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The advent of cellular immunotherapy in the clinic has entirely redrawn the

treatment landscape for a growing number of human cancers. Genetically

reprogrammed immune cells, including chimeric antigen receptor (CAR)-

modified immune effector cells as well as T cell receptor (TCR) therapy, have

demonstrated remarkable responses across different hard-to-treat patient

populations. While these novel treatment options have had tremendous

success in providing long-term remissions for a considerable fraction of

treated patients, a number of challenges remain. Limited in vivo persistence

and functional exhaustion of infused immune cells as well as tumor immune

escape and on-target off-tumor toxicities are just some examples of the

challenges which restrain the potency of today’s genetically engineered cell

products. Multiple engineering strategies are being explored to tackle these

challenges.The advent of multiplexed precision genome editing has in recent

years provided a flexible and highly modular toolkit to specifically address some

of these challenges by targeted genetic interventions. This class of next-

generation cellular therapeutics aims to endow engineered immune cells with

enhanced functionality and shield them from immunosuppressive cues arising

from intrinsic immune checkpoints as well as the hostile tumor

microenvironment (TME). Previous efforts to introduce additional genetic

modifications into immune cells have in large parts focused on nuclease-based

tools like the CRISPR/Cas9 system or TALEN. However, nuclease-inactive

platforms including base and prime editors have recently emerged and promise

a potentially safer route to rewriting genetic sequences and introducing large

segments of transgenic DNA without inducing double-strand breaks (DSBs). In

this review, we discuss how these two exciting and emerging fields—cellular

immunotherapy and precision genome editing—have co-evolved to enable a

dramatic expansion in the possibilities to engineer personalized anti-cancer

treatments. We will lay out how various engineering strategies in addition to

nuclease-dependent and nuclease-inactive precision genome editing toolkits

are increasingly being applied to overcome today’s limitations to build more

potent cellular therapeutics. We will reflect on how novel information-rich

unbiased discovery approaches are continuously deepening our understanding
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of fundamental mechanisms governing tumor biology. We will conclude

with a perspective of how multiplexed-engineered and gene edited cell

products may upend today’s treatment paradigms as they evolve into the

next generation of more potent cellular immunotherapies.
KEYWORDS

cell engineering, gene editing, immune effector cell, cell therapy, CAR (chimeric
antigen receptor), CRISPR screening
1 Introduction

Chimeric antigen receptor (CAR) engineering of immune

effector cells (IEC), such as T cells or Natural Killer (NK) cells, is

a promising frontier of personalized cancer therapy, manifesting

sustained remissions in specific populations of patients with

relapsed or refractory (R/R) lymphoid malignancies (1). This

approach entails reprogramming immune effector cells with

synthetic receptors equipped with multiprong features

enabling antigen recognition, downstream signaling, and

costimulatory activation, ultimately resulting in targeted

elimination of antigen-expressing tumor cells. The promise of

CAR-T cell therapy has primarily been realized through CD19-

directed therapies against B cell malignancies (2–6), and more

recently through BCMA-directed therapies against multiple

myeloma (7, 8), for which there are several commercial

products now available. This success has spurred extensive

preclinical investigation of cellular immunotherapy against

other malignancies with an expectant dynamic and exciting

pace of new indications. However, the clinical efficacy of CAR-

based therapies against other malignancies, particularly solid

tumors, has not yet been matched in many settings due to issues

relating to trafficking, infiltration, clonal heterogeneity, off-target

activity or on-target off-tumor activity against normal tissues,

and the hostile immunosuppressive TME (9). There are

additional logistical and clinical limitations to CAR-T cell

therapy. The cumbersome and lengthy production associated

with manufacturing an autologous product renders high

expenditure and restrictive use (10). Even if previously

generated allogeneic T cell products are HLA-matched with

the recipient, genetic modification is still required to reduce the

risk of graft-versus-host disease (GvHD) mediated by the native

ab T-cell receptor (TCR). Furthermore, CAR-T cell therapy can

cause toxicities, such as immune effector cell–associated

neurotoxicity syndrome (ICANS) and cytokine release

syndrome (CRS), which can increase hospitalization duration

and treatment cost (10). NK cells are innate immune cells that
02
serve as an attractive alternative platform for CAR engineering

and offer several advantages to the use of T cells, including

avoiding the risk of GvHD, scalability in an off-the-shelf

allogeneic cellular product, and a superior safety profile (10).

Enduring challenges with CAR engineered effector cells that

may yield suboptimal response and disease relapse include i)

antigen negative recurrence from immunoediting and antigen

escape in the tumor, or ii) limited in vivo persistence or

functional exhaustion of the CAR-engineered cells, resulting in

antigen positive relapse (11). Strategies to combat antigen

negative relapse thematically involve targeting multiple

antigens either simultaneously or in a sequential manner.

Approaches to overcome effector exhaustion or to increase

proliferation and potency are varied and include i) altering the

choice of co-stimulation (12), ii) cytokine cargo coupling (e.g.

IL-15, IL-12, IL-18) with awareness of the detriment from

unconstrained tonic signaling (13), and iii) synergizing CAR

adoptive cell therapy with checkpoint blockade (14), among

other tactics. Such advancements are being supplanted with

pioneering, multiplexed gene editing tools including Clustered

Regularly Interspaced Short Palindromic Repeats (CRISPR)

based editing to introduce deliberate genetic perturbations that

enhance the potency of CAR effectors by, for example,

reprograming immune cell metabolism, equipping cells with

methods to resist exhaustion, disrupting pathways for

immunosuppression, or improving survival (11). Such

interventions and investigations show enormous promise in

the marriage of sophisticated, hypothesis-driven modification

of immune cells in a site-directed fashion to modulate cellular

pathways that negatively impact the efficacy and fitness of CAR-

modified effector cells.

In this review, through the prism of challenges the field has

been facing with CAR-based immunotherapeutic strategies, we will

discuss the evolution of innovative multiplex engineering strategies

and precision gene editing tools that are designed to enhance the

therapeutic scope and potency of this groundbreaking

personalized therapy.
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2 Multiplexed engineering as a tool
to enhance cellular therapies

The expanding possibilities in personalized medicine

coincide with the dramatic improvements in immune cell

engineering, most notably the successful transition of CAR-T

and CAR-NK cells as well as TCR gene therapy (15) into

the clinic.

One of the most valuable features of cellular immunotherapy

lies in the capacity of infused immune cells to expand and evolve

in vivo. Indeed, some studies point towards peak CAR transcript

levels as assessed in the patients’ peripheral blood to be a

potential predictor of clinical response (16, 17). Contrary to

antibody-based strategies, which often need to be administered

continuously to mitigate rapid in vivo degradation, cell therapy

products are ‘living drugs’ which exhibit striking plasticity with

regard to their phenotypic, transcriptomic and epigenetic

composition post-infusion. This dramatic evolution is shaped

by the continuous selective pressures arising from the

interaction with both the tumor cells as well as bystander host

immune cells and may have profound effects on the persistence,

memory formation and anti-tumor potency of infused immune

effector cells (18–20). Seminal studies have in recent years

investigated the single-cell trajectories of infused CAR-T cells

and found key pre-infusion transcriptomic signatures which

correlate with response and potential toxicity and may in the

future serve as predictive biomarkers to help guide data-driven

treatment decisions (21–24).

Novel high-dimensional assays with single-cell resolution

have recently elucidated the complex epigenetic underpinnings

of T cell exhaustion (25–30), and it is likely that other immune

effector cells, including genetically engineered lymphocytes are

subject to and governed by many of the same mechanisms

although much is still to be learned in this regard.

Multiplexed gene engineering, ultimately, attempts to

modulate these cellular signatures to enhance the safety and

efficacy of cell therapies. By combining the effective delivery of

synthetic receptors with additional cellular modifications

brought about by the opportunities arising from precise gene

editing, the next generation of multiplexed engineered cellular

immunotherapies strives to enhance anti-tumor potency,

increase in vivo persistence and overcome functional

exhaustion by increasing cellular fitness and/or shielding

engineered immune cells from the inhibitory cues received

from endogenous checkpoints or immunosuppressive

metabolites in the tumor microenvironment (TME) by

introducing multiple genetic modifications (Figure 1).

In the following section, we will outline the most pivotal

examples of multiplexed engineered immune cells, a growing

fraction of which have moved into clinical testing.
Frontiers in Immunology 03
2.1 Synthetic transgenic payloads for
enhanced functionality

2.1.1 Cytokine armoring
Cytokine armoring was one of the early examples for how

multiplexed engineering can endow genetically modified

immune cells with enhanced functionality (Figure 1A).

Bi- and multi-cistronic vector systems are now routinely

deployed to deliver synthetic external receptors for tumor

antigen recognition together with additional molecular

payloads such as cytokines for autocrine growth support (31,

63–71). For NK cells in particular, IL-15 has long been known to

be a critical determinant for prolonged in vivo persistence (71)

and different strategies have been devised to endow NK cells

with IL-15 mediated autocrine growth support. In a phase I/II

trial led by our group, NK cells engineered to express a CD19-

directed CAR molecule together with IL-15 demonstrated

remarkable responses in heavily pre-treated patients with

CD19 positive hematologic malignancies (16, 31). Similar

strategies are being pursued by others, for instance by

retaining IL-2 within the endoplasmic reticulum (72) or by

equipping NK cells with a membrane-bound IL-15/IL-15

receptor fusion protein (73).

Building on the observation that exposure to certain

cytokines can fundamentally remodel the transcriptomic

signature of immune cells and enhance their potency and even

induce formation of a memory-like phenotype (74–77), there

has been a growing interest in exploring other cytokines beyond

IL-15 to engineer more powerful immune cell immunotherapies

for sustained clinical responses (13, 78). Interestingly, this

transcriptional remodeling can give rise to novel, thus far

unrecognized, immune cell signatures, as exemplified by a

recent report on IL-12-transduced CAR-T cells which emulate

an NK cell-like phenotype with the capacity for antigen-

independent HLA-E-restricted killing – a property which

might complement CAR-driven responses by preventing

immune escape via antigen loss (78).

Other strategies employed to remodel the transcriptional

landscape and tune CAR-modified immune cells towards higher

anti-tumor potency rely on the direct ectopic expression of

transcription factors as exemplified by work from Crystal

Mackall’s group on c-Jun signaling to overcome CAR-T

functional exhaustion (32).

2.1.2 Multi-targeting CARs & rational design
of logic circuits

CAR-engineered cellular immunotherapies have shown

remarkable paradigm-shifting successes particularly for liquid

cancers. CD19-positive lymphoid malignancies are particularly

well-suited to be targeted using CAR-engineered IECs as target
frontiersin.org
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antigen expression is relatively high and on-target off-tumor

toxicities can be managed in many cases. Although antigen-low

or antigen-negative relapses represent a major challenge (79)

and efforts are underway to fine-tune CAR signal strength to

address low antigen density (80), other human cancers have

been disproportionally harder to target as they lack uniform

expression of tumor-specific antigens or are characterized by a

higher degree of clonal heterogeneity. Solid tumors in particular

pose extraordinary challenges to engineered immune cells as

they exhibit a set of unique challenges including shared antigen

expression with healthy tissues, impaired trafficking, and

homing into tumor beds, a hostile and immunosuppressive

tumor microenvironment (TME) and a more heterogenous

clonal architecture. Overcoming these challenges, hence,

promises to target a broader range of human cancers and has

driven a spur of innovation in recent years.

One strategy to address the relative paucity of tumor-specific

antigens as well as tumor immune evasion due to clonal

evolution and emergence of antigen-negative clones has been

to engineer bispecific dual or tandem CAR-modified immune
Frontiers in Immunology 04
effector cells, some of which are governed by logic-gated circuits

to specifically differentiate between shared targets expressed on

cancerous cells versus healthy tissues (Figure 1B).

Recent work on bispecific CD19/CD22-directed CAR-T cells

demonstrated the potential of dual targeting approaches to

enhance anti-tumor activity and efforts are underway to

further advance multi-specific CAR targeting both in the pre-

clinical and clinical settings (33, 34, 79, 81, 82). Advancements in

multi-receptor-based engineering approaches and in the ability

to reprogram the intracellular signaling networks underpinning

CAR activation has allowed for the design of logic-gated CAR-T

cells which can effectively target tumor-associated antigens while

avoiding on-target off-tumor toxicity and thus sparing healthy

tissues (83, 84). Preclinical data reported by the Seattle group

have demonstrated how CAR-T cells targeting tumor-associated

ROR-1 can be prevented from inducing otherwise toxic

abrogation of healthy bone marrow stromal tissue by

endowing them with synthetic notch receptors (SynNotch)

which specifically recognize EpCAM or B7-H3 leading to

tumor regression while sparing healthy tissues (35). In NK
B

C
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F
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FIGURE 1

Multiplexed engineering and gene editing strategies to augment anti-tumor potency and cellular fitness. A growing number of multiplexed
engineering approaches have been pursued to enhance the cellular fitness and augment anti-tumor potency of genetically engineered antigen-
specific immune effector cells. (A) Cytokine-armored immune effector cells are reprogrammed using a multi-cistronic vector system which
endows them with antigen specificity and furthermore encodes for a specific cytokine to provide autocrine growth support for enhanced
functionality. In the setting of CAR-NK cells, this strategy has successfully been employed to augment in vivo persistence through ectopic IL-15
secretion (31). Epigenetic modulation by targeted insertion of transcription factors may confer exhaustion resistance as has been shown for c-
Jun in CAR-T cells (32). (B) Combinatorial targeting strategies including dual CARs promise to increase IEC potency against antigen-low tumor
clones by recognizing multiple relevant target antigens (33, 34). When combined with logic-gated circuits, these multi-receptor engineering
approaches may overcome on-target, off-tumor toxicities which might arise from shared antigen expression between tumor and healthy tissue
(35–37). (C) Through the targeted insertion of chemokine receptors, immune effector cells can be rewired to traffic more effectively into tumor
beds, a critical lever to engineer cell products which are capable of combatting solid tumors (38, 39). (D) Building on the clinical success of
immune checkpoint blockade, efforts are underway to genetically disrupt known negative regulators of immune cell function including, for
instance, PD-1, TIGIT and NKG2A as well as TME-sensing receptors which bind immunosuppressive metabolites including adenosine and TGFb
(40–56). (E, F) Deletion of lineage-specific antigens or endogenous receptors may render engineered immune cells resistant to fratricidal killing,
which is crucially important when targeting malignancies with an overlapping surfaceome (57, 58). For allogeneic CAR-T cells in particular,
elimination of the endogenous T cell receptor (TCR) prevents the deleterious effects of alloreactivity and GvHD induction and site-directed
engineering strategies now accomplish both simultaneously - deletion of the endogenous TRAC locus and CAR delivery (59, 60). Lastly, genetic
deletion of endogenous antigens and receptors may prove advantageous when co-administrating lymphodepleting and immunosuppressive
drugs (61, 62). Created with BioRender.com.
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cells, similar strategies have been conceived, for instance the

recent report of FLT3 OR CD33 NOT EMCN CAR-NK cells

which are activated by CD33+ or FLT3+ leukemic blasts but

inhibited by concomitant recognition of Endomucin, which is

expressed by the majority of healthy hematopoietic progenitor

cells (HSCs) (36).

In a similar vein, preliminary reports have laid out an IF-

BETTER gated combinatorial CAR design which selectively

targets AML bulk and leukemic stem cells using an ADGRE2-

targeting CAR molecule combined with a CLECL12A-directed

chimeric costimulatory receptor (CCR). By adding CLEC12A as

a rationally selected combinatorial target, T cells engineered to

express this logic-gated construct recognize both ADGRE2high/

CLEC12Aneg and ADGRE2low/CLEC12Ahigh leukemic cells,

preventing ADGRE2low immune escape while sparing

ADGRE2low/CLEC12Aneg healthy hematopoiesis (37). Efforts

to further advance logic circuits for precision targeting of

tumor cells are underway and allow the construction of

various logical conditionalities (e.g., AND, OR, NOT). Today,

these synthetic circuits are not restricted to extracellular antigens

but can also be applied to recognize MHC-bound intracellular

tumor-associated peptides, for instance via scFv fragments

targeting specific peptide-MHC complexes fused to synNotch

receptors for conditional activation (85).

Besides widening the therapeutic window when targeting

shared antigens, dual CAR strategies can also be harnessed to

mitigate fratricidal killing of neighboring CAR-engineered IECs,

which can occur following transfer of the targeted antigen from

the tumor cells to the IECs through means of trogocytosis. As

was recently illustrated for CD19-directed CAR-NK cells,

integration of KIR-based inhibitory CAR receptors can shield

NK cells from such effects and yield more potent tumor

killing (86).

Collectively, these early examples foreshadow the enormous

potential of rationally designed multi-targeted CAR constructs

to precisely target and discriminate tumor cells from normal

cells, addressing one of the most foundational challenges in

cancer therapy.

2.1.3 Chemokine receptor engineering
Besides shared antigen expression, impaired trafficking of

immune cells into tumors represents another formidable hurdle

to overcome to engineer more effective cellular immunotherapies,

particularly, when aiming to combat solid tumors. In the realm of

CAR-T cells, many studies have evaluated multiplexed

engineering strategies to equip CAR- and TCR-modified T cells

with chemokine receptors for enhanced tumor infiltration (87–

96). In NK cells, similarly, a number of studies have reported

improved NK cell infiltration and anti-tumor potency by

overexpressing chemokine receptors (38, 97, 98) or augmenting

release of chemokines from tumor beds (99, 100). The first

chemokine receptor-engineered CAR-NK cells to be reported

leveraged ectopic CXCR4 expression for enhanced trafficking
Frontiers in Immunology 05
into glioblastoma tumor beds (39) (Figure 1C). Similar efforts

are being pursued by others (101). Nevertheless, much is still to be

learned to fully leverage the potential of augmented chemokine

signaling as many challenges remain. Most noteworthy, the

mechanisms of impaired tumor microcirculation resulting in

inadequate chemotactic gradients as well as context-specific

differences in the ultimate effects of chemokine receptor-ligand

interactions need to be better understood for these tools to

successfully transition into the clinic.
3 Multiplexed genome editing as a
tool to enhance cellular therapies

While the previous section focused on engineering strategies

aiming at introducing synthetic transgenic payloads to enhance

immune cell function, the following section aims to portray

precision genome editing tools being employed to disrupt and

modulate endogenous immune cell pathways which ultimately

restrain anti-tumor potency.
3.1 Evolution of gene editing
tool kits

3.1.1 Nuclease-based genome editing
Over the past decades, a plethora of gene editing strategies

have been devised to introduce targeted genetic modifications

into host genomes of eukaryotic cells (Figure 2). Long before the

advent of the CRISPR/Cas9 system, zinc-finger nucleases (ZFNs)

made their debut in the 1980s and allowed for the first time for

site-directed gene editing by recognizing specific genomic

sequences, leading to notable successes including the

generation of autologous CCR5-/- CD4 T cells for the

treatment of HIV (102) and genetic ablation of the checkpoint

molecule PD-1 in tumor infiltrating lymphocytes (40).

Transcription activator-like effector nucleases (TALENs),

which are structurally related to ZFNs, followed in 2009 and

further increased target specificity by binding more than 30 base

pairs. Within the realm of cell therapy, TALEN technology has

been used to engineer allogeneic CAR-T cells which are devoid

of their endogenous T cell receptor (TCR) to prevent harmful

GvHD (61). Arguably the most prominent toolkit for genetic

editing is provided by the CRISPR/Cas9 system, which allows for

a high degree of customization with respect to site-specificity at

comparably low cost.

Over the past several years, multiple studies have explored

preclinical applications of CRISPR technology to optimize

cellular therapeutics based on T cells (5–10) as well as NK

cells (11–13). In 2020, this progress culminated in the first

successful clinical application of CRISPR-engineered TCR-T

cells (103). Common to all these Cas9-mediated editing
frontiersin.org
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strategies is the induction of double-strand breaks (DSBs) in

DNA which are subsequently repaired by either non-

homologous end joining (NHEJ) or homology-directed repair

(HDR). Incomplete repair of these breakage points may give rise

to indels leading to frameshift mutations and subsequent knock-

out of one or more targeted genes. When combined with DNA

donor template, the same toolkit allows the targeted integration

of exogenous DNA inserts at defined genomic loci (104)

(Figure 3). Incremental improvements have, over time,

expanded the potential length of the genetic payloads which

can be inserted and increased editing efficiency. Nevertheless,

challenges to deliver template DNA to target cells persist and

limited abundance of template DNA continues to represent a

potential bottleneck for targeted genomic insertions (125–127).

Retron-derived template DNA promise to overcome this

technical limitation by drastically increasing the concentrations

of available template DNA which in turn may increase precision

genome-editing efficiency (128). Retrons serve a role in bacterial

phage defense and possess the capacity for reverse transcription

(RT) (128–132). Recently, their ability to generate designer RT-

DNA in vivo was shown to be feasible for human genome-
Frontiers in Immunology 06
editing applications (128). Over time, it will be interesting to

observe how the various platforms of precise-genome

engineering will evolve and which ones will prove to be most

suitable for clinical translation in the space of engineered

immune cell therapeutics.

3.1.2 Nuclease-inactive precision
genome editing

Despite their great promises, all previously outlined

nuclease-based gene editing strategies hold the potential safety

concern of introducing inadvertent off-target cleavages which

may lead to potentially deleterious consequences (133–137).

In 2016, researchers around David Liu devised a novel

strategy which allows the introduction of genetic alterations

without the requirement of inducing DSBs (Figure 3). Base

editing traditionally refers to the sgRNA-directed exchange of

single nucleotides mediated by modified forms of Cas9 protein,

Cas9 nickases (nCas9), which lack the capacity to cleave DNA,

but instead are fused to bacterial deaminases to substitute single

nucleotides (105, 106, 138), although recently CRISPR-free all-

protein base editors have been described (139). For nCas9-
FIGURE 2

Evolution of gene editing toolkits. Zinc-finger nucleases (ZFNs) are a first-generation man-made gene-editing tool that consists of two domains:
1) a DNA-cleaving domain comprised of the non-specific nuclease domain of FokI to introduce DNA double-stranded breaks, and 2) two DNA-
binding domain chains, called “finger” modules, each recognizing a unique hexamer (6 bp) sequence of DNA. The fusion of DNA-binding and
DNA-cleaving domains forms a pair of “genomic scissors”, with high specificity but lower than that of Transcription activator-like effector
nucleases (TALENs) or Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR) gene editing systems. TALENs are a second-
generation gene-editing tool also based on chimeric nucleases like ZFN with the same non-specific DNA cleavage domain (FokI), but it
comprises of longer sequence-specific DNA-binding TALE modules, each of which contacts a single DNA base pair. By fusing with nuclease
(TALE-Nuclease or TALEN), this tool can be used to edit genes, but only one at a time, unlike CRISPR. The longer programmable DNA-binding
domain comprises of a series of 33-35 amino acid repeat domains, which allows for improved specificity than ZFNs, but increases cost and is
marked by a low-efficiency process of vector construction. TALEN editing may induce mosaicism, in which mutations are only present in some
transfected cells. The advent of CRISPR/Cas9 gene editing more recently has allowed for the creation of a tool with low cost, high specificity,
high efficiency, and much simpler construction. This RNA-based tool is derived from a natural bacterial defense mechanism. The nuclease
consists of the CRISPR-associated protein (Cas9) protein classically, though other Cas proteins have been used for cleaving. The complex
initially binds to a short sequence known as the protospacer adjacent motif (PAM). This nuclease interacts with two RNAs for recognition and
specificity, a trans-activating crRNA and single guide RNA, sometimes combined for simplicity. Notably, CRISPR allows for multiplexed gene
editing, where multiple gene mutations can be issued concurrently. Complications include the potential for off-target effects and potential
immune reaction susceptibility. As indicated, all systems employ a recognition module and cleavage domain that can be manipulated
independently. Created with BioRender.com.
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mediated base editing, single-strand DNA point mutations are

subsequently resolved in the process of replication and are used

to deliberately alter the codon sequence including insertion of

premature STOP codons. Base editors allow correction of

pathogenic allele variants offering novel treatment avenues for

monogenetic disorders including some causes of sickle cell

disease (140) and b-thalassemia (141, 142). The first base

editor to have entered the clinic aims to silence PCSK9 in

patients with heterozygous familial hypercholesterolemia and

further candidates are already on the horizon (141, 143).

The last years have seen the first applications of base editing

to cellular immunotherapy (144), for instance to engineer

fratricide-resistant CAR-T cells by targeting the pan-T lineage

antigens CD3 and CD7 (145). Another group recently reported

the introduction of four simultaneous base edits to generate

allogeneic CD7-directed CAR-T devoid of endogenous

expression of TRAC, CD52, CD7 and PD-1 (146).

While base editing allows for transition mutations (purine-

for-purine and pyrimidine-for-pyrimidine substitutions), it is

limited in its ability to perform transversion mutations

(exchanging purines for pyrimidines and vice versa), targeted
Frontiers in Immunology 07
deletions and insertions which would be required to correct for

genetic disorders including Tay-Sachs disease and cystic fibrosis

among others (107). Prime editing overcomes this limitation by

linking nCas9 to a reverse transcriptase, both of which are

guided to a desired genomic locus by a customizable prime

editing guide RNA (pegRNA) (107) (Figure 3). After binding to

the target region, prime editing allows for single base exchanges

as well as insertions and deletions of synthetic DNA sequences of

limited length (107). Efforts are ongoing to increase both prime

editing efficiency (147) as well as the potential size of targeted

inserts, the latter of which has recently been expanded to

incorporate DNA sequences of up to 5kb length using a

platform dubbed twin prime editing (TwinPE) (108).

In recent years, the field has seen continuous incremental

improvements in editing efficiency, precision, and versatility.

Novel genome engineering strategies have emerged which build

on existing platforms to further expand their utility. Programmable

Addition via Site-specific Targeting Elements (PASTE), for instance,

uses prime editing technology to insert specific landing sites (AttB)

into the host genome which allows subsequent introduction of large

genomic sequences of up to 36kb length (148). Yet another strategy
BA

FIGURE 3

CRISPR - A versatile toolkit for the targeted deletion, rewriting and insertion of novel genetic information. Continuous iterations of technological
innovation have considerably extended the scope and versatility of CRISPR-based gene editing strategies. Today, CRISPR genome editing
encompasses a wide spectrum of diverse applications including the direct rewriting of genetic code, modulation of gene expression, and post-
transcriptional RNA editing. While the most widely known CRISPR-Cas9 system and others rely on inducing DNA double-strand breaks (DSBs)
and carry the potential risk of introducing deleterious effects arising from off-target cleavages (A), other CRISPR-based editing tools, including
base editing (105, 106) and prime editing (107), allow to rewrite the genetic code without the requirement for DNA double-strand cleavages
and, hence, present a potentially safer alternative (B). Over time, the possibilities to insert novel genetic material have expanded dramatically
with the most recent advances including Twin prime editing (108) and CRISPR-associated transposase (CAST)-editing (109) now allowing large
transgenic inserts in the range of up to 10-40 kb length. Besides editing the genetic code, powerful tools now exist which allow to tune
transcriptional activation in a targeted manner. CRISPRa and CRISPRi rely on the site-directed delivery of transcriptional effector molecules to
activate or repress gene expression (110–113). More profound epigenetic modulation can be achieved by tethering catalytically dead Cas9 to
methyltransferases and acetyltransferases to alter the global methylome and edit histone modifications (114–124). Created with BioRender.com.
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for large genomic insertions relies on CRISPR-associated

transposases (CAST), which have been demonstrated to enable

the insertion of templates of up to 10 kb, however, with a

considerable fraction of 50% off-target integrations (109). Against

this backdrop, it will be interesting to see how these approaches can

eventually be applied to enhance the safety and potency of cell

therapy products.
3.2 Disruption of immune checkpoints
and TME-sensing receptors

Precision genome editing strategies including CRISPR/Cas9

and TALEN allow the disruption of inhibitory immune cell

pathways, for instance, by ablation of immune checkpoint

molecules or TME-sensing receptors (Figure 1D). To enhance

CAR-T potency, genetic perturbations have targeted negative

regulators of T cell function including PD-1 (41–46), CTLA-4

(43, 45), TIGIT (45), TIM-3 (45–47), LAG-3 (45, 46, 48).

Knockdown of GM-CSF in CD19-directed CAR-T cells

additionally led to mitigated IEC-mediated toxicities in one

pre-clinical study (149). In NK cells, seminal work established

the crucial role of the intracellular regulatory checkpoint CIS

which acts to suppress cytokine signaling and can be targeted

using the CRISPR/Cas9 editing for enhanced NK cellular fitness

and potency in non-engineered or CAR engineered settings (49,

50, 150). NKG2A, another potent inhibitory molecule in NK cell,

similarly leads to enhanced NK cell potency when genetically

blocked, and it will be interesting to see whether this strategy can

be translated to build NKG2A-disrupted CAR-NK cells that are

resistant to tumors expressing its cognate ligand HLA-E (51).

Receptors sensing the immunosuppressive metabolites of the

tumor microenvironment (TME), have likewise been targeted to

render NK cells resistant towards these inhibitory cues.

Transforming growth factor b1 (TGF-b) is a powerful

immunosuppressive cytokine which can have profound

negative effects on the anti-tumor immunity of NK cells.

CRISPR-mediated targeted ablation of TGF-bR2 rescued NK

cell effector functions from these deleterious effects (52, 53).

Similarly, genetic disruption of the adenosine A2A receptor may

contribute to enhanced CAR-T efficacy as it effectively shields

them from the negative consequences of the immunosuppressive

metabolite adenosine (54).
3.3 Disruption of lineage-specific
antigens to mitigate fratricide and
expand clinical utility

Other applications using genetic ablation have aimed to

delete lineage-specific antigens which might otherwise result in

fratricidal killing of engineered immune cells (Figure 1E). For

CAR-T cells, this has been of particular importance when
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targeting T cell malignancies which share the same pan-T cell

antigens including CD5 and CD7 (57). In NK cells, disruption of

endogenous CD38 has enabled the design of cell products which,

when combined with anti-CD38 monoclonal antibodies (mAbs),

confer anti-myeloma specificity for antibody-dependent cellular

cytotoxicity (ADCC) while shielding NK cells from CD38-

mediated fratricide (151).

Other manipulations can expand the therapeutic breadth of

immune effector cells, e.g., by knocking out CD52 (61, 152) or

the glucocorticoid receptor (62) to promote resistance towards

treatment-induced immunosuppression when co-administered

with alemtuzumab or corticosteroids, respectively (Figure 1F).

Furthermore, engineered immune cells can be reprogrammed

for more favorable interactions with the host immune system, e.g.,

by disrupting MHC-1 molecules to avoid host-mediated rejection

of engineered T cells, or to prevent GvHD by deleting the

endogenous TRAC locus, as is necessary for universal allogeneic

CAR-T cell candidates (44, 59, 153).
3.4 Sequence-specific editing to
enhance immune cell potency

Iterations of TRAC locus engineering now allow for the site-

directed insertion of CAR molecules to replace the endogenous

T cell receptor signaling complex and thereby reduce the

propensity of engineered cells for tonic signaling which has

been implicated in premature T cell exhaustion (59). Other

strategies leverage sequence-specific editing to fine-tune and

optimize antigen sensitivity of engineered T cells as was

demonstrated by the generation of HLA-independent T cell

receptors (HIT receptors), which exhibit drastically heightened

antigen affinity for killing of tumor cells with low antigen

density (60).

In conclusion, the high degree of modularity and flexibility

for customization provided by the evolving genome engineering

technologies has ushered in a new era of cell therapy products

which are characterized by rational design approaches building

on the ever deeper molecular understandings of tumor-immune

cell interactions.
4 CRISPR-enabled forward
genetic screening

Great strides have been made in recent years to endow

immune cells not only with antigen specificity but also enhanced

functionality and increased potency by multiplexed genetic

engineering and gene editing strategies. Common to all these

efforts is that they attempted to overcome previously established

and recognized mechanisms of immune cell dysfunction and

anergy. While the field is eagerly waiting to see the outcomes

when these multi-engineered cell products eventually advance to
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the clinics, novel unbiased and large-scale discovery approaches

have in recent years opened up new avenues to decode novel and

undescribed mechanisms of immune cell regulation that might

prove instrumental in designing the next generation of

engineered immune effector cells.

Pooled loss-of-function CRISPR screens in cancer cell lines

have become an invaluable tool to discernmolecularmechanisms of

therapeutic sensitivity and resistance. A large body of work across a

number of different human cancer types has elucidated genetic

dependencies that determine responses to anti-neoplastic

treatments (154, 155). In recent years, combinatorial screens have

further expanded these possibilities and allowed to identify

systematically distinct genetic interactions, for instance, to

discover synthetic lethal partners which might be exploited for

pharmacological interventions. The unique molecular features of

the DNA endonuclease Cas12a, which can simplify multiple

simultaneous genetic edits, has greatly improved the editing

efficiency compared to traditional Cas9 approaches and now

permits successful identification of hits in combinatorial drop-out

screens (156–159).

Whereas combinatorial screens can bring to light genetic

interactions which may drive the onset, maintenance or

progression of tumor cells, other platforms set out to

investigate cancer-type dependent genetic dependencies. As is

increasingly understood, CAR-T resistance mechanisms may

vary dramatically across tumor types and explain some of the

observed differential sensitivity for solid tumors versus

hematologic malignancies (160). Novel platforms aim to

investigate these distinct patterns of tumor-intrinsic resistance

pathways in a massively parallel manner. For instance, CRISPR

loss-of-function screening applied to a pool of hundreds of

barcoded cancer cell lines (PRISM) in an orthogonal screening

format recently helped elucidate shared cancer-intrinsic

transcriptional signatures which correlate with NK cell-

sensitivity (161). Noteworthy, this form of therapeutic

sensitivity mapping may guide future biomarker-driven

treatment algorithms.
4.1 Loss-of-function screens in primary
immune cells

Beginning in 2018, CRISPR screening strategies, which sought

to directly interrogate different subsets of primary immune cells,

started to emerge (Figure 4). Previously, technical hurdles in

delivering the high-molecular weight Cas9 protein had hampered

the efforts of performing such studies in hard-to-transduce primary

cells. For this reason, researchers have in many cases leveraged

transgenic murine models with constitutive Cas9 expression,

circumventing the need to deliver large bacterial endonucleases

into primary human immune cells (169–175). Notably, these works
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have been able to decipher fundamental aspects of immune cell

regulation in an unbiased and massively parallel large-scale fashion,

complementing decades of research on immunoregulatory

pathways governing T cell function.

Genome-wide CRISPR knockout screens in primary human T

cells were first reported in 2018, when two groups pioneered a

hybrid gene editing approach combining lentiviral sgRNA

delivery with transient Cas9 transfection via electroporation

(162, 163) (Figure 4A). In these studies, the authors were able

to identify known and unknown genetic mechanisms governing

activation-induced proliferation of primary human CD4+ and

CD8+ T cells (162) as well as hematopoietic stem and progenitor

cell (HSPC) expansion (163). Building on the same platform, the

researchers were furthermore able to assess the ramifications of a

set of different immunosuppressive selective pressures on immune

effector cells (including adenosine, TGF-b, cyclosporine,

tacrolimus) to identify potential routes to eventually overcome

them (162, 164).
4.1.1 High-content CRISPR readouts
Another aspect, which has greatly improved the biological

relevance of these studies is driven by the advent of high-content

CRISPR readouts. By relying on, for instance, marker-based

sorting to differentiate distinct cellular phenotypes or by

integrating other high-dimensional assays including single cell

RNA sequencing, these next-generation CRISPR screens provide

more depth compared to traditional assays which primarily

addressed resistance or sensitivity to a certain external

selective pressures (176).

One prominent example comes from work done by the group of

Jeremy Rich, who investigated genetic determinants of exhaustion, as

defined by surface expression of PD-1, in EGFRvIII-directed CAR-T

cells when challenged with glioblastoma stem cells (GSCs) (165). In

their seminal work, they used cell sorting to assess guide enrichment

in PD-1+ CAR-T compartment and found crucial regulators of CAR-

mediated glioblastoma killing. RNA sequencing of GSC-challenged

CAR-T cells, which had been specifically edited based on previously

identified hits, revealed distinct transcriptomic signatures

characterized by upregulation of T cell activation markers and

proinflammatory cytokines.

The integration of CRISPR screening and single cell RNA

sequencing, hence, powerfully illustrates the potential of high-

dimensional studies to capture the complex regulatory

mechanisms which determine immune cell fates and anti-

tumor immunity (162, 165). In light of the recent report of the

first genome-scale mapping of transcriptional effects of genetic

perturbations (Perturb-seq) (177), going forward, the relevance

of these information-rich assays is likely going to further

increase and will help inform the rational design of next-

generation engineered cell products.
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4.2 Knock-in screening

While targeted genetic ablation has the potential to disrupt

pathways which restrain immune cell activation or contribute to

exhaustion, knock-in of large gene cassettes, may hold even

greater potential to reprogram immune cells for heightened

effector functions or exhaustion resistance (32). As has

recently been demonstrated, forward genetic screening can be

deployed to systematically investigate the transcriptional and

functional ramifications arising from the introduction of

synthetic gene programs in pooled gain-of-function screens in

primary human T cells (55, 166, 167) (Figure 4B). Two main

technical platforms for gain-of-function screening have been

described relying on either i) non-viral delivery of promoterless

double-stranded DNA templates to a specific locus via co-

electroporation with CRISPR/Cas9 ribonucleoproteins (RNPs)

for subsequent HDR-mediated integration (55) or ii) lentiviral
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delivery of a barcoded open reading frame (ORF) library (166).

Of note, these platforms allow to systematically interrogate the

functional consequences of the integration of completely novel

gene programs including synthetic receptors which

physiologically might not be present in the targeted immune

cells, a key difference compared to CRISPR activation

(CRISPRa)-based screens, which focus on activation of

endogenous genes (168, 178–180). For instance, insertion of

lymphotoxin-b receptor (LTBR), typically expressed in myeloid

cells, into unmodified as well as CAR-engineered T cells, led to

exhaustion resistance and improved effector functions by

formation of an autocrine positive feedback loop, as a recent

genome-scale pooled knock-in screen selecting for highly-

dividing primary T cells revealed (166). Similarly, an in vivo

pooled knock-in screen which assessed the relative genotype

abundance of 36 synthetic receptors, transcription factors and

metabolic regulators among melanoma-infiltrating lymphocytes
B

C

A

FIGURE 4

Genome-wide CRISPR screening in primary human immune cells. Forward genetic screening enables the unbiased discovery of genetic
dependencies governing cellular functions. Applied to the context of primary immune cells, including genetically engineered immune effector
cells, these large-scale discovery approaches have in recent years contributed greatly to develop a deeper understanding of the molecular
mechanisms regulating activation-induced T cell proliferation, cytokine secretion and functional exhaustion. Technically, a set of different design
approaches exist and enable to address distinct biological questions and confer relationships between genotype and phenotype. (A) Pooled
CRISPR/Cas9 knock-out screens allow to interrogate in a massively parallel manner the functional consequences of genetic deletions at
genome-scale. In primary human T cells as well as CAR-T cells, lentiviral gRNA library delivery is typically followed by transient Cas9 delivery via
electroporation (162–165). Multiple different readouts have previously been investigated including activation-induced T cell proliferation and
cytokine secretion as well as T cell persistence and exhaustion. More sophisticated assays combine these efforts with additional selective
pressures, for instance, by challenging T cells with immunosuppressive metabolites such as adenosine to select for biologically relevant
phenotypes which might inform the design of the next generation of cellular therapies (162–165). (B) Knock-in screens allow the unbiased
investigation of novel synthetic gene programs and have lately been translated to primary human T cells in which context they were able to
elucidate synthetic fusions receptors which render T cells resistant to immunosuppressive cues from the TME (55, 166, 167). Delivering gene
inserts can be accomplished using different strategies, the most recent of which can deliver large transgenes up to multiple kb in size at scale
(108, 109). (C) Transcriptional remodeling using CRISPRa and CRISPRi-mediated has successfully been applied to primary human T cells and
helped elucidate genetic mechanisms orchestrating cytokine secretion of CD4+ and CD8+ T cells (168). Created with BioRender.com.
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(TILs), found that introduction of a novel chimeric TGF-b-R2-
41BB receptor endowed T cells with the capacity to resist

immunosuppressive signaling from TGF-b leading to

enhanced melanoma clearance in vivo (55). As the field

evolves, both the breadth of screenable gene products has

increased and the associated sequencing efforts have been

streamlined using modular screening strategies (167). These

modular platforms also enable combinatorial screening, for

instance, to investigate the synergies from the combined

integrations of different transcription factors (167).

Collectively, these examples demonstrate the power of

CRISPR-based unbiased discovery tools to identify novel gene

programs, which, when introduced into engineered lymphocytes

might augment cellular fitness and anti-tumor potency.
4.3 Tuning transcriptional networks for
enhanced immune cell function

Today, CRISPR-mediated genome editing allows for the

targeted ablation, rewriting and introduction of entirely new

segments of DNA (105–107, 110–113, 181). Specific

modifications using a catalytically dead form of Cas9 (dCas9)

fused with transcriptional activator (CRISPR activation –

CRISPRa) or repressor molecules (CRISPR interference –

CRISPRi) furthermore allow the targeted epigenetic modulation

of gene expression (110–113, 123, 124) (Figure 3). Both CRISPRi

and CRISPRa have been used to screen for transcriptional networks

regulating cellular function at genome-scale (177, 180, 181) to

decipher resistance mechanisms involved in dampening anti-

tumor immunity (180). Recent efforts point to the potential

application of multiplexed CRISPRa technology as a tumor

vaccine by upregulating TAAs for enhanced T cell anti-tumor

immunity (179).

In primary human T cells, reciprocal genome-wide CRISPRi/

CRISPRa screening has been used to expose transcriptional

bottlenecks which restrict T cell activation. Paired with scRNAseq

(Perturb-seq), the study further enabled deep molecular

characterization of the identified therapeutically relevant T cell

states which may prove instrumental when designing novel T

cell-based immunotherapies (168) (Figure 4C). In another recent

study, CRISPRa gain-of-function screening was applied to CAR-

modified murine T cells and was able to demarcate proline

metabolism as a pivotal driver of CAR-T cellular fitness and

function (178).

Of note, the CRISPRa toolkit is also being leveraged by

adjacent research fields, for instance, to revisit fundamental

questions of tumor biology, such as whether specific mutations

implicated in tumor resistance have been acquired through

clonal evolution or were pre-existing. Such questions are now

possible to answer using CRISPRa-inducible reporters for live

clonal retrieval (182).
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4.3.1 Transcriptome editing using CRISPR-
Cas13 proteins

Whereas CRISPRi and CRISPRa rely on the stable

introduction of transcriptional activators and suppressors to

modulate gene expression, Cas13 allows for direct transcriptome

engineering via RNA editing without the requirement for

permanent genetic manipulations (183–186) (Figure 3).

CRISPR-Cas13-mediated transcriptome engineering now allows

for both targeted RNA knockdown as well as the rewriting of RNA

transcripts, e.g., to correct for pathogenic mutations (187). Of

note, Cas13-based approaches may suffer from some of the same

drawbacks and limitations as Cas9 including potential off-target

editing (188) and host rejection due to pre-existing

immunogenicity (189). Nevertheless, this emerging technology

represents a promising toolkit for transcriptome engineering

which is potentially safer than CRISPR-Cas9-mediated

approaches as it can induce defined cellular states without

introducing genomic alterations. Recent innovations further

yielded chemically modified forms of Cas13, which were able to

stably modulate gene expression in CD4 and CD8 T cells (190).

The potential implications of these next-generation CRISPR

tools are vast and aim to i) better understand the basic biology of

anti-tumor immunity and ii) to build better and more powerful

cellular therapeutics. Moreover, while a number of potential

candidate genes for augmented T cell immunotherapy have been

proposed, it will be critical to see how robustly pre-clinical

validation efforts of identified hits can predict the successful

transition into clinical development programs.
5 In vivo gene editing and cell
engineering strategies

In its latest iteration, precision genome engineering has been

adapted for cell-type specific in vivo genetic editing to treat

various human diseases including cancer. In a report from 2021,

CRISPR/Cas9-mediated in vivo deletion of transthyretin (TTR),

which is mutated in progressively fatal transthyretin

amyloidosis, led to a striking decrease of circulating

transthyretin protein levels in the peripheral blood of treated

patients (191). Using an apolipoprotein-E (ApoE)-recruiting

lipid nanoparticle (LNP) loaded with Cas9-encoding mRNA

and a TTR-directed sgRNA, this platform allows to specifically

correct this pathogenic variant in hepatocytes (192). Similarly,

pre-clinical efforts have resulted in the in vivo generation of

fibroblast activation protein (FAP)-directed CAR-T cells to treat

cardiac injury, by selectively reprogramming T cells using a

CD5-targeted LNP system (193). Besides LNP-mediated

strategies, implantable bioinstructive scaffolds have been

developed, which can generate CAR-T cells in vivo and, hence,

circumvent the cost-intensive and lengthy vein-to-vein times
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required for ex vivo manufacturing of autologous CAR-T

products (194).

Most recently, nuclease-inactive genome editing strategies

have also transitioned to in vivo applications to correct

pathogenic mutations in diseases like Hutchinson–Gilford

progeria syndrome (195) or familial hypercholesterinemia

using size-optimized adeno-associated viruses (AAV) as

delivery vehicles (196).

These developments may have far-reaching implications, as

they promise to dramatically reduce the time and cost of

manufacturing cell products, which could ultimately increase

patient access. Furthermore, the immense adaptability of

precision genome editing strategies for designing and

delivering DNA sequences to correct pathogenic allele variants

make it likely that these powerful tools will play an increasingly

important role in the treatment of many of the most devastating

human diseases.
6 Ensuring patient safety and
navigating regulatory challenges

Despite the well-founded optimism, safety concerns arising

from various engineering and genome editing strategies remain a

preeminent concern, particularly when novel multiplex modified

cellular therapeutics transition into the clinic. Recently,

temporary halts of ongoing clinical trials investigating gene-

edited cell products illustrated the delicate regulatory trade-off to

find the right balance between granting patients access to

innovative treatments while ensuring utmost patient safety.

Safety concerns may arise both from the vector system

employed to deliver genetic cargo or from the induced genetic

alterations, themselves. While overall vector safety has greatly

improved over the last decades, nuclease-based genome editing

strategies continue to carry the risk of inadvertent off-target

cleavages. Off-target toxicities of CRISPR/Cas9 editing include

mutational events or chromosomal rearrangements that may

appear despite the first 20 nucleotide sequence of the sgRNA

directing the efficiency of Cas9. Inadvertent off-target cleavage

may lead to the deleterious loss of tumor suppressor genes (197).

One such example of off-target mutations is the integration of

DNA mismatches in the PAM-distal portion of the sgRNA

sequence (134, 135, 198–200). Multiple unbiased sequencing

platforms exist today and allow to detect these undesired

genomic edits (201–203) and assess potential associated risks

to decide whether a particular cell product can be safely infused.

Global and sensitive detection of DSBs introduced by CRISPR

RNA-guided nucleases is enabled through Genome-Wide,

Unbiased Identification of DSBs enabled by Sequencing

(GUIDE-seq) (201), Circularization for in vitro Reporting of
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Cleavage Effects by Sequencing (CIRCLE-seq) (202), or RNase

H-dependent PCR Amplification Sequencing (rhamp-Seq)

(203), which all function as assays to assess off-target cleavage.

Approaches to diminish or prevent off-target effects of CRISPR/

Cas9 editing include (i) identifying unique target sites without

homology to other genomic regions, (ii) modifying the sgRNA

by distal truncation of the 3’ end (204), (iii) substitution of

regular Cas9 with high fidelity Cas9 (HiFi) or alternative

nucleases such as Cas12 (205), (iv) lowering the concentration

and optimizing the ratio of Cas9-sgRNA given to the cells (206),

or (v) fusing dCas9 with Fokl nuclease (fCas9) to allow for

higher sequence targeting specificity (207, 208). Alternatively,

nuclease-inactive genome engineering including base editing

and PRIME editing present potentially safer alternatives as

they avoid DNA double-strand breaks and may well evolve to

play a more important role for genome-edited cell products for

clinical use going forward.

Today, clinical development programs aiming to translate

promising cellular candidates into the clinic are in ever closer

contact with regulatory bodies to jointly sketch a safe path

forward for highly innovative products to enter the clinic. As

the field matures, the most relevant learnings have recently been

formalized in Food and Drug Administration (FDA)-issued

guidance documents. One important document is focused on

Considerations for the Development of Chimeric Antigen

Receptor (CAR) Cell Products (209) and another important

document is geared towards Human Gene Therapy Products

Incorporating Human Genome Editing (210).

Within the framework of these resources, the FDA has

issued recommendat ions regarding the chemistry ,

manufacturing, and control (CMC), as well as toxicology,

pharmacology, and clinical study design involving CAR

engineered immune effector cell therapies (209). A prominent

guidance involves the choice of vector for gene delivery. Vectors

integrating into cellular DNA (e.g., retroviral-based vectors or

transposons) may increase the risk of delayed adverse events,

including potentially by insertional mutagenesis, and this may

require long-term follow-up. Such occurrences would be

unexpected in non-integrating vectors, and thus such long-

term follow-up for these products may not be warranted. The

FDA advises that the necessity of each additional functional

domain be justified in application reports, with a description of

how these elements may affect CAR specificity, functionality,

safety, and immunogenicity. Batch-based manufacturing and

process optimization are recommended. If viral vectors are

utilized, transduction reliability with batch-to-batch consistent

viral multiplicity of infection (MOI) is critical. Aseptic technique

should be carried out under current good manufacturing process

(CGMP) conditions. Guidance also covers the manufacture and

delivery of CAR products, with allowance decreed to both fresh

and cryopreserved products depending on the desired shelf-life
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and quality of the products. Cryopreserved cell products may be

more practical for delivery of the cells to different clinical sites,

provided that controlled thawing procedures are carefully

outlined, potential transport plans are established, and

assurance regarding the safety of cryoprotectants has been

assessed. Regarding study design, sponsors are recommended

to arrange a priori analyses for all subjects, as well as for patients

stratified by the receipt of bridging therapy or not. A plan for

stopping rules from dose-limiting toxicities, adverse effect

monitoring and attribution, and follow-up must be described.

The FDA has outlined separate guidelines for human gene

therapy products incorporating human genome editing,

encompassing CRISPR-engineered cell products (210). They

elaborate on different genome editing tools, delivery methods,

and conditions (e.g., ex vivo, in vivo), with stipulated goals to

stabilize components, uphold aseptic processing, and minimize

off-target genome alterations. The IND should contain

documentation regarding genome editing efficiency and

specificity. With appropriate controls, orthogonal and

redundant models are recommended that incorporate in silico,

biochemical, and cellular-based assays, for unbiased genome-wide

analysis to detect potential off-target sites. Safety analyses should

include assessments of the immunogenicity of genome editing

components, viability assessment, evaluation for any residual gene

editing components, and testing for selective survival advantage of

edited cells, including dysregulated growth or clonal proliferation.

It is essential to evaluate genomic integrity, including deletions or

insertions, chromosomal rearrangements, exogenous DNA

integration, and potential insertional mutagenesis or oncogenicity.
7 Concluding remarks and
future directions

The intersection of multiplexed engineering, precision

genome editing, and cellular immunotherapy has brought

about an unprecedented wave of innovations which has over

the last couple of years dramatically expanded the available

treatment modalities to combat cancer and other devastating

diseases. Iterative cycles of innovation have extended the scope

of genome editing strategies and novel delivery methods have

helped enable the design of multiplexed-engineered cell

products, redrawing the treatment landscape in oncology and

beyond. Nevertheless, important challenges remain, and the field

is actively exploring opportunities to overcome them.

First, there is an imperative to better understand the

mechanisms of therapeutic resistance and relapse following

cellular immunotherapy. Devising strategies to overcome

tumor immune escape and prevent functional exhaustion of

infused immune cells while mitigating inadvertent toxicities are
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just two examples of how improved cellular therapeutics may

evolve to become more powerful with time. As outlined, forward

genetic screening approaches paired with information-rich

multi-omic analyses may critically inform these novel

strategies by uncovering the biological mechanisms which

orchestrate the complex interplay between immune cells and

tumors. Multiplexed gene engineering may, in turn, build on

these learnings to enable the design of more powerful cell

products which can produce more durable and potent anti-

tumor immune responses.

Sketching a path forward for cellular immunotherapy to

effectively combat solid tumors indisputably represents one of the

most formidable challenges, the field seeks to address, and

numerous highly differentiated strategies are being pursued to

accomplish this goal. Besides tackling the challenges of shared

antigen expression (35–37, 211), downregulation of MHC

molecules (212–214) and impaired trafficking (39), the field is

continuously branching out, for instance, towards aiming to

restore the immunogenicity of immunologically ‘cold’ tumors, via

various approached including epigenetic modulation (215, 216),

tumor vaccination strategies (179) or by incorporating bacterial

virulence factors to attract bystander immune cells (217).

Researchers have also investigated the possibility of delivering

CAR targets to solid tumors via oncolytic viruses, in the hope to

render the transformed cells targetable using established CAR-T cell

products (218). Furthermore, recent work has also pointed to other

immune cell subsets for CAR modification (1, 219–223), including

CAR-modified macrophages (CAR-M), which may provide unique

advantages to better penetrate solid tumor capsules (224). Following

the recent report of in vivo edited hepatocytes (191), future studies

may also aim to reprogram the tumor cells directly in vivo. This

approach might be leveraged to restore treatment sensitivity by

augmenting the release of immune cell-attracting chemokines (99,

225) or by forcing expression of TAAs for enhanced

immunogenicity (179). Other strategies might aim to selectively

induce cell death, for instance, by targeted disruption of oncogenes

or hybrid pharmaco-genetic interventions to suppress synthetic

lethal gene interactions.

Lastly, a growing number of stakeholders in the field are aiming

to expand the scope of eligible patients who can benefit from the

tremendous advancements of cellular immunotherapy and

precision genome engineering. The transition towards allogeneic

off-the-shelf cell products (16, 31, 73, 226, 227) and in vivo-

manufactured cell products (193, 194) is already in full swing. Bi-

and multi-specific engager molecules are being explored to endow

immune cells with CAR-like anti-tumor specificity (228–237),

bypassing the complexities associated with cellular engineering

entirely. Combinations of both approaches in the form of BiTE-

secreting CAR-T cells epitomize the highly modular nature of next

generation cellular immunotherapy (238).
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Going forward, we expect that these and other emerging

technologies will further advance and deepen our understanding

of cancer biology and help engineer better, more potent and safer

immunotherapies to combat various human cancers.
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