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Abstract: In this paper, a novel class of quantum fractal functions is introduced based on the Meyer-
König-Zeller operator Mq,n. These quantum Meyer-König-Zeller (MKZ) fractal functions employ
Mq,n f as the base function in the iterated function system for α-fractal functions. For f ∈ C(I), I

closed interval in R, it is shown that a sequence of quantum MKZ fractal functions { f (qn ,α)
n }∞

n=0 exists

which converges uniformly to f without altering the scaling function α. The shape of f (qn ,α)
n depends

on q as well as the other iterated function system parameters. For f , g ∈ C(I), f ≥ g > 0, we show

that a sequence { f (qn ,α)
n }∞

n=0 exists with f (qn ,α)
n ≥ g > 0 converging to f . Quantum MKZ fractal

versions of some classical Müntz theorems are also presented. For q = 1, the box dimension and
some approximation-theoretic results of MKZ α-fractal functions are investigated in C(I). Finally,
MKZ α-fractal functions are studied in Lp spaces with p ≥ 1.

Keywords: fractal interpolation function; quantum meyer-könig-zeller operator; smooth quantum
fractal functions; constrained approximation; müntz polynomials
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1. Introduction

Quantum calculus or q-calculus is calculus without the use of limits. This theory
has been extensively studied in the fields of approximation theory, special functions,
combinatorics, number theory, mechanics, quantum physics, and the theory of relativity.
In 1987, Lupaş [1] constructed the q-analogue of Bernstein operators and established
convergence estimates and shape preserving properties. In the last three decades, q-
extensions of various results in classical approximation theory have been proposed by
several researchers. For an albeit incomplete list, see, for instance [2–11].

Since classical approximation theory and q-approximation theory dispense with the
approximation of functions using piecewise smooth functions or infinitely differentiable
functions, they are not ideal tools to represent non-differentiable functions such as speech
signals, bio-electric recordings, time series, financial series, or seismic data, to name a few.

Fractal functions bestow a constructive approximation theory on irregular functions
or functions whose derivatives are non-smooth in nature. Fractal functions easily describe
functions that have some degree of self-similarity at different scales. Using iterated function
systems (IFSs), Barnsley [12] introduced the construction of fractal interpolation functions
(FIFs) to obtain a mathematical representation of data sets arising from irregular functions.
He conceptualized the idea of approximation of a continuous function f defined on a
real compact interval I by a family of α-fractal functions f α, where α is a set of given or
appropriately chosen parameters. We refer the interested reader to the vast literature on
fractal functions and fractal interpolation and refer only to [13–19] as an albeit incomplete
list of references as they appertain most closely to the setting considered in this paper.
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The choice of a base function b is important in the construction of f α, even though it is
avoided in its notation. The graph of f α is typically a fractal set and dimension results for
classes of such fractal functions can be found in, for instance [13,20–28].

Shape preserving interpolants play an important role in engineering and the applied
sciences. The question of shape preserving aspects of a function f by its fractal perturbation
function f α is answered affirmatively in [29] with a suitable choice for b and α.

It is known that an α-fractal function f α of f converges to f when the magnitude of
the scaling factors of f α goes to zero. Vijender et al. [30] proposed a theory of quantum
α-fractal functions using Bernstein polynomials associated with f as base function. They
showed that the convergence of a sequence of quantum α-fractal functions towards the
function f follows from the convergence of the q-Bernstein polynomials towards f , even
when the scaling parameters are non-null.

In this paper, we propose the use of quantum Meyer-König-Zeller functions as base
functions, i.e., we require that b = Mq,n f , to construct a novel sequence of quantum MKZ
fractal functions denoted by f α

qn ,n. It is proved that f α
qn ,n converges to f as n→ ∞. However,

the magnitude/norm of the scaling functions does not go to 0 when {qn}∞
n=1 is a sequence

in (0,1] such that lim
n→∞

qn = 1. It is also shown that the shape of f α
q,n depends on the scaling

functions as well as 0 < q ≤ 1. We study the shape preserving aspects of quantum MKZ
fractal functions and consider quantum MKZ analogues of two classical Müntz theorems.
The latter approach makes use of so-called quantum MKZ fractal Müntz polynomials.

Setting q = 1 in the quantum MKZ fractal function f (q,α)
n , we obtain a novel MKZ

α-fractal function. Some approximation-theoretic properties and the box dimension for the
graph of such an MKZ α-fractal function is investigated. Finally, we study the existence
of MKZ α-fractal functions in Lp spaces, p ≥ 1, and investigate their approximation-
theoretic properties.

2. Background and Preliminaries

In this section, we present the foundations of IFSs and the construction of α-fractal
functions from a suitable IFS. For more details, the interested reader may consult the
important references [12,15,17,26,31].

Let N ∈ N := {1, 2, 3, . . .} and NN := {1, . . . , N} be the initial segment of N of length
N. An IFS F := {X; wi : i ∈ NN} is a collection of continuous functions on a complete
metric space (X, d). F is called a hyperbolic IFS if each wi is contractive on X, i.e., its
Lipschitz constant

si := Lip(wi) := sup
x,y∈X, .x 6=y

d(wi(x), wi(y))
d(x, y)

< 1.

Let H(X) := {A ⊆ X : A is non-empty and compact}. The Hausdorff-Pompeiu
metric h onH(X) is defined by

h(A, B) := max{d(A, B), d(B, A)},

where d(A, B) := sup{d(x, B) : x ∈ A} and d(x, B) := inf{d(x, y) : y ∈ B}. It is known
that if (X, d) is a complete metric space then (H(X), h) is also a complete metric space,
termed the space of fractals in [32].

The Hutchinson map [31] W : H(X)→ H(X) is defined by

W(A) :=
N⋃

i=1

wi(A), ∀A ∈ H(X).
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If the IFS F is hyperbolic, then W is a contraction on (H(X), h) with contraction factor
s := max

i∈NN
|si| < 1. Thus, by the Banach fixed point theorem, a unique G in H(X) exists

such that
G = lim

m→∞
W◦m(A), for any A ∈ H(X),

where W◦m denotes the m-fold composition of W with itself. The fixed point G is called the
attractor of, or deterministic fractal generated by, the hyperbolic IFS F .

Now, consider a set of interpolation points

{(xj, yj) ∈ [x1, xN ]×R : −∞ < x1 < x2 < · · · < xN < +∞, j ∈ NN}.

Let ui, i ∈ NN−1, be a set of homeomorphisms from I := [x1, xN ] to Ii := [xi, xi+1] satisfying

ui(x1) = xi, ui(xN) = xi+1. (1)

For i ∈ NN−1, let vi : I × K → K be a function, where K is a suitable compact subset of R
that contains all the yj, j ∈ NN (the existence of such a set is shown in, i.e., [15]). Assume
that each vi is continuous in the first variable and Lipschitz continuous in the second
variable with Lipschitz constant |αi| < 1, i ∈ NN−1, i.e.,

vi(x1, y1) = yi, vi(xN , yN) = yi+1, (2)

and
|vi(x, y1)− vi(x, y2)| ≤ |αi||y1 − y2|, ∀ i ∈ NN−1. (3)

Let C(I) := { f : I → R : f is continuous on I} and define

G := {g ∈ C(I) : g(x1) = y1 ∧ g(xN) = yN}.

Defining a metric on G by ρ(h, g) := max{|h(x)− g(x)| : x ∈ I} for g, h ∈ G, makes (G, ρ)
into a complete metric space.

Define a Read-Bajraktarević (RB) operator [15] T on (G, ρ) by

Tg(x) :=
N−1

∑
i=1

vi(u−1
i (x), g ◦ u−1

i (x))χui(I)(x), x ∈ I, (4)

where χS denotes the characteristic or indicator function of a set S.
Using the properties of ui and vi, it is straight forward to verify that Tg is continuous

on I. Also,
ρ(Tg, Th) ≤ |α|∞ρ(g, h), (5)

where α := (α1, . . . , αN−1) and |α|∞ := max{|αi| : i ∈ NN−1} < 1. Hence, T is a contractive
map on the complete metric space (G, ρ). Therefore, by the Banach fixed point theorem, T
possesses a unique fixed point f ∗ ∈ G. Consequently, from (4), f ∗ obeys the self-referential
functional equation

f ∗ =
N−1

∑
i=1

vi(u−1
i , f ∗ ◦ u−1

i )χui(I) (6)

on I. It can be easily verified that f ∗(xj) = yj, j ∈ NN−1.
Now, define mappings wi : I × K → Ii × K by

wi(x, y) := (ui(x), vi(x, y)), (x, y) ∈ I × K, i ∈ NN−1.

The graph of G( f ∗) of f ∗ is the attractor of the IFS

I := {I × K; wi(x, y) = (ui(x), vi(x, y)), i ∈ NN−1}
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and satisfies the self-referential set equation

G( f ∗) =
⋃

i∈NN−1

wi(G( f ∗)). (7)

In this setting, f ∗ is called a fractal interpolation function (FIF) associated with the IFS I .
It was observed in [12,15,17] that the concept of FIF may be used to define a class of

fractal functions associated with any function f ∈ C(I), as described in the following.
For this purpose, let I := [x1, xN ] ⊂ R. For a given f ∈ C(I), consider a partition

∆ := {x1, x2, . . . , xN} of I satisfying x1 < x2 < · · · < xN , and a continuous function
b : I → R with b 6= f that satisfies the endpoint interpolation conditions b(x1) = f (x1) and
b(xN) = f (xN).

Choose an α = (α1, . . . , αN−1) ∈ (−1, 1)N−1. If, for i ∈ NN−1, we set

ui(x) := aix + bi and vi(x, y) := αiy + f (ui(x))− αib(x), (8)

and determine the constants ai and bi via the conditions (1), then the IFS

{[x1, xN ]×R; wi(x, y) = (ui(x), vi(x, y)), i ∈ NN−1}

determines an attractor which is the graph of a fractal function f α
∆,b =: f α. The function f α

is referred to as an α-fractal function for f and may be considered as the fractalization of f
(with respect to the scaling vector α, the base function b, and the partition ∆).

The function f α is the fixed point of the RB operator T : C f (I)→ C f (I) defined by [15]

Tg = f +
N−1

∑
i=1

αi (g− b) ◦ u−1
i χui(I) (9)

on I, where C f (I) = {g ∈ C(I) : g(x1) = f (x1) ∧ g(xN) = f (xN)}. Consequently, f α

satisfies the self-referential equation

f α(x) = f (x) +
N−1

∑
i=1

αi( f α(u−1
i (x))− b(u−1

i (x)))χui(I)(x), x ∈ I.

The fractal dimension of the graph of f α depends on the choice of the scaling vector α and
the ai [20,21].

To obtain more flexibility in the construction of fractal functions, the constant scalings
αi, i ∈ NN−1, can be replaced by continuous functions αi ∈ C(I) with ‖α‖∞ := max{‖αi‖∞ :
i ∈ NN−1} < 1 in the IFS (8). Hence,

vi(x, y) = αi(x)y + f (ui(x))− αi(x)b(x), i ∈ NN−1. (10)

The corresponding α-fractal function is then the fixed point of the RB-operator

Tg = f +
N−1

∑
i=1

(αi ◦ u−1
i )(g− b) ◦ u−1

i χui(I), (11)

and it satisfies a self-referential equation with location-dependent scalings

f α(x) = f (x) +
N−1

∑
i=1

αi(u−1
i (x))( f α(u−1

i (x))− b(u−1
i (x)))χui(I)(x), x ∈ I. (12)

Using (12), it is easy to show that

‖ f α − f ‖∞ ≤
‖α‖∞

1− ‖α‖∞
‖ f − b‖∞. (13)
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The above inequality shows that an α-fractal function f α converges uniformly to f
if either ‖α‖∞ → 0 or ‖ f − b‖∞ → 0. In particular, if b is taken to be a sequence of MKZ
quantum functions, the novel class of MKZ (q, α)-fractal functions is obtained.

3. MKZ (q, α)-Fractal Functions

We require the following notation from quantum calculus. For q ∈ (0, 1] and k ∈ N, let

[k]q :=

{
1−qk

1−q , q 6= 1;

k, q = 1.

The q-factorial is defined as

[k]q! :=

{
[k]q[k− 1]q . . . [2]q[1]q, k ∈ N;
1, k = 0.

By means of the q-factorial, the q-binomial coefficients are then defined by(
n
k

)
q

:=
[n]q!

[k]q![n− k]q!
,

for all integers n ≥ k ≥ 0.
Following [33–35], we define a sequence of MKZ functions on I = [x1, xN ] for f ∈ C(I)

by

Mn,q f (x) := Pn,q(x)
∞

∑
k=0

(
n + k

k

)
q

(
x− x1

xN − x1

)k
f
(

x1 + (xN − x1)
[k]q

[k + n]q

)
,

Mn,q f (xN) := f (xN),

(14)

with

Pn,q(x) :=

n
∏
j=0

(xN − x1 − qj(x− x1))

(xN − x1)n+1 .

It is easy to verify that
Mn,q f (x1) = f (x1).

If in (10) we take as the base function b := Mn,q f , then the corresponding α-fractal function

f (q,α)
n := F (q,α)

∆,b ( f )

is termed a (q, α)-fractal function or quantum MKZ fractal function associated with f ∈ C(I).
Moreover,

f (q,α)
n = f +

N−1

∑
i=1

(αi ◦ u−1
i )( f (q,α)

n −Mn,q f ) ◦ u−1
i χui(I), on I. (15)

It follows from (14) and (15), that the various quantitative and approximation-theoretic
properties of (q, α)-fractal functions f (q,α)

n depend on the choices for q and the scaling
functions αi.

The graph of a (q, α)-fractal functions f (q,α)
n is constructed via the IFS

F(q,n) = {I ×R; wn,i(x, y) = (ui(x), vn,i(x, y)), i ∈ NN−1}, n ∈ N, (16)

where vn,i(x, y) := f (ui(x))− αi(x)(y−Mn,q f (x)).
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The following theorem ensures the convergences of a sequence of quantum MKZ
fractal functions to f in the sup-norm.

Theorem 1. Let f ∈ C(I). Then, there exists a sequence of quantum MKZ fractal functions
{ f (qn ,α)

n }∞
n=0 that converges uniformly to f on I, where {qn}∞

n=1 is a sequence in (0, 1] with

lim
n→∞

qn = 1 and f (qn ,α)
n is the fractal function corresponding to the IFS F(qn ,n) defined in (16).

Further, for each integer n ≥ 3, we have

‖ f (qn ,α)
n − f ‖∞ ≤ 5

2 ω

(
f , 1√

[n]qn

)
‖α‖∞

1− ‖α‖∞
,

where ω denotes the modulus of continuity of f .

Proof. Let f (qn ,α), n ∈ N, be a quantum MKZ fractal function corresponding to f . From (13),
we obtain

‖ f (qn ,α)
n − f ‖∞ ≤

‖α‖∞

1− ‖α‖∞
‖ f −Mn,qn f ‖∞. (17)

By ([33], Theorem 2), it follows that

‖Mn,qn f − f ‖∞ → 0 as n→ ∞, (18)

which implies uniform convergence of { f (qn ,α)
n }∞

n=1 to f .
Applying the result

‖Mn,q f − f ‖∞ ≤ 5
2 ω

(
f , 1√

[n]q

)
, n ≥ 3,

from ([34], Theorem 2.3) to (17), we obtain the following estimate:

‖ f (qn ,α)
n − f ‖∞ ≤ 5

2 ω

(
f , 1√

[n]qn

)
‖α‖∞

1− ‖α‖∞
, n ≥ 3. (19)

Example 1. We want to construct a quantum MKZ fractal function associated with f (x) := sin x.
Choose I := [0, 1] and consider its partition ∆ := {0, 1

7 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7 , 1}. Furthermore, let αi(x) :=

(1 + e−10x)−1, x ∈ I, i ∈ N7. We take {Mn,qn f }∞
n=1 as a sequence of base functions.

The quantum MKZ fractal functions are depicted in Figure 1a–c and represent the graphs of
f (.5,α)
1 , f (.5,α)

50 , and f (.9,α)
50 , respectively, at the second level of iteration. Figure 1b,c show the effect of

q on the quantum MKZ fractal function.
Figure 1a,c ensure that the fractal function f (.9,α)

50 provides better approximation of f (x) =

sin x, x ∈ [0, 1], than f (.5,α)
1 . From f (.5,α)

1 and f (.9,α)
50 , we observe that these two functions do

not have the same irregularity even when their scaling functions are the same. Note that
f (.5,α)
1 exhibits irregularities on all scales, whereas f (.9,α)

50 exhibits irregularities on small scales.

Figure 1d is the blow-up of a small part of f (.9,α)
50 showing irregularities of f (.9,α)

50 on small scales.
One reason for these irregularities is that the scaling functions αi do not satisfy the inequalities
‖αi‖∞ < ai

2 , i ∈ N7 ([36], Theorem 3.2).
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Figure 1. MKZ fractal functions of sin x.

Theorem 2. Let C(I) be endowed with the sup-norm. For every n ∈ N, the (q, α)-operator
F (q,α)

n : C(I)→ C(I), F (q,α)
n ( f ) := f (q,α)

n , is bounded and linear.

Proof. We know from [34] that Mn,q is a positive linear operator. Further, it is known that
Mn,qe0(x) = e0(x), where e0(x) ≡ 1. Then,

−‖ f ‖∞ e0 ≤ f ≤ ‖ f ‖∞ e0 =⇒ −‖ f ‖∞ Mn,q e0 ≤ Mn,q f ≤ ‖ f ‖∞ Mn,q e0.

Thus, ‖Mn,q f ‖∞ ≤ ‖ f ‖∞ Mn,q e0 = ‖ f ‖∞. Hence Mn,q is a bounded operator. By refer-

ence [19], we know that F (q,α)
n is a linear and bounded operator.

4. Constrained Quantum MKZ Fractal Approximation

When we are interested in the computation of energy associated with a wave-function
in the time-independent Schrödinger equation, then the energy must be non-negative [37].
Similarly, one may be interested in a non-negative solution of a q-difference equation [38],
of q-fractional order differential equations [39], or the q-heat and q-wave equation [40].
As quantum fractal functions are more general than the classical q-functions, one can search
for non-negative quantum MKZ fractal function solutions to these problems. For this
reason, we study constrained approximation by quantum MKZ fractal functions in the
following.

Theorem 3. Let f ∈ C(I) and f ≥ 0 on I. Let ∆ := {x1, x2, . . . , xN} be a partition of I
satisfying the condition x1 < x2 < · · · < xN and let {qn}∞

n=1 be a sequence in (0,1] such that

lim
n→∞

qn = 1. Then, the sequence {F(qn ,n)}∞
n=1 of IFSs determines a sequence { f (qn ,α)

n }∞
n=1 of

non-negative quantum MKZ fractal functions that converges uniformly to f if the scaling functions
αi(x) are chosen to satisfy the following two conditions:

1. ‖α‖∞ < 1;
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2. For all i ∈ NN−1,

max
{
−φ( f , i)
Cn − φn

, −Cn −Φ( f , i)
Φn

}
≤ αi(x)

≤ min
{

φ( f , i)
Φn

,
Cn −Φ( f , i)

Cn − φn

}
, x ∈ I. (20)

Here, we set φ( f , i) := min
x∈I

f (ui(x)), Φ( f , i) := max
x∈I

f (ui(x)), φn := min
x∈I

Mn,qn f (x),

and Φn := max
x∈I

Mn,qn f (x). Cn denotes a positive real number strictly larger than

max{φn, ‖ f ‖∞}.

Proof. By Theorem 1, there exists a sequence { f (qn ,α)
n }∞

n=1 of quantum MKZ fractal func-
tions that converges to f . Now suppose that f ∈ C(I) and f ≥ 0 on I. It is known (cf. for
instance, [34]) that Mn,q is a positive linear operator and thus Mn,q f ≥ 0 on I. This implies
that Φn is positive. We have that

f (qn ,α)
n (ui(x)) = vn,i(x, f (qn ,α)

n (x))

= f (ui(x)) + αi(x)( f (qn ,α)
n (x)−Mn,qn f (x)), x ∈ I.

(21)

Clearly, vn,i(x, f (qn ,α)
n (x)) ∈ [0, Cn], i ∈ NN−1, iff f (qn ,α)

n (ui(x)) ∈ [0, Cn], for all x ∈ I. Note

that I is the attractor of the IFS {I; ui(x), i ∈ N}. As f (qn ,α)
n is defined recursively, we only

need to show that f (qn ,α)
n (ui(x)) ≥ 0 whenever f (qn ,α)

n (x) ≥ 0 using suitable restrictions on
the functions αi.

To this end, suppose (x, y) ∈ I × [0, Cn] and αi, i ∈ NN−1, is such that |αi(x)| < 1,
for all x ∈ I. Now, there are two cases:

Case 1: 0 ≤ αi(x) < 1, for all x ∈ I.
Then, 0 ≤ y ≤ Cn yields qn,i ≤ αi(x)y + qn,i ≤ Cnαi(x) + qn,i. Therefore,

0 ≤ vn,i(x, y) = αi(x)y + qn,i ≤ Cn, i ∈ NN−1,

is true for all (x, y) ∈ I × [0, Cn] if

f (ui(x))− αi(x)Mn,qn( f , x) ≥ 0,

f (ui(x))− αi(x)Mn,qn( f , x) ≤ Cn(1− αi(x)), x ∈ I.

}
(22)

As f (ui(x)) ≥ φ( f , i) and Mn,qn( f , x) ≤ Φn, it is easy to verify that

f (ui(x))− αi(x)Mn,qn( f , x) ≥ 0

if φ( f , i)− αi(x)Φn ≥ 0, which is equivalent to the condition

0 ≤ αi(x) ≤ φ( f , i)
Φn

.

Similarly, using f (ui(x)) ≤ Φ( f , i) and Mn,qn( f , x) ≥ φn, the second inequality in (22) is
true, whenever Φ( f , i)− αi(x)φn ≤ Cn(1− αi(x)), which is equivalent to

0 ≤ αi(x) ≤ Cn −Φ( f , i)
Cn − φn

.
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Combining, these two sub-cases, we obtain that vn,i(x, y) ∈ [0, Cn], i ∈ NN−1, for all
(x, y) ∈ I × [0, Cn] if

0 ≤ αi(x) ≤ min
{

φ( f , i)
Φn

,
Cn −Φ( f , i)

Cn − φn

}
.

Case 2: −1 < αi(x) ≤ 0, for all x ∈ I.
Then 0 ≤ y ≤ Cn yields Cnαi(x) + qn,i ≤ αi(x)y + qn,i ≤ qn,i. Hence,

0 ≤ vn,i(x, y) = αi(x)y + qn,i ≤ Cn, i ∈ NN−1,

is valid for all (x, y) ∈ I × [0, Cn] whenever

f (ui(x))− αi(x)Mn,qn f (x) ≤ Cn,

Cnαi(x) + f (ui(x))− αi(x)Mn,qn f (x) ≥ 0, x ∈ I.

}
(23)

As f (ui(x)) ≤ Φ( f , i) and Mn,qn( f , x) ≤ Φn, then, from the first inequality in (23), we
obtain f (ui(x))− αi(x)Mn,qn( f , x) ≤ Φ( f , i)− αi(x)Φn ≤ Cn. Hence,

αi(x) ≥ −Cn −Φ( f , i)
Φn

.

Again, due to the fact that Mn,qn f (x) ≥ φn and f (ui(x)) ≥ φ( f , i), we observe that the
second inequality in (23) holds if

αi(x) ≥ −φ( f , i)
Cn − φn

.

Combining these two results, we conclude that vn,i(x, y) ∈ [0, Cn], i ∈ NN−1, for all
(x, y) ∈ I × [0, Cn] if

max
{
−φ( f , i)
Cn − φn

,−Cn −Φ( f , i)
Φn

}
≤ αi(x) ≤ 0.

Both cases yield the desired restrictions on the functions αi in (20).

By Theorem 3, it is found that for every continuous function f on I with f ≥ 0 on I,
there exists a sequence of non-negative quantum MKZ fractal functions which converges
to f in the sup-norm.

Example 2. Here, we give an example to illustrate Theorem 3. Let I := [0, 1] and let f : I → [0, 2],
x 7→ sin(πx) + 1. Further, let ∆ := {0, 1

3 , 2
3 , 1} and define α1(x) := 0.1298/(1 + exp(−10x)),

α2(x) := 0.100/(1 + exp(−10x)), and α3(x) := 0.2168/(1 + exp(−10x)).
Assume that qn := 2

π arctan(n), n ∈ N . Then, the scaling functions αi and the sequence
{qn}∞

n=1 fulfill the conditions stated in Theorem 3. In Figure 2a, the fractal quantum MKZ fractal

function f (q2,α)
2 is shown and provides a positive approximation for f .

If we choose α1(x) := 0.7, α2(x) := −0.9, and α3(x) := 0.9 instead, then α is not consistent
with the conditions given in (20). From Figure 2b, we further observe that the MKZ (q, α)-fractal
function f (q2,α)

2 is non-positive in nature for this choice of α.
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Figure 2. Positivity of MKZ fractal function according to Theorem 3. A positive quantum MKZ fractal
function (a) and a non−positive quantum MKZ fractal function (b).

The following theorem gives the existence of a double sequence of positive quantum
MKZ fractal functions which converges to f in the sup-norm.

Theorem 4. Let { fk}∞
k=1 be a sequence of positive functions in C(I) that converges to f ∈ C(I).

Let ∆ := {x1, x2, . . . , xN} be a partition of I satisfying the condition x1 < x2 < · · · < xN and let
{qn}∞

n=1 be a sequence in (0,1] such that lim
n→∞

qn = 1.

Suppose that ui : I → Ii, i ∈ NN−1, are affine maps of the form ui(x) = aix + bi satisfying
the conditions ui(x1) = xi, ui(xN) = xi+1. Let

v†
k,n,i(x, y) := fk(ui(x)) + αi(x)(y−Mn,qn( fk, x)), i ∈ NN−1.

Let f (qn ,α)
k,n be the MKZ fractal function associated with the IFS

F †
k,(qn ,n) := {I × K; (ui(x), v†

k,n,i(x, y)), i ∈ NN−1}.

Then, the double sequence of IFSs {{F †
k,(qn ,n)}

∞
n=1}∞

k=1 generates a double sequence {{ f (qn ,α)
k,n }∞

n=1}∞
k=1

of positive quantum MKZ fractal functions which converges to f in sup-norm provided that all scaling
functions αi obey the conditions:

1. ‖αi‖∞ < 1;
2. For all i ∈ NN−1,

max

{
−φ( fk, i)

C†
n,k − φn,k( fk)

,−
C†

n,k −Φ( fk, i)
Φn,k( fk)

}
≤ αi(x)

≤ min

{
φ( f , i)

Φn,k( fk)
,

C†
n,k −Φ( fk, i)

C†
n,k − φn,k( fk)

}
, x ∈ I. (24)

where φ( fk, i) := min
x∈I

fk(ui(x)), Φ( fk, i) := max
x∈I

fk(ui(x)), φn,k( fk) := min
x∈I

Mn,q( fk, x),

and Φn,k( fk) := max
x∈I

Mn,q( fk, x). Here, C†
n,k denotes a positive real number strictly greater

than max{φn,k( fk), ‖ fk‖∞}.

Proof. It follows easily from Theorem 3 that the MKZ fractal functions f (qn ,α)
k,n are positive

on I if the scaling functions αi, i ∈ NN−1, obey the inequalities in (24).
Let ε > 0. As { fk}∞

k=1 is a sequence of positive functions in C(I) that converges to f in
‖ · ‖∞, there exists a natural number k1 ∈ N such that

‖ fk − f ‖∞ <
ε

2
, ∀ k ≥ k1. (25)
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Employing Theorem 2 of [33], we can see that for each k ∈ N , ‖Mn,qn fk − fk‖∞ → 0,
as n→ ∞. Thus, there exists a k2 ∈ N such that

‖Mn,qn fk − fk‖∞ <
ε(1− ‖α‖∞)

2‖α‖∞
, ∀n ≥ k2. (26)

Given that f (qn ,α)
k,n is the MKZ fractal function obtained from the IFS F †

k,n, f (qn ,α)
k,n satisfies the

functional equation

f (qn ,α)
k,n = fk +

N−1

∑
i=1

(αi ◦ u−1
i )( f (qn ,α)

k,n ◦ u−1
i −Mn,qn fk ◦ u−1

i )χui(I) (27)

on I. It is easy to derive the following estimate from (27):

‖ f (qn ,α)
k,n − fk‖∞ ≤

‖α‖∞

(1− ‖α‖∞)
‖ fk −Mn,qn fk‖∞. (28)

From (26) and (28), we obtain

‖ f (qn ,α)
k,n − fk‖∞ <

ε

2
, ∀ n ≥ k2. (29)

Combining (25) and (29) shows that for a given ε > 0, there exists a k0 := max{k1, k2} such
that

‖ f (qn ,α)
k,n − f ‖∞ < ε, ∀ k, n ≥ k0,

confirming that the sequence {{ f (qn ,α)
k,n }∞

n=1}∞
k=1 converges uniformly to f .

The following theorem gives the existence of a one-sided sequential approximation by
MKZ fractal functions.

Theorem 5. Let f , g ∈ C(I) with f ≥ g on I. Let ∆ := {x1, x2, . . . , xN} be a partition of I
satisfying the condition x1 < x2 < · · · < xN and let {qn}∞

n=1 be a sequence in (0, 1] such that

lim
n→∞

qn = 1. For all n ∈ N, let f (qn ,α)
n denote the MKZ fractal functions associated with the IFS Fn.

Then, the sequence of IFSs {Fn}∞
n=1 determines a sequence of MKZ fractal functions { f (qn ,α)

n }∞
n=1

with f (qn ,α)
n ≥ g on I, n ∈ N, and this sequence converges uniformly to f , provided that the scaling

vector α of each f (qn ,α)
n satisfies the following conditions:

1. ‖α‖∞ < 1;
2. For each i ∈ NN−1,

0 ≤ αi(x) ≤ min
{

φ( f − g, i)
Φn( f )− φ(g)

, 1
}

, x ∈ I, (30)

where φ( f − g, i) := min
x∈I

( f − g)(ui(x)), Φn( f ) := max
x∈I

Mn,qn f (x), and φ(g) :=

min
x∈I

g(x)).

Proof. By the construction of the MKZ fractal function, we observe that f (qn ,α)
n satisfies the

following functional equation for x ∈ I:

f (qn ,α)
n (x) = f (x) +

N−1

∑
i=1

αi(u−1
i (x))( f (qn ,α)

n (u−1
i (x))−Mn,qn f (u−1

i (x)))χui(I)(x). (31)

This functional equation is a rule to obtain the values of f (qn ,α)
n at (N − 1)r+2 + 1 distinct

points in I at the (r + 1)-th iteration using the value of f (qn ,α)
n at (N − 1)r+1 + 1 points in I
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at the r-th iteration. Thus, if we can show that the result is true at the first iteration, then it
is true for all subsequent iterations.

We begin the iteration process at the nodal points xi, i ∈ N, where f (qn ,α)
n ≥ g as f (qn ,α)

n

interpolates f at these nodes and f ≥ g. Now, we want to verify that f (qn ,α)
n ◦ ui ≥ g ◦ ui on

ui(I). By (31), this is equivalent to proving that

f ◦ ui + αi f (qn ,α)
n − αi Mn,qn f − g ◦ ui ≥ 0 on ui(I). (32)

If we choose the functions αi to be positive, then the above inequality is true provided that

f ◦ ui + αig− αi Mn,qn f − g ◦ ui ≥ 0.

The sufficient condition for the validity of the above inequality is

0 ≤ αi(x) ≤ min
{

φ( f − g, i)
Φn( f )− φ(g)

}
, x ∈ I.

Therefore, if the functions αi, i ∈ NN−1, are chosen according to (30), then f (qn ,α)
n ≥ g on I.

Example 3. Let f (x) := 0.5 sin(4πx) + 1 and g(x) := −0.5(2x − 1.1)2 be two continuous
functions defined on I := [0, 1] and let ∆ := {0, 1

3 , 2
3 , 1} be a uniform partition of I. Further, let

qn := 2
π arctan(n), n ∈ N.

If we take α1(x) := 0.3950/(1 + exp(−10x)), α2(x) := 0.3550/(1 + exp(−10x)), and
α3(x) := 0.2774/(1 + exp(−10x)), then the scaling vector α satisfies the required conditions (30)
in Theorem 5. Figure 3a shows the MKZ fractal function f (q2,α)

2 and verifies that f (q2,α)
2 ≥ g on I.

Similarly, one can vary n to construct one-sided approximants f (qn ,α)
n ≥ g on I. But when

α1(x) := 0.4, α2(x) := 0.355, and α3(x) := 0.8, then the scaling vector α does not satisfy
condition (33). In Figure 3b, it is shown that for this choice of α, the MKZ fractal function obeys
f (q2,α)
2 6≥ g on I.

Corollary 1. Let f , g ∈ C(I) with f ≥ g on I. Let ∆ := {x1, x2, . . . , xN} be a partition of I
satisfying the condition x1 < x2 < · · · < xN and let {qn}∞

n=1 be a sequence in (0, 1] such that

lim
n→∞

qn = 1. Then, there exist sequences { f (qn ,α)
n }∞

n=1 and {g(qn ,α)
n }∞

n=1 of (q, α)-fractal functions

which converge to f and g, respectively, and which satisfy f (qn ,α)
n ≥ g(qn ,α)

n on I, whenever the
scaling functions αi are chosen according to

0 ≤ αi(x) ≤ min
{

φ( f − g, i)
Φn( f − g)

, 1
}

, i ∈ NN−1 x ∈ I, (33)

where φ( f − g, i) := min
x∈I

( f − g)(ui(x)) and Φn( f − g) := max
x∈I

Mn,qn( f − g)(x).

Proof. The corollary follows immediately from Theorem 5 by choosing f as f − g and
g = 0.
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Figure 3. One−sided approximation by MKZ fractal function according to Theorem 5. α satisfies the
sufficient condition (33) (a) and α does not satisfy (33) (b)

Example 4. In this example, we illustrate Corollary 1. To this end, let f (x) := sin(πx) and
g(x) := −(2x − 1)2, x ∈ I := [0, 1]. Let ∆ := {0, 1

3 , 2
3 , 1} and choose α1(x) := 0.6/(1 +

exp(−8x)), α2(x) := 0.6/(1 + exp(−7x)), and α3(x) := 0.6/(1 + x2). Further, let qn =
2
π arctan(n), n ∈ N. Then f and g, the scaling functions αi, and {qn}∞

n=1 satisfy the required
conditions in Corollary 1. (See, also Figure 4a). Figure 4b depicts the quantum MKZ fractal
functions f (q2,α)

2 ≥ g(q2,α)
2 on I.

(a) f > g (b) f (q2,α)
2 > g(q2,α)

2

Figure 4. MKZ fractal functions preserving positivity.

Theorem 6. Let f ∈ C(I) be convex and αi(x) ≥ 0, for all x ∈ I, i ∈ NN . Then f (q,α)
n (x) ≤ f (x)

for all x ∈ I and the sequence { f (q,α)
n (x)}∞

n=1 is non-increasing for each x ∈ I.

Proof. Using the functional Equation (15) of f (q,α)
n and keeping f (x)−Mn f (x) ≥ 0 (Theo-

rem 3.2, [34]) in mind, we conclude that for x ∈ I, i ∈ NN ,

( f (q,α)
n − f )(ui(x)) = αi(x)( f α

n (x)− f (x)) + αi( f (x)−Mn f (x))

≤ αi(x)( f α
n (x)− f (x)). (34)

By means of (34), we conclude that f α
n (x)− f (x) ≤ 0 ensuring that ( f (q,α)

n − f )(ui(x)) ≤ 0.
As the fractal function f (q,α)

n is constructed iteratively, we obtain f (q,α)
n (x) ≤ f (x) for all

x ∈ I.
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(15) and the functional equations of f (q,α)
n+1 and f (q,α)

n , respectively, yield

f (q,α)
n+1 (ui(x)) = f (ui(x)) + αi(x)( f (q,α)

n+1 (x)−Mn+1,q f (x)), x ∈ I,

f (q,α)
n (ui(x)) = f (ui(x)) + αi(x)( f (q,α)

n (x)−Mn,q f (x)), x ∈ I.

Note that both f (q,α)
n+1 and f (q,α)

n join up at the interpolation data points and that subsequent
values are generated iteratively from the same data. Taking their difference and using the
fact that Mn+1 f (x)−Mn f (x) ≤ 0 for all x ∈ I (cf. Theorem 3.3, [34]), we obtain that, for all
x ∈ I, and i ∈ NN ,

( f (q,α)
n+1 − f (q,α)

n )(ui(x)) ≤ αi(x)( f (q,α)
n+1 − f (q,α)

n )(x) + αi(x)(Mn+1 f −Mn f )(x)

≤ αi(x)( f (q,α)
n+1 − f (q,α)

n )(x). (35)

As the right hand side of (35) is zero at the first iteration, it is ensured that f (q,α)
n+1 (x) ≤

f (q,α)
n (x) for all x ∈ I.

Remark 1. Using the hypotheses of Theorem 1 and Theorem 6, we can construct a non-increasing
sequence of positive quantum MKZ fractal functions converging to f ∈ C(I), provided f is convex
and non-negative.

5. Approximation with Quantum MKZ Fractal Müntz Polynomials

Let Λ := {λi}∞
i=1, with λi 6= λj if i 6= j, λi > 0, and λ0 := 0. The set of real-

valued monomials

Λm := {xλ0 , xλ1 , . . . , xλm}

is called a finite Müntz system. The linear space

Mm(Λ) := span(Λm) = span{xλ0 , xλ1 , . . . , xλm}

is known as a (finite) Müntz space and

M(Λ) :=
∞⋃

m=0
Mm(Λ)

is referred to as the Müntz system corresponding to Λ.

Definition 1. Let I := [0, 1] and let ∆ := {x1, x2, . . . , xN} be a partition of I satisfying 0 =
x1 < x2 < · · · < xN = 1. Suppose α := (α1, . . . , αN−1), where αi is a bounded function on I
with ‖αi‖∞ < 1.

A quantum MKZ fractal Müntz polynomial is a finite linear combination of functions
(xλi )

(q,α)
n , λi ∈ Λ, i ∈ N, where

(xλi )
(q,α)
n := F (q,α)

∆,Mn,q
(xλi ) = F (q,α)

n (xλi )

is a quantum MKZ fractal Müntz monomial.

For xλj ∈ C[0, 1], we have that

F (q,α)
n (xλj) = xλj +

N−1

∑
i=1

αi(u−1
i (x))(F (q,α)

n (u−1
i (x))λj)−

Mn,q(u−1
i (x))λj)χui(I)(x), x ∈ I, n ∈ NN−1.
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Let K̃ := {(xλi )
(q,α)
n : i, n ∈ N}. Then, the set M(Λ) = span(K̃) is termed a quantum MKZ

fractal Müntz space associated with Λ.

Theorem 7. (Fractal version of the full Müntz theorem in C[0, 1]): Let ∆ := {x1, x2, . . . , xN} be
a partition of I := [0, 1] satisfying 0 = x1 < x2 < · · · < xN = 1 and let {qn}∞

n=1 be a sequence in
(0,1] such that lim

n→∞
qn = 1. Let α := (α1, α2, . . . , αN−1), where αi is a bounded function on I with

‖αi‖∞ < 1, i ∈ NN−1. Further, let Λ = {λi}∞
i=1 be a sequence of distinct positive real numbers.

Then, the set

S :=
∞⋃

n=1

∞⋃
m=1

span{1, (xλ1)
(qn ,α)
n , · · · , (xλm)

(qn ,α)
n }

is dense in C[0, 1] with respect to the sup norm if

∞

∑
i=1

λi

λ2
i + 1

= ∞. (36)

Proof. Let ε > 0 and f ∈ C[0, 1] be given. Then, by the classical Müntz theorem [41],

we know that span
∞⋃

m=0
{1, xλ1 , · · · , xλm} is dense in C[0, 1] with respect to the sup-norm if

∞
∑

i=1

λi
λ2

i +1
, where {λi}∞

i=1 is a sequence of distinct positive real numbers. Hence, there exists

a Müntz polynomial p(x) =
l

∑
s=0

asxλs , as ∈ R, such that

‖ f − p‖∞ <
ε

2
. (37)

Since p is continuous, ‖F (qn ,α)
n (p)− p‖∞ → 0 as n → ∞ by Theorem 1. Therefore, there

exists a natural number n1 such that

‖p(qn ,α)
n − p‖∞ <

ε

2
, ∀n ≥ n1, (38)

where F (q,α)
n (p) = p(q,α)

n =
l

∑
s=0

as(xλs)
(q,α)
n . Now, by (37) and (38),

‖p(qn ,α)
n − f ‖∞ ≤ ‖p(qn ,α)

n − f ‖∞ + ‖ f − p‖∞ <
ε

2
+

ε

2
= ε, ∀n ≥ n1.

Hence, there exists a sequence of quantum MKZ fractal Müntz polynomials converging to
f in sup-norm; and thus, S is dense in C[0, 1].

Using arguments similar to those in the proof of Theorem 7, we can prove Theorem 8
using the classical Müntz second theorem (see for instance [41,42]).

Theorem 8. (Fractal version of Müntz second theorem in C[0, 1]) Let ∆ := {x1, x2, . . . , xN} be
partition of I := [0, 1] satisfying 0 = x1 < x2 < · · · < xN = 1 and let {qn}∞

n=1 be a sequence
in (0, 1] such that lim

n→∞
qn = 1. Let α := (α1, α2, . . . , αN−1) be a scaling vector, where each αi

is a bounded function on I with ‖αi‖∞ < 1, i ∈ NN−1 . Let {λi}∞
i=1 be a sequence of distinct

positive real numbers such that inf
i≥1

λi > 0. Then, S is dense in C[0, 1] with respect to the sup-norm

provided that
∞

∑
i=1

1
λi

= ∞.

Proof. Let f ∈ C[0, 1] and ε > 0. Then, the classical Müntz theorem [41] ensures the
existence of Müntz polynomial p(x) such that ‖p − f ‖∞ < ε

2 . By (38), there exists a
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natural number n1 such that ‖p(qn ,α)
n − p‖∞ < ε

2 , ∀n ≥ n1. These two inequalities imply

‖p(qn ,α)
n − f ‖∞ < ε, ∀n ≥ n1. Hence, S is dense in C[0, 1] with respect to the sup norm.

Theorem 9. Let ∆ := {x1, x2, . . . , xN} where 0 = x1 < x2 < · · · < xN = 1 be a partition of I =
[0, 1] and let {qn}∞

n=1 be a sequence in (0, 1] such that lim
n→∞

qn = 1. Let α := (α1, α2, . . . , αN−1)

be a vector of scaling functions where αi is a bounded function on I with ‖αi‖∞ < 1, i ∈ NN−1.
If S := { fs : s ∈ N} is dense in C[0, 1], then

∞⋃
n=1

span{F (qn ,α)
n ( fs) : s ∈ N}

is also dense in C[0, 1].

Proof. Let f ∈ C[0, 1] and ε > 0 be given. By the density of the set S in C[0, 1], there

exists a polynomial of the form p(x) =
l

∑
s=0

asxλs , as ∈ R, such that ‖ f − p‖∞ < ε
2 . Using

Theorem 1, we get ‖p(qn ,α)
n − p‖∞ < ε

2 , ∀n ≥ n1. Finally, these two inequalities result in

‖p(qn ,α)
n − p‖∞ < ε, ∀n ≥ n1. Therefore, S is dense in C[0, 1].

6. Approximation by MKZ Fractal Functions

In this section, we investigate some approximation-theoretic properties of MKZ fractal
functions and derive conditions for such functions to belong to a Lebesgue space Lp, p ≥ 1.

6.1. MKZ-Fractal Approximation and Integral MKZ Fractal Functions

If we set q = 1 in (14), then the q-MKZ series Mn,q f becomes a classical MKZ series
Mn f , which is also known as the MKZ series of f ∈ C(I) (see, for instance, [34,43]).
The MKZ series is given by the following expression:

Mn f (x) := Pn(x)
∞

∑
k=0

(
k + n

k

)
(x− x1)

k f (x1 + (xN − x1)
k

k + n
); x1 ≤ x < xN ,

Mn f (xN) := f (xN),

(39)

with

Pn(x) :=
(xN − x)n+1

(xN − x1)n+1 .

Mn f satisfies the endpoint interpolation conditions

Mn f (x1) = f (x1) and Mn f (xN) = f (xN). (40)

The IFS with maps given by (10), where the base function is taken to be b := Mn f , deter-
mines an α-fractal function

f α
n := F α

∆,b( f ),

termed an MKZ α-fractal function associated with f ∈ C(I). Furthermore, this MKZ
α-fractal function satisfies the functional equation

f α
n = f +

N−1

∑
i=1

(αi ◦ u−1
i )( f α

n ◦ u−1
i )− (Mn f ) ◦ (u−1

i )χui(I) (41)

on I.
It is easy to obtain the estimate

‖ f α
n − f ‖∞ ≤

‖α‖∞

1− ‖α‖∞
‖ f −Mn f ‖∞. (42)
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Even if α 6= 0, we can get the convergence of f α
n to f as n→ ∞ by the following corollaries.

Corollary 2. Let f ∈ C(I) and α 6= 0. Then f α
n converges to f as n→ ∞, and

‖ f α
n − f ‖∞ ≤ 31

27 ω

(
f ,

1√
n

)
‖α‖∞

1− ‖α‖∞
, n ∈ N,

where ω denotes the usual modulus of continuity of a function f .

Proof. Using Corollary 2.3 in reference [44],

‖ f −Mn f ‖∞ ≤ 31
27 ω( f , 1√

n ),

in (42), we get the required estimate.

Corollary 3. Let f ∈ C1(I) and α 6= 0. Then, the uniform error between the MKZ α-fractal
functions f α

n and its germ f is given by

‖ f α
n − f ‖∞ ≤

2(2 + 3
√

3)
27
√

n
ω

(
f ,

1√
n

)
‖α‖∞

1− ‖α‖∞
, ∀ n ∈ N, (43)

where ω denotes the usual modulus of continuity of f .

Proof. Corollary 2.5 in reference [44] yields

‖Mn f − f ‖∞ ≤
2(2 + 3

√
3)

27
√

n
ω

(
f ′,

1√
n

)
, n ∈ N.

Using this estimate in (42), we obtain (43). In this case, f α
n converges to f at a faster rate

than for an f ∈ C(I).

Definition 2. Let A ∈ R, and 0 < β ≤ 1. Then, LipA β is the set of all functions satisfying

| f (x2)− f (x1)| ≤ A|x2 − x1|β, ∀ x1, x2 ∈ [x0, xN ].

Such functions are also called uniformly hölderian with exponent β.

Corollary 4. Let f ∈ C1(I) with f ′ ∈ LipM β for 0 < β ≤ 1. Further, let M > 0. Then,
the fractal function f α

n defined in (41) satisfies the following estimate:

‖ f α
n − f ‖∞ ≤

2(2 + 3
√

3)
27
√

n
n
−(β+1)

2
‖α‖∞

1− ‖α‖∞
, ∀ n ∈ N. (44)

Proof. It is known by Corollary 2.6 of [44] that

‖Mn f − f ‖∞ ≤
2(2 + 3

√
3)

27
√

n
n
−(β+1)

2 .

Employing the above estimate in (42), we obtain the required inequality. Thus, in this
case, the convergence rate of f α

n to the germ function f is faster than that for f ∈ C(I) or
f ∈ C1(I).

Proposition 1 (Cf. [43]). Given a continuous function f : [x0, xN ]→ R, it holds that

f ∈ LipA β ⇐⇒ Mn f ∈ LipA β, ∀ n ∈ N,

where (Mn)n≥1 is the sequence of MKZ operators defined in (39).
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The computation of the box and Hausdorff dimension of fractal sets and, in particular,
of the graph of fractal functions was carried out by several researchers, i.e., [13,21–25,27].
Below, we present a result for the box dimension of MKZ α-fractal functions.

Theorem 10. Let f ∈ C(I) be uniformly hölderian with exponent β ∈ (0, 1] satisfying Mn f (x1) =
f (x1) and Mn f (xN) = f (xN). Suppose ∆ := {x1, x2, . . . , xN} is a uniform partition of I satisfy-
ing xi+1 − xi = λ < 1, for i ∈ NN−1 and α = (α1, α2, . . . , αN−1) ∈ (−1, 1)N−1.

Consider the IFS In := {I; (ui(x), vi(x, y)), i ∈ NN−1} where ui : I → Ii is an affine
map with

ui(x) := λ(x + i− 1)

and
vi(x, y) := αiy + f (ui(x))− αi Mn f (x).

Further, assume that the set of interpolation points {(xj, f (xj)) : j ∈ NN} is not collinear. Let

γ :=
N−1

∑
i=1
|αi|, where αi 6= 0 for all i ∈ NN−1.

Then, the box dimension of the graph G = {(x, f α(x)) : x ∈ I} of f α has the following bounds:
1 ≤ dimB G ≤ 2− β, for γ ≤ 1;
1 ≤ dimB G ≤ 2− β + logN−1 γ, for γ > 1 with γ(N − 1)β−1 ≤ 1;
1 ≤ dimB G ≤ 1 + logN−1 γ, for γ > 1 with γ(N − 1)β−1 > 1;
dimB G ≥ 1 + logN−1 γ, for γ > 1 with β = 1.

(45)

Proof. By Proposition 1, f ∈ LipA β implies Mn f ∈ LipA β. Therefore, Mn f is also hölderian
with exponent β. The statements follow from ([20], Theorem 3.1) for Hölder functions.

6.2. MKZ α-Fractal Functions in Lp-Spaces

Given f ∈ Lp(I), p ≥ 1, where I := [0, 1], the integral MKZ operator M̂n [45] is
defined as

M̂n f (x) :=
∫ 1

0
Hn(x, s) f (s)ds, (46)

where

Hn(x, s) :=
∞

∑
k=0

m̂nk(x)χIk (t),

m̂nk(x) := (n + 1)
(

k + n + 1
k

)
xk(1− x)n, (47)

and

Ik :=
[

k
k + n

,
k + 1

k + n + 1

]
, (48)

with χIk denoting the characteristic function on Ik.
In the following theorem, we define MKZ α-fractal functions in Lp-spaces using as

base function M̂n.

Theorem 11. Let f ∈ Lp(I) with p ≥ 1 and let I := [0, 1]. Suppose that ∆ := {0 = x1 < x2 <
. . . < xN = 1} is a partition of I. Denote by Ii := [xi, xi+1), i ∈ NN−1, and IN := [xN−1, xN ]
the subintervals of I induced by ∆.
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Define affine maps ui : [0, 1)→ Ii on I by ui(x) := aix + bi. Assume that

ui(x1) = xi, ui(xN−) = xi+1, i ∈ NN−2,

uN−1(x1) = xN−1, uN−1(xN) = xN .

Suppose αi ∈ L∞(I) for i ∈ NN−1. Define an RB-operator T : Lp(I)→ Lp(I) as follows:

Tg := f +
N−1

∑
i=1

(αi ◦ u−1
i )(g− M̂n f ) ◦ u−1

i χIi . (49)

Assume that the vector of scaling functions α := (α1, . . . , αN−1) ∈ (L∞(I))N−1 satisfies

Λ :=

(
∑

i∈NN−1

ai‖αi‖
p
∞

) 1
p

< 1, for 1 ≤ p < ∞. (50)

Then T is a contraction map on Lp(I) with Lipschitz constant Λ and its unique fixed point f α
n satisfies

f α
n = f +

N−1

∑
i=1

(αi ◦ u−1
i )( f α

n − M̂n f ) ◦ u−1
i χIi . (51)

Furthermore, the mapping F α
∆,M̂n

: Lp(I)→ Lp(I) with

F α
∆,M̂n

( f ) = f α
n

is a bounded linear operator.

Proof. Using the same arguments as in the proof of ([36], Theorem 2.1), we can easily verify
that T is contractive. The remaining part follows using Theorem 3.4 in [46].

Theorem 12. Let f ∈ Lp(I), p ∈ [1, ∞). The MKZ fractal functions f α
n , n ∈ N, defined in

Theorem 11 converge in Lp-norm to f as n→ ∞ and satisfy the estimate

‖ f α
n − f ‖p ≤ C

Λ
1−Λ

ω1,p

(
f ,

1√
n

)
, (52)

with C > 0 a constant independent of f and p, and

ω1,p( f , t) := sup
0<h≤t

‖ f (. + h)− f (.)‖p,Ih ,

where ‖.‖p,Ih is the Lp norm taken over the interval Ih = [0, 1− h].

Proof. From (51), it is easy to compute that

‖ f α
n − f ‖p

p ≤Λp‖ f α
n − M̂n f ‖p

p.

Equivalently,

‖ f α
n − f ‖p ≤Λ‖ f α

n − M̂n f ‖p

≤Λ
{
‖ f α

n − f ‖p + ‖ f − M̂n f ‖p

}
,

which gives

‖ f α
n − f ‖p ≤

Λ
1−Λ

‖ f − M̂n f ‖p. (53)
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This ensures ‖ f α
n − f ‖p → 0 as n→ ∞.

It is known from Theorem 3 in [45] that ‖ f − M̂n f ‖p ≤ Cω1,p( f , 1√
n ), for some C > 0.

Using this result in (53), we obtain the required estimate.

Now we give the MKZ-fractal version of the Full Müntz Theorem for Lp[0, 1].

Theorem 13. Let {λi}∞
i=0 be the sequence of district real numbers such that λi ≥ − 1

p , for all

i ∈ N, where p ∈ [1, ∞) and (xλi )α
n is defined as in (51) . Then, the MKZ Müntz space

S :=
∞⋃

n=1

∞⋃
m=1

span{(xλ0)α
n, (xλ1)α

n, . . . , (xλm)α
n}

is dense in Lp(I) if

∞

∑
i=0

λi +
1
p

(λi +
1
p )

2 + 1
= ∞.

Proof. Let f ∈ Lp(I) and ε > 0 be given. By [41], it is known that the space

∞⋃
m=1

span{xλ0 , xλ1 , . . . , xλm)}

is dense in Lp(I). Therefore, there exists a Müntz polynomial r(x) :=
l

∑
i=1

di xλi ∈ Lp(I),

di ∈ R, such that

‖ f − r‖p <
ε

2
.

As r ∈ Lp(I), there exists a natural number n0 such that

‖ f − rα
n‖p <

ε

2
, for all n ≥ n0. (54)

Using the linearity of F α
∆,M̂n

, we can write rα
n(x) = F α

∆,M̂n
(r)(x) =

l
∑

i=0
di(xλi )α

n and, thus,

the above inequality becomes∥∥∥∥∥ f −
l

∑
i=0

di(xλi )α
n

∥∥∥∥∥
p

<
ε

2
, for all n ≥ n0. (55)

From (54) and (55), we obtain∥∥∥∥∥ f −
l

∑
i=0

di(xλi )α
n

∥∥∥∥∥
p

< ε, for all n ≥ n0.

Hence S is dense in Lp(I).

6.3. A remark about the Case 0 < p < 1

Recall that for 0 < p < 1, the Lebesgue spaces Lp(I), I ⊂ R a compact interval, are
F-spaces whose topology is induced by the complete translation invariant metric

dp(g, h) := ‖g− h‖p
p =

∫
I
|g(x)− h(x)|pdx,

(see, [47], 1.47).
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We will show by a counterexample that the above results do not extend to the case
0 < p < 1. For this purpose, we need to quote a theorem of Orlicz’s.

Theorem 14 (Orlicz’s Theorem [48]). Suppose that the kernel Kn(x, t) is measurable in the
square {(x, t) ∈ R×R : a ≤ x ≤ b, a ≤ t ≤ b} and that

∫ b

a
|Kn(x, t)|dt ≤ M, a.e. x ∈ [a, b], (56)

∫ b

a
|Kn(x, t)|dx ≤ M, a.e. t ∈ [a, b], (57)

with a constant M and for all n ∈ N. Then, for f ∈ Lp[a, b], the singular integral

Fn(x) =
∫ b

a
Kn(x, t) f (t)dt (58)

exists for a.e. x and is a function of the class Lp[a, b]. If in addition Fn → f strongly for all elements
f ∈ H of a set H ⊂ Lp[a, b] which is everywhere dense in Lp[a, b], then this is also true for any
f ∈ Lp[a, b]:

‖ f − Fn‖ =
[∫ b

a
| f (x)− Fn(x)|pdx

] 1
p

→ 0. (59)

Orlicz theorem is only true for p ≥ 1. The following example shows that the above
theorem does not hold for 0 < p < 1:

Example 5. Let [a, b] := I = [0, 1], Kn(x, t) := c, c 6= 0, and f (t) := t−1. Then, f ∈ Lp(I) for
0 < p < 1 and Kn(x, t) satisfy all required conditions of Orlicz’s theorem, but

Fn(x) =
∫ 1

0
Kn(x, t) f (t)dt =

∫ 1

0

c
t

dt =

{
+∞, c > 0;
−∞, c < 0.

For p ≥ 1, Müller [45] proved that the operator M̂n is well-defined and bounded using
Orlicz’s result, see Theorem 14. The above choices for Kn and f imply that Orlicz’s theorem
fails to prove the well-definiteness of the operator M̂n in Lp for 0 < p < 1. More precisely,
take again f (t) := t−1. As seen above, f ∈ Lp for 0 < p < 1. By the positivity of m̂nk(x)
(i.e., the series given below is a series of positive terms), we have

M̂n f (x) =
∫ 1

0
Hn(x, t) f (t)dt =

∞

∑
k=0

m̂nk(x)
∫

Ik

f (t)dt ≥ m̂n0(x)
∫

I0

f (t)dt

= (n + 1)(1− x)n lim
ε→0+

∫ 1

ε

dt
t
= ∞,

where m̂nk and Ik are given by (47) and (48), respectively. Hence, the integral MKZ operators
M̂n are not well-defined on Lp for 0 < p < 1.

7. Conclusions

In this paper, a novel class of fractal functions is introduced using quantum Meyer-
König-Zeller (MKZ) functions as base functions in the α-fractal interpolation procedure.
For f ∈ C(I), we have constructed a sequence of quantum MKZ fractal functions that
converges uniformly to f without altering the scaling functions. The convergence and
shape of quantum fractal approximants depend on the variable q ∈ (0, 1] as well as the
scaling functions. For a given positive function f ∈ C(I), we have generated a sequence of
positive MKZ fractal functions that converges uniformly to f provided the scaling functions
satisfy certain growth restraints. We have shown the existence of one-sided MKZ fractal
approximants for a given function and proved MKZ fractal versions of Müntz theorems
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in C[0, 1]. Finally, we have investigated some approximation-theoretic properties of MKZ
α-fractal functions in C(I) and Lp-spaces.
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