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Summary 

Macrocyclic inhibitors are an interesting class of therapeutics that are yet to be fully 

understood. Due to the structural constraint of their characteristic ring scaffold, the 

bound conformation of such ligands is often locked, increasing target specificity while 

lowering entropic binding costs. Despite exceeding the typical rule-of-5 space, some 

macrocycles obtain decent oral bioavailability through passive membrane permeability, 

attributed to environment-dependent conformational changes of the ring. These 

promising features contribute to their therapeutic potential. However, macrocycles 

proved to be challenging for computational modeling, particularly for structural methods 

like ligand conformational sampling and during pose generation of molecular docking 

calculations. Such methods must precisely reproduce the complex dynamics and 

flexibility of the macrocyclic ring for accurate structural description. Due to the 

interdependence of ring torsions, many sampling and docking algorithms exclude such 

moieties by default, leaving the ring conformation unaltered. Without compensation, 

these techniques fail to correctly represent the ligands conformational space, introducing 

computational artifacts and structural errors. In this work, a suitable strategy for 

combined conformational sampling and molecular docking of macrocycles was developed. 

The workflow is based on molecular dynamics simulations and includes a separate 

conformational sampling step before the actual docking procedure. In these simulations, 

the macrocycle conformational space was exhaustively explored employing optimized 

sampling conditions. To extract a subset of ring structures including near bioactive states, 

a classification scheme based on the sampled dihedral angles of ring torsions was 

developed for in-depth conformational analysis. Such conformer ensembles were then 

subjected to flexible receptor docking calculations performed with DynaDock to 

compensate the lack of ring flexibility during pose generation. Every initial pose was 

subsequently refined by optimized potential molecular dynamics simulations, allowing 

for the dynamic adaption of binding partners. This pipeline was tested in detailed case 

studies and evaluated in a benchmark study including 20 diverse macrocycles and their 

host proteins in bound and unbound states. It could be shown that with this dynamics-

based approach highly accurate binding poses could be obtained, thereby overcoming 

major structural challenges in molecular modeling of macrocycles. 
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Zusammenfassung 

Makrozyklische Inhibitoren sind eine interessante Klasse von Therapeutika, die in ihrer 

Vollständigkeit noch nicht verstanden sind. Aufgrund der charakteristischen 

Ringstruktur, die eine konformative Einschränkung darstellt, ist die gebundene Form 

solcher Liganden oft fixiert, was die Spezifizität zum Zielprotein erhöht und gleichzeitig 

die entropischen Bindungskosten senkt. Obwohl sie die Grenzen der Rule of Five 

(Faustregel für die orale Bioverfügbarkeit chemischer Substanzen) meist überschreiten, 

weisen manche Makrozyklen eine hohe orale Bioverfügbarkeit durch passive 

Membranpermeabilität auf, welche der umgebungsbedingten Anpassung der 

Ringstruktur zugeschrieben werden kann. Solche vielversprechenden Eigenschaften 

machen das therapeutische Potenzial der Makrozyklen aus. Für die 

Computermodellierung, insbesondere für strukturbasierte Methoden wie das 

konformative Sampling und die Platzierung des Liganden in der Proteinbindetasche 

(molekulares Docking), stellen sie jedoch eine besondere Herausforderung dar. Für eine 

exakte strukturelle Darstellung von Makrozyklen ist es notwendig, dass solche Methoden 

die komplexe Dynamik und Flexibilität des Rings berücksichtigen. Aufgrund der 

gegenseitigen Abhängigkeit von Ringtorsionen schließen viele Sampling und Docking 

Algorithmen die Ringstruktur automatisch aus und lassen somit die Konformation des 

Rings unverändert. Ohne einen entsprechenden Ausgleich können solche Methoden den 

Konformationsraum dieser Liganden nicht korrekt darstellen, was zu Rechenartefakten 

und Strukturfehlern führt. In dieser Arbeit wurde eine geeignete Strategie für die 

molekulare Modellierung von Makrozyklen entwickelt. Sie basiert auf Molekulardynamik 

Simulationen und beinhaltet ein separates Konformations-Sampling des Liganden vor 

dem eigentlichen Docking Schritt. Mit speziell für Makrozyklen optimierten 

Simulationsbedingungen konnte der Konformationsraum hinreichend gesampelt werden. 

Außerdem wurde ein torsionsbasiertes Klassifikationsverfahren entwickelt, um die 

erzeugten Konformationen im Detail zu analysieren und ein Ensemble an Ringstrukturen 

zu extrahieren, welches auch den gebundenen Zustand erfasst. Die Strukturen des 

Ensembles wurden dann als Startstrukturen für Docking Simulationen verwendet, die mit 

DynaDock durchgeführt wurden. Dadurch konnte der Mangel an Flexibilität des Rings, 

dessen Konformation während der Erzeugung von Bindeposen nicht verändert wurde, 

kompensiert werden. Die Molekulardynamik jeder Pose wurde anschließend unter 

Verwendung optimierter Potenziale simuliert, um eine dynamische Anpassung der 
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Bindungspartner zu ermöglichen. Diese Pipeline wurde in detaillierten Fallstudien 

getestet und in einer Benchmark-Studie mit 20 verschiedenen Makrozyklen und ihren 

Wirtsproteinen in gebundenem und ungebundenem Zustand evaluiert. Durch diesen 

dynamikbasierten Ansatz konnten die entsprechenden Bindungspositionen mit hoher 

Genauigkeit bestimmt und somit einige strukturelle Herausforderungen der molekularen 

Modellierung von Makrozyklen überwunden werden. 
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1. Introduction 

According to the International Union of Pure and Applied Chemistry, a macrocycle (MC) 

is a cyclic macromolecule or a cyclic portion of a macromolecule, but the term is also used 

to describe cyclic molecules of low molecular mass[1]. Often conventionally defined as 

molecules with at least 12 ring atoms[2], the official definition, however, which is followed 

throughout this work, does not specify a minimum ring size for MCs. A steadily growing 

research interest in MCs, as illustrated in Figure 1, reflects their emerging significance in 

science. The plot shows the PDB* and PubMed† text search results for entries including 

the terms “macrocycle” or “macrocyclic” in groups of 5 years, as well as cumulatively since 

1975, and elucidates a continuous increase in available structural data and scientific 

citations until today. The importance of MCs as a new class of therapeutics was fueled by 

successful clinical trials of natural products (NPs) in the 1990s. Compounds like sirolimus 

(rapamycin) and tacrolimus (FK506), which are included in the following, were approved 

for medical use shortly thereafter[3].  

 
* Protein Data Bank, https://www.rcsb.org/ 
† https://pubmed.ncbi.nlm.nih.gov/ 

Figure 1. Entries in the PDB and PubMed databases including “macrocycle” or “macrocyclic” in groups of 5 
years (columns, right axis) and their cumulative entries since 1975 (lines, left axis). 
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1.1. Examples of macrocycles in nature and their therapeutic use 

All example NPs introduced in this section were computationally investigated in this work. 

A substantial overview of molecules is provided in “Macrocycles in Drug Discovery” by 

Jeremy Levin[4] and “Practical Medicinal Chemistry with Macrocycles” by Eric Mersault 

and Mark Peterson[5]. Natural MCs are secondary metabolites originating from plants 

and microbes[2]. Their complex structures exhibit antagonistic function and thus provide 

evolutionary advantage for the host. In fact, their existence and production via 

sophisticated biosynthesis pathways favored the hypothesis that the presence of 

secondary metabolites is intended rather than coincidental[6, 7].  

Molecules of the ansamycin class consist of an aromatic moiety such as benzene or 

naphthalene, or derivatives thereof, that is incorporated in a MC ring. The benzoquinone 

ansamycin geldanamycin (GDM, Figure 2A), a secondary metabolite of the soil bacterium 

Figure 2. A) 2D structures of macrocyclic Hsp90 inhibitors geldanamycin (GDM) and derivatives. B) Crystal 
structure of the nucleotide binding site of Hsp90 bound by ADP (PDB-ID: 1AM1) and in two unbound forms 
with open and closed L2 loop (1YES and 1YER, respectively). C) Same as A) for radicicol (RDC) and the 
derivative c-RDC. D) Same as B) bound by GDM (1YET), RDC (1BGQ) and 17-DMAG (1OSF). Secondary 
structure labeling according to Stebbins et al[10]. 



3 

Streptomyces hygroscopicus var. geldanus with antimicrobial activity was first 

characterized in 1970[8]. Its antiproliferative effects were demonstrated in 1994, as 

oncogenic cellular transformations caused by tyrosine kinases, could be indirectly 

reversed by GDM by inhibiting the heat shock protein 90 (Hsp90), a chaperone assisting 

the proper maturation and refolding of cell-cycle regulating protein kinases and other 

proto-oncogenic client proteins[9]. Figure 2B shows the nucleotide binding cleft in the 

N-terminal domain of Hsp90, characterized by the flexible L2 loop. GDM targets this 

binding site, thereby altering ATPase activity, and ultimately, chaperone function, which 

results in the degradation of Hsp90 substrates and indirect cell death[10, 11]. 

Radicicol (RDC, Figure 2C), a natural macrolide also known as monorden, exhibiting 

antifungal properties and produced by the fungus Monosporium bonorden[12], is another 

MC inhibitor of Hsp90, and like GDM, a potential candidate as antitumor therapeutic. The 

binding affinity of RDC for the same ATP binding site of Hsp90 is significantly stronger 

than that of GDM, with a Kd = 19 nM (Kd = 1200 nM for GDM), making it the most potent 

MC inhibitor among NPs[13]. Despite their promising antitumor activity in vitro, 

undesirable effects in vivo prevented both compounds from further proceeding to clinical 

testing. For GDM, the characteristic quinone moiety proved to be redox-active, producing 

superoxide radicals that led to fatal cell damage unrelated to Hsp90 inhibition[14]. 

Moreover, GDM caused hepatotoxicity, which was attributed to the electrophilic 

quinonimine species, obtained through oxidative metabolism, depleting detoxifying 

hepatic glutathione reservoirs, and eventually reacting with biomolecules[15, 16]. 

Attempting to improve the in vivo profile, structural modifications targeting position 17 

in the quinone ring of GDM replaced its methoxy group with an allylamine moiety 

producing 17-AAG* (tanespimycin). Among many derivatives, 17-AAG proved to be the 

most potent with comparable antiproliferative effects as GDM on some cancer cell 

lines[17]. Additionally, 17-AAG showed increased inhibitory activity and stability in vivo 

compared to the parent compound[18]. Another promising derivative with a similar 

biological profile as 17-AAG but with improved aqueous solubility was 17-DMAG † 

(alvespimycin)[19]. Although both analogues entered clinical trials, adverse effects 

eventually led to their discontinuation. Figure 2D illustrates that both NPs and the 

derivative 17-DMAG indeed bind the same binding site in the open L2 state. However, 

 
* 17-allylamino-17-demethoxygeldanamycin 
† 17-dimethylaminoethylamino-17-demethoxygeldanamycin 
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GDM and RDC fill the cleft to different extents. Exemplarily for RDC, the epoxide moiety is 

prone for nucleophilic attack, inactivating the compound in vivo. A metabolically stable 

derivative is cycloproparadicicol (c-RDC), where the epoxide is replaced by a cyclopropyl 

ring. This functional group retains the strain on the MC scaffold, pre-determining the MC 

ring conformation that is crucial for recognition. Although the epoxide in RDC is involved 

in hydrogen bonding with the binding site of Hsp90, this interaction only stabilizes the 

bound complex and is not essential for its activity. Thus, c-RDC remains potent with a 

bearable drop in affinity[20]. 

Figure 3. Immunosuppressive MCs. 2D structures of A) rapamycin (or sirolimus) and rapalogs (everolimus 
and temsirolimus) and B) FK506 (tacrolimus or fujimycin). C) Crystal structures of bound FK506 (PDB-ID: 
1FKF) and rapamycin (1FAP) in complex with their immunophilin target FKBP, superimposed on the apo 
protein (1FKK). For the rapamycin-bound complex, the FRAP domain of the effector protein complex was 
co-crystallized. D) 2D structure of cyclic peptide cyclosporin A, labeling according to Loosli et al[60]. 
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Another interesting approach for designing improved Hsp90 ligands was a combination 

of both RDC and GDM scaffolds, producing the chimeric inhibitor randamycin. This 

derivative proved to be biologically active, as shown by the degradation of Hsp90 clients 

in breast cancer cells and serves as a promising class of potential Hsp90 inhibitors, with 

new options for structural variations[21, 22]. 

The same bacterium that produces GDM also builds the antibiotic rapamycin (RAP, 

sirolimus, Figure 3A). This macrolide was first discovered in 1975 and exhibits antifungal 

properties[23]. However, in mammalian cells, RAP demonstrated immunosuppressive 

and antiproliferative effects[24]. The structurally related MC FK506 (tacrolimus or 

fujimycin, Figure 3B) produced by Streptomyces tsukubaensis competes with RAP for 

binding the immunophilin FK506-binding protein (FKBP, also FKBP12), a cytosolic 

cis/trans isomerase that catalyzes the rotation of amide bonds in peptidyl proline 

residues. Both NPs are strong inhibitors with sub-nanomolar binding affinities (Kd = 0.2 

and 0.4 nm for RAP and FK506, respectively) and share the consensus binding motif, an 

α-keto homoprolyl amide (highlighted in red). Figure 3C illustrates the alignment of this 

group in the bound complexes, proving identical binding modes.  

However, the sole inhibition of FKBP’s rotamase activity could not be the reason for the 

compounds’ immunosuppressive effects, evidenced by the fact that although binding the 

same cytosolic protein, both MCs seem to affect T-cell activation in different ways. This 

led to the hypothesis that the two molecules act as pro-drugs that form a gain-of-function 

complex with FKBP, which subsequently interacts with distinct signaling pathways 

involved in T-cell activation[25]. FK506-FKBP inactivates calcineurin, a cytosolic Ca2+ 

calmodulin-dependent serine/threonine phosphatase that activates NFAT (nuclear factor 

of activated T-cells), a transcription factor which initiates cytokine production. Thus, 

FK506 is associated with calcium dependent signaling and early events of antigen-

induced activation of T-cells[26, 27]. In contrast, the RAP-FKBP complex allosterically 

binds the serine/threonine kinase mTOR (mechanistic target of rapamycin) as part of 

mTORC1 (mTOR complex 1), a multi-protein master regulator of the mTOR signaling 

pathway. mTORC1 is responsible for sensing environmental signals such as growth 

factors, nutrients, stress, energy and oxygen levels and reacts accordingly by 

phosphorylating and thus activating many downstream proteins, controlling cellular 

functions related to growth, macromolecule biosynthesis, cell cycle progression and 

metabolism[28]. In that way, RAP inhibits the cytokine-induced proliferation and 

antibody production of T- and B-lymphocytes without affecting lymphokine production 



6 

itself[27]. Additionally, RAP became a therapeutic candidate for cancer, where the mTOR 

pathway is de-regulated.  

As one of the first MC drugs of natural origin, RAP denotes an impressive clinical history 

counting multiple indications, thereby illustrating remarkable therapeutic versatility. Due 

to its strong immunosuppressive effects, RAP was first marketed for the prevention of 

organ transplant rejection under the brand name Rapamune®, approved by the U.S. Food 

and Drug Administration (FDA) in 1999[29] and by the European Medicines Agency (EMA) 

in 2001[30]. Furthermore, Rapamune® was also approved in 2015 (2018) by the FDA 

(EMA) against LAM*, a progressive lung disease. More recently, RAP was approved by the 

FDA under the brand name Fyarro®[31] for adults with advanced malignant or metastatic 

PEComa †  in 2021, and in 2022 as Hyftor™[32], the first topical formulation of RAP, 

indicated for facial angiofibroma associated with tuberous sclerosis. Analogs of RAP 

(called rapalogs), such as temsirolimus and everolimus (Figure 3A), approved by the FDA 

in 2007 and 2009, respectively, are used against several types of cancers[33, 34]. 

1.2. Characteristic features of macrocycles  

The central characteristic of all MCs, the large ring system, builds a structural scaffold that 

constrains the compounds overall molecular geometry, resulting in structurally pre-

organization of attached functional groups. This structural strain locks the bioactive 

conformation while concomitantly removing unfavorable conformations in solution. 

Thereby, the entropic barrier for target binding is lowered, improving the ligand’s binding 

affinity, thus lowering its effective dosage[2]. Moreover, the removal of unfavorable 

conformations generally reduces potential off-target interactions and toxicity, which 

leads to improved target specificity[35].  

Due to their structural topology and molecular size, MC compounds are not limited to 

classical inactivation of an enzyme’s active site. Their advanced binding modes enable 

unique possibilities of inhibition, tackling low-druggability targets with challenging 

binding sites like large, featureless surfaces and protein-protein interactions (PPIs) that 

cannot be targeted by typical small molecules[36, 37]. As demonstrated by the 

immunosuppressive MCs (Figure 3), the large ring scaffold features dedicated regions for 

binding and modulating different target proteins. While RAP and FK506 share the 

characteristic FKBP-binding motif, the opposing side differentiates between effector 

 
* Lymphangioleiomyomatosis 
† Perivascular Epithelioid Cell tumor (sarcoma) 
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proteins. In this way, MCs form complex intermolecular interactions facilitating the 

mediation of PPIs through sophisticated binding modes. Figure 4 shows MC inhibitors of 

the HCV NS3/4A protease, some of which are approved drugs (danoprevir and 

simeprevir). The shallow active site is highly surface-exposed and features multiple sub-

sites[38, 39]. Here, the MC ring acts as central anchor from which one (NHN), two (30B) 

or three (TSV, 9H4) substituents extend in different directions, covering a large area of 

the protein. Thereby, the compounds themselves form a surface-like topology, matching 

the protein’s shape. Such mode of action was also demonstrated for the NP erythromycin 

and its semi-synthetic derivatives clarithromycin and roxithromycin, approved antibiotic 

Figure 4. A) 2D structures of HCV NS3/4A protease inhibitors. B) Crystal structures of MC compounds 30B 
(PDB-ID: 3KEE), TSV (3M5L) and 9H4 (5VOJ) bound to the shallow surface-exposed binding site of the 
protease. Sub-sites on the protein surface are labeled according to Berger et al[39]. C) Crystal structure of 
bound NHN (2GVF), further demonstrating the sophisticated binding mode, stretching over large areas of 
the protein surface. 
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drugs. These MCs block the tunnel of the ribosomal peptidyl transferase of various 

bacteria through which nascent peptides exit the complex. By binding to the inner surface 

of its entrance, the pore is narrowed, and the release of synthesized peptides is prevented. 

This surface-modifying steric inhibition is distinct from the mode of action of non-cyclic 

inhibitors, which directly interact with the peptidyl transferase cavity[40]. 

Another aspect contributing to the therapeutic potential of some MCs is their decent oral 

bioavailability. Despite violation of Lipinski’s rule-of-5, a guideline for small drug-like 

molecules to avoid poor absorption and permeation[41], MCs can exhibit enhanced 

passive membrane permeability. What might seem counterintuitive at first can be 

attributed to the ring structure that changes conformation depending on the environment. 

In- and outside of the cell, hydrogen bond donors and acceptors are exposed to the polar 

surrounding, but form intramolecular hydrogen bonds when entering the lipid bilayer of 

the membrane, thus shielding polar functional groups[2]. Linear peptides, albeit great 

therapeutic potential, suffer from poor membrane permeability since their backbone 

amides cause a large conformation-averaged polar surface area. Furthermore, they are 

prone to rapid degradation inside the cell, unlike their cyclized counterparts that often 

exhibit proteolytic stability[42]. The peptidic MC cyclosporin A (CsA, Figure 3D) 

produced by the fungus Beauveria nivea, is a membrane permeable immunosuppressive 

drug targeting the intracellular cis/trans peptidyl-prolyl isomerase cyclophilin. Many 

Figure 5. Drug design from A) linear product-based peptides to B) MC inhibitors of HCV protease NS3/4A. 
Structural remains of the original DDIVPC peptide highlighted in orange. P1-P6 label moieties that bind to 
the corresponding subsites on the protease surface (see Figure 4B). Values for binding affinities and 
potencies according to Tsantrizos et al.[49], Llinàs-Brunet et al.[51] and LaPlante and Llinàs-Brunet[52]. 
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amide groups in CsA are N-methylated, while the remaining ones participate in 

intramolecular hydrogen bonds across the MC ring backbone in apolar environment[43]. 

This effect is known as chameleonicity and was more recently found in non-peptidic MC 

compounds[44]. Thus, new structural and physicochemical guidelines are needed for the 

chemical space beyond the rule-of-5 in order to purposefully design MC drug candidates 

with chameleonic properties[37]. 

BILN2061, a predecessor of TSV and related inhibitors (Figure 4A), is a great example for 

the design of a MC drug from a linear precursor (see Figure 5), that illustrates how 

macrocyclization improved pharmacodynamic and -kinetic properties. Initially, 

Figure 6. Conformational flexibility of MC ring structures comparing bound (orange) and unbound (cyan) 
crystal structures with their PDB and CSD identifiers, respectively, aligned on heavy atoms of the ring. A) 
geldanamycin (GDM). B) radicicol (RDC). Additionally, known unbound conformers L, P and L’ according to 
Moulin et al.[59], here qualitatively reproduced by Meixner et al.[104] in similar in silico studies. C) 
Cyclosporin A (CsA) aligned on backbone heavy atoms only showing the backbone (left) with the Cα-atoms 
as spheres and their corresponding residue number as in Figure 3D for orientation. Both conformations 
are separately shown on the right, additionally with their side chain heavy atoms as lines. Characteristic 
intramolecular hydrogen bonds in the unbound conformer (referring to the most dominant conformation 
in apolar solvent) indicated by dashed lines. 
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compound design was based on the N-terminal product peptide DDIVPC (Figure 5A), 

which inhibited HCV activity[45]. First modifications included replacement of the 

chemically active cysteine P1 residue by norvaline (Nva) and addition of P6 acetyl (Ac) 

and D-Asp P5 (d) (Ac-DdIVP-Nva)[46]. To further reduce the peptidic character of the 

compound, investigations focused on side chain specific modifications, which revealed 

that benzylmethoxy-proline at P2 significantly improved potency (1). NMR experiments 

of free and bound inhibitors could show that the P1-P4 region established most contact 

with the protein, while sites ≥P5 seemed to be solvent exposed in the bound state, 

suggesting N-terminal truncation into smaller peptides[47, 48]. Additionally, molecular 

docking studies of 1 provided more structural detail about the shallow binding surface 

and the extended binding conformation of the compound. Thus, the binding mode could 

be further analyzed, confirming that the P1 side chain bound to the only sub-pocket in 

close proximity to the P3 site, which only indirectly contributed to binding, while the P2 

benzyl moiety covered large portions of the protein surface[49]. In line with segmental 

flexibility sensing NMR spin relaxation experiments, it could be concluded that the 

peptide backbone conformation is extended in both bound and unbound state, while the 

side chains, especially in the P1 site, show significant loss of flexibility upon binding[47]. 

Since then, the design focused on reasonably rigidifying this region of the compound (e.g., 

P1 in 2) to fix the observed binding mode and thereby increase potency due to lowered 

entropic costs. One attempt was intramolecular macrocyclization of a tripeptide via P1 

and P3, exploiting their spatial proximity, to conserve the rigid side chain character of P1 

and pre-determine a crucial trans P2-P3 backbone geometry, thereby locking the bound 

conformation (2 → 3), yielding a 10-fold increase in potency[49]. Conformational search 

calculations have shown that different moieties at the P2 proline site occupy distinct areas 

of conformational space, suggesting that a combination of aromatic ring systems would 

cover larger areas of the protein surface while concomitantly increasing the rotational 

barrier of the dihedral angle around the oxyl-prolyl bond, further reducing the 

compound’s flexibility, and leading to the optimized compound 4[50]. The crystal 

structure of the HCV NS3/4A protease in complex with 4 confirmed the successful 

rigidification supported by NMR data, which proved similar conformations of the ligand 

in bound and unbound state[49]. Based on 4, cellular assays were performed to determine 

inhibitory activity in cell cultures. While this compound exhibited promising potency, 

further empirical optimizations of the N-terminal capping group and the aromatic P2 

moiety eventually led to BILN2061. Due to the unique structure, BILN2061 is a potent and 
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competitive inhibitor in vitro and in cellular context, exhibiting decent oral bioavailability 

and metabolic stability in rats. Additionally, target specificity was confirmed by the lack 

of activity against multiple human serine and cysteine proteases[49, 51, 52]. With these 

promising drug-like properties, BILN2061 could be investigated in clinical trials, where 

oral administration proved efficient reduction of plasma viral load after 48 hours[53]. 

Since its discovery, BILN2061 became a prominent parent compound for additional 

ligand-based drug design studies, resulting in a family of potent inhibitors, some of which 

became approved HCV drugs. Moreover, this example elucidates the powerful potential of 

combining different methods such as extensive structure-activity relationship studies, 

NMR and X-ray crystallographic experiments, as well as molecular modeling 

investigations, for the successful design of MC inhibitors. 

Although MCs are structurally constrained by their ring scaffold, they exhibit complex 

flexibility. In general, drug-like inhibitors often change conformation upon binding. 

Together with the concomitant structural adaption of the protein, this mechanism is 

known as induced-fit[54]. Thereby it was discovered that the bound state of the ligand is 

often different from the lowest energy conformation (global energy minimum), and even 

different from a local energy minimum state[55]. Such costly rearrangements and the 

associated loss of entropy of the ligand are compensated by favorable interactions of the 

complex[56]. Figure 6 shows abovementioned MC ligands, for which multiple 

conformations were observed experimentally. GDM is a prominent example where the 

bound and unbound conformations are significantly different, as observed by the 

corresponding crystal structures (Figure 6A). While the unbound form develops a flat 

ring scaffold with a trans amide, the bound conformation is folded into a C-clamp shape 

(see also Figure 2D) and exhibits a cis amide bond[10, 57]. RDC binds as the lowest 

energy conformer in its L shape[13, 58]. Correspondingly, the bound and unbound 

conformations shown in Figure 6B are similar. A study of RDC analogs reported one 

inactive isomer with inverted stereochemistry of the epoxide group[59]. Although this 

derivative obtained the overall same ring conformations in solution (L, P and L’ shape), 

the bioactive conformer was different from the lowest energy state for that species. This 

finding highlights the importance of the ring conformation for binding, which can be thus 

pre-determined by rigid proximal functional groups. Conformations of CsA (Figure 6C) 

were extensively studied over the years using NMR and X-ray crystallographic 

experiments as well as in silico approaches[60-63]. They are often described as closed and 

open depending on the environment. In nonpolar solvents (closed) the backbone of 
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residues 1-7 and 11 forms a twisted β-sheet with intramolecular hydrogen bonds across 

the ring involving all non-methylated amide protons, and residues 3 and 4 build a type II’ 

β-turn. The remaining residues form a loop with a characteristic cis peptide bond between 

residues 9 and 10. In polar solvents, multiple conformations exist that are described as 

open, like the cyclophilin bound state, that exhibits all-trans peptide bonds and no 

intramolecular hydrogen bonds. As illustrated above, this conformational polymorphism 

is linked to the membrane permeability and oral availability of CsA. These examples prove 

that MCs are capable of significant rearrangements and conformational changes, albeit 

their structural constraints. In X-ray crystallographic studies, a protein-MC ligand 

complex, that knowingly forms by induced-fit mechanism, could be crystallized well only 

after incubation at 50°C for 10 minutes, likely due to the rigidity of the MC ring[64]. 

Another extensive NMR study proved that MC ligands with smaller ring sizes and 

associated higher rigidity obtained slower conformational exchange rates. One example 

MC, the crystal structure of which only showed one conformational species, resulted in 

more rapid exchange rates and NMR signal coalescence with increasing temperatures[65]. 

In these experiments, high temperatures were used to induce conformational changes of 

the MC ring, thereby evidencing increased energy barriers for interconversion between 

ring conformers. 

1.3. Computational challenges for molecular modeling of macrocycles 

The accurate structural representation of MCs is crucial for reproducing and predicting 

dynamic properties regarding many theoretical endpoints, such as conformational 

analysis, molecular docking, pharmacophore modeling, 3D-QSAR studies, 

physicochemical characterization, thermodynamic calculations, ligand based virtual 

screening and similarity searches[66]. However, the energetic increase of interconversion 

between ring conformers and the interconnectedness of ring torsions poses a unique 

challenge for structural approaches. 

1.3.1. Conformational sampling 

Many conformational sampling tools aim for the optimization of different parameters or 

outcomes of the method such as reproducing bioactive conformation, including the global 

minimum structure, sampling high quality and low-energy conformations, covering 

diverse areas of the conformational landscape or generating large numbers of conformers 

for fast screening of many different compounds. Historically, most conformational 

sampling tools were originally developed for small organic compounds and validated on 
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data sets and data bases including typical drug like molecules. In principle, the general 

workflow of conformer generation tools starts with identifying rotatable bonds of the 

molecule. Different conformations are then generated by changing dihedral angles of such 

torsions according to the implemented algorithm. Most tools follow the rigid rotor 

approximation, under which bond distances and angle values are kept fixed for simplicity. 

Often, generated conformations are then ranked, filtered or clustered to select a final set 

of representative structures[67].  

Table 1 provides insights into some of the most popular conformational sampling tools. 

This list is by no means complete but gives a general overview of some common 

algorithmic strategies used to sample conformations of a molecule and includes the 

primary goal, for which the tool was originally designed. Various reviews thoroughly 

compared the performance of those and other tools[66 , 67, 84-88].  

Torsions of ring moieties are usually identified in the first step of the workflow and, by 

most tools, excluded from dihedral modifications due to their interconnectedness, to 

tool type algorithm goal ring conf. 

CATALYST[68] 

quasi-
systematic: 
fast 

fuzzy grid +  
FFa refinement 

building conf. 
libraries 

template library  
(≤ 9 atoms) 

Numerical: 
best 

DGb +  
FFa refinement + 

poling[69] 
large coverage 

CAESAR[70] systematic 
divide-and-conquer + 

recursive buildup 
diversity, 

low energy 
template library (DGb) 

MOE[71] 

stochastic 
Random Incremental 

Pulse Search[72] detailed conf. 
analysis 

 
systematic 

all comb. of tors. angles 
(discrete intervals) 

systematic: 
Conformation 
Import 

buildup from  
fragment library 

screening  
databases 

CORINA[73]  
ROTATE[74] 

systematic 
rule- and  

data-based 
screening  
databases 

template library  
(≤ 9 atoms) 

OMEGA[75] systematic knowledge-based high speed template library 

Balloon[76] stochastic DGb, GAc 
diversity, 

low energy 
flip-of-fragments[77] 

for small rings 

iCon[78] systematic 
knowledge- 

based 
screening  
databases 

initial generation by 
DGb and FFa refinement 

Confab[79] systematic 
torsion-driven using 

compound library[80] 
large coverage,  

low energy 
none 

ConfGen[81]  deterministic physics-based 
small subsets + 
bioactive state 

template library 

Macro-
Model[82] 

LMODd,[83] 
eigenvector-/ 

vib. mode-following 
exhaustiveness explicit 

a force field, b distance geometry, c genetic algorithm, d low-mode search 

Table 1. Incomplete list of common 3D conformer generation tools. 
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prevent the generation of unphysical ring structures. Especially for systematic searches, 

this lack of ring flexibility is often compensated by using a pre-defined set of possible ring 

conformations from a generated or existing template library. However, such libraries only 

cover the most essential small ring structures and fail to predict multiple conformations 

for more complex rings like MCs. From the tools in Table 1, Balloon incorporates a 

separate flip-of-fragment algorithm to generate multiple ring conformations. However, if 

a molecule has many ring systems, the performance easily suffers due to large memory 

requirements and poor complexity (increasing with the second power of number of ring 

atoms). By default, the number of possible flip-of-fragment operations is thus limited to a 

small number, even though the authors exemplarily show the generation of one MC 

conformer ensemble which includes a conformation similar to the bioactive state[76]. The 

LMOD strategy of MacroModel significantly differs compared to the other tools mentioned 

in Table 1, employing a normal mode analysis and following the low-frequency modes 

reaching different minima on the potential energy hypersurface[83].  

tool type algorithm goal ring split 

MMBS[89]a 
LMMDb + 
LLMODc 

stochastic MDd + 
eigenvector-following 

low energy no 

BRIKARD[90]e enumerative 
algebraic geometry, 
inverse kinematics; 

breadth-first 

diversity, 
exhaustiveness, 

speed 
no 

ForceGenf 
3D[91] 

deterministic physics-based 
generality, 
accuracy 

no 

Prime-MCS[92]g stochastic 
coarse-grained rotors, 
dead-end elimination 

diversity, 
speed, low 

energy 

yes 
2 linear fragments 

ConfBuster[93] systematic all comb. of tors. angles low energy 
yes 

1 linear fragment 

CCDCh conf. 
generator[94] 

stochastic 
knowledge-, rule- and 

data-based; depth-first; 
incremental construction 

small 
molecules, 

speed 

yes, if ring is not 
found among 

templates 

Confor-
mator[95] 

systematic 
knowledge-based, 

incremental construction 
accuracy, low 

energy 
yes, if more than 9 

ring atoms 

Moloc[96] shape-guided Fourier-based 
diversity, 
accuracy, 
screening 

no 

a MacroModel Baseline Search; b LowModeMD method; c large-scale LMOD; d Molecular Dynamics; 
e Builder for Recursive Inverse Kinematic Assembly and Ring Design; f Force Field Based Conformational 
Generation; g macrocycle conformational sampling; h Cambridge Crystallographic Data Centre 

Table 2. Incomplete list of MC-specific 3D conformer generation tools or general tools applicable to MC 
compounds. 
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This does not require a discrimination between cyclic and acyclic portions of the molecule. 

However, due to hydration and solvent accessible surface area models and many different 

FFs implemented, this approach is computationally more costly.  

Designed with a focus on small molecules, it has been shown that such tools are indeed 

inapplicable to MC compounds[97]. Furthermore, recent publications on the exploration 

of the unique conformational space of MCs highlighted the consistent need for advanced 

methods[98]. Without MC-specific techniques, the promising therapeutic potential of 

these molecules remains under-explored[99]. Table 2 shows an overview of tools 

specifically developed for MCs within the last 8 years. A general distinction can be made 

between methods that split the MC ring and sample the linear part(s) before re-fusing, 

and those that keep the ring as is to generate conformers (“ring split” column). Some 

algorithms employ similar strategies as in Table 1 with an adaptation for larger rings (e.g., 

MMBS, ConfBuster, Conformator, etc.). Others follow a more MC-guided strategy (e.g., 

BRIKARD, Moloc). 

Compared to systematic or stochastic tools, molecular dynamics (MD, see chapter 2.1) is 

another popular approach for conformational sampling. Simulating the molecular 

movement according to the atomic forces present at given conditions allows for studying 

the dynamics of the system including changes between different ligand conformations. 

Often for MD simulations of MCs, elevated temperatures are applied trying to overcome 

the increased interconversion barrier between ring conformations[100-104]. Some 

studies also used meta-dynamics[105] (MTD) or quantum mechanics[106] (QM) for this 

issue. Substantial reviews compared conformer generation strategies for MCs or included 

macrocycle data sets for evaluation[97, 103, 107-109]. Furthermore, specialized tools for 

cyclic peptides emerged[110-112], but were excluded from Table 2, since only non-

peptide MCs were studied in this work. 

1.3.2. Molecular docking 

Here, we concentrate on protein-ligand docking for the prediction of a bound state of 

drug-like MC inhibitors and their host proteins. More recent comprehensive overviews on 

molecular docking were provided for example by Pagadala et al.[113] and Wang et 

al.[114]. A typical docking calculation consists of a pose sampling and scoring step. In the 

former, the rotational, translational and conformational degrees of freedom (DoFs) of the  
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ligand are varied to generate different potential binding poses. For the latter, a score 

calculated by an energy function evaluates the strength of each pose and provides a rating 

for selecting the most likely. Since this work focused on structural accuracy during pose 

sampling, only the former step is introduced in detail. In principle, docking calculations 

can be categorized according to the level of molecular flexibility incorporated during pose 

generation. In rigid body docking, only the relative orientation but not the conformations 

of both binding partners change. Such calculations were based on the lock-and-key 

binding model, which assumes a geometric fit between the interacting partners without 

conformational changes upon binding. Flexible ligand docking or semi-flexible 

calculations sample different conformations only for the ligand. A fully flexible approach 

incorporates the highest level of flexibility, where both ligand and receptor 

conformational DoF are modified during pose sampling[128]. While by now most docking 

approaches follow a flexible ligand strategy, accounting for proper protein flexibility is 

still challenging due to the large number of conformational DoF. However, the 

consideration of conformational changes on the protein site is crucial for the accurate 

prediction of dynamic binding effects such as induced-fit and conformational selection 

phenomena, that involve structurally distinct bound (holo) and unbound (apo) protein 

states. Thus, many sampling algorithms with varying degrees of receptor and ligand 

program ligand flexibilitya MC ring conf. 
protein 

flexibilitya,b 
MC study 

DOCK 6[115] 
anchor-and-grow 

incremental 
construction 

- - [116] 

AutoDock 4[117] 
GAc/Solis-Wets 

search 
on-the-fly 

limited side chains 
rotations 

[116, 118] 

AutoDock 
Vina 1.2.0[119] 

Monte-Carlo/BFGSd on-the-fly 
limited side chains 

rotations 
[116, 120] 

Glide[121]e 
exhaustive rotamer 

pre-screening 
templating IFD protocol[122]f [99, 116] 

GOLD[123]g GAc corner flipping 
limited side chains 

rotations 
[124] 

ICM[125]h Monte-Carlo search on-the-fly 
limited side chain 

refinement 
[126] 

MOE-Dock[71] 
simulated annealing,  

tabu search 
- 

limited side chain 
refinement 

[127] 

a referring to the pose sampling step; b other than using a target structure ensemble; c genetic algorithm; 
d Broyden-Fletcher-Goldfarb-Shanno method; e grid-based ligand docking with energetics; f induced-fit 
docking protocol only in combination with Prime, limited to small backbone minimizations and side chain 
conformational changes; g Genetic Optimization for Ligand Docking; h internal coordinates mechanics 

Table 3. Incomplete list of popular docking programs giving their degree of incorporated ligand and 
protein flexibility, the treatment of large ring conformations, as well as reference to studies where this 
approach was applied to molecular docking of macrocyclic molecules. 
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flexibility exist. Table 3 lists features of commonly used docking programs. Ligand 

placement is performed employing either fragmentation and incremental construction, 

shape-based fitting, evolutionary algorithms, systematic or stochastic searches. 

Conformational flexibility of the ligand is thereby considered concomitantly by varying 

rotational DoF during the search or, e.g., in the case of Glide, a priori by sampling different 

ligand conformers (“ligand flexibility” in Table 3)[113]. For MC compounds, the 

conformational ring sampling problem introduced before, extends to the pose sampling 

step of flexible ligand docking calculations. Some docking tools attempt to internally 

generate ring conformations (“MC ring conf.” in Table 3) on-the-fly by opening the ring, 

independently modifying its torsion angles and applying a linear potential forcing ring 

closure during docking(AutoDock, AutoDock Vina)[119]. A similar approach 

implemented in ICM uses internal coordinates (bond distances, bond angles and dihedral 

angles) converting the ligand into a tree representation. Ring structures are read linearly 

as if one ring bond is broken, allowing to modify the remaining internal (ring) coordinates 

and using that “broken” bond as a closure constraint[125]. Alternatively, docking tools 

use template libraries (Glide) or a corner flipping algorithm[129] (GOLD) to generate MC 

ring conformers. However, as this is still an active field of research, some docking tools 

simply ignore (MC) ring torsions and treat such moieties rigidly. To compensate this 

artifact, many MC docking studies perform an external conformational sampling step first, 

for example with MC-specific methods introduced in Table 2, to generate a set of ring 

conformers that is used as a starting ensemble for subsequent docking calculations, 

thereby indirectly accounting for ring flexibility[130]. 

Independent of the type of ligand, receptor flexibility is only incorporated by some 

docking programs (“protein flexibility” in Table 3) and often limited to side chain 

rotations[128]. Depending on the algorithm, torsional DoF of side chains are modified, e.g., 

by using a rotamer library during ligand pose search (AutoDock, AutoDock Vina, GOLD) 

or after an initial docking run by refinement (ICM, MOE-Dock) or re-placement and 

minimization (Glide), allowing the amino acid residues to adapt to the presence of the 

docked ligand, thereby simulating induced-fit binding. However, this approach, often 

called selective docking, is still inapplicable when the conformational changes upon 

binding exceed simple side chain movements. Exemplarily demonstrated for the 

backbone of the L2 loop in proximity to the nucleotide binding site of Hsp90 (see Figure 

2B), that shows a displacement of up to 6.0 Å between holo and apo states[10]. 

Furthermore, this active site is able to host distinct (MC) ligands with varying binding 
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modes, emphasizing its structural adaptability[37]. Thus, neglecting protein flexibility for 

such systems can be fatal for molecular docking calculations, especially for docking into 

apo structures[131]. In the following, different strategies of flexible receptor docking are 

elaborated since this poses a major challenge for molecular modeling. 

Ensemble docking accounts for full receptor flexibility by generating and docking into a 

set of different protein conformations, like using a starting ensemble of MC ligands to 

compensate the lack of ring flexibility as mentioned above. Such approaches typically 

follow the conformational selection hypothesis and rely on experimental structures (X-

ray, NMR) or computational methods (homology modeling, MD). The ligand is then 

docked to all structures of the receptor ensemble, either in multiple runs, leaving the 

actual docking algorithm unaltered, or in a single run by combining the ensemble 

structures into a single model, e.g., for grid-based methods[132]. However, ensemble 

docking only accounts for protein flexibility implicitly since the single receptor 

conformations are still treated rigidly during docking. Moreover, multiple run approaches 

increase the risk of generating false positives and the computational costs compared to 

using a single receptor structure. However, this strategy could improve docking results 

for difficult targets[133], but success is highly dependent on the receptor ensemble, for 

which no clear guidelines are developed yet[134].  

Among the important variations of this method is 4D docking, which uses a discrete 

variable that determines the current receptor conformation, that is changed similarly as 

the ligand DoFs rather than sequentially docking the ligand to all receptor 

conformations[135]. In contrast to that, composite structure docking creates a new 

receptor structure based on discrete alternative conformations among the structures in 

the ensemble, as implemented in the FlexE method[136]. 

Approaches specifically focusing on backbone conformational changes were introduced 

in RosettaLigand[137], MedusaDock[138] and BP-Dock (Backbone Perturbation-

Dock)[139]. In the former, docking is performed in three steps from coarse-grained to 

high resolution, where receptor backbone flexibility is only incorporated in the last step. 

First, the ligand is placed based on shape compatibility. Secondly, the ligand and protein 

side chains are optimized using Monte-Carlo minimization and, lastly, a gradient-based 

minimization is performed for the whole ligand and protein side chain and backbone 

torsions. However, the authors reported average backbone movements of 0.45 Å, only 

corresponding to minor local conformational changes[137]. 
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In MedusaDock, a sequential ensemble dock is performed for pre-constructed ensembles 

of receptor backbone conformations. However, the ensembles are based on small 

numbers of experimental structures. Although the authors claim to thus cover a wide 

variety of backbone conformations, they are biased and limited to the available PDB 

structures. For example, their urokinase system was represented with only one backbone 

structure, since all known bound receptor conformations were similar[138].  

In contrast to that, BP-Dock generates the receptor conformations of the ensemble by 

perturbing protein residues with Brownian kicks (random external forces applied to Cα-

atoms). Perturbation response scanning is used to calculate a fluctuation profile of the 

backbone, followed by energy minimization. New receptor conformations are thus 

created that potentially correspond to ligand-induced conformational perturbations. The 

promising study included unbound protein structures for evaluation and claims to enable 

large-scale backbone movements. However, the actual docking is performed with 

RosettaLigand and, even without additional backbone flexibility, reproduced the binding 

positions already quite well in terms of structural accuracy. Thus, the BP-Dock protocol 

could only show minor improvements in these cases[139].  

As introduced above, including sufficient receptor flexibility is still a challenging task for 

molecular docking calculations, limiting their applicability. To tackle this issue, MD 

simulations are often used to support such calculations and either implemented in the 

docking algorithm or applied as a separate method in a pre- or post-processing step. 

An example strategy, where MD was incorporated before and after the actual docking 

calculations is illustrated by works of Lin et al[140]. They introduced the relaxed-complex 

scheme, where ligand libraries were sequentially docked in many conformations of the 

unbound FKBP (1FKK, see Figure 3C) pre-generated with MD. While this improved the 

accuracy of the docked poses of two investigated ligands, the AutoDock scoring function 

failed to identify them. The docked complexes were thus re-scored in a follow-up study 

by Molecular Mechanics/Poisson-Boltzmann Surface Area (MMPBSA) calculations, which 

successfully identified the accurate poses as the complexes with the lowest free 

energies[141]. This study further highlighted the possible decrease in specificity when 

using generated protein ensembles. The simulated conformational changes in the active 

site might accidentally allow for the placement of non-binding ligands. At the same time, 

docking into receptor ensemble might identify new binding modes that would be missed 

when docking into a single static crystal structure[142]. Studying the same protein, 

Zacharias et al.[143] used MD and principal component analysis (PCA) to extract 
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collective DoFs (soft modes) of the apo state as possible receptor deformations during 

docking. It could be shown that simulating receptor flexibility in that way improved the 

docking results for the MC compound FK506.  

A method, where MD is directly implemented into the docking algorithm is 

DynaDock[144]. During ligand placement in the active site, a user-defined overlap of 

protein and ligand atoms is allowed, that is subsequently refined by optimized potential 

MD (OPMD). In this refinement simulation, the non-bonded interactions (van der Waals 

and electrostatics) between receptor and ligand atoms are modified with the soft-core 

parameter α (see chapter 2.2). Depending on the initial overlap, the value of α (between 

0 and 1) is automatically determined and optimized over the course of the refinement 

until the overlap was fully resolved. Thereby, a value of 1 turns off non-bonded 

interactions completely and 0 corresponds to the standard physical potentials. In that way, 

the initial clashes during placement can be refined without causing strong repulsive 

forces, while the receptor atoms can smoothly adapt to the presence of the ligand, thereby 

explicitly accounting for full receptor flexibility. 

Furthermore, MD is used in post-processing to investigate the stability of the docked 

complexes and solvation effects[145]. Since only true binding poses would result in a 

stable trajectory, such simulations help to identify the correct docking pose[146]. 

Studying the dynamics of binding poses of different ligands, MD simulations provide a 

structural explanation for experimentally observed differences in inhibition[147, 148]. 

Aiming for a fully dynamic docking approach, pure MD studies were conducted studying 

ligand binding. Among popular methods are enhanced MD techniques that introduce an 

additional bias in form of collective variables (MTD) or tempering (replica exchange MD, 

REMD; accelerated MD; multicanonical MD). In contrast, unbiased approaches include 

brute-force MD and discontinuous methods. These have been substantially reviewed 

before[149]. Here, they are not discussed in detail since this would exceed the scope of 

this introduction. Instead, a comparison to static docking is drawn in the following. 

Dynamic docking methods retrieve information about the mechanism of ligand binding. 

Various studies of different methods could not only reproduce the known ligand binding 

poses, but calculate binding-free energies[150] and association constants[151], identify 

unknown (allosteric) binding sites[152] and predict new binding mechanisms[153], as 

well as study desolvation effects, intermediate states and associated energy barriers[154]. 

Thus, such methods not only investigate the final binding pose but also the dynamic 

binding process and its observables. The major disadvantage of all dynamic docking 
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methods, however, is the high computational cost due to long simulation times. Static 

docking is thus more useful for screening large databases of ligands in moderate time, 

while more expensive dynamic docking methods are usually applied to study few 

compounds in more detail. Both types of methods can be complementary and are often 

performed together in drug discovery pipelines or as hybrid approaches. 

Summarizing, the treatment of the MC ring during conformational sampling and docking 

pose generation is still an issue for computational methods. Additionally, although not 

limited to MC docking, the proper account of receptor flexibility during molecular docking 

calculations remains challenging. 

1.4. Aims and structure of this study 

The aim of this work was to develop a generally applicable pipeline for the accurate 

prediction of binding modes of MC compounds. In a previous study[102], an MD-based 

sampling and subsequent molecular docking protocol was successfully tested for 7 small 

MC inhibitors and their holo proteins. Our goal was to increase the data set to a larger 

number of diverse MC ligands, adjust and optimize the sampling and docking parameters 

of the pipeline and evaluate the new strategy in a benchmark-like study by docking in holo 

and apo protein states. 

Therefore, we first explored the ligand conformational sampling step. In a first study of 

the total synthesis of the NP tetrandrine and its analog iso-tetrandrine[155] (chapter 3.1), 

we computationally investigated MC intermediate structures of the final reaction of the 

pipeline. Long-term MD simulations performed under experimental conditions and 

statistical analysis of thus sampled pre-reactive conformational states were performed. 

From this, the ratio between conformers likely to result in tetrandrine and iso-tetrandrine 

could be assessed, which reproduced the experimentally observed product ratios.  

The in-depth conformational analysis based on dihedral angles of MC ring torsions led to 

the development of a torsional classification scheme for MD-simulated MC conformers. 

With this, the structures obtained from simulations can be classified according to the 

collective distribution of sampled dihedral angles of MC ring torsions and thus reduced to 

a subset of ring conformers. This was the basis for two subsequent case studies, where 

ensembles of thus generated conformer subsets were docked, thereby exploring possible 

modifications of the docking step of the pipeline. In the first study, acyldepsipeptides were 

docked to caseinolytic protease P (chapter 3.2)[147]. The second study investigated the 

binding mode of an actin-binding miuraenamide derivative (chapter 3.3)[156]. In both 
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cases, our pipeline could successfully identify binding poses that explained 

experimentally observed differences compared to their parent compounds. 

The knowledge and ideas gained from these studies were combined for the design of the 

final MD-based sampling and docking protocol, which was applied to 20 structurally 

diverse MC ligands and their host proteins in a benchmark study(chapter 3.4)[104]. We 

thereby provided a robust pipeline for the accurate prediction of binding modes of MCs 

with DynaDock[144], overcoming major structural challenges of molecular modeling of 

MCs. 

In the following, the theory behind the methods used throughout these studies is 

explained (chapter 2) and the results are summarized in more detail (chapter 3). A 

comprehensive discussion of the most important aspects of the computational work of all 

studies is presented (chapter 4), followed by a conclusion (chapter 5). 
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2. Theory 

In the following, the theory behind the methods used throughout this work will be 

elaborated. This section will thus cover molecular dynamics and molecular docking with 

DynaDock. Regarding the former, more details can be found in standard works of J. 

Andrew McCammon and Stephen C. Harvey[157] (“Dynamics of proteins and nucleic 

acids”), Charles L. Brooks, Martin Karplus and B. Montgomery Pettitt[158] (“Proteins: A 

theoretical perspective of dynamics, structure and thermodynamics”) and the substantial 

work of Tamar Schlick[159] (“Molecular Modeling and Simulation: an interdisciplinary 

guide”), the concepts of which shaped this section. For computational details and settings 

of employed programs, the material and methods sections of the individual publications 

contributing to this work provide the necessary information, and are therefore not listed 

here again. 

2.1. Molecular Dynamics (MD) Simulations 

MD constitutes a powerful theoretical method that describes the dynamics of a molecular 

system according to the physical forces that act on it under given conditions. These forces 

are obtained as the first derivative of the systems potential energy, which can be 

expressed as a function of atomic coordinates. The potential energy of a system is 

determined for a certain molecular geometry, the corresponding forces are obtained and, 

with classical equations of motion, the change of atomic positions with time, and thus the 

molecular motion, can be calculated. Simulating motion provides information about 

dynamic properties of the molecular system including changes in conformation and 

energy, which, with laws of statistical thermodynamics, can be related to macroscopic 

observations, thereby linking theory and experiment. For biomolecules, MD is an essential 

tool that supplements experimental findings. For example, simulating protein structures 

resolved by X-ray crystallography, which only resemble a static picture of one specific 

state, provides insights into structural transitions between thermally accessible states. 

Furthermore, the binding of a non-covalent inhibitors can be studied with MD by 

analyzing intermolecular interactions. Therefore, MD simulations unravel the complex 

and dynamic behavior of (macro)molecules, and thus help to better understand the 

relationship between structure and function to comprehend their biological activity. 
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2.1.1. Primary considerations 

An accurate description of the motion of any molecular system is provided by the 

Schrödinger equation (1), that employs the Hamiltonian operator �̂� , which consists of 

kinetic 𝐸𝑘 and potential energy 𝐸𝑝. In the notation of equation (2), these depend on the 

momentum �̃� and position vectors �̃� of all nuclei and electrons, respectively. 

 �̂�𝜓𝑛 = 𝐸𝑛𝜓𝑛 (1) 

 �̂�(�̃�, �̃�) = 𝐸𝑘(�̃�) + 𝐸𝑝(�̃�) (2) 

The exact solution of this equation, however, is not feasible for large molecules. To 

simplify this expression, the Born-Oppenheimer approximation separates the motion of 

electrons from the motion of nuclei. Since electrons are lighter and, thus, faster, they 

instantaneously adapt to new positions of the heavier and slower nuclei. High level QM 

approaches provide ab initio or semi-empirical solutions under the Born-Oppenheimer 

approximation. For the size of biomolecules, these calculations are often still too 

demanding for practical applications. An even more approximated approach uses the 

principle of molecular mechanics (MM). In MM, the electronic motion is neglected, 

thereby reducing the number of variables, and resulting in a function for the potential 

energy that is only dependent on the position of nuclei. Since electrons are not explicitly 

accounted for in that approximation, changes in electronic structure, like electronic 

excitation, chemical bond breaking and formation, rearrangements of charge distribution 

and polarization effects cannot be modeled. Instead, the system is simply described as a 

mechanical body, where atoms are treated as point masses with point charges centered 

at the position of the nuclei, that move according to physical forces. Thus, the potential 

energy can be calculated by empirical functions that describe the molecular constitution 

and intra- and intermolecular interactions with classical potentials.  

2.1.2. Principles of molecular mechanics 

The MM approach is based on the principles of additivity and transferability. The former 

states that the potential energy of a molecular system is a sum of separable potentials 

derived from bonded and nonbonded mechanical forces. Bonded potentials include terms 

describing covalent bonds, bond angles and dihedral angles. Nonbonded terms include 

van der Waals and electrostatic interactions between pairs of nonbonded atoms. 

Transferability assumes that the potential functions developed from experimental data of 

representative model structures can in general be used for the prediction of larger 

(bio)molecules. For that, the concept of atom types is introduced with which 
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characteristic variations due to the chemical environment and general hybridization of 

atoms in a molecule are considered. For example, bond angles are highly sensitive to 

hybridization and even small deviations – caused by, e.g., lone pairs, ring strains or other 

chemical environments – can alter the overall geometry of the molecule. With increasing 

numbers of atom types, these environment dependent variations can be modeled, 

facilitating an accurate prediction of biomolecular structures. 

2.1.3. Force Fields 

The functional form of the beforementioned potentials describing bonded and nonbonded 

interactions is called force field (FF) and can be written as in equation (3)[160]. The 

individual contributions or terms in the FF are explained in the following. 

 

𝐸𝑝 = ∑ 𝑘𝑟(𝑟 − 𝑟𝑒𝑞)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃𝑒𝑞)
2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑
𝑉𝑛

2
[1 + cos(𝑛𝜑 − 𝛾)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ [
𝐴𝑖𝑗

𝑅𝑖𝑗
12 −

𝐵𝑖𝑗

𝑅𝑖𝑗
6 +

𝑞𝑖𝑞𝑗

𝜖𝑅𝑖𝑗
]

𝑖<𝑗

 

(3) 

In MM, two covalently bound atoms are described as two spheres connected by a spring. 

As illustrated by the first term of equation (3), a harmonic potential characterizes the 

bond stretching motion with a simple functional form. This represents the oscillation of 

the bond length 𝑟 around a reference value 𝑟𝑒𝑞 with the force constant 𝑘𝑟  of the respective 

bond vibration, where 𝑟𝑒𝑞  and 𝑘𝑟  define parameters usually determined by experiment 

(X-ray crystallography) or higher level (QM-)calculations. The basic concept is deduced 

from Hooke’s law which states that the restoring force 𝐹(𝑥) of a spring is proportional to 

the displacement 𝑥 and its spring constant 𝑘, derived from the mass 𝑚 on the spring and 

the resulting angular frequency 𝜔 of the oscillation, as shown in equation (4), with the 

potential energy 𝐸(𝑥) given in equation (5). 

 𝐹(𝑥) = −𝑘𝑥 ,  𝑘 = 𝑚𝜔² >  0 (4) 

 𝐸(𝑥)  =  
𝑘

2
𝑥² (5) 

A more correct description of a chemical bond is provided by the Morse potential[161] 

shown in equation (6), including the width and depth parameters 𝑆𝑚 and 𝐷, respectively. 

A comparison of both potentials is shown in Figure 7. 

 𝐸𝑀𝑜𝑟𝑠𝑒(𝑟)  =  𝐷{1 −  𝑒𝑥𝑝[−𝑆𝑚(𝑟 − 𝑟𝑒𝑞)]}² (6) 
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Figure 7. Schematic illustration of the harmonic potential and the Morse potential describing bond 
stretching motion between two covalently bound atoms. Both potentials are similar near the corresponding 
reference bond length 𝑟𝑒𝑞 , but differ for increasing internuclear distance. 

Unlike the harmonic potential, the Morse potential reproduces the dissociation of two 

atoms with increasing internuclear distance expressed by the dissociation energy 𝐷 in 

Figure 7. However, both potentials are similar for small deviations around the reference 

bond length. Since most MD simulations are performed at ordinary temperatures, where 

the atom bond lengths stay close to their equilibrium values, the harmonic potential is 

sufficient in representing chemical bonds and used by many FFs for its computational 

simplicity. 

The second term in equation (3) considers bond angle interactions occurring between 

two adjacent covalent bonds. Like bond stretching, this motion is accounted for by a 

harmonic potential, where the spring is attached to the centers of the two covalent bonds. 

Correspondingly, the term includes the bond angle 𝜃, its reference value 𝜃𝑒𝑞 and the force 

constant 𝑘𝜃. Additionally, some FFs include cross terms correlating bond stretching and 

angle bending motions, i.e., concomitantly adjusting the bond lengths as the angle 

between these bonds changes. Such correction terms are described, e.g., by so called Urey-

Bradley potentials[162] and improve the fit between calculated and experimental 

vibrational frequencies. 

Most crucial for the conformation of a molecule is the rotation around covalent bonds, 

given by the third term of equation (3). This bonded interaction occurs for the central 

bond of any four consecutively bound atoms i – j – k – l and is expressed as the 

corresponding torsion angle (or dihedral angle) between the two planes spanned by the 
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atoms i – j – k and j – k – l, illustrated in Figure 8A. For freely rotatable bonds, this motion 

is periodic and thus described by a periodic functional form employing the cosine function, 

where 𝜑 is the dihedral angle, 𝑉𝑛 is the height of the torsional barrier and n and γ denote 

the periodicity and phase of this torsion, respectively.  

 

Figure 8. Illustration of a torsion angle 𝜑 (A) and an improper dihedral angle 𝜒 (B). 

The origin of the rotational barrier of this motion is much debated, but can be attributed 

mainly to hyperconjugation, rather than pure steric repulsion[163]. The form of the 

torsional profile is highly dependent on the atoms in the sequence. Thus, the functional 

form must be able to model various shapes of different torsional potentials. This is 

achieved by employing a Fourier series of periodic functions as shown in equation (7), 

where the sum runs over the integer value n. The first three functions of this equation 

(n = 1, 2, 3) are exemplarily plotted in Figure 9A. Through combination of functions with 

varying n and 𝑉𝑛 values, different torsional potentials can be modeled, illustrated by the 

more complex potential in Figure 9B. 

 ∑
𝑉𝑛

2
[1 + cos(𝑛𝜑 − 𝛾)]

𝑛

 (7) 

 

Figure 9. Schematic illustration of periodic functions (A) in the form of equation (7) for n = 1, 2, 3 with the 
same barrier height 𝑉𝑛 and a local minimum at 180° for better comparison. Fourier series of such functions 
used to model more complex torsional potentials in (B). 
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With such series typical cis/trans and trans/gauche energy differences are reproduced, 

thereby implicitly accounting for steric, dipole-dipole and gauche effects. To evaluate 

appropriate parameters, torsional potentials of model compounds are calculated with ab 

initio calculations and, together with nonbonded interactions, fitted to experimental 

vibrational frequencies. Such parameter sets are then applied to similar atom sequences 

in larger molecules. 

Furthermore, improper dihedral terms can be included in the FF. Illustrated in Figure 8B, 

an improper dihedral angle 𝜒 occurs between a plane spanned by three atoms (i, k, l) and 

a central atom (j) which is covalently bound to these. Often called out-of-plane motion, 

such terms are typically used to enforce planarity and chirality in regions of a molecule 

and described by a simple harmonic potential as shown in equation (8). 

 𝐸(𝜒)  =  (
𝑉′

2
) 𝜒² (8) 

The last term in equation (3) accounts for nonbonded interactions and consists of two 

contributions: van der Waals and electrostatic interactions. The sum runs over pairs of 

atoms i and j, that are further than 3 bonds apart and within a certain cutoff distance to 

each other, mainly for computational convenience. Van der Waals interactions occur as an 

attractive force between two nonbonded atoms moving towards each other until a certain 

internuclear distance 𝑟𝑒𝑞. Below this critical distance, the attraction is compensated by a 

strong repulsive contribution. The attractive part emerges from electron correlation in 

QM. For example, the electron fluctuation around a nucleus can generate a temporary 

dipole moment that will induce a complementary dipole moment in the adjacent atom. 

This dipole/induced-dipole interaction creates an attractive London or dispersion force 

and was first shown to decrease with the inverse sixth power of internuclear distance[164] 

( −𝐵𝑖𝑗/𝑅𝑖𝑗
6 , red in Figure 10). The repulsive force originates from a combination of 

internuclear repulsion and electron-electron repulsion under the Pauli exclusion 

principle and, for computational reasons, was chosen to increase with the inverse 12th 

power of internuclear distance (𝐴𝑖𝑗/𝑅𝑖𝑗
12, blue). Both effects are combined in the Lennard-

Jones potential that describes the nonbonded van der Waals interactions (black). The 

exact shape of this potential is dependent on the types of atoms, determined by the 

repulsive and attractive coefficients 𝐴𝑖𝑗  and 𝐵𝑖𝑗, respectively. 
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Figure 10. Lennard-Jones potential consisting of an attractive and a repulsive contribution, representing 
the van der Waals interactions between two nonbonded atoms as a function of their internuclear distance 
with equilibrium distance 𝑟𝑒𝑞 . 

The Lennard-Jones potential is often written in the form of equation (9), where 𝜖𝑖𝑗 

corresponds to the potential well depth (see Figure 10), 𝜎𝑖𝑗  indicates where the potential 

cuts the abscissa and 𝑅𝑚𝑖𝑛,𝑖𝑗  is the internuclear distance where the potential has its 

minimum (with𝑅𝑚𝑖𝑛,𝑖𝑗 = √2
6

𝜎𝑖𝑗 ). Rearranging the Lennard-Jones potential in that way 

gives the definition of the coefficients 𝐴𝑖𝑗  and 𝐵𝑖𝑗 as shown in equation (10). 

 

𝐸𝑣𝑑𝑤(𝑅𝑖𝑗) = ∑ 4𝜖𝑖𝑗 [(
𝜎𝑖𝑗

𝑅𝑖𝑗
)

12

−  (
𝜎𝑖𝑗

𝑅𝑖𝑗
)

6

]

𝑖<𝑗

 

𝐸𝑣𝑑𝑤(𝑅𝑖𝑗) = ∑ 𝜖𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑅𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑅𝑖𝑗
)

6

]

𝑖<𝑗

 

(9) 

   

 
𝐴𝑖𝑗 = 4𝜖𝑖𝑗𝜎𝑖𝑗

12 = 𝜖𝑖𝑗𝑅𝑚𝑖𝑛,𝑖𝑗
12 

𝐵𝑖𝑗 = 4𝜖𝑖𝑗𝜎𝑖𝑗
6 = 2𝜖𝑖𝑗𝑅𝑚𝑖𝑛,𝑖𝑗

6 
(10) 

Lastly, the final term included in the nonbonded potential energy terms in equation (3) 

accounts for the electrostatic interactions. Charles de Coulomb first formulated a law for 

the force 𝐹𝐶𝑜𝑢𝑙𝑜𝑚𝑏  between two ions or partially charged groups decreasing with the 

inverse square of their distance, equation (11). This force is attractive, if the effective 

charges of the interacting particles 𝑞𝑖 and 𝑞𝑗  are of opposite sign, and repulsive, for the 
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same sign. From this, the Coulomb potential 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 is derived, where the pre-factor is 

needed for conversion of the electrostatic charge units into kcal*mol-1 with the 

permittivity of vacuum 𝜖0 . 𝜖  denotes the dielectric constant of the environment if the 

charges are exposed to a surrounding other than vacuum. In aqueous solution, for 

example, the charges are shielded by water. This screening effect is stronger when the 

two charges are further apart and vanishes (towards vacuum) when they approach each 

other. Such changes are accounted for by using more complex expressions for 𝜖  like 

sigmoidal functions allowing for distance-dependent changes in the electrostatic field. 

 𝐹𝐶𝑜𝑢𝑙𝑜𝑚𝑏 ∝
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
2 ,  𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏(𝑅𝑖𝑗) =

1

4𝜋𝜖0
⋅

𝑞𝑖𝑞𝑗

𝜖𝑅𝑖𝑗
 (11) 

Compared to the van der Waals interactions, the Coulomb potential, illustrated in Figure 

11, is a long-range interaction since the decay is proportional to the inverse first power 

of the internuclear distance. The decrease of the Lennard-Jones potential is much more 

rapid, and therefore constitutes a short-range effect for nonbonded interactions.  

 

Figure 11. Coulomb potential according to equation (11), differentiating between an attractive and a 
repulsive interaction depending on the (partial) charges of the two particles. 

Since electron movement, and thus charge redistribution, is not considered in MM, 

effective partial or net charges are assigned to all atoms reproducing the electrostatic 

potential calculated by more sophisticated QM methods. Because of that, conformation 

dependent changes in polarization or induced dipole moments cannot be modeled 

explicitly and are thus considered negligible.  
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Summarizing, the previous paragraphs introduced the standard, all-atom non-polarizable 

FF for calculating the potential energy of a system as a function of atomic coordinates. The 

simple functional formulation implicates a physical interpretation and, moreover, allows 

rapid calculation and derivation of biomolecular interactions and their relative stability. 

However, since there is no universal FF, the exact functional form and values of associated 

parameters must be chosen carefully for the system of interest. More limitations are 

caused by the drastic electrostatic approximations that, as mentioned above, fail to model 

higher electrostatic phenomena. More sophisticated polarizable FFs were developed to 

tackle this shortcoming. Furthermore, the computation of nonbonded energy terms 

define the bottleneck for such calculations since they must be evaluated for all pairs of 

atoms, and thus generate a complexity of O(N²), where N is the number of particles. For 

the dimensions of biomolecular simulations, this step becomes severely time consuming. 

However, different strategies were developed to reduce this complexity for feasibility. 

2.1.4. Equations of motion and numerical integration 

In classical mechanics, a system’s motion follows underlying Newtonian laws and can be 

predicted for future time points. However, Newtonian dynamics are highly sensitive to 

initial conditions, meaning that two systems with almost identical initial conditions 

(initial coordinates and velocities) will diverge already after a few time steps. The system 

is thus both deterministic and chaotic. The motion can be calculated for a molecular 

geometry and its potential energy 𝐸𝑝 , equation (3), with Newton’s equation of motion. 

Accordingly, the force of the system is defined as the negative gradient (first partial 

derivative) of 𝐸𝑝 as shown in equations (12) and (13). 

 𝐹(𝑋(𝑡)) = −𝛻𝐸𝑝(𝑋(𝑡)) = 𝑀𝐴(𝑡) (12) 

   

 𝐴(𝑡) = �̇�(𝑡) = �̈�(𝑡) , 𝛻𝐸𝑝(𝑋)𝑖 =
𝜕𝐸𝑝(𝑋)

𝜕𝛼𝑖
 , 𝛼𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) (13) 

X is the collective vector of Cartesian coordinates of all atoms, V the corresponding 

velocity vector, A the acceleration, M the diagonal mass matrix. Dot notation indicates 

differentiation with respect to time t. For calculating the position and velocities for 

different points in time, this expression must be numerically integrated, for example, 

using the Verlet algorithm[165], which results in pairs of position and velocity {𝑋𝑛, 𝑉𝑛} 

for integers n at different time steps 𝑛𝛥𝑡. In general, the basic position update results as a 
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two-step propagation, which means that for determining the positions after one step 𝑋𝑛+1 

the positions from the current step 𝑋𝑛 and preceding step 𝑋𝑛−1 must be saved:  

 𝑋𝑛+1 = 2𝑋𝑛 − 𝑋𝑛−1 + 𝛥𝑡2𝐴𝑛 (14) 

Using a Taylor expansion around 𝑋(𝑡), the general definition of 𝑉𝑛 can be derived as the 

central difference approximation: 

 𝑉𝑛 =
(𝑋𝑛+1 − 𝑋𝑛−1)

2𝛥𝑡
 (15) 

Multiple variants, differing in numerical properties, exist to calculate the propagation of 

position and velocity like the Leapfrog scheme, the Position Verlet and Velocity Verlet 

variants. The former uses half steps for velocity and the corresponding propagation pairs 

{𝑋𝑛+1, 𝑉𝑛+1/2} can be written as: 

 

𝑋𝑛+1 = 𝑋𝑛 + 𝛥𝑡𝑉𝑛+1/2 

𝑉𝑛+1/2 = 𝑉𝑛 +
𝛥𝑡

2
𝐴𝑛 

(16) 

The other two variants formulate propagation pairs {𝑋𝑛+1, 𝑉𝑛+1} as whole steps of 𝛥𝑡, 

where the Velocity Verlet scheme is: 

 
𝑋𝑛+1 = 𝑋𝑛 + 𝛥𝑡𝑉𝑛 +

𝛥𝑡²

2
𝐴𝑛 

𝑉𝑛+1 = 𝑉𝑛 +
𝛥𝑡

2
(𝐴𝑛 + 𝐴𝑛+1) 

(17) 

where 𝑋𝑛+1 is obtained by combining equations (14) and (15). Lastly, the Position Verlet 

method is: 

 
𝑋𝑛+1 = 𝑋𝑛 + 𝛥𝑡𝑉𝑛 +

𝛥𝑡²

2
𝐴𝑛+1/2 

𝑉𝑛+1 = 𝑉𝑛 + 𝛥𝑡𝐴𝑛+1/2 

(18) 

From equations (16), (17) and (18) it shows that the Leapfrog and Velocity Verlet 

schemes evaluate the force (via 𝐴, see equation (12)) at whole steps of 𝛥𝑡, but the Position 

Verlet variant at half steps. All variants recursively calculate future steps using 

information of the proceeding steps, resulting in a trajectory.  
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2.1.5. Practical considerations 

A useful MD simulation of biomolecules requires further considerations, which will be 

introduced shortly. Before starting a simulation, the structure of the system must be 

properly prepared and minimized. After this initialization, the system is placed inside a 

space-filling box, called unit cell, which is surrounded by infinite copies of itself in all three 

dimensions under periodic boundaries. Only the unit cell is propagated throughout the 

simulation, so that a particle crossing the boundary is replaced by its periodic image. 

Under the minimum-image convention, every atom interacts only with the closest image 

of all other atoms within a spherical cutoff region. The unit cell must thus be large enough 

to avoid artifacts due to self-interaction. If the simulation is performed in explicit solvent, 

the unit cell is filled with solvent molecules, for example water, and ions. With that, the 

initial coordinates of all atoms of the system were defined. Initial velocities are then 

pseudo-randomly chosen so that the total kinetic energy of the system corresponds to the 

expected value at a target temperature. During the beginning of the simulation, an 

equilibration run should be performed to allow for proper relaxation until potential and 

kinetic energy converge to an equilibrium value. A thorough equilibration protocol, 

usually consisting of minimization and heat-up steps, is therefore useful for investigating 

the proper performance of periodic boundaries or artifacts due to initial placement of 

molecules. Constant energy simulations under the microcanonical ensemble (NVE, 

constant number of particles N, constant volume V, constant energy E) are only partly 

useful for biomolecular systems, where molecular properties are studied dependent on 

temperature (T) or pressure (P). Therefore, the canonical (NVT) or isothermic-isobaric 

ensembles (NPT) are more appropriate, which require the use of thermostats and 

barostats for temperature and pressure control, respectively. After the system is properly 

equilibrated, the production run is performed. Thereby, it is important to simulate the 

system for a sufficient amount of time to ensure meaningful statistical sampling of 

properties. 

2.2. Molecular Docking with DynaDock 

DynaDock is a docking tool and part of the DynaCell software published by Iris Antes in 

2010[144]. Herein, the original implementation will be followed. Two steps define the 

docking procedure: (i) generation of initial poses during a broad sampling step, allowing 

for a certain atomic overlap between protein and ligand atoms. (ii) refinement of each 
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initial placement with a short OPMD simulation resolving the initial overlap and enabling 

dynamic adaption of binding partners.  

In the broad sampling step, initial poses are generated within the binding site by random 

translation and rotation of the ligand and conformations are sampled by randomly 

modifying rotational DoFs of freely rotatable bonds. During this step, the receptor is kept 

rigid and a specified maximum overlap of van der Waals radii between any ligand and 

protein atom pair is allowed.  

 
𝑂 = 1 −

𝑑12

𝑟1 + 𝑟2
  (19) 

The overlap O is defined as a ratio between the distance d12 between two atoms and their 

van der Waals radii r1 and r2. This criterion prevents the sampling of poses deep inside 

the protein, while accepting small clashes with protein residues around the binding site. 

A separate overlap value can be specified for ligand-ligand atom pairs. This might be 

useful for acceptable small clashes inside the ligand caused by random conformational 

sampling. Together with a maximum translation distance and maximum distance from 

protein parameter, the three-dimensional space for ligand placement can be defined 

depending on the shape of the binding site. The goal of the broad sampling step is to 

thoroughly sample the conformational space of the ligand while covering large areas of 

the binding site.  

In the second step, each initial broad sampling pose is refined with a short OPMD 

simulation to resolve the atomic overlap. For this, soft-core potentials are employed for 

van der Waals and electrostatic interactions using the functional form of the Lennard-

Jones and Coulomb potential by Taylor[166], shown in equations (20) and (21), 

respectively.  

 𝑉𝐿𝐽(𝑟) = 4𝜖𝑖𝑗 [(
𝜎𝑖𝑗

12

(𝜶𝑚𝜎𝑖𝑗
6 + 𝑟𝑖𝑗

6)
2) −  (

𝜎𝑖𝑗
6

(𝜶𝑚𝜎𝑖𝑗
6 + 𝑟𝑖𝑗

6)
)] (20) 

 𝑉𝐶𝑜𝑢𝑙(𝑟) =
(1 − 𝜶)𝑛𝑞𝑖𝑞𝑗

4𝜋𝜖0(𝜶 + 𝑟𝑖𝑗
2)

0.5 
(21) 

The soft-core parameter α scales both potentials and can take values between 1.0 and 0.0, 

where the latter corresponds to the normal physical potentials. The higher the value of α, 

the softer the potential and the lower the resulting energies and forces. Additional 

weighting parameters m and n were chosen to balance both contributions in a combined 
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potential and were finalized to m=3 and n=6 resulting in a suitable functional form. This 

way, for small interatomic distances of overlapping atoms, a large α value corresponds to 

a small repulsive term, softly forcing their separation without disrupting the system. The 

value for α is automatically determined depending on the initial overlap of the broad 

sampling pose and is optimized with respect to the potential energy of the system 

throughout the simulation. This cycle of optimization continues until α reaches zero and 

fully physical potentials are restored. Like that, the overlap is successfully refined, and the 

simulation continues for a user-defined number of steps for short equilibration of the 

system leading to the final docking pose. 
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3. Results 

3.1. A modular approach to the bisbenzylisoquinoline alkaloids tetrandrine and 

isotetrandrine 

Citation 

Schütz, R., Meixner, M., Antes, I., & Bracher, F. (2020). A modular approach to the 

bisbenzylisoquinoline alkaloids tetrandrine and isotetrandrine. Organic & Biomolecular 

Chemistry, 18(16), 3047-3068. 

https://doi.org/10.1039/D0OB00078G 

Summary 

Tetrandrine is a MC alkaloid of the plant Stephania tetrandra and a known inhibitor of 

calcium channels and P-gylcoproteins, making it a potential lead compound against viral 

infections or cancer. However, options for structural modifications of the natural product 

are sparse and a known total synthesis comprises more than 20 individual steps. In this 

study, a modular approach of 12 reaction steps was introduced, allowing for 

implementation of structural variations along the way. The synthesis strategy started 

from commercially available compounds and consisted of 4 key steps that, depending on 

their order, can direct the synthesis yielding either an equimolar mixture or preferably 

tetrandrine or its diastereomer iso-tetrandrine. Tetrandrine contains two stereocenters 

located within the MC ring with the same absolute configuration (1-R,1’-R or 1-S,1’-S), 

whereas iso-tetrandrine exhibits either 1-S,1’-R or 1-R,1’-S. In the final step of a proposed 

reaction route, the reactant, which was obtained as a racemic mixture of R- and 

S-configuration on the first stereo center, performed an intramolecular cyclization 

reaction under the formation of the second stereo center. Solely depending on the order 

of the previous reaction steps, the second stereo center was either built at the C-1 or C-1’ 

atom and the reaction yielded a ratio of tetrandrine(R,R/S,S):iso-tetrandrine(R,S/S,R) of 

29:71 and 87:13, respectively.  

Based on these observations, molecular modeling studies were performed aiming for a 

structural explanation of the experimental ratios. The usual procedure would include, 

first, a MD-based conformational sampling step to generate appropriate starting 

structures, and second, the explicit calculation of the reaction paths using QM methods. 

As the second step is computationally demanding, such calculations for all possible 

reaction routes would have exceeded the scope of this study. Thus, we assessed the 
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resulting diastereomeric ratios based on the conformational stability of the MC 

intermediates of the corresponding reactions. Therefore, the four possible intermediates, 

differing in the configuration (S/R) and the location (C-1/C-1’) of their first stereo center 

(C-1S, C-1R, C-1’S, C-1’R), were simulated at experimental conditions employing extensive 

MD simulations. A statistically significant number of potential starting conformations for 

the final reaction, where the respective atoms that form the second stereo center were 

reasonably close, were extracted as pre-reaction ensembles. Based on the conformation 

of the MC scaffold, the potential configuration (pre-S/pre-R) resulting at the second stereo 

center could be determined for every structure in these ensembles. Estimated 

computational ratios were thus obtained by comparing the number of structures in the 

pre-reaction ensembles that would result in tetrandrine (or iso-tetrandrine) with respect 

to the total number of pre-reaction structures. In case the second stereo center was built 

at C-1, the resulting computational ratio of tetrandrine(pre-R,R/pre-S,S):iso-

tetrandrine(pre-R,S/pre-S,R) was 39:61. Correspondingly, for the case in which the 

second stereo center was built at C-1’ in the final reaction, the computational ratio of 

tetrandrine(R,pre-R/S,pre-S):iso-tetrandrine(R,pre-S/S,pre-R) was 74:26. These 

estimates agreed very well with the trends of the experimental ratios. However, since no 

reaction quantities were explicitly calculated, the results could be only qualitatively 

compared, but are, nevertheless, interesting. Our investigations highlighted that the 

conformational distribution and stability of intermediates resembled the stereoselectivity 

of these cyclization reactions.  

Contribution 

Experimental work was performed by Ramona Schütz. Maximilian Meixner designed the 

theoretical part of this study and performed all computational simulations and statistical 

analysis and wrote the theoretical part of the manuscript. All authors reviewed the final 

manuscript. 
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3.2. Acyldepsipeptide probes facilitate specific detection of caseinolytic 

protease P independent of its oligomeric and activity state 

Citation 

Eyermann, B., Meixner, M., Brötz‐Oesterhelt, H., Antes, I., & Sieber, S. A. (2020). 

Acyldepsipeptide probes facilitate specific detection of caseinolytic protease P 

independent of its oligomeric and activity state. ChemBioChem, 21(1-2), 235-240. 

https://doi.org/10.1002/cbic.201900477 

Summary 

The caseinolytic protease is a homo tetradecameric complex of the serine peptidase 

caseinolytic protease P (ClpP), consisting of two heptameric rings forming a barrel shaped 

quaternary structure. The proteolytic activity of the complex depends on the 

conformation of the protein subunits varying between an inactive compressed state, an 

intermediate compact state, and a fully active extended state. Accompanied by the 

chaperone ClpX, which unfolds globular proteins, the ClpP complex breaks down the 

linear peptide chain. ClpX binds hydrophobic pockets on the surface of the ClpP complex 

in-between two ClpP subunits with a conserved IGF residue motif. Acyldepsipeptides 

(ADEPs) are small MC compounds mimicking this motif and therefore bind the same 

apical binding site, widening the pore of the barrel and facilitating access and breakdown 

of larger substrates resulting in uncontrolled digestion of cellular proteins. In this study, 

ADEP derived photoprobes were designed to label the ClpP complex independent of its 

conformation and activity state. For the detection via affinity-based protein profiling, the 

compounds were designed with an alkyne handle as well as a photoreactive diazirine 

group. The two photoprobes, called 266 and 288, only differed in the location of the 

diazirine group, which was incorporated in one of two proline residues of the MC. The 

proline residue facing towards the pore is methylated in ADEP compounds. For 288, the 

diazirine group replaced this methyl group while the methyl-proline is conserved in 266, 

where the diazirine moiety was attached to the second proline. Albeit these minor 

structural variations, significantly different activation, and labeling of ClpP was observed.  

Molecular modeling studies could provide a structural explanation to the experimental 

differences. The two molecules 266 and 288 were docked in the known ADEP binding site 

located on the subunit interface of ClpP and exhibited a similar binding mode as 

co-crystallized ADEP and ADEP1 compounds. For 288, the weak activity could be 

explained by the missing methyl group of the conserved methyl-proline in the ADEP 
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scaffold, which is crucial for activation of the ClpP complex. For 266, the diazirine group 

was solvent exposed. Accordingly, the labeling signal was buffered by solvent molecules 

explaining the weaker labeling signal while retaining ClpP activation. 

Contribution 

Experiments in this study were performed by Barbara Eyermann. Maximilian Meixner 

designed, conducted, and analyzed the computational part of the study and wrote the 

respective paragraphs of the manuscript. All authors reviewed the final version of the 

manuscript. 
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3.3. Turning the Actin Nucleating Compound Miuraenamide into Nucleation 

Inhibitors 

Citation 

Wang, S.*, Meixner, M.*, Yu, L., Zhuo, L., Karmann, L., Kazmaier, U., Vollmar, A. M., Antes, 

I., Zahler, S. (2021). Turning the Actin Nucleating Compound Miuraenamide into 

Nucleation Inhibitors. ACS omega, 6(34), 22165-22172. 

https://doi.org/10.1021/acsomega.1c02838 

*Shared first authors 

Summary 

The actin protein is the building block for dynamic filaments in the eucaryotic cell. Actin 

monomers can accumulate and form nuclei, which eventually grow into filaments. The 3D 

structure of a free actin monomer is distinctly different from an actin subunit 

incorporated in the filament (F-actin). Various actin-binding MCs are known, which can 

be classified into stabilizers and destabilizers. The myxobacterial MC miuraenamide A is 

an actin nucleator. In a previous study, the binding mode of miuraenamide could be 

predicted using a combination of molecular docking and MD approaches. Binding the 

characteristic macrolide binding cleft at the actin-actin interface of the nucleus, 

miuraenamide facilitates a tighter packing of subunits compared to unbound F-actin. 

Moreover, interactions between miuraenamide and the adjacent actin subunit caused a 

crucial shift of the DNase-binding loop (d-loop), prohibiting the decoration of 

filament-destabilizing proteins such as cofilin.  

Based on these findings, derivatives were synthesized, some of which showed the 

opposite biological effect to the parent compound causing overall less filaments to be 

formed without altering the elongation rate of already existing filaments. In a case study, 

the binding mode of the derivative LK701 was investigated. While a stable binding pose 

could be predicted in a free actin monomer, the compound was unable to penetrate the 

macrolide binding cleft of a stable apo nucleus structure. In the latter, the cleft was 

occupied by the d-loop of the adjacent subunit, building characteristic longitudinal 

interactions that promote filament formation. These results confirmed that LK701 

blocked the macrolide binding cleft of free actin subunits on a monomer level, prohibiting 

such proteins from forming new nuclei, while existing nuclei remained unaffected. 
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Comparing the binding modes of LK701 and miuraenamide revealed that the former, 

which missed a bulky phenyl substituent, bound deeper inside the macrolide binding cleft 

of an actin monomer, blocking important interaction sites for nucleus formation. It could 

thus be explained how minor structural changes could convert the nucleator parent 

compound into a nucleation inhibitor. 

Contribution 

Experiments were performed by Shuaijun Wang, Lushuang Yu and Ling Zhuo.  

Compounds were synthesized by Lisa Karmann and Uli Kazmaier. Maximilian Meixner 

was responsible for the computational part of the study. Together with Iris Antes he 

conceptualized the study. He performed and analyzed all calculations and simulations and 

wrote the respective chapter of the manuscript, which was carefully revised by all authors.  
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3.4. Dynamic docking of macrocycles in bound and unbound protein structures 

with DynaDock 

Citation 

Meixner, M., Zachmann, M., Metzler, S., Scheerer, J., Zacharias, M., & Antes, I. (2022). 

Dynamic Docking of Macrocycles in Bound and Unbound Protein Structures with 

DynaDock. Journal of Chemical Information and Modeling. 

https://doi.org/10.1021/acs.jcim.2c00436 

Summary 

MCs hold great therapeutic potential and count many advantages due to their 

characteristic ring scaffold. The many experimental applications require suitable 

theoretical tools for the accurate prediction of binding modes of MC inhibitors. Most 

molecular docking programs, however, fail to describe the flexibility of the MC ring during 

the generation of docking poses. Additionally, common theoretical workflows are mainly 

based on the holo state of the receptor with the conformation of the binding site already 

adapted to a co-crystallized ligand. In this study, the bioactive states of 20 diverse MC 

inhibitors were predicted in holo and apo proteins. Therefore, we optimized our previous 

sampling and docking protocol. The dynamics of the ligands were separately simulated in 

a pre-sampling step with explicit solvent to generate different conformations. We 

investigated different sampling conditions to find the most appropriate settings for MCs. 

The sampled structures were thoroughly analyzed with our new torsional classification 

tool ClassTor.py, which classifies conformations based on the distribution of sampled 

dihedral angles of ring torsions. We could show that this created a more meaningful 

partition compared to the dihedral clustering approach of an existing analysis tool. From 

the classification results, ensembles of conformers were extracted and subjected to 

subsequent fully flexible docking calculations with DynaDock to compensate the lack of 

ring flexibility during pose generation. First, an initial broad sampling step was performed, 

where random ligand poses were generated inside the rigid binding site of the receptor, 

allowing for atomic overlap between protein and ligand atoms. A subsequent refinement 

step resolved the initial overlap using short, OPMD simulations considering full flexibility 

of receptor and ligand. This way, high accuracy prediction of binding poses in bound and 

unbound protein structures was achieved. Our results suggested that docking in apo 

structures required high level of receptor flexibility. We further highlighted that 

MD-based pre-sampling led to high quality MC (ring) conformers. Including a 
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conformation close to the bioactive state improved the chance for successful docking. 

Large flexible substituents binding to solvent-exposed binding sites were the main cause 

for remaining unsuccessful docking cases. However, such poses could be further 

improved by explicit MD simulations of the docked complexes. 

Contribution 

The idea of this study was based on previous work performed in the group of Iris Antes. 

The concept was designed and developed by Maximilian Meixner and Iris Antes. All 

simulations and calculations were conducted by Maximilian Meixner with help on two 

specific systems of the scope of a research internship project by the students Sebastian 

Metzler and Jonathan Scheerer, who were supervised by Maximilian Meixner. 

Furthermore, Maximilian Meixner conceptualized, wrote, and distributed the torsional 

classification tool ClassTor.py. Calculations involving DynaCell were performed by 

Maximilian Meixner and consulted by Martin Zachmann. The manuscript was written by 

Maximilian Meixner and reviewed by all authors. 
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4. Discussion 

The discussion focuses on the most challenging points for molecular modeling of MC 

compounds as elucidated in the introduction and comprehensively compares the results 

of studies presented herein with recent and relevant publications in the field. 

4.1. Conformational sampling 

4.1.1. Predictive power of MD simulations 

In the first study of this work, using extensive MD simulations we structurally explained 

the stereochemical preferences of MC intermediates during a final intramolecular 

cyclization reaction and successfully reproduced the experimentally observed 

diastereomeric ratio on a qualitative level by conformational sampling and analysis of 

pre-reaction ensembles[155]. We discussed that the addition of such extensive 

computational investigation could generally guide targeted synthesis towards the desired 

(stereochemical) product, if multiple possible pathways and their associated reaction 

mechanisms and intermediates are known, for example by estimating corresponding 

ratios in advance.  

In the past, similar case studies have been conducted, where detailed MD simulations and 

conformational analysis were performed to identify stable and flexible parts of a MC[167]. 

From thus generated conformers, energy calculations could accurately estimate 

rotational barriers and reproduce spectroscopic data. With this, the absolute 

configuration of the bisbibenzyl MC isoplagiochin C could be unraveled for the first time.  

In a sole computational investigation by Cleays and coworkers, semiempirical MD 

simulations could accurately reproduce the thermodynamic stability of MC alkene 

isomers featuring two stereocenters and a double bond[100]. Supported by high level 

torsional energy profiles of crucial ring dihedrals, large influence and minor effects on the 

MC ring conformation could be attributed to the chirality of the stereocenters and the 

configuration of the double bond, respectively.  

In our work, like in these earlier studies, such simulations were performed to substantiate 

experimental findings. However, more recently, the aim shifted towards developing 

prediction models for specific experimental observations. In the work of Wang et al. in 

2019, a predictive model for chromatographic elution orders and separation factors of 

enantiomers with a chiral polymer stationary phase was developed from MD 

simulations[168]. 10 racemic solutes in 3 different explicit solvents were separately 

simulated. Hydrogen bond lifetimes and aromatic π-π interactions between the drugs and 
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the stationary phase were quantified as averages over the MD simulation. The maximum 

hydrogen bond lifetime was found as a suitable metric to predict separation factors with 

a correlation factor of 0.85 and correct elution order in most cases. Remarkably, their 

model worked accurately without prior experimental information or fitting. Encouraged 

by these results, they improved their simulations in the following year by attaching the 

stationary phase to an amorphous silica, corresponding to the experimental setup[169]. 

This provided the advantage that more interactions could be formed in total, and larger 

drugs could interact across adjacent polymer strands. Based on such quantities, their 

model performed even more consistently and could overcome previous weaknesses. 

Kim et al. investigated the product specificity of different monoterpene synthases[170]. 

This class of enzymes catalyzes the first step in the monoterpene biosynthesis by 

converting a precursor substrate either to an acyclic, a monocyclic or a bicyclic product. 

Such enzymes exhibit different product specificities, meaning that some produce only one 

such product, while others can generate multiple products from the same substrate. The 

conformation of a crucial carbocation intermediate seems to be responsible for either 

direct deprotonation resulting in a monocyclic product, or a second cyclization, yielding 

the bicyclic product. With a combination of high-level energy calculations and MD 

simulations, the group could successfully correlate crucial active site residues and 

differences in their nonbonded interactions to the intermediate with the experimentally 

observed product ratios, thus laying the foundations for models that could predict the 

product specificities of new monoterpene synthases in advance. 

Together with these findings, our analysis highlighted the general potential of MD 

simulations for the development of prediction models, if the experimental objective and 

mechanistic insights are known and a suitable computational metric for quantification 

could be determined, which must be investigated for each case. More research is 

necessary that benchmark the incorporation of MD simulations in predictive models and 

investigate their applicability for MCs. 

4.1.2. Torsion-based analysis of sampled structures 

We developed the classification scheme ClassTor.py based on sampled ring torsion angles 

throughout MD-based conformational sampling of MCs to reduce the amount of obtained 

structures and analyze the conformational space in a meaningful way[104]. We could 

show that our procedure produced more qualitative partitions than dihedral clustering of 

existing methods. In short, the sampled dihedral angle values of selected MC ring torsions 
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were extracted and individually counted and convoluted with a standard Gaussian kernel 

to obtain a smooth spectrum-like distribution. Each spectrum was automatically 

characterized by detecting minima and maxima of the distribution, corresponding to less 

sampled and prominent dihedral angle values of this torsion, respectively. This 

information was used to divide each spectrum into labeled bins, declaring those minima 

and maxima as bin borders and bin centers, respectively. With this definition, each 

sampled structure could be classified by a specific combination of bin labels, and 

structures with the same combination were thus combined in the same class. Naturally, 

the obtained number of classes corresponds to the number of unique combinations of bin 

labels. Relying solely on the actual sampled torsion angles, this classification provides a 

meaningful analysis of occurring ring conformations and is thus more intuitive for MCs 

than Cartesian clustering, as employed in the previous pipeline[102]. From the 

classification results, representative structures of classes were extracted to a conformer 

ensemble, which was subjected to subsequent docking calculations. Our focus was to 

include a structure with a ring conformation close to the bound state for increased chance 

of successful docking. By choosing the centroid structures of the 10 highest populated 

classes, the final ensemble featured a bioactive-like conformer for most of the MCs in our 

data set, meaning the bound state was frequently visited during MD sampling and thus 

among the most prominent structures of the simulation. However, in the case of GDM, 

where the bound state is significantly different from abundant solution structures[62], 

the former, although sampled, was not found among the 10 highest populated classes. For 

such cases we implemented a selection of conformer subsets performed after initial 

classification that is optimized for structural diversity. By the user-defined subset size, the 

diverse ensemble is automatically generated by picking conformers based on the 

dissimilarity of their characterizing bin labels. For example, if two structures differ only 

in the bin label of one torsion of the MC ring, they will be classified into different classes, 

however since most ring torsions obtained the same bin labels, and thus related dihedral 

angle values, the two conformers might still be similar. The diverse selection thus 

considers only representatives of classes featuring many differences in their combined 

bin labels. We could show that this selection procedure resulted in a subset of conformers 

including the less sampled but structurally distinct bound-like conformation of GDM. 

Another method optimized for diversity of MC structures used the Kennard-Stone 

algorithm and was applied in the abovementioned study by Claeys et al[100]. In their 

procedure, the two most dissimilar structures based on an RMSD value of geometric 
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distance matrices were selected first. Iteratively, the least similar structure, 

corresponding to the conformer with the largest pair distance to the previously chosen 

pool was added to the selection until a desired ensemble size was obtained. This way a 

uniform distribution was created that represented all parts of the sampled space equally, 

independent of their sampling frequency. 

Focusing on torsion angle space, a former study clustered MD-sampled peptide 

conformations using dihedral angles of backbone torsions and showed that, unlike 

dihedral clustering, Cartesian clustering and dihedral PCA could not properly resolve all 

conformational states[171]. Furthermore, their dihedral clustering allowed for 

visualization of transition frequencies between clusters and could thus be applied to 

distinguish low-frequency transitions in folding events. 

Substantiated by these examples, our results further highlighted the use of a diversity-

oriented classification in torsion angle space for analysis of MC conformations. Due to the 

elevated rotational barriers of ring torsions, higher energy conformers might be sampled 

less frequently compared to local minimum structures. Therefore, a population-based 

selection might miss structurally distinct ring conformations. Thus, the option for creating 

a diverse conformer ensemble in our approach successfully accounted for that. Moreover, 

our approach is not limited to MC ring torsions but could also be applied to internal 

conformational changes in peptide and protein structures. However, the complexity of 

this procedure increases with the number of torsions included for classification. Thus, a 

priori knowledge about the system is required to limit this number to a manageable 

amount, for example when investigating a ligand-sized peptide or if a certain region of a 

protein is responsible for the investigated conformational changes. Future research 

should be conducted to compare this torsional classification with standard Cartesian 

clustering for conformational analysis of peptides and proteins. 

4.1.3. The MC ring: sampling with MD or structure generation tools? 

We showed that exhaustive MD simulations performed at elevated temperatures with 

carefully optimized sampling conditions (3x 1,000 ns, 600 K) produced high quality 

structural ensembles that featured conformers close to the bioactive state. The 

moderately increased temperature enabled overcoming elevated torsional barriers 

without sampling unphysical ring structures. Thus, the conformational space was 

extensively explored. However, this in-depth procedure required more computation time 

than structure generation algorithms of typical tools, as discussed before[104].  
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As introduced above, the characteristic ring scaffold of MC compounds poses a major 

challenge for conformational sampling methods. Highlighted by a recent study, the 

conformational space of MCs is still understudied mainly due to the increased rotational 

barrier of ring torsions, which accounts for their unique structures compared to linear 

counterparts[98]. Ebejer et al. performed a comparative study of freely available tools for 

conformer generation (Balloon, Confab, Frog2, RDKit, MOE), tested on a set of 708 small 

molecules[86]. MCs with rings larger than 7 atoms could not be handled by many methods, 

which failed to reproduce the experimental ring conformation. They exemplarily 

mentioned a 15-membered MC for which the generated conformers of all tools showed 

an average RMSD value of 2.79 Å relative to the crystal structure conformation, likely due 

to the challenging ring scaffold. They furthermore elaborated that for molecules with a 

central core and flexible extensions, which is often the case for MCs, all tools produced 

bad results. In general, increasing molecular flexibility caused less accurate structural 

ensembles. For example, molecules with 9 or more rotatable bonds showed average 

minimum RMSD values to the crystal structure reference above 1.0 Å by all toolkits. A 

similar study in the following year included a MC test set of 30 compounds, which 

exclusively featured 9 or more rotatable bonds per molecule[107], further elucidating the 

incompatibility of the former tools with MCs. In the latter study by Chen et al., other 

mainstream methods for conformer generations were tested (MOE, LMOD approaches, 

MMBS * ) for the reproduction of the crystal structure, the diversity of generated 

conformers and the location of the global energy minimum structure. They found that 

low-mode methods performed better than a stochastic search, and advanced settings 

were superior to default settings, especially for MCs. For example, increasing the energy 

window improved the diversity (in terms of compactness and extendedness, measured 

by radius of gyration, Rgyr) of resulting MC conformer ensembles, thereby stressing the 

increased interconversion barrier for such compounds. Furthermore, the MC-specific 

method MMBS (see Table 2) has per default an increased energy cutoff and, as a proof of 

principle, outperformed most of the other methods on the MC test set, even with its 

default settings, which reproduced the bioactive conformer with an accuracy below 2.0 Å 

in 97% of the cases. This finding confirmed the need of specialized strategies for complex 

molecules like MCs.  

 
* called MD/LLMOD in that study or MacroModel (MC)[108] and Macrocycle Conformational Sampling (MCS)[91] in 
other studies. However, for consistency in this work and to prevent confusion with the distinct Prime-MCS algorithm, 
the term MMBS (MacroModel Baseline Search)[92] is used, as proposed by the authors. 



49 

In two recent studies, Poongavanam and colleagues first investigated if conformer 

generation tools (OMEGA, MOE, MMBS) could reproduce known MC conformations in 

different environments[108], and secondly, if cell permeability could be successfully 

predicted from OMEGA-sampled conformers[44]. In their first work, they concluded that 

OMEGA outperformed other methods in accuracy and coverage of conformational space 

and explained that this might be due to the algorithmic differences of the investigated 

methods. According to that, the fragmentation and reconstruction technique 

implemented in OMEGA was more suitable for MCs and superior even to the MC-specific 

low mode-based MMBS and MD-based MOE methods. To stress this even further, 

structural ensembles from extensive MD simulations were structurally compared with 

the OMEGA ensembles by Rgyr and polar surface area (PSA). Again, MD performed worse 

in exploration of conformational space and resulting ensembles were influenced by the 

polarity of the environment, e.g., ensembles sampled in apolar solvent were less diverse 

than those of water simulations. However, their MD simulations were limited to 20 ns, 

which – as results in our study suggested[104] – is insufficient for exhaustive 

conformational sampling of MCs and, under modern standards, too short for extensive 

ligand-only simulations. Nevertheless, their study highlighted the use of structural 

measures other than RMSD and the strengths and weaknesses of conformer generation 

tools, which, as introduced above, should be carefully considered for the intended 

objective. In the follow-up study, a machine learning prediction method for MC 

compounds was introduced that classified molecules as low-medium and highly 

permeable based on 2D and 3D descriptors. While 2D descriptors were faster to calculate 

and more useful for such predictions, the authors showed that a model based on 3D 

descriptors was successful only for rigid MCs, for which the conformations in solution 

could be accurately predicted. Flexible MCs, for which such models failed, obtained 

solution structures significantly above the global energy minimum (5-15 kcal/mol). 

Although the defined energy cutoff for OMEGA (25 kcal/mol) would have been sufficient 

for complete sampling, relevant conformations for flexible MCs could not be obtained, 

which the authors attributed to the inability of the FF, which is used for refinement of 

generated structures, to identify such conformations. However, the authors did not 

compare other FF- or MD-based methods for conformer generation in that study. 

Interestingly, they explained that conformers of rigid MCs were more accurately 

predicted because they consisted of only the core ring structure. The error for larger MCs 

was thus attributed not to the ring scaffold but to flexible side extensions anchored to this 
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core, for which biologically relevant conformations were more difficult to generate. This 

finding is in agreement with results of our combined sampling and docking study[104], 

which also highlights flexible substituents of the ring as one of the main structural 

challenge for molecular modeling of MCs.  

Other studies that compare tools with MD were performed by Sindhikara and 

colleagues[92], the authors of Prime-MCS, comparing its performance with MMBS, MD 

and MOE, and Romero et al.[96] (Moloc, Prime-MCS, MacroModel, MOE, ETKDG, 

Conformator, CCDC, MD). Both used only short MD simulations (24 ns) for conformer 

generation, which again seemed insufficient for exhaustive exploration of MC conformer 

space. While the former work highlighted Prime-MCS as the superior method in terms of 

structural accuracy, conformational diversity and computational speed, the latter study 

mentioned MD among the most accurate software along MOE, MacroModel and Prime-

MCS. In both cases, instead of only using RMSD values, Rgyr and torsional fingerprints 

were calculated to structurally evaluate the generated conformers. 

A profound work from 2021 studied ensemble completeness for conformers of 7 small 

MCs in different charge states and solvents, generated by 3 tools (Prime-MCS, BIOVIA Best, 

Conformator) and extensive MD simulations (5x 100 ns)[103]. Their conformational 

maps obtained from PCA of ring torsions favored MD in coverage of sampled space. 

Furthermore, MD simulations produced distinct ensembles dependent on the MC, explicit 

solvent, and charge state, whereas conformers generated by tools were similar, 

independent of the (implicit) solvent. 

MD methods, and others that perform FF refinement, are, of course, dependent on the 

employed FF. A previous study, that compared 3 different FFs concluded that the type of 

FF did not significantly influence the reproduction of the bioactive state as well as the 

conformational coverage, and that the extent of sampling and the treatment of 

electrostatics were more crucial[107]. Further application studies of MD for 

conformational sampling (of MCs) are also included in the next section. Hence, the 

previous drawback of the MD method described by Poongavanam et al. might have been 

due to insufficient sampling rather than the use of the FF per se[108]. Therefore, a 

thorough benchmark of different FFs for the conformational sampling of MCs would be 

needed, which could more properly judge their general applicability and suggest if further 

development is necessary. For example, in the case of cyclic peptides, a residue specific 

FF was developed[172]. Providing guidance, results from our study suggest suitable MD 

sampling conditions optimized for MC compounds[104]. 
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To further compare the conformer ensembles obtained by our optimized MD sampling 

conditions, we generated 1,000 conformers with Prime-MCS and Balloon (DG option), 

respectively, and calculated RMSD values of MC ring atoms relative to the known bound 

state. From the combined MD simulations of each MC, we chose 1,000 equidistant frames 

constituting an ensemble. These supplemental results (Figure A1 of the appendix) 

suggest that MD structurally reproduces the bioactive state of diverse MC ligands more 

accurately than Prime-MCS and Balloon, and often cover a greater range of conformations, 

especially for large rings like FK5, RBT and RAP. Although 1,000 conformers were 

requested for each tool, the actual ensemble size was consistently smaller. This might be 

due to the implemented algorithms, that are said to filter out redundant conformations. It 

must be mentioned that no torsional fingerprints or unique ring conformations were 

determined for this analysis, and thus, no comments can be made about the 

exhaustiveness of sampled space. However, Balloon found the fewest conformers for large 

rings (FK5, RBT, RAP: 4, 4 and 2 structures, respectively) or no conformer at all for 

structurally complex MCs (CY9, fused ring system). This confirms that MCs cannot be 

handled by Balloon, as previously indicated by others[97]. Surprisingly so, since no upper 

limit for the number of flip-of-fragment operations was set for the production of flexible 

ring conformations[76]. Moreover, when given a 3D structure as input, Balloon often 

failed to assign the correct atom types, which led to saturation of double bonds and, 

ultimately, to the production of wrong output conformers. In such cases, the SMILES code 

was used instead. To overcome these shortcomings, different settings were tested 

beforehand, but no parameter set could be found that worked equally well for all MCs. As 

described previously[103, 107] and mentioned by the authors of Balloon[76], advanced 

settings slow down the procedure, which is why the flip-of-fragment operation is limited 

to a small number by default. However, if enhanced settings of these tools take 

significantly more time to generate structures, their major advantage, fast computational 

speed, is lost. 

In general, default settings seemed to be inapplicable to complex MCs, while appropriate 

settings (e.g., energy window) for capturing relevant ring conformations are unknown. 

Although many abovementioned studies compared advanced settings, clear guidelines 

are still missing. Since this is, in general, also the case for MD, our results suggest suitable 

and highly optimized MC-specific conditions for MD-based conformational sampling. 

Thus, the more time-consuming methods like MD are worth their computational demand 

in this case. However, if such computation-expensive approaches are no option, tools with 
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special MC treatment might be generally preferred over standard tools. But even newer 

conformer generators such as Conformator sometimes failed to predict MC ring 

conformation correctly, as shown for the structurally complex GDM[95]. This could be due 

to the unjustifiable fact that dihedral angles of ring torsions are sampled individually 

although such torsions are not independent. Such and related ring splitting algorithms 

have therefore no guarantee of producing valid ring conformations. Conformational 

sampling of MCs is still a field of active research, we hereby stressed that MCs need 

specialized workflows and strategies to overcome their unique structural challenges. 

4.2. Molecular Docking 

The following discussion covers a comparison of our studies with other approaches in 

terms of overall performance, incorporating ligand and receptor flexibility, as well as 

evaluation of docked poses. For easier reading, the relevant results are summarized first. 

Our updated pipeline for molecular docking of MCs, tested on 20 diverse ligands, included 

an exhaustive pre-sampling step to generate conformer ensembles[104]. From MD 

simulations with optimized sampling conditions, 10 starting structures were extracted by 

dihedral classification. Each conformer was flexibly docked with DynaDock[144] into the 

binding site of its host protein in holo and apo states. Docking was defined successful if 

the ligand position in the equilibrated X-ray structure could be reproduced with an 

accuracy below 2.0 Å, which was achieved in 95% (75%) of holo (apo) cases. Scoring was 

performed with MMGBSA (Amber) and compared to an equivalent score calculated with 

DynaCell. For successful docking poses in holo proteins, both scores could identify at least 

one such pose among the 10 top-scored poses in all but one system, while for apo docking 

calculations, DynaCell and Amber scores failed to rank such poses in only two and four 

cases, respectively. Additional post-docking MD simulations of unsuccessful apo docking 

poses quickly stabilized the initially docked complex, resulting in a more accurate pose 

that resembled the bound state in most cases. For an average sized system, pre-sampling 

of ligand conformations took 6 days, pose generation in the broad sampling step 2.8 hours 

and refinement of a single pose 6.2 hours on average. 

In the recent past, five benchmark studies investigated molecular docking of MCs[99, 116, 

124, 126, 127]. They either focused on comparing different conformational sampling 

strategies (MMBS, Prime-MCS, MCMM * , MCMMshort) producing distinct conformer 

ensembles which were subjected to the same docking algorithm (Glide)[99], or pre-

 
* MonteCarlo Multiple Minimum approach implemented in MacroModel 
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sampling with a single method (MMBS) and comparing the performance of different 

docking programs (Glide, AutoDock Vina, AutoDock 4, Autodock 3, DOCK)[116]. 

Furthermore, Anighoro et al. and Lam et al. tested ligand sampling and subsequent 

docking in MOE[127] and ICM[126], respectively, while Martin et al. investigated 

MT*/LMOD sampling in MacroModel and docking with GOLD[124]. 

In the first of these studies, published in 2016 by Anighoro et al., 48 MC compounds were 

docked into their holo proteins[127]. MC ring flexibility was accounted for by using a pre-

generated ensemble, which increased the docking success to more than 50% in contrast 

to using a random ligand structure or the lowest energy conformer, which could 

accurately reproduce the binding mode in only 27% and 41% of cases, respectively. 

Docked poses were only structurally evaluated by calculating RMSD values with respect 

to the crystallized reference discriminating three categories (≤1.0 Å, >1.0 Å and ≤2.5 Å, 

>2.5 Å). The major challenges were to extract a ligand conformer close to the bioactive 

state from the generated structures with MOE and to accurately account for van der Waals 

interactions, which dominated the shape-driven binding modes of MCs. 

The following year, the study by Alogheli included 16 ligands in a test set and 31 in a 

validation set[99]. Glide flexible ring docking, where MC ring conformations were 

intrinsically sampled during docking, was compared to external generation of conformers 

with different sampling methods and subsequent docking. Docked poses were 

structurally and energetically evaluated by RMSD and the internal Glide score, 

respectively. Only the flexible ligand docking with Glide and rigid docking of MMBS-

generated conformers produced average RMSD values below 2.0 Å for ligands in the 

validation set, while Prime-MCS sampling suffered from significant problems for larger 

MC ligands. When employing external sampling, computation times for the 

conformational search were higher than for the docking step, ranging from 139 to 33,579 

minutes for the former and from 4 to 2,167 minutes for the latter. 

In the same year, Castro-Alvarez published their benchmark study of docking programs 

investigating 20 MC complexes[116]. All programs except AutoDock 3 produced top-

scored poses with mean RMSD values below 2.0 Å and lowest RMSD poses below 1.0 Å. 

Presented computation times varied between 5 minutes and 52 hours for docking all 

conformers of a system. Re-scoring with MMGBSA could improve weaknesses of some of 

the scoring functions, obtaining values close to experimental data. 

 
* Mixed-torsion 
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In 2019, Martin et al. studied 41 MC compounds with GOLD, comparing intrinsic ligand 

sampling during docking with a more extensive pre-sampling and docking protocol[124]. 

Docking success was defined as reproduction of the crystallized binding mode with an 

accuracy below 2.0 Å. When GOLD flexible ligand docking was performed, binding modes 

could be successfully reproduced in 29.3% of cases, while using a pre-generated ensemble 

of conformers improved performance to 58.5%. Reported mean computing times ranged 

from 3 minutes for flexible docking to 7.5 hours for rigid docking of conformer ensembles 

excluding the pre-sampling step. 

Finally, Lam et al. presented the most substantial benchmark set of 246 MC-protein 

complexes subjected to ICM-dock, which included flexible ligand sampling during 

docking[126]. Their procedure produced at least one pose within 2.0 Å among the top 5 

(top 10) scored poses in 75% (81%) of cases. The median computation time was only 16 

minutes. Furthermore, this group participated in the 2018 Drug Design Data Resource 

(D3R) Grand Challenge 4, which was a community-wide blind prediction challenge that 

featured – among other tasks – pose prediction of 20 ligands in beta secretase 1 (BACE-

1), 19 of which were MC compounds[173]. The first stage (1A) of this challenge was a 

cross-docking setup, where the ligands were supposed to be docked into the active site 

without knowledge of the experimental binding pose and only provided with the FASTA 

sequence of the receptor and SMILES codes of the ligands. For the second stage (1B), the 

experimentally determined receptor conformations of these complexes were released, 

and ligand poses should be re-evaluated in a self-docking study. The challenge counted 

many submissions that resulted in corresponding publications on molecular docking of 

MC ligands, which will be included in the following discussion. 

4.2.1. Performance 

First, it needs to be stated that all beforementioned studies included different MC ligands 

in their data sets, which only allows for a qualitative comparison with our study. However, 

some prominent MC ligands overlapped among data sets (see below). Furthermore, for 

the most reasonable comparison possible, we included results of other studies with 

similar setups (external generation of ligand conformations and subsequent docking of 

conformer ensembles), even if other protocols might have obtained better results. Such 

differences are discussed afterwards. It must be kept in mind that, next to the varying 

programs and applied parameters, other preliminaries (like preparation of ligand and 

receptor structures, definition of the binding site, quality of structural alignment, etc.) 
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might have also influenced the docking procedure, and thus the final calculation of RMSD 

values of resulting poses. This section focuses on structural accuracy of the docked poses 

and scoring is included in the end of this discussion. 

Table 4. RMSD values [Å] for the most accurate docking pose of data set-overlapping MC ligands of holo 
docking results of different studies. Mean value of lowest RMSD poses of all ligands of a data set is given 
below (“data set average”). Values highlighted in red if above 2.0. 

In our approach, the mean RMSD value of the closest docking poses* for all ligands was 

1.06 Å (1.97 Å) in holo (apo) systems and most accurate poses were below 2.0 Å in 95% 

(75%) of cases. In similar setups of other studies, accuracy was significantly lower. Martin 

et al. and Anighoro et al. reported success rates of only 58.5%†[124] and 52.1%[127], 

respectively, where, for the latter, the accuracy limit was even raised to 2.5 Å. For 

overlapping ligands across data sets, a more direct comparison can be drawn to the works 

of Alogheli et al. and Castro-Alvarez et al. For similar procedures included in their works, 

Table 4 lists reported RMSD values of the most accurate docking pose of each ligand and 

the mean value over all ligands in the respective data sets. For the individual ligands, our 

 
* minimum RMSD pose to the equilibrated bound complex 
† here, success was defined if one of the top 3 scored poses obtained an RMSD value below 2.0 Å. 

sampling  MMBS MMBS 
Prime-

MCS 
MD 

docking 
ADa 

Vina 
ADa4 ADa3 DOCK Glide Glide DynaDock 

li
ga

n
d

-I
D

 

S1A 0.45 0.69 0.64 0.41 0.52    0.55 

LAR 0.47 0.61 0.82 0.59 0.36 0.21 1.56 1.74 1.00 

CY9 0.61 0.71 0.61 0.45 0.31 0.17 0.15 1.25 0.63 

GDM      0.34 0.59  0.62 

FK5      2.67 2.37  1.79 

RAP      0.51 7.24  1.31 

6QG        1.25 0.31 

06H        1.15 0.43 

27J        1.12 1.23 

ZER        1.64 0.84 

58T        0.83 0.53 

data set 

average 
0.83 0.97 1.46 0.93 0.92 1.14 2.55 1.28 1.06 

reference Castro-Alvarez et al.[116] 
Alogheli  

et al.[99] 

Ugur  

et al.[102]b 

Meixner  

et al.[104]c 

a AutoDock, b previous pipeline, c updated pipeline  
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approach was comparable in structural accuracy to other methods. For large rings like 

FK5, our dynamics-based pipeline achieved accuracy below 2.0 Å, outperforming docking 

with Glide. For such ligands (FK5, RAP), Alogheli et al. reported significant problems when 

using Prime-MCS, a conformational sampling method specifically designed for MC 

compounds, leading to an average RMSD value of 2.55 Å for the most accurate docking 

pose[99]. Together with our studies, this highlighted the importance of accurate sampling 

of bioactive-like conformers for the success of the subsequent docking step. Furthermore, 

results by Castro-Alvarez et al. suggested that outdated docking methods, like AutoDock 3, 

achieved overall less accurate docking poses (mean RMSD of 1.46 Å)[116], making it less 

suitable for MCs compared to newer versions and other docking approaches including 

DynaDock.  

Moreover, we included all seven small MC systems of the evaluation set of the previous 

pipeline in our benchmark to directly compare possible differences (see Table 4). While 

the old workflow already produced accurate docking poses below 2.0 Å for all systems 

(1.28 Å on average)[102], the optimized pipeline could improve all but one of those 

systems significantly. The average RMSD value over these seven systems employing the 

new pipeline was 0.71 Å[104]. The differences in both pipelines will be briefly outlined. 

In the old pipeline, MD-based conformational sampling of MC ligands was performed for 

3x 250 ns at 370 K. Combined trajectories were clustered in Cartesian space obtaining 

five clusters. Representatives of these were used as starting structures for molecular 

docking calculations with DynaDock producing 2,000 initial broad sampling poses each. 

Of these, 250 poses per starting conformer were selected for OPMD refinement 

simulations. Successfully refined poses were clustered and ranked[102]. In contrast to 

that, our optimized ligand sampling parameters featured 3x 1,000 ns simulations at 

600 K[104]. We could show that, for some MCs in our evaluation set, many new 

conformations were sampled within the first 1,000 ns (even after 250 ns) and that 

elevated temperatures enabled the sampling across torsional barriers leading to distinct 

MC conformations absent at 370 K. These optimized sampling conditions facilitated more 

exhaustive pre-sampling of conformers including the bioactive state of the MC inhibitors. 

Combined trajectories were classified in torsional space for more intuitive analysis and 

high-quality partitions. An ensemble size of 10 was used and each starting conformer 

produced 2,000 initial broad sampling poses that were clustered obtaining 100 remaining 

poses, which were then refined with OPMD. The last part of the refinement simulation 

was used for MMGBSA-based scoring and clustering, where the representative of the 
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highest populated cluster was appointed the final refined docking pose. These changes in 

our pipeline account for the detailed improvements in docking poses of six of the seven 

overlapping MC systems. Moreover, the new settings are generally applicable to MCs since 

we extended the data set for the benchmark study to cover a large variety of MCs including 

small, medium, and large MC rings with and without flexible substituents. Overall, MD pre-

sampling and docking with DynaDock provided consistent and highly accurate results 

that rank among the best structural performances for this setup in holo structures.  

18 out of 20 ligands in the study by Castro-Alvarez overlapped with compounds in the 

benchmark set by Lam et al., which allows for a more direct performance comparison. For 

those, mean RMSD values of 1.4 Å, 1.59 Å, 2.54 Å, 1.4 Å and 1.35 Å for AutoDock Vina, 

AutoDock 4, AutoDock 3, DOCK and Glide were achieved[116], which were higher than 

for ICM-dock (1.2 Å)[126]. Thus, the internal coordinate scheme implemented in ICM 

constitutes a remarkable strategy with the capability of accurately sampling MC ring 

conformations during docking (further discussed in the following section), that also 

achieved the best performance with sub-angstrom accuracy in stage 1B of the blind 

docking challenge. In contrast to our and other benchmark studies, in this challenge only 

a single protein system was explored. Moreover, multiple co-crystallized structures 

existed in the PDB with very similar (template) ligands compared to those investigated in 

the challenge. For example, 340 complexes were found in the PDB that shared 95% 

sequence similarity to the receptor target sequence[174]. Furthermore, the structure of 

one target ligand only differed in a hydroxyl group compared to an existing co-crystallized 

structure[175]. Thus, many submissions and most of those with mean sub-angstrom 

accuracy relied on highly tailored protocols that incorporated tight system-specific 

constraints guiding the docking procedure. These included hydrogen bond constraints in 

the active site[176], restrained minimization[177], atomic property fields of template 

ligands[126], distance dependent penalties and filters that only included poses with 

significant overlap between common substructures of target and template ligands[118]. 

In addition, the entire algorithm of SkeleDock, a newly introduced docking web 

application, was designed for template-based procedures[178]. All these approaches 

require detailed information about the investigated system or a highly similar one. It can 

thus be assumed that their performances strongly depend on this knowledge. Therefore, 

it would be interesting for future challenges to stipulate MC systems with less accessible 

experimental information uncovering the limits of biased docking.  
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Interestingly, many results presented in studies that participated in the challenge agree 

well with key findings from our works: (i) the accuracy of ligand pre-sampling and the 

inclusion of bioactive-like MC (ring) conformers are crucial for successful docking[120, 

175]. (ii) Structural errors in otherwise correctly placed poses could mainly be attributed 

to large flexible substituents of the ligand, not the MC ring[175]. This was also confirmed 

by other benchmark studies[99] and our own results, which further suggested that this 

was especially challenging for solvent-exposed binding sites[104]. (iii) During MD-based 

refinement of docked poses ligand moieties could adapt to the binding site, thereby 

overcoming weak initial placements resulting in higher accuracy[177].  

Regarding our MD-heavy pipeline, it is worth further discussing the performance of this 

method employed by participants in the challenge. Sasmal et al. performed short post-

docking MD simulations for 14 ns and evaluated possible changes of binding modes solely 

based on the first and last frames[175]. For 9 cases, the docked poses did not change 

significantly or slightly improved with respect to the bound reference. However, in the 

remaining 11 cases they drastically deteriorated. Overall, the mean RMSD value thus 

increased from 1.32 Å to 1.75 Å. Although a short minimization and equilibration of the 

initially docked poses were performed, relaxation of the complex could cause strong 

movements in the beginning of the production simulations. Furthermore, only 

considering the last frame of the simulation is arbitrary and not representative. Cluster 

analysis should have been performed to evaluate the most dominant structure of the 

simulation. In contrast to that, as part of our docking process, DynaDock performed a 

short OPMD simulation of each pose after initial placement to allow for induced-fit 

adaptions of the binding partners. The end of this refinement simulation was clustered to 

determine the final docking pose. From that, our long-term post-docking MD simulations 

carefully minimized, heated, and equilibrated the system. They furthermore stated 

different conditions between the reference structure (crystallized at low temperatures) 

and the docked complex (simulated at room temperature). We therefore also equilibrated 

the bound reference structure to assure similar treatment and conditions and to thus 

minimize possible structural artifacts from crystallization experiments. In our setup, a 

docking pose with an RMSD value of 0.0 Å to this equilibrated reference would be 

theoretically exact, allowing for more meaningful conclusions about the accuracy of the 

computational workflow. 

Computational costs across these approaches were discussed before[104] and will be 

summarized herein. Compared to strategies where docking and/or conformer sampling 
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were performed by stochastic tools, our MD-driven pipeline was significantly more 

demanding in computation time and resources. However, such tools were often designed 

and optimized for speed, allowing fast screening approaches of many ligands of a database. 

In contrast, our workflow is focused on structural accuracy and thus more suitable for 

detailed predictions of few systems. Fast docking programs often generate many possible 

binding modes. The DynaDock strategy can be used for distinguishing and refining the 

true binding mode. We further highlighted that costly external generation of ligand 

conformations with MD is worth the investment, if the necessary computational resources 

are available.  

4.2.2. Ligand flexibility 

Important for dynamically complex molecules like MCs, ligand flexibility is mainly 

accounted for in two different ways regarding molecular docking: (i) generating ligand 

conformations by external sampling and selecting an ensemble of starting structures or 

(ii) intrinsically modifying ligand torsional DoFs during pose generation, called flexible 

ligand docking, which is challenging for MCs due to interdependence of ring bonds, as 

introduced earlier.  

Tested in other benchmark studies, flexible ligand docking with AutoDock 4[116] and 

GOLD[124] produced worse results when directly compared to rigid docking of pre-

generated conformers. GOLD’s optional retrieval of template ring conformations from 

experimental CSD structures was inapplicable to larger MCs, since only rings consisting 

of less than 8 ring atoms were included. Alogheli et al. reported robustness for intrinsic 

sampling with Glide, which was comparable to other conformational sampling methods, 

and even outperformed Prime-MCS[99]. However, some rings (for example RAP) could 

not be processed by Glide and no docking poses could be obtained prohibiting unified 

treatment. Unfortunately, no explanation was provided for those cases. Other flexible 

ligand docking approaches like ICM-dock[126] or a newly GPU-adapted version of 

AutoDock[118] seemed more promising for MCs, producing accurate docking poses 

below 2.0 Å for ligands of the Grand Challenge 4, whereas the anchor-and-grow type of 

conformer generation algorithm implemented in DOCK seemed unsuitable[175]. 

However, another disadvantage of these methods is the lack of knowledge about the 

generated (ring) structures. Since conformations are sampled on-the-fly without optional 

output prior to docking, it cannot be judged if a bioactive-like ring conformer was 

generated apart from evaluating the final docking poses.  
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Pre-sampling of MC conformations in a separate step allows for more detailed structural 

analysis[177], but also faces the same challenges as discussed above. Moreover, in the 

context of subsequent docking, wrongly generated starting conformers from RDKit led to 

unsuccessful docking calculations[120]. In that case, the tool strongly favored cis 

configuration for an amide dihedral angle within the MC ring, despite the native trans 

configuration. The researchers could only force the right configuration with a highly 

tailored protocol, relying on human intervention and knowledge about the system. This 

result confirmed that poor external pre-sampling limits the performance of the docking 

step. OMEGA was another tool that showed significant problems with MC conformer 

generation during the Grand Challenge 4. Participants reported that an old version of the 

tool could not handle MCs well, missing near bioactive conformations, which decreased 

the docking accuracy[175]. Moreover, docking poses with high RMSD values originated 

from OMEGA conformers due to general sampling issues rather than the use of a 

conformer subset[174]. 

Thus, MC ligand flexibility is still not thoroughly accounted for in some flexible docking 

tools as well as in some stochastic conformational sampling tools, making this an active 

field of research[130]. Therefore, our optimized dynamics-based sampling and fully 

flexible docking pipeline meets the need for MC-specific methods and provides sufficient 

MC ligand flexibility.  

4.2.3. Receptor flexibility 

Abovementioned benchmark studies focused on rigid receptor dockings in the bound 

state of the protein. Such protocols are only useful for method evaluation and comparison 

and thus limited in their applicability. Accounting for receptor flexibility is crucial for 

more realistic setups and upcoming comparative studies should thus include apo states. 

Our benchmark study was the first of this kind focused on MC compounds[104], where 

we explicitly included receptor flexibility during OPMD refinement of the docking step. 

The significantly higher accuracy obtained by our approach even in the holo state 

compared to similar studies (see chapter above) suggests that incorporating receptor 

flexibility improves the docking performance also for the ligand-bound state. 

Ensemble docking, as introduced earlier, is a common strategy to implicitly account for 

receptor flexibility during docking. A direct comparison of our approach to that strategy 

would be an interesting future study. For the Grand Challenge 4, biased docking approach 

with ICM-dock incorporated 14 receptor states in a 4D docking setup, which led to highly 
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accurate results[126]. In another study, all ligands were docked to handpicked ensemble 

of 11 receptor conformations[118]. As mentioned before, such approach is more costly 

when docking in a systematic fashion, and typically more suited for conformational 

selection phenomena, since each chosen receptor state is still treated rigidly during 

docking[128].  

In contrast to that, for the submission by Basciu et al.[174] their previously published 

EDES approach[179] (ensemble docking with enhanced sampling) was applied. For that, 

three orthogonal inertia planes were defined across the binding site including its center 

of mass. The contacts between residues of each side of a plane and the Rgyr of the binding 

site were then employed as collective variables in MTD simulations. The latter was used 

to alter the shape of the binding site in a controlled manner throughout the simulation. 

With this, they generated 200 holo-like receptor structures in silico starting from apo 

states for subsequent unbiased ensemble docking calculations. Although their prediction 

results ranked worse compared to biased docking studies (stage 1A average minimum 

RMSD values of 2.48 Å and 2.28 Å for docking with AutoDock and HADDOCK, respectively), 

they achieved comparable results to docking in real holo states of the protein. 

Furthermore, their approach was generally disadvantaged by average-based rankings 

since it was intendedly designed to produce distinct shapes of the binding site. However, 

docking in the crystallized apo form of the protein resulted in poses with larger RMSD 

values of 3.78 Å (AutoDock), showing that incorporating receptor flexibility in that way 

significantly improved docking accuracy. A recent benchmark study developed a similar 

approach where apo structures were reliably converted to holo-like states employing MD 

simulations[180]. Docking in these refined structures achieved high accuracy with 

average RMSD values of 1.97 Å, comparable to self-docking and significantly lower 

compared to rigid apo docking results. These studies thus highly strengthened the validity 

of dynamics-based methods for incorporating receptor flexibility, agreeing with our own 

conclusions[104]. 

4.2.4. Evaluation of docking poses 

Focusing on structural evaluation first, the RMSD value is still the most common metric, 

useful in benchmark studies, where structural accuracy is compared between different 

approaches. We intentionally chose a harsh cut-off value of 2.0 Å for docking success to 

show the high structural accuracy of our approach that we aimed for. However, such 

threshold is usually employed for typical small molecules[181], which is why other 
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studies employed more relaxed boundaries up to 2.5 Å[127] or 3.0 Å[124]. Large RMSD 

values can be obtained for minor errors even if most parts of the docked pose were 

predicted accurately. Some MCs are prone to this inherent weakness since their structural 

architecture comprises an MC core with multiple flexible substituents. Exemplarily 

demonstrated by Alogheli et al., even if the core scaffold and two of the three extensions 

were placed correctly, the one wrongly predicted substituent caused an overall RMSD of 

4.2 Å for that pose[99]. Most of our failed docking cases (JZB, JZC and NHN), could be 

explained in the same way[104], attributing these errors to the substituents rather than 

the MC ring. For conformational pre-sampling, we intendedly focused on the RMSD of ring 

atoms, since other studies showed that the RMSD of all heavy atoms can be insufficient in 

describing the ring conformation[96]. However, other studies included Rgyr to assess the 

extendedness or compactness of a conformation and torsional fingerprints to measure 

exhaustiveness of sampling or diversity of conformers[92, 182]. The latter is an 

interesting metric for ring structures, often employed when comparing structure 

generation methods and should be used in combination with MD simulations in future 

studies, since an arbitrary number of conformers can be generated by the latter without 

accounting for redundancy. For evaluating docking poses, the reproduction of native 

contacts might be a promising alternative to RMSD, as demonstrated by the MC peptide 

docking study of Zhang et al[183]. They exemplarily showed a docking pose where the 

protein-bound parts were docked correctly, while solvent-exposed extensions differed 

from the reference. Although reproducing 96% of native contacts, the pose obtained an 

RMSD value of 5.6 Å and would have been neglected by a strict RMSD cut-off. Thus, their 

metric could indeed overcome deficiencies of the RMSD like the dependence on structural 

alignment, which is of great importance when considering apo structures. Future studies 

should therefore consider this metric and test its potential to identify MC docking poses 

that might resemble the correct binding mode but obtained RMSD values larger than 2.0 Å 

due to solvent-exposed substituents. Such docking poses can also be evaluated by MD 

simulations in a post-processing step. We showed that docking poses quickly stabilized 

during the simulation, thereby confirming that the initial placement indeed resembled the 

bound state, even if the RMSD was slightly above 2.0 Å[104]. A similar strategy was 

employed in a docking protocol for antibody-carbohydrate complexes, where MD 

simulations were used to discriminate between real bound states and wrong docking 

poses produced by the Vina-CARB program[184]. Together, these results suggest that MD 
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simulations offer a useful way of evaluating docked poses over the course of a trajectory, 

instead of only considering a static pose based on a single RMSD value. 

Besides structural measures docked poses can be evaluated energetically. Realistically, if 

the exact binding mode is unknown and no co-crystallized reference structure exists, 

scoring and ranking the docking poses based on their interaction energy might be the only 

consideration. Unfortunately, there is no ultimate scoring function that correlates exactly 

with structural measures. The development of suitable scoring functions is still an active 

field of research[185] and would thus exceed the scope of this work since we focused on 

structural accuracy. Nevertheless, we illustrated that MMGBSA is generally a suitable 

measure for ranking of MC docking complexes. A benchmark setup by Greenidge et al. has 

shown before that re-ranking poses docked by GOLD and Glide with MMGBSA in a post-

processing step improved the identification of the correct pose, overcoming sensitivities 

of the scoring functions implemented in these programs[186]. Interestingly, implicit 

receptor flexibility accounted for by ensemble docking was indispensable for this pipeline. 

Furthermore, our workflow has the advantage that the trajectory of the OPMD 

simulations can be directly used for MMGBSA energy calculations (employing a single 

trajectory protocol) without the need of expensive post-processing simulations. In the 

Grand Challenge 4, affinity ranking and free energy prediction were additional tasks of 

both stages. Sasmal et al. reported near zero correlation between experimental rankings 

or values and MMGBSA, and thus argued that this method was neither suitable for pose 

ranking nor affinity prediction[175]. However, single trajectory MMGBSA calculations 

were performed with frames of a 10 ns production run after rigid receptor docking, 

during which some initially docked poses proved to be unstable. A connected study 

further highlighted the sensitivity of MMGBSA calculations to the initial conformation of 

the receptor and its protonation state[187]. Thus, this might be explained by significant 

structural rearrangements during the long simulation due to poor docking rather than 

scoring. Most likely, such poses produced unreliable scores which evened out the scores 

of stable poses. Therefore, we only used the frames of the last 5 ps of the refinement OPMD 

for MMGBSA calculations. This way, potential fluctuations of the beginning of such 

simulations due to induced-fit of the initial placement and the flexible receptor were 

excluded. Taking all results into account, we thus argue that MMGBSA calculations might 

be more meaningful for ranking of high-quality docking poses that resemble stable 

binding modes. Associated with that, we strongly advocate the incorporation of receptor 
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flexibility during docking to assure the generation of reliable poses which allow for 

improved scoring.  
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5. Conclusion 

In this work the development of a suitable strategy for successful molecular modeling of 

MCs was presented. We first explored and optimized MD-based sampling of MC ligands. 

Our early case study of the MC tetrandrine and iso-tetrandrine intermediates revealed 

that few specific ring torsions determined the compound’s overall conformation[155]. 

Detailed analysis of dihedral angles of such torsions helped to understand the distribution 

of sampled conformers throughout the simulation which could be correlated to 

experimental observations. This in-depth investigation eventually led to the development 

of a torsion-based classification scheme for MD-sampled conformations of MCs 

(ClassTor.py)[104].  

In two following case studies, molecular docking of MCs was performed where different 

parameters could be tested to obtain structurally accurate docking poses[147, 156]. In 

the first, acyldepsipeptide derivatives were docked to caseinolytic protease P. Docking 

parameters could be validated for a test case of the parent compound, where a co-

crystallized structure was available. Thus optimized, the docking of the investigated 

compounds predicted accurate binding modes which could explain major experimentally 

observed differences. In the second study, the miuraenamide derivative LK701 was 

studied. Earlier studies could determine the binding mode of the parent compound 

miuraenamide bound to an actin trimer nucleus and structurally explain its filament-

stabilizing effects[188]. The derived compounds, however, showed an opposing biological 

outcome since less filaments were formed after LK701 treatment[156]. Our extensive 

computational investigation showed that LK701 binds to the actin monomer and cannot 

penetrate and bind an existing unbound nucleus. Blocking important longitudinal 

interaction sites in the macrolide binding cleft of single actin subunits, binding of LK701 

likely prevents actin monomers from incorporation into existing nuclei and filaments. Our 

docking calculations confirmed that the minor structural differences between LK701 and 

its parent miuraenamide led to distinct binding modes explaining the observed 

differences in the experiments. 

These three detailed case studies provided the basis for the final benchmark study, where 

we combined conformational sampling and molecular docking in a generally applicable 

pipeline for molecular modeling of MCs. The final workflow was based on a previous 

strategy in our group that was tested for seven small MCs[102]. We extended the data set 

to 20 highly diverse MC compounds ranging from 11 to 29 MC ring atoms with or without 
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large flexible substituents and further included proteins in their holo and apo states.  We 

found suitable conditions for the ligand simulations accounting for their complex 

topology and dynamics. We developed a dihedral classification scheme to rationally 

analyze the sampled ring conformations which we used for the extraction of conformer 

ensembles. Settings of the docking procedure with DynaDock could be optimized and thus 

produced highly accurate and refined binding modes.  

This pipeline thus solved some of the major structural challenges in molecular modeling 

of MCs. Missing ring flexibility during broad sampling of molecular docking calculations 

could be compensated by a conformer ensemble generated by MD-based ligand pre-

sampling. Here, the extensiveness of ligand MD simulations was crucial for high quality 

structural ensembles that included a bioactive-like state of the MC rings which ultimately 

increased the chance for successful docking. Furthermore, during the pose refinement 

OPMD simulations MC rings could adapt conformation to the presence of the protein, 

corresponding to a switch from unbound to bound state in some cases. The refinement 

allowed for incorporation of full protein flexibility which enabled explicit simulation of 

dynamic phenomena like induced-fit binding, improving docking results in holo and apo 

states.  

Insights from our studies suggested that large flexible substituents on the ring scaffold in 

combination with solvent-exposed binding sites on the protein remained troublesome 

and should be tackled in future studies. There, it should be investigated if small changes 

to our existing pipeline solve these remaining issues or if larger modifications of the 

strategy are necessary. In case of the former, it must be shown if simply increasing the 

number of initially generated broad sampling poses or modifications in torsional DoFs 

would be sufficient to accurately account for the larger conformational space of these 

flexible moieties. In case of the latter, a fragmentation-based docking approach could be 

an interesting alternative, where first the ring scaffold is placed, while adding the 

substituents afterwards. However, this entirely different procedure would pose new 

questions and might overly complicate the issue. In this regard, upcoming AI-based 

docking procedures could also be considered for MCs. An easier solution without 

fragmentation might be a general docking with our pipeline followed by additional 

refinements of only the substituents to allow for further adaption in these regions of the 

MC compounds. Moreover, alternative structural measures despite RMSD values must be 

tested for this issue, for example the reproduction of native contacts. Such measures could 

distinguish protein-bound parts of the compounds from solvent-exposed regions and 
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reveal their importance for accurate structural reproduction under consideration of their 

sophisticated binding modes. Furthermore, detailed investigations of scoring functions 

are necessary for MC compounds which could reveal the need of MC-specific functions. 

Concluding, studies in this work provided helpful solutions for molecular modeling of MCs. 

With our sophisticated pipeline that incorporates high level of molecular flexibility, the 

dynamics and the complexity of the MC ring was accounted for in detail. Thereby, we 

redirected the focus in modeling of larger MC ligands to their flexible substituents bound 

to solvent-exposed binding sites, which remain challenging for molecular docking 

methods. 
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Abbreviations 

17-AAG 17-allylamino-17-demethoxygeldanamycin 

17-DMAG 17-dimethylaminoethylamino-17-demethoxygeldanamycin 

2D two-dimension(al) 

3D three-dimension(al) 

AD AutoDock 

ATP adenosine triphosphate 

BP-Dock backbone perturbation-dock 

BRIKARD builder for recursive inverse kinematic assembly and ring design 

CAESAR conformer algorithm based on energy screening and recursive buildup 

CCDC Cambridge Crystallographic Data Centre 

c-RDC cycloproparadicicol 

CsA cyclosporin A 

CSD Cambridge Structural Database 

DG distance geometry 

DoF(s) degree(s) of freedom 

EDES ensemble docking with enhanced sampling 

EMA European Medicines Agency 

FDA U.S. Food and Drug Administration 

FF(s) force field(s) 

FKBP(12) FK506-binding protein (12) 

ForceGen force field based conformational generation 

GA genetic algorithm 

GDM geldanamycin 

Glide grid-based ligand docking with energetics 

GOLD genetic optimization for ligand docking 

HBA hydrogen bond acceptor 

HBD hydrogen bond donor 

HCV hepatitis C virus 

Hsp90 heat shock protein 90 

ICM internal coordinates mechanics 

LAM lymphangioleiomyomatosis 

LLMOD large scale LMOD 
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LMOD low mode search 

MC(s) macrocycle(s), macrocyclic 

MD  molecular dynamics 

MM molecular mechanics 

MMBS MacroModel baseline search 

MMGBSA MM/generalized Born Surface Area 

MMPBSA MM/Poisson-Boltzmann Surface Area  

MOE molecular operating environment 

MTD meta-dynamics 

mTOR(C) mechanistic target of rapamycin (complex) 

NFAT nuclear factor of activated T-cells 
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OPMD optimized potential MD 

PCA principle component analysis 

PDB Protein Data Bank 

PEComa perivascular epithelioid cell tumor (sarcoma) 

PPI protein-protein interaction 

Prime-MCS Prime macrocycle conformational sampling 

PSA polar surface area 

QM quantum mechanics 

RAP rapamycin 

RDC radicicol 

Rgyr radius of gyration 
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Appendices 

Appendix 1: Supplemental results of macrocycle conformational sampling  

 

Figure A1. Comparison between 3 different conformer generation methods for the conformational 
sampling of MCs of the evaluation set by Meixner et al.[104] (chapter 3.4): extensive MD simulations (blue: 
3x1,000 ns, 600 K, explicit solvent), distance geometry algorithm of Balloon software (red) and 
Schrödinger’s Prime Macrocycle Conformational Sampling tool (green). The MC ring atoms of generated 
structures were compared to the bound form in the holo state (ring RMSD, y-axis), boxplots mark the first 
and third quartile values of the conformer ensemble, whiskers extend to the overall minimum and 
maximum values and the median is indicated by a white dot. 

 


