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Abstract

This thesis explores Side-Channel Analysis (SCA) of ring-based Physical Unclonable Functions (PUFs),
and BCH codes used to correct errors in the PUF response. SCA of the TERO PUF and Loop PUF is
conducted. Countermeasures for the Loop PUF are proposed that protect sign- and amplitude-based
bit derivation, and can partially be transferred to other PUFs. Differential SCA of BCH codes is
extended and the possibility, and limitations of horizontal SCA are analyzed.

Zusammenfassung

Diese Arbeit untersucht die Seitenkanalanalyse (SCA) von Ring-basierten Physical Unclonable Func-
tions (PUFs) und dabei zur Fehlerkorrektur verwendeter BCH Codes. Eine SCA von der TERO PUF
und Loop PUF wird durchgeführt. Gegenmaßnahmen für die Loop PUF werden vorgestellt, die Bit-
und Amplituden-basierte Bitableitung schützen und teilweise auf andere PUFs übertragen werden
können. Differentielle SCA von BCH Codes wird erweitert und die Möglichkeit und Beschränkungen
von horizontaler SCA werden analysiert.
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1 Introduction

In an increasingly interconnected world, the ubiquity of embedded devices leads to an elevated
requirement of secure communication and data protection. Cryptographic algorithms are leveraged
to achieve security goals such as authenticity, confidentiality and integrity. A common ground of all
algorithms is the use of secret keys, e.g., for encryption, decryption and signing messages. However,
the proper storage of the key material is a major challenge for embedded devices, where an adversary
has potentially physical access to the devices. In particular if the key is kept in Non-Volatile Memory
(NVM), attacks during the power-off phase of a device have to be considered. Unprotected storage
is prone to probing attacks that allow for reading out the key material, e.g., by optical analysis upon
delayering the Integrated Circuit (IC) or related attacks. Therefore, secured NVM is a requirement
to maintain system security, which however comes at an increased cost.

Especially low-cost embedded devices are physically accessible and may serve as an entry point
for attacks. While such devices require decent security mechanisms, their low-cost nature limits the
acceptable cost overhead. One major issue is the secure key storage to provide credentials for e.g.,
secure firmware updates or authenticated communication. However, secured NVM is frequently not
affordable. Also, NVM protection mechanisms require permanent power, draining the limited energy
resources of embedded devices in the field.

To overcome the limitations of non-volatile storage, Physical Unclonable Functions (PUFs) pro-
vide means for secure key storage without requiring expensive secured NVM. By leveraging manu-
facturing variations for each device a unique, but reproducible PUF response is generated that can be
used to embed a secret key. Compared to classical key storage, the secret is only derived on-demand
from the PUF and stored in volatile memory, i.e., during power-off no key material remains on the
device, which reduces the attack surface. Commercially available PUFs include the Loop PUF from
Secure-IC1; the SRAM PUF from Intrinsic ID2, which is also used in NXP3 devices for key storage and
by Rambus4; the SAMPUF™ [1] by Samsung; and the NeoPUF [2, 3] by ememory5. Further vendors
provide PUFs in their portfolio without providing details about the exact primitive, e.g., Thales6 has
an analog IP core at hand, and Xilinx7 provides their Zynq UltraScale+ devices with a built-in PUF to
generate a cryptographically strong, device-unique encryption key.

Most importantly, PUFs have to meet quality criteria to assure that the derived keys are different
on distinct devices and have full entropy. However, apart from quality criteria and ease of integration
into existing solutions, protecting PUFs against Side-Channel Analysis (SCA) is a major concern for
practical applications. SCA exploits the fact that ICs may leak information from physical properties
such as timing, power consumption or electromagnetic (EM) emanations. In particular, if this side-
channel information is related to the processed secret data, SCA is a severe threat that jeopardizes the
security of a system. In the context of PUFs, SCA can target the primitive directly, i.e., the circuitry
that exploits the manufacturing variations, or the subsequent processing that processes the derived
data, e.g., Error-Correcting Codes (ECCs). Understanding potential attacks is a key requirement to
develop suitable countermeasures that enable secure key generation from PUFs.

1https://www.secure-ic.com/products/issp/security-ip/key-management/puf-ip/, last accessed 22nd December 2022.
2https://www.intrinsic-id.com/physical-unclonable-function/, last accessed 22nd December 2022.
3https://www.nxp.com/docs/en/application-note/AN12292.pdf, last accessed 22nd December 2022.
4https://www.rambus.com/blogs/combining-root-of-trust-and-puf-technology-for-robust-chip-security/, last ac-

cessed 22nd December 2022.
5https://www.ememory.com.tw/en-US/Products/Product?guid=19081314113656, last accessed 22nd December 2022.
6https://www.thalesgroup.com/en/market-specific-solutions/tss/system/physical-unclonable-function-puf, last

accessed 22nd December 2022.
7https://docs.xilinx.com/r/en-US/xapp1333-external-storage-puf, last accessed 22nd December 2022.

https://www.secure-ic.com/products/issp/security-ip/key-management/puf-ip/
https://www.intrinsic-id.com/physical-unclonable-function/
https://www.nxp.com/docs/en/application-note/AN12292.pdf
https://www.rambus.com/blogs/combining-root-of-trust-and-puf-technology-for-robust-chip-security/
https://www.ememory.com.tw/en-US/Products/Product?guid=19081314113656
https://www.thalesgroup.com/en/market-specific-solutions/tss/system/physical-unclonable-function-puf
https://docs.xilinx.com/r/en-US/xapp1333-external-storage-puf
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1.1 Contributions

This thesis investigates SCA attacks and countermeasures for ring-based PUF primitives, and attacks
on BCH codes used for key generation. In particular the following contributions are achieved:

• Practical SCA of the Transient Effect Ring Oscillator (TERO) PUF, demonstrating that attacks
are even feasible on primitives with short metastable oscillations.

• SCA and protection of the Loop PUF with sign-based bit derivation. The attack is shown for
classical as well as for on-chip side-channel measurements, highlighting the threat and need
for countermeasures. The proposed temporal masking countermeasure randomizes temporally
separated frequency leakage. Deriving the required randomness from the Loop PUF enables a
self-secured PUF primitive.

• SCA and protection of the Loop PUF with Two-Metric Helper Data (TMHD) bit derivation. It
is practically demonstrated that the TMHD scheme can be attacked by analyzing the amplitude
of the observed frequency difference, and cannot be protected by temporal masking. Instead,
randomizing the bit derivation order in form of challenge randomization has to be adopted.
Possible lightweight randomization techniques do not provide sufficient protection, and a True
Random Number Generator (TRNG)-based countermeasure is very expensive. Therefore, a
side-channel hardened modified Loop PUF primitive, the Interleaved Challenge Loop PUF
(ICLooPUF), is proposed that avoids exploitable frequency leakage by challenge interleaving. A
theoretical analysis of the protection mechanism is accompanied by a practical evaluation.

• Extension of SCA of Bose-Chaudhuri-Hocquenghem (BCH) codes in the context of PUF-based
error correction. Existing Differential Power Analysis (DPA) attacks are extended, and hori-
zontal SCA attacks are investigated regarding their feasibility and limitations.

1.2 Structure

The thesis is organized as follows: In Chapter 2 the generation of secret keys from Physical Unclonable
Functions is introduced. In particular, the relevant ring-based PUF primitives for the following
chapters as well as bit derivation methods and error correction for post-processing are provided.
Additionally, the attacker model and existing physical attacks on PUFs are addressed.

The possibility of attacking the TERO PUF is shown in Chapter 3, which highlights that even ring-
based primitives that oscillate for a limited time are susceptible to SCA. Chapter 4 demonstrates that
the Loop PUF is prone to classical and remote SCA and requires dedicated protection. Consequently,
temporal masking, a low complexity countermeasure for the Loop PUF, is proposed, where the temporal
order of two challenges used to generate a PUF bit is randomized. As the randomness is drawn from
the Loop PUF itself, the result is a self-secured PUF primitive with little overhead. Chapter 5 shows that
temporal masking does not protect amplitude-based bit derivation. Possible protection mechanisms
are analyzed. The analysis leads to a modification on circuit level that interleaves pairs of challenges.
The countermeasure denoted as Interleaved Challenge Loop PUF (ICLooPUF) hides side-channel
leakage, which is theoretically established and practically verified. Chapter 6 relates attacks on ring-
based PUF primitives, and compares the countermeasures for the Loop PUF. Further, the transfer of
the temporal masking countermeasure to other PUF primitives is explored.

Chapter 7 focuses on possible SCA attacks on BCH codes that are used to correct noisy PUF re-
sponses. Improvements of DPA attacks based on modified helper data manipulations and an extended
power model are provided that allow for attacking stand-alone BCH codes. As the manipulation of
helper data is not always possible, the feasibility of horizontal SCA attacks is investigated. Results
from simulated power measurements are provided for both attacks.

Finally, the thesis concludes in Chapter 8.
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2 Key Generation from Physical Unclonable
Functions (PUFs)

This chapter introduces the use of Physical Unclonable Functions (PUFs) for key generation on
embedded devices. First, Section 2.1 provides a general overview of the involved entities and their in-
teraction. Subsequently, Section 2.2 summarizes PUF primitives based on rings. A detailed overview
of different bit derivation methods is provided in Section 2.3. It is followed by details about error
correction that enables a reliable derivation of key material from noisy PUF responses in Section 2.4.
Finally, Section 2.5 concludes with the attacker model and existing physical attacks on PUFs.

2.1 Overview

PUF
Primitive

𝒞 ℰ

Quanti-
zation

Bit
Derivation𝓡

PUF

ECC
Decoding

Post-
Processing

Reconstruction

Helper DataECC Encoding

Enrollment

w

r

k
c

Bit Derivation
Helper Data

wbd

r′ = r ⊕ e𝓡′ 𝚫

𝚫𝑟𝑒 𝑓

c′ k̃
k̂

w

Figure 2.1 Schematic of PUF-based key generation using the Fuzzy Commitment Scheme (FCS). Dotted lines
denote steps that are carried out once during enrollment in a trusted environment, solid lines denote operations
required by the reconstruction step in the field.

Fig. 2.1 depicts the general structure of the key generation from PUFs considered in this work that
consists of two main building blocks. The Physical Unclonable Function (PUF), highlighted in gray,
generates a binary string r′ from analog values 𝓡. The PUF response r′ is processed by the Fuzzy
Commitment Scheme (FCS) [4] consisting of enrollment and reconstruction, emphasized in lightgray,
to derive a reliable key k̂. Further details of Fig. 2.1 and its components are provided in the upcoming
sections.

2.1.1 PUF: Primitive, Quantization and Bit Derivation

In Fig. 2.1, the PUF is a unit consisting of a PUF primitive, a quantization step and a subsequent bit
derivation from the quantized values, i.e., it transforms analog physical variations into binary values.
The PUF primitive is the source of randomness that captures device-specific manufacturing variations.
This means the primitive must be designed such that, while the blueprint of the primitive is identical
on different devices, manufacturing variations lead to a device-specific behavior. The primitive is pro-
vided with an input, denoted as challenge𝐶𝑖 , and provides an output termed as responseℛ𝑖 . Applying a
set of challenges 𝒞 ∈ {𝐶0 , . . . , 𝐶𝑁𝒞−1} results in analog responses 𝓡 =

[ℛ0 ,ℛ1 , . . . ,ℛ𝑁𝒞−1
]
. Note that
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for PUF-based key generation, the challenge set should be fixed and should be provided from within
the device, i.e., the challenges are stored on the device or generated on-the-fly; there is no external in-
terface that allows for setting the challenges. The quantization transforms the analog responses 𝓡 into
digitized values 𝚫𝑟𝑒 𝑓 =

[
𝛿
𝑟𝑒 𝑓
0 , 𝛿𝑟𝑒 𝑓1 , . . . 𝛿𝑟𝑒 𝑓𝑁𝒞−1

]
, i.e., each ℛ𝑖 is mapped to an 𝑚-bit value 𝛿

𝑟𝑒 𝑓
𝑖 . Finally,

the bit derivation maps the discrete values 𝚫𝑟𝑒 𝑓 to a binary PUF response r = [𝑟0 , 𝑟1 , . . . , 𝑟𝑁𝑟−1]. Note
that the number of response bits𝑁𝑟 can differ from the number of challenges𝑁𝒞 depending on the bit
derivation scheme, e.g., if more than one response bit is generated from each analog response. Fur-
thermore, depending on the bit derivation scheme that is used, additional side-information, so-called
bit derivation helper data wbd, about the properties of the quantized values is stored.

The PUF primitive is influenced by environmental conditions such as the temperature and the
supply voltage of the device [5, 6, 7]. Furthermore, aging can shift the analog responses with respect to
their nominal value𝓡 at the beginning of the PUF’s lifetime [8, 9]. Consequently, the analog responses
are affected by noise ℰ and the primitive provides a noisy analog responseℛ′𝑖 = ℛ𝑖+ℰ 𝑗 . Note that ℰ 𝑗 is
sampled from a distribution each time 𝑗 an analog response from challenge 𝑖 is derived, i.e., it is derived
from a stochastic process [10]. In Fig. 2.1, the noise term ℰ encompasses all of the aforementioned
noise effects, and additional indices to indicate different samples are neglected for simplicity. After
quantization of the noisy analog response𝓡′, the digitized values𝚫 =

[
𝛿0 , 𝛿1 , . . . 𝛿𝑁𝒞−1

]
are combined

with the helper data wbd to derive the binary PUF response. Depending on the bit derivation method
and the environmental perturbations, the resulting PUF response r′ = r ⊕ e can be noisy, i.e., it is
perturbed by bit errors e compared to the response r that has been generated during enrollment. A
reliable key generation is not directly possible if the PUF response r′ contains bit errors as the response
differs for each query.

2.1.2 Fuzzy Commitment Scheme: Enrollment and Reconstruction

In order to ensure reliable key generation from a noisy PUF response r′, various Helper Data Algo-
rithms (HDAs) exist that differ in the generation of the helper data w, the choice of the secret, and
its reconstruction [11]. Similarly to the FCS used in this thesis, the helper data w of the Code-Offset
Fuzzy Extractor (COFE) [12] is computed from the offset of a codeword c generated from a random
number and the PUF response r. However, the PUF response r is directly used as the secret, and in
order to avoid helper data leakage, an additional hash function is required to derive the key k from
the response. On the other hand, in syndrome constructions [12] the helper data is constructed by
multiplying the PUF response r with a parity check matrix H of an ECC, i.e., the so-called syndrome

is stored. For reconstruction, the smallest error vector e is searched that has the same syndrome
as the sum of the syndrome of the noisy PUF response r′ and the stored helper data. Compared
to COFE and FCS, the helper data size is reduced, but due to possible helper data leakage, the key
must be compressed by an additional hash. Parity constructions [13] use the PUF response r directly
as a secret. It is multiplied with the parity part P of a generator matrix G from an ECC, and the
redundancy is stored as helper data w. Depending on the size of the PUF response and the helper
data, information leakage can be an issue, and additional compression of the key by a hash is required.
Systematic Low Leakage Coding (SLLC) [14] splits the PUF response r into two parts, and uses the
first part of the PUF response as the secret. The XOR of the parity of the encoded secret part with
the second part of the PUF response is stored as helper data, avoiding information leakage from the
helper data. Other HDAs as the pointer-based approach Index-Based Syndrome (IBS) coding [15] and
its extension Complementary IBS (C-IBS) [16], as well as Differential Sequence Coding (DSC) [17]
require knowledge of the statistical properties of the PUF during enrollment.

In this thesis, the Fuzzy Commitment Scheme (FCS) [4] is used that embeds a secret key k into
the PUF response r during an enrollment phase, such that the key can be retrieved from a noisy
response r′ in a reconstruction phase. The FCS does not use the PUF response directly as a secret,
such that changing the key is possible. Furthermore, post-processing such as compression or hashing
is not strictly needed. During the enrollment phase, which is carried out once at the beginning of the
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Figure 2.2 Basic configurations of rings used in PUFs.

device’s life time in a trusted environment, a secret key k of 𝑁𝑘 bits is generated. The key is encoded
by an ECC to a codeword c that contains redundancy to compensate errors at a later stage. The
codeword c and the PUF response r are mapped to the helper data w using an XOR-offset. Note that
the ECC is designed such that the𝑁𝑘-bit key results in an𝑁𝑟-bit codeword and consequently the same
number of helper data bits 𝑁𝑤 = 𝑁𝑟 . In the field, whenever the key is needed, the reconstruction phase

allows for generating the same key k that has been embedded to the PUF response in the enrollment
phase. The noisy PUF response r′ and the helper data w are mapped to a noisy codeword c′ using an
XOR-offset. An ECC decoder corrects the noisy codeword to a decoded key k̃. The probability for a
reconstruction error 𝑝𝑒 depends on the assumed average bit error probability of the PUF response 𝑝𝑏
and the error-correcting capability of the ECC. Usually, the ECC is designed such that a reconstruction
error of 𝑝𝑒 < 10−6 to 10−9 is reached, i.e., with probability 1−𝑝𝑒 the noise-free key k̃ = k is obtained. If
the entropy of the PUF response r and the generated random key k is sufficiently high, no additional
hashing is needed in the FCS, i.e., k̂ = k̃.

The following sections provide details about ring-based PUF primitives, different bit derivation
schemes, and BCH-based ECCs that are used to compensate errors in the PUF response. Finally,
possible attack vectors are provided.

2.2 Ring-Based PUF Primitives

In the two decades since silicon PUFs were introduced in 2002 [18], a variety of PUF primitives has
been proposed. The main focus in this thesis is on ring-based PUF primitives that consist of a chain
of delays or inverting elements with a feedback as depicted in Fig. 2.2. Depending on the number
of inverting elements, the ring develops either a stable oscillation that does not stop on its own, or a
metastable oscillation that collapses after a certain time.

Stable and Metastable Oscillations For an odd number of inverting elements as depicted in Fig. 2.2a,
the ring oscillates with a period inversely proportional to the sum of the delays of the individual
elements. In order to stop and start the stable oscillation in a controllable manner, a NAND gate is
used, i.e., setting the enable signal to high initiates the oscillation process, while setting it to low stops
the oscillation. If the number of oscillations at the output is measured for a fixed acquisition time
𝑇𝑎𝑐𝑞 by a counter, the counter value is proportional to the oscillation frequency 𝑓 , respectively the
period 𝑇, of the ring:

𝑣 =
⌊
𝑇𝑎𝑐𝑞 · 𝑓

⌋
=

⌊
𝑇𝑎𝑐𝑞
𝑇

⌋
, (2.1)

where the floor operator accounts for the fact that the counter quantizes the frequency. The acquisition
time must be sufficiently high, i.e., 𝑇𝑎𝑐𝑞 ≫ 𝑇, to reduce quantization artifacts.

For an even number of inverting elements, as shown in Fig. 2.2b, the output of the AND gate is 0
as long as the enable signal is low. Accordingly, the outputs of the inverters are alternatingly 1 and 0,
and the ring takes a stable state, where the second input of the AND gate is 1. As soon as the enable
signal is set to high, the two events propagate through the ring. Under ideal conditions the inverters
are identical and the events oscillate as long as the enable signal is set to high. However, for inverters
with variations the events collapse after some time resulting in a metastable oscillation.



6

Ring-based
PUFs

Stable

Frequency Period length

Metastable

Duration Stable state Transient
state

RO PUF/
Loop PUF

ICLooPUF TERO PUF BR/TBR PUF

(a) Evaluation principle

stablemetastable

single

multiple

BR PUF
TBR PUF Loop PUF

RO PUFTERO PUF

(b) Architectures

Figure 2.3 Overview of ring-based PUF primitives.

Ring-Based PUF Architectures From the two basic ring configurations different PUF architectures
can be derived. Fig. 2.3 provides an overview of ring-based PUFs in terms of their evaluation principles
and the configuration of the respective PUF architecture. Two general distinctions can be drawn that
are depicted in Fig. 2.3b, namely the stability of the oscillation and the number of oscillators used in
the basic architecture.1

Following the basic ring configurations from Fig. 2.2, the ring of the primitives can be configured
either for stable or metastable oscillation. As depicted in Fig. 2.3a, the stability is the main distinction
regarding the evaluation principle. On the one hand, constructions with an oscillator that is stable for
a defined time, such as the Ring Oscillator (RO) PUF [19] or the Loop PUF [20], usually employ the
frequency of oscillations as their secret. Modifications of these primitives, such as the ICLooPUF [21]
introduced in Section 5.5, modify the evaluation principle, but still rely on the stability of the oscilla-
tions. On the other hand, metastable ring-based primitives derive the entropy from oscillations with
an unpredictable duration. Either the duration until the oscillation aborts serves as a secret as for the
TERO PUF [22, 23], or the stable or transient state of the ring can be used to derive the entropy, as in
the case of the Bistable Ring (BR) PUF [24, 25] and the Twisted Bistable Ring (TBR) PUF [26, 27].

Along the second dimension in Fig. 2.3b, the architectures can be divided into primitives that are
based on an array of multiple rings or consist of a single configurable ring. The Loop, BR and TBR
PUFs belong to the latter class, while the RO and TERO PUFs can be assigned to the former. Primitives
based on ring arrays compare distinct rings with each other, where the number of rings in the array
determines the entropy. From a design perspective, spatial gradients are a possible source of bias that
have to be considered [28]. In comparison, for primitives based on a single ring, the elements forming
the ring are configurable such that more than a single response bit can be derived. The selection of
different paths through the ring is achieved by a challenge, where each bit configures a different ring
element. Consequently, the length of the ring determines the entropy, which can be extracted. In
order to avoid bias effects, the ring design and the evaluation method must assure that neither single
elements nor interconnects between the elements dominate the oscillation.

The following sections introduce the PUF architectures distinguished in Fig. 2.3b.

2.2.1 RO PUF

Along with the idea of building silicon PUFs, oscillating circuits were proposed as candidates to
characterize ICs, and the comparison of different oscillators to compensate environmental conditions
was outlined [18]. Yet, only in 2007 the RO PUF architecture depicted in Fig. 2.4a based on an array

1Note that architectures of primitives based on a single oscillator, such as the Loop, BR and TBR PUF, can be extended
by using multiple configurable oscillators in parallel.
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Figure 2.5 Schematic of the Loop PUF structure.

of 𝑄 oscillators was introduced [19]. It derives PUF bits from the frequency difference of oscillator
pairs. Comparing every RO to all other ROs would allow for deriving log2 (𝑄(𝑄 − 1)) bits, which do
not have full entropy as the bits are mutually dependent. Overall, the number of ROs in the array,
determines the PUF entropy. To achieve an output with full entropy, only non-overlapping pair-wise
comparisons can be used. Each oscillator is only used in one comparison, extracting log2(𝑄/2) bits.

Instead of using comparisons of oscillator pairs, the PUF-based cryptographic KeY generator
design (PUFKY) architecture from Fig. 2.4b is based on 𝑃 arrays of 𝑀 ROs [29]. From every array, an
oscillator is selected , and the corresponding 𝑃 frequencies are measured each by a counter. Subse-
quently, the counter values are ordered and Lehmer-Gray coding is applied to extract an increased
number of bits as outlined in Section 2.3.3. Compared to the classical RO PUF, using several arrays
that are measured at once, more bits with higher reliability can be extracted [30]. The benefits come
at the cost of a hardware overhead due to the increased number of counters.

Note that for both RO PUF designs the selection of the ROs that are measured is considered as the
challenge.

2.2.2 Loop PUF

The Loop PUF is a ring-based delay PUF with stable oscillation introduced in 2012 [20]. Its main
component is a delay chain composed of𝑁 identical controllable delay stages. An RO is formed when
the output of the delay chain is fed back to the chain’s input through an inverting gate. An enable
signal allows for starting and stopping the oscillation. Fig. 2.5a illustrates the Loop PUF architecture.
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Each of the 𝑁 delay stages of the Loop PUF contains two delay elements such as inverters or
buffers, as depicted in Fig. 2.5b. Due to manufacturing variations, the two elements have different
delays 𝜏𝐴 and 𝜏𝐵. A challenge bit 𝑐𝑖 applied to the 𝑖th stage selects, e.g., via a multiplexer, one of the
two elements that is included in the RO path. The challenge 𝐶 applied to the PUF is the 𝑁-bit word
composed of the 𝑐𝑖 . The frequency of the RO depends on the sum of the selected delays. Neglecting
noise and aging, the frequency is constant for given environmental conditions but unique for each
hardware realization of a Loop PUF due to local process variations of the individual delay elements
during the device fabrication.

Operating Mode The Loop PUF requires an operating mode to derive secret bits from the oscillation
frequencies obtained for given challenges. The basic operating mode is presented in Algorithm 1. It
consists of two subsequent measurements: The first using the challenge 𝐶 and the second with the
complementary challenge ¬𝐶 applied (Lines 1 and 3). In other words, the frequencies of the oscillator
are measured with different delay elements in the ring.

Algorithm 1 Basic Loop PUF Operation

Input: Challenge 𝐶
Input: Measurement time in terms of periods 𝑛𝑎𝑐𝑞 of the reference clock
Output: Response 𝛿𝐶 (a signed integer mapped to the secret bit 𝑟𝐶)

1: Set current challenge to 𝐶
2: Count oscillations of the Loop PUF for 𝑛𝑎𝑐𝑞 cycles of the reference clock⇒ 𝑣𝐶
3: Set current challenge to ¬𝐶
4: Count oscillations of the Loop PUF for 𝑛𝑎𝑐𝑞 cycles of the reference clock⇒ 𝑣¬𝐶
5: Compute 𝛿𝐶 = 𝑣𝐶 − 𝑣¬𝐶
6: return 𝛿𝐶

The challenge dependent frequency of the RO is the underlying secret, which is measured by
counting the number of oscillations of the loop for a fixed predefined measurement time (Lines 2
and 4). For this purpose, the 𝑁-bit challenge 𝐶 is applied to the Loop PUF. Then, the enable signal is
set to logical 1 while a reference counter counts a predefined number 𝑛𝑎𝑐𝑞 of periods of a reference
clock with frequency 𝑓𝑟𝑒 𝑓 . After the acquisition time 𝑇𝑎𝑐𝑞 = 𝑛𝑎𝑐𝑞/ 𝑓𝑟𝑒 𝑓 has passed, the counter value
𝑣𝐶 is derived. The counter value 𝑣¬𝐶 for the complementary challenge ¬𝐶 is derived accordingly.
In the original proposal, the sign of the counter difference 𝛿𝐶 = 𝑣𝐶 − 𝑣¬𝐶 , or equivalently its Most
Significant Bit (MSB), is the secret response bit 𝑟𝐶 obtained from the Loop PUF [20]. However, other
bit derivation schemes, which are introduced in Section 2.3, can be used as well, e.g., in Chapter 5 the
TMHD is analyzed.

The differential measurement process compensates for a large amount of influences through en-
vironmental conditions and aging effects. Since these effects happen on a larger time scale than
the measurement time, successively measured frequencies are affected similarly. Compared to other
oscillation-based PUF primitives, such as the RO and TERO PUF, that use multiple rings in their
architecture, spatial correlations are avoided by using the same oscillator sequentially.

Hadamard Challenges for Maximum Entropy The Loop PUF provides a challenge space of 2𝑁 chal-
lenges, where each challenge derives a PUF response bit. However, for challenges that have a small
Hamming distance, i.e., which are similar, similar delay elements are used and a correlation of the
response bits is expected. In the key generation scenario, only a limited number of response bits is
required, which have to be independent in order to provide a PUF response with full entropy. In
order to get a PUF response with full entropy from an 𝑁-stage Loop PUF the challenges are chosen
as Hadamard codewords from an 𝑁 × 𝑁 Hadamard Matrix [31].

Hadamard codewords are pairwise orthogonal and have a Hamming distance of 𝑁/2 from each
other. In other words, for each challenge half of the used delay elements are different compared to



9

...

𝑀
-to

-1

1-
to

-𝑀 MSB LSB

Counter1

...

𝑀
-to

-1

1-
to

-𝑀 MSB LSB

Counter2

enable 𝐶𝑖 −

𝑣1

𝑣2

𝛿𝑖

Figure 2.6 TERO PUF architecture as used in [32, 33, 34].

the other challenges, minimizing correlations of the resulting response bits. Furthermore, Hadamard
codewords, except for the all-zero and all-one codewords, share a Hamming weight of 𝑁/2: Half of
the delay elements selected by the challenge multiplexer are chosen from the lower and the other half
from the upper of the available paths depicted in Fig. 2.5b. In order to avoid systematic bias effects
from path delays between the stages, the all-zero and all-one Hadamard codewords are not used and
𝑁 − 1 bits can be derived from a Loop PUF with 𝑁 stages using Hadamard challenges. Note that
Hadamard codewords can be constructed on-chip with low effort, enabling a low-complexity design
as only a small memory is required to store the challenges.

2.2.3 TERO PUF

The Transient Effect Ring Oscillator (TERO) was introduced in 2010 as an entropy source for
TRNGs [35], and the possibility to use it as a PUF primitive was postulated in 2013 [22]. Each TERO
cell comprises two identical branches, consisting of an AND gate and an odd number of inverter
gates, that form a metastable ring as depicted in Fig. 2.2b. When setting the enable signal from low
to high, two events start to propagate. While in theory the TERO oscillates until the enable signal
is reset, manufacturing variations of the underlying Complementary Metal-Oxide-Semiconductor
(CMOS) structures result in different delays of the two branches and a break down of the oscillation
in finite time.

The manufacturing variation dependent number of oscillations until the TERO reaches its stable
state has been utilized to construct the TERO PUF in 2014 [23]. In the first proposal, an overlapping
comparison of neighboring TERO cells is able to generate 126 bits from 64 TEROs. Later, the archi-
tecture shown in Fig. 2.6 became the proposed architecture of the TERO PUF [32, 33, 34]. It consists
of two blocks of 𝑀 TERO cells and two corresponding counters. One TERO cell is selected from
each block by a challenge. The two cells are activated and connected to the counters by multiplexers.
Thus, only the two TERO cells that are compared oscillate at a time. The selection of pairs of cells
is not restricted [32, 33, 34]: Each of the 𝑀 cells from one block is compared to all 𝑀 cells from the
other block resulting in 𝑀2 Challenge-Response Pairs (CRPs). After a fixed acquisition time 𝑇𝑎𝑐𝑞 ,
the activated TERO cells are stopped. 𝑇𝑎𝑐𝑞 allows for a trade-off between reliability, uniqueness, and
runtime. It is chosen such that most of the TERO cells are expected to be settled. Therefore, 𝑇𝑎𝑐𝑞 is in
the range of several hundred nanoseconds depending on the number of inverters in a branch of the
TERO cells, e.g., 600 ns for seven inverters [33, 34].

To derive the PUF response, the counter values after𝑇𝑎𝑐𝑞 are subtracted. The Least Significant Bits
(LSBs) of the difference 𝛿𝑖 are unstable due to noise and are ignored for the PUF use case, but could
be used as a source of entropy for a TRNG. The MSBs, in particular the sign, are variation dependent
and relatively stable over time. Hence, the sign bit and specific unique and steady bits (e.g., the fifth
to seventh LSBs [33, 34]) serve as PUF response bits. Gray coding can be applied to the difference 𝛿𝑖
to ease further processing and to potentially increase robustness with respect to noise [32].
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Figure 2.7 Architectures of the BR and TBR PUF. Adapted from [36].

2.2.4 BR PUF and TBR PUF

A Bistable Ring (BR) consist of a ring with an even number of inverters. When released from an
unstable state, there are two possible stable states at the output of the inverters, namely ’1010 . . . 010’
or ’0101 . . . 101’. Whether the ring stabilizes within a certain time or keeps oscillating depends on the
process variations of the involved elements.

The BR PUF [24, 25] builds inverting elements of two NAND or NOR gates that are selected by a
pair of a multiplexer and a demultiplexer. Fig. 2.7a shows a BR PUF with NOR gates, where each
of the 𝑁 inverting elements can be configured by a challenge bit 𝑐𝑖 ; depending on the challenge bit
value, the multiplexer and the demultiplexer select the lower or upper NOR gate to be included in
the ring. The second input of the gates is connected to a reset signal that allows for bringing the ring
into an unstable all-zero state, i.e., the outputs of all inverting elements are set to 0 and the ring state
is ’000 . . . 000’. The ring is started by releasing the reset, such that the gates act as inverters. Due
to delay differences of the inverting elements, the propagating signals in the BR collide and the ring
state settles to one of the two stable states. The bit of any of the inverting nodes can be used as a PUF
bit, i.e., the stable state of the settled BR serves as the secret. As the evaluation of the stable state is
not possible for BRs with a long settling time, alternatively the transient state of the entire ring can
be compared to one of the stable states [26]. That is, instead of evaluating the stable state of a single
inverting node, the duty cycle of the oscillation is evaluated either at a defined point in time or for
several subsequent points in time.

As the CRPs of the BR PUF are linearly related, the Twisted Bistable Ring (TBR) PUF [37] depicted
in Fig. 2.7b has been proposed as an improvement. Instead of selecting one of two possible gates in
each inverting stage, all inverters are always included and the challenge bits determine the positions of
the inverters in the ring. The aforementioned evaluation methods based on the stable state or transient

states can be similarly applied to the TBR PUF.

2.3 Bit Derivation From Analog PUFs

In order to derive PUF response bits from digitized analog values, several methods exist that provide
different trade-offs regarding reliability, robustness and the number of extracted bits. Following
Section 2.2, for most ring-based primitives a counter quantizes the analog values of the oscillator, the
BR/TBR PUF being a notable exception. Usually, a comparison of counter values is used to reduce
bias effects in the PUF due to offsets caused by local or temporal gradients, e.g., counter values from
two ROs for the RO PUF or from two challenges for the Loop PUF are compared. In the following it
is assumed that a counter value difference 𝛿𝑖 is mapped to one or more response bits.

The values are assumed to follow approximately a normal distribution, i.e., the realizations of the
random variable 𝛿𝑖 are drawn from a distribution 𝛿𝑖 ∼ 𝒩(𝜇, 𝜎)with mean 𝜇 and standard deviation 𝜎.
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Figure 2.8 Bit derivation from analog PUFs. Adapted from ©2022 IEEE [21].

Fig. 2.8 depicts the most common bit derivation methods covered in the following sections for a
standard normal distribution with 𝜇 = 0 and 𝜎 = 1.

2.3.1 Sign-Based Bit Derivation

Fig. 2.8a depicts the sign-based bit derivation, where the sign of 𝛿𝑖 determines the PUF bit as

𝑟𝑖 =
{

0, 𝛿𝑖 ≤ 0
1, otherwise , (2.2)

i.e., the MSB of the counter difference determines the PUF bit. The main drawback of the sign-based
approach is that it requires a strong error correction: Noise and environmental variation can change
the sign of 𝛿𝑖 if it is close to 0. The changed sign causes faulty bits, as the response from reconstruction
deviates from the enrolled value.

Dark-bit Masking A simple method to improve reliability is to drop unreliable bits, referred to as
dark-bit masking [38, 39].2 In the enrollment phase, multiple measurements are taken to determine the
bit error probability 𝑝𝑏,𝑖 of each bit 𝑟𝑖 . A bit mask stores for each response bit whether it exceeds a
certain error probability, i.e., whether it is considered unreliable and identified as a so-called dark bit.
For example, in Fig. 2.8a values 𝛿𝑖 within a certain range 𝜖𝑑𝑏 around 0, i.e., |𝛿𝑖 | ≤ 𝜖𝑑𝑏 , are expected
to have a higher bit error probability as perturbations from environmental conditions change the
sign of 𝛿𝑖 more easily. The bit mask is stored as bit derivation helper data wbd, and is applied
during reconstruction to the PUF response such that dark bits are discarded. On the one hand, dark
bit masking leads to an increased reliability of the provided bits as only the most reliable bits are
selected. On the other hand, it discards PUF bits and therefore reduces the overall entropy. Note
that dark bit masking is not limited to sign-based bit derivation, but can be similarly applied to
amplitude-based schemes from Sections 2.3.2 and 2.3.3.

2.3.2 Two-Metric Helper Data Scheme

The Two-Metric Helper Data (TMHD) [40] scheme is a method that enhances the reliability of
responses that contain reliability information. For ring-based PUFs and sign-based bit derivation,
the amplitude provides reliability information: if a value 𝛿𝑖 is far off the decision bound of 0, it is
less prone to errors, while a value that is closer to 0 is more likely affected by errors in terms of a
changed sign. Using this information, the TMHD scheme allows for highly reliable responses with

2The method of selecting the most robust bits was briefly mentioned for analog outputs of optical PUFs [38], later it
was formally described and the term dark bit was coined [39].



12

a decreased use of error correction in the post-processing stage. Furthermore, compared to dark bit
masking, no bits are discarded.

The TMHD subdivides the assumed normal distribution of the counter differences into octiles. In
the enrollment phase, the distribution of all 𝛿𝑖 on a device is estimated under the assumption that it
follows a Gaussian normal distribution with mean 𝜇 = 0 and standard deviation 𝜎, i.e., 𝛿𝑖 ∼ 𝒩(0, 𝜎).
The octiles are defined by the points −𝑇1, −𝑎, −𝑇2, 𝑇2, 𝑎, 𝑇1 (and ±∞) as depicted in Fig. 2.8b. For
each octile the upper and lower bounds 𝑥 and 𝑦 are adapted such that, the Cumulative Distribution
Function (CDF) Φ(·) defined by the integral over the Probability Density Function (PDF) 𝜙(·)
complies to

Φ(𝑥) −Φ(𝑦) =
ˆ 𝑥

𝑦
𝜙(𝑥)𝑑𝑥 =

1
8 . (2.3)

The Two-Metric Helper Data (TMHD) method derives its name from the fact that based on the
octiles, two metrics 𝑀1 and 𝑀2 define the mapping of the frequency difference 𝛿𝑖 to the PUF bit 𝑟𝑖
as:

𝑀1 : 𝑟𝑖 =
{

0, 𝑇2 ≤ 𝛿𝑖 ∨ 𝛿𝑖 < −𝑇1
1, −𝑇1 ≤ 𝛿𝑖 < 𝑇2 𝑀2 : 𝑟𝑖 =

{
0, 𝑇1 ≤ 𝛿𝑖 ∨ 𝛿𝑖 < −𝑇2
1, −𝑇2 ≤ 𝛿𝑖 < 𝑇1 . (2.4)

Note that from the definition of the octiles
´ 𝑇2
−𝑇1 𝜙(𝑥)𝑑𝑥 =

´ 𝑇1
−𝑇2 𝜙(𝑥)𝑑𝑥 = 1/2, the values for 𝑟𝑖 are

equiprobable and no bias is induced by the TMHD. For each bit 𝑖 the metric is chosen and stored as
helper data 𝑤𝑏𝑑

𝑖 , for which the reconstruction from a perturbed value 𝛿′𝑖 = 𝛿𝑖 + �̃� is more reliable. In
other words, the metric is stored as helper data, for which a deviation �̃� from the enrollment value is
less likely to cause a change of the PUF bit during reconstruction. From Fig. 2.8b metrics 𝑀1 and 𝑀2
are least stable around −𝑇1/𝑇2 and −𝑇2/𝑇1 respectively, thus the selection of the appropriate helper
data is done according to the following intervals:

𝑤𝑏𝑑
𝑖 =

{
𝑀1, −𝑎 ≤ 𝛿𝑖 ≤ 0 ∨ 𝑎 < 𝛿𝑖
𝑀2, −𝑎 < 𝛿𝑖 ∨ 0 < 𝛿𝑖 ≤ 𝑎 . (2.5)

During the reconstruction phase, the distribution and hence the bounds from the enrollment ±𝑇1,
±𝑇2 and ±𝑎 may change due to varying environmental conditions. Therefore, the device measures
the distribution of values and estimates a new set±𝑇1′, ±𝑇2′ and±𝑎′ for reconstruction. The values 𝛿′𝑖
are mapped with the metric stored in the helper data 𝑤𝑏𝑑

𝑖 to the PUF bit 𝑟′𝑖 :

𝑟′𝑖 =
{

0,
(−𝑇1′ > 𝛿′𝑖 ≥ 𝑇2′ ∧ 𝑤𝑏𝑑

𝑖 = 𝑀1
) ∨ (−𝑇2′ > 𝛿′𝑖 ≥ 𝑇1′ ∧ 𝑤𝑏𝑑

𝑖 = 𝑀2
)

1,
(−𝑇1′ ≤ 𝛿′𝑖 < 𝑇2′ ∧ 𝑤𝑏𝑑

𝑖 = 𝑀1
) ∨ (−𝑇2′ ≤ 𝛿′𝑖 < 𝑇1′ ∧ 𝑤𝑏𝑑

𝑖 = 𝑀2
) . (2.6)

For typical noise measurements a Bit Error Rate (BER) of < 10−6 is achieved [40], i.e., 𝑟′𝑖 = 𝑟𝑖 with
high probability. Either the correction capability of a subsequent ECC can be reduced or the ECC can
be omitted at all, which decreases the overall implementation effort if the TMHD is used.

2.3.3 Other Amplitude-Based Bit Derivation Methods

The TMHD is the amplitude-based bit derivation scheme mainly considered in this thesis. However,
there are further bit derivation methods that use more than only the sign of digitized PUF values.

Equiprobable Quantization

In the context of PUFs, Equiprobable Quantization (EPQ) has been introduced as zero leakage
quantization [41] and for tamper-evident PUFs [42]. Similarly to the TMHD scheme, the distribution
of analog values is divided into 𝑁𝑒𝑞𝑝 intervals of equal probability, i.e., for each interval defined by
the bounds 𝑥 and 𝑦, the probability is

Φ(𝑥) −Φ(𝑦) =
ˆ 𝑥

𝑦
𝜙(𝑥)𝑑𝑥 =

1
𝑁𝑒𝑞𝑝

. (2.7)
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In Fig. 2.8c the Equiprobable Quantization (EPQ) method is depicted for 𝑁𝑒𝑞𝑝 = 8, where each in-
terval {ℐ0 ,ℐ1 , . . . ,ℐ𝑁𝑒𝑞𝑝−1} is assigned a symbol from a higher order alphabet 𝒮 = {𝑠0 , 𝑠1 , . . . , 𝑠𝑁𝑒𝑞𝑝−1}.
While other encodings are possible, using a Gray code, i.e., binary values of neighboring intervals
differ by one bit only, reduces the bit errors for small changes in 𝛿𝑖 [41]. For example, if the interval
010 is enrolled and noise leads to a shift to a neighboring interval during reconstruction, either 011
or 110 is obtained; in both cases only one of three bits changes compared to the enrollment.

During enrollment, the response bits are derived from the interval 𝑗, where 𝛿𝑖 falls into, as[
𝑟0
𝑖 , 𝑟

1
𝑖 , . . . 𝑟

log2 ⌈𝑁𝑒𝑞𝑝⌉
𝑖

]
= 𝑠 𝑗 , 𝑗 | 𝛿𝑖 ∈ ℐ𝑗 , (2.8)

i.e., as the symbol 𝑠 𝑗 corresponding to the interval ℐ𝑗 . To increase robustness, the number of intervals
(respectively their minimum width) is adjusted to the expected noise level of the PUF during enroll-
ment, and bit derivation helper data wbd is stored that describes the relative position of the enrolled
value within the respective interval. During reconstruction, the knowledge of the relative position
from enrollment allows for adjusting the decision boundary. Note that while the interval that a value
belongs to is the secret, the helper data of the relative position within the interval does not leak secret
information [41].

Compared to the TMHD scheme, the EPQ typically derives more bits, where a certain amount of
bits is consumed for redundancy of the error correction. Furthermore, the amount of bit derivation
helper data is increased if the granularity of the relative position is more than binary, i.e., more than
the upper/lower half of the interval is provided.

Order encoding

Instead of deriving bits from single values 𝛿𝑖 based on intervals of a distribution, order encoding takes
a set of 𝑃 values {𝛿𝑖 , 𝛿𝑖+1 , . . . , 𝛿𝑖+𝑃−1} and derives PUF bits from their relative order. In other words,
the amplitudes of the values are transformed into a sorted list, which is encoded to a binary string.

In the PUFKY architecture shown in Fig. 2.4b, Lehmer-Gray order encoding has been suggested
to derive a large number of stable bits from an array of RO PUFs [29], but could be applied to other
ring-based PUFs as well. In the case of the RO PUF, for each position an individual offset from the
counter is subtracted in order to remove bias effects for specific oscillator positions. The offsets are
determined per device and are stored as bit derivation helper data wbd.

The 𝑃 different RO frequencies, respectively the corresponding values {𝛿𝑖 , 𝛿𝑖+1 , . . . , 𝛿𝑖+𝑃−1},3 are
sorted with respect to their value. Each of the possible 𝑃! orders is assigned a unique bit sequence
used as response. The sequence is encoded under the constraint of a low sorting overhead and such
that minimal changes in the ordering lead to a small variation in the derived bit sequence, which
is fulfilled by Lehmer encoding of the ordering and Gray encoding of the Lehmer coefficients. The
number of bits that can be derived from the Lehmer-Gray order encoding is 𝑙′ =

∑𝑃
𝑖=2⌈log2 𝑖⌉, which

are usually further compressed to 𝑙 ≤ 𝑙′ bits to remove bias and bit dependencies [29].

Multiple Counter Bits

The commonly used sign-based method from Section 2.3.1, where the MSB of an 𝑚-bit value is
used, can be extended to several MSBs. The method is closely related to Equidistant Quantization
(EPQ) [43] that divides the distribution of analog values into intervals of the same width. When
deriving a PUF bit from the 𝑗th MSB of the counter difference 𝛿𝑖

𝑟𝑖(𝛿𝑖[𝑗]) := 𝑟 𝑗𝑖 =
{

0, 𝛿𝑖 mod 2𝑗+1 < 2𝑗
1, otherwise , (2.9)

3For the sake of readability and consistency with the other bit derivation schemes, the symbol 𝛿𝑖 , which actually denotes
a counter difference, instead of the symbol for the counter value 𝑣𝑖 is used. Note that in [29] counter values are sorted, but
counter differences could also be used, e.g., for the Loop PUF.
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Table 2.1 BCH codes used for PUF-based key generation.

Code construction (𝑛, 𝑘, 𝑡) 𝑝𝑒 𝑝𝑏 key size

Bösch et al.𝑎) (2008) [44] 25 × [Rep(3, 1, 1)+BCH(63, 7, ,15)] 8.13 · 10−7 15% 128𝑏)
2 × [Rep(5, 1, 2)+BCH(226, 86, 21)] 2.28 · 10−7 15% 128𝑏)

Maes et al. (2012) [29] Rep(7, 1, 3)+BCH(318, 174, 17) ≤ 10−9 13% 128
Van Herrewege et al. (2012) [47] 7 × BCH(255, 21, 55) 10−6.97 10% 128

Van Herrewege/Verbauwhede (2012) [48] BCH(413, 296, 13) ?𝑐) 3-10% ?𝑐)
Merli et al. (2013) [49] 2 × [Rep(7, 1, 3)+BCH(127, 64, 10)] 10−6 15%𝑑) 128
Jarvis/Gaj (2017) [50] BCH(511, 238, 37) 4.7 · 10−7 3% 128

44 × BCH(127, 22, 23) 2.03 · 10−11 3% 128
SAMPUF™ [1, 46] 2 × BCH(255, 131, 18) 2.11 · 10−11 8.62% 256

𝑎) Only code constructions with BCH codes that result in 𝑝𝑒 ≤ 10−6 are listed as [44] targets 𝑝𝑒 ≤ 10−6.
𝑏) 171 source bits are decoded and hashing results in 128 bits of key.
𝑐) Not provided by the authors, and cannot be derived from the provided quantities.
𝑑) The expected BER is not explicitly provided, but is derived from the other parameters.

the number of bits is increased compared to other methods as more than one bit is derived at once.
Note that for oscillator-based PUFs, the MSBs of the counter difference are related to device-

specific variations, while the LSBs are related to the jitter of the oscillator, i.e., can be used to derive
randomness. For higher MSBs device-specific and jitter-related terms mix increasingly, i.e., the
reliability of the derived bits decreases. Therefore if using several MSBs, it has to be evaluated for
each PUF primitive individually how many bits can be reliably derived.

2.4 BCH-Based Error Correction for PUFs

The FCS described in Section 2.1 relies on Error-Correcting Codes (ECCs) that encode the secret in
the enrollment phase and decode the codeword c′ during the reconstruction phase to compensate bit
errors. The choice of the ECC depends on the average bit error probability 𝑝𝑏 of the PUF response and
the required reconstruction error probability 𝑝𝑒 , i.e., the probability that the derived key differs from
the enrolled key. Different code constructions have been proposed in the context of PUF-based key
generation. Instead of simple codes, the concatenation of codes provides the possibility of achieving
higher error correction capabilities while maintaining an efficient implementation [17, 44].

In particular, BCH codes are widely used for PUF-based key generation as they can be efficiently
implemented in hardware and provide a high error correction capability compared to other codes.
BCH codes are linear cyclic block codes with parameters (𝑛, 𝑘, 𝑡) [45], i.e., the code operates on blocks
of data of 𝑘 bits that are encoded to 𝑛-bit codewords c. If the number of errors in the received
codeword c′ = c ⊕ e is |e| ≤ 𝑡, it is guaranteed that the errors can be corrected.

Depending on the Bit Error Rate (BER) 𝑝𝑏 of the PUF response, the targeted decoding error
probability 𝑝𝑒 and the required key size, the code constructions and parameters vary. Table 2.1
provides an overview of BCH-based code constructions that have been proposed for key generation
with PUFs. Concatenated codes are a common design choice, where BCH codes are usually used as
the outer code and a repetition code provides the inner code. They result in a lower code rate, but
allow for using smaller BCH codes that require less resources. However, commercially available PUF
constructions such as the SAMPUF™ [1, 46] use stand-alone BCH codes as well.



15

2.5 Physical Attacks on PUFs and Countermeasures

Similar to physical attacks on cryptographic algorithms, where the algorithm can be mathematically
sound, but unprotected implementations are prone to attacks, the secret of a PUF that shows excellent
quality metrics can be revealed by physical attacks. Consequently, physical attacks are a threat for
the PUF’s security that has to be studied and mitigated by appropriate countermeasures.

This section systematizes attacker models and their particularities regarding the PUF scenario in
Section 2.5.1. Finally, Sections 2.5.2 to 2.5.4 provide an overview of SCA-related attacks on the PUF
primitive, the post-processing of its response and further attacks.

2.5.1 Attacker Model

The attacker model defines the capabilities of an attacker in terms of access and physical interaction
with the device, and the PUF. The PUF-based key generation scenario disposes some peculiarities
that are discussed regarding their implications for attacks and countermeasures in the following.

Attack Vectors The enrollment phase of the FCS is carried out in a trusted environment. Therefore,
attacks are not applicable during the enrollment process. That means, neither the ECC encoding nor
the generation of any kind of helper data are a possible attack vector. Consequently, no dedicated
countermeasures are required for these steps. However, the attacker is able to perform physical attacks
such as side-channel measurements during the reconstruction phase of the PUF. This includes attacks
on the ECC decoding step of the FCS as well as the steps required to derive the PUF response: the
PUF primitive, and the bit derivation method.

The security of the PUF should not rely on the concealment of the implementation details. For
ring-based PUF primitives the number of oscillators, their configuration and the duration 𝑇𝑎𝑐𝑞 for
which the ring is activated are considered public. Similarly, the set of challenges 𝒞 from which the
key is generated is considered public. Without further countermeasures, the order of the challenges
is not secret either, and can be matched to the order of observations.

Helper Data Access In addition to public implementation details, in particular the assumption of
public helper data is generally accepted when designing PUF-based key storage: the helper data
should not leak about the secret, and storing the helper data in a protected NVM would render the
PUF approach useless as the secret could directly be stored [11].

Helper data with read-write access imposes the least constraints on an adversary, i.e., an attacker
can read the value of the helper data from enrollment and also change its value in the reconstruction
phase. From the possibility of helper data manipulations, various attack vectors emerge that can be
hampered by restricting to read-only access. In this case, the helper data is known to the attacker, but
modifications are out of scope. Finally, access to the helper data could be further hampered, e.g., if it
is stored by fuses88 that are difficult to read out. Limited helper data access represents the worst case
scenario for an attacker, but is only relevant on a theoretical level as the security of the system must
not depend on the concealment of the helper data.

Physical Access and Attacker Capabilities As PUF-based key generation is targeted at low-cost
embedded devices that operate in the field, an attacker potentially has physical access to the device
including the PUF. The key generation from the PUF will usually be carried out in a startup phase,
but an attacker can reset the device to acquire multiple observations of the PUF reconstruction for the
same device. Multiple measurements can decrease the Signal-to-Noise Ratio (SNR) by averaging
methods or can be used to combine different measurements, e.g., for DPA attacks or for combining
information in other manners. The number of measurements𝑁𝑡 may practically be limited by the time
and storage capacities of the adversary, but without countermeasures the number of reconstructions
is unlimited.
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Attacks can be classified into active and passive attacks and into invasive, semi-invasive and non-
invasive attacks [51]. For passive attacks the device under attack is operated within its specifications
and only observations of physical properties are acquired. On the other hand, for active attacks the
device is operated outside its specifications, e.g., by modifying environmental conditions such as
supply voltage, clock supply or temperature. SCA attacks that measure power or EM emanations
fall into the category of passive attacks, while clock and voltage glitching or Fault Injection Attacks
(FIA) are active attacks. For PUF-based key generation, only passive attacks are considered in the
following.

Power measurements and global EM measurements above the package are non-invasive attacks and
are the minimum capabilities an attacker with physical access can achieve. At the same time, this kind
of attacks poses the least requirements to an attacker and is therefore the most relevant scenario for
low-cost devices. This type of measurements acquires the global power consumption, i.e., a mixture
of different sources from the design. Localized EM measurements, allow for increasing the SNR by
placing micro near-field probes in proximity to the part-of-interest of the circuit. When attacking PUF
primitives, localized measurements provide additional benefits if component leakage can be spatially
resolved, i.e., it can be separated compared to global measurements, where only the combined leakage
is observed. Localized EM attacks are semi-invasive, i.e., they require a high level of sophistication
due to decapsulation of chips, and expensive measurement equipment in terms of micro near-field
probes. The bar for mounting these kinds of attacks can be raised by adding sensors that detect
opening of the package and thus impede direct access to the die.

Finally, in a scenario without physical access, the attacker may share the device under attack, e.g.,
an Field Programmable Gate Array (FPGA) in a cloud server, with the victim. Hence, neither global
nor local power measurements from classical equipment are feasible. However, a remote attacker can
use on-chip sensors to acquire power measurements.

Implications of Error Correction for Attacks The fact that an ECC decoder is used in the reconstruc-
tion phase lowers the requirements for the attacks as the (𝑛, 𝑘, 𝑡)-decoding module corrects up to 𝑡
errors in the PUF response. As the implementation details for the PUF-based key generation are
public, the error correction module and its parameters are known to the attacker. Hence, if an attack
retrieves the PUF response with an error of at most 𝑡 bits, the erroneous bits can be corrected using
the same decoding as the device, and the correct key is retrieved.

2.5.2 Side-Channel Analysis and Countermeasures for PUF Primitives

The most direct attack vector is the PUF primitive itself. Several PUF primitives have been targeted
by SCA attacks with a focus on optical and local EM semi-invasive attacks. To mitigate the attacks,
several countermeasures have been suggested.

Other PUF Primitives While the focus of this thesis is on ring-based PUFs, there have been semi-
invasive attacks also on other primitives, which are briefly summarized. For Static Random-Access
Memory (SRAM) PUFs a cloning attack measures near infrared photonic emissions of the SRAM cells
to characterize the PUF and subsequently clone it using a Focused Ion Beam (FIB) [52]. Furthermore,
an attack is proposed that exploits the remanesence decay effect of SRAM cells if an attacker is able
to overwrite the SRAM used for the PUF [53, 54]. The Arbiter PUF is characterized by analyzing the
photonic emissions of the different delay stages in order to deduce a linear model for the Arbiter PUF
that can be solved with little effort [55].

Ring-Based PUFs The most prominent target from the class of ring-based PUFs is the RO PUF,
where several attacks have been carried out:
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(i) Using Laser Voltage Probing by exposing the backside of a die to an near-infrared laser beam [56].
The intensity of the reflected beam is altered through absorption or interference effects and
allows for the recovery of the RO frequencies.

(ii) Using localized EM emissions of the ROs over a decapsulated die [57]. Frequencies from simul-
taneously activated ROs can be identified and exploited if ROs are used in several comparisons,
i.e., are activated more than once. Consequently, a possible countermeasures consists in limiting
the use of each RO to a single comparison. Additionally, it is suggested to measure multiple,
i.e., more than two, ROs in parallel to increase the number of frequencies an attacker has to
distinguish.

(iii) Using localized EM measurement over a decapsulated FPGA die, single ROs can be resolved if
placed far from each other [58]. However, for ROs placed in proximity to each other, separation
of single ROs is deemed unlikely. Yet, multiplexers and counters exhibit leakage about the RO
frequencies that can be resolved spatially. To impede SCA of counters and multiplexers, mea-
surement path randomization, i.e., using different counters or multiplexers for each evaluation,
and interleaved placement of the components are proposed.

(iv) Using geometric leaks in the EM spectrum of an ASIC to resolve adjacently placed counters [59]:
The RO PUF under attack follows a low-power design to reduce SCA leaks. However, depending
on the measurement position on the decapsulated die, the counter frequencies have different
amplitudes and can be distinguished. Interleaved placement of components is therefore not
sufficient. Parallel comparison of multiple ROs, as proposed by [57], increases the number
of possibilities, but does not protect from brute force attacks. Ultra-low-power counters are
proposed as a possible hiding countermeasure.

Furthermore, the possibility to identify and locate ROs by their EM emanations has also been studied
in the context of TRNGs [60] and for EM cartography in general [61]. Finally, ROs are susceptible to the
so-called locking phenomenon, where an RO locks into frequencies injected over the supply voltage [62]
or by harmonic injection with electromagnetic fields [63]. The latter is most relevant for FIA that
could be carried out.

Parallel to the publication of the attack described in Chapter 3 [64], the possibility to observe
TERO oscillations and their duration has been exemplified on a decapped chip for a few bits using a
spectrum analyzer [65].

2.5.3 Side-Channel Analysis and Countermeasures for Post-Processing

Due to noise and imperfections in the PUF response, further post-processing such as error correction
and hashing are required in order to derive a reliable key with full entropy. Consequently, the
respective steps can become target of SCA.

For Toeplitz hashing, which allows for efficient implementations by combining Linear Feedback
Shift Register (LFSR) with an XOR accumulator, a Simple Power Analysis (SPA) attack can distin-
guish the output of the XOR accumulator [66]. For software implementations of ECCs for PUF-based
key generation, naive implementations of BCH and Reed-Solomon (RS) codes are prone to SPA at-
tacks, and template attacks can be mounted as well [67]. Algorithmic processing of the PUF response
by hardware implementations of concatenated repetition and BCH codes can be attacked by DPA
attacks if the helper data can be manipulated [49]. Improved helper data manipulation can increase
the efficiency of the DPA attack further [68].

A codeword masking countermeasure has been proposed for linear block codes, such as BCH codes,
to hinder DPA attacks based on helper data manipulation [49]. A 𝑘-bit random mask m is encoded
into an 𝑛-bit mask codeword cm that is added to the actual codeword c derived from the PUF before
decoding. Consequently, the decoder processes cm ⊕ c and the side-channel leakage is independent
of the secret. For linear block codes, the sum of two code words is a valid codeword and the decoding
provides k̃ ⊕m, where the mask can be removed again.
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2.5.4 Further Attacks

Apart from SCA attacks, there are other attack vectors that can jeopardize the security of a PUF.
Considering public helper data, a possible attack vector are Helper Data Manipulation Attacks

(HDMAs), where an adversary manipulates the stored helper data and observes the system behavior
after manipulation [69]. By observing whether a key derivation fails after tailored helper data
manipulations, it is possible to retrieve single bits of the PUF response. Sequentially repeating the
attack, allows for recovering the entire PUF response and thereby the secret key. Manipulation
attacks have been proposed for different RO PUF constructions [70] as well as for Pattern Matching
Key Generators [71]. Furthermore, the possibility of HDMA for the DSC decoding scheme has been
discussed [17]. Finally, constructions of the Robust Fuzzy Extractor (RFE) [72], which extends the
Fuzzy Extractor (FE) against manipulation attacks, can be subject to HDMA if a necessary distance
check of the result is omitted [73]. In this case, the reconstructed PUF response can be set to a value
known by the attacker. For particular choices of the error correction code even a key recovery is
possible. Possible countermeasure to impede HDMAs include hashing of the helper data to limit the
possibility of controlled manipulations.

PUFs have also been proposed for means of authentication, where machine learning attacks can be
applied. In authentication protocols, where the PUF is presented with a challenge and returns a
response, the number of challenges and consequently the number of CRPs is not limited. A possible
attack consists of collecting CRPs and training a Machine Learning (ML) model that predicts future
responses to challenges not contained in the training set, i.e., a model of the PUF is generated [74, 75].
Modeling attacks require several thousands of CRPs to train the model and access to the response,
which can be obtained in a protocol setting or via side-channel analysis [76]. In contrast, for PUF-based
key storage the collection of CRPs that allow for ML modeling attacks is out of scope as a limited,
fixed set of challenges is hard-coded inside the device and the response bits are the secret key. Note
that even for key generation, there is the possibility of ML attacks that exploit helper data depending
on the error correction code [77]. However, due to the focus on single-challenge key generation, ML
attacks using CRPs are out of scope in this work.

Finally, fault attacks on the ECC that processes the PUF response have been investigated [78].
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3 Side-Channel Analysis of the TERO PUF

This chapter describes an SCA attack on the PUF primitive and the bit derivation from Fig. 2.1. In
particular, the evaluation principle of the oscillation duration for metastable oscillations from Fig. 2.3 is
targeted in combination with a multi-bit derivation from the quantized values. The targeted primitive
is the Transient Effect Ring Oscillator (TERO) PUF, an FPGA PUF primitive favored independently
by several authors [6, 23, 34]. Breaking the TERO PUF by means of SCA entails specific challenges,
e.g., extracting a multi-bit response per TERO cell and measuring the otherwise hard to observe
TERO oscillations. Section 3.1 identifies methods to measure the TERO oscillations and introduces a
Short-Time Fourier Transform (STFT)-based method for time domain measurements to evaluate the
oscillations of the TERO primitive. The experimental setup is introduced in Section 3.2. In Section 3.3,
a semi-automatic attack significantly reduces the entropy of the TERO PUF: up to 25% of the response
bits are recovered without any error, and the overall error probability of all estimated bits is less than
18%. The estimate of the failure probability for each bit facilitates an optimal smart guessing strategy.
Furthermore, assuming a PUF scenario, where up to 20% errors are corrected, the error probability is
sufficiently small to consider the examined TERO PUF design with overlapping comparisons broken
by the attack. Finally, the number of oscillations can be predicted so accurate that the derivation of
multiple bits from a single comparison is prone to SCA attacks.

The results in this chapter are based on Tebelmann/Pehl/Immler: "Side-Channel Analysis of the

TERO PUF", in Constructive Side-Channel Analysis and Secure Design, Springer International

Publishing, 2019, pp. 43-60 [64], the first publication to successfully perform an EM-based side-
channel attack on the TERO PUF primitive without depackaging the chip. In parallel, the
possibility to attack the TERO PUF has been exemplified on a decapped chip for a few bits
using a spectrum analyzer [65].

Remarks on the Original TERO PUF Architecture In the original proposals of the TERO PUF [23, 33],
the separation of the two cell blocks is deemed necessary to avoid dependencies of the responses.
This may lead to bias in the responses though, as spatial gradients in silicon can cause cells of one
part of the die to settle faster (or slower) than on other parts. Comparing adjacent cells would largely
counteract such spatial effects. In addition, spatially separating the TERO blocks makes them prone
to attacks by localized EM measurements. While resolving adjacent cells may not be feasible by
localized EM measurements, identifying spatially separated cells is certainly within scope based on
attacks on similar structures [79, 80].

Due to its architectural limits, the TERO PUF in the described form is only suited for PUF-based key
generation and not for challenge-response authentication like proposed in [34]. From a side-channel
perspective, the difference between the scenarios is the control over the challenge of the PUF. For
authentication the attacker might have the ability to decide which TERO cells are enabled at a time
while for key generation the sequence of applied challenges is fixed or can only be influenced with
significant effort. An attacker could possibly control and choose the challenges sent to the PUF in the
authentication scenario e.g., over a challenge-response protocol. For key generation, the challenges,
i.e., the selected TERO cells, remain constant. Note that challenge-response authentication with a
TERO PUF would also open the door for machine learning attacks.

Another important design decision is whether to compare TERO outputs among all TERO cells
or not. Comparing a certain cell to multiple other cells enables a similar attack as proposed for RO
PUFs [57]. Also, inherent correlations between PUF bits occur and lower the entropy of the remaining
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PUF response bits, i.e., the response does not have full entropy as from the comparison of 𝑀 cells at
most log2 𝑀! bits of entropy can be extracted [29]. However, restricting the number of derived bits
changes the evaluation of the efficiency of the TERO PUF significantly; therefore in the following, the
originally proposed design is taken.

3.1 Exploration of the TERO PUF

In the following, suitable attack vectors for the TERO PUF are identified in Section 3.1.1. The
TERO oscillations are discovered in Section 3.1.2. Subsequently, Section 3.1.3 provides a method
for estimating the oscillation duration, and Section 3.1.4 briefly introduces the Short-Time Fourier
Transform.

3.1.1 TERO Models and Attack Vectors

In order to derive attack vectors and subsequently an attack strategy, it is crucial to understand the
working principle of the Transient Effect Ring Oscillator (TERO) and the resulting physical side-
channel emanations. Several approaches to physically model the TERO oscillations exist, that aim
at providing a stochastic model for the TERO TRNG [81, 82, 83, 84]. However, the results from the
physical models are also useful in the context of the TERO PUF. While there is some controversy
about the assumption of the different physical models [84], one key observation is that equally built
TEROs on a device oscillate with constant and similar frequency [82, 83]. Therefore, TERO cells and
their location are identifiable by an attacker based on their characteristic frequency. Another result
is that the variation of the duty cycle changes monotonously over time until it reaches 0% or 100%
and the oscillation collapses [82, 83]. Consequently, in the spectrum an attacker can observe a TERO
cell at a constant and approximately known frequency as long as it is oscillating. The number of
oscillations per TERO cell that are used to derive the secret can be estimated from the frequency as
soon as an attacker observes the beginning and the end of the oscillation. Depending on the TERO
implementation, two attack vectors are considered in the following.

Multiple usage of TERO cells A comparison of each cell from one TERO block to all cells of the other
TERO block and taking the sign of the counter differences was suggested to increase the number
of secret bits [32]. However, an attacker that observes the approximate duration of each of the
simultaneously oscillating TERO cells from the two blocks knows which cell is reused. Consequently,
the assignment of the observed duration to blocks and, given the public challenge, even to cells is
possible. Then, similarly to [57], the attacker knows the sign bit derived from the subtractor (i.e., the
secret) from the observed oscillation times and the knowledge which time belongs to which cell.

Derivation of multiple bits per TERO cell pair Given that an attacker can estimate the oscillation
duration per cell, it is evident that the approximation of the counter difference is possible. Thus,
when deriving multiple bits from a TERO cell [23, 33], they are revealed as soon as the attacker
observes the oscillations with sufficient precision. An attacker does not have to resolve the counter
differences exactly, since only relatively stable bits of the difference can be used. For the difference
𝛿 = 𝑣1 − 𝑣2 of two counter values 𝑣1 and 𝑣2, the PUF bit 𝑟(𝛿[𝑗]) is derived according to Eq. (2.9).
The value of the bit derived from the 𝑗th MSB is revealed when counter values are distinguished
with a precision of 2𝑗 by the attacker. For example, when using Bit 4 and Bit 5, as proposed in [33],
an accuracy of at least 24 = 16 is required to learn both bits. This corresponds to a resolution of
approximately 85 ns in the time domain for a TERO frequency of 187.5 MHz as found in Section 3.1.2.

Measuring a TERO cell together with exactly one other cell, thereby avoiding the reuse in multiple
pairs, improves the situation. It prevents an attacker from resolving the oscillation time to a single
cell. Nevertheless, it is still possible to observe the oscillation duration’s absolute value. Hence, only
the sign bit of the difference remains unknown.



21

0 200 400 600 800
0

50

100

150

200

∆time

∆counter

Time [ns]

C
ou

n
te

r
av

er
a
ge

(v
)

Figure 3.1 Evaluation of TERO counter values to estimate the oscillation frequency and settling time. Counter
values of 2 × 96 = 192 TERO cells are averaged over 𝑁 = 101 measurements.

3.1.2 Discovering TERO Oscillations

An accurate estimate of the number of oscillations is the basis for the presented attacks. The major
obstacle is the short oscillation time until a TERO cell settles. Fig. 3.1 depicts a practical evaluation of
the settling time from counter values of different TERO cells. The acquisition time in the experiment
is varied from 1 to 99 clock cycles at a clock frequency of 𝑓𝑐𝑙𝑘 = 100 MHz, corresponding to 10 ns
to 990 ns. The respective counter values of each TERO cell are averaged over 101 measurements to
compensate for noise at room temperature. The break point of each curve in Fig. 3.1 indicates the end
of the oscillation of the corresponding TERO cell, i.e., its settling time.

The results show that most of the TERO cells settle within less than 600 ns. This emphasizes the
need for a good time resolution in order to observe the duration of the oscillation. It also motivates
the acquisition time of 600 ns used in Section 3.3, which is selected according to [34]. Note that a
longer acquisition and oscillation time is beneficial for the attack.

In addition to the settling time of the TERO cells, the slope in Fig. 3.1 confirms that TERO cells
indeed oscillate with similar and constant frequency until the oscillation breaks down [82, 83]. The
expected frequency

𝑓𝑇𝐸𝑅𝑂 =
Δ𝑐𝑜𝑢𝑛𝑡𝑒𝑟
Δ𝑡𝑖𝑚𝑒

≈ 187.5 MHz (3.1)

for the considered design is derived from the slope of the counter values, where Δ𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is the
difference of the counter for a given difference Δ𝑡𝑖𝑚𝑒 of the time. Note that the experiment is only
carried out to validate the assumption of a constant oscillation frequency. For an attack, it is not
necessary to obtain frequency counter values, as the frequency can be estimated by observing the
spectrum.

3.1.3 Estimating TERO Oscillation Durations

The experiment in Section 3.1.2 shows a stable oscillation of the TERO cells until the oscillation breaks
down. The actual frequency of a certain TERO cell is approximated by 𝑓𝑇𝐸𝑅𝑂 and typically lies in a
small interval 𝑓𝑇𝐸𝑅𝑂 ± 𝑓Δ. Note that the nominal oscillation frequency 𝑓𝑇𝐸𝑅𝑂 is device specific, and
𝑓Δ is the relative deviation for a certain TERO cell on the same device. In other words, all TERO cells
oscillate with 𝑓𝑇𝐸𝑅𝑂 on average, but small deviations 𝑓Δ are possible for individual cells. From the
frequency 𝑓𝑇𝐸𝑅𝑂 and the time 𝑇𝑜𝑠𝑐 , for which a TERO cell oscillates before it settles, the number of
oscillations 𝑁𝑜𝑠𝑐 is estimated as

𝑁𝑜𝑠𝑐 ≈ 𝑓𝑇𝐸𝑅𝑂 · 𝑇𝑜𝑠𝑐 . (3.2)

As the counter counts the number of oscillations, its value 𝑣 is proportional to 𝑁𝑜𝑠𝑐 . Due to smaller
duty cycles towards the end of the oscillation, counter value corruptions can occur as counter Flip-
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Figure 3.2 Short-Time Fourier Transform. The windowing function 𝑤(𝑡) is omitted for simplicity.

Flops (FFs) are only guaranteed to function for a duty cycle of 50% and have differing critical timing
characteristics. Spikes exceeding the slope in Fig. 3.1 can be attributed to counter value corrup-
tions [84]. All TERO cells are activated for an acquisition time 𝑇𝑎𝑐𝑞 of 𝑛𝑎𝑐𝑞 clock cycles of the system
clock with frequency 𝑓𝑐𝑙𝑘 = 1

𝑇𝑐𝑙𝑘
. Therefore, the counter value, respectively the number of oscillations,

is upper bounded by

𝑣 ∼ 𝑁𝑜𝑠𝑐 ≤ ( 𝑓𝑇𝐸𝑅𝑂 + 𝑓Δ) · 𝑇𝑐𝑙𝑘 · 𝑛𝑎𝑐𝑞 = ( 𝑓𝑇𝐸𝑅𝑂 + 𝑓Δ) · 𝑇𝑎𝑐𝑞 , (3.3)

where equality is reached iff the TERO oscillates until the acquisition time 𝑇𝑎𝑐𝑞 ends. Note that for
many practical cases the relative frequency deviation 𝑓Δ of individual cells is negligible in Eq. (3.3).
For a deviation 𝑓Δ from the nominal oscillation frequency 𝑓𝑇𝐸𝑅𝑂 , the difference between the actual
counter value 𝑣 and the estimated counter value �̂� for 𝑇𝑜𝑠𝑐 ≤ 𝑇𝑎𝑐𝑞 is at most

|�̂� − 𝑣 | ≈ |( 𝑓𝑇𝐸𝑅𝑂 ± 𝑓Δ) · 𝑇𝑜𝑠𝑐 − 𝑓𝑇𝐸𝑅𝑂 · 𝑇𝑜𝑠𝑐 | ≤ | 𝑓Δ | · 𝑇𝑎𝑐𝑞 . (3.4)

For example, for an accurately known𝑇𝑜𝑠𝑐 = 𝑇𝑎𝑐𝑞 = 600 ns and | 𝑓Δ | ≤ 1.67 MHz the difference between
actual and estimated counter value is 1 when 𝑓Δ is neglected. This is below the expected variations
in the measurement due to noise.

Summing up, as long as the counter frequencies lie within a narrow range around the nominal
frequency 𝑓𝑇𝐸𝑅𝑂 , the approximation in Eq. (3.2) holds and the counter values are indeed estimated
by the oscillation time 𝑇𝑜𝑠𝑐 .

3.1.4 Short-Time Fourier Transform

To estimate𝑇𝑜𝑠𝑐 , the visibility of the TERO frequency 𝑓𝑇𝐸𝑅𝑂 in the spectrum is analyzed. The challenge
regarding the measurement is the short acquisition time of 𝑇𝑎𝑐𝑞 = 600 ns and oscillation times as short
as 𝑇𝑜𝑠𝑐 = 100 ns. In order to resolve time and frequency simultaneously, a STFT-based approach is
taken.

Each time domain signal 𝑥(𝑡) during the activation of a TERO cell is processed via the STFT,
depicted in Fig. 3.2, into the frequency domain. Instead of transforming the entire signal, segments
𝑥(𝑙)(𝑡) of length 𝐿 are taken from 𝑥(𝑡), where (𝑙) denotes the index of a segment. Each segment is
multiplied by a Hanning window (raised cosine) function 𝑤(𝑡) = 1

2
[
1 − cos

( 2𝜋𝑡
𝐿−1

) ]
to reduce spectral

leakage effects, where the samples in each segment are defined as 𝑡 ∈ {0, . . . , 𝐿 − 1}. Windowed
segments are transformed individually into the frequency domain:

𝑋(𝑙)( 𝑓 ) = FFT
(
𝑥(𝑙)(𝑡) · 𝑤(𝑡)

)
= FFT

(
�̂�(𝑙)(𝑡)

)
. (3.5)

The segments overlap for a number of samples 𝐿𝑜𝑣𝑒𝑟𝑙𝑎𝑝 . In other words, the segments are shifted
by Δ𝐿 = 𝐿 − 𝐿𝑜𝑣𝑒𝑟𝑙𝑎𝑝 samples along the time axis. From the preliminary evaluation of the TEROs in
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Section 3.1.2 the frequencies of the TERO cells are stable. This allows for averaging in the frequency
domain for each segment over 𝑁𝑡 measurements per cell to enhance the SNR.

In order to eliminate signals such as the system clock and other disturbances, a noise floor can be
estimated to facilitate the evaluation. For the noise floor estimate, measurements 𝑛(𝑡) are taken while
the TERO cells are deactivated and the same processing as in Eq. (3.5) is applied. Averaging over
𝑁𝑛𝑜𝑖𝑠𝑒 measurements yields the noise frequency spectrum �̄�(𝑙)( 𝑓 ) for each segment (𝑙).
From the averaged signal �̄�(𝑙)( 𝑓 ) and averaged noise floor �̄�(𝑙)( 𝑓 )

�̄�(𝑙)( 𝑓 ) = 1
𝑁𝑡

𝑁𝑡∑
𝑖=1

FFT
(
�̂�𝑖 ,(𝑙)(𝑡)

)
, �̄�(𝑙)( 𝑓 ) = 1

𝑁𝑛𝑜𝑖𝑠𝑒

𝑁𝑛𝑜𝑖𝑠𝑒∑
𝑖=1

FFT
(
�̂�𝑖 ,(𝑙)(𝑡)

)
(3.6)

the frequency and segment dependent average SNR of segment (𝑙) is defined as

SNR(𝑙)( 𝑓 ) = 10 log
(
�̄�(𝑙)( 𝑓 )
�̄�(𝑙)( 𝑓 )

)
= 10 log

(
�̄�(𝑙)( 𝑓 )

) − 10 log
(
�̄�(𝑙)( 𝑓 )

)
. (3.7)

The proposed attack evaluates the SNR around the expected TERO frequency 𝑓𝑇𝐸𝑅𝑂 . During the
period of activation, SNR(𝑙)( 𝑓𝑇𝐸𝑅𝑂) is expected to take higher values. Estimating the time of the
activation period translates into measuring the duration of the high SNR.

Note that estimating the noise floor is not a premise for the attack. Instead of evaluating the relative
changes defined by the SNR in Eq. (3.7), absolute values of Eq. (3.5) could be used to carry out the
attack.

Frequency resolution For a real valued signal 𝑥(𝑡), the spectrum is symmetric and can be reduced
to 𝑁𝐹𝐹𝑇/2 + 1 bins ranging from Direct Current (DC) to 𝑓𝑚𝑎𝑥 . Given the sampling frequency 𝑓𝑠 , the
resolution in the frequency domain, i.e., the frequency between two bins, is

Δ𝐹𝐹𝑇 =
𝑓𝑚𝑎𝑥

𝑁𝐹𝐹𝑇/2 =
𝑓𝑠

𝑁𝐹𝐹𝑇
(3.8)

with 𝑓𝑚𝑎𝑥 = 𝑓𝑠/2 being the maximum frequency that can be reconstructed according to the Shannon-
Nyquist theorem. In general, a narrow frequency resolution Δ𝐹𝐹𝑇 is desired, which can be achieved
by keeping the sampling rate as low as possible, i.e., 𝑓𝑠 ≥ 2 · 𝑓𝑇𝐸𝑅𝑂 or by increasing the number of
Fast Fourier Transform (FFT) bins 𝑁𝐹𝐹𝑇 .

Temporal resolution An attacker is mostly interested in the duration of the signal, i.e., the TERO
frequency 𝑓𝑇𝐸𝑅𝑂 does not have to be resolved in detail and a trade-off towards the temporal resolution
is acceptable. The temporal resolution also depends on 𝑁𝐹𝐹𝑇 and 𝑓𝑠 and behaves contrary to the
frequency resolution, where again a narrow value is generally desired:

Δ𝑇 =
𝑁𝐹𝐹𝑇

𝑓𝑠
=

1
Δ𝐹𝐹𝑇

, (3.9)

i.e., to get a good temporal resolution, high sampling rates are required. Without overlapping
segments, the resolution would be too coarse to analyze the TERO oscillations. As the segments
overlap by 𝐿𝑜𝑣𝑒𝑟𝑙𝑎𝑝 samples, a certain redundancy between segments exists, i.e., since the same
samples are transformed, the resulting amplitudes are similar. Yet, as the oscillations stop after
some time, all segments that contain samples during the oscillation provide information, and smaller
differences than Δ𝑇 can be resolved as shown in Section 3.3.

3.2 Experimental Setup

In the following, the experimental setup is described in terms of the measurement setup, the design
under attack, and a pre-evaluation by means of EM cartography.
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(a) Floorplan (rotated) (b) EM cartography

Figure 3.3 Design under attack and EM cartography. (a) Floorplan of the TERO PUF on the Spartan-6 FPGA,
(b) heatmap with maximum SNR in the frequency range 180-200 MHz during the first 60 ns.

Measurement Setup Measurements are recorded with an oscilloscope of 2.5 GHz analog bandwidth
and a sample rate of 𝑓𝑠 = 20 GS/s. The near-field probes RF-B 0.3-3 and RF-B 3-2 from Langer EMV
are used, having < 1 mm and ≈ 1 mm resolution respectively. Both probes capture emanations
in vertical direction relative to the FPGA package. Two 30 dB amplifiers amplify the time domain
signals. Following the trade-off between frequency and temporal resolution from Section 3.1.4, the
number of FFT bins is set to 𝑁𝐹𝐹𝑇 = 4096 resulting in a frequency resolution of Δ𝐹𝐹𝑇 ≈ 4.88 MHz
and a temporal resolution of Δ𝑇 = 204.8 ns per segment (𝑙). A segment offset of Δ𝐿 = 200 samples,
corresponding to a full clock cycle length of the system clock with𝑇𝑐𝑙𝑘 = 10 ns, is selected as a trade-off
between computational cost and temporal resolution. In all experiments in Section 3.3 the number
of noise measurements to estimate the noise floor is set to 𝑁𝑛𝑜𝑖𝑠𝑒 = 9600 and the SNR is evaluated
by its maximum in the range from 180 MHz to 190 MHz, corresponding to 𝑓𝑇𝐸𝑅𝑂 ≈ 187.5 MHz from
Section 3.1.2.

Design Under Attack The evaluated target is a Xilinx Spartan-6 LX16 FPGA in a 324-pin BGA package
mounted on a Nexys3 development board, where the package of the FPGA remains unaltered. The
design under attack contains two blocks of 𝑀 = 96 TERO cells each. For the TERO cells a hard macro1

for the Spartan-6 is used with seven inverters per branch [33]. The number of cells per block is slightly
reduced compared to the original TERO PUF proposal in order to include serial communication and
a Finite State Machine (FSM) on the same chip.

Fig. 3.3a depicts the floorplan, where the TERO blocks are denoted as PUF_AREA_1 and PUF_AREA_2
respectively. The logic for selecting specific cells in each block and assigning their output to the
counters is contained in MAIN, located in the lower right corner. The counters are placed separately
adjacent to the second block of TERO cells. The separation allows to verify whether EM emanations
stem from the TERO cells or the counters. The counters are placed side by side to prevent spatial
separation of their EM emanations. This thwarts attacks targeting each counter separately.

Pre-evaluation with EM cartography Fig. 3.3b depicts a heatmap overlay with the floorplan obtained
by using the RF-B 0.3-3 probe and an xyz-table. The maximum SNR in the frequency range from
180 MHz to 200 MHz is shown. Measurements are taken on a grid of 0.25 mm×0.25 mm over the part
of the package where the die is located. Each point is measured 𝑁𝑡 = 10 times while a cell from each
block is activated. Similarly, the noise floor is measured from 𝑁𝑛𝑜𝑖𝑠𝑒 = 10 traces. The SNR according
to Eq. (3.7) is evaluated during the first 60 ns after a trigger signal. According to Fig. 3.1, in this
period all cells oscillate and no settling effects take place. The maximum SNR in Fig. 3.3b coincides
with the location of the counters in the design. The area spans almost 1 mm2, i.e., a fine-grained

1https://perso.univ-st-etienne.fr/bl16388h/salware/tero_puf.htm, last accessed 29th July 2022.

https://perso.univ-st-etienne.fr/bl16388h/salware/tero_puf.htm
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Figure 3.4 Example SNRs for separately activated cells. Double arrows depict the estimated oscillation duration.

search over the package is not needed and the RF-R 3-2 probe is positioned manually for all following
experiments. Note, that the counter emanations are in line with previous work on EM analysis of
ROs [49] showing that observed EM emanations are most likely caused by multiplexers, counters and
wires in between. This is no limitation of the proposed attack, since – similar to the attack on ROs [57]
– it mainly exploits that TERO cells are used for multiple comparisons.

3.3 Exploitation of the TERO Side-Channel

This section demonstrates that TERO PUFs are vulnerable to non-invasive SCA. Section 3.3.1 shows
the feasibility of detecting TERO oscillations by activating cells separately. Subsequently, Section 3.3.2
practically exploits the reuse of a certain cell in the derivation of multiple response bits, i.e., two
cells under comparison are activated at once. The results illustrate that the oscillation duration is
well estimated by the STFT approach. A simple countermeasure is not to reuse a certain TERO cell
in multiple comparisons. The analysis in Section 3.3.3 nevertheless shows that if multiple bits are
extracted from a single comparison still some counter values are leaked which renders the extraction
of more than one bit per TERO cell pair insecure.

3.3.1 Analysis of Separately Activated Cells

In this experiment only one cell is activated at once to verify the practicality of the STFT approach
outlined in Section 3.1.4. Fig. 3.4 depicts the maximum SNR while shifting the segment under trans-
formation in the time domain. The frequency range from 180 MHz to 190 MHz is chosen according
to 𝑓𝑇𝐸𝑅𝑂 from Section 3.1.2. The point where the first sample of the segment in the time domain is
aligned with the starting point of the oscillation corresponds to 0 ns. Note that also segments starting
before 0 ns can include samples at which the TERO cell oscillates. Thus, the increase in SNR starts
before this point in time is reached. In addition, cells with an oscillation time shorter than the FFT
window can cause a maximum before 0 ns.

The activation of cells causes an increase of the SNR in Figs. 3.4a and 3.4b. At approximately
−100 ns, i.e., when the oscillation starts in the middle of the segment under transformation, the SNR
reaches 0.75 dB. This value is chosen as a threshold to estimate the oscillation duration𝑇𝑜𝑠𝑐 as the time
from exceeding the threshold to falling back below this value. Assuming an oscillation frequency
𝑓𝑇𝐸𝑅𝑂 = 187.5 MHz for all TERO cells, the counter values are computed according to Eq. (3.2) as
�̂� = 48 and �̂� = 112, respectively. The result fits well to the actual counter values 𝑣 = 47 and 𝑣 = 111,
i.e., both short and long oscillations of the TERO are well estimated by the STFT approach.
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Figure 3.5 Results for the attack on the TERO PUF for separately activated cells. (a) Automatically estimated
vs. actual counter values. (b) Probability of guessing a wrong bit using the estimates in (a).

A comparison of estimated and actual counter values for all TERO cells is depicted in Fig. 3.5a.
The actual counter values, which slightly vary due to noise, are derived from averaging among
𝑁𝑡 = 100 measurements. Since the acquisition time, for which the TERO cells are activated, is set
to 𝑇𝑎𝑐𝑞 = 600 ns, the maximum number of oscillations is 𝑣𝑚𝑎𝑥 = 𝑓𝑇𝐸𝑅𝑂 · 𝑇𝑎𝑐𝑞 ≈ 112. Thus, estimated
values �̂� > 𝑣𝑚𝑎𝑥 can be assumed to be 𝑣𝑚𝑎𝑥 . Indeed, in Fig. 3.5a, almost all estimated values �̂� > 𝑣𝑚𝑎𝑥
correspond to the maximum possible value, i.e., the minor overestimation of oscillations does not
affect the result. Since it is known that all TERO cells have a minimum oscillation duration, certain
values below 𝑣𝑚𝑖𝑛 are known to be false, e.g., estimates �̂� = 0 are physically not possible.

Entropy reduction of the TERO PUF Comparing each cell from one block to all cells of the respective
other block and taking the sign bit as a secret results in𝑀×𝑀 = 96×96 = 9216 response bits. From the
2×96 = 192 estimations of the oscillation duration, four results are deemed unreliable as �̂� < 𝑣𝑚𝑖𝑛 = 10,
i.e., for the corresponding 4 × 96 = 384 bits no estimation can be given. For the remaining 8808 bits,
the probability of guessing the PUF bit erroneously depends on the difference Δ�̂� :=

���̂�𝑖 − �̂� 𝑗 �� of the
estimated counter value �̂�𝑖 from block 0 and �̂� 𝑗 from block 1 as depicted in Fig. 3.5b. The graph shows
the probability of an error �̄�𝑒 if only difference estimates Δ�̂� greater than the value on the x-axis
are considered. Clearly, the error probability decreases with an increase of the differences. This is
in line with Fig. 3.5a: The deviation in the average counter value (ordinate) of the scatter plots is
an indicator of the estimation accuracy. An inaccurate estimation has more impact if the estimated
counter values are close to each other compared to when the estimated counter values are further
apart. According to Fig. 3.5b estimated counter differences with Δ�̂� ≥ 55 have an error probability of
�̄�𝑒 = 0, i.e., the 2368 bits corresponding to these estimates are revealed without any errors. Estimated
counter differences with Δ�̂� ≥ 19 still have an error probability of only �̄�𝑒 ≈ 1.5%, which applies to
5471 bits. The whole set of 8808 bits has an error probability of �̄�𝑒 ,𝑎𝑙𝑙 ≈ 12.4%.

Summing up, for automatic estimation of single TERO cell oscillations and using only known error
free bits, the entropy of the TERO PUF is reduced by a quarter from 9192 to 6848 bits. In addition,
an attacker can take advantage from error probabilities for estimations. They define a confidence for
each bit that allows to develop a smart guessing strategy, i.e., the remaining guessing effort is below an
exhaustive search. Also, an attacker can try to adjust the counter values for counters which contribute
to unreliable differences, e.g., by visual inspection of the SNR, which provides more precise results
than automatic estimation.
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Figure 3.6 Results for the attack on the TERO PUF for two simultaneously activated cells. (a) Automatically
estimated vs. actual counter values. (b) Probability of guessing a wrong bit using the estimates in (a); dashed
line: result for manually discarding estimates marked in solid red in (a).

3.3.2 Analysis of Simultaneously Activated Cells

Following the preliminary experiment of attacking single cells, this section analyzes the scenario
that two cells are activated at once: each TERO cell in block 0 is compared to each cell in block 1,
where the two cells under comparison are activated in parallel. In this setting, each cell 𝑖 is measured
𝑀 = 96 times, always in combination with a different cell 𝑗 ∈ {1, . . . 𝑀}. Assuming that an attacker
can figure out which cell is activated at a certain point in time, e.g., by knowledge of the design, the
attacker averages over the SNR of all 𝑀 measurements for cell 𝑖. For all measurements of cells 𝑖,
the same cells 𝑗 are compared. Thus, contributions from the other cells result in an approximately
constant, distinguishable offset SNR(𝑙)( 𝑓 ), that can be considered as noise:

SNR(𝑙)( 𝑓 ) = 1
𝑀

𝑀∑
𝑗=1

SNR𝑖 , 𝑗
(𝑙)( 𝑓 ) =

1
𝑀

𝑀∑
𝑗=1

SNR𝑖
(𝑙)( 𝑓 ) + SNR𝑗

(𝑙)( 𝑓 ) (3.10)

= SNR𝑖
(𝑙)( 𝑓 ) +

1
𝑀

𝑀∑
𝑗=1

SNR𝑗
(𝑙)( 𝑓 ) ≈ SNR𝑖

(𝑙)( 𝑓 ) + SNR(𝑙)( 𝑓 ). (3.11)

.
Effectively, the scenario of activating two cells at once is transformed back to the case of separately

activated cells. Due to the activation of two cells and an additionally observed noise floor of approx-
imately 1 dB, the threshold in the automatic counter value estimation is increased from 0.75 dB to
2.5 dB. Fig. 3.6 depicts the results for cells of both blocks. For every comparison, a single measurement
is taken and the noise floor is subtracted. The 𝑁𝑡 = 𝑀 measurements of comparisons containing the
same cell are averaged, i.e., the number of traces per cell is in the same range as in the previous
experiment.

Fig. 3.6a compares automatically estimated counter values against averaged known counter values
for this scenario. As expected, the results are slightly degraded compared to Fig. 3.5a, since not all
effects caused by simultaneously activated cells cancel out. Due to few but substantial deviations
of automatically estimated counter values from the actual ones, the resulting error probability for
guessing bits in Fig. 3.6b increases to �̄�𝑒 ,𝑎𝑙𝑙 ≈ 17% compared to �̄�𝑒 ,𝑎𝑙𝑙 ≈ 12.4% in Fig. 3.5b. While still
more than 7600 out of 9216 bits are guessed correctly, this reduces the confidence of the guess for
almost all bits.

To significantly improve the result, the underlying SNR is evaluated to eliminate cases showing a
distorted SNR over time when compared to Fig. 3.4. The most obviously degraded cases in the results
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Figure 3.7 SNR over time for two simultaneously activated cells (𝑁𝑡 = 100). (a) visually estimated oscillation
duration. (b) additional model given as red dashed line.

correspond to the two solid red dots in Fig. 3.6a. Eliminating these yields the dashed line for the error
probability in Fig. 3.6b. Similar to Fig. 3.5b, bits that are guessed with an estimated counter difference
of Δ�̂� ≥ 62 are regarded error free. This applies to 831 bits while smart guessing can be used to get
remaining bits as suggested above.

In a typical PUF setting, an error correction is applied to the PUF response to compensate variations
due to e.g., environmental conditions. Hence, an BER in the estimated response of up to the correction
capability is tolerable for a successful attack. Please note, despite an empirical BER in the range of 5
to 10% within academic settings [5, 6], it is common practice to consider a substantially larger amount
of errors in a commercial setting to ensure a failure free operation throughout the whole lifetime of a
product, including industrial temperature ranges from −40 ◦C to 85 ◦C, leading to an anticipated BER
of 15 to 20%. Therefore, the examined TERO PUF can be considered broken by the STFT-based attack
even if not all bits are known.

3.3.3 Attack on Multi-Bit Responses

The attack in Section 3.3.2 is prevented by using every TERO cell in only one comparison such that a
cell is only compared to one cell from the other block. Averaging over multiple measurements, as if
a cell is compared to different other cells, is not possible if only pair-wise comparisons are allowed.
Then, an attacker cannot assign a counter value to a certain cell as long as the measurements cannot
spatially resolve the cells. Consequently, an attacker cannot reveal the sign bit of counter differences.
However, if multiple bits are derived from a comparison of the counters, the difference itself is of
interest, since knowing its absolute value reduces the entropy to one bit, as discussed in Section 3.1.1.

While no automatic detection is implemented, visual inspection of the SNRs reveals the difference
of counter values in many cases as depicted in Fig. 3.7a. Knowing from the previous investigations
that the SNR over time develops a plateau while a TERO cell is oscillating, decreases afterwards, and
has a knee when no more oscillations are seen in the time segment under observation, the graph can
be interpreted: The first peak corresponds to the duration of the first oscillation, while the second
oscillation is present until the plateau decays and the SNR vanishes in the noise floor of approx. 1 dB.
In Fig. 3.7a the counter values, and thus the difference, is estimated quite accurately and only the sign
bit is still secret when neglecting unreliable LSBs.

In contrast, Fig. 3.7b shows that revealing the counter differences from the SNR is more difficult
in other cases. Still, by modeling the behavior of the TERO, the two apparently untypical peaks are
explained: (i) The two TEROs have similar oscillation durations, but (ii) in the model the TERO with
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the shorter oscillation duration has a 1.5 MHz higher oscillation frequency. Property (i) causes that the
end points of the oscillation durations can hardly be distinguished, while (ii) results in a cancellation
of the oscillations in the spectrum due to the relatively coarse resolution of measurements in the
frequency domain. The model prediction is marked by the red dashed line in Fig. 3.7b.

The results from Section 3.3.2 and Section 3.3.3 prove that methods to derive multiple bits per
pair of TERO cells are vulnerable to side-channel attacks. Similarly, the attack applies to multi-bit
derivation from the classical RO PUF (c.f. Fig. 2.4a) as it shares the same architecture, i.e., if not only
the MSB of the counter is used. In case of the RO PUF, the amplitude of the frequency difference
could be observed from SCA measurements, reducing the entropy for an attacker to the sign bit.
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4 Self-Secured PUF: Protecting the Loop PUF by
Masking

This chapter analyzes side-channel vulnerabilities of a PUF primitive from Fig. 2.1 with stable os-
cillations in combination with a sign-based bit derivation. The targeted primitive, the Loop PUF
from Section 2.2.2, is an area efficient PUF implementation with a configurable delay path based on
a single RO. In Section 4.1, SCA results from power and EM measurements confirm that oscillation
frequencies are easily observable and distinguishable, breaking the security of unprotected Loop PUF
implementations. Furthermore in Section 4.2, on-chip measurements acquired by a Time-to-Digital
Converter (TDC) sensor indicate that remote SCA attacks may be feasible in multi-tenant FPGA sce-
narios. In order to thwart SCA, a low-cost countermeasure denoted as temporal masking is presented
in Section 4.3 that requires only one bit of randomness per PUF response bit. The randomness is
extracted from the PUF itself creating a self-secured PUF. The concept is highly effective regarding se-
curity, low complex, and has low design constraints. Finally, Section 4.4 discusses possible trade-offs
of side-channel resistance, reliability, and latency.

The results in this chapter are based on the publications Tebelmann/Danger/Pehl: "Self-secured

PUF: Protecting the Loop PUF by Masking", in Constructive Side-Channel Analysis and Secure
Design, Springer International Publishing, 2020, pp. 293-314 [85] and Tebelmann/Wettermann/Pehl:

"On-Chip Side-Channel Analysis of the Loop PUF", in Proceedings of the 2022 Workshop on Attacks
and Solutions in Hardware Security, Association for Computing Machinery, 2022, pp. 55-63 [86].

4.1 Classical Side-Channel Analysis of the Loop PUF

This section provides the methodology and results for the SCA of the Loop PUF. First, the implemen-
tation of the Loop PUF and its use in the experimental setup is described in Sections 4.1.1 and 4.1.2.
Subsequently, methods to detect the Frequencies of Interest (FoIs) at which the Loop PUF oscillates
are proposed in Section 4.1.3 and a side-channel attack is conducted in Section 4.1.4.

4.1.1 Loop PUF Implementation

The most sophisticated part of a Loop PUF from Section 2.2.2 is the implementation of the delay chain.
Ideally, the expected delay of the Loop PUF is independent of the challenge, and a difference in the
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Figure 4.1 Sketch of the Lookup Table (LUT) utilization of a Loop PUF stage.
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delay is only due to process variations affecting the delay elements. In other words, wiring should
have no influence and the delay elements in a delay stage according to Fig. 2.5b should be as similar
as possible.

To reach this goal, the Loop PUF implementation in this work utilizes the multiplexer structure
of the Artix-7 FPGA in accordance to the suggestions for an area-efficient RO PUF design in [87]:
Every slice of the Xilinx Artix-7 FPGA contains four 6-input-2-output LUTs. The inputs to a LUT
select a path from functionality dependent initialized SRAM cells through a multiplexer tree to the
LUT output. Fig. 4.1 sketches the concept for a delay element implemented in a 2-input-1-output
LUT. To implement two distinct inverter gates as the basic delay elements (alternatively buffers can be
realized) of a delay stage in one LUT, the SRAM at the input of two multiplexers in the same hierarchy
level is initialized so that their outputs (𝑚𝑎 , 𝑚𝑏) correspond to the inverse of a certain input (𝐼𝑖). An
additional challenge input (𝑐𝑖) selects if the LUT output is 𝑂𝑖 = 𝑚𝑎 or 𝑂𝑖 = 𝑚𝑏 . Consequently, the
routing between delay stages from 𝑂𝑖 to 𝐼𝑖+1 is independent of the challenges and does not influence
the delay differences.

For 𝑐𝑖 and 𝐼𝑖 , inputs of the LUT are selected such that the expected delay is independent of the
challenge bit. Still, due to the FPGA’s internal routing and the implementation of the path from
SRAM cells through multiplexers to the output, a certain challenge dependent systematic delay bias
might be caused. This corresponds to delay elements in Fig. 2.5b, which are faster or slower on
all devices and would result in a reduced entropy of the Loop PUF. If the same amount of fast
and slow paths are active for the challenges which are compared, i.e., for the challenge 𝐶 and the
inverted challenge ¬𝐶, the effect is mitigated assuming all LUTs are affected by the same systematic
effect. Challenges 𝐶/¬𝐶, which are selected correspondingly, have the same Hamming weight. For
challenges that are Hadamard codewords, this property is inherently fulfilled if the all-zero challenge
𝐶0 = [0 . . . 0] is discarded.

From the described delay elements, a 64-stage Loop PUF is implemented in only 17 slices in
eight Configurable Logic Blocks (CLBs). The Loop PUF is realized within a closed domain with
fixed placement and routing such that it does not interfere with other parts of the design. The
other parts of the design are placed in a separate area but without additional constraints regarding
placement and routing. Using Hadamard codewords and discarding 𝐶0, the design generates 63 bits.

A single Loop PUF on the device corresponds to the best case for an attacker. Using multiple Loop
PUFs in parallel, e.g., to increase the amount of PUF bits in a key-storage scenario, the attacker faces the
additional obstacle of spatially resolving different counters, which has been shown to be feasible using
localized EM measurements [59]. The additional barrier of localized measurements does, however,
not change the overall results and is deemed out of the scope of this work. To further support the
analysis, the design supports supplying challenges externally and reading back the measured counter
values allowing for validation of side-channel leakage. Responses are computed on a PC receiving
the counter values from the device, since the analysis does not consider the potential leakage in the
comparison step. In a practical scenario the attacker is not required to have access to any of the
internal counter values or being able to apply challenges.

4.1.2 Experimental Setup

The experimental setup for the SCA evaluation of the Loop PUF consists of a ChipWhisperer 305 Artix
FPGA Target (CW305), that features an Artix-7 (XC7A100TFTG256) running at 𝑓𝑐𝑙𝑘 =100 MHz. A
PicoScope 6402D USB oscilloscope performs the acquisition at a sampling frequency of 𝑓𝑠 =1.25 GHz.
The input bandwidth of the scope is 250 MHz, which is sufficient regarding the oscillation frequencies
of the Loop PUF and their harmonics that are in the range from 15 MHz to 65 MHz as shown in
Section 4.1.3. Measurements are performed in parallel for the power and EM side-channels as
depicted in Fig. 4.2; power measurements are acquired using the SMA jack X4 of the CW305, which
outputs the voltage drop of the FPGA’s internal supply voltage VCCint over a 100 mΩ shunt amplified
by a 20 dB low-noise amplifier. EM measurements are taken using a Langer EMV RF-R 50-1 near
field probe with a diameter of approximately 10 mm. A 30 dB Langer EMV PA303 pre-amplifier is
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Figure 4.2 Measurement setup for the SCA evaluation of the Loop PUF. The RF-R 50-1 EM probe position and
a SMA cable connected to the power jack X4 of the CW305 board are depicted.

used to enhance the signal amplitudes in order to benefit from the oscilloscope’s dynamic range. The
EM probe is placed on the front-side about 1 mm above the package to capture field lines that are
orthogonal to the package surface. A coarse positioning procedure is applied to find the location
of interest above the package: For each quadrant of the package measurements are taken, and the
procedure in Section 4.1.3 is used to determine whether the relevant frequencies are present. The
position providing the highest peak at the frequency of interest is chosen for all further evaluations.

4.1.3 Frequency of Interest Detection

In order to attack the Loop PUF, an attacker has to determine the frequencies of the oscillation
termed as Frequency of Interest (FoI) in the following. In Fig. 4.3 the spectral representation
of different detection methods are depicted. All figures are based on a single measurement per
challenge, where the Loop PUF is activated for 𝑇𝑎𝑐𝑞 ≈ 5.24 ms. The first 5.2 ms are transformed into
the frequency domain using a FFT of 𝑁𝐹𝐹𝑇 = 2, 684, 359 frequency bins and a Hanning window
to minimize aliasing effects. The resulting spectra exhibit various spikes which makes automatic
evaluation difficult. Thus, low-pass filtering is applied along the frequencies to smooth the spectrum.
Using the filtering technique, single frequency noise form perturbations and artifacts are reduced,
while Loop PUF frequencies, that have a small fluctuation, remain.

Figs. 4.3a and 4.3b show the spectra 𝑋( 𝑓 ) of two challenges 𝐶 and ¬𝐶 for power and EM measure-
ments respectively. The oscillation frequency is approximated from the counter value 𝑣𝐶 as

𝑓𝐶 ≈ 𝑓𝑟𝑒 𝑓 · 𝑣𝐶𝑛𝑎𝑐𝑞 =
𝑣𝐶
𝑇𝑎𝑐𝑞

, (4.1)

with 𝑓𝑟𝑒 𝑓 = 𝑓𝑐𝑙𝑘 . Note that due to the discrete counter values, 𝑓𝐶 is subject to quantization noise.
The Loop PUF frequency 𝑓0 ≈ 15.77 MHz, verified by Eq. (4.1), is indicated as well as the multiples
𝑓1 , . . . , 𝑓3. In the power side-channel, the frequencies show notable peaks, while in the EM side-
channel, peaks are partly covered by other signals. Furthermore, in both side-channels, frequency
peaks unrelated to the Loop PUF show up. While some frequency components can be attributed to
expected sources such as the system clock 𝑓𝑐𝑙𝑘 = 100 MHz, other frequencies are a priori indistin-
guishable from the Loop PUF frequency. Therefore, two methods for reliable Frequency of Interest
(FoI) detection are proposed.

FoI Based on Signal-to-Noise Ratio The first method subtracts an estimated noise floor 𝑁( 𝑓 ) from
the spectra 𝑋( 𝑓 ), generating a Signal-to-Noise Ratio SNR( 𝑓 ) = 𝑋( 𝑓 )/𝑁( 𝑓 ) similar to the approach
in Section 3.1.4. Results are depicted in Figs. 4.3c and 4.3d. The noise floor is estimated from
measurements with an inactive Loop PUF, eliminating certain irrelevant frequencies, such as the
clock frequency. In Figs. 4.3c and 4.3d the noise floor estimate 𝑁( 𝑓 ) is based on averaging over the
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frequency spectra of 128 measurements, where the Loop PUF was not active. Compared to the spectra
𝑋( 𝑓 ) in Figs. 4.3a and 4.3b, the frequencies 𝑓1 , 𝑓2 , 𝑓3 show up more clearly in the SNR( 𝑓 ) and other
frequency components are canceled out. The basic frequency 𝑓0 is covered by other signals in the EM
side-channel. The peaks at 68.6 MHz and its multiple at 137.2 MHz are unrelated to the Loop PUF,
yet the candidate frequencies for an attacker are reduced.

FoI Based on Standard Deviation An attacker may not be able to estimate the noise floor reliably
by idle measurements, e.g., if other operations, which are not active in the idle measurements, run
in parallel to the Loop PUF. Thus, a second FoI detection method is proposed based on the standard
deviation over frequency spectra of all challenges. The basic idea is that frequency components
present in all measurements, such as the clock frequency, show a low standard deviation, while
frequencies that vary for different measurements produce a higher standard deviation. In Figs. 4.3e
and 4.3f, the standard deviation of the frequency spectrum among the different challenges is depicted
for power and EM measurements. Indeed, the FoI detection in the power side-channel in Fig. 4.3e
reveals the Loop PUF frequency 𝑓0 as well as multiples 𝑓1 , 𝑓2 , 𝑓3. In the EM side-channel, Figs. 4.3e
and 4.3f, a frequency ramp is visible between 15 MHz and 24 MHz, that partly covers 𝑓0. Thus, the
fundamental Loop PUF frequency of 𝑓0 can still be sensed with a priory knowledge, but is hardly
identifiable for an attacker. Only 𝑓1 , 𝑓2 , 𝑓3 are clearly visible. Similar to the SNR-based method,
additional frequencies are detected around 68.6 MHz and 72 MHz that are unrelated to the Loop
PUF. Overall, more unrelated peaks occur compared to the SNR-based method, but FoIs can be more
clearly distinguished compared to the raw spectra in Figs. 4.3a and 4.3b.

Concluding, two methods to detect the FoIs are proposed that allow for determining the frequencies
related to the Loop PUF. If possible, the SNR-based method is preferable, otherwise calculating the
standard deviation across challenges provides sufficient information.

4.1.4 Side-Channel Analysis of the Loop PUF

The frequencies in the range of the FoIs determined in Section 4.1.3 are evaluated regarding the
possibility of extracting information about the Loop PUF. The following evaluations focus on a
spectral range from 31.4 MHz to 31.7 MHz, because a frequency around 31.54 MHz is identified as
a FoI in the EM side-channel. The same frequency range is used for power side-channel to ease
comparison.

As noted in Algorithm 1 from Section 2.2.2, the counter value 𝑣𝐶 that results from the challenge 𝐶 is
compared to the counter value 𝑣¬𝐶 that results from the complementary challenge¬𝐶. The challenges
are applied sequentially, thus an attacker can observe the frequencies 𝑓𝐶 and 𝑓¬𝐶 separately. If the
order in which 𝐶 and ¬𝐶 are applied is known, as is the case for the design presented in Section 2.2.2,
the attacker can guess the PUF bit 𝑟𝐶 by comparing the frequency spectra of the challenges.

In Fig. 4.4 the typically observed spectra for challenge 𝐶 and its complement ¬𝐶 are depicted.
The peaks 𝑓𝐶 and 𝑓¬𝐶 are clearly different and can be distinguished. The sign of the comparison
Δ 𝑓 = 𝑓𝐶 − 𝑓¬𝐶 is used as the guess for the PUF response bit, i.e.,

𝑟𝐶 =
{

1 if sign(Δ 𝑓𝐶) ≥ 0
0 if sign(Δ 𝑓𝐶) < 0.

(4.2)

In order to determine the success of an attack on all Loop PUF bits, the actual counter difference
Δ𝑣𝐶 = 𝑣𝐶 − 𝑣¬𝐶 is compared to its estimate

Δ�̂�𝐶 =
⌊
𝑓𝐶 · 𝑇𝑎𝑐𝑞

⌋
−

⌊
𝑓¬𝐶 · 𝑇𝑎𝑐𝑞

⌋
(4.3)

determined from the side-channel observations. The floor operator reflects the assumption that the
counter value is incremented after every Loop PUF oscillation.
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Figure 4.3 Comparison of FoI detection methods for the Loop PUF frequency. (a)-(b): Power Spectral Density
(PSD) of exemplary side-channel measurements for 𝐶 and ¬𝐶. (c)-(d): PSD subtracted by PSD from noise
measurement. (e)-(f): FoI method using the standard deviation of the PSD among all challenges.



36

31.4 31.5 31.6 31.7
Frequency [MHz]

34

36

38

40

42

44

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 [

dB
]

(a) Power

31.4 31.5 31.6 31.7
Frequency [MHz]

34

36

38

40

42

44

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 [

dB
]

(b) EM

Figure 4.4 Zoomed PSD for a challenge 𝐶 (blue) and its complement ¬𝐶 (orange).

Fig. 4.5 depicts the match between Δ𝑣𝐶 and Δ�̂�𝐶 . Estimated differences Δ�̂�𝐶 with sign(Δ�̂�𝐶) ≠
sign(Δ𝑣𝐶) are depicted as filled red squares. Using the method in Eq. (4.2), from 63 Loop PUF bits,
only two and three bits result in a wrong guess for the power respectively EM side-channel. For at
most 𝑀 wrong bits the guessing entropy is

𝐺𝐸(𝑀) ≤ log2

𝑀∑
𝑖=0

(
63
𝑖

)
, (4.4)

i.e., all possible combinations of 𝑀 or less erroneous bits have to be considered. Assuming that a
guessing entropy of about 32 bits is feasible for brute-forcing, with 𝑀 ≤ 8 the 63-bit Loop PUF can be
certainly attacked. Notably, in Fig. 4.5 the wrong guesses correspond to smaller frequency differences
that are more difficult to resolve. Considering this knowledge, it is possible to improve the search by
a smart guessing strategy that first tests bits corresponding to estimated values close to zero. If only
the 𝑁𝑙𝑖𝑚 bits with the smallest values of Δ�̂�𝐶 are considered, the guessing entropy is reduced to

𝐺𝐸′(𝑀) ≤ log2

𝑀∑
𝑖=0

(
𝑁𝑙𝑖𝑚

𝑖

)
. (4.5)

For example, taking 𝑁𝑙𝑖𝑚 = 41 of the 63 Loop PUF bits allows for 𝑀 ≤ 11 wrong bits to reach a
guessing entropy of about 32 bits. Hence, the guessing entropy in Eq. (4.4) is the upper bound
if no side-information is considered or in other words more errors 𝑀 in the attack results can be
tolerated by using Eq. (4.5). Note, the smart guessing strategy is only successful if all erroneous bits
are contained in the considered 𝑁𝑙𝑖𝑚 bits.

Independent of the search strategy, unstable PUF bits are compensated by an error-correcting step
in key generation or even discarded, i.e., an attacker can afford a certain number of wrong bit guesses
since also on the device not all 63 bits might be derived correctly. In other words, only for a number
of erroneous bits that exceeds the error-correcting capabilities of the device, a strategy as defined by
Eqs. (4.4) and (4.5) is required.

Summing up, the response of the Loop PUF can be recovered from non-invasive power and EM
measurements using a single measurement per challenge for all but a few unstable bits. Thus, the
unprotected Loop PUF design is broken by side-channel attacks.
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Figure 4.5 Results for the SCA of the Loop PUF: Match of real and estimated counter differences from frequency
measurements using maxima around 31.55 MHz.

4.2 On-Chip Power Analysis of the Loop PUF

Based on the attack from Section 4.1, this section investigates the possibility of on-chip SCA of the Loop
PUF primitive and compares the efficiency to classical SCA attacks. Remote power measurements are
acquried using a TDC sensor on two Artix-7 FPGAs with different resources to compare differences
in the SNR. Further, the relative placement of the targeted PUF and the TDC sensor is varied.

logical separation

Sensor


Target¤

PDN

power
consumption



FPGA Fabric

Figure 4.6 Intra-FPGA remote SCA attack scenario.

In recent years, the possibility to rent computing resources, e.g., on FPGAs, from cloud providers
has been emerging. While direct physical access is difficult to achieve for attackers, remote SCA attacks

constitute a novel attack vector on such devices [88]. These attacks exploit that on shared FPGAs the
same Power Distribution Network (PDN) provides the internal voltage𝑉𝐶𝐶𝐼𝑁𝑇 for all IP cores, even
though they are logically separated as depicted in Fig. 4.6. Changes in the power consumption of the
target propagate through the PDN, leading to fluctuations of its value 𝑉𝐶𝐶𝐼𝑁𝑇 [89]. An attacker, who
shares the same FPGA, can measure the variations by using voltage sensors, e.g., based on ROs [90, 91]
or TDCs [92], and conduct SCA from the measurements. Most related work targets implementations
of cryptographic algorithms, mainly AES and RSA [88]. Additionally, the inputs of neural network
accelerators have been retrieved [93] via remote SCA.

In the domain of shared remote FPGAs, PUFs have been proposed as root of trust in schemes that
provide secure computing enclaves on cloud FPGAs [94]. Implementations of oscillation-based PUF
and TRNG primitives are available for commercial cloud FPGAs for fingerprinting, authentication
and reliability purposes [95]. Furthermore, the use of on-chip sensors has been proposed as low-cost
and flexible alternative to classical SCA evaluations for AES [96]. Comparison of remote sensors with
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Figure 4.7 Time-to-Digital Converter (TDC) sensor.

oscilloscope measurements indicate that TDC sensors allow for comparable results for Correlation
Power Analysis (CPA) attacks on AES [92, 91].

This section investigates whether remote SCA of the Loop PUF is a possible threat in multi-tenant
FPGA scenarios. Additionally, the attack success from on-chip measurements is compared to classical
SCA power measurements to provide insights how far low-cost on-chip measurements can be used
to evaluate the security of PUFs.

Attacker Model In contrast to the other attacks in this thesis, the attacker is without physical access
to the device under attack, but shares the FPGA with the victim. The attacker has remote access
by which she can provide an IP core to the device, that runs in parallel to the victim, and can sent
data. The victim uses a PUF to generate a secret key. Algorithms and primitives as well as non-secret
parameters used in the victim’s IP core are considered public. Concealing this information may add
some reverse engineering effort for the attacker, but must not be the basis for security. In order to
reveal the secret key generated by the victim’s PUF, the attacker uses SCA measurements from a TDC.

4.2.1 Time-to-Digital Converter Power Sensor

Fig. 4.7 shows the general concept of a TDC, where a signal propagates through a chain of buffers.
The propagation delays of the buffers are sensitive to changes in the supply voltage, i.e., an increased
supply voltage decreases the propagation delay and vice versa. Thus, the signal propagation through
the delay chain is proportional to the voltage [89]. The voltage sensitivity of the TDC delay can be
used as a sensor by tapping the delay line with latches between the buffers; the same signal that is
connected to the delay line enables the latches. After a half clock period, the latches are disabled, and
the state, i.e., how far the clock signal propagates through the buffer chain, is stored into a register.
As the signal passes the buffers sequentially, the register state is a "thermometer" code, i.e., a series
of 1’s followed by 0’s. Other circuits or IP cores that share the same PDN cause a voltage drop in
the supply voltage when they are active. Due to the voltage drop, the signal propagation through
the TDC delay line is slowed down, and the output register value is reduced. By storing the register
values over time, side-channel traces can be generated.

Delay Line

The delay line of the TDC is composed of an initial delay and an observable delay: The initial delay

compensates the propagation delay corresponding to the DC offset of the design. The length of the
observable delay is designed such that the expected delay variation can be observed. The combination
of the clock signal’s 𝑐𝑙𝑘𝑡𝑑𝑐 frequency 𝑓𝑡𝑑𝑐 and the number of buffers of the observable delay determines
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Figure 4.8 Experimental setup with modules and communication. The dashed line denotes a logical separation.

the sampling rate and resolution of the sensor. These parameters are calibrated before collecting the
actual SCA measurements.

Bubble Encoder

In order to compress the thermometer code of the register output, a binary encoder is required to
convert the TDC output. However, due to uneven propagation delays in the FPGA structure and
hold time noise of the latches, so-called bubbles may occur at the transition edges, i.e., the last 1 of the
output can have one or more preceding 0’s [97]. The encoder implementation by Adamič et al. [98],
used in the following, leverages LUTs and pipelined adder trees to count the number of 1’s in the
thermometer code. For at most one or two bubbles in the thermometer code, this is a simple and
robust method to correct bubbles with little distortion in the resulting sample value.

4.2.2 Experimental Setup

Fig. 4.8 depicts a block diagram of the experimental setup including the modules of the TDC, the Loop
PUF, and the communication between the FPGA and a computer (PC). The modules are logically
separated, and the TDC only receives a trigger signal as input and records measurements as soon as
the trigger provides a rising edge. Therefore, the TDC module is independent of the attacked module
and can be reused in any other target design. Each of the two modules is connected to a separate
communication module, using UART modules with a Baud rate of 115200 Baud for the Loop PUF
and 460800 Baud for the TDC module.

Similar to Section 4.1.1, a 63-bit Loop PUF is implemented. The control PC sends a challenge
to the Loop PUF, which returns the counter value to provide a reference value for the SCA attack.
The TDC does not require any control and sends the acquired measurement data to the PC, i.e., a
one-directional communication suffices.

The TDC module, in the gray frame, consists of the TDC delay sensor, an encoder, a Block Random
Access Memory (BRAM) to store the measurements, and a control unit. Furthermore, a UART sends
the acquired data to the PC, and a Phase-Locked Loop (PLL) supplies the TDC and the UART with
a separate clock signal. Using a PLL ensures that the TDC module is separated of the system clock,
i.e., the sampling rate of the TDC can be adjusted independently.

The encoder converts the sampled TDC values from thermometer code into binary encoding and
corrects bubbles from the measurements [98]. The resulting intermediate data are stored to BRAM,
since the data rate of the communication interface is much slower than the sampling frequency of
the sensor. The control unit coordinates data recording, data storage, and data transmission: At the
rising edge of the trigger, data is acquired until the BRAM is filled. Then, the data is transmitted over



40

Loop PUF 
RO

TDC 
delay line

(a) Logical separation, spatial proximity

TDC
delay 
line

Loop 
PUF
RO

(b) Logical and spatial separation

Figure 4.9 TDC and Loop PUF placement on the CW305. Edited screenshots from Xilinx Vivado, adapted
from [99].

the UART, the BRAM is reset and the next measurement can be taken. As the measurements of the
Loop PUF consist of magnitudes more samples than for attacks e.g., on AES, using an Integrated
Logic Analyzer (ILA) core [92], which has a limited number of samples that can be transmitted, is
not possible. However, a design with intermediate storage and communication interface is closer to
a realistic scenario where an ILA is likely out of scope.

The TDC delay path is designed as described in Section 4.2.1, consisting of an initial delay of
𝑁𝑖𝑛𝑖𝑡 LUTs and𝑁𝑜𝑏𝑠. CARRY4 primitives. On the Artix-7 FPGAs, the CARRY4 elements have a smaller
delay compared to the LUTs and thus allow for a more fine grained resolution of the observable delay,
while for the initial delay a coarse granularity is sufficient to compensate the DC offset. The numbers
𝑁𝑖𝑛𝑖𝑡 and 𝑁𝑜𝑏𝑠. have to be calibrated according to the placement, the TDC frequency 𝑓𝑡𝑑𝑐 and the
respective board.

Target Boards

In order to consider the effect of different SNR due to varying FPGA sizes and a different PDN
quality, the experiments are conducted on two FPGA boards featuring distinct Artix-7 FPGAs. Firstly,
the Basys3 development board contains a variety of peripherals for prototyping of digital circuits
and features an Artix-7 XC7A35T. Secondly, the CW305 features an Artix-7 XC7A100T, which has
considerably more resources, and is designed for conducting SCA measurements, i.e., it comes with
little additional peripherals. The CW305 is also used for a comparison between classical and on-chip
SCA measurements of the Loop PUF in Section 4.2.4.

Placement Configurations

In order to investigate the impact of the distance of the relative placement of the PUF and the sensor
module, Fig. 4.9 depicts two scenarios for the CW305 that are investigated. In Fig. 4.9a the Loop PUF
and the sensor are logically separated, but spatially adjacent. The TDC delay line is placed close to
the oscillator of the Loop PUF. The second scenario in Fig. 4.9b is closer to a real world attack scenario
where the FPGA is shared between multiple IPs: the Loop PUF and the TDC sensor are logically and
spatially separated. The floorplan is split into two separate blocks by constraints.
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Table 4.1 Overview of experiments with considered Frequencies of Interest (FoIs) ranges determined from
counter values.

FoIs [MHz]

board 𝑓𝑡𝑑𝑐 placement counter oscillator

CW305 40 MHz close 7.38 − 7.39 14.74 − 14.79
separate 7.38 − 7.39 14.72 − 14.78

Basys3 30 MHz close 6.42 − 6.44 12.85 − 12.88
separate 6.44 − 6.45 12.85 − 12.89

CW305 16 MHz close 7.46 − 7.47 –

4.2.3 Practical Results of On-Chip Power Analysis

For all results of the TDC-based SCA of the Loop PUF, the Loop PUF is activated for 𝑛𝑎𝑐𝑞 = 219

cycles of a 𝑓𝑟𝑒 𝑓 = 100 MHz clock (𝑇𝑟𝑒 𝑓 = 10 ns) corresponding to around 5.2 ms for each challenge.
Time domain measurements are acquired by the TDC sensor (or an oscilloscope for classical SCA
measurement) and transformed into the frequency domain. In order to improve the SNR, multiple
measurements, also denoted as repetitions in the following, are acquired per challenge. Subsequently,
the frequency spectra of several repetitions are averaged. From the averaged frequency spectra, peak
detection is used to get the estimated oscillation frequencies. In order to facilitate the analysis, the
FoI range, in which the peak detection is applied, is limited to the range of frequencies calculated
from the actual counter values by leveraging Eq. (4.1). An example spectrum and the zoom to the
FoI range are provided in Appendix B.2. In a real attack scenario, the attacker could narrow the FoI
based on a comparison of the spectrum during activity of the PUF compared to normal operating
conditions, e.g., by one of the methods presented in Section 4.1.3.

Table 4.1 provides an overview of the different experimental scenarios and the corresponding FoIs
determined from the counter values. As expected for a PUF, the Loop PUF frequency is board
dependent, due to differing available resources used. In addition, it differs slightly for different
measurement campaigns due to slightly varying environmental conditions and other noise effects.
Note that the oscillator of the Loop PUF and the counter in Fig. 2.5a are separated by a Toggle
Flip-Flop (T-FF), which acts as a frequency divider. From the device’s perspective, the counter value
depicts the halved frequency of the Loop PUF, but does not affect the sign of the bit derivation. From
the attacker’s perspective, two possible FoIs have to be considered: due to the frequency-dividing
T-FF, the feedback buffer chain oscillates at about twice the frequency as the counter.

According to the Shannon-Nyquist theorem, the frequency 𝑓𝑡𝑑𝑐 of the TDC has to be at least twice
the frequency of the Loop PUF. For the different scenarios in Table 4.1, the condition is fulfilled with an
additional margin. The BRAM in the TDC sensor module must be able to store𝑇𝑟𝑒 𝑓 ·𝑛𝑎𝑐𝑞/ 𝑓𝑡𝑑𝑐 samples.
Consequently, the maximum sampling frequency 𝑓𝑡𝑑𝑐 of the TDC is limited by the available BRAM
blocks of the FPGA. Finally, while a high sampling rate 𝑓𝑡𝑑𝑐 is desirable to increase the frequency
range and resolution, a lower 𝑓𝑡𝑑𝑐 can increase the sensitivity as the signal can propagate further into
the observable part of the delay chain. In the first four rows in Table 4.1 a sampling rate 𝑓𝑡𝑑𝑐 is chosen
that allows for resolving the FoIs of counter and oscillator, and increases the frequency resolution.
On the other hand, in the last row in Table 4.1 the sampling rate 𝑓𝑡𝑑𝑐 is chosen close to the minimum
possible value that resolves the counter FoIs. This increases the sensitivity of the TDC sensor, but
comes at the cost of not being able to resolve the oscillator FoIs.

To evaluate the attack success, the signs of the real counter difference and the counter difference
retrieved based on the SCA frequency peaks are compared, similar to Section 4.1.4. Examples of
the match for the CW305 with 𝑐𝑙𝑘𝑡𝑑𝑐 = 40 MHz for different numbers of repetitions are depicted in
Fig. 4.10. With an increasing number of repetitions, the SNR is increased from averaging and the
match becomes more precise. Assuming that a guessing entropy of about 32 bits is feasible for brute-
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Figure 4.10 Comparison of real and SCA counter differences from oscillator FoIs on the CW305 for
𝑐𝑙𝑘𝑡𝑑𝑐 = 40 MHz and separate placement of PUF and sensor.
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(d) Separate, oscillator FoI

Figure 4.11 Attack results on CW305 with 𝑐𝑙𝑘𝑡𝑑𝑐 = 40 MHz.

forcing, the Loop PUF can be attacked if the attack has 𝑀 ≤ 8 erroneous bits according to Eq. (4.4).
Similar to the classical SCA results in Section 4.1.4, for a sufficiently low SNR most wrong guesses
occur for frequency differences close to zero as highlighted by the red filled squares in Fig. 4.10c
and Appendix B.1. Therefore, it would be possible to improve the search by a smart guessing strategy
that first tests the values close to zero and leads to a reduced guessing entropy according to Eq. (4.5).
However, as the brute-force strategy leads to successful results, it is adopted for the following results.

Figs. 4.11 and 4.12 depict the SCA results on the CW305 and the Basys3 boards as outlined in the
first four rows of Table 4.1. The dashed lines denote the brute-force limit of eight erroneous bits. The
plots show the number of correctly retrieved bits from the 63-bit Loop PUF with increasing number
of measurements used for averaging the spectra. In general, averaging over multiple repetitions
allows for aggregating information, whereas a single measurement would not suffice for a successful
attack. The number of recovered bits reaches a saturation point, but in some cases decreases slightly
afterwards. The variations can be attributed to changing environmental conditions as the entire
measurement campaigns are taken over more than 30 hours. On both boards, depending on the
placement and the targeted FoI range, the on-chip measurements from the TDC sensor allow for
reducing the remaining uncertainty about the PUF response down to a few bits.
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Figure 4.12 Attack results on Basys3 with 𝑐𝑙𝑘𝑡𝑑𝑐 = 30 MHz.
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(a) On-chip 𝑓𝑡𝑑𝑐 = 16 MHz
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(b) Classical 𝑓𝑠 = 156.25 MS/s

Figure 4.13 Comparison of attack results on CW305 for (a) best case on-chip and (b) classical power SCA
measurements.

Influence of the Placement In Figs. 4.11a, 4.11b, 4.12a and 4.12b for a close placement of the TDC
sensor and the Loop PUF, the FoIs from the counter can be more easily exploited than the ones from
the oscillator, i.e., less measurements are required to retrieve a high number of correct bits. On the
other hand, in Figs. 4.11c, 4.11d, 4.12c and 4.12d for a separate placement, only the FoIs corresponding
to the oscillator allow for attacking the Loop PUF.

A possible explanation, why attacks on the counter FoIs are not possible for separate placement,
is that the oscillator has a power consumption that affects the PDN stronger and thus can be sensed
independent of the sensor placement. For close placement, the sensor also captures the counter’s
local influence to the PDN and can resolve the corresponding FoIs better, which leads to an increased
number of correctly recovered bits.

Influence of FPGA Size and TDC Sampling Frequency Except for the close placement and oscillator
FoIs in Figs. 4.11b and 4.12b, the results for the Basys3 board show a faster increase of the number of
correct bits. The measurements on the Basys3 board use a lower sampling frequency of 𝑓𝑡𝑑𝑐 = 30 MHz,
which increases the sensitivity, affecting the attack results positively. As the overall results between
Figs. 4.11 and 4.12 are in the same range, the SNR seems to play a negligible role. In order to
investigate the effect of the sampling frequency further, Fig. 4.13a depicts the attack success on the
CW305 with 𝑓𝑡𝑑𝑐 = 16 MHz. Due to the low sampling rate only the counter FoIs can be targeted as
for the oscillator FoIs the sampling rate is too low. Compared to Fig. 4.11a, where with 100 traces five
erroneous bits remain, in Fig. 4.13a with 18 traces only three erroneous bits remain, with 25 traces all
bits are retrieved correctly. In conclusion, to increase the attack success a low TDC sampling rate is
beneficial.

4.2.4 Comparison with Classical Side-Channel Analysis

Finally, to compare the attack success of the on-chip power measurements to measurement from a
classical SCA setup, power measurements from the CW305 are acquired with a sampling rate of
𝑓𝑠 = 156.25 MS/s. Similar to Section 4.1.4, peak detection is applied to the FoI range from 31.73 MHz
to 31.95 MHz, corresponding to the first harmonic of the oscillator. From Fig. 4.13b, with a single
trace only two bits are not recovered correctly resulting in a successful attack. In the best case on-chip
scenario with 𝑓𝑡𝑑𝑐 = 16 MHz in Fig. 4.13a, nine repetitions are required for feasible brute-force search
and at least 18 repetitions to achieve the same precision as classical SCA.

The comparison in Fig. 4.13 shows that classical SCA is – as it might be expected – indeed more
powerful when compared to on-chip SCA. However, the results also highlight that on-chip measure-
ments are capable of attacking the Loop PUF and are a possible attack vector in shared FPGAs. The
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limiting factors for the considered remote attack are the TDC sampling rate 𝑓𝑡𝑑𝑐 and the transmission
of the acquired data. The relatively low oscillation frequency of the Loop PUF allows for setting
a low sampling rate of the TDC that increases the resolution and reduces the acquired data at the
same time. For oscillators with a higher frequency, e.g., ROs with less delay elements, an increased
sampling frequency would be needed to capture the FoIs. In order to maintain a sufficient resolution,
the TDC could be modified to use parallel delay lines [100]. Additionally, the amount of data could be
reduced at the cost of additional sensor complexity, e.g., by calculating the frequency transformation
on-chip and transmitting only the relevant frequency bins. Some a priori knowledge on the attacker’s
side in terms of the FoIs would be required for this approach.

From the results, similar to quick evaluation of AES from on-chip measurement [96], SCA eval-
uations of PUFs without expensive measurement equipment are in principle possible. Due to the
long time needed for data transmission, the application seems to be limited to scenarios, where
oscilloscope-based testing it not possible or comes with a large overhead.

4.3 Securing the Loop PUF

To thwart SCA of the Loop PUF, a masking countermeasure is proposed in this section. First, the
general concept of the temporal masking scheme is introduced in Section 4.3.1. Second, limitations
and constraints of the attack are discussed in Section 4.3.2, which are leveraged to make the Loop PUF
self-secured by using the counter LSB as a random bit in Section 4.3.3. Finally, Sections 4.3.4 and 4.3.5
evaluate the mask quality and provide results for SCA for the proposed countermeasure.

4.3.1 Temporal Masking

The measurements of the Loop PUF to derive a PUF bit 𝑟𝐶 are performed sequentially, i.e., the
measurement for challenge 𝐶 is followed by the measurement for its complement ¬𝐶. The ordered
sequential measurements are exploited by the SCA in Section 4.1.4. However, reordering of mea-
surements does not affect PUF quality metrics as it has no effect on the oscillation frequency. Thus,
to protect the sequential measurements against SCA, the order of measurements to derive a PUF
response bit can be randomized. In Algorithm 2, the bit derivation for 𝑟𝐶 is randomized by a 1-bit
mask 𝑚, which is unknown and unpredictable for an attacker. As the countermeasure modifies the
temporal order of the applied challenges, it is denoted as temporal masking in the following.

Algorithm 2 Temporal Masking: Protected Loop PUF Operation

Input: Challenge 𝐶
Input: Measurement time in terms of periods 𝑛𝑎𝑐𝑞 of the reference clock
Input: mask 𝑚 (1-bit random variable)
Output: Response 𝛿𝐶 (a signed integer whose sign is mapped to the secret bit 𝑟𝐶)

1: Set current challenge 𝐶′ = 𝑚 ? 𝐶 : ¬𝐶
2: Count oscillations of the Loop PUF for 𝑛𝑎𝑐𝑞 cycles of the reference clock⇒ 𝑣𝐶′
3: Set current challenge ¬𝐶′
4: Count oscillations of the Loop PUF for 𝑛𝑎𝑐𝑞 cycles of the reference clock⇒ 𝑣¬𝐶′
5: Compute 𝛿𝐶 = 𝑚 ? 𝑣𝐶′ − 𝑣¬𝐶′ : 𝑣¬𝐶′ − 𝑣𝐶′
6: return 𝛿𝐶 with 𝑟𝐶 = MSB(𝛿𝐶) ∈ {0, 1}

Comparing the operation mode of the Loop PUF with temporal masking in Algorithm 2 to the
basic operation mode in Algorithm 1, the mask bit 𝑚 determines whether 𝐶 or ¬𝐶 is applied first
(Lines 1, 3): If 𝑚 is logically 0, the sequence of challenges is 𝐶 ≺ ¬𝐶; Otherwise, if 𝑚 is logically 1, the
order is ¬𝐶 ≺ 𝐶. Consequently, for an unknown mask bit 𝑚 the attacker cannot determine the order
of frequency measurements, which impedes the SCA from Section 4.1.4.
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The order of the measurements determines the secret bit according to Algorithm 1, i.e., without
further modification, a changed order of measurements leads to a wrong sign derived from the
frequency difference. Therefore, the sign is corrected by considering the order of measurement
also in the subtraction (Line 5). The mask bit 𝑚 determines the order in which the frequencies are
subtracted such that the final result is independent of 𝑚 but still cannot be observed by an attacker.

4.3.2 Towards a Self-Secured Loop PUF: Understanding SCA Limitations and Constraints

In order to understand general limitations of the SCA presented in Section 4.1.4, this section revisits
the fundamentals of the attack and provides constraints regarding the possible frequency resolution
of observations. Understanding the resulting limitations of the SCA approach enables the counter-
measures proposed in Section 4.3.3.

In Section 4.1.4, the attacker acquires time domain signals of length 𝑇𝑠𝑐𝑎 with an oscilloscope at a
sampling frequency 𝑓𝑠 , which are subsequently transformed into the frequency domain. First, the
general case is considered, where the attacker measures for a time 𝑇𝑠𝑐𝑎 ≤ 𝑇𝑎𝑐𝑞 , i.e., at most the time for
which the Loop PUF is active, to verify that 𝑇𝑠𝑐𝑎 = 𝑇𝑎𝑐𝑞 is the best setup from an attacker’s perspective.
The smallest frequency 𝑓𝑚𝑖𝑛 , which can be resolved, is the frequency, for which exactly one complete
period of the oscillation fits into the observation window 𝑇𝑠𝑐𝑎 . In case of the Loop PUF, the maximum
observation time is the acquisition time 𝑇𝑎𝑐𝑞 , i.e.,

𝑓𝑚𝑖𝑛 := 1
𝑇𝑠𝑐𝑎
≥ 1
𝑇𝑎𝑐𝑞

=
𝑓𝑐𝑙𝑘
𝑛𝑎𝑐𝑞

. (4.6)

The maximum frequency 𝑓𝑚𝑎𝑥 that can be resolved, is determined by the Shannon-Nyquist sampling
theorem as 𝑓𝑚𝑎𝑥 = 𝑓𝑠/2 for the sampling frequency 𝑓𝑠 . Thus, the observable frequency range1 is
bounded to

1
𝑇𝑎𝑐𝑞
≤ 𝑓𝑚𝑖𝑛 ≤ 𝑓 ≤ 𝑓𝑚𝑎𝑥 =

𝑓𝑠
2 . (4.7)

For a measurement period of 𝑇𝑠𝑐𝑎 , the number of sampling points, i.e., the length of the applied
FFT is

𝑁𝐹𝐹𝑇 = 𝑓𝑠 · 𝑇𝑠𝑐𝑎 . (4.8)

Note that for real valued time domain signals the spectrum is symmetric. Therefore, an FFT of
length 𝑁𝐹𝐹𝑇 maps the signal into 𝑁𝐹𝐹𝑇/2+ 1 frequency bins ranging from DC to 𝑓𝑚𝑎𝑥 . The frequency
resolution of the FFT frequency bins is

Δ𝐹𝐹𝑇 =
𝑓𝑚𝑎𝑥

𝑁𝐹𝐹𝑇/2 =
𝑓𝑠

𝑁𝐹𝐹𝑇
=

1
𝑇𝑠𝑐𝑎
≥ 1
𝑇𝑎𝑐𝑞

. (4.9)

In other words, a longer measurement time 𝑇𝑠𝑐𝑎 allows the attacker to obtain a better resolution of
the frequency differences. An attacker is expected to get the best result if the entire acquisition time
𝑇𝑠𝑐𝑎 = 𝑇𝑎𝑐𝑞 is measured as in Section 4.1.4. It is worth mentioning that the frequency resolution is
independent of 𝑓𝑠 and only determined by the design parameter 𝑇𝑎𝑐𝑞 , i.e., it cannot be improved by
the attacker.

The FFT induces a certain quantization error, i.e., the observed bin center frequency 𝑓 represents a
value range for the real oscillation frequency 𝑓𝑟𝑒𝑎𝑙 of the Loop PUF. From Eq. (4.9), 𝑓𝑟𝑒𝑎𝑙 is bounded
by the width of the frequency bins to

𝑓 − 1
2 · 𝑇𝑎𝑐𝑞 ≤ 𝑓𝑟𝑒𝑎𝑙 ≤ 𝑓 + 1

2 · 𝑇𝑎𝑐𝑞 . (4.10)

1Note that technically, the smallest frequency that can be resolved is 0 Hz, i.e., the DC component. However, in Eq. (4.7)
we are concerned with the observable frequencies.
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Assuming all frequencies within a specific bin appear with the same probability, the best guess an
attacker can make for the counter value according to Eq. (4.3) from the observed 𝑓 is therefore

�̂�𝐶 =
⌊(
𝑓 ± 1

2 · 𝑇𝑎𝑐𝑞

)
· 𝑇𝑎𝑐𝑞

⌋
=

⌊
𝑓 · 𝑇𝑎𝑐𝑞

⌋
± 1. (4.11)

Regarding limitations and constraints of the SCA and implications for possible countermeasures,
from Eqs. (4.10) and (4.11) the following holds:

1. If the frequency difference of two challenges 𝐶 and ¬𝐶 is | 𝑓𝐶 − 𝑓¬𝐶 | > Δ𝐹𝐹𝑇 , the resulting PUF
response bit 𝑟𝐶 is always revealed by an attack.

2. If | 𝑓𝐶 − 𝑓¬𝐶 | ≤ Δ𝐹𝐹𝑇 , the probability that both 𝑓𝐶 and 𝑓¬𝐶 are in the same FFT bin, i.e., indistin-
guishable for an attacker, increases with decreasing distance of the frequencies. The attack will
succeed for small frequency differences only with a certain probability.

3. While the sign of the counter difference can be revealed, an attacker will fail in deriving the LSB
of the counters.

Note that regarding Item 2, intentionally designing a Loop PUF with closeby frequencies does
not serve as a countermeasure: The comparison of frequencies close to each other is not desirable
from a PUF perspective, because bits derived from such a comparison are less robust against noise.
The conclusions in Items 1 and 2 emphasize the necessity for countermeasures to protect the Loop
PUF. Additionally, Item 3 substantiates that the LSB of a counter cannot be revealed by the attack.
Consequently, the LSB is used in Section 4.3.3 as a random bit to protect the Loop PUF.

4.3.3 Self-Secured Loop PUF Using Randomness From the Counter LSB

The temporal masking scheme from Section 4.3.1 allows for masking the Loop PUF at the expense
of a random bit per PUF bit. This section addresses the question how to efficiently implement the
masking scheme without the effort of an additional Random Number Generator (RNG). Based on
the limitations of the SCA frequency resolution derived in Section 4.3.2, the LSB of the Loop PUF
counter is suggested as 1-bit RNG, resulting in a self-secured Loop PUF.

Algorithm 3 describes the response generation of the self-secured Loop PUF with temporal masking
and an LSB-based mask. The algorithm takes the acquisition time in terms of the number of clock
cycles 𝑛𝑎𝑐𝑞 of a reference clock as an input during design time. When executed, all Hadamard
codewords except of the all-zero challenge𝐶0 (Line 1) are derived. Note that the Hadamard codewords
can be computed during runtime and do not require additional memory. The successive codeword
can be computed parallel to applying the current codeword to the PUF.

Following Sections 2.2.2 and 4.1.1, the all-zero challenge 𝐶0 cannot be used to extract a PUF bit as
it is biased if the delay stage is imbalanced. However, it can be used to derive a mask bit (Lines 2 to 4)
for the generation of the first response bit. The oscillations of the Loop PUF for 𝐶0 are measured and
the LSB of the resulting counter value is taken as mask bit 𝑚.
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Figure 4.14 Schematic of the protected Loop PUF structure.

Algorithm 3 Protected Loop PUF

Input: Measurement time in terms of periods 𝑛𝑎𝑐𝑞 of the reference clock
Output: 𝑁 − 1-bit PUF response r = [𝑟𝑁−1 , . . . , 𝑟1]

1: Compute the Hadamard codewords set 𝒞 = {𝐶1 , . . . , 𝐶𝑁−1} with HW(𝐶𝑖) = 𝑁/2
2: Set current challenge 𝐶′ = 𝐶0 = [0 . . . 0]
3: Count oscillations of the Loop PUF for 𝑛𝑎𝑐𝑞 cycles of the reference clock⇒ 𝑣𝐶′
4: Set mask 𝑚 = LSB(𝑣𝐶′) ∈ {0, 1}
5: for all 𝑖 = 𝑁 − 1 down to 1 do
6: Set current challenge 𝐶′ = 𝑚 ? 𝐶𝑖 : ¬𝐶𝑖
7: Count oscillations of the Loop PUF for 𝑛𝑎𝑐𝑞 cycles of the reference clock⇒ 𝑣𝐶′𝑖
8: Set current challenge ¬𝐶′𝑖
9: Count oscillations of the Loop PUF for 𝑛𝑎𝑐𝑞 cycles of the reference clock⇒ 𝑣¬𝐶′𝑖

10: Compute 𝛿𝐶 = 𝑚 ? 𝑣𝐶′𝑖 − 𝑣¬𝐶′𝑖 : 𝑣¬𝐶′𝑖 − 𝑣𝐶′𝑖
11: Set 𝑟𝑖 = MSB(𝛿𝐶) ∈ {0, 1}
12: Set mask 𝑚 = LSB(𝑣𝐶′𝑖 ) ∈ {0, 1}
13: end for

Subsequently, all other 𝑖 = 1, . . . , 𝑁 − 1 Hadamard codewords 𝐶𝑖 and their complements ¬𝐶𝑖 are
applied to the Loop PUF. The measurement order of 𝐶𝑖 and ¬𝐶𝑖 is randomized by the current mask
bit 𝑚 (Line 6 to 10) according to the steps from Algorithm 2.. A secret PUF bit 𝑟𝑖 is derived from the
MSB of the counter difference. Finally, the mask bit is updated to the random LSB of the counter
value 𝑣𝐶′𝑖 protecting the next measurement.

Fig. 4.14 sketches a possible hardware implementation of the self-secured Loop PUF omitting
generation of the Hadamard codewords, reference counter, state machine, output registers, and reset
tree. In an actual design, the state machine would cause generation of Hadamard codewords and
loading of codewords to the challenge register while resetting the counter. An up/down counter
might be used for counting the periods of the Loop PUF.

Starting with the all-zero challenge, 𝑚 = 0 and select = 0, the number of Loop PUF oscillations
within the acquisition time are measured. Without loss of generality, it can be assumed that the
counter is counting upwards in this mode. Setting store = 1 for one cycle after 𝑛𝑎𝑐𝑞 clock cycles, the
LSB of the resulting counter value is buffered as the first mask bit.

Subsequently, four main states are repeated until all 𝑁 −1 challenges have been applied to the Loop
PUF: (i) The mask bit from the buffer is applied to the input of the XOR tree, another challenge is
loaded, and the counter is reset. (ii) The select signal in the design is set to logical 0 and enable is set
to logical 1. (iii) After 𝑛𝑎𝑐𝑞 cycles of the reference clock, the LSB is buffered but not yet used as 𝑚,
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Figure 4.15 Empirical analysis of the LSB-mask: (a) Relative frequency of the LSB for all Hadamard challenges.
Correlation between LSB and frequency over (b) multiple challenges, (c) repeated measurements.

select is switched to logical 1. (iv) After another 𝑛𝑎𝑐𝑞 cycles of the reference clock, the MSB is taken as
a secret bit.

The structure of the design causes that if𝑚⊕select = 0, the counter counts upwards and 𝐶 is applied
to the PUF. If 𝑚 ⊕ select = 1, ¬𝐶 is used while counting downwards. In other words, if 𝑚 = 0, first
𝐶 is applied while counting upwards before ¬𝐶 is applied while counting downwards; if 𝑚 = 1 the
order of 𝐶 and ¬𝐶 as well as the counting direction in state (ii) and (iii) are reversed, so that after the
complete sequence of states the up/down counter always contains the correct frequency difference
and no inversion of the MSB is required.

4.3.4 Empirical Analysis of the LSB-Mask

Temporal masking is effective, if the attacker cannot predict the mask bit 𝑚. Section 4.1.4 shows that
the LSB is not resolvable by the suggested measurement strategy. Hence, the question remains if the
attacker can predict the LSB by some other means, e.g., if the LSB (i) has an exploitable bias or (ii) is
correlated to the oscillation frequency.

Bias A bias is considered exploitable if LSB(𝑣) for the same challenge is equal for all devices or if
LSB(𝑣) exhibits a global bias with respect to all challenges. The former case is excluded from further
analysis, since a bias over devices implies the same frequencies for a challenge over all devices.
Consequently the PUF quality would be low and some redesign is required. To rule out a bias on the
device that influences the quality of the mask bit, Fig. 4.15a depicts the relative frequencies of the LSB
for all challenges, where each challenge is measured 1000 times, and no apparent bias exists among
challenges. The global bias of all LSBs from all challenges is 0.5022, which is within the expected range.
Note that in Fig. 4.15a the LSBs of the counter values from all 2 × 𝑁 = 128 challenges are included in
the analysis, while for the protection with the temporal masking scheme only 𝑁 − 1 = 63 random bits
are needed. However, according to Algorithm 3 the challenges used to derive the random bits are not
known a priori, but depend on previous random bits. Therefore, all 128 counter LSBs are analyzed.

Correlations With Frequency Regarding correlations to the oscillation frequency, two cases are
considered: First, the attacker might take advantage from correlations between the LSB and the
frequency over multiple repeated measurements for a fixed challenge. This would indicate that a
certain guessed frequency corresponds to a certain LSB. Second, the attacker might take advantage
of a correlation between the LSB and the frequency over multiple challenges, which would indicate
a general dependency between frequency and the LSB. Figs. 4.15b and 4.15c refute the existence of
both kinds of correlations in the design. Both figures show the respective correlation values between
frequency and LSB along with a threshold depicted in dashed red. Values below the threshold, given
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Figure 4.16 Attack results from SCA of the self-secured Loop PUF: Match of real counter differences and
estimated counter differences.

by ±4/√𝑁, are not significantly different from zero with a confidence of 99.99% [51]. The number of
observations 𝑁 used to calculate the correlation is 𝑁 = 128, i.e., the number of different challenges,
and the experiment is repeated for 1000 measurements in Fig. 4.15b. In Fig. 4.15c, 𝑁 = 1000 different
measurements are correlated and the experiment is repeated for each challenge. In neither case is the
significance threshold exceeded indicating no correlations between LSB and frequency.

To sum up, the LSB of the Loop PUF counter is suited as a mask bit. It does not show significant
bias, nor is the LSB correlated to the frequency of the oscillation, which an attacker could observe.
Establishing these properties makes the self-secured Loop PUF a low-complexity and secure design.

4.3.5 Side-Channel Analysis of the Self-Secured Loop PUF

Finally, the effectiveness of the self-secured PUF design on practical measurements is evaluated. In
order to assure a fair comparison, the exact same measurements as in Section 4.1.4 are used, but the
order of measurements for 𝐶 and ¬𝐶 presented to the attacker is modified according to Algorithm 3.
The random bit 𝑚 is determined from the counter values obtained from the device. In Fig. 4.16,
the attacker’s capability to estimate the counter difference is depicted. Note that the attacker tries
to guess the MSB as well as the LSB. From the remarks from Section 4.3.2 it is evident that the LSB
cannot be retrieved, which is reflected in Fig. 4.16: Due to the randomized acquisition order, the
relationship between real counter differences and SCA-based counter difference estimates is broken
and the self-secured Loop PUF is effectively hardened against SCA.

4.4 Remarks on the Temporal Masking Countermeasure

The temporal masking scheme allows for protecting the Loop PUF against SCA by randomizing
the observations for an attacker. This section elaborates on the required quality of the masks in
Section 4.4.1, and the impact of the measurement time in Section 4.4.2.

4.4.1 Required Mask Quality

The empirical analysis of the LSB in Section 4.3.4 shows that the design provides mask bits that are
uniformly distributed. However, it is worth noting that temporal masking still provides protection
for biased mask bits as long as the bias per bit is unknown to the attacker. Considering LSB-based
masks, the attacker can count the occurrences of the frequencies 𝑓𝐶 and 𝑓¬𝐶 for each challenge 𝐶 from
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repeated observations of the PUF response generation. This allows for determining the deviation 𝛿𝑏𝑖𝑎𝑠
of the relative frequency from its ideal value of 0.5. However, the attacker is not able to assign 𝑓𝐶 and
𝑓¬𝐶 to individual observations. Only the absolute value |𝛿𝑏𝑖𝑎𝑠 | of the deviation is revealed. Thus, the
estimated relative frequency of the mask 𝑚 is 0.5 ± |𝛿𝑏𝑖𝑎𝑠 |, which still provides one bit of uncertainty
as the sign cannot be determined by the attacker.

Note that biases on different devices have to be different. Otherwise, the attacker could conclude
about the bias from a template device to the attacked device. Furthermore, for biased mask bits, the
bias for different bits on the same device must not be correlated. For example, if all bits are biased
in the same direction, the uncertainty is reduced to one bit for the entire PUF response and temporal
masking is circumvented.

4.4.2 Impact of Measurement Time

The frequency measurement depends largely on the measurement window 𝑇𝑎𝑐𝑞 . From Section 4.3.2,
the attack becomes more difficult with the reduction of 𝑇𝑎𝑐𝑞 , as the FFT accuracy decreases. Thus,
a naïve countermeasure would be the reduction of the measurement time. Additionally, the latency
is proportional to 𝑇𝑎𝑐𝑞 making a design with smaller 𝑇𝑎𝑐𝑞 more efficient. However, a small 𝑇𝑎𝑐𝑞
significantly reduces the reliability because the quantization noise of the counting process is increased.
Hence, the best compromise depends on different factors such as the required latency and reliability
of the key generation.

Neglecting latency, a large𝑇𝑎𝑐𝑞 provides a higher reliability of the PUF response bits. As a larger𝑇𝑎𝑐𝑞
comes at the cost of side-channel leakage, a countermeasure like temporal masking is inevitable. Yet,
temporal masking provides security benefits independent of the measurement time, since it impedes
attacks independent of the capability of the attacker to resolve frequencies. It is, e.g., still effective
against fault attacks where an attacker is able to extend the measurement time by decreasing the
frequency of the reference counter.
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5 Side-Channel Analysis and Protection of the
Two-Metric Helper Data Scheme

This chapter analyzes the peculiarities regarding SCA and its mitigation for bit derivation schemes
other than the sign-based bit derivation treated in the previous chapters. Section 5.1 provides several
insights regarding attack vectors of amplitude-based derivation schemes resulting in requirements
for a protection of the Loop PUF independent of the bit derivation.

The remainder of the chapter focuses on the Two-Metric Helper Data (TMHD) scheme presented
in Section 2.3 combined with the Loop PUF. First, Section 5.2 proves that the temporal masking
countermeasure introduced in Section 4.3.1 does not provide protection for amplitude-based bit
derivation. A novel attack against the TMHD scheme is shown, which makes use of the amplitude – in
contrast to the sign – of the frequency differences from ring-based PUFs. The feasibility of the attack
is shown for a 63-bit Loop PUF. Second, Section 5.3 takes a first step into the direction of protecting
the TMHD by combining a modification of the helper data metrics with the randomization of the
challenge order, denoted as Challenge Randomization countermeasure. It turns out that lightweight
generation of the required randomness can be broken, and TRNG-based implementations are costly
with a non-deterministic runtime. Therefore, Section 5.5 presents the Interleaved Challenge Loop
PUF (ICLooPUF), which is a design modification of the Loop PUF that hides side-channel leakage
in the first place. A theoretical analysis of the protection is provided as well as practical results that
show the effectiveness of the new protected PUF primitive.

The results in this chapter are based on the publications Tebelmann et al.: "Analysis and Protection

of the Two-Metric Helper Data Scheme" in Constructive Side-Channel Analysis and Secure Design,

Springer International Publishing, 2021, pp. 279-302 [101] and Tebelmann/Danger/Pehl: "Interleaved

Challenge Loop PUF: A Highly Side-Channel Protected Oscillator-Based PUF" in IEEE Transactions
on Circuits and Systems I: Regular Papers, 2022, vol. 69, no. 12, pp. 5121-5134 (©2022 IEEE) [21].

5.1 Requirements for a Universal Protection of the Loop PUF

The temporal masking countermeasure from Section 4.3.1 is designed to protect the sign-based bit
derivation from Loop PUF counter differences. However, as will be shown in Section 5.2 for the TMHD
scheme, amplitude-based bit derivation is not protected by the temporal masking countermeasure.
In addition to the attack on the TMHD scheme, other amplitude-based bit derivation schemes from
Section 2.3.3 are impacted by SCA that reveals information about the amplitude of a frequency
difference as well. This section first outlines possible threats to the EPQ, and the order encoding bit
derivation schemes. Subsequently, bit derivation methods from Section 2.3 are compared regarding
the secret to be protected. This allows for determining the requirements for a universal protection
of the Loop PUF that applies to sign-based and amplitude-based bit derivation methods at the same
time.

Attacks on Equiprobable Quantization As introduced in Section 2.3.3 – similarly to the TMHD
scheme – the EPQ scheme divides the distribution of counter differences 𝛿𝑖 into intervals of equal
probability. The quantization method has to be considered public. An attacker measuring 𝛿𝑖 including
the sign can compute the quantization, and the symbol derived on the device. Even if the attacker
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Table 5.1 Comparison of bit derivation methods regarding the secret to be protected.

Secret

Sign Amplitude

Sign-Based [20] x
Two-Metric Helper Data [40] x
Equiprobable Quantization [42] x x
Order Encoding [29] x x

can only reveal |𝛿𝑖 | without the sign, only the two intervals for |𝛿𝑖 | and for −|𝛿𝑖 | are possible. In other
words, even if protection of the sign is achieved by the temporal masking scheme, the remaining
entropy for an attacker would be reduced to one bit rendering the approach useless compared to sign-
based bit derivation. Therefore, EPQ is only useful if an attacker cannot learn about the amplitude of
the counter difference |𝛿𝑖 |. Note that the argument also holds for any other ring-based PUF, for which
an attacker observes the analog properties. Furthermore, it applies to other quantization schemes
like equidistant quantization as well.

Attacks on Order encoding Lehmer-Gray order encoding from Section 2.3.3 sorts the analog values
of the PUF with respect to their value followed by an encoding of the order. Using a Loop PUF
with Hadamard challenges, bias is largely removed , and order encoding could be directly applied
to the counter differences 𝛿𝑖 . However, the same problem as for the other amplitude-based methods
appears: An attacker observing all possible 𝛿𝑖 or at least |𝛿𝑖 | can make strong statements about the
resulting order. Therefore, not only the sign but also the amplitude of 𝛿𝑖 has to be protected.1

Protection Methods for the Loop PUF Table 5.1 summarizes for the different bit derivation methods
the secret information of the Loop PUF, which has to be protected from SCA. For the sign-based
method only the sign of the counter difference is secret. Temporal masking provides a low-cost coun-
termeasure that efficiently hides the sign of the counter difference from an attacker. However, if
temporal masking is applied to amplitude-based schemes, the attacker is still able to significantly
reduce the entropy or to completely break the system, if |𝛿𝑖 | or 𝛿𝑖 can be measured.

In order to protect the Loop PUF independently of the bit derivation method, either the order of
challenges 𝐶1 , . . . , 𝐶𝑁−1 can be randomized, i.e., an attacker does not know the correct order of her
observations, or leakage about |𝛿𝑖 | must be hidden in the first place. The first approach is introduced
in Section 5.3 in form of challenge randomization that randomizes the challenge index: While the device
can resolve the correct order, an attacker is not able to sort SCA observations accordingly. In Section 5.5
the second approach is taken by proposing challenge interleaving, a modification of the Loop PUF with
low complexity. It hinders side-channel leakage without the need for additional randomness and is
applicable to amplitude- and sign-based bit derivation.

5.2 Analysis of the Two-Metric Helper Data Scheme

This section reveals a side-channel vulnerability of the original TMHD scheme given an attacker
without helper data access. A modification of the TMHD from Section 2.3.2 improves the scheme
regarding mitigation of the vulnerability. Subsequently, it is shown that even with the improvements
an attack with helper data knowledge still succeeds in recovering the secret. The findings emphasize
the need for additional countermeasures, which are proposed in Section 5.3.

1Note that the same problem is expected to appear if an attacker mounts a side-channel attack on the PUFKY architec-
ture [29] from Section 2.2.1 and is able to resolve individual RO frequencies.
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5.2.1 Attack Vector of the Two-Metric Helper Data Scheme

In the following, the counter differences 𝛿𝑖 processed by the TMHD stem from a Loop PUF that
is protected by the temporal masking scheme from Section 4.3.1. Consequently, the underlying PUF
primitive is protected against SCA and only the properties of the TMHD can be targeted. First, note
that for the TMHD scheme the bit value is not given by the sign of 𝛿𝑖 , but by its amplitude. Revisiting
Fig. 2.8a and Eqs. (2.4) and (2.5), which establish the bit value according to the metrics and the counter
difference, if |𝛿𝑖 | > 𝑎 the bit value is always 𝑟 = 0; otherwise, the bit value is 𝑟 = 1. Thus, an attacker
observing the frequencies and their difference in the side-channel can derive the bit value even in
presence of the temporal masking countermeasure. This is only possible because the TMHD uses the
amplitude instead of the sign to derive the PUF bits.

5.2.2 Formalization of the Attack Success

In the following, theoretical insights are provided into the success probability that an attacker can
achieve. Note that in the formal model of the side-channel observations instead of the discretized
counter difference 𝛿𝐶 the analog frequency difference 𝑑𝑓𝐶 is considered as it is the basis for the
observed frequency difference 𝑑𝑓 ★𝐶 , which is also an analog quantity.

The noise 𝒩𝑎𝑡𝑡𝑎𝑐𝑘 that the attacker is confronted with is a combination of the noise from measure-
ments𝒩𝑚𝑒𝑎𝑠. ∼ 𝒩(0, 𝜎𝑚𝑒𝑎𝑠.) and the inherent noise𝒩𝑜𝑠𝑐. ∼ 𝒩(𝜇𝐶 , 𝜎𝑜𝑠𝑐.) of the oscillation frequency 𝑓𝐶
that occurs from measurement to measurement. Assuming that the noise terms are normally dis-
tributed and additive, the overall noise is expressed as

𝒩𝑎𝑡𝑡𝑎𝑐𝑘 = 𝒩𝑚𝑒𝑎𝑠. +𝒩𝑜𝑠𝑐. ∼ 𝒩(𝜇𝑎𝑑𝑣. , 𝜎𝑎𝑑𝑣.), (5.1)

where 𝜎𝑎𝑑𝑣. =
√
𝜎2
𝑚𝑒𝑎𝑠. + 𝜎2

𝑜𝑠𝑐..2 Assuming that environmental conditions change slowly, any per-
turbation is constant among the different frequencies. Thus, systematic offsets 𝜖 from the nominal
oscillation frequencies, i.e., 𝜇𝐶 + 𝜖, 𝜇¬𝐶 + 𝜖, cancel out when calculating the frequency difference
𝑑𝑓 = 𝑓𝐶 − 𝑓¬𝐶 , and it follows that 𝜇𝑎𝑑𝑣. = 𝜇𝐶 − 𝜇¬𝐶 .

The following notation is adopted for the PDF of a normally distributed variable with mean 𝜇 and
standard deviation 𝜎

𝜙★ (𝑥;𝜇, 𝜎) := 1
𝜎
𝜙

( 𝑥 − 𝜇
𝜎

)
=

1
𝜎
√

2𝜋
𝑒−

1
2 ( 𝑥−𝜇𝜎 )2 , (5.2)

where 𝜙(𝑥) is the standard normal distribution.
The attacker mimics the reconstruction process by estimating bounds ±𝑇1★, ±𝑇2★ and ±𝑎★ from

the observed values 𝑑𝑓 ★𝐶 and guesses 𝑟𝐶 using Eq. (2.6). Note that for 𝜎𝑚𝑒𝑎𝑠. = 0 this corresponds to
the reconstruction procedure on the device as only 𝜎𝑜𝑠𝑐. is present compared to the enrollment, i.e.,
𝑇1★ = 𝑇1′, 𝑇2★ = 𝑇2′ and 𝑎★ = 𝑎′. In this case, the attacker has the same information as the device
and the attack will succeed. The expected attack success decreases if the attacker observes 𝜎𝑚𝑒𝑎𝑠. > 0.
In the following, the noise term is set to 𝜎𝑜𝑠𝑐. = 0 such that 𝜎𝑎𝑑𝑣. = 𝜎𝑚𝑒𝑎𝑠. is the additional noise the
attacker observes. In other words, the device will reconstruct based on the same bounds as during
enrollment, i.e., 𝑇1′ = 𝑇1, 𝑇2′ = 𝑇2 and 𝑎′ = 𝑎, while the attacker does so based on the noisy versions
𝑇1★, 𝑇2★ and 𝑎★. The success probability

𝑃𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑑𝑓𝐶 , 𝜎𝑎𝑑𝑣.) = 𝑃𝑟[𝑟𝐶 = 𝑟𝐶 |𝑑𝑓𝐶 , 𝜎𝑎𝑑𝑣.] (5.3)

defines whether an attacker can retrieve the correct PUF bit for a challenge 𝐶. The assumption is
that the device uses 𝑑𝑓𝐶 for reconstruction, while the attacker observes 𝑑𝑓 ★𝐶 drawn from the normal
distribution 𝜙★ (𝑑𝑓 ★; 𝑑𝑓𝐶 , 𝜎𝑎𝑑𝑣.). In addition to the relationship of attack success and SNR, Eq. (5.3)
also provides insights whether certain values 𝑑𝑓𝐶 can be more easily attacked.

2Note that the device observes only 𝜎𝑜𝑠𝑐. during reconstruction, i.e., the attacker is always in a worse position compared
to the device.
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Figure 5.1 Visualization of the attack failure for attacker without helper data.

Weighting the success probability by the occurrence of 𝑑𝑓 yields the average success probability.
From Section 2.3.2 𝑑𝑓 is assumed to follow a normal distribution that for the sake of simplicity is
transformed into a standard normal distribution for 𝜎𝑜𝑠𝑐. = 0. Consequently, the average success
probability is given as

𝑃𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝜎𝑎𝑑𝑣.) =
ˆ ∞
−∞

𝑃𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑑𝑓, 𝜎𝑎𝑑𝑣.) · 𝜙★(𝑑𝑓; 0, 1) d𝑑𝑓. (5.4)

5.2.3 Exploiting the Two-Metric Helper Data Scheme

In the following, side-channel vulnerabilities of the TMHD from Section 2.3.2 with and without helper
data knowledge are investigated.

Side-Channel Analysis Without Helper Data Access

In a first step it is shown that even if an attacker does not know the helper data, i.e., whether metric
𝑀1 or 𝑀2 is applied, the TMHD leaks side-channel information. From Fig. 2.8a the attacker needs to
observe the amplitude of the frequency difference 𝑑𝑓 ★ regarding 𝑎★: if |𝑑𝑓 ★| > 𝑎★, the guessed PUF
bit is 𝑟𝐶 = 0, otherwise 𝑟𝐶 = 1. The success probability that the estimated PUF bit 𝑟𝐶 matches the
correct 𝑟𝐶 is

𝑃𝑟𝑛𝑜 𝐻𝐷𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑑𝑓, 𝜎𝑎𝑑𝑣.) = 1 − 𝑃𝑟[𝑟𝐶 ≠ 𝑟𝐶] (5.5)
= 1 − (

𝑃𝑟
[|𝑑𝑓 ★| ≤ 𝑎★ �� |𝑑𝑓 | > 𝑎

] + 𝑃𝑟 [|𝑑𝑓 ★| > 𝑎★
�� |𝑑𝑓 | ≤ 𝑎] )

= 1 −
{ ´ −𝑎★
−∞ 𝜙★ (𝑑𝑓 ★; 𝑑𝑓, 𝜎𝑎𝑑𝑣.)d𝑑𝑓 ★ +

´∞
𝑎★ 𝜙★ (𝑑𝑓 ★; 𝑑𝑓, 𝜎𝑎𝑑𝑣.)d𝑑𝑓 ★, −𝑎 ≤ 𝑑𝑓 < 𝑎´ 𝑎★

−𝑎★ 𝜙
★ (𝑑𝑓 ★; 𝑑𝑓, 𝜎𝑎𝑑𝑣.)d𝑑𝑓 ★, −𝑎 > 𝑑𝑓 ≥ 𝑎 .

Figs. 5.1a and 5.1b depicts the distributions of 𝑑𝑓/𝑑𝑓 ★ from which device and attacker derive their
bounds 𝑎/𝑎★ as solid and dashed curves respectively. Due to the additional noise term the attacker
faces, the dashed distribution is notably broader. The dotted curve represents the distribution of
observed values 𝑑𝑓 ★𝐶 for an enrolled value 𝑑𝑓𝐶 marked as square. The filled area below the dotted
curve marks a failed attack according to Eq. (5.5).

Fig. 5.2a depicts the success probability depending on the enrolled value of 𝑑𝑓𝐶 for different levels
of noise. For 𝑑𝑓 ★𝐶 ≈ |𝑎★|, the attacker faces the biggest uncertainty as the additional noise 𝜎𝑎𝑑𝑣. changes
the retrieved PUF bit most easily close to the decision boundary. Note that the attack does not change
whether the temporal masking countermeasure from Section 4.3.1 is applied or not – in both cases, the
amplitude reveals the PUF bit.

Side-Channel Analysis With Helper Data Access

Finally, SCA with helper data access is considered, i.e., the attacker can combine observations 𝑑𝑓 ★𝐶
with the corresponding bit derivation helper data 𝑤𝑏𝑑

𝐶 . In case no temporal masking is applied, the
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Figure 5.2 Simulated attack success probability for different levels of attacker noise. (a) – (b) Depending on the
enrolled value 𝑑𝑓. (c) Integrated success probability according to the occurrence of 𝑑𝑓.
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(b) 𝑑𝑓𝐶 ≥ 𝑎

Figure 5.3 Visualization of the attack failure with known helper data and temporal masking, where the sign of
𝑑𝑓 ★ is flipped compared to 𝑑𝑓 for metric 𝑀1.

additional information can be leveraged to improve the attack as outlined in Appendix A. This high-
lights that the TMHD scheme without any protection is prone to SCA attacks and the bit derivation
helper data wbd improves the reliability of the PUF as well as the attack success. As without temporal
masking the frequency difference 𝑑𝑓𝐶 would be revealed independently of the helper data scheme, in
the following temporal masking is considered.

Note that if temporal masking is activated, the attacker cannot trust the sign of the observed
frequency difference 𝑑𝑓 ★𝐶 . The attacker is still able to estimate bounds ±𝑇1★ and ±𝑇2★, but due to
the randomization of the sign there may be a small estimation error. The effect is neglected in the
following as it can be considered as an additional noise term in 𝜎𝑎𝑑𝑣..

From an attackers point of view there are two possible approaches towards the temporal masking
scheme. First, any helper data knowledge can be ignored, i.e., the bound 𝑎★ is used on the absolute
values |𝑑𝑓 ★|, and the attack success rate is equal to the case in which no helper data is known. Second,
the attacker can try to exploit the helper data by using the bounds 𝑇1★ and 𝑇2★ estimated from the
attack. However, it has to be considered that due to the temporal masking countermeasure the sign of
the observation, which is compared the bounds, could be flipped. Taking metric 𝑀1 as an example,
the attacker would average the choice of −𝑇1★ and 𝑇2★ (as defined by 𝑀1 in Fig. 2.8a) and −𝑇2★ and
𝑇1★ (reflecting a sign flip depicted as in Fig. 5.3) and the probability for an attack error is

𝑃1(𝑑𝑓, 𝜎𝑎𝑑𝑣.) = 𝑃𝑟[𝑟𝐶 ≠ 𝑟𝐶 |𝑤𝑏𝑑
𝐶 = 𝑀1, 𝑑 𝑓 > 𝑎] (5.6)

=
1
2

[ˆ 𝑇2★

−𝑇1★
𝜙★ (

𝑑𝑓 ★; 𝑑𝑓, 𝜎𝑎𝑑𝑣.
)

d𝑑𝑓 ★ +
ˆ 𝑇1★

−𝑇2★
𝜙★ (

𝑑𝑓 ★; 𝑑𝑓, 𝜎𝑎𝑑𝑣.
)

d𝑑𝑓 ★
]
.

The other intervals from the enrollment are covered accordingly. Fig. 5.3 depicts the resulting error
if the observed 𝑑𝑓 ★ has flipped sign. Fig. 5.2b highlights that the intervals between −𝑇1★ and −𝑇2★,
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(b) Modified TMHD

Figure 5.4 TMHD bit derivation from counter differences 𝛿𝑖 with different choices of metrics. (a) Original
metrics [40] as in Fig. 2.8b, (b) flipped metric 𝑀2.

and 𝑇1★ and 𝑇2★ are most prone to errors. Note that for increasing attacker noise 𝜎𝑎𝑑𝑣. the intervals
[−𝑇1★, 𝑇2★] and [−𝑇2★, 𝑇1★] overlap increasingly.

In Fig. 5.2c the overall success rate for varying noise levels 𝜎𝑎𝑑𝑣. is depicted according to Eq. (5.4) for
the different scenarios outlined in this section. Even in the noise-free case and for low-noise scenarios
the attack using 𝑇1★ and 𝑇2★ yields worse results compared to only using the helper data or 𝑎★.
Thus, with temporal masking activated, the attacker will use the bounds ±𝑎★. Using the bounds
±𝑎★, the average error in Fig. 5.2c is equal to the attack success for the case without helper data and
no temporal masking, i.e., no additional information is achieved from the helper data if temporal
masking is applied. From Fig. 5.2c, if temporal masking is disabled, helper data access improves the
attack even further.

Summing up, the TMHD is prone to SCA and temporal masking does not hinder these attacks.
Therefore, either the TMHD scheme requires a modification or a dedicated countermeasure.

5.2.4 Hardening of the Two-Metric Helper Data Scheme

A first attempt to mitigate SCA of the TMHD is to modify the mapping of the metrics. If the bit value
with metric M2 is inverted compared to Eq. (2.4), i.e.,

𝑀1 : 𝑟𝑖 =
{

0, 𝑇2 ≤ 𝛿𝑖 ∨ 𝛿𝑖 < −𝑇1
1, −𝑇1 ≤ 𝛿𝑖 < 𝑇2 𝑀2 : 𝑟𝑖 =

{
1, 𝑇1 ≤ 𝛿𝑖 ∨ 𝛿𝑖 < −𝑇2
0, −𝑇2 ≤ 𝛿𝑖 < 𝑇1 , (5.7)

the PUF response is related to the sign of the counter difference 𝛿𝑖 as shown in Fig. 5.4b. Note that
the choice of the metric, i.e., the helper data, is maintained according to Eq. (2.5) as the comparison
to the original TMHD scheme in Fig. 5.4a shows.

As the amplitude no longer reveals information, temporal masking protects the TMHD scheme as
long as the helper data is unknown to the adversary. However, in case of known helper data, the
attacker can still learn about the secret despite the temporal masking countermeasure. As the sign of
𝑑𝑓 ★𝐶 is randomly altered, consider the absolute values |𝑑𝑓 ★| and estimate the parameters ±𝑎★, ±𝑇1★
and ±𝑇2★ as described in Section 5.2.2. Again, the attacker uses the bounds ±𝑎★ and combines the
helper data and the values of |𝑑𝑓 ★𝐶 | to estimate the PUF bit as

𝑟𝐶 =
{

0,
(|𝑑𝑓 ★𝐶 | > 𝑎★ ∧ 𝑤𝑏𝑑

𝐶 = 𝑀1
) ∨ (|𝑑𝑓 ★𝐶 | ≤ 𝑎★ ∧ 𝑤𝑏𝑑

𝐶 = 𝑀2
)

1,
(|𝑑𝑓 ★𝐶 | > 𝑎★ ∧ 𝑤𝑏𝑑

𝐶 = 𝑀2
) ∨ (|𝑑𝑓 ★𝐶 | ≤ 𝑎★ ∧ 𝑤𝑏𝑑

𝐶 = 𝑀1
) . (5.8)

Using Eq. (5.8), the attacker achieves the same success probability as for the non-flipped metric as
depicted in Fig. 5.2c. Nevertheless, using the sign instead of the amplitude to derive PUF bits, the
following improvements are achieved:
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Table 5.2 Remaining entropy in bits after smart guessing on the 63-bit Loop PUF using TMHD with flipped
metric 𝑀2 and temporal masking.

Campaign Remaining entropy in bits

#1 7.3 9.1 15.7 16.6 16.6 17.0 17.5 > 20 > 20 > 20
#2 10.5 11.4 13.1 13.7 14.4 15.6 16.8 19.5 > 20 > 20

1. Attacks without helper data are impeded completely.

2. The Hamming weight of the key is not leaked for unknown helper data, because the attacker
cannot distinguish regions that map to 0 or 1.

Yet, the attacker is able to retrieve PUF bits even under noisy measurements. Furthermore, from the
knowledge of the likelihood of a correct estimate, a smart guessing strategy similar to Section 4.1.4 can
be derived: In Eq. (5.8), the closer |𝑑𝑓 ★𝐶 | is to the boundary 𝑎★, where 0 and 1 change, the lower is the
reliability of the estimate. The next section provides practical results from side-channel measurements
to verify the possibility of a successful SCA attack.

5.2.5 Practical Results for SCA of the Two-Metric Helper Data Scheme

The same setup with a 63-bit Loop PUF and the approach from Section 4.1 are used to retrieve
estimates of the frequency differences 𝑑𝑓 ★𝐶 . The attack from Section 5.2.4 is carried out by first
performing an enrollment on the actual counter values averaged over ten runs. From the enrollment,
a set of reference bit derivation helper data wbd is generated. The measurements of challenge pairs
(𝐶, ¬𝐶) are randomized to emulate the temporal masking countermeasure.

For the following practical results, the TMHD bounds used for the attack are derived on the
measured frequencies, i.e., the attacker faces additional noise compared to the device according
to Eq. (5.1). Table 5.2 depicts the results for two different campaigns of ten Loop PUF runs each
recorded on the same device. Enrollment is performed on the average of the actual counter values
of the campaign, while attacks are carried out on single runs from the measured frequencies. The
smart guessing first alters bits derived from frequency differences |𝑑𝑓 ★𝐶 | close to 𝑎★ and is stopped at
20 bits to limit the time used for the attack. The median guessing complexity is around 16 bits in
both campaigns, indicating that an attack can break the TMHD even with the flipped metric from
Section 5.2.4 with reasonable effort.

In conclusion, a modification by flipped metrics does not hamper SCA of the TMHD and the
following sections investigate possible countermeasures.

5.3 Protection of the Two-Metric Helper Data Scheme by Challenge
Randomization

According to Section 5.2 an attacker with helper data knowledge and side-channel observations of
frequencies can break the TMHD scheme. The prerequisite is that for each observed frequency
difference 𝑑𝑓 ★𝑖 the corresponding bit derivation helper data 𝑤𝑏𝑑

𝑖 is known. Consequently, hindering
the mapping of observations and helper data by randomizing the measurement order or, equivalently
the order of challenge pairs, provides protection against SCA. As in a PUF scenario with publicly
stored helper data protected memory contradicts the use case, storing a randomized mapping of
helper data and challenges securely is not possible. Further, by Kerckhoffs’s principle, the attacker
knows how the challenges are generated and applied. Therefore, this section investigates Challenge

Randomization countermeasures to randomly permute challenge pairs during reconstruction. The
countermeasures are derived as general as possible, but are exemplified for a 63-bit Loop PUF in
accordance with Sections 4.1 and 5.2.5.
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5.3.1 Attack Vector of the Protection Mechanism

In the following, the flipped metric as introduced in Section 5.2.4 is used and temporal masking is
enabled. Thus, the attacker measures frequency differences 𝑑𝑓 ★𝑖 of the Loop PUF without knowing the
sign. Even if the order of the different 𝑑𝑓 ★𝑖 is randomized, she still knows which frequency differences
are used. The frequency differences can be distinguished by their absolute values and further by the
pairs of observed frequencies 𝑓𝐶𝑖 and 𝑓¬𝐶𝑖 . Thus, a divide and conquer strategy is possible:

1. bring the frequency differences into the order of the helper data

2. mount the attack from Section 5.2.5 on the ordered data.

The attack succeeds if the first step yields only few possible mappings between helper data and
frequency differences: For each possible mapping, the attack from Section 5.2.5 is performed. The
remaining entropy after a single measurement is determined by noise. As a consequence, the com-
plexity to bring the frequency differences into the correct order mainly determines the difficulty of
the attack.

According to Section 2.2.2, a Loop PUF with 𝑁 delay stage generates 𝑁 − 1 secret bits from
challenge pairs (𝐶𝑖 ,¬𝐶𝑖) and their corresponding counter differences 𝛿𝑖 . There exist 𝑁 − 1! different
permutations of the order of challenge pairs, and for 𝑁 > 4 permutation suffices to protect the secret
as 𝑁 − 1! > 2𝑁−1. The difficulty is to develop an algorithm, which generates the permutations or a
subset of permutations efficiently and unpredictably.

5.3.2 True Random Number Generator-Based Protection

The first approach is a countermeasure that randomizes the order of challenge pairs (𝐶𝑖 ,¬𝐶𝑖) using
a TRNG. For this purpose at least 𝑁 − 1 random numbers of 𝑅 ≥ ⌈log2 (𝑁 − 1)⌉ bits are needed to
generate the index 𝑖 ∈ {0, . . . , 𝑁 − 2} that selects the corresponding challenge pair. In this case, an
attacker with SCA knowledge observes a random permutation of frequency differences, which hinders
the mapping of helper data and observations, and eventually impedes an attack. Two questions are
addressed in the following:

(i) How to map from random values to a unique sequence of challenge pairs?

(ii) What is a suitable choice of 𝑅 to mitigate SCA attacks while retaining a low implementation
overhead?

Mapping of Random Values to a Unique Sequence

An efficient method to solve the mapping of random values to a unique sequence is given in Fig. 5.5.
A possible implementation, depicted as block diagram in Fig. 5.5a, requires two ⌈log2 (𝑁 − 1)⌉-bit
adders, two ⌈log2 (𝑁 − 1)⌉-bit counters, an 𝑅-bit comparator and (𝑁 − 1) · (⌈log2 (𝑁 − 1)⌉ + 𝑅)

bit of
storage capacity. The permutation generator, which is related to Lehmer encoding, takes as an input
𝑁 − 1 distinct randomly chosen 𝑅-bit numbers stored in T-RAM. The index RAM (I-RAM) is initialized
with zero. By iterating with counters A and B over all (𝑁−1)·(𝑁−2)

2 pairs of random numbers and
incrementing always the entry in I-RAM that corresponds to the index of the larger random number,
the I-RAM finally contains a permutation of the values 0, . . . , 𝑁−2. The sorting algorithm provided in
Fig. 5.5b defines – independent of the number of random bits 𝑅 – the permuted order of all challenge
pairs. The order is unpredictable for the attacker, but can be resolved by the device in order to match
counter differences and helper data.
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(a) Block diagram

Algorithm 1: Permutation Generator

Choose 𝑁 − 1 distinct 𝑅-bit random numbers 𝑥𝑖
Store 𝑥𝑖 to T-RAM.
for A in 0 to 𝑁 − 2 do

for B in A+1 to 𝑁 − 1 do
if T-RAM(A) > T-RAM(B) then

increment I-RAM(A)
else

increment I-RAM(B)
end if

end for
end for
return Sequence in I-RAM.

(b) Algorithm

Figure 5.5 TRNG-based permutation generator.

Table 5.3 Probability for a collision of random numbers for 𝑁 − 1 = 63 rounded to three digits.

𝑅 6 7 8 9 10 11 12 13 14 . . . 20 21

𝑝𝑐𝑜𝑙 1.000 1.000 0.999 0.975 0.842 0.603 0.370 0.206 0.109 . . . 0.002 0.001

Randomness Required by the TRNG-Based Protection

If a TRNG provides only distinct random numbers, the protection mechanism does not reveal informa-
tion about the sorting. In this case, (𝑁−1) ·𝑅 random bits would be required, e.g., 63×6 = 378 random
bits for a 63-bit Loop PUF. However, this is the lower limit as in practice collisions are possible, i.e., the
same random number may be sampled twice. Options to overcome the problem of repeated random
numbers include to put the challenges for which collisions appear into a predefined order or to re-
sample in case of a collision. A predefined order of challenges leads to a higher probability for specific
permutations that gives additional information to an attacker. Therefore, the re-sampling approach
is followed as it prevents attacks that exploit permutations with distinct probabilities. Re-sampling
generates a new random number if a collision appears, and the amount of required additional random
numbers is analyzed in the following.

Similar to the birthday problem, the probability that from the set of 2𝑅 possible random numbers
at least two collide when generating 𝑁 − 1 numbers is

𝑝𝑐𝑜𝑙 = 1 −
(
1 − 1

2𝑅

) (𝑁−1)(𝑁−2)/2
. (5.9)

Table 5.3 summarizes the corresponding probabilities for𝑁−1 = 63, where only for random numbers
of 𝑅 ≥ 21 bits the probability for a collision of two number is less than one in a thousand. In other
words, decreasing the probability of a collision is costly in terms of the required number of random
bits.

However, it is less important if collisions appear than how many bits are required when generating
a set of distinct random numbers if collisions are resolved through re-sampling. Assume that the
random numbers 𝑥𝑖 are sampled sequentially and that the current 𝑥𝑖 is re-sampled until the TRNG
provides a number not yet used. Further, assume an ideal TRNG providing 𝑅-bit outputs such that
all 2𝑅 possible sequences are equally likely. Then, the probability for a collision for the 𝑖th random
number with 0 ≤ 𝑖 ≤ 𝑁 − 2 < 2𝑅 is

𝑝𝑟𝑒 ,𝑅(𝑖) = 𝑖
2𝑅
, (5.10)
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Table 5.4 TRNG-based countermeasure: Optimum number and bit lengths of random numbers and required
re-sampling.

𝑁 − 1 15 31 63 127 255 511 1023

𝐸𝑏𝑖𝑡𝑠,𝑁−1 (bit) 99.03 247.36 577.23 1312.17 2930.88 6464.41 14122.15
𝑅 (bit) 5 7 8 9 10 11 12
𝐸𝑟𝑒 ,𝑅 4.81 4.34 9.15 18.80 38.09 76.67 153.85

i.e., the more random numbers are drawn, the higher is the probability for a collision with previous
random numbers. The expected number of samples required to receive a random number 𝑥𝑖 that has
not been used is

𝐸𝑅(𝑖) = 1
1 − 𝑝𝑟𝑒 ,𝑅(𝑖) =

1
1 − 𝑖

2𝑅
=

2𝑅

2𝑅 − 𝑖 . (5.11)

Summing Eq. (5.11) for all successively drawn random bits yields the overall expected number of
samples. As a consequence, the average number of required random bits when sampling 𝑁 − 1
random numbers of length 𝑅 is

𝐸𝑏𝑖𝑡𝑠,𝑁−1(𝑅) = 𝑅 ·
𝑁−2∑
𝑖=0

𝐸𝑅(𝑖), (5.12)

which has a minimum in 𝑅. For a given 𝑁 −1 the minimum defines the optimal choice of 𝑅 regarding
the expected amount of TRNG bits needed. However, this comes at cost of the average number of
re-samplings, i.e., the number of expected samples above the minimum possible number of samples

𝐸𝑟𝑒 ,𝑅 =

(
𝑁−2∑
𝑖=0

𝐸𝑅(𝑖)
)
− (𝑁 − 1). (5.13)

Table 5.4 provides the optimum average number of random bits and the corresponding bit length 𝑅
for different 𝑁 − 1, which can be used for the permutation generator from the previous section.
Furthermore, the required average re-samplings are given. Considering the example of the𝑁−1 = 63-
bit Loop PUF the minimum is reached at 𝑅 = 8, i.e., on average 𝐸𝑏𝑖𝑡𝑠,63(8) ≈ 577.23 bits are needed,
which is substantially more than the minimum of 378 bits without re-sampling. Note that the
number of re-samplings and consequently the runtime of the generation is not constant, but can only
be provided on average. On the one hand, if the generation of an 𝑅-bit random number takes less time
than the Loop PUF needs to derive a bit, re-sampling could be done in parallel to the bit derivation.
On the other hand, there is a non-zero probability that re-sampling has to be repeated more than once
per random number and takes longer than the bit derivation, i.e., a constant time behavior can not be
guaranteed.

Summing up, the drawback of the TRNG-based permutation generator is the significant amount of
random bits. Furthermore, due to re-sampling of random numbers, the runtime is non-deterministic.

5.3.3 Towards a Lightweight Protection of the Two-Metric Helper Data Scheme

The TRNG-based approach from Section 5.3.2 exclusively focuses on the complexity of guessing the
sorting of the frequency differences. However, in a practical setting, frequency differences as well as
their relations to each other are not constant between multiple reconstructions of the PUF response due
to noise. This limits the attacker’s capability to establish a relationship between observed frequency
differences from different reconstructions. In parallel, the measurement complexity can limit the
applicability of the attack. This leads to the question if a more lightweight approach with less random
bits, and lower implementation complexity is feasible that retains a sufficient level of protection.

This section introduces a lightweight implementation based on LFSRs for Loop PUFs with the
number of stages chosen at powers of two. In this case, 2𝑎 − 1 challenge pairs have to be permuted,
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Figure 5.6 Combined low-complexity countermeasures to generate 6-bit indices for a 63-bit Loop PUF.

and the 2𝐿 − 1 states of an 𝐿 = 𝑎-bit LFSR directly represent the index of a challenge. In Fig. 5.6 an
LFSR with six state bits 𝑏0 to 𝑏5 is depicted. The approach uses a combination of the LFSR seed
(𝑏0 to 𝑏5), clock shifting (in blue), an additive mask (in green), and the randomized LFSR feedback
polynomial (in red). The single parts and their expected entropy are investigated in the following.

Entropy From the Random Seed The first randomization technique is the use of a random initial-
ization of the LFSR state bits. Since all states of the LFSR are used to index the 𝑁 − 1 challenge pairs,
the random seed corresponds to a cyclic shift of the LFSR output. An attacker has to guess the correct
seed to obtain the correct sorting of the frequency differences, which introduces log2(𝑁 − 1) bit of
entropy, i.e., 5.98 bits in case of the 6-bit LFSR used by the 63-bit Loop LFSR.

Entropy From the Random Shifts The second protection mechanism is a multi-bit shift of the LFSR
output. The LFSR is read out only after every 𝑛th shift, where 𝑛 is selected at random once per
reconstruction. In Fig. 5.6 the enable signal is set for 𝑛 cycles after which the values of the challenge
bits 𝑖0 , . . . , 𝑖5 are used to determine the challenge index. As the LFSR output is cyclic, the shift by 𝑛
has to be relative prime to the period of the LFSR in order to reach all states of the LFSR. Euler’s totient
function 𝜑(𝑁 − 1) provides the number of relative primes to 𝑁 − 1. In case of the 6-bit LFSR there are
36 values for 𝑛 corresponding to approximately 5.17 bits of guessing entropy for the attacker.

Note that shifting the LFSR output has two possible drawbacks: First, the method delays the
indexing of the challenge pairs. This is, however, not critical, since the next index is calculated in
parallel to the much slower measurement of the Loop PUF. Second, an attacker can observe through
a side-channel how frequently the LFSR is clocked. However, the SNR for the attacker to observe the
LFSR is small: When the LFSR is clocked in parallel to the Loop PUF, the attacker has to observe
both the Loop PUF frequency, and the LFSR in parallel. The attacker can observe the clocking only
𝑁 − 1 times, i.e., once per frequency difference, since for the next reconstruction another 𝑛 is chosen.
An additional hiding countermeasure could be to randomize the point in time, when the LFSR starts
shifting during the measurement time of the Loop PUF.

Entropy From the Random Mask The third method to add randomness is to modify the state of the
LFSR by applying an additive mask corresponding to log2 𝑁 bits of entropy. By adding a mask the
index zero is introduced if the mask value is the same as the LFSR state value. However, the index
equal to the mask disappears as the LFSR state cannot be zero. As the all-zero challenge 𝐶0 is not
used for response derivation in the Loop PUF, the zero index is mapped to the missing index in the
analysis.

Entropy From the Random Polynomials As a fourth method the feedback polynomial is randomly
chosen for the LFSR. In order to assure sequences of maximum length that cover all indices, primitive
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Table 5.5 Entropy and required randomness of combined countermeasure compared to TRNG-based approach.

𝑁 − 1

Mechanism Effect Possibilities 15 31 63 127 255

LFSR Seed Offset 𝑁 − 1 3.91 bits 4.95 bits 5.98 bits 6.99 bits 7.99 bits
Multi-Bit Shifting Shifting 𝜑(𝑁 − 1) 3 bits 4.91 bits 5.17 bits 6.98 bits 7 bits
Masking XOR 𝑁 4 bits 5 bits 6 bits 7 bits 8 bits
LFSR Polynomial Re-ordering 𝜑(𝑁−1)

log2 𝑁
1 bit 2.58 bits 2.59 bits 4.17 bits bit 4 bits

Summed Entropy 11.91 bits 17.45 bits 19.73 bits 25.14 bits 26.99 bits
Required Randomness 12 bits 18 bits 21 bits 26 bits 27 bits

TRNG: Entropy 15 bits 31 bits 63 bits 127 bits 255 bits
TRNG: Av. Randomness ≥ (𝑁 − 1)⌈log2(𝑁 − 1)⌉ bits 99.03 bits 247.36 bits 577.23 bits 1312.17 bits 2930.88 bits

polynomials of degree log2 𝑁 over the finite field 𝐺𝐹(2) have to be used. The number of different
primitive polynomials is 𝜑(𝑁 − 1)/log2 𝑁 ,3 i.e., for the 63-bit Loop PUF, there are six primitive
polynomials of degree log2 64 = 6 over the finite field that lead to approximately 2.59 bits of entropy.

5.3.4 Summary of Countermeasures

The idea of the combined countermeasure is to increase the complexity for SCA while maintain-
ing a low complexity of the countermeasure. Table 5.5 summarizes the four proposed protection
mechanisms for different 𝑁 − 1-bit Loop PUFs, where the 63-bit Loop PUF is highlighted in bold.
The summed entropy for all countermeasure mechanisms is given and the required randomness is
provided assuming that the randomness for each countermeasure is acquired separately, i.e., round-
ing to the next integer per countermeasure. Compared to the TRNG-based countermeasure from
Section 5.3.2, the number of required bits is significantly reduced at the cost of a reduction of the
entropy, i.e., less than 𝑁 − 1 bits are achieved. However, recall that the attacker has to perform
the smart guessing attack from Section 5.2.5 for the provided possibilities if the different sequences
are indistinguishable. For the 63-bit Loop PUF, summing the entropy values of the four protection
mechanisms yields 19.73 bits of entropy from a 6-bit LFSR. Instead of 577.23 bits on average for the
TRNG-based countermeasure, the combined lightweight countermeasures require only 21 bits of ran-
domness. While the brute-force complexity below 20 bits would not prevent an attack, considering
that a single run of the attack takes more than an hour, even with a 100-fold parallelization, the attack
on the different sequences would take approximately one year, which can be considered a reasonable
protection level for a lightweight solution.

The practical security analysis in Section 5.4 investigates how an adversary can distinguish se-
quences generated by the lightweight countermeasure in order to reduce the entropy and enable an
attack.

5.4 Security Analysis of the Lightweight Challenge Randomization
Countermeasure

The attacker can observe absolute values of frequency differences, but due to temporal masking the
sign of the differences is unknown. The goal is to enable the attack from Section 5.2 by reconstructing
the order of the frequency differences. Since the adversary does not have direct information regarding
the correct ordering, she can enable an attack by labeling the observed frequencies with symbols. Then
she brings the symbols into an order that might have been generated by the protection mechanism.
An attacker wins if she can guess or identify the correct ordering of the frequencies since then and
only then she can sort the frequency differences according to the helper data.

3https://archive.ph/UA0Iq, last accessed 28th September 2022.

https://archive.ph/UA0Iq
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This section analyzes the quality of the lightweight countermeasure from Section 5.3.3 in order
to show its limitations and to point towards possible solutions. The different countermeasures are
discussed individually and followed by practical evaluation results of individual and combined
countermeasures. In the following, a 6-bit LFSR is considered, and the Galois LFSR state from Fig. 5.6
is interpreted as an integer, e.g., [1, 0, 0, 0, 0, 0] corresponds to 1.

5.4.1 Attack Strategy

Assume an attacker taking two measurements from two distinct reconstructions of the same Loop
PUF. The randomized seed, shift size, mask, and polynomial are fixed for each reconstruction. The
attacker defines the frequency differences 𝑑𝑓 ★𝑖 of the PUF as symbols 𝑠𝑖 , 𝑖 ∈ 1, . . . , 𝑁 − 1. She knows
that there is a native order s𝑛𝑎𝑡 = [𝑠1 , . . . , 𝑠𝑁−1] of the symbols, which matches the sorting of the bit
derivation helper data wbd =

[
𝑤𝑏𝑑

1 , . . . , 𝑤𝑏𝑑
𝑁−1

]
. Further, the frequency differences s𝑜𝑏𝑠 she observes

are sorted by a permutation described by a permutation matrix A.
From the 219.7 bit of entropy of the combined countermeasures in Section 5.3.3, more than 850000

permutation matrices exist and the attacker’s task is to find the correct one corresponding to one of
her observations. If one or more randomization options are disabled, the number of permutations
decreases accordingly. The attacker uses a differential approach on the observed sequences s𝑜𝑏𝑠,1 and
s𝑜𝑏𝑠,2. She resorts each of the sequences with all possible sub-sequences. For the correct permutation
matrices A1 and A2 of two noise-free measurements it holds that

(s𝑜𝑏𝑠,1 = s𝑛𝑎𝑡A1 ∧ s𝑜𝑏𝑠,2 = s𝑛𝑎𝑡A2) ⇒ s𝑛𝑎𝑡 = s𝑜𝑏𝑠,1A−1
1 = s𝑜𝑏𝑠,2A−1

2 .

However, the reverse argumentation does not hold, i.e., if two matrices A★
1 and A★

2 exist such that
s𝑐𝑎𝑛𝑑 = s𝑜𝑏𝑠,1A★

1
−1 = s𝑜𝑏𝑠,2A★

2
−1 the candidate solution s𝑐𝑎𝑛𝑑 is not necessarily s𝑛𝑎𝑡 . For noisy mea-

surements, a direct matching of the resorted sequences is not possible as the observed frequencies
vary across measurements. However, the attack can be modified by correlating the two observed
and transformed sequences s𝑜𝑏𝑠,1A★

1
−1 and s𝑜𝑏𝑠,2A★

2
−1, i.e., by using the similarity of two corrected

sequences.
The following analysis determines how many solutions s𝑐𝑎𝑛𝑑 exist, i.e., how much entropy the

attacker faces.

5.4.2 Theoretical Analysis

Each of the different lightweight countermeasures causes a permutation of the native order s𝑛𝑎𝑡 . The
effect of each countermeasures is summed up in Table 5.5. The following theoretical analysis provides
insights how far an attacker can deduce the native order from two permuted sequences determined
from observations. The analysis considers the best case of noise-free observations, i.e., the attacker
does not face any uncertainties about the observed symbols.

Confusion From Random Seed Randomizing the seed corresponds to a cyclic shift of the LFSR. The
permutation matrix R𝑚 for a cyclic shift by 𝑚 bits is R𝑚 = R𝑚

1 , where R1 is the permutation matrix of
the shift by one bit. Same applies to the inverse, i.e., R−1

𝑚 =
(
R−1

1
)𝑚 . Consequently, if two observations

have the shifts 𝛼 and 𝛽 from their seeds, the relative shift of the sequences corresponds to a 𝜅-bit shift
with 𝜅 = 𝛼 − 𝛽. The native sequence follows from inverting the respective shifts, i.e., s𝑜𝑏𝑠,𝛼R−1

𝛼 and
s𝑜𝑏𝑠,𝛽R−1

𝛽 . Every candidate s𝑐𝑎𝑛𝑑,𝑛 that fulfills

s𝑐𝑎𝑛𝑑,𝑛 = s𝑜𝑏𝑠,𝛼R−1
𝛼 R𝑛 = s𝑜𝑏𝑠,𝛽R−1

𝛽 R𝑛 = s𝑛𝑎𝑡R𝑛

is a solution. Since the LFSR is cyclic with period 2𝑁 − 1, the attacker cannot distinguish 2𝑁 − 1
different sequences.
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Confusion From Random Shift Similarly to the previous argumentation, the shift by multiple bits
is a permutation with a permutation matrix T. Let T𝛼 correspond to the permutation of the LFSR
state sequence under shifts by 𝛼, and let T𝛽 correspond to the permutation of the LFSR state sequence
under shifts by 𝛽. Since all shift sizes are relative prime to the LFSR length 2𝑁 − 1, their product
modulo 2𝑁−1 is relative prime to the LFSR length. The multiplication of matrices T𝛼 and T𝛽 therefore
results in a valid shift. Thus, for each pair of observations there exists a pair of matrices T𝑘 , T𝑙 so that

s𝑜𝑏𝑠,𝑖T−1
𝛼 T𝑘 = s𝑜𝑏𝑠,𝑖T−1

𝛽 T𝑙 ,

and the attacker cannot distinguish different shift widths.

Confusion From Random Masks A mask is implemented as a bit-wise XOR onto the LFSR state with
the all-zero result mapped to the mask value. Different from the previous methods, two permutations
𝑀𝛼 and𝑀𝛽 inserted by the mask are unique. As a consequence, if different masks are used to permute
the state sequence of the LFSR, the resulting symbol orders can be distinguished since only for the
correct pair of masks and – as the experiments show – few exceptions

s𝑜𝑏𝑠,𝛼M−1
𝛼 = s𝑜𝑏𝑠,𝛽M−1

𝛽

holds. Consequently, the entropy spent through this countermeasure does not contribute to the
uncertainty for the attacker. In addition, the experiments in the last part of this section reveal that the
mask, when combined with the random shift, effectively reduces the uncertainty for an attacker.

Confusion From Random Polynomial Similar to the previous countermeasure, polynomials do not
lead to an increased uncertainty for the attacker but rather allow for a better attackability of the LFSR.
The reason is, that the permutation matrices 𝑃𝛼 and 𝑃𝛽 from different feedback polynomials are very
distinct. Therefore,

s𝑜𝑏𝑠,𝛼P−1
𝛼 = s𝑜𝑏𝑠,𝛽P−1

𝛽

only holds for the correct permutation and – as the experiments show – for few exceptions.

5.4.3 Practical Evaluation

The theoretical insights from Section 5.4.2 are verified with experimental data from synthetic symbols
as well as on the measurement data of campaign #1 used in Table 5.2. The synthetic symbols and
measured frequency differences are permuted in software with different permutation strategies from
Section 5.3.3 enabled. All experiments assume temporal masking, i.e., the absolute values of frequency
differences are used. An attack is limited to the measurements of a single Loop PUF, but can employ
measurements from multiple reconstructions. Each pair of two reconstructions in the campaign is
analyzed. In accordance with the attack strategy, all inversions are pre-computed to map from a
permutation back to the native sorting. For the 6-bit LFSR, a list with 870912 inversions is generated.
Then, the two observed sequences of symbols are permuted with respect to to the pre-computed
inversion list and are correlated with each other. A correlation of 𝜌 = 1 would be a perfect match
of sequences, which only occurs for synthetic data. As frequency differences change slightly from
measurement to measurement, for experimental data the correlation 𝜌 < 1 depends on the noise
level. Note that the complete attack takes on a commodity computer4 in the range of seconds if only
one permutation strategy is enabled up to less than 70 minutes with all four protection mechanisms
enabled.

Table 5.6 summarizes the results for different levels of countermeasures enabled, namely random
seed (R), randomly selected shift (T), random mask (M), and randomly selected feedback (P). Results
are shown for noise-free simulated data with 𝜌 = 1 and for the lowest (𝜌𝑚𝑖𝑛 = 0.91) and highest

4Intel(R) Core(TM) i7-6700 CPU; 3.40GHz; 4 cores; 16GB RAM
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Table 5.6 Results for SCA of the lightweight protection mechanism. Noisy data from power measurements of
Loop PUF frequencies, noise free data from synthetically generated symbols. R, T, M, P correspond to random
seed, randomly selected shift width, random mask, and randomly selected polynomial.

Enabled
Countermeasure

Simulated Data
(Noise-free)

Measurement Data (Noisy)

𝜌𝑚𝑎𝑥 = 0.97 𝜌𝑚𝑖𝑛 = 0.91

R T M P min median max min median max min median max

x - - - 63 63 63 63 63 63 63 63 63
- x - - 36 36 36 36 36 36 36 36 36
- - x - 1 1 1 1 2 8 1 8 27
- - - x 1 1 1 1 1 6 1 1 1

x x - - 2268 2268 2268 2268 2268 2268 2268 2268 2268
x x x - 378 378 756 378 378 3780 378 2268 10584
x x - x 2 2 13608 2 4 13608 2 4 13608
x x x x 2 4 2268 2 4 11340 4 13 870912

(𝜌𝑚𝑎𝑥 = 0.97) noise observed in the data set. Each experiment is repeated ten times for each set
of enabled countermeasures and minimum, maximum, and median number of indistinguishable
sequences are provided. A sequence is included into the set of possible candidates if it yields a
correlation 𝜌′ ≥ 𝜌 − 𝜀 with the data. The correlation 𝜌 considers the noise level of the data sets and
setting 𝜀 = 10−6 prevents rounding errors. The values indicate, how many times the attacker would
have to run the attack on the TMHD scheme from Section 5.2.4 under different mappings between
helper data and frequency differences.

Some remarks regarding the results in Table 5.6:

1. Except for all countermeasures enabled, the minimum value is the same for the noise conditions,
and minimum and median are close. The small deviations indicate that the attack is quite robust
against noise.

2. The maximum for noisy data and only polynomials (P) enabled is 6 and the maximum value
for random seed, shift width, and feedback enabled (R,T, P) is always 13608 = 36 · 63 · 6, both
corresponding to the theoretical maximum according to Section 5.3.3. The reason for these
cases is, that by random chance twice the same polynomial has been selected and the attacker
does not know which one. Conversely, if distinct polynomials are used, the distinction of two
sequences is easier, which suggest that the polynomial countermeasure should not be used in
combination with the other mechanisms.

3. In case that the mask is enabled, the median and maximum numbers of indistinguishable
sequences increase, and at the same time the minimum number decreases, compared to the
same setting without mask, i.e., (R,T, P) vs. (R,T,M, P), and (R,T) vs. (R,T,M). While the
increased median and maximum values indicate a susceptibility of the attack towards noise, the
increase of the minimum value reveals that masking is an unsuited permutation strategy and
lowers the overall protection similar as the use of random polynomials.

Summarizing, the best combination of protection mechanisms is the use of random seeds (R) and
randomly selected shifts (T) for which the attacker faces 63 · 36 = 2268 indistinguishable sequences
when observing ten different pairs of Loop PUF measurements. In other words, instead of 19.73 bits
from the combination of four countermeasures, only 11.15 bits of protection are achieved. While the
attack is independent of the noise level, an attacker could combine 𝑁𝑚𝑒𝑎𝑠 measurements to construct
𝑁𝑚𝑒𝑎𝑠 ! different pairs for an attack. From each pair, processed in parallel, she could take the 2268 most
likely results or drop results, which have more than 2268 equally high correlations. The resulting up to
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Figure 5.7 Schematic of challenge interleaving and time domain measurements of the ICLooPUF. ©2022
IEEE [21]

𝑁𝑚𝑒𝑎𝑠 !×2268, sequences could be used in parallel to match helper data and frequency differences and
to run the attack from Section 5.2.5. This eventually demonstrates that the lightweight countermeasure
hardly provides sufficient protection for the TMHD scheme. Nevertheless, the discussion highlights
pitfalls, e.g., regarding combined permutations, and provides indicators on how to develop improved
lightweight protection mechanisms in the future.

In order to protect the Loop PUF also for amplitude-based bit derivation, the following section
introduces architectural modifications of the primitive that aim at preventing exploitable side-channel
emanations in the first place.

5.5 The Interleaved Challenge Loop PUF: A Side-Channel Hardened PUF
Primitive

This section proposes and analyzes the Interleaved Challenge Loop PUF (ICLooPUF), an enhance-
ment of the Loop PUF. The goal of the design modifications is to harden the Loop PUF against
SCA of amplitude-based bit derivation such as the attack on the TMHD scheme in Section 5.2. In
Section 5.2 it has been shown that the TMHD is not protected against SCA by the temporal masking

countermeasure from Section 4.3.1 as the absolute value of a frequency difference is used in the
secret-bit derivation, and randomization of the sign provides no protection. Challenge randomization

with a TRNG provides protection, but requires a substantial amount of random bits, does not have a
guaranteed maximum runtime, and exhibits a significant complexity increase. Therefore, to provide
robustness against SCA with low overhead for amplitude-based bit derivation schemes like TMHD,
this section proposes the dynamic change of challenges, termed as challenge interleaving, for the Loop
PUF, resulting in the ICLooPUF. The proposed technique thwarts SCA by breaking the relation be-
tween spectral emanations of the implementation and the frequency difference of the challenges, i.e.,
the secret response.

A proof-of-concept implementation on an FPGA shows the practical feasibility, followed by the
theoretical validation of the resistance of the ICLooPUF against SCA. Finally, practical evidence is
provided that the new primitive does indeed not reveal exploitable side-channel leakage.

5.5.1 Architecture of Challenge Interleaving

This section introduces the ICLooPUF, an SCA-hardened enhancement of the Loop PUF described
in Section 2.2.2. The fundamental difference is that instead of applying the challenges 𝐶 and ¬𝐶
sequentially, they are applied in an interleaved manner. This is, within a single measurement run, both
challenges are alternatingly applied. When using challenge interleaving, a different measurement
concept must be applied, too. The resulting ICLooPUF is shown in Fig. 5.7.
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Table 5.7 Comparison of hardware resources. ©2022 IEEE [21]

Loop PUF ICLooPUF

Flip-flops for...
... challenge interleaving – 2 – 𝑁
... synchronization – 5
2-to-1 MUXes for..
... path selection 𝑁 𝑁
... challenge interleaving – 𝑁
Reference counter 1 1
Sample counter 1 1

Similar to the Loop PUF, the ICLooPUF consists of an oscillator formed by configurable delay stages
and an inverting feedback. When the enable signal is triggered, a rising edge propagates through
the delay chain starting from the AND gate in Fig. 5.7. Any node in the delay chain passed by the
rising edge is set to logical 1 until the falling edge arrives. Assume switching of the challenge bit,
which defines the path through a delay element, as soon as the rising edge has passed the input
and output nodes of a delay element. Under this assumption, the wave traversing through the ring
passes for one period the delay elements defined by challenge 𝐶 = [𝑐1 , . . . , 𝑐𝑁 ], and for one period
the delay elements defined by challenge ¬𝐶 = [𝑐′1 , . . . , 𝑐′𝑁 ]. The challenge bits are switched by T-FFs
triggering on the rising edge traversing through the ring. The T-FFs control the multiplexing of the
two challenge bits to be interleaved per delay stage.

There is no need to switch every delay stage individually. In particular, it is possible without side
effects to switch any delay element with input and output stabilized to a fixed value, which could
be achieved by only two T-FFs as in Fig. 5.7. However, since the propagation of the signal is an
analog process, the voltage of several nodes can be on an intermediate voltage levels at the same time.
Switching such nodes can cause glitches resulting in additional rising edges and effectively errors in
the derived secret. Therefore, the number of T-FFs must not be selected too low. A suitable number
of T-FFs is discussed for the proof-of-concept design in Section 5.5.3.

Summarizing, Table 5.7 depicts the hardware resources of the ICLooPUF compared to the original
Loop PUF, showing that the overhead is very limited. Furthermore, the ICLooPUF adds little
design costs as only few components require manual routing, which is practically verified in the
implementation in Section 5.5.3.

PUF Entropy Extraction In the original Loop PUF construction from Section 2.2.2 a measurement
counter determines the oscillations under a specific challenge 𝐶, and a reference counter stops the
counting after a predefined time𝑇𝑎𝑐𝑞 = 𝑛𝑎𝑐𝑞/ 𝑓𝑟𝑒 𝑓 . According to Eq. (4.1) the value of the measurement
counter 𝑣𝐶 is proportional to the Loop PUF frequency.

In the ICLooPUF, challenges 𝐶 and ¬𝐶 are interleaved, i.e., two alternating periods of length 𝑇𝐶
and 𝑇¬𝐶 are present at the output. Without challenge interleaving, the expected frequencies of the
oscillation are 𝑓𝐶 = 1

𝑇𝐶
and 𝑓¬𝐶 = 1

𝑇¬𝐶 for 𝐶 and ¬𝐶. Using the measurement concept of the original
Loop PUF would result in a counter value related to the average frequency 𝑓𝐶,¬𝐶 through

�̄�𝐶,¬𝐶 =
𝑇𝐶 + 𝑇¬𝐶

2 ⇒ 𝑓𝐶,¬𝐶 =
2 · 𝑓𝐶 · 𝑓¬𝐶
𝑓𝐶 + 𝑓¬𝐶 . (5.14)

However, the goal of the ICLooPUF is not to measure the average frequency but to directly get the
difference 𝑇𝐶 −𝑇¬𝐶 between the period lengths under challenges 𝐶 and ¬𝐶. Therefore, different from
the original approach, the difference of the two oscillations is measured in the time domain.

For this purpose, in the measurement circuit in Fig. 5.7 a sample clock with frequency 𝑓𝑠 ≫
max{ 𝑓𝐶 , 𝑓¬𝐶} is applied. The sampling frequency is limited to 2 ·max{ 𝑓𝐶 , 𝑓¬𝐶} < 𝑓𝑠 ≤ 𝑓𝑐𝑙𝑘 , i.e., by
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Figure 5.8 Timing diagram of the ICLooPUF sample counter. ©2022 IEEE [21]

the Nyquist-Shannon theorem at the lower end and upper bounded by the available frequency of the
chip, e.g., from the available PLL. Note that with decreasing 𝑓𝑠 , the time to reach a reliable response
increases, i.e., a higher sampling frequency is preferable. A counter counts with frequency 𝑓𝑠 in an
alternating manner upwards and downwards for each one period of the oscillation of the ICLooPUF.
For a period length 𝑇, the number of oscillations of the sampling clock in this period is 𝑇 · 𝑓𝑠 , i.e., the
counter value of the sampling counter is related to the period length of the ICLooPUF.

Conditioning the up and down count of the sample counter on the currently applied challenge
and with challenge interleaving applied, the counter counts up for each 𝑇𝐶 and down for each 𝑇¬𝐶 .
Consequently the counter value after any even number of oscillations of the ICLooPUF is related to
the difference 𝑇𝐶 −𝑇¬𝐶 . The higher the sample clock 𝑓𝑠 , the more precise is the resolution of 𝑇𝐶 −𝑇¬𝐶 .

The up and down counting in the measurement circuit as well as the enabling of the counter is
controlled by the ICLooPUF. The T-FF at the ICLooPUF’s output ensures that the output signal is
logically 0 for exactly one period and logically 1 for the next period. This corresponds to the control
signal for up and down counting. In addition, the ICLooPUF drives a reference counter. The system
is stopped, when the reference counter reaches a pre-defined value 𝑛𝑚𝑎𝑥 . This way, for all pairs
of challenges and complementary challenges the same number of periods under 𝐶 and ¬𝐶 is used
to derive the delay difference. This approach is easy to implement and sample counter values are
directly related to the difference in the ICLooPUF’s period length for 𝐶 and ¬𝐶.

The transition from the clock domain of the ICLooPUF oscillation to the clock domain of the
sample clock can result in meta-stability. Therefore, the enable signal of the sample counter as well
as the control signal for up and down counting are synchronized with the sample clock. Finally,
the comparison result of the reference counter with 𝑛𝑚𝑎𝑥 is buffered to prevent wrong results in the
sample clock domain.

The timing of the sample counter in relation to the ICLooPUF output signal is depicted in Fig. 5.8 for
some exemplary ICLooPUF periods. The reference counter is increased every𝑇𝐶+𝑇¬𝐶 . The up/down
signal (+/-) follows synchronized to the sampling clock with the delay of a two-stage synchronizer
implemented by a cascade of two FFs. The sample counter counts up (highlighted in gray) when the
up/down signal is high and down otherwise. Since 𝑇¬𝐶 > 𝑇𝐶 in the example, the counter value is
overall decreasing in the depicted time interval.

Quantization Error In principle, a quantization error can occur in the suggested measurement circuit.
Assuming jitter-free period lengths 𝑇𝐶 and 𝑇¬𝐶 and 𝑇𝑠 = 1/ 𝑓𝑠 for the sampling clock, and the first
rising edge of the sample clock occurring aligned with the ICLooPUF’s first rising edge (but not
triggering any action), the sampling counter value after 𝑛𝑚𝑎𝑥 periods of the output signal generated
by the ICLooPUF is

𝑛𝑚𝑎𝑥−1∑
𝑘=0
⌊[𝑇𝐶 + (𝑘 · (𝑇𝐶 + 𝑇¬𝐶) mod 𝑇𝑠)] · 𝑓𝑠

⌋ − ⌊[𝑇¬𝐶 + (((𝑘 + 1) · 𝑇𝐶 + 𝑘 · 𝑇¬𝐶) mod 𝑇𝑠)] · 𝑓𝑠
⌋
. (5.15)
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This equation is construed as: The up and down counting is periodic with 𝑇𝐶 + 𝑇¬𝐶 ; in each of these
counting periods 𝐶 and ¬𝐶 contribute to the number of increments and decrements with 𝑇𝐶 · 𝑓𝑠 and
𝑇¬𝐶 · 𝑓𝑠 . However, since 𝑇𝐶 and 𝑇¬𝐶 are typically not multiples of 𝑇𝑠 , a small amount of time expressed
by the modulo terms is sampled as part of the wrong period. The quantization error is the difference
of Eq. (5.15) and the expected outcome when 𝑛𝑚𝑎𝑥 is reached

(𝑇𝐶 − 𝑇¬𝐶) · 𝑛𝑚𝑎𝑥 · 𝑓𝑠 . (5.16)

Although the quantization error can get large in theory,5 a small jitter in the clock frequency signif-
icantly reduces the quantization error. Therefore, although a quantization error must be considered
in theory, it is negligible for practical implementations.

5.5.2 Theoretical Analysis of Side-Channel Attack Vectors

The ICLooPUF hides the value of the sample counter, corresponding to𝑇𝐶−𝑇¬𝐶 , from an attacker. This
section provides a theoretical analysis of potential side-channel observations and concludes about
the robustness of the protection principle. The following analysis considers jitter-free oscillations as
the best case from an attacker’s perspective.

Observation of Measurement Time

First, a possible timing side-channel of the ICLooPUF from observation of the runtime is considered.
The attacker observes two alternating oscillations with unknown period lengths 𝑇𝐶 and 𝑇¬𝐶 . Further,
the number of oscillations 𝑛𝑚𝑎𝑥 is not considered a secret, i.e., it is known by the attacker. Conse-
quently, the measurement for a challenge pair 𝐶 and ¬𝐶 takes 𝑛𝑚𝑎𝑥 · (𝑇𝐶 + 𝑇¬𝐶) and the attacker can
observe the sum 𝑇𝐶 + 𝑇¬𝐶 of the periods.

Observation of Oscillation Frequency

Second, the spectral side-channel of the ICLooPUF is investigated since for oscillation-based PUF
primitives, the oscillation frequency is the most important attack vector. The oscillation of two
interleaved challenges 𝐶 and ¬𝐶 is modeled in the time domain as alternating sine waves without
jitter and with period lengths of 𝑇𝐶 and 𝑇¬𝐶 as

𝑔(𝑡) = 𝑔1(𝑡) + 𝑔2(𝑡) (5.17)

with

𝑔1(𝑡) =
𝑁∑
𝑘=1

sin
(

2𝜋
𝑇𝐶
(𝑡 − (𝑘 − 1) (𝑇𝐶 + 𝑇¬𝐶))

)
· Θ ©«

(
𝑡 −

(
(𝑘 − 1) (𝑇𝐶 + 𝑇¬𝐶) + 𝑇𝐶

2

))
𝑇𝐶

ª®®¬ (5.18)

𝑔2(𝑡) =
𝑁−1∑
𝑘=1

sin
(

2𝜋
𝑇¬𝐶
(𝑡 − (𝑘𝑇𝐶 + (𝑘 − 1)𝑇¬𝐶))

)
· Θ ©«

(
𝑡 − (𝑘 (𝑇𝐶 + 𝑇¬𝐶)) + 𝑇¬𝐶

2

)
𝑇¬𝐶

ª®®¬ , (5.19)

where Θ (𝑡) is the rectangular function. For the signal modeled by Eqs. (5.17) to (5.19) at each point
in time only one of the two oscillations is active, i.e., always one complete period of the oscillation
under 𝐶 is alternated with one complete period under ¬𝐶.

Following previous attacks on ring-based PUFs, the spectral amplitude is the attack vector for
targeting the frequency. Transforming the time domain signal from Eq. (5.17) to the frequency
domain (for details c.f. Appendix C) yields

5Both terms in Eq. (5.15) deviate from the best possible quantization value by utmost 1 for each 𝑘, so the quantization
error is trivially bound by 2 · 𝑛𝑚𝑎𝑥 .
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|𝑆( 𝑓 )| =
����� (1 + 𝛾)2𝑇𝐶𝑛𝑚𝑎𝑥

2𝜋

𝑁∑
𝑛=−𝑁

[
1

𝑛2 − (1 + 𝛾)2
(
𝑒 𝑗2𝜋

𝑛
(1+𝛾) − 1

)
+ 𝛾

𝑛2𝛾2 − (1 + 𝛾)2
(
1 − 𝑒 𝑗2𝜋 𝑛

(1+𝛾)
)]

· sinc
(
𝑛𝑚𝑎𝑥(1 + 𝛾)𝑇𝐶

(
𝑓 − 𝑛
(1 + 𝛾)𝑇𝐶

))���� , (5.20)

where 𝛾 := 𝑇¬𝐶/𝑇𝐶 , 𝛾 > 0 is the ratio of period lengths. In Eq. (5.20), the global maxima of the sinc
function are at multiples of the frequency defined by the sum of the periods (1+ 𝛾)𝑇𝐶 = 𝑇𝐶 +𝑇¬𝐶 . The
width and the amplitude of the sinc functions are proportional to the sum 𝑇𝐶 + 𝑇¬𝐶 and the number
of oscillations 𝑛𝑚𝑎𝑥 . In other words – similar to observations of the measurement time – an attacker
can observe the sum of the period lengths from the frequency spectrum.

Conclusion

From the measurement time and the frequency it is not possible to retrieve the secret 𝑇𝐶 −𝑇¬𝐶 directly.
For both attack vectors the sum 𝑇𝐶 + 𝑇¬𝐶 of the period lengths can be observed. However, under the
assumption that single periods of 𝑇𝐶 and 𝑇¬𝐶 cannot be resolved, the sum does not reveal information
about its terms, nor about about their difference. Thus, the measurement time and the oscillation
frequency of the ICLooPUF are no exploitable attack vectors.

5.5.3 Practical Implementation of the ICLooPUF

This section introduces an implementation of the ICLooPUF on a CW305 board that features an
Artix-7 (XC7A100TFTG256) using a sample clock of 𝑓𝑠 =400 MHz. In accordance with Chapter 4, the
design consists of 64 delay stages. Since challenges are Hadamard codewords like for the original
Loop PUF and the all-zero and all-one challenges are dropped, this results in 𝑁 − 1 = 63 bits derived
from the PUF primitive.

Resource Utilization and Place-and-Route

The delay stages of the ICLooPUF are realized as LUTs, similar to Section 4.1.1. Fixed placement
is only used for LUTs implementing delay stages and challenge interleaving as well as for the T-FFs
used for challenge interleaving. In addition, input pins of the mentioned LUTs are fixed. The output
T-FF of the ICLooPUF is fixed routed to ensure a short feedback. Apart from this, no fixed placement
or routing is required in the circuit. In particular, routing between delay stages is left unconstrained
since all connections between delay elements are part of the ring for every challenge and cancel out
when comparing two frequencies. Hence, only the paths within delay elements can cause a bias that
decreases the PUF quality. As for the original Loop PUF from Section 2.2.2 the use of Hadamard
challenges ensures that bias related to path imbalance is compensated. Finally, four delay elements
are grouped in a single slice for optimum resource usage.6

The challenge interleaving is implemented by 4-to-2 multiplexers realized in 6-input-2-output LUTs.
These select from a pair of challenge bits 𝑐𝑖 , 𝑐 𝑗 and the respective complements ¬𝑐𝑖 ,¬𝑐 𝑗 either the
two challenge bits or the two complementary challenge bits. Always two multiplexer-LUTs are
implemented together with one T-FF triggering the switching of the challenges – implemented by a
LUT and a FF – in one slice. This way a CLB7 consists of one slice deriving four challenge bits and one
slice with the corresponding four delay elements; the signal from the delay path to the clock input of
the T-FF is decoupled through a latch in the slice with the delay elements. The regularity of the design
does not only help to reduce bias in the PUF response – since always the same slice in a CLB is used

6Internal differences of the LUTs due to their position in a slice and on the FPGA might introduce slight bias. However,
these effects are negligible for the design built to analyze side-channel protection.

7On Artix-7 FPGAs a CLB consists of two slices, where each slice features four LUTs and eight flip-flops.
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for delay elements – but the existence of macro-blocks also supports a quick and easy design. With
these design choices, the number of slices required for the ICLooPUF is twice the amount of slices
needed for the original Loop PUF; area optimization at the cost of a more complicated placement and
routing is possible.

Stability Considerations of Interleaving

In order to flip a challenge bit without inserting glitches while the PUF is oscillating, the same stable
state must be applied at input and output of the delay elements. In other words, the delay of the
feedback path from an inner node of the delay chain, through the T-FF to the multiplexer switching
the challenge in addition to the delay from the challenge multiplexer input back to the delay element
must be smaller than a half-period of the oscillation.

For the design the oscillation frequency is around 16 MHz corresponding to a half-period of 31.25 ns.
Without dedicated place-and-route of the feedback, switching tuples of four delay stages of the
64 stages provides a sufficiently low delay. Increasing the number of stages that switch challenge bits
in parallel would likely be possible, in particular if manual place-and-route would be applied for the
feedback path. This would reduce resource allocation and increase the design effort but is considered
out-of-scope for this work.

Offset Compensation

The oscillation of the ICLooPUF has a lower slew-rate compared to a normal clock signal. Combined
with the specific propagation delay of the FPGA’s internal gates, one (e.g., the rising) edge may
propagate faster than the other (e.g., the falling) edge from the output T-FF of the ICLooPUF to the
sample counter’s input that selects up or down count. Consequently, the count of one half period of
the oscillation at output T-FF is extended compared to the other half period, causing an offset of the
sample counter value.

To compensate the device-specific offset, the measurement of the ICLooPUF is extended to two
phases: First, 𝐶 and ¬𝐶 are applied as interleaved challenges for 𝑛𝑚𝑎𝑥/2 periods. Neglecting noise, the
sample counter value is 𝑣+𝑠 = 𝑣𝑑+𝑣𝑜 , where 𝑣𝑑 is the actual difference and 𝑣𝑜 is the offset of the counter
due to the asymmetric delay of the connect from the delay chain to the sample counter. Second, the
challenges are exchanged, and ¬𝐶 is applied as first challenge and 𝐶 as second challenge for another
𝑛𝑚𝑎𝑥/2 oscillation periods, such that the sample counter value is 𝑣−𝑠 = −𝑣𝑑 + 𝑣𝑜 . The delay difference
of oscillations under 𝐶 and ¬𝐶 is computed from the difference 𝑣+𝑠 − 𝑣−𝑠 = 2 · 𝑣𝑑 on the device. Since
the delay offset 𝑣𝑜 is independent of the order of the challenges and constant for the same device, it
cancels out in the difference.

Extensions for Experiments

For the experiments the design is extended. First, it is possible to send arbitrary values of challenges𝐶,
and¬𝐶 to the device for interleaving; in an actual design, the challenges 𝐶 could be generated on-chip
and ¬𝐶 would be generated by inverting 𝐶 on-chip. Second, the design supports different modes
of operation: An interleaved mode implements the challenge interleaving from Section 5.5.1; Two
challenges are interleaved and the counter is counting down when the first challenge 𝐶 is applied
and up for the second challenge ¬𝐶. A sequential mode applies a single challenge 𝐶 or ¬𝐶 without
interleaving as for the original Loop PUF. The sequential mode is leveraged to verify the functionality
of the interleaved mode in Section 5.5.4 and to determine the expected oscillation frequency of the
ICLooPUF for SCA experiments in Section 5.5.5. Third, the reference value 𝑛𝑚𝑎𝑥 can be set for the
experiments, and the design allows for reading out the value 𝑣 of the counter for PUF evaluations
and as a reference for SCA.



72

−10000 −5000 0 5000 10000

Counter difference ICLooPUF

−10000

−5000

0

5000

10000

C
ou

nt
er

di
ff
er
en

ce
Lo

op
PU

F

(a) 𝑛𝑚𝑎𝑥 = 217

−20000 −10000 0 10000 20000

Counter difference ICLooPUF

−20000

−10000

0

10000

20000

C
ou

nt
er

di
ff
er
en

ce
Lo

op
PU

F

(b) 𝑛𝑚𝑎𝑥 = 218

Figure 5.9 Comparison of counter value 𝑣𝐶−¬𝐶 averaged over 1000 repetitions for ICLooPUF and counter
value difference 𝑣𝐶 − 𝑣¬𝐶 achieved without challenge interleaving (original Loop PUF) applying each the same
challenges ¬𝐶 and 𝐶. ©2022 IEEE [21]

5.5.4 Functional Validation of the ICLooPUF

This section evaluates the challenge interleaving of the ICLooPUF compared to sequential measure-
ments of the original Loop PUF. Additionally, it provides a first PUF quality assessment, which shows
possible trade-offs between reliability and runtime.

Equivalence of Interleaved and Sequential Mode

Fig. 5.9 shows the average counter values 𝑣𝐶−¬𝐶 for 1000 repetitions per challenge of the interleaved

mode compared to the difference of averaged counter values 𝑣𝐶−𝑣¬𝐶 for¬𝐶 and 𝐶 in sequential mode,
which is equivalent to the sequential operation of the original Loop PUF. The plots show a linear
relationship, i.e., the two modes lead to the same results. Furthermore, doubling the reference counter
values 𝑛𝑚𝑎𝑥 yields doubled counter values for both operation modes, which is the expected behavior
due to the doubled measurement time. Concluding, the ICLooPUF is functionally equivalent to the
original Loop PUF.

Preliminary PUF Quality Assessment

In the following, the sign-based bit derivation method from Section 2.3.1 and the TMHD from
Section 2.3.2 are evaluated for the ICLooPUF. As the focus is on SCA hardening of the primitive, only
a first assessment of the quality metrics is provided to validate that the ICLooPUF is in principle a
valid PUF primitive. Note that an in-depth evaluation requires significantly more data and devices.

As the TMHD makes use of helper data, results for the sign-based method and dark-bit masking as
described in Section 2.3.1 are provided as well, i.e., instead of all 63 bits only the 𝑙 most reliable bits are
used. Neglecting specialized encoding schemes, storing the reliability information requires 63 bits of
helper data as for TMHD, which enables a fair comparison of both methods. Table 5.8 provides results
regarding the common PUF metrics reliability, uniqueness, and uniformity – computed as in [102] – for
varying values of the reference counter value 𝑛𝑚𝑎𝑥 . The reliability illustrates the reproducibility of a
PUF response and is defined via the intra-device Hamming distance of a response r𝑡 ,𝑑 with respect to
the reference response r𝑒𝑛𝑟𝑜𝑙𝑙,𝑑. For 𝐷 different devices, the average reliability is

Reliability =
1
𝐷

𝐷∑
𝑑=1

(
1 − 1

𝑅

𝑅∑
𝑡=1

HD(r𝑒𝑛𝑟𝑜𝑙𝑙,𝑑 , r𝑡 ,𝑑)
|r|

)
,
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Table 5.8 PUF metrics of the ICLooPUF for ten devices, 𝑙 bits, and 100 repetitions (from which ten are taken
for enrollment). ©2022 IEEE [21]

𝑛𝑚𝑎𝑥

l 210 211 212 213 214 215 216 217 218

Reliability

Sign 63 0.797 0.834 0.880 0.909 0.935 0.956 0.969 0.978 0.983
Sign 60 0.809 0.850 0.895 0.925 0.953 0.972 0.984 0.991 0.996
Sign 50 0.850 0.893 0.935 0.965 0.982 0.992 0.998 1.000 1.000
Sign 32 0.912 0.951 0.979 0.991 0.997 1.000 1.000 1.000 1.000
TMHD 63 0.782 0.846 0.910 0.952 0.978 0.993 0.998 1.000 1.000

Uniformity Sign 63 0.508 0.510 0.514 0.522 0.525 0.529 0.525 0.525 0.525
TMHD 63 0.479 0.479 0.475 0.471 0.475 0.470 0.476 0.481 0.470

Uniqueness Sign 63 0.482 0.481 0.485 0.480 0.482 0.474 0.472 0.479 0.476
TMHD 63 0.487 0.499 0.504 0.494 0.500 0.490 0.493 0.493 0.486
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Figure 5.10 Reliability of the ICLooPUF with increasing 𝑛𝑚𝑎𝑥 for ten devices and 100 repetitions per challenge;
ten repetitions are taken to derive the expected responses (enrollment). Adapted from ©2022 IEEE [21].

where 𝑅 is the number of repetitions and |r| is the number of bits of the PUF response. Ideally, the
reliability takes a value of 1. Note that sometimes the average BER computed as BER = 1−Reliability
is provided instead.8 The uniqueness provides a metric for the difference of PUF responses on different
devices by

Uniqueness =
2

𝐷(𝐷 − 1)
𝐷−1∑
𝑑=1

𝐷∑
𝑑′=𝑑+1

HD(r𝑑 , r𝑑′)
|r| ,

where a value of 0.5 is ideal. Finally, the uniformity estimates the relative frequencies of bits in the
PUF response. For 𝐷 different devices the average uniformity is

Uniformity =
1
𝐷

𝐷∑
𝑑=1

1
|r|

|r|∑
𝑖=1

𝑟𝑖 ,𝑑 ,

where again a value of 0.5, i.e., a uniform distribution of 0’s and 1’s, is considered ideal. In Table 5.8,
as expected, uniformity and uniqueness are independent of the reference counter value 𝑛𝑚𝑎𝑥 .9 Both
metrics are close to their optimal values of 0.5.

8The BER allows designers of ECCs to determine the required correction capability, e.g., from Table 5.1 for 64 · 100 · 10
samples a reliability of 1 would result in a average BER of ≤ 1.5 · 10−5.

9The number of bits 𝑙 does not have an effect either, therefore the respective rows are omitted in Table 5.8.
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Figure 5.11 Reliability of the ICLooPUF with varying environmental temperature and supply voltage for a
single device and 100 repetitions per challenge; ten repetitions are taken to derive the expected responses at
20 ◦C and 1 V (enrollment). Adapted from ©2022 IEEE [21].

Regarding reliability, Fig. 5.10 depicts the values from Table 5.8 for an easier comparison. The
results provide further motivation to use the TMHD approach: for 𝑛𝑚𝑎𝑥 ≥ 217 the method leads
to nearly perfectly reliable reconstruction under nominal conditions. On the other hand, using the
sign-based method a similar reliability can be achieved for taking only the 𝑙 = 50 most reliable bits,
i.e., deriving 13 bits less than for the TMHD. Note that the runtime to derive the PUF response is
proportional to 𝑛𝑚𝑎𝑥 , i.e., the TMHD provides the best trade-off regarding runtime and derived bits,
whereas for the sign-based derivation either a significant loss of bits has to be tolerated or the runtime
has to be increased to guarantee a stable response. The reliability results for the ICLooPUF and sign-
based reconstruction are comparable to the results for Loop PUF primitives from [6], where different
oscillator-based PUF primitives are implemented on Artix-7 FPGAs.10 Using the TMHD improves
the reliability even further.

Fig. 5.11 shows the reliability for a selected device under varying environmental conditions 𝑛𝑚𝑎𝑥 =
217 (Fig. 5.11a) and 𝑛𝑚𝑎𝑥 = 218 (Fig. 5.11b). Differential measurements of 𝐶 and¬𝐶 help to compensate
parts of the disturbance from environmental changes since the oscillators for each challenge are
expected to be affected similarly. Similarly as for the Loop PUF [6], for the nominal supply voltage of
1 V (medium size markers), the ICLooPUF is stable for TMHD and sign-based bit derivation within
the temperature range from 0 ◦C to 70 ◦C. Varying the supply voltage by±10% decreases the reliability
in particular for the sign-based method as delay values are individually affected by the supply voltage
and the differential measurements compensate only a part of the effects. In general, the TMHD is less
affected by the environmental conditions and retains reliabilities above 95% (𝑛𝑚𝑎𝑥 = 217) respectively
98% (𝑛𝑚𝑎𝑥 = 218) even under extreme conditions.

Summing up, the proof-of-concept design of the ICLooPUF is a highly reliable PUF primitive.
The use of the TMHD improves the number of extracted bits for a targeted reliability and runtime
compared to the sign-based method, and is more robust regarding variations of the environmental
conditions.

5.5.5 Validation Against Side-Channel Analysis

This section provides a practical validation of the side-channel protection of the ICLooPUF. The
power side-channel over the CW305 board’s shunt resistor is measured as, according to Section 4.1.4,

10Reliability results in [6] are generated with 1.3 ms measurement time, which corresponds to 𝑛𝑚𝑎𝑥 = 214 − 215 for the
presented ICLooPUF.
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EM measurements do not provide additional benefit for attacks on the Loop PUF. The time domain
measurements acquired by a PicoScope 6402 USB oscilloscope at sampling frequency 𝑓𝑠 =156.25 MS/s
are transformed into the frequency domain. In accordance with the results from Section 5.5.4 the
reference counter value is set to 𝑛𝑚𝑎𝑥 = 218; this results in a high reliability and the attacker is able
accumulate more information compared to lower values of 𝑛𝑚𝑎𝑥 .

Exploration of Frequencies of Interest

The original Loop PUF leaks by the oscillation frequency. Considering in addition Eq. (5.20), the
dependency between the frequency difference of the PUF with 𝐶 and ¬𝐶 applied on the one hand
and the amplitude, width and frequency of the ICLooPUF’s spectrum on the other hand has to be
investigated. In order to enable the analysis, the sequential mode described in Section 5.5.3 allows to
determine the FoI range. For each challenge 𝐶, the counter value 𝑣𝐶 is acquired and the frequency of
the delay chain is

𝑓𝑜𝐼 =
2 · 𝑛𝑚𝑎𝑥
𝑣𝐶 · 𝑇𝑟𝑒 𝑓 . (5.21)

Note that due to the output T-FF, which acts as a frequency divider, the reference counter measures
only half of the frequency and the factor of two has to be added to determine the oscillation frequency
of the loop. The average frequency across all challenges𝐶𝑖 and¬𝐶𝑖 , 𝑖 ∈ {1, . . . , 63} is 𝑓𝑜𝐼 = 16.021 MHz
with a frequency range 16.007 MHz ≤ 𝑓𝑜𝐼 ≤ 16.035 MHz, which defines the region of interest for the
following SCA evaluation.

Side-Channel Analysis Results

Considering the average frequency of 𝑓𝑜𝐼 = 16.021 MHz and the value 𝑛𝑚𝑎𝑥 = 218, the expected
runtime of the ICLooPUF per challenge is around 32.7 ms, from which the first 30 ms are transformed
into the frequency domain.11 Finally, for easier peak detection, the frequency spectrum is low-pass
filtered, similar to Section 4.1.3.

Fig. 5.12 shows exemplary spectra in the FoI range from 16 MHz to 16.05 MHz. Figs. 5.12a and 5.12b
correspond to challenges 𝐶 and ¬𝐶 with the maximum and minimum counter difference in sequential

mode, i.e., the extreme values an attacker can observe for the original Loop PUF. In Fig. 5.12c the
spectra for the same challenges in interleaved mode are depicted, where the solid line corresponds
to Fig. 5.12a, and the dashed line corresponds to Fig. 5.12b. Note that the increased amplitude
in Fig. 5.12c compared to Figs. 5.12a and 5.12b stems from the fact that only in interleaved mode
the challenges are switched by T-FFs, while in sequential mode the T-FFs are deactivated, i.e., the
increased amplitude is caused by the additional switching activity. The difference of frequencies in
the spectra in Figs. 5.12a and 5.12b corresponds to the underlying counter differences, i.e., an attacker
can learn from the peak comparison. In Fig. 5.12c, the depicted extreme cases show similar spectra
corresponding to the averaged frequency of the ICLooPUF challenged with 𝐶 and ¬𝐶 interleaved. At
first glance, there is no obvious attack vector on the ICLooPUF’s spectrum visible.

In order to further evaluate the side-channel resistance of the ICLooPUF, the real counter values
and their amplitudes are compared with different properties of the observed frequency peaks. As
mentioned above, the amplitude, the frequency and the width of the peak are considered, which
are marked in Fig. 5.12 as cross, dotted gray vertical line and solid gray horizontal line respectively.
Pearson’s correlation coefficient of the counter values with the characteristics of the peak is used as a
measure for similarity. The correlation represents the predictability of the counter values from SCA.
In Table 5.9 the correlations between peak characteristics and counter values are provided for the
original Loop PUF as well as for the ICLooPUF. The lower part of the table provides correlations of

11Additionally, a noise floor is determined by connecting the system clock instead of the delay chain to the counting
circuitry. Similar to Sections 3.1.4 and 4.1.3, subtracting the noise floor from the actual signal allows to remove regular
components of the device, such as the clock frequency, for better detecting relevant frequencies, but is not a necessary
condition for the attack.
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Figure 5.12 Frequency spectra revealed from SCA in the FoI range for extreme cases of expected frequencies.
Challenges 𝐶𝑖 and ¬𝐶𝑖 with extreme cases (a)-(b) in sequential mode, and (c) the corresponding spectra in
interleaved mode. ©2022 IEEE [21]

Table 5.9 Side-channel analysis results: correlation of counter values and physical observations averaged over
different numbers of measurement traces and for 𝑛𝑚𝑎𝑥 = 218 and 𝑁 − 1 = 63. ©2022 IEEE [21]

Traces Frequency Amplitude Width

Loop PUF (𝐶) 1 -0.961 0.122 -0.115
Loop PUF (𝐶) 10 -0.995 -0.213 -0.309
Loop PUF (¬𝐶) 1 -0.970 -0.103 0.089
Loop PUF (¬𝐶) 10 -0.987 0.018 -0.109
ICLooPUF (𝛿𝑖) 1 0.173 -0.135 -0.003
ICLooPUF (𝛿𝑖) 10 0.156 -0.073 -0.028
ICLooPUF (𝛿𝑖) 100 0.233 -0.104 -0.067
ICLooPUF (|𝛿𝑖 |) 1 -0.038 0.041 0.202
ICLooPUF (|𝛿𝑖 |) 10 0.098 0.093 0.409
ICLooPUF (|𝛿𝑖 |) 100 0.181 0.128 0.406

the absolute counter values to analyze the impact on amplitude-based bit derivation. An attacker
could try to aggregate information from several observations by using repeated measurements of the
same challenge. Therefore, in Table 5.9 the peak characteristics are determined from the average of
several traces of the same challenge and compared to averaged counter values.

Even with a single measurement per challenge in sequential mode the match between the frequency
and the counter value leads to an absolute correlation of above 0.961,12 i.e., as expected there is a
direct relationship between frequency and counter value for the original Loop PUF. Adding further
measurements increases the correlation. For the original Loop PUF, the observed frequencies of 𝐶
and ¬𝐶 therefore reveal sign and amplitude of the frequency difference, and hence the secret as
shown in Sections 4.1.4 and 5.2.5.

In Table 5.9, frequency, amplitude, and width show correlations of up to 0.409 with the counter
values and the absolute counter value |𝛿𝑖 | for the ICLooPUF.13 A detailed insight of the evolution
of the correlation is provided in Fig. 5.13, where Figs. 5.13a and 5.13b depict the correlation with
increasing number of averaged traces per challenge for the counter values respectively their absolute
value. In Fig. 5.13a, the correlations are below 0.25. Similarly, in Fig. 5.13b correlations with frequency
and amplitude converge towards values of below 0.2 with increasing measurements, and the width
to around 0.4. In other words increasing the number of repetitions beyond the depicted number does
not improve the match of observation and counter values for the ICLooPUF.

12For 𝑁 = 63 observations, the confidence interval of the correlation coefficient is within [0.9361, 0.9763] with a confi-
dence level of 0.95.

13The confidence interval of the correlation coefficient is within [0.1794, 0.5963]with a confidence level of 0.95.
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Figure 5.13 Evolution of correlation between averaged counter values and observed side-channel properties
for 63 challenges of the ICLooPUF, same device as used for Table 5.9. ©2022 IEEE [21]
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Figure 5.14 Evolution of correlation between averaged counter values and observed side-channel properties
for 63 challenges of the ICLooPUF, different device as used for Table 5.9. ©2022 IEEE [21]

Even though correlation values of 0.4 do not indicate a causal relation with the counter values,
Fig. 5.14 investigates whether the same correlation is observed on a different device to rule out any
profiling attacks. On a second device the maximum absolute correlation is 0.31,14 but the sign differs
compared to Fig. 5.13. Therefore, even if correlations would theoretically allow for reducing entropy
on a particular device – which is not indicated by the measured correlations – an attacker could not
derive the device-specific correlation from profiling on a second board. Finally note that, e.g., for an
attack on the TMHD scheme, the intervals for bit derivation would be wrongly estimated if there is
no deterministic relation between observations and counter values, i.e., the required precision for an
attack is not given by weak correlations.

Summing up, the ICLooPUF does not leak exploitable side-channel information in the frequency
domain via frequency, amplitude or width of peak in the FoI range. Therefore, it constitutes an
SCA-hardened PUF primitive.

14The confidence interval of the correlation coefficient is within [0.0674, 0.5180]with a confidence level of 0.95.
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6 Comparison of Attacks and Countermeasures for
Ring-Based PUF Primitives

This chapter brings together the findings from Chapters 3 to 5 about SCA of ring-based PUF prim-
itives and its prevention by suitable countermeasures. First, Section 6.1 summarizes the attacks on
ring-based primitives in this work and relates them to attacks in other works. Section 6.2 revisits the
proposed countermeasures for the Loop PUF and provides a comparison regarding their implemen-
tation cost and protection level for different bit derivation schemes. Furthermore, the transfer of the
proposed countermeasures to the RO PUF is explored, and possible countermeasures for the TERO
PUF are outlined. Finally, Section 6.3 concludes the chapter.

Fig. 6.1 revisits the overview of ring-based PUF primitives from Fig. 2.3a, and shows attacks (�)
and countermeasures (�) for the different primitives.1 The work from this thesis is depicted by black
symbols, while other works are highlighted in gray.

6.1 SCA Attacks on Ring-Based PUF Primitives

As shown in Section 2.5.2, most previous works target the RO PUF that leaks through its frequency
emanations [56, 57, 58, 59]. The SCA attacks on the Loop PUF from Chapters 4 and 5 further emphasize
that the oscillation frequency of ring-based PUF primitives can be exploited. Compared to the RO
PUF, the Loop PUF is built from a longer ring with more stages resulting in a lower oscillation
frequency. The lower frequencies can even be attacked by remote SCA as shown in Section 4.2.
Further, the evaluation principle with sequential measurements results in a temporal separation of
the leakage. This eases attacks on the Loop PUF compared to RO PUFs that run several oscillations
in parallel, i.e., where it is necessary to resolve the oscillators, respectively the counters, locally.

The SCA of the TERO PUF in Chapter 3 highlights that metastable oscillations used for building
PUF primitives are prone to attacks as well. However, the estimation of the oscillation duration is
more challenging compared to measuring the frequency, which is also highlighted by other work that
targets the TERO PUF [65].

Ring-based
PUFs

Stable

Frequency Frequency Period length

Metastable

Duration Stable state Transient
state

����

�

��

�� �

��

�

RO PUF Loop PUF ICLooPUF TERO PUF BR/TBR PUF

Figure 6.1 Attacks (�) and countermeasures (�) for ring-based PUF primitives. Black symbols: this thesis. Gray
symbols: other works.

1In order to distinguish the RO PUF and the Loop PUF primitives, different from Fig. 2.3a, the evaluation of the
frequency is split into two distinct blocks.
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Table 6.1 Comparison of countermeasures for an 𝑁-stage Loop PUF regarding protection level and required
resources. Adapted from ©2022 IEEE [21].

Temporal
Masking

(Section 4.3.1)

Challenge
Randomization

(Section 5.3)
ICLooPUF

(Section 5.5)

Hardware Overhead very low high low
Timing deterministic probabilistic deterministic
Randomness Source Loop PUF TRNG not needed
Random Bits 𝑁 − 1 ≥ (𝑁 − 1)⌈log2(𝑁 − 1)⌉ 0

Sign-Based full full full
Two-Metric Helper Data none full full
Equiprobable Quantization sign only full full
Order Encoding sign only full full

From Fig. 6.1, the BR PUF and TBR PUF have not been subject to SCA so far. In theory, the methods
used for the other PUF primitives can be transferred to measure the frequency and duration. However,
due to the evaluation principle based on the stable or transient state, the secret is not directly related
to the frequency or duration of the oscillation. A possible attack vector is to resolve the toggling of a
single stage of the BR. The required localization and precision of the measurements for such an attack
is very high though, and the practical feasibility needs further investigation.

In conclusion, for unprotected primitives the order of difficulty for an SCA attack, starting with
the easiest, is: Loop PUF, RO PUF, TERO PUF, and BR/TBR PUF. Primitives that generate the PUF
secret from the stable frequency of a ring are particularly prone to SCA as the frequency spectrum
can be easily evaluated. On the other hand, if the secret is not directly related to the frequency, the
complexity of the measurement methods and their required precision for SCA increases significantly.

6.2 Countermeasures for Ring-Based PUF Primitives

This section summarizes the proposed countermeasures for the Loop PUF. Further, a possible transfer
of the Loop PUF countermeasures to other ring-based PUF primitives is explored. First, Section 6.2.1
compares resource requirements and the protection level of countermeasures for the Loop PUF. Sec-
ond, Section 6.2.2 applies the temporal masking countermeasure to the RO PUF. Finally, Section 6.2.3
shows that, due to architectural similarities, the TERO PUF can be protected by countermeasures for
the RO PUF.

6.2.1 Protection Mechanisms for the Loop PUF

In Chapters 4 and 5, different countermeasures have been proposed to protect the Loop PUF: temporal

masking in Section 4.3.1, challenge randomization in Section 5.3, and challenge interleaving with the
ICLooPUF in Section 5.5. Table 6.1 provides a comparison of the countermeasures regarding the
required resources and the protection level for different bit derivation schemes.

Resource Requirements The temporal masking countermeasure, as sketched in Fig. 4.14, adds only
𝑁 + 1 XOR gates and a 1-bit storage to the original Loop PUF, resulting in a very low overhead. For
each derived PUF bit 𝑟𝐶 , one bit of randomness determines the order of the challenges 𝐶 and ¬𝐶.
However, a dedicated TRNG is not required as the bits are derived from the counter LSB, i.e., from
the jitter of the Loop PUF frequency.

The challenge randomization approach needs to implement an algorithm as depicted in Fig. 5.5
and requires a TRNG, resulting in a significant hardware overhead. The countermeasure has a
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probabilistic runtime due to possible re-sampling of duplicate indices, and requires additional time
for randomizing the challenge order. In addition, the number of required random bits is significant,
which hinders applications for low-cost embedded devices.

According to Table 5.7 and Fig. 5.7, the ICLooPUF requires 𝑁 additional 2-bit multiplexers and
utmost 𝑁 T-FFs for switching challenge bits; in the proof-of-concept design in Section 5.5.3 𝑁/4 T-
FFs have been used. Note that the 2-bit multiplexers can be replaced by XOR gates inverting the
challenge 𝐶 for every second period, further reducing the hardware footprint. Different from the
Loop PUF, the ICLooPUF uses time domain sampling with an up/down counter. Although the
counters and the comparator are arranged differently, the only overhead for the measurement circuit
is the synchronization stage consisting of few FFs, which is negligible. The protection mechanism has
therefore overall a low hardware overhead when compared to the original Loop PUF and provides
resilience against SCA without requiring any random bits.

Protection Level Temporal masking can only protect the sign-based bit derivation. As discussed
in Section 5.1, it has limited effect in the case of EPQ and order encoding or no effect in the case of
TMHD. On the other hand, challenge randomization and the ICLooPUF protect against SCA with
sign-based as well as with amplitude-based bit derivation.

Overall, if the reduced reliability of the sign-based bit derivation can be tolerated at the cost of error
correction or reduced entropy, temporal masking has the lowest resource overhead. However, in
order to enable highly efficient and reliable bit derivation, amplitude-based schemes are needed. The
ICLooPUF maintains a low hardware overhead and prevents the need for a separate TRNG compared
to challenge randomization when using these schemes.

6.2.2 Transfer of Loop PUF Countermeasures to the RO PUF

For the RO PUF from Section 2.2.1, several countermeasures have been proposed: (i) Restricting to
non-overlapping pair-wise comparisons, i.e., each oscillator is used only to derive a single bit [57].
(ii) Increasing the number of counters to decrease the attacker’s SNR as more rings oscillate simul-
taneously [57]. (iii) Interleaved placement of counters and multiplexers to prevent an attacker from
spatially resolving them [58]. (iv) Measurement path randomization to break the relation of RO and
attacked measurement path, where the path from the RO through the multiplexer to the counter is
altered for each measurement [58].

Note that the adjacent placement of counters is vulnerable to attacks that exploit geometrical
leakage, i.e., the fact that depending on the distance to the counter, the signal amplitude varies [59].
However, the ROs itself have not been spatially resolved so far, which is the underlying assumption
of all countermeasures for the RO PUF.

Measurement path randomization comes at the cost of a significant overhead as the size of the
required multiplexers increases, and a TRNG is required to randomize the address of the selected
counter [58]. Thus, the question arises whether it is possible to reduce the overhead by transferring
a countermeasure for the Loop PUF, which uses sequential measurement of frequencies by a single
counter, to the RO PUF, which is based on parallel frequency measurements of two ROs connected
to separate counters. In theory, challenge randomization could be applied to the RO PUF, i.e., the
order of compared RO pairs would be randomized. However, the same drawbacks in terms of the
hardware overhead apply as for the Loop PUF and there is no benefit compared to measurement path
randomization. As challenge interleaving implemented by the ICLooPUF is limited to a configurable
ring, it is not applicable.

The temporal masking countermeasure can be applied if the frequencies of two selected ROs are
measured sequentially by the same counter, as for the Loop PUF. It renders attacks infeasible that
spatially resolve the counters [58, 59], as long as the ROs themselves cannot be spatially resolved.
As multiple RO pairs are measured to derive a sufficient number of bits from the RO PUF, different
design trade-offs are possible: (i) For sequential measurements using the same counter, the latency
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to get the PUF response is doubled while the number of counters is halved. (ii) Keeping the number
of counters constant allows measurements of the same amount of ROs in parallel as in the classical
RO PUF design. Note that in order to avoid side-channel leakage, the measured ROs must belong
to different RO pairs. Otherwise the same attacks as for classical RO PUFs would be possible. As
only the way of parallelization is changed, the latency stays the same in this second case. Additional
resources are needed if no up/down counters are used, e.g., in form of additional memory to cache
measured frequencies and to store required random bits for the first activated ROs.

Summarizing, in terms of complexity, the number of counters can be reduced down to a single
counter. However, the area required for the large number of ROs in a typical RO PUF design is
much larger than the area of a single counter. Hence, the number of counters is not limited by area
constraints but rather by the latency requirement. Contrary to the path randomization method [58],
there is no specific design effort required for the protection.

6.2.3 Countermeasures for the TERO PUF

The SCA attacks on the TERO PUF in Chapter 3 highlight that the primitive needs countermeasures
for a secure operation. Due to the similar architectures, the TERO PUF can be protected by the same
mechanisms as the RO PUF: (i) Increasing the number of counters decreases the attacker’s SNR as
more TEROs oscillate simultaneously. (ii) Dedicated placement of counters and multiplexers increases
the difficulty of resolving them spatially, but does not prevent sophisticated geometric leak attacks
completely [59]. (iii) Restricting the TERO PUF to non-overlapping pair-wise comparisons, i.e., a
cell is only used once, and limiting to sign-based bit derivation impedes the attacks from Section 3.3
entirely.

Following Section 6.2.2, the application of temporal masking similar as for the RO PUF, and
alternatively to (iii) is possible. If the TERO cells are measured sequentially, comparisons can be
made on the stored counter values. Hence, the oscillation of a single cell can only be observed
once revealing no additional side-channel leakage. Additionally, shuffling of compared TERO cells
impedes averaging of measurements with the same TERO cell as the attacker does not know to which
cell pair a measurement belongs. Similar to challenge randomization for the Loop PUF, a significant
overhead would be required.

6.3 Conclusion

Summing up, the Loop PUF’s disadvantage of a single counter, which eases SCA by temporal sepa-
ration of the leakage, turns out to be an advantage for the protection against SCA. For sign-based bit
derivation temporal masking has a very low resource overhead. It can be transferred to multi-ring
array PUFs such as the RO PUF and TERO PUF, providing an alternative to more expensive counter-
measures as measurement path randomization. For amplitude-based bit derivation the ICLooPUF
protects the Loop PUF with low resource overhead and without requiring any randomness. As the
ICLooPUF is limited to configurable single-ring PUFs, there are no comparable countermeasures for
the RO PUF and TERO PUF.
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7 Side-Channel Analysis of BCH Codes

This chapter investigates SCA attacks on the error correction in Fig. 2.1. The focus is on BCH codes
that are widely used to correct errors in the PUF response to enable a reliable key generation as
outlined in Section 2.4. The data processed by the BCH code is related to the secret key, and an
SCA attack that retrieves the codeword can determine the key as well. In Section 7.1 the required
theoretical background of BCH codes is introduced, followed by their hardware implementation in
Section 7.2. Section 7.3 introduces existing DPA attacks on BCH codes used in concatenation with a
repetition code. Next, Section 7.4 extends the existing attacks by including the syndrome calculation
to the power model, and altering the manipulation of helper data. As a result, the improved attack
does not rely on the concatenation with a repetition code. Furthermore, a horizontal SCA attack is
outlined that combines the power consumption of different points in time from a single trace. The
attack is applicable even if the helper data is not altered, reducing the requirements compared to
vertical SCA attacks, such as DPA. Finally, Section 7.5 provides results from simulated side-channel
measurements for the vertical and the horizontal attacks, and Section 7.6 concludes the chapter.

This chapter combines and extends results from two master’s theses that have been supervised
as part of this thesis. The code generation framework from Huber: "Design and Side-Channel

Evaluation of BCH Code Hardware Implementations", Technical University of Munich, May 2022 [103]
is used to generate simulated power traces of different BCH codes, and the horizontal attack
from Brosch: "Horizontal Side-Channel Analysis of Error-Correcting Codes", Technical University of

Munich, November 2019 [104] is evaluated on the different implementations.

7.1 Theoretical Background of BCH Codes

Bose-Chaudhuri-Hocquenghem (BCH) codes are linear cyclic block codes that encode a 𝑘-bit message
block u into an 𝑛-bit codeword c, where 𝑛 > 𝑘. After transmission over a noisy channel, the noisy
codeword c′ = c ⊕ e is decoded to the received message û. In the following, the most important
subclass of binary BCH codes is considered, i.e., the message and the codeword are binary vectors.
The most relevant aspects of BCH codes are derived from [45], where further details and derivations
can be found.

Linear Block Codes A block code is linear if the sum of two codewords c1 and c2 is also a valid
codeword c = c1 ⊕ c2. Linear block codes can be expressed in terms of their generator matrix G of size
𝑛 × 𝑘 and with binary entries. For systematic linear block codes, the message and redundancy part
of the codeword are separated into two parts and the generator matrix consists of a 𝑘 × 𝑘 identity
matrix I and an (𝑛 − 𝑘) × 𝑘 parity matrix P, such that

c = Gu =
[
I
P

]
u, (7.1)

where u is a column vector. From Eq. (7.1) all 2𝑘 possible codewords can be generated. The parity

check matrix H allows for verifying whether a codeword has been generated by the generator matrix G.
The columns of the 𝑛 × (𝑛 − 𝑘) parity check matrix are orthogonal to the columns of G, i.e., only for
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valid codewords the syndrome is H𝑇c = 0. For a received codeword that is subject to an error e, the
syndrome

s = H𝑇c′ = H𝑇(c + e) = H𝑇e (7.2)
is non-zero and allows for detecting and correcting errors. The number of errors 𝑡 that can be corrected
by a linear code depends on the minimum distance 𝑑𝑚𝑖𝑛 , i.e., the minimal Hamming distance between
any codewords of the code, and is bound by

𝑑𝑚𝑖𝑛 ≥ 2𝑡 + 1. (7.3)

A code of length 𝑛 with a message size 𝑘 that is capable of correcting 𝑡 errors in a received codeword
is denoted as (𝑛, 𝑘, 𝑡) code.

Cyclic Codes Cyclic codes are an important subclass of linear block codes with an algebraic struc-
ture that allows for efficient decoding methods. A codeword c of a cyclic code that is shifted by
𝑛′ mod 𝑛 ≥ 1 positions to the right is again a valid codeword c′ = [𝑐𝑛−𝑛′ , 𝑐𝑛−𝑛′+1 , . . . 𝑐𝑛−𝑛′−1]. Cyclic
codes work on polynomials, i.e., instead of vector notation, the codeword is described as a polynomial

𝑐(𝑥) = 𝑐0 + 𝑐1𝑥 + . . . + 𝑐𝑛−1𝑥𝑛−1 (7.4)

with binary coefficients 𝑐𝑖 and a degree of 𝑛−1 or less. The generator polynomial 𝑔(𝑥) of a linear (𝑛, 𝑘, 𝑡)
cyclic code is the unique code polynomial of degree 𝑛 − 𝑘

𝑔(𝑥) = 1 + 𝑔1𝑥 + . . . + 𝑔𝑛−𝑘𝑥𝑛−𝑘 (7.5)

and every other code polynomial can be expressed as 𝑣(𝑥) = 𝑢(𝑥)𝑔(𝑥), from a message polyno-
mial 𝑢(𝑥) of degree 𝑘 or less. The generator matrix G and parity check matrix H can be constructed
from the generator polynomial 𝑔(𝑥) [45]. However, for larger codes the storage of the matrices be-
comes increasingly expensive and encoding and decoding based on polynomial operations is usually
preferred for cyclic codes.

Encoding of Binary BCH Codes For any positive integers 𝑚 ≥ 3 and 𝑡 < 2𝑚−1, there exists a binary
(𝑛, 𝑘, 𝑡) BCH code with block length 𝑛 = 2𝑚 − 1, that is able to correct up to 𝑡 errors in the received
codeword c′ such that the corrected message block is û = u. The generator polynomial 𝑔(𝑥) of a 𝑡-
error correcting binary BCH code is defined as the lowest degree polynomial with binary coefficients
that has the consecutive powers 𝛼, 𝛼2 , . . . , 𝛼2𝑡 of the primitive element 𝛼 ∈ 𝐺𝐹(2𝑚) as its roots, i.e.,
𝑔(𝛼𝑖) = 0 for 1 ≤ 𝑖 ≤ 2𝑡. With the minimal polynomial 𝜙𝑖(𝑥) of 𝛼𝑖 , the generator polynomial is

𝑔(𝑥) = LCM{𝜙1(𝑥), 𝜙2(𝑥), . . . 𝜙2𝑡(𝑥)}, (7.6)

where LCM is the Least Common Multiple (LCM). As even powers of the primitive element 𝛼 share
the same minimal polynomial, i.e., 𝜙2𝑖(𝑥) = 𝜙𝑖(𝑥) for 𝛼𝑖 and 𝛼2𝑖 , Eq. (7.6) can be reduced to

𝑔(𝑥) = LCM{𝜙1(𝑥), 𝜙3(𝑥), . . . 𝜙2𝑡−1(𝑥)}. (7.7)

Note that the degree of the minimal polynomials 𝜙𝑖(𝑥) is at most 𝑚, i.e., deg 𝑔(𝑥) = 𝑛 − 𝑘 ≤ 𝑚𝑡 with
equality if and only if all minimal polynomials have degree 𝑚.

For systematic BCH codes that are usually employed in hardware implementations, the mes-
sage part of length 𝑘 is separated from the redundant checking part of length 𝑛 − 𝑘. The encod-
ing of a message polynomial 𝑢(𝑥) is achieved by using the remainder of the polynomial division
𝑟(𝑥) = (

𝑢(𝑥) · 𝑥𝑛−𝑘 ) mod 𝑔(𝑥) as the parity part of the message, i.e., the systematic codeword poly-
nomial is composed of the remainder polynomial 𝑟(𝑥) and the shifted message polynomial 𝑢(𝑥) as
𝑐(𝑥) = 𝑟(𝑥) + 𝑢(𝑥) · 𝑥𝑛−𝑘 . In hardware, the division to obtain the remainder 𝑟(𝑥) is efficiently imple-
mented by a Galois LFSR with taps according to the coefficients of the generator polynomial 𝑔(𝑥).
The message is shifted bit-wise into the LFSR, and after 𝑛 cycles the remainder is contained in the
registers.
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Figure 7.1 General structure of a BCH decoder.

Decoding of Binary BCH Codes Fig. 7.1 depicts the general structure of a binary BCH decoder that
consists of three steps: computing the syndrome s, finding the error locator polynomial Λ(𝑥), and
estimating the error positions ê. Finally, the estimated error positions are used to retrieve the corrected
message û by adding them to the noisy codeword c′ that is stored in the input register.

The syndrome computation step derives the syndrome s = [𝑠1 , 𝑠2 , . . . , 𝑠2𝑡]𝑇 consisting of 2𝑡 com-
ponents by evaluating the received codeword 𝑐′(𝑥) at the powers of the primitive element

𝑠𝑖 = 𝑐′(𝛼𝑖) (7.8)

for 1 ≤ 𝑖 ≤ 2𝑡 and with 𝑠𝑖 ∈ 𝐺𝐹(2𝑚). The received polynomial, which consists of the original codeword
polynomial 𝑐(𝑥) and the error polynomial 𝑒(𝑥), can be represented as

𝑐′(𝑥) = 𝑐(𝑥) + 𝑒(𝑥) = 𝑎𝑖(𝑥)𝜙𝑖(𝑥) + 𝑏𝑖(𝑥), (7.9)

i.e., as a multiple 𝑎𝑖(𝑥) of the minimal polynomial 𝜙𝑖(𝑥) and a remainder

𝑏𝑖(𝑥) = 𝑐′(𝑥)
𝜙𝑖(𝑥) (7.10)

with deg 𝑏𝑖(𝑥) < deg 𝜙𝑖(𝑥). Combining Eqs. (7.7) to (7.10) yields

𝑠𝑖 = 𝑐′(𝛼𝑖) = 𝑒(𝛼𝑖) = 𝑏𝑖(𝛼𝑖) = 𝑐′(𝑥)
𝜙𝑖(𝑥)

����
𝑥=𝛼𝑖

, (7.11)

as 𝜙𝑖(𝛼𝑖) = 0 and 𝑐(𝛼𝑖) = 0. In other words, the syndrome components 𝑠𝑖 can be obtained by dividing
the received codeword polynomial by the respective minimal polynomial 𝜙𝑖(𝑥) and evaluating the
remainder at the corresponding power 𝛼𝑖 of the primitive element instead of evaluating the entire
codeword polynomial. This allows for an efficient implementation in hardware as the polynomial
division can be realized as an LFSR. As the primitive polynomials of odd and even powers are
identical, the even syndrome components can be derived as 𝑠2𝑖 = 𝑠2

𝑖 , which further reduces the
computational effort.

If the syndromes are s = 0, no errors are detected and decoding is trivial. Otherwise, the error
locator polynomial Λ(𝑥) is calculated from the syndrome components in Eq. (7.11). The error locator
polynomial has the inverse of the error locations as its roots and can be retrieved by different algo-
rithms. Usually, the Berlekamp-Massey Algorithm (BMA) is used, as it is an iterative and efficient
method for solving the set of equations defined by the syndrome components. From the error locator
polynomial, the error positions are determined by finding the roots of Λ(𝑥) using the Chien search
that searches the roots by trial and error [45]. As in the following, the main focus is on the syndrome
calculation, the BMA and the Chien search are not further detailed.

7.2 Hardware Implementation of BCH Codes

For a systematic SCA evaluation of BCH codes, implementations with different code parameters
are required. Previous SCA attacks [49, 68] target a single code from a framework optimized for
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communication applications, i.e., with a low latency of the design [105]. While SCA attacks on the
auto-generated code are feasible, it is not optimized regarding readability. This makes it difficult
to analyze more complex attack vectors than the input register of the BCH code. As in the PUF
context area is more important than latency, in Section 7.2.1 a framework optimized for area-efficient
implementations [103] is introduced. Furthermore, the generated code is structured into modules
that allow for analyzing different steps of the BCH decoding separately. Section 7.2.2 provides the
implementation of the syndrome computation that is used to refine the power model in Section 7.4.1.

7.2.1 BCH Code Generation Framework

The framework for generating BCH codes [103] is denoted as Code Generation Framework (CGF) in
the following. The general structure of the generated code follows Fig. 7.1, where the decoding steps
are carried out sequentially, i.e., the BMA and the Chien search start after the syndrome computation
is finished. The CGF allows for selecting the code length 𝑛, input data size 𝑘 and the correction
capability 𝑡 of the desired code. Furthermore, a number of test vectors can be selected that is
generated along with the code implementation. The output of the CGF are a VHDL implementation
of the systematic (𝑛, 𝑘, 𝑡) BCH code, a text file with the test vectors, and a corresponding test bench.

In the following, the design choices for the BMA and the Chien search are briefly outlined. The
implementation of the syndrome computation is explained in more detail in Section 7.2.2 as it is used
for the improved power model in Section 7.4.1.

The BMA is based on the Further optimized inversion-free Berlekamp-Massey (FiBM) [106] imple-
mentation, an inversion-less BMA implementation. By selecting a folding factor 𝐾, the parallelism of
the implementation is determined, and a trade-off between latency and area can be chosen. Depend-
ing on the folding factor the number of identical Processing Elements (PEs) [107] is determined. For
a fully-folded FiBM implementation, only a single PE is required, reducing the overall footprint [103].
Additionally, two shift registers of size 𝑡 + ⌈ 𝑡2⌉ and a control logic are required.

The Chien search substitutes the powers of the primitive element 𝛼𝑖 in the error locator polynomial
Λ(𝑥) determined by the BMA. If the result is zero, the power corresponds to a root of the error locator
polynomial and the corresponding bit in the codeword is corrected. The hardware implementation
from the CGF uses constant multipliers and adders, where the number of components is determined
by the correction capability 𝑡 [103]. Note that the message buffer stores only the 𝑘 message bits and
not the entire 𝑛-bit codeword, i.e., the Chien search only corrects the errors in the message part. As
the parity part of the codeword does not contain information, this approach reduces the latency and
saves hardware resources as less registers are needed in the message buffer.

7.2.2 Syndrome Computation: Division and Substitution

Hardware implementations allow for using LFSRs to calculate the polynomial division in Eq. (7.11)
for the different syndrome components: The LFSR registers are initialized with zeros. The message
is sequentially shifted into the LFSRs one bit per clock cycle such that the syndrome is obtained after
𝑛 clock cycles. The minimal polynomials 𝜙𝑖(𝑥), which specify the generator polynomial of the code
according to Eq. (7.7), define the positions of the feedback taps and the number of LFSR registers. For
a BCH code from the Galois field 𝐺𝐹(2𝑚), the minimal polynomials are of degree deg 𝜙𝑖(𝑥) ≤ 𝑚, i.e.,
each LFSR consists of at most 𝑚 registers. The number of parallel LFSRs depends on the number of
different minimal polynomials 𝑁𝜙, which is at most 𝑡. Note that the LFSRs only divide the received
codeword polynomial 𝑐′(𝑥) by the corresponding minimal polynomials 𝜙𝑖(𝑥). In order to evaluate the
result at 𝛼𝑖 from the final state of the registers, an additional combinatorial logic circuit is required.
As even powers of 𝛼 share the same minimal polynomial, e.g., 𝜙1(𝑥) = 𝜙2(𝑥) = 𝜙4(𝑥) = . . ., from a
single LFSR structure multiple syndrome components are derived by different logic circuits.1

1Note that there is also the possibility of a shift register structure that evaluates 𝑐′(𝑥) directly at 𝛼𝑖 [45]. For minimal
polynomials that are used for single syndrome component only, the structure saves the additional combinatorial logic. In
the following, this structure is not considered to simplify the analysis. As the BMA is by far the most resource demanding
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Figure 7.2 Circuit to calculate the syndrome components 𝑠1, 𝑠2 and 𝑠4 of a (15, 7, 2) BCH code. Adapted from
[45].

Fig. 7.2 depicts an example LFSR structure for the syndrome components 𝑠1, 𝑠2 and 𝑠4 of a (15, 7, 2)
BCH code that is constructed from 𝐺𝐹(24). Consequently, there are 𝑚 = 4 registers and the feedback
taps of the Galois LFSR are defined by the minimal polynomial 𝜙1(𝑥) = 𝜙2(𝑥) = 𝜙4(𝑥) = 𝑥4 + 𝑥3 + 1.
Finally, the register states are logically combined to form the syndrome components. The required
logic connections are determined at design time from Eq. (7.11).

7.3 Differential Power Analysis of BCH Codes for PUF-based Key
Generation

This section introduces the general concept of correlation-based DPA attacks in Section 7.3.1. Sub-
sequently, the power model and helper data manipulation strategy of existing DPA attacks on BCH
codes used for PUF-based key generation are outlined in Section 7.3.2.

7.3.1 Differential Power Analysis (DPA)

DPA attacks exploit power consumption differences of implementations for different data that is
processed. By comparing the recorded power consumption to a model of the power consumption for
different data, the most likely processed data is determined [51, 108]. If the comparison of hypothetical
power consumption and measured power traces is done by Pearson’s correlation coefficient 𝜌, the
attack is also denoted as Correlation Power Analysis (CPA) [109]. The correlation coefficient is
dimensionless and limited between −1 ≤ 𝜌 ≤ 1, where independent variables result in a correlation
coefficient of zero.

First, a suitable intermediate value of the attacked algorithm is chosen. Given 𝑁𝑡 measurements
with different input data 𝑑𝑖 and 𝑁𝐾 possible values for the targeted intermediate value 𝑘 𝑗 , a 𝑁𝑡 × 𝑁𝐾

matrix V is generated. Each entry 𝑣𝑖 , 𝑗 in V is derived from a model function 𝑓 (𝑑𝑖 , 𝑘 𝑗) that determines
the internal state of the implementation from the known input data 𝑑𝑖 and a possible candidate 𝑘 𝑗
for the intermediate. A power model maps the state of the implementation in V to hypothetical
power consumption values H. The most common power model for hardware implementations is
the Hamming distance model that assumes a power contribution for transitions 0 → 1 and 1 → 0 and
ignores static power consumption, i.e., 0 → 0 and 1 → 1 do not contribute. The power model is

part of a BCH hardware implementation, the minimal saving of the combinatorial logic does not impact the overall hardware
footprint significantly.
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applied to all considered signals of the implementation, and the overall power model consists of the
sum of all Hamming distances

𝑃𝐻𝐷 =
∑
𝑖

HD(𝑣𝑖 , 𝑣𝑖 ,𝑝𝑟𝑒𝑣), (7.12)

where 𝑣𝑖 is the current value and 𝑣𝑖 ,𝑝𝑟𝑒𝑣 is the previous value of the signal or register.
The measurements of the implementation are stored in a matrix T of size 𝑁𝑡 ×𝑁𝑠 , where the traces

of 𝑁𝑠 samples are organized in the rows of T. The correlation coefficient for the hypothetical power
consumption H and the measured traces T is calculated for each candidate 𝑖 and sample point 𝑗: The
columns hi and tj are compared using the correlation coefficient

𝜌𝑖 , 𝑗 =

∑𝑁𝑡
𝑑=1

(
𝑡𝑑,𝑗 − 𝑡 𝑗

) (
ℎ𝑑,𝑖 − ℎ̄𝑖

)√∑𝑁𝑡
𝑑=1

(
𝑡𝑑,𝑗 − 𝑡 𝑗

)2
√∑𝑁𝑡

𝑑=1
(
ℎ𝑑,𝑖 − ℎ̄𝑖

)2
, (7.13)

where ℎ̄𝑖 and 𝑡 𝑗 denote the mean values of hi and tj taken over the different input data values. The
values 𝜌𝑖 , 𝑗 are combined in the correlation matrix P, where the row index 𝑖 corresponds to the value
of the candidate and the column index 𝑗 corresponds to the time sample of the measured trace.

The maximum correlation coefficients for the possible candidates are obtained by taking the maxi-
mum over the samples of P. Usually, all samples 𝒮 ∈ {0, . . . , 𝑁𝑠 − 1} are included in the evaluation.
However, if the point in time within the measurements at which the operation of interest is executed
is known, only a subset 𝒮 ∈ {𝑠𝑚𝑖𝑛 , . . . , 𝑠𝑚𝑎𝑥} of the time samples can be included. Limiting the
evaluated time span reduces the computational effort. The candidate with the maximum correlation
coefficient

𝑖𝑐𝑎𝑛𝑑 = arg max
0≤𝑖≤𝑁𝐾−1

max
𝑗∈𝒮

P, (7.14)

determines the guess of the attack.

7.3.2 DPA of BCH Codes

Hardware implementations of concatenated BCH and repetitions codes have been shown to be vul-
nerable to DPA attacks, where the input register of the BCH code is targeted [49, 68]. Existing attacks
consider the concatenation of an (𝑛𝑟𝑒𝑝 = 7, 𝑘𝑟𝑒𝑝 = 1, 𝑡𝑟𝑒𝑝 = 3)-repetition code with an (𝑛 = 127, 𝑘 = 64,
𝑡 = 10) BCH code, where two decodings generate a 128-bit key [49, 68]. Consequently, the number
of PUF response and helper data bits is 2 × 127 × 7, where the input bits of the BCH decoder are
generated from the decoding of the repetition code bits as

𝑐𝑖 = DecodeRep(r′rep,i ⊕ wrep,i) (7.15)

= DecodeRep([𝑟′𝑖·𝑛𝑟𝑒𝑝 , . . . 𝑟′(𝑖+1)·𝑛𝑟𝑒𝑝−1] ⊕ [𝑤𝑖·𝑛𝑟𝑒𝑝 , . . . 𝑤(𝑖+1)·𝑛𝑟𝑒𝑝−1]) (7.16)

= DecodeRep(crep,i) =
{

0 if HW(crep,i) < ⌈𝑛𝑟𝑒𝑝/2⌉
1 if HW(crep,i) ≥ ⌈𝑛𝑟𝑒𝑝/2⌉ , (7.17)

i.e., always 𝑛𝑟𝑒𝑝 = 7 bits of the PUF response and the helper data derive a bit that is processed by
the BCH decoder. By changing the values of helper data bits, single bits of crep,i can be modified
and a DPA attack can be tailored that attacks the value of the BCH code bit 𝑐𝑖 in the input register,
respectively the processing of the results of the repetition code.

Requirement and Assumptions for the Attack There are some requirements and assumptions for
the DPA attack on the BCH decoder:

• While the codeword c processed by the decoder is the attack target, due to c = r⊕w, recovering
the PUF response r is equivalent as the codeword can be obtained by combining r with the
public helper data w.
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• The same PUF response is assumed for all SCA measurements that are acquired, which is
generally the case for PUF-based key generation. Note that actually the noisy PUF response
r′ = r ⊕ e is processed in each trace, i.e., the targeted secret is subject to an error e. However,
assuming that the PUF is stable under nominal conditions and that the attacker keeps the
environment at the nominal conditions, bit errors are neglected in the following.2

• In order to enable DPA attacks, the helper data has to be publicly known and its manipulation
must be possible. Note that for the Fuzzy Commitment Scheme (FCS) [4] and the related
Code-Offset Fuzzy Extractor (COFE) [12] the manipulation of the helper data affects directly
the processed codeword. For other HDAs from Section 2.1.2, such as syndrome and parity
constructions, the influence of the helper data manipulation on the processed data may be
different, i.e., a modification of the hypothesis generation is needed.

• Errors ea in the recovered codeword ĉ = c ⊕ ea compared to the correct codeword c can be
corrected as long as HW(ea) ≤ 𝑡, i.e., if their number is smaller than the correction capability of
the code under attack.

• The registers of the BCH decoder are assumed to be initialized with all zeros before the first bit
is processed, i.e., the previous values of all registers for the first bit are 𝑣−1 = 0.

Input Register Power Model Existing attacks use the input register of the BCH decoder as inter-
mediate value, but target the processing of several bits of a repetition code to obtain the register
value [49, 68]. The attack on bit 𝑐𝑖 requires the preceding value of the input register 𝑣𝑖−1 = 𝑐𝑖−1 from
the previous step of the attack to calculate the Hamming distance power model as

𝑃𝑖𝑛𝑝𝑢𝑡 (𝑐𝑖 , 𝑣𝑖−1) = HD (𝑐𝑖 , 𝑣𝑖−1) . (7.18)

Note that the switching of codeword bits 𝑐0 , . . . , 𝑐𝑖−2 does not depend on 𝑐𝑖 and is therefore omitted in
the power model. As the codeword is sequentially processed by the decoder, the bits of the codeword
are attacked sequentially as well.

Helper Data Manipulation The manipulation of helper data wman affects directly bits of the codeword

c′ = r′ ⊕ w ⊕ wman , (7.19)

that is processed by the BCH decoder, where wman is the vector with the manipulated helper data.
Each bit can be manipulated by 𝑥 ∈ {0, 1}, i.e., for each helper data bit 𝑤𝑖 ⊕ 𝑥 either its public value
is used (𝑥 = 0) or it is flipped (𝑥 = 1). The DPA attack on the BCH decoder takes the manipulated
helper data w ⊕ wman,j as known input data for the 𝑗th trace: The helper data w is public and the bit
manipulations wman,j are controlled by the attacker.

The original attack iterates over all 2𝑛𝑟𝑒𝑝 values of the input of the repetition code to find the
most probable value of the 𝑛𝑟𝑒𝑝-bit PUF response chunk corresponding to the respective helper
data [49]. Given the 𝑛𝑟𝑒𝑝-bit candidate r̂rep,i, the 𝑖th bit 𝑐𝑖 of the BCH code is determined by decoding
ĉrep,i = r̂rep,i ⊕ wrep,i according to Eq. (7.17), where wrep,i is the value of the public helper data.

The manipulation of the repetition code helper data wman,rep,j loops over the 2𝑛𝑟𝑒𝑝 different values.
As a result, the corresponding BCH codeword bit is altered according to the result of the decoding
RepDec

(
wman,rep,j

)
of the respective manipulation. After 2𝑛𝑟𝑒𝑝 manipulations, the next 𝑛𝑟𝑒𝑝-bit chunk

2In case bit errors e occur, the respective trace will not match the power model anymore, which can be seen as noise for
the DPA. This would increase the number of required traces, but does not hinder the DPA generally.
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of helper data, corresponding to the bit 𝑐𝑖+1 of the BCH code, is manipulated. Consequently, the
manipulation of the BCH codeword for the 𝑗th trace is

wman,j =


[𝑥, 0, 0, . . . , 0, 0, 0] if 0 ≤ 𝑗 ≤ 2𝑛𝑟𝑒𝑝 − 1
[0, 𝑥, 0, . . . , 0, 0, 0] if 2𝑛𝑟𝑒𝑝 ≤ 𝑗 ≤ 2 · 2𝑛𝑟𝑒𝑝 − 1

. . . . . .
[0, 0, 0, . . . , 0, 0, 𝑥] if (𝑛 − 1) · 2𝑛𝑟𝑒𝑝 ≤ 𝑗 ≤ 𝑛 · 2𝑛𝑟𝑒𝑝 − 1

, (7.20)

where 𝑥 is the manipulated value according to

𝑥 =
{

0 if HW
((𝑗 mod 2𝑛𝑟𝑒𝑝 )2

)
< ⌈𝑛𝑟𝑒𝑝/2⌉

1 if HW
((𝑗 mod 2𝑛𝑟𝑒𝑝 )2

) ≥ ⌈𝑛𝑟𝑒𝑝/2⌉ = RepDec
((𝑗)2 mod 2𝑛𝑟𝑒𝑝

)
(7.21)

and (·)2 is the binary representation of the trace index. In other words, the manipulation pattern
mimics the decoding of the repetition code from Eq. (7.17).

Taking into account that not the value of the 𝑛𝑟𝑒𝑝-bit PUF response chunk but the value of the
BCH codeword bit is of interest, the possible values for the 𝑛𝑟𝑒𝑝-bit chunk can be reduced to one bit.
The original attack has been modified, such that the correlations from other candidates are leveraged
to increase the robustness of the attack by matching on the characteristic correlation pattern of all
candidates [68]. Yet, 2𝑛𝑟𝑒𝑝 manipulated helper data bits are required for each bit of the BCH decoder
input [49, 68]. Conduction manipulations for every second bit in the same measurement minimizes
the number of measurements [68], and the manipulation pattern is changed to

wman,j =
{ [𝑥, 0, 𝑥, . . . , 𝑥, 0, 𝑥] if 0 ≤ 𝑗 ≤ 2𝑛𝑟𝑒𝑝 − 1
[0, 𝑥, 0, . . . , 0, 𝑥, 0] if 2𝑛𝑟𝑒𝑝 ≤ 𝑗 ≤ 2 · 2𝑛𝑟𝑒𝑝 − 1 . (7.22)

Note that with the manipulation strategy from Eq. (7.22) more than 𝑡 bits in c are changed, i.e., the
decoded key is k̃ ≠ k and the manipulation can be detected by the device.

Using the input register power model and the manipulation of the helper data of the repetition
decoder is limited to concatenated code constructions. Therefore, Section 7.4 improves the existing
attacks by a more sophisticated power model and a modified helper data manipulation strategy, mak-
ing them applicable to stand-alone BCH codes. Additionally, in order to overcome the requirement
of helper data manipulation altogether, a horizontal SCA attack is proposed.

7.4 Extended SCA Attacks on BCH Codes

This section extends the existing DPA attack on BCH codes from Section 7.3.2 in two directions. First,
Section 7.4.1 improves the power model by including the syndrome computation in addition to the
input buffer, and adapts the helper data manipulation pattern. The resulting attack does not rely on
concatenated codes, but can be applied to stand-alone BCH codes. Second, Section 7.4.2 introduces a
correlation-based Horizontal Side-Channel Analysis (HSCA) attack that combines different parts of
a single trace. Consequently, helper data manipulation is not needed, and the attack is more powerful
than DPA attacks. The attacks from Sections 7.3.2, 7.4.1 and 7.4.2 are compared in Section 7.4.3.
Finally, Section 7.4.4 introduces the possibility to correct additional errors in the attack by exploiting
the linear and cyclic properties of BCH codes.

7.4.1 Improved DPA Attack

The DPA attack from Section 7.3.2 requires the concatenation of the targeted BCH code with a
repetition code in order to enable the proposed helper data manipulation. Furthermore, only the input
register is included into the power hypothesis, such that the power from the syndrome computation
is not covered by the model. In order to overcome these shortcomings, the power model is extended
to include the LFSR state of the syndrome computation. Furthermore, the helper data manipulation
is modified such that no concatenated repetition code is required and the decoder cannot detect the
manipulation.
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Syndrome LFSR Power Model The power model from Eq. (7.18) is very limited given that the
syndrome computation from Section 7.2.2 is carried out in parallel. Therefore, the improved DPA
attack uses a more complex power model based on the LFSRs of the syndrome computation. In the
following, the update of the LFSR registers from state v𝑖−1 to state v𝑖 by shifting bit 𝑐𝑖 into the LFSR
are modeled as a matrix multiplication

v𝑖 = A
[
𝑐𝑖

v𝑖−1

]
, (7.23)

where A is the state transition matrix for the LFSR defined by a minimal polynomial 𝜙(𝑥) from Eq. (7.7).3
Note that the registers are initialized with zeros before the first bit 𝑐0 is added, i.e., v−1 = 0.

The minimal polynomials used to calculate the syndromes according to Eq. (7.11) are of the form
𝜙(𝑥) = 𝑎𝑀𝑥𝑀 + . . . + 𝑎1𝑥 + 1 with degree 𝑀 := deg 𝜙(𝑥). The feedback vector a is derived from the
coefficients of 𝜙(𝑥) as a = [1, 𝑎1 , . . . , 𝑎𝑀−1]𝑇 . The 𝑀 × (𝑀 + 1) state transition matrix is

A =
[
I|a] = 

1 0 . . . 1
0 1 . . . 𝑎1
...

...
. . .

...
0 0 . . . 𝑎𝑀−1

 , (7.24)

i.e., the 𝑀 × 𝑀 identity matrix I represents the shift to the next register and the feedback vector a
adds the feedback of the Galois LFSR from the last register. Using the Hamming distance model and
following Eq. (7.23), the power consumption of a single LFSR is

𝑃𝐿𝐹𝑆𝑅 = HD (v𝑖 , v𝑖−1) (7.25)

and the overall power consumption from the 𝑁𝜙 ≤ 𝑡 different LFSRs results in

𝑃𝐿𝐹𝑆𝑅𝑠 =
𝑁𝜙−1∑
𝑝=0

𝑃𝐿𝐹𝑆𝑅,𝑝 . (7.26)

Note that the improved power model requires the correct values of preceding bits [𝑐0 , . . . , 𝑐𝑖−1] in
order to iteratively calculate the previous state v𝑖−1 from Eq. (7.23). As the initial values v−1 = 0 are
known, the requirement is fulfilled for the first bit. For all subsequent bits, the values are derived
from the previously attacked bits [𝑐0 , . . . , 𝑐𝑖−1].

Improved Helper Data Manipulation DPA attacks could be hampered by detecting erroneous decod-
ings and locking the device, e.g., by allowing only a limited number of failed decodings. Consequently,
the approach of parallel manipulation from Eq. (7.22) would be detected. It could be modified to
manipulate at most 𝑡 bits at once, i.e., the number of manipulated bits has to be less than the error
correcting capability of the BCH decoder. This would increase the number of traces by a factor of

⌈
𝑛
𝑡

⌉
.

Furthermore, the helper data manipulation approaches from Section 7.3.2 rely on the existence of a
concatenated repetition code, and the number of traces with a different manipulation pattern is fixed
to 𝑁𝑡 = 2𝑛𝑟𝑒𝑝 per attacked bit, i.e., extracting more information for the DPA attack is not possible with
the approach.4 In combination with the simple input register power model, attacks on stand-alone
BCH codes are not possible.

The improved DPA attack uses a different helper data manipulation compared to Eqs. (7.20)
and (7.22). Instead of a systematic manipulation pattern, 𝑡 bits are randomly manipulated for each
measurement

wman,j = [𝑥0 , 𝑥1 , . . . , 𝑥𝑛−1] , 𝑥𝑖 $← [0, 1] , s.t. HW
(
wman,j

)
= 𝑡 , (7.27)

3Note that in order to avoid confusion with the codeword bit index 𝑖, the index of 𝜙 is omitted in this paragraph.
4Note that repeated measurements can be used to increase the SNR [68].
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which ensures that the decoding of the BCH codeword does not fail. In combination with the
syndrome LFSR power model, the improved manipulation can be applied to BCH codes independent
of their concatenation to other codes. The number of different manipulation patterns according to
Eq. (7.27) is upper limited by

(𝑛
𝑡

)
, i.e., by the possibilities to distribute the 𝑡 manipulated bits among

the 𝑛 bits of the codeword. In contrast to the attack from Section 7.3.2, the number of traces 𝑁𝑡 of the
DPA attack can be chosen independently, i.e., there is no minimal number of traces that is required.

7.4.2 Horizontal Side-Channel Analysis

Horizontal Side-Channel Analysis (HSCA) is a powerful class of SCA attacks that combines the
power consumption of different parts of a trace [110, 111].5 Instead of aggregating information from
different measurements with varying input data, as for DPA attacks, HSCA is performed along the
time domain by combining different points in time of a single trace. The prerequisite for HSCA is that
the secret under attack is processed in different parts of the algorithm, and consequently appears in
different parts of the power trace.

Requirements For the scenario of attacks on BCH codes used for PUF-based key generation, HSCA
provides several improvements compared to the DPA attacks from Section 7.4.1.

• As HSCA operates on a single trace, the manipulation of helper data to generate differential
measurements is not required. Consequently, even if the write access to helper data is hampered,
attacks on a single trace with known helper data are still possible.

• While for vertical attacks noisy PUF measurements, i.e., where e ≠ 0, can constitute a problem
as the secret is not constant across measurements, HSCA is not influenced by bit errors in the
PUF response. As it operates on a single trace, it recovers the noisy codeword, which can be
corrected to the secret key as long as the number of errors is within the correction capability 𝑡.

Correlation-Based Horizontal Side-Channel Attack The HSCA on the BCH decoder compares the
power consumption of different points in time with the hypothetical power consumption for the
possible input sequences. Similar to DPA in Section 7.4.1, Pearson’s correlation coefficient is leveraged
to evaluate the similarity of the observed power consumption and the hypothetical values [104].

As the bits are serially shifted into the BCH decoder, a new codeword bit is added in each clock
cycle. The correlation-based HSCA attack targets sequences of𝑚 bits at once by modeling the expected
power consumption over 𝑚 clock cycles with the LFSR power model from Section 7.4.1. There are 2𝑚
different sequences that have to be considered as candidates, i.e., the hypothesis matrix H is of size
2𝑚 × 𝑚. The number of clock cycles 𝑚 that is modelled for each candidate is denoted as hypothesis

length in the following. For a longer hypothesis length, more information from different points in time
is included into the attack. However, the hypothesis matrix H grows exponentially in 𝑚, limiting the
hypothesis length by the available computing resources.

From the power trace t with 𝑁𝑠 samples, a sample for each clock cycle is selected resulting in a trace
segment t★ of 𝑚 samples.6 Similar to Eq. (7.13), the correlation coefficient between the rows hi of the
hypothetical power consumption H and the trace segment t★ is calculated for each candidate 𝑖:

𝜌𝑖 =

∑𝑚
𝑑=1

(
𝑡★𝑑 − 𝑡★

) (
ℎ𝑑,𝑖 − ℎ̄𝑖

)√∑𝑚
𝑑=1

(
𝑡★𝑑 − 𝑡★

)2√∑𝑚
𝑑=1

(
ℎ𝑑,𝑖 − ℎ̄𝑖

)2
, (7.28)

5As the time domain is usually plotted on the x-axis, horizontal refers to the fact that HSCA operates on shares from
different points in time. In contrast, vertical attacks use the same point in time from multiple traces.

6For simulated results, there are no alignment issues due to jitter. Note that for practical measurements it is also
possible to select more than one sample per clock cycle at the cost of additional computations: the samples have to the
mutually combined, i.e., for 𝑁′ samples per clock cycle 𝑁′𝑚 combinations exits for which a separate correlation according
to Eq. (7.28) has to be calculated.
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Table 7.1 Comparison of SCA attacks on BCH codes used for PUF-based key generation.

Power Model
Minimum
# Traces # Manipulations Detectable

Repetition
Code

Original Attack [58] Input register 𝑛 × 2𝑛𝑟𝑒𝑝 𝑛 × 2𝑛𝑟𝑒𝑝 no yes
Modified Attack [68] Input register 2 × 2𝑛𝑟𝑒𝑝 𝑛 × 2𝑛𝑟𝑒𝑝 yes yes

Input register 2 × 2𝑛𝑟𝑒𝑝 × ⌈
𝑛
𝑡

⌉
𝑛 × 2𝑛𝑟𝑒𝑝 no yes

Improved DPA Attack Syndrome LFSRs 𝑁𝑡 𝑁𝑡 × 𝑡 no no
HSCA Attack Syndrome LFSRs 1 – no no

where ℎ̄𝑖 and 𝑡★ denote the mean values of hi and t★ taken over the entire segment. The values 𝜌𝑖
are combined in the correlation vector P, where the index 𝑖 corresponds to the value of the candidate
sequence. The index with the highest correlation

𝑖𝑐𝑎𝑛𝑑 = arg max
0≤𝑖≤2𝑚−1

P (7.29)

provides the sequence determined by the attack. The bits [𝑐0 , . . . , 𝑐𝑚−1] are set according to the
sequence with the highest correlation. In the next step, the internal state of the LFSRs is calculated
from the bits retrieved from the attack. The hypotheses for the following𝑚 bits are computed, and the
bits [𝑐𝑚 , . . . , 𝑐2𝑚−1] are determined analogously. In order to determine the entire 𝑛-bit codeword, the
correlation-based attack is conducted

⌈
𝑛
𝑚

⌉
times. As outlined in Section 7.4.1, the LFSR-based power

hypothesis of subsequent sequences depends on the previously recovered codeword bits. Thus, if an
error in estimating one of the bits occurs, the model of the state v 𝑖−1 of the BCH decoder is erroneous
and subsequent hypotheses do not match.

Increasing the Robustness of the Attack The robustness of the attack can be increased by using
only the first bit of the retrieved candidate sequence from Eq. (7.29). Consequently, the hypotheses
have an overlap of 𝑚 − 1 positions with the hypotheses of preceding bits: The first bit is attacked with
a hypothesis length 𝑚, and the power consumption of bits 0 to 𝑚 − 1 is included in the hypothesis.
From the determined candidate only the first bit is used, i.e., the codeword guess is only updated by
𝑐0 instead of [𝑐0 , . . . , 𝑐𝑚−1]. The assumed internal state of the LFSRs is updated by the determined
candidate bit. In the next step, the bits 1 to 𝑚 are included in the hypothesis, and 𝑐1 is retrieved.
The procedure is repeated for the first 𝑛 − 𝑚 bits. For the last 𝑚 bits, the entire sequence is adopted
for [𝑐𝑛−𝑚 , . . . , 𝑐𝑛−1] to avoid using shorter hypothesis length for the last bits. This method comes at
the cost of an increased computational effort as instead of

⌈
𝑛
𝑚

⌉
correlation computations, 𝑛 − 𝑚 + 1

correlation computations are necessary. However, it also increases the robustness of the attack, and
is therefore used in the following.

7.4.3 Comparison of SCA Attacks

Table 7.1 compares the SCA attacks from Sections 7.3.2, 7.4.1 and 7.4.2. The first three rows summarize
the existing attacks from Section 7.3.2, including the modified attack that avoids detection of the
manipulation as outlined in Section 7.4.1. Due to the BCH input register power model, the attacks
rely on the concatenation with a repetition code. This also limits the number of different manipulation
patterns and therefore the available traces.

The extended attacks from this thesis, presented in Sections 7.4.1 and 7.4.2, employ the more
complex syndrome LFSR power model, which removes the requirement of a concatenated repetition
code. The improved DPA attack from Section 7.4.1 manipulates only 𝑡 bits per trace. Consequently,
as long as there are no additional errors in the PUF response, the BCH decoder corrects to the correct
key and the manipulation cannot be detected. The HSCA attack does not require any helper data
manipulations, and is done on a single trace.
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7.4.4 Attacking the Difference Codeword

Finally, a method is introduced that allows for correcting additional errors of the attack by exploiting
the linear and cyclic properties of BCH codes. From Section 7.1, for linear codes the sum c′ = c1 ⊕ c2
of two codewords c1 , c2 results in a valid codeword. Furthermore, for cyclic codes a cyclic shift of
the codeword results in a valid codeword. Consequently, for linear cyclic codes the vector d resulting
from the difference of subsequent bits of a codeword 𝑑𝑖 = 𝑐𝑖 ⊕ 𝑐𝑖+1 is also a codeword denoted as
difference codeword in the following [78].

The recovered codeword ĉ = c ⊕ ea is the correct codeword c subject to errors at positions defined
by the attack error ea. The errors can be corrected as long as their number HW(ea) is smaller than the
correction capability 𝑡 of the code under attack. Now, the difference codeword is

d̂ = [𝑐0 ⊕ 𝑒𝑎,0 ⊕ 𝑐1 ⊕ 𝑒𝑎,1 , 𝑐1 ⊕ 𝑒𝑎,1 ⊕ 𝑐2 ⊕ 𝑒𝑎,2 , . . . , 𝑐𝑛−1 ⊕ 𝑒𝑎,𝑛−1 ⊕ 𝑐0 ⊕ 𝑒𝑎,0] (7.30)
= d ⊕ da , (7.31)

i.e., the sum of the valid codeword d and the difference error da of the attack error ea. For the attack,
the use of d̂ can be beneficial if HW(da) ≤ 𝑡 < HW(ea), i.e., if the difference codeword d̂ is decodable,
while the codeword ĉ itself is not. The necessary condition is that the errors in ea are located in blocks
of neighboring bits, e.g., for ea = [001111110] the resulting difference error would be da = [001000010].
If the errors are scattered over the codeword, the difference codeword does not provide a benefit, e.g.,
ea = [011010110] results in da = [101111010].

If HW(da) ≤ 𝑡, decoding the difference codeword d̂ from Eq. (7.30) and re-encoding the result leads
to an error-free codeword

d = [𝑑0 , 𝑑1 . . . , 𝑑𝑛−1] = [𝑐0 ⊕ 𝑐1 , 𝑐1 ⊕ 𝑐2 , . . . , 𝑐𝑛−1 ⊕ 𝑐0] , (7.32)

from which the codeword c can be derived. Using the relation 𝑐𝑖+1 = 𝑐𝑖 ⊕ 𝑑𝑖 , the codeword bits are
mutually related with each other. By fixing one bit 𝑐𝑖 to either 0 or 1, there are two possibilities for c.

7.5 Simulated Side-Channel Analysis Results

This section provides simulated SCA results for the improved DPA attack and the HSCA attack from
Sections 7.4.1 and 7.4.2. In Section 7.5.1 the experimental setup with power trace simulation and
noise simulation is introduced. The results for the improved DPA attack in Section 7.5.2 show that it
is robust against noise. In contrast in Section 7.5.3, the horizontal attack requires a perfect match of
the power traces and the model as well as low noise levels, i.e., it is subject to practical limitations.

7.5.1 Experimental Setup

In order to experimentally analyze the SCA attacks, power traces from a behavioral simulation are
generated. By using simulated measurements, the attacks can be carried out under controlled noise
conditions to verify their robustness.

Power Trace Simulation

The workflow for generating traces for the analysis is depicted in Fig. 7.3. It allows for generating
simulated power traces for arbitrary binary, systematic BCH codes. For the evaluation, four different
codes are considered, where the (127, 64, 10) code and the (255, 131, 18) code are selected according to
Table 2.1. The (63, 36, 5) code has a similar code rate 𝑘/𝑛 as the first two codes, and the (15, 5, 3) code
is selected as an example for a small code with a lower code rate. Appendix D provides the minimal
polynomials of the selected codes that define the LFSR structure for the power model.

First, the Code Generation Framework [103] from Section 7.2.1 generates a Register-Transfer
Level (RTL) description of the BCH decoder, a set of test vectors, and a test bench. The CGF takes



95

TOFU


Code Generation
Framework (CGF)

𝑛, 𝑘, 𝑡, 𝑁𝑡 ,
manipulation pattern

<
test

vectors


test

bench

<

RTL



vcd_dump.tcl

<

dump000.vcd
dump001.vcd

...



parse



extract
signal IDs



synthesize

c, wman, c′


selected
signals

n

traces.hdf5

Figure 7.3 Workflow for generation of simulated power traces.

as inputs the code parameters (𝑛, 𝑘, 𝑡) and the number of test vectors, i.e., the number of traces 𝑁𝑡

for simulation. Different helper data manipulations wman can be added to the codeword for vertical
attacks. The RTL description is a set of VHDL files of the generated BCH code. A corresponding
test bench allows for verifying the functional behavior of the RTL code for different test vectors. The
test vectors consist of the secret codeword c, the helper data manipulation wman, and the resulting
processed codeword c′ = c ⊕wman. From the test bench and the generated test vectors, an additional
Tool command language (Tcl) script allows for generating Value Change Dump (VCD) simulation
traces from a behavioral simulation.

Second, the TOggle Foul-Up (TOFU) tool [112] transforms the VCD simulation traces into power
traces based on a Hamming distance leakage model. The tool consists of three steps: first the VCD
values are parsed. In a second step, the tool allows for selecting only a subset of signals from the
entire implementation, such that additional switching noise can be reduced. To specify the desired
entities, a list of signal literals can be passed to the signal extraction step. Finally, the power traces are
synthesized from the selected signals, resulting in a matrix of traces T that is stored in an Hierarchical
Data Format 5 (HDF5) file. In addition, the correct and noisy codeword, as well as the helper data
manipulation pattern for each trace are stored in the HDF5 file.

Noise Simulation

The power consumption of CMOS circuits consists of a static and a dynamic part, where the dynamic
power consumption caused by switching of cells is usually targeted by SCA. From an attackers
perspective, the power consumption is composed of different parts as

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑒𝑥𝑝 + 𝑃𝑠𝑤. 𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑒𝑙. 𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑐𝑜𝑛𝑠𝑡 , (7.33)

where 𝑃𝑒𝑥𝑝 is the exploitable power consumption, 𝑃𝑠𝑤. 𝑛𝑜𝑖𝑠𝑒 the switching noise, 𝑃𝑒𝑙. 𝑛𝑜𝑖𝑠𝑒 inherent
electronic noise of the circuit and 𝑃𝑐𝑜𝑛𝑠𝑡 a constant offset, independent of operations and data, e.g.,
caused by leakage currents [51]. The constant offset follows 𝑃𝑐𝑜𝑛𝑠𝑡 ∼ 𝒩(𝜇𝑐𝑜𝑛𝑠𝑡. , 0) and the electronic

noise is modeled as 𝑃𝑒𝑙. 𝑛𝑜𝑖𝑠𝑒 ∼ 𝒩(0, 𝜎), where 𝜇𝑐𝑜𝑛𝑠𝑡. is the mean and 𝜎 is the standard deviation.
The exploitable power consumption corresponds to all data and operation dependent components of
a circuit that are modeled by the attacker. In contrast, the switching noise is the part of the power
consumption that is data and operation dependent, but not captured by the model.

The traces generated from the CGF and TOFU in Section 7.5.1 are noise-free and do not consider
electronic noise terms typically contained in SCA measurements, i.e., the standard deviation of the
electronic noise is 𝜎 = 0. The noise-free power simulations allow only for investigating the influence
of the switching noise, i.e., to show that the attack works in principle. However, the robustness under
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electronic noise is of interest to determine the practical threat of an attack. Thus, a noise term is added
to the noise-free simulations in order to evaluate the influence of noisy measurements on the attack
success.

Electronic noise is approximated well by a normal distribution [51]. Assuming further that the
noise of different signals is uncorrelated, i.e., statistically independent, the noise is described as

𝑃𝑚𝑜𝑑𝑒𝑙𝑒 𝑙. 𝑛𝑜𝑖𝑠𝑒 =
∑
𝑖

𝒩 (0, 𝜎𝑖) = 𝒩 ©«0,
√∑

𝑖

𝜎2
𝑖
ª®¬ = 𝒩 (0, 𝜎) , (7.34)

i.e., the noise model combines all noise sources by a single normal distribution with the standard
deviation 𝜎. The noise is sampled independently for each point in time and is added to the samples
of the noise-free power trace.7

7.5.2 Improved DPA Attack

In this section, the improved DPA attack from Section 7.4.1 is investigated. For all codes, 𝑁𝑡 =
10000 traces are simulated with a fixed codeword that is randomly chosen for each code. All signals
from the BCH decoder are included in the simulated power trace, i.e., the input register, the syndrome
calculation, BMA and the Chien search. In order to enable the DPA attack, helper data manipulation
of different bits per trace is a requirement. The improved manipulation pattern from Section 7.4.1 that
changes 𝑡 bits in each trace is applied. Nine different noise levels ranging from 𝜎 = 1 to 𝜎 = 200 are
simulated with ten repetitions per noise level. The repetitions ensure that the influence of favorable
or unfavorable noise additions is minimized by taking the average attack success over all repetitions.

In order to determine the attack success, the number of errors ea = ĉ⊕ c in the codeword ĉ retrieved
by the attack compared to the correct codeword c is related to the correction capability 𝑡 of the code.
If the number of errors introduced by the attack is less than the correction capability, the attacker
can decode the secret key k, and the attack is deemed successful. Following the difference codeword
approach from Section 7.4.4, additionally the same comparison is done for the difference codeword d̂
respectively the difference error from the attack da, i.e.,

Attack success =
{

1 if HW(da) ≤ 𝑡 ∨HW(ea) ≤ 𝑡
0 otherwise. (7.35)

Fig. 7.4 shows results for the improved DPA based on traces from a behavioral simulation. The
number of traces is increased for different noise levels and the averaged attack success among the
ten repetitions is provided. Independent of the code parameters, the attack success increases for an
increasing number of traces. This is expected for a CPA attack as the influence of noise is averaged
out with an increasing number of traces. The noise level that allows for a successful attack is similar
across the different code parameters; a noise level of 𝜎 ≤ 10 allows for attacking the selected code
successfully with more than 1000 traces. Even for increased noise conditions of 𝜎 = 50, the attack
success is above 0.5 for the available 10000 traces, i.e., an attack succeeds in more than half of the
attempts.

An exception is the (15, 5, 3) BCH code that can also be attacked at higher noise levels with a
probability above 0.5 in many cases as shown in Fig. 7.4a. First, the lower code rate of the (15, 5, 3) code
adds additional redundancy in the codeword that is beneficial for the attacker as relatively more errors
can be corrected. Second, note that the number of different manipulation patterns are

(15
3
)
= 455

according to Section 7.4.1, i.e., patterns are used more than once for 𝑁𝑡 > 455. In other words, traces
7The noise level 𝜎 for load/store instructions has been measured on different microcontroller architectures for a noisy

Hamming Weight (HW) model HW(𝑎) + 𝒩(0, 𝜎) of an intermediate 𝑎 [113]. On an 8-bit microcontroller (XMEGA 128D),
for 𝜎 = 0.5 the model matches the practical measurements and for an 32-bit microcontroller (STM32F405) the standard
deviation varies from 𝜎 = 0.4 to 𝜎 = 3.0, where averaging over 10 traces reduces the noise level to 𝜎 = 0.2 − 1.3. While the
noise levels have been obtained on microcontrollers and a HW model has been used, the values provide a reference point.
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1(a) (15, 5, 3) BCH code
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1(c) (127, 64, 10) BCH code
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Figure 7.4 Average attack success on simulated traces for the improved DPA: Noise vs. traces.

with the same manipulation pattern occur more than once, and (similar to averaging) the SNR is
improved.

Finally, for the (15, 5, 3) code there is a higher number of cases where HW(da) ≤ 𝑡, while HW(ea) > 𝑡,
i.e., where decoding the difference codeword d̂ provides benefits over decoding the codeword ĉ
directly. The effect is depicted in Fig. 7.5 in terms of the number of repetitions where the difference
codeword d̂ yields a successful attack, but the codeword ĉ does not.8 For the (15, 5, 3) BCH code
in Fig. 7.5a, the use of the difference codeword is advantageous in particular for higher noise levels
𝜎 > 50. The region in Fig. 7.5a, where decoding d̂ provides an advantage, corresponds to region at
which the (15, 5, 3) code can still be attacked in Fig. 7.4a. In contrast, in Figs. 7.5b and 7.5c for the
(63, 36, 5) and the (127, 64, 10) BCH code, attacking the difference codeword provides an advantage in
only a few cases.

For all codes, the cases are in regions at the border between successful and unsuccessful attacks in
Fig. 7.4. Thus, the approach proposed in Section 7.4.4 provides indeed an advantage compared to
only decoding the codeword ĉ under certain conditions. In particular for smaller codes and higher
noise levels, results can be improved compared to using only the codeword ĉ.

7.5.3 On the Limits of Horizontal SCA of BCH Codes

This section provides simulation results for the correlation-based HSCA attack from Section 7.4.2.
The same four BCH codes as in Section 7.5.2 are compared. As the horizontal attack uses only a single
trace for the attack, increasing the number of traces per codeword, as for the DPA, does not provide
any benefit. Instead, for each code 100 codewords are randomly chosen and the attack is carried out
on the different codewords to reduce the influence of single codewords.

8The (255, 131, 18) code is not depicted in Fig. 7.5 as there is no case in which the difference codeword provides a benefit.
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Figure 7.5 Improved DPA on simulated traces: Advantage of decoding the difference codeword d̂ compared to
decoding only the retrieved codeword ĉ.

For the simulated power consumption of the entire BCH code, the horizontal attack does not
succeed. Therefore, the simulation takes only the LFSRs of the syndrome computation into account, i.e.,
switching noise from the input buffer, the syndrome logic, the BMA and the Chien search is excluded.
Eight noise levels are simulated ranging from 𝜎 = 0.1 to 𝜎 = 5, which is lower compared to the
noise used for the improved DPA. For the smaller (15, 5, 3) and (63, 36, 5) codes ten repetitions per
codeword and noise level are simulated. As the time for the attacks increases for larger codes, for
the (127, 64, 10) and (255, 131, 18) codes only a single repetition is simulated per codeword and noise
level. The HSCA attack has a degree of freedom, namely the hypothesis length. For the simulations,
three different choices 𝑚 ∈ {8, 10, 12} are considered. Larger hypothesis length come at the cost of
an increased computation time and memory consumption as the size of the hypothesis matrix H
grows exponentially with the hypothesis length 𝑚. Therefore, the choice of the hypothesis length is
practically limited by the computational resources, and for the results a trade-off in favor of simulating
multiple codewords is made.

Figs. 7.6 to 7.9 show the simulation results for the HSCA. The attack success according to Eq. (7.35),
averaged over the different codewords, is depicted for an increasing noise level. For simulations that
use multiple repetitions per noise levels, box plots indicate the variation of the average attack success
across the repetitions. The orange marker is the median value and the boxes span from the first to the
third quartile of the data, i.e., half of the values lie within the Inter-Quartile Range (IQR) marked by
the boxes. The circles indicate outliers that extend from the box by more than 1.5× of the IQR marked
by the whiskers.

For all codes, increasing the hypothesis length 𝑚 improves the attack success. This is expected
as more clock cycles are included into the hypothesis. Consequently, the correlation includes more
points in time, and is more robust against noise. For noise levels 𝜎 > 2.5, the horizontal attack is only
successful for some codewords of the (15, 5, 3) BCH code in Fig. 7.6. An attack success above 0.75 is
reached for 𝜎 ≤ 1.0 with 𝑚 = 12 for the (15, 5, 3) and the (63, 36, 5) codes in Figs. 7.6 and 7.7. For
the (127, 64, 10) code in Fig. 7.8 and the (255, 131, 18) code in Fig. 7.9, an attack success above 0.75 is
reached for 𝜎 ≤ 1.5 with 𝑚 = 12. The results indicate that the attack is slightly more robust for larger
codes. A possible reason is that larger codes contain more LFSRs for the syndrome computation, i.e.,
the number of modeled registers is larger compared to smaller codes. Consequently, it is less likely
that different candidates lead to similar hypothetical power consumption and the probability that the
first bit of the selected candidate is wrong is decreased.

The results show that HSCA on BCH codes are possible in theory. The attack succeeds for power
traces from a behavioral simulation with low additive noise, but only if switching noise is neglected.
For a practical application, an attacker would need to resolve only the syndrome computation LFSRs,
e.g., by localized EM measurements. At the same time the noise of the measurements must be very
low. These strong requirements emphasize that the HSCA faces severe limitations regarding its
practical application.
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Figure 7.6 Results for the simulated horizontal SCA for the (15, 5, 3) BCH code.

0.
1

0.
25 0.
5

1.
0

1.
5

2.
0

2.
5

5.
0

Noise level (σ)

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

at
ta
ck

su
cc

es
s

(1
0
re
pe

tit
io
ns

)

mean

1(a) 𝑚 = 8

0.
1

0.
25 0.
5

1.
0

1.
5

2.
0

2.
5

5.
0

Noise level (σ)

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

at
ta
ck

su
cc

es
s

(1
0
re
pe

tit
io
ns

)

mean

1(b) 𝑚 = 10
0.
1

0.
25 0.
5

1.
0

1.
5

2.
0

2.
5

5.
0

Noise level (σ)

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

at
ta
ck

su
cc

es
s

(1
0
re
pe

tit
io
ns

)

mean

1(c) 𝑚 = 12

Figure 7.7 Results for the simulated horizontal SCA for the (63, 36, 5) BCH code.
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Figure 7.8 Results for the simulated horizontal SCA for the (127, 64, 10) BCH code.
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Figure 7.9 Results for the simulated horizontal SCA for the (255, 131, 18) BCH code.
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7.6 Conclusion

The improved DPA attack from Section 7.4.1, using the syndrome power model and a modified helper
data manipulation, is able to attack stand-alone BCH codes without the need for a concatenated
repetition code. Manipulating only 𝑡 helper data bits per trace ensures that the decoding result is not
affected and the manipulations cannot be detected by the decoder. Using the difference codeword
as proposed in Section 7.4.4, can improve the vertical attack in particular for small codes and higher
noise levels. The improved DPA attack is robust for a noise level of 𝜎 ≤ 50 with up to𝑁𝑡 = 10000 traces
and for a noise level of 𝜎 ≤ 10 with only 𝑁𝑡 = 1000 traces.

The results for the HSCA attack show that the approach faces practical limitations: The simulated
power measurements include only the LFSRs of the syndrome computation, i.e., switching noise is
neglected. This would imply that an attacker is able to resolve the relevant part of the circuit with
high precision measurements, e.g., by using localized EM measurements. Furthermore, the noise
levels that can be handled by the attack are considerably lower compared to the noise levels for the
improved DPA attack. In other words, even if a spatial resolution could be achieved that allows for
measuring only the LFSRs, additionally measurements with a high SNR would be required.

Summing up, if helper data manipulation is possible, countermeasures such as codeword mask-
ing [49] should be implemented to prevent DPA attacks. The HSCA on single traces without helper
data manipulation is theoretically possible, but practically limited.
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8 Conclusion

This thesis demonstrated the threat of SCA of PUF primitives by practical attacks on the TERO
PUF and the Loop PUF showing that ring-based PUF primitives can be attacked by analyzing the
duration or frequency of the oscillations. The comparison of unprotected ring-based PUF primitives
regarding the difficulty of SCA showed that primitives deriving the secret from the stable frequency
of a ring, such as Loop and RO PUF, are particularly prone to SCA. For primitives, whose secret is not
directly related to the frequency, e.g., TERO, BR, and TBR PUF, the complexity of the measurement
methods and their required precision for SCA increases significantly. While the unprotected Loop
PUF is an easy target for SCA, the use of a single counter enables efficient protection mechanism,
and a set of countermeasures has been proposed for the Loop PUF primitive. First, for sign-based
bit derivation temporal masking, i.e., randomizing the order of two challenges, prevents an attacker
from obtaining information about the corresponding secret bit. Deriving the randomness from the
Loop PUF allows for constructing a self-secured PUF primitive. Second, methods for protecting
amplitude-based bit derivation have been investigated with a particular focus on the TMHD scheme.
Lightweight countermeasures based on the randomization of the challenge order do not provide a
sufficient level of protection. However, the modified ICLooPUF primitive hides spectral side-channel
leakage by interleaving the measurements of two challenges.

The different approaches to protect the Loop PUF highlight that the design of countermeasures for
PUFs has to consider the combination of the PUF primitive and its bit derivation method. Counter-
measures that focus only on the primitive may not be suitable if the bit derivation method is changed,
potentially putting the security of the key generation at risk. However, countermeasure mechanisms
can be transferred to other primitives as exemplified for temporal masking to the RO PUF and TERO
PUF.

Finally, SCA attacks on the error correction for PUF-based key generation have been investigated.
The widely used class of BCH codes has been evaluated regarding the possibility of vertical and
horizontal SCA attacks. An improved DPA attack allows for attacking stand-alone BCH codes in-
dependent of the concatenation with a repetition code by including the LFSRs of the syndrome
computation in the power model. Independent of the code parameters, it is robust against noise.
Additionally, exploiting the properties of linear cyclic codes by using the difference codeword can
increase the attack success under certain conditions. Therefore, DPA attacks have to be considered a
serious threat that requires countermeasures. Restricting the write access to the helper data impedes
vertical SCA attacks, such as DPA. However, the proposed correlation-based horizontal SCA attack
combines different points in time of a single trace and does not rely on helper data manipulation.
The results from simulated power measurements show that the attack requires a perfect match of the
power measurements and the attacker’s power model. Additionally, its application is limited to very
low levels of noise. Thus, while theoretically feasible, horizontal SCA faces practical limitations in
terms of the needed local resolution and the SNR.

Summing up, this thesis showed that countermeasures are required to enable a protected key
generation from ring-based PUFs. Countermeasures for the Loop PUF have been proposed that
protect sign-based and amplitude-based bit derivation and can partially be transferred to other
primitives. Furthermore, DPA attacks of BCH codes used to correct errors in the PUF response have
been extended to stand-alone codes, and the possibility and limitations of horizontal SCA have been
analyzed.
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A Analysis of the TMHD Scheme: With Helper Data
Access and Without Temporal Masking

This section provides details for the attack success of an attacker, who attacks a Loop PUF without
the temporal masking countermeasure and the TMHD bit derivation, and has helper data access. The
additional helper data information improves the attack success compared to the attack in Section 5.2.3,
which highlights that the TMHD scheme without further protection enables SCA. Note that without
temporal masking, the frequency difference 𝑑𝑓 would be revealed independently of the helper data
scheme, i.e., the following analysis is rather of theoretical interest. However, the results show that
the reliability information of the TMHD can also be exploited by the attacker and improves the attack
compared to the scenario without helper data knowledge.

Figs. A.1a and A.1b depict the attack scenario assuming helper data knowledge. As an example,
the use of metric 𝑀1 is depicted, where an attacker can use the bounds −𝑇1★ and 𝑇2★ instead of ±𝑎★
if no helper data is known. Compared to Figs. 5.1a and 5.1b, the gray area below the distribution of
observed values is significantly smaller. This indicates that the attacker benefits from the reliability
information encoded in the helper data. The attack success probability is formalized in the following.

Assuming metric 𝑀1 and the value 𝑑𝑓 > 𝑎 during enrollment the actual PUF bit is 𝑟𝐶 = 0 according
to Eqs. (2.4) and (2.5). The attacker will know that 𝑀1 is the metric but any observed value −𝑇1★ ≤
𝑑𝑓 ′𝐶 < 𝑇2★ is decoded as 𝑟𝐶 = 1 ≠ 𝑟𝐶 . Now for 𝑑𝑓 ★ ∼ 𝒩(𝑑𝑓, 𝜎𝑎𝑑𝑣.), the probability for this event is

𝑃1(𝑑𝑓, 𝜎𝑎𝑑𝑣.) = 𝑃𝑟[𝑟𝐶 ≠ 𝑟𝐶 |𝑤𝑏𝑑
𝐶 = 𝑀1, 𝑑 𝑓 > 𝑎] (A.1)

=
ˆ 𝑇2★

−𝑇1★
𝜙★ (

𝑑𝑓 ★; 𝑑𝑓, 𝜎𝑎𝑑𝑣.
)

d𝑑𝑓 ★.
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Figure A.1 Visualization of the attack failure for attacker with helper data knowledge. As an example metric
𝑀1 is used, but no temporal masking is effective.
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Figure A.2 Helper data/no temporal masking: Simulation of the attack success probability for different levels
of attacker noise 𝜎𝑎𝑑𝑣..

The boundaries −𝑇1★ and 𝑇2★ depend on the noise the attacker faces1, thus Eq. (A.1) establishes a
relationship between the SNR and failure probability. Similarly, for the case when the metric is 𝑀1
and 𝑟𝐶 = 1, the failure probability is:

𝑃2(𝑑𝑓, 𝜎𝑎𝑑𝑣.) = 𝑃𝑟[𝑟𝐶 ≠ 𝑟𝐶 |𝑤𝑏𝑑
𝐶 = 𝑀1,−𝑎 ≤ 𝑑𝑓 ≤ 0] (A.2)

=
ˆ −𝑇1★

−∞
𝜙★ (

𝑑𝑓 ★; 𝑑𝑓, 𝜎𝑎𝑑𝑣.
)

d𝑑𝑓 ★ +
ˆ ∞
𝑇2★

𝜙★ (
𝑑𝑓 ★; 𝑑𝑓, 𝜎𝑎𝑑𝑣.

)
d𝑑𝑓 ★.

In an analogous way the failure probability for metric 𝑀2 with 𝑟𝐶 = 0 is defined as

𝑃3(𝑑𝑓, 𝜎𝑎𝑑𝑣.) = 𝑃𝑟[𝑟𝐶 ≠ 𝑟𝐶 |𝑤𝑏𝑑
𝐶 = 𝑀2, 𝑑 𝑓 < −𝑎] (A.3)

=
ˆ 𝑇1★

−𝑇2★
𝜙★ (

𝑑𝑓 ★; 𝑑𝑓, 𝜎𝑎𝑑𝑣.
)

d𝑑𝑓 ★,

and for metric 𝑀2 with 𝑟𝐶 = 1 it results in

𝑃4(𝑑𝑓, 𝜎𝑎𝑑𝑣.) = 𝑃𝑟[𝑟𝐶 ≠ 𝑟𝐶 |𝑤𝑏𝑑
𝐶 = 𝑀2, 0 < 𝑑𝑓 ≤ 𝑎] (A.4)

=
ˆ −𝑇2★

−∞
𝜙★ (

𝑑𝑓 ★; 𝑑𝑓, 𝜎𝑎𝑑𝑣.
)

d𝑑𝑓 ★ +
ˆ ∞
𝑇1★

𝜙★ (
𝑑𝑓 ★; 𝑑𝑓, 𝜎𝑎𝑑𝑣.

)
d𝑑𝑓 ★.

From the probabilities in Eqs. (A.1) to (A.4), which define the entire support of 𝑑𝑓, the overall
success probability to recover a PUF bit is given by

𝑃𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑑𝑓, 𝜎𝑎𝑑𝑣.) = 1 −
4∑
𝑖=1

𝑃𝑖(𝑑𝑓, 𝜎𝑎𝑑𝑣.). (A.5)

Fig. A.2 depicts the success probability for different levels of noise 𝜎𝑎𝑑𝑣. an attacker faces and depend-
ing on the enrollment value 𝑑𝑓. The results show that 𝑑𝑓 ≈ ±𝑎 and 𝑑𝑓 ≈ 0 contain most uncertainty
for the attacker, i.e., it is most likely that the estimated value for the PUF bit 𝑟′𝐶 is wrong. The attacker
faces the highest uncertainty for values of 𝑑𝑓 close to the boundary between 𝑟 = 0 and 𝑟 = 1. On the
one hand, this means the attack will not yield a 100% success rate for all PUF bits. On the other hand,
the attacker is provided with reliability information for the attack results that allow for developing a
smart guessing strategy.

1Note: For the standard normal distribution 𝜇 = 0, 𝜎 = 1, the resulting value are | ±𝑇1| = 0.31863936, | ± 𝑎 | = 0.67448975
and | ± 𝑇2| = 1.15034938. Depending on 𝜎, the value are scaled accordingly. Notably the points that define the octiles are
not equidistant.
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B Additional Results for On-Chip Power Analysis of
the Loop PUF

This appendix provides further details for the results in Section 4.2.3. First, Appendix B.1 shows the
comparison of estimated and real counter values for Figs. 4.11 to 4.13. Second, Appendix B.2 provides
the spectra from the TDC sensor data.

B.1 Comparison of Estimated and Real Counter Values

This section provides some additional figures that show the relationship between the actual counter
difference on the device and counter difference retrieved by SCA for the different scenarios. In
Figs. B.1 to B.4 the results for the CW305 with 𝑐𝑙𝑘𝑡𝑑𝑐 = 40 MHz from Fig. 4.11 are depicted. Similarly,
Figs. B.5 to B.8 depict the match for the Basys3 with 𝑐𝑙𝑘𝑡𝑑𝑐 = 30 MHz from Fig. 4.12. Finally, Figs. B.9
and B.10 provide details for the comparison of and remote SCA of the CW305 with 𝑐𝑙𝑘𝑡𝑑𝑐 = 16 MHz
and classical SCA, corresponding to the results in Fig. B.4.
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Figure B.1 Comparison of real counter value and SCA results from counter FoIs on the CW305 for
𝑐𝑙𝑘𝑡𝑑𝑐 = 40 MHz and close placement – corresponding to Fig. 4.11a.
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Figure B.2 Comparison of real counter value and SCA results from oscillator FoIs on the CW305 for
𝑐𝑙𝑘𝑡𝑑𝑐 = 40 MHz and close placement – corresponding to Fig. 4.11b.
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Figure B.3 Comparison of real counter value and SCA results from counter FoIs on the CW305 for
𝑐𝑙𝑘𝑡𝑑𝑐 = 40 MHz and separate placement and – corresponding to Fig. 4.11c.
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Figure B.4 Comparison of real counter value and SCA results from oscillator FoIs on the CW305 for
𝑐𝑙𝑘𝑡𝑑𝑐 = 40 MHz and separate placement – corresponding to Fig. 4.11d.
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Figure B.5 Comparison of real counter value and SCA results from counter FoIs on the Basys3 for
𝑐𝑙𝑘𝑡𝑑𝑐 = 30 MHz and close placement – corresponding to Fig. 4.12a.
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Figure B.6 Comparison of real counter value and SCA results from oscillator FoIs on the Basys3 for
𝑐𝑙𝑘𝑡𝑑𝑐 = 30 MHz and close placement – corresponding to Fig. 4.12b.
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Figure B.7 Comparison of real counter value and SCA results from counter FoIs on the Basys3 for
𝑐𝑙𝑘𝑡𝑑𝑐 = 30 MHz and separate placement – corresponding to Fig. 4.12c.
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Figure B.8 Comparison of real counter value and SCA results from oscillator FoIs on the Basys3 for
𝑐𝑙𝑘𝑡𝑑𝑐 = 30 MHz and separate placement – corresponding to Fig. 4.12d.
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Figure B.9 Comparison of real counter value and SCA results from counter FoIs on the CW305 for
𝑐𝑙𝑘𝑡𝑑𝑐 = 16 MHz and close placement.
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Figure B.10 Comparison of real counter value and SCA results from counter FoIs on the CW305 for classical
SCA from power measurements.
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B.2 Frequency Spectrum Plots

Fig. B.11 depicts the averaged spectra for 63 different challenges from the Basys3 board, separate
placement, and with 𝑐𝑙𝑘𝑡𝑑𝑐 = 30 MHz. The spectrum for each challenges is averaged over 500 rep-
etitions to increase the SNR and smoothing of the spectrum is applied to ease peak detection. In
addition to the entire frequency range, a zoom to the FoI range used for the attack is shown. The
frequency peaks in the FoI range span about 30 kHz. Consequently, the peaks are separate enough,
such that automatic peak detection can distinguish them. This is also indicated by the comparison of
real and estimated counter values in Fig. B.8.

Figure B.11 Frequency spectrum averaged for 500 repetitions on the Basys3 board, 𝑐𝑙𝑘𝑡𝑑𝑐 = 30 MHz and separate
placement.
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C Theoretical Leakage Behavior of the ICLooPUF

This appendix provides a detailed derivation of the theoretical frequency leakage of the ICLooPUF
in Eq. (5.20). First, a solution for infinite signals is provided in Appendix C.1, and subsequently
extended to time-limited signals in Appendix C.2.

C.1 Infinite Time Signals

The signal generated by the Interleaved Loop-PUF can be described as a series of interleaved sine
waves, with periods 𝑇𝐶 and 𝑇𝐶′, i.e.,

𝑔(𝑡) = 𝑔1(𝑡) + 𝑔2(𝑡) (C.1)

with

𝑔1(𝑡) =
𝑁∑
𝑘=1

sin
(

2𝜋
𝑇𝐶
(𝑡 − (𝑘 − 1) (𝑇𝐶 + 𝑇¬𝐶))

)
· Θ ©«

(
𝑡 −

(
(𝑘 − 1) (𝑇𝐶 + 𝑇¬𝐶) + 𝑇𝐶

2

))
𝑇𝐶

ª®®¬ (C.2)

𝑔2(𝑡) =
𝑁−1∑
𝑘=1

sin
(

2𝜋
𝑇¬𝐶
(𝑡 − (𝑘𝑇𝐶 + (𝑘 − 1)𝑇¬𝐶))

)
· Θ ©«

(
𝑡 − (𝑘 (𝑇𝐶 + 𝑇¬𝐶)) + 𝑇¬𝐶

2

)
𝑇¬𝐶

ª®®¬ .
In order to simulate the theoretical spectral leakage behavior, the frequency representation of 𝑔1(𝑡)
and 𝑔2(𝑡) is of interest.

The Fourier series, which is a periodic function with period 𝑃 consisting of weighted sinusoids, can
approximate an arbitrary function 𝑠(𝑡) by

𝑠𝑁 (𝑡) =
𝑁∑

𝑛=−𝑁
𝑐𝑛 · 𝑒 𝑗

2𝜋
𝑃 𝑛𝑡 , 𝑐𝑛 =

1
𝑃

ˆ
𝑃
𝑠(𝑡) · 𝑒−𝑗 2𝜋𝑃 𝑛𝑡 𝑑𝑡. (C.3)

The signal 𝑔(𝑡) from Eq. (C.1) is periodic with 𝑃 = 𝑇𝐶 + 𝑇𝐶′, such that the coefficients 𝑐𝑛 are obtained
as

𝑐𝑛 =
1

𝑇𝐶 + 𝑇𝐶′
ˆ 𝑇𝐶+𝑇𝐶′

0
𝑔(𝑡) · 𝑒−𝑗

2𝜋
𝑇𝐶+𝑇𝐶′ 𝑛𝑡 𝑑𝑡 (C.4)

=
1

𝑇𝐶 + 𝑇𝐶′
[ˆ 𝑇𝐶

0
sin

(
2𝜋
𝑇𝐶
𝑡
)
· 𝑒−𝑗

2𝜋
𝑇𝐶+𝑇𝐶′ 𝑛𝑡 𝑑𝑡 +

ˆ 𝑇𝐶+𝑇𝐶′

𝑇𝐶
sin

(
2𝜋
𝑇𝐶′
(𝑡 − 𝑇𝐶)

)
· 𝑒−𝑗

2𝜋
𝑇𝐶+𝑇𝐶′ 𝑛𝑡 𝑑𝑡

]
(C.5)
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From the product rule (𝑢𝑣)′ = 𝑢′𝑣 + 𝑣′𝑢, it follows that
´ 𝑏
𝑎 𝑢
′𝑣 = [𝑢𝑣]𝑏𝑎 −

´ 𝑏
𝑎 𝑣
′𝑢. With 𝑢′ = 𝑒−𝑗𝑑𝑡 and

𝑣 = sin
( 2𝜋
𝑐 (𝑡 − 𝑡′)

)
the integral is solved as (𝑏 > 𝑎, and 𝑎, 𝑏, 𝑐, 𝑑, 𝑡′ ≥ 0)

ˆ 𝑏

𝑎
𝑒−𝑗𝑑𝑡 sin

(
2𝜋
𝑐
(𝑡 − 𝑡′)

)
𝑑𝑡 =

[
sin

(
2𝜋
𝑐
(𝑡 − 𝑡′)

)
1
−𝑗𝑑 · 𝑒

−𝑗𝑑𝑡
] 𝑏
𝑎︸                                 ︷︷                                 ︸

𝐴

−
ˆ 𝑏

𝑎

1
−𝑗𝑑 · 𝑒

−𝑗𝑑𝑡 2𝜋
𝑐
· cos

(
2𝜋
𝑐
(𝑡 − 𝑡′)

)
𝑑𝑡

= 𝐴 + 2𝜋
𝑗𝑑𝑐

ˆ 𝑏

𝑎
𝑒−𝑗𝑑𝑡︸︷︷︸
�̂�′

· cos
(

2𝜋
𝑐
(𝑡 − 𝑡′)

)
︸              ︷︷              ︸

�̂�

𝑑𝑡

= 𝐴 + 2𝜋
𝑗𝑑𝑐

([
cos

(
2𝜋
𝑐
(𝑡 − 𝑡′)

)
1
−𝑗𝑑 · 𝑒

−𝑗𝑑𝑡
] 𝑏
𝑎
−
ˆ 𝑏

𝑎

2𝜋
𝑗𝑑𝑐
· 𝑒−𝑗𝑑𝑡 · sin

(
2𝜋
𝑐
(𝑡 − 𝑡′)

)
𝑑𝑡

)
= 𝐴 + 2𝜋

𝑑2𝑐

[
cos

(
2𝜋
𝑐
(𝑡 − 𝑡′)

)
· 𝑒−𝑗𝑑𝑡

] 𝑏
𝑎
+

(
2𝜋
𝑑𝑐

)2 ˆ 𝑏

𝑎
𝑒−𝑗𝑑𝑡 · sin

(
2𝜋
𝑐
(𝑡 − 𝑡′)

)
𝑑𝑡

Grouping the integrals, and assuming 𝑎 = 𝑡′, 𝑏 = 𝑘𝑐+ 𝑡′, 𝑘 ∈ ℕ, i.e., integration is done over a period
of the harmonic functions, the solution can be simplified:

ˆ 𝑏

𝑎
𝑒−𝑗𝑑𝑡 sin

(
2𝜋
𝑐
(𝑡 − 𝑡′)

)
𝑑𝑡 =

(
1 −

(
2𝜋
𝑑𝑐

)2
)−1 ©«

[
sin

(
2𝜋
𝑐
(𝑡 − 𝑡′)

)
𝑗
𝑑
· 𝑒−𝑗𝑑𝑡

] 𝑏
𝑎︸                              ︷︷                              ︸

=0

+ 2𝜋
𝑑2𝑐

[
cos

(
2𝜋
𝑐
(𝑡 − 𝑡′)

)
· 𝑒−𝑗𝑑𝑡

] 𝑏
𝑎

ª®®®®®¬
(C.6)

=

(
1 −

(
2𝜋
𝑑𝑐

)2
)−1

2𝜋
𝑑2𝑐

(
𝑒−𝑗𝑑𝑏 − 𝑒−𝑗𝑑𝑎

)
=

2𝜋𝑐
𝑑2𝑐2 − 4𝜋2

(
𝑒−𝑗𝑑𝑏 − 𝑒−𝑗𝑑𝑎

)
(C.7)

With 𝑑 = 2𝜋𝑛
𝑇𝐶+𝑇𝐶′ , 𝑎 = 0, 𝑏 = 𝑇𝐶 , 𝑐 = 𝑇𝐶 , and 𝑡′ = 0 the first integral in Eq. (C.5) solves to

ˆ 𝑇𝐶

0
𝑒
−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑡 sin
(

2𝜋
𝑇𝐶
𝑡
)
𝑑𝑡 =

2𝜋𝑇𝐶(
2𝜋𝑛

𝑇𝐶+𝑇𝐶′
)2
𝑇2
𝐶 − 4𝜋2

(
𝑒
−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶 − 1
)

(C.8)

=
𝑇𝐶

2𝜋𝑛2

(𝑇𝐶+𝑇𝐶′)2
𝑇2
𝐶 − 2𝜋

(
𝑒
−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶 − 1
)
=
𝑇𝐶
2𝜋

1
𝑛2

(𝑇𝐶+𝑇𝐶′)2
𝑇2
𝐶 − 1

(
𝑒
−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶 − 1
)

(C.9)

With 𝑑 = 2𝜋𝑛
𝑇𝐶+𝑇𝐶′ , 𝑎 = 𝑇𝐶 , 𝑏 = 𝑇𝐶 + 𝑇𝐶′, 𝑐 = 𝑇𝐶′, and 𝑡′ = 𝑇𝐶 the second integral in Eq. (C.5) solves to

ˆ 𝑇𝐶+𝑇𝐶′

𝑇𝐶
𝑒
−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑡 sin
(

2𝜋
𝑇𝐶′
(𝑡 − 𝑇𝐶)

)
𝑑𝑡 =

2𝜋𝑇𝐶′(
2𝜋𝑛

𝑇𝐶+𝑇𝐶′
)2
𝑇2
𝐶′ − 4𝜋2

(
𝑒
−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ (𝑇𝐶+𝑇𝐶′) − 𝑒−𝑗 2𝜋𝑛
𝑇𝐶+𝑇𝐶′ 𝑇𝐶

)
(C.10)

=
𝑇𝐶′
2𝜋

1
𝑛2

(𝑇𝐶+𝑇𝐶′)2
𝑇2
𝐶′ − 1

(
1 − 𝑒−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶
)

(C.11)
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Substituting the expressions from Eqs. (C.8) and (C.10) into Eq. (C.3) results in the Fourier series
approximation of the signal:

𝑠𝑁 (𝑡) =
𝑁∑

𝑛=−𝑁
𝑐𝑛 · 𝑒 𝑗

2𝜋
𝑇𝐶+𝑇𝐶′ 𝑛𝑡

=
𝑁∑

𝑛=−𝑁

1
𝑇𝐶 + 𝑇𝐶′

©«𝑇𝐶2𝜋
1

𝑛2

(𝑇𝐶+𝑇𝐶′)2
𝑇2
𝐶 − 1

(
𝑒
−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶 − 1
)
+ 𝑇𝐶′2𝜋

1
𝑛2

(𝑇𝐶+𝑇𝐶′)2
𝑇2
𝐶′ − 1

(
1 − 𝑒−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶
)ª®¬ 𝑒 𝑗

2𝜋
𝑇𝐶+𝑇𝐶′ 𝑛𝑡

=
1

2𝜋

𝑁∑
𝑛=−𝑁

1
𝑇𝐶 + 𝑇𝐶′

©« 𝑇𝐶
𝑛2

(𝑇𝐶+𝑇𝐶′)2
𝑇2
𝐶 − 1

(
𝑒
−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶 − 1
)
+ 𝑇𝐶′

𝑛2

(𝑇𝐶+𝑇𝐶′)2
𝑇2
𝐶′ − 1

(
1 − 𝑒−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶
)ª®¬ 𝑒 𝑗

2𝜋
𝑇𝐶+𝑇𝐶′ 𝑛𝑡

=
𝑇𝐶 + 𝑇𝐶′

2𝜋

𝑁∑
𝑛=−𝑁

©«
𝑇𝐶

𝑛2𝑇2
𝐶 − (𝑇𝐶 + 𝑇𝐶′)2︸                  ︷︷                  ︸

:=𝛼(𝑛)

(
𝑒
−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶 − 1
)
+ 𝑇𝐶′

𝑛2𝑇2
𝐶′ − (𝑇𝐶 + 𝑇𝐶′)2︸                  ︷︷                  ︸

:=𝛽(𝑛)

(
1 − 𝑒−𝑗 2𝜋𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶
)ª®®®®®®¬
𝑒
𝑗 2𝜋
𝑇𝐶+𝑇𝐶′ 𝑛𝑡

=
𝑇𝐶 + 𝑇𝐶′

2𝜋

𝑁∑
𝑛=−𝑁

(𝛼(𝑛) − 𝛽(𝑛)) 𝑒 𝑗
2𝜋𝑛

𝑇𝐶+𝑇𝐶′ (𝑡−𝑇𝐶 ) + (𝛽(𝑛) − 𝛼(𝑛)) 𝑒 𝑗
2𝜋

𝑇𝐶+𝑇𝐶′ 𝑛𝑡 (C.12)

Finally, we can transform Eq. (C.12) to the frequency domain using the conversion of complex
harmonic functions 𝑒 𝑗𝑎𝑡 c s𝛿 (

𝑓 − 𝑎
2𝜋

)
and the time shift property ℎ(𝑡− 𝑡0) c s𝑒 𝑗2𝜋𝑡0 𝑓𝐻( 𝑓 ), where ℎ(𝑡)

is the time domain function and 𝐻( 𝑓 ) the corresponding Fourier transform:

𝑆( 𝑓 ) =
ˆ ∞
−∞

𝑠𝑁 (𝑡) · 𝑒−𝑗2𝜋 𝑓 𝑡𝑑𝑡

=
𝑇𝐶 + 𝑇𝐶′

2𝜋

ˆ ∞
−∞

𝑁∑
𝑛=−𝑁

(
(𝛼(𝑛) − 𝛽(𝑛)) 𝑒 𝑗

2𝜋𝑛
𝑇𝐶+𝑇𝐶′ (𝑡−𝑇𝐶 ) + (𝛽(𝑛) − 𝛼(𝑛)) 𝑒 𝑗

2𝜋
𝑇𝐶+𝑇𝐶′ 𝑛𝑡

)
· 𝑒−𝑗2𝜋 𝑓 𝑡𝑑𝑡

=
𝑇𝐶 + 𝑇𝐶′

2𝜋

𝑁∑
𝑛=−𝑁

(𝛼(𝑛) − 𝛽(𝑛)) 𝑒 𝑗2𝜋 𝑓 𝑇𝐶 𝛿
(
𝑓 − 𝑛

𝑇𝐶 + 𝑇𝐶′
)
+ (𝛽(𝑛) − 𝛼(𝑛)) 𝛿

(
𝑓 − 𝑛

𝑇𝐶 + 𝑇𝐶′
)

=
𝑇𝐶 + 𝑇𝐶′

2𝜋

𝑁∑
𝑛=−𝑁

[(𝛼(𝑛) − 𝛽(𝑛)) 𝑒 𝑗2𝜋 𝑓 𝑇𝐶 + (𝛽(𝑛) − 𝛼(𝑛))] 𝛿 (
𝑓 − 𝑛

𝑇𝐶 + 𝑇𝐶′
)

(C.13)

So, we can conclude that the frequency of the interleaved signal is only present for multiples of the
average frequency 𝑓 = 𝑛

𝑇𝐶+𝑇𝐶′ with decreasing amplitudes for |𝑛 | → ∞ as 𝛼(𝑛), 𝛽(𝑛) ∼ 1
𝑛2 .

The remaining question is whether it is possible to learn something from the amplitudes of the
different harmonics 𝑛:����𝑆 (

𝑛
𝑇𝐶 + 𝑇𝐶′

)���� = 𝑇𝐶 + 𝑇𝐶′
2𝜋

�����
(

𝑇𝐶
𝑛2𝑇2

𝐶 − (𝑇𝐶 + 𝑇𝐶′)2
− 𝑇𝐶′

𝑛2𝑇2
𝐶′ − (𝑇𝐶 + 𝑇𝐶′)2

)
𝑒
𝑗2𝜋 𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶

+ 𝑇𝐶′

𝑛2𝑇2
𝐶′ − (𝑇𝐶 + 𝑇𝐶′)2

− 𝑇𝐶
𝑛2𝑇2

𝐶 − (𝑇𝐶 + 𝑇𝐶′)2

�����
=
𝑇𝐶 + 𝑇𝐶′

2𝜋

����� 𝑇𝐶
𝑛2𝑇2

𝐶 − (𝑇𝐶 + 𝑇𝐶′)2
(
𝑒
𝑗2𝜋 𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶 − 1
)
+ 𝑇𝐶′

𝑛2𝑇2
𝐶′ − (𝑇𝐶 + 𝑇𝐶′)2

(
1 − 𝑒 𝑗2𝜋 𝑛

𝑇𝐶+𝑇𝐶′ 𝑇𝐶
)�����
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Setting 𝑇𝐶′ := 𝛾𝑇𝐶 , 𝛾 > 0 the spectral amplitude can be expressed as the relative period of the
interleaved signals:

|𝑆 (𝑛, 𝛾)| = (1 + 𝛾)𝑇𝐶
2𝜋

����� 𝑇𝐶
𝑛2𝑇2

𝐶 − (1 + 𝛾)2 𝑇2
𝐶

(
𝑒
𝑗2𝜋 𝑛
(1+𝛾)𝑇𝐶 𝑇𝐶 − 1

)
+ 𝛾𝑇𝐶

𝑛2𝛾2𝑇2
𝐶 − (1 + 𝛾)2 𝑇2

𝐶

(
1 − 𝑒 𝑗2𝜋 𝑛

(1+𝛾)𝑇𝐶 𝑇𝐶
)�����

=
(1 + 𝛾)

2𝜋

����� 1
𝑛2 − (1 + 𝛾)2

(
𝑒 𝑗2𝜋

𝑛
(1+𝛾) − 1

)
+ 𝛾

𝑛2𝛾2 − (1 + 𝛾)2
(
1 − 𝑒 𝑗2𝜋 𝑛

(1+𝛾)
)����� (C.14)

Eq. (C.14) allows for evaluating whether certain harmonics 𝑛 of the interleaved signal are particulary
present and whether and how the amplitude changes for different relations 𝛾 of the periods of the
interleaved signals.

C.2 Extension for Time-Limited Signals

The result in Eq. (C.13) represents the ideal spectrum for an infinite signal 𝑠𝑁 (𝑡). However, in
reality the signal 𝑠𝑁 (𝑡) is limited to 𝑁𝑚𝑎𝑥 clock cycles of the period 𝑃 = 𝑇𝐶 + 𝑇𝐶′. For the time
limited signal 𝑠𝑁 (𝑡) · Θ

(
𝑡

𝑁𝑚𝑎𝑥 ·𝑃
)
, the convolutional properties of the Dirac-function 𝛿(·) lead to 𝑒 𝑗𝑎𝑡 ·

Θ(𝑏𝑡) c s𝛿 (
𝑓 − 𝑎

2𝜋
) ∗ 1
|𝑏 | sinc

(
𝑓
𝑏

)
= 1
|𝑏 | sinc

(
𝑓− 𝑎

2𝜋
𝑏

)
, with sinc( 𝑓 ) = sin(𝜋 𝑓 )/(𝜋 𝑓 ). In other words, the

Dirac-function in Eq. (C.13) is replaced by a sinc-function

1
|𝑏 | sinc

(
𝑓 − 𝑎

2𝜋
𝑏

)
= |𝑁𝑚𝑎𝑥(𝑇𝐶 + 𝑇𝐶′)| · sinc

(
𝑁𝑚𝑎𝑥(𝑇𝐶 + 𝑇𝐶′)

(
𝑓 − 𝑛

𝑇𝐶 + 𝑇𝐶′
))

= |𝑁𝑚𝑎𝑥(1 + 𝛾)𝑇𝐶 | · sinc
(
𝑁𝑚𝑎𝑥(1 + 𝛾)𝑇𝐶

(
𝑓 − 𝑛
(1 + 𝛾)𝑇𝐶

))
In contrast to Eqs. (C.13) and (C.14), where discrete frequencies corresponding to the harmonics can
be evaluated, using the sinc-function the mixture of different 𝑛 has to be considered for the entire
spectrum:

|𝑆( 𝑓 )| =
����� (1 + 𝛾)2𝑇𝐶𝑁𝑚𝑎𝑥

2𝜋

𝑁∑
𝑛=−𝑁

[
1

𝑛2 − (1 + 𝛾)2
(
𝑒 𝑗2𝜋

𝑛
(1+𝛾) − 1

)
+ 𝛾

𝑛2𝛾2 − (1 + 𝛾)2
(
1 − 𝑒 𝑗2𝜋 𝑛

(1+𝛾)
)]

· sinc
(
𝑁𝑚𝑎𝑥(1 + 𝛾)𝑇𝐶

(
𝑓 − 𝑛
(1 + 𝛾)𝑇𝐶

))����
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D Details of the Investigated BCH Codes

This section provides the details of the BCH codes that are evaluated in Chapter 7. The minimal
polynomials 𝜙𝑖(𝑥) define the LFSR configurations used for the improved power model. Furthermore,
the Galois field and its defining irreducible polynomial as well as the generator polynomial that
results from the Least Common Multiple (LCM) of the minimal polynomials are provided.

D.1 (15, 5, 3) BCH Code

Galois field 𝐺𝐹
(
24) with the irreducible polynomial 𝑥4 + 𝑥 + 1, generator polynomial: 𝑔(𝑥) = 𝑥10 +

𝑥8 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1 with the minimal polynomials:

𝜙1(𝑥) = 𝜙2(𝑥) = 𝜙4(𝑥) = 𝑥4 + 𝑥 + 1
𝜙3(𝑥) = 𝜙6(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1

𝜙5(𝑥) = 𝑥2 + 𝑥 + 1

D.2 (63, 36, 5) BCH Code

Galois field 𝐺𝐹
(
26) with the irreducible polynomial 𝑥6 + 𝑥 + 1, generator polynomial: 𝑔(𝑥) = 𝑥27 +

𝑥22 + 𝑥21 + 𝑥19 + 𝑥18 + 𝑥17 + 𝑥15 + 𝑥8 + 𝑥4 + 𝑥 + 1 with the minimal polynomials:

𝜙1(𝑥) = 𝜙2(𝑥) = 𝜙4(𝑥) = 𝜙8(𝑥) = 𝑥6 + 𝑥 + 1
𝜙3(𝑥) = 𝜙6(𝑥) = 𝜙9(𝑥) = 𝑥6 + 𝑥4 + 𝑥2 + 𝑥 + 1

𝜙5(𝑥) = 𝜙10(𝑥) = 𝑥6 + 𝑥5 + 𝑥2 + 𝑥 + 1
𝜙7(𝑥) = 𝑥6 + 𝑥3 + 1
𝜙9(𝑥) = 𝑥3 + 𝑥2 + 1
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D.3 (127, 64, 10) BCH Code

Galois field 𝐺𝐹
(
27) with the irreducible polynomial 𝑥7 + 𝑥3 + 1, generator polynomial: 𝑔(𝑥) =

𝑥63 + 𝑥61 + 𝑥56 + 𝑥55 + 𝑥53 + 𝑥51 + 𝑥49 + 𝑥48 + 𝑥47 + 𝑥40 + 𝑥38 + 𝑥36 + 𝑥35 + 𝑥33 + 𝑥32 + 𝑥31 + 𝑥30 + 𝑥26 +
𝑥25 + 𝑥24 + 𝑥23 + 𝑥22 + 𝑥21 + 𝑥19 + 𝑥18 + 𝑥15 + 𝑥5 + 𝑥2 + 1 with the minimal polynomials:

𝜙1(𝑥) = 𝜙2(𝑥) = 𝜙4(𝑥) = 𝜙8(𝑥) = 𝜙16(𝑥) = 𝑥7 + 𝑥3 + 1
𝜙3(𝑥) = 𝜙6(𝑥) = 𝜙12(𝑥) = 𝑥7 + 𝑥3 + 𝑥2 + 𝑥 + 1
𝜙5(𝑥) = 𝜙10(𝑥) = 𝜙20(𝑥) = 𝑥7 + 𝑥4 + 𝑥3 + 𝑥2 + 1

𝜙7(𝑥) = 𝜙14(𝑥) = 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1
𝜙9(𝑥) = 𝜙17(𝑥) = 𝜙18(𝑥) = 𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1

𝜙11(𝑥) = 𝑥7 + 𝑥6 + 𝑥4 + 𝑥2 + 1
𝜙13(𝑥) = 𝑥7 + 𝑥 + 1
𝜙15(𝑥) = 𝑥7 + 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1
𝜙19(𝑥) = 𝑥7 + 𝑥6 + 𝑥3 + 𝑥 + 1

D.4 (255, 131, 18) BCH Code

Galois field 𝐺𝐹
(
28) with the irreducible polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1, generator polynomial

𝑔(𝑥) = 𝑥124+𝑥120+𝑥119+𝑥117+𝑥116+𝑥115+𝑥114+𝑥111+𝑥109+𝑥108+𝑥106+𝑥105+𝑥103+𝑥102+𝑥99+𝑥98+
𝑥95+𝑥94+𝑥93+𝑥90+𝑥89+𝑥87+𝑥84+𝑥78+𝑥77+𝑥75+𝑥72+𝑥70+𝑥68+𝑥67+𝑥63+𝑥61+𝑥59+𝑥57+𝑥52+𝑥50+𝑥49+
𝑥48+𝑥47+𝑥46+𝑥45+𝑥44+𝑥41+𝑥37+𝑥33+𝑥32+𝑥28+𝑥22+𝑥20+𝑥15+𝑥14+𝑥13+𝑥11+𝑥9+𝑥8+𝑥5+𝑥4+𝑥3+1
with the minimal polynomials:

𝜙1(𝑥) = 𝜙2(𝑥) = 𝜙4(𝑥) = 𝜙8(𝑥) = 𝜙16(𝑥) = 𝜙32(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1
𝜙3(𝑥) = 𝜙6(𝑥) = 𝜙12(𝑥) = 𝜙24(𝑥) = 𝑥8 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1

𝜙5(𝑥) = 𝜙10(𝑥) = 𝜙20(𝑥) = 𝑥8 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥 + 1
𝜙7(𝑥) = 𝜙14(𝑥) = 𝜙28(𝑥) = 𝑥8 + 𝑥6 + 𝑥5 + 𝑥3 + 1

𝜙9(𝑥) = 𝜙18(𝑥) = 𝜙33(𝑥) = 𝜙36(𝑥) = 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 1
𝜙11(𝑥) = 𝜙22(𝑥) = 𝑥8 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥2 + 𝑥 + 1
𝜙13(𝑥) = 𝜙26(𝑥) = 𝑥8 + 𝑥5 + 𝑥3 + 𝑥 + 1
𝜙15(𝑥) = 𝜙30(𝑥) = 𝑥8 + 𝑥7 + 𝑥6 + 𝑥4 + 𝑥2 + 𝑥 + 1
𝜙17(𝑥) = 𝜙34(𝑥) = 𝑥4 + 𝑥 + 1

𝜙19(𝑥) = 𝑥8 + 𝑥6 + 𝑥5 + 𝑥2 + 1
𝜙21(𝑥) = 𝑥8 + 𝑥7 + 𝑥3 + 𝑥 + 1
𝜙23(𝑥) = 𝑥8 + 𝑥6 + 𝑥5 + 𝑥 + 1

𝜙25(𝑥) = 𝜙35(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1
𝜙27(𝑥) = 𝑥8 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1
𝜙29(𝑥) = 𝑥8 + 𝑥7 + 𝑥3 + 𝑥2 + 1
𝜙31(𝑥) = 𝑥8 + 𝑥5 + 𝑥3 + 𝑥2 + 1



115

Bibliography

[1] Y. Lee, B. Karpinskyy, Y. Choi, K.-M. Ahn, Y. Kim, J. Park, S. Noh, J. Kang, J. Shin, J. Park,
Y. Chung, and J. Shin, “Samsung physically unclonable function (SAMPUF™) and its integration
with samsung security system,” in 2021 IEEE Custom Integrated Circuits Conference (CICC), 2021,
pp. 1–7.

[2] M.-Y. Wu, T.-H. Yang, L.-C. Chen, C.-C. Lin, H.-C. Hu, F.-Y. Su, C.-M. Wang, J. P.-H. Huang,
H.-M. Chen, C. C.-H. Lu, E. C.-S. Yang, and R. S.-J. Shen, “A PUF scheme using competing oxide
rupture with bit error rate approaching zero,” in 2018 IEEE International Solid - State Circuits

Conference - (ISSCC), 2018, pp. 130–132.

[3] K. K.-H. Chuang, H.-M. Chen, M.-Y. Wu, E. C.-S. Yang, and C. C.-H. Hsu, “Quantum tunnel-
ing PUF: A chip fingerprint for hardware security,” in 2021 International Symposium on VLSI

Technology, Systems and Applications (VLSI-TSA), 2021, pp. 1–2.

[4] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in Proceedings of the 6th ACM

Conference on Computer and Communications Security, ser. CCS ’99. ACM, 1999, pp. 28–36.

[5] S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.-R. Sadeghi, I. Verbauwhede, and C. Wachsmann,
“PUFs: Myth, fact or busted? a security evaluation of physically unclonable functions (PUFs)
cast in silicon,” in Cryptographic Hardware and Embedded Systems – CHES 2012, E. Prouff and
P. Schaumont, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 283–301.

[6] A. Wild, G. T. Becker, and T. Güneysu, “A fair and comprehensive large-scale analysis of
oscillation-based PUFs for FPGAs,” in 2017 27th International Conference on Field Programmable

Logic and Applications (FPL), Sept 2017, pp. 1–7.

[7] R. Hesselbarth, F. Wilde, C. Gu, and N. Hanley, “Large scale RO PUF analysis over slice type,
evaluation time and temperature on 28nm Xilinx FPGAs,” in 2018 IEEE International Symposium

on Hardware Oriented Security and Trust (HOST), April 2018, pp. 126–133.

[8] R. Maes and V. van der Leest, “Countering the effects of silicon aging on SRAM PUFs,” in 2014

IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), 2014, pp. 148–153.

[9] A. Maiti and P. Schaumont, “The impact of aging on a physical unclonable function,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 9, pp. 1854–1864, 2014.

[10] R. Maes, “An accurate probabilistic reliability model for silicon PUFs,” in Cryptographic Hardware

and Embedded Systems - CHES 2013, G. Bertoni and J.-S. Coron, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 73–89.

[11] M. Pehl, M. Hiller, and G. Sigl, “Secret key generation for physical unclonable functions,” in
Information Theoretic Security and Privacy of Information Systems, R. F. Schaefer, H. Boche, A. Khisti,
and H. V. Poor, Eds. Cambridge University Press, 2017, p. 362–389.

[12] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data,” in Advances in Cryptology - EUROCRYPT 2004, C. Cachin and
J. L. Camenisch, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 523–540.



116

[13] G. Davida, Y. Frankel, and B. Matt, “On enabling secure applications through off-line biometric
identification,” in Proceedings. 1998 IEEE Symposium on Security and Privacy (Cat. No.98CB36186),
1998, pp. 148–157.

[14] M. Hiller, M.-D. M. Yu, and M. Pehl, “Systematic low leakage coding for physical
unclonable functions,” in Proceedings of the 10th ACM Symposium on Information, Computer and

Communications Security, ser. ASIA CCS ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 155–166.

[15] M.-D. Yu and S. Devadas, “Secure and robust error correction for physical unclonable functions,”
IEEE Design & Test of Computers, vol. 27, no. 1, pp. 48–65, 2010.

[16] M. Hiller, D. Merli, F. Stumpf, and G. Sigl, “Complementary IBS: Application specific error
correction for PUFs,” in 2012 IEEE International Symposium on Hardware-Oriented Security and

Trust, 2012, pp. 1–6.

[17] M. Hiller, M. Weiner, L. Rodrigues Lima, M. Birkner, and G. Sigl, “Breaking through fixed PUF
block limitations with differential sequence coding and convolutional codes,” in Proceedings of

the 3rd International Workshop on Trustworthy Embedded Devices, ser. TrustED ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 43–54.

[18] B. Gassend, D. Clarke, M. van Dĳk, and S. Devadas, “Silicon physical random functions,” in
Proceedings of the 9th ACM conference on Computer and communications security (CCS ’02), 2002,
pp. 148–160.

[19] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication and secret
key generation,” in Proceedings of the Design Automation Conference, (DAC ’07). 44th ACM/IEEE,
2007, pp. 9–14.

[20] Z. Cherif, J. Danger, S. Guilley, and L. Bossuet, “An easy-to-design PUF based on a single
oscillator: The loop PUF,” in 2012 15th Euromicro Conference on Digital System Design, Sep. 2012,
pp. 156–162.

[21] L. Tebelmann, J.-L. Danger, and M. Pehl, “Interleaved challenge loop PUF: A highly
side-channel protected oscillator-based PUF,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 69, no. 12, pp. 5121–5134, 2022.

[22] M. Varchola, M. Drutarovsky, and V. Fischer, “New universal element with integrated PUF
and TRNG capability,” in 2013 International Conference on Reconfigurable Computing and FPGAs

(ReConFig), Dec 2013, pp. 1–6.

[23] L. Bossuet, X. T. Ngo, Z. Cherif, and V. Fischer, “A PUF based on a transient effect ring oscillator
and insensitive to locking phenomenon,” IEEE Transactions on Emerging Topics in Computing,
vol. 2, no. 1, pp. 30–36, March 2014.

[24] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and U. Rührmair, “The bistable ring PUF: A new
architecture for strong physical unclonable functions,” in 2011 IEEE International Symposium on

Hardware-Oriented Security and Trust, June 2011, pp. 134–141.

[25] ——, “Characterization of the bistable ring PUF,” in 2012 Design, Automation Test in Europe

Conference Exhibition (DATE), March 2012, pp. 1459–1462.

[26] R. Hesselbarth and G. Sigl, “Fast and reliable PUF response evaluation from unsettled bistable
rings,” in 2016 Euromicro Conference on Digital System Design (DSD), Aug 2016, pp. 82–90.

[27] M. Riedel, “Understanding TBR PUF: State trajectory analysis on an FPGA array,” Master’s
thesis, Technical University of Munich, February 2018.



117

[28] F. Wilde, B. M. Gammel, and M. Pehl, “Spatial correlation analysis on physical unclonable
functions,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 6, pp. 1468–1480,
2018.

[29] R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY: A fully functional PUF-based
cryptographic key generator,” in Cryptographic Hardware and Embedded Systems – CHES 2012,
ser. Lecture Notes in Computer Science, E. Prouff and P. Schaumont, Eds., vol. 7428, 2012, p.
302–319.

[30] C.-E. D. Yin and G. Qu, “LISA: Maximizing RO PUF’s secret extraction,” in 2010 IEEE Interna-

tional Symposium on Hardware-Oriented Security and Trust (HOST), 2010, pp. 100–105.

[31] O. Rioul, P. Solé, S. Guilley, and J.-L. Danger, “On the entropy of physically unclonable func-
tions,” in 2016 IEEE International Symposium on Information Theory (ISIT), 2016, pp. 2928–2932.

[32] A. Cherkaoui, L. Bossuet, and C. Marchand, “Design, evaluation, and optimization of physical
unclonable functions based on transient effect ring oscillators,” IEEE Transactions on Information

Forensics and Security, vol. 11, no. 6, pp. 1291–1305, June 2016.

[33] C. Marchand, L. Bossuet, and A. Cherkaoui, “Design and characterization of the TERO-PUF on
SRAM FPGAs,” in 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), July 2016,
pp. 134–139.

[34] C. Marchand, L. Bossuet, U. Mureddu, N. Bochard, A. Cherkaoui, and V. Fischer, “Imple-
mentation and characterization of a physical unclonable function for IoT: A case study with
the TERO-PUF,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 1, pp. 97–109, Jan 2018.

[35] M. Varchola and M. Drutarovsky, “New high entropy element for FPGA based true random
number generators,” in Cryptographic Hardware and Embedded Systems, CHES 2010, S. Mangard
and F.-X. Standaert, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 351–365.

[36] F. Ganji, S. Tajik, F. Fäßler, and J.-P. Seifert, “Having no mathematical model may not secure
PUFs,” Journal of Cryptographic Engineering, vol. 7, no. 2, pp. 113–128, Jun 2017.

[37] D. Schuster and R. Hesselbarth, “Evaluation of bistable ring PUFs using single layer neural
networks,” in Trust and Trustworthy Computing, T. Holz and S. Ioannidis, Eds. Cham: Springer
International Publishing, 2014, pp. 101–109.

[38] B. Škorić, P. Tuyls, and W. Ophey, “Robust key extraction from physical uncloneable functions,”
in Applied Cryptography and Network Security, J. Ioannidis, A. Keromytis, and M. Yung, Eds.
Springer Berlin Heidelberg, 2005, pp. 407–422.

[39] F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, and P. Tuyls, “Memory leakage-resilient en-
cryption based on physically unclonable functions,” in Advances in Cryptology – ASIACRYPT

2009, M. Matsui, Ed. Springer Berlin Heidelberg, 2009, pp. 685–702.

[40] J. Danger, S. Guilley, and A. Schaub, “Two-metric helper data for highly robust and secure delay
PUFs,” in 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), June
2019, pp. 184–188.

[41] T. Stanko, F. Nur Andini, and B. Škorić, “Optimized quantization in zero leakage helper data
systems,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 8, pp. 1957–1966,
2017.



118

[42] V. Immler and K. Uppund, “New insights to key derivation for tamper-evident physical
unclonable functions,” IACR Transactions on Cryptographic Hardware and Embedded Systems, vol.
2019, no. 3, pp. 30–65, May 2019.

[43] V. Immler, M. Hennig, L. Kürzinger, and G. Sigl, “Practical aspects of quantization and
tamper-sensitivity for physically obfuscated keys,” in Proceedings of the Third Workshop on

Cryptography and Security in Computing Systems, ser. CS2 ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 13–18.

[44] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls, “Efficient helper data key
extractor on FPGA,” in Cryptographic Hardware and Embedded Systems – CHES 2008. 10th interna-

tional workshop. Washington, DC, USA, August 10 - 13, 2008. Proceedings, E. Oswald and P. Rohatgi,
Eds. Springer, 2008, pp. 181–197.

[45] S. Lin, Error Control Coding, 2nd ed., D. J. Costello, Ed. Pearson-Prentice Hall, 2004.

[46] Y. Choi, B. Karpinskyy, K.-M. Ahn, Y. Kim, S. Kwon, J. Park, Y. Lee, and M. Noh, “Physically
unclonable function in 28nm FDSOI technology achieving high reliability for AEC-Q 100 grade
1 and ISO26262 ASIL-B,” in 2020 IEEE International Solid- State Circuits Conference - (ISSCC),
2020, pp. 426–428.

[47] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R. Sadeghi, I. Verbauwhede, and
C. Wachsmann, “Reverse fuzzy extractors: Enabling lightweight mutual authentication for
PUF-enabled RFIDs,” in Financial Cryptography and Data Security, A. D. Keromytis, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 374–389.

[48] A. Van Herrewege and I. Verbauwhede, “Tiny application-specific programmable processor for
BCH decoding,” in 2012 International Symposium on System on Chip (SoC), Oct 2012, pp. 1–4.

[49] D. Merli, F. Stumpf, and G. Sigl, “Protecting PUF error correction by codeword masking,”
IACR Cryptology ePrint Archive, vol. 334, 2013.

[50] B. Jarvis and K. Gaj, “Selection of an error-correcting code for FPGA-based physical unclonable
functions,” in 2017 International Conference on Field Programmable Technology (ICFPT), Dec 2017,
pp. 243–246.

[51] S. Mangard, Power Analysis Attacks, E. Oswald and T. Popp, Eds. Springer, 2007.

[52] C. Helfmeier, C. Boit, D. Nedospasov, and J. Seifert, “Cloning physically unclonable functions,”
in 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), June 2013,
pp. 1–6.

[53] Y. Oren, A.-R. Sadeghi, and C. Wachsmann, “On the effectiveness of the remanence decay side-
channel to clone memory-based PUFs,” in Cryptographic Hardware and Embedded Systems - CHES

2013, G. Bertoni and J.-S. Coron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 107–125.

[54] S. Zeitouni, Y. Oren, C. Wachsmann, P. Koeberl, and A. Sadeghi, “Remanence decay side-
channel: The PUF case,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 6,
pp. 1106–1116, June 2016.

[55] S. Tajik, E. Dietz, S. Frohmann, J.-P. Seifert, D. Nedospasov, C. Helfmeier, C. Boit, and H. Dittrich,
“Physical characterization of arbiter PUFs,” in Cryptographic Hardware and Embedded Systems –

CHES 2014, L. Batina and M. Robshaw, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 493–509.



119

[56] H. Lohrke, S. Tajik, C. Boit, and J.-P. Seifert, “No place to hide: Contactless probing of secret
data on FPGAs,” in Cryptographic Hardware and Embedded Systems – CHES 2016, B. Gierlichs and
A. Y. Poschmann, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 147–167.

[57] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, “Semi-invasive EM attack on FPGA RO PUFs
and countermeasures,” in 6th Workshop on Embedded Systems Security (WESS’2011). ACM, Mar
2011.

[58] D. Merli, J. Heyszl, B. Heinz, D. Schuster, F. Stumpf, and G. Sigl, “Localized electromagnetic
analysis of RO PUFs,” in 2013 IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), June 2013, pp. 19–24.

[59] M. Shiozaki and T. Fujino, “Simple electromagnetic analysis attacks based on geometric leak
on an ASIC implementation of ring-oscillator PUF,” in Proceedings of the 3rd ACM Workshop

on Attacks and Solutions in Hardware Security Workshop, ser. ASHES’19. New York, NY, USA:
ACM, 2019, pp. 13–21.

[60] P. Bayon, L. Bossuet, A. Aubert, and V. Fischer, “Electromagnetic analysis on ring oscillator-
based true random number generators,” in 2013 IEEE International Symposium on Circuits and

Systems (ISCAS2013), May 2013, pp. 1954–1957.

[61] L. Sauvage, S. Guilley, and Y. Mathieu, “Electromagnetic radiations of FPGAs: High spatial
resolution cartography and attack on a cryptographic module,” ACM Trans. Reconfigurable

Technol. Syst., vol. 2, no. 1, pp. 4:1–4:24, Mar. 2009.

[62] A. T. Markettos and S. W. Moore, “The frequency injection attack on ring-oscillator-based true
random number generators,” in Cryptographic Hardware and Embedded Systems - CHES 2009,
C. Clavier and K. Gaj, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 317–331.

[63] P. Bayon, L. Bossuet, A. Aubert, V. Fischer, F. Poucheret, B. Robisson, and P. Maurine, “Contact-
less electromagnetic active attack on ring oscillator based true random number generator,” in
Constructive Side-Channel Analysis and Secure Design, W. Schindler and S. A. Huss, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 151–166.

[64] L. Tebelmann, M. Pehl, and V. Immler, “Side-channel analysis of the TERO PUF,” in Constructive

Side-Channel Analysis and Secure Design, I. Polian and M. Stöttinger, Eds. Cham: Springer
International Publishing, 2019, pp. 43–60.

[65] U. Mureddu, B. Colombier, N. Bochard, L. Bossuet, and V. Fischer, “Transient effect ring
oscillators leak too,” in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), July
2019, pp. 37–42.

[66] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, “Side-channel analysis of PUFs and fuzzy
extractors,” in Trust and Trustworthy Computing, ser. Lecture Notes in Computer Science, J. M.
McCune, B. Balacheff, A. Perrig, A.-R. Sadeghi, A. Sasse, and Y. Beres, Eds. Springer Berlin
Heidelberg, 2011, no. 6740, pp. 33–47.

[67] D. Karakoyunlu and B. Sunar, “Differential template attacks on PUF enabled cryptographic
devices,” IEEE International Workshop on Information Forensics and Security (WIFS), 2010.

[68] L. Tebelmann, M. Pehl, and G. Sigl, “EM side-channel analysis of BCH-based error correction
for PUF-based key generation,” in Proceedings of the 2017 Workshop on Attacks and Solutions in

Hardware Security, ser. ASHES ’17. New York, NY, USA: ACM, 2017, pp. 43–52.

[69] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data algorithms for PUF-based
key generation: Overview and analysis,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 34, no. 6, pp. 889–902, June 2015.



120

[70] J. Delvaux and I. Verbauwhede, “Key-recovery attacks on various RO PUF constructions via
helper data manipulation,” in 2014 Design, Automation Test in Europe Conference Exhibition

(DATE), 2014, pp. 1–6.

[71] ——, “Attacking PUF-based pattern matching key generators via helper data manipulation,”
in Topics in Cryptology – CT-RSA 2014, ser. Lecture Notes in Computer Science, J. Benaloh, Ed.
Springer International Publishing, 2014, no. 8366, pp. 106–131.

[72] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith, “Secure remote authentication using
biometric data,” in Advances in Cryptology – EUROCRYPT 2005, R. Cramer, Ed. Springer Berlin
Heidelberg, 2005, pp. 147–163.

[73] G. T. Becker, “Robust fuzzy extractors and helper data manipulation attacks revisited: Theory
versus practice,” IEEE Transactions on Dependable and Secure Computing, vol. 16, no. 5, pp. 783–795,
2019.

[74] ——, “The gap between promise and reality: On the insecurity of XOR arbiter PUFs,” in
Cryptographic Hardware and Embedded Systems – CHES 2015, T. Güneysu and H. Handschuh,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 535–555.

[75] F. Ganji, On the Learnability of Physically Unclonable Functions. Springer International Publishing,
2018.

[76] G. T. Becker and R. Kumar, “Active and passive side-channel attacks on delay based PUF
designs,” Cryptology ePrint Archive, Report 2014/287, 2014.

[77] E. Strieder, C. Frisch, and M. Pehl, “Machine learning of physical unclonable functions using
helper data: Revealing a pitfall in the fuzzy commitment scheme,” IACR Transactions on

Cryptographic Hardware and Embedded Systems, vol. 2021, no. 2, pp. 1–36, Feb. 2021.

[78] J. Ruchti, M. Gruber, and M. Pehl, “When the decoder has to look twice: Glitching a PUF error
correction,” IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2022, no. 3,
p. 26–70, 2022-06.

[79] V. Immler, R. Specht, and F. Unterstein, “Your rails cannot hide from localized EM: how dual-
rail logic fails on FPGAs,” in Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th

International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, 2017, pp. 403–424.

[80] F. Unterstein, J. Heyszl, F. De Santis, and R. Specht, “Dissecting leakage resilient PRFs with
multivariate localized EM attacks,” in Constructive Side-Channel Analysis and Secure Design,
S. Guilley, Ed. Cham: Springer International Publishing, 2017, pp. 34–49.

[81] L. Hars, “Random number generation based on oscillatory metastability in ring circuits,”
Cryptology ePrint Archive, Paper 2011/637.

[82] P. Haddad, V. Fischer, F. Bernard, and J. Nicolai, “A physical approach for stochastic modeling of
TERO-based TRNG,” in Cryptographic Hardware and Embedded Systems – CHES 2015, T. Güneysu
and H. Handschuh, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 357–372.

[83] F. Bernard, P. Haddad, V. Fischer, and J. Nicolai, “From physical to stochastic modeling of a
TERO-based TRNG,” Journal of Cryptology, vol. 32, no. 2, pp. 435–458, 2019.

[84] J. Delvaux, “Refutation and redesign of a physical model of TERO-based TRNGs and PUFs,”
Cryptology ePrint Archive, Report 2019/810, 2019.

[85] L. Tebelmann, J.-L. Danger, and M. Pehl, “Self-secured PUF: Protecting the loop PUF
by masking,” in Constructive Side-Channel Analysis and Secure Design, G. M. Bertoni and
F. Regazzoni, Eds. Cham: Springer International Publishing, 2020, pp. 293–314.



121

[86] L. Tebelmann, M. Wettermann, and M. Pehl, “On-chip side-channel analysis of the loop PUF,”
in Proceedings of the 2022 Workshop on Attacks and Solutions in Hardware Security, ser. ASHES’22.
New York, NY, USA: Association for Computing Machinery, 2022, p. 55–63.

[87] L. Feiten, K. Scheibler, B. Becker, and M. Sauer, “Using different LUT paths to increase area
efficiencyof RO-PUFs on Altera FPGAs,” in TRUEDEVICE, 2018.

[88] M. C. Martínez-Rodríguez, I. M. Delgado-Lozano, and B. B. Brumley, “SoK: Remote power
analysis,” in The 16th International Conference on Availability, Reliability and Security, ser. ARES
2021. New York, NY, USA: Association for Computing Machinery, 2021.

[89] D. R. E. Gnad, F. Oboril, S. Kiamehr, and M. B. Tahoori, “Analysis of transient voltage fluctu-
ations in FPGAs,” in 2016 International Conference on Field-Programmable Technology (FPT), 2016,
pp. 12–19.

[90] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel attacks,” in 2018 IEEE Sym-

posium on Security and Privacy (SP), May 2018, pp. 229–244.

[91] J. Gravellier, J. Dutertre, Y. Teglia, and P. Loubet-Moundi, “High-speed ring oscillator based
sensors for remote side-channel attacks on FPGAs,” in 2019 International Conference on ReCon-

Figurable Computing and FPGAs (ReConFig), Dec 2019, pp. 1–8.

[92] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, “An inside job: Remote power
analysis attacks on FPGAs,” in 2018 Design, Automation Test in Europe Conference Exhibition

(DATE), March 2018, pp. 1111–1116.

[93] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, “Remote power side-channel attacks
on BNN accelerators in FPGAs,” in 2021 Design, Automation Test in Europe Conference Exhibition

(DATE), 2021, pp. 1639–1644.

[94] M. E. S. Elrabaa, M. Al-Asli, and M. Abu-Amara, “Secure computing enclaves using FPGAs,”
IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 2, pp. 593–604, 2021.

[95] S. Tian, A. Krzywosz, I. Giechaskiel, and J. Szefer, “Cloud FPGA security with RO-based
primitives,” in 2020 International Conference on Field-Programmable Technology (ICFPT), 2020, pp.
154–158.

[96] R. Elnaggar, S. Ray, M. Sabbagh, B. Yuce, T. Wang, and J. Fung, “OPAL: On-the-go physical
attack lab to evaluate power side-channel vulnerabilities on FPGAs,” in 2021 IEEE Physical

Assurance and Inspection of Electronics (PAINE), 2021, pp. 1–8.

[97] J. Wu, “Several key issues on implementing delay line based TDCs using FPGAs,” IEEE Trans-

actions on Nuclear Science, vol. 57, no. 3, pp. 1543–1548, 2010.

[98] M. Adamič and A. Trost, “A fast high-resolution time-to-digital converter implemented in a
Zynq 7010 SoC,” in 2019 Austrochip Workshop on Microelectronics (Austrochip), 2019, pp. 29–34.

[99] M. Wettermann, “Remote power analysis of the loop PUF using time-to-digital converters,”
Master’s thesis, Technical University of Munich, April 2022.

[100] Y. Wang, J. Kuang, C. Liu, and Q. Cao, “A 3.9-ps RMS precision time-to-digital converter using
ones-counter encoding scheme in a Kintex-7 FPGA,” IEEE Transactions on Nuclear Science, vol. 64,
no. 10, pp. 2713–2718, 2017.

[101] L. Tebelmann, U. Kühne, J.-L. Danger, and M. Pehl, “Analysis and protection of the two-metric
helper data scheme,” in Constructive Side-Channel Analysis and Secure Design, S. Bhasin and
F. De Santis, Eds. Cham: Springer International Publishing, 2021, pp. 279–302.



122

[102] A. Maiti, V. Gunreddy, and P. Schaumont, “A systematic method to evaluate and compare
the performance of physical unclonable functions,” in Embedded Systems Design with FPGAs,
P. Athanas, D. Pnevmatikatos, and N. Sklavos, Eds. New York, NY: Springer New York, 2013,
pp. 245–267.

[103] V. Huber, “Design and side-channel evaluation of BCH code hardware implementations,”
Master’s thesis, Technical University of Munich, May 2022.

[104] M. Brosch, “Horizontal side-channel analysis of error-correcting codes,” Master’s thesis, Tech-
nical University of Munich, November 2019.

[105] E. Jamro, “The design of a VHDL based synthesis tool for BCH codecs,” Master’s thesis,
University of Huddersfield, September 1997.

[106] M. Yin, M. Xie, and B. Yi, “Optimized algorithms for binary BCH codes,” in 2013 IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), 2013, pp. 1552–1555.

[107] W. Liu, J. Rho, and W. Sung, “Low-power high-throughput BCH error correction VLSI design
for multi-level cell NAND flash memories,” in 2006 IEEE Workshop on Signal Processing Systems

Design and Implementation, 2006, pp. 303–308.

[108] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in Cryptology — CRYPTO’

99. CRYPTO 1999, ser. Lecture Notes in Computer Science (LNCS), vol. 1666. Springer, Berlin,
Heidelberg, 1999, pp. 388–397.

[109] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage model,” in
Cryptographic Hardware and Embedded Systems - CHES 2004. CHES 2004, ser. Lecture Notes in
Computer Science (LNCS), vol. 3156. Springer, Berlin, Heidelberg, 2004, pp. 16–29.

[110] C. D. Walter, “Sliding windows succumbs to big mac attack,” in Cryptographic Hardware and

Embedded Systems — CHES 2001, Ç. K. Koç, D. Naccache, and C. Paar, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 286–299.

[111] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil, “Horizontal correlation anal-
ysis on exponentiation,” in Information and Communications Security, M. Soriano, S. Qing, and
J. López, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 46–61.

[112] M. Gruber and G. Sigl, “TOFU - toggle count analysis made simple,” Cryptology ePrint
Archive, Paper 2022/129.

[113] M. J. Kannwischer, P. Pessl, and R. Primas, “Single-trace attacks on Keccak,” IACR Transactions

on Cryptographic Hardware and Embedded Systems, vol. 2020, no. 3, pp. 243–268, Jun. 2020.



123

Acronyms

BCH Bose-Chaudhuri-Hocquenghem
BER Bit Error Rate
BMA Berlekamp-Massey Algorithm
BR Bistable Ring
BRAM Block Random Access Memory

C-IBS Complementary IBS
CDF Cumulative Distribution Function
CGF Code Generation Framework
CLB Configurable Logic Block
CMOS Complementary Metal-Oxide-Semiconductor
COFE Code-Offset Fuzzy Extractor
CPA Correlation Power Analysis
CRP Challenge-Response Pair
CW305 ChipWhisperer 305 Artix FPGA Target

DC Direct Current
DPA Differential Power Analysis
DSC Differential Sequence Coding

ECC Error-Correcting Code
EM electromagnetic
EPQ Equidistant Quantization
EPQ Equiprobable Quantization

FCS Fuzzy Commitment Scheme
FE Fuzzy Extractor
FF Flip-Flop
FFT Fast Fourier Transform
FIA Fault Injection Attacks
FIB Focused Ion Beam
FiBM Further optimized inversion-free Berlekamp-Massey
FoI Frequency of Interest
FPGA Field Programmable Gate Array
FSM Finite State Machine

HDA Helper Data Algorithm
HDF5 Hierarchical Data Format 5
HDMA Helper Data Manipulation Attack
HSCA Horizontal Side-Channel Analysis

IBS Index-Based Syndrome
IC Integrated Circuit



124

ICLooPUF Interleaved Challenge Loop PUF
ILA Integrated Logic Analyzer
IQR Inter-Quartile Range

LCM Least Common Multiple
LFSR Linear Feedback Shift Register
LSB Least Significant Bit
LUT Lookup Table

ML Machine Learning
MSB Most Significant Bit

NVM Non-Volatile Memory

PDF Probability Density Function
PDN Power Distribution Network
PE Processing Element
PLL Phase-Locked Loop
PSD Power Spectral Density
PUF Physical Unclonable Function
PUFKY PUF-based cryptographic KeY generator design

RFE Robust Fuzzy Extractor
RNG Random Number Generator
RO Ring Oscillator
RS Reed-Solomon
RTL Register-Transfer Level

SCA Side-Channel Analysis
SLLC Systematic Low Leakage Coding
SNR Signal-to-Noise Ratio
SPA Simple Power Analysis
SRAM Static Random-Access Memory
STFT Short-Time Fourier Transform

T-FF Toggle Flip-Flop
TBR Twisted Bistable Ring
Tcl Tool command language
TDC Time-to-Digital Converter
TERO Transient Effect Ring Oscillator
TMHD Two-Metric Helper Data
TOFU TOggle Foul-Up
TRNG True Random Number Generator

UART Universal Asynchronous Receiver/Transmitter

VCD Value Change Dump
VHDL Very High Speed Integrated Circuit Hardware De-

scription Language
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