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Summary

Background

Modelling the Earth system and its components, such as the atmosphere,
oceans, biosphere, or ice sheets, is a daunting task. It includes many physical
processes that interact across wide ranges of spatial and temporal scales, i.e.,
from millimeters to thousands of kilometers and milliseconds to millennia.

Numerical models that integrate the fundamental physical equations of
motion that govern the dynamics, as well as thermodynamics, are our primary
tool to forecast tomorrow’s weather or to project climate scenarios for the
coming decades. While significant improvements to the models have been
made over the past decades, substantial errors and uncertainties remain
(Bauer et al., 2015; Schneider et al., 2017b). Due to computational con-
straints, the discretized simulations have a limited spatial and temporal
resolution, and important physical processes remain unresolved. Small-scale
processes that cannot be fully resolved have to be approximated as paramet-
erizations, i.e., written as functions of the resolved variables.

Precipitation, formed by condensation of water vapour in the atmosphere,
is the result of an interaction of processes on large ranges of scales, i.e.,
from microphysical droplet interactions over atmospheric turbulence to frontal
weather systems. Hence, the discretized nature of numerical models strongly
affects the representation of precipitation and can lead to biases in the
simulations with an under- or overestimation of extremes (Déqué, 2007;
Cannon et al., 2015).

This is problematic, as precipitation is arguably one of the most important
atmospheric variables with significant ecological and socio-economic impacts
(Kotz et al., 2022), e.g., on transportation, air traffic, utility sector, agriculture,
and the natural biosphere. Moreover, with anthropogenic global warming
projected to increase in the coming decades, precipitation extremes are likely
to increase globally in frequency and intensity (Wilcox and Donner, 2007;
Fischer and Knutti, 2016). On the other hand, local trends have been found
to show heterogeneous changes over the next decades (Ali et al., 2018; Traxl
et al., 2021). Therefore, accurately modelling extreme precipitation is an
urgent problem and will likely gain importance in the future (IPCC, 2021).

Statistical post-processing methods have therefore been developed to
adjust systematic errors in the numerical simulations (Wilks, 2006; Gud-
mundsson et al., 2012; Cannon et al., 2015). These methods typically adjust
model biases locally for each grid cell individually without taking into account
spatial correlations.

In recent years, advances in computational hardware such as graphics
and tensor processing units (GPUs and TPUs) (Wang et al., 2020), as well as
in software libraries and algorithms, have led to a renaissance in machine
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learning, and in particular, deep neural networks (DNNs) that can use spatial
context for their predictions (LeCun et al., 2015).

The volume and quality of data that data-driven methods can leverage
have significantly increased through the development of high-resolution re-
mote sensing products and increasingly comprehensive simulations.

Thus, the emergence of efficient hardware and algorithms, together with
large amounts of spatial-temporal training data, make deep learning methods
a promising tool for correcting biases in numerical precipitation simulations.

Scope of the dissertation

This cumulative thesis explores deep learning methods for post-processing
tasks of numerical weather and climate simulations of precipitation, and par-
ticularly its extremes. More specifically, computer vision and image processing
methods are investigated to improve essential precipitation characteristics
that are missing in the numerical simulations. In summary, the following key
research questions and challenges have been addressed in this work:

Q1 Can DNNs improve spatial patterns of precipitation, and in particular, the
characteristic small-scale variability?

Challenge Due to the relatively coarse resolution and a limited num-
ber of physical processes in numerical weather and climate models,
precipitation dynamics cannot be completely resolved. The output fields
in numerical simulations often appear overly smooth, i.e., spatial pat-
terns lack characteristic small-scale variability.

Approach In short-term numerical weather prediction (NWP), the out-
put of the weather model can be directly compared to observations
for each time step. Publication P1 (chapter 2) studies the applica-
tion of supervised convolutional neural networks (CNNs) that can use
multi-scale spatial context to improve the fidelity of the simulation in a
post-processing step by using suitably designed loss functions.
Climate simulations do not follow observations directly, i.e., they are
built to produce realistic temporal distributions over long periods. There-
fore Publication P2 and P3 (chapter 3) follow an unsupervised approach
using generative adversarial networks (GANs), where a second network
becomes part of the loss function that enables realistic output fields.

Q2 Can DNNs accurately learn to correct the frequency distribution of precipita-
tion extremes from biased model simulations?

Challenge Modelling precipitation extremes accurately is challenging,
given the strongly skewed distribution and, by definition, rare occur-
rence. Numerical simulations often exhibit biased distributions that over-
or underestimate frequencies of extreme events.
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Approach Publication P1 investigates this problem from a weather
prediction perspective. Different loss functions and their effect on the
CNN to accurately predict extremes in the upper distribution tail are
compared.
Publications P2 and P3 pursue this question from a climate perspective
by applying generative models that learn a transformation from a given
distribution to another target distribution.

Q3 Can DNNs increase the forecast skill for rare precipitation events in numerical
weather predictions?

Challenge The main challenge here is to use the relatively sparse
training data of extreme events to improve the forecast skill of the
NWP predictions. More specifically, to increase the accuracy of extreme
precipitation event predictions for a given time and place.

Approach The research leading to publication P1 also explored dif-
ferent input features (or predictors) that can be linked to heavy pre-
cipitation events, neural network architectures that are suitable for the
multi-scale nature of spatial precipitation fields, and their effect on the
DNN’s forecast skill.

Q4 Can DNNs improve numerical climate simulations of precipitation?

Challenge Climate simulations do not follow observations, as the
chaotic nature of the atmosphere leads to diverging trajectories. Hence,
post-processing methods have to be able to deal with unpaired training
samples. Further challenging is the lack of ground truth for future
projections and the inherent non-stationarity of the Earth’s climate. This
leads to out-of-sample predictions and possible violations of physical
conservation laws.

Approach Deep learning methods for image-to-image translation are
investigated in publications P2 and P3, particularly cycle-consistent gen-
erative adversarial networks (CycleGANs) (Zhu et al., 2017) that change
the “style” of an image but not its overall content. Moreover, their abil-
ity to improve summary statistics over long periods (e.g. decades) by
transforming single fields on short time scales (e.g. days), as well as
the incorporation of physical constraints, are studied.

Main outcomes

The main outcomes and contributions of this dissertation are summarized in
the following.

Q1 | Improved spatial patterns of precipitation In the weather prediction
context of P1, the U-Net-based CNN can strongly improve the spatial patterns
of rainfall forecasts from the Integrated forecast system (IFS) (European
Centre for Medium-Range Weather Forecasts, 2012) by training on data from
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the satellite-based Tropical Rainfall Measurement Mission (TRMM) (Huffman
et al., 2007) product. Combining a suitable architecture with a loss function
incorporating a multi-scale structural similarity index measure (MS-SSIM)
(Wang et al., 2003) leads to improved spatial patterns. This is evaluated with
a complex wavelet-based extension of the SSIM that is invariant to small
rotations and translations, i.e., evaluates the similarity of the patterns without
penalizing small deviations in their position.

The CycleGAN in P2 and P3 can translate the overly smooth and blurry
climate simulations into much sharper fields, s.t. the characteristic variability
in spatial patterns is visually indistinguishable from the observation-based
reanalysis ground truth. We evaluate the spatial fields using power spec-
tral densities and the fractal dimension that captures the characteristics of
the small-scale variability. It is shown that the developed method strongly
outperforms established quantile mapping-based techniques.

Q2 | Learning the distribution of precipitation extremes To learn the
strongly skewed distribution of precipitation, a weighted mean squared error
is shown in P1 to enable the CNN to correct the frequency distributions over
all precipitation values far into the upper distribution tail. A comparable
skill to quantile mapping - a method that is specifically designed to correct
distributions - is achieved by the CNN.

Training a CNN as a generative adversarial network in P2 and P3 produces
distributions that closely match the ground truth, including the tails. It
thereby strongly improves the numerical simulations without the need to
engineer a suitable loss function manually. It achieves comparable or better
results than the quantile mapping baseline on low-resolution simulations.
Using comprehensive high-resolution Earth system simulations (GFDL-ESM4)
(Krasting et al., 2018), our method performs comparably to a state-of-the-art
bias correction framework (ISIMIP3BASD) (Lange, 2019).

Q3 | Increased forecast skill of rare rainfall events The forecast skill for
(nearly) global rainfall is significantly improved by the CNN-based post-
processing in P1. It uses the vertical velocity of wind that can be linked to
updrafts and convection as additional input features. The architecture and
loss function are suitably chosen for the multi-scale nature of precipitation
patterns. The method improves continuous evaluation metrics and categorical
skill scores of extreme events, outperforming several baselines.

Q4 | Realistic and efficient climate simulations of precipitation The Cycl-
eGAN applied in P2 and P3 can be trained naturally on the unpaired training
samples from climate simulations and the observation-based ground truth.
Taking the results from Q1 and Q2 together, the model can correct the sim-
ulations on short and long time scales, i.e., with respect to spatial patterns
of daily fields and temporal distributions over a decade. The method is
thus able to make climate simulations much more realistic. To generalise
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to warmer climates unseen during the training on historical observations,
a physical constraint is introduced that preserves the global precipitation
sum per time step. It ensures consistency with the large-scale hydrological
cycle in the simulation and enables the GAN to capture trends in global
mean precipitation as expected from thermodynamic considerations. Finally,
a gradient-based interpretability method is used as a sensitivity analysis of
the discriminator network. It shows that the network uses the geographical
regions with the largest model bias to distinguish between generated and
ground truth precipitation fields.

Conclusion and outlook

This thesis investigates the application of deep convolutional neural networks
and training techniques to develop post-processing methods for weather and
climate simulations. A central focus is on improving extreme precipitation
events that can have a high impact.

In study P1, the CNN has shown great potential to predict extreme rainfall
events that are not accurately represented in the input. Given these encour-
aging findings, possible extensions are probabilistic ensemble forecasting and
downscaling. This would go in hand with the work on generative adversarial
methods in this thesis and other recent studies (e.g. Ravuri et al. (2021);
Harris et al. (2022); Price and Rasp (2022)).

The second part of this thesis has shown that unpaired image-to-image
translation in deep learning can be used for ESM bias correction. It allows
for improving the simulations in a new dimension also spatially, which is not
possible with established methods. Adding further variables in future work
besides precipitation should be straightforward and would enable physically
consistent multivariate bias correction. Combinations with downscaling to
increase spatial resolution are another promising direction for future research.

With continuing advances in deep learning algorithms, specialized hard-
ware, and the increasing volume and quality of geospatial data, the integra-
tion of deep learning-based approaches in Earth system modelling is likely to
gain importance for the foreseeable future with exciting new possibilities to
advance the integration of both domains.
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Zusammenfassung

Die Modellierung des Erdsystems und seiner Komponenten, wie die Atmo-
sphäre, Ozeane, Biosphäre oder Eisschilde, ist eine gewaltige Aufgabe. Es
umfasst viele physikalische Prozesse, die in einem weiten Bereich von räum-
lichen und zeitlichen Skalen interagieren, von Millimetern bis zu Tausenden
von Kilometern und von Millisekunden bis zu Jahrtausenden.

Numerische Modelle, die die grundlegenden physikalischen Gleichungen
der Dynamik sowie der Thermodynamik integrieren, sind unser wichtigstes
Instrument für die Vorhersage des Wetters von morgen oder für die Pro-
jektion von Klimaszenarien für die kommenden Jahrzehnte. Obwohl die
numerischen Modelle in den letzten Jahrzehnten erheblich verbessert wur-
den, zeigen sie nach wie vor erhebliche Fehler und Unsicherheiten (Bauer
et al., 2015; Schneider et al., 2017b). Aufgrund von beschränkten Rechen-
kapazitäten haben die diskretisierten Simulationen eine begrenzte räumliche
und zeitliche Auflösung. Wichtige physikalische Prozesse können daher nicht
vollständig aufgelöst werden. Kleinskalige Prozesse müssen deshalb als Para-
metrisierungen approximiert werden, d.h., als Funktionen der aufgelösten
Variablen beschrieben werden.

Niederschlag, der durch die Kondensation von wasserdampfhaltiger Luft in
der Atmosphäre entsteht, ist das Ergebnis einer Interaktion von Prozessen auf
einem großen Bereich von Größenskalen, die von mikrophysikalischen Tröp-
fcheninteraktionen über atmosphärische Turbulenzen bis hin zu Fronten in
Wettersystemen reichen. Daher wirkt sich die Diskretisierung der numerischen
Modelle stark auf die Darstellung des Niederschlags aus und führt oft zu sys-
tematischen Fehlern in den Simulationen mit einer Unter- oder Überschätzung
von Extremen (Déqué, 2007; Cannon et al., 2015).

Dies ist problematisch, da der Niederschlag wohl eine der wichtigsten
atmosphärischen Variablen mit erheblichen ökologischen und sozioökonomis-
chen Auswirkungen ist (Kotz et al., 2022), z.B. auf das Transportwesen, den
Luftverkehr, Versorgungsunternehmen, die Landwirtschaft und die natürliche
Biosphäre. Mit der voraussichtlich zunehmenden anthropogenen globalen
Erwärmung in den kommenden Jahrzehnten, wird auch die Häufigkeit und
Intensität von Niederschlagsextremen weltweit zunehmen (Wilcox and Don-
ner, 2007; Fischer and Knutti, 2016). Die lokalen Trends weisen allerdings
heterogene Veränderungen auf (Ali et al., 2018; Traxl et al., 2021). Daher ist
die genaue Modellierung von Extremniederschlägen eine dringende Aufgabe
und wird in Zukunft wahrscheinlich noch an Bedeutung gewinnen (IPCC,
2021).

Statistische Postprocessing Methoden wurden entwickelt, um systematische
Fehler in den numerischen Simulationen zu korrigieren (Wilks, 2006; Gud-
mundsson et al., 2012; Cannon et al., 2015). Diese Methoden korrigieren
die Modellabweichungen in der Regel lokal für jede Gitterzelle einzeln, ohne
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dabei räumliche Korrelationen zu berücksichtigen.
In den letzten Jahren haben Fortschritte in der Computerhardware, wie

z.B. GPUs und TPUs (Wang et al., 2020) sowie Softwarebibliotheken und
Algorithmen zu einer Renaissance des maschinellen Lernens geführt, insbeson-
dere tiefer neuronaler Netze (TNN), die den räumlichen Kontext für ihre
Vorhersagen nutzen können (LeCun et al., 2015).

Der Umfang und die Qualität der Daten, die von datengetriebenen Meth-
oden genutzt werden können, haben durch die Entwicklung hochauflösender
Fernerkundungsprodukte und immer umfassenderer Simulationen erheblich
zugenommen.

Das Aufkommen effizienter Hardware und Algorithmen, sowie die große
Menge an raum-zeitlichen Trainingsdaten machen Deep Learning Methoden
zu einem vielversprechenden Werkzeug für die Korrektur von systematischen
Fehlern in Niederschlagsdaten von numerischen Wetter und Klimasimula-
tionen.

Umfang der Dissertation

In dieser kumulativen Dissertation werden Deep Learning Methoden für das
Postprocessing von numerischen Wetter- und Klimasimulationen des Niedersch-
lags, insbesondere von Extremen, untersucht. Genauer gesagt werden Meth-
oden der Computer Vision (dt. computerbasiertes Sehen) und der Bildverarbei-
tung analysiert und verwendet, um wesentliche Niederschlagseigenschaften zu
verbessern, die in den numerischen Simulationen fehlen. Zusammenfassend
wurden die folgenden zentralen Forschungsfragen und Problemstellungen in
dieser Arbeit behandelt:

Q1 Können TNN die räumlichen Muster des Niederschlags und insbesondere
dessen charakteristische kleinräumige Variabilität verbessern?

Problemstellung Aufgrund der relativ groben Auflösung und einer
begrenzten Anzahl von physikalischen Prozessen in numerischen Wetter-
und Klimamodellen kann die Niederschlagsdynamik nicht vollständig
aufgelöst werden. Die ausgegebenen Felder von numerischen Simula-
tionen erscheinen oft zu glatt, d.h., den räumlichen Mustern fehlt die
charakteristische kleinräumige Variabilität.

Ansatz Bei numerischen Wettervorhersagen auf kurzen Zeitskalen kann
jede Vorhersage des Wettermodells direkt mit Beobachtungen verglichen
werden. In der Veröffentlichung P1 (Kapitel 2) wird die Anwendung
von supervised (dt. überwachten) Convolutional Neural Networks (CNNs)
untersucht, um die Genauigkeit der Simulation durch ein Postprocessing
zu verbessern. Besonders die Fähigkeit von CNNs einen mehrskaligen
räumlichen Kontext nutzen zu können, sowie der Einsatz geeigneter Ver-
lustfunktionen im Training des Netzwerkes stehen dabei im Mittelpunkt.
Klimasimulationen, andererseits, folgen nicht direkt den Beobachtungen,
d.h., sie werden entwickelt, um realistische Verteilungen über lange
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Zeiträume zu simulieren. Daher verfolgen die Veröffentlichungen P2
und P3 (Kapitel 3) einen unsupervised (dt. unüberwachten) Ansatz, bei
dem Generative Adversarial Networks (GANs) verwendet werden. Dabei
wird ein zweites Netzwerk als Teil der Verlustfunktion verwendet und
die Generierung realistischer Felder ermöglicht.

Q2 Können TNN die Häufigkeitsverteilung von Niederschlagsextremen aus verzer-
rten Modellsimulationen korrigieren?

Problemstellung Die genaue Modellierung von Niederschlagsextremen
ist eine große Herausforderung, durch die ausgeprägte Schiefe der Ver-
teilung und die Seltenheit der Ereignisse. Numerische Simulationen
weisen oft verfälschte Verteilungen auf, die die Häufigkeit von Ex-
tremereignissen über- oder unterschätzen.

Ansatz In der Veröffentlichung P1 wird dieses Problem im Kontext
von Wettervorhersagen untersucht. Es werden verschiedene Verlust-
funktionen und ihre Auswirkungen auf die Fähigkeit des CNNs die
Häufigkeitsverteilung von Extremen abzubilden verglichen.
Die Veröffentlichungen P2 und P3 verfolgen diese Frage aus der Klima-
perspektive, indem sie generative Modelle anwenden, die eine Trans-
formation von einer gegebenen Verteilung in eine andere Zielverteilung
lernen.

Q3 Können TNN die Vorhersagefähigkeit für seltene Niederschlagsereignisse in
numerischen Wettervorhersagen erhöhen?

Problemstellung Die Hauptherausforderung hier besteht darin, die re-
lativ spärlichen Trainingsdaten von Extremereignissen zu nutzen, um die
Vorhersagefähigkeit der Wettervorhersagen zu verbessern. In anderen
Worten, die Genauigkeit der Vorhersagen extremer Niederschlagsereign-
isse für einen bestimmten Zeitpunkt und Ort zu erhöhen.

Ansatz Die Forschungsarbeit, die zur Veröffentlichung P1 führte, unter-
suchte verschiedene Inputvariablen (Prädiktoren), die mit Starknieder-
schlagsereignissen in Verbindung gebracht werden können, sowie neur-
onale Netzwerkarchitekturen, die für die Mutliskalen-Felder räumlicher
Niederschlagsverteilungen geeignet sind, und deren Auswirkung auf die
Vorhersagekraft von selten Extremen.

Q4 Können TNN numerische Klimasimulationen des Niederschlags verbessern?

Problemstellung Klimasimulationen folgen nicht genau dem beobach-
teten Wetter, da die chaotische Natur der Atmosphäre zu abweichenden
Trajektorien führt. Daher müssen Postprocessing Methoden in der
Lage sein, mit ungepaarten Trainingssamples umzugehen. Eine weit-
ere Herausforderung besteht darin, dass es keine wahre Vergleichs-
grundlage für künftige Projektionen gibt und das Klima von Natur aus
nicht-stationär ist. Dies führt zu Vorhersagen außerhalb der Trainings-
verteilung wobei es möglicherweise zur Verletzung von physikalische
Erhaltungssätze durch das neuronale Netzwerk kommen kann.
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Ansatz In den Veröffentlichungen P2 und P3 werden Deep Learn-
ing Methoden für die Bildübersetzung untersucht, insbesondere cycle-
consistent (dt. etwa zykluskonsistente) Generative Adversarial Networks
(CycleGANs) (Zhu et al., 2017), die den “Stil” eines Bildes verändern,
nicht aber den Inhalt. Darüber hinaus wird ihre Fähigkeit von GANs
untersucht, zusammenfassende Statistiken über lange Zeiträume (z.B.
Jahrzehnte) zu verbessern, indem einzelne Felder auf kurzen Zeitskalen
(z.B. Tage) transformiert werden, sowie dessen Einhaltung physikalischer
Grenzen.

Hauptresultate

Die Hauptergebnisse und Beiträge dieser Dissertation werden im Folgenden
zusammengefasst.

Q1 | Verbesserte räumliche Niederschlagsmuster Im Kontext der Wetter-
vorhersage von P1 kann das U-Net-basierte CNN die räumlichen Muster der
Niederschlagsvorhersagen des numerischen IFS Modells (European Centre
for Medium-Range Weather Forecasts, 2012) stark verbessern, indem es auf
satellitengestützte Daten der Tropical Rainfall Measurement Mission (TRMM)
(Huffman et al., 2007) trainiert wird. Die Kombination einer geeigneten
Netzwerkarchitektur mit einer Verlustfunktion, die ein multiskaliges und
strukturelles Ähnlichkeitsindexmaß (Wang et al., 2003) enthält, führt zu
verbesserten räumlichen Mustern. Dies wird mit einer Wavelet-basierten Er-
weiterung des Maßes ausgewertet, die invariant gegenüber kleinen Rotationen
und Translationen ist, d.h., die Ähnlichkeit von Mustern bewertet, ohne kleine
Abweichungen in ihrer Position zu berücksichtigen.

Das CycleGAN in P2 und P3 kann die unrealistisch glatten und unschar-
fen Klimasimulationen in deutlich schärfere Felder übersetzen, die visuell
nicht von den beobachtungsbasierten Reanalysedaten zu unterscheiden sind.
Wir evaluieren die Qualität der räumlichen Felder mit Hilfe der spektralen
Leistungsdichte sowie durch die Berechnung der fraktalen Dimension, um
die kleinskalige Variabilität im Raum zu erfassen. Es wird gezeigt, dass die
entwickelte Methode etablierte, auf Quantile Mapping basierende Techniken
deutlich übertrifft.

Q2 | Lernen der Häufigkeitsverteilung von Niederschlagsextremen Zum
Erlernen der schiefen Niederschlagsverteilung wird in P1 ein gewichteter
mittlerer quadratischer Fehler in der Verlustfunktion verwendet. Damit lernt
das CNN die Häufigkeitsverteilungen über alle Niederschlagswerte bis weit
in die oberen Verteilungsränder zu korrigieren. Das CNN erreicht vergleich-
bare Ergebnisse wie Quantile Mapping - eine Methode, die speziell für die
Korrektur von Verteilungen entwickelt wurde.

Das Training eines CNN als Generative Adversarial Network in P2 und P3
führt zu Verteilungen, die denen der Beobachtungsdaten sehr nahe kommen,
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einschließlich der Ränder. Dadurch werden die numerischen Simulationen
stark verbessert, ohne dass eine geeignete Verlustfunktion manuell entwickelt
werden muss. Bei Simulationen mit niedriger räumlicher Auflösung wer-
den vergleichbare oder bessere Ergebnisse erzielt als mit Quantile Mapping.
Bei der Verwendung umfassender, hochauflösender Erdsystem-Simulationen
(basierend auf dem GFDL-ESM4 Modell) (Krasting et al., 2018) erreicht das
GAN vergleichbare Ergebnisse wie eine etablierte Methode zur Korrektur von
systematischen Fehlern (ISIMIP3BASD) (Lange, 2019).

Q3 | Erhöhte Vorhersagefähigkeit von seltenen Niederschlagsereignissen
Die Vorhersagefähigkeit (fast) globaler Niederschlags-Simulationen wird durch
das CNN-basierte Postprocessing in P1 deutlich verbessert. Es verwendet ver-
tikale Windgeschwindigkeiten als zusätzliche Prädiktoren, die über Aufwinde
und Konvektion mit dem Niederschlag in Verbindung stehen. Die Architek-
tur und die Verlustfunktion wurden passend für die Multiskalen-Muster der
Niederschlagsfelder gewählt. Die Methode verbessert sowohl die kontinuier-
lichen als auch die kategorischen Evaluierungsmetriken von Extremereignissen
und übertrifft dabei mehrere Vergleichsmodelle.

Q4 | Realistische und effiziente Klimasimulationen des Niederschlags Das
in P2 und P3 angewandte CycleGAN kann passend auf den ungepaarten
Trainingsdaten von Klimasimulationen und der beobachtungsbasierten Reana-
lyse trainiert werden. Nimmt man die Ergebnisse aus Q1 und Q2 zusam-
men, kann das CycleGAN die Simulationen sowohl auf kurzen als auch
auf langen Zeitskalen korrigieren, d.h., sowohl räumliche Muster täglicher
Niederschlagsfelder, als auch zeitliche Verteilungen über ein Jahrzehnt. Die
Methode ist somit in der Lage, Klimasimulationen wesentlich realistischer zu
machen. Um die Verallgemeinerung der Vorhersagen des neuronalen Netzes
für wärmere Klimaszenarien zu erleichtern, welche während des Trainings
auf historischen Beobachtungen nicht gezeigt wurden, wird eine physikalische
Begrenzung eingeführt, die die globale Niederschlagssumme pro Zeitschritt
erhält. Dadurch wird die Konsistenz mit dem großräumigen hydrologischen
Zyklus in der Simulation sichergestellt und das GAN in die Lage versetzt,
die aus thermodynamischen Überlegungen zu erwarteten Trends des global
gemittelten Niederschlags zu reproduzieren. Außerdem wird eine gradien-
tenbasierte Interpretierbarkeitsmethode als Sensitivitätsanalyse des Diskrim-
inatornetzes verwendet. Sie zeigt, dass das Netzwerk erwartungsgemäß die
geografischen Regionen mit der größten Modellfehlern verwendet, um zwis-
chen generierten und tatsächlichen Niederschlagsfeldern zu unterscheiden.

Schlussfolgerung und Ausblick

Diese Arbeit untersucht die Anwendung von tiefen Convolutional Neural
Networks und Trainingstechniken zur Entwicklung von Postprocessing Meth-
oden für Wetter- und Klimasimulationen. Ein zentraler Fokus liegt dabei
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auf der Verbesserung von extremen Niederschlagsereignissen, die eine große
Auswirkung haben können.

In der Arbeit P1 zeigt das CNN großes Potenzial, die Vorhersage von
extremen Niederschlagsereignissen zu verbessern, welche im Netzwerkinput
nicht genau dargestellt werden. Angesichts dieser ermutigenden Ergebnisse
sind probabilistische Ensemblevorhersagen und Downscaling-Anwendungen
als Weiterentwicklung möglich. Dies würde zu den Arbeiten mit Generative
Adversarial Networks (P2 und P3) in dieser Arbeit und anderen aktuellen
Studien (z.B. Ravuri et al. (2021); Harris et al. (2022); Price and Rasp
(2022)) passen.

Der zweite Teil dieser Arbeit hat gezeigt, dass die ungepaarte Bild-zu-Bild
Übersetzung in Deep Learning für die Korrektur systematischer Fehler in
Erdsystem-Simulationen verwendet werden kann. Sie erlaubt es, die Simu-
lationen in einer neuen Dimension auch räumlich zu verbessern, was mit
etablierten Methoden nicht möglich ist. Die Hinzunahme weiterer physikalis-
cher Variablen neben dem Niederschlag sollte in zukünftigen Arbeiten ohne
weiteres möglich sein. Dies würde eine physikalisch konsistente multivariate
Fehlerkorrektur ermöglichen. Kombinationen mit Downscaling zur Erhöhung
der räumlichen Auflösung sind eine vielversprechende Richtung für zukünftige
Weiterentwicklungen.

Mit den kontinuierlichen Fortschritten in der Entwicklung von Deep Learn-
ing Algorithmen, leistungsfähigerer Hardware und der zunehmenden Menge
und Qualität von Geodaten wird die Integration von Deep Learning-basierten
Ansätzen in der Erdsystemmodellierung in absehbarer Zukunft voraussichtlich
an Bedeutung gewinnen und spannende neue Möglichkeiten eröffnen.

xviii



Contents

Acknowledgements iii

List of publications v

Summary vii

Zusammenfassung xiii

1 Introduction 1
1.1 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Physical processes . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Statistical characteristics . . . . . . . . . . . . . . . . . . . 4
1.1.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Modelling weather and climate . . . . . . . . . . . . . . . . . . . 7
1.2.1 Numerical forecasts and projections . . . . . . . . . . . . 8
1.2.2 Statistical post-processing . . . . . . . . . . . . . . . . . . 11

1.3 Deep learning for post-processing . . . . . . . . . . . . . . . . . 15
1.3.1 Machine learning basics . . . . . . . . . . . . . . . . . . . 15
1.3.2 Computer vision and image processing . . . . . . . . . . 20
1.3.3 Combining domain knowledge with machine learning . . 24

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Post-processing rainfall forecasts with deep neural networks 29
2.1 P1 | Deep learning for improving numerical weather prediction

of heavy rainfall . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Generative models for improving precipitation fields from climate
simulations 53
3.1 P2 | Physically constrained generative adversarial networks for

improving precipitation fields from Earth system models . . . . 55
3.2 P3 | Deep Learning for bias-correcting comprehensive high-

resolution Earth system models . . . . . . . . . . . . . . . . . . . 93

4 Conclusion 113
4.1 P1 | Post-processing rainfall forecasts with deep neural networks113

4.1.1 Main outcomes . . . . . . . . . . . . . . . . . . . . . . . . 113
4.1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.1.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 P2 and P3 | Generative models for improving precipitation
fields from Earth system simulations . . . . . . . . . . . . . . . . 116
4.2.1 Main outcomes . . . . . . . . . . . . . . . . . . . . . . . . 117

xix



4.2.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Future developments . . . . . . . . . . . . . . . . . . . . . . . . . 120

List of figures 123

Bibliography 125

xx



1 Introduction

Accurately modelling precipitation and its extremes is important due to the
high ecological and socio-economic impacts (Kotz et al., 2022). Precipitation
is a fundamental component of the global water cycle, where sufficient
freshwater resources are necessary to support the majority of living organisms
on Earth, including plants, animals and human society. Long-term changes in
precipitation can have important consequences for the planet’s biosphere and
vegetation, including crop yields in agriculture. Extreme events can cause
severe flooding, landslides, and infrastructure damage, while the absence
of rainfall and droughts can have similarly severe effects. Transportation
also depends on sufficiently high river water levels and the right conditions
on streets and landing platforms. Therefore, accurate short-term predictions
between a few hours to days are necessary for disaster prevention and
mitigation, while reliable long-term projections are required to assess the
impacts caused by anthropogenic global warming.

However, skillfully predicting precipitation, particularly its extremes, is
challenging. The complex interaction of physical processes across a large
range of spatial and temporal scales, the high variability, and a strongly
non-Gaussian and skewed distribution must be captured closely.

Numerical models that simulate the atmosphere on discretized grids with
a finite resolution and model complexity cannot resolve important processes
on small scales due to computational constraints. Hence, they commonly
exhibit large biases in their output and under- or overestimate extreme events
(Déqué, 2007; Cannon et al., 2015). Therefore, accurate weather forecasts
and realistic climate projections remain challenging despite the progress that
has been made over the past decades (Bauer et al., 2015; Schneider et al.,
2017b).

Statistical post-processing methods aim to correct such biases (Wilks, 2006;
Gudmundsson et al., 2012; Cannon et al., 2015) but have not been developed
to use a larger spatial context efficiently for this task.

In recent years three main trends have started to enable new data-driven
approaches that can potentially address this short-coming: (i) the availability
of new high-resolution observational datasets and comprehensive simulations
with global coverage (Hersbach et al., 2020), (ii) advances in computer vision
algorithms and software libraries for optimizing deep learning models with
large parameters spaces (LeCun et al., 2015) and (iii) the development of
specialized hardware, such as graphics and tensor processing units (GPUs
and TPUs), that can efficiently process large volumes of data and train deep
neural networks.

Based on these advances, the central topic of this thesis is the application
of deep learning-based post-processing methods that use spatial context to
improve precipitation simulations of short-term weather and long-term cli-
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1. Introduction

mate. More specifically, this thesis investigates whether deep convolutional
neural networks can be used to improve spatial patterns and relative fre-
quency distributions of precipitation simulations. In the weather prediction
context, methods for improving the forecast skill of precipitation and particu-
larly extreme events are investigated. When post-processing climate model
simulations, challenges that arise from the chaotic nature of the atmosphere,
and the inherent non-stationarity of the system, are also addressed.

This thesis is organized as follows. In the first part of the introduction,
physical processes and their multi-scale character that lead to the generation
of precipitation and the challenges involved in its measurement are discussed.
The section concludes with a brief discussion of the characteristic statistical
properties of precipitation.

The second part focuses on modelling aspects of the Earth system, emphas-
ising the main differences between weather prediction and climate projections
to help distinguish the different problems addressed in the publications of the
thesis. It is meant to introduce the main sources of errors in numerical simu-
lations of the atmosphere and how they can be improved with post-processing
methods.

The last part introduces deep learning concepts for post-processing spatial
fields, including training techniques, architectures for computer vision applic-
ations, and hybrid approaches combining physical and data-driven methods
that have been applied in the studies of this thesis.

After the introduction, the publications are included and summarized
in two chapters on weather forecasting and climate modelling respectively.
Concluding this thesis, the final chapter summarizes the main outcomes, sets
them into context, and gives an outlook on possible future extensions.

1.1 Precipitation

Precipitation, in the form of rain, snow, or hail, results from the condensation
of water vapour in the atmosphere due to a complex interplay between
physical processes on a range of spatial and temporal scales. The multi-
scale aspect and the many processes involved make numerical precipitation
modelling and accurate observational measurements challenging. Accurate
observations, however, form the basis for developing and validating new
models, such as the post-processing methods in this thesis. The following
sections are thus meant to give a brief introduction to these topics.

1.1.1 Physical processes

In essence, precipitation occurs when air rises and thereby cools due to the
expansion in the lowered pressure, leading to condensation of the moisture
and the formation of larger water droplets. The droplets then fall down
under the gravitational pull. The generation of precipitation thus requires
three main mechanisms (Trenberth et al., 2003):
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1. Introduction

(i) The source for the uplift Causes for the upward motion of the air
can be manifold. For example, atmospheric instabilities range from
small turbulent and convective motion to planetary Rossby waves (Mo
and Higgins, 1998; Boers et al., 2019). The orography can also cause
uplifts, e.g., when wind flows over mountain ranges (Houze Jr., 2012;
Trenberth et al., 2003).

(ii) The microphysical condensation process The smallest processes in-
volved in the generation of precipitation are related to the condensation
in clouds. Water droplets grow by micro-physical interactions until they
are heavy enough or undergo a phase shift to fall. Further, aerosols
such as those emitted by humans can interact and affect the formation
process (Rotstayn and Lohmann, 2002; Trenberth et al., 2003; Harrison
et al., 2020).

(iii) The availability of moisture The moisture availability depends on
the local thermodynamic conditions and the advective transport to or
from other regions. The ratio of the two sources is called recycling ratio
and depends on the season and region (Dai, 2001). Especially storms
and cyclones that generate large amounts of precipitation draw moisture
from the surrounding atmosphere leading to larger precipitation sums
than possible from the locally available moisture (Trenberth et al.,
2003).

To better understand the change in large-scale moisture available for
precipitation with a warming of the atmosphere, the Clausius Clapeyron
relation of the saturation water vapour pressure can be used (Berg et al.,
2013; Lehmann et al., 2015; Guerreiro et al., 2018),

d ln es
dT

=
L

RT 2
, (1.1)

where es is the saturation water vapour pressure1, L the latent heat of
vaporization and R the ideal gas constant. For temperatures in the lower
layers of the atmosphere, the right-hand side of Eq. 1.1 has a value of about
0.07, which corresponds to an increase in es of about 7% per 1 degree [K]
warming (Held and Soden, 2006). This scaling has also been found to hold
for rainfall on near-global averages in observations (Traxl et al., 2021).

On regional scales, however, the trends in precipitation can vary strongly
(Ali et al., 2018; Traxl et al., 2021). Regions where precipitation is domin-
antly generated by convection have been found to exhibit trends that exceed
the thermodynamic scaling expected from Eq. 1.1. Here, precipitation ex-
tremes are thus projected to increase in frequency and severity in the coming
decades of anthropogenic warming (O’Gorman and Dwyer, 2018). On the
other hand, some regions show negative precipitation trends, for example,
due to the decreasing availability of moisture (Ali et al., 2018).

1Sometimes referred to as the water holding capacity of the atmosphere.
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Therefore, reliable projections of long-term changes in precipitation for
future warming scenarios are critical. Similarly, accurate weather forecasts
of extreme events will likely gain further importance with a warming of the
atmosphere.

1.1.2 Statistical characteristics

The main characteristics that set precipitation apart from many other at-
mospheric variables and make it challenging to predict and model are
the strongly skewed non-Gaussian distribution and the discrete separation
between dry and wet conditions, i.e., zero or finite precipitation sums (Kout-
soyiannis, 2004a,b). Another defining characteristic is the substantial vari-
ability of precipitation in space and time, called intermittency. It describes
the sparseness of the precipitation signal and can be quantified as the ratio
between precipitation and no-precipitation events for a given precipitation
threshold and time interval (Dunkerley, 2015).

As described in section 1.1.1, precipitation results from the interaction
between a large range of physical processes on various temporal and spatial
scales. Hence, depending on the spatial and temporal scale of interest,
the dominating physical processes might change and, in turn, will lead to
different statistical characteristics. For example, atmospheric convection can
generate localized bursts of large precipitation amounts. In contrast, large-
scale and more uniformly distributed precipitation typically occurs in frontal
systems (Pfahl et al., 2017).

The intermittency of precipitation events has been found to increase with
time scales from minutes to days (Dunkerley, 2015; Schleiss, 2018). On
monthly to annual time scales, the intermittent signal is decreasing again
due to the averaging effect (Schleiss, 2018), thus exhibiting a dependence
on the time scale.

Several studies have investigated the scaling behaviour of precipitation
time series across temporal and spatial scales using conceptual models and
observations (Veneziano et al., 2006; Claussnitzer, 2010) with some indication
of self-similar scaling for certain ranges of scales. This can be physically
motivated by a similar scale invariance of turbulent eddies in the atmosphere
interlinked with precipitation (Schertzer and Lovejoy, 1987).

A geometrical way to quantify how patterns change with the scale at
which they are measured was introduced by Mandelbrot (1967) with the
notion of the fractal dimension. The concept derives from how shapes or pat-
terns change in different dimensions under scaling. Intuitively, the dimension
of a pattern can be related to the number of squares N with side length s
that are required to cover it (Lovejoy et al., 1987), as

N ∝ s−D. (1.2)

For example, a single two-dimensional square (D = 2) of side length s = 1
can be divided into N = 4 smaller squares of side length s = 0.5, or N = 16
squares of side length s = 0.25 and so on.
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To find the fractal dimension of shapes that lie between integer dimen-
sions, the box-counting method can be used (Meisel et al., 1992). It divides
the pattern or shape to be analysed into measuring “boxes” of side length
s and counts the number of boxes that cover the pattern N . From these
measurements, the dimension D can then be estimated with Eq. 1.2, i.e.,

D =
log(N)

log(1/s)
. (1.3)

The physical processes that generate precipitation change with temporal
and spatial scales can also vary strongly geographically and seasonally (Ali
et al., 2018; Traxl et al., 2021). This adds another layer of complexity when
studying or forecasting precipitation.

Another key challenge is capturing the statistics of rare and extreme
events in the far end of the upper tail in the distribution, given their severe
impact. This is especially important for assessing and predicting the risk of
such extreme events, e.g., for engineering tasks or disaster prevention and
mitigation measures.

Extremes There are various definitions for extreme events, of which two
are the most common ones in the context of extreme value theory (EVT). In
the first, the maximum values of finite sequences or blocks, so-called block
maxima (BM), are taken as extremes, e.g., the maximum precipitation sum in
a day, month, or year (Serinaldi and Kilsby, 2014; Lehmann et al., 2015). In
the second approach, called peak over threshold (POT), values in a continuous
record exceeding a certain threshold, e.g., the 90th, 95th, or 99th percentile
of the empirical distribution, are taken as extremes (Boers et al., 2019).
BMs can be modelled with the generalized extreme value (GEV) distribution,
while the distribution of POTs can be described by a generalized Pareto (GP)
distribution (Serinaldi and Kilsby, 2014).

Accurately estimating the distribution of relative precipitation frequencies
can be challenging in itself, however. Empirical histograms can be used,
for example, to estimate the distribution of past observations, but do not
allow extrapolation to future unseen events. On the other hand, parametric
distributions require an assumption of the distribution form. Estimating
the distribution parameters to fit the tails can be challenging due to the
small sample size (Frei and Schär, 2001; Koutsoyiannis, 2004a). Hence,
uncertainties about the occurrence probability of extremes remain large.

1.1.3 Observations

Accurate precipitation observations are essential in nowcasting applications
(Franch et al., 2020a), in data assimilation for numerical weather predictions
(Geer et al., 2018), or the validation of numerical weather forecast and
climate models (Kucera et al., 2013; Michaelides et al., 2009).

Following Tapiador et al. (2012) and Michaelides et al. (2009), this section
aims to give an overview of the different ways to measure precipitation on the
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ground (e.g. by rain gauges, disdrometers, or radar), or satellite-based (e.g.
radar-based or passive sensors), and combinations with physical simulations.

Ground-based measurements There are three main tools for measuring
precipitation on the ground, rain gauges, disdrometers, and radar.

Rain gauges provide a direct way of measuring precipitation sums at a
specific location. By collecting the droplets that fall onto it, gauges mechanic-
ally count small volumes of precipitation (Strangeways, 2010). Disdrometers
extend the approach by recording further properties, such as the physical
phase and drop size distribution. (Tokay and Short, 1996).

Since gauges and disdrometers only provide local information, constructing
datasets with a more extensive coverage requires the interpolation of station
networks. This can be problematic, as the characteristics of precipitation
vary with the spatial scale, depending on the relevant physical processes that
generate it (Tapiador et al., 2012).

Weather radars on the ground can estimate precipitation over kilometer-
scale areas and distinguish between different hydrometeor phases. This con-
stitutes a valuable complement to local rain gauges and disdrometers, which
must be placed in a high density to provide accurate spatial information.
Ground-based measurements are unevenly distributed over the continents
with higher densities in more developed regions of the world which can be
a source of bias that has to be considered during the validation of global
precipitation estimation products (Beck et al., 2017).

Satellite-based measurements Globally consistent estimates of precipitation
are based on passive sensors or radar aboard satellites that orbit the Earth.
Passive sensors can be grouped into three categories for visible (VIS), infrared
(IR), and microwave (MW) spectral ranges.

Infrared-based methods aim to estimate the total precipitation on the
ground by measuring the top-of-the-cloud temperature. Cold cloud temper-
atures are linked to vertical updrafts, which can cause precipitation. Visible
light can be used during day time to infer additional information for the IR
estimates to correct biases (Tapiador et al., 2012).

By measuring microwave radiation interacting with water particles in
clouds or precipitation droplets, passive and active microwave techniques
provide a more direct estimation than IR methods. At relatively long wavelengths
compared to visible and infrared ranges, microwave radiation is not subject
to atmospheric scattering and can pass through clouds.

Passive sensors suffer from the problem that critical information from the
vertical distribution of atmospheric conditions cannot be inferred (Michaelides
et al., 2009). Hence, cloud-resolving physical models are used to fill some of
the gaps, but considerable uncertainties remain. Active MW estimations that
provide their own radiation source were premiered in the Tropical Rainfall
Measurement Mission (TRMM) (Kummerow et al., 1998; Huffman et al.,
2007) and are continued in the Global Precipitation Measurement (GPM)
mission (Hou et al., 2014).
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Combined precipitation products Combining the different methods offers
the opportunity to alleviate the limitation of one approach by using the
advantages of another. For example, methods combining gauges and radar
have been used to calibrate satellite-based measurements, such as in TRMM.
Passive MW techniques can accurately capture the precipitation characteristics,
while the IR sensor provides high-resolution information about the spatial
distribution (Tapiador et al., 2012). IR sensors can also be used to estimate
the temporal dynamics of the atmosphere, which can then be incorporated
into physical advection models to improve the MW estimates.

Reanalysis products, such as ERA5 (Hersbach et al., 2020), combine
ground and satellite-based observations with data assimilation routines from
numerical weather prediction to derive comprehensive and consistent estim-
ates of the atmosphere for a wide range of variables. The weather forecast
model thus creates the best guess of the atmospheric state that optimally
matches observations. These reanalyses are typically more consistent with
well-observed variables. Variables such as precipitation, on the other hand,
can exhibit notable deviations between reanalysis products (Beck et al., 2017,
2019; Hassler and Lauer, 2021).

1.2 Modelling weather and climate

The Earth system is incredibly complex, comprising numerous physical pro-
cesses interacting on a large range of spatial and temporal scales. Modelling
it numerically might seem like a daunting task. Yet, our ability to simulate
weather and climate has steadily improved over the past decades (Bauer
et al., 2015). Given the finite computational resources available, comprom-
ises to which processes can be included and resolved for a given modelling
task are required. For example, forecasting the weather on times scales of
hours to weeks is a very different problem than projecting climate scenarios
for the next centuries. Further, global weather and climate models typically
have different resolutions in space and time.

Weather models integrate the primitive equations on time steps in the
order of minutes, while climate models can have longer time steps between
hours to days (Drüke et al., 2021). The exact time step length can vary
with the model component depending on the characteristic time scale of
the dynamics. Global weather models have spatial grid cell sizes of around
10−50 kilometers (Benjamin et al., 2018; European Centre for Medium-Range
Weather Forecasts, 2012), while global climate models simulate on coarser
grids of around 25−200 kilometer horizontal resolution (Haarsma et al.,
2016; Schneider et al., 2017b). The grid spacing in the vertical direction
typically varies with height and can range between around 20 layers in
low-resolution climate models in up to 140 layers in high-resolution weather
forecasts (Drüke et al., 2021; Dunne et al., 2020).

Weather forecasting is essentially an initial value problem, i.e., determ-
ining the forecast’s initial conditions as closely as possible is crucial for the
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predictive skill. Thus, much of the recent advances in numerical weather
prediction can be attributed to advances in data assimilations techniques and
ensemble forecasts of perturbed initial conditions. The modelling chain for
numerical weather predictions is outlined in Fig. 1.1A.

The first step in the chain is concerned with gathering observations from
which initial conditions for the numerical model can be derived via data-
assimilation methods. Observations from heterogeneous sources such as
weather stations, aeroplanes, and satellites are combined and used in four-
dimensional variational (4D-Var) data assimilation (Navon, 2009) to compute
optimal initial conditions. The numerical model then propagates the initial
state forward in time, producing the actual forecast. Systematic forecast
errors, e.g., caused by the parameterization of unresolved processes or due
to missing processes, are corrected in a subsequent post-processing step. The
final forecast product can then be provided to end users.

Modelling the Earth system on climate time scales, on the other hand,
can be considered as a boundary condition problem. As described by Hoskins
(2013) and depicted in Fig. 1.1B, in addition to the atmosphere, more and
more components of the Earth system become important with increasing
time scales. Hence, capturing their interaction and external forcings, such as
greenhouse gas emissions or solar radiation, becomes increasingly important.
Due to the chaotic nature of the atmosphere that causes exponential growth
in the initial forecast error, deterministic forecasts are limited up to around
two weeks. Therefore, accurate initial conditions are not relevant for climate
projections. Post-processing also plays an important role in climate modelling,
especially in assessing the impacts of anthropogenic global warming. These
are simulated using impact models that are typically developed and calibrated
with observation-based data but use ESM simulations as input for future
scenarios. Hence, systematic errors in the ESM need to be corrected before
the simulation output can be provided as input for the impact models.

This section aims to highlight the key differences between weather and
climate simulations and the post-processing approaches in used both domains.

1.2.1 Numerical forecasts and projections

Weather forecasting Accurate weather predictions are important to many
aspects of our society, from disaster prevention and mitigation of extreme
events to energy management, agriculture, and transportation. Advances
in computational technology, observational methods, and our scientific un-
derstanding have led to a steady improvement of forecast skill over the
past decades, gaining about a day lead time per decade in medium-range
forecasting (between about three to ten days) (Bauer et al., 2015).

As discovered by Lorenz in 1963 (Lorenz, 1963), there are fundamental
limits to the predictability of the atmosphere due to the exponential growth
in model errors, e.g., in the initial conditions or model formulation, that lead
to diverging forecast trajectories. Hence, much of the advances in weather
forecasting can be attributed to the assimilation of observations, improve-
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Figure 1.1: Components of the weather forecasting chain and time scales of Earth system model
components. (A) The components of the weather forecasting chain, based on (Rasp, 2019).
Observations are gathered from numerous sources, which are then processed to provide initial
conditions for the numerical simulation in time. The final output of the numerical simulation is
post-processed to remove systematic errors with respect to observations before being provided
to an end user. (B) The different components of the ESM and their importance with respect
to the time scales, adapted from (Hoskins, 2013). The atmosphere and oceans are the most
important components for short to medium-range weather forecasting. At the same time, the
provision of accurate initial conditions has a large impact on the forecast skill. On longer time
scales, coupling and interaction of the model components become more important, including
land, atmospheric chemistry, and ice sheets.

ments in the model formulations, and forecast uncertainty quantification
using ensemble methods (Bauer et al., 2015).

An advantage of numerical weather prediction (NWP) as a scientific dis-
cipline is the ability to evaluate the models daily over the globe. Thus,
improvements in the forecasting methods can be validated with high accur-
acy.

The spatial scale of events that can be skillfully forecasted is inter-
linked with the time scale of the forecasts (Hoskins, 2013). Short-term
forecasts between hours and days are able to capture local small-scale events.
Here, simulating atmospheric dynamics alone is often sufficient. High-impact
weather events can be forecasted in the medium range of days to about two
weeks. On this time scale, global weather simulations are required, and the
coupling of the ocean with the atmosphere becomes important. Forecasts
with lead times of months aim to predict large-scale weather patterns and
regime changes. The interaction of land surface processes becomes important
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at that time scale. Warming of the Pacific Ocean during the El Niño Southern
Oscillation (ENSO) phenomenon is an example that can be predicted on
seasonal time scales, typically below a year in advance (McPhaden et al.,
2006; Ham et al., 2019).

With simulation time scales increasing towards decadal or centennial
climate, the coupling of further components in the Earth system, such as
the biosphere, including vegetation, atmospheric chemistry, and ice sheets,
becomes more important. At the same time, accurate initial conditions cease
to be relevant, as illustrated in Fig. 1.1B.

Climate projections Earth system models (ESMs) simulate the coupled
components, such as the atmosphere, oceans, biosphere, and ice sheets,
over periods of hundreds to thousands of years. Such models are built to
answer fundamentally different questions than numerical weather prediction
models. On long time scales, summary statistics and how they change due
to the boundary conditions are the main question that ESMs are built to
answer, rather than accurate forecasts of local weather. Examples are the
change in global mean temperature with increasing CO2 concentrations in the
atmosphere or the irreversible tipping of ESM components into different states.
The emphasis is, therefore, on the coupling and interaction of the different
ESM components, while the initialization of the model mainly estimates its
internal variability.

Due to the large uncertainty in the boundary conditions, such as future
greenhouse gas emissions, different scenarios are often simulated and com-
pared. In contrast to weather predictions, these experiments can often not
be falsified, and the agreements of different model implementations across
research institutions are used as an indication for their reliability2 (Eden
et al., 2012), for example, in the Coupled Model Intercomparison Project
phase 6 (CMIP6).

However, today’s most advanced and comprehensive ESMs exhibit large
disagreement, e.g., in global mean temperature of about 1°C (Palmer and
Stevens, 2019). Another prominent example is the equilibrium climate sens-
itivity (ECS), which measures the increase in global mean temperature due
to a doubling of CO2 in the atmosphere after reaching an equilibrium state
(Schneider et al., 2017b; Balaji et al., 2022). Compared to observations
over the past 50 years, ESMs exhibit significant biases. An example3 is the
overestimation of the precipitation band in the south of the Equator, the
so-called double-peaked intertropical convergence zone (ITCZ) bias (Tian and
Dong, 2020).

The main source for the large disagreement between different ESMs lies in

2However, as noted in (Eden et al., 2012), a high model agreement might not necessarily
translate into high confidence, as simulations might agree due to common biases. Further, ESMs
are rarely developed fully independently from each other.

3Further examples of ESM biases are the Amazon dryness, sea surface temperatures in the
Southern Ocean, or differences in magnitude and frequency of the El Niño Southern Oscillation
(ENSO) (Eyring et al., 2019; Hourdin et al., 2017).
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their spatial and temporal resolution at which the physical differential equa-
tions are simulated. While ESMs have grown in complexity, including more
and more processes, the horizontal spatial resolution is typically restricted
to grid cells on the order of 25−200 kilometers. However, the microphysics
of clouds and their feedbacks, which are crucial for ECS estimations and
realistic precipitation distributions, require a minimum resolution of about
10 meters (Schneider et al., 2017b). Given the coarse resolution, turbulent
convection of moisture, another important process for the local distribution
of precipitation, cannot be resolved (Stevens and Bony, 2013). Such pro-
cesses on sub-grid spatial scales are typically included as paramterizations,
i.e., written as parameterized functions of the resolved variables.

Sub-grid scale parameterizations General circulations models (GCMs) that
simulate the dynamics and energy transport of fluids in the atmosphere
or oceans form the core of weather and climate models. The governing
physical laws are formulated as coupled partial differential equations that
are solved numerically on a discretized grid. The system of equations can be
summarized as (Balaji et al., 2022),

∂x

∂t
= R(x) + U(x) + P (x) + F, (1.4)

where x describes the system state, e.g., wind, water vapour, temperature,
etc., R(x) the resolved dynamics that can be written explicitly, U(x) the
unresolved dynamics, P (x) the thermodynamic processes and F the external
forcing. The “physics” of the system that acts on temporal or spatial scales
which cannot be resolved with the given numerical discretization is represen-
ted by U(x) and P (x). It thus has to be parameterized (Balaji et al., 2022),
e.g., as

U(x) + P (x) =
∑

θ

M(x, θ), (1.5)

where θ is a set of parameters derived from theoretical considerations or
empirical studies. Increasing the resolution of the numerical model allows
an extension of the number of processes that can be explicitly modelled and
therefore reduces the need for parameterizations. This, however, comes at
an increased computational cost, which limits the periods over which simula-
tions can be performed or the size of model ensembles used for uncertainty
quantification. Since relevant processes in the Earth system are acting on
spatial scales as small as micrometers (Balaji et al., 2022), a feasible target
resolution where all important processes are resolved will most likely be
forever out of reach.

1.2.2 Statistical post-processing

Numerical models for weather prediction and climate projections often exhibit
systematic biases. One important source is the subgrid-scale parameterization,
as discussed in the previous section 1.2.1. By approximating the effect of
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small-scale processes on large-scale variables, errors are introduced. Statistical
post-processing methods have been developed to correct these by comparing
the model simulations with observations.

In the following, an overview of different post-processing methods for
both weather forecasts and climate projections is given.

Post-processing weather forecasts Statistical post-processing methods for
weather forecasting have been developed for almost as long as numerical
weather models themselves (Wilks and Vannitsem, 2018).

There are two main sources of uncertainties and errors in numerical
weather forecasts. The first results from the dependence of the deterministic
predictability on the initial conditions. Since the true initial conditions cannot
be determined exactly in the real world, the choice of initial conditions
may strongly affect the forecast performance. The sensitivity on the initial
conditions is further state-dependent, i.e., varies over time, and therefore
needs to be estimated for each forecast individually (Lorenz, 1963; Wilks and
Vannitsem, 2018).

This has led to the development of ensemble forecasts that extend single
deterministic forecasts to probabilistic predictions (Lorenz, 1965; Palmer,
1993). The uncertainty in the initial conditions is thereby modelled as a
distribution over the ensemble with perturbed initial conditions. In other
words, the distribution over the initial conditions is propagated in time by
numerically integrating each weather model in the ensemble.

The resulting predictive ensemble distribution, however, can also be biased.
This can be caused by an imperfect selection of the initial distributions and
imperfect models. The second source of uncertainties is the incomplete model
due to the finite resolution in space and time, together with the limited
number of modelled processes. Post-processing in the weather prediction
context can be applied to correct errors in single forecasts or to improve
probabilistic ensemble predictions.

Probabilistic post-processing methods aim to improve properties such as
the sharpness and calibration of the predictive distribution. Sharpness can
be seen as the concentration of the distribution, while calibration refers to
the agreement between forecast probability to the observed event frequency
(Gneiting et al., 2007; Lerch et al., 2017).

Methods for correcting single weather forecasts are typically referred to
as model output statistics (MOS)4 (Glahn and Lowry, 1972). Especially for
near-surface or surface variables, systematic biases in numerical weather
forecasts can be significant (Wilks and Vannitsem, 2018). Due to the limited
resolution, complex boundary effects, e.g., due to the orography, surface types,
etc., cannot be resolved. Similarly, small-scale processes, such as microphysics
in clouds, remain unresolved and must be approximated in parameterizations.
One of the earliest MOS methods is based on a linear regression model that
predicts a target variable ŷ(t) from given feature variables xi(t), i = 1, ..., N

4However, sometimes ensemble post-processing methods are also referred to as MOS in the
literature.
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at time t that the weather model forecasts with

ŷ(t) = a0 + a1x1(t) + a2x2(t) + ...+ aNxN(t), (1.6)

where ai are the regression coefficients, e.g., determined by minimizing
the mean squared error (MSE) between ŷ and the observation y(t) (Glahn
and Lowry, 1972). This approach is suitable for weather forecasts, as the
prediction ŷ(t) can be directly compared to a ground truth observation y(t),
e.g., with metrics such as the MSE. Publication P1 extends this approach
using a non-linear regression model in the form of a convolutional neural
network to improve predictions of heavy rainfall events.

Post-processing climate projections Earth system models for climate sim-
ulations have three main sources of uncertainty (Eden et al., 2012). The
first source is the uncertainty in the external forcing, e.g., F in Eq. 1.4, and
how the model responds to it, e.g., to solar radiative forcing or CO2 emission
scenarios. The second source is related to the internal variability of the ESM
model, which is caused by the interaction and feedback between processes.
Parameterizations of small-scale processes that cannot be resolved, e.g., U(x)
and P (x) in Eq. 1.4, are the third source for uncertainty. This is particularly
important for precipitation that is generated by parameterized microphysical
processes.

To estimate these uncertainties in ESMs, ensemble runs are typically
performed by perturbing the initial conditions or the parameterizations that
lead to varying internal variability. The initial conditions for climate model
runs are thereby not based on observations as in weather forecasts, but
for example, based on control runs with preindustrial conditions. Still, the
perturbation leads to different internal variability modes of the model that
can be used for uncertainty quantification. The uncertainty of future climate
scenarios is typically assessed by applying different external forcings.

Using historical observations, methods have been developed to reduce
these uncertainties. Techniques such as emergent constraints aim to select
or weight models in an ensemble that lie closer to observations (Hall et al.,
2019; Williamson et al., 2020; Knutti et al., 2017). For the model error and
uncertainty introduced by parameterizations, post-processing methods can be
applied that reduce the model bias with respect to observations.

The correction of systematic bias with respect to observations through
post-processing is especially important for impact modelling. Impact models
assess the effect of anthropogenic global warming, for example, on flood-
ing events, sea level rise in coastal regions, or crop yields and vegetation
changes. These impact models are, however, developed and calibrated using
observational input data. This way, the modelled and observed impacts can
be directly compared and evaluated. For future impacts, projection simula-
tions from comprehensive ESMs have to be used as input. This can cause
severe inconsistencies as the ESM output fields often exhibit very different
characteristics than the observations. Hence, post-processing methods aim to
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bridge this gap and provide impact models with future scenario simulations
that are more consistent with observations.

Due to the chaotic nature of the Earth system, the “weather trajectory”
of the climate simulation does not follow the observed state closely, as
errors in the initial conditions and model grow exponentially in the first few
days of the simulation. This is not a model deficiency but rather a natural
consequence of the chaotic system. Hence, ESMs are built to produce realistic
summary statistics aggregated over long periods, e.g., decades or centuries.
This also means that the post-processing aimed to reduce the model bias
cannot follow the MOS approach in Eq. 1.6 since comparing variables locally
for each time step t on “weather scales” is not meaningful.

Therefore, ESM bias correction methods are typically designed to compare
and optimize distributions over time. One particularly successful method is
quantile mapping (QM). It can be used to correct the entire distribution of a
modelled variable xmodel(t) at a given grid cell (Cannon et al., 2015). This is
done by approximating a function f(x) that maps the value of xmodel(t) to a
corresponding value in the observations xobs(t), i.e.,

xobs(t) ≈ x̂model(t) = f(xmodel(t)). (1.7)

The function f(x) can be constructed from the cumulative distribution
functions (CDFs), that are estimated over a historical period for both obser-
vational and modelled time series with

x̂model(t) = CDF−1
obs,hist{CDFmodel,hist[xmodel(t)]}, (1.8)

where CDF−1
obs,hist is the inverse of the CDF (i.e. quantile function) of the

observations. Quantile mapping methods differ in their way of estimating
the CDFs. Empirical quantile mapping uses histograms to approximate the
CDFs without making assumptions about the shape of the distribution. On
the other hand, parametric quantile mapping assumes a functional form of
the distributions. It has the main advantage that values can be extrapolated
if they fall outside the historical range.

Bias correction ESM climate simulations w.r.t. observations assumes that
the model bias is stationary. In other words, the correction function derived
from historical ESM simulations and observations, e.g., f(x(t)) in Eq. 1.7, is
assumed to be invariant in time (Maraun, 2012). While the assumption might
not be fully justified (Christensen et al., 2008), it is difficult to estimate
the degree of non-stationarity in the model bias, given the small climate
change signal in the period where sufficiently dense historical observations
are available (Maraun, 2012). Generally, a trade-off has to be considered
between reducing the ESM bias w.r.t. historical observations for better impact
modelling and, on the other hand, the risk of underestimating the transient
climate change signal.

Since the long-term climate of the Earth system is non-stationary, quantile
mapping methods have been developed to preserve the transient trends.
For example, this can be done in three steps, by first detrending the ESM
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simulation, then applying the bias correction on the detrended data, e.g.,
with Eq. 1.8, and finally adding the trend to the corrected simulation again
(Cannon et al., 2015; Lange, 2019).

The non-stationarity of the climate is also challenging for deep learning-
based post-processing methods that typically assume identically distributed
training data. The following section introduces key machine learning concepts,
particularly for training deep neural networks from computer vision and
image processing for post-processing tasks.

1.3 Deep learning for post-processing

Deep learning, the field of machine learning that is based on deep artificial
neural networks (ANNs), has gone through different periods of popularity
and development since the introduction of the multi-layer perceptron (MLP)
model in the 1950s (Rosenblatt, 1959; Schmidhuber, 2015; Goodfellow et al.,
2016).

The surge in popularity in recent years can be attributed to the increasing
availability of training data, combined with advances in dedicated hardware
such as GPUs and TPUs, as well as developments in algorithms and software
that allow training ANNs and processing datasets of increasing size. Build
with inspirations from neuroscience; ANN architectures have become more
and more complex as have the tasks they can solve (LeCun et al., 2015;
Goodfellow et al., 2016).

This section introduces basic concepts of machine learning and neural
networks, particularly for computer vision and image processing applications
that can use spatial correlations in gridded data such as images or, in the
case of this thesis, geographical fields from numerical simulations. Further,
metrics that can be used to quantify image characteristics, such as blurring,
are discussed together with suitable learning approaches. The following is
largely based on (Goodfellow et al., 2016).

1.3.1 Machine learning basics

Learning approaches Machine learning algorithms can be roughly grouped
into three categories of supervised, unsupervised, and reinforcement learning.
The categories differentiate between the tasks the algorithm has to solve and
the nature of the training data, i.e., whether the training data contains input
features and labelled targets.

Supervised algorithms need labelled training data in the form of inputs
(“features”) and outputs (also called “targets” or “labels”). For example, in
image recognition, the features are the input images, and labels are assigned
to the object(s) in the image, which the algorithm is tasked to predict.
Another example is regression, where a continuous target variable must be
predicted from a set of input features.
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Unsupervised learning, roughly speaking, tries to identify structures in
unlabeled data. Examples are clustering algorithms that group features based
on their similarity or dimensionality reduction methods. Generative mod-
els are another example of unsupervised learning that try to approximate
the distribution of the training data, s.t. new samples can then be drawn
(Goodfellow et al., 2020).

However, combinations of the two categories are possible as well. Generat-
ive adversarial networks (Goodfellow et al., 2014) learn to generate samples
that are indistinguishable from the target data distribution by including ele-
ments of supervised learning in the form of a second discriminator network
that is trained as a classifier.

Reinforcement learning should be mentioned for completeness as another
category of learning algorithms where an ML agent interacts with an envir-
onment. In this setting, the dataset is not fixed before training but accessed
through interaction during training.

Training techniques After training an ML algorithm (in the following, also
referred to as “model”), one usually measures its performance on new unseen
data. Therefore, the dataset is divided into a training set used to optimize
the model parameters (or “weights”) and a separate test set. The underlying
assumption is that the samples in both sets are independent and identically
distributed (i.i.d).

The assumption allows us to see the training samples as being produced
by a single data-generating distribution and to quantify whether the model
is underfitting or overfitting. Underfitting refers to the case where the model
cannot reach a low error on the training set. On the other hand, overfitting
occurs when the difference between the errors on the training and test set
is large, i.e., when the training error is low but the test set error is high.
This is illustrated in Fig. 1.2. To find the right balance between under- and
overfitting, we can change the capacity of the model.

The capacity (or “expressiveness”) of a model determines which functions
can be approximated, e.g., a regression model based on polynomials of degree
two can learn the set of linear and quadratic functions. One way to increase
the capacity is to increase the number of parameters. This could correspond
to adding higher polynomial degrees in the given regression example. It
allows the model to approximate a larger function space. However, it can
make it harder to find the “true” data generating function from the large
possible space, especially in the case of small training datasets, and can lead
to overfitting. Decreasing the capacity too much, on the other hand, can also
make it impossible to find the correct function, e.g., when approximating a
non-linear function with a linear model, and lead to underfitting. Another
technique to constrain the possible function space is regularization.

An extensive range of regularization techniques has been developed to
control the models’ expressiveness. For example, a penalty in the form of
an L1 or L2 norm on the weights can be added to the loss function that
computes model error during training. Other approaches introduce sparsity
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by removing parameters through pruning or dropout (Srivastava et al., 2014;
Blalock et al., 2020). Simply increasing the size of the training data can
also be seen as a form of regularization, as it adds further constraints to
the model parameters. If additional training data can not be acquired, data
augmentation methods, such as flipping or cropping images in computer
vision problems, can be applied (Shorten and Khoshgoftaar, 2019). Adding
additional terms to the loss function that capture different aspects of the
tasks to be learned is another popular regularization strategy. Multi-task
learning can be seen as such an approach, where the model has to learn
several related tasks instead of a single (Caruana, 1997).

Hyperparameters The capacity of a model is determined through its hyper-
parameters. They control, e.g., the model architecture, the number of weights,
or the type of regularization in a model. They also include parameters of
the training method, such as learning rates (the “step size” of the parameter
updates in gradient descent optimization) and batch sizes (the number of
training samples used for an optimization step) or transformations in the pre-
processing. A more detailed discussion of the model parameter optimization
with gradient descent is given later in this section.

The choice of hyperparameters cannot be evaluated on the training set,
as it would lead to a model with maximum capacity, and neither on the test
set, as it is still part of the model optimization. Therefore, a third validation
set is required for tuning hyperparameters.

The relation between under- and overfitting can also be seen from a
statistical point of view as a bias-variance trade-off. From this perspective,
the ML algorithm acts as a function estimator. Hence, the goal is to find an
estimator f̂(x), e.g., with a neural network, of a target function y = f(x) + ϵ,
where ϵ is some measurement noise, e.g., with E(ϵ) = 0 and Var(ϵ) = σ2

ϵ .
Computing the mean squared error over the test set then gives insights into
the trade-off between underfitting, leading to a low bias of the estimator, or
overfitting resulting in a high variance of the estimator. This can be seen
when decomposing the MSE as

MSE = E[(f̂(x)− y)2],

= E[f̂ 2(x)] + f 2(x)− 2E[f̂(x)]f(x) + σ2
ϵ ,

= E[f̂ 2(x)] + f 2(x)− 2E[f̂(x)]f(x) + σ2
ϵ + E[f̂(x)]2 − E[f̂(x)]2︸ ︷︷ ︸

= 0

, (1.9)

= E[f̂(x)]2 − 2E[f̂(x)]f(x) + f 2(x) + E[f̂ 2(x)]− E[f̂(x)]2 + σ2
ϵ ,

= (E[f̂(x)]− f(x))2︸ ︷︷ ︸
(Bias)2

+E[f̂ 2(x)]− E[f̂(x)]2︸ ︷︷ ︸
Variance

+σ2
ϵ .

The minimum MSE over a test set will thus have an optimal trade-off between
bias and variance. This makes it a suitable loss function for many regression
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problems. Observing the change in MSE over the epochs (iterations over the
training data) during training allows determining an optimal stopping point
of the process, i.e., early stopping of the training (Prechelt, 1998).
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Figure 1.2: Sketch showing the trade-off between under- and overfitting, adapted from (Goodfel-
low et al., 2016). Increasing the capacity of a model reduces its bias and the risk of underfitting.
After a certain point, the growing capacity can cause overfitting and high variance, leading to a
high error on the test set. The goal is, therefore, to find the right balance between these two
extreme cases.

Optimization The optimization procedure of neural networks is nowadays
almost exclusively based on the stochastic gradient descent (SGD) algorithm.
During training, the parameters θ of a neural network f(x;θ) are optimized
with the goal of minimizing a cost function C(θ). The cost function measures
the performance of the model and specifies the learning objective. The cost
function is then constructed as the sum over a loss function L evaluated on
the training samples,

C(θ) =
1

m

m∑

i=1

L(f(xi;θ),yi), (1.10)

where xi and yi are the ith feature and target sample, respectively, in a
batch of m samples. Using batches of samples instead of the entire training
set is computationally more efficient and typically used for training on large
datasets in deep learning. The gradient of the cost function with respect to
the model parameters is then estimated from a batch with,
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∇θC(θ) =
1

m

m∑

i=1

∇θL(f(xi;θ),yi). (1.11)

The new parameters θt+1 are then computed using gradient of the cost
function w.r.t. the parameters,

gt = ∇θC(θt), (1.12)

with
θt+1 = θt − λgt, (1.13)

where λ is the learning rate. In practice, the learning rate is often not fixed
but gradually decreases during training with a scheduling algorithm. While
the global minimum of the cost function is often not found, SGD typically
can find a very low local minimum.

An extension of SDG optimization that is also used in the studies of this
thesis is ADAM (Kingma and Ba, 2015). In ADAM, adaptive moments based
on exponentially weighted averages of the gradient, mt, and the squared
gradient, vt, are used to update the model parameters, i.e.,

θt = θt−1 − λ
mt√
vt + ϵ

, (1.14)

where λ is the learning rate again, and ϵ = 1e−8 is a small constant for
numerical stability.

Back-propagation In practice, the gradient of the cost function w.r.t the
neural network’s weights in Eq. 1.11 is computed numerically with the back-
propagation algorithm (Rumelhart et al., 1986).

It constructs a computational graph that stores variables as nodes and
mathematical operations applied to these as edges. From the graph, the
derivatives can be computed to get the total gradient using the chain rule of
derivatives from calculus. The computational graph for back-propagation is
found by storing the operations used to compute the output of the neural
network from a given input in reverse order, i.e., starting from the network’s
output and then going backwards layer by layer.

Computing the total gradient in the backward direction is computationally
more efficient than computing it in the forward direction for each layer
separately. The advantage is two-fold; it avoids duplicate computations
because the gradient of a layer l does not depend on deeper layers l + 1, l +
2, ... and does not need to cache intermediate results, since the full gradient
w.r.t the cost function is computed for each layer directly. This is possible
since the weights in a given network layer only change the loss by affecting
the next layer and only using the information in the same layer.

Backpropagation is a special case of “reverse mode” automatic differen-
tiation (AD) for a scalar-valued function such as the training cost. More
generally, AD methods can also be applied to higher-dimensional functions.
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1.3.2 Computer vision and image processing

The fields of computer vision and image processing are closely related, and a
clear separation is not always possible. Broadly speaking, computer vision
focuses on the abstract understanding of image or video data for tasks such
as image classification, object recognition, segmentation, or video prediction,
to name a few.

In image processing, the emphasis is more on analysing, transforming,
and synthesising images for tasks such as denoising, compression, sharpening,
or style transfer. Computer vision applications often include image processing
techniques, e.g., for pre-processing, data augmentation, or evaluation in the
workflow.

The development of convolutional neural networks and the ability to train
them efficiently with back-propagation (LeCun et al., 2012) has revolutionized
many parts of the two fields, where deep learning-based models attain state-
of-the-art results.

Convolutional neural networks The convolutional neural network is in-
spired by the hierarchical structure of neuron layers in the visual cortex of
humans and animals that process more complex patterns with increasing
depth. It is one of the most successful architectures for gridded data such
as images (LeCun et al., 2015). It is parameter efficient because individual
neurons only process information in their limited receptive field. It further
utilizes translation invariance, s.t., the position of the pattern in the input
does not affect the response of the neurons.

At the heart of the CNN lies the convolution operation, which is typically
implemented as a cross-correlation between an input x and a weighted
kernel w, and in the case of a two-dimensional input image5 has the form
(Goodfellow et al., 2016)

yi,j =
M−1∑

m=0

N−1∑

n=0

xi+m,j+nwm,n, (1.15)

where M and N are the height and width of the kernel in two dimensions
and yi,j is the value of the resulting feature map at position i and j. The
resulting size, i.e., height or width, of y depends on three hyperparameters,
the stride S that controls the step size between each convolutional operation,
the padding P that extends the input image, and the kernel size K, leading
to

Size(y) =
I −K + 2P

S
+ 1, (1.16)

where I is the size of the input image. Typically, network layers additionally
apply a non-linear activation function6 σ(y), such as the rectified linear unit

5I.e., assuming an image with a single colour channel for simplicity.
6For a discussion on different activation functions and their properties, see, e.g., section 2.2

in Ray et al. (2023).
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(ReLU), i.e., σ(y) = max(0,y), to produce the input of the next network layer
z with

z = σ(y). (1.17)

CNNs are parameter-efficient architectures, typically having fewer paramet-
ers per layer than fully connected networks, with the size of the kernel being
smaller than that of the input. This is motivated by the fact that patterns
to be learned from images are typically smaller than the total image size.
Moreover, parameters are shared because the same kernel parameters are
used for the different locations in the input. Further, the extracted features
will appear in the output feature map at a similar location.

Another concept that is central to CNNs is the pooling layer. Pooling is
typically applied to aggregate information in a feature map, for example, by
averaging over a pixel neighbourhood or computing its maximum value. It
helps the network to learn translation-invariant patterns, i.e., where shifts
in spatial directions of the input do not change the output significantly.
Moreover, it allows the network to extract features at different spatial scales,
as the pooling operation reduces the resolution, enabling kernels of the same
size to extract larger spatial features in deeper network layers.

CNNs are typically constructed by stacking convolutional and pooling
layers. Finding a suitable architecture is crucial for learning the desired
function efficiently. For example, skip-connections (Ronneberger et al., 2015;
He et al., 2016), which connect network layers by skipping some in between,
can help the model to preserve high-frequencies in the image signal while
also preventing problems such as vanishing gradients that can occur in deeper
neural network architectures.

Image processing and analysis Besides the CNN architecture, the loss func-
tion primarily controls the function to be learned by the model.

A central question in this thesis is to find a suitable loss function that
leads to desirable image properties in the CNN output. In the context of post-
processing precipitation simulations of weather or climate models, resolving
the characteristic high-frequency variability is particularly important.

The mean squared error (MSE),

MSE =
1

N

N∑

i=1

(xi − yi)
2, (1.18)

between two variables xi and yi, is often used in supervised regression prob-
lems but has been found unreliable for detecting image distortions such as
blurring (Wang et al., 2004). Therefore, extensions such as the structural sim-
ilarity measure (SSIM) (Wang et al., 2004; Wang and Bovik, 2009; Rehman
et al., 2013) have been proposed7. The SSIM compares two images x and y

7See Fig. 2 in (Wang et al., 2004) for sensitivity comparison between MSE and SSIM for
different image distortions such as blurring.

21



1. Introduction

with respect to luminosity l(x,y), contrast c(x,y) and structure s(x,y), as

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

,

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

, (1.19)

s(x,y) =
σxy + C3

σxσx + C3

,

using the mean µ, standard deviation σ, covariance σxy and small constants
C1, C2, and C3 for numerical stability. The SSIM then reads

SSIM(x,y) = [l(x,y)]α[c(x,y)]β[s(x,y)]γ, (1.20)

where α, β, and γ are parameters that can be adjusted to weight the different
terms.

Perceptual image quality can also be quantified using CNNs. For example,
by comparing the output or layer statistics of a trained image classification
network, e.g., an Inception model (Szegedy et al., 2016) trained on the large
ImageNet dataset (Deng et al., 2009), as done in the inception score (IS) and
Fréchet inception distance (FID) (Salimans et al., 2016; Heusel et al., 2017).
Generative adversarial networks (Goodfellow et al., 2014) similarly use a
network-based metric in training, enabling it to produce realistic images of
high-fidelity. Using a neural network instead of a heuristic or hand-engineered
loss function that needs to be developed through many experiments makes
these models attractive.

Generative adversarial networks As the name suggests, generative adver-
sarial networks (GANs) are generative models, i.e., they can be trained to
learn a target distribution from which samples can be drawn (or “generated”).
They can generate highly realistic and sharp images (e.g. see Karras et al.
(2019)). GANs do not require labelled training data and thus can be seen
as a form of unsupervised learning (Goodfellow et al., 2020). A generative
model aims to learn a distribution pmodel(x) that approximates an unknown
target distribution pdata(x) closely. Traditionally, this is done by fitting a
parameterized distribution to the data drawn from pdata(x), e.g., via max-
imum likelihood estimation. However, for high-dimensional distributions, this
approach can become intractable (Goodfellow et al., 2020). GANs follow
a different approach that only learns a transformation of samples from a
given prior distribution pz(z), e.g., a Gaussian or uniform distribution, and
therefore belongs to the class of implicit generative models.

The idea behind GANs is to learn the transformation of pprior(z) through a
“minimax” game between two deep neural networks (DNNs). One DNN takes
the role of a so-called generator, G(z), that learns the distribution pmodel(x).
The other discriminator DNN, D(x), learns the distinction between generated
samples and such drawn from the target distribution pdata(x), usually as a
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classification task. The loss function for the GAN that was originally proposed
by Goodfellow et al. (2014) is

L(D,G) = Ex∼pdata(x)[log(D(x))] (1.21)
+ Ez∼pz(z)[log(1−D(G(z)))].

The training then aims to solve

G∗ = arg min
G

max
D

L(D,G), (1.22)

to obtain the optimal generator network G∗. The discriminator is trained to
maximize the loss in Eq. 1.21 by correctly classifying samples from the target
distribution and generated ones. The generator tries to fool the discrimin-
ator by generating realistic samples that cannot be distinguished, thereby
minimizing the loss.

In practice, the original GAN formulation in Eq. 1.21 is rarely used as
it has been found to suffer from training instabilities and problems such as
mode collapse, i.e., where the generator always produces the same sample
(Arjovsky and Bottou, 2017). Thus alternatives for the loss function in
Eq. 1.21 have been proposed (Salimans et al., 2016), such as the Wasserstein
loss (Arjovsky et al., 2017), together with empirical techniques that can help
to stabilize the training (Radford et al., 2016).

Cycle-consistent GANs The translation of unpaired images between two
domains X and Y for style transfer tasks, e.g., translating photorealistic
images to classical paintings or vice versa without changing their overall
content, has been shown to be effective with cycle-consistent generative
adversarial networks (CycleGANs) (Zhu et al., 2017). The CycleGAN uses
two generator-discriminator pairs that learn inverse mappings between the
two domains. The cycle-consistency constraint can then be defined as a
regularizing loss term that computes the difference after one image translation
cycle, i.e., x → G(x) → F (G(x)) ≈ x and vice versa for y, using the L1 norm:

Lcycle(G,F ) = Ex∼px(x)[||F (G(x))− x||1] (1.23)
+ Ey∼py(y)[||G(F (y))− y||1],

where G : X → Y and F : Y → X are the two generator networks. An
identity constraint can additionally be imposed to regularize the networks to
approximate an identity mapping with,

Lident(G,F ) = Ex∼px(x)[||F (x)− x||1] (1.24)
+ Ey∼py(y)[||G(y)− y||1].

The log-likelihood loss in Eq. 1.21 is replaced by a mean squared error loss
to improve the training stability, and the generator loss is reformulated in
order to be minimized by the optimizer. The full generator loss then reads

LGenerator = Ex∼px(x)[(DX(G(x))− 1)2]

+ Ey∼py(y)[(DY (F (y))− 1)2] (1.25)

+ λLcycle(G,F ) + λ̃Lident(G,F ),
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where λ and λ̃ can be tuned to adjust the two loss terms. The discriminator
networks are DX and DY trained with

LDiscriminator = Ey∼py(y)[(DY (y)− 1)2] + Ex∼px(x)[(DY (G(x)))2] (1.26)
+ Ex∼px(x)[(DX(x)− 1)2] + Ey∼py(y)[(DX(F (y)))2]. (1.27)

1.3.3 Combining domain knowledge with machine learning

Spatial precipitation fields from numerical weather and climate models often
tend to be blurry, i.e., they cannot accurately resolve the variability in space.
Therefore, a loss function based on a metric that penalizes blurriness in
images can be advantageous for training a CNN in a post-processing setting.

Currently, research in atmospheric and Earth system science has started to
apply deep learning methods for solving domain-specific problems due to their
capability in text or image recognition, translation or generation (Reichstein
et al., 2019; Huntingford et al., 2019; Schultz et al., 2021; Irrgang et al.,
2021).

The following aims to give an overview of how data-driven methods from
ML and DL can be combined with domain-specific knowledge for weather
and climate modelling. In general, there exists a spectrum of different
combinations with varying degrees of emphasis on either domain knowledge-
based or data-driven approaches.

On the mostly knowledge based-side of the spectrum are physical models,
typically in the form of (partial) differential equations that model the relevant
physical processes. These models follow the physical laws of the system, e.g.,
conservation of energy or momentum. Unresolved processes can be included
as approximations, typically in the form of parameterizations, where the free
parameters can be calibrated with respect to observations. The number of
free parameters is relatively small compared to large deep neural networks,
which makes them relatively robust to generalize beyond the data used for
calibration. The calibration procedure of the parameters is similar to ML
optimization procedures (Cleary et al., 2021; Tsai et al., 2021). Process-based
models are more interpretable than their deep learning-based counterparts,
i.e., a physical meaning can usually be derived from the parameters. However,
process-based models can usually only be applied to a specific problem for
which they are designed.

On the opposite data-driven end of the spectrum, machine learning mod-
els, e.g., in the form of deep neural networks (DNNs), are trained to learn
tasks such as emulating the dynamics of a system of interest purely from
the training data. DNNs are rather flexible and can be applied to a range of
problems. However, DNNs do not “know” about fundamental physical laws,
such as the conservation of energy or mass, prior to training and might fail
to learn them purely from data. The generalization to predictions outside the
training data distribution can also be challenging. This is particularly import-
ant in the climate context, where historical observations are expected to have
different distributions than future climate states. Further, with increasing
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numbers of parameters, the models tend to become less interpretable (Molnar
et al., 2020).

Between these two modelling paradigms lies a range of possibilities for
combinations of the two. For example, purely DNN-based models can be
tailored for more specific domain tasks, e.g., by extending their architecture
to include physical equations and constraints, or differential equations-based
models can be combined in so-called hybrid approaches to include data-driven
components, e.g., in cases where the mathematical formulation of a process
is not known or would be too expensive to compute.

Incorporating domain knowledge into deep learning models Using domain
knowledge to make informed design choices of the deep learning model prior
to training can have several advantages, especially when training data is
limited. Selecting or designing a suitable architecture for the problem at
hand helps to constrain the set of possible functions to be learned, e.g., by
introducing inductive biases. Examples are the use of invariant properties
that simplify the problem (Ling et al., 2016), developing architectures that
fit the structure of the data, such as multiple scales that are common in
atmospheric data or that are suitable for the spherical geometry of the Earth
(Zhu et al., 2017; Weyn et al., 2020; Keisler, 2022; Pathak et al., 2022).

For problems where the data distributions for training and inference are
identical, “soft“ constraints in the form of additional regularization terms
in the loss function can be imposed that penalize the violation of physical
properties, e.g., in the context of “physics-informed” neural networks (Raissi
et al., 2019; Greydanus et al., 2019; Li et al., 2022).

A central question in climate modelling is the generalization to out-of-
sample predictions when training on historical observations. Here, architec-
ture (or “hard”) constraints in the form of additional network layers can be
included to ensure that conservation laws are fulfilled, which has been shown
to improve the generalization (Beucler et al. (2021a)).

Hybrid modeling Hybrid modelling is a rather general term. Here, we will
denote hybrid models as models that combine systems of physical differential
equations with machine learning components. The ML component can be
used to pre-process input data to the model (Kraft et al., 2022), emulate and
replace physical components, e.g., subgrid-scale parameterizations in weather
and climate models (Rasp et al., 2018; Gentine et al., 2018; Watt-Meyer
et al., 2021; Yuval et al., 2021), or as post-processing to correct for biases in
the physical model (Arcomano et al. (2022)).

An important distinction in hybrid modelling is the methodology for op-
timizing the hybrid model and particularly the ML component. One approach
is so-called “offline” learning. Here, training data is usually generated by
integrating the purely physical model in time. The resulting output data can
then be used to train an ML algorithm. This approach is often practically
convenient when the physical model cannot be accessed during training and
therefore does not allow propagating gradients through the entire hybrid
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model, which is necessary to update the network parameters. When including
the offline trained ML algorithm in the physical model, a problem can be the
out-of-sample predictions that result from the feedback of the ML component
in the hybrid model and thus leads to different input data than seen during
the offline training (Rasp et al., 2018; Sanford et al., 2022).

Therefore, recent efforts have begun to write physical models in modern
programming languages such as Python or Julia (Schneider et al., 2017a;
McGibbon et al., 2021; Kochkov et al., 2021; Häfner et al., 2021; Bauer et al.,
2021; Kraft et al., 2022) that allow better integration of the ML component
in the physical model.

Interpretable and explainable AI The performance of machine learning
models typically increases with the model complexity and size (given suf-
ficient training data and difficulty of the tasks to be learned) while the
interpretability of the ML model decreases at the same time (Molnar et al.,
2020). Deep neural networks are thus often considered as “black-box” models.
Therefore, methods in the field of interpretable and explainable AI8 are being
developed to make them more transparent (Molnar et al., 2020).

There are several reasons why interpretability and explainability matter in
ML applications to Earth system modelling. It can help to ensure that the
model learns to identify the relevant physical processes. These insights, in
turn, can be used to debug and improve the model, as well as increase the
trust in its predictions (McGovern et al., 2019; Ebert-Uphoff and Hilburn,
2020). This is especially relevant for out-of-sample predictions in climate
modelling, where predictions of the future often cannot be falsified (see
section 1.2.1). Another application is ML-driven scientific discovery, e.g.,
where insights are extracted from an ML model trained on large volumes of
data that might be infeasible to process by human experts (Karpatne et al.,
2017; Zanna and Bolton, 2020).

There exists an abundance of different interpretability and explainability
methods. Gradient-based techniques that leverage the differentiability of the
model are useful for neural networks trained on image data. These techniques
aim to attribute an “importance” score to input features with respect to the
prediction. They can be grouped into methods that directly use the gradient
of the model, such as saliency maps (Simonyan et al., 2014), or SmoothGrad
(Smilkov et al., 2017) and methods that approximate the gradient, such
as layer-wise relevant propagation (LRP) (Montavon et al., 2018), DeepLift
(Shrikumar et al., 2019), or Integrated Gradients (Sundararajan et al., 2017).

The first group has the advantage that the gradient is always available, in-
dependent of the neural network architecture, whereas approximate gradients
can be challenging to construct. Hence the latter is often used for simpler
architectures, e.g., as in (Toms et al., 2020). On the other hand, using the

8The terms interpretability and explainability are often used interchangeably and are not
clearly defined (Lipton, 2017). An attempt to do so and to distinguish these two terms can be
found in Roscher et al. (2020).

26



1. Introduction

gradient directly can be noisy as it can vary strongly on the local pixel level
(Smilkov et al., 2017).

1.4 Outline of the thesis

To summarize the previous sections in preparation for the publications in the
next chapters, a short outline of the thesis and its scope shall be given in
the following.

The central topic that this thesis explores is the question of how deep
learning methods from the computer vision and image processing domains
can be applied to improve key characteristics of numerical precipitation
simulations in a post-processing step.

Numerical models exhibit significant systematic errors in their simulation
output that are largely due to the discretization of the model domain that
requires approximations of small-scale processes as well as a limited model
complexity. This is particularly important for precipitation since it results from
the multi-scale interaction of numerous processes, including, e.g., small-scale
microphysics in clouds.

Hence, numerical weather forecasts and climate projections exhibit various
biases, e.g., by under- or overestimating the occurrence of rare extreme
precipitation events or by producing overly smooth spatial fields that lack the
defining small-scale variability, i.e., intermittency of precipitation patterns.

Classical statistical post-processing methods are typically applied to each
location individually and are not designed to use spatial correlations effi-
ciently. Therefore, these methods cannot improve spatial patterns effectively.

Convolutional neural networks, on the other hand, are built to use spa-
tial correlation for tasks such as image-to-image translation, which is very
similar to post-processing (or “translating”) spatial fields from numerical sim-
ulations using observations. Given these similarities, this thesis investigates
suitable neural network architectures, loss functions and training techniques
to improve weather forecasts and climate projections.

The following Chapter 2 explores such deep learning-based approaches
in the weather prediction context. Here, the forecast skill of the numerical
model or post-processing method can be directly evaluated by comparing
the predicted field with observations for each grid cell and time instance.
Supervised learning that requires such training samples can be applied using
loss functions that improve the structural similarity of paired samples and
can be modified to increase the predictive skill of rare extreme events.

The studies in Chapter 3 aim to improve spatial patterns and frequency
distributions of numerical climate simulations, which poses different chal-
lenges. Small modelling errors grow exponentially in chaotic systems such as
the atmosphere, which leads to deviating trajectories of the model simulation
and observations. Therefore, training samples of daily precipitation fields
become unpaired, which motivates the application of unsupervised learning
techniques such as generative adversarial networks. Further challenging is
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the non-stationarity of the Earth’s climate, in which future projections be-
come out-of-sample predictions for deep learning models trained on historical
observations. Evaluating the similarity and realisticness of modelled spatial
fields that are unpaired also requires different metrics than in short-term
weather predictions.

The following main research questions are addressed in the following
studies:

Q1 Can DNNs improve spatial patterns of precipitation, and in particular, the
characteristic small-scale variability? (Chap. 2 and 3)

Q2 Can DNNs accurately learn to correct the frequency distribution of precipita-
tion extremes from biased model simulations? (Chap. 2 and 3)

Q3 Can DNNs increase the forecast skill for rare precipitation events in numerical
weather predictions? (Chap. 2)

Q4 Can DNNs improve numerical climate simulations of precipitation? (Chap. 3)
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Summary The study focuses on improving the numerical weather prediction
(NWP) of rainfall and, in particular, of extreme events using a supervised
deep learning approach.

The accurate prediction of rainfall and its extremes remains challenging
due to the limited resolution and model complexity of the forecast model,
which leaves important small-scale processes unresolved. This is particularly
problematic for precipitation as it results from the interaction of processes
across many scales, from continental weather systems down to cloud micro-
physics.

In this study, a deep convolutional neural network based on the U-Net
architecture (Ronneberger et al., 2015) is trained to reduce biases in the
ensemble mean predictions of the Integrated Forecast System (IFS) (European
Centre for Medium-Range Weather Forecasts, 2019) with respect to satellite-
based observations from the Tropical Rainfall Measurement Mission (TRMM)
(Huffman et al., 2007). The forecast and ground truth data have a high
resolution of three hours in time and 0.5° horizontally in space with near-
global coverage.

We show that a suitably designed loss function that combines a weighted
mean-squared error to compensate for the strongly skewed frequency distribu-
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tion with a multi-scale structural similarity index measure (MS-SSIM) (Wang
et al., 2003) that is sensitive to blurring in images enables the network to
accurately learn extreme events that are not provided by the NWP ensemble
as input. Vertical wind velocities on different pressure levels are used as
additional input features based on their physical link to heavy rainfall events.

The here-developed method can correct the relative frequency distribution
with a comparable skill to state-of-the-art bias correction methods such as
quantile mapping (Cannon et al., 2015) while achieving a better forecast
skill. The latter is assessed using continuous metrics that cover the whole
range of rainfall values and categorical skill scores that are commonly used in
weather forecast evaluation for extreme events. The network trained with the
novel loss function outperforms several other baseline methods, particularly
in capturing the relative frequencies of rainfall sums in the distribution’s
upper tail.

2.1 P1 | Deep learning for improving numerical
weather prediction of heavy rainfall

Please turn to the next page.
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1. Introduction
Modeling and predicting rainfall, and in particular heavy rainfall events, remains is challenging. The relevant 
multi-scale dynamics range from small-scale droplet interactions to large-scale weather systems. Further, the 
high intermittency in space and time, as well the strongly non-Gaussian, right-skewed distribution (Koutsoyian-
nis, 2004a, 2004b) make accurate predictions difficult.

The thermodynamic Clausius-Clapeyron relation (Allan & Soden, 2008; Donat et al., 2013; Guerreiro et al., 2018), 
and comprehensive model simulations (Masson-Delmotte, V. et al., 2021) suggest that the frequency and sever-
ity of heavy rainfall are expected to increase in a warming atmosphere (Fischer & Knutti, 2016). It should be 
noted, however, that the spatial patterns of these increases are expected to be heterogeneous and complex (Ali 
et al., 2018; Traxl et al., 2021). Correspondingly, accurate forecasts of heavy rainfall events will become ever 
more crucial for disaster prevention and mitigation.

Numerical weather prediction (NWP) models solve the fluid dynamical equations governing the dynamics of the 
atmosphere. They are essential for weather forecasting, including the prediction of heavy rainfall events. Despite 
the large improvements made over the past decades (Bauer et al., 2015), considerable sources of error remain 
in most of the models, in particular for rainfall (Boyle & Klein, 2010). Global NWP models, with a resolution 
of about 20 km, cannot explicitly resolve many of the relevant small-scale processes. These processes need to 
be included as sub-grid parameterizations, that is, they are written as functions of the explicitly resolved (grid-
scale) variables. These parameterizations of important processes involved in the generation of rainfall introduces 
biases and errors that can lead to an under- or overestimation of the magnitudes of heavy rainfall events (Wilcox 
& Donner, 2007).

Abstract The accurate prediction of rainfall, and in particular of the heaviest rainfall events, 
remains challenging for numerical weather prediction (NWP) models. This may be due to subgrid-scale 
parameterizations of processes that play a crucial role in the multi-scale dynamics generating rainfall, as well as 
the strongly intermittent nature and the highly skewed, non-Gaussian distribution of rainfall. Here we show that 
a U-Net-based deep neural network can learn heavy rainfall events from a NWP ensemble. A frequency-based 
weighting of the loss function is proposed to enable the learning of heavy rainfall events in the distributions' 
tails. We apply our framework in a post-processing step to correct for errors in the model-predicted rainfall. Our 
method yields a much more accurate representation of relative rainfall frequencies and improves the forecast 
skill of heavy rainfall events by factors ranging from two to above six, depending on the event magnitude.

Plain Language Summary Modeling rainfall is challenging because of its large variability in space 
and time, and its highly skewed distribution. Numerical weather prediction (NWP) models have to be simulated 
on discretized grids with finite resolution. Although important especially for the generation of rainfall, small-
scale processes can therefore not be resolved explicitly and must be paremeterized, that is, included as empirical 
functions of the resolved variables. This introduces model biases that can lead to an under- or overestimation of 
heavy rainfall events. Here we apply a deep neural network (DNN) to correct biases in the rainfall forecast of a 
NWP ensemble. The DNN is optimized with a loss function that includes weights to account for heavy rainfall 
events, and shows substantially improved performance in their prediction.
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Post-processing methods are commonly applied to the simulated model output to correct for such biases (Berg 
et al., 2012; Maraun, 2016; Wilks, 2011; Xu, 1999). Traditional approaches relate the biases to differences in 
long-term statistics of the simulated and observed variable. Among them, quantile mapping (QM) has become 
particularly popular for weather and climate model applications (Cannon et al., 2015; Déqué, 2007; Gudmunds-
son et al., 2012; Tong et al., 2021), as it allows to correct for biases over the entire distribution. While correcting 
the general long-term statistics, these methods, however, do not directly correct for spatial biases in synchronous 
events that are both modeled and observed.

Recent work has shown promising results by including data-driven machine learning methods including neural 
networks (LeCun et al., 2015), into the traditional NWP workflow. Well-suited applications of neural networks 
range from data-assimilation (Bocquet et al., 2020), purely data-driven and hybrid weather prediction and climate 
modeling (Brenowitz & Bretherton, 2019; Rasp et al., 2018; Rasp & Thuerey, 2021; Watt-Meyer et al., 2021; 
Weyn et al., 2020; Yuval & O’Gorman, 2020) to post-processing NWP output (Grönquist et al., 2021; Rasp & 
Lerch, 2018).

Here we correct the European Center for Medium-Range Weather Forecasting (ECMWF) (European Centre for 
Medium-Range Weather Forecasts, 2012) Integrated Forecast System (IFS) for biases in both general statistics 
and local events, by post-processing its rainfall output with a deep neural network (DNN).

When DNNs are tasked to infer a variable with large intermittency and a heavy-tailed distribution, such as rain-
fall, the optimization with the widely employed mean squared error (MSE) loss function often leads to a good 
approximate of the distribution's mean. By simply averaging over a sample batch, the loss is dominated by the 
most frequent values, while outliers in the tail of the target distribution only have a comparably small contribu-
tion. This can lead to blurring of the spatial patterns and a less accurate prediction of the high values in the tail, 
as the model focuses mainly on accurate predicting the most frequent values near the mean.

For rainfall, this problem has been addressed in different ways, for example, by translating the regression task 
into a classification problem (Agrawal et al., 2019; Sønderby et al., 2020), by using methods from image qual-
ity assessment in computer vision (Tran & Song, 2019), and by employing a weighted loss function (Franch 
et al., 2020; Shi et al., 2017). The latter being composed of a weighted MSE and mean absolute error (MAE), with 
a set of five discrete weights determined by binned rainfall intensities. We show that the U-Net DNN architecture 
is able to infer high values in the far right tail of the target distribution from remotely sensed rainfall data. Notably, 
we use NWP ensemble simulations as input features, which do not exhibit an accurate representation of heavy 
rainfall events. To capture the heavy rainfall events and the intermittent spatial patterns, we introduce a new loss 
function, which combines a continuously weighted MSE with a structural similarity measure.

2. Materials and Methods
2.1. Integrated Forecast System

Atmospheric variables simulated as reforecasts by a ten-member ensemble of the IFS of the model cycle CY41R2 
from the ECMWF (European Centre for Medium-Range Weather Forecasts, 2012) are taken as inputs of the 
DNN. The data is provided by the ECMWF at three-hourly time steps and 0.5° horizontal resolution. It is initial-
ized twice daily at 06 and 18 UTC with a 12 hr lead time and small perturbations in the initial conditions. In this 
work, the ensemble mean of the variables is used, since taking the individual ensemble members as inputs would 
not be computationally feasible at present.

2.2. Training Data

The input features of the DNN are the three-hourly accumulated rainfall and vertical velocities of the IFS ensem-
ble mean at the respective lead time. The forecast consists of three-hourly steps up to 12 hr lead time. The ensem-
ble mean is taken from eleven pressure levels: 200, 250, 300, 400, 500, 600, 700, 800, 900, 950, and 1,000 hPa. 
The vertical velocity is dynamically linked to rainfall through convective processes and large-scale updrafts of 
warm, moist air (Müller et al., 2020; O’Gorman & Schneider, 2009; Pfahl et al., 2017). The satellite-based Tropi-
cal Rainfall Measurement Mission (TRMM) 3B42 V7 product (Huffman et al., 2007) is used as a training ground 
truth at three-hourly temporal resolution. Following (Beck et al., 2019; Rasp et al., 2020) the spatial resolution is 
regridded to 0.5° using bilinear interpolation to match the IFS grid. The TRMM data is considered to have high 
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accuracy especially for heavy rainfall events (Boers et al., 2015). The geographic region of this study is the entire 
spatial coverage of the TRMM product, which ranges from 50° S to 50° N and 180° W to 180° W. Further, the 
June, July and August season is used and split into a training set of 8,096 samples (1998–2008), a validation set 
containing 2208 samples (2009–2011) to optimize the hyperparameters of the DNN model, and a test set with an 
equal number of samples for evaluation (2012–2014). Although the TRMM product is continued till present, a 
change of the satellites in 2014 has introduced significant biases, as shown in Figure S6 in Supporting Informa-
tion S1, and the period after 2014 was therefore excluded.

2.3. Definition of Heavy Rainfall Events

We define heavy rainfall events as those 3-hourly time steps for which the rainfall sums exceed a pre-defined 
threshold. This threshold is determined individually for each grid cell in terms of percentiles. The percentiles are 
computed from the entire TRMM time series from 1998 to 2014 of 3-hourly time steps with rainfall amounts 
above 0.1 [mm/3h]. This allows to determined the event thresholds in the most accurate way by leveraging all the 
available data, which is important for the heavy rainfall events considered in this study.

2.4. Neural Network Architecture

The DNN architecture is based on the U-Net (Ronneberger et al., 2015), a convolutional neural network that 
can capture multi-scale spatial patterns. The U-Net includes a combination of pooling operations for large-scale 
feature extraction and skip-connections to preserve small-scale, high-frequency information. The U-Net architec-
ture has shown good performance in weather prediction and post-processing tasks (Grönquist et al., 2021; Weyn 
et al., 2020). The model, shown in Figure 1, takes the standardized spatial fields of the atmospheric variables 
as input. The number of 12 input channels equals the number of variables times the corresponding number of 
pressure levels. The output layer has a single channel and spatial dimensions identical to the global rainfall grid. 
It applies a rectified linear unit (ReLU) to ensure non-negative output values. The number of weights per layer 
is reduced by half compared to the original model from (Ronneberger et al., 2015), and only two max pooling 
operations are found to be optimal for all the models in this study. This effectively reduces the model parameters 
size compared to the original U-Net. Adding more layers did not lead to improvements, as similarly found in 
(Grönquist et al., 2021; Weyn et al., 2020). The ADAM optimizer (Kingma & Ba, 2017) was employed for train-
ing the networks. We use a batch size of 64, an initial learning rate of 10 −4, and early stopping with a patience of 
20 epochs without improvement of the loss function on the validation data set to prevent overfitting. The learning 

Figure 1. Sketch of the U-Net-based deep neural network (DNN) architecture. IFS output for rainfall and vertical velocities is passed to the DNN, which produces 
rainfall output optimized to approximate corresponding spatial fields from a satellite-based, quasi-global high-resolution rainfall data set. The number of channels in the 
DNN is indicated inside each layer. The horizontal dimensions per pooling level are given on the left. The arrows show the operations applied after each layer. Green 
arrows indicate convolutional operations followed by a ReLU activation function. The skip-connections are shown as gray arrows, transferring the hidden state across 
the bottleneck. Orange and purple arrows indicate max pooling and transposed convolutions respectively. For a more detailed explanation of a similar sketch we refer 
the original U-Net publication (Ronneberger et al., 2015).
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rate is reduced during training using a scheduler. It decreases by a factor of 0.1 after a period of 10 epochs without 
improvement on the validation loss.

2.5. Loss Function

To improve the training regarding high values and intermittency, we propose the weighted loss function

𝐿𝐿𝜆𝜆 (𝑦𝑦𝑦 𝑦𝑦𝑦) =
𝜆𝜆

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

𝑤𝑤 (𝑦𝑦𝑖𝑖) (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑖𝑖)
2
+ (1 − 𝜆𝜆)MS-SSIM (𝑦𝑦𝑦 𝑦𝑦𝑦) 𝑦 (1)

where N is the number of training examples, w is a weight function and y and 𝐴𝐴 𝐴𝐴𝐴 are the target and prediction, 
respectively. The cost function is thus a convex sum of the weighted MSE and the so-called multi-scale structural 
similarity measure MS-SSIM (Wang et al., 2003) (named WMSE-MS-SSIM in the following), introducing an 
additional hyperparameter λ. The weights w are defined as

𝑤𝑤 (𝑦𝑦𝑖𝑖) = min
(

𝛼𝛼𝛼𝛼𝛽𝛽𝑦𝑦𝑖𝑖 , 1
)

, (2)

where α and β are hyperparameters. We optimize all the network hyperparameters on the validation set using 
random search with uniform distributions for each loss function. The intervals of the parameter distribution 
were adapted during the optimization procedure. For the loss in Equation 1, we find through manual evaluation 
α = 0.007, β = 0.048 and λ = 0.158 to be optimal with respect to continuous metrics such as root mean square 
error (RMSE) and mean error (ME) as well as categorical skill scores such as F1 and CSI. Since the rela-
tive frequency of 3-hourly rainfall events decreases approximately exponentially with increasing magnitude, the 
weights aim to account for the statistical imbalance. Ebert-Uphoff et al. (Ebert-Uphoff & Hilburn, 2020) also use 
an exponentially weighted MSE loss to emphasise less frequent and high values when training a DNN to estimate 
radar composite reflectivity from satellite imagery. While the weighted MSE accounts for the skewed rainfall 
frequency distribution, the MS-SSIM evaluates the mean, standard deviation and covariance in the predicted 
rainfall output and ground truth. This is done through an iterative comparison of luminance, contrast and structure 
on different scales by downsampling and low-pass filtering the image signals (see supporting information). It is 
highly sensitive to blurring in images, as opposed to the MSE loss term. This can be seen for example, in Figure 
2 in (Wang et al., 2004), showing a comparison of the sensitivity of MSE and MS-SSIM for different image 
distortions. Intuitively, one might hope that including the MS-SSIM will improve the spatial patterns of the DNN 
output, which is important for an accurate reproduction of heavy rainfall events. In our case, we indeed find that 
only optimizing with the weighted MSE leads to large biases, which can be removed through the addition of 
the MS-SSIM into the loss, with the role to improve the structural similarity. Further introducing bounds on the 
weights was crucial for a robust optimization of the network.

2.6. Baseline

We compare our method to two different baselines. A linear ridge regression (Hoerl & Kennard, 1970) with the 
IFS ensemble mean rainfall of a single grid-cell as input is used as the first baseline model. The regularization 
constant of 10 −3 was found to be optimal using the same validation method as for the DNNs. Including the verti-
cal velocity fields did not improve the performance of this baseline model. In addition, we use QM (Déqué, 2007) 
as a second baseline. The period from 1998 to 2011 is used to estimate the cumulative distribution functions 
(CDFs) of the simulated Fhist and observed Fobs data with 750 discretized quantiles, which are found to be optimal. 
The CDFs are then used to match the corresponding quantiles via

�̃�𝑝𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹 −1

𝑜𝑜𝑜𝑜𝑠𝑠
(𝐹𝐹ℎ𝑠𝑠𝑠𝑠𝑖𝑖 (𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠)) . (3)

Here, 𝐴𝐴 𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 and psim are the quantile-mapping corrected and simulated rainfall values, respectively.
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3. Results
3.1. Evaluation of the Continuous Forecast Skill of the Deep Learning Model

The evaluation results reported in the following are computed on the test data set. We first compare the histo-
grams of the relative frequencies of the 3-hourly rainfall values for the outputs from IFS, the different post-pro-
cessing models, and the ground truth given by the TRMM remote sensing product (Figures 2a and 2b). The 
histograms of grid-cell values are computed over the entire part of the globe covered by the TRMM data (50°S to 
50°N) and test set period. Training the DNN with an MSE or a MS-SSIM loss leads to a similar rainfall frequency 
distribution as the IFS ensemble mean and the linear ridge regression baseline, with over-representation of low 
rainfall frequencies and underestimation of the tail, as compared to the observational TRMM target. Training 
with the WMSE-MS-SSIM loss function in Equation 1, instead, enables the DNN to infer a distribution that is 
substantially closer to the target distribution. The frequencies of low rainfall rates are correctly reduced, while at 
the same time achieving a better statistical representation of the heavy rainfall events in the tail. The ridge regres-
sion shows the largest bias toward low rainfall rates, hence not improving the IFS output at all. Applying QM to 
the IFS output on the other hand leads to an accurate representation of rainfall frequencies over the entire range 
of values - also for low values, as expected by construction.

We assess the continuous forecast skill of the different models by computing the RMSE, ME and the complex-wave-
let structural similarity index (CW-SSIM; Sampat et  al.,  2009; see supporting information). The CW-SSIM 
allows a structural comparison of two images that is insensitive to small non-structural transformations such 
as rotation and translation, but sensitive to structural changes such as sharpness. Time steps with rainfall below 

Figure 2. Relative rainfall frequencies and categorical heavy rainfall event forecast scores for the different post-processing models compared to the IFS. (a) The 
Heidke Skill Score (HSS) for events above increasing percentile thresholds is shown for the IFS (blue), ridge regression (orange), DNN trained with the mean squared 
error loss (green), the MS-SSIM loss (purple), with the WMSE-MS-SSIM loss proposed here (red) and quantile mapping (brown). A HSS greater than zero implies 
an improvement over a random forecast, and HSS = 1 would imply a perfect forecast (see supporting information). (b) The relative improvement of the HSS for the 
different machine learning methods over the IFS mean, is shown in percentages. Histograms of three-hourly rainfall event magnitudes are shown on a linear y-axis (c) 
and a logarithmic y-axis (d) for Tropical Rainfall Measurement Mission (black), IFS (blue), ridge regression (orange), DNN trained with the MSE loss (green), the 
MS-SSIM loss (purple) and the WMSE-MS-SSIM loss (red). The bins were chosen to be evenly spaced with a width of 1 mm/day.
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a threshold of 0.1 [mm/3h] have been excluded before applying the error metrics. Rainfall on such low scales 
cannot be measured accurately by satellite-based remote sensing (Huffman et al., 2007). Hence, completely dry 
times are not represented in the error statistics. The results are summarized in Table 1 as averages of the absolute 
cell-wise metrics. Training the DNN with the MS-SSIM leads to the lowest RMSE, while the WMSE-MS-SSIM 
loss function shows a ME similar to the MS-SSIM, and the highest structural similarity. Processing the IFS 
output with the ridge regression does not lead to improvements. Omitting rainfall from the input features and thus 
purely focusing on the vertical wind velocities W is not substantially affecting the performance of the model. The 
WMSE-MS-SSIM loss function combined with the MS-SSIM leads to an improvement of the ME by almost 23% 
and an improvement of the CW-SSIM metric by more than 50%. Besides the metrics discussed above, rainfall 
maps produced by the IFS, DNN and TRMM are shown in Figure S1 in Supporting Information S1 for a quali-
tative comparison. While QM is not able to reduce the RMSE of the IFS, it strongly reduces the ME and leads to 
high similarity values, reflected in the CW-SSIM.

3.2. Evaluation of the Forecast Skill of the Deep Learning Model for Heavy Rainfall Events

To evaluate the forecast skill for heavy rainfall events, categorical statistics can be computed from the contin-
gency table containing the true positives and negatives, as well as the false positives and negatives (Table S1 in 
Supporting Information S1). A detailed definition of the events is given in Section 2.3 and the skill scores are 
defined in the Supporting Information. Table 2 summarizes the skill scores for events above the 95th percentile. 
The HSS, defined in the SI (Text S2 in Supporting Information S1), which is equal to zero for a random forecast 
and equal to one for a perfect forecast, is shown in Figure 2c for thresholds ranging from the 75th to the 99th 
percentile. Corresponding results for the other scores are given in the Figures S2 to S5 in Supporting Informa-
tion S1. The DNNs improve the scores compared to the IFS mean and ridge regression, in particular for events 
above the 90th and higher percentiles (Figure 2c). Quantile mapping results in HSS, F1 and CSI values higher 
than for the MSE-trained DNN, but stays below the other two networks. While QM leads to a high probability of 
detection, it also shows a large FAR score indicating a high number of false positives. The DNN trained using the 

Model Loss Input RMSE % ME % CW-SSIM %

IFS - - 1.457 - 0.175 - 0.359 -

Qantile map. - P 2.071 −42.1 0.149 14.9 0.511 42.3

Ridge Regr. MSE P 1.473 −1.1 0.209 −19.4 0.359 0

DNN MSE W 1.375 5.6 0.165 5.7 0.388 8.1

DNN MSE P, W 1.372 5.8 0.166 5.1 0.395 10

DNN MS-SSIM P, W 1.368 6.1 0.136 22.3 0.441 22.8

DNN WMSE-MS-SSIM P, W 1.439 1.2 0.135 22.9 0.545 51.8

Table 1 
Continuous Validation Statistics Are Given for the Integrated Forecast System Ensemble Mean, Quantile Mapping, Ridge 
Regression, and the DNNs Trained With Different Loss Functions and the Input Variables Rainfall (P) and Vertical Velocity 
(W) From the IFS

Model Loss HSS % F1 % CSI % POD % FAR %

IFS - 0.067 - 0.069 - 0.036 - 0.041 - 0.778 -

Quantile map. - 0.156 133 0.161 135 0.088 144.4 0.163 299 0.840 −8

Ridge Regr. MSE 0.040 −40 0.041 −41 0.021 −42 0.022 −46 0.775 0

DNN MSE 0.113 69 0.115 67 0.061 69 0.066 61 0.567 27

DNN MS-SSIM 0.174 160 0.177 157 0.097 169 0.115 180 0.622 20

DNN WMSE-MS-SSIM 0.192 187 0.195 183 0.108 200 0.139 239 0.673 13

Note. The percentage columns give the relative improvement over the IFS mean for each error metric and skill score.

Table 2 
Event-Based Forecast Skill Scores for Rainfall Events Above the 95th Percentile
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MS-SSIM alone as loss shows the highest scores below the 95th threshold. The proposed WMSE-MS-SSIM loss 
leads to significant improvements even above the 95th percentile (improving the IFS forecast by 192% in terms 
of the HSS) and yields the most skillfull forecast for events above the 99th percentile (improving the IFS forecast 
by more than 500% in terms of the HSS). Note that the FAR score is not as strongly improved as the other skills, 
indicating slightly more frequent false alarms when optimizing with the WMSE-MS-SSIM loss. We attribute this 
to the highly localized, intermittent nature of heavy rainfall events and emphasize that - in view of the results for 
the other error metrics - the increased number of false positives is more than balanced by the increased number of 
true positives. The DNN trained with the WMSE-MS-SSIM loss introduced above leads to substantial improve-
ments also for the spatial patterns of heavy rainfall events. In particular for regions with stronger heavy rainfall 
events (Figure 3) the skill improvement increases. This is also visible in Figure 4 showing longitudinal averages 
of the 95th rainfall percentile and the HSS scores of the IFS and the DNNs trained with MSE and the WMSE-
MS-SSIM loss function. There remain regions, however, where the HSS is not substantially improved. These are 

Figure 3. Spatial distribution of the 95th rainfall percentile and Heidke Skill Score (HSS) for events above the 95th percentile. (a) The 95th percentile of the rainfall 
distribution at each grid cell of the Tropical Rainfall Measurement Mission data set. (b) The spatially resolved HSS for the IFS mean. (c) The spatially resolved HSS 
for the deep neural network post-processed forecast, trained with the proposed WMSE-MS-SSIM loss. Hatched areas indicate grid-cells where the HSS could not be 
evaluated. This is due to the low number of wet times in these locations, so that the percentile thresholds could not be determined.
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mainly given by areas for which the IFS itself already has particularly low forecast skill (Figure S7 in Supporting 
Information S1), including a large fraction of the land masses between 30°S and 30°N. The rainfall frequencies 
are still improved in this region (Figure S8 in Supporting Information S1), although less strongly than over the 
entire global domain.

4. Discussion
We introduced a DNN to model heavy rainfall from short-range numerical weather ensemble forecasts. To 
address the strong statistical imbalance of the training data, a loss function is introduced that combines a weighted 
MSE with a structural similarity measure (WMSE-MS-SSIM). The proposed WMSE-MS-SSIM loss function is 
found to substantially improve the training with respect to high values compared to using the MSE and MS-SSIM 
individually, which are two commonly used loss functions. For comparison, we show that post-processing the 
IFS mean with a ridge regression model does not lead to any improvements. This motivates the importance of 
a non-linear DNN architecture such as the U-Net. Moreover, our results suggest that the U-Net architecture is 
indeed capable of capturing the multi-scale spatial structure of rainfall accurately.

The WMSE-MS-SSIM loss substantially improves relative rainfall frequencies in the DNN output, the ME and 
CW-SSIM of overall rainfall fields, as well as categorical skill scores for heavy rainfall events above the 90th and 
higher percentile, with strongly increasing relative rate of improvement for higher thresholds. As seen in Figure 3 
and Figure 4 the skill improvement follows largely regions with higher rainfall percentiles. A possible explanation 
could be that the WMSE-MS-SSIM loss is particularly successful at locations with high rainfall values. This is 
supported be the seemingly lower correlation of the MSE-trained DNN's HSS with the rainfall percentiles as 
shown in Figure 4. In regions, where the IFS predictions are not much better than a random forecast (Heidke skill 
score close to 0), our DNN-based post-processing that uses these IFS prediction as input is not be able to improve 
these IFS forecasts significantly. A direction for future research could thus be the improvement of our method in 
tropical regions where the skill is lower than in higher latitudes.

As noted by several authors, a single metric that captures all characteristics of a forecast does not exist, which 
renders the evaluation of purely data-driven weather forecasts particularly challenging (Ebert-Uphoff & 
Hilburn,  2020; Rasp & Thuerey,  2021; Ravuri et  al.,  2021). In particular, physical consistency, that is often 
assumed in established metrics, is not always guaranteed in neural network-based predictions. In this study, the 
DNN performance was manually evaluated using several metrics, both continuous and categorical. We believe 
that the development of more suitable and comprehensive evaluation metrics, or combinations thereof, will be an 
important direction of future research. It would enable a fully automatic hyperparameter tuning with respect to 
the various forecast qualities, which is, however, outside the scope of this study.

Figure 4. Zonal mean of the Heidke Skill Score for events above the 95th percentile for the Integrated Forecast System mean 
(blue), the deep neural network (DNNs) trained with the mean squared error (MSE) (green) and WMSE-MS-SSIM loss (red). 
The zonal mean of the Tropical Rainfall Measurement Mission (TRMM) 95th rainfall percentiles are shown in black. Note. 
That the averaged HSS of the DNN (WMSE-MS-SSIM) is approximately proportional to the 95th rainfall percentiles of 
TRMM.
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Taking the mean of the IFS ensemble is expected to damp the high rainfall values in the forecast. Hence, the 
results of the IFS shown here do not represent the skill of single ensemble members to forecast heavy rainfall 
events, which do not show this damping. The comparison of the bias correction methods presented in this study 
to the IFS ensemble mean therefore aim to show the respective relative improvements. Nevertheless, our results 
demonstrate the ability of the proposed DNN architecture to learn high rainfall values that are not produced by the 
existing precipitation parameterization of the IFS model, and to substantially improve their prediction.

The satellite-based TRMM rainfall data is used in this study as a ground truth. However, since different obser-
vational rainfall datasets usually agree only on much larger spatial and time scales than considered in this study, 
this should not be taken literally. The high resolution chosen for this study is important to capture the intermit-
tent variability of heavy rainfall events. Since our method can be retrained in a flexible manner, it is possible to 
re-calibrate it to other observational data set as well. This allows for a continuous update of the DNN once more 
accurate observational datasets become available.

Interestingly, the error statistics did not change significantly when rainfall was excluded and only the vertical 
wind speed were considered as input features. This indicates that the DNN can learn a good representation of 
rainfall and especially its high values from the vertical velocity alone. This is also in agreement with previous 
works (Müller et al., 2020; O’Gorman & Schneider, 2009) on the link of the vertical velocity to heavy rainfall 
events.

An improved structural similarity in terms of the CW-SSIM is achieved when using the WMSE-MS-SSIM loss, 
compared to using the MS-SSIM alone as loss function. Adding the weighted MSE to the MS-SSIM loss might 
not be expected to increase the overall structural similarity of the DNN output. We speculate that the increased 
structural similarity we found might be related to the DNNs ability to improve the standard deviation that is 
measured in the CW-SSIM and to perform a transformation of the rainfall distribution similar to the QM method. 
Both our DNN and QM show accurate frequency distributions as well as relatively high structural similarity 
compared to the other models. Nevertheless, when trained using the WMSE-MS-SSIM loss, the forecast skill 
of our DNN-based post processing outperforms all other methods including QM, for almost all continuous and 
event-based validation metrics (see Tables 1 and 2).

A qualitative comparison of the DNN output with the TRMM target (Figure S1 in Supporting Information S1) 
shows that there remain small-scale features that are not captured by our method. This lack of high-frequency 
details in the output can be attributed to the deterministic nature of our neural network model. Here, generative 
models that learn stochastic functions and are therefore able to produce realistic small-scale features might offer a 
direction toward further improvements. However, producing stochastic small-scale features does not necessarily 
lead to a better forecast skill of the model, in particular for high rainfall events (Ravuri et al., 2021). We therefore 
believe that the results presented here could also be relevant for such stochastic approaches.

Although the considered forecast has a high temporal resolution of three hours, the forecast lead time of up to 
twelve hours is still comparably short. With applications to disaster prevention in mind, an extension of the study 
to longer forecast lead times will be an important direction for future research.

With ongoing global warming, the characteristics of heavy rainfall events are expected to change. To account for 
this non-stationarity, the training of the proposed method can in principle be continued over time when new train-
ing data becomes available. Further, making use of the entire IFS ensemble will allow to incorporate uncertainties 
into the framework, which are essential for operational forecasting of heavy rainfall events.

Data Availability Statement
Data pre-processing was done using the Climate Data Operator (CDO) software (Schulzweida, 2019) for regrid-
ding as well as the Xarray 0.15.1 package. The Pytroch 1.7.0 (Paszke et al., 2019) source code for training and data 
processing will be available at (https://zenodo.org/badge/latestdoi/457716105) on publication. The QM method 
was implemented using the Xclim 0.25.0 Python package (Logan et al., 2021). The IFS training data is avail-
able for download at the Copernicus Climate Change Service (C3S; Hersbach et al., 2020; https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels). The TRMM (TMPA) data can be obtained at 
the Goddard Earth Sciences Data and Information Services Center (GES DISC; Leptoukh, 2005; https://disc.
gsfc.nasa.gov/datasets/TRMM_3B42_7/summary).
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Text S1. The root mean square error (RMSE) and mean error (ME) are defined as,

RMSE =

√√√√ 1

N

N∑

i=1

(ŷi − yi)2, (1)

ME =
1

N

N∑

i=1

(ŷi − yi), (2)

where N is the number of training examples, y is the TRMM target and ŷ is the modelled

rainfall output. The multi-scale structural similarity measure (MS-SSIM)(Wang et al.,

2003) quantifies the structural similarity between two images, in our case two spatial rain-

fall maps, as sets of N grid-cells, i.e. y = {yi|i = 1, 2, ..., N} and ŷ = {ŷi|i = 1, 2, ..., N}.

The MS-SSIM then iteratively computes three measures, for luminance l(y, ŷ), contrast

c(y, ŷ) and structure s(y, ŷ) by successively downsampling and low-pass filtering the im-

age signals. The three measures are defined as

l(y, ŷ) =
2µyµŷ + C1

µ2
y + µ2

ŷ + C1

, (3)

c(y, ŷ) =
2σyσŷ + C2

σ2
y + σ2

ŷ + C2

, (4)

s(y, ŷ) =
σyŷ + C3

σyσŷ + C3

, (5)

where µy is the mean, σy the standard deviation of y and σy,ŷ the covariance of y and

ŷ. The small constants C1, C2, and C3 are inlcuded to improve the stability and are

computed via

C1 = (K1L)2, C2 = (K2L)2 and C3 = C2/2, (6)

where L = 255, K1 = 0.01 and K2 = 0.03. The MS-SSIM can then be written as,

MS-SSIM(y, ŷ) = [lM(y, ŷ)]αM ·
M∏

j=1

[cj(y, ŷ)]βj · [sj(y, ŷ)]γj , (7)

where M denotes the number downsampling iterations. The exponents αM , βj and γj can

be adjusted to give different weights to the measures, but are set to αj = βj = γj = 1.
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The complex wavelet structural similarity (CW-SSIM)(Sampat et al., 2009), extends the

idea of structural similarity to the complex wavelet domain. The motivation behind it is

that structural changes between two images, such as small rotations or translations will

lead to a constant relative phase shift in the coefficients of a complex wavelet transform.

Therefore, the CW-SSIM is constructed in such a way that it is insensitive to relative

phase shifts and magnitude distortions. On the other hand it is sensitive to non-structural

transformations in images, such as changes in sharpness, that will lead to phase shifts in

the coefficients. The CW-SSIM is defined as

CW-SSIM(cy, cŷ) =
2|∑N

i=1 cy,ic
∗
ŷ,i|+ C

∑N
i=1 |cy,i|2 +

∑N
i=1 |cŷ,i|2 + C

, (8)

where cy = {cy,i|i = 1, 2, ..., N} and cŷ = {cŷ,i|i = 1, 2, ..., N} are two sets of complex

wavelet coefficients obtained at the same spatial location and wavelet subbands of the two

images being compared. The asterix denotes the complex conjugate and C = 0.01 is a

small constant for stability.

Text S2. We quantify the forecast skill of extreme events with categorical skill scores

commonly used in meteorology and machine learning, such as the critical success index

(CSI), probability of detection (POD), false alarm ratio (FAR), F1 and Heidke skill score

(HSS). These skill scores can be computed from the contingency table (see Table S1).

The table classifies event forecast outcomes into true positives (TP), false positives (FP),

false negatives (FN) and true negatives (TN). Based on these categories, the skill scores

can be defined as

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,
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F1 = 2
Recall Precision

Recall + Precision
,

HSS =
2(TP TN− FP FN)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
,

CSI =
TP

TP + FN + FP
,

POD = Recall,

FAR =
FP

FP + TP
.

The recall score computes the proportion of relevant events that were classified correctly

and precision gives the fraction of positive classifications that were correct. The F1 score

combines precision and recall as a harmonic mean and is commonly used in machine

learning to evaluate predictions on strongly imbalanced data. The Heidke Skill Score

(HSS) evaluates the accuracy of event predictions, e.g. rainfall extremes, relative to a

random forecast and can also be used for strongly imbalanced classes. The critical success

(CSI) relates the accuracy of event predictions to the actually observed events, without

accounting for correct negative predictions. The probability of detection (POD) and

false alarm ratio (FAR) scores should be assessed together, where the former is defined

identically to the recall score. Since POD ignores false alarms, the false alarms ratio

(FAR) can be used to evaluate these.
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Figure S1. Spatial rainfall maps at three different time instances of the IFS, the DNN

and TRMM test set data are shown for a qualitative comparison.
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Figure S2. The critical success index (CSI) for rainfall events above the 75th percentile

threshold.
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Figure S3. The probability of detection (POD) of rainfall events above the 75th

percentile threshold.
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Figure S4. The false alarm ratio (FAR) of rainfall events above the 75th percentile

threshold.
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Figure S5. The F1 score for rainfall events above the 75th percentile threshold.
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Figure S6. The histograms of grid-cell values show here are computed over the entire

part of the globe covered by the TRMM data (50◦S to 50◦N) and for single years. The

histograms of years before 2015 are colored in red and for years thereafter in blue.
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Figure S7. Intersection of the Heidke skill score below 0.01 of the IFS and the DNN

(WMSE-MS-SSIM) forecasts, shown in grey. Land area is hatched for better distinction.

In the highlighted regions, the DNN does not show significant improvements over the

relatively low IFS forecast skill. In the tropics (30◦S to 30◦N) this includes a large fraction

of the land area, e.g. parts of South America, Africa and Australia.
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Figure S8. Histograms of three-hourly rainfall event magnitudes over land in the tropics

(30◦S to 30◦N) are shown on a a logarithmic y-axis for TRMM (black), IFS (blue), ridge

regression (orange), DNN trained with the MSE loss (green), the MS-SSIM loss (purple)

and the WMSE-MS-SSIM loss (red)
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Table S1. Contingency table of forecast outcomes for binary events.

Observed Not observed

Forecasted True positive (TP) False positive (FP)

Not forecasted False negative (FN) True negative (TN)

February 9, 2022, 1:32pm



2. Post-processing rainfall forecasts with deep neural networks

52



3 Generative models for improving
precipitation fields from climate
simulations

Based on

Physically constrained generative adversarial networks
for improving precipitation fields from

Earth system models

Philipp Hess, Markus Drüke, Stefan Petri,
Felix M. Strnad and Niklas Boers, 2022.

Nature Machine Intelligence, 4(10), 828-839.

Copyright The article published in Nature Machine Intelligence is published
closed-access, with Springer Nature or its licensor holding exclusive rights to
this article under a publishing agreement with the authors.

Contribution PH and NB conceived the research and designed the study
with input from all authors. PH performed the data processing, neural net-
work training, and analysis. MD conducted the CM2Mc-LPJmL experiments.
All authors interpreted and discussed the results. PH wrote the manuscript
with input from all authors.

and

Deep Learning for bias-correcting comprehensive
high-resolution Earth system models.

Philipp Hess, Stefan Lange and Niklas Boers, 2022.
Submitted to Proceedings of the National Academy of Sciences.

53



3. Generative models for improving precipitation fields from climate simulations

Copyright The study has not been published yet. A preprint under the Cre-
ative Commons Attribution-NonCommercial-NoDerivatives license is available
on arXiv.

Contribution PH and NB conceived the research and designed the study
with input from SL. PH performed the data processing, neural network
training and analysis. All authors interpreted and discussed the results. PH
wrote the manuscript with input from SL and NB.

Summary To simulate the Earth system over decades to millennia, numer-
ical Earth system models have a relatively coarse horizontal resolution of
around 25−200km and thus require parameterizations of small-scale pro-
cesses that cannot be resolved explicitly. These approximations and limited
model complexity lead to biases in temporal distributions and spatial patterns,
the latter often being overly smooth compared to observations.

Impact models are developed and calibrated with observations-based data
products but use the Earth system simulation output as input for future
climate scenarios. This can lead to inconsistencies since the impact model is
forced with input data that has not been calibrated.

Therefore, bias-correction methods aim to close this gap by correcting
systematic errors in the simulations using historical observations. Established
methods typically based on quantile mapping (QM) (Cannon et al., 2015)
correct the local distributions in time for each grid cell individually.

The two studies P2 and P3, in this chapter tackle the bias correction
problem as an unpaired image-to-image translation task, or “style transfer”,
where image characteristics (such as of paintings, photos, etc.) are translated
onto another image without altering the overall content. Using convolutional
neural networks that can leverage spatial correlations for image transla-
tion, spatial patterns can be corrected. This is not possible with established
QM-based methods, which only transform statistics locally at each grid cell
without any spatial context.

The studies show how cycle-consistent generative adversarial networks
(CycleGAN) (Zhu et al., 2017) can be applied as a novel bias-correction
method for ESM simulations. The first study uses efficient low-resolution
simulations of the CM2Mc–LPJmL ESM (Drüke et al., 2021) with reduced
model complexity. It demonstrates how both temporal distribution and spa-
tial patterns can be corrected, thus creating realistic climate simulations of
precipitation that are computationally very efficient. It further investigates
the generalization of the GAN to out-of-sample tasks, i.e., the extrapolation
to predictions of climate states that are not seen during the network training.
We introduce an architecture constraint that preserves the global ESM pre-
cipitation sum by rescaling it. This enables the GAN to capture the transient
trends expected in an extreme global warming scenario. Additionally, we ap-
ply an interpretability method (Smilkov et al., 2017) to the GAN architecture.
Using the gradients of the discriminator network, we find that the model has
learned a physically consistent distinction between generated and real-world
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3. Generative models for improving precipitation fields from climate simulations

precipitation fields. The second study extends the approach to high-resolution
and comprehensive ESM simulations and evaluates the method against the
state-of-the-art bias-correction framework ISIMIP3BASD (Lange, 2019). It
shows that even the most advanced ESMs can still be significantly improved
with the GAN post-processing, particularly the characteristic intermittency
of spatial patterns. The strong ISIMIP3BASD baseline is outperformed on
the tasks of improving spatial patterns and compares similarly on temporal
distributions. It can be further combined with our method to achieve the
best overall results.

3.1 P2 | Physically constrained generative adver-
sarial networks for improving precipitation fields
from Earth system models

Please turn to the next page.
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Key Points:

• A generative adversarial network improves both distributions and spatial structure of
the precipitation output of a numerical Earth system model.

• Constraining its architecture enables the network to generalize to transient future
climates not seen during training.

• A gradient-based interpretability method shows that the network has learned to iden-
tify geographical regions with strong model biases.
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Abstract
Precipitation results from complex processes across many scales, making its accurate simu-
lation in Earth system models (ESMs) challenging. Existing post-processing methods can
improve ESM simulations locally, but cannot correct errors in modelled spatial patterns.
Here we propose a framework based on physically constrained generative adversarial net-
works (GANs) to improve local distributions and spatial structure simultaneously. We apply
our approach to the computationally efficient ESM CM2Mc-LPJmL. Our method outper-
forms existing ones in correcting local distributions, and leads to strongly improved spatial
patterns especially regarding the intermittency of daily precipitation. Notably, a double-
peaked Intertropical Convergence Zone, a common problem in ESMs, is removed. Enforcing
a physical constraint to preserve global precipitation sums, the GAN can generalize to fu-
ture climate scenarios unseen during training. Feature attribution shows that the GAN
identifies regions where the ESM exhibits strong biases. Our method constitutes a general
framework for correcting ESM variables and enables realistic simulations at a fraction of
the computational costs.

1 Introduction

Numerical Earth system models (ESMs) simulate the dynamics of Earth system com-
ponents such as the atmosphere, oceans, vegetation, and polar ice-sheets, as well as their
interactions, by solving the relevant partial differential equations on discretized spatial grids.
The grid resolution is limited by computational costs. For state-of-the-art comprehensive
ESMs, integrating the differential equations requires parallelized runs on thousands of CPU
cores. The finite resolution requires processes on unresolved spatial scales to be parameter-
ized, i.e., to be written as functions of the resolved variables. This introduces a source for
potential errors in ESMs. It is generally expected that the accuracy of ESM simulations
increases with increasing resolution of the spatial grid on which the model is integrated
(Palmer & Stevens, 2019).

A higher grid resolution, however, comes at even higher computational cost, and trade-
offs are therefore typically necessary. The time current state-of-the-art ESMs take to make
projections for the decadal to centennial time scales relevant in the context of anthropogenic
climate change render it challenging to simulate ensembles with sufficient size for a thor-
ough uncertainty quantification. Similarly, the high computational cost even for simulating
single trajectories prevent more systematic parameter calibration. Complementary to high-
resolution but computationally demanding ESMs, efficient model setups that are still as
accurate as possible are therefore also needed.

The generation of precipitation involves a wide range of physical processes, from mi-
croscopic interactions of droplets in clouds over atmospheric convection to synoptic-scale
weather systems. The resulting complex dynamics needs to be captured accurately to
model the high variability and intermittency of precipitation in both space and time. A
reduced resolution and limited number of explicitly resolved processes in ESMs therefore
leads to errors that can strongly affect the representation of sub-grid scale processes such
as precipitation (Wilcox & Donner, 2007; Boyle & Klein, 2010; IPCC, 2021).

These errors can be addressed in a local or point-wise manner by applying post-
processing methods to the individual simulated time series. Traditionally, this is done by
relating the statistics of a historical model simulation with observations. Quantile mapping
(QM), in particular, has become a popular method for improving the model output statis-
tics of precipitation (Déqué, 2007; Tong et al., 2021; Gudmundsson et al., 2012; Cannon et
al., 2015). It approximates a mapping from the estimated cumulative distribution function
of the modelled to the observed quantity over a historical period. The inferred mapping
can then be applied to correct new data. QM gives good results in correcting temporal
distributions locally, i.e., errors in the distribution at a given grid cell. QM is, however,
not able to improve the spatial structure of the modelled output, such as its intermittency
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especially for the case of precipitation. For this task a spatial context larger than the single
grid cells used to compute the distributions in QM is required. It should be emphasized
that even a (almost) perfect reproduction of the distributions at each grid cell would by
no means guarantee that also the spatial patterns are reproduced accurately. In particular,
the patterns may still be too smooth and lack the spatial intermittency that is typical for
realistic precipitation fields.

Machine learning (ML) methods from image-to-image translation in computer vision
offer a new approach to improve the structure of ESM output in the spatial dimension.
Recently, artificial neural networks have been applied successfully to post-processing tasks
of numerical weather prediction and climate models (Rasp & Lerch, 2018; Grönquist et al.,
2021; François et al., 2021). In weather forecasting, the trajectories of the observed state
and the numerical weather model starting at an initial condition taken from observations
can be directly and quantitatively compared. This allows to train discriminative ML models
such as deep neural networks (LeCun et al., 2015) to directly minimize a pixel-wise distance
measure as a regression task.

For ESMs tasked with climate projections, such a pixel-wise ground truth is not avail-
able, rendering a direct comparison between observed and modelled trajectories impossible.
In particular, ML models cannot be trained via minimizing differences between simulations
and corresponding observations in this case. The goal of ESMs is indeed to produce long-
term summary statistics rather than to agree with observations on short time scales. In
this context, generative adversarial networks (GANs) (Goodfellow et al., 2014; Mirza &
Osindero, 2014; Isola et al., 2017) have emerged as suitable ML models. GANs learn to
approximate a target distribution from which realistic samples can be drawn. Crucially,
recent developments have shown successful application of cycle-consistent GANs (Zhu et
al., 2017; Yi et al., 2017; Hoffman et al., 2018) to training tasks that do not require pairwise
training samples. This suggests the suitability of cycle-consistent GANs for post-processing
Earth system model simulations, for which no direct observational counterpart exists. By
learning stochastic functions, GANs can also model the small-scale variability that cannot
be predicted deterministically. This enables them to overcome the problem of blurring that
is often found in neural network predictions (Ravuri et al., 2021). Based on these proper-
ties, GANs have been proposed for sub-grid scale parameterizations (Gagne et al., 2020)
and statistical downscaling of numerical weather forecasts (Price & Rasp, 2022; L. Harris et
al., 2022). Employing GANs in a post-processing task of a regional climate model, François
et al. (2021) found a comparable bias correction skill of their GAN compared to quantile
mapping.

Training ML algorithms typically requires the training data and separate test sets for
predictions to be independent and identically distributed. When applied to historical ob-
servations and transient ESM time series with changing forcing, however, the underlying
distributions are non-stationary, i.e., training and test distributions are different. In par-
ticular in the context of anthropogenic climate change, this has made the application of
ML methods challenging. To generalize to such out-of-sample predictions, physics-informed
or constrained neural networks have been proposed. These methods incorporate physical
knowledge into the neural network through penalties in the loss function (Raissi et al., 2019),
or include additional layers (Beucler et al., 2021) in the architecture.

Here, we introduce a physically constrained GAN (see Fig. 1 and Methods for details) to
improve the precipitation output of ESMs, and demonstrate its performance by applying it to
the CM2Mc-LPJmL model (Drüke, von Bloh, et al., 2021). We frame the post-processing as
an image-to-image translation task with unpaired training samples. The first image domain
corresponds to the ESM simulations, and the second to daily precipitation fields from the
ERA5 reanalysis “ground truth” (Hersbach et al., 2020), spanning the period between 1950
and 2014. The translation is performed with a CycleGAN (Zhu et al., 2017), consisting
of two generator-discriminator pairs, that learn bijective mappings between the ESM and
reanalysis domains, with consistent translation cycles. We add a physical constraint as an
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additional layer to the generator network architecture after training in order to preserve the
global precipitation sum (see Methods).

We compare our results to QM-based post-processing as well as the output of a consider-
ably more complex and higher-resolution, state-of-the-art ESM from Phase 6 of the Coupled
Model Intercomparison Project (CMIP6), namely the GFDL-ESM4 (Krasting et al., 2018)
model. Further, the ability of the GAN to generalize to transient future climate scenarios is
evaluated for physically constrained and unconstrained GAN architectures. When applying
neural network models to future projections that cannot (yet) be verified, transparency of
the method becomes important. Therefore, we examine whether the GAN’s feature attribu-
tion is physically reasonable, using the SmoothGrad (Smilkov et al., 2017) interpretability
method (Methods). Moreover, the quantitative interpretation of the GAN results allows us
to identify regions with particularly large biases of the underlying process-based ESM, which
will in turn be helpful for improving its representation of relevant physical mechanisms. For
a more detailed description of the methods applied in this study we refer to the Methods
section below.

   ESM
 dataset

Discriminator
 

Discriminator

  

Earth system model Reanalysis

  
   Sample

                  

Transformed
    sample

 

Generator
 

Generator 

Transformed
    sample 

   Sample

Loss Loss

real / fakereal / fake

  ERA5
 dataset

Figure 1. Schematic of the CycleGAN model, showing the two generator-discriminator pairs

that learn to translate samples from the ESM simulations to the ERA5 reanalysis (grey) and vice

versa (yellow). Training the two generators to learn inverse mappings of each other allows to enforce

cycle-consistency in the translation of the unpaired samples, i.e. x→ G(x)→ F (G(x))→ x̃ ≈ x and

vice versa for y. As described by Zhu et al. (2017), the cycle-consistency loss (Eq. 5) is motivated

from natural language translation, where one should arrive at the same sentence after translating

it into another language and back. In the training context, this has been found to improve the

stability and to prevent typical problems in adversarial networks, such as mode collapse, where

every input would be mapped to the same output image (Zhu et al., 2017).
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2 Results

2.1 Correcting temporal distributions

When comparing the spatial precipitation fields from CM2Mc-LPJmL with the ERA5
data, large biases are evident, especially in the tropics, where a pronounced double-peaked
Intertropical Convergence Zone of CM2Mc-LPJmL can be seen (Fig. 2a). The more complex
and higher-resolution – yet computationally much more expensive – GFDL-ESM4 model
exhibits a similar spatial pattern of bias, although with a reduced southern peak (Fig. 2b).

We evaluate our method against quantile mapping, which a state-of-the-art method
to correct temporal distributions (Fig. 2c). The GAN shows a strongly improved skill
overall, and especially in correcting the double-peaked ITCZ (Fig. 2d), compared to quantile
mapping, but also compared to GFDL-ESM4 model.

This is also summarized in the averaged absolute value of the mean error (ME) shown in
the spatial plots (Table 1). Here, the GAN shows the strongest error reduction compared to
QM and GFDL-ESM4, reducing the error of CM2Mc-LPJmL by 75% for annual and between
72% to 64% for seasonal time series. We include the results of two additional ESMs from
CMIP6, the MPI-ESM1-2-HR and the CESM2 model, for comparison with GFDL-ESM4 in
the SI (Table S1). The ME of the MPI-ESM1-2-HR model is higher than for GFDL-ESM4
while the CESM2 shows lower bias. The average ME of CEMS2, however, remains higher
than our GAN-based post-processed CMCMc-LPJmL model.

In addition to the mean error we also evaluate the difference in the 95th percentile of
the precipitation above a threshold of 0.5 [mm/day] per grid cell. The spatial plots are
shown in Figs. S5-S9 and summarized as absolute averages in Table S2. Again, the GAN
outperforms the other baseline methods for annual and seasonal time series, reducing biases
between 59.76 and 49.11%.

Also from latitude profiles it can be quantitatively inferred that the GAN outperforms
quantile mapping especially regarding the correction of the double-peaked ITCZ, and also
that the GAN-processed fields is closer to the ERA5 data than the GFDL-ESM4 simulations,
especially in the tropics (Fig. 2e).

Regarding the globally averaged temporal distributions, we infer an under-representation
of heavy precipitation values in CM2Mc-LPJmL and an over-representation in GFDL-ESM4.
QM and our GAN-based method perform similarly well in correcting the distributions over
the entire range of precipitation values (Fig. 2f).

Table 1. The averaged absolute value of the grid-cell-wise mean error (ME) for the raw CM2Mc-

LPJmL and GFDL-ESM4 models, as well as for the QM- and GAN-based post-processing, using the

CM2Mc-LPJmL output as input. The bias reduction relative to the raw CMCMc-LPJmL model

is given in percentage. Note that the GAN shows the largest reduction of the absolute ME in all

cases, with more than 75% improvement relative to the raw CM2Mc-LPJmL for the annual fields.

Season CM2Mc-LPJmL GFDL-ESM4 % QM % GAN %

Annual 0.769 0.448 41.7 0.218 71.7 0.191 75.2
DJF 0.915 0.544 40.5 0.664 27.4 0.256 72
MAM 0.886 0.603 31.9 0.567 36.4 0.268 69.8
JJA 0.963 0.589 38.8 0.704 26.9 0.270 72
SON 0.823 0.508 38.3 0.552 32.9 0.294 64
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Figure 2. Comparison of global mean error maps over the JJA season, long-term precipitation

statistics based on latitude-profiles and relative frequency histograms. Mean errors of (a) CM2Mc-

LPJmL, (b) GFDL-ESM4, (c) QM-based and (d) GAN-based post-processing methods applied to

the CM2Mc-LPJmL output. The mean error is computed with respect to the ERA5 reanalysis data.

The largest errors are in the tropics, where also the largest mean precipitation values are observed

(see panel (e)). The GAN shows the largest error reduction, strongly reducing the double-peaked

ITCZ in the tropics. Quantile mapping, on the other hand, is not able to remove the ITCZ bias.

See Figs. S1–S4 for corresponding figures for annual time series, as well as the other three seasons.

(e) Precipitation rates averaged over time and longitudes and relative frequency histograms (f)

are shown for ERA5 data (black), CM2Mc-LPJmL (red), GFDL-ESM4 (blue), quantile mapping

(magenta) and the GAN (cyan). The GAN applied to the CM2Mc-LPJmL output corrects the

double-peaked ITCZ as well as the histogram over the entire range of precipitation rates.
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2.2 Correcting spatial patterns

We continue with assessing the ability of our correction method to improve the spatial
structure of the ESM precipitation output. Most importantly, we investigate to which degree
the characteristic high-frequency spatial variability of precipitation which is not represented
well in the CM2Mc-LPJmL model output, can be improved (see Fig. 3 for some example
fields). To quantify this spatial intermittency in the precipitation fields, we compute the
radially averaged power spectral density (PSD) following (D. Harris et al., 2001; Sinclair
& Pegram, 2005; Ravuri et al., 2021). First, the PSD is computed for each daily spatial
precipitation field and then the mean is taken over the resulting spectrograms, shown in
Fig. 3e. While the CM2Mc-LPJmL precipitation shows a reduced density at high frequencies
(i.e., short wavelengths below 1024 km), the GFDL-ESM4 model exhibits an unrealistically
high PSD in the same range. Quantile mapping shifts the CM2Mc-LPJmL spectrum towards
ERA5, but results in an overshoot in the mid-range and long wavelengths, while the higher
frequencies remain underestimated. Only the GAN is able to produce a power spectrum
that is consistent with ERA5, especially for short wavelengths, i.e., the high-frequency range
that is crucial for precipitation.

2.3 Non-stationary climate scenario

Climate projections under a changing radiative forcing induced by anthropogenic green-
house gas release constitute an out-of-sample problem: The conditions for which predictions
shall be made are different from the conditions for which historical data are available for
training. Methods for post-processing or correcting the output of ESMs tasked with such
projections hence need to be able to generalize to states that deviate from the historical
period, where observations are available. Here, we test our GAN approach for the CMIP6
SSP5-8.5 scenario until the end of the 21st century. The SSP5-8.5 “business as usual”
scenario represents an extreme climate scenario in CMIP6, with the strongest increase in
CO2. This scenario has been chosen to test how well the GAN model can capture the
non-stationarity in this extreme case.

The CM2Mc-LPJmL and GFDL-ESM4 models both show monotonically increasing
global mean precipitation with similar trends over the current century (Fig. 4a), which is in
agreement with other studies (IPCC, 2021). In contrast, the unconstrained GAN, trained
on the historical period, does – as expected – not exhibit an increase in average global
precipitation, since it is by itself not able to generalize to the changing boundary conditions
given by higher greenhouse gas concentrations and temperatures.

In the tropics (23◦ S to 23◦ N), GFDL-ESM4 remains overall lower in mean precipitation
than CM2Mc-LPJmL, while also exhibiting a much less pronounced increase over the entire
period (Fig. 4b). For the temperate zones from 40◦ N/S to 60◦ N/S, the GFDL-ESM4
model shows an overall higher mean precipitation with a slightly stronger positive trend
than CM2Mc-LPJmL (Fig. 4c).

By construction of the constraint introduced in Eq. 8, the GAN-processed precipitation
is identical to the increasing global average of the CM2Mc-LPJmL output (Fig. 4a). Without
the constraining layer added to the GAN, however, the GAN-processed precipitation stays
relatively constant without a substantial trend. In both tropical and temperate zones, the
constrained GAN corrects the precipitation towards the more complex and higher-resolution
GFDL-ESM4, while following the trend of the CM2Mc-LPJmL model. Again, the uncon-
strained model remains relatively constant in both cases, with a small decrease over time
in the temperate zone. Note that the GFDL-ESM4 does not represent a ground truth, but
only one realisation of a possible Earth system trajectory, for comparison. This can be
seen by the differing trends of two other CMIP6 models in Fig. S13. It should, however,
be expected that the precipitation output from the CMIP6 models is much more realistic
than the raw precipitation from the comparably low-resolution CM2Mc-LPJmL model. The
CMIP6 model GFDL-ESM4 also appears to be calibrated well with respect to large-scale
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Figure 3. Qualitative and quantitaive comparison of the intermittency in daily precipitation

above 1 mm/day, on the same date (25th December 2014), for the (a) ERA5 reanalysis, (b) CM2Mc-

LPJmL model, (c) GAN-based and (d) QM-based post-processing. The CM2Mc-LPJmL precip-

itation field (b) corresponds to an input of the GAN-generator which transforms it into the field

shown in panel (c). The discriminator network then classifies whether the GAN output (c) or the

ERA5 field (a) was generated artificially. Visually, the GAN substantially improves the spatial

intermittency seen in ERA5, whereas applying QM does not lead to improved intermittency. Note

that the modelled fields are not expected to be point-wise similar to the ERA5 ‘ground truth’ (a),

since these are time slices from climate projection runs. (e) The spatial power spectral density

(PSD) of the different precipitation fields, averaged radially in space and over time. For ERA5

reanalysis (black), CM2Mc-LPJmL (red), GFDL-ESM4 (blue), quantile mapping (magenta) and

the GAN (cyan). Note that only GAN-based post-processing of the CM2Mc-LPJmL model yields

an accurate PSD across all spatial scales.
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averages over the historical test period, as can be seen in Fig. S12, in which the GAN shows
improvements over the CM2Mc-LPJmL inputs.

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60
Av

er
ag

ed
 p

re
cip

ita
tio

n 
[m

m
/d

] a
Global

GAN (unconstrained)
GAN
CM2Mc-LPJmL
GFDL-ESM4

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

Av
er

ag
ed

 p
re

cip
ita

tio
n 

[m
m

/d
] b

Tropics

GAN (unconstrained)
GAN
CM2Mc-LPJmL
GFDL-ESM4

2030 2040 2050 2060 2070 2080 2090
Year

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

Av
er

ag
ed

 p
re

cip
ita

tio
n 

[m
m

/d
] c

Temperate zone

GAN (unconstrained)
GAN
CM2Mc-LPJmL
GFDL-ESM4

Figure 4. Large-scale trends as a three year rolling-mean of monthly and spatially average

precipitation for the CMIP6 SSP5-8.5 scenario. For (a) global data, (b) the tropics and (c) tem-

perate zone, of the CM2Mc-LPJmL (red crosses) and GFLD-ESM4 (blue) models, as well as the

constrained (cyan) and unconstrained (brown) GANs. Only by adding the physical constrained

to preserve the global precipitation amount per timestep enables the GAN (cyan) to follow the

transient dynamics of the non-stationary climate scenario.

2.4 Interpretability of the GAN-based correction

We investigate in the following whether the GAN has learned an ESM output correction
that is also physically reasonable. The attribution maps are computed with SmoothGrad
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for each prediction of the discriminator DY , with daily CM2Mc-LPJmL precipitation fields
given as input. The discriminator has been trained to distinguish between reanalysis (ERA5)
and GAN-processed precipitation fields and we are interested to see which spatial regions
in the ESM output the discriminator regards as most important for the distinction. These
regions then need to be corrected the most by the generator, implying where the most
pronounced biases of CM2Mc-LPJmL are.

The temporal average of the CM2Mc-LPJmL precipitation is shown in Fig. 5 together
with the absolute value of the attribution map as contour lines. The regions of highest
importance are shown in red and coincide with the region in the western Pacific where the
strongest biases and in particular the double-peaked ITCZ of CM2Mc-LPJmL are located
(as shown in Fig. 2 and Fig. S1). Although the GAN is trained on daily precipitation
fields, it has thus learned to identify regions that show biases occurring on interseasonal to
interannual scales.

Figure 5. Annual average of daily precipitation fields from CM2Mc-LPJmL (color shading with

scale according to the colorbar on the left) together with attribution maps (contour lines with color

scale according to colorbar on the right). Note that we applied a Gaussian filter to the attribution

maps to further reduce the noise. A standard deviation σ = 1.5 for the filter was found to give

robust results. The pacific region in the tropics shows the highest annual mean precipitation, and

also the highest feature importance. The same region also exhibits the largest bias of CM2Mc-

LPJmL, see in Fig. 2. Note that especially the double-ITCZ bias is a common and long-standing

problem in the precipitation output of many general circulation models (Tian & Dong, 2020).

3 Discussion

We have introduced a physically constrained generative adversarial network that, com-
bined with the computationally lightweight and efficient CM2Mc-LPJmL Earth system
model, is able to produce highly realistic precipitation simulations at low computational
costs.

Our method improves the ESM output in two ways: (i) the temporal distributions of the
CM2Mc-LPJmL model precipitation, as well as (ii) the spatial patterns and in particular
the spatial intermittency of the CM2Mc-LPJmL model precipitation. Our approach is
evaluated against quantile mapping (Cannon et al., 2015) and the much more advanced
CMIP6 GFDL-ESM4 model, (Krasting et al., 2018) taking ERA5 reanalysis data as ground
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truth. Note that any other, and especially purely observational, precipitation dataset with
sufficient temporal resolution could readily be used instead.

Given that the training samples are unpaired as a result of the chaotic nature of observed
and simulated Earth system trajectories, a comparison of single prediction-target pairs is
not possible. We therefore evaluate the GAN performance on long-term summary statistics
over the entire test set period. When evaluating the skill to improve temporal distributions,
we find that our proposed method outperforms both baselines, showing the lowest mean
errors and the smallest difference in the 95th precipitation percentile. The improvement
over quantile mapping is especially pronounced for seasonal time series, where only our
method successfully removes the double-peaked ITCZ of the CM2Mc-LPJmL model. This
is in contrast to the results by (François et al., 2021), who report a comparable skill of their
CycleGAN implementation with quantile mapping for regional climate simulations. Our
method corrects relative frequency histograms over the entire range of precipitation values,
similarly well to QM, which is designed for this task.

Crucially, our GAN-based approach also improves the spatial structure of the ESM
precipitation fields, which is not possible with traditional approaches. The GAN yields real-
istically intermittent spatial patterns that are characteristic for precipitation on all resolved
scales, and in this regard outperforms both the quantile-mapping-based post-processing
and the comprehensive, high-resolution GFDL-ESM4 model. These results show that our
method, combined with the computationally lightweight and efficient CM2Mc-LPJmL ESM,
can produce precipitation fields that are at least comparable to state-of-the-art, and much
more computationally expensive CMIP6 models.

We applied our method to the strongly non-stationary SSP5-8.5 CMIP6 climate scenario
until 2100 to test the GAN’s ability to capture these non-stationarity and the transient
dynamics. The unconstrained GAN trained on observations does not generalize to the
unseen climate state. It does not show an increase in global mean precipitation, as one would
expect from the thermodynamic Clausius-Clapeyron relation and as seen in the numerical
ESMs (Allan & Soden, 2008; Donat et al., 2013; Guerreiro et al., 2018; Traxl et al., 2021).
This can be explained by the fact that the precipitation of the future scenario lies well
outside the training distribution. To solve this and help the GAN to generalize to this kind
of out-of-sample prediction, a physical constraint to preserve the global precipitation amount
of the ESM in each time step was introduced as additional network layer in the GAN. The
global constraint allows the GAN to improve the precipitation regionally by accounting for
local characteristics, while producing the same global mean as the ESM by construction.
Conserving a physical quantity that is simulated numerically, such as the global precipitation
sum in our study, also means that it cannot be improved with respect to observations by
definition of the constraint. The global precipitation trend can, however, be expected to
be represented comparably well in the numerical ESM through thermodynamic processes.
Adding this constraint enables the GAN to follow the non-stationary, transient dynamics of
the SSP5-8.5 scenario.

The generator architecture in this study is deterministic, producing the same input-
output-pairs once it is trained. This enables run-to-run reproducibility, where uncertainties
of the ESM can then be quantified through ensemble runs. Since the training itself is
stochastic, one can create an ensemble to estimate the uncertainties resulting from GAN
training (see Fig. S14). A potential direction for future research could be to develop a
stochastic model that directly learns the uncertainties.

We demonstrate how feature attribution from interpretable Artifical Intelligence can be
applied for a GAN, enabling a physical interpretation of this deep learning model. We find
that the discriminator part of the GAN has learned to identify those regions for its decisions
that are critical also from a physical perspective. These regions highlighted by our GAN
interpretation are the ones with the highest absolute errors of the raw CM2Mc-LPJmL,
and are known to be the most problematic for ESM precipitation in general. Namely, the
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tropical Pacific Ocean was found to be of highest importance for the discriminator. In
this region, the particularly heavy precipitation is often caused by deep convection-driven
clouds, which are difficult to model numerically (Tian & Dong, 2020). The sensitivity
of the discriminator in the Pacific region also explains the effectiveness of our generator
network to reduce the double-peaked ITCZ bias. This is the region where the generator
needs to modify the CM2Mc-LPJmL precipitation field most in order to avoid rejection by
the discriminator. The results indicate that the GAN has successfully learned the long-term
statistics while being trained on samples of much shorter time scales. This makes GANs
particularly suitable for climate applications, where training samples and the statistics of
interest are often on very different time scales.

The main contribution of our approach is the efficient simulations of highly realistic
precipitation fields, by combining a physically constrained GAN with an ESM of reduced
complexity. Producing similarly realistic fields purely numerically would require much more
computational resources. For comparison, our post-processed CM2Mc-LPJmL ESM takes
about 0.5 hours to compute a model year using 28 CPUs, whereas the much more complex
GFDL-ESM4 requires 2 hours computational time on 1000 CPUs for a model year (Krasting
et al., 2018). This corresponds to an increased computational efficiency by roughly two
orders of magnitude, keeping in mind that GFDL-ESM4 produces higher resolution output.
The time the GAN post-processing takes is negligible in comparison, taking 0.35 seconds
per model year on a V100 GPU and 37.17 seconds on a single CPU. The quantile mapping
is similarly efficient taking 0.59 seconds per model year on a CPU.

Based on our findings, there are several directions for extending our method. Down-
scaling applications that increase the resolution of the ESM could be a direction for future
research. Conditioning the generator by adding variables that are physically linked to pre-
cipitation, such as humidity, temperature, or wind, could further improve our method. The
precipitation data, improved by our method, may be used as input to other stand-alone
Earth system components such as vegetation, that require realistic climate input.

Acknowledgments

The authors would like to thank the referees for their helpful comments and sugges-
tions. NB and PH acknowledge funding by the Volkswagen Foundation, as well as the
European Regional Development Fund (ERDF), the German Federal Ministry of Education
and Research and the Land Brandenburg for supporting this project by providing resources
on the high performance computer system at the Potsdam Institute for Climate Impact Re-
search. MD acknowledges funding by the Volkswagen Foundation project POEM-PBSim.
The authors thank the International Max Planck Research School for Intelligent Systems
(IMPRS-IS) for supporting FS. NB acknowledges further funding by the Federal Ministry
of Education and Research under grant No. 01LS2001A.

Data availability

The ERA5 reanalysis data is available for download at the Copernicus Climate Change
Service (C3S) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5
-single-levels?tab=overview and https://cds.climate.copernicus.eu/cdsapp#!/dataset/

reanalysis-era5-single-levels-preliminary-back-extension?tab=overview). Out-
put data from the CM2Mc-LPJmL model is available at https://doi.org/10.5281/zenodo
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Materials and Methods

The Earth system model CM2Mc-LPJmL

The coupled Earth system model CM2Mc-LPJmL v1.0 (Drüke, von Bloh, et al., 2021)
combines the coarse-grained but relatively fast atmosphere and ocean model CM2Mc (Galbraith
et al., 2011) with the state-of-the-art dynamic global vegetation model (DGVM) LPJmL5
(Schaphoff et al., 2018a, 2018b; Von Bloh et al., 2018).

CM2Mc is a coarser (3°x3.75° latitude-longitude) configuration of the Climate Model
CM2 (Milly & Shmakin, 2002), which has been developed at the Geophysical Fluid Dy-
namics Laboratory (GFDL). The original configuration of CM2Mc includes the Modular
Ocean Model 5 (MOM5) and the global atmosphere and land models AM2-LM2 or AM2-
LM (Anderson et al., 2004) with static vegetation. In CM2Mc-LPJmL, the land component
LM/LM2 is replaced by the dynamic global vegetation model LPJmL5, while AM2 and
MOM5 remain dynamically coupled to the model framework. The Flexible Modeling Sys-
tem (FMS) developed by GFDL connects all different model compartments and calculates
the fluxes between them.
The state-of-the-art and thoroughly validated DGVM LPJmL (Lund-Potsdam-Jena man-
aged Land) simulates global surface energy balance, water fluxes and carbon stocks and
fluxes for natural and managed land. Being forced by climate and soil data, LPJmL sim-
ulates the impact of bioclimatic limits and effects of heat, productivity and fire on plant
mortality to determine the establishment, growth, competition and mortality for different
plant functional types (PFTs) in natural vegetation and crop functional types (CFTs) on
managed land. Since its original implementation (Sitch et al., 2003) the model now incor-
porates a water balance (Gerten et al., 2004), agriculture (Bondeau et al., 2007), wildfire in
natural vegetation (Thonicke et al., 2010; Drüke et al., 2019), and the impact of multiple
climate drivers on phenology (Forkel et al., 2014, 2019).

In CM2Mc-LPJmL, the fluxes simulated by LPJmL depend, of course, on the precipi-
tation modelled by AM2. As a stand-alone model LPJmL has been mainly calibrated with
respect to reanalysis, and a similarly accurate precipitation output within CM2Mc-LPJmL
would hence be favorable to maintain consistency and to obtain realistic surface fluxes from
LPJmL. For the overall performance of CM2Mc-LPJmL, realistically simulated precipita-
tion fields are therefore crucial. This motivates the work presented below, where we use
a specific kind of GAN to transform the AM2 precipitation fields toward fields that are
indistinguishable from ERA5 precipitation fields (see below).
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The model experiments of this paper are consistent with (Drüke, von Bloh, et al., 2021).
After a 5000-year stand-alone LPJmL spin-up, a second fully coupled spin-up under pre-
industrial conditions without land use was performed for 1250 model years. In this way
we ensure that the model starts from a consistent equilibrium between the long-term soil
carbon pool, vegetation, ocean, and climate.

The subsequent transient historic phase of the model is performed from 1700-2018,
using historic land use data from 1700 (Fader et al., 2010) and historic concentrations of
greenhouse gases, solar radiation, ozone concentrations and aerosols from 1860, which were
kept at pre-industrial conditions beforehand.

From 2019 until 2100 the model is forced by constant land use from the year 2018 and
CO2 equivalents of the atmospheric forcing prescribed in the CMIP6 SSP5-8.5 (“business
as usual”) climate scenario that assumes a continued increase in CO2 emissions.

Cycle-consistent generative adversarial networks

Generative adversarial networks (GANs) are designed to learn a target distribution
py(y) through a two-player “minimax” game between a generator G and a discriminator D
(Goodfellow et al., 2014). The generator network is trained to transform an input x ∈ X to
values that approximate samples from a target domain y ∈ Y , i.e. the generator is trained
to learn the mapping G : X → Y . Samples from the generator and the target dataset are
then shown to the discriminator, which classifies their origin. In this way, the generator and
discriminator compete against each other, thereby improving the quality of the generated
samples. The training can be formulated as

G∗ = min
G

max
D
LGAN (D,G), (1)

where G∗ is the optimal generator and LGAN(D,G) is the loss function defined as

LGAN(D,G) = Ey∼py(y)[log(D(y))] + Ex∼px(x)[log(1−D(G(x)))]. (2)

In our situation, X and Y correspond to the sets containing precipitation fields from the
CM2Mc-LPJmL Earth system model and ERA5 reanalysis, respectively (samples are shown
in Fig. 3). In the above formulation, GANs have often been found to suffer from instabilities
and difficulties to generalize to distributions of higher dimensionality, such as in image-to-
image translation without pairwise matching samples. One reason for the instabilities is
the highly under-constrained mapping to be learned by the generator. To alleviate this
problem, cycle-consistent GANs have been proposed recently (Zhu et al., 2017). They aim
to constrain the space of mappings by training a second pair of generator and discriminator
networks, which learns the inverse mapping F : Y → X. A schematic of the cycle-consistent
GAN model is shown in Fig. 1. Both generators should perform bijective (i.e., one-to-one)
mappings (Zhu et al., 2017) and are therefore trained at the same time, together with
a regularization term that enforces consistency of translation cycles, i.e. x → G(x) →
F (G(x)) ≈ x and vice versa for y. The corresponding loss functions are then

LX→Y (G,DY ) = Ey∼py(y)[log(DY (y))] (3)

+ Ex∼px(x)[log(1−DY (G(x)))],

and similarly,

LY→X(F,DX) = Ex∼px(x)[log(DX(x))] (4)

+ Ey∼py(y)[log(1−DX(F (y)))].
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The cycle-consistency loss is given by

Lcycle(G,F ) = Ex∼px(x)[||F (G(x))− x||1] (5)

+ Ey∼py(y)[||G(F (y))− y||1].

The full loss function then reads

L(G,F,DX , DY ) =LX→Y (G,DY )

+LY→X(F,DX) (6)

+λLcycle(G,F ),

which is solved as

G∗, F ∗ = min
G,F

max
DX ,DY

L(G,F,DX , DY ). (7)

We adopt the architecture from Zhu et al. (2017) and optimize the networks with Adam
(Kingma & Ba, 2014), using a learning rate of 2e−4 for both the generator and the discrim-
inator networks and set λ = 10. Following Zhu et al. (2017) we set the batch size to 1 and
train the models for 250 epochs, logging the 50 best performing generators every 10 epochs.
The training takes about 5.25 days on a NVIDIA V100 GPU with 32 GB memory. After
training the final generator is determined by evaluation on the test set.

Neural network architectures

The generator architecture is based on a variant of convolutional residual networks (He
et al., 2016). Convolutional neural networks (CNNs) are commonly employed to process im-
age data. CNNs transform the input data through stacked layers of trainable convolutional
filters that are followed by a non-linear activation functions thereby learning to extract spa-
tial patterns. For a more detailed introduction see, e.g., (Goodfellow et al., 2016). Adopting
the naming convention from (Johnson et al., 2016; Zhu et al., 2017). c7s1-k denotes a layer
with a 7 × 7 convolution followed by instance normalization and ReLU activation with k
filters, a stride 1 and reflection padding. dk represents a layer with 3 × 3 convolutions,
instance normalization, ReLU activation, k filters and stride 2. Rk are residual blocks with
a 3× 3 convolutional layer and k filters. uk denots a layer with 3× 3 fractional-strided con-
volutions, instance normalization, ReLU activation, k filters and stride 1/2. The generator
architecture with 6 residual blocks is then

xin → c7s1-64→ d128→ d256→ [R256→]︸ ︷︷ ︸
×6

u128→ u64→ c7s1-3→ yout,

where xin is the input of the generator and yout the output. The discriminator architecture
is based on the PatchGAN (Isola et al., 2017). Denoting a 4× 4 convolutional layer with k
filters, instance normalization (except for the first layer), leaky ReLU with slope 0.2 and a
stride of 2 with Ck. The full architecture of the discriminator is

xin → C64→ C128→ C256→ C512→ yout.

Generator constraint

To enable a better generalization of the GAN to climate states not seen during training,
and hence in particular to address the out-of-sample problem imposed by the changing
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radiative forcing due to anthropogenic greenhouse gas emissions, we introduce the physical
constraint of preserving the total global precipitation amount of the CM2Mc-LPJmL model
input. That is, we add an additional layer to the generator network after training, which
re-scales each output yi at each grid point i as

ỹi = yi

∑Ngrid

i xi∑Ngrid

i yi
, (8)

where Ngrid is the total number of grid-points, xi the CM2Mc-LPJmL precipitation input
and ỹi the constrained output. The motivation of the constraint is that it gives the GAN
freedom to change the precipitation locally and to redistribute it in space, while forcing it
to follow the global trend prescribed by the ESM. The global trend has been found to be
well represented in the ESM, where noise and and biases found on small time and spatial
scales are averaged out (Drüke, von Bloh, et al., 2021). Also in observations, it has recently
been shown that the physically based Clausius-Clapeyron relation, suggesting a 7% increase
in precipitation per degree of warming, holds very well in terms of global averages, despite
pronounced regional deviations (Traxl et al., 2021).

Training

We use daily precipitation from the European Center for Medium-Range Weather Fore-
casts (ECMWF) Reanalysis v5 (ERA5) product (Hersbach et al., 2020) as a training target
and ground truth for evaluation. This reanalysis is produced by the Copernicus Climate
Change Service (C3S) at ECMWF, combining a large range of satellite- and land-based ob-
servations with high-resolution simulations through state-of-the-art data assimilation tech-
niques (Courtier et al., 1994; Hersbach et al., 2020). The original resolution is 30km hor-
izontally in space and hourly in time, spanning the period from 1950 to present. For this
study the data is aggregated to daily precipitation sums and re-gridded, following (Rasp et
al., 2020; Beck et al., 2019), by bilinear interpolation using the xESMF package (Zhuang
et al., 2020), in order to match the resolution of CM2Mc-LPJmL. We split the ESM and
ERA5 datasets into the training period 1950-2000 and the test period 2001-2014 (for which
also the GFDL-ESM4 data is available), with 18615 and 5110 daily samples, respectively.
Model simulations from 2019-2100 are used to test the generalization of the network with a
CO2 forcing according the CMIP6 SSP5-8.5 (“business as usual”) climate scenario, which
assumes a continued increase in CO2 emissions. Following Zhu et al. (2017), we replace the
log likelihood by a least-squares loss, which has been found to improve the training. The
GAN loss in Eq. 2 is then minimized by both G and D, with a loss Ex∼px(x)[(D(G(x))−1)2]
for G and Ey∼py(y)[(D(y)− 1)2] + Ex∼px(x)[(D(G(x)))2] for the discriminator D. We apply
a log-transform to the input data with x̃ = log(x+ ε)− log(ε) following (Rasp & Thuerey,
2021), where x̃ is the transformed precipitation and ε = 0.0001. We further normalize the
data to the interval [−1, 1], which was found to improve the training performance. Once
trained, the generator takes only about ten seconds on a NVIDIA V100 GPU to process the
test set ESM precipitation.

Baselines

We compare our method to quantile mapping, implemented with the xClim package
(Logan et al., 2021), and also carry out comparisons to the raw output of the more advanced
CMIP6 climate model GFDL-ESM4 (Krasting et al., 2018). The latter uses AM4 (Zhao et
al., 2018a, 2018b), a more recent and substantially more complex version of the atmosphere
model AM2 used in CM2Mc-LPJmL (GFDL Global Atmospheric Model Development Team
et al., 2004), with a substantially higher spatial resolution and strongly improved parame-
terizations of subgrid-scale processes. These improvements of course come at the expense
of substantially increased computational costs. The motivation here is to see whether a
comparably simple atmospheric general circulation model (GCM) such as AM2 can be com-
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bined with the proposed GAN model in order to yield similar results as a comprehensive
state-of-the-art atmospheric GCM such as AM4, at a fraction of the computational costs.
Quantile mapping uses the empirical cumulative distribution functions of simulated and
observed precipitation to transform the simulated values into the corresponding quantiles
derived from observations. Before computing the cumulative distribution function, following
(Cannon et al., 2015), we detrend the historical time series, assuming a linear trend.
As an error metric to compare our methods we apply the mean error (ME), which is defined
as

ME =
1

N

Ntime∑

t=1

(xt − yt) =
1

N

Ntime∑

t=1

xt −
1

N

Ntime∑

t=1

yt, (9)

where xt and yt are the simulated and observed precipitation at time t for a given grid cell
and Ntime the number of time steps in the test set. Note that the ME is used to evaluate
the differences in the time averages per grid cell, as can be seen on the right-hand side of
Eq. 9.

Model transparency

Neural network models are often regarded as black boxes. Since it is important for many
applications to be able to explain the neural network’s prediction, the emergent fields of
interpretable (Murdoch et al., 2019; Toms et al., 2020) and explainable Artificial Intelligence
(Sundararajan et al., 2017; Montavon et al., 2019) aim to improve the transparency.

Many methods for interpreting neural networks are specifically designed for classifica-
tion problems (Goodfellow et al., 2016). In the GAN framework, the discriminator network
performs such a classification task in distinguishing between generated and real images.
Hence, suitable interpretability methods can be applied, even though entire GAN is build
for the much more complex generative task. Being able to interpret the GAN increases the
transparency and trust, since it ensures that the model has learned to identify physically
reasonable input features. To our knowledge, we are the first to apply an interpretability
method in such a way, i.e., to test the physical consistency of the GAN training.

Here, we use the gradient-based method SmoothGrad (Smilkov et al., 2017) to interpret
the discriminator network DY that has learned to classify ERA5 and generated precipitation
fields. An attribution map φ is computed by taking the gradient of the neural network DY

with respect to its input y,

φ(DY , y) =
∂DY (y)

∂y
, (10)

showing for each input grid cell how much the prediction will change with respect to its
input, i.e. how sensitive it is to perturbations of the input. It has been observed that
using only the gradient of the input, however, tends to give rather noisy attribution maps.
Therefore, Smilkov et al. (2017) proposed a technique to reduce the noise, by adding it to
the network’s input and averaging the gradient over a sample size, e.g. here N = 10, as

φ̂(DY , y) =
1

N

N∑

i=1

φ (y + εi) , (11)

where the noise is sampled from a Gaussian distribution εi ∼ N
(
0, σ2

)
.
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Figure S1. Global maps showing the mean error for the entire test set. For (a) CM2Mc-

LPJmL, (b) GFDL-ESM4, (c) QM-based and (d) GAN-based post-processing methods applied

to the CM2Mc-LPJmL output.
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Figure S2. Global maps showing the mean error for the DJF season of the test set. For (a)

CM2Mc-LPJmL, (b) GFDL-ESM4, (c) QM-based and (d) GAN-based post-processing methods

applied to the CM2Mc-LPJmL output.
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Figure S3. Global maps showing the mean error for the MAM season of the test set. For (a)

CM2Mc-LPJmL, (b) GFDL-ESM4, (c) QM-based and (d) GAN-based post-processing methods

applied to the CM2Mc-LPJmL output.
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Figure S4. Global maps showing the mean error for the SON season of the test set. For (a)

CM2Mc-LPJmL, (b) GFDL-ESM4, (c) QM-based and (d) GAN-based post-processing methods

applied to the CM2Mc-LPJmL output.
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Figure S5. Global maps showing the difference in the 95th precipitation percentile for the

annual time series of the test set. For (a) CM2Mc-LPJmL, (b) GFDL-ESM4, (c) QM-based

and (d) GAN-based post-processing methods applied to the CM2Mc-LPJmL output. Grid cells

where the percentiles could not be determined due to insufficient statistics are shown in grey.
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Figure S6. Global maps showing the difference in the 95th precipitation percentile for the

DJF season of the test set. For (a) CM2Mc-LPJmL, (b) GFDL-ESM4, (c) QM-based and (d)

GAN-based post-processing methods applied to the CM2Mc-LPJmL output. Grid cells where

the percentiles could not be determined due to insufficient statistics are shown in grey.
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Figure S7. Global maps showing the difference in the 95th precipitation percentile for the

MAM season of the test set. For (a) CM2Mc-LPJmL, (b) GFDL-ESM4, (c) QM-based and (d)

GAN-based post-processing methods applied to the CM2Mc-LPJmL output. Grid cells where

the percentiles could not be determined due to insufficient statistics are shown in grey.
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Figure S8. Global maps showing the difference in the 95th precipitation percentile for the

JJA season of the test set. For (a) CM2Mc-LPJmL, (b) GFDL-ESM4, (c) QM-based and (d)

GAN-based post-processing methods applied to the CM2Mc-LPJmL output. Grid cells where

the percentiles could not be determined due to insufficient statistics are shown in grey.
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Figure S9. Global maps showing the difference in the 95th precipitation percentile for the

SON season of the test set. For (a) CM2Mc-LPJmL, (b) GFDL-ESM4, (c) QM-based and (d)

GAN-based post-processing methods applied to the CM2Mc-LPJmL output. Grid cells where

the percentiles could not be determined due to insufficient statistics are shown in grey.
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Figure S10. Global maps showing the mean error for the annual time series of the test set.

For (a) CM2Mc-LPJmL, (b) GFDL-ESM4, (c) MPI-ESM1-2-HR and (d) CESM2.
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Figure S11. Qualitative and quantitaive comparison of the intermittency in daily precipitation
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Figure S12. Large-scale trends as a three year rolling-mean of monthly and spatially average

precipitation for the test set period. For (a) global data, (b) the tropics and (c) temperate zone, of

the ERA5 reanalysis (black dotted line), CM2Mc-LPJmL (red crosses) and GFLD-ESM4 (blue)

models, as well as the constrained (cyan) and unconstrained (brown) GANs.
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Figure S13. Large-scale precipitation trends are shown for the CMIP6 SSP5-8.5 scenario for

the global time series (a), the tropics and temperate zone (c), of the CM2Mc-LPJmL (orange),

GFLD-ESM4 (blue), MPI-ESM1-1-HR (red) and CESM2 (green) model.
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Table S1. The averaged absolute value of the grid-cell wise bias is shown for the raw model

output of CM2Mc-LPJmL, GFDL-ESM4, MPI-ESM1-1-HR and CESM2.

Season CM2Mc-LPJmL GFDL-ESM4 MPI-ESM1-2-HR CESM2
Annual 0.769 0.448 0.516 0.404
DJF 0.915 0.544 0.677 0.530
MAM 0.886 0.603 0.702 0.549
JJA 0.963 0.589 0.649 0.584
SON 0.823 0.508 0.595 0.513

Table S2. The averaged absolute error of the grid-cell-wise 95th precipitation percentiles

for the raw CM2Mc-LPJmL and GFDL-ESM4 models, as well as for the QM- and GAN-based

post-processing, using the CM2Mc-LPJmL output as input.

Season CM2Mc-LPJmL GFDL-ESM4 % QM % GAN %
Annual 3.715 2.774 25.33 1.868 49.72 1.495 59.76
DJF 4.198 3.071 26.85 3.480 17.10 1.889 55.63
MAM 4.200 3.114 25.86 2.954 29.67 1.876 55.34
JJA 4.324 2.995 30.73 3.077 28.84 1.889 56.31
SON 3.875 2.826 27.07 2.818 27.28 1.972 49.11
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3. Generative models for improving precipitation fields from climate simulations
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Deep Learning for bias-correcting comprehensive
high-resolution Earth system models

Philipp Hess1,2, Stefan Lange2, and Niklas Boers1,2,3

1Earth System Modelling, School of Engineering & Design, Technical University of Munich,

Munich, Germany
2Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany

3Global Systems Institute and Department of Mathematics, University of Exeter, Exeter, UK

Key Points:

• A generative adversarial network is shown to improve daily precipitation fields from
a state-of-the-art Earth system model.

• Biases in long-term temporal distributions are strongly reduced by the generative
adversarial network.

• Our network-based approach can be complemented with quantile mapping to fur-
ther improve precipitation fields.
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Abstract
The accurate representation of precipitation in Earth system models (ESMs) is crucial for
reliable projections of the ecological and socioeconomic impacts in response to anthropogenic
global warming. The complex cross-scale interactions of processes that produces precipi-
tation are challenging to model, however, inducing potentially strong biases in ESM fields,
especially regarding extremes. State-of-the-art bias correction methods only address errors
in the simulated frequency distributions locally, at every individual grid cell. Improving
unrealistic spatial patterns of the ESM output, which would require spatial context, has
not been possible so far. Here, we show that a post-processing method based on physically
constrained generative adversarial networks (GANs) can correct biases of a state-of-the-art,
CMIP6-class ESM both in local frequency distributions and in the spatial patterns at once.
While our method improves local frequency distributions equally well as gold-standard bias-
adjustment frameworks it strongly outperforms any existing methods in the correction of
spatial patterns, especially in terms of the characteristic spatial intermittency of precipita-
tion extremes.

1 Introduction

Precipitation is a crucial climate variable and changing amounts, frequencies, or spatial
distributions have potentially severe ecological and socioeconomic impacts. With global
warming projected to continue in the coming decades, assessing the impacts of changes
in precipitation characteristics is an urgent challenge (Wilcox & Donner, 2007; Boyle &
Klein, 2010; IPCC, 2021). Climate impact models are designed to assess the impacts of
global warming on, for example, ecosystems, crop yields, vegetation and other land-surface
characteristics, infrastructure, water resources, or the economy in general (Kotz et al., 2022),
using the output of climate or Earth system models (ESMs) as input. Especially for reliable
assessments of the ecological and socioeconomic impacts, accurate ESM precipitation fields
to feed the impact models are therefore crucial.

ESMs are integrated on spatial grids with finite resolution. The resolution is limited
by the computational resources that are necessary to perform simulations on decadal to
centennial time scales. Current state-of-the-art ESMs have a horizontal resolution on the
order of 100km, in exceptional cases going down to 50km. Smaller-scale physical processes
that are relevant for the generation of precipitation operate on scales below the size of
individual grid cells. These can therefore not be resolved explicitly in ESMs and have to
included as parameterizations of the resolved prognostic variables. These include droplet
interactions, turbulence, and phase transitions in clouds that play a central role in the
generation of precipitation.

The limited grid resolution hence introduces errors in the simulated precipitation fields,
leading to biases in short-term spatial patterns and long-term summary statistics. These
biases need to be addressed prior to passing the ESM precipitation fields to impact mod-
els. In particular, climate impact models are often developed and calibrated with input
data from reanalysis data rather than ESM simulations. These reanalyses are created with
data assimilation routines and combine various observations with high-resolution weather
models. They hence provide a much more realistic input than the ESM simulations and
statistical bias correction methods are necessary to remove biases in the ESM simulations
output and to make them more similar to the reanalysis data for which the impact models
are calibrated. Quantile mapping (QM) is a standard technique to correct systematic errors
in ESM simulations. QM estimates a mapping between distributions from historical sim-
ulations and observations that can thereafter be applied to future simulations in order to
provide more accurate simulated precipitation fields to impact models (Déqué, 2007; Tong
et al., 2021; Gudmundsson et al., 2012; Cannon et al., 2015).

State-of-the-art bias correction methods such as QM are, however, confined to address
errors in the simulated frequency distributions locally, i.e., at every grid cell individually.
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Unrealistic spatial patterns of the ESM output, which would require spatial context, have
therefore so far not been addressed by postprocessing methods. For precipitation this is
particularly important because it has characteristic high intermittency not only in time,
but also in its spatial patterns. Mulitvariate bias correction approaches have recently been
developed, aiming to improve spatial dependencies (Vrac, 2018; Cannon, 2018). However,
these approaches are typically only employed in regional studies, as the dimension of the
input becomes too large for global high-resolution ESM simulations. Moreover, such meth-
ods have been reported to suffer from instabilities and overfitting, while differences in their
applicability and assumptions make them challenging to use (François et al., 2020).

Here, we employ a recently introduced postprocessing method (Hess et al., 2022) based
on a cycle-consistent adversarial network (CycleGAN) to consistently improve both local
frequency distributions and spatial patterns of state-of-art high-resolution ESM precipita-
tion fields. Artificial neural networks from computer vision and image processing have been
successfully applied to various tasks in Earth system science, ranging from weather forecast-
ing (Weyn et al., 2020; Rasp & Thuerey, 2021) to post-processing (Grönquist et al., 2021;
Price & Rasp, 2022), by extracting spatial features with convolutional layers (LeCun et al.,
2015). Generative adversarial networks (Goodfellow et al., 2014) in particular have emerged
as a promising architecture that produces sharp images that are necessary to capture the
high-frequency variability of precipitation (Ravuri et al., 2021; Price & Rasp, 2022; Harris et
al., 2022). GANs have been specifically developed to be trained on unpaired image datasets
(Zhu et al., 2017). This makes them a natural choice for post-processing the output of cli-
mate projections, which – unlike weather forecasts – are not nudged to follow the trajectory
of observations; due to the chaotic nature of the atmosphere small deviations in the initial
conditions or parameters lead to exponentially diverging trajectories (Lorenz, 1996). As a
result, numerical weather forecasts lose their deterministic forecast skill after approximately
two weeks at most and century-scale climate simulations do not agree with observed daily
weather records. Indeed the task of climate models is rather to produce accurate long-term
statistics that to agree with observations.

We apply our CycleGAN approach to correct global high-resolution precipitation simu-
lations of the GFDL-ESM4 model (Krasting et al., 2018) as a representative ESM from the
Climate Model Intercomparison Project phase 6 (CMIP6). So far, GANs-based approaches
have only been applied to postprocess ESM simulations either in a regional context (François
et al., 2021), or to a very-low-resolution global ESM (Hess et al., 2022). We show here that
a suitably designed CycleGAN is capable of improving even the distributions and spatial
patterns of precipitation fields from a state-of-the-art comprehensive ESM, namely GFDL-
ESM4. In particular, in contrast to rather specific existing methods for postprocessing ESM
output for climate impact modelling, we will show that the CycleGAN is general and can
readily be applied to different ESMs and observational datasets used as ground truth.

In order to assure that physical conservation laws are not violated by the GAN-based
postprocessing, we include a suitable physical constraint, enforcing that the overall global
sum of daily precipitation values is not changed by the GAN-based transformations; es-
sentially, this assures that precipitation is only spatially redistributed (see Methods). By
framing bias correction as an image-to-image translation task, our approach corrects both
spatial patterns of daily precipitation fields on short time scales and temporal distributions
aggregated over decadal time scales. We evaluate the skill to improve spatial patterns and
temporal distributions against the gold-standard ISIMIP3BASD framework (Lange, 2019),
which relies strongly on QM.

Quantifying the “realisticness” of spatial precipitation patterns is a key problem in
current research (Ravuri et al., 2021). We use spatial spectral densities and the fractal
dimension of spatial patterns as a measure to quantify the similarity of intermittent and un-
paired precipitation fields. We will show that our CycleGAN is indeed spatial context-aware
and strongly improves the characteristic intermittency in spatial precipitation patterns. We
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will also show that our CycleGAN combined with a subseqeunt application of ISIMIP3BASD
routine leads to the best overall performance.

2 Results

We evaluate our CycleGAN method on two different tasks and time scales. First, the
correction of daily rainfall frequency distributions at each grid cell locally, aggregated from
decade-long time series. Second, we quantify the ability to improve spatial patterns on daily
time scales. Our GAN approach is compared to the raw GFDL-ESM4 model output, as well
as to the ISIMIP3BASD methodology applied to the GFDL-ESM4 output.

2.1 Temporal distributions

10 6

10 5

10 4

10 3

10 2

10 1

100

Hi
st

og
ra

m

a

0 98.4 99.7 99.94 99.98 99.993 99.997
W5E5v2 precipitation percentiles

W5E5v2
GFDL-ESM4
ISIMIP3BASD
GAN
GAN (unconstrained)
GAN-ISIMIP3BASD

0 25 50 75 100 125 150
Precipitation [mm/d]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Ab
so

lu
te

 e
rro

r

b

Figure 1: Histograms of relative precipitation frequencies over the entire globe and test
period (2004-2014). (a) The histograms are shown for the W5E5v2 ground truth (black),
GFDL-ESM4 (red), ISIMIP3BASD (magenta), GAN (cyan), unconstrained GAN (orange),
and the constrained-GAN-ISIMIP3BASD combination (blue). (b) Distances of the his-
tograms to the W5E5v2 ground truth are shown for the same models as in (a). Percentiles
corresponding to the W5E5v2 precipitation values are given on the second x-axis at the
top. Note that GFDL-ESM4 overestimates the frequencies of strong and extreme rainfall
events. All compared methods show similar performance in correcting the local frequency
distributions.
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We compute global histograms of relative precipitation frequencies using daily time
series (Fig. 1a). The GFDL-ESM4 model overestimates frequencies in the tail, namely for
events above 50 mm/day (i.e., the 99.7th percentile). Our GAN-based method as well as
ISIMIP3BASD and the GAN-ISIMIP3BASD combination correct the histogram to match
the W5E5v2 ground truth equally well, as can be also seen in the absolute error of the
histograms (Fig. 1b).

Comparing the differences in long-term averages of precipitation per grid cell (Fig. 2
and Methods), large biases are apparent in the GFDL-ESM4 model output, especially in
the tropics. The double-peaked Intertropical Convergence Zone (ITCZ) bias is visible. The
double-ITCZ bias can also be inferred from the latitudinal profile of the precipitation mean
in Fig. 3.

Table 1 summarizes the annual biases shown in Fig. 2 as absolute averages, and addi-
tionally for the four seasons. The GAN alone reduces the annual bias of the GFDL-ESM4
model by 38.7%. The unconstrained GAN performs better than the physically constrained
one, with bias reductions of 50.5%. As expected, the ISIMIP3BASD gives even better results
for correcting the local mean, since it is specifically designed to accurately transform the
local frequency distributions. It is therefore remarkable that applying the ISIMIP3BASD
procedure on the constrained GAN output improves the post-processing further, leading to
a local bias reduction of the mean by 63.6%, compared to ISIMIP3BASD with 59.4%. For
seasonal time series the order in which the methods perform is the same as for the annual
data.

Besides the error in the mean, we also compute differences in the 95th percentile for each
grid cell, shown in Fig. S1 and as mean absolute errors in Table 1. Also in this case of heavy
precipitation values we find that ISIMIP3BASD outperforms the GAN, but that combining
GAN and ISIMIP3BASD leads to best agreement of the locally computed quantiles.

Table 1: The globally averaged absolute value of the grid cell-wise difference in the long-
term precipitation average, as well as the 95th percentile, between the W5E5v2 ground truth
and GFDL-ESM4, ISIMIP3BASD, GAN, unconstrained GAN, and the GAN-ISIMIP3BASD
combination for annual and seasonal time series (in [mm/day]). The relative improvement
over the raw GFDL-ESM4 climate model output is shown as percentages for each method.

Season Percentile
GFDL-

ESM4

ISIMIP3-

BASD
% GAN %

GAN

(unconst.)
%

GAN-

ISIMIP3-

BASD

%

Annual - 0.535 0.217 59.4 0.328 38.7 0.265 50.5 0.195 63.6

DJF - 0.634 0.321 49.4 0.395 37.7 0.371 41.5 0.308 51.4

MAM - 0.722 0.314 56.5 0.419 42.0 0.378 47.6 0.285 60.5

JJA - 0.743 0.289 61.1 0.451 39.3 0.357 52.0 0.280 62.3

SON - 0.643 0.327 49.1 0.409 36.4 0.362 43.7 0.306 52.4

Annual 95th 2.264 1.073 52.6 1.415 37.5 1.213 46.4 0.945 58.3

DJF 95th 2.782 1.496 46.2 1.725 38.0 1.655 40.5 1.432 48.5

MAM 95th 2.948 1.482 49.7 1.805 38.8 1.661 43.7 1.337 54.6

JJA 95th 2.944 1.366 53.6 1.852 37.1 1.532 48.0 1.247 57.6

SON 95th 2.689 1.495 44.4 1.741 35.3 1.592 40.8 1.366 49.2
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Figure 2: Bias in the long-term average precipitation over the entire test set between
the W5E5v2 ground truth (a) and GFDL-ESM4 (b), ISIMIP3BASD (c), GAN (d), uncon-
strained GAN (e) and the GAN-ISIMIP3BASD combination (f).

2.2 Spatial patterns

We compare the ability of the GAN to improve spatial patterns based on the W5E5v2
ground truth, against the GFDL-ESM4 simulations and the ISIMIP3BASD method applied
to the GFDL-ESM4 simulations. To model realistic precipitation fields, the characteristic
spatial intermittency needs to be captured accurately.

We compute the spatial power spectral density (PSD) of global precipitation fields,
averaged over the test set for each method. GFDL-ESM4 shows noticeable deviations from
W5E5v2 in the PSD (Fig. 4). Our GAN can correct these over the entire range of wave-
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Figure 3: Precipitation averaged over longitudes and the entire test set period from the
W5E5v2 ground truth (black) and GFDL-ESM4 (red), ISIMIP3BASD (magenta), GAN
(cyan), unconstrained GAN (orange) and the GAN-ISIMIP3BASD combination (blue). To
quantify the differences between the shown lines, we show their mean absolute error w.r.t
the W5E5v2 ground truth in the legend. These values are different from the ones shown in
Table 1 as the average is taken here over the longitudes without their absolute value. The
GAN-ISIMIP3BASD approach shows the lowest error.

lengths, closely matching the W5E5v2 ground truth. Improvements over ISIMIP3BASD
are especially pronounced in the range of high frequencies (low wavelengths), which are
responsible for the intermittent spatial variability of daily precipitation fields. Adding the
physical constraint to the GAN does not affect the ability to produce realistic PSD distribu-
tions. After applying ISIMIP3BASD to the GAN-processed fields, most of the improvements
generated by the GAN are retained, as shown by the GAN-ISIMIP3BASD results.

For a second way to quantifying how realistic the simulated and post-processed pre-
cipitation fields are, with a focus on high-frequency spatial intermittency, we investigate
the fractal dimension (Edgar & Edgar, 2008) of the lines separating grid cells with daily
rainfall sums above and below a given quantile threshold (see Methods). For a sample and
qualitative comparison of precipitation fields over the South American continent see Fig. S2.
The daily spatial precipitation fields are first converted to binary images using a quantile
threshold. The respective quantiles are determined from the precipitation distribution over
the entire test set period and globe. The mean of the fractal dimension computed with box-
counting (see Methods) (Lovejoy et al., 1987; Meisel et al., 1992; Husain et al., 2021) for each
time slice is then investigated (Fig. 5). Both the GFDL-ESM4 simulations themselves and
the results of applying the ISIMIP3BASD post-processing to them exhibit spatial patterns
with a lower fractal dimension than the W5E5v2 ground truth, implying too low spatial
intermittency. In contrast, the GAN translates spatial fields simulated by GFDL-ESM4 in
a way that results in closely matching fractal dimensions over the entire range of quantiles.

3 Discussion

Postprocessing climate projections is a fundamentally different task from postprocessing
weather forecast simulations (Hess et al., 2022). In the latter case, data-driven postprocess-
ing methods, e.g. based on deep learning, to minimize differences between paired samples
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Figure 4: The power spectral density (PSD) of the spatial precipitation fields is shown as
an average over all samples in the test set for the W5E5v2 ground truth (black) and GFDL-
ESM4 (red), ISIMIP3BASD (magenta), GAN (cyan, dashed), unconstrained GAN (orange,
dashed-dotted) and the constrained-GAN-ISIMIP3BASD combination (blue, dotted). The
GANs and W5E5v2 ground truth agree so closely that they are indistinguishable. In contrast
to ISIMIP3BASD, the GAN can correct the intermittent spectrum accurately over the entire
range down to the smallest wavelengths.

of variables such as spatial precipitation fields (Hess & Boers, 2022). Beyond time scales of
a few days, however, the chaotic nature of the atmosphere leads to exponentially diverging
trajectories, and for climate or Earth system model output there is no observation-based
ground truth to directly compare to. We therefore frame the post-processing of ESM projec-
tions, with applications for subsequent 195 impact modelling in mind, as an image-to-image
translation task with unpaired samples.

To this end we apply a recently developed postprocessing method based on physically
constrained CycleGANs to global simulations of a state-of-the-art, high-resolution ESM
from the CMIP6 model ensemble, namely the GFDL-ESM4 (Krasting et al., 2018; O' Neill
et al., 2016). We evaluate our method against the gold-standard bias correction framework
ISIMIP3BASD. Our model can be trained on unpaired samples that are characteristic for
climate simulations. It is able to correct the ESM simulations in two regards: temporal
distributions over long time scales, including extremes in the distrivutions’ tails, as well
as spatial patterns of individual global snap shots of the model output. The latter is not
possible with established methods. Our GAN-based approach is designed as a general
framework that can be readily applied to different ESMs and observational target datasets.
This is in contrast to existing bias-adjustment methods that are often tailored to specific
applications.

We chose to correct precipitation because it is arguably one of the hardest variables
to represent accurately in ESMs. So far, GANs have only been applied to regional studies
or low-resolution global ESMs (François et al., 2021; Hess et al., 2022). The GFDL-ESM4
model simulations are hence chosen in order to test if our CycleGAN approach would lead
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Figure 5: The fractal dimension (see Methods) of binary global precipitation fields is com-
pared as averages for different quantile thresholds. Results are shown for the W5E5v2
ground truth (black) and GFDL-ESM4 (red), ISIMIP3BASD (magenta), GAN (cyan), un-
constrained GAN (orange, dashed), and the GAN-ISIMIP3BASD combination (blue). The
GAN can accurately reproduce the fractal dimension of the W5E5v2 ground truth spatial
precipitation fields over all quantile thresholds, clearly outperforming the ISIMIP3BASD
basline.

to improvements even when postprocessing global high-resolution simulations of one of the
most complex and sophisticated ESMs to date. In the same spirit, we evaluate our ap-
proach against a very strong baseline given by the state-of-the-art bias correction framework
ISIMIP3BASD, which is based on a trend-preserving QM method (Lange, 2019).

Comparing long-term summary statistics, our method yields histograms of relative pre-
cipitation frequencies that very closely agree with corresponding histograms from reanalysis
data (Fig. 1). The means that the extremes in the far end of the tail are accurately cap-
tured, with similar skill to the ISIMIP3BASD baseline that is mainly designed for this task.
Differences in the grid cell-wise long-term average show that the GAN skillfully reduces bi-
ases (Fig. 2); in particular, the often reported double-peaked ITCZ bias of the GFDL-ESM4
simulations, which is a common feature of most climate models (Tian & Dong, 2020), is
strongly reduced (Fig. 3). The ISIMIP3BASD method - being specifically designed for this
- produces slightly lower biases for grid-cell-wise averages than the GAN; we show that
combining both methods by first applying the GAN and then the ISIMIP3BASD procedure
leads to the overall best performance.

Regarding the correction of spatial patterns of the modelled precipitation fields, we
compare the spectral density and fractal dimensions of the spatial precipitation fields. Our
results show that indeed only the GAN can capture the characteristic spatial intermittency
of precipitation closely (Figs. 4 and 5). We believe that the measure of fractal dimension
is also relevant for other fields such as nowcasting and medium-range weather forecasting,
where blurriness in deep learning-based predictions is often reported (Ravuri et al., 2021)
and needs to be further quantified.
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Post-processing methods for climate projections have to be able to preserve the trends
that result from the non-stationary dynamics of the Earth system on long-time scales. We
have therefore introduced the architecture constraint of preserving the global precipitation
amount on every day in the climate model output (Hess et al., 2022). We find that this does
not affect the quality of the spatial patterns that are produced by our CycleGAN method.
However, the skill of correcting mean error biases is slightly reduced by the constraint. This
can be expected in part as the constraint is constructed to follow the global mean of the
ESM. Hence, biases in the global ESM mean can influence the constrained GAN. This also
motivates our choice to demonstrate the combination of the constrained GAN with the QM-
based ISIMIP3BASD procedure, since it can be applied to future climate scenarios, making
it more suitable for actual applications than the unconstrained architecture.

There are several directions to further develop or approach. The architecture employed
here has been built for equally spaced two-dimensional images. Extending the CycleGAN
architecture to perform convolutions on the spherical surface, e.g. using graph neural net-
works, might lead to more efficient and accurate models. Moreover, GANs are comparably
difficult to train, which could make it challenging to identify suitable network architectures.
Using large ensembles of climate simulations could provide additional training data that
could further improve the performance. Another straightforward extension of our method
would be the inclusion of further input variables or the prediction additional high-impact
physical variables, such as near-surface temperatures that are also important for regional
impact models.

4 Methods

4.1 Training data

We use global fields of daily precipitation with a horizontal resolution of 1◦ from the
GFDL-ESM4 Earth system model (Krasting et al., 2018) and the W5E5v2 reanalysis prod-
uct (Cucchi et al., 2020; WFDE5 over land merged with ERA5 over the ocean (W5E5 v2.0),
2021) as observation-based ground truth. The W5E5v2 dataset is based on the ERA5
(Hersbach et al., 2020) reanalysis and has been bias-adjusted using the Global Precipitation
Climatology Centre (GPCC) full data monthly product v2020 (Schneider et al., 2011) over
land and the Global Precipitation Climatology Project (GPCP) v2.3 dataset (Huffman et
al., 1997) over the ocean. Both datasets have been regridded to the same 1◦ horizontal
resolution using bilinear interpolation following (Beck et al., 2019). We split the dataset
into three periods for training (1950-2000), validation (2001-2003), and testing (2004-2014).
This corresponds to 8030 samples for training, 1095 for validation, and 4015 for testing.
During pre-processing, the training data is log-transformed with x̃ = log(x+ε)− log(ε) with
ε = 0.0001, following Rasp and Thuerey (2021), to account for zeros in the transform. The
data is then normalized to the interval [−1, 1] following (Zhu et al., 2017).

4.2 Cycle-consistent generative adversarial networks

This section gives a brief overview of the CycleGAN used in this study. We refer to
(Zhu et al., 2017; Hess et al., 2022) for a more comprehensive description and discussion.
Generative adversarial networks learn to generate images that are nearly indistinguishable
from real-world examples through a two-player game (Goodfellow et al., 2014). In this
set-up, a first network G, the so-called generator, produces images with the objective to
fool a second network D, the discriminator, which has to classify whether a given sample
is generated (“fake”) or drawn from a real-world dataset (“real”). Mathematically this can
be formalized as

G∗ = min
G

max
D
LGAN (D,G), (1)
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with G∗ being the optimal generator network. The loss function LGAN (D,G) can be defined
as

LGAN(D,G) = Ey∼py(y)[log(D(y))] + Ex∼px(x)[log(1−D(G(x)))], (2)

where py(y) is the distribution of the real-world target data and samples from px(x) are
used as inputs by G to produce realistic images. The CycleGAN (Zhu et al., 2017) consists
of two generator-discriminator pairs, where the generators G and F learn inverse mappings
between two domains X and Y . This allows to define an additional cycle-consistency loss
that constraints the training of the networks, i.e.

Lcycle(G,F ) = Ex∼px(x)[||F (G(x))− x||1] (3)

+ Ey∼py(y)[||G(F (y))− y||1].

It measures the error caused by a translation cycle of an image to the other domain and
back. Further, an additional loss term is introduced to regularize the networks to be close
to an identity mapping with,

Lident(G,F ) = Ex∼px(x)[||G(x)− x||1] (4)

+ Ey∼py(y)[||F (y)− y||1].

In practice, the log-likelihood loss can be replaced by a mean squared error loss to facilitate
a more stable training. Further, the generator loss is reformulated to be minimized by
inverting the labels, i.e.

LGenerator = Ex∼px(x)[(DX(G(x))− 1)2]

+ Ey∼py(y)[(DY (F (y))− 1)2] (5)

+ λLcycle(G,F ) + λ̃Lident(G,F ),

where λ and λ̃ are set to 10 and 5 respectively following (Zhu et al., 2017). The corresponding
loss term for the discriminator networks is given by

LDiscriminator = Ey∼py(y)[(DY (y)− 1)2] + Ex∼px(x)[(DX(G(x)))2] (6)

+ Ex∼px(x)[(DX(x)− 1)2] + Ey∼py(y)[(DY (F (y)))2]. (7)

The weights of the generator and discriminator networks are then optimized with the ADAM
(Kingma & Ba, 2014) optimizer using a learning rate of 2e−4 and updated in an alternating
fashion. We train the network for 350 epochs and a batch size of 1, saving model checkpoints
every other epoch. We evaluate the checkpoints on the validation dataset to determine the
best model instance.

4.3 Network Architectures

Both the generator and discriminator have fully convolutional architectures. The gen-
erator uses ReLU activation functions, instance normalization, and reflection padding. The
discriminator uses leaky ReLU activations with slope 0.2 instead, together with instance
normalization. For a more detailed description, we refer to our previous study (Hess et al.,
2022). The network architectures in this study are the same, only with a change in the
number of residual layers in the generator network from 6 to 7.

The final layer of the generator can be constrained to preserve the global sum of the
input, i.e. by rescaling

ỹi = yi

∑Ngrid

i xi∑Ngrid

i yi
, (8)
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where xi and yi are grid cell values of the generator input and output respectively and
Ngrid is the number of grid cells. The generator without this constraint will be referred
to as unconstrained in this study. The global physical constraint enforces that the global
daily precipitation sum is not affected by the CycleGAN postprocessing and hence remains
identical to the original value from the GFDL-ESM4 simualtions. This is motivated by the
observation that large-scale average trends in precipitation follow the Clausius-Clapeyron
relation (Traxl et al., 2021), which is based on thermodynamic relations and hence can be
expected to be modelled well in GFDL-ESM4.

4.4 Quantile mapping-based bias adjustment

We compare the performance of our GAN-based method to the bias adjustment method
ISMIP3BASD v3.0.1 (Lange, 2019, 2022) that has been developed for phase 3 of the Inter-
Sectoral Impact Model Intercomparison Project (Warszawski et al., 2014; Frieler et al.,
2017). This state-of-the-art bias-adjustment method is based on a trend-preserving quantile
mapping (QM) framework. It represents a very strong baseline for comparison as it has
been developed prior to this study and used not only in ISIMIP3 but also to prepare many
of the climate projections that went into the Interactive Atlas produced as part of the 6th
assessment report of working group 1 of the Intergovernmental Panel on Climate Change
(IPCC, https://interactive-atlas.ipcc.ch/). In QM, a transformation between the cumulative
distribution functions (CDFs) of the historical simulation and observations is fitted and then
applied to future simulations. The CDFs can either be empirical or parametric, the latter
being a Bernoulli-gamma distribution for the precipitation in this study. The CFDs are
fitted and mapped for each grid cell and day of the year separately. For bias-adjusting the
GFDL-ESM4 simulation, parametric QM was found to give the best results, while empirical
CDFs are used in combination with the GAN.

To evaluate the methods in this study we define the grid cell-wise bias as the difference
in long-term averages as,

Bias(ŷ, y) =
1

T

T∑

t=1

ŷt −
1

T

T∑

t=1

yt, (9)

where T is the number of time steps, ŷt and ŷt the modelled and observed precipitation
respectively at time step t.

4.5 Evaluating spatial patterns

Quantifying how realistic spatial precipitation fields are is an ongoing research question
in itself, which has become more important with the application of deep learning to weather
forecasting and post-processing. In these applications, neural networks often achieve error
statistics and skill scores competitive with physical models, while the output fields can
at the same time show unphysical characteristics, such as blurring or excessive smoothing.
Ravuri et al. (2021) compare the spatial intermittency, which is characteristic of precipitation
fields, using the power spectral density (PSD) computed from the spatial fields; in the latter
study, the PSD-based quantification was complemented by interviews with a large number
of meteorological experts. We propose the fractal dimension of binary precipitation fields
as an alternative to quantify how realistic the patterns are.

We compute the fractal dimension via the box-counting algorithm (Lovejoy et al., 1987;
Meisel et al., 1992). It quantifies how spatial patterns, for example coastlines (Husain et
al., 2021), change with the scale of measurement. The box-counting algorithm divides the
image into squares and counts the number of squares that cover the binary pattern of
interest, Nsquares. The size of the squares, i.e. the scale of measurement, is then reduced
iteratively by a factor s. The fractal dimension Dfractal can then be determined from the
slope of the resulting log-log scaling, i.e.,
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Dfractal =
log(Nsquares)

log(s)
. (10)
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Figure S1. Bias maps as in Fig. 2 but with the 95th percentile instead of the mean.

Global mean absolute errors (MAEs) are given in the respective titles. Combining the GAN with

ISIMIP3BASD achieves the lowest error compared to the other methods.
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Figure S2. Qualitative comparison of precipitation fields at the same date (December 21st

2014) over the South American continent. The region is used for a comparison of the fractal

dimension in binary precipitation patterns.
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4 Conclusion

This thesis investigates methods from deep learning in computer vision and
image processing to post-processing tasks of precipitation simulations ranging
from short-term weather to climate time scales. According to the nature of
the training data and post-processing objective, suitable learning strategies
are applied.

In weather prediction, the numerical forecast and the observational ground
truth follow similar trajectories where the resulting paired training samples
allow a supervised learning approach.

For climate projections, the chaotic nature of the atmosphere leads to
unpaired samples on short time scales of daily weather. Hence, unsupervised
learning approaches for unpaired samples are particularly suitable. Addition-
ally, model interpretability and physical constraints become important for
reliable predictions outside the training distribution.

4.1 P1 | Post-processing rainfall forecasts with deep
neural networks

4.1.1 Main outcomes

Publication P1 developed a deep learning-based post-processing method to
improve numerical weather predictions of rainfall, with an emphasis on
extreme events. Ensemble mean forecasts with lead times up to 12 hours
and three-hourly time steps are taken from the Integrated Forecast System
(IFS) (European Centre for Medium-Range Weather Forecasts, 2012) with
near-global coverage and a high spatial resolution of 0.5° horizontally. As
ground truth, the satellite-based TRMM 3B42 V7 product (Huffman et al.,
2007) is taken with the same resolution. The relatively high resolution in
time and space is particularly important to resolve localized heavy rainfall
events.

We apply a convolutional U-Net with a new loss function suitable for
the characteristics of spatial rainfall patterns. Regarding the main research
questions of this thesis (see section 1.4), the main results in the weather
forecasting context are the following.

Q1 | Improved spatial patterns of precipitation The loss function for the
CNN training includes a multi-scale structural similarity index measure (Wang
et al., 2003), which is sensitive to blurring in images to improve the sharp-
ness of the CNN output. We evaluate the CNN-processed spatial rainfall
patterns with a complex wavelet-based extension of the SSIM (Sampat et al.,
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2009) that is invariant to small rotations and translations, i.e., quantifies
the similarity of spatial patterns without penalizing small deviations in their
position. We find that the CNN-based post-processing leads to improved
spatial patterns.

Q2 | Learning the distribution of precipitation extremes To learn the
strongly skewed distribution of precipitation, a weighted mean-squared error
is added to the loss function, where the weights exponentially increase with
the rainfall amount. Thus, rare events with large rainfall sums are emphasised
during training.

The loss function enables the CNN to correct the frequency distributions
over all precipitation values far into the upper distribution tail. A comparable
skill to quantile mapping (Déqué, 2007; Cannon et al., 2015), which is
specifically designed to correct distributions, is achieved by the CNN.

Q3 | Increased forecast skill of rare rainfall events Vertical wind velo-
cities across eleven pressure levels that can be linked to precipitation via
updrafts and convection are used as additional input features. The CNN
architecture and loss function are suitably chosen for the multi-scale nature
of precipitation patterns.

We evaluate the performance with continuous evaluation metrics over the
entire range of rainfall values and find that the IFS forecast skill is strongly
improved by the CNN-based post-processing. Further, common categorical
skill scores are used to evaluate predictions of heavy rainfall events that show
an enhancement of the IFS forecast skill by the CNN of factors between 2 to
above 6, depending on the percentile threshold. The here-developed method
outperforms several baseline ML models and quantile mapping.

4.1.2 Context

Post-processing of numerical weather forecasts is very suitable for supervised
machine learning tasks, given the large amounts of paired samples available
for training. Modern ML methods can efficiently use spatial context, which is
not straightforwardly possible with classical statistical methods.

Before emerging ML methods can be integrated into the operational
weather forecasting chain, however, accurate and reliable predictions of
weather extremes, such as heavy rainfall events, that have a high impact
must be demonstrated (Watson, 2022).

To accurately predict extreme and rare rainfall events with neural net-
works, different approaches have been taken. The authors in Shi et al.
(2017); Franch et al. (2020b) use a weighted mean squared error loss func-
tion, where the weights are based on selected threshold values. Ebert-Uphoff
and Hilburn (2020) use exponential weights similar to our study for es-
timating radar composite reflectivity from satellite images. Purely neural
network-based predictions of temperature extremes have also been found

114



4. Conclusion

to benefit from an exponential weighting of the MSE (Lopez-Gomez et al.,
2022) following the softmax-based approach of Qi and Majda (2020).

The structural similarity index measure (SSIM) has been used for now-
casting problems (Tran and Song, 2019; Grönquist et al., 2020). Grönquist
et al. (2020) apply a supervised U-Net, similar to ours, to ensemble post-
processing and find that the network was able to improve predictions of
tropical cyclones. Hence, our approach builds on these findings by combining
the weighted MSE with multi-scale SSIM in a single loss function.

Recently generative adversarial networks have shown great potential for
probabilistic rainfall nowcasting and downscaling (Ravuri et al., 2021; Har-
ris et al., 2022; Price and Rasp, 2022), with the ability to produce sharp
forecast fields. In particular, Ravuri et al. (2021) apply a weighted mean
error regularization term in the generator loss to ensure that the predictions
follow the ground truth closely; however, a degradation of heavy rainfall
predictions for longer lead times was found. This highlights the need for
further developments in this field with respect to extremes.

4.1.3 Outlook

While there have been promising advances in learning extreme weather
events with deep neural networks, there remains room for improvements
(Watson, 2022).

For nowcasting applications with lead times of minutes to a few hours,
purely data-driven methods have shown comparable or better performance
with traditional process-based methods (Ravuri et al., 2021). For longer
lead times, e.g., medium-range predictions between days to weeks, global
numerical models still largely outperform deep learning forecast models
(Rasp and Thuerey, 2021; Schultz et al., 2021; Pathak et al., 2022) and
some have questioned that the amount of training data will become sufficient
for this tasks in the foreseeable future (Rasp and Thuerey, 2021; Palmer,
2022). Therefore, completely replacing the NWP forecast chain with a single
neural network “end-to-end” is unlikely to be realized in the near future.
A combination of numerical simulation and post-processing will thus likely
remain the leading forecast method. Several promising directions exist to
build on and extend the work in publication P1.

Learning extremes Our research investigates, besides the model architec-
ture and suitable predictors, particularly the design of a loss function to
enable the neural network to learn extremes in the target distribution’s tail.
Besides using weights in the loss function, different sampling strategies can
also be applied to counterbalance the skewed distribution of precipitation,
i.e., by giving a higher probability to samples containing extremes (Ravuri
et al., 2021). This is particularly suitable for regional forecasts, e.g., over
single countries that might not have any or very small rainfall amounts for
some of the training samples. In this setting, one could also use training
data outside the target region to increase the training sample size. A third
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approach to improve the learning of extremes is the development of suitable
transformations, e.g., using extreme value theory (Boulaguiem et al., 2022).

Probabilistic post-processing Current operational NWP forecast use en-
semble runs with perturbed initial conditions to quantify the state-dependent
forecast uncertainties (Palmer, 2019). Post-processing can accordingly be
extended from deterministic to probabilistic methods to improve the resulting
forecast ensemble distribution (Gneiting et al., 2005, 2007). The study in
publication P1 so far only corrects the rainfall forecast in a deterministic
setting but can, in principle, also be extended to the probabilistic forecasts.

One possibility would be to process each ensemble member forecast indi-
vidually with the U-Net model and train it with a loss function that evalu-
ates the resulting post-processed ensemble with a scoring rule, such as the
Continuous Ranked Probability Score (CRPS), before back-propagating the
gradient. Scoring rules such as the CRPS can be extended to include weights
emphasising parts, such as tails, of the distribution (Gneiting and Ranjan,
2011; Lerch and Thorarinsdottir, 2013; Lerch et al., 2017). Alternatively, a
single network can be used that takes the entire ensemble prediction as input
and learns a mapping to an output distribution in the form of a histogram
or parametric distribution (Schulz and Lerch, 2022).

Results from Ravuri et al. (2021); Harris et al. (2022) have demonstrated
the ability of generative adversarial networks to generate skillful probabilistic
forecast distributions. Hence, further research in this direction would also
benefit from the findings in publications P2 and P3 that GANs can generate
sharp predictions that resolve small-scale precipitation features.

Evaluation A thorough evaluation of the trained model is particularly im-
portant for extreme events. Watson (2022) provides a summary of evaluation
techniques that can be applied in this context, such as quantile-quantile plots,
error statistics only for extreme events, and reporting their return periods. An
interesting problem in this context is how ML methods respond to extreme
events not encountered during the training. Further research is also necessary
for quantifying how useful deep learning-based predictions are to end users
since the model might achieve state-of-the-art evaluation scores while produ-
cing physically unrealistic forecasts at the same time (Ravuri et al., 2021).
The question of how to quantify the physical “realisticness” of spatial fields
is also relevant in the climate modelling context.

4.2 P2 and P3 | Generative models for improving
precipitation fields from Earth system simula-
tions
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4.2.1 Main outcomes

For post-processing precipitation output from Earth system model simula-
tions that run over climate time scales, publications P2 and P3 apply cycle-
consistent generative adversarial networks (CycleGANs) (Zhu et al., 2017).
Instead of designing a suitable loss function manually, as in P1, the unsu-
pervised CycleGAN learns to improve spatial patterns and distributions in
two-player games between generator and discriminator networks. In particu-
lar, the ability of CycleGANs to train with unpaired training samples makes
them a very suitable choice for processing climate simulations that do not
follow the observation-based reanalysis ground truth.

In publication P2, a CycleGAN is trained on daily precipitation fields from
the low-resolution CM2Mc–LPJmL ESM (Drüke et al., 2021) and the ERA5
reanalysis (Hersbach et al., 2020) ground truth.

We extend the method developed in P2 with publication P3 in two re-
gards: (i) we apply our method to comprehensive high-resolution GFDL-ESM4
(Krasting et al., 2018) simulations, e.g., that are also used in practice to
inform policymakers (IPCC, 2021) and (ii) we compare it to the state-of-the-
art post-processing framework ISIMIP3BASD (Lange, 2019) that has been
developed outside this study and hence represents a strong baseline for com-
parisons. We also show in P3 how the strength from both methods - QM and
GAN - can be combined to obtain the overall best results.

The main contributions are summarized in the following.

Q1 | Improved spatial patterns of precipitation The CycleGAN in P2 and
P3 can translate the overly smooth and blurry climate simulations into much
sharper fields, s.t. the characteristic intermittency of the spatial patterns is
visually indistinguishable from the observation-based reanalysis ground truth.

We evaluate the spatial fields using power spectral densities and, in
P3, the fractal dimension that both capture the characteristic small-scale
variability and intermittency in spatial precipitation patterns.

The CycleGANs strongly outperform the QM baselines on the correction
of spatial patterns.

Q2 | Learning the distribution of precipitation extremes The CycleGAN
corrects the relative frequency distributions from the ESM s.t. they closely
match the ground truth, including extremes in the upper tail.

It achieves comparable or better results than the quantile mapping baseline
on low-resolution simulations from the CM2Mc–LPJmL ESM (P2). Using com-
prehensive high-resolution Earth system simulations (GFDL-ESM4), the same
method performs comparably to a state-standard bias correction framework
(ISIMIP3BASD) (Lange, 2019). Here, the constrained CycleGAN exhibits lar-
ger biases than the unconstrained network while still improving the ESM
simulations significantly. Combining the ISIMIP3BASD method with the con-
strained CycleGAN results in a better performance than either method alone.
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Q4 | Realistic and efficient climate simulations of precipitation The results
from Q1 and Q2 show that CycleGANs are able to make climate simulations
much more realistic by correcting spatial patterns on short (daily) time scales
and temporal distributions on long (decadal) time scales.

Adding a constraint layer that rescales the output of the CycleGAN to
preserve the global ESM precipitation sum per time step is shown in P2 to
enable a generalization to out-of-sample predictions in an extreme CMIP6
warming scenario (SSP5-8.5). The constraint ensures consistency with the
large-scale hydrological cycle in the simulation and enables the CycleGAN to
capture trends in global mean precipitation as expected from thermodynamic
considerations (Traxl et al., 2021).

Finally, SmoothGrad (Smilkov et al., 2017), a gradient-based interpretab-
ility method, is used in P2 as a sensitivity analysis of the discriminator
network. It reveals that a region in the western Pacific Ocean in the input is
most important for distinguishing between real and generated precipitation
fields. This geographical region also coincides with the largest ESM bias and
average precipitation rates, making it a physically reasonable choice (Tian
and Dong, 2020).

4.2.2 Context

Publications P2 and P3 show the similarity between ESM bias correction and
unpaired image-to-image (I2I) translation tasks in deep learning. Concurrently
with our study, François et al. (2021) showed that CycleGANs can correct
biases in the temperature and precipitation output of a regional climate
model over France. The advantage over classical statistical approaches is that
spatial patterns can additionally be corrected, besides temporal distributions.

In deep learning, unpaired I2I translation has gained a lot of interest
leading to steady improvements over the past years. The CycleGAN archi-
tecture (Zhu et al., 2017) was one of the first to demonstrate skillful I2I
translation with unpaired samples and established the cycle-consistency loss
to enforce a bijective mapping between both domains (Yi et al., 2017; Liang
et al., 2018; Gokaslan et al., 2018; Tang et al., 2019; Torbunov et al., 2022).
A different approach to unpaired I2I translation has been taken with vari-
ational autoencoders (VAs) that learn a shared intermediate representation,
e.g., with the UNIT model (Liu et al., 2017; Huang et al., 2018). Fulton
and Clarke (2021) use the UNIT method to correct biases in an ESM from
CMIP6, showing promising results. Diffusion-based extensions have gained
in popularity recently and might be a promising alternative to GANs (Sasaki
et al., 2021; Zhao et al., 2022).

The interpretability methods for neural networks have also attracted much
attention in recent years in the deep learning community (Montavon et al.,
2018; Molnar et al., 2020). However, they have so far only been applied
to supervised learning tasks in the Earth system science context (to my
knowledge) (Ham et al., 2019; McGovern et al., 2019; Toms et al., 2020;
Ebert-Uphoff and Hilburn, 2020; Rasp and Thuerey, 2021).
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The non-stationarity of the Earth’s climate and the central out-of-sample
problem when training machine learning models on historical data are often
overlooked. However, the problem has been addressed in sub-grid scale
parameterization emulators by enforcing hard constraints on the model ar-
chitecture (Beucler et al., 2021a) or rescaling target variables to make them
invariant to changes in temperature (Beucler et al., 2021b).

4.2.3 Outlook

There are several promising directions to extend the CycleGAN-based ESM
post-processing in future projects. Extensions to downscaling tasks, different
model architectures and ESM integration are briefly outlined in the following.

Multivariate downscaling The bias correction is only applied to precipit-
ation in P2 and P3, as it is very challenging to model and because of its
large impact. Extending the method to multiple variables should be technic-
ally straightforward with convolutional architectures, e.g., by stacking the
variables similar to colour channels in RGB images.

Combining the bias correction task with downscaling that increases the
ESM resolution is another possible extension, where the unpaired nature of
training data has only received limited attention (Saha and Ravela, 2022;
Cheng et al., 2022), with the exception of Ballard and Erinjippurath (2022)
(to my knowledge). Suppose this approach proves to be successful, and
high-resolution fields of multiple variables that are physically consistent can
be created with generative models. In that case, data-driven methods might
eventually be able to compete with process-based regional climate models
on downscaling ESM output. A requirement, however, is the availability of
sufficiently high-resolution and comprehensive target training data.

Model architectures The CycleGAN has been developed for translating two-
dimensional image data, where pixels are equally spaced. The spherical
geometry of the Earth, typically represented in terms of latitude-longitude-
coordinates, needs to be projected onto the flat image structure. This causes
the image pixels to correspond to physical grid cells of changing size depend-
ing on the latitude. Thus another direction for future research could be the
adoption of convolutional architectures that are more suitable for spherically
structured data (Perraudin et al., 2019; Keisler, 2022; Scher and Messori,
2021).

Vision transformer (ViT) networks (Dosovitskiy et al., 2021) have been
used to extend the CycleGAN architecture and found to improve the perform-
ance for unpaired image-to-image translation (Torbunov et al., 2022). Given
the results of the ViT-based FourCastNet (Pathak et al., 2022) for purely
data-driven weather predictions, this could be another promising direction to
improve the performance of our method.
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ESM integration Another direction could be integrating the generator net-
work into an ESM as a model component that bias-corrects variables during
an ESM run. This could be implemented in two “modes”. The first would
serve as an “online” post-processing using the network trained in P2. The
second mode would close the feedback loop between GAN and ESM by cor-
recting variables inside the ESM. To increase the stability of the resulting
hybrid ESM, the GAN training should be continued during the integration of
the hybrid model.

4.3 Future developments

To summarize, there are several key challenges in the application of deep
neural networks to weather prediction and climate modelling:

1. Extreme events: Weather extremes are challenging to model due to
the rare occurrence. At the same time, the high impact and potentially
devastating consequences of false predictions require reliable forecasts.
Hence, deep learning approaches must demonstrate skillful predictions
of such events before they can be employed in real-world applications.
The work in P1−3 shows how suitable loss functions can enable DNNs
to improve the learning of such extremes.

2. Generalization: The generalization to out-of-sample predictions is im-
portant for weather prediction and especially for climate modelling.
In the former, weather events might not be included in the training
data due to the limited period where observations are available. In
the context of modelling the Earth system under anthropogenic global
warming, the non-stationary system leads to out-of-sample predictions
when using observational data for training. Since the climate change
signal is relatively weak in this period, trends might not be captured
accurately. Further, extreme climatic events such as the tipping of entire
Earth system components might lead to drastic changes where ESM
corrections with respect to historical observations are more difficult to
motivate. While this remains an open question, the results of P2 and
P3 suggest that suitable constraints show one direction to tackle this
out-of-sample problem to capture trends in future climate scenarios.

3. Physical consistency: Data-driven models, such as DNNs, should not
violate fundamental physical laws, such as conservation of energy and
mass, or the positivity of quantities like precipitation. This is particularly
important for the generalization to unseen future climates, where a
ground truth for evaluation might not be available. Hence, the reliability
of the projection is largely based on the physical consistency of the
model. Physical constraints, as applied in P2 and P3, can help the
neural network to follow conservation laws even in climate regimes
unseen during training. Physical consistency is also relevant when
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modelling multiple variables. While dynamical process-based models are
physically consistent by construction, data-driven methods might fail to
learn the inter-variable relation from the data.

4. Transparency: To gain insights into whether deep learning models
make predictions for the correct physical reasons, interpretability and
explainability methods, as applied in P2 can be used. These methods are
particularly important for predicting weather extremes and projections
to unseen climates, where the reliability of the method is crucial.

5. Unpaired samples: Specifically for training DNNs on observational data
and long ESM climate runs, unpaired samples that arise from the chaotic
nature of the atmosphere pose a challenge for common supervised
learning approaches. Since the DNN’s prediction and the target ground
truth cannot be compared pixel-wise, unsupervised generative models,
as applied in P2 and P3, have been found to be a suitable alternative.
Besides the DNN training, unpaired model prediction and ground truth
data also require new metrics for evaluation, e.g., to assess how realistic
spatial patterns are.

The challenges outlined above have so far not been solved entirely. Still,
recent work in this field (see previous context sections) and results from
this thesis suggest that tools from deep learning are flexible and effective for
tackling these. The similarities between domains of deep learning and Earth
sciences, such as computer vision and image processing tasks, on the one
hand, and post-processing of weather and climate simulations, on the other,
offer promising synergies.

Deep learning-based image generation and synthesis have recently gained
a lot of attraction, with generative models winning art contests1. It thus can
be expected that advances in this fast-developing field will help to improve
methods tackling similar challenges in ESM post-processing.

By increasing the resolution of ESMs down to kilometer scales where
atmospheric convection can be resolved, the need for parameterizing un-
resolved processes will be reduced (Palmer and Stevens, 2019). However,
processes that are crucial for precipitation act on micro-physical scales and
hence can not be expected to be explicitly resolved numerically in the near
future. Therefore, post-processing will likely be required for future ESM
generations, particularly for simulations over climate timescales where the
high resolution used in state-of-the-art weather forecasts is computationally
prohibitive.

New generations of weather and climate models are being developed in
modern programming languages such as Python or Julia (Schneider et al.,
2017a; Häfner et al., 2021; Bauer et al., 2021; Ben-Nun et al., 2022), which
will improve software interfaces and heterogenous hardware support for com-
bining data-driven methods with numerical process-based models. Therefore,

1https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html
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the integration of these two approaches can be expected to grow in the
future (Schultz et al., 2021; Irrgang et al., 2021).
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