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Abstract: Deficit irrigation is a common approach in water-scarce regions to balance productivity and
water use, whereas drought stress still occurs to various extents, leading to reduced physiological
performance and a decrease in yield. Therefore, seeking a rapid and reliable method to identify wheat
varieties with drought resistance can help reduce yield loss under water deficit. In this study, we
compared ten wheat varieties under three deficit irrigation systems (W0, no irrigation during the
growing season; W1, irrigation at jointing; W2, irrigation at jointing and anthesis). UAV thermal
imagery, plant physiological traits [leaf area index (LAI), SPAD, photosynthesis (Pn), transpiration
(Tr), stomatal conductance (Cn)], biomass and yield were acquired at different growth stages. Wheat
drought resistance performance was evaluated through using the canopy temperature extracted
from UAV thermal imagery (CT-UAV), in combination with hierarchical cluster analysis (HCA). The
CT-UAV of W0 and W1 treatments was significantly higher than in the W2 treatment, with the ranges
of 24.8–33.3 ◦C, 24.3–31.6 ◦C, and 24.1–28.9 ◦C in W0, W1 and W2, respectively. We found negative
correlations between CT-UAV and LAI, SPAD, Pn, Tr, Cn and biomass under the W0 (R2 = 0.41–0.79)
and W1 treatments (R2 = 0.22–0.72), but little relevance for W2 treatment. Under the deficit irrigation
treatments (W0 and W1), UAV thermal imagery was less effective before the grain-filling stage in
evaluating drought resistance. This study demonstrates the potential of ensuring yield and saving
irrigation water by identifying suitable wheat varieties for different water-scarce irrigation scenarios.

Keywords: deficit irrigation; drought stress; physiological traits; UAV thermal imagery; canopy
temperature; hierarchical cluster analysis

1. Introduction

Wheat is the main food crop grown in North China, and nearly half of the country’s
wheat production comes from the North China Plain [1]. Although wheat plays a crit-
ical role in ensuring food security in China, wheat production consumes a lot of water
resources, increasing the burden of water consumption [2]. In addition, the current severe
groundwater overexploitation in the North China Plain has seriously damaged the local
ecological environment [3]. In water-scarce regions, ‘deficit irrigation’ is a commonly used
water-saving measure [4–6]. Deficit irrigation uses less water than is required for potential
evapotranspiration and maximum yield, thereby saving limited irrigation water [7]. Deficit
irrigation can increase water use efficiency because it reduces evapotranspiration while
maintaining yield [8]. However, while crops are being irrigated in deficit, they will face the
threat of drought stress, resulting in a decrease in yield [9]. Since different crop varieties
have different sensitivities to water deficit, they will behave different drought resistance
performances under different water deficit conditions [10]. Choosing wheat varieties with
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good drought resistance performance can minimize yield loss while carrying out different
degrees of deficit irrigation, which is very important for water shortages such as drought
or semi-arid [11].

In the past, the research on the drought resistance performance of crops was based
on the investigation of physiological traits and yield, which requires destructive sampling
and is time-consuming and labor-intensive [12–14]. However, Canopy temperature (CT)
can be used to identify changes in physiological traits [15,16], enabling rapid screening of
varieties with drought resistance [17]. For decades, canopy temperature has been commonly
measured by a handheld infrared analyzer in most research [18–20]. The handheld infrared
analyzer can quickly obtain the canopy temperature and then evaluate the physiological
traits of crops, and it also showed that crop varieties with lower canopy temperature may
have better physiological performance under drought stress due to their deep root or
osmotic adjustment capacity [21–23]. However, using a handheld thermal infrared analyzer
to obtain canopy temperature may have two problems; one of them is that as the number
of samples collected increases, it remains time-consuming and laborious. Secondly, a long
time span of the canopy temperature measurement will easily lead to a decrease in the
accuracy of the canopy temperature acquisition and affect the final analysis result. This is
because the canopy temperature of plants is easily affected by environmental factors such
as ambient temperature [24].

Unmanned aerial vehicles (UAVs) equipped with different types of sensors become
a promising tool in various fields of agricultural research, e.g., biomass and grain yield
estimation, planting density assessment, pest and disease detection, and crop stress mon-
itoring [25–30]. Among them, the thermal infrared cameras onboard unmanned aerial
vehicles (UAV) have been increasingly used for crop drought stress detections [28,31,32].
UAV-based thermal images can provide sub-meter spatial resolution, making it possible
to accurately obtain canopy temperature over large fields in a short time [33–39]. Accord-
ingly, crop transpiration can also be predicted from crop canopy temperature to guide
irrigation [40]. In addition, UAV thermal infrared images can also be used to predict
some physiological traits of crops, such as water use efficiency and biomass [41,42], which
brings new insights into the assessment of crop drought resistance under water-deficit
and drought conditions. For instance, UAV thermal infrared imagery has been used for
evaluating crop stress resistance in drought-stressed conditions [43–45], e.g., the canopy
temperature extracted from UAV thermal infrared images was used to rapidly identify the
drought resistance of different soybean varieties [46]. Moreover, UAV thermal infrared
images enabled the evaluation of the stomatal conductance, plant moisture content and
biomass of different wheat genotypes under salt stress, as well as to grade them for salt
tolerance [47]. Despite that UAV thermal imagery has been applied to various stress mon-
itoring or crop moisture monitoring, little is known about the evaluation of the drought
resistance performance of wheat varieties in deficit-irrigation conditions, such as in the
North China Plain.

Therefore, the main goal of this study was to test the feasibility of using UAV ther-
mal infrared imaging to identify drought-resistant varieties suitable for different deficit-
irrigation regimes in water-scarce regions in China. The specific objectives are (1) to
understand the relations of canopy temperature from UAV-thermal imaging with physio-
logical traits and (2) to evaluate the drought resistance performance of ten wheat varieties
by combining physiological trait measurements, yield and UAV-based canopy temperature.

2. Materials and Methods
2.1. Study Site and Experimental Design

This experiment was conducted in the Experimental Station of China Agricultural
University (37◦41′N, 116◦37′E) in Yaozhuang Village, Wuqiao County, Hebei Province,
from 2019 to 2020 (Figure 1). The site is located in The Heilong Port Basin in the central part
of Hebei Province, with an altitude of about 20 m above mean sea level. It has a continental
monsoon climate in summer, with an average annual temperature of 12.5 ◦C, an average
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annual rainfall of 550 mm and an average rainfall of 124 mm in wheat season. Soil nutrients
in the surface layer (0–20 cm) were as follows: organic matter content of 10.4 g·kg−1, the
total nitrogen content of 0.98 g·kg−1, alkali hydrolyzed nitrogen of 60.2 mg·kg−1, available
phosphorus of 39.5 mg·kg−1, and available potassium of 92 mg·kg−1.
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Figure 1. The map shows the location of the experiment site and the experimental plots. The red star
shows the location of the experiment site. The images in middle and on the right show the RGB and
thermal infrared images, respectively, taken over the experiment plots. The bottom two images show
the zoomed-in RGB and thermal infrared images of the three irrigation treatments. The treatments
from left to right are W0 (no irrigation), W1 (one irrigation at jointing) and W2 (two irrigations at
jointing and anthesis), respectively. The experiment consisted of fifteen varieties with two replications
and in total 90 plots.

The experiment used a split-plot design, with three irrigation times for the primary
plots and fifteen varieties for the subplots. Three irrigation rates (times during the growing
season) were applied, including the W0 treatment (no irrigation), W1 treatment (one
irrigation at jointing) and W2 treatment (two irrigations at jointing and anthesis). The
same amount of water (750 m3/ha) was used for each irrigation. The varieties included
the Gaoyou 2018 (GY2018), Hengmai 4399 (H4399), Guanmai 35 (G35), Gaoyou 5766
(GY5766), Shinong 086 (SN086), Shimai 22 (SM22), Jimai 418 (JM418), Zhongmai 1062
(ZM1062), Cangmai 6005 (C6005), Nongda 3636 (ND3636), and five new untested genotypes.
The experiment consisted of two replications and in total 90 plots. The plot size was
10 m × 1.5 m, with a row spacing of 15 cm. The experiment was sown on 16 October
2019, and the harvest of each treatment was conducted on the 7th, 9th, and 12th of June
2020, respectively, for W0, W1 and W2. The five untested genotypes (30 plots) did not
show unstable physiological characteristics, and thus they were excluded from further data
analysis (60 plots). Protective plots were planted between irrigation treatments to avoid the
influence of soil water translocation.
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2.2. UAV Systems and Thermal Infrared Camera

In this study, a UAV thermal remote sensing system (Figure 2a) was developed with
a Matrice M600 Pro (DJI Inc., Shenzhen, China). The total weight of the UAV, including
the batteries, is 9.5 kg, and its maximum takeoff weight is 15.5 kg. The UAV can use the
GNSS system to locate coordinates in real-time and give information of position data. The
UAV was controlled using the DJI Matrice 600 series remote controller and a Xiaomi tablet
(Xiaomi Inc., Beijing, China) with the DJI Pilot app (DJI Inc., Shenzhen, China). The UAV
requires six charged 4500 mAh batteries for operation. It has a maximum flight time of
about 20 min within its payload.
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Figure 2. The main instruments for obtaining CT in this study include (a) Matrice M600 Pro UAV,
(b) Zenmuse XT2 camera, (c) D-RTK2 mobile GNSS station, (d) Ground control point, and (e) Hand-
held infrared thermometer.

The thermal infrared camera is Zenmuse XT2 (FLIR Systems Inc., Wilsonville, OR,
USA). The camera consists of two lenses (Figure 2b): a thermal infrared lens and an RGB
lens. So, it can obtain thermal infrared images and RGB images at the same time. The ther-
mal infrared lens has a field of view (FOV) of 25◦ × 20◦ and a resolution of 640 × 512 pixels.
The camera’s sensor is an uncooled Vanadium Oxide (VOx) microbolometer detector with
a detector pitch of 17 µm measuring in the spectral range of 7.5–13 µm. The specified
temperature range of the measurement objects is −40 ◦C to +550 ◦C and it has a claimed
accuracy of ±5 ◦C and thermal sensitivity of 0.05 ◦C. In addition, the thermal infrared
camera also has a temperature self-calibration function, which can ensure accurate access to
the ground temperature information. The RGB lens has a field of view (FOV) of 57◦ × 42◦

and a resolution of 3840 × 2160 pixels, supporting both image optimization and digital
image enhancement to avoid image distortion.

2.3. Acquisition of UAV Thermal Images and RGB Images

The UAV flew and acquired the thermal infrared images that were acquired from 14:00
to 15:00 at noon local time on 5 May, 11 May, 20 May, 25 May and 2 June 2020. The thermal
infrared camera lens was nadir angle to the test plots. The flight altitude was 40 m, and the
side overlap and front overlap were set at 90% and 80%, respectively. Under this condition,
the ground resolution of thermal infrared images and RGB images is 7.5 cm/pixel and
1.2 cm/pixel, respectively. DJI Pilot app (DJI Inc., v. 1.7.2) was used for UAV route planning,
and the flight speed is set at 1.2 m/s, and the time of a single flight mission is about 10 min.
The camera was preheated for 15 min before each take-off to reduce systematic error. All
missions were conducted under sunny, cloudy-free and windless conditions to minimize
the impact of the environment on temperature acquisition.
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2.4. UAV Thermal Images Processing

After obtaining the thermal infrared images and RGB images, Pix4D software (Pix4D
Inc., Lausanne, Switzerland) was used for mosaic processing. During the photo stitching
process, there are ground control points to calibrate the geo-reference of thermal and
RGB orthophoto, and the coordinates of these ground control points (Figure 2d) were
measured through D-RTK2 mobile GNSS station (DJI Inc., China, Figure 2c). Next, we used
a method that combined RGB images and thermal infrared images to avoid the influence of
a soil background on canopy temperature extraction [39]. The method had two key steps
(Figure 3): First, we used UAV RGB orthophoto to separate the wheat canopy pixels from the
soil background. Second, we binarized the segmented wheat cover images for wheat binary
maps. In order to better extract canopy pixels, we combined the excess green vegetation
index (ExG) with Otsu’s method to set a separate threshold for each plot; and second, we
resampled the wheat cover binary maps from 1.2 cm/pixel to 7.5 cm/pixel to match the size
of thermal orthophoto through using the nearest-neighbor interpolation algorithm. Finally,
the thermal infrared orthophoto was multiplied by the wheat binary maps to produce a
new thermal orthophoto in which the soil background has been removed. All of the image
processing was completed by MATLAB (v. 2018b). Then, the canopy temperature was
extracted from each plot using the open-source GIS software QGIS (v. 3.20.3-Odense). In
order to reduce the influence of shadow and brightness, we normalized three bands—R, G
and B [48–50]. The ExG was calculated through using Equations (1)–(4):

Rn =
R

R + G + B
(1)

Gn =
G

R + G + B
(2)

Bn =
B

R + G + B
(3)

ExG = 2Gn − Rn − Bn (4)

where R, G and B represent the raw digital numbers of red, green and blue bands, Rn, Gn
and Bn represent the normalized digital numbers of red, green and blue bands.
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2.5. Acquisition of CT by A Handheld Thermal Infrared Analyzer

Immediately after the UAV mission, the thermometry measurements were made with
an AZ8895 infrared thermometer (Heng Xin Inc., Taiwan, China, Figure 2e). The infrared
thermometer had the specified temperature range of the measurement objects is −40 ◦C
to +816 ◦C, with a temperature resolution of 0.1 ◦C. To avoid the impact of soil, it scanned
a certain area (D:S = 12:1, about 0.0125 m2) of the wheat canopy at an angle of 75◦ in the
horizontal direction and 15 cm above the canopy with the emissivity of 0.95 [51]. Each plot
was measured three times in different locations and then calculated its average canopy
temperature. Then, the canopy temperature data will be used to calibrate the canopy
temperature that was extracted from UAV thermal imagery. The relationship between the
canopy temperature extracted from the UAV thermal imagery (CT-UAV) and the canopy
temperature obtained by the handheld infrared analyzer (CT-handheld) and the calibration
of the canopy temperature of the UAV are shown in Table S1.

2.6. Physiological Parameters Measurements
2.6.1. Photosynthetic Data

Li-6400 photosynthetic instrument was used to measure the net photosynthetic rate
(Pn), transpiration rate (Tr), and stomatal conductance (Cn) of flag leaves of wheat on
11 May and 20 May from 8:00 to 11:00 in the morning, with a built-in LED light source with
a light intensity of 1500 µmol·m−2·s−1 and an airflow rate of 400 µmol·m−2·s−1. Three
wheat flag leaves with the same size and direction were measured repeatedly in each plot.

2.6.2. SPAD and Leaf Area Index

Chlorophyll content (SPAD) measurements were made using a SPAD-502 Minolta
chlorophyll meter (Spectrum Technologies Inc., Aurora, IL, USA) from 11:00 to 12:00
afternoon on 5 May, 11 May, 20 May, 25 May, and 2 June. Five flag leaves of similar size,
orientation and shape were selected for measurement in each plot, measured once on both
sides of each leaf and again in the middle position, for a total of three times, and the average
value was taken.

Leaf area index (LAI) measurements were taken from 16:00 to 17:00 afternoon on
5 May, 11 May, 20 May, 25 May, and 2 June using Li-COR 2200C (LI-COR Inc., Lincoln, NB,
USA) canopy analyzer. Five measurements will be made within each plot, with the five
sample points arranged in a Z-shape, and the results will be averaged.

2.6.3. Biomass and Yields

After the wheat ripened, the wheat was harvested on 7, 11, and 12 June 2020 under
W0, W1 and W2 treatments, respectively. Two subplots of 1 m2 (1 m × 1 m area) were
collected from each plot, and all the wheat culms in the ground were harvested (excluding
the roots). After they were all dried, the dry matter weight was taken as the biomass. After
that, the wheat was threshed, and the grain water content was obtained, which was finally
converted into 13% water content to be the final grain yield of each variety. Finally, take the
average of the two numbers measured in each plot as the biomass and yield of this plot.

2.6.4. The Corresponding Days and Growth Stage after Sowing

The sampling and physiological trait measurement dates are indicated for the days
after sowing (DAS) and corresponding growth stages in Table 1.
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Table 1. The sampling or measuring date corresponds to the days after sowing and the growth stages.

Sampling or
Measuring Date The Days after Sowing (DAS) Growth Stages

5 May 2020 202 days Flowering
11 May 2020 208 days 6 days after flowering
20 May 2020 217 days Early stage of grain-filling
25 May 2020 222 days Middle stage of grain-filling
2 June 2020 230 days Late stage of grain-filling
7 June 2020 235 days Ripe stage, W0
9 June 2020 237 days Ripe stage, W1

12 June 2020 240 days Ripe stage, W2

2.7. Statistical Analysis

In this study, the canopy temperature and physiological traits measured in all different
stages were used for principal component analysis to determine important variables and
the relationship between canopy temperature and physiological traits.

Hierarchical cluster analysis (HCA) characterizes the similarity between samples by
examining the distances between points representing all possible pairs of samples in a
high-dimensional space [52]. When using the algorithm to execute, it does not require
any information about the number of clusters in advance. Furthermore, it is easy to
implement, less complex and tends to give the best results in some cases and can be used
to comprehensively rank observations across multiple parameters [53]. In this study, we
conducted the Ward’s method hierarchical cluster analysis by computing the Euclidean
distance between the observations (rows) of the data matrix. The distance between two
cluster centers was calculated through using Equation (5). Next, we clustered the drought
resistance of different wheat varieties into groups (good/high, moderate, bad/low) based
on the measured physiological traits (SPAD, LAI, Pn, Tr, Cn and biomass), grain yield
and CT-UAV across growth stages, respectively, for physiological-trait-based clustering,
yield-based clustering and CT-based clustering.

d(x, y) =

√
(x 1 − y1)

2+(x 2 − y2

)2
+ . . . + (x k − yk)

2 (5)

where d(x,y) represents the Euclidean distance, xk and yk represent the observed data for
two different subjects in k-th variable, and k represents the number of variables.

In addition, SPSS 19.0 (SPSS, Inc., Chicago, IL, USA) was also used to conduct Duncan’s
multiple range test to detect physiological differences of wheat under different moisture
conditions. In addition, in order to explore the differences between the canopy temperatures
under different water deficit treatments, this study used the R language (v. 4.1.2) to perform
a multiple-test method on the canopy temperature. In this study, the correlation analysis
between canopy temperature and physiological traits is to use Pearson correlation analysis
to determine the correlation coefficient between variables. Finally, the canopy temperatures
of the different variety groups were compared for their drought resistance performance
using the t-test (α = 0.05) and visualized using the R language.

3. Results
3.1. Physiological and Yield Performance of Wheat under Different Water Treatments

Physiological traits of wheat showed significant differences under different water
treatments (Table 2). First, the physiological performances of wheat such as SPAD, LAI,
biomass, Pn, Tr and Cn were better with increasing irrigation, with the best performance
under W2 treatment and the worst under W0 treatment. For the W0 treatment, compared
with the W2 treatment, these physiological traits decreased significantly in all stages and
the decline has been increasing over time, while for the W1 treatment, the decrease in
physiological performance was smaller and did not reach a significant level before 11 May.
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Table 2. Physiological traits at five growth stages under different water treatments.

Physiological Traits Treatment n 5 May 11 May 20 May 25 May 2 June

SPAD
W0 20 52.3 b 50.4 b 47.8 b 45.5 b 10.7 c
W1 20 54.2 a 53.3 a 52.8 a 48.5 a 22.1 b
W2 20 54.6 a 54.3 a 54.4 a 51.5 a 31.4 a

LAI
W0 20 4.7 b 4.5 b 3.6 c 3.1 c 2.7 c
W1 20 6.5 a 5.5 a 4.5 b 3.8 b 3.2 b
W2 20 7.1 a 6.2 a 5.0 a 4.2 a 3.7 a

Pn (µmol CO2·m−2·s−1)
W0 20 - 17.3 b 11.4 c - -
W1 20 - 19.7 a 13.9 b - -
W2 20 - 20.7 a 15.6 a - -

Tr (mmol H2O·m−2·s−1)
W0 20 - 2.73 b 2.21 c - -
W1 20 - 2.82 ab 2.64 b - -
W2 20 - 3.09 a 3.63 a - -

Cn (mmol H2O·m−2·s−1)
W0 20 - 0.153 b 0.099 c - -
W1 20 - 0.160 b 0.156 b - -
W2 20 - 0.227 a 0.208 a - -

Duncan’s multiple range test was used to compare the mean values of physiological traits under different water
treatments. Within each trait, any two treatments showing different letters are significantly different in the mean
values, at p < 0.05.

With the progress of the growth stages, SPAD, LAI, Pn, Tr and Cn further decreased,
reaching a significant level compared with the W2 treatment after 20 May, suggesting
that drought stress will cause the further deterioration of wheat physiological traits as the
growth stage progresses. Figure 4. shows the physiological performance of each wheat
variety in different water treatments on 20 May. The physiological performance of almost
all wheat cultivars decreased continuously with the intensification of the water deficit.
At the same time, there are also great differences in all measured physiological traits in
different wheat varieties under the same water treatment, indicating the degree of drought
impact of each wheat variety was different and different wheat varieties have different
abilities to cope with drought stress.
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Figure 4. Physiological performances between W0, W1 and W2 treatment based on 20 May and the
biomass was at maturity: (a) SPAD, (b) LAI, (c) net photosynthetic rate, (d) transpiration rate and
(e) stomatal conductance, (f) Biomass. Duncan’s multiple range test was used to compare the mean
values of physiological traits in different water treatments. The means followed by different letters
are significantly different at p < 0.05.
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Table 3 shows the yield of different wheat varieties under different deficit irrigation
systems. There were significant yield differences among wheat varieties, in W0, W1 and
W2 conditions, yield ranges from 5871.9 kg/ha−1 to 7103.8 kg/ha−1, 7088.0 kg/ha−1 to
8150.6 kg/ha−1, and 7568.4 kg/ha−1 to 9030.4 kg/ha−1, respectively. With the decrease in
irrigation times, the yield decreased significantly, and the JM418 variety had the highest
yield, while the ND3636 variety had the lowest yield in the three deficit irrigation treatments.
These results proved that the water deficit affects the physiological performance and
ultimately crop yield.

Table 3. The yield of different varieties under different deficit irrigation systems.

Varieties Treatment Yield
(kg/ha−1) Varieties Treatment Yield

(kg/ha−1)

GY2018
W0 6017.0 c

ND3636
W0 5871.9 c

W1 7261.4 b W1 7088.0 b
W2 7788.4 a W2 7568.4 a

G35
W0 6520.5 c

H4399
W0 6315.3 c

W1 7352.0 b W1 7877.2 b
W2 7917.8 a W2 8784.6 a

GY5766
W0 6825.8 c

SN086
W0 5973.6 c

W1 7170.9 b W1 7840.1 b
W2 7840.1 a W2 8481.8 a

SM22
W0 6629.3 c

JM418
W0 7103.8 c

W1 7657.3 b W1 8150.6 b
W2 8573.0 a W2 9030.4 a

ZM1062
W0 7045.0 c

C6005
W0 6779.3 c

W1 7538.4 b W1 7452.0 b
W2 8211.0 a W2 8573.0 a

Duncan’s multiple range test was used to compare the mean values of yield in different water treatments. The
means followed by different letters are significantly different at p < 0.05.

3.2. The HCA Results Based on Physiological Traits and Yield

The ten wheat varieties were artificially divided into three categories (Figure 5) which
were the first group (with good drought resistant performance), the second group (with
moderate drought resistant performance) and the third group (with poor drought resistant
performance). For the W0 treatments, C6005, ZM1062 and JM418 were grouped into the
first cluster (green color group) due to their better and similar physiological performance,
while the second cluster mainly included SM22 and GY5766, and these two clusters were re-
aggregated into one group when the Euclidean distance was 6.7, and the third cluster was
SN086, G35, GY2018, H4399 and ND3636. The third cluster and the other two groups were
aggregated into one group when the Euclidean distance was 10.9. For the W1 treatment,
the first cluster included JM418, SN086, H4399 and SM22, the second cluster included
ZM1062, G35, C6005 and GY5766 and the wheat varieties of the final cluster were GY2018
and ND3636. Then, the first and second clusters were re-aggregated into one group when
the Euclidean distance was 6.4 and all of the groups were clustered into one group as the
Euclidean distance was 10.7. For the W2 treatment, the first cluster included JM418, H4399,
SN086 and C6005, the second cluster mainly included ZM1062, GY2018 and SM22, and the
third cluster was GY5766, G35 and ND3636. Among them, the third cluster and the second
cluster were merged into one larger group when the Euclidean distance was 6.6, and all of
the clusters were aggregated into one larger cluster when the Euclidean distance was 8.4.
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Figure 5. Dendrogram of wheat genotypes based on physiology traits (SPAD, LAI, Pn, Tr, Cn and
biomass) of all stages in different water treatment: (a) W0, no irrigation during the growing season,
(b) W1, irrigation at jointing, (c) and W2, irrigation at jointing and anthesis, they were divided into
three groups. Three colors represent different drought resistant performance categories.

Table 4 shows the yield clustering results and the centroid value of each group,
10 wheat varieties were also divided into three different yield categories. For the W0
treatment, the high-yield wheat varieties include JM418, ZM1062, C6005 and GY5766, the
moderate varieties were SM22, G35 and H4399 and the low-yield varieties were GY2018,
SN086 and ND3636. Their centroid values of yield were 6970.3 kg/ha−1, 6488.3 kg/ha−1

and 5954.2 kg/ha−1, respectively. As for the W1 treatment, JM418, H4399 and SN086 wheat
varieties belong to the high yield group; the centroid value of yield was 7956.0 kg/ha−1,
and the moderate group includes SM22, ZM1062 and C6005, their centroid value was
7532.5 kg/ha−1. The low-yield wheat varieties were G35, GY2018, GY5766 and ND3636;
their centroid value was 7218.1 kg/ha−1. For the W2 treatment, the high-yield group in-
cluded JM418 and H4399, and the centroid value of yield was 8907.5 kg/ha−1. The moderate
group included SN086, ZM1062 and C6005, and their centroid value was 8421.9 kg/ha−1.
The low-yield group included SM22, G35, GY2018, GY5766 and ND3636, and the centroid
value of this group was 7822.0 kg/ha−1. The centroid yield values of the three groups
differed significantly between the three deficit irrigation treatments.

Table 4. Yield-based hierarchical clustering in different deficit irrigation treatments and the average
value of each group was also displayed.

Treatment Group The Average Yield
(kg/ha−1) Varieties

W0
High 6970.3 a JM418, ZM1062, C6005, GY5766

Moderate 6488.3 b SM22, G35, H4399
low 5954.2 c GY2018, SN086, ND3636

W1
High 7956.0 a JM418, H4399, SN086

Moderate 7532.5 b SM22, ZM1062, C6005
low 7218.1 c G35, GY2018, GY5766, ND3636

W2
High 8907.5 a JM418, H4399

Moderate 8421.9 b SN086, ZM1062, C6005
low 7822.0 c SM22, G35, GY2018, GY5766, ND3636

Duncan’s multiple range test was used to compare the mean values of yield under different water treatments. The
means followed by different letters are significantly different at p < 0.05.

The drought resistance clustering based on physiological traits was similar to the
clustering results based on yield, with similarities of 80% (two varieties with inconsistent
classification), 70% (three varieties with inconsistent classification) and 60% (four varieties
with inconsistent classification) in W0, W1 and W2 treatments, respectively. Results showed
a strong link between drought resistance and yield.
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3.3. Canopy Temperature from Different Treatments and Multiple Growth Stages

Figure 6 shows the distribution of canopy temperature among treatments in different
growth stages. There were significant differences in canopy temperature among the three
treatments. In the five growth stages, the canopy temperature ranged from 24.8 ◦C to
33.3 ◦C under the W0 treatment, from 24.3 ◦C to 31.6 ◦C for the W1 treatment, and from
24.1 ◦C and 28.9 ◦C for the W2 treatment. The canopy temperature of all treatments
increased continuously with the growth process (except on 11 May, there was precipitation
before), and showed the maximum on 2 June, which were 33.3 ◦C, 31.6 ◦C and 28.9 ◦C, for
W0, W1 and W2, respectively. W0 treatment had the highest canopy temperature and was
4.7 ◦C higher than W2 on 20 May, indicating that W0 treatment was most seriously affected
by water deficit. W1 treatment differed greatly from W2 and showed the largest difference
of 2.6 ◦C on 2 June.
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Figure 6. Canopy temperature based on UAV thermal imagery at different stages under W0, W1
and W2 treatment. The red “*” represents the mean value of the canopy temperature. In addition,
the horizontal lines in the boxes in the two figures represent the median, and the dots represent the
canopy temperature values of different plots. The significance analysis is based on the t-test method,
0.01 < p < 0.05, is “*”, 0.001 < p < 0.01, is “**”, p < 0.001, is “***”. The relatively low CT on 11 May was
due to the precipitation before the measurement date.

Figure 7 shows the canopy temperature difference between varieties on 20 May. For
the W0 treatment, there were apparent differences in canopy temperature among wheat
varieties, in which JM418 and ZM1062 had lower canopy temperatures of 31.4 ◦C and
31.8 ◦C, respectively, while SN086 and ND3636 had higher canopy temperatures, 33.5 ◦C
and 33.6 ◦C. For the W1 treatment, the canopy temperature differences among wheat vari-
eties were still large, in which JM418, H4399 and SN086 all had lower canopy temperatures.
GY5766 and ND3636 had higher canopy temperatures, 29.7 ◦C and 30.2 ◦C. For the W2
treatment, JM418 varieties had a lower canopy temperature that was 27.4 ◦C and GY5766,
GY2018 and SM22 varieties had a higher canopy temperature of 28.5 ◦C. Moreover, in
W0, W1 and W2 treatments, the maximum canopy temperature difference among wheat
varieties was 2.2 ◦C, 1.9 ◦C and 1.1 ◦C, respectively.
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Figure 7. Canopy temperature of wheat varieties based on UAV thermal imagery on 20 May under
W0, W1 and W2 treatment. The range means maximum canopy temperature minus minimum canopy
temperature among varieties under the same irrigation treatment. Duncan’s multiple range test was
used to compare the mean values of canopy temperature in different water treatments. The means
followed by different letters are significantly different at p < 0.05.

3.4. The PCA of Physiological Traits and CT-UAV in Different Deficit Irrigation Treatments

According to the scree plot (Supplementary Figure S1), the first two principal com-
ponents were selected for analysis for both W0 and W1 treatments, because the first two
principal components in them could explain 87.4% and 83.3% of the data variance, respec-
tively. For the W0 treatment, the first principal component explains 79.1% of the variance,
while the second principal component explains 8.3% of the variance (Figure 8a). For the
W1 treatment, the first and second principal components can contribute 71.6% and 11.7%
of data variance (Figure 8b). Among them, for the canopy temperature part, CT-UAV has
more contributions in the first principal component and the total contribution of CT-UAV
was still relatively high at any growth stage.
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Figure 8. PCA correlation circle with vectors for each variable on the first two principal components
(Dim 1 and Dim 2) showing the association between canopy temperature and physiology traits and
the contribution of Dim 1 and Dim 2 to the model at different water treatments (W0, W1 and W2),
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traits and canopy temperature on May 20: (a) W0, no irrigation during the growing season, (b) W1,
irrigation at jointing, (c) and W2, irrigation at jointing and anthesis.
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In addition, there was a negative correlation between canopy temperature and physio-
logical traits such as LAI, SPAD, Pn, Tr, Cn, biomass and yield by PCA under both water
deficit treatments. At the same time, the first principal component can explain more than
70% of the data variation in all water stress treatments. In contrast, for the W2 treatment,
the first two principal components could only explain 64.4% of the data variance, and there
were no strong correlations between canopy temperature and physiological parameters.

3.5. The Evaluation of CT-UAV on Physiological Traits at Different Growth Stages

Through the linear regression model, the negative relationship between canopy tem-
perature and physiological traits in each growth stage was determined, as shown in Table 5.
CT-UAV was closely correlated with SPAD and LAI in W0 and W1 treatments, with R2

values ranging from 0.28 to 0.79 and 0.22 to 0.72, respectively. The correlations were strong
in the late growth stages, with the maximum R2 values appearing on 2 June. CT-UAV also
correlated closely with Pn (R2 = 0.35 to 0.68), Tr (R2 = 0.40 to 0.66) and Cn (R2 = 0.28 to
0.71). Biomass was always correlated with CT-UAV under W0 and W1 on each of the five
sampling dates, with the exception that biomass in W2 was correlated with CT-UAV only
on the latest sampling date (2 June). Overall, CT-UAV was correlated with biomass and
physiological traits mainly under the W0 and W1 treatments, and the correlations were
strong in the late growth stages.

Table 5. The linear relationship between CT-UAV and physiological traits in different deficit irriga-
tion treatments.

Physiological
Traits Treatment 5 May 11 May 20 May 25 May 2 June

W0 0.41 ** 0.53 *** 0.50 *** 0.51 *** 0.79 ***
SPAD W1 0.28 * 0.46 ** 0.49 *** 0.56 *** 0.72 ***

W2 0.01 0.05 0.00 0.00 0.05
W0 0.41 ** 0.60 *** 0.64 *** 0.50 *** 0.72 ***

LAI W1 0.22 * 0.28 * 0.65 *** 0.54 *** 0.68 ***
W2 0.13 0.01 0.03 0.00 0.07
W0 - 0.48 *** 0.68 *** - -

Pn (µmol
CO2·m−2·s−1) W1 - 0.35 ** 0.58 *** - -

W2 - 0.03 0.18 - -
W0 - 0.44 ** 0.66 *** - -

Tr (mmol
H2O·m−2·s−1) W1 - 0.40 ** 0.58 *** - -

W2 - 0.03 0.25 * - -
W0 - 0.41 ** 0.71 *** - -

Cn (mmol
H2O·m−2·s−1) W1 - 0.28 * 0.60 *** - -

W2 - 0.01 0.24 * - -
W0 0.42 *** 0.43 *** 0.47 *** 0.60 *** 0.62 ***

Biomass
(ton/ha−1) W1 0.43 ** 0.37 ** 0.45 ** 0.32 ** 0.42 **

W2 0.19 0.00 0.01 0.08 0.65 ***
Significance analysis is based on Pearson correlation, 0.01 < p < 0.05, is “*”, 0.001 < p < 0.01, is “**”, p < 0.001, is
“***”, “-” is no value available.

3.6. Evaluation of Drought Resistance Performance Based on Multi-stages CT-UAV

Figure 9 shows the variety clustering groups under the three irrigation treatments
based on CT-UAV. The 10 wheat varieties were clustered for the first group (good: with
lower CT), the second group (moderate: with moderate CT) and the third group (poor: with
higher CT). For the W0 treatment, JM418, ZM1062 and C6005 were clustered into the good
group, GY5766, SM22, G35 and H4399 were classified as the moderate group, and SN086,
ND3636 and GY2018 were considered as the poor group. For the W1 treatment, the wheat
varieties of the good group include JM418, H4399, SN086 and SM22, the moderate group
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included ZM1062, C6005, G35 and GY2018 and the poor group was GY5766 and ND3636.
As for the W2 treatment, JM418, H4399, SN086 and C6005 were clustered into the good
group. The moderate group mainly included ZM1062, GY2018 and SM22, and GY5766, G35
and ND3636 were considered as the poor group.
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perature (all of the stages) at different water treatments: (a) W0, no irrigation during the growing
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three kinds of colors represent canopy temperature categories.

The CT-UAV-based clustering results of drought resistance were similar to those
based on physiological traits, with similarities of 90% (only one variety with inconsistent
classification), 80% (two varieties with inconsistent classification) and 50% (half of the
varieties with inconsistent classification) in the W0, W1 and W2 treatments, respectively.
Moreover, there were also 90%, 70% and 50% similarities between the clustering based on
CT-UAV and yield under W0, W1 and W2 treatments, respectively.

In order to determine the effectiveness of CT acquisition time, we further compared
the differences between the CT-UAV clustered groups. As shown in Figure 10, for the W0
treatment, according to the canopy temperature on 5 May and 11 May, varieties in the good
performance group were significantly different from the moderate performance group and
poor performance group. However, the canopy temperatures of the moderate and the poor
groups were not significant on these two days. Following 20 May, canopy temperature
showed a significant difference between any two of the three clustering groups.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 21 
 

 

included ZM1062, C6005, G35 and GY2018 and the poor group was GY5766 and ND3636. 
As for the W2 treatment, JM418, H4399, SN086 and C6005 were clustered into the good 
group. The moderate group mainly included ZM1062, GY2018 and SM22, and GY5766, G35 
and ND3636 were considered as the poor group.  

The CT-UAV-based clustering results of drought resistance were similar to those 
based on physiological traits, with similarities of 90 % (only one variety with inconsistent 
classification), 80 % (two varieties with inconsistent classification) and 50% (half of the 
varieties with inconsistent classification) in the W0, W1 and W2 treatments, respectively. 
Moreover, there were also 90%, 70% and 50% similarities between the clustering based on 
CT-UAV and yield under W0, W1 and W2 treatments, respectively.  

 
Figure 9. Dendrogram of wheat genotypes based on UAV thermal imagery extracted canopy tem-
perature (all of the stages) at different water treatments: (a) W0, no irrigation during the growing 
season, (b) W1, irrigation at jointing, (c) and W2, irrigation at jointing and anthesis. Among them, 
three kinds of colors represent canopy temperature categories. 

In order to determine the effectiveness of CT acquisition time, we further compared 
the differences between the CT-UAV clustered groups. As shown in Figure 10, for the W0 
treatment, according to the canopy temperature on 5 May and 11 May, varieties in the 
good performance group were significantly different from the moderate performance 
group and poor performance group. However, the canopy temperatures of the moderate 
and the poor groups were not significant on these two days. Following 20 May, canopy 
temperature showed a significant difference between any two of the three clustering 
groups.  

In the W1 treatment, on 5 May, CT-UAV differed significantly only between the good 
and the poor groups. Until 11 May, CT-UAV showed significant differences between any 
two of the three clustering groups. Similar to the W0 treatment, CT-UAV differed signifi-
cantly between all the groups from 20 May onwards. Overall, CT-UAV differed largely in 
the late stages compared to the early stages. 

 
Figure 10. Comparison of canopy temperature of different drought-resistant performance groups
measured at five growth stages. Among them, (a) W0, no irrigation during the growing season and
(b) W1, irrigation at jointing. Black “3” represents the average value of the group, and the black
horizontal line represents the comparison between the two groups. In addition, the significance
analysis is based on the t-test method, p > 0.05, is ns, 0.01 < p < 0.05, is *, 0.001 < p < 0.01, is **,
p < 0.001, is ***.
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In the W1 treatment, on 5 May, CT-UAV differed significantly only between the good
and the poor groups. Until 11 May, CT-UAV showed significant differences between
any two of the three clustering groups. Similar to the W0 treatment, CT-UAV differed
significantly between all the groups from 20 May onwards. Overall, CT-UAV differed
largely in the late stages compared to the early stages.

4. Discussion
4.1. The Different Clustering of Drought Resistance Performance in Different Water Deficits

Under the three water deficit regimes, we obtained different drought resistance cluster-
ing groups of wheat varieties based on physiological performance (Figure 5). It emphasizes
the complexity of drought resistance at different drought stress levels.

In mild or moderate water deficit, drought stress can make crop physiological perfor-
mance deteriorate. However, for some high-yielding varieties, such a level of water stress
may have a limited impact on the physiological traits, such as green leaf area, chlorophyll
content and photosynthetic rate [54–57]. These varieties may still maintain physiological
performance and high yield in mild or moderate water deficit conditions [58,59]. In addi-
tion, in this study, under W1 and W2 treatments, the high-yielding varieties JM418, H4399
and SN086 varieties had better drought resistance performance and grain yield. In contrast,
with the further aggravation of water stress such as W0, the physiological performance of
some high-yielding varieties will decline rapidly, and the yield will also shrink [60]. Some
drought-resistant varieties can maintain relatedly stable productivity and physiological per-
formance by their regulation or deep root advantage [22,61,62]. For example, the ZM1062
and C6005 varieties, while they do not always have outstanding physiological and yield
performance under regular water supply or mild water stress conditions.

In addition, the wheat crop has specific water-sensitive stages, such as the jointing
stage, booting stage, and flowering and grain-filling stage [63], and different wheat cultivars
have different sensitivities to drought stress during these stages. Simultaneously, applying
drought treatment to wheat at different growth stages has different effects on physiological
traits and yield [58,64,65]. For instance, drought stress during the flowering causes a
grain yield reduction of 11% to 39% and the water stress at the heading reduces grain
yield by 57% [66,67]. Similarly, a yield reduction of 58% to 92% has been measured when
severe drought stress was imposed at grain-filling [68]. Collectively, drought resistance
performance of the same varieties may differ in different growth stages and deficit irrigation
conditions. Therefore, in different deficit irrigation systems, appropriate varieties should
be used according to the degree of water stress to ensure the final yield, so as to improve
water use efficiency as much as possible on the premise of saving irrigation water.

4.2. Canopy Temperature Variation under Different Deficit Irrigation Treatments

Canopy temperature consistently increased with the decrease in irrigation (Figure 6),
whereas a declined transpiration was observed (Table 2). Under water stress conditions,
the water obtained by plants from the soil decreases, which reduces the transpiration of
crop. Then, the heat exchange will decrease between the air and canopy or leaf surface
and finally increases the canopy temperature [69,70]. It is worth noting that the canopy
temperature difference between W0 and W2 was already large (4.1 ◦C) in the early stage,
whereas the canopy temperature difference between W1 and W2 was more visible in the
late stage (Figure 6). This also indicates that the W0 treatment was subjected to water stress
and occurred earlier than the W1 treatment. Irrigation during the jointing stage (W1) can
effectively reduce the impact of drought stress due to insufficient rainwater supply [71],
and it has a great impact on the development of physiological traits. This irrigation enables
crops to have a luxuriant plant canopy [72], which reduces bare soil and decreases soil
evaporation to preserve water for transpiration and maintain lower canopy temperatures.

Our results also showed that the maximum temperature differences between varieties
were 2.2 ◦C, 1.9 ◦C and 1.1 ◦C under W0, W1 and W2 treatments, respectively (Figure 7).
The large extent of differences between varieties, especially in W0 and W1, provides the
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opportunity for UAV thermal infrared imagery to capture canopy temperature differences
due to drought stress.

4.3. CT-UAV in Relation to Ground-based Physiological Traits in Different Deficit Irrigations

The close correlations between canopy temperature and SPAD value, LAI, Pn, Tr, Cn
and biomass, particularly under W0 and W1, made it possible to evaluate the drought-
resistant performance of wheat varieties using UAV thermal infrared images. The phys-
iological performance of plants will deteriorate in drought stress conditions, while the
canopy temperature is also sensitive to water deficit. Thus, there is also a certain relation-
ship between canopy temperature and some physiological traits, e.g., chlorophyll, leaf area
index, transpiration rate and stomatal conductance [39,47,73–75]. However, there was a
poor correlation between canopy temperature and the above physiological traits in the
W2 treatment. Compared with W2, W0 and W1 had more deficient irrigation, leading to
more severe water stress responses and gradient changes in physiological traits [76–78].
Therefore, close correlations between canopy temperature and the above physiological
traits were observed under the W0 and W1 treatments.

The effects of drought on crops would increase with the growth progress and organ
senescence at later stages [14,79,80]. As a result, the differences in physiological traits such
as SPAD, LAI, Pn, Tr and Cn among wheat cultivars were gradually significant after the
anthesis stage, and the canopy temperature also increased due to the decrease in irrigation
amount [81–83]. In contrast, the transpiration water of the crops was sufficient in W2 due to
the irrigation during the flowering stage, and thus canopy temperature differences among
varieties were small [75,84]. Recent studies also highlighted that no significant or weak
correlation between canopy temperature and physiological traits, e.g., leaf chlorophyll
content, LAI and Pn, under normal or mild water stress [85–87]. In this study, these results
suggest that canopy temperature alone could not reflect the physiological changes of crops
well under mild water stress.

Overall, the canopy temperature-based evaluation and the physiology-based evalua-
tion (Figures 5 and 9) produced consistent drought resistance clustering results for the W0
and W1 treatments, highlighting the potential of UAV thermal infrared image to identify
drought resistant performance of wheat varieties in deficit irrigation conditions.

4.4. Canopy Temperature Acquisition Stage for Drought Resistance Assessment

Canopy temperature differences among the three drought-resistant performance
groups became larger in the grain-filling stage (Figure 10), indicating that the canopy
temperature obtained after this stage was more representative and can be more accurate
to distinguish drought resistant performance among different wheat varieties. In deficit
irrigation conditions, a large amount of soil moisture was lost due to evaporation in the
early stage along with plant transpiration, resulting in running out of soil moisture during
the grain-filling stage and further water stress [88]. This, in turn, leads to greater covari-
ations in crop physiological parameters and canopy temperature among different wheat
cultivars [14]. In this study, the correlations between canopy temperature and physiological
traits (SPAD, LAI, Pn, Tr and Cn) were stronger under the W0 and W1 treatments and after
20 May. Therefore, the drought resistance can be well reflected by the canopy temperature,
especially in the late stage of crop growth (grain-filling stage and later). Similarly, canopy
or leaf temperatures at grain-filling stages and later were found to be better related to
the physiological traits of the varieties, such as leaf area index, photosynthetic parame-
ters, chlorophyll content and yield in previous studies [73,89–91]. Therefore, this study
allows the recommendation for obtaining UAV thermal infrared images to evaluate drought
resistant performance of wheat varieties during the grain-filling stage.

5. Conclusions

We obtained canopy temperature from UAV thermal infrared images and measured
physiological traits (LAI, SPAD, Pn, Tr, Cn and biomass) of 10 wheat varieties under three
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deficit irrigation regimes, across multiple growth stages to evaluate their drought resistance.
This study showed that irrigation deficit induced declines in the measured physiological
traits but an increase in the canopy temperature. Moreover, the results showed closely
negative correlations between canopy temperature and physiological traits under the W0
and W1 treatments, whereas almost no correlation was observed under the W2 treatment.
The observed correlations between canopy temperature and physiological traits were
relatively high following the grain-filling stage.

The UAV thermal imagery combined with the hierarchical clustering method success-
fully identified the drought-resistant performance (good, moderate, and poor) of 10 wheat
varieties under W0 and W1 treatments, which was in line with the drought resistance
evaluation results based on physiological traits. In contrast, the results were poor un-
der the W2 treatment. The grain-filling stage is found to be more suitable than the early
stages for drought resistance evaluation based on UAV thermal imaging, which should be
further validated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14215608/s1, Table S1. Linear relationship between canopy
temperature extracted by UAV thermal infrared imagery and canopy temperature measured by hand-
held infrared analyzer. Figure S1. Scree plot to express the degree of explanation of each principal
component to the total variance in three water deficit treatments. (a) W0, no irrigation during the
growing season, (b) W1, irrigation at jointing, (c) and W2, irrigation at jointing and anthesis.
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