they become a self-stabilizing system
only above this speed [12]. Moreover, motorcycles can be affected by oscillations, which impair
the controllability [13, p. 432] and reduce the confidence of the rider [14, 15], thus negatively
affecting the safety and the whole driving experience.

Therefore, it becomes clear that a big part in the development process of motorcycles is
constituted by the study of their stability and its improvement. In particular, better stability
improves the controllability because the rider is not disturbed by the presence of oscillation
and can concentrate on the trajectory-following task [16]; moreover, the absence of oscillation
phenomena when accelerating or braking ensures better road adherence and increases rider’s
confidence [17]. Finally, stability and maneuverability are sometimes considered as conflicting
aspects [10], in the sense that a too stable motorcycle is often not well maneuverable. Therefore,
considering the scope of a certain motorcycle, it is useful to study its stability in order to determine
the ideal combination of stability and maneuverability.
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1 Introduction and Motivation

In the present thesis, a set of methods is proposed to study and enhance the stability of
motorcycles, with the further aim of improving the overall structural design. The stability is
studied by leveraging the well-known concept of eigenmodes, which are intrinsic properties of
each mechanical system (Section 2.1). In particular, motorcycles possess several eigenmodes,
which are summarized in Section 2.2. The subject of this thesis is the study of two of these
eigenmodes, which are called weave and wobble. The eigenfrequency of weave is in the range
of 1-4 Hz [18, p. 272] and it involves the roll, yaw and rotation of the steering system, while the
eigenfrequency of wobble is in the range 6-10 Hz and it is characterized by almost only rotation
of the steering system [19]. These frequencies are all above the frequency range of the action
of the rider and, therefore, it is almost impossible for a rider to actively stabilize the weave and
wobble oscillations. For this reason, unstable weave and wobble eigenmodes can seriously
compromise the driving dynamics of the motorcycle, even leading to loss of control and causing
severe accidents [14, 20]. Under this point of view, improving the stability of these eigenmodes
means increasing their damping or, equivalently, reducing the time needed for the oscillation to
disappear.

1.1 Ensuring the Stability of Weave and Wobble in
Motorcycles

Considering the previous introduction, it can be stated that the improvement of the stability
of the weave and wobble eigenmodes is vital in the development of new motorcycles and
in the optimization of the existing models. Several approaches can be used by motorcycle
manufacturers to increase the stability of these oscillation phenomena:

• Adaptation of chassis geometry and mass distribution.

• Optimization of tires’ characteristics.

• Optimization of the stiffness of chassis components.

• Development of active control systems.

Even if changing the chassis geometry [21, p. 533] and the mass distribution [7–9] has been
proven to have the potential for increasing motorcycle stability, the space for optimization is quite
limited. In fact, the chassis geometry has to also satisfy packaging and ergonomic requirement.
Moreover, changes in mass distribution are often directly related to changes in the chassis
geometry.

Tire characteristics certainly determine the stability of motorcycles [21, p. 532], [22, 23]. However,
after a motorcycle is sold, the customer has the freedom to choose the tires from several tire
manufacturer. In Europe, the mounted tires have to satisfy some requirements about dimensions,
and maximal allowed load and speed [24]. Moreover, for motorcycles sold before September
2005, there is also an indication of the tire models that the customer can choose [25]. However,
the situation varies worldwide and, therefore, from the perspective of motorcycle manufacturers,
it is difficult to guarantee stability only by leveraging tire properties.

There is a strong correlation between the stiffness of chassis components and the stability of the
weave and wobble eigenmodes of motorcycles, as several works in this field show (Section 2.2.3
provides a review on these works). The optimization of the stiffness of structural components
is a well-known trade-off problem in the automotive industry [26, p. 152]. This trade-off usually
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1 Introduction and Motivation

consists of maximizing the stiffness while minimizing the mass. While for cars the highest
stiffness possible is desired, for motorcycles an additional challenge is present: it has been
shown that introducing some flexibility on certain chassis components has positive effects
on road holding and stability [27], so that the focus shifts to achieving the optimal stiffness
distribution, rather than the highest stiffness possible. Besides these advantages on driving
dynamics, an optimal stiffness distribution also implies optimal usage of material. This results in
mass reduction, which has positive effects on fuel consumption, acceleration, and increases
the maneuverability, particularly at low speed. Thus, finding the best stiffness distribution
for motorcycles has always been a great challenge for manufacturers [28]. Historically, this
optimization process has been tackled by “trial-and-error” [29]; however, this approach often
leads to expensive development for the high number of prototypes required. The literature on
motorcycle simulation examined in Section 2.3 demonstrates that this is why the importance of
simulation in motorcycle development is steadily increasing. However, the main challenge for
the simulation is the correct representation of reality, and, of particular importance for this thesis,
the correct modeling of the effect of flexibilities on driving dynamics.

Thanks to the increasing availability of fast and precise control systems, the development of
systems for active stabilization of motorcycles has become more feasible in the past few years.
Prototypes of motorcycles able to self-stabilize when standing were proposed by Honda in
2013 with the name “Riding Assist” [30]. In 2022 Yamaha presented a prototype for a steering
actuator that will be fitted in the next generations of motorcycles and should increase both agility
and stability [31]. The use of an active system to prevent dangerous oscillation phenomena is
therefore legitimate and could enhance the driving safety, thus increasing the acceptance of
motorcycles.

1.2 Thesis Goals

This thesis will present a framework to assess and increase the stability of oscillating phenomena
in motorcycles. As stated in the previous section, the two approaches that have a higher
potential for achieving this aim are the determination of an optimal stiffness distribution of
chassis components and the development of an active system for stabilization. The first one
helps to improve the stability during the design phase of the motorcycle, while the second
approach focuses on the online stabilization during operation.
Regarding the first aspect, this work contributes to a motorcycle model that presents the following
functionalities:

• It reproduces the effect of the chassis stiffness on stability with high accuracy.

• It allows easy evaluation of the effect of changes in the stiffness of structural com-
ponents on the stability, thus facilitating the achievement of an optimal distribution
of stiffness and a reduction of the mass.

Regarding the aspect of active control, this work proposes a control system for a steering
actuator with the following advantages:

• Prevention of unstable oscillating phenomena throughout the whole operating
range of the motorcycle.

• It only needs signals from the motorcycle that can be easily obtained with common
measurement equipment.
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2 State of the Art and Fundamentals

This chapter reviews the relevant literature for the present thesis and introduces some basic
concepts that are useful to understand and motivate the methods of the thesis. The chapter
is divided into four main sections. Section 2.1 introduces the theme of stability in mechanical
systems and the possibilities to evaluate it. Section 2.2 explains the concept of eigenmodes in
motorcycles and highlights the correlation between some eigenmodes and structural flexibilities.
Section 2.3 summarizes the approaches to model the flexibilities of structural components in
the multibody simulation environment. Finally, Section 2.4 presents the relevant literature that
developed active and passive systems for preventing unstable oscillations in motorcycles.

2.1 Stability of Mechanical Systems

In the present thesis, a methodology is needed to analyze the stability of mechanical systems.
One possibility is to study motion in time. Defining x as the state vector, i.e., the vector containing
every Degree of Freedom (DOF), the system is at an equilibrium point if the condition ẋ = 0 is
satisfied [32]. The stability of a system can be studied by considering the amplitude of its motion
around the equilibrium point, where ∥ · ∥ is the Euclidian norm. Lyapunov [33] distinguishes three
cases of stability:

1. The system is Lyapunov stable if, given an initial condition x 0 satisfying the inequal-
ity ∥x 0∥< δ, the relation

∥x (t)∥< ε 0≤ t <∞ (2.1)

is true. δ and ε define two small numbers. This means that, given an initial
condition close enough to the an equilibrium point, the system’s reaction remains
bounded by the limit ε.

2. The system is asymptotically stable if it is both Lyapunov stable and, in addition,

lim
t→∞
∥x (t)∥= 0. (2.2)

3. The system is unstable if neither of the previous conditions are satisfied.

The study of stability can be carried out by also leveraging the eigenmodes. These are intrinsic
properties of mechanical systems that directly correlate with the DOFs of the system itself [34,
p. 137]. For linear systems, the time-domain answer to an external excitation is given by a linear
combination of its eigenmodes [34, p. 142]. Eigenmodes are characterized by eigenvalues, which
lead to the system’s eigenfrequencies, and by eigenvectors (also called mode shapes), which
describe the relative motion between the DOFs and are associated with a certain eigenfrequency
[34, p. 135].
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Eigenvalues, which are in general complex numbers, can be used to study a system’s stability
by looking at their real part. Recalling the definition of stability used above, a system’s motion
is asymptotically stable if all eigenvalues have a negative real part, stable if at least one of the
eigenvalues is purely imaginary (the real part is equal to zero), and unstable if at least one
eigenvalue has a positive real part [35, p. 64]. This statement can be demonstrated by looking
at the free-response of a 1-DOF linear system with mass m, stiffness k, and viscous damping
d, as in (2.3). This can be extended to the multiple DOFs case by using the transformation to
modal coordinates, which decouples the equations of motion, and the solution can be found by
solving n 1-DOF systems [36, p. 156].

mẍ + d ẋ + kx = 0. (2.3)

Defining the undamped natural frequency as ωn =
q

k
m and the modal damping ratio as

ζ = d
2mωn

, (2.3) can be rewritten as:

ẍ + 2ωnζ ẋ + ω2
n x = 0. (2.4)

The general solution of (2.4) is [35, p. 61]:

x(t) = C1eα1 t + C2eα2 t , α1,2 = −ζωn ± ωn

Æ

ζ2 − 1, (2.5)

where α1 and α2 are the two roots of the characteristic equation x2 + 2ωnζx + ω2
n = 0 and the

eigenvalues of the 1-DOF system in (2.3). The two constants C1, C2 have to be calculated with
the initial conditions. Depending on the value of ζ, the general solution in (2.5) shows different
behaviors [35, p. 61]:

• ζ = 1: critically damped case. The roots of the characteristic equation are
coincident and real: α1 = α2 = −ωn. This leads to the solution:

x(t) = e−ωn t[u0 + (v0 + ωnu0)t], (2.6)

where u0, v0 are the initial conditions on position and speed, respectively. (2.6)
expresses that the system returns to its equilibrium position without vibrating.

• ζ > 1: over-damped case. The roots α1,2 are distinct and real and the solution is:

x(t) = e−ζωn t(C1eωn t
p
ζ2−1 + C2e−ωn t

p
ζ2−1). (2.7)

(2.7) represents again a non-oscillating solution but, in this case, the system takes
longer than in (2.6) to reach the equilibrium position.

• 0 < ζ < 1: under-damped case. The roots α1,2 are complex conjugates and can
be expressed as: α1,2 = −ζωn ± iωn

p

1− ζ2. The solution becomes:

x(t) = e−ζωn t(C1eiωn t
p

1−ζ2 + C2e−iωn t
p

1−ζ2). (2.8)

This time, the solution represents an oscillating motion at the damped natural
frequency ωd = ωn

p

1− ζ2 with an exponentially decaying amplitude given by the
envelope curves ±e−ζωn t .

While critically damped systems are always stable, over-damped and under-damped systems
may be unstable. At this point, the classification of stability based on the real part of the
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eigenvalues becomes clear: if the real part of α1,2 is negative, the exponent of the solutions
(2.7), (2.8) is negative, thus resulting in a motion with decaying amplitude, i.e., stable motion
[37, p. 11]. In the under-damped case, this motion is oscillation with a decaying amplitude. If the
real part of α1,2 is positive, the exponents in (2.7), (2.8) become positive, thus resulting in an
unstable motion where the amplitude increases exponentially over time, either oscillating or not
[35, p. 64], [37, p. 11].

The present thesis evaluates the stability of motorcycles by leveraging the eigenmodes, which
are presented in the next section.

2.2 Eigenmodes in Motorcycles

This section presents the concept of eigenmodes in motorcycles. It is divided into three sub-
sections: Section 2.2.1 introduces the in-plane and out-of-plane eigenmodes. Section 2.2.2
explains how the attempt of guaranteeing stable eigenmodes has influenced motorcycle design
through the years. Finally, Section 2.2.3 presents several works that analyze the correlation
between chassis flexibility and stability of eigenmodes through simulation.

2.2.1 In-Plane and Out-of-Plane Eigenmodes

Being mechanical systems, motorcycles possess typical eigenmodes as well. The principal
eigenmodes of motorcycles can be studied with a motorcycle model containing at least the
following 11 DOFs [18, p. 265], [38, 39]:

• 6 DOFs given by 3 translations and 3 rotations of the whole motorcycle about x , y,
and z axes of the vehicle.

• Front and rear wheel spin.

• Front and rear suspension travel.

• Rotation of the steering system.

To study of eigenmodes of motorcycles with this model, it is useful to distinguish between
in-plane (vertical) and out-of-plane (lateral) dynamics. When the motorcycle has zero lean
angle, in-plane and out-of-plane dynamics are decoupled [19] and can therefore be analyzed
separately. This allows for the definition of the in-plane and out-of-plane eigenmodes, which are
presented in the remainder of this section for the straight running condition. Figure 2.1 shows
the typical eigenvalues of a motorcycle with the so-called root-locus plot [19]. It presents the
evolution of the eigenmodes with increasing speed by plotting the real part of the eigenvalues,
which represents the damping, on the abscissa and the imaginary part of the eigenvalues, which
represents the eigenfrequency, on the ordinate.

The in-plane eigenmodes involve the DOFs of the front and rear suspensions. To describe the
in-plane eigenmodes, the concept of sprung and unsprung masses is useful, whereby sprung
masses are condensed in a single body containing the main frame, the engine, and the rider,
and unsprung masses represent the wheels and the moving components of the suspensions
[18, p. 177] (Figure 2.2). This way, four in-plane eigenmodes can be identified for motorcycles:
pitch, bounce, front hop, and rear hop [18, p. 181]. The pitch and bounce eigenmodes are
characterized by the movement of the sprung mass involving a rotation about the lateral axis
(pitch rotation) and vertical displacement, whereby in the pitch eigenmode, the front and rear

7
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Figure 2.1: Root locus plot of the eigenvalues of a stable motorcycle calculated in straight running.
The speed is varied from 40 kmh−1 to 200 kmh−1 in steps of 10 kmh−1; the star represents
the lowest speed and the square the highest speed. The arrows point in the direction of
increasing speed. The rear wobble is not visualized because it has extremely high damping.
Only the oscillating eigenmodes–i.e., those with non-zero imaginary part–are shown.

suspension move in counter-phase, while in the bounce eigenmode, they move in-phase [19].
The front hop involves only the DOF of the front suspension, while the rear hop includes only the
DOF of the rear suspension [18, p. 181].
Damping of the in-plane eigenmodes is mainly related to damping of the suspensions and
vertical damping of the tires, which should be non-zero. This is why, in straight running, the
in-plane eigenmodes do not become unstable and remain well-damped, as the real part of the
in-plane eigenmodes in Figure 2.1 confirms. Moreover, their change with increasing longitudinal
speed is limited and it is entirely due to changes in the motorcycle trim due to aerodynamic
forces [12, p. 68].

Sprung mass

Unsprung
mass rear

Unsprung
mass front

DOF front suspensionDOF rear suspension

x

z

Pitch

Bounce

Figure 2.2: Schematic representation of the sprung and unsprung masses of a motorcycle. This scheme
is useful for studying the in-plane eigenmodes.

The out-of-plane eigenmodes include capsize, weave, wobble, and rear wobble [18, p. 267].
Capsize is a non-oscillating eigenmode, i.e., an eigenmode with zero eigenfrequency, and
corresponds to the motorcycle tilting over [18, p. 268]. Capsize is generally unstable at low
speeds and gets more stable with increasing speed. Its eigenvector also changes with speed,
with the low speed capsize mainly involving roll motion and the high speed capsize mainly
8
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characterized by lateral motion [12, p. 69].
Weave is an oscillating eigenmode with an eigenfrequency in the range of 1-4 Hz [18, p. 272]
and its eigenvector is dominated by roll, yaw, and rotation of the steering system (Figure 2.3a),
whereby yaw and rotation of the steering system are almost opposite in phase [40]. As Figure 2.1
shows, the weave eigenmode is strongly influenced by the longitudinal speed of the motorcycle.
In particular, damping of the weave increases up to 70-90 kmh−1, and after this point it decreases
[18, p. 272], meaning that weave may become unstable at high speed, thus becoming a serious
threat for safety [4, p. 457]. Moreover, the eigenvector itself is influenced by the longitudinal
speed, with the roll component decreasing with increasing speed (Section 4.1). If the DOF of
the rider lean is included, the so-called “rider shake” mode originates [12, p. 69], which can, with
some combinations of parameters, merge with the weave eigenmode. However, the shake mode
generally remains well-damped throughout the whole speed range [12, p. 69].
Wobble has a higher eigenfrequency than weave, in the range of 6-10 Hz, and its eigenvector
includes almost only rotation of the steering system [19] (Figure 2.3b). Similarly to weave, the
damping of wobble strongly changes with longitudinal speed. Moreover, the speed range where
damping is minimal depends on the structural stiffness of the front assembly (in particular, its
lateral bending stiffness): low stiffness causes the wobble to be lightly damped at low and
medium speeds, while high stiffness shifts the low damping speed range towards higher speeds
[23, 28, 41]. See also Section 4.1 for a detailed investigation of this correlation.
Rear wobble can be regarded as a pendant of wobble [12, p. 69] because it mainly includes yaw
oscillation of the rear frame with a minor component of roll rotation, which is almost in-phase
with the yaw rotation [18, p. 275]. This mode is generally heavily damped [12, p. 69] and, for this
reason, it is not an object of study in the literature.

x
y

z

Steering head
rotation

Lateral
translation

Yaw rotation (z)

Roll
rotation(x)

(a) Weave eigenvector.

Steering head
rotation

x
y

z

(b) Wobble eigenvector.

Figure 2.3: Schematic representation of the motorcycle motion during weave and wobble oscillations.

Acceleration and braking in straight running influence the stability of weave and wobble and may
cause new modes to appear. In particular, wobble is destabilized by braking [17, 42, 43] due to
the increase of the relaxation length with increasing load [44], while weave is unaffected [42, 43].
Evangelou et al. [17] identify a so-called burst oscillation that occurs under firm acceleration at
high speed, which is caused by the interaction between weave and wobble.

As previously mentioned, decoupling between in-plane and out-of-plane dynamics is only valid in
straight running. When cornering, the in-plane and out-of-plane dynamics become coupled, and
therefore, in-plane and out-of-plane eigenmodes can interact [12, 45]. In fact, coupling of in-plane
and out-of-plane dynamics provides a signal transmission path between road undulations and
lateral dynamics, meaning that vertical excitation coming from the road also excites the lateral
eigenmodes [14]. At high speeds, the weave eigenfrequency approaches the eigenfrequencies of
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bounce and pitch [40, 46, 47] and, due to coupling between in-plane and out-of-plane dynamics,
an interaction between these modes is possible, thus causing the so-called cornering weave [12].
The interaction can also be seen in the eigenvector of the cornering weave because the DOF
of the rear suspension is present [40, 46]. Moreover, under cornering, there is the possibility
that wobble interacts with the front hop, so that front suspension travel is present in the wobble
eigenvector, thus creating the so-called front patter [12, 48].

While the previously described eigenmodes are self-induced, there are also oscillation phenom-
ena that occur only under certain conditions and with a specific excitation, such as chattering
and kick-back. Kick-back, also known as tank-slapper, is a violent form of wobble oscillation that
is generally experienced at medium-high speed, depending on the motorcycle’s parameters [49,
50]. It is generally triggered by a series of road undulations that induce a periodic excitation with
the eigenfrequency of wobble [50]. The excitation causes a periodic lifting of the front wheel that,
when landing on the ground with a non-zero steering angle, produces periodic tire lateral forces,
which quickly induce a limit-stop to limit-stop oscillation [4, p. 460].
Chatter is a phenomenon occurring under extreme braking conditions coupled with big lean an-
gles [51–53] and has an eigenfrequency of 17-22 Hz [54]. Due to the severity of these conditions,
chatter can only be seen in racing: it occurs mainly in the latter phase of corner entry, continues
during the high-lean angle rolling phase, and disappears while accelerating [53]. The oscillation
starts at the rear wheel, due to the interaction between tire longitudinal force and driveline mode,
and propagates through the frame to the front wheel [53]. For an in-depth analysis of the physics
behind chatter, the reader is referred to [54].

Table 2.1 summarizes the most relevant oscillation phenomena that can occur on motorcycles.

Table 2.1: Most relevant eigenmodes and external-induced oscillations of motorcycles. f is the abbrevi-
ation for eigenfrequency and d for damping.

f Relation with speed

In-plane

Bounce 1.5–2 Hz -
Pitch 2–3 Hz -
Front hop 10–12 Hz Small change in d
Rear hop 13–15 Hz Change in d

Out-of-plane
Weave 1–4 Hz Change in f ,d
Wobble 6–10 Hz Change in f ,d

Forced oscillations
Kick-back ca. 10 Hz Occurs at high speeds
Chattering 17–22 Hz -

2.2.2 Correlation between Motorcycle Design and Stability

The main structural components of motorcycles are frame, front fork, and swingarm. These
components represent a “chain” of stiffnesses that connect the two wheels. The evolution of
motorcycle structural design demonstrates that a great effort has been devoted to optimizing
these stiffnesses in order to achieve the desired dynamic properties. Of course, this was not the
only reason that motivated the evolution of structural design, which must satisfy requirements of
strength and durability. The stiffness of structural components should be optimized considering
different aspects such as:

• Good insulation from vibrations coming from the engine and road [4, p. 330].

• Road adhesion [55] when driving over road imperfections with a non-zero lean
angle, whereby the excitation from the road has an out-of-plane component, which
has to be absorbed by the stiffness of the structural components [27, p. 6-43].
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• Precise steering [4, p. 330], [27, p. 1-3].

• Stability of the out-of-plane eigenmodes [56].

All these requirements must be satisfied, while at the same time minimizing mass [57]. In fact,
achieving the desired stiffness distribution with a minimum mass is a major challenge in the
development process of motorcycles [27, p. 10-1]. The history of motorcycle design motivates
the effort in solving this trade-off, which can be seen in the numerous solutions developed for
the design of structural components throughout the years.

Evolution of Frame Design over Time

The frame must provide a suitable connection for the swingarm and front fork and enough space
for the powertrain [4, p. 330]. Due to these multiple functions, the history of motorcycle design
shows several examples of design choices. The requirements mentioned above pose contrasting
challenges to the designer of frames. In fact, for precise steering, relatively high torsional and
bending stiffness is required–which ensures that the designed steering geometry is maintained
in all conditions–while for good comfort, lower stiffness is advantageous [27, p. 1-3]. In the first
motorcycles and up to the 1990s, cradle frames (Figure 2.4) were the dominant solution thanks
to cheap production and the capability to fit with almost every type of engine [4, p. 344]. Tubular
back-bone frames, which also belong to the category of cradle frames, are characterized by
a beam on the upper side that ideally connects the front fork and swingarm-pivot [27, p. 10-5].
However, the achievable trade-off between stiffness and mass is disadvantageous [4, p. 345]. To
avoid excessive mass, these frames therefore show relatively low stiffness, which could cause
instabilities of the weave and wobble eigenmodes under certain loading conditions, as a study
by Roe et al. [56] demonstrates. Nowadays, cradle frames can be found mainly on heritage
motorcycles or on cheap models, which focus more on the hommage to old-style design or on
cost reduction rather than on achieving the best structural efficiency.
Cradle frames and tubular back-bone frames can be realized using triangulated tubes to increase
structural efficiency, thus coupling low mass with high stiffness [27, p. 10-9]. The first examples
of this frame construction can be found in the 1950s on several motorcycles from Moto Guzzi.
Besides the beneficial stiffness-to-weight ratio, they offer the advantage that the tubes forming
the triangulation can be adapted to different types of engines or motorcycles. The downside is
the high production cost due to the numerous welded joints [27, p. 10-9].

Figure 2.4: Example of a cradle frame from the BMW R80/R100 [58].

A decisive step towards stiffer frames was reached when the engine was used as a structural
component. One of the first and most remarkable examples is the frame of the BMW K100
(1983) (Figure 2.5), where the frame was rigidly connected to the engine and provided support
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only for the front fork, while the swingarm was directly connected to the engine itself [4, p. 342].
This construction was characterized by low total mass and high structural stiffness, as part of
the stiffness was provided by the engine itself [27, p. 10-17]. However, because of this new
configuration and increasing engine performance, some new high-speed instabilities appeared,
such as kick-back (Section 2.2.1). It was understood that one of the reasons for this behavior
was excessive stiffness, which reduces damping of the kick-back, thus favoring the occurrence
of this dangerous phenomenon [49].

Figure 2.5: Frame of the BMW K100 [4].

Design solutions combining high stiffness and moderate mass were obtained when aluminum
started to be adopted for the construction of motorcycle frames [27, p. 10-23], with the first
examples presented in the 1980s, such as the Honda VFR from 1985. The general configuration,
which has been then adapted to different motorcycle types, is characterized by two beams
running on each side of the powertrain and joining the steering head joint to the swingarm pivot
[27, p. 10-23]. This type of frame shows its advantages in terms of mass if the design is adapted
to the intrinsic characteristics of aluminum [4, p. 333], [57], so that simply converting a frame
made of steel to an identical version made of aluminum would not provide any mass advantages
[27, p. 10-22]. The high stiffness reachable with aluminum frames is demonstrated by some
reports about the Suzuki TL1000 (1997), which, similarly to the BMW K100, was affected by
high-speed kick-back because of the excessive stiffness of its aluminum frame.

(a) Typical conformation of an aluminum frame. (b) Triangulated steel frame from the KTM 950 Rally LC8.

Figure 2.6: Exemplary frames from modern motorcycles [58].
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In modern motorcycles, aluminum frames are dominant thanks to the mass advantage and the
capability to be adapted to different motorcycle types (Figure 2.6a). Moreover, triangulated steel
frames employing the engine as a structural component are still used (Figure 2.6b), especially
in some high-performance motorcycles, such as those from Ducati (e.g., the SuperSport) and
KTM (e.g., the 1290 Super Duke). For the present thesis, it is particularly important to stress
that motorcycle frames should include some compliance at determined points, which allows, for
example, to ensure better road adherence when driving over road undulations [55], [27, p. 6-43]
and to avoid dangerous high-speed kick-back phenomena. Knowing that, the designer should
pursue an ideal distribution of the compliance, which would guarantee the desired dynamic
properties with minimal mass.

Evolution of Front Fork Design over Time

The history of motorcycles shows several design solutions for the front fork. In this paragraph,
only the solutions that are nowadays dominant on the market are considered; for an extensive
review of all other types, the reader is referred to [4, 27]. The front fork must satisfy requirements
on driving dynamics similar to the frame but, additionally, it must realize the desired suspension
kinematics, which ensures good damping of road excitation and appropriate steering feedback
under all driving conditions [4, p. 346]. This is why different design solutions for the front fork are
mainly motivated by the attempt to achieve the required performances in terms of response to
road excitation and during braking, accelerating, and steering [59, p. 32]. However, similar to the
frame, achieving the desired stiffness was also one of the reasons for evolution: experimental
tests in the 1960s demonstrated that a front suspension with insufficient stiffness would seriously
impair the controllability when driving over road imperfections [59, p. 176].

Clamps

Stanchions

Sliders

Wheel spindle

Figure 2.7: Types of telescopic forks: road-side-up (left) upside-down (right) [58].

The most common construction for the front fork is the telescopic fork. The traditional imple-
mentation, also called road-side-up (RSU), has a pair of stanchions fixed by two clamps and
fitted over sliders with a bigger diameter that can slide on the two stanchions and are fixed
together at the bottom by the wheel spindle [27, p. 7-2] (left side of Figure 2.7). Particularly
in the first implementations, these forks were affected by low stiffness in the longitudinal and
lateral directions, whereby low lateral stiffness may cause wobble instability phenomena at
moderate speeds (Section 2.2.3). These problems have partially been solved in modern forks by
increasing the diameter of the tubes. A relevant improvement was obtained with the introduction
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of upside-down (USD) forks, where the smaller diameter tube is the slider and is connected to
the wheel (right side of Figure 2.7). Due to the larger diameter of the stanchions and the longer
sliders, upside-down forks have higher stiffness, thus partially solving the problems related to
insufficient stiffness [4, p. 349]. Interestingly, one of the reasons for the dominance of telescopic
forks in modern motorcycles is attributed to the aesthetic aspect rather than to engineering
considerations [27, p. 7-2]. In fact, besides the potentially insufficient stiffness, telescopic forks
are affected by a great amount of nose dive when braking [27, p. 7-3]; moreover, due to the rake
angle, the vertical force applies a bending load to the tubes, thus causing stiction, which tends
to clamp the fork [4, p. 349] and deteriorates the response over small bumps [27, p. 7-3].

To solve the problems of telescopic forks, motorcycle manufacturers have proposed several
solutions, some of which found their way into the industry. An example is the Telelever presented
by BMW in 1993 (Figure 2.8). It involves a structure similar to the telescopic fork. The main
difference is the presence of a pivoted longitudinal arm that is connected to the sliders (lower
fork) with a spherical joint; moreover, the stanchions (upper fork) are not rigidly connected to the
fork bridge, but through spherical joints [4, p. 356]. This construction solves several problems
of the telescopic fork: it realizes an anti-dive function when braking and the presence of the
longitudinal arm strongly increases lateral stiffness [4, p. 356].

Longitudinal arm

Spherical
joint

Fork bridge

2 spherical
joints

Figure 2.8: BMW Telelever system. Picture modified from [60].

Other constructive solutions named double-link suspensions have been implemented as al-
ternative to the telescopic fork. The different examples can be found in [27, p. 7-18]; in this
construction, the tubes that characterize the telescopic fork and the Telelever are missing and
the front wheel is carried by a wheel carrier, which itself is connected to the main frame with two
pivoted arms. Steering is realized with a link between the handlebar and wheel carrier, which can
steer thanks to spherical joints on the pivoted arms [27, p. 7-19]. Modern examples of this front
suspension are the Duolever system by BMW (2004) (Figure 2.9) and the front suspension of the
Honda Gold Wing starting from the model year 2018. In the double-link suspension, the wheel
carrier ensures high structural stiffness. Moreover, thanks to the support of two longitudinal arms
and a small lever arm between the front tire contact point and the pivoted arms, the support
structures on the main frame can be lighter [4, p. 358]. Finally, the presence of two pivoted arms
allows for the precise implementation of the desired suspension kinematic. These advantages
are contrasted by high implementation costs due to the high number of links; therefore, this front
suspension is suitable only for upper-class motorcycles.
14
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Wheel carrier

Upper arm

Lower arm

Handlebar
Steering link

Figure 2.9: BMW Duolever system. Picture modified from [61].

Evolution of Swingarm Design over Time

The last important structural component of motorcycles is the swingarm, which must ensure
precise guiding of the rear wheel and the desired suspension travel [4, p. 363]. In this case,
the different constructive solutions do not differ much throughout the years; the two variations
that can be found are the two-sided and the single-sided swingarm [27, p. 8-19]. In both cases,
the evolution of design has led to increasing overall stiffness to avoid undesired steer and
camber variations of the rear wheel that would be detrimental to handling [4, p. 366]. However,
as explained above, in the last years, chassis stiffness has reached a level that may cause
problems with bump absorption when cornering and this has brought some manufacturers to
reintroduce some targeted compliance [27, p. 8-16].

Upper link

Lower link

Wheel carrier

Figure 2.10: BMW Paralever system. Picture modified from [60].

In terms of achievable stiffness, two-sided and single-sided swingarms are equivalent, given
that an appropriate design is chosen [27, p. 8-25]. The two swingarm types have been coupled
with both chain and shaft drive. In modern motorcycles, however, the two-sided swingarm
is coupled almost exclusively with the chain drive, while the single-sided can be found on
motorcycles with either chain or shaft drive. The most significant variations for both swingarms
were motivated by the attempt to achieve the anti-squat effect, i.e., to counteract the tendency of
the motorcycle’s back to lift when accelerating, or to realize a progressive spring rate. For the

15



2 State of the Art and Fundamentals

anti-squat behavior, the single-sided swingarm has been extended with an additional link and the
wheel carrier is connected to the two arms with revolute joints, whereby the swingarm becomes
a four-bar linkage [4, p. 386]. An example is the Paralever from BMW (1988) (Figure 2.10). In
motorcycles with chain drive, anti-squat can be realized by adjusting the relative position of the
pinion center and the swingarm pivot [18, p. 210]. The progressive spring rate can be obtained
with a rocker system, whereby the spring-damper element is connected to a rocker arm, which
itself is connected to the swingarm and, thanks to appropriate dimensions of the rocker’s arms,
different leverage ratios between wheel travel and compression/extension of the spring-damper
element can be obtained [27, p. 8-5].

Importance of Structural Design in the Development of Motorcycles

This overview shows that chassis stiffness strongly affects motorcycle dynamics and that it
significantly motivated the evolution of chassis design. An important statement is made in
[27, p. 8-25] and [56]: a good general rule is to balance the stiffness between the chassis
components, meaning that it is pointless to have, for example, an extremely stiff swingarm
mounted on a flexible frame. Moreover, as explained above, a common trend in chassis design
is to include some targeted flexibilities, which avoids high-speed instability problems and allows
for better traction when accelerating out of a curve on bumpy roads.

All these considerations demonstrate the need for a methodology to study the influence of
chassis flexibilities on motorcycle dynamics. This would allow not only to easily include targeted
flexibilities on chosen structural components but also to improve structural design, thus reducing
mass. The development and application of this methodology are described in Chapter 4, where
the focus is to study the effect of flexibility on the weave and wobble eigenmodes and to derive a
structural design that optimizes their stability.

The following section reviews studies on the influence of the flexibilities of chassis components
on the stability of the motorcycle with a particular focus on weave and wobble eigenmodes,
which are the phenomena of interest in the present thesis.

2.2.3 Influence of Structural Flexibilities on Weave and Wobble

The previous section showed that the attempt to achieve the desired stiffness properties played a
determining role in the evolution of structural design. Therefore, with the objective of understand-
ing which level of stiffness should be aimed for, several works studied the influence of chassis
stiffness on motorcycle stability. A common factor is the use of the so-called lumped stiffness
approach to model elastic deformations. In this approximation, the stiffness is concentrated
on a joint that connects two rigid bodies. In the following paragraphs, the works analyzing
the influence of stiffness of the frame, front fork, and swingarm on weave and wobble are
summarized.

Frame Flexibility

Since the frame represents the connecting element between the front and rear assembly, its
flexibility turned out to highly influence motorcycle dynamics. Several works only consider the
frame torsional flexibility at the steering head joint, which is modeled with a lumped stiffness
characterized by a revolute joint on the steering head joint with its rotation axis perpendicular to
the steering axis [17, 28, 38, 50, 51, 62, 63]. The effect of such a lumped stiffness is to let the
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contact point of the front wheel move laterally, similar to the motion caused by the fork bending
stiffness.

For example, Cossalter et al. [64] state that both frame twisting and lateral fork deformation
should be included when studying wobble. Similarly, Pacejka et al. [21, p. 531] and Sharp et al.
[65] underline how the inclusion of frame stiffness is necessary when simulating wobble. Sharp
et al. [38] show with simulations that high-speed weave is compromised by a reduction in frame
torsional stiffness. Moreover, the wobble problem is transferred from high speeds to medium
speeds by this change. Roe et al. [9] carried out experiments to identify the effect of lateral and
torsional stiffness of the frame: starting with a standard production frame from the 1980s, they
state that increasing torsional stiffness is beneficial for wobble and does not greatly influence
weave, which, instead, is positively affected by increasing lateral frame stiffness. Similarly, Kane
[7] states, based on experiments, that increasing flexural stiffness of the frame was beneficial for
attenuation of weave.

Besides the effect on weave and wobble, Bocciolone et al. [55] explain that frame torsional
flexibility is important for driving dynamics because it absorbs the road excitation not directed
towards the suspension system. This situation may occur, for instance, when driving on road
undulations with a large roll angle. A somehow connected observation is given by Roe et al. [9]:
they observe that too high frame torsional stiffness should be avoided because it makes the
motorcycle “chop” sideways when cornering at high speeds over a bumpy road. Similarly, Lake
et al. [29] underline that the frame should be as stiff as possible in torsion to guarantee high
weave stability but potentially compliant in bending.

Doria et al. [66] leverage on the identification of the twist axis [67] for parameterizing a lumped
stiffness model of the frame. The authors distinguish between static and dynamic deformation
axis: they are in general different, so tuning the lumped stiffness model only while considering
the static twist axis could introduce an error.

Front Fork Flexibility

Several works investigated the effect of bending flexibility of the front fork on weave and wobble
[23, 41, 52, 64, 68–71]. They have in common the modeling of flexibility with a lumped stiffness
using a joint along the fork and with its rotation axis perpendicular to the steering axis. These
studies show that, while the weave mode is hardly affected, the wobble mode strongly correlates
with fork stiffness. Spierings [41] notes that, while with low fork lateral bending stiffness, wobble
damping shows a minimum in lower speed ranges (40 kmh−1 to 80 kmh−1), when increasing
this stiffness, wobble damping is lower in high-speed ranges. Similar results were obtained with
simulations in [28] and experimentally in [56]. Spierings [41] recommends a value for the lumped
stiffness used to model the fork bending stiffness between 100 kN m rad−1 and 150 kN m rad−1.
He also states that motorcycles in those years (the 1980s) had a front fork with lateral bending
stiffness of only about 35 kN m rad−1. This could explain the trend of producing stiffer forks, as
mentioned in Section 2.2.2.

Cossalter [23] and Spierings [41] motivate the particular influence of fork stiffness considering
the gyroscopic moment caused by the additional motion that the front wheel has when modeling
the lateral bending stiffness of the fork. In particular, this moment has a stabilizing action on
the wobble; since the gyroscopic moment increases with speed, the presence of this moment
motivates the higher stability of the wobble at high speeds when the lateral bending stiffness of
the fork is lowered.
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Cossalter et al. [64] provide another possible explanation for the correlation between wobble
damping and lateral bending stiffness of the fork. By analyzing the structural modes of the whole
motorcycle, it was noted that the first eigenmode, which is dominated by the lateral deformation
of the front fork, has an eigenfrequency of only 12 Hz higher than the wobble eigenfrequency.
For this reason, the fork lateral stiffness is likely to influence the wobble mode.

Few works analyzed the isolated influence of the torsional flexibility of the front fork. Only Sharp
et al. [28] report a minor influence of this flexibility on weave and wobble.

As stated by Doria et al. [72], the position of the revolute joint used to model fork lateral bending
stiffness with the lumped stiffness approach is a key factor. With the aim of better approximating
the flexural behavior of the front fork while using the lumped stiffness approach, Doria et al.
[68] start from an experimental modal analysis of the front assembly of a bicycle and use the
collected data to tune a lumped stiffness model. The value obtained is verified using a static
test, obtaining a good accordance. In the attempt to parameterize the lumped stiffness model
of the front fork, Cossalter et al. [73] apply the concept of the twist axis [67] to the front fork.
They discover that the twist axis changes when obtaining it with static or dynamic tests. For
this reason, they propose three different models for the fork stiffness, which take into account
the static, the dynamic, and a “mixed-approach” twist axis. The models using the static and
“mixed-approach” twist axis show a similar influence on the stability of weave and wobble, while
the the model using the dynamic twist axis is more similar to the rigid case.

Swingarm Flexibility

The swingarm connects the rear wheel to the main frame. Similarly to the front fork and frame,
its stiffness has been observed to influence the stability characteristics of motorcycles [23, 52,
74].

Cossalter et al. [23, 52] simulate the swingarm torsion and bending with lumped stiffnesses.
They discover that low values of these stiffnesses have a destabilizing effect on the weave,
particularly at medium and high speeds. This effect is explained considering the gyroscopic
couple caused by the additional motion of the wheel due to the flexibilities. Similarly, Limebeer et
al. [75] report that the swingarm flexibility has little influence on wobble but destabilizes weave.

With the same procedure used in [66, 73], Taraborrelli et al. [74] use the twist axis method to
identify the parameters for a lumped stiffness model of the swingarm. The study was applied to
two motorcycles: a sports and an enduro motorcycle. The influence of the swingarm stiffness
changed for the two motorcycles: it has almost no influence on the sports motorcycle, while in
the enduro motorcycle, high torsional stiffness stabilizes the weave, and high bending stiffness
destabilizes it.

While the previous works analyze swingarm stiffness with the lumped stiffness approach, Ferretti
et al. [76] model the swingarm as a flexible body (Section 2.3.2). Simulation shows that, when
driving over road imperfections, a flexible swingarm causes an unstable motorcycle oscillation
that was not present in the rigid case.
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2.3 Motorcycle Modeling in Multibody Simulation

The first works on motorcycle dynamics date back to the end of the 19th century, to the works of
Whipple [77] and Carvallo [78], followed by the famous work of Sharp [79]. These are based on
“handwritten” analytical motorcycle models. To limit complexity, some simplifying assumptions
had to be made: the rider is rigidly attached to the main frame, the wheels are rigid discs, the
DOFs related to the suspensions are not modeled, and only small perturbations from straight
running are considered. While these models can capture the basics of motorcycle dynamics, the
strong simplifications lead to a significant difference between model and reality.

With increasing availability of computational power, motorcycle models have been improved to
better match reality. In this context, Multibody Simulation (MBS) has become a common tool
for studying vehicle dynamics [80]. MBS gives the possibility to reproduce complex mechanical
systems by specifying only the mass and inertia properties of the bodies involved, the joint
types that constrain the relative motion, and the force elements, which may be external forces or
interactions between bodies [81]. The equations of motion are generated internally by the MBS
software and solved with numerical integration methods [82, chap. 7]. This way, the unknown
internal joint forces are determined and the resulting time evolution of the system state variables
is calculated.
In general, MBS software is either numerical or symbolic. Numerical software prepares equations
in numeric form only, solves them, and post-processes them [83]. Symbolic software simply
produces equations and it needs to be coupled with a numerical processing package to solve
the equations [83]. Commercial software is available for both numerical and symbolic formalism:
Adams [84], Simpack [85], Bikesim [86], and Simscape [87], which is the MBS library of Matlab-
Simulink, are the most famous exponents of the numerical MBS software. Autolev [88], Autosim
[89], Mesa-Verde [90], and Neweul [91] are some examples of symbolic MBS software. The
present thesis uses a numerical open-source MBS software called MBSim (www.mbsim-env.de)
[92].

The first works using the MBS formalism to study the dynamics of single-track vehicles were
published in the 1990s [49, 93]. MBS allowed to significantly increase the accuracy of motorcycle
models, as representative works in this field show [38, 52, 94]. The most relevant improvements
were achieved in rider modeling [95–101], the tire model (next paragraph and Section 4.1), and
modeling of structural stiffnesses (Section 2.2.3).

The most widespread tire model in the simulation of motorcycle dynamics is the Pacejka Magic
Formula. It has been adapted in [44] to include the effect of the camber angle in the generation
of tire forces, which is necessary when modeling motorcycles tires. The Magic Formula has
been then continuously updated up to its most recent version [21]. This model, which neglects
belt dynamics, is suitable to model tire phenomena with a frequency lower than about 15 Hz
[39, 75]. Also, in these conditions, the tire lag phenomena can be described by first-order
dynamics [75]. Lot [102] proposes a physical tire model as an alternative model to the Pacejka
Magic Formula–which is an empirical tire model–where tire lag is implicitly accounted for, so no
additional relaxation equations are needed.
For higher frequencies, other models have been implemented that account for belt dynamics.
An example is “MF-SWIFT 6.2”, which can handle frequencies up to 60-80 Hz, and is, therefore,
suitable for comfort studies or for modeling braking maneuvers with anti-lock systems [21, p. 587].
The advantage of this model is that the steady-state forces are still calculated with the Magic
Formula while the belt dynamics are accounted for with the rigid ring model. In this model, a rigid
ring, representing the belt, is connected to the rim and contact patch through a series of spring
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damper elements, thus enabling the belt’s relative motion [21, p. 588]. In [103], the rigid ring tire
model is used for studying motorcycle dynamics and in [104] a test procedure is developed to
find a parameterization of the rigid ring tire model.

Further literature reviewing the development of motorcycle modeling can be found in [19, 105]
and, regarding the development of models suited for control purposes, in [11, 106, 107].

Thanks to the progress in modeling tools, it was possible to study the effect of structural stiffness
on motorcycle dynamics. In particular, a remarkable effect has been noted on the weave and
wobble eigenmodes. Two modeling approaches have been established for modeling structural
flexibilities: the lumped stiffness approach and the flexible multibody approach, also called
Elastic Multibody Simulation (EMBS). These two approaches are one of the central points of this
thesis and are therefore presented in the next two sections.

2.3.1 Modeling of Flexibility: Lumped Stiffness Approach

The lumped stiffness approach is the most basic solution to include flexibility in MBS. It consists
of approximating the flexural behavior of a structure with one lumped stiffness parameter [32].
This approach has been extensively adopted for studying the influence of structural flexibilities
on the stability of motorcycles (Section 2.2.3). In the present section, the general concepts
behind the lumped stiffness approach are presented.

Considering the simple example of a cantilever beam in Figure 2.11, a lumped stiffness model of
its bending flexibility about the z-axis can be derived as follows. The original continuous beam is
split into at least two bodies that are connected by a revolute joint with its rotation axis parallel to
the z-axis and a rotational spring-damper element associated to it. This way, the continuous
deformation shape is approximated with a piecewise linear deformation shape. In particular, the
motion of the body with the free end can be described with the equation of a 1-DOF oscillator
about the equilibrium [32, p. 12]:

J θ̈ + dθ̇ + kθ = F l, (2.9)

where, instead of the classical formulation with the translation DOF, the equivalent for the
rotational DOF θ is used. J is the inertia of the moving body about the rotation axis of the
revolute joint; d, k are the rotational damping and stiffness associated the revolute joint. (2.9)
describes the linear elastic equation with the assumption of viscous damping; general nonlinear
oscillators can be modeled by substituting the damping and stiffness terms with a generic
nonlinear function f (θ̇ ,θ ) [108, p. 35].

F

l

θ
∆y

x

y

∆y

Figure 2.11: Lumped stiffness approach for modeling the bending of a beam.

Lumped stiffness models aim to approximate the displacement ∆y of the free end caused by
the load F [68]. The quality of the approximation depends on the parameters used to build the
model itself. These involve the parameters in (2.9), whereby J and d influence the dynamic
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response of the model, while k impacts both dynamic and static responses. Methods have been
proposed for identifying the lumped stiffness parameters of structural components, e.g., in [66,
68, 72–74, 109] and in Section 4.3.

The example in Figure 2.11 can be extended to model the torsional flexibility of the beam
[32, p. 6]; moreover, it is possible to split the continuous body into more bodies, thus better
approximating the deformation shape of the continuous beam [32, p. 297] at the cost of increasing
the number of DOFs.

Lumped stiffness models have the great advantage of limited modeling effort and complexity,
which also lead to short computational time. However, as shown in Figure 2.11, the actual
deformation shape of the original structure is strongly approximated, which limits the accuracy of
this approach. Moreover the accuracy strongly depends on the method used for parameterizing
the model itself. The requirements of higher accuracy and the desire to overcome this param-
eterization effort have led to the development of more complex approaches for modeling the
stiffness in an MBS environment, which are explained in the next section.

2.3.2 Modeling of Flexibility: Elastic Multibody Simulation (EMBS)

EMBS is an extension of the classical theory of MBS, which only considers rigid bodies, for
applications where the elastic deformations within bodies cannot be neglected [81]. EMBS gives
the possibility to introduce flexible bodies in the standard MBS. Different formulations have been
proposed to extend the theory of MBS: the Consistent Rotation-Based Formulation (CRBF),
the Absolute Nodal Coordinate Formulation (ANCF), and the Floating Frame of Reference
Formulation (FFRF). The first two formulations are developed to model flexible bodies undergoing
large elastic deformations [110]. The FFRF, instead, is suitable for modeling flexible bodies
whose motion is dominated by large nonlinear rigid body motions while they undergo only small
elastic deformations [111, 112]. The present thesis investigates the influence of the flexibility of
structural components on the weave and wobble eigenmodes of motorcycles. These components
are likely to undergo small deformations while they have to “follow” the large nonlinear motions
of the motorcycle itself. Therefore, the FFRF is well suited for the present study and is explained
in more detail.

In the FFRF, a so-called Floating Frame of Reference (FFR) KFFR is defined that is attached to
the flexible body itself (Figure 2.12). Using this reference frame, the motion of each point of
the flexible body is described through the superposition of two components [76, 111–115]: the
nonlinear rigid body motion is described by the vector q rbm, which represents the displacement
of the FFR with respect to the inertial frame KI [115, 116]; the small elastic displacements of
each point of the body–i.e., the nodal displacements–are instead expressed with respect to the
FFR by the vector qe [112, 116]. Some constraints have to be specified for attaching the FFR
to its flexible body to ensure that the description of the nodal elastic displacements is unique
[115–117]. Different methods are available, briefly summarized thereafter.

• Principal-axis frame: this approach ensures that the kinetic energy resulting from
the elastic deformations is minimal [118, p. 326], which is equivalent to saying that
the elastic deformation is minimized [117, 119]. With this method, the FFRF has
the origin in the center of mass and its axes are oriented so that the inertia matrix
of the deformable body is diagonal [111].

• Tisserand or mean-axis frame: this approach is a simplification of the principal-
axis frame where the internal momentum and angular momentum are zero for
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Figure 2.12: Representation of the motion of a flexible body with the FFRF.

every deformation of the body [118, p. 325]. The formulation of the Tisserand
frame is valid in general. Its equivalent for small displacements is called Buckens
frame [118, p. 326]. Both Tisserand and Buckens frames require the introduction
of dynamic constraints on the nodal displacements [118, p. 325]. It has been
shown–e.g., in [118, p. 326]–that these constraints are automatically fulfilled when
the ansatz function for describing the nodal displacements are eigenmodes of the
unconstrained structure where the rigid body modes have been eliminated.

• Reference Conditions (RC) method : in this case, the FFR is fixed to the flexible
body by specifying kinematic constraints [81]; this way, the FFR is fixed to a node.
A fundamental distinction should be made between boundary conditions and RC.
Boundary conditions are used in the simulation (MBS or Finite Element Method
(FEM)) to define the topology of the assembled mechanical system and are used to
remove the relative DOFs between the bodies [120]. RC, instead, define the shape
of deformation with respect to the FFR by eliminating the rigid body modes of the
flexible body [121] and are used to attach the FFR to its flexible body. Therefore,
they do not introduce any constraint that restricts the gross motion of the flexible
body [120]. The main difficulty in using the RC is that there is not a general
set valid for every application [120, 121]. However, some general guidelines are
available. The use of labile RC, i.e., RC that do not eliminate all the rigid body
modes, is discouraged [120], as it introduces some spurious modes in the system
that compromise the quality of the numerical solution [121]. Isostatic RC generally
provide good results. However, Cammarata et al. [120] showed that, for some
applications, hyperstatic RC provide more accurate results. The decision whether
to use isostatic or hyperstatic RC should be made according to the use-case,
keeping in mind that the introduction of hyperstatic RC makes the flexible body
stiffer. An application example is shown in Section 4.2.

In multibody simulations, the most common approaches are the Tisserand-Buckens frame [117,
122] and the RC [120, 121] method. The present thesis adopts both methods and compares
them in Section 4.2

Model Order Reduction (MOR)

Before including a flexible body in MBS by using the theory of EMBS, the flexible body itself
must be modeled. Generally, this is done with FEM [32, 118]. However, the resulting model has
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a large order–up to 106 for some industrial applications [117]–and cannot be directly integrated
into the MBS environment because the resulting computational time would make the MBS model
unusable [114, 123]. For this reason, Model Order Reduction (MOR) techniques are used.
Figure 2.13 visualizes the steps needed to include a flexible body in an MBS environment: after
modeling the flexible body with FEM, the number of DOFs is reduced with MOR; at this point,
the obtained reduced-order model can be introduced into the MBS environment by applying one
of the formulations presented at the beginning of Section 2.3.2.

FEM Model with
103 to 106 DOFs MOR

Reduced-order
model

101 to 102 DOFs
EMBS

CRBF
ANCF
FFRF

Flexible body
in MBS

Figure 2.13: Steps for including a flexible body in an MBS environment.

The aim of MOR is to produce a reduced-order model that accurately approximates the behavior
of the original system for the desired use-case [108, p. 37]. In structural mechanics, the
elastic deformations of a body are described by a second-order system. By assuming small
displacements around the equilibrium and making the hypothesis of viscous damping, the
equations of the elastic body can be written as (2.10) [108, p. 35]. These hypotheses will be
valid for the structures considered in the present thesis because the structural components of
motorcycles are only subjected to small deformation and their damping behavior can often be
approximated with viscous damping.

Meq̈e(t) + Deq̇e(t) + K eqe(t) = Beu(t), (2.10a)

y(t) = Cqe
qe(t) + C q̇e

q̇e(t). (2.10b)

The behavior of the mechanical system (2.10) can be interpreted also considering its transfer
function, which can be obtained by applying the Laplace transform on (2.10) [108, p. 36]:

G(s) = (Cqe
+ sC q̇e

)(s2Me + sDe + K e)
−1Be. (2.11)

qe(t) ∈ RN is the vector of the elastic displacements. y(t) ∈ Rr is the output vector, u(t) ∈ Rp

is the input vector, and the matrix Be ∈ RN×p captures the distribution of the loads [113]. The
matrices Cqe

,C q̇e
∈ Rr×N are the output matrices considering displacements and velocities,

respectively [108, p. 36].

In structural mechanics, projective MOR is common, where a projection matrix V ∈ RN×n is
identified that projects the original system (2.10) with order N into a subspace with order n≪ N
[113]:

qe(t) ≈ Vq̂e(t), (2.12)

where q̂e(t) ∈ Rn is the reduced-order vector of elastic displacements.
By substituting (2.12) in (2.10) and left multiplying (2.10a) by WT to have a square system, the
reduced-order equations are obtained:

M̂e
ˆ̈qe(t) + D̂e

ˆ̇qe(t) + K̂ eq̂e(t) = B̂eu(t), (2.13a)

y(t) = Ĉqe
q̂e(t) + Ĉ q̇e

ˆ̇qe(t), (2.13b)
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with the reduced matrices:

{M̂e, D̂e, K̂ e} = WT · {Me, De, K e} · V , {M̂e, D̂e, K̂ e} ∈ Rn×n, (2.14a)

B̂e = WTBe, B̂e ∈ Rn×p, Ĉ q̇e
= C q̇e

V , Ĉqe
= Cqe

V , Ĉ q̇e
, Ĉqe
∈ Rr×n. (2.14b)

(2.13) is valid if the Petrov-Galerking conditions WTr (t) = 0 are satisfied, which means that the
residual r (t) vanishes [108, p. 37]. If W = V, the projection is called one-sided, as opposed to
the two-sided projection where W ̸= V [124]. The one-sided projection preserves the passivity
and structure of the original model [108, p. 38].

There are several methods for MOR, and one possible way to categorize them is according to the
field in which they are commonly adopted. Depending on the application, different requirements
to the MOR methods can be formulated:

• In structural mechanics, the models to be reduced have second-order form and,
therefore, the MOR methods have to preserve the structure. This way, the spar-
sity pattern is kept and the original system preserves its physical meaning, thus
facilitating the usage of the reduced-order model in further simulation programs,
such as MBS [117]. Another important consideration is that in the study of me-
chanical systems, the global behavior of the system has to be considered, which
also includes its frequency response [124]. For this reason, the most common
MOR methods act in the frequency domain by projecting the original model into
the subspace of its eigenmodes. Modal truncation [125] and Component Mode
Synthesis (CMS) [126, 127] belong to this category.

• In control engineering and in the design of large electronic circuits, the system
equations are generally described by a state space formulation, i.e., a first-order
system [124]. Therefore, the MOR methods have to deal with a different structure
with respect to mechanical systems. Moreover, the aim of MOR is to approximate
the input-output behavior or, in other words, the transmission of energy between
the input and the output, while the global behavior is not directly considered
[108, p. 38], [124, 128]. Finally, in particular for control systems, the stability of
the original system must be preserved after reduction [124]. The most common
methods for MOR in these fields are balanced truncation (also called Singular
Value Decomposition (SVD)-based methods) [129, 130] and moment matching
(also called Krylov subspace methods) [131, 132].

This differentiation between structural mechanics and control engineering should not be under-
stood as a strict division. Some works successfully applied SVD-based and Krylov subspace
methods to MOR of second-order systems [113, 114, 119, 132, 133]. The idea behind this is
that mechanical systems can also be regarded as input-output systems, whereby the inputs are
external forces and the outputs are, for example, displacements. These methods present some
advantages that make them interesting for application in structural mechanics.
Krylov subspace methods have high computational efficiency thanks to their recursive nature,
which involves mainly basic linear algebra operations [114, 132]. The disadvantage of Krylov
subspace methods it that the reduction quality strongly depends on the choice of the expansion
points [117, 134], i.e., the frequencies at which the transfer function of the original model are
exactly approximated in the reduced-order model [135]. Moreover, the Krylov reduction is
challenging for systems with many inputs and outputs [113, 128].
Balanced truncation is attractive for the possibility of having an a-priori bound of the reduction
error [113, 119, 130] but presents the disadvantage of high computational effort because it
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requires the expensive computation of Gramian matrices and the solution of Lyapunov equations
[114, 124].

Another challenge in using these methods for MOR of mechanical systems is that they were
originally developed to be applied to first-order systems. The application of these methods on
second-order systems would require reformulating the second-order equations in (2.10) into
a first-order state space formulation [108, p. 36], [133, 136]. However, this would destroy the
second-order structure, and coming back to the second-order formulation after MOR is not
always possible [133, 137].
For this reason, solutions have been proposed to adapt balanced truncation and Krylov subspace
methods to work directly on the second-order formulation: MOR of second-order systems with
Krylov subspace methods is addressed in [133, 136, 138], which proposed the so-called SOAR
algorithm (second-order Arnoldi), and in [117, 139], where the SOGA (second-order Global
Arnoldi) algorithm is shown. MOR of second-order systems with balanced truncation is tackled in
[140–142]. Moreover, in [128, 143], methods to calculate approximated second-order Gramians
are proposed; this allows to apply balanced truncation on second-order systems with larger
dimensions.

Both Krylov subspace and balanced truncation methods have been extended into their first-order
formulation for automated MOR, whereby the order of the reduced-order model is determined
by the reduction process itself and the user only has to specify the maximum allowed error;
the paragraph below on reduction error describes the error measures. Balanced truncation
naturally lends itself to automated MOR thanks to the presence of a global error bound [144].
As mentioned above, Krylov subspace methods offer higher computational efficiency but the
reduction quality depends on the choice of expansion points. For carrying out automated MOR
with Krylov subspace methods, Gugercin et al. [135] propose the algorithm IRKA (Iterative
Rational Krylov Algorithm), where the expansion points are determined iteratively, leveraging
on an idea first proposed by [132]. It has been demonstrated that, under certain conditions,
the algorithm converges to an H2-optimal solution, which means that the H2 norm of the error
between the transfer functions of the original and reduced-order model is minimum.

Authors have also studied the application of automated MOR with Krylov subspace methods on
second-order systems. In [145], the SO-IRKA is proposed, which extends the IRKA algorithm
to the second-order formulation. Similarly, in [117], methods are developed for the automated
selection of expansion points in second-order Multi-Input-Multi-Output (MIMO) systems, which
allows to apply automated MOR with the Krylov subspace methods to second-order systems.
Druskin et al. [146, 147] propose an alternative method to IRKA called adaptive tangential
interpolation, where the Krylov subspace is built iteratively by positioning the next expansion
point at the frequency where the reduction error is maximal.

In Section 4.2, MOR with CMS is carried out, and, for this reason, this method is explained in
more detail in the next paragraph. In particular, the Craig-Bampton method and some of its
extensions will be summarized.

Craig-Bampton Method
Mechanical structures are generally composed of several bodies or substructures. It could
therefore be convenient to perform model reduction on the separated bodies and thereafter
re-assemble the reduced-order bodies into the original structure. This procedure is called
substructuring [115, 148, 149].
The Craig-Bampton method [127] is based on this concept and is widely used in the industry
for MOR of models generated with FEM. An important step in the Craig-Bampton method is
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the separation of the vector qe of the elastic DOFs in boundary qb and internal q i DOFs. The
boundary DOFs represent the DOFs where the connections to the other subsystems are present
or where the external forces are applied. To ensure inter-component compatibility and, this
way, approximate the particular solution of the original system, constraint modes are used [113].
Constraint modes result from static condensation (also called Guyan condensation [126]), where
the internal DOFs q i are projected onto the boundary DOFs qb. Constraint modes can be inter-
preted as the deformation that would occur in the body if one boundary DOF was subjected to a
unit displacement, with all other boundary DOFs fixed and all interior DOFs left unconstrained.
The concept can be mathematically expressed as follows.
The partition of the DOFs between interior and exterior leads to (2.15), where the time depen-
dence has been omitted and an undamped system is shown. Moreover, it is assumed that no
forces are applied on q i [150].

�

Mbb Mbi

M ib M ii

�

·
�

q̈b

q̈ i

�

+

�

Kbb Kbi

K ib K ii

�

·
�

qb

q i

�

=

�

f b

0

�

. (2.15)

The internal DOFs q i can be split into two contributions:

q i = q i,stat + q i,dyn. (2.16)

By neglecting the inertia forces in the second row of (2.15), one obtains:

q i,stat = −K−1
ii K ibqb. (2.17)

At this point, the static condensation is obtained by neglecting q i,dyn:

�

qb

q i

�

= Vqb =

�

I
S

�

qb, S = −K−1
ii K ib. (2.18)

V is the reduction matrix introduced in (2.12). At this point, the system (2.15) can be expressed
in the reduced form as:

M̂ ˆ̈qb + K̂ q̂b = f̂ b. (2.19)

As mentioned above, the system is reduced by projecting the internal DOFs q i onto the boundary
DOFs qb.

This type of reduction is acceptable if applied to a static problem or if the highest eigenfrequency
of interest is much smaller than the smallest eigenfrequency of the substructure [150]. In
multibody simulations, however, this is often not the case. For this reason, Craig-Bampton
methods also consider dynamic behavior in the reduction process. This is done by approximating
the system eigendynamics with fixed boundary DOFs, thus obtaining the so-called fixed interface
modes [127]. The projection matrix V in (2.18) is extended as follows. First of all, the eigenvalue
problem with fixed boundary DOFs must be solved:

K iiq i = ω
2M iiq i. (2.20)

Only m < Ni eigenvectors are kept in the reduced-order model (Ni is the number of internal
DOFs), which typically correspond to the lowest eigenfrequencies [150], and are assembled in
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the matrix Φm. The reduction matrix V results as:

V =

�

I 0
S Φm

�

. (2.21)

The projection of the elastic DOFs on the reduced-order subspace then is:

�

qb

q i

�

= V

�

qb

ξ

�

, (2.22)

where ξ are the modal coordinates [127]. To summarize, the Craig-Bampton method combines
static reduction on boundary DOFs with modal truncation on internal DOFs. Besides the Craig-
Bampton method, other methods exist that maintain the same basic procedure but, instead
of solving the eigenvalue problem for the internal DOFs with fixed boundary, they solve this
eigenvalue problem with free boundary DOFs. They were first developed by MacNeal [151] and
Rubin [152]. A more recent application of this technique can be found in [153].

Extensions of the Craig-Bampton Method
One challenge of the Craig-Bampton method is the selection of appropriate fixed interface
modes. Generally, a solution is to keep the first m eigenvectors corresponding to the m lowest
eigenfrequencies resulting from (2.20) because the first eigenmodes have the greatest contri-
bution to the dynamic behavior. However, the mode shapes with smaller eigenvalues are not
always those with the greatest contribution to the dynamic response of the substructure [154].

Kammer et al. [155] propose to solve this challenge with a measure of the modal dynamic
importance called Effective Interface Mass (EIM). It was shown that EIM is an absolute measure
of the contribution of each fixed interface mode to the loads at the boundary, so it is possible
to choose the most important eigenmodes according to this measure. The method allows for
a sort of automated MOR, where the designer only has to specify a threshold for the dynamic
completeness of the reduced-order model and the fixed interface modes are automatically
selected according to their EIM value so that the threshold is satisfied. Moreover, the authors
demonstrate that ranking the modes based on the EIM measure is equivalent to ranking them
based on the square of the approximate balanced singular value. For the definition of the
approximate balanced singular value, this is equivalent to minimizing the peak of the transfer
function of the error between the original and reduced-order model. This method was used in
[156] to model the crank train of a motorcycle L-twin engine.

Another method for the selection of the fixed interface modes was proposed by Liao et al. [154],
which itself is based on [157]. The method suggests reordering the fixed interface modes
according to the norm of a coupling matrix, which is based on the moment-matching principle.
Once reordered, only m modes are retained. This means that the order of the reduced-order
model must still be specified by the designer but, for the same order, this method has higher
accuracy than the Craig-Bampton method.

Kim et al. [158] propose to enhance the Craig-Bampton method by including the residual
fixed-interface modes–i.e., the fixed-interface modes not included in Φm–in the projection matrix
V. Since direct calculation of the residual modes is often not possible because it would involve
the calculation of all eigenmodes in (2.20), the enhancement of V is achieved by leveraging a so-
called residual flexibility matrix. The authors show that for the same order of the reduced system,
the enhanced Craig-Bampton method shows higher accuracy than the standard Craig-Bampton
in the whole considered frequency range.
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Finally, Holzwarth et al. [113] developed the so-called CMS-Gram method, which, while still
keeping the fundamental structure of Craig-Bampton with the distinction between boundary and
internal DOFs, uses balanced truncation instead of modal truncation for the projection of the
internal DOFs. The advantage of this method is that it allows considering the loading conditions
and the inertia forces due to the acceleration of boundary DOFs, which should lead to faster
convergence of the reduction method, i.e., faster decay of the error with increasing order of
the reduced-order model. For the same reduction error, CMS-Gram should produce smaller
reduced-order models compared to the Craig-Bampton method. The challenges resulting from
the high computational time of balanced truncation are circumvented by applying the methods
developed in [128, 143] for the approximation of second-order Gramians.

Reduction error

MOR aims at reducing the order of the original system while introducing the smallest error
possible. The acceptable error depends on the application. Different error measures can be
applied to calculate the reduction error. When considering the approximation of global dynamics,
one possibility for calculating the error is to compare the eigenfrequencies of the original and
reduced-order model [113, 158]. Another possibility is to use the modal assurance criterion [113,
159, 160], which looks at the eigenvectors [161]:

MAC =
∥ψHψ̂∥2

ψHψψ̂
H
ψ̂

, (2.23)

where ψ is an eigenvector of the non-reduced system, ψ̂ is the corresponding eigenvector of the
reduced system, and the superscript H indicates the complex conjugate transpose (Hermitian).
The modal assurance criterion provides the degree of consistency (linearity) between two modal
vectors and therefore indicates how well the reduced-order eigenvector correlates with the
original one [161]: a value close to 1 indicates a good correlation, i.e., a small reduction error,
while a value close to 0 indicates poor quality of the reduced-order model.

Besides the error measures considering the eigenmodes, other measures have been developed
that analyze the input-output behavior of the reduced-order model. Two main categories can be
distinguished [108, p. 37]:

1. Errors representing the approximation quality pointwise in time ∥y(t)− ŷ(t)∥(·) or
pointwise in frequency



G(iω)− Ĝ(iω)




(·) using a certain matrix and vector norm
(·) = {1,2,∞, F, ...}.

2. Normwise errors in the time domain as ∥y − ŷ∥(⋆) with (⋆) = {L1,L2,L∞, ...}, or in
the frequency domain as



G − Ĝ




(∗) with (∗) = {H2,H∞, Hankel, ...}.

In the first category, the relative error εrel
F is commonly used [113, 114, 143]:

εrel
F (ω) =



G(iω)− Ĝ(iω)




F

∥G(iω)∥F
, (2.24)

where ∥G(iω)∥F =
Æ

trace(G(iω) ·GH(iω)) is the Frobenius norm and ω is the frequency range
of interest.
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In the second category, two norms are mainly used: the H∞ and the H2 norm. They are defined
as follows [145, chap. 1]:

∥G∥H∞ = supω∈R ∥G(iω)∥2 , (2.25a)

∥G∥H2
=
�

1
2π

∫ ∞

−∞
∥G(iω)∥2F dω
�

1
2

. (2.25b)

For calculating the error, these norms are applied to the transfer function of the error system
GE = G − Ĝ.
The H∞ norm of the system error represents the worst-case error between the reduced and the
original system for all inputs with a unit input gain [117]. A small H2 norm of GE implies, instead,
that the L2 norm of the output error y(t)− ŷ(t) is small [143], [145, chap. 1].

The relative error over all frequencies can be defined using the H∞ norm [141]:

εrel
H∞ =



G − Ĝ




H∞
∥G∥H∞

. (2.26)

When carrying out MOR with balanced truncation, an a-priori error bound is available [162, p. 37],
[114, 137]:



G(iω)− Ĝ(iω)




H∞
≤ 2

N
∑

i=n+1

σi , (2.27)

where n is the order of the reduced-order model, N is the order of the original model, and σi

are the Hankel singular values. (2.27) shows that the a-priori error is limited by the double sum
of the Hankel singular values that have been truncated by the balanced truncation [162, p. 37].
However, this has been demonstrated only for first-order systems. An extension to second-order
systems is shown in [114].

2.4 Control Systems for Increasing the Stability of
Weave and Wobble

As explained in Section 2.2, the design of motorcycles has been strongly driven by the attempt
to improve their stability, in particular regarding the stability of the out-of-plane eigenmodes
such as weave and wobble. Besides the improvement in structural design, this has led to the
development of mechanical components having the aim of increasing the stability of potentially
unstable eigenmodes. Passive, semi-active, and active systems have been proposed.

Evangelou [163] developed a control strategy for the rear shock absorber to address the
cornering weave. As explained in Section 2.2.1, the rear suspension has a contribution to
cornering weave and, therefore, a control strategy for the rear suspension has the potential
to increase the stability of the cornering weave. The solution proposed in [163] is to shift the
attachment point of the rear shock absorber to the swingarm through a linear actuator, thus
changing the direction of the force applied by the shock absorber. A control strategy is then
developed for this actuator using the Nyquist diagram. Results demonstrate how this control
strategy can increase the stability of cornering weave for different speeds and roll angles while
not affecting the stability of other modes. However, because it only acts on the rear suspension,
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this method can not improve motorcycle stability in straight running, where the suspension
system is almost not involved in the weave and wobble eigenvectors. Moreover, the feasibility of
the actuator concerning the required forces and the package is questionable [163].

Watanabe et al. [164] propose a control system that employs the brakes as stabilizing system.
The system compares the signal of the yaw rate with a calculated “intended yaw rate”; when
these signals differ and the actual yaw rate show oscillations, the system applies the brakes.
The control strategy was tested through simulations in cornering on a low-friction road surface,
showing that the system is able to prevent a fall that would occur due to weave instability.

More common are stabilizing systems that apply a moment on the steering assembly to enhance
stability. A well-known example is the steering damper, i.e., a damper connected between the
main frame and the steering head that applies a counter torque proportional to the steering rate
[165]. If its damping value is selected correctly, a steering damper can increase the stability of
wobble and prevent the occurrence of kick-back [4, p. 460]. However, a steering damper with
a high damping coefficient is detrimental to weave and cornering weave, so this coefficient is
always a trade-off [14, 62]. For this reason, different solutions have been proposed to solve or at
least improve this trade-off.
One possible solution is to use a semi-active steering damper, where the damping value can be
adapted in real-time. The development of a magnetorheological semi-active steering damper
has been tackled in [166]. Moreover, the idea of changing the damping coefficient of a steering
damper employing an electrorheological or magnetorheological damper is reported in a patent by
Schiffer et al. [167]. Wakabayashi et al. [168] propose to vary the damping coefficient according
to static maps that are a function of longitudinal speed and acceleration. This system was
implemented in series production by Honda and applied to the CBR1000RR [169]. In [170], a
control strategy for the semi-active steering actuator is proposed, where the damping coefficient
can assume a maximal or minimal value according to a selection strategy based on the sign of
some state variables of the motorcycle, such as steering rate and yaw rate, and on the frequency
content of these signals. Results show that the proposed strategy can merge the advantage of
a passive steering damper with low damping value, which favors weave stability, with that of a
passive steering damper with high damping value, which instead ensures high wobble stability.
This partially solves the mentioned trade-off. In [165], this strategy was tested through simulation
in challenging dynamic maneuvers such as emergency braking in steady cornering, µ-jump in
steady cornering, and driving on road undulations that would excite the kick-back. One drawback
of this solution is that performances cannot exceed those of an optimal passive steering damper,
since even a semi-active damper only reacts to the steering rate and cannot bring active control
inputs to the steering head.
Another solution based on passive components is proposed in [62], where the simple steering
damper is substituted by a so-called steering compensator, which is composed of spring, damper,
and inerter (a mechanical element reacting to acceleration [171]). This configuration allows
to obtain a second-order mechanical impedance between steering rate and steering torque
applied by the compensator to the steering head. The parameters composing the impedance
are optimized with a sequential quadratic programming algorithm that ensures improved stability
of weave and wobble over the whole operating range of the motorcycle. A similar system was
used in [17] to counteract the burst phenomenon in racing motorcycles.
The systems described in the previous paragraph are reactive, meaning that the system applies
steering torque only as a reaction to the movement of the steering system so that the torque is
proportional to either steering angle, steering rate, or steering acceleration. Passive systems
present some limitations [62]: because of their passivity, the coefficients must be real and
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positive, to avoid excessive construction costs, the device must be low-order, and adaptive
systems are not realizable. These disadvantages can be solved by an active system, such as
a steering actuator. Considering this potential, [172] proposes a control strategy for a steering
actuator based on the H∞ loop-shaping approach. This approach is adopted in the present
thesis as well (Chapter 5). [172] is mainly focused on the stabilization of the wobble eigenmode.
Moreover, the controller is built by leveraging a model linearized in a certain working condition.

H∞ Controller

The H∞ controller belongs to the category of optimal controllers in the sense that it ensures
robust stability and optimal disturbance rejection [173]. The robustness is achieved by directly
taking into account model uncertainty so that the designed controller is able to handle a pre-
specified range of model uncertainty [174, p. 309].
Figure 2.14 helps to understand how the controller works. The symbols have the following
meaning:

1. p is the vector of inputs (disturbances, noise, references).

2. u is the vector of control inputs.

3. z is the vector of outputs.

4. y is the vector of signals provided to the controller.

G

K

p z

yu

Figure 2.14: Block diagram of a typical H∞ controller structure.

The structure of the original plant G can be rewritten in the Laplace domain in the following form:

�

Z(s)
Y (s)

�

=

�

Gzp(s) Gzu(s)
Gyp(s) Gyu(s)

��

P(s)
U(s)

�

. (2.28)

The desired controller K has the form [175, p. 333]:

U(s) = −K(s)Y (s). (2.29)

The equation for the closed-loop system can be expressed as [175, p. 333].

Z(s) = Gp(s)P(s), (2.30a)

Gp(s) = Gzp(s)−Gzu(s)K(s)
�

I +Gyu(s)K(s)
�−1

Gyp(s). (2.30b)
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The controller synthesis consists in solving the H∞ optimization problem [175, p. 334], [176]:

min
K(s)
∥Gp(s)∥∞ . (2.31)

The result of the optimization process is a controller K(s) that minimizes the H∞ norm of the
transfer function Gp(s) between the plant inputs, which are generally considered disturbances,
and the plant outputs. This guarantees that the system’s response remains bounded under a
certain threshold. ∥.∥∞ is the infinity norm and denotes the largest singular value of the given
matrix [175, p. 334]. Using this norm in the optimization problem (2.31) enforces the transfer
function Gp(s) to belong to the so-called Hardy-Space, which is the space of all stable linear
time-invariant continuous-time systems [174, p. 310]. This way, the stability of the closed-loop
system Gp(s) is guaranteed.

The synthesis of an H∞ controller is often coupled with the loop-shaping approach [172, 173,
177, 178], whereby a designer specifies closed-loop objectives in terms of requirements on the
open-loop singular values of the original system [173]. The next paragraph provides more details
about this approach.

Loop Shaping Approach

In feedback design, many performance objectives can be written as a requirement on the
singular values of the open-loop system. Considering that, generally, performance is required
at low frequencies and robustness at high frequencies [179], the requirements are formulated
by specifying weighting functions that shape the plant at different frequencies according to the
requirements. Despite the advantage of being easily understandable and applicable, the loop-
shaping approach does not ensure the stability of the closed-loop system [173]. For this reason,
the combination of the loop-shaping approach with the H∞ control synthesis is particularly
appealing, as it incorporates the performance/robustness trade-off given by the loop-shaping
with the guarantee of robust stability of H∞ design procedures [179].
The loop-shaping H∞ design procedure can be divided into three steps [173]:

1. Loop-shaping: Using a precompensator W1 and/or a postcompensator W2, the
singular values of the nominal plant are shaped to obtain the desired open-loop
behavior. The compensators are also referred to as weights and can be scalar or
transfer functions (generally PI or PD filters). The open-loop system then becomes:
Gs = W1GW2. It is assumed that W1 and W2 are such that Gs contains no hidden
poles.

2. Robust stabilization: a feedback controller K∞ is determined that ensures the
stability of the closed-loop system with a maximum stability margin εmax.

ε−1
max = inf

Kstabilising









�

W−1
1

W2G

�

�

I − KG
�−1 �

W1 −GW−1
2

�









∞
, (2.32)

where the infimum is chosen over all stabilizing controllers K [180]. If εmax ≪ 1,
step 1 is repeated and W1 and W2 are adjusted. A value εmax > 0.3 is generally
considered satisfactory [176]. Otherwise, ε≤ εmax is selected and a controller K∞
is synthesized which satisfies:
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∞
≤ ε−1. (2.33)
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3. The final feedback controller K is obtained by including the weights in the K∞
controller: K = W1K∞W2.

ε≤ εmax is called stability margin and has multiple functions:

• It captures information on the compatibility of the desired closed-loop shape with
the stability constraints and is therefore an indicator of the success of loop-shaping
[179].

• It is a measure of robustness and, in particular, it provides a measure of the
amplitude of the model uncertainties that can be handled by the controller [173].
This is further explained in the next paragraph, which describes the possibilities to
include model uncertainties.

• It gives a bound on the norm of all closed-loop transfer functions [179].

Model Uncertainties

The uncertainties of the model G can be defined as ∆G. These can be either multiplicative,
additive, or specified as a coprime factorization [174, p. 323]. In [173, 179, 180], the coprime
factorization is used to show that the stability margin ε is a measure of robust stability. Using the
left coprime factorization, the plant G can be expressed as:

G = M̃
−1

Ñ. (2.34)

The perturbed plant can be obtained by perturbing the coprime factorizations [173]:

G∆ = (M̃ +∆M)
−1(Ñ +∆N). (2.35)

∆M ,∆N are stable, unknown transfer functions of the uncertainties and satisfy ∥∆M ,∆N∥ < ε.
At this point, the concept of robust stability in the H∞ design procedure is equivalent to finding
a controller K that stabilizes all G∆ for a given stability margin ε [173], which is expressed
in (2.33). Step 2 of the algorithm described in the previous paragraph is generally iterative.
However, McFarlane et al. [173] show that, when the coprime factorization of G is normalized, a
non-iterative method for finding εmax is available.

The possibility to introduce model uncertainties into the control synthesis is particularly useful to
develop a stabilizing controller for a motorcycle. In fact, some motorcycle parameters, such as
tire characteristics or rider’s position and mass, are subjected to variations that are difficult to
capture with a model. H∞ allows to include these effects indirectly by specifying the transfer
functions ∆M ,∆N . The parameter ε can be interpreted as the entity of model uncertainty that
the controller can handle.
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This thesis aims to enhance the stability of the weave and wobble eigenmodes in motorcycles
by leveraging both design optimization and active control. In the previous chapter, several works
have been summarized, which provide the basis for this thesis. In the present chapter, the
research questions are presented and the methods used to answer them are summarized. The
research questions are defined based on the gaps in the state-of-the-art, which are presented in
the next section.

3.1 Research Gap

For a stability-optimized design of the structural components, it is important to understand how
the chassis stiffnesses impact the stability of weave and wobble. Section 2.2.3 provides an
insight on the literature dealing with this problem, however, all these works model the chassis
stiffness with the lumped stiffness approach without providing any demonstration whether the
accuracy of this approach is sufficient for the study of weave and wobble; in Section 4.2 of the
present thesis, this aspect will be discussed. Moreover, none of these works tackle the challenge
of optimizing the stiffness distribution of structural components for improving the stability of
weave and wobble. Section 4.3 proposes a method to solve this challenge.

Among the works that developed mechanical systems for stabilizing weave and wobble, only
Evangelou et al. [172] proposed a fully active control system. However, [172] is mainly focused
on improving the stability of wobble, while the aim of the present thesis is to increase the stability
of both weave and wobble. Moreover, the controller proposed in [172] is optimal only for a
specific working point, thus limiting its applicability.

3.2 Research Questions

Based on the research gaps described in the previous section, the following research questions
arise, which can be divided into two categories:

• Concerning the development of a methodology for optimizing the distribution of
chassis stiffnesses considering the stability of weave and wobble:

– Do simplified model layouts sufficiently reproduce the effect of chassis flexibil-
ities on weave and wobble or is a more accurate model required? (Section
4.1 and 4.2)

– How can the developed model be used to obtain indications for the design
of structural components, which would lead to an optimized distribution of
structural stiffness? (Section 4.3 and 4.4)
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• Concerning the synthesis of an active controller for a steering actuator:

– Which controller structure allows for the increase in the stability of weave and
wobble while not impairing the rider’s action? (Chapter 5)

3.3 Proposed Approach

The research questions will be answered in Chapter 4, where the steps towards the develop-
ment of a methodology for optimizing the distribution of structural stiffness are explained, and
Chapter 5, where two controllers are proposed that enhance the stability of weave and wobble.
In the present section, the contents of these methods are summarized and it is highlighted how
they build on each other.

3.3.1 Methodology for Optimizing the Distribution of Structural Stiff-
ness

The first step for optimizing the distribution of structural stiffness with the aim of improving the
stability of weave and wobble is to understand the basic phenomena behind these eigenmodes.
For that, a motorcycle model is needed that enables such a study. In Section 4.1, a multibody
motorcycle model is proposed, which serves as basis for the following works. MBS is chosen for
the motorcycle model because it allows to include physical phenomena that are important for
the modeling of weave and wobble. In particular, attention is devoted to the tire model, whereby
the Pacejka Magic Formula for combined slip is used [38] and a first order lag for the tire lateral
force is introduced, which is necessary for the modeling of wobble [68, 69, 79, 100]. Moreover,
the MBS software used in the present thesis (MBSim [92]) provides a solver for carrying out an
eigenvalues analysis, where the nonlinear equations of motion are linearized about a specified
working point and the eigenvalues and eigenvectors are calculated. Finally, another reason for
choosing MBS is that it offers the possibility to model the structural flexibilities either with the
lumped stiffness or with the flexible multibody approach.

The second step towards a methodology for stiffness optimization is the development of a
model where the structural flexibility is modeled with high accuracy. The aim of this model
is to correctly represent the effect of structural flexibilities on weave and wobble. As stated
above, previous works leveraged only the lumped stiffness approach. In Section 4.2, a flexible
multibody motorcycle model is proposed, where the stiffness of the structural components is
modeled with the flexible multibody approach. This way, the effect of structural flexibilities on
weave and wobble can be represented with high accuracy and a comparison with the lumped
stiffness approach can be made to understand whether the accuracy of lumped stiffness models
is sufficient. This answers the first research question stated in Section 3.2.

In the third step, the methodology for optimizing the distribution of structural stiffness is devel-
oped, which is proposed in Section 4.3. Its objective is to generate guidelines that can be used
to optimize the stiffness distribution between and within the structural components. For the
development of this methodology, either the flexible multibody or the lumped stiffness approach
can be used. The decision has to be taken considering pros and cons of these two approaches,
which are summarized in Table 3.1. Even if it offers high accuracy, the flexible multibody motor-
cycle model has the disadvantage that it is difficult to carry out a parameter study where single
stiffnesses within each structural component are treated separately. Moreover, its parameters
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Table 3.1: Pros and cons of lumped stiffness and flexible multibody approach considering the require-
ments for the development of a methodology for stiffness-optimization.

Lumped stiffness approach Flexible multibody approach

Pros • Each parameter has a physical meaning: stiff-
ness value in a certain direction.
• Easy to study parameters independently from
each other.

• Flexibility represented as a continuous prop-
erty→ high accuracy.

Cons • Strong approximation of the flexural behavior.
• Accuracy strongly dependent on the parame-
terization.

• Separated study on single stiffnesses within
each structural component is critical.
• Difficult to give a physical interpretation to the
underlying parameters.

do not always have a physical explanation, because part of their DOFs are expressed through
modal coordinates (Section 2.3.2), so it is difficult to extract information which can be directly
interpreted for design optimization. For this reason, the methodology is based on a lumped
stiffness motorcycle model, where the flexibility of every component is represented through a
bending and a torsional stiffness, which can be studied independently from each other. This
way, it is possible to answer the second research question stated in Section 3.2. The potential
disadvantage of lumped stiffness models lays in the accuracy, which is strongly dependent on
the parameterization used. Therefore, a method for parameterization of lumped stiffness model
is proposed, with which the lumped stiffness motorcycle model achieves similar accuracy as the
flexible multibody model in reproducing the effect of structural stiffness on weave and wobble.
The flexible multibody model presented in step two serves therefore as “ground truth”.

3.3.2 Active Stabilization of Weave and Wobble

In Chapter 5, two control strategies are proposed: proportional gain-scheduling and H∞. The
choice of the gain-scheduling controller is motivated by:

• The possibility to directly use the multibody motorcycle model to find the controller
parameters.

• The simplicity of its structure, which allows the development of a look-up table
where the controller parameters for different combinations of longitudinal speed
and roll angle are contained.

The H∞ controller is chosen for the following reasons:

• It lenders itself to the development of a disturbance rejecting controller, as is
needed for a stabilizing control system. Moreover, it provides a background for
implementing a robust controller, i.e., a controller able to tolerate a defined amount
of model uncertainties.

• The loop-shaping approach makes it possible to shape the controller according to
the frequency range where it should act. This is particularly useful for the controller
proposed in this thesis, because it should act in the frequency range of weave and
wobble but not in the low-frequency range, where driving maneuvers take place.
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4 Steps Towards Optimized Distribution
of Structural Stiffness

4.1 Analysis of the Phenomena causing Weave and
Wobble [MDPI 2020]

The stability of the weave and wobble eigenmodes is central for the present thesis and it is
therefore fundamental to understand the physics behind them.
In this publication, the basic phenomena characterizing the stability of weave and wobble are
analyzed in detail. For that, a multibody motorcycle model is proposed, which is based on a state
of the art model from Sharp et al. [38] for the motorcycle parameters and on Wisselmann [49]
for the model structure and the calculation of kinematics of the contact point. This model serves
as basis for the following works in this thesis, which are presented in Section 4.2, Section 4.3
and Chapter 5. The most important features of this model are:

• Use of the Pacejka Magic Formula (the version and tire parameters reported in [38]
are used) for the calculation of the tire forces. A first-order lag is introduced in the
generation of the lateral forces, which is necessary when modeling wobble. Given
that the frequency of weave and wobble is lower than 15 Hz, it is not necessary to
use the more complex rigid ring tire model [75].

• Model of the rider with two bodies to represent the upper and lower body. The
rider’s passive motion is modeled with 3 DOFs: lateral displacement of the rider,
lean motion of the upper body (rotation about the longitudinal axis), and rotation of
the upper body about the vertical axis. Moreover, the connection between upper
body and handlebars provided by the arms is modeled.

• Lumped stiffness models of several structural components: bending and torsional
stiffness of the front fork, and torsional stiffness at the steering head joint of the
frame, torsional stiffness of the swingarm.

For more details on the motorcycle model the reader is referred to Section 3.1 of the publication.

The literature review shows that most works analyzing weave focus on the study of the motorcycle
parameters that influence its stability, such as chassis stiffness, tire properties [21, p. 532], [23]
and rider [15, 50, 95, 96, 181]. However, a physical explanation of the correlation between weave
damping and longitudinal speed is still missing. As Figure 4.1 shows, the damping of weave
has two opposing trends. In the lower speed range, the damping increases (decreasing real
part) with increasing longitudinal speed, while after a characteristic speed (between 50 kmh−1

and 90 kmh−1 according to the motorcycle parameters) the damping decreases (increasing real
part) with increasing speed. In this publication, this correlation is explained by analyzing how the
weave eigenvector changes with increasing speed (Figure 4.2). From 30 kmh−1 to 100 kmh−1,
the eigenvector changes significantly, evolving from a lateral-displacement-dominated motion (y)
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Figure 4.1: Weave eigenfrequency and real part as a function of speed [182].
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Figure 4.2: Compass plots of the weave eigenvector at different speeds [182]. δ is the steering angle,
ψ is the yaw angle, ρ is the roll angle and y is the lateral displacement.

to a combination of roll ρ, yaw ψ and steering head δ motion, which represents the well-known
weave eigenvector. This evolution explains the increase in damping with longitudinal speed
in the lower speed range, because the weave eigenvector evolves from a low frequency self
stabilizing motion to the classical weave. From 100 kmh−1 to 250 kmh−1, the relative phase
between the components of the weave eigenvector does not change but the roll component
almost disappears (the length of the phasor decreases). The decreasing weave damping with
increasing longitudinal speed can be explained considering that, when projecting about the
steering axis the gyroscopic moments and the moments produced by the front tire, they act in
phase opposition. This means that the gyroscopic moments tend to decrease the stabilizing
action of the tire forces. As the gyroscopic moments increase with longitudinal speed, their
destabilizing action also increases, thus explaining the reduction in weave damping with speed.

The literature review also summarizes the works that studied the influence of motorcycle param-
eters on the stability of wobble, whereby tire properties [68, 69, 79, 100] and chassis flexibilities
[23, 41] are the most important. In particular, the modeling of the front fork bending flexibility
is required for a correct description of the evolution of the wobble damping over speed. When
adding the lateral flexibility of the front fork to a rigid body motorcycle model, the damping of the
wobble eigenmode is decreased in the lower speed range while it increases at higher speeds,
as Figure 4.3 shows. Cossalter et al. [23] and Spierings at al. [41] explain this behavior by using
a lumped stiffness model of the front fork (Figure 4.4), and present the following hypothesis:

• The bending flexibility of the front fork has itself a destabilizing effect, which
predominates at low speeds.

• The bending flexibility causes an additional rotation αff of the front wheel that
creates a gyroscopic moment about the steering axis that stabilizes wobble. This
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Figure 4.3: Wobble eigenfrequency and real part as a function of speed [182].
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Figure 4.4: Lumped stiffness model of the front fork (front view) [182].

gyroscopic moment is proportional to the rotational speed of the front wheel and
therefore prevails at higher speed.

While the second hypothesis about the stabilizing effect of the gyroscopic moment was verified,
the first one–i.e., the destabilizing effect of the bending flexibility at low speeds–was presented
as an assumption and not demonstrated. In the present publication, an explanation to the
first hypothesis is provided. By modeling the fork bending flexibility with the lumped stiffness
approach, it is shown that this flexibility causes a variation ∆vyC

of lateral speed of the front
contact patch (Figure 4.4) and it reduces the lateral forces produced by the tire during the
wobble oscillation. Since the tire lateral force contributes to stabilize the wobble, reducing it
has a destabilizing effect on wobble. This explains why the front fork bending flexibility alone
destabilizes the wobble at low speeds.

The last part of the publication shows the effect of the rider model on weave and wobble. In
particular, the effects of the DOFs described above are studied. For weave, an important
contribution derives from the lean DOF, while wobble is strongly stabilized by the arms of the
rider, which act as a sort of steering damper.

The model used in the publication is published open-source: [183]
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Abstract: The present work follows in the tracks of previous studies investigating the stability of
motorcycles. Two principal oscillation modes of motorcycles are the well-known wobble and weave
modes. The research in this field started about fifty years ago and showed how different motorcycle
parameters influence the stability of the mentioned modes. However, there is sometimes a minor lack
in the physical analysis of why a certain parameter influences the stability. The derived knowledge
can be complemented by some mechanical momentum correlations. This work aims to ascertain, in
depth, the physical phenomena that stand behind the influence of fork bending compliance on the
wobble mode and behind the velocity dependence of the weave damping behaviour. After a summary
of the relevant work in this field, this paper presents different rigid body simulation models with
increasing complexity and discusses the related eigenvalue analysis and time behaviour. With these
models, the mentioned modes are explained and the physical phenomena only partly covered by the
literature are shown. Finally, the influence of the rider model on weave and wobble is presented.

Keywords: two-wheeler; vehicle dynamic modelling; wobble; weave; fork bending compliance;
rider influence

1. Introduction

Motorcycle dynamics have always been an extensive research topic due to the complexity and the
influence on the riders’ safety. The knowledge used to develop a stable motorcycle chassis comes, to a
certain extent, from experience or sensitivity analysis which sometimes lack physical and theoretical
understanding of the hidden phenomena. This paper wants to clarify these phenomena, in particular
with regard the understanding of the effect of the front fork bending compliance and of the weave
damping behaviour with changing speed.

Two of the principal eigenmodes of a motorcycle are known as wobble and weave. The first one
includes almost solely the rotation of the front assembly about the steering axis whose frequency is in
the range between 7 and 10 Hz depending on the motorcycle’s parameters [1]; the second one is more
complex, and when affected by this mode, the motorcycle shows roll, yaw, steering-head rotation and
lateral displacement [2].

The starting point for this work is an observation resulting from the comparison of experience in
reality and simulation results. Using the eigenvalue analysis, the earlier motorcycle models, such as the
model of Sharp [3] which only includes a tyre model but no compliances, show a stable wobble mode
in the lower speed range (up to 80 km h−1), and this mode becomes unstable in the higher speed range.
However, the experience with a real motorcycle shows an almost opposite behaviour: lower stability
(or even instability) at low speed and increasing stability at higher speed. This was demonstrated
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through measurements on a real motorcycle by Koch [4]. Previous research addressed this apparent
incompatibility between simulation and reality, concluding that the front fork bending compliance
is a key parameter when studying wobble [5–9], as discussed further in Section 2. Wisselmann [10]
conducted an analysis where the motorcycle stiffnesses were progressively eliminated (i.e., set to
infinity); in this case also, a remarkable variation in the motorcycle response was shown.

For weave mode, the situation is different: the well-known correlation between
eigenmode-damping and speed is also reproduced by models without chassis compliances [2,5,6].
In this case, up to a certain speed, the weave mode becomes more stable with increasing speed. After a
tipping point, the stability degenerates again when the speed increases. This behaviour is unexpected,
as the increasing gyroscopic moments of the wheel should stabilise the motorcycle, as is the case,
for example, with a gyroscope. This is a complex system to analyse because there are many possible
gyroscopic moments and their combined influence is not trivial. This peculiar behaviour is further
analysed in Section 4.2.

The different models that will be presented within this paper were produced using open source
multibody simulation software named “MBSim” (www.mbsim-env.de) which was developed at the
Institute of Applied Mechanics of the Technical University of Munich. An introduction [11] on the
functionalities of this software is provided. Multibody simulation is common for vehicle dynamics,
and was used, for example, by Cossalter in multiple publications [2,5,7,12]. It allows the building of
the desired model through a CAD-like interface, by connecting the bodies with joints and assigning
them stiffness and damping when needed. The present motorcycle model is described in Section 3.

To summarise, this work deeply investigates the influence of the front fork bending compliance
on the wobble mode. Starting from the point reached by previous authors [1,5,6], Section 4.1 provides
a different justification for the well-known effect of the fork bending compliance on wobble damping.
Moreover, in Section 4.2 the weave mode is further analysed and a possible justification for its damping
behaviour is provided. Finally Section 4.3 investigates the influence of the rider on wobbling and
weaving.

2. Related Work

Vehicle dynamics is a very popular research topic which features in many books and publications.
Most of the literature is focused on four-wheelers; nevertheless, there is also a huge collection of
research on two-wheeled vehicles. The different relevant authors are mentioned below.

Back in 1971, Sharp [3] published a paper about the driving stability of two-wheeled vehicles.
This research is considered the starting point of the modern motorcycle dynamics. In fact, thanks to a
(linearised) tyre model it was possible to detect the wobble mode, which was not present in the even
earlier and less complex motorcycle models by Whipple [13] (p. 195).

Cossalter [2] (p. 278) [5] and Spierings [6] presented a solution to overcome the previously
mentioned incoherence between reality and rigid model simulations when analysing wobble. A fork
bending compliance with a lumped stiffness was added: a revolute joint in the front fork, with its
rotating axis (named twist axis [14]) perpendicular to the steering head axis. A certain stiffness and
a damping are assigned to this joint. Lumped parameter models are described in [15]. This kind
of modelling is also found in other sources, especially when a more complex non-rigid model is
developed [16–21].

This additional fork bending results in a more realistic wobble-damping characteristic:
wobble-instability at low speed and a clear stabilisation when increasing the speed. Cossalter [2]
(p. 280) and Spierings [6] explain this change of characteristic with the combination of two opposed
effects caused by the fork bending compliance:

1. The bending compliance itself reduces the stability.
2. The combination of wheel-spin and the rotation around the twist axis produces a gyroscopic

moment about the steering axis, leading to stabilisation.
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Since the gyroscopic moment is proportional to the speed, the first effect dominates at low speed,
causing lower stability in this speed range. The second effect becomes dominant with increasing speed,
which explains the restored stability at high speeds. Section 4.1 investigates the influence of the fork
bending compliance considering another phenomenon caused by the bending compliance itself.

There are several parameters affecting a motorcycle’s wobble stability; a complete list can be
found in [2,3,17,21]. For this work, besides the fork bending compliance, two tyre parameters are of
particular importance: the relaxation length and the cornering stiffness. Some research [3,16,17,20]
has underlined that a tyre model with cornering stiffness is necessary in order to simulate the wobble
mode. This also suggests an important consideration: the principal cause of the wobble is given by the
tyre’s response. When the wheel is subject to an outer disturbance steering the wheel itself, the tyre
reacts with a side force which, thanks to the mechanical trail, produces an aligning moment around
the steering axis. When returning to the equilibrium position, the wheel starts oscillating about the
steering axis, thereby triggering the wobble mode [22]. Depending on the speed of the motorcycle,
this oscillation will diverge (unstable behaviour) or converge to the equilibrium (stable behaviour).

The other important tyre parameter influencing wobble is the relaxation length [3,13,23].
Several works [3,16,17,20,24] investigated its effect on wobble damping, underlying how the relaxation
length destabilises the wobble mode, since it generates a delay between the wheel steering and the
tyre-lateral force generation. As a consequence, Sharp [3] (p. 323) clarifies that both tyre sideslip
and tyre relaxation properties are fundamental for a proper representation of a motorcycle’s dynamic
properties. Like most of the tyre parameters, the relaxation length also depends on several factors.
Pacejka et al. [25] and Sharp [1] report that the relaxation length increases with increasing speed.
Moreover, a dependence on the vertical load is present. A more recent paper by Sharp [12] proposes a
tyre model based on the Pacejka magic formula [26] where dependencies on both speed and vertical
load are reproduced. This model and the related parameters are also used in the present work.

In summary, some minimal requisites for a correct analysis of the wobble mode can be defined.
Pacejka [26] and Doria [16] suggest that the tyre properties have the greatest influence on motorcycle
stability. The Pacejka magic formula [26] coupled with a first order dynamic response, as described in
the previous paragraph, is necessary in order to produce reliable wobble stability analyses [13] (p. 324).
This tyre model allows an accurate description of the tyre forces and moments if the frequency of the
external forces is lower than 15 Hz [13]; these conditions are generally satisfied for common stability
analysis, therefore the magic formula is used in almost all the latest researches based on multibody
analysis [2,7,12,27–29]. In addition to the tyre modelling, the lateral compliance at the front of the
machine is necessary when simulating wobble [13,30]. This can be obtained with a bending compliance
of the front fork [5–9], or by adding a lumped torsional stiffness of the main frame at the steering
head joint with its rotation axis perpendicular to the steering axis [12,26–28]; a combination of both
stiffnesses can also be implemented, as in the present work.

Besides the wobble mode, many of the mentioned sources also analyse vehicle
“weave” [2,3,5–7,17,19,21]. The weave mode can also be qualitatively represented with a motorcycle model
having no flexibilities [13] (p. 195). However, the literature underlines that some additional degrees of
freedom (DoF) notably influence the weave mode. In particular, Doria [17] (p. 17) and Splerings [6] (p. 28)
underline that the fork bending compliance destabilises the weave mode. Taraborrelli [23] and Cossalter [7]
analyse the effect of the swingarm torsional and bending compliance. Reference [23] simulated two
motorcycle types with significantly different stiffness values: a super-sport motorcycle (higher stiffness),
where the two swingarm compliances had almost no influence on weave, and an enduro-motorcycle,
where the swingarm bending compliance slightly destabilised the weave mode, which was at the same
time slightly stabilised by the torsional compliance of the swingarm. The results of [7], on the contrary,
show the destabilising effect of both swingarm bending and torsional compliance; however, the influence
was also small in this case.

Furthermore, the rider has proven to greatly affect the motorcycle’s stability behaviour.
In fact, Roe [31] points out that the stability analysis of a riderless motorcycle can be very
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misleading. Significant changes in the weave stability due to the rider have also been reported
by Pacejka [26] (p. 535). The modelling of the rider’s passive response and its influence on stability is a
broad topic which will be summarised in Sections 3.3 and 4.3.

An interesting argument strictly connected to weave is the so called “cornering weave”.
During cornering, the in-plane eigenmodes (bounce, pitch) become increasingly coupled with the
out-of-plane eigenmodes (weave, wobble), whereby the former shows degrees of freedom typical of
the latter and vice versa [9,13,32]. Concerning cornering weave, the eigenvector also shows front and
rear suspension travels which are not present in the straight-running weave [32]. This mode-coupling
is critical because it provides a signal transmission path from road undulations to lateral motions [33].
Moreover, under cornering conditions, bounce and weave have similar eigenfrequencies in the middle
to high speed range (70–120 km h−1) [9,24,32,34], thereby leading to mutual triggering [13,33,34].
From these considerations it should be clear that the suspension system must also be modelled when
carrying out stability analysis of motorcycles under cornering conditions [13,34].

As mentioned in the introduction, the models for the present work were implemented with
the “MBSim” multibody simulation software. Two interesting references in this field are the works
of moreCossalter [29] and moreLot [35]. They did not use the same software, but developed two
multibody-simulation tools that follow the same principle; they are both based on the symbolic
calculation software “Maple” with the second one using a build-in library for multibody modelling
called “MBSymba”. These references underline the suitability of a multibody simulation tool for
the dynamics and stability analysis of motorcycles. Another piece of software used in several
works [12,27,36] is “Autosim”; in this case as well, the authors demonstrated the great advantages
provided by multibody modelling when conducting both time and frequency analyses. Following this
established research, this modelling and calculation method were chosen for the present work.

3. Modelling

Different models have been developed during the last 70–80 years. Their complexity is obviously
related to the objectives they pursue. For example, the wobble has been simulated studying systems
capable of shimmy behaviour [37] (p. 166). Limebeer [13] (p. 184) derived the equations of motion of
such a system, which possesses two DoF:

1. Rotation about the steering axis (in this case perpendicular to the ground).
2. Lateral translation of the steering joint used to reproduce lateral flexibility.

The model does not take into account the gyroscopic influences. A liner model with relaxation
effect is used for the tyre forces. Even with this strongly simplified configuration, some important
effects are described, which also occur in motorcycle modelling. The destabilising effect of the cornering
stiffness, as prescribed by Sharp [3], is reproduced. Moreover, the inversion of behaviour experienced
in motorcycle simulation when using an infinite stiff front frame (Section 2) is also present. This is a
remarkable result, as this model does not reproduce the gyroscopic moments, which are considered
in [2,6] as responsible for the inversion of behaviour. This could suggest that also other phenomena
influence the wobble stability. In Section 4.1 this hypothesis is further developed.

Limebeer [13] (p. 189) carries on his analysis by converting the shimmy model into a front fork
model. In this case, the caster angle is considered for the steering axis and the gyroscopic effects are
also considered. Another important feature is a revolute joint connecting the fork assembly to the
ground. This simulates the motorcycle’s frame torsional flexibility, which provides a lateral flexibility
at wheel level, as described in Section 2. Thanks to this feature, the eigenvalue analysis of this system
provides results similar to those generally obtained with motorcycle modelling. Cossalter [2] (p. 251)
also produced a similar model with the aim of studying wobble; however, it lacks the mentioned lateral
flexibility and transient tyre properties, thereby failing to capture the physics of the wobble mode.

The simplified front fork model is acceptable when the aim is to only reproduce wobble.
When studying weave, however, a whole motorcycle model is needed. The "basic" motorcycle model
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is generally updated with some additional degrees of freedom in order to reproduce, for example,
the frame compliance or the rider motion.

In Section 3.1 the motorcycle model used in the present work is explained.

3.1. Motorcycle Model

The model used in this work is based on [10], where a model for BMW sport motorcycles from the
1990s was developed and validated with several experimental data, especially regarding the weave
and wobble modes. The kinematic structure of the rear suspension and the dataset in the present paper
are based on [12]. This reference uses a model with 13 DoF:

• Six DoF related to the main frame rigid body motion: translation about x, y, z axes, roll (ρ), pitch
(φ) and yaw (ψ).

• Two wheel spins (θfw, θrw).
• Two suspension travels (zf, zr).
• Steer rotation (δ).
• Frame torsion (αfr) at the steering head joint, simulated with a revolute joint with rotation axis

perpendicular to the steering axis.
• Rider lean (αri) simulated with a revolute joint between the rider’s lower and upper body with

rotation axis parallel to the main frame x axis.

In the present work some additional DoF are added, which are shown in Figure 1.

x

z

I

αff, βff, γff

αri, yri, γri
αfr

αsw

Figure 1. Motorcycle sketch with the DoF associated with the stiffnesses. The small rectangles indicate
the related joints. The red points represent the bodies’ centre of mass.

• Three compliances of the front fork, simulated with three revolute joints placed approximately at
the half of fork length:

– Bending about the x axis (αff); the rotation axis of the revolute joint is perpendicular to the
steering axis. This compliance is particularly important for wobble, as explained in Section 2.
It allows a lateral motion of the wheel along the y axis.

– Bending about the y axis (βff); the rotation axis of the revolute joint is parallel to the front
wheel axis. This flexibility allows a translation of the wheel along the x axis.

– Torsion (γff); the rotation axis of the revolute joint is parallel to the steering axis.

• Lateral motion of the rider’s lower body with respect to the saddle (yri), simulated with a linear
joint with axis parallel to the main frame y axis.

• Rider yaw rotation (γri) simulated with a revolute joint between the rider’s lower and upper body
with rotation axis parallel to the main frame z axis.
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• Swingarm torsion (αsw), simulated with a revolute joint at the swingarm anchor point with rotation
axis parallel to the main frame x axis.

The motorcycle parameters in [12] were obtained through experimental measurements or through
estimates. However, some parameter variations have been used in the present work:

• The data for the rider’s upper body mass and inertia tensor were taken from [12]. In [12] the
mass and inertia tensor of the rider’s lower body and of the motorcycle’s main frame were fused
together. In the present work, with the aim of allowing lateral translation of the rider’s hip
(considered as lower body in the present work), the mass and inertia tensor of the main frame
in [12] were split between hip and main frame, while ascertaining that the combined inertia tensor
and the overall centre of gravity remain unchanged. The data for hip’s mass and inertia tensor
were taken from [38]. According to these data, the mass and inertia tensor of the main frame were
properly modified. In particular, the hip mass was subtracted from the main frame mass in [12].
Moreover, as explained above, the inertia tensor of the main frame was adapted so that the whole
inertia tensor of the lower body and main frame together was equal to the main frame inertia
in [12]. The rider’s legs were considered fixed to the main frame, so their mass and inertia were
included in it. As reported in [12] (p. 252), the rider’s total mass was 72 kg.

• In the year of publication of [12] the experimental data of the front fork were not completely
available. Some of them were judged by the authors of the present work as not realistic
(for example, the mass of the lower fork and its lacking inertia tensor). For this reason, the front
fork mass and inertia data were taken from [39], while retaining the overall geometry given in [12].

The motorcycle’s parameters are reported in Appendix A.
The tyre forces and moments were reproduced with the Pacejka magic formula; further details on

the tyre model are given in Section 3.4. The software for the motorcycle model is available on GitHub:
https://github.com/TUMFTM/motorcycle_model.git.

3.2. Suspension

There are several types of motorcycle suspension. The simplest configuration is composed of a
telescopic front suspension and a cantilever rear suspension. However, multi-link suspensions have
been developed for both front and rear wheels. For the rear suspension, the multi-link solution allows
a non-linear damping curve to be obtained even with a linear damper, as the kinematic function
of the damper travel can be adjusted using a rocker. Multi-link at the front suspension generally
increases the fork stiffness and favours the anti-dive property. For further details the reader is referred
to [13] (p. 327). The motorcycle adopted in the present work uses a telescopic front suspension and a
unitrack-like rear suspension (definition of [13]), where the spring-damper unit is connected to the
chassis and to a rocker, while a pull rod connects the rocker to the swingarm. The kinematic functions
of this rear suspension are presented in [12]. Figure 1 shows its geometry.

3.3. Rider Model

In contrast to cars, the rider’s weight strongly influences the total motorcycle weight in riding
conditions. Moreover, the rider has some relative motions with respect to the motorcycle. One can
therefore expect the rider to have a great influence on motorcycle stability. This is indeed the case,
as shown by both simulation [7,40] and experimental [41] results. In this work we only focus on the
rider’s passive motions. This is reasonable, as the eigenfrequencies of wobble and weave are too
high for the rider to actively counteract them; therefore, it can be assumed that the rider behaves as a
passive body when the motorcycle experiences wobble or weave. Under this assumption, different
rider models can be developed. The most simple model has been adopted by several works [12,26–28]
and includes only one DoF: the rider’s upper body rotation about an axis parallel to the frame x
axis. A different one-DoF model [42] reproduces the rider’s rotation about the vertical axis (parallel
to the frame z axis); moreover, the connection between the upper body and handlebar is included
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with a parallel rotational spring-damper element. A 2-DoF model can then be obtained by combining
the two previously described models [40]. Finally, the lateral displacement (frame y axis) of the
rider’s hip can be added, thereby obtaining a 3-DoF rider model [7]. An interesting observation is
made by Limebeer [13] (p. 326) about the influence of the rider’s parameters: he reports that the
rider’s upper body parameters mainly influence the weave mode, while the lower body parameters
have a greater effect on wobble. The literature also offers several examples of more complex rider
models containing up to 28 DoF [43]. In this case, the rider model was used to faithfully evaluate
the motorcycle race performances, so that the whole rider motion was needed, including his control
action on the handlebars and his lean-in strategy. As introduced at the beginning of this paragraph,
the current work pursues a very different objective, i.e., the analysis of the motorcycle eigenmodes,
so that such a complex rider model is not necessary and would only complicate the interpretation of
the results.

The rider model used in the present work is based on that presented in [7]. The rider is composed
by two masses, representing the upper and lower body. The DoF are:

• αri: the rider’s upper body lean.
• γri: the rider’s upper body yaw.
• yri: the rider’s hip (lower body) lateral motion.

As previously said, the connection with the handlebar is modelled by a rotational spring-damper
element which reacts to the relative rotation between the upper body and handlebar, and applies equal
and opposite moments for lower body and upper body, and frame and steering head, respectively.

3.4. Tyre Model

As introduced in Section 2, the present model uses the Pacejka magic formula to describe the
tyre forces. The tyre model is analogous to that reported by Sharp [12] and is suited for motorcycles,
as it accounts for the lateral force generation due to the wheel roll angle (camber angle). Moreover, it
also describes the longitudinal forces, thereby allowing the motorcycle to be simulated in all possible
conditions. Another peculiar factor is the description of the combined longitudinal and lateral force
generation. This means that the maximal tyre-lateral force is reduced when the tyre simultaneously
generates a longitudinal force (and vice versa). The model also takes into account the variation of the
tyre potential with changing vertical load.

The present tyre model considers the tyre width. In this way, in contrast to thin disc models,
the overturning moment must not be added separately, as the lateral migration of the contact point
automatically generates this overturning moment [12,28].

The magic formula needs some inputs: longitudinal slip (κ), slip angle (α), camber angle (ρw),
vertical load (Fz). κ can be calculated with Equation (1).

κ = −vxC −ωy (rrim + rc cos ρw)

vxC

, (1)

where vxC is the longitudinal velocity of the tyre contact point, rrim is the rim radius, rc is the tyre
crown radius and ωy is the wheel rotation speed. α is calculated with a first order relaxation equation:

σ

vxC

α̇ + α = αss, αss = − arctan
(

vyC

vxC

)
, (2)

where αss is the slip angle in steady-state conditions, while vyC is the lateral velocity of the tyre contact
point. This means that the lateral force due to the slip angle is generated with some delay depending
on the relaxation length σ. Its value is not constant and depends on both longitudinal speed and
vertical load; these dependencies are taken into account in the present model. The longitudinal force
and the lateral force due to the camber angle are assumed to build up instantaneously, so no relaxation
equation is used.
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At this point, a geometrical model of the tyre contact point and a related reference frame are
needed in order to calculate the velocity components vyC , vxC at the contact point itself and the vertical
load Fz. Firstly, the orientation of the reference frame at the contact point has to be obtained. It should
satisfy the following requirements: z axis being perpendicular to the road; x axis being in the wheel
plane and parallel to the road. Such a reference frame can be derived with two rotations starting
from the reference frame of the wheel carrier, indicated in the following with the subscript Wc.
The intermediate reference frame W is obtained as follows:

Wex =
Wcey × Iez

|Wcey × Iez|
,

Wey = Wcey,

Wez = Wex × Wey,

(3)

where refei is the unit vector of the ith axis of the reference frame named “ref”, and Iez = [0, 0, 1]T.
The frame W has the x axis parallel to the ground. In order to get C, another transformation is needed,
which allows the z axis to be perpendicular to the ground:

Cex = Wex,

Cez = Iez,

Cey = Cez × Cex.

(4)

The unit vectors in Equation (3) define the rotation matrix ISW = [Wex, Wey, Wez] from
frame W to the inertial frame I. Similarly, the rotation matrix from frame C to I is defined as

ISC = [Cex, Cey, Cez]. Now the longitudinal and lateral velocities vxC , vyC can be calculated in
the following steps:

WvWc = IST
W IvWc,

WvC = WvWc + WωWc × [0, −rc sin ρw, −rrim − rc cos ρw]
T,

IvC = ISW WvC,

CvC = IST
C IvC.

(5)

BvA is the absolute velocity vector of the generic point A in the generic frame B. The vector CvC
represents the velocity of the contact point in frame C; its first and second components provide
vxC , vyC .

The last remaining input for the magic formula is the vertical load. This is composed by a
constant Fz,stat and a varying part Fz,dyn. The constant one is obtained in static equilibrium conditions.
The second one depends on motorcycle trim and can be calculated using the tyre carcass compression
∆ztyre from the nominal state.

∆ztyre = −rrim cos ρw − rc + Iz0C − IzWc. (6)

Iz0C > 0 is the vertical distance under static equilibrium conditions between the origin of the inertial
frame I and the contact point. IzWc > 0 is the instantaneous vertical distance between the origin of the
inertial frame I and the wheel carrier Wc. Finally, the tyre vertical load Fz is calculated as follows:

Fz = Fz,stat + Fz,dyn = Fz,stat − cz ∆ztyre − dz vzC . (7)

cz, dz are the tyre vertical stiffness and damping, respectively. It is worth pointing out that ∆ztyre

is negative when the carcass is compressed; therefore, the carcass compression leads, through
Equation (7), to an increased vertical load.
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All the inputs for the magic formula are now available. The equations of the magic formula
are taken from [12], so they are not repeated here. The outputs are: longitudinal force, lateral force
and aligning moment. These outputs are applied in the wheel carrier and not at the contact point as
in [12]. This choice was made because in MBSim the forces must be applied to a body, which would
require the definition of a body in the contact point, which in the actual model structure is not an
easy task. Shifting the tyre forces in the wheel carrier requires applying additional moments; this is,
however, easily done, as all the lever arms are known or can be derived with geometric reasoning.
The equivalence between this force system and the one with the forces applied at the contact point has
been verified on a simplified model with a single wheel. The results are equivalent, thereby confirming
the correctness of the choice made.

3.5. Validation

As explained in Section 3.1, the motorcycle model in the present work is based on the data of [12].
The obvious solution is then to validate the present model against this reference by Sharp. In order to
do so, the front fork data were set to the values in [12]; moreover, the additional DoF were "switched
off." This was possible thanks to a functionality developed for this purpose in MBSim, which allows
the selection of the DoF to be considered. Reference [12] reports the simulation results of a steady-state
cornering condition with fixed roll angle and at different speeds. Several variables are then shown
under this condition; particularly important for steady-state cornering are: steering torque, front and
rear tyre-lateral forces and aligning moments. The same condition has been tested in the present work
and the variables compared. The accordance is very good, with deviations less than 5 % for all values.
This is shown Figure 2, where Fyf , Fyr are the front and rear tyre-lateral forces, while Mzf , Mzr are the
front and rear tyre aligning moments and Tδ is the steer torque.
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Figure 2. Model validation with steady-state analysis: comparison between the current model and the
model of Sharp for a steady-state cornering maneuver. Fyf , Fyr are the front and rear tyre-lateral forces,
while Mzf , Mzr are the front and rear tyre aligning moments and Tδ is the steer torque.

As further validation, the present model was also compared with that in [26] (p. 508) by Pacejka.
This model renounces some DoF with respect to [12]: the suspensions are not modelled. Moreover,
the frame torsional stiffness is not present, while the front fork has bending compliance. Using the
same data of [26] and with the same DoF, a comparison of the eigenvalue analysis has been carried
out. Additionally, in this case the agreement of the results is very good, with the curves of the wobble
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and weave eigenfrequencies and damping as a function of the speed almost overlapping, as shown in
Figure 3. In this figure, the frequency is expressed in rad s−1 in order to facilitate the comparison with
the results of [26], where this unit of measurement is used. In the subsequent paragraphs, however,
the frequency will be expressed in Hz. Additionally, the selection of the speed range in Figure 3 was
made according to [26].
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Figure 3. Model validation with eigenvalue analysis: comparison between the current model
(parametrised with the same data of the Pacejka model) and the model of Pacejka.

4. Results

This section shows the eigenvalue analysis and the time response for the presented model.
Starting from these plots, some physical relations will be derived and will help to understand the
important phenomena influencing the behaviour of the wobble and weave eigenmodes as a function
of vehicle speed.

4.1. Wobble

Section 2 describes how the front fork lateral flexibility (bending-compliance about the x axis)
strongly influences the stability of wobble. This difference is shown in Figure 4. In order to isolate
the influence of the fork compliance, the curve relative to the rigid fork was obtained with a 9-DoF
model, wherein the DoF used to represent the motorcycle’s stiffnesses, as described in Section 3.1,
have been eliminated. Moreover, the rider’s DoF are not present. In the curve relative to the flexible
fork, only the DoF αff has been added, so that the DoF are 10 in total. With the parameter set used in the
present work and in the speed range considered, the wobble mode remains well damped. This is due
to the relatively high value of the steering damper. In the following part of this section, the reason for
such a drastic behaviour change between rigid and flexible fork is addressed. In particular, a possible
cause is presented which partially differs from the explanation provided by Cossalter [2] (p. 280) and
Spierings [6].

A key concept described in Section 2 is the correlation between tyre properties and wobble.
In particular, a tyre model with cornering stiffness is necessary to reproduce wobble [3,16,17,20].
Therefore, the tyre and specifically the lateral force due to the slip angle is a fundamental factor when
considering wobble stability. However, what is the reason for the behaviour inversion in Figure 4 and
how can it be attributed to the tyre response? Equation (2) shows how the slip angle depends on the
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lateral velocity of the wheel contact point vyC . The fork lateral flexibility allows some lateral motion of
the wheel because of the rotation about the revolute joint axis (fork x axis), thereby influencing vyC .
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Figure 4. Influence of front fork flexibility on wobble.

This concept is shown schematically in Figure 5. The variation of vyC due to the fork lateral
flexibility can be expressed as:

∆vyC = h α̇ff. (8)

αff, α̇ff

∆vyCy

z
h

Figure 5. Variation of the lateral velocity at the contact point due to lateral fork flexibility.

To prove the effect of ∆vyC , it is compensated by subtracting its value from vyC in Equation (2).
Figure 6 shows the corresponding eigenvalue analysis with the dots-marked curve. The compensation
of ∆vyC remarkably stabilises wobble. Moreover the curve shows the same behaviour for the 9-DoF
model. At this point a conclusion can be drawn: the fork lateral flexibility influences the wobble
stability through its effect on the lateral velocity vyC of the contact point.

In a subsequent step, it is of particular interest to observe whether ∆vyC increases or reduces the
value of vyC . Figure 7 shows a time simulation at 50 km h−1 with a steer torque impulse as excitation.
The full line represents vyC obtained from Equation (5); the dashed line was obtained with vyC − ∆vyC ,
whereby ∆vyC was derived from Equation (8). The subtraction of ∆vyC increases the value of vyC :
∆vyC , which is normally included in vyC , thereby reduces the amplitude of vyC . The tyre-lateral force
is proportional to the slip angle, which is proportional to vyC (Equation (2)). This force tends to
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oppose the wheel motion due to the wobble oscillation. Therefore, the fork flexibility introduces a
∆vyC , which reduces the tyre-lateral force. This explains why the curve with ∆vyC = 0 in Figure 6 is
significantly more stable than the 10-DoF case with ∆vyC 6= 0.
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Figure 6. Effect of compensating ∆vyC on wobble damping. In the dotted curve only ∆vyC is
compensated. In the dash-dotted curve both ∆vyC and ∆Mz (with Equation (9)) are compensated.
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Figure 7. Variation of the lateral velocity of the contact point vyC due to front fork flexibility.
Time simulation at 50 km h−1 and with a steer torque impulse as excitation.

Even if the curve with compensated ∆vyC in Figure 6 assumes the same qualitative behaviour as
the 9-DoF model, the damping values are still significantly different. In order to get a curve similar to
that of the 9-DoF model, the gyroscopic moment introduced by fork bending must be compensated.
The moment acts about the steering axis and can be calculated with Equation (9) (this formula differs
from the complete Euler equations (compare to Equation (10)), whose left-hand side defines the whole
gyroscopic effects. Equation (9) is used here because its simple structure allows one to compensate
the gyroscopic effects about the steering axis as external moments in the used multibody simulation
software), as shown by Cossalter [5]. This formula is also well-known in the literature, as it is present
in the book on vehicle dynamics by Mitschke [44]. The symbol ∆ in Equation (9) indicates that the
formula only refers to the gyroscopic moment due to the fork lateral flexibility.

∆Mz = α̇ff ωyfw Iyyfw , (9)

where ωyfw is the front wheel rotation speed and Iyyfw is its polar moment of inertia. The dash-dotted
curve in Figure 6 shows the effect of compensating ∆Mz. As expected, the damping curve gets very
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close to the 9-DoF model. The remaining offset can be attributed to other secondary phenomena,
which have not yet been completely identified.

In summary, the influence of the fork bending compliance on wobble can be explained by
considering two main phenomena:

1. Gyroscopic moment;
2. Variation of the lateral speed of the wheel contact point.

Both of them originate through the rotation αff and its time derivatives.
When observing the curve of the 10-DoF case in Figure 6, it is evident that it is less stable than the

9-DoF case only up to about 80 km h−1. Above this speed, the higher stability of the 10-DoF model
compared to the 9-DoF model can be justified with the same consideration made by Cossalter [5]: the
gyroscopic moment ∆Mz about the steering axis stabilises the wobble with increasing speed.

At this point another question may be raised: Which phenomenon is responsible for the decreasing
wobble damping shown by the 9-DoF model and the model with compensated ∆vyC compared to
the 10-DoF one? To answer this question, a model containing only the front fork and front wheel has
been used. With this model two cases are studied: two DoF characterised by the rigid fork and three
DoF with a flexible fork; the first model correlates with the 9-DoF model, and the second with the
10-DoF model.

Figure 8a shows the damping curves for these two models. Different variations were made: the
wheel inertia tensor Ifw was set to 1% of the original value (to eliminate the gyroscopic moments) and
∆vyC has been compensated as in Figure 6. Some important conclusions can be drawn:

• The 2-DoF model did not show a decrease in damping with increasing speed, as did the
9-DoF model.

• The damping of the 3-DoF model grew more rapidly than the one of the 10-DoF model.
• The case Ifw = 1 %, ∆vyC = 0 is very close to the curve of the 2-DoF model, as was expected by to

theoretical observations. In fact, the 2-DoF model had no gyroscopic moments about the steering
axis, as no rotation about the fork x axis was present. In Figure 6 the curve with ∆vyC = 0 shows a
remarkable offset compared to the 9-DoF curve because of the gyroscopic moments. With Ifw set
to 1 % they almost vanish, resulting in a smaller offset.

The difference in behaviour between the 2 and 9-DoF models can be justified by the additional
roll motion of the 9-DoF case. This motion produces additional gyroscopic moments which apparently
destabilise the wobble with increasing speed. These moments are also clearly present in the 10-DoF
model. However, in this case they are compensated by the gyroscopic moment produced by the fork
flexibility. The opposition of these two effects is underlined by the saturation shown in the 10-DoF
model at about 150 km h−1, which is not present in the 3-DoF model.

In summary, the wobble damping behaviour of a real motorcycle is determined by three principal
mechanisms. The front fork flexibility produces a lateral movement of the front wheel, which can
be represented with a rotation αff. This reduces the tyre-lateral force and thus decreases the wobble
damping at low speed compared to a rigid fork. When the speed increases, the gyroscopic moment
caused by the rotation αff increases in magnitude and stabilises the wobble, thereby making the
10 DoF model more stable than the 9-DoF model. The third mechanism is related to the gyroscopic
moments caused by the motorcycle’s roll motion. They destabilise the wobble with increasing speed,
thereby explaining why the wobble damping in the 9-DoF model decreases with increasing speed.
This does not happen in the 10-DoF model because the stabilising gyroscopic moment caused by αff
outweighs the destabilising effect.
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Figure 8. (a) Wobble damping for the 2 and 3-DoF models with variation of the tensor Ifw and
compensation of ∆vyC . The curve with Ifw = 1 % for the 2-DoF model is identical to that with
Ifw = 100 % so it was not plotted. (b) Figure 4b copied to facilitate the comparison.

4.2. Weave

The weave mode was already captured in its essence by the very first motorcycle model by
Whipple [13] (p. 195). Moreover, there is no evidence of parameters which produce a behaviour
inversion of the damping curve, as can be observed for the wobble mode. This already suggests
that the weave mode reproduces in some way the "basic" motorcycle behaviour. This idea was
also proposed by Schröter [45] (p. 28), who describes the weave mode as a degenerated dynamic
stabilisation process involving steering, roll and yaw oscillations. This can be shown with a simple time
simulation where the upright riding motorcycle is excited with a lateral force impulse applied to the
frame. Assuming that the wobble is well damped, the motorcycle reacts to this excitation with a weave
oscillation, which may diverge or stabilise depending on the motorcycle’s speed and parameters.

Figure 9 shows the frequency and damping of the weave mode as a function of the speed.
The effect of the rider is analysed in Section 4.3, so this figure refers to the case with a rigid rider; the
other DoF are all present. In order to represent the saturation shown by the damping curve at high
speed, the speed range differs from the one in Figure 4. The behaviour of the weave damping shows
some interesting characteristics: below 70 km h−1 weave is stabilised with increasing speed; above it
is destabilised. However, above 220 km h−1 the weave damping shows a plateau. This particular
behaviour suggests that the weave mode changes with speed. Moreover, the speed dependency
could be explained by a certain influence of the gyroscopic effects, which are also speed dependent.
The gyroscopic effects are obtained with the whole left-hand side of the Euler equations, which is
shown in Equation (10) for the front wheel.

Ifwω̇fw + ωfw × (Ifwωfw) = Mext, (10)

where ωfw is the rotational velocity vector of the front wheel and Ifw is the front wheel inertia tensor.
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Figure 9. Weave eigenfrequency and damping as a speed function.

Figure 10 further illustrates this concept. In this figure, the weave eigenvector is shown with the
so-called compass plot. The arrows are named phasors and represent how the motorcycle’s DoF are
involved in the weave oscillation. An arrow’s length is the magnitude of the motion of the related DoF.
In order to maintain the information about the absolute amplitude of the phasors, no normalisation is
present. The phasor’s angle shows the phase. In the following paragraphs the relative angle between
the phasors is called relative phase.
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Figure 10. Compass plot of the weave eigenvector at different speeds. δ is the steering angle, ψ is the
yaw angle, ρ is the roll angle and y is the lateral displacement.

At low speed, (Figure 10a) the roll (ρ) and lateral displacement (y) show big amplitudes. The latter
is due to the small gyroscopic effects, so that if weave is excited (for example, with a lateral impulse),
the motorcycle describes a “slalom” at low frequency (see Figure 9) involving a significant lateral
displacement. This can be described as a low-frequency “self-stabilising” motion, which the literature
already considers as weave.

As the speed increases (Figure 10b), the relative phase between the motions significantly changes,
whereby the lateral displacement is no longer important. The other DoF show a similar amplitude.
Finally, when the speed increases further (Figure 10c), the relative phase does not change remarkably.
The most important observation, however, is the reduction of the roll (ρ) amplitude with increasing
speed, which can be seen when comparing the related phasor in Figure 10b,c. This can also be observed
in the time simulation. If the motorcycle is excited by a lateral impulse at high speed, the resulting
weave oscillation does not show a significant roll motion, while the front wheel and the frame rotate
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around the steering and vertical axis almost in opposition of phase, as shown by the vectors δ, ψ in
Figure 10c. The reduction in roll motion with increasing speed is also shown by a free rolling wheel.
This phenomenon can be explained considering the gyroscopic effects which increase with speed,
thereby preventing the wheel (or the motorcycle) capsizing.

Which are the possible causes of the peculiar damping behaviour shown in Figure 9b? Some useful
knowledge can be derived by an eigenvalue analysis with reduced wheel inertia. The correlation to
Figure 10 is shown in Figure 11, for which the total wheel inertia tensors Ifw, Irw was set to 10 % of
the original tensors. The first consideration resulting from the comparison is that in Figure 11 the
relative phase between the phasors no longer changes with speed, as it happens in Figure 10. The plot
at 30 km h−1 is not present, as the weave mode is no longer available at this speed. It is important
to point out that, because of this massive inertia reduction, the gyroscopic effects almost disappear.
Two main observations can be made:

1. The missing weave mode at low speed can be attributed to the (almost) missing gyroscopic effects.
The time simulation at 30 km h−1 with a lateral force impulse shows that the motorcycle does not
react to the excitation with a weave oscillation, but it capsizes. With the original inertia values the
gyroscopic effects are present, despite the low speed. They prevent the motorcycle from capsizing
immediately after the excitation and producing the low-frequency “self-stabilising” motion.

2. The gyroscopic effects are also the main cause for the change in the weave eigenvector shown
in Figure 10. In fact, when they are very small, as in Figure 11, the relative phase between the
eigenvector components is no longer speed dependent.
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Figure 11. Compass plot of the weave eigenvector at different speeds with Ifw, Irw = 10 %.

The correlation with Figure 9 is shown in Figure 12. The speed range starts now from 80 km h−1,
as for the following reasoning only this range is necessary. Moreover, the weave with reduced
wheel inertia is not present up to about 50 km h−1 and in the range 50−80 km h−1 it is extremely
well damped (real part > 25 rad s−1). Similarly to the full inertia case, the damping continues to
decrease with increasing speed in the small inertia case shown in Figure 12b. As the gyroscopic
effects are almost missing, the reason for this behaviour can be determined by investigating in the
tyre response. The tyre-lateral force is proportional to the slip angle which is in turn proportional
to the ratio between vyC and vxC (Equation (2)). The authors verified that vyC mainly depends on
the kinematic steering angle (see [2] for its definition), which is proportional to the steering angle.
Figure 11 shows that above a certain speed (100 km h−1) the amplitude of steering motion in the weave
eigenvector remains fairly constant. The numerator of αss in Equation (2) is therefore almost constant
with speed. The denominator of αss is given by vxC , which clearly increases with speed. As a result, αss

decreases with increasing speed and so does the tyre-lateral force. The tyre-lateral forces tend to bring
the motorcycle back to the equilibrium position, thereby stabilising the weave. The decreasing tyre
force is therefore responsible for the decreasing weave damping and the hyperbolic behaviour of the
dashed curve in Figure 12b.



Appl. Sci. 2020, 10, 6826 17 of 27

50 100 150 200 250 300
2.5

3

3.5

4

Speed in km h−1

Fr
eq

ue
nc

y
in

H
z

(a) Eigenfrequency

50 100 150 200 250 300

−10

−5

0

Speed in km h−1

R
ea

lp
ar

ti
n

ra
d

s−
1

Ifw, Irw = 100 %
Ifw, Irw = 10 %

(b) Real part

Figure 12. Comparison between the eigenvalue analysis with original wheel inertia tensors and
reduced inertia tensors.

Considering again the curve with the original wheel inertia in Figure 12, the first observation
is the smaller weave damping. This can be explained by taking into account the additional impact
of the gyroscopic effects. The gyroscopic effects of the front wheel about the steering axis are in
counterphase with respect to the tyre moments, as Figure 13 shows, therefore they work against them.
For this reason, the weave damping is lower compared to the reduced inertia case. The gyroscopic
effects also justify the slower damping decrease in the case with original wheel inertia (see Figure 12).
In fact, due to the progressively changing eigenvector (Figure 10), i.e., the decreasing roll motion
amplitude, the gyroscopic effects increase underproportionally with the speed. For example, in a
time simulation with lateral force excitation, the first peak of the front wheel gyroscopic effects about
the z axis increase from 100 to 150 km h−1 by 37.5%, while they only increase by 14.5% from 250 to
300 km h−1. As a consequence, they also underproportionally reduce the tyre forces with increasing
speed. This, combined with the decreasing tyre forces, leads to the mentioned saturation above
220 km h−1, which is not present in the reduced inertia case.
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Figure 13. Front wheel gyroscopic effects and tyre moments about the steering axis. The time simulation
was obtained with a lateral force excitation on the motorcycle frame at the speed of 150 km h−1.

The last characteristic to be observed is the increase in damping shown below 80 km h−1 in
Figure 9b. The authors’ belief is that in this lower speed range the weave mode can still be seen as
the already mentioned low-speed “self-stabilising” motion. When increasing the speed, this motion
progressively changes to the “real” weave, thereby producing the observed increase in damping.
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Figure 14 illustrates this fact. Following the three compass plots with increasing speed, one can see
that the phase and amplitude of the phasors progressively change; i.e., the weave changes from the
“self-stabilising” motion to the classical weave. In fact, above 100 km h−1 the relative angle between
the phasors no longer changes significantly, as the comparison of Figure 10b,c shows.
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Figure 14. Compass plot of the weave eigenvector at different speeds.

4.3. Rider Influence

As explained in Section 3.3, the literature offers different examples of rider modelling.
These references often analyse the influences of the rider on weave and wobble stability. For example,
reference [42] investigates the effect of the rider yaw combined with the connection to the handlebar.
Reference [7] proposes the eigenvalue analysis with the 3-DoF rider also used in the present work.
In order to obtain a better overview of the single influences, this section aims to briefly summarise the
essential differences between the three different DoF models used for rider modelling. This is shown
in Figure 15. The effect of the single DoF can be summarised as follows:

• The rider lean αri stabilises the weave and destabilises the wobble at high speed. The increased
stability of weave is a reasonable result because during the weave oscillation the rider lean is
almost in counterphase to the motorcycle’s roll [41], thereby damping out this motion.

• The rider yaw γri combined with the connection to the handlebar destabilises the weave, massively
stabilises the wobble and also increases its eigenfrequency. This is in accordance with [42] and
is a reasonable result, as the connection acts in a similar way to a steering damper, which also
stabilises the wobble while destabilising the weave.

• The rider’s hip lateral motion yri hardly affects the eigenmodes, as also reported by [31]. The only
remarkable influence is the increase in the wobble frequency at high speed.



Appl. Sci. 2020, 10, 6826 19 of 27

0 100 200 300
0

2

4

Speed in km h−1

Fr
eq

ue
nc

y
in

H
z

Weave

Rigid
αri
γri
yri

(a) Weave eigenfrequency

0 100 200 300
−10

−5

0

5

Speed in km h−1

R
ea

lp
ar

ti
n

ra
d

s−
1

Weave

(b) Weave real part

0 100 200 300

8

10

12

Speed in km h−1

Fr
eq

ue
nc

y
in

H
z

Wobble

Rigid
αri
γri
yri

(c) Wobble eigenfrequency

0 100 200 300

−30

−20

−10

0

Speed in km h−1

R
ea

lp
ar

ti
n

ra
d

s−
1

Wobble

(d) Wobble real part

Figure 15. The rffects of the single rider’s DoF on the weave and wobble modes.

Figure 16 shows the effect of the whole rider model, containing the three DoF αri, yri, γri. In the
weave the effect of αri overcomes the others, thereby causing the already mentioned stabilisation at
high speed. When concerning wobble, the effect of γri and the connection with the handlebar are
dominant, leading to an increase in both frequency and damping.
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Figure 16. Effect of the whole rider model (3-DoF) on the weave and wobble modes.

5. Conclusions and Outlook

The present work further analysed the physical phenomena behind the wobble and weave
eigenmodes. In particular, the effect of the front fork bending compliance has been discussed and a
possible justification for the well-known weave damping behaviour with increasing speed is provided.
Finally, the effect of the single rider’s DoF on the weave and wobble mode has been shown.

The first aspect has been addressed before by Cossalter [5] and Spierings [6]. They noticed
that the modelling of the fork bending compliance allows very similar results to the real driving
experience to be obtained: the wobble mode is unstable at low speed and stabilises with increasing
speed. Without this parameter, the simulation results are not realistic. Cossalter [5] justifies this
behaviour considering the superposition of two effects, both caused by the fork bending compliance:
this compliance alone is destabilising but it also produces a gyroscopic moment about the steering
axis that stabilises the wobble. The first effect dominates at low speeds, while the second prevails at
high speed. The present work provides an additional perspective for explaining the effect of the fork
bending compliance, though maintaining the validity of the previous results [5]. The additional insight
is given by the tyre behaviour. It was demonstrated that the lateral motion of the wheel contact point
caused by the fork bending compliance reduces the lateral component of the contact point velocity
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vyC . The tyre-lateral force is proportional to this velocity component through the slip angle. Reducing
vyC also reduces the tyre force. This causes a reduction in the wobble damping at below 80 km h−1.
At higher speeds, the effect of the gyroscopic moments introduced by the fork flexibility leads to
increasing wobble damping with increasing speed, as explained by Cossalter [5].

The weave damping behaviour is well-known and involves a progressive stabilisation up to about
80 km h−1 (with the present parameters), then the damping decreases with increasing speed until it
reaches a saturation above 220 km h−1. This peculiar behaviour can now be explained. The weave
eigenvector changes with speed. In the lower speed range this corresponds to a change from a low
frequency self-stabilising motion involving a lot of frame lateral displacement to a weave oscillation
where the lateral motion is no longer significant. The eigenvector change is supposed to be the
main cause of the damping increase below 80 km h−1. Above this lower speed range, the weave
eigenvector does not change in the relative phase between phasors, but the roll component becomes
progressively smaller. This influences the gyroscopic effects, which underproportionally increase with
speed, thereby causing the plateau above 220 km h−1.

The multibody model used in this work was provided with a functionality to select the different
DoF. This gives the chance to investigate the separated influence of the single DoF used in the rider
model. In particular, the rider lean stabilises the weave and slightly destabilises the wobble; the rider
yaw plus the connection with the handlebar destabilises the weave and remarkably stabilises the
wobble. The whole 3-DoF rider model produces the same effect of the rider lean as regards weave and
the same effect of rider yaw as regards wobble.

The contributions of the present paper to general motorcycle dynamics knowledge can be
summarised as follows. A review of the literature on motorcycle dynamics and stability behaviour;
this knowledge has been interpreted in order to derive some minimal prerequisites to the motorcycle
model, with the aim of conducting a stability analysis. After that, the effect of the tyre response on the
wobble damping was analysed, thereby leading to considerations that fuse together with and partially
complete the theory exposed by Cossalter [5] and Spierings [6]. Moreover, a possible justification for
the well-known weave damping behaviour was given, which was not found in the literature. Finally,
the influence of the rider model on stability, which was already studied in previous works, has been
summarised, thereby facilitating the interpretation of the effect of the single rider’s DoF.

Further development of the present paper could involve the inclusion of a “flexible body” to
faithfully reproduce the different frame flexibilities without using lumped stiffnesses.
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Nomenclature/Notation

Symbol Unit Description

α rad Tyre slip angle
αff rad Front fork bending about fork x axis
αfr rad Frame torsion at steering head joint
αri rad Rider’s upper body lean angle
αsw rad Swingarm torsion
βff rad Front fork bending about fork y axis
γff rad Front fork torsion
γri rad Rider’s upper body yaw rotation
δ rad Steer rotation
∆Mz N m Gyroscopic moment due to fork flexibility
∆vyC m s−1 Variation of the lateral velocity of the wheel contact point
∆ztyre m Tyre carcass compression
θfw rad Front wheel spin angle
θrw rad Rear wheel spin angle
κ - Longitudinal slip
ρ rad Main frame roll angle
ρw rad Wheel camber angle
σ m Relaxation length
φ rad Main frame pitch angle
ψ rad Main frame yaw angle
BωA rad s−1 Rotational velocity vector of the generic point A in the generic frame B
ωfw rad s−1 Front wheel rotational velocity vector
ωy rad s−1 Wheel rotational speed
cz N m−1 Tyre carcass vertical stiffness
dz N s m−1 Tyre carcass vertical damping
refei - Unit vector of the ith axis of the “ref” reference frame
Fyf N Front tyre-lateral force
Fyr N Rear tyre-lateral force
Fz N Tyre vertical load
Ifw kg m2 Front wheel inertia tensor
Irw kg m2 Rear wheel inertia tensor
Mδ N m Steer torque
Mzf N m Front tyre aligning moment
Mzr N m Rear tyre aligning moment
BSA - Transformation matrix from system A to system B
BvA m s−1 Absolute velocity vector of the generic point A in the generic frame B
vxC m s−1 Longitudinal speed of the wheel contact point
vyC m s−1 Lateral speed of the wheel contact point
vzC m s−1 Vertical speed of the wheel contact point
yri m Rider’s lower body lateral motion
zf m Front suspension travel
zr m Rear suspension travel
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Appendix A

Appendix A.1. Geometric Parameters
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Figure A1. Scheme for the geometric parameters.

Table A1. Dimensions.

Point x in m z in m

1 0 0.297
2 0.196 0.3113
3 0.3722 0.2748
4 0.4443 0.1782
5 0.4946 0.1522
6 0.539 0.1878
7 0.549 0.3608
8 0.487 0.4888
9 0.6779 0.4724

10 0.364 0.8438
11 0.415 1.14
12 1.173 0.749
13 1.1803 0.7818
14 1.3036 0.5209
15 1.3125 0.4357
16 1.41 0.282

Table A2. Wheel geometry.

Parameter Symbol Value in m

Front wheel radius rfw 0.282
Front wheel crown radius rc fw 0.06

Front wheel rim radius rrim fw 0.222
Rear wheel radius rrw 0.297

Rear wheel crown radius rc rw 0.095
Rear wheel rim radius rrim rw 0.202
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Appendix A.2. Tyre Coefficients

Table A3. Tyre vertical stiffness and damping.

Parameter Symbol Value

Front tyre vertical stiffness cz fw 130,000 N m−1

Front tyre vertical damping dz fw 800 N s m−1

Rear tyre vertical stiffness cz rw 141,000 N m−1

Rear tyre vertical damping dz rw 800 N s m−1

The other tyre coefficients used in the present work were taken from [12].

Appendix A.3. Stiffness and Damping

Table A4. Lumped stiffness and damping values. The DoF refer to Figure 1.

DoF Stiffness Damping

Frame torsion αfr 163,000 N m rad−1 100 N m s rad−1

Front fork bending αff 55,300 N m rad−1 20 N m s rad−1

Front fork bending βff 55,300 N m rad−1 20 N m s rad−1

Front fork torsion γff 16,000 N m rad−1 20 N m s rad−1

Swingarm torsion αsw 63,700 N m rad−1 20 N m s rad−1

Rider rotation about x axis αri 380 N m rad−1 34 N m s rad−1

Rider rotation about z axis γri 75.8 N m rad−1 4.79 N m s rad−1

Rider arms 1053.4 N m rad−1 19.28 N m s rad−1

Rider translation along y axis yri 38,416 N m rad−1 981 N s m−1

Appendix A.4. Suspensions

Table A5. Suspension’s parameters.

Parameter Value

Front spring stiffness 17,000 N m−1

Front spring unloaded length 0.35 m
Front spring preload 876.231 N

Front compression damping force at 2 m s−1 203 N
Front rebound damping force at 2 m s−1 865.8 N

Rear spring stiffness 58,570 N m−1

Rear spring unloaded length 0.3435 m
Rear spring preload 248.87 N

Rear compression damping force at 1 m s−1 9600 N
Rear rebound damping force at 1 m s−1 13,700 N



Appl. Sci. 2020, 10, 6826 25 of 27

Appendix A.5. Mass and Inertia

Table A6. Mass parameters.

Parameter Symbol Value

Frame mass mfr 153.716 kg
Rider lower body mass mri lo 11.414 kg
Rider upper body mass mri ub 33.68 kg

Upper fork mass mff up 9.3 kg
Lower fork mass mff lo 6.5 kg
Front wheel mass mfw 11.9 kg
Swingarm mass msw 8 kg
Rear wheel mass mrw 14.7 kg

Table A7. Inertia parameters.

Parameter Symbol Value

Frame inertia Ifr




9.2774 0 2.267
0 19.0193 0

2.267 0 13.6702


 kg m2

Rider lower body inertia Iri lo




0.1163 0 −0.0055
0 0.0942 0

−0.0055 0 0.1036


 kg m2

Rider upper body inertia Iri ub




1.4280 0 −0.443
0 1.347 0

−0.443 0 0.916


 kg m2

Upper fork inertia (z axis ≡ steer axis) Iff up




0.5 0 0
0 0.4 0
0 0 0.13


 kg m2

Lower fork inertia (z axis ≡ steer axis) Iff lo




0.3 0 0
0 0.25 0
0 0 0.09


 kg m2

Front wheel inertia Ifw




0.27 0 0
0 0.484 0
0 0 0.27


 kg m2

Swingarm inertia Isw




0.02 0 0
0 0.259 0
0 0 0.259


 kg m2

Rear wheel inertia Irw




0.383 0 0
0 0.638 0
0 0 0.383


 kg m2
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4 Steps Towards Optimized Distribution of Structural Stiffness

4.2 Study of Weave and Wobble with Elastic Multi-
body Simulation (EMBS) [IDETC/CIE 2022]

In the previous section, it was shown how the flexibility of the front fork plays a deciding role in
the stability of wobble. As reported in Section 2.2.3, the literature shows that the other chassis
flexibilities also influence both weave and wobble. This suggests that, for an accurate modeling
of these eigenmodes, a model of the whole chassis flexibility is required. Most of the works in this
field use the lumped stiffness approach (Section 2.3.1). However, they have never demonstrated
if the accuracy of the lumped stiffness models is sufficient for this type of simulation. In fact,
lumped stiffness models strongly approximate the flexural behavior of the real component, so
this approximation could lead to incorrect results when simulating weave and wobble.

In this publication, the effect of structural flexibilities on weave and wobble is analyzed with the
flexible multibody approach, i.e., leveraging on EMBS. The aim is to construct a model where the
flexibility of each structural component is modeled with high accuracy. For the implementation
of the flexible multibody approach the FFRF formulation is used, which is suitable to model
the deformation of components that undergo large nonlinear rigid body motions and small
linear elastic displacements. For the MOR required in the EMBS, two common approaches are
adopted: Craig-Bampton and modal truncation. Moreover, for the implementation of the FFRF
itself, the Tisserand frame method and the Reference Conditions method are compared.
To verify the accuracy of the flexible multibody models of the structural components, stiffness
tests on the real components are compared with the same tests carried out in the simulation. The
deviation between real data and simulation is under 6.5 % and, therefore, the flexible multibody
models of the components are used to build the flexible multibody motorcycle model, which is
needed to simulate weave and wobble.

For the simulations, the model presented in Section 4.1 is adapted to represent a touring
motorcycle for which the FEM models of the structural components were available. These
models are processed with MOR to reduce their dimension and then included in the MBS
environment. The motorcycle considered in this publication has a Telelever front suspension
and, therefore, in the following the term “front assembly” is used instead of front fork. Moreover,
the swingarm is a four-bar linkage (Paralever, Section 2.2.2). The components modeled as
flexible bodies are: the frame, front assembly, and swingarm; the front assembly and swingarm
are composed of several sub-components, which are listed in the publication.

The main results are reported in Figure 4.5, where multiple cases are compared: the curves
marked as “Rigid” are obtained with the motorcycle model without any flexibility; the curves
marked as “Frame”, “Front assembly” and “Swingarm” are obtained with a motorcycle model
where only the indicated component is modeled as flexible body while the other are rigid; the
curves marked as “All flexible” are generated with a motorcycle model where all the structural
components are modeled as flexible bodies. The front assembly is the structural component
whose flexibility has the strongest effect on both weave and wobble: compared to the rigid case,
its flexibility destabilizes wobble at low speeds and stabilizes it at high speeds, thus qualitatively
confirming the correlation described in Section 4.1. Moreover, the flexibility of the front assembly
destabilizes weave at high speed. The flexibility of the frame has a similar influence as the
front assembly, however, it is less marked because the frame is significantly stiffer. Finally, the
flexibility of the swingarm does not affect wobble and slightly stabilizes weave at high speeds.

In Figure 4.6, a state-of-the-art lumped stiffness model of the front assembly is compared with
the model where the front assembly is modeled with the flexible multibody approach. The
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Figure 4.5: Effect of the flexibility of the structural components on weave and wobble [184].

state-of-the-art model is based on common assumptions on the position of the joints used to
model the flexibility of the front assembly with the lumped stiffness approach. It presents a
significant error with respect to the flexible multibody model. This confirms that lumped stiffness
models can provide incorrect results if they are not parameterized appropriately. A method for
solving this issue is proposed in Section 4.3.
Finally, some insights into MOR are provided and it is shown that, for modeling an assembly
composed of several flexible bodies, the Craig-Bampton method provides better results than
modal truncation. Moreover, it is shown that the Reference Conditions method, if applied correctly,
can significantly reduce the computation cost of the model while preserving the accuracy.

Besides these results, the motorcycle model with flexible bodies serves as basis for the method
presented in Section 4.3, where a lumped stiffness motorcycle model with high accuracy is
proposed. In that context, the model presented in this publication is considered as “ground truth”
to test the accuracy of the lumped stiffness motorcycle model.
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Figure 4.6: Comparison between the model with flexible front assembly and a state-of-the-art lumped
stiffness model of the front assembly [184].
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ABSTRACT
Weave and wobble are well known eigenmodes of motorcy-

cles and have been studied by several authors because of their
importance to the overall stability and safety of motorcycles.
Studies have highlighted the importance of structural flexibility
on these eigenmodes. A common approach in multibody simula-
tion for modeling the flexibility is the lumped stiffness method. It
is advantageous for its limited modeling effort and its small im-
pact on computational time. However, it was never demonstrated
if this approach leads to sufficient accuracy when simulating the
weave and wobble eigenmodes. The present work answers this
question by modeling the structural components of a motorcycle
with the flexible multibody approach. The most relevant com-
ponents for the stability of weave and wobble are identified. A
comparison with the lumped stiffness approach is also proposed.
Moreover, some implementation details concerning models with
flexible bodies are discussed.

1 INTRODUCTION
Motorcycles are intrinsically unstable systems [1]. The

rider’s control inputs allow the stabilization of the capsize mode,
thus avoiding the tilting of the motorcycle while at the same time
following the desired trajectory. These control actions occur at
a low frequency (about 0.5 Hz). However, motorcycles possess
eigenmodes with higher frequencies that may also become un-

∗For correspondence: francesco.passigato@tum.de

stable. If this happens the rider cannot actively stabilize the mo-
torcycle. Two relevant eigenmodes in this context are weave and
wobble [2–4]. Weave is characterized mainly by roll, yaw and
steering-head rotation, where the last two are almost opposite
in phase [5], and its eigenfrequency is in the range 1-4 Hz [4].
Wobble is dominated by steering-head rotation and has an eigen-
frequency that varies in the range of 6-10 Hz [3] depending on
motorcycle parameters. As the rider is not able to stabilize them,
the free oscillation of these modes should remain well damped
throughout the whole speed range of the motorcycle. Manufac-
turers use both simulation and experimental analysis in order to
guarantee sufficient damping of these modes.
By conducting studies about the parameters influencing motor-
cycle stability, the stiffness of structural components was identi-
fied as an influential factor, see section 2 for more details. This
somehow motivates the constant evolution that can be seen in
the structural design of motorcycles, which always tries to solve
the trade-off between weight reduction and achieving the desired
structural stiffness. The research community proposes different
methods with increasing complexity for modeling the flexibility
of the structural components of a motorcycle. The most basic
method is to use lumped stiffnesses, where the elastic behavior is
approximated by introducing revolute joints with an associated
stiffness and damping. This method allows for the unification of
a primitive representation of the flexural behavior with moder-
ate modeling overhead and advantageous computational time [6].
For this reason, it was the first one to be adopted. The most re-

1 Copyright © 2022 by ASME



cent studies on motorcycle stability make use of this modeling
technique, and therefore the available information about the in-
fluence of the motorcycle flexibility on the weave and wobble
eigenmodes is mainly provided by lumped stiffness models.
Thanks to the progress in computing power and software tech-
nology, new tools are available for accurately modeling flexibil-
ity. Finite-Element-Methods (FEM) are mainly adopted to con-
duct static simulations and evaluate the structural eigenmodes
of a single body. When it comes to the dynamic simulation of
an assembly, Multibody Simulation (MBS) is the most appropri-
ate approach [7]. The standard version of MBS features rigid
bodies, which are connected to each other with different type of
joints in order to restrain the motion of the bodies and to de-
fine the assembly itself. The standard formulation can also be
extended to include flexible bodies, thus obtaining the so-called
Elastic Multibody Simulation (EMBS) [8]. This opens up new
possibilities into the investigation of the effect of flexibility on
the stability of motorcycles.
While EMBS has been already used to study the propagation of
engine vibration [9] and road excitation to the rider [10], few
studies have tackled the problem of analyzing the weave and
wobble eigenmodes with a motorcycle model that includes flexi-
ble bodies. The present work will shed light on this topic by sim-
ulating the structural components of a motorcycle with flexible
bodies. An example of the comparison between modeling with
flexible bodies and lumped stiffnesses is also proposed. More-
over, the isolated influence of each substructure will be shown,
in order to highlight which elements have the greatest influence
on weave and wobble. Finally, this framework offers the possi-
bility to investigate the role of the different methods involved in
implementing flexible bodies in a MBS.

2 STATE OF THE ART
This section is divided into three subsections. The first sum-

marizes the works that analyze the influence of the structural
components of a motorcycle on the weave and wobble eigen-
modes. The second presents the topic of EMBS. The third intro-
duces the concept of Model Order Reduction (MOR).

2.1 Effect of Flexibility on Weave and Wobble
The investigation of the most influential parameters on the

weave and wobble eigenmodes is a broad and active research
topic. Beside the rider and tires, which have a major influence,
importance has been attributed to the stiffness of the structural
components of the motorcycle. The first evidence of this corre-
lation was obtained experimentally in the 1980’s [11, 12]. After
these experimental results, models have been implemented that
simulate the flexibility of the motorcycle components. As men-
tioned in the introduction, the lumped stiffness approach was the
first method adopted for this aim. The first examples of its ap-

plication are found in [6, 13]. The authors noticed a remarkable
influence of the front fork stiffness on the damping of the wob-
ble mode. Most modern studies still rely on lumped stiffness for
studying the correlation between stiffness and stability. How-
ever, while early works still relied on “hand-written” mathemat-
ical models, the most recent examples use modern MBS soft-
ware. Thanks to the modeling advantages provided by MBS,
the lumped stiffness approach has been adopted to model several
structural components: the front fork bending stiffness [14–16],
the frame torsional stiffness [17, 18], and the swingarm bending
and torsional stiffness [14, 19].
The primary challenge when using the lumped approach is pa-
rameter estimation of the lumped stiffness and damping coeffi-
cients. Moreover, the initial rigid body for which the flexibility
has to be modeled must be split into two or more rigid bodies,
and therefore the related mass and inertia parameters must be
estimated as well. For approximating the flexibility of the main
frame with a lumped stiffness, Doria et al. [20] propose a method
based on the twist axis approach, whereby the twist axis is de-
fined as the intersection between the loaded and unloaded planes
of the frame. Using a test rig for applying loads on the motorcy-
cle frame, the authors identify a static twist axis, obtained with
quasi-static application of the load, and two dynamic twist axes
corresponding to the first and second frame eigenmodes, which
are bending and torsional, respectively. The results show how
it is impossible to define a single location of the lumped stiff-
ness which correctly describes the frame deformation for every
frame design. Therefore, the parametrization effort is quite high.
The twist axis approach was employed also for the front fork
in [21] and for the swingarm in [19]. Similarly to the previous
case, it is not trivial to understand whether to use the parameters
for the lumped stiffness resulting from the static or the dynamic
test. [15] develops a method to tune the lumped stiffness on the
first bending eigenmode to simulate the fork bending stiffness.
The resulting stiffness was similar to that obtained with a static
experiment. However, some assumptions on the deformation pat-
tern have to be made, which may not be valid in general.
As highlighted in the previous paragraph, it is not a trivial task to
find the correct parameters for a lumped stiffness model, there-
fore simulating weave and wobble with this approach could lead
to errors. For this reason, some authors have studied motorcy-
cle dynamics using flexible bodies. [22] models the swingarm as
flexible body; compared to a rigid structure, the authors notice an
increase in instability of the motorcycle when braking and driv-
ing over curbs. [10] models the main frame as flexible body and
reports relevant differences in the vertical acceleration at chosen
points compared to the rigid case when simulating a passage over
road undulations. Finally, [23] analyzes the wobble phenomenon
of a three-wheeled vehicle by modeling the frame and the steer-
ing column as flexible bodies. The steering column was the most
influential element.
As this brief summary underlines, the weave and wobble eigen-
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modes of motorcycles have not yet been investigated in detail
using flexible multibody dynamics. The most common approach
uses lumped stiffness. However, it has never been verified if this
approximation provides reliable results for the simulation of the
weave and wobble eigenmodes. In the present work, this topic
will be tackled by modeling the structural components of the mo-
torcycle using the flexible multibody approach and studying their
effect on weave and wobble.

2.2 Elastic Multibody Simulation (EMBS)
EMBS extends the standard formulation of MBS to include

the modeling of elastic bodies [24, 25]. For this purpose, differ-
ent formulations have been proposed. The Consistent Rotation-
Based Formulation (CRBF) and the Absolute Nodal Coordinate
Formulation (ANCF) are suitable for modeling flexible bodies
that undergo big elastic deformations [26]. Contrastingly, the
Floating Frame of Reference Formulation (FFRF) is commonly
used for the modeling of flexible bodies that are characterized
by big nonlinear rigid body movements and small linear elastic
deformations [22, 27, 28]. In the FFRF, a Floating Frame of Ref-
erence (FFR) is defined for each flexible body. The big nonlinear
motions are expressed by the position vector of this frame with
respect to an inertial frame. The elastic deformations are then ex-
pressed with respect to the FFR. The motorcycle structural com-
ponents have to “follow” the big nonlinear displacements of the
motorcycle and are likely to undergo small elastic displacements.
For this reason, the FFRF is adopted in this work.
To attach the FFR to its flexible body, some constraints have to
be defined: these are needed to uniquely define the motion of the
body. Without these constraints, the matrices defining the flexi-
ble body would still contain rigid body modes, which as a result
would be accounted for twice.
Different methods are available to express these constraints. The
Tisserand frame method defines the FFR using dynamic con-
straints. In particular, the FFR is selected in such a way that the
linear momentum and angular momentum due to body deforma-
tion are zero [8]. In this way, the FFR lays at every instant in the
center of mass of the flexible body and is not necessarily attached
to a material point [7]. Another method fixes the FFR to the flex-
ible body with kinematic constraints [8]. This method consists
in specifying so-called Reference Conditions (RC), which aim at
eliminating the rigid body modes from the matrices of the flex-
ible body [29]. The RC should be chosen according to the con-
straints that will be imposed on the flexible body during simula-
tion. Otherwise, they would alter its deformation pattern [7, 29].
Further details on the implementation of these methods are pre-
sented in section 4.
The FFRF is the most used formulation for multibody simula-
tions. In fact, it provides an interface between any multibody-
and finite-element-code [25]. However, the models created with
FEM contain many Degrees of Freedom (DOF), up to 106 for

some industrial applications. These models cannot be directly
interfaced with a multibody code because the resulting computa-
tional time would render the model unusable [30]. For this reason
Model Order Reduction (MOR) methods are required, which are
further explained in section 2.3.

2.3 Model Order Reduction
MOR aims at reducing the number of DOF in a model of

order N to make its computation more efficient. In the context of
structural mechanics, and more specifically MBS, the common
procedure is to start from an FEM of the component and then
apply the MOR to reduce the high number of elastic coordinates
and thus significantly reducing the computation time [31].
Assuming that the modeled component will undergo small dis-
placements around an equilibrium position [32], as is the case
with FFRF, a second-order linear equation can be used to express
the elastic displacements:

MMMeq̈qqe(t) + DDDeq̇qqe(t) + KKKeqqqe(t) = fff (t), (1)

where qqqe(t) ∈ RN are the elastic DOF of the body,
{MMMe,DDDe,KKKe} ∈ RN×N are the mass, damping and stiffness ma-
trices, respectively, and fff (t) ∈ RN is the vector of the external
forces. The reduction of the DOF is usually achieved by projec-
tive MOR [32]. The vector of the elastic DOF is approximated
using the reduced displacements q̂qqe(t) ∈ Rn by the relation:

qqqe(t) ≈ VVV q̂qqe(t), (2)

with VVV ∈ RN×n being the projection matrix. The aim is to obtain
a reduced model with less DOF than the original: n� N. The
reduced form of Eqn. 1 is:

M̂MMe ¨̂qqqe(t) + D̂DDe ˙̂qqqe(t) + K̂KKeq̂qqe(t) = f̂ff (t), (3)

The reduced mass, damping and stiffness matrices and the re-
duced vector of external forces are obtained as follows:

{M̂MM, D̂DD, K̂KK} = VVV T · {MMM,DDD,KKK} ·VVV , {M̂MM, D̂DD, K̂KK} ∈ Rn×n,

f̂ff = VVV T fff , f̂ff ∈ Rn.
(4)

The projection shown in Eqn. 4 is called the one-sided projection,
as opposed to the two-sided projection where, instead of left mul-
tiplying with VVV T, another projection matrix WWW T is used [33].
Different methods are available to obtain the projection matrix
VVV . In this work, two of the most common methods in structural
mechanics are used. The reader is referred to [32, 34] for a sur-
vey on other methods proposed in the literature.
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A simple method to carry out a MOR is the so-called modal trun-
cation. It consists of approximating the original model with a lin-
ear combination of its undamped eigenmodes [34]. First of all,
the unconstrained eigenvalue problem is solved:

(KKKe − ω2
j MMMe)φφφ j = 000, (5)

where φφφ j is the eigenvector corresponding to the eigenfrequency
ω j. The matrix VVV is then obtained by choosing n� N eigenvec-
tors, generally those corresponding to the lowest eigenfrequen-
cies: VVV = ΦΦΦn. The main issue is choosing the proper number n
that achieves the desired accuracy in the approximation.
Another very common MOR method in structural mechanics is
the Craig-Bampton (CB) method [35]. It is based on the concept
of substructuring and is particularly well-suited for MBS. It splits
an assembly into substructures, which could be different flexible
bodies of a multibody system. MOR is carried out separately on
these substructures, which are assembled again after the reduc-
tion [36]. The DOF at the boundaries of the substructures are
of particular importance because they are responsible for restor-
ing the compatibility conditions between the substructures [36].
Therefore, the elastic DOF qqqe are split into boundary DOF qqqb
and internal DOF qqqi. Equation 1 can be represented as:

[
MMMbb MMMbi
MMMib MMMii

]
·
[

q̈qqb
q̈qqi

]
+

[
KKKbb KKKbi
KKKib KKKii

]
·
[

qqqb
qqqi

]
=

[
fff b
000

]
. (6)

Equation 6 describes an undamped system and the external forces
are assumed to act only on the boundary DOF. The time depen-
dency has been omitted for better readability.
The CB method expresses Eqn. 2 as:

[
qqqb
qqqi

]
=

[
III 000

−KKK−1
ii KKKib ΦΦΦm

][
qqqb
ζζζ

]
(7)

The first column of this projection matrix VVV represents the inter-
nal DOF as a function of the boundary DOF. It is obtained by
imposing a unitary displacement to every boundary DOF while
keeping the other boundary DOF fixed and calculating the result-
ing static displacements of the internal DOF. This part is there-
fore called static or Guyan condensation [37]. To approximate
the dynamic behavior of the substructure, the eigenvectors ΦΦΦm
are also used. These are obtained by solving an eigenvalue prob-
lem on the internal DOF with fixed boundary DOF for each sub-
structure: (KKKii −ω2

j MMMii)φφφ j = 000. The matrix ΦΦΦm is then obtained
by selecting m�Ni eigenvectors, thus carrying out a modal trun-
cation on the internal DOF. The terms of ζζζ are the related modal
coordinates and ΦΦΦm contains the so-called fixed-interface eigen-
modes.

The fundamental characteristic of the CB method is that the
boundary DOF are still present in the reduced model. As already
mentioned, this is particularly important in substructuring be-
cause it allows the compatibility conditions to be satisfied when
coupling the substructures in the final assembly.

3 OBJECTIVES OF THIS WORK
The present paper analyzes the effects of modeling the struc-

tural components of a motorcycle with flexible bodies on the
weave and wobble eigenmodes. The components with the great-
est influence are identified and the problems in approximating the
real flexural behavior with lumped stiffnesses are highlighted.
Moreover, the consequences of carrying out MOR with modal
truncation or CB are analyzed. Some results about the implica-
tions on model efficiency when using the Tisserand frame or RC
methods for the FFRF are shown. Finally, considerations about
model validation are presented.

4 MODELING
This section gives a brief overview on the motorcycle model

and provides some details about modeling using EMBS.

4.1 Motorcycle model
The motorcycle model used in this work is based on [38].

The FEM models of the structural components were available
for a different motorcycle compared to that in [38], i.e. for a
touring motorcycle currently available on the market. For this
reason, the parameters of the model in [38] have been adapted
to represent this motorcycle. Beside the changes in the mass
and geometry, the main differences regard the suspensions: the
front suspension is a multilink, while the rear suspension uses a
four bar linkage. Without considering the DOF coming from the
flexible bodies, the motorcycle has 11 DOF: 6 from rigid body
translations and rotations, 2 wheel spins, steering head rotation
and 2 suspension travels. Moreover, the rider is modeled with
two rigid bodies, representing the upper and lower body, which
are connected with a revolute joint and a spring/damper to sim-
ulate the roll motion of the rider with 1 DOF. The rider weight
is 88 kg. The motorcycle is loaded with an additional total mass
of 40 kg, which is distributed in three bags mounted on the rear
frame. The model is fitted with a steering damper with a damp-
ing value of 7 Nmsrad−1. For the tire forces, the Pacejka Magic
Formula adapted for motorcycles is used [39]. The aerodynamic
forces are also modeled with a single force placed and directed
in such a way that it produces a moment causing the same pitch
rotation measured in real tests. Further motorcycle data cannot
be provided because are property of BMW®.
The frame, front fork and swingarm are modeled as flexible bod-
ies. The front fork is composed of five bodies: the fork bridge,
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two stanchions, lower fork and wishbone. The swingarm is com-
posed of three bodies: main arm, link and wheel carrier.
The simulations are performed with the multibody simulation
software MBSim. The original matrices for the flexible bodies
are exported from FEM models in Nastran® and the MOR is
carried out with a Python code adapted from [40]. The origi-
nal FEM models of the structural components have more than
106 DOF but their matrices are very sparse, therefore the code
makes use of the scipy package, which uses the sparse na-
ture of the matrices to save computational time and RAM when
computing the eigenvalue problems during MOR. Still, the cal-
culations for MOR require about 70 GB of RAM. Therefore, a
high-performance computing machine with more than 360 GB
of RAM and 20 CPUs has to be employed.

4.2 Implementation of FFRF
As explained in section 2.2, two methods are available to im-

pose the constraint needed for an FFRF: the Tisserand frame and
RC methods. In the Tisserand frame, these constraints, i.e. that
the linear momentum and angular momentum due to the body
deformations are zero, can be imposed by orthogonalizing the
rows of the projection matrix VVV with respect to the rigid body
modes [8]. When using modal truncation for the MOR, it is
sufficient to select only the eigenvectors with non-zero eigen-
frequencies, since the eigenvectors with zero eigenfrequency are
the rigid body modes. The orthogonality of the selected eigen-
vectors to the rigid body modes is then guaranteed by the mutual
orthogonality of the system eigenmodes. When using CB for the
MOR, the orthogonalization step must be carried out after cal-
culating VVV , since this method does not eliminate the rigid body
modes [7]. In the present work, this step is done using a QR de-
composition of the matrix VVV .
For imposing the RC, the rigid body modes must be eliminated
from the original matrices before applying MOR. This is done
using a transformation matrix RRRc [29]. The matrix can be di-
rectly applied to Eqn. 1:

RRRT
c MMMeRRRcq̈qqe(t) + RRRT

c DDDeRRRcq̇qqe(t) + RRRT
c KKKeRRRcqqqe(t) = RRRT

c fff (t). (8)

When specifying the constraints for the RC method, some DOF
must be eliminated from the original matrices. The matrix RRRc can
be obtained by starting with an identity matrix with size RN×N

and deleting the columns corresponding to the DOF that have to
be eliminated. As stated by [7, 29], the RC must only eliminate
the rigid body modes and define the shape of deformation with
respect to its FFR. They do not introduce any constraint that re-
stricts the gross motion of the body. Therefore, the RC are sub-
stantially different from the boundary conditions used in FEM
simulations, which instead are introduced to constrain the kine-
matics of a body. However, the RC must be chosen according to
the physical joints that the body will have once assembled. For

this reason, there is no unique set of RC that is suitable for all ap-
plications [7,29]. When using the RC method, the designer has to
carefully choose the DOF to be eliminated. Section 5.2 presents
how to select the DOF for imposing the RC on the frame.

5 RESULTS
This section is divided into three subsections: the first an-

alyzes in detail the influence of the flexibility of the structural
components on weave and wobble, the second discusses some
details about MOR and FFRF, and the third highlights some is-
sues concerning model validation.

5.1 Influence of the flexibility of structural compo-
nents

This section begins by presenting the effect of including the
structural components of the motorcycle as flexible bodies on
weave and wobble. Figure 1 shows how the eigenfrequency and
real part (i.e. the damping) of the weave and wobble eigenmodes
are affected when the components are added as flexible bodies
one at time while modeling the other components as rigid bodies.
Also the curves corresponding to the case where all components
are modeled as flexible bodies are shown.
The curves in Fig. 1 are obtained with eigenvalue analyses at
different speeds using the multibody software MBSim: the equa-
tions of motion are internally linearized around a point that can
be specified by passing a state vector. To generate this vector, a
time simulation is carried out for each speed, where the motor-
cycle reaches the equilibrium in straight-running conditions. The
state vector corresponding to this equilibrium is saved and used
for the eigenvalues analysis.
For these results, the CB method has been used for MOR; more-
over, the Tisserand frame method is adopted in the FFRF. The
boundary DOF for each body are at the interfaces where the other
bodies are connected; moreover, 20 fixed-interface eigenmodes
are used for each body. 20 modes were chosen to represent a suf-
ficiently big frequency range in the reduced model of every com-
ponent. In the case of the frame, this includes frequencies up to
600 Hz, which is an order of magnitude more than the weave and
wobble eigenfrequencies. The frame has the lowest frequency
content, so selecting 20 modes also for the other components
should lead to acceptable accuracy. Further optimization of the
reduced order models could be an extension of the present topic.
Table 1 shows the number of DOF of the structural components
before and after MOR. The DOF after MOR are indicated as a
sum to highlight how many boundary DOF and fixed-interface
modes (20) are present.
The following considerations can be made for each structural
component:

• The frame is very stiff so its flexibility marginally influences
weave and has only a small effect on wobble. However,
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TABLE 1: NUMBER OF DOF BEFORE AND AFTER MOR.

original after MOR

Frame 3,8·106 20+54

Front fork

Fork bridge 8,0·105 20+9

Stanchions (each) 2,1·105 20+9

Lower fork 1,7·106 20+18

Wishbone 4,7·105 20+12

Swingarm

Main arm 2,7·106 20+15

Link 4,1·105 20+6

Wheel carrier 2,1·106 20+12

these effects already reflect the behavior known from prac-
tical experience: compared to a rigid frame, a flexible frame
tends to destabilize high speed weave, while wobble is sta-
bilized at high speed and destabilized at low speed.
• The flexibility of the front fork has a marginal effect on

weave and has a similar effect on wobble as the frame. This
effect is, however, more marked. This also overlaps with
known behavior, i.e. that a more flexible fork reduces the
wobble damping at low speed and increases it at high speed.
• The flexibility of the swingarm has no influence on wobble

and a minor positive effect on the weave damping.

The model with all flexible components seems to combine the
effects of the fork and frame on both weave and wobble.
To summarize, the flexibility at the front, due to either the frame
or front fork, has a considerable effect on wobble. This correla-
tion is similar to the results obtained in previous works, where the
lumped parameter approach was used. For example, [13–15, 38]
obtained similar qualitative results when representing the lateral
flexibility of the front fork as a revolute joint with a rotation axis
perpendicular to the steering axis and adding a torsional spring-
damper element to it. [6, 17] model the frame torsional flexi-
bility at the steering head joint with a similar approach. The
effect of the frame and fork flexibility are qualitatively similar
because they both allow a lateral movement of the front wheel.
This influences the gyroscopic moments and the tire forces, as
analyzed in [14, 38], thus causing the effect presented in Fig.
1. The swingarm flexibility slightly stabilizes the weave at high
speed. [19] obtained a similar result modeling the torsion of the
swingarm with a lumped stiffness. However, a destabilizing ef-
fect of the lateral bending on weave was also reported. As the
present work uses flexible bodies, all possible flexibilities of the
swingarm are considered. Their total effect is, as mentioned, to
stabilize the weave at high speed. The wobble is not affected by
the swingarm flexibility. This is plausible because the swingarm

has no structural function for the front wheel, which is the wheel
that mainly influences wobble.
While general consideration can be made using lumped stiffness,
it is difficult to approximate the real deformations of each body
with this approach, as described in section 2. Moreover, it is not
clear how the simplifications arising from the lumped stiffness
approach impact the simulation of the weave and wobble eigen-
modes. In the following, an example is proposed focusing on the
front fork.
The differences between modeling the fork flexibility with
lumped parameters or with flexible bodies is analyzed. Two
lumped stiffnesses are used: one for the lateral (bending) stiff-
ness and one for the torsional stiffness along a central axis paral-
lel to the fork tubes, herein referred to as the fork axis, see Fig. 2.
A simple way to estimate these parameters is to carry out static
tests where the front fork is clamped at the steering head joint. In
the present work, this test is done in a simulation where only the
front fork is present and its components are modeled with flexi-
ble bodies. For measuring the bending stiffness, a lateral force is
applied on the wheel axis and the resulting lateral displacement
of the wheel center is measured [15, 21]. The linear stiffness kl
is obtained by dividing the applied force with the lateral move-
ment; it is transformed then into a torsional stiffness kt using the
relation:

kt = klb2, (9)

where b is the arm between the wheel center and the pivot of the
revolute joint used for the lumped stiffness. In the present case,
the revolute joint for modeling the bending stiffness is at the junc-
tion between the wishbone of the suspension and the lower fork,
and has its axis perpendicular to the fork axis, see Fig. 2. This
decision has been made due to the particular geometry of the fork
in the present model. The wishbone is also subjected to lateral
force and putting the lumped stiffness above this junction would
lead to a higher stiffness at the wheel axis. For the identification
of the torsional stiffness, a similar test is carried out by applying
a moment directed along the fork axis at the wheel center. Di-
viding the moment with the resulting rotation directly gives the
parameter for the lumped stiffness. The revolute joint is at the
same point as the one used for the bending stiffness but has its
axis parallel to the fork axis.
Because of the introduction of the revolute joints, the fork has
to be split into two rigid bodies: the upper and lower fork. The
mass and inertia data for these bodies were already available, so
no additional identification for these data is required.
Figure 3 shows the comparison of the two models. Only the
fork flexibility has been considered and modeled either with flex-
ible bodies or with lumped stiffnesses. The model with lumped
stiffnesses is able to approximate qualitatively the effect of the
fork flexibility on the wobble eigenmode. However, some differ-
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FIGURE 1: EFFECT OF THE FLEXIBILITY OF STRUCTURAL COMPONENTS ON WEAVE AND WOBBLE.

ences are present: compared to the results with flexible bodies,
the wobble frequency is lower and its damping shows a slightly
different trend. Moreover, the weave stability deteriorates more
markedly at high speed. A possible reason can lay in the static
test for the identification of the bending stiffness: when applying
the lateral force at the wheel axis, a torsional deformation may
also be present, as the wheel axis does not necessarily lay on the
torsional axis of the fork. The resulting bending stiffness may be
affected by this error. Moreover, the assumption on the position
of the revolute joint, which affects the length b, is an approxima-
tion of the real deformation pattern.
Summarizing, the approximation of the front fork deformation
with a lumped stiffness provides qualitatively comparable results
when analyzing weave and wobble, but particular attention needs
to be devoted to the test methods for the identification of param-
eters. Moreover, the positions of the lumped parameters were
“chosen” considering the special geometry of the suspension,
but it is in general a parameter needing identification. A simi-
lar approach for the frame is significantly more complex. In this
case, it is not straightforward which test is required to identify
the lumped stiffness parameters. Moreover, as explained in sec-
tion 5.1, the frame must be split into two or more rigid bodies
and their mass and inertia data identified. Therefore, a similar
comparison as in Fig. 3 for the frame is an interesting research
topic, but a suitable method for the approximation with lumped
stiffness has to be developed.

5.2 Modeling details on MOR and FFRF
As presented in section 2, the designer has several possible

paths when using flexible multibody dynamics. The first choice
to be made is the method of MOR. In this work, two of the most

b

fork axis

wishbone

FIGURE 2: FRONT FORK GEOMETRY.

common methods are compared, i.e. CB and modal truncation.
For the CB method 20 fixed-interface eigenmodes are used and in
modal truncation the first 20 eigenmodes are kept, so that the fre-
quency content of the reduced models is comparable. Moreover,
the Tisserand frame is imposed in the FFRF. Figure 4 shows the
curves of weave and wobble when modeling only the frame as
flexible body and using these methods for MOR. Only the damp-
ing is shown because it is the main feature of interest when an-
alyzing stability. Though, the following considerations are also
valid for the eigenfrequencies. When using modal truncation, the
curves are closer to those of the rigid case, in particular for wob-
ble. This suggests that the modal truncation produces a reduced
model with higher stiffness. This was also confirmed by static
measurements on the lateral stiffness of the frame, whereby the
reduction with CB provides results similar to the real measure-
ments while the stiffness after modal truncation is too high. This
difference can be due to the fact that CB maintains the boundary
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FIGURE 3: EFFECT OF FORK FLEXIBILITY WHEN MODELING WITH FLEXIBLE BODIES OR LUMPED STIFFNESSES.

DOF also in the reduced model. For this reason, the other bodies
of the motorcycle are attached at “physical” DOF, which allows
the correct transmission of constraint forces. With modal reduc-
tion all DOF are approximated by modal coordinates. The other
bodies are not attached to “physical” DOF. The transmission of
forces is not represented correctly, which erroneously increases
the overall stiffness of the flexible body. This highlights the great
importance of the boundary DOF within substructuring.
Another important aspect is the choice of method in implement-
ing the FFRF. The Tisserand frame method is very common, as
it provides good results in most of the cases. However, in some
situations it does not allow a correct approximation of the real
body deflection [7]. In the following, only the frame is mod-
eled as a flexible body and the results using the Tisserand frame
and the RC methods after model reduction with CB are com-
pared. Again, in the CB method, 20 fixed-interface eigenmodes
are kept. For imposing the RC, the DOF corresponding to the
joints between frame and engine are eliminated. These joints are
visualized with red marks in Fig. 6. Because of the joints, the
frame is not able to deform at these DOF, so that they would
never be “active” during simulation. Eliminating these DOF
deletes the spurious rigid body modes, without changing the ac-
tual deformation pattern that the frame will experience in the fi-
nal assembly. Figure 5 shows that, for the present case, there is
no difference in the results choosing the one formulation over the
other. Again, only the damping is shown, but the same is valid
for the eigenfrequencies. Note that the reduced model with the
RC method has less DOF: the reduced model after applying the
Tisserand frame has 74 DOF while with the RC method it only
contains 50 DOF because 8 nodes (each containing 3 DOF) cor-
responding to the engine mounts are eliminated. This leads to

a remarkable decrease in computation time of the whole motor-
cycle model: for a time simulation of 1.5 s, the model with the
Tisserand frame needs about 1900 s, while the model with the RC
method only takes 300 s. This advantage is not only due to the
smaller model order, but also to the fact that the DOF eliminated
for the RC method are boundary DOF. When applying MOR with
CB, the boundary DOF are maintained in the reduced model with
the so-called static modes, see section 2.3. These modes are as-
sociated with a very high frequency. For a time simulation high
frequency contents are always critical, because when solving the
differential equations the minimal time step has to be reduced.
Deleting these DOF in the reduced model therefore brings the
double advantage of reducing the model dimension and relaxing
the required minimum step size. Of course, only the appropriate
boundary DOF can be eliminated, otherwise one would alter the
deformation pattern of the body.

5.3 Model validation and reduction error
As a conclusion to this section, some considerations on the

validation of the results are presented. In particular, how to es-
timate if the real stiffness of the structural components is cor-
rectly represented by the reduced models. First of all, one has
to estimate the reduction error as result of MOR, i.e. the er-
ror between the original FEM model and the reduced model. A
common way to estimate this error is to compare the eigenvalues
and eigenvectors of the original and reduced model [31, 41]. By
applying the RC method, the original eigenmodes are certainly
altered, therefore this measure of error would produce a large re-
duction error. However, as shown in section 5.2, this does not
necessarily lead to poor simulation results when the assembled
model is considered. This measure of error is therefore certainly
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FIGURE 6: VISUALIZATION OF ENGINE MOUNTS.

well suited if one is interested in approximating a single body
that has no connection to other bodies, however it does not fairly
represent the reduction error of a whole assembly. In fact, er-
ror estimation for an assembly is a difficult task. In the present
paper, one would have to model the whole motorcycle with the
original non-reduced FEM bodies and compare the results with
the model using reduced bodies. However, a simulation with the
original bodies would imply more than 107 DOF, which leads to
unacceptable computation time. A possibility is to carry out two
MOR, one with the desired final dimension and one with a higher
reduced order. The error is calculated considering the model with

higher order as “ground truth”. Another possibility is to compare
the simulation with real measurements. This could involve static
measurements, which allows for a quick comparison on the over-
all stiffness. In the present work, this methodology for validation
was adopted. The bending stiffness of the frame was measured
in the simulation by clamping it at the swingarm axis and ap-
plying a lateral force at the steering joint; the obtained stiffness
deviates 6.4 % from experimental data. The lateral stiffness of
the fork assembly was measured by clamping it at the steering
head joint and applying a lateral force at the front wheel axis.
The deviation between experimental and simulation data is only
0.5 %. This validation is not possible for the swingarm because
static measurements are not available.

6 CONCLUSIONS
The present work analyzes the influence of the flexibility of

structural components of a motorcycle on its stability, i.e. on
the weave and wobble eigenmodes. The flexibility at the front
of the motorcycle tends to degrade the weave stability, to in-
crease the wobble stability at high speed and to decrease it at
low speed. The swingarm flexibility slightly stabilizes the weave
at high speed, while it does not affect wobble. The component
with the highest influence on stability is the front fork.
The components are modeled using EMBS, where each compo-
nent is implemented as a flexible body. This approach allows
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a more accurate modeling of the flexibility of components with
respect to the lumped stiffness approach. The latter has major ad-
vantages when it comes to computation time, however it heavily
approximates the deformation pattern. Moreover, the identifica-
tion of the lumped parameters is a difficult task because a suitable
method must be chosen. This choice is not trivial as the litera-
ture provides both static and dynamics methods that often iden-
tify different parameters. In the present work, it has been shown
that for the front fork a lumped stiffness model with parameters
identified by static tests leads to qualitative similar results to the
simulation with flexible bodies when simulating weave and wob-
ble. However, differences are still present and to get a perfectly
consistent result would require additional experimental effort. A
similar approach for the frame has not been shown, as a method
for the correct identification of the lumped parameters is still an
active area of research.
The framework of EMBS also makes it possible to analyze the
methods that are available for modeling a flexible body. In the
context of MOR, used to reduce the number of DOF in a flexible
body, modal truncation and CB are compared. The result is that
for an assembly consisting of several bodies, such as a motorcy-
cle, CB better approximates the behavior of the original model
because it maintains the boundary DOF, which are used to con-
nect the other components to the flexible body.
The present work uses both the Tisserand frame and the RC
methods for the FFRF. An example using the motorcycle frame
shows that both methods provide the same results. However, the
RC method can be more efficient in terms of computation time
but at the cost of requiring more modeling effort from the de-
signer, as suitable RC for the particular case must be chosen.
Further attention can be devoted to the optimization of the re-
duced order models. In particular the number of modes selected
in MOR should be chosen depending on the frequency content
of the component itself. This way, after fixing a frequency of
interest, enough modes should be selected for every component
to match that frequency. The comparison of alternative methods
for MOR is another possible extension.
An interesting continuation of the present work could be the anal-
ysis of weave and wobble in a steady-state curve to analyze the
effect of stiffness in this situation. Moreover, it could be interest-
ing to investigate if the flexibility of the structural components
affects the steering feedback perceived by the rider.
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Conference Proceedings, Linköping University Electronic
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4 Steps Towards Optimized Distribution of Structural Stiffness

4.3 Optimization of the Stiffness Distribution between
Structural Components [IMSD 2023]

The model presented in Section 4.2 leverages the flexible multibody approach to simulate
with high accuracy the effect of the flexibility of structural components on weave and wobble.
However, as introduced in Section 3.3.1, it is difficult to carry out parameter studies on the
stiffness with the flexible multibody motorcycle model. In fact, each flexible body contains the
flexibility in all directions, so that, when trying to change the stiffness in one direction, all the
stiffness properties of the body are affected. For such a parameter study, the lumped stiffness
approach has the advantage that every stiffness parameter possesses a physical interpretation
because it represents the stiffness of the component in a certain direction. A study leveraging
a lumped stiffness model would therefore provide useful information for design optimization.
However, the disadvantage of lumped stiffness models is the lower accuracy compared to flexible
multibody models.
For this reason, the present publication proposes a preliminary procedure for parameterizing
lumped stiffness models, which increases the accuracy of lumped stiffness models. This
procedure and its advantages are presented in Section 4.3.1.
The obtained lumped stiffness motorcycle model is then used to develop the actual methodology
for optimizing the stiffness distribution between the structural components. The development of
this methodology is presented in Section 4.3.2.
The sequence for optimizing the stiffness distribution is shown in the schematic of Figure 4.7.
The indications provided by the methodology for stiffness optimization can be used to design
new components, which can be subjected to a further optimization-loop (dashed arrow).

Parameter identification
Lumped stiffness
motorcycle model

Optimization of
stiffness distribution

Optimized design

Figure 4.7: Pipeline for building a high accuracy lumped stiffness motorcycle model and carrying out a
sensitivity analysis with it.

4.3.1 Method for the Parameter Identification of Lumped Stiffness
Models

In this publication, a method is proposed to increase the accuracy of lumped stiffness models.
The aim is to model the influence of structural flexibilities on weave and wobble with an accuracy
similar to that of flexible multibody models.
The method leverages previous works where a procedure for the identification of the deformation
axis of elastic components is proposed [66, 68, 73, 74]. In this publication, the procedure is
generalized and applied to every main structural component of the motorcycle, i.e., frame, front
assembly and swingarm. The deformation axis is determined by clamping the component on
one end and by applying a quasi-static or dynamic load perpendicular to the symmetry plane of
each component and measuring the displacement and rotation of the free end. These tests are
carried out in simulations where the structural components are modeled as flexible bodies. The
identified parameters are then used to parameterize a lumped stiffness model for every structural
component. According to the type of load applied, different deformation axes results. From the
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4 Steps Towards Optimized Distribution of Structural Stiffness

previous works, it is not clear which deformation axis should be used for the parameterization of
a lumped stiffness motorcycle model having the aim of modeling weave and wobble.

In the present publication, the accuracy of the lumped stiffness motorcycle model compared to
the flexible multibody motorcycle model described in Section 4.2 is determined. In particular,
the frequency ( f ) and the real part (Re) of the weave and wobble modes are calculated in the
relevant speed range (40 - 210 kmh−1) with both models to determine the error of the lumped
stiffness model.
The error is calculated separately for each structural component and is shown in Figure 4.8. For
each component, four lumped stiffness models are presented: “State of the art” is based on the
common assumptions for building lumped stiffness models; “Static”, “Torsion” and “Bending” are
the lumped stiffness models based on the proposed identification process and parameterized
with the quasi-static test or the harmonic test with the frequency of the first torsional and bending
modes, respectively. The lumped stiffness models parameterized with the quasi-static test
provide the best accuracy. This way, the error of lumped stiffness models is less then 15 %, thus
providing a significant improvement compared to state-of-the-art lumped stiffness models, where
the maximum error is more than 35 %. In fact, the state-of-the-art lumped stiffness models rely
on assumptions on the deformation pattern of the structural components, which often prove to
be wrong.
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Figure 4.8: Error of lumped stiffness models with respect to the flexible multibody model [185].
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4.3.2 Methodology for Optimizing the Stiffness Distribution

Since the accuracy of lumped stiffness models is significantly increased and can be considered
sufficient thanks to the proposed method, the lumped stiffness motorcycle model can now be
used to carry out a parameter study on the structural stiffnesses. In the present publication,
this is done with a sensitivity analysis where, for every structural component, the influence of
bending and torsional stiffness on the stability of weave and wobble is studied. The information
of this sensitivity analysis can be used to optimize the stiffness distribution between the structural
components.
After defining an index (stability index) that indicates the stability of weave and wobble, the
linear Pearson correlation coefficient ρ is used to determine the sensitivity of each stiffness
on the stability of weave and wobble. The lumped stiffness motorcycle model contains six
stiffnesses: bending and torsional stiffness for the frame, front assembly and swingarm. Each of
them is varied by ±10 %; bigger variations are avoided in order to study stiffness configurations
consistent with the values of the motorcycle model considered. The results of the sensitivity
analysis are shown in Figure 4.9. A positive coefficient indicates that increasing the stiffness
enhances the stability. By analyzing separately the low and high speed range, it is evident that
there are some stiffness parameters, such as the bending stiffness of the front assembly, which
impact in an opposite way according to the speed.

The results in Figure 4.9 confirm some observations made in Section 4.2: the front assembly is
the component with highest impact on the stability of weave and wobble; due to its high stiffness,
the frame has lower sensitivity; the swingarm influences only the weave eigenmode. However,
the sensitivity analysis provides some additional information. Particularly interesting is to note
that the torsional stiffness of the front assembly kt,a has a negative correlation coefficient for
wobble (i.e., destabilizing effect) over the whole speed range, thus suggesting that, under the
perspective of stability, excessive values of this stiffness should be avoided. Moreover, the
swingarm bending stiffness kb,s has a negative correlation coefficient for high-speed weave,
thus suggesting that an optimized design of the swingarm would imply relatively low bending
stiffness but high torsional stiffness. These considerations are employed in Section 4.4, where
an example is shown on how to apply the proposed methodology for achieving the objective of
enhancing the overall stability while reducing the total mass.
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Figure 4.9: Person correlation coefficients of weave and wobble for every structural stiffness. Nomen-
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letter is the structural component (f: frame, a: front assembly, s: swingarm) [185].
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Abstract
In motorcycle dynamics, great importance is attributed to the study of the weave and wobble
vibration modes and, in particular, to the effects of the flexibility of structural components
on their stability. Therefore, appropriate motorcycle models for studying weave and wobble
should include flexible elements for describing the flexural behavior of components such as
the main frame, front assembly, and rear swingarm. Different approaches are possible for
modeling flexibilities: the most common among them are the lumped stiffness and the flex-
ible multibody approaches. While the latter certainly provides higher accuracy, the former
has advantages in terms of computational load, but, above all, it makes it easier to under-
stand in the design phase how technical parameters, such as torsional and bending stiffness
of a given structural component, can influence the stability of weave and wobble. The accu-
racy of lumped stiffness models strongly depends on parameter identification. In this study,
a general method is proposed to determine appropriate lumped stiffness parameters for any
given motorcycle component. The proposed method is tested and validated by comparing
the weave and wobble modal behavior with the results of flexible multibody analysis. The
lumped stiffness model is then adopted to carry out a sensitivity analysis aimed at identify-
ing the effects on the weave and wobble stability of the torsional and bending stiffness of
specific structural components of the motorcycle to optimize their design.

Keywords Parameter identification · Lumped stiffness · Weave · Wobble · Motorcycle
dynamics · Stability analysis

1 Introduction

Weave and wobble are well-known eigenmodes of motorcycles, both involving lateral dy-
namics. The weave eigenvector is dominated by roll, yaw, and steering head rotation [1]
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with an eigenfrequency in the range 1-4 Hz [2]. Wobble is characterized mainly by steer-
ing head rotation, and its eigenfrequency varies from 6 to 10 Hz [3]. The stability of these
eigenmodes is a safety critical problem because the motion caused by an unstable weave or
wobble is not controllable by the rider and would likely lead to an accident. For this reason,
weave and wobble have been extensively studied in the literature, with the first works dating
back to the 1970s [4]. A deciding step in modeling weave and wobble was made when the
flexibility of the structural components was included in the models. In fact, particularly for
wobble, this step allowed the correct prediction of the change of mode damping with speed
[5–8].

For modeling the stiffness of structural components, different approaches are possible:
the most used and simple is the lumped stiffness approach. It consists of representing the
flexibility of a component with a single parameter, i.e., a concentrated stiffness, see Sect. 2.
The second approach is the Elastic Multibody Simulation (EMBS) [9], where the classical
formulation of multibody simulation is extended to include flexible bodies. In this case,
the flexibility is represented as a distributed property so that the real deformation is better
approximated. The lumped stiffness approach is attractive for its limited modeling effort,
short computational time, and, above all, because it makes it easier to understand in the
design phase how technical parameters, such as the torsional and bending stiffness of a
given structural component, can influence stability. However, the strong approximation of
the actual flexural behavior, which is intrinsic in this method, may negatively affect the
accuracy when modeling weave and wobble.

The crucial part of the lumped stiffness approach is the identification of the parameters
[10]. In the literature, most models using the lumped stiffness approach make assumptions
about the position of the joints for modeling flexibility. However, as shown in [11], these
assumptions may lead to inaccurate results when studying weave and wobble.

This paper presents a method for parameterizing a lumped stiffness model of any struc-
tural component. It is based on the identification of the deformation axis of each component
and can be applied to real components or using a simulation environment, as in the present
paper. The method is applied to each structural component of a motorcycle, and the ob-
tained lumped stiffness model is compared to a flexible multibody model in the simulation
of weave and wobble. The decision to use the lumped stiffness approach for studying the
effect of structural flexibilities on weave and wobble is justified by the necessity of obtaining
stiffness values with a physical meaning that can be easily interpreted and adapted. In fact,
the developed lumped stiffness model lends itself to carrying out a sensitivity analysis to
understand, for every component, if its torsional or bending stiffness is more important for
the stability of weave and wobble. The results of the sensitivity analysis can help to optimize
the stiffness in the early design phase of structural components so that the overall weight can
be minimized while ensuring the stability of weave and wobble.

2 State of the art

As mentioned in the introduction, structural flexibility is important to the stability of weave
and wobble. The first works modeling the flexibility of structural components for the study
of weave and wobble are [5, 6]. They use two different approaches to model the flexibility
at the front of the motorcycle. The authors of [5] model the frame torsional flexibility with
a revolute joint and a coaxial rotational spring/damper at the steering head joint with its
rotation axis perpendicular to the fork axis. In [6], the bending flexibility of the front fork
is modeled with a revolute joint and a coaxial rotational spring/damper along the fork with
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its rotation axis perpendicular to the fork axis. The aim is mainly to investigate the effect of
this stiffness on weave and wobble and not to exactly reproduce the fork deformation. For
this reason, the position of the revolute joint and the stiffness value are not based on real
measurement but are varied to draw information about a possible optimized design. Based
on this first experience, other works followed in its stead, by adopting the lumped stiffness
approach for modeling the flexibility of structural components. In [12], the approaches in
[5, 6] are combined, and the stiffness values are derived from real measurements, still main-
taining the assumptions on the position and orientation of the revolute joints. The author of
[13] proposes an analysis where the position of the deformation axis of the frame is varied
and the effect on weave and wobble investigated. These modeling approaches, where the
position of the joint and the value of the lumped stiffnesses is assumed or estimated, can be
found in several other works, e.g., the works based on the model developed in [5], see, e.g.,
[14–19], or in independent works from other authors [7, 20].

The first attempt to parameterize a lumped stiffness model with a consistent procedure
is found in [21, 22] for the front fork and in [23] for the swingarm. In [21], a procedure is
developed where, using the mass properties and the bending eigenfrequency measured with
experimental test, a lumped stiffness model is developed for the front fork bending flexi-
bility. However, the orientation of the revolute joint axis is assumed to be perpendicular to
the fork axis. The authors of [22, 23] identify the deformation axis of the structural com-
ponent with either static or dynamic excitation. Dynamic excitation with a frequency equal
to the first bending and torsional eigenfrequencies allows the identification of the bending
and torsion axis, while the static test identifies the so-called twist axis, and the resulting de-
formation is generally a combination of bending and torsion. The authors provide different
lumped stiffness models for the fork and swingarm, using the parameters identified through
static or dynamic tests or a combination of the two. The weave and wobble eigenmodes are
simulated with these models and compared to the rigid body case. However, the question re-
mains about which combination provides the most realistic results. A similar approach was
proposed in [24] for identifying the twist, bending, and torsion axes of a frame. However,
no lumped stiffness model was parameterized with the resulting data.

The present paper answers the remaining open questions. In particular, the most suitable
test for parameterizing a lumped stiffness model to study the influence of flexibilities on
weave and wobble is identified. For that, a comparison with flexible multibody models is
presented, which are considered the “ground truth”. This way, it is demonstrated that the
common assumptions on the location of the revolute joints to model the different flexibilities
do not always lead to correct results.

Moreover, a sensitivity analysis will be carried out to separate the effect of bending and
torsional flexibility of each component in the study of weave and wobble. Other works have
already used this method to identify the most relevant parameters for motorcycle stability
[25–27]. The common procedure is to calculate the analysis of variance (ANOVA) with a
full factorial design of experiments. The results provide information on whether the varied
factors interact with each other or only the main effects may be considered. In the latter case,
a statistical model without interactions can be adopted [25]; in particular, a linear correlation
technique (Pearson correlation coefficients) is used. More information about the sensitivity
analysis is provided in Sect. 4.3.

3 Aim of the paper

The present paper is focused on two contributions. The first is the development of a unified
procedure for parameterizing lumped stiffness models of the main structural components of
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motorcycles. Attention is devoted to correctly reproducing the effect of structural flexibili-
ties on weave and wobble with the lumped stiffness model. In particular, a test procedure is
identified that allows the best approximation of a flexible multibody model with the lumped
stiffness approach. The decision to use the lumped stiffness approach instead of leveraging
on more advanced techniques for model condensation (e.g., dynamic condensation) is mo-
tivated by the necessity of identifying technical parameters that define the stiffness of each
structural component. Then, in contrast to lumped stiffness models, condensation methods
do not provide any physical parameters, which the engineer can directly interpret to derive
an optimized design. Moreover, when applying condensation methods to the mechanisms of
the front assembly and swingarm, it has to be determined at which level to apply the con-
densation. If it is applied to the whole assembly, composed of different bodies, the problem
is preserving the kinematics of the mechanism itself. If condensation is applied to the single
bodies of each assembly, further analysis will provide indications about the effects of the
stiffness of single bodies, thus failing to analyze the effect of the stiffness of the whole as-
sembly, which makes it difficult to derive information for an optimized design. The obtained
lumped stiffness models are particularly useful for the second main contribution of this pa-
per, i.e., a sensitivity analysis with the lumped stiffness model to study the separated effect
on weave and wobble of bending and torsional flexibility for each structural component.

4 Methods

In this section, the methods used in this paper are presented. Section 4.1 briefly describes
the motorcycle model used to generate the results. Section 4.2 provides details on the meth-
ods for the parameterization of lumped stiffness models. Section 4.3 summarizes the steps
needed to conduct a sensitivity analysis with the motorcycle model and to calculate the
stability index and correlation coefficients.

4.1 Motorcycle model

The motorcycle model is based on [11]. The motorcycle weighs 250 kg and is loaded with a
rider (88 kg), two side bags and one top bag (40 kg in total). The front suspension is multilink
with one longitudinal arm, while the rear suspension is of the four-bar link type swingarm.
The Pacejka Magic Formula (MF) is used to model the tire forces [28]. A single contact
point is assumed, and the tire thickness is accounted for. The kinematics of the contact point
is based on the approach described in [8], where the relative orientation between the wheel
carrier and ground is used to determine the reference system of the contact point.

In this work, two different versions of the motorcycle model are presented: one ver-
sion uses EMBS with flexible bodies and is identical to that in [11]. The structural com-
ponents modeled as flexible bodies are the frame, connected to a rigid engine, the front
assembly, composed of the fork bridge, two stanchions, longitudinal arm and lower fork,
and the swingarm, composed of lower link, upper link and wheel carrier. In the present
work, this version is compared to a model of the same motorcycle that uses only rigid bod-
ies and the lumped stiffness approach for representing the flexibilities. The parameters for
the lumped stiffness models are identified with the method presented in Sect. 4.2. The the-
ory of EMBS for modeling flexible bodies is explained in [11]. More information about the
flexible multibody models is provided in the appendix.

With reference to Fig. 1, first, the model without flexibilities is described. It is composed
of the following subsystems, bodies, and degrees of freedom (DOFs):
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Fig. 1 Schematic representation
of the motorcycle and its
sub-assemblies. The image of the
real motorcycle has been taken
with permission from [29]

• Main frame of the motorcycle (including engine, fuel tank, and part of the driveline); it is
constituted by a single rigid body, with 6 DOFs in 3D space (3 translations and 3 rotations
about the inertial axes of the body).

• Driver, modeled as an additional rigid body split into two parts (not shown in Fig. 1):
lower body fixed with respect to the main frame and upper body with one DOF of relative
rotation with respect to the lower body, describing the rider’s passive lean motion.

• Front assembly, composed of 3 rigid bodies: upper fork, including handlebars, lower fork,
including wheel carrier, and longitudinal arm. Kinematically, the front assembly has 2
DOFs of relative motion with respect to the main frame; the first DOF is a rotation about
the steering axis; the second one, for a fixed steering angle, is represented by a planar
motion of the 3 members of the subsystem, yielding the front suspension travel. This can
be inferred from Fig. 1, where the front assembly can be visualized as a spatial mechanism
with 3 moving members with respect to the main frame, connected by one revolute joint,
one prismatic joint, and two spherical joints (one placed at the steering head, the other
one placed at the connection between longitudinal arm and lower steering assembly; the
centers of these two spherical joints identify the position of the steering axis).

• Front wheel, including all rotating elements with the front wheel, modeled as a single
rigid body with single contact point tire, and one DOF of relative motion with respect to
the lower front assembly (rotation).
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• Swingarm, composed of 3 rigid bodies (upper link, lower link, including transmission
shaft, and wheel carrier). Kinematically, the swingarm represents a four-bar linkage, with
one DOF of relative planar motion with respect to the main frame, describing the rear
suspension travel. This can be inferred from Fig. 1, where the swingarm can be seen
as a planar four-bar linkage, with 3 moving members with respect to the main frame,
connected by 4 revolute joints.

• Rear wheel, including all rotating elements with the rear wheel, modeled as a single rigid
body with single contact point tire, and one DOF of relative motion with respect to the
rear wheel carrier (rotation).

At this stage, the flexibility of the 3 subsystems (main frame, front assembly, and swingarm)
is introduced into the model by means of lumped stiffness elements. First, the front assembly
and the swingarm are assumed to be “frozen” in a configuration of interest for the analy-
sis. Then, each of the 3 subsystems is split into two rigid bodies connected by a fictitious
revolute joint with a spring/damper element. This way, a (small) deformation of a flexible
body is approximated by the relative (small) rotation between two rigid bodies about a de-
formation axis. Clearly, this requires the addition of 3 internal DOFs to the model, one for
each flexible subsystem. Regarding the two bodies which compose the frame: one has the
steering head joint, and the other provides the attachment point for the swingarm and lon-
gitudinal arm of the front assembly. For the front assembly and swingarm, the flexibility of
the lumped stiffness model is obtained by introducing a massless body attached to the wheel
carrier through the revolute joint associated with the lumped stiffness model. The wheel is
then attached with the rotational DOF to the massless body itself. This way, the effect of
flexibility on the wheel movement is reproduced.

For simulations, the open-source multibody simulation software MBSim [30] is used.
The model order reduction needed for EMBS is carried out in Python with a code based on
[31]; see [11] for further details.

4.2 Identification method

In this section, an identification method for lumped stiffness models is proposed aimed at
representing with sufficient accuracy the effect of structural flexibility on weave and wobble.
The basic procedure to create a lumped stiffness model starting from a single elastic body
consists of splitting the body into two rigid bodies connected by a revolute joint. A rotational
spring/damper is then associated with that joint. This way, a continuous (small) deformation
of the elastic body is approximated by the relative rotation of two rigid bodies about a
deformation axis. This approximation procedure needs to identify several parameters: the
location and orientation of the revolute joint, the rotational stiffness and damping, and the
inertia associated with each of the two bodies.

The adopted identification procedure, similar to that presented in [22–24], is described
here referring to the simple case of a beam, as presented in Fig. 2. At one end of the un-
deformed beam, a reference system O;x, y, z is fixed so that the axis of the beam lays in
the plane (x, z). At the opposite end of the beam, another reference system O ′;x ′, y ′, z′ is
fixed so that x ′ and z′ are parallel to x and z, respectively. It is now assumed that the beam
is clamped at point O and free at point O ′. An external load Fy is applied at point O ′ in y

direction, causing a small displacement, which moves the point from position q0 to position
q . In general, this also produces a small rotation of the reference system fixed at point O ′.
Therefore, under the effect of the external load, the planes defined by (x, z) and (x ′, z′) are
no longer parallel. Their intersection identifies the deformation axis, which can be adopted
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Fig. 2 Deformation axis of a beam cantilevered at the origin O (light blue dot) and having the load F applied
to the free end (orange dot). (Color figure online)

for approximating the small deflection of the beam by means of the relative rotation of two
rigid bodies.

Three types of tests are used: quasi-static test, harmonic test, and eigenvalue analysis. In
the quasi-static test, a force is applied slowly so that the dynamics of the component is not
excited. For the harmonic test, the load is applied with a sinusoidal wave oscillation, where
the excitation frequency is constant throughout the test. In the eigenvalue analysis, the first
bending and torsional eigenmodes and the related eigenvalues are identified. The amplitude
of the forces applied to the components has been determined considering the loads that
the components will experience during typical driving conditions, where the deformations
remain in the linear range.

Based on these concepts, the procedure for identification of the lumped stiffness param-
eters shown in Fig. 2 can be defined. The explanation is divided into two parts: the identi-
fication of the geometric parameters l, β, b and the identification of stiffness k, damping c

and vibrating inertia J .
The tests are carried out with simulations where the frame, front assembly, and swingarm

are modeled with the same flexible bodies used for the motorcycle model in [11]. The mea-
surements needed for the tests are provided by the simulation software itself.

4.2.1 Identification of l,β,b

The geometric parameters can be calculated either with static or harmonic tests. Define
q = [xq, yq, zq] the position of the free end and R its orientation matrix with respect to the
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fixed inertial frame. With the static test, these values are measured after the quasi-static load
has reached its maximum, while, during the harmonic test, the values from peak displace-
ment are used.

The deformed plane is represented by a1x + a2y + a3z + a4 = 0. n = [a1, a2, a3] is the
vector perpendicular to the displaced plane of symmetry. As in Fig. 2, the plane of symmetry
of the component is the x-z plane, and the vector is equal to the second column of matrix
R: n = Ry . Knowing the vectors n and q , the coefficient a4 of the plane equation can be
determined:

a4 = −(a1xq + a2yq + a3zq). (1)

With the assumption that the plane of symmetry of the component under the test is the x-z
plane, the position of the revolute joint can be found, see orange rectangle in Fig. 2. It could
lay at any point along the deformation axis in Fig. 2. In this work, the revolute joint is placed
at the intersection between the deformation axis and the line joining the origin of the inertial
frame and the position q0 = [xq0 , yq0 , zq0 ] of the loaded end in its unloaded configuration.
This line has the equation z = zq0

xq0
x. Substituting y = 0 in the equation of the plane gives

the equation of the deformation axis:

z = −a1

a3
x − a4

a3
. (2)

The x coordinate xj of the revolute joint can be calculated by substituting z = zq0
xq0

x in

Equation (2):

xj = − a4

a1 + a3
zq0
xq0

. (3)

The coordinate zj is then automatically determined:

zj = zq0

xq0

xj. (4)

With these coordinates, the parameter l can be calculated:

l = cos

(
atan

(
zj

xj

)
− atan

(
zq0

xq0

))√
x2

j + z2
j . (5)

The cosine term is needed to determine if the revolute joint is at the positive or negative side
of the x axis.

The angle β is calculated as difference between two angles:

β = atan

(
−a1

a3

)
− atan

(
zq0

xq0

)
= θj − θ0. (6)

The angle β is wrapped between 0 and π , since the orientation of the revolute joint is
insensitive to rotations of π . In fact, a rotational spring/damper element is assigned to the
revolute joint, which acts equally in both directions of rotation.

Finally, the calculation of the moment arm b is given as:

b = (L − l) sinβ, (7)
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where L =
√

x2
q0

+ z2
q0

is the distance between loaded end and the origin in the unloaded

configuration.
The harmonic test provides one set of parameter l, β, b for every peak. The lumped stiff-

ness model is then parameterized by the mean over these sets. In particular, the excitation is
applied until the mean settles within a specified tolerance band.

4.2.2 Identification of k, c,J

The rotational stiffness k can be calculated by dividing the moment of the force F about the
deformation axis by the rotation of the free end about the axis itself:

k = Fst · b
asin

( yqst
b

) , (8)

where Fst and yqst are the values of force amplitude and related displacement from a static
test. b is the moment arm resulting either from the static or harmonic test, depending on the
test chosen for identifying the geometric parameters in Sect. 4.2.1.

For the identification of c and J a different approach based on the eigenvalue analysis
of each flexible body model is used. After identifying the first bending and torsional eigen-
modes and under the assumption that they are sufficiently decoupled, the related eigenvalues
are calculated. For underdamped systems, as it is the case for structural components, these
can be expressed in the form:

λ1,2 = −ζnωn ± jωn

√
1 − ζ 2

n , (9)

where ωn is the modal natural frequency, and ζn is the modal damping ratio. Note that Equa-
tion (9) is valid under the assumption of proportional viscous damping, which is acceptable
in the case under analysis due to small amounts of structural damping. The imaginary part of
Equation (9) provides the damped modal eigenfrequency ωd. The modal natural frequency
ωn can be obtained from numerical simulation without damping or as the modulus of the
eigenvalues λ1,2 in Equation (9). Knowing ωn and ωd, the modal damping ratio ζn can be
calculated. At this point, the modal inertia J and the damping c result from:

J = k

ω2
n

, (10)

c = 2ζnJωn. (11)

This yields J and c for each of the two eigenmodes. Under the assumption of viscous damp-
ing, c can be directly used in the rotational spring damper element associated with the revo-
lute joint.

4.2.3 Stiffness decomposition

For the sensitivity analysis in Sect. 4.3, two separated parameters for the bending and tor-
sional stiffnesses are needed. However, the static test identifies only one stiffness value. The
authors of [24] propose a method to split the stiffness identified with a static test between
the deformation axes corresponding to the bending and torsion axes. Instead of only one
revolute joint, the resulting lumped stiffness model has two revolute joints with rotation
axes having the same directions of the bending and torsion axes. This concept is shown in
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Fig. 3 Schematic representation
of the stiffness decomposition:
the stiffness about the static
deformation axis is split into two
stiffnesses about the bending and
torsion axes

Fig. 3. This way, two stiffness parameters are available, but the overall flexural behavior of
the lumped stiffness model is the same as that parameterized with just one revolute joint.

In the following, the procedure described in [24] is briefly summarized. Three tests with
the component are needed: static test to identify the stiffness k, orientation β , and arm b; a
harmonic test with the first bending eigenfrequency to identify the orientation βb and arm bb;
and a harmonic test with the first torsional eigenfrequency to identify the orientation βt and
arm bt. The unknowns are the stiffnesses about the bending axis kb and torsion axis kt. For
the following two equations, two assumptions are made [24]: the displacement of the loaded
end due to rotation about the static deformation axis is equal to the sum of the displacements
due to rotations about bending and torsion axes, and the rotation about the static deformation
axis of the loaded end is equal to the sum of the rotations about the bending and torsion axes.
Additionally, as explained in [24], the assumption of small rotations is made. This makes it
possible to consider the resultant rotation as the vector sum of components, where the order
in which the rotations are performed is irrelevant. The adopted computational procedure is
taken from [24]. The two unknowns kb, kt can be found by solving the system of equations:

b2

k
= b2

b

kb
+ b2

t

kt
, (12a)

tanβ =
bb
kb

sinβb + bt
kt

sinβt

bb
kb

cosβb + bt
kt

cosβt

. (12b)

4.3 Sensitivity analysis

As explained in Sect. 3, the aim of the sensitivity analysis is to investigate the separated influ-
ence on weave and wobble of bending and torsional flexibility of each structural component
on weave and wobble. The framework to carry out this analysis is provided by [25–27].
Basically, the influence of varying the stiffness parameters (main factors) on the damping of
weave and wobble is analyzed. The procedure can be divided into three steps:

1. Definition of a stability index for weave and wobble.
2. Calculation of analysis of variance (ANOVA) to understand if there are interactions be-

tween the main factors.
3. If the interactions between the main factors are negligible, a linear correlation coefficient

can be used (Pearson correlation coefficient) to show if an increase in the main factors,
i.e., the stiffness parameters, leads to an increase or decrease in the stability index.

Starting from a plot of the real part of the eigenvalue of weave and wobble over longitudinal
speed, the following two situations shown in Fig. 4 can be distinguished:

• The stability boundary is never crossed in the considered speed range, i.e. the real part
of the eigenmode is negative at each speed. In this case, the stability index is defined as
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minimum distance between the curve of the real part and the stability boundary:

s1 = max(Re(λ)). (13)

• The stability boundary is crossed at least once, i.e. its real part becomes positive. In this
case, the stability index is defined as the ratio between the velocity range where the mode
is stable and the whole velocity range considered:

s2 = ‖vstable‖
vmax − vmin

, (14)

where vstable represents the interval of velocities where the mode is stable, see the thick
segments in Fig. 4. In the case shown in Fig. 4, ‖vstable‖ = (v1 − vmin) + (vmax − v2),
where v1 and v2 are the points of the first and second roots, respectively. Depending on
the shape of the curve, another calculation may be necessary, but the meaning of the index
s2 does not change. If there is only one root, only one interval for ‖vstable‖ is identified.
No more than two crossings are expected when studying weave and wobble as a function
of the speed.

With reference to Fig. 4, it can be seen that the stability index s2 is defined relatively to
the whole interval of velocities achievable by the motorcycle. If the motorcycle is unstable
in the whole velocity range, then s2 = 0 (minimum stability, given by the fact that one
or more eigenvalues have always positive real part in the whole velocity range). If the
motorcycle is stable in the whole velocity range, then s2 = 1 (maximum stability, given
by the fact that one eigenvalue is at the stability threshold, with zero real part).

Equations (13) and (14) can be combined into a single stability index s:

s = ‖min(0, s1)‖ + s2. (15)

When the real part of the eigenvalue is always negative, s2 = 1 and s > 1. If the stability
boundary is reached, the first part of Equation (15) is zero, as s1 is positive, and the index
s varies between 0, which means that the eigenmode is unstable in the whole speed range,
and 1, which indicates that the curve of the real part touches the stability boundary but never
crosses it.

In the present work, the stability index is defined separately for low (40-100 km h−1) and
high (100-210 km h−1) speeds. This covers all the relevant speeds up to the maximal speed of
the motorcycle considered; speeds lower than 40 km h−1 are not relevant for studying weave
and wobble in motorcycles. The distinction of the speed ranges is necessary, particularly for
wobble, because parameters, such as the fork bending stiffness, act oppositely at a low and
high speed [5–8]. The use of a single index for the whole speed range would fail to capture
this distinction, thus falsifying the sensitivity analysis.

Similarly to [25–27], a full factorial design with two levels is chosen for an ANOVA with
the stability index as response variable. The nominal values identified with the procedure in
4.2.3 are varied by ±10%. There are two stiffness values for each of the three considered
structural components; this way, 26 = 64 combinations are tested. After this analysis, it can
be recognized if the variability of the six main factors is dominant, or if the interactions be-
tween them have a nonnegligible importance. The ANOVA is carried out with the anovan
function of MATLAB.

Finally, if the interactions between the main factors are negligible, Doria [25] proposes
to use the Pearson correlation coefficient to determine the effect of each factor, evaluated at
the two levels, on the stability index. Using the same nomenclature as in [25], the Pearson
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Fig. 4 Representation of stability
indexes. Left: no crossing of the
stability boundary, the index in
Equation (13) is used. Right: two
crossings of the stability
boundary, the index in
Equation (14) is used

correlation coefficient is ρIF , where F is the factor (stiffness), and I is the index (weave or
wobble stability index), and it is defined as follows:

ρIF = σIF

σIσF

. (16)

σI , σF , σIF are, respectively, the variance of the index, the variance of each factor, and the
covariance between index and factor:

σ 2
I = 1

n

n∑
i=1

(Ii − I)2,

σ 2
F = 1

n

n∑
i=1

(Fi − F)2,

σ 2
IF = 1

n

n∑
i=1

(Ii − I)(Fi − F),

(17)

where n is the number of combinations of the factors, 64 in this case.
A value of ρIF close to 1 or −1 indicates either positive or negative strong correlation of

the index I to the factor F [32].

5 Results

This section is divided into three subsections. Section 5.1 shows the results of the identifi-
cation method presented in Sect. 4.2. In particular, the deformation axes of every structural
component identified with static and harmonic tests are visualized. In Sect. 5.2, the accuracy
in the simulation of weave and wobble of the lumped stiffness models with identified param-
eters is evaluated by comparing the results with the flexible multibody motorcycle model.
Section 5.3 presents the results of the sensitivity analysis.

5.1 Results of parameter identification

The deciding point when identifying the lumped stiffness parameters is to pick the right load
combination. In fact, as presented in [22, 23], static and harmonic loads identify different
parameters. Figures 5, 6, and 7 show the deformation axes for every structural component
with the static and harmonic test. The x axis represents the longitudinal axis of the motorcy-
cle, and the z axis points upwards. The blue line is the deformation axis identified with the
static test. The two green lines are the deformation axes resulting from harmonic tests hav-
ing the frequency of the first bending and torsional eigenmodes, named bending and torsion
axes. Table 1 shows the first torsional and bending eigenfrequencies for each component.



Identification of lumped stiffness parameters for a motorcycle model. . .

Fig. 5 Visualization of
deformation axes of the frame
with different loads. The
component is fixed at the engine
mounts and the load is applied to
the steering head joint. (Color
figure online)

Fig. 6 Visualization of
deformation axes of the front
assembly with different loads.
The component is clamped at the
steering head joint and at the
revolute joint of the longitudinal
arm. The load is applied to the
wheel axis. (Color figure online)

Fig. 7 Visualization of
deformation axes of the
swingarm with different loads.
The component is fixed at the
swingarm joint and the load is
applied to the wheel axis. (Color
figure online)

Table 1 First torsional and
bending eigenfrequency of frame,
front assembly, and swingarm

Component Eigenfrequency Mode shape

Frame 74 Hz Torsion

93 Hz Bending

Front assembly 28 Hz Torsion

79 Hz Bending

Swingarm 112 Hz Bending

321 Hz Torsion

The black thin lines show the deformation axes when the excitation frequency of the har-
monic test is varied from 1 Hz to a frequency of 5 Hz below the first eigenfrequency of the
component. Similarly to Fig. 2, the light blue dots are the points where the component is
fixed to the inertial frame, and the orange dots are the points where the load is applied.
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In Fig. 5, the frame is fixed at the engine mounts, and the load is applied to the steering
head joint. The choice of fixing the engine mounts allows the consideration of the contribu-
tion of the engine to the overall stiffness. In fact, in the motorcycle, the frame is mounted on
the engine itself, which is assumed rigid in this paper. The eigenfrequencies in Table 1 are
obtained with the tank and saddle mounted on the frame and modeled as rigid bodies with
mass and inertia. The torsion axis is nearly parallel to the line joining the swingarm joint and
the steering head joint, where the load is applied. The bending axis is nearly perpendicular to
the torsion axis and lays behind the swingarm joint, signalizing that, when oscillating with
the first bending eigenmode, the steering head joint mainly translates along the y axis, i.e. in
the direction orthogonal to the symmetry plane of the frame. The static deformation axis is
a combination of torsion and bending; this is due to the fact that the frequencies of the first
torsion and bending eigenfrequencies are close in value. As expected, by sweeping the fre-
quency of the harmonic excitation, the deformation axis moves from the static deformation
axis to the deformation axis of the first eigenmode, i.e., the torsion axis.

The front assembly is clamped at the steering head joint and at the joint between the
longitudinal arm and the frame to avoid the movement of the suspension (Fig. 6). The load
is applied at the wheel axis. The longitudinal arm of the multilink suspension is also shown.
The torsion axis is, as expected, nearly parallel to the fork axis, while the bending axis is
almost perpendicular to it. Also, in this case, the static deformation axis is a combination
of torsion and bending. However, torsion dominates the deformation of the assembly for a
static excitation because the eigenmode with the lowest eigenfrequency is torsional, and the
frequency of the first bending eigenmode is significantly higher (Table 1). This is different
from conventional forks that generally have lower bending stiffness than torsional stiffness
[22]. The high bending stiffness in the present case can be attributed to the presence of
the longitudinal arm. The harmonic test with increasing frequency (black lines in Fig. 6)
identifies a deformation axis that progressively moves from the static axis to the axis of the
eigenmode.

The swingarm, Fig. 7, is fixed at the joint with the frame, and the force is applied to
the wheel axis. As mentioned in Sect. 4.1, it is a four-bar link composed of a lower link,
upper link, and wheel carrier. Unlike frame and front assembly, the first eigenmode is a
bending one, see Table 1. The bending axis is, as expected, almost perpendicular to the
main arm and link, and the torsion axis is nearly perpendicular to the bending axis. The
static deformation axis is dominated by bending because it is the first eigenmode, and the
first torsional eigenmode has a significantly higher eigenfrequency. Also, in this case, when
increasing the frequency of the harmonic test, the deformation axis moves from the static
axis to the axis of the first eigenmode.

When building the lumped stiffness model of a structural component, the single body
must be split into two bodies. Regarding the frame, the inertia of the body to which the
handlebar is attached is the one identified through the test in Sect. 4.2.2. The mass of the
frame, engine, tank, and saddle is concentrated into the other body to which the swingarm
and the longitudinal arm of the front assembly are connected; the inertia of this body is
calculated such that the overall inertia of the motorcycle remains the same. For the front
assembly and swingarm, the identified inertia is assigned to the massless body used for the
lumped stiffness model, see Sect. 4.1. Inertia must then be removed to ensure that the overall
inertia remains constant. In the case of the front assembly, this inertia is removed from the
lower fork, while for the swingarm, the inertia is removed from the wheel carrier.
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Fig. 8 Root mean square error in
percentage of lumped stiffness
models compared to the flexible
multibody models

5.2 Accuracy of identified lumped stiffness models

At this point, the accuracy of lumped stiffness models in simulating the influence of flexibil-
ities on weave and wobble is investigated. For that, the models are compared to the flexible
multibody motorcycle model presented in [11], which is considered the “ground truth”. In
particular, the eigenfrequency f and real part Re of weave and wobble are determined be-
tween 40 and 210 km h−1, and the root mean square error in percentage between the lumped
stiffness models and the flexible body models is calculated:

eRMS% =
√

1
N

∑N

i=1(xlu − xfl)2

x̄fl
· 100. (18)

N is the number of speed values for which weave and wobble are simulated. xlu, xfl are either
the frequency or the real part of weave or wobble calculated with the lumped stiffness and
flexible body model, respectively. x̄fl is the mean over the speed range of either frequency
or real part calculated with the flexible body model.

The results are shown with the bar diagram in Fig. 8. In the first three plots, the frame,
front assembly, and swingarm are studied separately: for each case, only the flexibility of
that component is included in the motorcycle model, with either lumped stiffness or flexible
multibody approach. The last plot represents the case where the flexibility of all structural
components is modeled simultaneously. Different lumped stiffness models are shown in
Fig. 8. The one marked with “State of the art” uses the common assumptions found in the
literature for the orientation of the revolute joints; moreover, the stiffness values are mea-
sured with static tests on the flexible multibody model of each structural component. The
case marked with “Static” uses the identification procedure of Sect. 4.2 with the quasi-static
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Fig. 9 Effect of the flexibility of
the front assembly on weave and
wobble (only the flexibility of the
front assembly is modeled):
comparison between flexible
body, state-of-the-art lumped
stiffness, and lumped stiffness
models parameterized with the
procedure in Sect. 4.2

application of the load. The bars marked with “Torsion” and “Bending” also use the identi-
fication procedure but with harmonic tests at the frequency of the first torsional and bending
eigenmodes of the flexible body, respectively. “State of the art” and “Static” lumped stiff-
ness models are obtained with a static test because they approximate the response of the
component to static loads; for this reason, they both do not use the identified inertia. In
contrast, “Torsion” and “Bending” lumped stiffness models approximate the frequency re-
sponse of the component at the first torsional and bending eigenfrequencies. For this reason,
Equation (10) is applied to the first torsional and bending eigenfrequencies, thus obtaining
the modal inertia about the torsional and bending axes, respectively. The distribution of the
inertia is done as explained at the end of Sect. 5.1.

Figure 8 does not show the error of lumped stiffness models parameterized with harmonic
tests with a frequency below the first eigenfrequency of the flexible component because their
results are similar to the lumped stiffness models parameterized either with the static test
or harmonic test at the first eigenfrequency. In particular, for frequencies up to 10-20 Hz
lower than the first eigenfrequency, the static test and the harmonic test identify very similar
parameters (see Figs. 5, 6, and 7), and, therefore, the resulting lumped stiffness models are
equivalent. In the rest of this section, the accuracy of the lumped stiffness models of the
structural components is analyzed separately.

5.2.1 Frame

The “State of the art” lumped stiffness model of the frame represents the frame torsion with
a revolute joint at the steering head joint with a rotation axis perpendicular to the fork axis
[5]; the front assembly is then attached to that joint. In the present paper, the related stiffness
is measured with a static moment applied to the steering head joint and perpendicular to the
fork axis. As the frame of the present motorcycle is very stiff, all lumped stiffness models
show low error in almost all cases. However, the “State of the art” model presents a relatively
high error in the real part of the wobble eigenvalue, whereas the lumped stiffness models
with parameters identified by the procedure in the present work perform significantly better.
In particular, it has been verified that the “State of the art” model shows an eigenvalue with
smaller real part (in modulus) at high speed than the “ground truth”, which signifies the
stiffness is too high, see, e.g., [5–7].

5.2.2 Front assembly

The state-of-the-art approach for modeling the bending flexibility of the front assembly is to
put a revolute joint with a rotation axis perpendicular to the fork axis. The related stiffness is
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measured with a static lateral force applied to the wheel axis, see [11]. The revolute joint is
located at the position of the spherical joint of the longitudinal arm, see [11] for more details
on this decision. For the “State of the art” and “Static” lumped stiffness models, it has been
verified that it is important that the inertia of the lower fork is activated during the motion
of the wheel due to flexibility. For this reason, the inertia of the lower fork is moved to the
massless body used for the definition of the lumped stiffness model while ensuring that the
position of the center of gravity is not changed. In the “Torsion” and “Bending” lumped
stiffness models, instead, the identified modal inertia is assigned to the massless body to
correctly represent the frequency response of the component at the first bending and torsion
eigenfrequencies. The front assembly is the component where the lumped stiffness models
have the highest error, in particular in the real part of wobble. For this reason, it is worth
looking in more detail at the evolution of weave and wobble with speed, shown in Fig. 9. The
plots clarify that the “Static” lumped stiffness model provides the best approximation of the
“ground truth”, i.e., the flexible multibody model. Interestingly, the “State of the art” lumped
stiffness model and the “Bending” lumped stiffness model provide very similar results. This
is due to the fact that the bending axis is almost perpendicular to the fork axis, see Fig. 6,
and the resulting lumped stiffness model is therefore very similar to the “State of the art”
model. This configuration, however, does not accurately represents the deformation of the
front assembly when simulating weave and wobble.

5.2.3 Swingarm

For the swingarm, there is no general trend in the state-of-the-art. For this reason, the “State
of the art” model here represents a possible simplified modeling approach for simulating
the swingarm torsion: a revolute joint with a rotation axis parallel to the vehicle x axis
(longitudinal axis) is put between the wheel center and the wheel carrier, see for example
[33]. The related stiffness derives from a static test where a moment parallel to the vehicle
x axis is applied to the wheel axis. The swingarm of the present motorcycle model has high
stiffness, and, therefore, the differences between the models are small. The “Static” lumped
stiffness model has the lowest error. In contrast, the “Torsion” lumped stiffness model shows
a high error.

5.2.4 All components

The same considerations made above apply to the case where the flexibility of all structural
components is modeled simultaneously: the largest error is in the real part of the wobble
eigenmode, whereby the lumped stiffness models parameterized with the static test only
show an error of at most 10%, thus overperforming the other lumped stiffness models.

In summary, the “Static” lumped stiffness models show the smallest error for every struc-
tural component and they offer a relevant improvement in accuracy compared to the state-
of-the-art. The “Torsion” and “Bending” lumped stiffness models have higher errors than
the “Static” lumped stiffness model so that the static test seems the best approach for pa-
rameterizing lumped stiffness models having the aim of modeling weave and wobble.

It is worth pointing out that the damping and inertia parameters identified through Equa-
tion (10) and (11) have a minor influence on weave and wobble. The main parameters influ-
encing the stability of the two eigenmodes are the stiffness and location of the revolute joint.
This is the reason why, for the lumped stiffness model identified with the static test, a very
small value of damping is used. It can be calculated by multiplying the identified rotational
stiffness by the proportionality constant γ = 0.001 s, thus obtaining c = γ k.
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Table 2 Nominal values of
stiffness about the static
deformation axis k and stiffness
about the torsion kt and bending
kb axis after decomposition with
the method in Sect. 4.2.3

k in N m rad−1 kt in N m rad−1 kb in N m rad−1

Frame 1.03·106 3.75·105 3.59·106

Front assembly 1.06·104 5.95·103 1.71·105

Swingarm 1.33·105 1.04·106 1.39·105

5.3 Sensitivity analysis

In this section, a sensitivity analysis is carried out to answer the question of which stiffness
within each component has the highest impact on the stability of weave and wobble. The sta-
bility index defined in Sect. 4.3 is used. Two separated analyses are done for the low speeds
(40-100 km h−1) and high speeds (100-210 km h−1). This allows for the identification of the
stiffness parameters that have opposite effects according to the speed range considered.

Once the parameters for the static deformation axis of each structural component are
identified in Sect. 5.1, the stiffness about that axis is split along the torsion and bending
axes with the procedure in Sect. 4.2.3. Table 2 presents these values for every structural
component. The obtained stiffness values about torsion and bending axes are then varied in
the range ±10%, and the stability indexes for each of the 64 combinations are calculated.

First of all, the ANOVA is carried out to check which percentage of the variability of
the stability index is due to main effects and how much depends on interactions between
factors. For each stability index, approximately 99% of the variability is due to main factors.
Therefore, the evaluation with the Pearson correlation coefficient is possible.

It has been verified that, for the motorcycle considered and for any combination of the
lumped stiffness parameters, weave and wobble never cross the stability boundary, so only
the stability index in Equation (13) is used.

Fig. 10 shows the Pearson correlation coefficients for every stiffness and distinguishes
between weave and wobble. The subscript used must be interpreted as follows: the first letter
indicates the type of flexibility (t for torsion and b for bending), and the second letter indi-
cates the structural component (f is the frame, a is the front assembly, and s is the swingarm).
A positive correlation coefficient means that an increase in the considered stiffness leads to
increased damping of the mode.

The bar plot of wobble makes it clear why this analysis was conducted separately for the
low- and high-speed ranges. There are stiffness parameters, such as torsional and bending
stiffness of the frame and bending stiffness of the front assembly, that oppositely contribute
to the two speed ranges.

At this point, some considerations about a stability-optimized design of structural com-
ponents can be made. The following is valid for the present structural components and the
shown nominal stiffness values; the extension to components with other designs can be a
further research topic. High-frame torsional and bending stiffnesses have positive effects on
the high-speed weave and low-speed wobble but a slightly negative effect on the high-speed
wobble, which overlaps with experimental tests carried out in [34]. The front assembly is
the part whose stiffness has the strongest effect on both eigenmodes. Too high torsional
stiffness should be avoided because it destabilizes wobble at every speed and has only a
small stabilizing effect on weave. Finding the optimal value of bending stiffness is a tricky
task: on the one hand, the high bending stiffness of front assembly stabilizes the high-speed
weave and the low-speed wobble; on the other hand, it strongly destabilizes the high-speed
wobble. This stiffness should be therefore designed considering the characteristics of the
whole motorcycle, such as its overall geometry and weight distribution, tire properties and
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Fig. 10 Pearson correlation
coefficients of weave and wobble
for every structural stiffness

the presence of a steering damper. Please note that the torsion axis of the frame and the
bending axis of the front assembly have similar orientation, see Fig. 5 and 6. In fact, they
produce qualitatively similar results. The smaller sensitivity of the frame torsion is due to
two effects: its nominal value is very high, so even with a variation of 10%, the stiffness al-
ways remains high; the front assembly bending flexibility directly affects the motion of the
front wheel, while the frame torsional flexibility does that indirectly through the motion of
the front assembly, which in the present case is also affected by the presence of the longitu-
dinal arm. The swingarm stiffness hardly affects wobble, which is mainly influenced by the
parameters of the motorcycle’s front. Reducing swingarm bending stiffness brings positive
effects to the high-speed weave but negative effects to the low-speed weave. However, weave
is never critical at low speed, so an optimized design for the investigated configuration of
the swingarm would involve relatively low bending stiffness but high torsional stiffness.

Of course, when reducing the stiffness of structural components with the aim of saving
weight, the effects on driving dynamics as a whole and strength requirements must also be
taken into account.

6 Conclusions

This paper proposes a method for parameterizing lumped stiffness models of motorcycle
structural components. For that, static and harmonic tests are carried out in simulations with
the components modeled as flexible bodies.

The main objective is to evaluate whether the lumped stiffness models parameterized
with this method are accurate enough to simulate the influence of flexibilities on weave and
wobble. The motorcycle model with lumped stiffnesses is therefore compared to the flexible
multibody motorcycle model, which is considered “ground truth” because it has the most
realistic modeling of flexibilities. The error of lumped stiffness models can be evaluated
by simulating the frequency and real part of weave and wobble with these two models.
Results show that the most suitable test for parameterizing lumped stiffness models with the
aim of simulating weave and wobble is the static test. Moreover, the presented method for
parameterization allows a significant improvement in accuracy compared to the state-of-the-
art lumped stiffness models, which are generally based on assumptions for the position of
the revolute joints used to model the flexibility.

It can be concluded that thanks to the presented method, lumped stiffness models reach
enough accuracy to simulate the effect of flexibilities on weave and wobble. For modeling
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phenomena with higher frequency, such as comfort tests, lumped stiffness model parameter-
ized with harmonic tests at higher frequency could provide better results. However, there is
also the possibility that, in these situations, only flexible multibody models provide sufficient
accuracy thanks to their ability to reproduce frequency contents in a broad range.

The second main contribution of this work is the sensitivity analysis of component stiff-
nesses to point out which stiffness within each component has the highest impact on the
stability and to make suggestions for an optimized design of structural components of the
motorcycle model considered in this paper. The results stress the big influence of the flex-
ibilities of the front assembly on both weave and wobble. Its torsional stiffness should not
be too high to avoid the destabilization of wobble, while its bending stiffness should be
optimized considering that a high value is advantageous for the high-speed weave damping
and low-speed wobble damping but detrimental for the high-speed wobble damping. Finally,
the flexibilities of swingarm only influence weave, and a stability-optimized design could
involve relatively low bending stiffness but high torsional stiffness.

These considerations about possible optimal design are valid for the present components
with the characteristics of the deformation axes provided. Literature shows that components
with alternative constructions present different deformation characteristics, so the extension
to other designs for the structural components could be a further research topic. The method
presented in this paper is suitable for all types of structural components so that this extension
can be easily carried out.

Appendix A

In this appendix, a summary of the information in [11] about the flexible multibody motor-
cycle model is reported.

As mentioned in Sect. 4.1, the following structural components of the motorcycle are
modeled as flexible bodies:

• Frame, which is fixed to a rigid engine.
• Front assembly, which is composed of fork bridge, two stanchions, longitudinal arm, and

lower fork.
• Swingarm, which is composed of lower link, upper link, and wheel carrier.

These bodies are initially modeled with FEM. However, they contain up to 106 degrees
of freedom, so it would be impossible to directly include them in a multibody simulation
environment because this would lead to unacceptable computation time. Therefore, model
order reduction (MOR) is applied. In [11], the Craig-Bampton method is used, which has
the peculiarity of distinguishing between the boundary and internal degrees of freedom. The
boundary degrees of freedom serve as an attachment point for other bodies in an assembly or
to apply external forces and are preserved by the reduction with the Craig-Bampton method.
The internal degrees of freedom are reduced by applying modal truncation. In particular,
the first 20 fixed-interface modes have been kept for each body. This way, the frequency
content up to 600 Hz is included in the reduced order bodies. Table A.1 shows the degrees
of freedom for each flexible body before and after MOR with Craig-Bampton. The degrees
of freedom of the reduced order models are expressed as a sum to distinguish the number of
boundary degrees of freedom (second number) from the number of selected modes.

For embedding the reduced order models of the structural components in the multibody
simulation environment of the motorcycle, the Floating Frame of Reference Formulation is
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Table A.1 Degrees of freedom of
the flexible bodies before and
after the model order reduction

DOFs FEM DOFs after MOR

Frame 3,8·106 20+54

Front assembly Fork bridge 8,0·105 20+9

Stanchions (each) 2,1·105 20+9

Lower fork 1,7·106 20+18

Longitudinal arm 4,7·105 20+12

Swingarm Lower link 2,7·106 20+15

Upper link 4,1·105 20+6

Wheel carrier 2,1·106 20+12

used, which is suitable for describing the deformation of bodies that undergo small linear
elastic displacement combined with big nonlinear rigid body motions.

The flexible multibody model of the frame and front assembly has been validated by
comparing the stiffness resulting from static tests on the real components. In particular, the
frame has been tested by clamping it at the swingarm axis and applying a lateral force at
the steering head joint. The stiffness resulting from the flexible body deviates 6.4% from the
experimental data. The front assembly is clamped at the steering head joint, and the lateral
force is applied to the wheel axis. In this case, the error between experiment and simulation
is 0.5%. The validation for the swingarm was not possible because no measurements were
available.

Author contributions Francesco Passigato initiated the idea of the paper and contributed significantly to the
concept, modeling, and results. Alexander Schramm made significant contributions in the development of
methods and in the review phase. Silvio Sorrentino and Alessandro De Felice contributed to the review phase.
Achim Gordner contributed to significant discussion of the results. Frank Diermeyer contributed to the whole
concept of the paper. Frank Diermeyer gave final approval for publication of this version and is in agreement
with all aspects of the work. As a guarantor, he accepts responsibility for the overall integrity of this paper.

Funding Open Access funding enabled and organized by Projekt DEAL. Francesco Passigato is funded by
BMW Group (Germany).

Data Availability The model data belong to BMW Group and can therefore not be published.

Declarations

Ethical Approval Not applicable

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.



F. Passigato et al.

References

1. Cossalter, V., Lot, R., Maggio, F.: The modal analysis of a motorcycle in straight running and on a curve.
Meccanica 39, 1–16 (2004)

2. Cossalter, V.: Motorcycle Dynamics, 2. english edn. Lulu Press, S.l, Padova, Italy (2006)
3. Sharp, R.S., Limebeer, D.J.N.: A motorcycle model for stability and control analysis. Multibody Syst.

Dyn. 6, 123–142 (2001)
4. Sharp, R.S.: The stability and control of motorcycles. J. Mech. Eng. Sci. 13(5), 316–329 (1971)
5. Sharp, R.S., Alstead, C.J.: The influence of structural flexibilities on the straight-running stability of

motorcycles. Veh. Syst. Dyn. 9(6), 327–357 (1980). https://doi.org/10.1080/00423118008968629
6. Spierings, P.T.J.: The effects of lateral front fork flexibility on the vibrational modes of straight-running

single-track vehicles. Veh. Syst. Dyn. 10(1), 21–35 (1981). https://doi.org/10.1080/00423118108968633
7. Cossalter, V., Lot, R., Massaro, M.: The influence of frame compliance and rider mobility on the scooter

stability. Veh. Syst. Dyn. 45(4), 313–326 (2007). https://doi.org/10.1080/00423110600976100
8. Passigato, F., Eisele, A., Wisselmann, D., Gordner, A., Diermeyer, F.: Analysis of the phenomena

causing weave and wobble in two-wheelers. Appl. Sci. 10(19), 6826 (2020). https://doi.org/10.3390/
app10196826

9. Schwertassek, R., Wallrapp, O., Shabana, A.A.: Flexible multibody simulation and choice of shape func-
tions. Nonlinear Dyn. 20(4), 361–380 (1999)

10. Doria, A., Formentini, M.: Identification of the structural modes of high performance bicycles in the
perspective of wobble control: parts a and b. In: Proceedings of the ASME Design Engineering Technical
Conference, vol. 4, pp. 551–560 (2011). www.scopus.com

11. Passigato, F., Gordner, A., Diermeyer, F.: Modeling of the weave and wobble eigenmodes of motorcy-
cles using flexible multibody simulation International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, Vol 9: 18th International Conference on Multi-
body Systems, Nonlinear Dynamics, and Control (MSNDC) (2022). https://doi.org/10.1115/DETC2022-
89945.

12. Koenen, C., Pacejka, H.B.: The influence of frame elasticity and simple rider body dynamics on free
vibrations of motorcycles in curves. Veh. Syst. Dyn. 10(2–3), 70–73 (1981). https://doi.org/10.1080/
00423118108968637

13. Koenen, C.: The Dynamic Behaviour of a Motorcycle when Running Straight Ahead and when Corner-
ing: Delft. Techn. Hogeschool, Proefschrift 1983 (1983)

14. Sharp, R.S.: Stability, control and steering responses of motorcycles. Veh. Syst. Dyn. 35(4–5), 291–318
(2001). https://doi.org/10.1076/vesd.35.4.291.2042

15. Sharp, R.S., Evangelou, S., Limebeer, D.J.N.: Advances in the modelling of motorcycle dynamics. Multi-
body Syst. Dyn. 12(3), 251–283 (2004)

16. Sharp, R.S., Limebeer, D.J.N.: On steering wobble oscillations of motorcycles. Proc. Inst. Mech. Eng.,
Part C, J. Mech. Eng. Sci. 218(12), 1449–1456 (2004). https://doi.org/10.1243/0954406042690434

17. Evangelou, S., Limebeer, D.J.N., Sharp, R.S., Smith, M.C.: Mechanical steering compensators for high-
performance motorcycles. Trans. ASME J. Appl. Mech. 74(2), 332–346 (2007)

18. Evangelou, S., Limebeer, D.J.N., Tomas-Rodriguez, M.: Suppression of burst oscillation in racing mo-
torcycle. J. Appl. Mech. 80 (2013)

19. Sharp, R.S., Watanabe, Y.: Chatter vibrations of high-performance motorcycles. Veh. Syst. Dyn. 51(3),
393–404 (2013). https://doi.org/10.1080/00423114.2012.727440

20. Cossalter, V., Lot, R., Massaro, M.: An advanced multibody code for handling and stability analysis of
motorcycles. Meccanica 46(5), 943–958 (2011). https://doi.org/10.1007/s11012-010-9351-7

21. Doria, A., Favaron, V., Taraborrelli, L., Roa, S.: Parametric analysis of the stability of a bicycle taking
into account geometrical, mass and compliance properties. Int. J. Veh. Des. 75(1–4), 91–123 (2017)

22. Cossalter, V., Doria, A., Massaro, M., Taraborrelli, L.: Experimental and numerical investigation on the
motorcycle front frame flexibility and its effect on stability. Mech. Syst. Signal Process. 60–61, 452–471
(2015). https://doi.org/10.1016/j.ymssp.2015.02.011

23. Taraborrelli, L., Favaron, V., Doria, A.: The effect of swingarm stiffness on motorcycle stability: exper-
imental measurements and numerical simulations. Int. J. Veh. Syst. Model. Test. 12(3/4), 240 (2017).
https://doi.org/10.1504/IJVSMT.2017.089981

24. Doria, A., Taraborrelli, L.: The twist axis of frames with particular application to motorcycles. Proc.
Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 230(17), 3026–3039 (2016). https://doi.org/10.1177/
0954406215604862

25. Doria, A., Roa, S.: On the influence of tyre and structural properties on the stability of bicycles. Veh.
Syst. Dyn. 56(6), 947–966 (2018)

26. Doria, A., Roa, S., Muñoz, L.: Stability analysis of bicycles by means of analytical models with increas-
ing complexity. Mech. Sci. 10(1), 229–241 (2019). https://doi.org/10.5194/ms-10-229-2019



Identification of lumped stiffness parameters for a motorcycle model. . .

27. Roa, S., Doria, A., Muñoz, L.: Optimization of the bicycle weave and wobble modes. ASME 3 (2018).
https://doi.org/10.1115/DETC2018-86132

28. Pacejka, H.B.: Tyre and Vehicle Dynamics, 2 edn. Elsevier Butterworth-Heinemann, Amsterdam and
Heidelberg (2006)

29. BMW Group: the new BMW R 1200 GS. https://www.press.bmwgroup.com/global/article/detail/
T0132324EN/the-new-bmw-r-1200-gs

30. Schindler, T., Förg, M., Friedrich, M., Schneider, M., Esefeld, B., Huber, R., Zandler, R., Ulbrich, H.: In:
Analysing Dynamical Phenomenons: Introduction to mbsim. The 1st Joint International Conference on
Multibody System Dynamics, 2010 May 25-27, Lappeenranta, Finland (2010)

31. Meyer, C.H., Lerch, C., Maierhofer, J.: AMfe. Chair of Applied Mechanics, Technical University of
Munich. https://github.com/AppliedMechanics/AMfe

32. Schober, P., Boer, C., Schwarte, L.: Correlation coefficients: appropriate use and interpretation. Anesth.
Analg. 126(5), 1763–1768 (May 2018). https://doi.org/10.1213/ANE.0000000000002864

33. Dipl.-Ing. Dirk Wisselmann: Motorrad-Fahrdynamik-Simulation. Modellbildung, Validierung und An-
wendung: PhD Thesis. VDI-Berichte, Dachau (1992)

34. Roe, G.E., Thorpe, T.E.: The influence of frame structure on the dynamics of motorcycles stability SAE
Technical Papers (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.



4 Steps Towards Optimized Distribution of Structural Stiffness

4.4 Application Example of the Optimization of Stiff-
ness Distribution

In this section, it is shown how the information provided by the methodology presented in
Section 4.3 can be used to reduce the mass of structural components while enhancing the
stability of the weave and wobble eigenmodes. A common way to reduce the mass of a
component is to use less material, which generally implies a reduction of its stiffness. Obviously,
the challenge is to select to which component this stiffness reduction should be applied without
impairing the stability of weave and wobble. In fact, as explained in Section 2.2.2 and 2.2.3,
when the chassis components have too low of a stiffness, the motorcycle could show high-
speed weave stability issues. The methodology presented in Section 4.3 allows the designer to
decide which structural component can be considered for the stiffness reduction and, within the
structural component itself, whether it is better to reduce the bending or the torsional stiffness.

For Figure 4.10, the same nomenclature of Section 4.3 is used:

• ρ is the Pearson Correlation Coefficient.

• kt,f and kb,f are the torsional and bending stiffness of the frame, respectively.

• kt,a and kb,a are the torsional and bending stiffness of the front assembly, respec-
tively.

• kt,s and kb,s are the torsional and bending stiffness of the swingarm, respectively.

The “baseline” configuration in Figure 4.10 is the same used in Section 4.3 and its correlation
coefficients are shown by the first set of bars. Starting from this configuration, three subsequent
steps of stiffness reduction are carried out, whose sensitivity analyses are shown with the
remaining sets of bars:

Baseline kt,a = −20 % kt,a, kb,s = −20 % kt,a, kb,s, kf = −20%
40-100 kmh−1

100-210 kmh−1
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Figure 4.10: Sensitivity analyses of the three subsequent steps of stiffness reduction.
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1. The torsional stiffness of the front assembly kt,a is reduced by 20 %. kt,a is a good
candidate for stiffness reduction because it has negative correlation coefficients
at both speed ranges for wobble and only small positive correlation coefficients
for weave. This means that a reduction of this stiffness would stabilize the wobble
at low and high speeds, while having only a minor destabilizing effect on weave.
The correlation coefficients resulting from this new configuration are shown by the
bars with light blue lines in Figure 4.10. As expected, compared to the previous
configuration, the correlation coefficients of the stiffness kt,a change after its reduc-
tion, especially in the high speed range. In particular, the correlation coefficient
for wobble becomes more negative, which would suggest to further reduce this
stiffness. However, concurrently, the correlation coefficient for weave becomes
more positive, which indicates to increase the stiffness. Moreover, the reduction of
kt,a has an effect on the correlation coefficients of kb,a, in particular that for wobble
at high speed, which gets less negative.

2. Starting from the configuration of 1., the bending stiffness of the swingarm kb,s is
reduced by 20 %. The decision is made considering that this stiffness has negative
correlation coefficient on weave at high speeds and no effect on wobble. This
indicates that a reduction of this stiffness would stabilize weave in the speed
range where it is generally lightly damped (Section 4.1). The positive correlation
coefficient for weave at low speeds is less critical because in this speed range
weave is highly damped. The correlation coefficients of the new configuration
are shown in Figure 4.10 with the green lines. The main change compared to
the previous configuration is in the correlation coefficients for weave of kb,s. In
particular, the coefficients for both speed ranges increase in value.

3. Starting from the configuration of 2., the torsional and bending stiffness of the
frame kt,f, kb,f are reduced by 20 %. This decision is less obvious than the previous
steps. In fact, kt,f and kb,f have positive correlations coefficients for weave and
opposite correlation coefficients for wobble in the low and high speed ranges.
Therefore, after reducing them, the evolution of the eigenmodes in the whole
velocity range must be checked. This is shown in Figure 4.11 and discussed
below. The correlation coefficients after reducing the frame stiffnesses are shown
in Figure 4.10 with orange lines. The change in the frame stiffnesses influences
the correlation coefficients of several other stiffnesses, in particular kt,a,kb,a and
kb,s. This can be explained considering that the frame is the supporting element for
the front assembly and swingarm so that changing its stiffness alters the stiffness
ratios between the structural components.

The considerations made above show the versatility of this methodology, which allows at every
step of the stiffness reduction to monitor how all sensitivities evolve. This is particularly important
to decide which stiffness to reduce in the next step and to make sure that no unexpected effects
occur, which could compromise the stability.

After reducing the stiffnesses, it is important to check how the stability of the weave and wobble
eigenmodes changes compared to the initial configuration. This is shown in Figure 4.11, where
the stability of the motorcycle with the new stiffness configuration is analyzed. The diagrams
show how the weave eigenmode remains basically unchanged, while the wobble stability is
slightly improved in the whole considered speed range. The increased stability of wobble can
be mainly attributed to the reduction in kt,a. While the reduction of only kt,a,kt,f,kb,f would be
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Figure 4.11: Change in the weave and wobble eigenmodes after applying stiffness reduction.

detrimental for the weave stability, a deterioration in weave damping is prevented by reducing
at the same time kb,s, which, as discussed above, has a positive effect on high-speed weave
stability. This result stresses the utility of the proposed methodology: by observing the information
provided, it was possible to achieve the competing objectives of reducing the stiffness and thus
also the mass of structural components while at the same time improving the motorcycle stability
in the whole speed range.
In this first version of the methodology, the designer has still to decide which component to
reduce by looking at the correlation coefficients. An algorithm for automatically iterating through
all structural components is possible, however, it should be adapted to considered the multiple
requirements to the structural design, such as strength, fatigue and durability, which is beyond
the scope of the present thesis.

After changing the stiffness distribution of structural components, the effect on several other
aspects of motorcycle dynamics should be considered, such as the response when driving
over curbs during cornering and the potential changes in the steering feedback. For that,
the methodology proposed in Section 4.3 could be extended to consider different performance
criteria in addition to the stability of weave and wobble. A maximum of 20 % for stiffness reduction
has been considered to limit the present study to realistic configurations.
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In Chapter 4, it has been shown how to adapt the chassis stiffnesses to increase the stability
of the weave and wobble eigenmodes. As mentioned in the introduction, another possibility
to enhance the stability properties of a motorcycle is by using a stabilizing controller. In the
present publication, two control strategies for a steering actuator are proposed with the following
closed-loop requirements:

• Guaranteeing the stability of the weave and wobble eigenmodes throughout the
whole operating range of the motorcycle.

• No interference with the rider’s control action.

The steering actuator–which applies a moment directly to the steering system–was chosen
as active stabilizing system based on the ideas provided by previous works in the field. The
fundamental idea is to extend the functionality of the steering damper, which on the one hand
improves the stability of wobble but on the other hand destabilizes weave. For this reason, the
damping coefficient of a steering damper must always be chosen considering this trade off [14,
62]. To overcome this limitation, passive [62], semi-active [165] and active [172] systems have
been developed. Passive and semi-active systems present some limitations compared to active
systems. For active systems, a suitable control strategy must be developed. In [172], the control
strategy is based on a linearized model and is therefore limited in its applicability to the whole
operating range of the motorcycle. Finally, the controller proposed in [172] is mainly focused on
the improvement of the stabilization of wobble.
In this publication, two approaches for the synthesis of the stabilizing controller are proposed: a
gain-scheduling proportional controller and an H∞ controller. The control signals used are yaw
rate ψ̇ and steering rate δ̇, because, as shown in Section 4.3, they are representative of weave
and wobble, respectively. The controllers are developed using the motorcycle model presented
in Section 4.1, whereby some parameters such as the mass distribution have been adapted to
represent a motorcycle with weave stability issues at high speed.

The gain-scheduling controller is based on a simple law: τ = kψ̇ψ̇ + kδ̇δ̇. ψ̇, δ̇ are the yaw rate
and steering rate, respectively and kψ̇, kδ̇ are the controller parameters. These parameters are
determined with a procedure that leverages the multibody motorcycle model and that provides
optimal control parameters for several combinations of speed and roll angle in the relevant
operating range.

The H∞ controller has the structure shown in Figure 5.1. G is the system model and contains
the transfer functions between the modeled disturbances, i.e., lateral force Fy and steering
moment τd, and the outputs, i.e., yaw rate ψ̇ and steering rate δ̇. These transfer functions are
obtained with a system identification procedure, where the necessary data are generated with
the multibody motorcycle model. Compared to [172], where a linearized motorcycle model is
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Figure 5.1: Block diagram of the H∞ controller [186].

used, the system identification process has the advantage of reducing the number of state space
variables yet still correctly modeling the frequency and damping of weave and wobble. This
facilitates the controller synthesis and increases the performance of the final controller.
Finally, the weights Wψ̇, Wδ̇, Wact are used to shape the controllers so that the closed-loop
requirements mentioned above are satisfied. The novelty compared to the previous works such
as [172] is an optimization procedure that automatically calculates the weights, so that the
common trial-and-error process is overcome. Moreover, the H∞ controller in [172] only takes
into account steering torque disturbances and uses only the steering rate as control signal. As
mentioned above, in the present publication also lateral force disturbances are modeled and,
additionally to the steering rate δ̇, the yaw rate ψ̇ is used, which allows better damping of the
weave eigenmode.

Results show that both controllers are able to solve the high-speed stability issue of the motorcy-
cle considered. This is demonstrated in Figure 5.2, which shows a time simulation at 180 kmh−1,
where the motorcycle is excited with either a steering moment impulse or a lateral force impulse
to simulate, for example, an excitation coming from the road or from lateral wind. The motor-
cycle would be unstable, as the oscillation with increasing amplitude shows. Both controllers
successfully stabilize the motorcycle, with the H∞ controller showing slightly better performance
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Figure 5.2: Comparison of the controllers’ behavior after excitation of the weave mode at 180 kmh−1

with either steering moment impulse or lateral force impulse. The plots in the middle are
a magnification of the respective plots above. The plots below show the steering moment
applied by the steering actuator [186].
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than the proportional gain-scheduling controller because it damps the oscillation more quickly.
Moreover, it has been shown that both controllers do not interfere with normal driving conditions.
However, to satisfy this requirement, the proportional gain-scheduling controller requires proper
filtering of the yaw rate and steering rate signals with a high pass filter, which filters out the low
frequencies deriving from normal maneuvers. In the H∞ controller, these filters are not needed
because the requirements on the actuation frequencies are specified through the weights.

With the gain-scheduling controller, the values of the controller gains are selected from a look-up
table containing the gains for different combinations of speed and roll angle. To make sure that
this switching does not cause stability problems of the controller itself, extensive simulation for
several working conditions have been carried out, showing that the controller does not causes
instabilities in the simulated configurations.
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Two Approaches for the Synthesis of a Weave-Wobble-stabilizing
Controller in Motorcycles

Francesco Passigato1, Alexander Wischnewski2, Achim Gordner3 and Frank Diermeyer1

Abstract— Weave and wobble are well-known eigenmodes of
motorcycles. Depending on the motorcycle parameters, these
modes may become unstable, thus impairing safety and ma-
neuverability.
Steering dampers are fitted in modern motorcycles to improve
the wobble stability and prevent the kick-back phenomenon.
However, they have a detrimental effect on the weave stability,
so that the damping coefficient is a trade-off between wobble
and weave stability. Even though a similar problem concerning
the vertical dynamics of passenger cars is well documented,
there are not so many applications which try to optimize this
trade-off for motorcycles. In the present work, two control
strategies for a steering controller are presented, which help
to optimize the trade-off. The first one is a proportional
controller, where the controller parameters are optimized for
several speeds. The second one is based on H∞ controller
synthesis coupled with a model identification process. Both
controllers are able to increase the stability range of a specific
motorcycle model. In particular, the high speed weave stability
issue is solved. The H∞ controller performs better than the
proportional controller and, even though it is synthesized for a
single speed, it demonstrates the desired behavior over a wide
speed range.

I. INTRODUCTION

Mechanical systems have characteristic eigenmodes. The
most important eigenmodes of motorcycles involving the
lateral dynamics are capsize, weave and wobble [1]–[3].
Capsize is a non-oscillating mode corresponding to the
motorcycle tilting over [3] and is dominated by roll and
lateral displacement of the vehicle [4]. Weave and wobble
are instead oscillating eigenmodes. Weave involves roll, yaw,
steering-head rotation and lateral displacement and has an
eigenfrequency in the range 1-4 Hz [3]. Wobble is dominated
by the steering head rotation and its eigenfrequency lies in
the range 5-10 Hz [2]. For the present work only the weave
and wobble are of interest.

The literature includes a number of papers in which the
parameter influencing weave and wobble are analyzed [5]–
[11]. Modern motorcycles are often fitted with a steering
damper whose main function is to improve the wobble mode
damping and avoid the kick-back phenomenon. However, it
is detrimental for the stability of the weave mode, so that
the damping value of this mechanical component is always
a trade-off [12], [13].
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This paper presents a solution for solving this problem.
Two control strategies for a steering controller are pre-
sented, which allow the damping of the weave and wobble
modes to be simultaneously increased. The first concept is
a proportional controller using yaw and steering rates as
control variables. These variables were chosen on the basis
of previous literature and because they are representative of
weave and wobble, respectively. The main novelty for this
controller is coupling with an optimization process which
uses a non-linear motorcycle model [10] to determine the
optimal controller parameters. The second concept is based
on the H∞ controller synthesis [14]. In this case, the main
contributions are: a data-based system identification process
that makes it possible to achieve an efficient model for the
controller synthesis. The data are generated with a non-linear
motorcycle model [10]. The other contribution is an opti-
mization process to determine the weights for the controller
synthesis by specifying concrete closed-loop requirements.
This simplifies the controller synthesis because normally the
weights are obtained by trial and error.

Both controllers are tested in the time domain with the
non-linear motorcycle model presented in [10].

II. STATE OF THE ART

The problem of solving the conflict in determining the
damping coefficient for the steering damper has already
been tackled in the literature using different approaches. The
damping (decay ratio) of the weave and wobble eigenmodes
is strongly dependent on the current motorcycle state, in
particular on the speed and the roll angle [1], [3], [6], [12].
This poses additional challenges to the control strategy.

De Filippi et al. [15] implement a control strategy for a
semi-active steering damper. The basic idea is to transfer the
control strategies ”Sky Hook” and ”Ground Hook”, which
were originally developed for the vertical dynamic, to the
lateral dynamics. In this way, the damping coefficient is
adapted to the current state of the motorcycle, thus making
it possible to partially solve the trade-off between weave and
wobble stability.

Another solution using passive mechanical components is
proposed by Evangelou et al. [12]. The classical steering
damper is substituted by a so-called mechanical compensator,
which includes three components: a spring, a damper and
an inerter. With this solution, the authors achieve a second
order impedance between the steering rate and the steer
torque applied by the compensator. This, combined with a
proper optimization of the impedance parameters, improves
the damping of the weave mode while maintaining similar



wobble damping when compared to an optimized steering
damper.

Based on the idea of using a second order impedance,
Evangelou et al. [16] implement a control strategy for a steer-
ing actuator using H∞ controller synthesis. The controller
structure is, however, different from the structure used for
the H∞ controller in the present paper. Compared to the
steering compensator, this solution has two advantages: that
the parameters can be easily adjusted and that an extension
of the control strategy with an adaptive or parameter-varying
version is possible. The results show some improvements
with respect to the compensator, in particular thanks to the
possibility of including disturbances in the control synthesis.

Massaro et al. [17] develop a rider model for trajectory
following. The controller for the lateral dynamics is a PID
controller that contains, in addition to the terms for path
following, two terms proportional to the yaw and steering
rate. The authors state that these terms improve both weave
and wobble damping. However, the effect of including these
terms in the control strategy is not analyzed.

This paper is organized as follows: Section III presents
two methods for the synthesis of a weave-wobble stabilizing
controller. Section IV demonstrates advantages and disad-
vantages of the controllers by use of simulations. The paper
concludes in Section V.

III. CONTROLLER SYNTHESIS

This Section presents two control strategies the purpose of
which is to improve the weave and wobble damping. They
must satisfy two requirements:

1) Ensure the stability of the weave and wobble modes.
2) No actuation during a normal steering maneuver or

steady-state turn.
The following notation is used: Fy is a lateral force distur-
bance; τd the steering torque disturbance; τ is the control
torque applied by the steering controller; ψ̇ is the yaw rate;
δ̇ is the steering rate.

The motorcycle model presented in [10] is used for the
controller synthesis. This is a multibody model developed
with the software ‘MBSim’ (www.mbsim-env.de). It uses
the Pacejka Magic Formula for motorcycle tires [18] and
is able to reproduce the chassis stiffnesses with lumped
parameters and the passive rider behavior. The model pa-
rameters have been artificially adapted to represent a heavily
laden motorcycle with a total weight of 390 kg (including
motorcycle, rider and luggage) and having high speed weave
stability issues: in the simulations, the weave becomes unsta-
ble starting from about 160 km h−1. The synthesis process
will then tune the controller to compensate for this problem,
while also ensuring that the wobble remains well-damped.

A. Proportional controller
The idea of a proportional controller for stabilizing both

weave and wobble was presented in [17]. However, the
benefits of such a controller were not indicated. The control
torque is calculated using the following equation:

τ = kψ̇ψ̇ + kδ̇ δ̇ (1)

where kψ̇, kδ̇ are the two control parameters that need to be
determined. The first term in (1) is proportional to the yaw
rate and improves the weave damping. The second term in
(1) works analogously to a steering damper and improves
the wobble damping [17].

The control parameters can be determined by solving an
optimization process. A common procedure is to formu-
late the optimization process using a model obtained from
linearizing a non-linear motorcycle model around a certain
working condition [4], [17], [19]. In the present work, the
controller defined in (1) is coupled with an optimization that
is carried out for different combinations of speeds and roll
angles. The optimization is performed using the non-linear
motorcycle model. The simulation is carried out with initial
speed v0 and initial roll angle ρ0. The weave and wobble are
triggered with an impulse lateral force Fy on the motorcycle
frame at the steer joint. The force is applied at the begin-
ning of the simulation and then the motorcycle response is
simulated for tend seconds. In this simulation, the controller
(1) is implemented and the parameters kψ̇, kδ̇ are defined
outside the model. They are changed by an optimization
routine in Matlab® which minimizes the cost functional (2).
The minimization function used is fminsearch().

J1 = wψ̇

tend∑

t=t1

|ψ̇(t)|+ wδ̇

tend∑

t=t1

|δ̇(t)|. (2)

wψ̇, wδ̇ are scalar weights. The two sums
∑tend
t=t1

represent
the mean of the yaw rate and steering rate over the last
tend − t1 seconds of simulation time. The absolute value
ensures that the sum is positive and that sample points with
opposite sign (as it happens in an oscillation around 0)
do not delete with each other. The optimization therefore
tunes the parameters kψ̇, kδ̇ so that the resulting controller
compensates the excitation caused by Fy . This corresponds
to damping out the weave oscillation, represented by ψ̇, and
the wobble oscillation, represented by δ̇. During a steady-
state turn we have ψ̇ 6= 0. Therefore, for minimizing the
cost functional (2), the motorcycle should be brought to
the straight running position, which is not the aim of the
controller. To avoid this, a high pass filter is applied to
the signal ψ̇. This filters out the constant component of ψ̇
during a steady-state turn and only leaves the component
related to the weave oscillation. The high pass filter is also
advantageous for the final application of the controller. In
fact, it also ensures that the controller does not interfere
with low-frequency control actions of the rider, for example
during a steering maneuver.

Let vopt ∈ Rnv ,ρopt ∈ Rnρ be the vectors of the speed
and roll angles for which kψ̇, kδ̇ are to be optimized. The
optimization problem is:

min
kψ̇,kδ̇

J1(t1, tend, v0,i, ρ0,j). (3)

It provides the optimal values of kψ̇, kδ̇ for every combina-
tion [v0,i, ρ0,j ] with i = 1...nv, j = 1..nρ.
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Fig. 2: Block diagram of the current H∞ controller.

B. H∞ controller

The block diagram of a general H∞ controller is shown
in Fig. 1, where G is the system to be controlled and K
is the controller. The underlying feature of a H∞ controller
is its capability to minimize the effect of disturbance inputs
w on the model outputs z. This is equivalent to solving the
following optimization problem [20]:

min
K(s)

‖Gw(s)‖∞ , (4)

i.e. the resulting controller minimizes the maximum singular
value of the transfer function between the disturbancesw and
the outputs z. This ensures that the system response remains
bounded, i.e. it is stable with a certain stability margin (robust
stability) [14].

For the synthesis of an H∞ controller, a linear model G
of the motorcycle is needed in the form of a transfer function
or of a state space formulation [14], [20]. It is possible to
export the state space model directly from the multibody
environment. However, for the motorcycle model used in
this paper, this would lead to a state space model with 36
state variables, which makes the controller synthesis difficult.
Another possibility is to use a model identification technique,
as described in [21]. The System Identification Toolbox from
Matlab® allows this process to be carried out easily. The
model identification is done in the following steps:
• Define the vectors w, z,y,u needed for the controller

synthesis.
• Generate an input-output sequence using the non-linear

motorcycle model. A harmonic excitation is generated
for each input at different frequencies in the desired
frequency range, with the other inputs equal to 0.

• The System Identification Toolbox uses the input-output
sequence to produce the model G.

As stated in the introduction to Section III, the motorcycle
model under consideration is critical at high speed because of
the instability of the weave mode. The model identification
is therefore carried out at 150 km h−1, when the weave is
near to the stability bound. Harmonic excitation is used in

the range 0.1 - 5 Hz (0.6 - 31.4 rad s−1), where both weave
and wobble are present.

The structure of the controller used in this paper is shown
in Fig. 2. The disturbances considered are the lateral force
Fy applied on the motorcycle frame and the steering torque.
Two inputs for the steering torque are present. This is
necessary because it is considered as both a disturbance
τd and a control action τ . Fy models a side wind dis-
turbance while τd represents a general disturbance acting
on the steering assembly (for example road undulations
which cause steer moments). The model contains six transfer
functions: ψ̇(s)

Fy(s)
, δ̇(s)
Fy(s)

, ψ̇(s)τd(s)
, δ̇(s)τd(s)

, ψ̇(s)τ(s) ,
δ̇(s)
τ(s) ; the last four

are pairwise equivalent. Fig. 3 shows the comparison of the
transfer function ψ̇(s)

τd(s)
between the model obtained using the

System Identification Toolbox (”si”) and the model directly
exported from the multibody environment (”exp”). There is
good accordance both for the magnitude and phase in the
frequency range of interest, i.e. where weave and wobble are
present. This is also valid for the other transfer functions.

The identified model G has 5 state space variables.
Therefore, the system identification process is used as a
sort of model order reduction, where the model order is
reduced from 36 (linearized state space model exported
from the multibody model) to 5, which still represents the
important information for the controller synthesis, as shown
in Fig. 3. This significantly reduces the computing time for
the H∞controller synthesis. It has been also verified that
the controller synthesized using the identified model has
much better performance than the one synthesized with the
linearized model.

The chosen model outputs are the yaw rate ψ̇ and the
steering rate δ̇ as they are representative of the weave and
wobble modes, respectively.
A is the model of a possible steering actuator controlled

by the controller K using signal u. It represents the delay
of the actuator and is defined as a first order low pass filter
with time constant equal to 0.03 s; A = 1

(0.03·2π)s+1 .
The H∞ controller can be synthesized by specifying

weights W that ensure the desired closed loop behavior
[14], [16], [20]. In the present work, the weights have the
following meanings:

• WFy ,Wτd are constant normalization factors because
the inputs have different magnitudes.

• Wact ensures that the controller does not act at low
frequencies, so that the controller does not interfere with
low-frequency control actions of the rider.

• Wψ̇,Wδ̇ ensure the stability of the weave and wobble
modes.

The controller will minimize the effect of the disturbances
dFy , dτd on the outputs eδ̇, eψ̇ by sending a signal u to
the actuator A which, in the proposed example, applies
a steering torque τ to the model G. After solving the
optimization problem in (4), a controller K is obtained
that includes the weights W in the controller K∞ (see
Figure 2), i.e. the final controller includes and satisfies the
closed-loop requirements specified with the weights. The
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Fig. 3: Comparison between the model obtained with system identification (si) and the exported state space model (exp).

synthesis procedure in this paper uses the Matlab® function
hinfsyn(). An example with structure similar to Fig. 2 is
present in the documentation.

The specification of the transfer functions Wψ̇,Wδ̇,Wact

is not a trivial task and is often carried out by trial
and error [16]. In the present paper, this task is solved
with an optimization that again uses the Matlab® function
fminsearch(). The weights Wψ̇,Wδ̇,Wact have a gen-
eral second order transfer function:

W =
a2s

2 + a1s + a0
b2s2 + b1s + b0

. (5)

The parameters for each weight are provided by the optimiza-
tion process, which therefore involves 6 ·3 = 18 parameters.
The cost function is:

J2 =
∣∣min

(
0, (‖G(ωwe)‖ − ‖Gcl(ωwe)‖)−∆we

)∣∣+∣∣min
(
0, (‖G(ωwo)‖ − ‖Gcl(ωwo)‖)−∆wo

)∣∣+
| ‖G(ω < ωlow)‖ − ‖Gcl(ω < ωlow)‖ |+
| ‖G(ω > ωhigh)‖ − ‖Gcl(ω > ωhigh)‖ |,

(6)

Where Gcl is the closed-loop transfer function where the
weights are included, ωwe, ωwo are the weave and wobble
eigenfrequencies, ∆we,∆wo are scalars, ωlow is the highest
frequency below the critical frequency range and ωhigh is
the lowest frequency above the critical frequency range. (6)
is created by considering the following closed-loop require-
ments: The peaks of the transfer functions of G (see Fig. 3),
corresponding to the weave and wobble eigenmodes, should
be attenuated at least by a certain amount. The transfer
functions of the closed loop system should not deviate
from the original transfer functions of G outside the critical
frequency range. These closed-loop requirements could not
be directly implemented in the H∞ controller synthesis, but
rather by trial and error tuning of the weights.

IV. RESULTS

We start this section with a frequency-domain-analysis of
the performances of the H∞ controller. The same analysis is
not possible for the proportional controller because it works
with the non-linear model so that the related transfer function
is not directly available.

Fig. 4 shows a comparison between the transfer function
ψ̇(s)
τd(s)

of the open-loop and closed-loop models. The follow-
ing considerations are also valid for the other transfer func-
tions. The closed-loop requirements formulated in Subsection

III-B are met: the peak relative to the weave eigenmode is
reduced by about 30 dB, while the wobble is only marginally
mitigated because it is not critical at the speed where model
identification is carried out. Moreover, the controller does not
change the open-loop transfer functions outside the critical
frequency range.

Fig. 5 shows the magnitude of the transfer functions of the
weights Wψ̇,Wδ̇,Wact and of the transfer functions of the
controller. The weights derive from the optimization problem
described in Subsection III-B. The controller K is composed
of two transfer functions: u(s)

ψ̇(s)
, u(s)
δ̇(s)

. The considerations pre-
sented above can also be drawn from Fig. 5: the magnitude
of the controller’s transfer functions is low outside of the
weave-wobble frequency range and, for this reason, it does
not interfere with ”normal” riding conditions. The transfer
function u(s)

δ̇(s)
is similar to that obtained by Evangelou et

al. [16], which also had the objective of increasing weave
and wobble damping using, however, a different controller
structure.

The time domain offers similar interpretations. In this case,
a comparison of the performances of the two controllers
is possible. Both controllers are applied to the non-linear
motorcycle model presented in [10] and briefly described in
Section III. Two simulations are carried out.

The first one has the aim of demonstrating that the
controllers do not intervene during a ”normal” steering
maneuver. A cosine steer moment τd with period 1.5 s
and amplitude 20 N m is applied. The speed used for this
simulation is 120 km h−1. Fig. 6 shows the behavior of the
open-loop system, the proportional controller and the H∞
controller. The roll angle ρ is observed because it is the most
representative state variable to judge whether the controller
influences a steering maneuver. The two controllers perform
similarly. However, the H∞ controller performs better than
the proportional controller: the maximum deviation from the
open-loop system is about 0.4◦ for the proportional controller
and 0.2◦ for the H∞ controller. Moreover, the H∞ controller
does not require the high pass filter applied to ψ̇ (as for
the proportional controller), because the appropriate filters
are already specified in the controller synthesis with to the
weighting factors Wψ̇,Wδ̇,Wact.

The second simulation is to compare the capability of the
two controllers in damping an unstable weave oscillation.
We recall that for the motorcycle considered in the present
work, the weave mode is most critical. The simulation is
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carried out at 180 km h−1 and two disturbances are used: Fy
impulse of 0.2 s with amplitude 120 N; τd impulse of 0.2 s
with amplitude 20 N m. The upper figures in Fig. 7 show the
yaw rate, which is representative of the weave eigenmode,
for the two impulse disturbances. The original model would
be unstable. Both the controllers are able to stabilize the
motorcycle. However, the H∞ controller performs slightly
better because it damps out the oscillation more quickly (see
the middle plots in Fig. 7). The difference between the con-
trollers is bigger when the disturbance τd is used. The reason
is that only Fy is used for the synthesis of the proportional
controller, while both disturbances are considered in the
synthesis of the H∞ controller. The moment applied by the
steering actuator (lower figures in Fig. 7) to compensate for
the weave instability assumes similar values (max 4 N m). At
180 km h−1, both controllers are able to deal with τd impulse
disturbances up to 100 N m and Fy impulse disturbances
up to 1600 N. However, this would require actuator torques
rapidly varying from 50 N m to −50 N m. The feasibility of
such a torque input should be verified on a real actuator.
Also in this limit conditions, the H∞ controller stabilizes
the motorcycle more quickly.

V. CONCLUSIONS

Two control systems have been presented with which
the stability range of a specific motorcycle model can be
increased. The first one is a proportional controller in which
the control parameters are optimized for different speeds and
roll angles; the optimization is carried out using a non-linear
motorcycle model. The second one is an H∞ controller.
The novelty for this second controller is that the controller
synthesis is carried out using a model obtained with a data-
based model identification, where the data are produced with
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the non-linear motorcycle model. In this way, the model for
the controller synthesis includes only the relevant dynamics
for the control strategy, i.e. it correctly reproduces the weave
and wobble modes.

The controllers’ performances have been tested on the
non-linear motorcycle model: the controllers behave sim-
ilarly. However, the H∞ controller performs better than
the proportional controller: it damps the weave oscillation
more quickly and it has less influence on the low frequency
steering maneuver in the speed range considered (120-
180 km h−1).

The proportional controller does not require a linearization
of the original model. However, its parameters are very
sensitive to the boundary conditions used for the simulations
in the optimization algorithm, such as the intensity of Fy
and the simulation time tend. For this reason, the resulting
optimal parameters are always a local optimum. By contrast,
the synthesis of the H∞ controller offers a more robust envi-
ronment and can be extended to include other disturbances.

The H∞ controller was developed to compensate for
high speed weave. For this reason the model used for the
controller synthesis was obtained by model identification at
150 km h−1. The results showed that the controller behaves
as desired over a wide speed range (120-180 km h−1). At low
speed (below 80 km h−1), however, this model is no longer
valid because of the nonlinearities in motorcycle dynamics.
For this reason, the controller does not behave correctly in
this lower speed range. One possibility to avoid this problem
is to use two (or three) controllers synthesized using models
identified at different speeds. The number of speeds to be
considered will probably be smaller than that needed in
the optimization of the proportional controller parameters
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because theH∞ controller demonstrated superior robustness.
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6 Conclusions

In this chapter, the main results are summarized and ideas for further developments of the
presented methods are formulated.

6.1 Summary

In this thesis, the problem of increasing the stability of the weave and wobble eigenmodes in
motorcycles has been considered. The proposed solution leverages two main aspects: the
search for an optimal distribution of structural stiffness that enhances the stability properties of
the motorcycle and the development of a stabilizing controller for a steering actuator. The first
approach is suitable for application in the design phase of motorcycles. The second solution
allows the enhancement of the stability during operation, i.e., in real driving conditions.

In Section 4.2, a flexible multibody model has been proposed, which allows the reproduction
with high accuracy of the effect of structural flexibilities on the stability of the weave and wobble
eigenmodes. Results showed that the front assembly has the highest impact, whereby a stiff
front assembly enhances the high-speed stability of weave and the low-speed stability of wobble,
while it deteriorates the high-speed stability of wobble. Moreover, based on the motorcycle
considered in the present thesis, it can be argued that the frames of modern motorcycles tend
to be extremely stiff. This trend is certainly motivated by the attempt to increase the high-
speed stability of weave; however, modern frames sometimes reach stiffness values that are
not necessary under the perspective of weave and wobble stability. In fact, as discussed in
Section 2.2.2, a too stiff frame could even cause high speed wobble instabilities (kick-back).
Moreover, a reduction of the stiffness implies less material usage, which leads to mass reduction
and savings in production costs. This highlights that even modern motorcycles have potential for
improving the design of their structural components.

Based on this consideration, in Section 4.3 a methodology has been proposed to optimize the
distribution of structural stiffness with the aim of improving the stability of the weave and wobble
eigenmodes. The method provides information about the sensitivity on the stability of weave and
wobble of the bending and torsional stiffness of the main structural components of a motorcycle,
i.e., frame, front assembly and swingarm. This information can be used by the designer to
improve the design of these structural components. The method is based on a lumped stiffness
motorcycle model, which allows to study each stiffness separately. Since the accuracy of lumped
stiffness models strongly depends on their parameterization, a procedure has been proposed
to build a lumped stiffness motorcycle model, where the influence of flexibilities on weave and
wobble is modeled with an accuracy similar to that of a flexible multibody model.

In Section 4.4, an example application of the methodology is proposed: using the information
presented by the methodology, the stiffness of the structural components has been reduced by
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20 % in three subsequent steps. Results show that, for the motorcycle considered, this stiffness
reduction leaves weave unaltered while it improves the stability of wobble. Moreover, the
stiffness reduction is associated with a mass reduction, which, as mentioned above, enhances
the longitudinal and lateral dynamics.

In Chapter 5, two controllers for a steering actuator have been proposed, which have the aim of
increasing the stability of the weave and wobble eigenmodes. The gain-scheduling proportional
controller can be easily tuned to produce an appropriate control action in the whole operating
range of the motorcycles. The H∞ controller presents higher robustness and gives the possibility
to account for model uncertainties. Both controllers are able to successfully stabilize an unstable
motorcycle. Moreover, it has been proven that they do not interfere during normal maneuvering,
such as cornering.

For the design of new motorcycles, the proposed methodology can be combined to design
lightweight motorcycles with relatively low stiffness–whereby the reduced mass would bring
advantages on fuel efficiency and low speed maneuverability. A motorcycle with low stiffness
would likely result in stability issues, especially for the high-speed weave. However, these
could be solved with the proposed control system, thus obtaining a lightweight motorcycle
with the desired stability properties. Of course, a chassis with low stiffness could present
problems on other aspects of the riding experience, which have to be evaluated separately.
Moreover, since without the stabilizing action of the controller the motorcycle could be unstable,
a proper certification for the control-actuation system would be necessary for such a system to
be industrialized.

6.2 Outlook

Study of the Effect of Structural Flexibility on Weave and Wobble

The studies proposed in Section 4.3 and Section 4.4 are carried out with a single motorcycle
model, which is based on the stiffness data of a real motorcycle. However, it could happen
that, using other stiffness data as basis, the results of the study change. An example is shown
in Figure 6.1, where the initial configuration of the stiffnesses used in Section 4.3 is varied by
reducing the bending stiffness of the front assembly by 50 %. With this variation, the intent is
to reach a value for the bending stiffness which is similar to that of conventional telescopic
forks. In fact, the motorcycle used in Section 4.3 has a Telelever front suspension, which has
a significantly higher bending stiffness than conventional telescopic forks. Compared to the
standard configuration, which produces the sensitivity analysis in Figure 4.9, the sensitivity of
the bending stiffness of the front assembly increases significantly, while the sensitivity of its
torsional stiffness is reduced. The sensitivity of the other stiffnesses remains almost unchanged.
This experiment indicates that, when carrying out a design optimization, the initial configuration
to which the optimization has to be applied must be considered carefully and a generalization of
the conclusions is not always possible. However, the proposed methodology gives the possibility
to easily adapt the initial condition, thus facilitating the study of stiffness configurations relative
to different motorcycles.

In Section 4.2, two of the most common methods for MOR have been used, i.e., Craig-Bampton
and modal truncation. Further research could involve testing different methods for MOR and
the development of methods for automatic MOR of second-order systems. For that, already
existing methods could be adopted [117, 128, 143, 145]. Alternatively, the method presented by
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Figure 6.1: Sensitivity of the structural stiffnesses on the stability of weave and wobble. For the
calculation, the same procedure proposed in Section 4.3 is adopted. However, the initial
configuration of the stiffnesses is varied by reducing the bending stiffness of the front
assembly kb,a by 50 %.

Druskin et al. [146, 147] for first order system could be extended to second order systems. The
application of alternative methods for MOR could increase the accuracy of the flexible multibody
motorcycle model or, concurrently, allow to reduce the size of the flexible multibody model while
providing the same accuracy.

An interesting evolution of the motorcycle model could be the adoption of the rigid ring model for
the calculation of the tire forces [21, p. 587]. This approach is generally adapted for simulating
high frequency phenomena, i.e., with frequency well above that of the weave and wobble
eigenmodes. However, a study comparing the rigid ring model and the classical Pacejka Magic
Formula in the computation of weave and wobble could be an objective of future work.

Finally, in this thesis, the studies of the effect of structural flexibilities on weave and wobble
have been carried out in straight running. As explained in Section 2.2.1, in cornering these
eigenmodes change because of the coupling between in-plane and out-of-plane dynamics.
Therefore, it would be interesting to understand if the conclusions about the influence of structural
flexibilities on weave and wobble in straight running can be generalized to steady-state cornering.
Preliminary studies in a student thesis [187] show that this influence remains qualitatively the
same, thus supporting that the considerations proposed in the present thesis can be extended
to steady-state cornering.

Controller for a Steering Actuator

In this thesis, the stabilizing controller has not been tested on a real motorcycle. Therefore, it
would be interesting in further research to understand how the sensor noise would impact the
controller accuracy. Under this perspective, the H∞ controller has the advantage that it can be
designed to be tolerant to sensor noise.
Possible extensions of the controller structures proposed in Chapter 5 could involve increasing
their accuracy.
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A first aspect to be considered is the actuator’s dynamic. In Chapter 5, it is modeled as a first
order delay. However, real actuators can also present a dead time, meaning that the actuator
needs a certain amount of time to even start responding to the control signal. The introduction
of this effect in the controller design could improve its performance.

Another challenge consists in developing a controller that is able to deal with different longitudinal
speeds and roll angles of the motorcycle, which influence the motorcycle response to external
input. This challenge is tackled by the proposed gain-scheduling controller with a look-up table
that contains a combination of controller parameters for several working point in the whole
operating range of the motorcycle. The H∞ controller partially solves this challenge thanks to
the robustness of its structure, which can be designed to be tolerant to model uncertainties.
However, a possibility to increase the controller accuracy would be to synthesize the controller
leveraging the theory of Linear Parameter Varying (LPV) control [188], whereby the nonlinear
motorcycle model would be approximated by a linear model with varying parameters, where the
varied parameters are speed and roll angle. LPV control offers the advantage that the linear
control theory can be applied, but the resulting controller would still be able to handle parameter
variations.

Another possibility to increase the controller accuracy would be adapting the controller param-
eters to changes of the motorcycle properties. The controllers proposed in Chapter 5 rely on
fixed parameters identified with a specific motorcycle model. Imagining a situation where the
controllers are applied to a real motorcycle, it could happen that, during driving, some motorcycle
parameters deviate from those contained in the motorcycle model. This could happen, for
example, if the tire coefficients change because of temperature changes or if the motorcycle
is fitted with bags. An adaptive controller would be able to compensate for these effects and
therefore further increase the controller performance. This could be achieved, for example,
using a motorcycle model running on the internal hardware of the motorcycle where some of the
parameters are adapted on-line. This model could then be used to synthesize a new controller.
For ensuring fast adaptation, an efficient model is needed. In this case, the lumped stiffness
motorcycle model proposed in Section 4.3 could be a candidate because it presents a speedup
of about 3200x compared to the flexible multibody model.

Finally, it is possible to develop a controller that employs the steering actuator for realizing other
dynamic functions, such as supporting the rider to reduce the steering effort or a safety function
able to recognize a slip situation and to act on the steering to prevent a fall.
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