
Citation: Rowold, M.; Ögretmen, L.;

Kerbl, T.; Lohmann, B. Efficient

Spatiotemporal Graph Search for

Local Trajectory Planning on Oval

Race Tracks. Actuators 2022, 11, 319.

https://doi.org/10.3390/act11110319

Academic Editor: Jih-Gau Juang

Received: 26 September 2022

Accepted: 28 October 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Efficient Spatiotemporal Graph Search for Local Trajectory
Planning on Oval Race Tracks
Matthias Rowold 1,* , Levent Ögretmen 1 , Tobias Kerbl 2 and Boris Lohmann 1

1 Automatic Control, Department of Mechanical Engineering, TUM School of Engineering and Design,
Technical Universtiy of Munich, 85748 Garching, Germany

2 Institute of Automotive Technology, Department of Mechanical Engineering, TUM School of Engineering and
Design, Technical Universtiy of Munich, 85748 Garching, Germany

* Correspondence: matthias.rowold@tum.de

Abstract: Autonomous racing has increasingly become a research subject as it provides insights
into dynamic, high-speed situations. One crucial aspect of handling these situations, especially in
the presence of dynamic obstacles, is the generation of a collision-free trajectory that represents a
safe behavior and is also competitive in the case of racing. We propose a local planning approach
that generates such trajectories for a racing car on an oval race track by searching a spatiotemporal
graph. A considerable challenge of search-based methods in a spatiotemporal domain is the curse
of dimensionality. Therefore, we propose how a previously presented graph structure that is based
on intervals instead of discrete values can be searched more efficiently without losing optimality by
using a uniform-cost search strategy. We extend the search method to make it anytime-capable so that
it can provide a suboptimal trajectory even if the search has to be terminated early. The graph-based
planning approach allows us to apply a flexible cost function so that our approach can operate fully
autonomously on an oval race track, including the pit lane. We present a cost function for oval racing
and explain how the terms contribute to the desired behaviors. This is supported by results with a
full-scale prototype.

Keywords: autonomous vehicles; motion planning; spatiotemporal planning; graph search

1. Introduction

During the last decade, autonomous racing has drawn attention from different research
groups. The motivation behind this is to learn from difficult dynamic situations at high
velocities and transfer the knowledge to traffic scenarios, increasing future autonomous
vehicles’ safety. Following the DARPA challenges [1,2], many planning and control ap-
proaches for racing have focused on the fastest lap for a single vehicle on a closed race
track. Their capabilities, approaching the performance of human race drivers, have been
demonstrated on full-scale prototypes, e.g., in [3,4] within the autonomous racing series
Roborace [5]. While this application already poses challenges due to the high velocities and
driving at the handling limits, even more difficult scenarios arise when multiple vehicles
race simultaneously. The vehicles should react safely to one another and at the same time
maintain a short lap time. Therefore, a local planning approach must generate a trajectory
representing an appropriate behavior, which is often a compromise between conflicting
objectives. The local environment must be considered, which includes the race track, track
bounds, friction limits, and the likely motion of other vehicles. Combined with the high
velocities in racing, these aspects present the following challenges that we will address in
this paper:

(1) The race track offers many maneuver variants to be considered, since the presence of
other vehicles constitutes a nonconvex problem. A sufficiently long planning horizon
is required and a short computation time is desired, which further complicates the
search for the optimal solution.

Actuators 2022, 11, 319. https://doi.org/10.3390/act11110319 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act11110319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0002-3011-2818
https://orcid.org/0000-0002-5410-4281
https://orcid.org/0000-0001-6289-1345
https://orcid.org/0000-0002-7881-8385
https://doi.org/10.3390/act11110319
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act11110319?type=check_update&version=1


Actuators 2022, 11, 319 2 of 18

(2) One must ensure that the planning problem remains solvable in the next planning
step. In the field of model predictive control (MPC) this is known as recursive feasibility.
An illustrative example in the context of racing is a braking point before a sharp turn
that, if not correctly determined, could lead to a planning problem with no feasible
safe solution due to excessive speed at the turn entry.

(3) The used cost function should result in safe but competitive behaviors in all scenarios.
(4) Newly detected obstacles or falsely predicted vehicles require fast reactions. Therefore,

the computation time for generating a trajectory in the new environment should be as
short as possible.

1.1. Related Work

Most planning approaches that competed in the DARPA Grand Challenge (2005) [1]
separate the trajectory generation into a path planning step and a subsequent velocity
planning step to complete the trajectory. While a path only contains spatial information,
meaning a sequence of poses, a trajectory also contains information about time and velocity
at the corresponding poses, which is called spatiotemporal. The path-velocity decomposi-
tion (PVD) [6] is sufficient for environments with only static obstacles, but too conservative
for dynamic obstacles. Traffic rules and simultaneous driving of the competitors prompted
the teams of the DARPA Urban Challenge (2007) [2] to introduce new approaches for
behavior and trajectory planning that consider the spatiotemporal aspect in the presence
of dynamic obstacles. In the following years, various planning approaches have been
proposed. Paden et al. [7] provided a comprehensive survey on the methods used, which
they categorized into variational, graph search, and incremental methods. In the following,
we present some approaches and use cases based on methods from the three categories
relevant to our problem. They are generally designed for road traffic scenarios but solve a
similar problem in environments with multiple static and dynamic obstacles and can be
applied for an operation on a race track.

Variational methods formulate an optimal control problem (OCP) that is solved nu-
merically using direct or indirect methods. Obstacles can enter the problem directly as
constraints as in [8] or indirectly as in [9], such that a collision would result in high costs.
In the context of racing, variational methods are often used to compute the racing line,
i.e., the trajectory for a minimum lap time on a closed race track. While Veneri et al. [10]
and Lovato et al. [11] used a point mass model constrained to a precalculated gg-envelope,
Casanova [12] and Christ et al. [13] solved the minimum lap time OCP with detailed
vehicle models. However, the racing line optimization does not consider obstacles and is
therefore unsuitable for our use case with static and dynamic obstacles. Other approaches,
as in [14,15], apply an online replanning scheme if the vehicle has to deviate from the
offline generated racing line, e.g., to avoid an obstacle. The planning horizon is limited
to a small section of the race track so that short computation times can be achieved. In
general, variational methods are fast, especially when convex programming is applied, as
was demonstrated in [16]. However, the planning problem in environments with obstacles
is generally nonconvex, so numerical-optimization-based methods usually only find a
local optimal solution depending on the initialization [14,17]. An illustrative example of
nonconvexity in the racing context is an overtaking scenario with collision-free solutions
on the left and the right side of another vehicle [18,19]. Including the temporal dimension
or more vehicles adds a combinatorial aspect as many maneuver variants are possible [20].
Each maneuver can be a local optimal solution in a spatiotemporal state space. If sufficient
computation resources are available, multiple OCPs can be solved in parallel as in the
stitching method presented in [21] or for each homotopy class as in [22].

Graph search methods discretize the spatial or spatiotemporal state space and can find
a global discrete-optimal solution to the nonconvex planning problem. For racing, Stahl
et al. [23] created a spatial state lattice by placing nodes on layers distributed along the track
and oriented perpendicular to a reference line. Each node corresponded to a pose of the
vehicle. Edges associated with costs connected the nodes to complete the spatial graph and



Actuators 2022, 11, 319 3 of 18

represent available paths. A search over multiple layers yielded the path with a planning
horizon of at least 200 m, long enough to ensure recursive feasibility. A velocity planner
based on a forward–backward solver [4] completed the final trajectory. Static obstacles
could be considered by blocking edges and dynamic obstacles by selecting a so-called
action template and using a PVD. Other graph search methods search in the spatiotemporal
space and can therefore account for dynamic obstacles directly. The approach in [24]
sampled time, velocity, and lateral displacement from a reference line and generated
jerk-minimal trajectories to reach the discrete states. A recent approach in [25] extended
the approach for the racing scenario and used a constant time horizon. However, Stahl
et al. [23] argued that a one-step sampling approach could not plan complex maneuvers at
high velocities, such as initiating an overtaking maneuver just before a sharp turn, because
the shortsighted solution might not be recursively feasible. spatiotemporal approaches
that can plan multiple steps ahead build a graph with usually two additional dimensions
compared to the graph in [23]. Besides the pose, Ziegler and Stiller [26] discretized time
and velocity to create a spatiotemporal state lattice and use quintic polynomials with the
appropriate boundary conditions to generate jerk-minimal edges. Instead of discretizing
time and velocity, McNaughton et al. [27] assigned time and velocity intervals to the
spatial nodes to create spatiotemporal nodes. Sampling acceleration profiles along spatial
edges during an exhaustive search yielded spatiotemporal edges whose end velocities and
times could be assigned to the intervals. In addition to the interval-based graph structure,
Morsali et al. [28] performed an A* search to speed up the search. The used heuristic was
the estimated time to reach a destination assuming a constant velocity and was calculated
after the creation of a collision-free driving corridor. In general, it is hard to find a good
heuristic for spatiotemporal problems directly, especially ones including dynamic obstacles,
so exhaustive searches have been preferred [26,27]. Therefore, these approaches suffer from
the curse of dimensionality so that only rough discretizations are possible [17].

Incremental methods sample the state or action space to create a tree-like graph until
a goal region is found. Many approaches of this group are based on rapidly exploring
random trees (RRT) [29], such as a closed-loop variant in [30] and an application in racing
with a PVD in [31]. Liniger et al. [18] built a tree by integrating stationary points with fixed
forward velocities taken from a precomputed library. Despite a short planning horizon, the
viability-based approach in [32] ensured recursive feasibility. Although many RRT-based
approaches are probabilistically complete and even asymptotically optimal, it cannot be
guaranteed that a solution will be found within a given computation time.

There is a trend to combine methods from the three categories to solve the combi-
natorial problem in the spatiotemporal state space while not being limited to a coarse
discretization. For example, Svensson et al. [19] first sampled maneuver alternatives in mul-
tivehicle scenarios to find the correct discrete maneuver decision and then used the solution
to warm-start an optimization problem. Similarly, Xin et al. [17] generated a reference
trajectory by searching a spatiotemporal graph with an A* algorithm and smoothed it with
an optimization-based method. Another growing area of research deals with interaction-
aware planning that considers the mutual influence of the vehicles’ behaviors. For the
competitive racing scenario game-theoretic approaches such as the Nash equilibrium have
been proposed in [33,34].

1.2. Contribution

We present a local planning approach for autonomous racing based on a search in a
spatiotemporal graph with time and velocity intervals as proposed in [27]. Our first two
contributions regard the search method that aims to reduce the computation time despite
the curse of dimensionality to allow a long planning horizon and evaluate all possible
maneuver variants. Our third contribution refers to the cost function specifically designed
for the racing scenario:

• In contrast to [26,27], we perform a uniform-cost search (UCS) to find the cost-minimal
path in the spatiotemporal graph and show that the search can significantly reduce



Actuators 2022, 11, 319 4 of 18

the computation time compared to the originally proposed exhaustive search. We
explain under which conditions and how the UCS can be applied to the interval-based
graph structure.

• We extend the UCS to be anytime capable for the interval-based graph structure.
Therefore, we maintain a set of candidate goal nodes in the graph that must be
updated during the search. With this set, the search can terminate early and provide a
suboptimal solution even before the optimal solution is found, e.g., due to computation
time constraints or an appearing obstacle that requires immediate replanning.

• We propose a cost function for search-based planning approaches suited for racing and
explain how it affects the graph search. This has been tested for a fully autonomous
operation on an oval race track, including pit lane driving, racing line following, and
overtaking maneuvers.

1.3. Structure

The remainder of the paper is structured as follows: Section 2.1 describes the frame-
work into which our local planning approach can be integrated. The interval-based spa-
tiotemporal graph is introduced in Sections 2.2 and 2.3. In Section 2.4, we explain our
proposed UCS with anytime capabilities, and in Section 2.5, we provide the used cost
function suited for racing. Exemplary scenarios from an autonomous racing event at the
Las Vegas Motor Speedway (LVMS) in Figure 1 are presented in Section 3 to illustrate the
behavioral decisions and evaluate the efficiency of the graph search. The final conclusion is
given in Section 4 along with an outlook on future work.

Figure 1. Dallara AV-21: Full-scale prototype of TUM Autonomous Motorsports (back) running the
proposed planning algorithm at the LVMS and overtaking a dynamic obstacle.

2. Materials and Methods
2.1. Local Planning Concept

To address the first challenge in Section 1, we propose a local planning approach that
explores paths through a spatiotemporal state space to solve the combinatorial planning
problem and find the optimal maneuver in the presence of dynamic obstacles subject to
the chosen cost function and discretization. As in [23], we assume that a sufficiently long
planning horizon can ensure recursive feasibility (second challenge) so that a minimum
planning horizon is the goal condition for the presented graph search. The planning ap-
proach is suited for frameworks with limited computational resources, e.g., that do not
allow optimization problems to run in parallel as in [21,22]. Depending on the environ-
ment (pit lane or race track) and the current race condition, the parameters of a flexible
cost function can easily be adjusted to promote the desired behavior for each scenario
(third challenge). To integrate the planning approach into a software stack, the following
requirements have to be met:

• A global racing line serving as a reference must be precomputed offline. This can be
the, e.g., curvature-minimal or time-optimal trajectory for the closed race track. The
racing line enters the cost function so that the local planning approach follows the
racing line whenever possible.



Actuators 2022, 11, 319 5 of 18

• The result of our proposed graph search is a coarse trajectory. It can be curvature- and
acceleration-discontinuous, encoding more a behavioral decision than a path with a
velocity profile that should be tracked precisely. Therefore, a subsequent smoothing
procedure should be performed so that a tracking controller can execute the planned
motion. Alternatively, the used tracking controller can handle the discontinuous
profiles such as the one used in Section 3.

• Following a sequential pipeline, the planning approach requires the positions of static
and predictions of dynamic obstacles as inputs. Interaction-aware planning must
be realized via the cost function so that iterations with alternating prediction and
planning steps as in [35] or iterated best response algorithms as in [34] are not possible.
An example of how interactions can enter the cost function is given in [36].

• Before the planning step, the new trajectory’s initial state must be determined. It
should lie on the trajectory generated in the previous planning step to maintain
possible tracking errors and clearly separate the planning from the tracking task. As
in [8], the selection of the initial state can be based on the expected calculation time of
the planning approach to account for the motion along the previous trajectory while
the new trajectory is not yet available.

• The initial state must be connected to the spatiotemporal graph at the nodes where
the search begins. The method used in Section 3 samples longitudinal and lateral
polynomials, so we call it a sampling procedure from here on. The sampling procedure
should generate a set of diverse trajectory segments, called initial edges, which connect
the initial state with multiple nodes in the spatiotemporal graph.

In practice, the vehicle moves only on the initial edges since they constitute the first
parts of the generated trajectory options, and a new trajectory is available before an initial
edge can be tracked completely. However, at high velocities, the planning horizon of the
sampling procedure alone is too small to determine a braking point before a turn correctly
so that it cannot plan complex maneuvers. Therefore, the task of the proposed graph search
is to extend the trajectory with a longer planning horizon to guide the initial edges for
recursive feasibility and initiate the desired behaviors.

Despite accurate predictions and small relative velocities during races on oval race
tracks, replanning, i.e., updating the local trajectory, is required to react appropriately
to obstacles and turns that come into the range of the sensors and planning horizon.
Simulations of multivehicle scenarios on an oval race track have shown that an entire
planning step, including the sampling procedure and the graph search, should not exceed
a computation time of 300 ms. With this upper bound, we aim for an average computation
time of 150 ms (fourth challenge) to have a sufficient margin. In the following, we introduce
the used spatial graph on which the interval-based spatiotemporal graph is built.

2.2. Spatial Graph

The spatial graph does not influence the approach presented here as long as it is a
directed graph. This work follows the generation proposed in [23] since it has already been
applied for racing with a full-scale prototype. The result is a directed cyclic multilayered
graph we briefly describe in the following. A layer Li is determined by the arc length
si traveled along a reference line (x(s), y(s), θ(s), κ(s)), with s = 0 at the start–finish line.
Here, x(s) and y(s) describe the position in a global Cartesian coordinate system at arc
length s, θ(s) the heading, and κ(s) the curvature. The layer Li contains spatial nodes
nj ∈ Li arranged perpendicular to the reference line at si, as shown in Figure 2. Each spatial
node describes a pose of the vehicle

(
xj, yj, θj

)
. Spatial edges, realized with cubic splines in

the Cartesian coordinates, connect the nodes of one layer with the nodes of the next layer,
forming a directed cyclic graph. They represent admissible paths in the spatial state space
(x, y, θ, κ) and, like the spatial nodes, can be precomputed offline since the race track is
known in advance. The spatial edges are exemplarily shown in Figure 2 for the nodes n1
and n2 of layer Li. Note that the cubic splines allow for C1-continuous transitions at the
layers, but there can be jumps in the curvature κ at the transition from an edge ending in



Actuators 2022, 11, 319 6 of 18

a node and another edge leaving the same node. To allow a fully autonomous operation,
we extend the graph for the track with a spatial graph for the pit lane. Transition edges
that connect the pit lane’s layers with the race track’s layers allow planning of merging
maneuvers from and onto the pit lane.

Reference line

s
Li

n1n2. . .

Spatial node

Li+1

Spatial edge

Li+2

Racing line

x

y

θ1

Figure 2. Spatial graph. The layers group spatial nodes. Spatial edges connect the spatial nodes and
represent available paths.

2.3. Spatiotemporal Graph

The spatiotemporal graph builds on the spatial graph and extends the state space
with the velocity and time dimensions to be capable of solving the combinatorial prob-
lem. Motivated by [27,28], we used intervals for the new dimensions instead of a fixed
discretization, as shown in Figure 3, mitigating the curse of dimensionality. Together with
a spatial node nj, the velocity interval [vk, vk+1) and the time interval [tl , tl+1) constitute
a spatiotemporal node nj,k,l described by

(
xj, yj, θj, [vk, vk+1), [tl , tl+1)

)
. The nodes span a

spatiotemporal state lattice over the race track, which can already be computed offline like
the spatial graph.

s

v

t

v

t

v

t

v

t

v

t

v

t

Initial state

Initial edge

Spatial node

Spatial edge

Spatiotemporal node

Spatiotemporal edge

Accelerating

Decelerating

Figure 3. Spatiotemporal graph. The sampling procedure connects the initial state with the spa-
tiotemporal state lattice. A graph search follows, starting at the connected nodes (here, only shown
for one node).



Actuators 2022, 11, 319 7 of 18

Analogous to spatial edges, spatiotemporal edges connect the spatiotemporal nodes.
They describe trajectories in the state space (x, y, θ, κ, v, ax) with ax being the longitudinal
acceleration. Starting from a spatiotemporal node nj,k,l with an initial velocity v0 and
time t0 in its intervals such that vk ≤ v0 < vk+1 and tl ≤ t0 < tl+1, the spatiotemporal
edges are generated online during the search by sampling acceleration profiles along the
outgoing spatial edges. In the following, this procedure is called expanding the node nj,k,l
and is shown in Figure 3 for one accelerating (blue) and one decelerating (orange) profile
per spatial edge. Each generated spatiotemporal edge is associated with a non-negative
cost and reaches the spatial target node of the underlying spatial edge with specific end
velocity and time. The end velocity and time determine the reached spatiotemporal node
based on the intervals they belong to (blue squares). Multiple paths through the graph can
reach a spatiotemporal node nj,k,l . The incoming spatiotemporal edges generally differ in
the end velocities and times (green squares). Each path through the graph to reach nj,k,l
has a total cost, which is the sum of all edge costs along the path beginning at the initial
state. The path with the lowest cost is the optimal path to reach the node, and its total
cost is called the cost-to-come. The end velocity and time of the last edge of the optimal
path determine the initial velocity and time (v0, t0) used for expanding nj,k,l . Following
the principle of dynamic programming [37], the other edges reaching nj,k,l are not further
considered since the paths they belong to have higher total costs. As a result, the intervals
not only reduce the number of nodes in the graph but also prevent the number of edges
from growing exponentially with a progressing time horizon. Since the intervals group
similar states that are expected to produce similar results, this procedure does not reduce
the behavioral options.

Although time and velocity are coupled and could be converted into one another, we
discretize both, since a greater variability of edges could be achieved. By sampling the
acceleration, a spatial node nj can be reached through multiple paths with different end
times and velocities. If only the time was divided into intervals, all paths ending in an
interval [tl , tl+1) would be reduced to one (v0, t0) pair with tl ≤ t0 < tl+1. This (v0, t0) pair
is used for expansion according to the principle explained above, regardless of the velocity
range that the paths cover. By dividing the velocity into intervals as well, the node nj is
expanded starting at multiple initial velocities within the interval [tl , tl+1) resulting in a
greater variability of paths through the spatiotemporal domain.

As in [27], we sample constant accelerations ax along the outgoing spatial edges to
expand a node. This results in simple and fast computations of the velocity profiles and
associated time vectors:

v(v0, se, ax) =


√

v2
0 + 2axse, if v2

0 + 2axse ≥ 0

undefined, otherwise

t(t0, v0, se, ax) =

{
t0 +

2se
v0+v(se,v0,ax)

, if v2
0 + 2axse ≥ 0

undefined, otherwise

(1)

In Equation (1), se is the arc length along the spatial edge. The case v2
0 + 2axse < 0

is a deceleration to 0 m/s between two layers and can be handled by setting the velocity
and acceleration for the remaining edge to 0 m/s and 0 m2/s, respectively. The constant
accelerations between two layers result in the mentioned discontinuous acceleration profile
at the nodes when concatenating edges.

Although a sequence of edges intends to represent only a behavioral decision, the
resulting trajectory must be feasible. Therefore, all generated edges must satisfy kinematic
constraints and not exceed the engine or the combined acceleration limits. With a potentially
large number of edges to be checked for feasibility, we rely on simple checks to achieve the
desired planning frequency. The following feasibility checks are performed at equidistant
points on the edges with sufficiently close spacing. The velocity-dependent engine and
combined acceleration limits can be efficiently stored and retrieved with look-up tables.



Actuators 2022, 11, 319 8 of 18

The engine limits the available longitudinal acceleration ax ≤ aengine,max(v) so that the
sampled constant acceleration ax of an edge directly provides the feasibility information.
The combined acceleration limits can be modeled by a diamond shape at the vehicle
level [38,39], allowing an efficient check with:

|ax|
ax,max(v)

+
|ay|

ay,max(v)
≤ 1 (2)

The lateral acceleration ay is obtained with ay = v2κ. Since the kinematic constraints
are not decisive at high velocities on an oval race track, we simply check that all edges
do not exceed a maximum curvature κ ≤ κmax which is sufficient for maneuvering in the
pit lane. Edges that fail at least one of the three feasibility checks are not considered any
further, thereby reducing the size of the graph, as is exemplified by a black cross in Figure 3.

In addition to the feasibility checks, race rules and collision checks can also sort
out edges. These includes edges that overtake in no-passing zones or collide with the
reliable first part of a vehicle’s predicted trajectory. For the collision checks, the size of the
obstacles is virtually increased to create the lateral bounds between which the used tracking
controller can alter the trajectory without knowing the obstacles and still be collision-free.
More details on the collision checks can be found in [40].

2.4. Graph Search

All nodes reached by paths through the spatiotemporal graph reaching the desired
planning horizon are called goal nodes and are said to satisfy the goal condition. The
objective of the graph search is to find the goal node reached by the cost-minimal path.
While the state lattice is known from offline calculations, the spatiotemporal edges must
be generated online during the graph search since the initial velocities and times of the
nodes needed for the expansion are unknown beforehand. The order in which the edges
are generated is essential to ensure that a node’s initial velocity and time (v0, t0) are fixed
before expanding it. Otherwise, if a new path to a node is found whose cost-to-come is
lower than the current one, leading to a different (v0, t0), all existing leaving edges will
become invalid according to the procedure explained in Section 2.3. Therefore, the graph
search must ensure that the optimal path to a node is found before expanding it. This
can be achieved by an exhaustive search as proposed in [27] and is briefly explained in
Section 2.4.1. However, since the computation time increases with the number of generated
edges, the graph search should generate as few edges as possible. As it is hard to find a
suitable heuristic in a spatiotemporal domain for a cost function that includes energy terms
or even dynamic obstacles [26,27], we propose to apply a UCS, which is an uninformed
search algorithm, and adapt it for the interval-based graph structure in Section 2.4.2.

2.4.1. Exhaustive Search

The exhaustive search proposed by McNaughton et al. [27] proceeds from layer to
layer, generating all possible spatiotemporal edges. Starting with the layer reached by the
sampling procedure, all connected nodes are expanded, regardless of the cost-to-come.
Then, looking at the next layer, all paths to reach it are present, and the optimal paths
to its nodes are known. Repeating this procedure from layer to layer eventually yields
the optimal path with the desired planning horizon. Despite the use of velocity and time
intervals to prevent an exponential growth in the number of edges, the computation time
of the exhaustive search is often too high in our use case, as is shown in Section 3.

2.4.2. Uniform-Cost Search

Our search strategy aims to reduce the number of edges generated online to find
the optimal path. We use a variant of Dijkstra’s algorithm [41], which is often called
UCS [42,43] and is suited for graphs that are not known beforehand but explored or
generated during the search. Since we cannot let the algorithm search without a time



Actuators 2022, 11, 319 9 of 18

constraint, we adapt the UCS by terminating the search if the computation time threshold
tthr is reached. Furthermore, we add the option for an external trigger to terminate the
search. If appropriate nodes have been reached, the adapted UCS can still provide a
suboptimal solution that satisfies the planning horizon requirement.

Algorithm 1 shows the pseudocode for the proposed search whose result is a goal
node g. The UCS keeps track of a frontier F , which is a set including all nodes eligible for
expansion and initialized with the nodes reached by the sampling procedure. The set G,
initialized with ∅, is updated during the search and contains all nodes satisfying the goal
condition. The nodes in G are thus candidates for the goal node g and can be used for a
suboptimal solution if the search terminates early. The basic procedure of the UCS is to
expand the node in the frontier with the lowest cost-to-come, determined by the function
GETBESTNODE() (Line 6) and in the following called node n. The expansion generates
edges that reach target nodes grouped in the set T (Line 11). These target nodes are further
analyzed by the function NEWBESTPATH(τ) (Line 13) that determines the currently optimal
path to a node τ ∈ T . It returns TRUE if the newly generated edges found the first path or
a better path than the previous one. In both cases, τ is added to the frontier F (Line 15)
if not already contained. If τ satisfies the goal condition, checked by GOALCOND(τ), it is
also added to the set of goal node candidates (Line 17). However, if τ does not satisfy the
goal condition but did so before expanding n, it has to be removed from G (Line 19). After
analyzing all reached target nodes in T , the described procedure repeats.

Algorithm 1 UCS with suboptimal goal nodes

1: Input: Frontier F ← nodes reached by the sampling procedure
2: Output: Trajectory ξ
3: Goal node g← NULL
4: Goal node candidates G ← ∅
5: while tcomp < tthr and not EXTERNALTRIGGER do
6: n← GETBESTNODE(F )
7: if GOALCOND(n) then
8: g← n
9: break

10: F .REMOVE(n)
11: Target nodes T ← EXPAND(n)
12: for all τ ∈ T do
13: if NEWBESTPATH(τ) then
14: if τ /∈ F then
15: F .ADD(τ)
16: if GOALCOND(τ) and τ /∈ G then
17: G.ADD(τ)
18: else if not GOALCOND(τ) and τ ∈ G then
19: G.REMOVE(τ)
20: if g = NULL and G 6= ∅ then
21: g← GETBESTNODE(G)
22: if g 6= NULL then
23: ξ ← CONCATENATE(g)
24: else
25: ξ ← EMERGENCYTRAJECTORY

The search continues until the computation time tcomp reaches the threshold tthr, an
external trigger is received, or the node n with the lowest cost-to-come in the frontier F
satisfies the goal condition. In the latter case, n is the goal node reached by the cost-minimal
path (Line 8). Thus, the search is terminated (Line 9). In the case of a reached computation
time threshold or an external trigger, the node with the lowest cost-to-come in G becomes g
(Line 21), providing a suboptimal solution. Decelerating edges reach the planning horizon



Actuators 2022, 11, 319 10 of 18

earlier than accelerating edges, such that G mainly contains nodes reached by decelerating
edges, as is shown in Section 3. This usually results in more defensive and safer trajectories
reducing the velocity. Tracing back the edges from g to the initial state and concatenating
them yields the final trajectory ξ (Line 23). If no suboptimal solution can be found within
the constrained computation time, a parallel generated emergency trajectory is used, which
brings the vehicle to a standstill (Line 25).

Unlike the exhaustive search, the UCS allows jumping back to nodes in previous
layers and generating edges to layers already visited. This is made possible by the directed
structure of the graph and the cumulative costs, where the cost along a path increases
monotonically with each edge. If a node nj in layer Li with the cost-to-come Cnj is selected
by the function GETBESTNODE(), there cannot be a more cost-effective path to nj, since all
nodes with a cost-to-come lower than Cnj in the previous layers Lk with k < i have already
been expanded. This means that the initial velocity and time (v0, t0) of nj cannot change
at a later stage of the search. The same reasoning applies to terminating the search if the
cost-minimal node in the frontier F satisfies the goal condition and thus becomes the goal
node (Line 8).

For tcomp < tthr and no external trigger, the UCS remains optimal and finds the same
solution as the exhaustive search while significantly reducing the number of edges. This
reduction becomes more significant the more diverse the costs of the edges are. If all edges
had similar costs, all nodes in a layer Li would have similar cost-to-come, lower than the
cost-to-come of the nodes in layer Li+1. In this case, all nodes in layer Li are expanded first.
Continuing this scheme for the following layers results in an exhaustive search. Hence,
the following cost function affects the extent to which the UCS can reduce the number of
edges generated.

2.5. Cost Function

The cost function of spatiotemporal edges must be carefully chosen to balance con-
flicting behavioral objectives in specific situations. Although all edges on an oval race
track have similar lengths, approximately the distance between two layers, the times to
traverse the edges can differ significantly due to different velocity profiles. Integrating over
time yields the total cost of an edge to allow a fair comparison of edges. We assumed a
piecewise constant cost function for an efficient implementation and evaluated the cost at
N discretization points, including the start and end nodes. The total cost of an edge was:

C̃ =
N−1

∑
i=0

ci∆ti (3)

Here, ∆ti is the time difference between the discretization points i and i + 1, and ci is
the following sum of various cost terms evaluated at point i:

ci = wrldrl,i + wv(vi − vd)
2 + wκκ2

i + wpreddpred,i (4)

Each term is a product of a weight w and a feature of the edge at the discretization
point. They cause different, sometimes contradictory, behaviors. On the one hand, the
vehicle should reach a high velocity and follow the racing line to achieve a minimum lap
time. On the other hand, it has to deviate from the racing line to overtake other vehicles and
slow down if necessary. The Euclidean distance drl to the offline-generated optimal racing
line causes the vehicle to follow the racing line whenever possible. The linear contribution
of drl, instead of d2

rl, allows the vehicle to follow the racing line in single-vehicle scenarios
but leaves enough incentive to deviate from it during overtaking maneuvers. The second
term penalizes the deviation from the target velocity vd given either by the racing line or
by race rules. The third term penalizes the curvature κ to avoid abrupt steering at high
velocities. For scenarios with static and dynamic obstacles, the last term takes into account
the prediction to maintain a sufficient distance to the obstacles and to perform overtaking
maneuvers. The prediction cost depends on the longitudinal and lateral distances of



Actuators 2022, 11, 319 11 of 18

the predicted vehicle to the discretization point i and a time-dependent factor g(t). It is
computed using Equation (5), where dx,i and dy,i are the longitudinal and lateral distances
in the local coordinate system of the predicted vehicle:

dpred,i = max

1−

 1
d2

x,max(t)
1

d2
y,max(t)

T[
d2

x,i
d2

y,i

]
, 0

g(t) (5)

The elliptical shape of dpred,i is illustrated for three discretization points along an
exemplary edge in Figure 4. The cost increases to a maximum value of 1 as the position
of a discretization point approaches the predicted vehicle’s center. dx,max(t) and dy,max(t)
specify at which longitudinal and lateral distances the prediction costs are incurred so that
the values of these parameters can easily be set according to the desired safety distances.
The choice of dx,max(t) > dy,max(t) reflects the more uncertain predicted longitudinal
movement. Furthermore, dx,max(t) and dy,max(t) increase as the time horizon progresses to
account for less certain predictions further in the future. However, too-wide ellipses can
lead to conservative behaviors, i.e., just following a vehicle instead of overtaking it, since
all accelerating edges across the entire width of the race track come within the range of
the ellipses. If the velocity cost is not weighted high enough, it is better to stay behind a
vehicle to avoid entering the expensive area covered by ellipses. To mitigate this problem,
the factor g(t) decreases linearly with time so that the prediction and velocity cost terms
are of similar magnitude, allowing a planned overtaking maneuver that maximizes the
lateral distance to the vehicle ahead.

s
i = 0
t = 2 s

s
i = 1
t = 2.5 s

s
i = 2
t = 3 s

s
i = 3
t = 3.5 s

s
i = 4
t = 4 s

t = 2 s

t = 2.5 s

t = 3.5 s

0 0.5 1

Figure 4. Prediction cost. The considered edge, shown in black, is discretized with five points and
covers the time range from t = 2 s to t = 4 s. The predicted path is shown in blue, together with
the ellipses for the discretization points i = 0, 1, 3. The point i = 3 is covered by the corresponding
ellipses so that the prediction cost of this edge is nonzero.

The described interacting influences of the velocity and prediction costs and other
conflicting behaviors illustrate the importance of a proper distribution of the weights wrl,
wv, wκ , wpred, and the other parameters. Different parameter sets are selected depending
on the environment (pit lane or race track) and the race condition. Since dx,max(t) and
dy,max(t) have a physical interpretation they can be set according to the required safety
distances given by the race rules. The weights, however, are more difficult to tune. In
our case, empirically determined values were used so that the racing line was followed in
single driving scenarios, but the prediction costs dominated in the presence of obstacles.
For more general behaviors, the tuning could be automated by optimizing the weights
based on a collection of safety-critical and performance-oriented scenarios.

3. Results and Discussion

In the following, we present results from the racing event Autonomous Challenge at
CES (AC@CES) at the LVMS on 7 January 2022 [44]. The proposed planning approach was



Actuators 2022, 11, 319 12 of 18

integrated into the sequential software architecture of TUM Autonomous Motorsports in
Figure 5. The used full-scale prototype Dallara AV-21 in Figure 1 had an eight-core Intel
Xeon E-2278GE CPU with 3.3 GHz and 64 GB RAM. Our chosen allocation of computing
resources to the individual modules left one CPU core available for the local planning
approach. The final trajectory should reach a minimal planning horizon of 5 s. The software
architecture met all requirements listed in Section 2.1 with the tracking controller in [45],
which was based on a Tube-MPC approach, and the racing line generation in [13]. The
sampling procedure used to generate the initial edges is described in [46]. Similar to [24,25],
it was based on the generation of jerk-minimal trajectories but only constituted the first
part of the final trajectory. The longitudinal distance of the layers was 75 m and the lateral
spacing of the nodes was 1.4 m. The sampling procedure and the proposed graph search
were written in Python 3.8, while some functions used Numpy or were written in C.

Sensors

Localization

Perception
Tracking

and
prediction

Local
planning Tube-MPC

Actuators

Global planning
(offline)

Racing line

Estimated state

Figure 5. Software architecture: the software of TUM Autonomous Motorsports follows a sequential
approach.

The race rules at the AC@CES prescribe alternating overtaking maneuvers. The leading
vehicle, the defender, has to maintain a fixed velocity and stay on the inner (left) side of the
race track. The following vehicle, the attacker, has to complete an overtaking maneuver
within a specified passing zone. After a successful overtaking maneuver, the roles switch.
If both competitors successfully overtake, the defender’s velocity increases, and the race’s
next round begins. For this form of competition, our offline-generated racing line was
restricted to the inner side of the track to make the defender behavior the default behavior.
Furthermore, the inner racing line encouraged natural overtaking maneuvers, where the
swerve to initiate the maneuver and the switch back to the inside solely resulted from the
edge costs. In the final event, our software was able to perform overtaking maneuvers
with attacker velocities of up to 74 m/s. The following sections focus on the two fastest
overtaking maneuvers to illustrate the behavioral planning and advantages of the UCS
over an exhaustive search for a long planning horizon. A video of the corresponding race
section can be found at https://youtu.be/XUIctOJdrLk (accessed on 2 November 2022).

3.1. Overtaking Maneuver

Figure 6 shows the fastest achieved attacker scenario after entering the passing zone. In
the selected planning step, in the following called planning step d©, the sampling procedure
reached layer L1 and the graph search proceeded for three layers. The last edge of the final
trajectory to layer L4 reached a time of 5.4 s, satisfying the minimum planning horizon of 5 s.
While the planned velocity profile was continuous, the acceleration and curvature profiles
showed the expected discontinuities at the layers, which illustrated the behavioral nature
of the graph search result. The result of planning step d©could be interpreted as a maneuver
to accelerate and overtake the defender on the right side. The subsequent Tube-MPC
reoptimized the coarse trajectory so that the tracked acceleration and curvature profiles
were smoother. With the chosen discretization for the sampled constant accelerations
between two layers, it was possible to accelerate at 2 m/s2 between L1 and L2 and at
0.5 m/s between L2 and L3. With these limits, it took 5 s for the attacker to be side-by-side
with the defender, emphasizing the need for a long planning horizon.

https://youtu.be/XUIctOJdrLk


Actuators 2022, 11, 319 13 of 18

350 400 450 500 550 600 650 700

750

800

850
L1

L2

L3

L4

x in m

y
in

m

Prediction Actual Planned

65

70

75

v
in

m
/s

0

1

2

a x
in

m
/s

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

−2
0
2
4
6

time in s

κ
in

10
−

3

m

Figure 6. Initiation of an overtaking maneuver in planning step d©. The planned and actually driven
path, velocity, acceleration, and curvature are shown in blue. The correctly predicted path and
velocity of the defender are green. The planned and predicted poses of the vehicles are shown for
t = 0 and the times marked by the vertical lines in the lower plots.

Figure 7 illustrates the generated spatiotemporal graph for planning step d©. Edges
lying on the inside of the race track came into the range of the prediction cost ellipses and
thus received high costs. The prediction costs dominated the racing line costs, so deviating
from the racing line and keeping a high velocity was better than staying inside behind the
defender. Although the prediction cost was not incurred until the latter part of the planning
horizon, it gave an incentive to deviate from the racing line early at layer L1 since in the long
term the inside paths would end up in the high-cost region. Due to the wide prediction cost
ellipses near the end of the planning horizon, the planned trajectory kept a maximum lateral
distance, as can also be seen in Figure 6. This and the early reaction were advantageous
in terms of recursive feasibility so that overtaking solutions could still be found in later
planning steps.

Due to the high prediction costs on the inside, the UCS did not explore this region
further. Similarly, the velocity costs contributed to the reduction in the number of edges
since nodes with high velocities were expanded first, more likely leading to the optimal path.
In the planning step d©, the UCS could reduce the number of generated edges from 2544 to
409 compared to the exhaustive search and found 15 suboptimal goal nodes, all of them
located in layer L4. The suboptimal goal nodes were mainly reached by decelerating edges.

Figures 6 and 7 also highlight the multistep characteristic of our approach. As illus-
trated in Figure 7, it was planned to change the lateral position until layer L3 and maintain a
constant lateral distance to the track boundaries from layer L3 to L4. The acceleration profile
in Figure 6 shows that the vehicle accelerated until layer L3 and maintained the velocity
from layer L3 to L4. Since the approaches in [24,25,46] sampled time, velocity, and lateral
displacement for only one step, the resulting trajectories could not represent the described



Actuators 2022, 11, 319 14 of 18

maneuver. However, a drawback of our approach compared to the jerk-minimal one-step
approaches arises from the constant acceleration between two layers. In Equation (2), ax
remains constant by design, ax,max(v), ay,max(v), and ay, however, vary depending on the
velocity and track geometry. Especially on oval race tracks, the distance between two
layers can be large, so the spatiotemporal edges can cover a large velocity range. While
driving at the limits, this can generate many infeasible edges, and only edges that keep the
current velocity remain. The variable accelerations of the jerk-minimal trajectories in [24,25]
show better-suited profiles for high velocities, so fewer edges are sorted out and driving
closer to the limits is possible. Therefore, we followed the jerk-minimal approach for the
sampling procedure.

L4 L3 L2 L1

t

v

Low cost

High cost

Figure 7. Generated graph for planning step d©. Only the relevant spatial nodes and edges that
contribute to an optimal path to reach a spatiotemporal node are shown for a clearer picture. The
reached nodes are qualitatively colored according to their cost-to-come and the edges according to
their cost. The optimal path is shown in black, and all nodes satisfying the goal condition are outlined
in black.

3.2. Comparison of the Search Methods

Reducing the number of generated edges directly affected the computation time.
Figure 8 depicts the computation times for the two fastest overtaking maneuvers and one
defender scenario obtained by recalculations on comparable hardware. The computation
time of the sampling procedure is included and was approximately constant at 10 ms.
Considering fewer edges by the UCS resulted in shorter and more consistent computation
times compared to the exhaustive search. The large fluctuations in the computation time
of the exhaustive search resulted from the alternating straight and curved track sections.
In general, more edges were generated on straight sections since many edges failed the
feasibility checks in turns at high velocities. In contrast to the exhaustive search, the
computation time for each planning step using the UCS stayed below the upper limit of
tthr = 300 ms. This means that the search could always be terminated early when the
optimal solution was found. The average computation time of the exhaustive search was
345 ms, while the UCS undercut the target of 150 ms with an average computation time of
99 ms in the presented race section. Compared to the recent sampling approach in [25], the
computation time was larger, and the GPU performance reported in [27] for the exhaustive
search could not be achieved. However, for the given use case, it was sufficient and enabled
the exploration of more maneuvers with a longer planning horizon.



Actuators 2022, 11, 319 15 of 18

0 10 20 30 40 50 60 70 80 90 100 110

0

100

200

300

400

500

600 a© b© c© d©

time in s

t c
om

p
in

m
s

Online UCS Exaustive search tthr Defending Attacking

Figure 8. Comparison of computation times. The planning steps of the considered race section
were recalculated with the UCS and the exhaustive search. The black-dotted line shows the actual
computation times for the UCS on Dallara AV-21 hardware during the race. The defending and
attacking maneuvers are highlighted.

An increased computation time was observed during the overtaking maneuvers in
the role of an attacker. This increase could be explained by the deviation from the racing
line during the overtaking process. Nodes close to the racing line were expanded first, but
then, the reached nodes were not expanded due to the high prediction cost resulting in
high costs-to-come. As a defender, on the other hand, the costs along the racing line were
the lowest, so that significantly fewer iterations through the frontier (Line 6 in Algorithm 1)
took place until the optimal path was found. This was also why the computation time of
the UCS was not influenced by straight or curved track sections. The resulting graphs are
compared in Figure 9. A peak in computation time can be observed for planning step a©.
Here, the UCS reached the computation time of the exhaustive search. In this planning
step, a falsely detected vehicle with low velocity in a no-passing zone caused all edges to
have similar costs. Hence, the phenomenon described at the end of Section 2.4.2 came into
play, and the UCS expanded the nodes in an order nearly identical to the exhaustive search.

With regard to the suboptimal goal nodes, further analyses showed that the first
suboptimal goal node was found after 60% to 80% of the iterations through the frontier
needed to find the optimal solution. Moreover, as can be seen in Figures 7 and 9, most of
the suboptimal goal nodes were reached with a smaller velocity than the final goal node
resulting in defensive braking maneuvers in the case of early search terminations.

Graph for planning step b© Graph for planning step c©

Figure 9. Comparison of graphs for defending and attacking scenarios: 450 edges were generated
while overtaking in planning step b© and 162 edges were generated while being overtaken in planning
step c©. The colors and grids are defined analogously to Figure 7.

4. Conclusions and Outlook

We presented a graph-search-based planning approach capable of generating trajec-
tories for racing on an oval race track. Searching in a discretized spatiotemporal state



Actuators 2022, 11, 319 16 of 18

space finds a trajectory that represents the optimal behavior in the presence of a predicted
competitor. Despite a long planning horizon and many maneuver variants, we achieved
computation times sufficient for the presented use case. This was accomplished by the
specific graph structure with intervals for the velocity and time dimensions and by the
efficient graph search algorithm. Furthermore, our proposed cost function, if properly
parameterized, could generate a competitive behavior with early reactions to obstacles due
to the long planning horizon, allowing a safe operation at high velocities. The proposed
mechanism for a suboptimal solution did not need to be applied in the presented scenario
but worked successfully in simulations and will be analyzed in future work. The resulting
behaviors are of particular interest.

The total computation time should be further reduced for races with more competitors,
complex scenarios, and hence more uncertain predictions. Our approach could be implemented
in C and partly parallelized if sufficient resources were available. However, the computation
time benefit would be less than in [27], since the UCS only allows a parallelization at a node
expansion level while the exhaustive search can be parallelized at a layer level.

Besides racing, the presented search method could be applied in traffic scenarios as
initially proposed for the given graph in [27]. Instead of the racing line, a lanelet network
could provide the reference for the cost function. However, a traffic scenario would require
additional terms and a behavior state machine to consider traffic rules and meet comfort
goals. Both racing and traffic scenarios include highly interactive scenarios, which have
been neglected in this work. Future work will analyze how the cost function of general
sampling and search-based planning approaches can consider mutual influence.

Author Contributions: Conceptualization, M.R. and L.Ö.; methodology, M.R., L.Ö. and T.K.; soft-
ware, M.R., L.Ö. and T.K.; validation, M.R.; formal analysis, M.R. and T.K.; investigation, M.R. and
L.Ö.; data curation, M.R. and T.K.; writing—original draft preparation, M.R.; writing—review and
editing, M.R., L.Ö., T.K. and B.L.; visualization, M.R.; supervision, B.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on reasonable request.

Acknowledgments: We want to thank the entire team of TUM Autonomous Motorsports for enabling
us to execute our planning approach on a full-scale prototype successfully. We thank the organizers
of the Indy Autonomous Challenge (IAC), Juncos Hollinger Racing, and all participating teams who
made the IAC possible. Furthermore, we thank Saskia Brose, Thomas Herrmann, and Tim Stahl for
their experienced inputs and revisions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LVMS Las Vegas Motor Speedway
IMS Indianapolis Motor Speedway
IAC Indy Autonomous Challenge
AC@CES Autonomous Challenge at CES
RRT Rapidly exploring random trees
UCS Uniform-cost search
TUM Technical University of Munich
MPC Model predictive control
OCP Optimal control problem
NLP Nonlinear programming
PVD Path-velocity decomposition



Actuators 2022, 11, 319 17 of 18

References
1. Buehler, M.; Iagnemma, K.; Singh, S. (Eds.) The 2005 DARPA Grand Challenge; Springer Tracts in Advanced Robotics; Springer:

Berlin/Heidelberg, Germany, 2007; Volume 36. [CrossRef]
2. Buehler, M.; Iagnemma, K.; Singh, S. (Eds.) The DARPA Urban Challenge; Springer Tracts in Advanced Robotics; Springer:

Berlin/Heidelberg, Germany, 2009; Volume 56. [CrossRef]
3. Theodosis, P.A.; Gerdes, J.C. Nonlinear Optimization of a Racing Line for an Autonomous Racecar Using Professional Driving

Techniques. In Proceedings of the ASME 5th Annual Dynamic Systems and Control Division Conference and JSME 11th Motion
and Vibration Conference, Fort Lauderdale, FL, USA, 17–19 October 2012; ASME: New York, NY, USA, 2013; pp. 235–241.
[CrossRef]

4. Heilmeier, A.; Wischnewski, A.; Hermansdorfer, L.; Betz, J.; Lienkamp, M.; Lohmann, B. Minimum curvature trajectory planning
and control for an autonomous race car. Veh. Syst. Dyn. 2020, 58, 1497–1527. [CrossRef]

5. Roborace. Available online: https://roborace.com/ (accessed on 2 November 2022).
6. Kant, K.; Zucker, S.W. Toward Efficient Trajectory Planning: The Path-Velocity Decomposition. Int. J. Robot. Res. 1986, 5, 72–89.

[CrossRef]
7. Paden, B.; Cap, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A Survey of Motion Planning and Control Techniques for Self-Driving

Urban Vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]
8. Ziegler, J.; Bender, P.; Dang, T.; Stiller, C. Trajectory Planning for Bertha—A Local, Continuous Method. In Proceedings of the

2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; IEEE: Piscataway, NJ, USA, 2014;
pp. 450–457. [CrossRef]

9. Cremean, L.B.; Foote, T.B.; Gillula, J.H.; Hines, G.H.; Kogan, D.; Kriechbaum, K.L.; Lamb, J.C.; Leibs, J.; Lindzey, L.; Rasmussen,
C.E.; et al. Alice: An Information-Rich Autonomous Vehicle for High-Speed Desert Navigation. In The 2005 DARPA Grand
Challenge; Springer Tracts in Advanced Robotics; Buehler, M., Iagnemma, K., Singh, S., Eds.; Springer: Berlin/Heidelberg,
Germany, 2007; Volume 36, pp. 437–482. [CrossRef]

10. Veneri, M.; Massaro, M. A free-trajectory quasi-steady-state optimal-control method for minimum lap-time of race vehicles. Veh.
Syst. Dyn. 2020, 58, 933–954. [CrossRef]

11. Lovato, S.; Massaro, M. A three-dimensional free-trajectory quasi-steady-state optimal-control method for minimum-lap-time of
race vehicles. Veh. Syst. Dyn. 2022, 60, 1512–1530. [CrossRef]

12. Casanova, D. On Minimum Time Vehicle Manoeuvring: The Theoretical Optimal Lap. Ph.D. Thesis, Cranfield University: Silsoe,
UK, 2000.

13. Christ, F.; Wischnewski, A.; Heilmeier, A.; Lohmann, B. Time-optimal trajectory planning for a race car considering variable
tyre-road friction coefficients. Veh. Syst. Dyn. 2021, 59, 588–612. [CrossRef]

14. Gundlach, I.; Konigorski, U. Modellbasierte Online-Trajektorienplanung für zeitoptimale Rennlinien. Automatisierungstechnik
2019, 67, 799–813. [CrossRef]

15. Subosits, J.K.; Gerdes, J.C. From the Racetrack to the Road: Real-Time Trajectory Replanning for Autonomous Driving. IEEE
Trans. Intell. Veh. 2019, 4, 309–320. [CrossRef]

16. Zhu, Z.; Schmerling, E.; Pavone, M. A Convex Optimization Approach to Smooth Trajectories for Motion Planning with Car-Like
Robots. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015;
IEEE: Piscataway, NJ, USA, 2015; pp. 835–842. [CrossRef]

17. Xin, L.; Kong, Y.; Li, S.E.; Chen, J.; Guan, Y.; Tomizuka, M.; Cheng, B. Enable faster and smoother spatio-temporal trajectory
planning for autonomous vehicles in constrained dynamic environment. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021,
235, 1101–1112. [CrossRef]

18. Liniger, A.; Domahidi, A.; Morari, M. Optimization-based autonomous racing of 1:43 scale RC cars. Optim. Control. Appl. Methods
2015, 36, 628–647. [CrossRef]

19. Svensson, L.; Bujarbaruah, M.; Kapania, N.R.; Torngren, M. Adaptive Trajectory Planning and Optimization at Limits of Handling.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3942–3948. [CrossRef]

20. Bender, P.; Tas, O.S.; Ziegler, J.; Stiller, C. The Combinatorial Aspect of Motion Planning: Maneuver Variants in Structured
Environments. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 1386–1392. [CrossRef]

21. Li, B.; Yin, Z.; Ouyang, Y.; Zhang, Y.; Zhong, X.; Tang, S. Online Trajectory Replanning for Sudden Environmental Changes
during Automated Parking: A Parallel Stitching Method. IEEE Trans. Intell. Veh. 2022, 7, 748–757. [CrossRef]

22. He, S.; Zeng, J.; Sreenath, K. Autonomous Racing with Multiple Vehicles using a Parallelized Optimization with Safety Guarantee
using Control Barrier Functions. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA),
Philadelphia, PA, USA, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3444–3451. [CrossRef]

23. Stahl, T.; Wischnewski, A.; Betz, J.; Lienkamp, M. Multilayer Graph-Based Trajectory Planning for Race Vehicles in Dynamic
Scenarios. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30
October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3149–3154. [CrossRef]

http://doi.org/10.1007/978-3-540-73429-1
http://dx.doi.org/10.1007/978-3-642-03991-1
http://dx.doi.org/10.1115/DSCC2012-MOVIC2012-8620
http://dx.doi.org/10.1080/00423114.2019.1631455
https://roborace.com/
http://dx.doi.org/10.1177/027836498600500304
http://dx.doi.org/10.1109/TIV.2016.2578706
http://dx.doi.org/10.1109/IVS.2014.6856581
http://dx.doi.org/10.1007/978-3-540-73429-1_14
http://dx.doi.org/10.1080/00423114.2019.1608364
http://dx.doi.org/10.1080/00423114.2021.1878242
http://dx.doi.org/10.1080/00423114.2019.1704804
http://dx.doi.org/10.1515/auto-2019-0032
http://dx.doi.org/10.1109/TIV.2019.2904390
http://dx.doi.org/10.1109/CDC.2015.7402333
http://dx.doi.org/10.1177/0954407020906627
http://dx.doi.org/10.1002/oca.2123
http://dx.doi.org/10.1109/IROS40897.2019.8967679
http://dx.doi.org/10.1109/IVS.2015.7225909
http://dx.doi.org/10.1109/TIV.2022.3156429
http://dx.doi.org/10.1109/ ICRA46639.2022.9811969
http://dx.doi.org/10.1109/ITSC.2019.8917032


Actuators 2022, 11, 319 18 of 18

24. Werling, M.; Ziegler, J.; Kammel, S.; Thrun, S. Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenét Frame. In
Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; IEEE:
Piscataway, NJ, USA, 2010; pp. 987–993. [CrossRef]

25. Raji, A.; Liniger, A.; Giove, A.; Toschi, A.; Musiu, N.; Morra, D.; Verucchi, M.; Caporale, D.; Bertogna, M. Motion Planning and
Control for Multi Vehicle Autonomous Racing at High Speeds. In Proceedings of the 2022 IEEE International Conference on
Intelligent Transportation Systems (IEEE ITSC 2022), Macau, China, 8–12 October 2022; IEEE: Piscataway, NJ, USA, 2022.

26. Ziegler, J.; Stiller, C. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In Proceedings
of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; IEEE:
Piscataway, NJ, USA, 2009; pp. 1879–1884. [CrossRef]

27. McNaughton, M.; Urmson, C.; Dolan, J.M.; Lee, J.W. Motion Planning for Autonomous Driving with a Conformal Spatiotemporal
Lattice. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
IEEE: Piscataway, NJ, USA, 2011; pp. 4889–4895. [CrossRef]

28. Morsali, M.; Frisk, E.; Aslund, J. Spatio-Temporal Planning in Multi-Vehicle Scenarios for Autonomous Vehicle Using Support
Vector Machines. IEEE Trans. Intell. Veh. 2021, 6, 611–621. [CrossRef]

29. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Technical Report 98-11; Iowa State University,
Department of Computer Science: Ames, IA, USA, 1998.

30. Arslan, O.; Berntorp, K.; Tsiotras, P. Sampling-based Algorithms for Optimal Motion Planning Using Closed-loop Prediction. In
Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 4991–4996. [CrossRef]

31. Feraco, S.; Luciani, S.; Bonfitto, A.; Amati, N.; Tonoli, A. A local trajectory planning and control method for autonomous vehicles
based on the RRT algorithm. In Proceedings of the 2020 AEIT International Conference of Electrical and Electronic Technologies
for Automotive (AEIT AUTOMOTIVE), Turin, Italy, 18–20 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [CrossRef]

32. Liniger, A.; Lygeros, J. A Viability Approach for Fast Recursive Feasible Finite Horizon Path Planning of Autonomous RC Cars.
In Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, Seattle, WA, USA, 14–16
April 2015; Girard, A., Sankaranarayanan, S., Eds.; ACM: New York, NY, USA, 2015; pp. 1–10. [CrossRef]

33. Liniger, A.; Lygeros, J. A Noncooperative Game Approach to Autonomous Racing. IEEE Trans. Control. Syst. Technol. 2020,
28, 884–897. [CrossRef]

34. Wang, M.; Wang, Z.; Talbot, J.; Gerdes, J.C.; Schwager, M. Game-Theoretic Planning for Self-Driving Cars in Multivehicle
Competitive Scenarios. IEEE Trans. Robot. 2021, 37, 1313–1325. [CrossRef]

35. Bahram, M.; Lawitzky, A.; Friedrichs, J.; Aeberhard, M.; Wollherr, D. A Game-Theoretic Approach to Replanning-Aware
Interactive Scene Prediction and Planning. IEEE Trans. Veh. Technol. 2016, 65, 3981–3992. [CrossRef]

36. Fisac, J.F.; Bronstein, E.; Stefansson, E.; Sadigh, D.; Sastry, S.S.; Dragan, A.D. Hierarchical Game-Theoretic Planning for
Autonomous Vehicles. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,
Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 9590–9596. [CrossRef]

37. Bellman, R. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957.
38. Hermansdorfer, L.; Betz, J.; Lienkamp, M. Benchmarking of a software stack for autonomous racing against a professional human

race driver. In Proceedings of the 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER),
Monte-Carlo, Monaco, 10–12 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [CrossRef]

39. Herrmann, T.; Wischnewski, A.; Hermansdorfer, L.; Betz, J.; Lienkamp, M. Real-Time Adaptive Velocity Optimization for
Autonomous Electric Cars at the Limits of Handling. IEEE Trans. Intell. Veh. 2021, 6, 665–677. [CrossRef]

40. Betz, J.; Betz, T.; Fent, F.; Geisslinger, M.; Heilmeier, A.; Hermansdorfer, L.; Herrmann, T.; Huch, S.; Karle, P.; Lienkamp, M.;
et al. TUM Autonomous Motorsport: An Autonomous Racing Software for the Indy Autonomous Challenge. arXiv 2022,
arXiv:2205.15979 [CrossRef]

41. Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
42. Felner, A. Position Paper: Dijkstra’s Algorithm versus Uniform Cost Search or a Case Against Dijkstra’s Algorithm. In Proceedings

of the The Fourth International Symposium on Combinatorial Search (SoCS-2011), Barcelona, Spain, 15–16 July 2011; pp. 47–51.
43. Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010.
44. Indy Autonomous Challenge. Available online: https://www.indyautonomouschallenge.com/ (accessed on 2 November 2022).
45. Wischnewski, A.; Herrmann, T.; Werner, F.; Lohmann, B. A Tube-MPC Approach to Autonomous Multi-Vehicle Racing on

High-Speed Ovals. IEEE Trans. Intell. Veh. 2022, 1. [CrossRef]
46. Ögretmen, L.; Rowold, M.; Ochsenius, M.; Lohmann, B. Smooth Trajectory Planning at the Handling Limits for Oval Racing.

Actuators 2022, accepted.

http://dx.doi.org/10.1109/ROBOT.2010.5509799
http://dx.doi.org/10.1109/IROS.2009.5354448
http://dx.doi.org/10.1109/ICRA.2011.5980223
http://dx.doi.org/10.1109/TIV.2020.3042087
http://dx.doi.org/10.1109/ICRA.2017.7989581
http://dx.doi.org/10.23919/AEITAUTOMOTIVE50086.2020.9307439
http://dx.doi.org/10.1145/2728606.2728620
http://dx.doi.org/10.1109/TCST.2019.2895282
http://dx.doi.org/10.1109/TRO.2020.3047521
http://dx.doi.org/10.1109/TVT.2015.2508009
http://dx.doi.org/10.1109/ICRA.2019.8794007
http://dx.doi.org/10.1109/EVER48776.2020.9242926
http://dx.doi.org/10.1109/TIV.2020.3047858
http://dx.doi.org/10.48550/arXiv.2205.15979.
http://dx.doi.org/10.1007/BF01386390
https://www.indyautonomouschallenge.com/
http://dx.doi.org/10.1109/TIV.2022.3169986

	Introduction
	Related Work
	Contribution
	Structure

	Materials and Methods
	Local Planning Concept
	Spatial Graph
	Spatiotemporal Graph
	Graph Search
	Exhaustive Search
	Uniform-Cost Search

	Cost Function

	Results and Discussion
	Overtaking Maneuver
	Comparison of the Search Methods

	Conclusions and Outlook
	References

