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Abstract

Evolution has preferred a network strategy, namely vascular systems, for the internal
logistics of living beings. Any disruptions in the expected behavior of the vascular
system impact the functional normality from cells to organs to the individual level,
even sometimes fatal. Hence, the study of the vascular system is of immense urgency
in medical and biological science. The main research direction embraces identifying
structural and functional properties of vascular systems, their inter-dependencies,
and the appearance of pathogens in the system. This scientific curiosity is met with
modern tools developed with the help of other branches of science, such as physics
and engineering, which enable photographing the vascular system in action. For
example, the functional imaging modalities considered in this thesis are phase-contrast
magnetic resonance imaging to measure blood flow velocity within vessels and light
sheet microscopy for structural imaging, which allows imaging up to the capillary
level. A natural next step is to analyze these images, which modern deep learning is
getting very good at. The aim of this thesis is to advance deep learning methodologies
and sharpen them with the necessary features to deal with challenges in vascular
imaging. Specifically, this thesis considers the different genres of constraints that
occur from the underlying nature of the biophysical systems and adopts them in deep
learning settings. In these crossroads, the core of this dissertation consists of four
contributions. 1) The first project marries implicit neural functions and convolutional
neural networks to efficiently enforce partial differential equations for obtaining the
pressure distribution within blood vessels from measured blood flow velocity. 2)
Next, a directional sensitive loss function is introduced to emphasize the directional
correctness, which is suitable for super-resolving the flow velocities. 3) Third, an
efficient loss function is proposed to highlight the important pixels in an image, which
are crucial to preserving the underlying network topology in the segmented vasculature.
4) Finally, a novel model architecture is designed to directly learn the underlying
graph representation vessel-network from voxel representation of vascular images. In
summary, this thesis contributes to the theoretical and experimental advancement of
the functional and structural analysis of blood vessels from contemporary vascular
imaging modalities.
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Zusammenfassung

Während der Evolution hat sich eine netzwerkartige Gefäßstruktur für die inter-
ne Logistik in Lebewesen entwickelt und durchgesetzt. Jede Störung des sensiblen
Gefäßsystems wirkt sich auf die Funktionalität von Zellen, Organen bis hin zu ganzen
Individuen aus. Daher ist die Untersuchung des Gefäßsystems in der medizinischen
und biologischen Wissenschaft von immenser Relevanz. Insbesondere ist die Identifi-
zierung der strukturellen und funktionellen Eigenschaften von Gefäßsystemen und die
Beschreibung ihrer gegenseitigen Abhängigkeiten interessant. Das wissenschaftliche
Interesse an Gefäßen wird durch die Entwicklung moderner Bildgebung Instrumente
und Methoden unter Mithilfe anderer Wissenschaftszweige, wie der Physik und der
Ingenieurwissenschaften begünstigt. Die in dieser Arbeit betrachteten funktionellen
Bildgebungsmodalitäten sind die Phasenkontrast-Magnetresonanztomographie zur
Messung der Blutflussgeschwindigkeit in den Gefäßen, und die Lightsheet Mikrosko-
pie für die strukturelle Bildgebung, welche eine Bildgebung bis auf Kapillarebene
ermöglicht. Ein natürlicher nächster Schritt ist die automatisierte Analyse dieser Bil-
der durch modernes Deep Learning. Ziel dieser Arbeit ist es, Deep-Learning-Methoden
weiterzuentwickeln und sie mit dem nötigen Rüstzeug auszustatten, um die Herausfor-
derungen der modernen vaskulären Bildgebung zu bewältigen. Insbesondere werden in
dieser Arbeit biophysikalische Bedingungen und Eigenschaften berücksichtigt und für
unsere lernenden Methoden nutzbar gemacht. Der Kern dieser Dissertation besteht
aus vier Beiträgen. 1) Im ersten Projekt werden partielle Differentialgleichungen
anhand von impliziten neuronalen Funktionen und Neuronale Netzen gelößt, um die
Druckverteilung in Blutgefäßen anhand gemessener Blutflussgeschwindigkeit zu ermit-
teln. 2) Als nächstes wird eine richtungssensitive Optimierungsfunktion eingeführt die
für die Superauflösung der Flussgeschwindigkeiten von Blut geeignet ist. 3) Drittens
wird eine effiziente Optimierungsfunktion für Segmentierung von Blutgefäß vorge-
schlagen, welche die wichtigen Pixel in einem Bild hervorhebt die für die Erhaltung
der Netzwerktopologie von gefäßen entscheidend sind. 4) Abschließend wird eine
neuartige Netzwerkarchitektur entworfen, um aus Bildern eine Graphendarstellung
von Gefäßnetzwerken zu erlangen. Zusammenfassend leistet diese Arbeit einen Bei-
trag zur theoretischen und experimentellen Weiterentwicklung der funktionellen und
strukturellen Analyse von Blutgefäßen mit modernen bildgebenden Verfahren.
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INTRODUCTION
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Foreword

Deep learning has evolved rapidly in the last decade thanks to access to large datasets
and increased computation capabilities. Specifically, supervised deep learning has
emerged as an excellent tool for learning a parametric function of interest given
enough input-output pairs. Nowadays, deep models’ long reach finds usage ranging
from analyzing small microscopic images [1] to big cosmological images [2]. At the core
of this deep learning success lies the contribution of dedicated, modern, and powerful
parametric models and well-engineered strategies to make these models learn up to
their total capacity. However, most of this engineering effort was targeted at modalities
like natural images [3] and natural languages [4] where semantic correspondence is
pivotal to our understanding.

Carrying on its root success in computer vision and natural language processing,
deep learning finds broader applications in healthcare, physics simulations [5], biology
[6], and what not. Among these, the application of deep learning in healthcare and
biology is of recurring interest in this thesis.

Now, a natural question arises: why do we need to pay special attention to deep
learning applications in medical applications?

First, unlike machine learning applications in natural images and natural language
processing, where semantics prevail as the unit of understanding information, the
medical and biological field demands precise quantitative measurements without
semantic ambiguity. The reason in most application scenarios is that the quantity
of interest is linked to a physical entity, be it structural or functional. One example
is Computed Tomography (CT) images, where the image intensity is directly linked
to the tissue density. The same analogy goes for medical applications such as blood
flow modelling, tumour growth modelling, and image-based biomarker identification.
Hence, special measures must be developed to equip the machine learning models to
obey the underlying biophysical constraints in order to be applicable to these fields.
These additional requirements worsen the already existing difficulties, such as scarcity
of domain knowledge and data privacy.

Second, a different level of abstraction is needed based on the scale and target

3



1. Foreword

application we are interested in. For example, to solve the task of tubular structure
segmentation in an image, one could quickly adopt a state-of-the-art convolutional
model and an optimizer out-of-the-box from deep learning libraries like Pytorch
or Tensorflow. However, the question of what to optimize is more puzzling. One
could see that tubular structures form a dense prediction and argue for the correct
prediction for each pixel. A second opinion is to shift the focus from local predictions
to a more abstract concept of connectivity. A third view could be to go even higher
and reduce the connectivity to a compact graph representation. A fourth abstraction
could be adding different physical attributes to the graph, such as the radius for
each edge, in order to recover the lost local details, and so on. These highlight the
requirement of looking into the same problem from a different perspective. Each of
them is a valid and well-reasoned approach; however, each approach requires finding
suitable constraints to enforce the desired level of abstraction.

Keeping these two principles in mind, the key objective of this thesis is to
explore new avenues in the methodological aspects of vascular image analysis. As
mentioned before, vascular applications involve quantifying biophysical phenomena
underlying an image measurement. Examples considered in this thesis are estimating
pressure distribution from velocity measurement and super resolving an already
measured velocity field. First, a specific strategy principle at the crossroads of the
physics constrained and the neural network has to be investigated. Secondly, the
representations of vascular objects are analyzed in this thesis, for which the underlying
topological and graph constraints have to be taken into account for the deep models.
The contributions of this thesis primarily revolve around incorporating the above-
mentioned physical constraints into the modern deep models and their application in
structural and functional analysis of image-based vascular applications. Among all
possible elements of deep learning, the main focus of this dissertation will be on the
network architecture and custom loss function.

Organization

This dissertation is arranged as follows. Part I consists of four chapters, of which the
current one is Chapter 1. Chapter 2 introduces the application background and briefly
familiarises the imaging modalities. The key concepts and methodology used in this
dissertation, including a short literature review, are described in Chapter 3. Chapter 4
summarizes the main contributions of this thesis. Part II comprises four peer-reviewed
publications, constituting the main contribution of this thesis in Chapters 5-8. Each
journal and conference paper is presented in a self-contained section, starting with
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a summary of the publication. In Part III of this thesis, Chapter 9 discusses the
presented work and draw conclusion. Finally, in Chapter 10 an outlook on future
research directions is given. Appendix A comprises supplementary material from three
peer-reviewed publications and one peer-reviewer workshop publication that are not
relevant to the evaluation of this thesis but complement the prominent publications
thematically, either presenting supporting results or relevant side projects.
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Background

In this chapter, the target vascular applications are sketched out to motivate the
methodological contribution of this thesis. To complement the tasks hand, we will
briefly go through two cutting-edge imaging modalities that have been considered in
this thesis.

2.1 The Vascular System

A crucial jump in the evolutionary advantage was the circulatory system. A circulation
for a continuous stream of nutrition, oxygen, sewage extraction, protection, and
communication. For efficient transportation of such payloads, vessels have naturally
emerged as structural networks for this transport. Notably, the structure of the vessel
network is highly customized by the functional requirements of its end users. For
example, in the brain, there has been extra redundancy called collateral in case of
any abrupt disruption via one path. Similarly, the fine capillaries in the filter in the
kidney are dedicated to minimizing the loss of valuable molecules and getting rid

Structural
changes

Functional
changes

Structure Function

Circulatory 
system

Brain
lesion

Neuro-
degenerative StenosisAneurysm

Figure 2.1: Inter-dependency of structural and functional properties of circulatory
systems.
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2. Background

of harmful substances. Thus the structure of blood vessels heavily influences the
functional part and any changes in the functions, in turn, change vessel structure
(c.f. Fig 2.1). Below we briefly go through different applications of structural and
functional quantities of vessel networks and blood flow.

2.1.1 Functional Vessel Analysis

Blood circulation is the core pillar for the proper functioning of each individual organ.
To assess the quality of the current circulatory state, different functional measurement
is part of the clinical routine, such as blood pressure and pulse rate. However, these
measurements are a point estimator of the whole system. Recent advancement in
non-invasive imaging, as discussed in the next section, opens up new possibilities for
a novel way to measure and quantify hemodynamics even localized to a particular
small region of interest. This is particularly useful to develop novel bio-marker from
hemodynamic quantity, such as pressure distribution within brain aneurysms [7] to
hemorrhagic stroke. Therefore, a major half of the thesis will build on new methods
to tackle functional quantity estimation for vascular regions.

2.1.2 Structural Vessel Analysis

While functional analysis has enormous clinical importance, structural analysis of
vascular networks also appears in many pre-clinical tasks. Thanks to our increasing
understanding of optical engineering and biochemical compositions, we can probe
into complete vasculature up to the capillary level. We all bear a typical genetic code
that spawns a healthy vascular network. However, in the presence of different kinds of
pathogens, the network deviates from its healthy condition. To efficiently understand
this causal relationship, one needs to consider the different representations of the
vascular network, especially emphasising its topological property and graph nature.
The other half of the thesis devotes to developing tools for this purpose.

2.2 Vascular Imaging Modalities

Below, we will consider two prominent imaging modalities used in this thesis. 1)
4D-Flow MRI and 2) Light-sheet microscopy. Finally, we present a concise descrip-
tion relevant to understanding the imaging modalities, and enthusiastic readers are
encouraged to consult associated references.
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2.2. Vascular Imaging Modalities

Complex k-space data Image data Flow velocity Hemodynamics

Magnitude x-encode

y-encode z-encode

Figure 2.2: 4D-flow MRI processing pipeline: from measurement to quantitative
hemodynamics analysis.

2.2.1 4D-Flow MRI

Out of many miraculous applications of quantum mechanics, Magnetic Resonance
Imaging (MRI) stands out in the history of humanity. MRI equipped us with a high
resolution camera to look inside the human body without harming the tissue or cell
level. The core principle of MRI relies on the alignment of nuclear spin along the
applied magnetic field and collects their signal through a radio-frequency transmitter-
receiver. The raw MRI signals collect the complex signal in frequency space, known
as k-space. The magnitude of the inverse Fourier reconstruction provides our desired
image. Over time, a different protocol of imaging technique masters the need to
well separate different tissues or organs through contrast. This includes T1-weighted,
T2-weighted, Flair, and diffusion-weighted images.

Primarily, MRI images involve static anatomical delineation, and the measured
intensity weakly correlates with the tissue density or any bio-physical quantities.
Interestingly, it is also possible to measure quantitative signals through the phase of
the complex MRI signal. The resultant modality is called phase-contrast MRI. In
this setting, the motion of a moving spin is captured via differential computation in
the phase component, which directly measures the fluid flow in our body, such as
blood flow and cerebrospinal fluid flow (c.f. Fig 2.2). As a result, one can measure
temporally resolved blood flow in a 3D volume. Hence, the name appears as 4D Flow
MRI [8]. The following provides a brief outline of the imaging pipeline.
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2. Background

Phase-contrast MRI

The complex MRI signal is a function of spacial tissue properties, such as T1 and T2

relaxation time and the applied magnetic field. The phase of this complex signal can
be expressed as

ϕ(r, t) = γ∆BTE + γ

∫ TE

0

G(t) · r(t) (2.1)

where r and t denotes space and time respectively, γ is gyromagnateic ratio, TE is
echo time, ∆B is sum of local inhomogeneity and G(t) is the gradient. r(t) can be
expanded using Taylor series as r(t) = r0 +vt+ 1

2
at2 + . . ., where v and a are velocity

and acceleration respectively. Taking only first order tern and neglecting higher order,
we get

ϕ(r, t) = ϕ0 + γr0

∫ TE

0

G(t)dt + γv

∫ TE

0

G(t)tdt. (2.2)

First, one needs to set the G(t) such that the first integral becomes zero and the
second integral is non-zero. To compensate for the ϕ0, a second gradient needs to
be applied where both the integral becomes zero. The difference can be represented
as ∆ϕ = γvM1. In other words, the velocity is a linear function of space v = ∆ϕ

γvM1
.

Because the maximum phase limit of ±π, it leads us to velocity encoding (Venc),
which describes the measurement sensitivity towards the velocity magnitude. In order
to measure velocities higher than Venc, one needs to apply phase unwrapping.

In practice, because of the dynamic nature of the data, the measurement is synced
with cardiac motion with ECG triggering to denote the beginning of a cardiac cycle
and the time series is filled in over more than one cardiac cycle. Further, to enable
3D measurement, an additional two gradient is needed to nullify unwanted signals
effectively. In recent times, many breakthroughs accelerated the acquisition to enable
4D-Flow MRI feasibly.

Image Based Hemodynamics

Based on the acquired 4D signal, one can estimate different hemodynamic quantities
of interest [8]. First, stage the region of interest is identified in the image by
segmentation of contouring. Next, given the velocity measurement, one has to
compute the relevant biophysical quantities such as pressure and stress tensor of
wall shear stress. These quantities are found to be important bio-marker of different
cardiovascular and neurovascular diseases. Further, given the signal-to-noise ratio of
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Figure 2.3: Light sheet microscopy processing pipeline: from biochemical preparation
to image acquisition.

the MRI signal, stable spatial differentiation reacquires substantial resolution, which
is a super-resolution problem.

2.2.2 Light Sheet Microscopy

In order to image organs in a traditional histopathological microscopy setting, one
needs to dissect the organ into thin slices which are then imaged. Finally, these
images have to be stitched together in 3D. In contrast, light sheet microscopy
technology allows us to scan a whole organ or even an entire specimen in 3D. This is
a significant advantage compared to previous methods where the slicing and stitching
of tissue introduced substantial errors and artefacts. However, for that purpose, the
specimen must be transparent, and the objects of interest must be highlighted with a
fluorescent dye. A recent technological breakthrough in tissue-clearing [9] enables
taking full advantage of light sheet microscopy to scan biological specimens in full
3D. The processing pipeline is shown in Fig. 2.3. The protocol involves selecting the
appropriate fluorescence dye and fine-tuning the clearing protocol to the particular
tissues and anatomy of interest.

Subsequently, the organ is placed under the microscope to scan a fully volumetric
3D scan keeping the organs intact. In light sheet microscopy, the illumination is done
in a single plane instead of the whole 3D volume. This setup reduces the background
noise as much as possible and scans through the whole volume slice by slice.

11





Methodology

As discussed in the previous chapters, this thesis aims to explore the desired physical
constraints to equip the machine learning model to deal with the problem at hand. In
this thesis, I will mainly look into three cases in the neurovascular application, a) flow
computation, b) topology preservation in a vascular graph, and b) vascular graph
extraction. In addition, we will be looking into the existing prior art and finding
room for improvement to set the problem statements for the thesis.

Before jumping into specific aspects of the deep learning-based literature, which
pays special attention to retaining the link between model prediction and the physical
entity of interest, We will briefly review the building blocks of modern deep learning.

3.1 Building Blocks of Deep Learning

A decade has passed since the spring of deep learning initiated by AlexNet [10] and
the field since then have been matured and standardized. The main components
of modern deep learning can be boiled down into two parts; a) designing a search
space, e.g., model architecture and b) designing a search strategy, which includes
loss functions, regularizer, optimizer, and scheduler. Different engineering directions
toward better search space and search-strategy have matured and benefited from
shared and complementary design principles. The focus on improving the search space,
a.k.a model, has gifted us ResNet, DenseNet, U-Net, and most recently, Transformer.
Simultaneous exploration of loss functions, optimizer, and regularization, have boosted
performance and accelerated train time.

The deep learning model can be expressed as a parametric model FA
θ with d

dimensional learnable parameter θ ∈ Rd and architecture A. The architecture helps
to find a meaningful prediction from the search space in Rd. The learning problem
can be formulated as finding the right set of parameter θ given a criterion L and a
dataset D = {x,y}

θopt = arg min
θ
L(FA

θ (x),y) (3.1)
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Figure 3.1: A pictorial description delineating training strategy (τ) from θinit to
θopt under an architecture A.

The training part of the learning is a process of mapping an initial guess θinit to
an optimal value θopt of the parameter. Hence, a training strategy defined by the
following mapping

T : θinit → θopt; given L (3.2)

With the optimal θopt, the inference y for an input sample x is obtained

FA
θopt

: x→ y (3.3)

Together with carefully engineered search space (FA
θ ) and search strategy (T ,L)

have contributed to the immense success of deep learning in the past decade. A
primary goal of this thesis is to incorporate various physical constraints such as
partial differential equation, flow consistency, underlying topology, or graph structure
into the architecture and the loss function. Before delving deep into each of the
individual topics, the following is a very brief overview of modern deep learning model
components, namely architectures (A) and loss functions (L).

3.1.1 Model Architecture

Different model architectures have been developed, keeping specific applications in
mind. The architecture has many vital components, such as the functional layer, norm
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3.1. Building Blocks of Deep Learning

MLP CNN U-net RNN Transformer

Figure 3.2: Pictorial comparison of different deep learning architectures.

layer, an activation layer. Here we will focus solely on the functional layer. Functional
layers are designed to specifically take advantage of invariance or equivariance of the
input space under certain spatio-temporal transformations. This is often referred to
as imposing inductive biases in the literature.

MLP

A Multi-Layered Perceptron (MLP) [11] is a fully-connected feed-forward neural
network. A single layer of an MLP consists of a weight matrix (W ) and a bias vector
(b). A two-layer MLP can be described below

FMLP (x) = W 2(σ(W 1(x) + b1)) + b2 (3.4)

where σ is an activation function.

CNN

Unlike MLP, a Convolutional Neural Network (CNN) [12] relies on convolution with
a set of filters (W ). Convolutional layers are stacked together to form a CNN. A
two-layer CNN can be described as follows

FCNN(x) = W 2 ⊛ (σ(W 1 ⊛ x + b1)) + b2 (3.5)

Additionally, the CNN network consists of downsampling layers to reduce the spatial
dimension of the image as the feature size grows with layers.

U-net

MLP and CNN, as perceived initially, was suitable classification task. Over time,
U-net [13] has been developed based on CNN to make dense predictions on the image.
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In addition to the downsampling layer, U-net relies on an upsampling layer to rescale
feature maps into the image dimension. A U-net of depth two can be expressed as.

y1 = W 1 ⊛ x + b1

y2 = W 2 ⊛ σ(y1) + b2

FU−net(x) = W 4 ⊛ (σ(W 3 ⊛ y2 + b3)⊕ y1) + b4 (3.6)

RNN

A Recurrent Neural Network (RNN) [14]was introduced to process sequence data
such as text and speech. The past input is processed and stored in a hidden state
(h), which is combined with the current input to produce the output.

ht = Fh(ht−1,xt−1) (3.7)

yt = FRNN(ht,xt) (3.8)

Transformer

RNN suffers from vanishing gradient and modeling long-range dependency. Hence a
new variation of the model has evolved based on the attention mechanism [15]. The
attention mechanism works on a sequence data (x = {xt}Tt=1)

q = MLPq(x),k = MLPk(x),v = MLPv(x)

Attn(x) = softmax

(
qk⊤
√
d

)
v (3.9)

multiple heads with attention mechanisms make a strong model for modern machine-
learning tasks.

3.1.2 Loss Function

Similar to the architectural revolution, deep learning heavily progressed with the
novel design of loss functions. The loss functions have come from diverse communities
dealing with a spectrum of problems. Here we will categorize them broadly into a
few buckets for the ease of revisiting them. We will consider the ground truth as y
and the prediction as ŷ.
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Regression Classifcation Overlap-
based Distributional Contrastive

Figure 3.3: Pictorial comparison of the commonly used loss function.

Regression

Regression loss is used for predicting real-valued numbers. It uses ℓp norm as a loss
function with a usual value of p = 1, 2. ℓ1 loss is robust compared to the ℓ2 loss. The
general regression loss is given below.

Lreg = ∥ŷ − y∥p (3.10)

There are numerous varieties of regression loss apart from ℓP norm, including Huber
loss etc.

Classification

Unlike regression, classification loss involves computing loss with categorical variables.
The commonly used loss function is cross-entropy

LCE = −y log(ŷ)− (1− y) log(1− ŷ) (3.11)

Over time many different classification losses have been proposed, like focal loss,
hinge loss, etc.

Overlap-based

Unlike pointwise classification, there is a higher-order abstraction of objects for which
overlap-based loss has been used. Among them, the IoU of Dice [16] is a popular loss
used in object detection and segmentation.

LDice =

∑
(y ⊙ ŷ)∑
y +

∑
ŷ

(3.12)
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Distributional

A different kind of loss, namely, distributional loss, has dominated the field of
generative modelling in the recent past. The notion is derived from optimal transport
or one distribution to a different one [17]. The main distributional loss is Wasserstein
distance. p-wasserstein is defined as

LW = inf
Π

{(
E(ŷ,y)∼Π[d(ŷ,y)p]

) 1
p

}
(3.13)

Contrastive

Recently a very useful class of loss functions came into use. Contrastive loss [18],
at the same time, tries to maximize the similarities of positive samples from an
anchor and maximize the distance for negative samples. There are many flavours of
contrastive learning, self-supervised and supervised. The supervised contrastive loss
[19] is

LC =
−1

|P (i)|
∑

p∈P (i)

log
exp

(
ŷi · ŷp/τ

)
∑

a∈A(i) exp (ŷi · ŷa/τ)
(3.14)

where P (i) ≡
{
p ∈ A(i) : yp = yi

}
is the set of indices of all positives with respect

to anchor i and A(i) ≡ D\{i}

3.2 Physics Constrained Deep Learning

As discussed at the beginning of this chapter, one core problem is examining blood
flow modelling through the machine learning lens. One has to solve a set of Partial
Differential Equations (PDE), the Navier-Stokes equation, in this case, to model
the flow behaviour. A recent surge in the crossroads of PDE and neural networks
co-evolved two main research fields. 1. Taking inspiration from classical neural solver
to improve deep learning architecture [20]; and 2. Incorporating modern deep models
to design numerical solver [21]. The first category became immensely popular for
modelling finite transformation from one set of inputs to another, thereby solving
classification and shape modelling. Nevertheless, computer vision problems, strong
constraints on search space, or the solution is hard to estimate beforehand. However,
in the case of solving PDE, these constraints come free of cost as the form of governing
equation, initial condition, and boundary condition.
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Figure 3.4: Physics constraints in the architecture vs physics constraints in the loss.

Again, two distinct design principles emerge as de-facto models in this avenue.
They involve imposing the physics constrained in the search space (i.e. in the
architecture) or the search strategy (i.e. in the loss). Let us consider the following
PDE equation

∂u

∂t
= F(u; {∂i,ai}i=1:N),∀x ∈ Ω,

s.t. G(u) = b(x, t),∀x ∈ Γ and u(x, t0) = u0 (3.15)

where Ω is the domain (e.g., ⊆ R2 or ⊆ R3), Γ is the boundary with boundary
function G and boundary values b(x, t) and u0 the initial value at time t = t0.
F(u, {∂i,ai}i=1:N) is a spatial function comprising partial differential operators
{∂i}i=1:N and its corresponding parameter {ai}i=1:N . One can take one of the
following roads to solve this PDE.

3.2.1 Physics in the Architecture

Most of the PDEs involve time as a variable. In practice, due to the intractability
of the close-form solution, spatio-temporal discretization is employed. While spatial
discretization is analogous to extracting image features, temporal discretization
gives rise to a recurrent solution scheme [22, 23], which is analogous to recurrent
neural networks. This connection can be leveraged as a constraint on the network
architecture. Precisely, the recurrence scheme can be unfolded as RNN, and particular
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temporal discretization can be imposed in the connection [24, 23]. One can write the
following discretization scheme of Eq. 3.15.

ut+∆t = ut + ∆tF (ut; D,A) (3.16)

To mimic Eq. 3.16, one can employ the following RNN with constrained architecture
f and g.

ut = ut−1 + ∆tf (bt, ωt)

ωt = ωt−1 + ∆tg (bt−1, ωt−1) (3.17)

The advantages of incorporating constraints in the architecture are that they can
be easily generalized to different computation domains or geometry. On the other
hand, because of particular temporal discretization, one has to take care of temporal
stability by checking the time step.

3.2.2 Physics in the Loss

As an alternative approach, solving PDE can be thought of as an implicit function
learning which maps the space and time to a variable of interest through a parametric
model. To resolve the ambiguity one has to enforce the physics constrained in the
loss of the model [25]. The resultant solution obeys the governing equation nearly.
For Eq. 3.15 one can learn a parametric function Fθ

u = Fθ(x, t) (3.18)

Subsequently, one can exploit the end-to-end differentiability to cheaply compute
the spatial and temporal derivative of u. The resultant entities are put together in the
loss to obey the governing equation (LPDE), initial (Linit), and boundary condition
(Lbound).

Ltotal = LPDE + Linit + Lbound (3.19)

where

LPDE = L
(
∂Fθ(x, t)

∂t
,F(Fθ(x, t); {∂i,ai}i=1:N)

)
; ∀x ∈ Ω, t > t0 (3.20)

Linit = L(Fθ(x, t), u(x, t0)); ∀x ∈ Ω, t = t0 (3.21)

Lbound = L(Fθ(x, t), b(x, t)); ∀x ∈ Γ, t > t0 (3.22)

Because of the implicit function learning, the network can handle continuous spatio-
temporal interpolation. However, this kind of model suffers from poor generalizability
and has to be retrained on every new geometry from scratch.
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Figure 3.5: Persistence homology allows us to compute critical points in the predicted
likelihood by checking all real values and identifying points where a topological entity,
such as cycles, is born and dies.

3.3 Topology Preserving Image Segmentation

An essential recurring notion highly relevant at the crossroads of machine learning
and physical systems is predicting the correct topology of an entity of interest.
One example is the blood vessel segmentation task, where the segmented objects
with incorrect topology (connectivity) would mean completely different functional
properties, such as blood flow. All our work in this thesis is restricted to 2D and 3D,
whilst the mathematical concepts of topology go beyond this.

A significant drawback of convnet-based prediction is that it outputs a prediction
on a regular volumetric grid. Any topological computation beyond the voxel-wise
metric requires establishing higher-order entities such as edge, face, and cubical
complexes. A major bottleneck is that this is possible only in the presence of
thresholded volume, which, if applied directly, would break end-to-end differentiability.
Persistence homology allows us to circumvent this problem and find out the critical
location [26] in an image for all possible discrete thresholds present in that image.
The critical locations are essential in maintaining the discovered topological entities
in the predicted likelihood. In the loss, the critical pixels are given special care to
have a correct prediction. However, this demands heavy computation power since
identifying the cycles can not be efficiently parallelized. One could question the
necessity of spending tremendous computational power against finding only a sparse
collection of critical pixels.

In summary, the aim of tackling the topological correctness problem is to find crit-
ical pixels, which, if having a predicted value lower/higher than the threshold, would
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Figure 3.6: Capillary level vessel graph extraction is a prerequisite for flow-based
bio-marker identification.

lead to the loss/extra of topological entities in the binarized image. Subsequently,
during the training, the critical pixels should be emphasized. Now, can we find the
critical pixels efficiently if we relaxed the criteria to include an increased number of
pixels to be highlighted?

3.4 Image-to-Graph Generation

In many applications, segmentation is an intermediary step to the final representation.
In the case of the blood vessel, the final representation of interest is graph structure
[27]. Although the graph is a reduced representation than segmentation, this is an
effective strategy for a variety of blood vessels, except the big artery aorta and heart.
The resultant graph structure is used to analyze structural and functional properties.
Among structural properties, geometry and thickness change of angle is of interest to
study. Among functional properties, simulating blood flow in graphs and computing
hemodynamic quantities are of paramount interest in many applications such as
Alzheimer’s or stroke.

Classically, one can extract centerlines from segmentation and extract a graph
from it. However, since the skeleton would result in a voxelized binary representation,
it would be dense and would have filled with a vast amount of unnecessary nodes of
degree two. One can attempt to prune it, which, however, involves complex heuristics.
An alternative direction is to fit spheres of small radii inside the segmentation and
stitch the centroids to get centerlines. Although this results in a relatively smoother
graph, the process requires substantial computation power. One can ask if we can
learn a model to learn where to place nodes in an image and also learns to connect
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them with appropriate edges.
Notably, graph extraction from an image is a relatively new field of research

and mainly involves semantic knowledge graphs, i.e., scene-graph extraction from
natural images [28]. Can we merge these two parallel endeavours under a single
framework? Moreover, can we benefit from translating image-to-graph models from
the scene-graph community to structural graph extraction?
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Summary of Contributions

Having presented the scope of the application and relevant literature review in the
previous chapter, here I present the concrete problem statement and the proposed
methodology. The recurring theme of this dissertation is to enforce the known apriori
constraints on the solution space.

For that, we will first consider the functional analysis aspects of vascular analysis
and ask the following question.

Q1. Can we leverage a partial differential equation in the neural network for
pressure estimation from velocity data? If so, what could be an efficient strategy to
realize it?

Pressure distribution is an essential biomarker for different vascular pathogens.
Estimating pressure from velocity measurement requires solving Poisson’s equation
with the Neumann boundary condition. Pressure gradient originates in two forms.
First, the local changes in geometry influence advection and, thereby, a local gradient.
Second, the transient nature at the boundary induces a global distribution. Based
on this observation, we model two components with two different models. The
first one is handled by a fully convolutional network with physics constrained in
the architecture. The latter is tackled by an implicit neural function trained with
boundary-driven loss. The fully convolutional network can be easily generalized over
different geometry. However, the implicit function needs to be optimized separately
for each new case. The proposed approach is validated with the help of simulated
ground truth. Chapter-5 presents this work in detail.

Next, we look into the task of super-resolving the measured flow field and ask the
following question.

Q2. Can we impose directional awareness in the 3D velocity field super-resolution,
and what will be the benefits?

Increasing the resolution of the 4D-Flow MRI is necessary for the downstream
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analysis. Traditional regression loss used for super-resolution tasks does not take
any prior knowledge of the variable of interest into account. Primarily because of
the Gaussian/Laplacian assumption on the noise distribution of each component,
we use mean squared/mean absolute error for losses. However, its direction and
magnitude are of immense interest for velocity. Separately enforcing its directionality
is challenging because of the different ranges of the error bound for magnitude and its
angle. Alternatively, we aim to leverage the projection of prediction onto ground truth
and vice-versa to promote directional sensitivity to the loss function. We studied
in residual learning settings with simulated and real data, which showed improved
reconstruction than previous non-deep learning methods. Chapter-6 describes the
peer-reviewed journal on this topic.

Next, we look into the structural aspects of the vascular network and focus on the
segmentation task of vasculature from images and look into the following question.

Q3. How to enforce topological correctness in the form of connectivity on the
segmentation, and what would be an efficient strategy to enforce this constraint?

Estimating the correct topological structure for the vessel graph is crucial. How-
ever, computing the topological features on a real-valued likelihood map is challenging
without breaking end-to-end differentiability. Conventional use of persistence ho-
mology looks for a very sparse set of important points and emphasizes them in loss,
however, at the cost of an enormous computation. Given the scale of the image size,
the choice of important points selection can be flexible, which will drastically speed
up the computation. We propose including the predicted skeleton on its ground truth
and vice versa as a proxy to compare topology with a provable guarantee. Deriving
from this principle, a differentiable loss is proposed comprising max-pooling and
ReLU. Our experiments suggested improved topological results in 2D and 3D vessel
segmentation tasks. Chapter-7 describes the peer-reviewed conference article on this
topic.

Finally, we look into direct graph prediction from images without an explicit
segmentation stage.

Q4. Can we put graph constraints on the network architecture to directly infer the
underlying graph representation? If so, can we leverage techniques for other similar
problems, and how far can we go?

A single-stage transformation from image representation to graph representation
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is challenging yet important in the structural analysis of vascular networks. An image
lies in a regular lattice structure, while the underlying graph lies in an unstructured
set. We propose leveraging the transformer’s cross-attention to bridge between two
representations. This allows efficient joint learning of object and relation represen-
tation. The resulting representation not only learns where to place the node but
also connects them based on a similarity measure whenever there should be an edge
between them. We provided the first learning-based solution for 3D image-to-graph
extraction and showed a proof-of-concept application where the ground truth graph
is known. The final Chapter-8 consists of the peer-reviewed conference article on this
problem.
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Velocity-To-Pressure (V2P) - Net:
Inferring Relative Pressures from
Time-Varying 3D Fluid Flow
Velocities

Suprosanna Shit, Dhritiman Das, Ivan Ezhov, Johannes C. Paetzold, Augusto Fava
Sanches, Nils Thuerey & Bjoern H. Menze

Conference: International Conference on Information Processing in Medical Imaging
(IPMI), June 2021
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Abstract. Pressure inference from a series of velocity fields is a common
problem arising in medical imaging when analyzing 4D data. Traditional
approaches primarily rely on a numerical scheme to solve the pressure-
Poisson equation to obtain a dense pressure inference. This involves
heavy expert intervention at each stage and requires significant com-
putational resources. Concurrently, the application of current machine
learning algorithms for solving partial differential equations is limited to
domains with simple boundary conditions. We address these challenges in
this paper and present V2P-Net: a novel, neural-network-based approach
as an alternative method for inferring pressure from the observed veloc-
ity fields. We design an end-to-end hybrid-network architecture moti-
vated by the conventional Navier-Stokes solver, which encapsulates the
complex boundary conditions. It achieves accurate pressure estimation
compared to the reference numerical solver for simulated flow data in
multiple complex geometries of human in-vivo vessels.

1 Introduction

Imaging modalities such as 3D phase-contrast magnetic resonance imaging [14]
or particle imaging velocimetry [23] enable us to get an in-vivo measurement of
blood flow velocity. Relative pressure fields, inferred from the measured velocity
fields, serve as a clinical biomarker for various cardiovascular diseases such as
aortic valve stenosis, aortic coarctation, and aortic aneurysm. Additionally, the
spatio-temporal distribution of pressure fields within a vessel segment is often
used for clinical intervention and therapeutic planning in neurovascular diseases,
such as cerebral angioma and intracranial aneurysm.

Given the velocity measurements, solving pressure fields simplifies the Navier-
Stokes equation to the Pressure-Poisson Equation (PPE). [22] used an iterative
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scheme to solve the PPE. Heuristics-based attempts to compute a robust line
integral have been proposed by [18]. [4] proposed an alternate method to the
conventional PPE solution by using the work-energy conservation principle. [10]
introduced a finite-element method (FEM) to solve the PPE and [15] improved
upon this by incorporating flow-aware boundary tagging. A detailed analysis of
the pressure estimation methods, in particular has been presented in [1].

In medical imaging, although mesh-based solutions are popular, they are
computationally intensive. Recent machine learning-based solutions [9] are also
compute-costly. Moreover, these methods demand expert intervention to accu-
rately take care of patient-specific simulation domain and spatiotemporal dis-
cretization. Moving towards a fundamentally different direction from the prior
literature, the goal of this paper is to propose an alternate, fast, and accu-
rate pressure inference scheme without requiring the computationally expensive
mesh-based analysis. In this paper, we mainly focus on neural network (NN)-
based methods which can provide a good approximation of costly numerical
schemes, such as the Navier-Stokes, for Partial Differential Equations (PDE).

Differential Equations (DE) have been studied in physics and engineering for
quite a few decades. However, a strong connection between the NN and the DE
has only been established very recently. While numerical schemes for solving DE
can be exploited to design efficient network architectures, enforcing physics in an
NN could also accelerate the numerical solutions of DE [3]. Recent methods based
on a fully supervised training regime have shown promising results to learn the
unknown physics model from conditional latent variables [8] and using a fully
convolutional neural network (FCN) [5,20]. However, these methods are only
favorable to solve the forward simulation problem. On the other hand, explicit
prior information about the underlying physics can help an NN to solve forward
and inverse problems in the PDE system. Two main categories of methods have
emerged in recent times to incorporate physics in the network:

1. Physics constraints in the architecture of the NN: Classical approaches
to solving a PDE system can be substituted by an approximation model that
can be learned from the observed data. This formulation relies on a specific
spatio-temporal discretization of a continuous-time process that offers the
ability to generalize well over a variety of domains. [12] proposed one such
generic network architecture (PDE-Net), which is parameterized by a learn-
able coefficient and constrained convolutional kernel to discover the underly-
ing PDE from observed data. [21] has shown that an FCN can approximate
well an intermediate step of the Euler velocity update rule for the inviscous
Navier-Stokes equation by solving the Poisson equation.

2. Physics constraints in the loss of the NN: An alternate approach to
obeying a PDE equation is to include it as a standalone loss or as an additional
regularizer along with a data-fidelity loss. [16] show that prior knowledge
about the form of a PDE in a loss function can help in exploiting differentiable
programming (deep learning), to simulate a PDE and use the learned system
to infer unknown system parameters. While this helps to obtain a robust
fitting of a parameterized continuous-time generative model, the inclusion
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of PDE system parameters in a domain-specific boundary loss restricts its
generalization. Note that we refer to the coefficients of the PDE equation as
the system parameters to differentiate it from the learnable NN parameters.

[21]’s method achieves significant acceleration for inviscid fluid flow simulation
by using a semi-implicit Lagrangian convection scheme coupled with an FCN
to approximate the traditional Jacobi iteration-based Poisson’s equation solver.
While this method shares our goal to infer pressure fields, they do not account
for the change in velocity at the boundary (inflow-outflow) and the pressure drop
from the viscous energy loss. Their proposed FCN assumes zero Neumann BC
whereas, on the contrary, this is non-zero at the inlet and outlet boundaries of
the flow as shown by [6]. Hence, it is not readily applicable for inferring pressure
in the case of transient viscous fluid flow such as blood.

Our Contribution: In this paper, we present a proof-of-concept study of V2P-
Net - a novel NN-based framework for inferring pressure from time-varying 3D
velocity fields (Fig. 1). The two key properties of V2P-Net are: 1) inclusion of dif-
fusion in an end-to-end trainable network that emulates the Navier-Stokes equa-
tion solver, and 2) decoupling the relative pressure into: a) convection induced
pressure pG, and b) inlet-outlet boundary driven pressure pB . We show that
pG and pB can be estimated using two separate neural networks dedicated to
solving the Poisson’s and Laplace’s equations (Eqs. 3 & 4), respectively. pG is
modeled by solving the zero Neumann BC using a FCN, while a fully-connected
NN (MLP) is used to map a geometry specific pB conditioned on the non-zero
Neumann BC. The FCN leverages the physics constraint in the network archi-
tecture, which enables it to generalize well over a different domain, while the
MLP learns a domain-specific function by satisfying the non-zero Neumann BC
as the loss function. Both of them are optimized by exploiting the underlying
physics of the Navier-Stokes equation in an unsupervised way, thus obviating
any need for ground-truth training data of the pressure distribution. We demon-
strate the efficiency of the V2P-Net architecture on simulated cerebral blood
flow geometries.

2 Methodology

2.1 Background

The Navier-Stokes equation for incompressible fluid in 3D volume is described
by the following momentum-balance equation:

∂u

∂t︸︷︷︸
Transient

+ ∇u · u︸ ︷︷ ︸
Convection

= νΔu︸︷︷︸
Diffusion

−1

ρ
∇p + f ; subject to ∇ · u = 0 (1)

In a bounded domain Ω with Dirichlet BC, u = ub(x, t) on boundary δΩ; sub-
ject to

∫
δΩ

η ·ub = 0, ∇ and Δ represent the gradient and Laplacian operations
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un PDE-Net
un

Diff

un
Conv

fG

Bn

S

∂u
∂t |t=n

⊕
η

fBx
pn+1
B

pn+1
G

⊕ pn+1

Fig. 1. Overview of V2P-Net. PDE-Net, fG and fB represent constrained convo-
lutions, an FCN and an MLP respectively. Individual architecture of PDE-Net, fG,
and fB are defined in detail in Fig. 2. S and Bn denote the vessel segmentation and
BC respectively. un

Conv has a non-zero divergence field which is subsequently corrected
using the convective induced pressure pn+1

G .

respectively and η is the normal on δΩ. In Eq. 1, u, p, ν, ρ and, f denote velocity,
pressure, kinematic viscosity, density of the fluid and external force respectively.

In our case, velocity (u) is known and the pressure (p) is unknown. For a
divergence-free flow, taking divergence of 1, we have to solve

Δpn+1 = ∇ · (−∇un · un), subject to
∂pn+1

∂η
= Bn (2)

where the boundary condition (BC) Bn = η · (νΔun − ∇un · un − ∂u
∂t |t=n). In

the following, we show that this equation can be modelled in a feed-forward NN,
the V2P-Net (c.f. Fig. 1).

2.2 V2P-Net:

Here, we formulate the pressure estimation problem (Eq. 2) in the context of PDE
approximation using an NN and describe our proposed hybrid NN architecture,
V2P-Net, which consists of: 1) constrained convolution operations as PDE-Net
[12], 2) an FCN, and 3) an MLP module. Parallels can be drawn between the
proposed network and a recurrent neural network (RNN), where each time step
update of the Navier-Stokes equation can be viewed as an unrolled step of the
recurrence scheme. However, a conventional RNN would need explicit supervision
for training, and therefore we use our hybrid network, which is unsupervised.

Convection-Diffusion Modelling (PDE-Net): The convection-diffusion
(∇un · un,Δun) operation is commonly solved in semi-implicit form for bet-
ter numerical stability. However, semi-Lagrangian semi-implicit schemes lose the
end-to-end trainability over multiple time-steps [21]. Therefore, we opt for an
explicit convection-diffusion operation modeled as a constrained convolution ker-
nel [12]. The constrained convolution represents a particular differential operator
(in this case, convection and diffusion) as a learnable parameter in the explicit
scheme. Thus, the network becomes end-to-end trainable even in the presence of
viscosity over multiple time steps. We denote the resultant convection-diffusion
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Fig. 2. Building blocks of our proposed method: a) The explicit convection-diffusion
step is modeled using constrained convolution shown as PDE-Net, which enables an
end-to-end differentiability. The resultant convective term (un

conv) acts as a source
for fG, while the diffused term (un

diff ) contributes to the boundary condition Bn.
b) fG is a FCN, with ReLU activation, which takes the divergence of the convective
velocity and segmentation mask S as input and produces the convective pressure, pG.
c) fB is an MLP on channel dimension with tanh activation, which takes a domain
descriptor X (Fig. 5) as input and maps it to a spatial function pB . fB is optimized
for a specific geometry with their corresponding phase-field function ψ and specific
boundary condition Bn.

operation (∇un · un, Δun) as (un
Diff , un

Conv). This part of the network is
detailed as PDE-Net in Fig. 2a.

Pressure Decoupling (pG, pB): The resultant diffused and convective velocity
from the PDE-Net (un

Diff and un
Conv) in Fig. 2a contributes to the source of the

pressure gradient. We make a few observations here: 1) ∇ · (−∇un · un) causes
a pressure gradient due to the geometric variation within the control volume.
Additionally, the BC is non-zero at the inlet-outlet boundary and zero elsewhere.
Thus, the pressure drop due to BC is global in nature for a particular computa-
tional domain. 2) One may question as to why we do not use an end-to-end FCN
to infer pressure from velocity directly? To infer pressure from velocity, the com-
putational domain plays an important role through the BC (Dirichlet for veloc-
ity and Neumann for pressure generally). Although FCNs are good for learning
generalizable feature aggregates (from low-level edges to high-level objects in a
hierarchical manner), we need to solve a volumetric non-local operation such as
a boundary-conditioned volume integral to solve the pure Neumann BC. This
requires the whole domain information at once, which is nontrivial for an FCN
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to learn with a finite receptive field. 3) Similarly, we do not design an MLP-only
model with the Navier-Stokes equation embedded in the loss [17] because, if the
contribution in the pressure from the local geometric variation and global BC
are not balanced, the MLP often overlooks the weaker contribution.

To overcome the above problems, we propose to decouple the total pressure,
pn+1, as a sum of two components, i.e. pn+1 = pn+1

G + pn+1
B (Fig. 1), where pn+1

G

denotes the pressure quantity induced by the convection due to variation in local
geometric shape and pn+1

B represents the pressure distribution coming from the
inflow-outflow BC. Henceforth, the PPE needs to solve two separate equations,

Poisson’s Equation: Δpn+1
G = ∇ · (−∇un · un); s.t.

∂pn+1
G

∂η
= 0 (3)

Laplace’s Equation: Δpn+1
B = 0; s.t.

∂pn+1
B

∂η
= Bn (4)

For complex blood vessel geometries, the handling of BC is difficult due to:
a) discretization error, b) error in the boundary estimate, and c) implementation
of finite difference schemes for non-trivial BC, i.e., non-zero Neumann. [11] have
shown a practical approximation for complex geometry by using a phase-field
function for the Neumann BC in Eq. 4.

Fig. 3. An illustration of the phase-field function on a complex boundary. The original
BC was Neumann at the boundary ∂Ω. Diffused domain approximation transforms it
into a Dirichlet BC at the modified simpler boundary ∂Ω1. The smoothness factor (ε)
controls the approximation error vs robustness to noisy boundary trade-off.

As shown in Fig. 3, the computational domain can be realized as a phase-field
function ψ, where ψ = 1 inside the domain and ψ = 0 outside the domain. At the
boundary, this creates a smooth transition from 1 → 0 and therefore improves
the handling of complex geometries.

We solve the following approximated PDE problem,

ψΔpn+1
B + ∇ψ · ∇pn+1

B + Bn|∇ψ| = 0 (5)

This formulation transforms the Neumann BC into a source term in the
modified advection-diffusion equation (Eq. 5) with spatially varying coefficients.
Additionally, this alleviates the Lagrange multiplier tuning between the energy of
the Laplacian of the predicted field inside the domain and the energy mismatch
at the boundary as used in [13].
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FCN & MLP Share the Burden: To predict the convective induced pressure
pn+1

G , we need to learn a relationship between the divergence source term to a
compensating scalar field. Since the divergence occurs locally in nature, an FCN
is an ideal candidate for this task. We incorporate the multi-resolution FCN
proposed by [21] to solve Eq. 3. Let’s denote this network as fG parameterized
by θ (as described in Fig. 2b). The predicted pressure, pn+1

G , is given by,

pn+1
G = fG (∇ · (−∇un · un) , S; θ) (6)

where S is the binary segmentation mask of the vessel. We train fG by minimizing
the cumulative divergence of the predicted velocities over T time steps,

LG =
1

T

T∑

i=1

∫

Ω

∥∥∥∥∇ ·
(

−∇un · un − δt

ρ
∇pi+1

G

)∥∥∥∥ dv (7)

As shown earlier, Eq. 4 ensures a smooth BC even for complex geometries. We,
therefore, leverage the universal approximator property of the MLP to parame-
terize the functional form of the solution of Eq. 4 by fB with a set of parameters
φ. As shown in the MLP module in Fig. 2.c, fb takes a description of the domain
(Fig. 5) as input and maps it to a continuous spatial functional field. While in a
simpler geometry, the Cartesian coordinate system is a good domain descriptor,
a manifold aware descriptor is essential for the fB to learn unctions, which are
specific to geometries, such as blood vessels. To encode the manifold information
in the domain discriminator, we employ a local cylindrical coordinate system as
shown in Fig. 5. The fB network architecture is explained in Fig. 2.c. Now, pn+1

B

is computed as follows
pn+1

B = fB(x, Bn, ψ;φ) (8)

We adopt the phase-field approximation as described in the previous section
to easily handle complex geometry and increase robustness against noisy BC. We
train this network by minimizing the Laplacian energy over the control volume
while obeying the BC.

LB =

∫

Ω

‖ψΔpn+1
B + ∇ψ · ∇pn+1

B + Bn|∇ψ|‖dv

︸ ︷︷ ︸
volume integral

(9)

Appropriate discretization is employed to numerically evaluate the volume and
surface integral in Eq. 9. Note that both Eqs. 7 and 9 are trained in an unsuper-
vised manner. Initial conditions, the BC and segmented vessel mask are sufficient
inputs for training.

3 Experiments

In the following, we introduce a proof-of-concept study for validating our pro-
posed method on a simulated blood flow for brain aneurysms. We aim to esti-
mate the pressure within a blood vessel from the velocity fields for a viscous
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and transient fluid such as blood. As we do not have the ground truth pres-
sure to compare within the case of in-vivo 3D phase-contrast MRI, we rely on
patient-specific simulated flow models to validate our method. Furthermore, due
to the unavailability of standard datasets, it is a common practice [7,16,19] to
validate the learning-based method by comparing it to a numerical reference
solution. Therefore, given these constraints, we adopt a similar approach in our
work to validate our proposed pressure estimation model against the solution
of a numerical solver. Moreover, the unavailability of open-source codes posed a
critical bottleneck for us to benchmark against competing methods.

Fig. 4. (Left) Four patient-specific geometries (a → d) are used for simulation of the
flow segmented from 3D rotational angiogram images. These are the internal carotid
arteries with aneurysms, which makes the data representative of complex blood vessel
structures. After voxelization, the average size is 85 × 110 × 106 voxels. (Right) Syn-
thetic aneurysm geometry used for simulation of the flow. The spherical structure of
the aneurysm induces vortex and complex flow which is used to train fG

Fig. 5. Local cylindrical co-ordinates capture better domain topology than global
Cartesian co-ordinates in case of blood vessel geometry as illustrated in the figure
above. Points P1 and P2 are far apart to each other in the computational domain than
the Euclidean distance between them. An efficient alternative way to describe the rel-
ative position is with respect to its distance from the nearest center-line points. Thus
P1 or P2 can be represented with a pair of a) the distance from its closest centerline
point, and b) the distance between its closest centerline point and the reference point
along the centerline.
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Flow Simulation: We use four patient-specific geometries with cerebral
aneurysm (Fig. 4) to simulate 3D PC MRI sequences for one cardiac cycle, each
with 24 time-points with temporal resolution of 36 ms and spatial resolution
of 0.2 mm. We also have one synthetic geometry emulating an aneurysm in a
uniform cylindrical vessel. We obtain two simulated flow sequences using the
synthetic geometry, each with 100-time points and with a time step of 16 ms.
The blood flow for each geometry was modeled as an unsteady Newtonian incom-
pressible fluid with the following parameters: viscosity = 0.0032 Pa·s; density =
1050 kg/m3. The Navier-Stokes equations were solved using the finite volume-
based open-source platform OpenFOAM.V3.0. A second-order upwind scheme
for the convective terms and a semi-implicit method for the pressure linked equa-
tions is used. The inlet patient-specific flow BC was extracted from 2D PC-MRI,
and a zero pressure condition was used at the outlet. All the vascular walls were
assumed rigid.

Training and Inference: Although the ground truth pressure is available at
our disposal, we use them only for evaluation purposes. fG is trained for direct
inference of pG (while ignoring pB as it has no contribution in the inference of
pG due to the decoupling). We select a point for each geometry to use it as a
reference point for quantitative and qualitative comparison. We only use two
simulated sequences from the synthetic geometry for training fG. Since fB is a
parameterized function conditioned by the specific BC, it is optimized on-the-
fly during inference. Experimentally, the optimization of fB converges after 40
iterations.

4 Results and Discussion:

Individual Performance of fG and fB (Ablation Study): For quantita-
tive evaluation, we compare the predicted pressure, pG + pB , with the reference
pressure for all four test geometries. Furthermore, we find that the contribution
of pB is more than that of pG which is an expected behavior for highly viscous
flow, such as blood, under transient acceleration. The total pressure is the only
reference that is available from the CFD simulation and, therefore, we resort
to additionally solving fG using the Jacobi iteration and compare it with the
prediction of fG. This also serves as the ablation study of our approach since it
evaluates fG and fB separately. Figure 8 shows box plots for the absolute error
in total pressure (pG + pB) and pG with respect to the CFD simulated reference
pressure and reference pG obtained from Jacobi method respectively. We observe
that the highest error occurs at the most complex structure of geometry d.

From Fig. 6, we observe that the pressure estimation at the aneurysm bound-
ary has a higher absolute error than the areas with high flow. The outliers
observed in the Bland-Altman plot (Fig. 9) originate from this region. We
hypothesize that the local-cylindrical coordinate is optimal for a healthy vessel-
like structure but sub-optimal for degenerated cases as in aneurysm (which does
not have any active inflow or outflow rather than turbulent vortex). Our future
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Fig. 6. An example qualitative comparison from the test sequence at a time instant
(at t = 288 ms) from our experiment for all four geometries. All views are a 2D slice
taken from the mid-section of the geometry. The unit for pressure is in mm Hg and the
reference pressure at the primary outlet is set zero for the ground-truth, pG, and pB . a)
shows the segmented mask. b) shows that fG accurately captures the convective local
pressure variation and c) shows that fB infers a rather global pressure distribution
induced by BC. d) shows simulated reference pressure. f) shows the absolute difference
between pG + pB (shown in e) and the reference pressure.
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Fig. 7. Comparison between the mean reference and the mean estimated pressure for
four different geometries at the slice locations shown in the middle. The banded curves
indicate the 25% and 75% percentile of the distribution. The predicted pressure shows
a good agreement in dynamic behaviour as the simulated reference.

Fig. 8. Box plot for the absolute error in estimate of pG and pG + pB for four different
geometries over one cardiac cycle. The median error for pG+pB is consistently less than
1.5 mm Hg for all four geometries. Since, the contribution from pB is higher compared
to pG, the error in pG + pB mainly comes from pB .

work will focus on learning a more general domain descriptor using geometric
deep learning [2] suitable for a larger class of geometries than using hard-coded
coordinates. This will facilitate the extension of our approach to arbitrary struc-
tures in multiple applications.

Distribution of Slice Dynamics: We examine the dynamic behavior of the
predicted pressure at a particular plane over one cardiac cycle. The comparison
depicted in Fig. 7 shows a good agreement between the simulated reference and
the estimated pressure in terms of mean value and the distribution at the selected
slice. We observe that our proposed method underestimates when the reference
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Fig. 9. Bland-Altman plot between 500 randomly chosen data points of the reference
pressure and pG +pB from all four geometry. The X-Axis represents the average of the
reference pressure and pG + pB estimates while the Y-axis represents their difference.
This plot shows a high correlation between the estimated pG + pB and the reference
pressure with very few outliers.

pressure is high. We attribute this to be a performance trade-off as a consequence
of the increased robustness offered by the phase-field approximation against
the uncertainty in the BC values. The slice-wise processing is done as a post-
processing step after the prediction using ParaView v5.6.0 software.

Run-Time Comparison: The mesh-based CFD simulation to generate ref-
erence data in a high performance computing cluster takes circa 10 h for one
subject per one cardiac cycle while the total inference time for out proposed
method is circa 20 min on a single Quadro P6000 GPU. A recent study based
on an MLP where physics constraints work only in the loss function [9] has
reported several hours (∼ 7) to process a single geometry on a Tesla P100 GPU
on the geometry of an aorta. Since they learn the convective source and the BC
for every time points altogether, it takes a longer time for the network to learn
the spatial distribution of pressure. On the contrary, our method leverages time
discretization through network architecture and the splitting of pressure facili-
tates fast inference of pG and spends most of its computing time only to infer
pB .

5 Conclusion

We introduce an end-to-end neural network approximating the traditional
Navier-Stokes solver for incompressible Newtonian fluid flow with non-zero Neu-
mann boundary conditions. Furthermore, in the context of pressure inference
from the time-varying velocity field, we propose a novel approach for pressure
decoupling and validate this using a generalizable FCN and an anatomy specific
MLP-regressor based on the convection and boundary condition of the fluid. We
evaluate the proposed method on simulated patient-specific blood flow data and
find that our estimation closely approximates the simulated ground truth.
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Exploiting 4D-flow magnetic resonance imaging (MRI) data to quantify

hemodynamics requires an adequate spatio-temporal vector field resolution

at a low noise level. To address this challenge, we provide a learned solution

to super-resolve in vivo 4D-flow MRI data at a post-processing level. We

propose a deep convolutional neural network (CNN) that learns the inter-

scale relationship of the velocity vector map and leverages an e�cient residual

learning scheme to make it computationally feasible. A novel, direction-

sensitive, and robust loss function is crucial to learning vector-field data. We

present a detailed comparative study between the proposed super-resolution

and the conventional cubic B-spline based vector-field super-resolution. Our

method improves the peak-velocity to noise ratio of the flow field by 10 and

30% for in vivo cardiovascular and cerebrovascular data, respectively, for 4×

super-resolution over the state-of-the-art cubic B-spline. Significantly, our

method o�ers 10x faster inference over the cubic B-spline. The proposed

approach for super-resolution of 4D-flow data would potentially improve the

subsequent calculation of hemodynamic quantities.

KEYWORDS

4D-flow MRI, residual learning, flow super-resolution, cerebrovascular flow, flow

quantification

1. Introduction

Assessing quantitative hemodynamic metrics is crucial in diagnosing and managing

flow-mediated vascular pathologies. For example, monitoring wall shear stress along

the aortic vessel wall supports diagnostic assessment in patients with bicuspid aortic

valves (Guzzardi et al., 2015; Garcia et al., 2019); alteration in pressure distribution

(Leidenberger et al., 2020) is observed inMarfan disease. Similarly, local characterization

of the vortex core pattern can assist in rapture risk estimation of the vascular aneurysm

(Futami et al., 2019). 4D-flow magnetic resonance imaging (4D-flow MRI) (Markl et al.,

2012) provides spatiotemporally resolved velocity vector maps of coherent blood flow

through vascular structures. In applications mentioned above, 4D-flow MRI serves as a

basis for quantifying flow parameters and patterns non-invasively.

Accurate computation of image-based quantitative hemodynamic metrics from

4D-flow MRI is limited by the trade-offs between spatiotemporal resolution,

signal-to-noise ratio, and the clinically acceptable in vivo acquisition duration.
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In particular, low spatial resolution at near-wall points hamper

the numerical estimation of spatial derivatives of the three-

dimensional vector field (Petersson et al., 2012). Furthermore,

sometimes image registration is required to standardize the

image space for comparison purposes (Cibis et al., 2017),

which also involves isotropic resampling or super-resolution

of the 4D-flow data. Moreover, clinically important qualitative

visualization, such as streamlines (Cebral et al., 2011) and vortex

core line (Byrne et al., 2014) delineation, relies on improved

spatial resolution. Therefore, having access to high-resolution

4D-flow MRI image data is critical to infer hemodynamic

metrics reliably and using computational routines for improving

the image data after acquisition has become an indispensable

step in processing these data. This brings to the generations

of efficient acquisition algorithms and hardware acceleration,

such as parallel imaging (Stankovic et al., 2014), non-Cartesian

trajectories (Markl et al., 2012), k-t SENSE (Tsao et al.,

2003), k-t GRAPPA (Breuer et al., 2005), which enabled 4D-

flow MRI. In addition, several algorithms have emerged over

time, building on this accelerated acquisition to enhance the

measured 4D-flow MRI. In this direction, there are two parallel

streams of research in the context of MRI super-resolution: 1)

Compressed sensing: MRI super-resolution by improving high-

frequency components from the k-space (Santelli et al., 2016;

Ma et al., 2019) and 2) Single-volume MRI super-resolution:

acquiring conventional MRI at low spatiotemporal resolution

and retrospectively super-resolve data at the image level (Ferdian

et al., 2020) as post-processing.

Previous works based on MRI image quality enhancement

from k-space were focused toward velocity-field denoising (Ong

et al., 2015), divergence reduction (Mura et al., 2016), intravoxel

dephasing (Rutkowski et al., 2021), and streamline denoising

(Callaghan and Grieve, 2017). In contrast, super-resolution as

a post-processing step in the image space is more versatile and

applicable to any collection of images acquired by differing

sequences or MRI scanners, agnostic to the specifics of the k-

space sampling. Once we have the reconstructed MRI images in

the form of DICOM or NIFTI, super-resolution in image space

is an efficient and hustle-free plug-and-play feature. As such,

it is not a competing but a complementary and independent

field of work that is of particular relevance when dealing with

large and inhomogeneous multi-centric data sets or when access

to original k-space recordings is not available. In spite of

an abundance of conceptually related machine learning-based

techniques for video, super-resolution (Chu et al., 2018) and

optical-flow estimation (Liu et al., 2019), (that has not been

used for 4D-flowMRI super-resolution, though) the data-driven

reconstruction in image space remains under-explored in 4D-

flow MRI, which is a commonly used method either rely on

4D cubic spline (Stalder et al., 2008; Dyverfeldt et al., 2014)

or sinc (Bernstein et al., 2001) interpolation. In this work, we

will focus on adapting deep learning-based super-resolution to

the specific requirements of 4D-flow interpolation, leveraging

prior knowledge of flow fields from prior observations. At the

same time, we identify that the loss function is crucial for this

translation and offers a novel loss well-adapted to velocity fields.

1.1. Prior work on super-resolution in
image space

Super-resolution is a well-studied topic in computer vision,

where high-resolution images are reconstructed from low-

resolution images. Recently, deep neural networks based on

super-resolution (Bhowmik et al., 2018) have become popular

due to their high accuracy and fast processing time. Dong

et al. (2016) first introduced a fully convolutional network

for super-resolution. Most of the subsequent super-resolution

approaches rely on residual learning, where we predict the fine

detail using a convolutional network and add them with coarse

upsampled images (i.e., cubic spline). Two distinct approaches

in residual learning for super-resolution evolved in recent times:

a) upsample in the beginning and then extract fine details from it

using residual learning (Kim et al., 2016) and b) extract powerful

image features from the low-resolution image and add them

with the upsampled image at the end (Lim et al., 2017). The

former enjoys extra performance improvement, while the latter

is more efficient regarding the computational budget. Recently,

channel widening before activation in the residual branch has

been proposed (Yu et al., 2018), which not only helps shallow

features to propagate easily into deeper layers but also reduces

the network complexity. Zhang et al. (2018) has proposed a

residual in residual architecture for a very deep network with

a channel attention layer, which exploits non-linear interaction

between global channel statistics to scale individual features.

1.2. Prior work on MRI super-resolution
and challenges

Volumetric MRI super-resolution (Pham et al., 2017;

Lyu et al., 2020) in image space is analogous to the 2D

counterpart. However, the challenge lies in designing memory-

and computation-efficient methods suitable for 3D volume that

can be trained on a limited amount of training data. This

problem is exaggerated for 3D vector-valued data, requiring new

approaches to learn the inter-scale transformation effectively.

Previously, in an attempt to mitigate the 3D computational

complexity, a variation of residual learning called densely

connected convolutional network has been adopted in MRI

super-resolution by Chen et al. (2018). Often super-resolution

is interpreted as a texture synthesis problem using adversarial

learning (Sánchez and Vilaplana, 2018). Although adversarial

learning produces perceptually high-quality images (Xie et al.,

2018), it fails to achieve superior reconstruction metrics
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compared to non-adversarial learning, which is of main interest

in the case of 4D-flow MRI to accurately compute the velocities

and their spatial derivatives. Hence, we are not considering

adversarial learning. Previously, data-driven super-resolution

approaches explored other MRI modalities, such as super-

resolution of temporal perfusion MRI (Meurée et al., 2019) and

vector field super-resolution problem of diffusion MRI (Tanno

et al., 2017; Albay et al., 2018). Note that these methods either

rely on 2D slice-wise super-resolution or individual channel-

wise super-resolution in 3D. Ferdian et al. (2020) proposed

a residual network to super resolve 4D Flow MRI. Although

they also used computational fluid dynamic (CFD) to mitigate

the shortcomings of noisy in vivo data, their method relies

on the magnitude image alongside the velocity image. For

CFD, it is hard to simulate a magnitude image due to the

unknown relationship between the simulated velocity field and

the magnitude image intensities. Fathi et al. (2020) proposed

physics-informed deep learning to super resolve patient-specific

flow. However, they need to retrain their model for each new

patient since the physics-informed model does not generalize

over the computation domain, i.e., the vessel geometry in

this case.

1.3. Related work on 4D-flow MRI and
CFD

Several classical approaches have been applied to improve

the spatial resolution of 4D-fLow MRI, such as ridge-regression

(Bakhshinejad et al., 2017) and Lasso regression (Fathi et al.,

2018). Recently, Rutkowski et al. (2021) proposed a machine

learning-based solution to merge the CFD and MRI data.

Flow data assimilation is another active research field, where

the reduced-order Kalman filter (Habibi et al., 2021) and

local ensemble Kalman filter (Gaidzik et al., 2019, 2021)

have been used. Incorporating CFD simulation using interior-

point optimization framework (Töger et al., 2020) and lattice

Boltzmann-based topology optimization (Klemens et al., 2020).

While these works attempted to improve 4D-flow MRI by

merging CFD data, it requires expensive CFD simulation for

each new acquisition. Hence, we look for an alternative road

where we can learn a model using both CFD and in vivo 4D-flow

MRI data, and the learned solution can be used out of the box for

any newly acquired data without any further CFD simulation.

Along this line, we aim to find an elegant solution to learn

a scalable non-linear mapping from coarse- to fine-scale spatial

velocity field. Further, three channels of 4D-flow MRI together

represent the flow direction in 3D and should be treated as a

joint interpolation problem compared to earlier approaches on

scalar volumes (Chen et al., 2018; Sánchez and Vilaplana, 2018).

Moreover, the commonly used ℓ2 loss is sub-optimal for 4D-

flow MRI because of the non-Gaussian (Gudbjartsson and Patz,

1995) noise distribution and does not prioritize the direction

of point-wise velocity fields. Previously, direction-sensitive loss

functions, such as cosine similarity, have been explored in text

processing (Li andHan, 2013) and face recognition (Nguyen and

Bai, 2010). Since in 4D-flowMRI, the flow direction consistency

is important for all subsequent applications, we identify it as

a crucial aspect and propose including it in a novel mutually-

projected ℓ1 loss function.

1.4. Our contribution

In summary, our contributions are as follows:

• We propose a novel and memory-efficient end-to-end

convolutional neural network architecture, which learns

the non-linear relationship between fine- and coarse-scale

velocity fields and achieves super-resolution of the velocity

field. Moreover, it applies to 4D-flow data irrespective

of the scanner-specific constraints and access to the

k-space information.

• We introduce a novel, robust, and direction-dependent

cost function referred to as mutually projected ℓ1. We

investigate its effect on the proposed network compared to

the standard ℓ1 loss function.

• We further validate our method on in vivo 4D flow MRI

datasets of two anatomical regions, namely: a) an internal

carotid artery (ICA) brain aneurysm (Cerebrovascular

data) and b) whole heart and great vessel (Cardiovascular

data) that were acquired with different MRI scanners and at

different imaging centers. This assesses the generalizability

of the proposed method.

2. Materials and methods

In this section, we describe in detail the proposed learning-

based method (Section 2.1). Subsequently, we describe the

proposed robust loss function (Section 2.2) along with its

implementation details (Section 2.3).

2.1. Network architecture

4D-flow MRI provides time-resolved 3D blood flow velocity

maps over a single cardiac cycle. Our work focuses on super-

resolving along the spatial dimensions and treats each temporal

image frame as an independent sample. Let us denote the

low resolution velocity field and high resolution velocity field

as u and U respectively, where u ∈ RH×W×D×3, U ∈

RsH×sW×sD×3, H,W,D are the spatial dimensions, and s is

the factor of upscaling (s = 2, 3 or 4). We are interested in

learning a supervised data-driven mapping function from u →

U from the input-output pairs {ui,Ui}
n
i=1. Since three channels

denote three velocity components are highly correlated, we
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FIGURE 1

A proposed residual block consists of a sequence of channel widening, convolution followed by activation, channel squeeze and excitation (SE)

block. While the channel widening by a factor of p before activation helps to reduce network parameters, the SE block promotes diverse feature

distribution by compressing interim features by a factor of r.

FIGURE 2

PA proposed SRflow has a series of residual groups made of residual blocks, as shown in Figure 1. The residual grouping strategy maximally

leverages residual learning by exploiting hierarchical skip connections.

opted for a three-channel volumetric super-resolution instead

of individually super-resolving each velocity component. To

reduce the computational overhead, we naturally opt to extract a

rich feature from the low-resolution vector field using residual

learning and add the predicted fine details with upsampled

vector fields to reconstruct high-resolution velocity fields.

2.1.1. Building blocks

In recent times (Yu et al., 2018), wide-activation before the

convolution operation in the residual branch proved to be an

efficient strategy to reduce model complexity without sacrificing

super-resolution performance.We first extend the idea of having

widely activated residual blocks in 3D. Henceforth, we will call

this network WDSR-3D and use it as a baseline method for

evaluation purposes. We keep the weight normalization as was

proposed in Yu et al. (2018). We incorporate a sequence of

residual groups, which effectively accelerates the learning of deep

networks (Zhang et al., 2018). Since channel expansion with a

1×1×1 convolution kernel is applied, new channels are different

linear combinations of the previous layer channel without any

spatial feature propagating in the channel dimension. Thus,

information in the new channels carries redundant information.

We argue that although this redundancy gives multiple paths for

the gradient to propagate easily throughout the residual blocks,

they often share similar information. The recently introduced

squeeze and excitation (SE) (Hu et al., 2018) block helps to inject

useful cross-channel diversity in the residual features. Hence,

we leverage the feature diversity of an SE block to re-calibrate

the channel features. This is depicted in Figure 1. We will

refer to this modified architecture as SRflow in the subsequent

discussion, which is depicted in Figure 2.

2.1.2. SRflow

The first convolution layer transforms the input toC channel

feature maps. After first convolution, it goes through the N

number of residual groupsG1,G2, · · · ,GN. Each of the residual

group consists ofM number of R1,R2, · · · ,RM residual blocks.

The deep features and the input goes through their respective

feature refining convolution layer, which transforms channels

C → s3C. We use voxel shuffling layer [3D pixel shuffling (Shi

et al., 2016) layer] to rearrange features from channel dimension

to increase spatial dimension sH × sW × sD × C. The final

convolution layer merges fine details with the coarse up-scaled

branch and reconstruct super-resolved volume of size sH×sW×

sD× 3.
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FIGURE 3

Left: A 2D delineation of mutually projected ℓ1 (mp-ℓ1) error. The reference and the predicted vectors are u = [u0,u1] and v = [v0, v1],

respectively. Individual local minimas of J1(v;u) and J2(v;u) w.r.t v are shown in red line and purple circle, respectively. However the common

minima of the two losses are unique and are as same as the reference. Middle: A description of the ℓ1 error surface at u = [0.5, 0.5]. Right: A

description of the mp− ℓ1 error surface for the same u and α = β = 0.5, which has a direction sensitivity based on the value of u.

2.2. Robust loss function

4D-flow MRI data acquired in clinical settings are sparse in

both space and time, and they can be easily corrupted by noise.

Since noise in 4D-flow MRI is not Gaussian (Gudbjartsson and

Patz, 1995), it is sub-optimal to use an ℓ2 norm on the error in

our task. Thus, a robust cost function is needed for obtaining

accurate estimates of the super-resolved flow. Let us denote

the reference velocity as {ui}
n
i=1|ui ∈ R3 and the estimated

velocity as {vi}
n
i=1|vi ∈ R3. The most commonly used robust

loss function is ℓ1 loss. For n number of samples, it is defined as

Jℓ1 =
1

n

n
∑

i=1

‖vi − ui‖1 (1)

2.2.1. Mutually projected ℓ1 loss

ℓ1 loss penalizes the estimation error equally, irrespective of

the reference vector direction. Neighboring voxels tend to have

a different correlation in magnitude and direction based on local

blood vessel geometry and the global flow direction. Because

of this, we argue that a magnitude/direction disentanglement

in the loss would benefit the network to arrive at a better

trade-off between the accuracy of magnitude and direction

estimation under noisy circumstances. Also, errors inmagnitude

and direction are very different in the value range across the

spatial location, making it difficult to find optimal weight in the

case of a weighted loss function. To overcome this, we propose

to incorporate a directional sensitivity for the reference velocity

in the loss function. Specifically, we introducemutually projected

ℓ1 (mp-ℓ1) error (c.f. Figure 3). The projected ℓ1 error of v on u

is given by

J1(v; u) = |‖u‖ − ‖v‖ cos(θ)| (2)

Where θ is the angle between u and v. The local minima of

J1(v; u) is the orthogonal subspace of u. Similarly, the projected

ℓ1 error of u on v is given by

J2(v; u) = |‖v‖ − ‖u‖ cos(θ)| (3)

The local minima of J2(v;u) is the sphere centered at u/2 with

radius ‖u‖/2 excluding the origin 0. We take a convex linear

combination of J1 and J2 to construct the Jmp-ℓ1 loss

Jmp-ℓ1 =
1

n

n
∑

i=1

(αJ1(vi; ui)+ βJ2(vi; ui)) (4)

where [α + β = 1 : 0 < α,β < 1]

Note that both J1 and J2 independently have two different

solution spaces (cf Figure 3-left); however, Jmp-ℓ1 has a unique

local minima, which is also the global minima achieved under

the condition of v = u. Figure 3 explains mp-ℓ1 in 2D scenario.

The same interpretation holds in a higher dimension with a

hyper-sphere and a hyper-plane instead of a circle and a line.

Unlike ℓ1 loss, mp-ℓ1 has directional sensitivity depending on

the value of u, which helps the pointwise error to adapt locally

near the minima.

2.2.2. Combined loss

In our experiment, we find that the combination of ℓ1 and

mp-ℓ1 losses helps to achieve the best performance in terms of

training loss and validation PVNR. The complete loss function

is as follows

Jopt = λℓ1Jℓ1 + λmp-ℓ1Jmp-ℓ1 (5)

where λℓ1 and λmp-ℓ1 are two weight parameters.
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FIGURE 4

Typical examples of three data sets used in our experiments.

2.3. Implementation details

We implement our model in PyTorch. In the network

architecture, we use N = 4 andM = 2. We expand the features

by p = 32 times for the wide activation, and for the SE block,

we use r = 8. For loss function, we select α = β = 0.5 and

λℓ1 = λmp-ℓ1 = 1. We select the learning rate at 10−3 and

use the ADAM optimizer for all of our experiments. We train

each model for 200 epochs with a learning rate decay of 0.9

after every 10 epochs with a batch size of 4 in a Quadro P6000

GPU. The best model is chosen based on the validation peak

velocity-to-noise ratio (PVNR).

2.4. Datasets

To study how well our model generalizes in practice, we

chose two different vascular regions, which are also of numerous

clinical relevance (Amili et al., 2018; Garcia et al., 2019).

Importantly, these two datasets are obtained from two different

scanners. The dataset consists of three different sets of flow data;

a) Synthetic Cerebrovascular Data: CFD simulated flow data

of cerebral aneurysm, b) In vivo Cerebrovascular Data: in vivo

4D-flow MRI of ICA aneurysm, and c) In vivo Cardiovascular

Data: in vivo 4D-flow MRI of the whole heart and great vessels.

Exemplary samples from the datasets have been shown in

Figure 4.

2.4.1. Synthetic cerebrovascular data

We obtain patient-specific cerebrovascular aneurysms

(N= 6) in ICA geometries from 3D rotational angiograms.

We segment the blood vessel geometries from the computed

tomography using the MITK v2018.4. We generate the

triangulated mesh using ICEM CFD v.19 (ANSYS Inc). We

model the blood flow as an unsteady Newtonian flow and solve

the Navier-Stokes equations using the finite volume-based

OpenFOAM-v3.0. We impose the inlet patient-specific flow

boundary conditions extracted from 2D phase-contrast MRI

and a zero pressure condition at the outlet. All the vascular walls

are assumed rigid. We use a second-order upwind scheme for

the convective terms and a semi-implicit method for pressure-

linked equations. We employ an algebraic multi-grid-based

solver for high-precision simulation. We simulate the blood

flow with the following parameters: viscosity 0.0032 Pa·s;

density 1,050 kg/m3 (Brindise et al., 2019).

2.4.2. In vivo 4D-flow MRI data

A total number of 24 in vivo 4D-flow MRI data sets are

included: Cardiovascular data of healthy subjects covering the

whole heart (N = 10) or thoracic aorta only (N = 11); and

cerebrovascular data of patients with ICA aneurysm (N = 3). All

in vivo volunteers were recruited prospectively. The institutional

review board approves all imaging studies, and written consent

is obtained before scanning. All cardiovascular data are acquired

using a 1.5 T MRI system (Siemens Avanto) with breathing

navigator gating and prospective electrocardiogram triggering.

Three ICA aneurysm data sets are acquired using a 3 T

MRI system (Philips Achieva TX) with prospective cardiac

triggering using a peripheral pulse unit. No contrast agent is

used. Acquisition parameters for both types of data are listed

in Table 1. For all datasets, Maxwell terms and gradient non-

linearity are corrected during reconstruction. Eddy current

phase offset is corrected offline.

2.5. Data preparation

For synthetic and in vivo data sets, we rely on the following

data preparation steps to create training data. We consider the

acquired image volume as the high-resolution reference data.

1. We first convert the velocity data into phase using a venc =

vmax/π to avoid any phase warping. Next, we combine the

magnitude with phase and transform the reference data into

Fourier space. Note that we use synthetic data’s segmentation

mask as the dummy magnitude.

2. Then, we crop the low-frequency component from the k-

space according to the downsampling factors.

Frontiers in Artificial Intelligence 06 frontiersin.org



Shit et al. 10.3389/frai.2022.928181

TABLE 1 Acquisition parameters in our study for the synthetic and in vivo 4D-flow MRI data set.

Synthetic cerebrovascular In vivo Cerebrovascular In vivo Cardiovascular

FOV [mm] 320–440 x 370–520 x 320–470 190 x 210 x 32 340–360 x 210–250 x 80–150

Acquisition matrix - 128 x 128 x 32 160 x 100 x 32–64

Spatial res. [mm] 0.25 x 0.25 x 0.25 0.82 x 0.82 x 0.82 2.1–2.3 x 2.1–2.5 x 2.3–2.5

Temporal res. [ms] 36 55 40

Patient cohort 6 3 21

Scanner - 3.0 T Philips Achieva TX 1.5 T Siemens avanto

TE/TR [ms] - 2.9/4.6 2.54/5

Venc [cm/s] - 80 150

Parallel imaging - SENSE (R = 2) (Pruessmann et al., 1999) PEAK-GRAPPA (R = 5) (Jung et al., 2008)

Cardiac gating - peripheral pulse unit ECG

FOV, field of view; TE, echo time; TR, repetition time; Venc , velocity encoding range; ECG, electrocardiogram.

3. We apply additive Gaussian noise with the k-space.

4. Finally, we apply Fourier inversion and multiply the phase

with venc to obtain the low-resolution training data.

This process closely resembles the sub-sampling process in the

MRI scanner (Gudbjartsson and Patz, 1995). For our training,

we extract patches of sizes 24×24×12×3, 16×16×8×3, and 12×

12× 6× 3 from the low-resolution volume for 2×, 3×, and 4×

super-resolution, respectively. The patches-size corresponding

to the high-resolution volume is 48 × 48 × 24 × 3. The patches

are selected on-the-fly during training from a random location

of the training data.We normalize the input to [-1,1] by dividing

the velocity with vmax, the maximum velocity present.

2.6. Evaluation metrics

Peak velocity-to-noise ratio (PVNR) is commonly used to

quantify the reconstruction quality of the estimated velocity

field. We use PVNR as a primary metric to quantify the

performance of our proposed super-resolution method. PVNR

between reference (u) and the estimated velocity (v) is

PVNR = 20 log10
1

RMSvel
dB (6)

RMSvel =
1

maxi ‖ui‖

√

√

√

√

1

N

N
∑

i=0

‖ui − vi‖
2 (7)

where RMSvel is the normalized-root-mean-squared-error of

velocity. PVNR represents a combined error in the magnitude

estimation and the phase estimation. Furthermore, we aim to

deconstruct the source of error into its magnitude and phase

component. As a measure of the error in magnitude estimation,

we compare the normalized-root-mean-squared-error of speed

(RMSspeed) as described below

RMSspeed =
1

maxi ‖ui‖

√

√

√

√

1

N

N
∑

i=0

(‖ui‖ − ‖vi‖)
2 (8)

We also computeDirection Error (Edir) tomeasure the deviation

of instantaneous velocity direction with respect to the reference

velocity. The error in direction estimation is critical in some

downstream tasks, such as streamline-tracing and path-line

tracking, where the corresponding algorithm’s accuracy depends

on direction estimation accuracy.

Edir =
1

N

N
∑

i=0

(

1−
〈ui · vi〉

‖ui‖ ‖vi‖

)

(9)

Furthermore, we emphasize the flow consistency in terms of the

flow divergence of the super-resolved flow field. We compute

the root-mean-squared divergence in the region of interest and

compare it against the high-resolution reference velocity.

RMSdiv =

√

√

√

√

1

N

N
∑

i=0

|∇ · vi|
2 (10)

3. Results

In this section, we describe our experiments and the main

results. We refer to WDSR-3D as the 3D extension of WDSR by

Yu et al. (2018). For the details of WDSR architecture, please

refer to the original paper by Yu et al. (2018). This is one

of the top-performing methods in the NTIRE super-resolution

challenge. Hence, we select this as the baseline of our study and

build our contribution upon it. We compare our work to the

WDSR-3D for two main purposes. First, it is a strong baseline

that is scalable to 3D. Second, its residual learning architecture

is similar to the existing method (Ferdian et al., 2020) and
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provides a point of reference for comparison. The method by

Ferdian et al. (2020) also requires magnitude images, which is

not a good candidate for training with CFD simulated data.

Since we are not using magnitude images in our training, we

are unable to perform a direct comparison. Although it is not

100% identical, WDSR-3D is analogous to their method and can

serve as a point of reference. In our experiment with WDSR-3D

on synthetic data, we observe that ℓ1 loss offers on average 1dB

PVNR improvement over ℓ2 loss for 2x super-resolution. From

this observation, we choseWDSR-3D with ℓ1 loss as the baseline

model for our experiments. We will denote SRflow (ℓ1), SRflow

(mp-ℓ1), and SRflow (opt) trained with Jℓ1 , Jmp-ℓ1 , and Jopt ,

respectively. The following two subsections (Experiment-1 & -

2) are the descriptions of the experimental setup. For statistical

significance analysis, we performed a Wilcoxon signed-rank

test. For this, we collected predictions from all of the 3-fold

validation.We declare statistical significance when the p-value is

lower than 0.001. The analysis of their results is presented jointly

in Section 4.

3.1. Experiment-1: Train on synthetic
cerebrovascular data

First, we train and test our model on the synthetic

cerebrovascular data. We perform three experiments with three

different train-validation splits and report the combined results.

This allows us to maximize training examples while performing

required cross-validation. For each experiment, we have selected

(120 samples) five subjects as training and the remaining one

as the validation data (24 samples). The train-validation split

was fixed across the models and loss functions for a fair

comparison.

3.1.1. Part A: Evaluation on synthetic
cerebrovascular data

This experiment serves as the proof of concept for both

our model and loss function. We compute each metric’s mean

and SD for the validation data over three independent trials.

We train separate models for three different upscaling factors,

such as 2×, 3×, and 4× SR. Figure 5A shows the boxplot of

four different metrics for the experiments on the synthetic data.

We present the comparative result for different experiments set

in Supplementary Table S1. Supplementary Figure S1 presents

an exemplary temporal visualization of PVNR for a particular

slice from the validation set. Supplementary Figure S2 presents

the error profile of the velocity field for the corresponding

slice location of the same example, which is done using

Paraview.

3.1.2. Part B: Evaluation on in vivo

cerebrovascular data

We evaluate the model trained on synthetic cerebrovascular

data on the 32 in vivo cerebrovascular samples from 2 subjects.

Supplementary Table S2 shows the quantitative comparison of

all the metrics for three different scaling factors. We observe

that the improvement in metrics for scaling factors 2× and 3×

is low compared to 4×. The improvement is also relatively lower

than the improvement observed in Supplementary Table S1.

Although SRflow (opt) consistently performs better than the

cubic spline and baselineWDSR-3D, we investigate the inclusion

of in vivo data during training in the following.

3.2. Experiment-2: Fine-tune on in vivo

cardiovascular data

The previous experiment shows that the model trained on

synthetic data does not offer the same degree of improvement

over cubic-spline on in vivo cerebrovascular data for lower

scaling factors. We attribute this to the fact that different noises

and artifacts are present in the in vivo data (Johnson and Markl,

2010). We fine-tune the model using in vivo cardiovascular data

to overcome this gap. We choose to fine-tune all our model

Experiment-1 on in vivo cardiovascular data instead of in vivo

cerebrovascular data because cardiovascular data have more

samples than cerebrovascular data and consists of a significantly

richer variation of noise and artifacts (Fathi et al., 2018). Similar

to synthetic experiments, we perform three experiments with

three different train-validation splits and report the combined

results. For each experiment, we have selected 17 subjects as

training and the remaining 4 as the validation set. Similar to

before, the train-validation split was fixed across the models and

loss functions for a fair comparison. Finally, we directly translate

the trained model from cardiovascular data to in vivo aneurysm

4D-flow MRI data and evaluate the performance.

3.2.1. Part A: Evaluation of in vivo

cardiovascular data

Similar to our synthetic data experiments, we perform

the experiments for three different scenarios, such as 2×,

3×, and 4× super-resolution. Figure 5B shows the boxplot of

four different metrics for the validation data. The comparative

result for this experiment is shown in Supplementary Table S3.

Figure 6 shows a qualitative comparison of representative

cardiac data from our experiments.

3.2.2. Part B: Re-evaluation of in vivo

cerebrovascular data

We use the trained model from the cardiovascular

experiments and evaluate the in vivo cerebrovascular data
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FIGURE 5

Left → right shows the box plots for peak velocity-to-noise ratio (PVNR), root-mean-squared-error (RMS)speed, Edir , and RMSdiv , respectively.

The x-axis shows di�erent upscaling factors 2×, 3×, and 4× respectively. Higher (↑) PVNR and lower (↓) RMSspeed, Edir and RMSdiv indicates

better performance. Note that SRflow (opt) consistently outperforms the baseline models. (A) Experiment-1 Part A: box plots for synthetic

cerebrovascular data. (B) Experiment-2 Part A: box plots for in vivo cardiovascular data. (C) Experiment-2 Part B: box plots for in vivo

cerebrovascular data.

FIGURE 6

Qualitative comparison of streamlines obtained from di�erent methods on two representative in vivo samples (left-cardiovascular and

right-cerebrovascular). SRflow (opt) shows closer similarity to the reference streamlines for both the cases, while it reduces artifacts.

without further fine-tuning. Supplementary Table S4 shows the

quantitative comparison of all the metrics for three different

scaling factors. Figure 5C shows the boxplot of four different

metrics for the in vivo cerebrovascular data. Figure 6 shows

a qualitative comparison of representative aneurysm data

from our experiments. Additionally, we have shown the
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FIGURE 7

Bland-Altman plot for the three velocity components of 50,000 random samples from the in vivo cerebrovascular data for the SRflow(opt)

model fine-tuned with cardiovascular data. We observe excellent agreement between the prediction and the reference.

FIGURE 8

Qualitative images from di�erent methods on a representative cerebrovascular sample. Note that cubic spline interpolation creates unnecessary

amplification and attenuation of flow where SRflow (opt) preserves the flow intensity closest to the reference (HR).

Bland-Altman plot (Figure 7) for each velocity component,

which shows good agreement with the reference, and the error

is homogeneously scattered across the (mean ±1.96 × SD)

range. Qualitative results from Figure 8 show that SRflow (opt)

produces the closest prediction to the reference.

4. Discussion

4.1. Ablation study and transfer learning

4.1.1. E�ect of squeeze and excite block

From Figures 5A–C and Supplementary Tables S1–S4 in the

Appendix, we observe that cubic-spline-based upsampling is

consistently inferior compared to the learning-based solutions.

The performance gain between these two increases with

the upsampling factor for both the synthetic and in vivo

data. However, the improvement for synthetic cerebrovascular

data (Supplementary Table S1) is greater than the in vivo

cardiovascular data (Supplementary Table S3). We attribute this

to the ‘reference’ 4D-flow MRI data being noisy, which may

hamper the reconstruction quality measure. Furthermore, we

notice that the SRflow (ℓ1) network achieves better PVNR,

RMSspeed, Edir , and RMSdiv. than the WDSR-3D counterpart

for all three cases of super resolutions 2×, 3×, and 4×. We

find SRflow (ℓ1) results are statistically significant (p < 0.001)

compared to WDSR-3D for all four metrics. We believe this is

due to the fact that the diversity in feature space induced by

the SE block better captures the inter-scale relationship of the

velocity field.

4.1.2. E�ect of our proposed loss function
(mp-ℓ1)

We investigate the effect of two different loss functions

discussed in Section 2.2 on the SRflow architecture. For

Experiment 1 (Supplementary Tables S1, S2), we see that SRflow

(opt) performs consistently better than the other loss functions

for all super-resolution factors concerning PVNR and RMSspeed.

For Edir , SRflow (opt) produces the lowest error except 4× factor

in Supplementary Table S1. For RMSdiv, we observe that SRflow

(ℓ1) produces the lowest error. We find the improvements
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TABLE 2 E�ect of divergence loss and data augmentation strategy on synthetic cerebrovascular data.

Methods s PVNR (dB) ↑ RMSspeed (ms−1) ↓ Edir ↓ RMSdiv (s
−1) ↓

SRflow (opt) ×2 39.14± 0.629 0.0161± 0.00487 0.0084± 0.00008 0.0014± 0.00038

SRflow (ℓ1 + div) ×2 38.89± 0.427 0.0138 ± 0.00346 0.0081 ± 0.00005 0.0012 ± 0.00026

SRflow (opt+mixed data) ×2 39.21± 0.301 0.0138 ± 0.00249 0.0084± 0.00008 0.0013± 0.00028

SRflow (opt+ div) ×2 38.93 ± 0.426 0.0138 ± 0.00342 0.0084± 0.00007 0.0012 ± 0.00027

SRflow (opt) ×3 35.20± 0.520 0.0253± 0.00732 0.0102± 0.00008 0.0015± 0.00042

SRflow (ℓ1 + div) ×3 35.45± 0.376 0.0205± 0.00494 0.0088 ± 0.00006 0.0013± 0.00029

SRflow (opt+mixed data) ×3 35.19± 0.260 0.0241± 0.00405 0.0102± 0.00005 0.0015± 0.00026

SRflow (opt+ div) ×3 35.94 ± 0.389 0.0196 ± 0.00478 0.0088 ± 0.00006 0.0012 ± 0.00028

SRflow (opt) ×4 33.87± 0.642 0.0293± 0.00888 0.0097± 0.00015 0.0017± 0.00048

SRflow (ℓ1 + div) ×4 34.44± 0.399 0.0226 ± 0.00560 0.0096 ± 0.00006 0.0014± 0.00032

SRflow (opt+mixed data) ×4 33.24± 0.256 0.0269± 0.00603 0.0096 ± 0.00002 0.0013 ± 0.00030

SRflow (opt+ div) ×4 34.51 ± 0.428 0.0229± 0.00573 0.0098± 0.00003 0.0013 ± 0.00031

The bold values mean the highest score of the corresponding scale factor×2,×3, and×4.

TABLE 3 Comparison on data augmentation strategy on in vivo cerebrovascular data.

Methods s PVNR (dB) ↑ RMSspeed (ms−1) ↓ Edir ↓ RMSdiv (s
−1) ↓

SRflow (opt) ×2 33.52 ± 2.703 0.0164 ± 0.00878 0.0053± 0.00160 0.0083 ± 0.00394

SRflow (opt+mixed data) ×2 33.32± 2.588 0.0167± 0.00878 0.0051 ± 0.00131 0.0083± 0.00387

SRflow (opt) ×3 30.46 ± 2.473 0.0228 ± 0.01188 0.0120 ± 0.00345 0.0070 ± 0.00333

SRflow (opt+mixed data) ×3 30.39± 2.390 0.0229± 0.01177 0.0122± 0.00347 0.0070± 0.00336

SRflow (opt) ×4 28.30 ± 2.321 0.0279 ± 0.01456 0.0242 ± 0.00723 0.0067± 0.00325

SRflow (opt+mixed data) ×4 28.03± 2.258 0.0294± 0.01491 0.0245± 0.00694 0.0062 ± 0.00311

The bold values mean the highest score of the corresponding scale factor×2,×3, and×4.

from SRflow (opt) over baseline (WDSR-3D) and other SRflow

variants to be statistically significant (p < 0.001) for PVNR,

RMSspeed, and Edir . While we do not find any statistically

significant (p > 0.001) difference between the SRflow (ℓ1)

and SRflow (opt) for RMSdiv for S1, the same is statistically

significant (p < 0.001) for Supplementary Table S2.

For experiment 2 (Supplementary Tables S3, S4), SRflow

(opt) improves PVNR for all scale factors compared to

baseline (WDSR-3D) and other SRflow variants. For RMSspeed,

SRflow (opt) and SRflow (mp-ℓ1) result in the lowest

error. For Edir , SRflow (opt) produces the lowest error

except for the 4× factor in Supplementary Table S1. WDSR-

3D and SRflow (ℓ1) produce the lowest RMSdiv. Although

SRflow (opt) reduces Edir consistently, it produces slightly

higher RMSspeed and RMSdiv than SRflow (mp-ℓ1) and

SRflow (ℓ1), respectively. We attribute this to the fact

that mp-ℓ1 offers a trade-off between accurate magnitude

and phase estimation of the velocity field during training

on ‘noisy reference.’ While higher PVNR ensures good

signal quality for accurate quantitative analysis, lower Edir
reduces error in the qualitative assessment, such as streamline

tracing. We find the improvements from SRflow (opt)

over baseline (WDSR-3D) and other SRflow variants to be

statistically significant (p < 0.001) for PVNR, RMSspeed,

and Edir . We find no statistically significant (p < 0.001)

difference between the SRflow (ℓ1) and SRflow (opt) for

RMSdiv for Supplementary Tables S3, S4. In stark contrast with

Supplementary Table S3, this shows the benefit of fine-tuning

using in vivo data.

The mp-ℓ1 alone fails to improve the performance

compared to the standard ℓ1, but it is evident from

Supplementary Tables S1, S3 that when combined with

the ℓ1 it outperforms both. We hypothesize that gradient

from mp-ℓ1 loss is beneficial when the directional error

is large because of the directional sensitivity, which is

helpful for the ‘exploration’ in the early stage of training.

Additionally, since the loss curve of mp-ℓ1 is smoother

compared to ℓ1 loss at lower error, ℓ1 provides a stronger

gradient than mp-ℓ1, which is vital in the ‘exploitation’

of the final stage of training. Hence, the performance

improvement stands out when both loss functions are

used simultaneously.

We experimented with divergence loss function, which can

serve as a physics constrained regularizer. The divergence loss is
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FIGURE 9

Velocity streamlines from an in vivo cerebrovascular 4D-flow

MRI. The seed points are placed using a spherical source. The

landmarks are used in Table 4.

defined below.

Jdiv =
1

n

n
∑

i=1

‖∇ · vi‖2 (11)

We have identical experiment settings for divergence loss as

described before to have a fair comparison. We have observed

from Table 2 that the inclusion of divergence loss improved

the results in both cases. In particular, the divergence metric

improved consistently across the different upsampling factors.

We also observe that the gain is slightly higher in the case

of SRflow (opt) than in standard ℓ1 loss, which reasserts the

effectiveness of our proposed loss function. However, since

divergence cannot be used as a standalone loss function, we

conclude from these experiments that using it as a regularizer

benefits the model.

4.1.3. Transfer learning

We fine-tune our model on the in vivo cardiovascular data

and validate it on the in vivo cerebrovascular data, scanned

in an entirely different scanner and velocity encoding value.

Despite the difference in the anatomical region, we observe that

our proposed SRflow (opt) improves all metrics significantly

(c.f. Supplementary Table S4). Especially we observe that it

produces the lowest RMSdiv compared to other methods, which

is also statistically significant. This observation confirms that

our model can be seamlessly transferred to other existing MRI

acquisition configurations without the need for any further local

fine-tuning.

We have performed additional experiments comprising joint

CFD and in vivo datasets and reported Tables 2, 3. We compare

the result from joint training and training sequentially in

synthetic and in vivo data on both synthetic and in vivo data.

We observe a marginal improvement on the synthetic test set.

However, the results deteriorate slightly on the in vivo test set.

TABLE 4 The mean of relative error in the number of streamlines with

respect to the reference in vivo data over one cardiac cycle, which is

computed at two landmarks as shown in Figure 9 for di�erent

super-resolution methods.

Method Landmark 1 Landmark 2

Cubic-spline 0.66 0.76

WDSR-3D 0.50 0.16

SRflow (ℓ1) 0.37 0.16

SRflow (mp-ℓ1) 0.36 0.21

SRflow (opt) 0.31 0.11

TABLE 5 Runtime comparison between SRflow and cubic spline,

where we see that SRflow is much faster.

Method 2x 3x 4x

Cubic spline 76.42 s 76.19 s 73.09 s

SRflow (opt) 8.17 s 3.80 s 2.86 s

We attribute this to the fact that the MRI artifacts and noise are

difficult to model in the CFD data.

4.2. Global quality evaluation of
reconstructed velocity

Besides the voxel-wise reconstruction metrics, analyzing the

effect of the super-resolved velocity field on a global level, such

as path integration along the flow field, are also important. We

compare the computed streamlines for in vivo 4D-flowMRI data

to assess the global reconstruction quality.

Streamlines (Cebral et al., 2011) is an important visualization

technique, often used as the primary mode for clinicians’

interpretable representation of 4D-flow MRI. The continuity

of streamlines can be used as an alternative way to measure

the quality of the super-resolved vector fields. We start the

streamline tracing near the aneurysm with 2000 seed points and

extend toward both the landmarks as shown in Figure 9. We

compute the relative error between the number of streamlines

produced by each super-resolver volume and the reference

streamline. Table 4 shows the mean of the relative error over

one cardiac cycle at two landmarks for the 4× super-resolution

task. We find that the cubic spline always underestimates the

number of streamlines, and SRflow (opt) produces the lowest

relative errors.

4.3. Runtime comparison

We compare the runtime for a 96 × 132 × 48 3D volume

between the cubic spline and the neural network-based model

for three different resolutions. We compare the runtime in a
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workstation equipped with Intel(R) Xeon(R) W-2123 and 64

GB DDR4 RAM. The comparison is shown in Table 5. SRflow

offers significant computational speedup, which is favorable for

clinical application.

4.4. Limitation and outlook

While the improved resolution will be beneficial in

increased stability for numerical gradient computation, its

accuracy is still limited to finite difference schemes and

the maximum super-resolution factor learned during training

for optimal performance. Furthermore, the current study is

limited in exploring different spatial super-resolution factors,

and temporal super-resolution is of future research interest.

Additionally, including other realistic perturbations, such as

scan-rescan variability, phase aliasing, and eddy current effect,

would be of interest to include in the model. Future research will

include increasing the number of samples of the in vivo cohort.

Future work will also focus on further quantitative assessment of

advanced parameters, such as WSS and KE.

5. Conclusion

This paper investigates the effectiveness of deep learning

in super-resolving 4D-flow MRI data up to 4x resolution.

We have started with a strong baseline model and gradually

improved it by incorporating expressive squeeze and excite

block. Furthermore, we introduce a novel robust loss function

with directional sensitivity suitable for velocity data. With

extensive validation, we demonstrated the effectiveness of the

introduced component. Next, we show that the model learned

from synthetic CFD data still requires finetuning on in vivo

data for improved performance. Importantly, this finetuning

is not dataset-dependant and can be applied seamlessly to

other in vivo datasets without further finetuning. Naturally, we

have improved runtime compared to the classical interpolation

method, which could enable future 4D-flow MRI acquisitions at

lower resolution—and thus with decreased scan time—without

compromising the accuracy of quantitative flow analysis.
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Abstract

Accurate segmentation of tubular, network-like struc-
tures, such as vessels, neurons, or roads, is relevant to
many fields of research. For such structures, the topology
is their most important characteristic; particularly preserv-
ing connectedness: in the case of vascular networks, miss-
ing a connected vessel entirely alters the blood-flow dynam-
ics. We introduce a novel similarity measure termed center-
lineDice (short clDice), which is calculated on the inter-
section of the segmentation masks and their (morpholog-
ical) skeleta. We theoretically prove that clDice guaran-
tees topology preservation up to homotopy equivalence for
binary 2D and 3D segmentation. Extending this, we pro-
pose a computationally efficient, differentiable loss func-
tion (soft-clDice) for training arbitrary neural segmenta-
tion networks. We benchmark the soft-clDice loss on five
public datasets, including vessels, roads and neurons (2D
and 3D). Training on soft-clDice leads to segmentation with
more accurate connectivity information, higher graph simi-
larity, and better volumetric scores.

1. Introduction
Segmentation of tubular and curvilinear structures is an

essential problem in numerous domains, such as clinical
and biological applications (blood vessel and neuron seg-
mentation from microscopic, optoacoustic, or radiology im-
ages), remote sensing applications (road network segmen-
tation from satellite images) and industrial quality control,
etc. In the aforementioned domains, a topologically accu-
rate segmentation is necessary to guarantee error-free down-
stream tasks, such as computational hemodynamics, route
planning, Alzheimer’s disease prediction [18], or stroke
modeling [20]. When optimizing computational algorithms
for segmenting curvilinear structures, the two most com-
monly used categories of quantitative performance mea-
sures for evaluating segmentation accuracy of tubular struc-

*The authors contributed equally to the work

Figure 1. Motivation: The figure shows a 3D rendering of a com-
plex, whole brain vascular dataset [48], where an exemplary 2D
slice of the data is chosen and segmented by two different models,
see purple (middle) and red (right), respectively. The two segmen-
tation results achieve identical quality in terms of the traditional
Dice score. Note that the purple segmentation does not capture the
small vessels while segmenting the large vessel very accurately;
on the other side, the red segmentation captures all vessels in the
image while being less accurate on the radius of the large vessel.
Skeleta are drawn in yellow. From a topology or network perspec-
tive, the red segmentation is evidently preferred.

tures, are 1) overlap based measures such as Dice, preci-
sion, recall, and Jaccard index; and 2) volumetric distance
measures such as the Hausdorff and Mahalanobis distance
[21, 40, 36, 16].

However, in most segmentation problems, where the
object of interest is 1) locally a tubular structure and 2)
globally forms a network, the most important characteris-
tic is the connectivity of the global network topology. Note
that network in this context implies a physically connected
structure, such as a vessel network, a road network, etc.,
which is also the primary structure of interest for the given
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image data. As an example, one can refer to brain vascula-
ture analysis, where a missed vessel segment in the segmen-
tation mask can pathologically be interpreted as a stroke
or may lead to dramatic changes in a global simulation
of blood flow. On the other hand, limited over- or under-
segmentation of vessel radius can be tolerated, because it
does not affect clinical diagnosis.

For evaluating segmentations in such tubular-network
structures, traditional volume-based performance indices
are sub-optimal. For example, Dice and Jaccard rely on
the average voxel-wise hit or miss prediction [46]. In a task
like network-topology extraction, a spatially contiguous se-
quence of correct voxel prediction is more meaningful than
a spurious correct prediction. This ambiguity is relevant for
objects of interest, which are of the same thickness as the
resolution of the signal. For them, it is evident that a single-
voxel shift in the prediction can change the topology of the
whole network. Further, a globally averaged metric does
not equally weight tubular-structures with large, medium,
and small radii (cf. Fig 1). In real vessel datasets, where
vessels of wide radius ranges exist, e.g. 30 µm for arteri-
oles and 5 µm for capillaries [48, 9], training on a globally
averaged loss induces a strong bias towards the volumet-
ric segmentation of large vessels. Both scenarios are pro-
nounced in imaging modalities, such as fluorescence mi-
croscopy [48, 58] and optoacoustics, which focus on map-
ping small capillary structures.

To this end, we are interested in a topology-aware image
segmentation, eventually enabling a correct network extrac-
tion. Therefore, we ask the following research questions:

Q1. What is a good pixelwise measure to benchmark seg-
mentation algorithms for tubular, and related linear
and curvilinear structure segmentation while guaran-
teeing the preservation of the network-topology?

Q2. Can we use this improved measure as a loss function
for neural networks, which is a void in existing litera-
ture?

1.1. Related Literature

Achieving topology preservation can be crucial to ob-
tain meaningful segmentation, particularly for elongated
and connected shapes, e.g. vascular structures or roads.
However, analyzing preservation of topology while simpli-
fying geometries is a difficult analytical and computational
problem [11, 10].

For binary geometries, various algorithms based on thin-
ning and medial surfaces have been proven to be topology-
preserving according to varying definitions of topology
[23, 25, 26, 35]. For non-binary geometries, existing meth-
ods applied topology and connectivity constraints onto vari-
ational and Markov random field-based methods: tree shape
priors for vessel segmentation [44], graph representation

priors to natural images [2], higher-order cliques which con-
nect superpixels [53] and adversarial learning for road seg-
mentation [51], integer programming to general curvilin-
ear structures [49], and proposed a tree-structured convolu-
tional gated recurrent unit [22], morphological optimization
[14], among others [3, 15, 32, 31, 33, 37, 41, 52, 57, 56].
Further, topological priors of containment were applied to
histology scans [5], a 3D CNN with graph refinement was
used to improve airway connectivity [19], and recently,
Mosinska et al. trained networks which perform segmen-
tation and path classification simultaneously [30]. Another
approach enables the predefinition of Betti numbers and en-
forces them on the training[8].

The aforementioned literature has advanced the com-
munities understanding of topology-preservation, but crit-
ically, they do not possess end-to-end loss functions that
optimize topology-preservation. In this context, the litera-
ture remains sparse. Recently, Mosinska et al. suggested
that pixel-wise loss-functions are unsuitable and used se-
lected filter responses from a VGG19 network as an addi-
tional penalty [29]. Nonetheless, their approach does not
prove topology preservation. Importantly, Hu et al. pro-
posed the first continuous-valued loss function based on the
Betti number and persistent homology [17]. However, this
method is based on matching critical points, which, accord-
ing to the authors makes the training very expensive and
error-prone for real image-sized patches [17]. While this is
already limiting for a translation to large real world data set,
we find that none of these approaches have been extended
to three dimensional (3D) data.

1.2. Our Contributions

The objective of this paper is to identify an efficient,
general, and intuitive loss function that enables topology
preservation while segmenting tubular objects. We intro-
duce a novel connectivity-aware similarity measure named
clDice for benchmarking tubular-segmentation algorithms.
Importantly, we provide theoretical guarantees for the topo-
logical correctness of the clDice for binary 2D and 3D seg-
mentation. As a consequence of its formulation based on
morphological skeletons, our measure pronounces the net-
work’s topology instead of equally weighting every voxel.
Using a differentiable soft-skeletonization, we show that the
clDice measure can be used to train neural networks. We
show experimental results for various 2D and 3D network
segmentation tasks to demonstrate the practical applicabil-
ity of our proposed similarity measure and loss function.

2. Let’s Emphasize Connectivity
We propose a novel connectivity-preserving metric to

evaluate tubular and linear structure segmentation based on
intersecting skeletons with masks. We call this metric cen-
terlineDice or clDice.
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Figure 2. Schematic overview of our proposed method: Our proposed clDice loss can be applied to any arbitrary segmentation network.
The soft-skeletonization can be easily implemented using pooling functions from any standard deep-learning toolbox.

We consider two binary masks: the ground truth mask
(VL) and the predicted segmentation masks (VP ). First, the
skeletons SP and SL are extracted from VP and VL re-
spectively. Subsequently, we compute the fraction of SP

that lies within VL, which we call Topology Precision or
Tprec(SP , VL), and vice-a-versa we obtain Topology Sen-
sitivity or Tsens(SL, VP ) as defined bellow;

Tprec(SP , VL) =
|SP \ VL|

|SP | ; Tsens(SL, VP ) =
|SL \ VP |

|SL|
(1)

We observe that the measure Tprec(SP , VL) is suscepti-
ble to false positives in the prediction while the measure
Tsens(SL, VP ) is susceptible to false negatives. This ex-
plains our rationale behind referring to the Tprec(SP , VL)
as topology’s precision and to the Tsens(SL, VP ) as its sen-
sitivity. Since we want to maximize both precision and sen-
sitivity (recall), we define clDice to be the harmonic mean
(also known as F1 or Dice) of both the measures:

clDice(VP , VL) = 2⇥ Tprec(SP , VL)⇥ Tsens(SL, VP )

Tprec(SP , VL) + Tsens(SL, VP )
(2)

Note that our clDice formulation is not defined for Tprec =
0 and Tsens = 0, but can easily be extended continuously
with the value 0.

3. Topological Guarantees for clDice
The following section provides general theoretical

guarantees for the preservation of topological properties

achieved by optimizing clDice under mild conditions on the
input. Roughly, these conditions state that the object of in-
terest is embedded in S3 in a non-knotted way, as is typi-
cally the case for blood vessel and road structures.

Specifically, we assume that both ground truth and pre-
diction admit foreground and background skeleta, which
means that both foreground and background are homotopy-
equivalent to topological graphs, which we assume to be
embedded as skeleta. Here, the voxel grid is considered as
a cubical complex, consisting of elementary cubes of di-
mensions 0, 1, 2, and 3. This is a special case of a cell
complex (specifically, a CW complex), which is a space con-
structed inductively, starting with isolated points (0-cells),
and gluing a collection of topological balls of dimension k
(called k-cells) along their boundary spheres to a k � 1-
dimensional complex. The voxel grid, seen as a cell com-
plex in this sense, can be completed to an ambient complex
that is homeomorphic to the 3-sphere S3 by attaching a sin-
gle exterior cell to the boundary. In order to consider fore-
ground and background of a binary image as complemen-
tary subspaces, the foreground is now assumed to be the
union of closed unit cubes in the voxel grid, corresponding
to voxels with value 1; and the background is the comple-
ment in the ambient complex. This convention is commonly
used in digital topology [24, 23]. The assumption on the
background can then be replaced by a convenient equiva-
lent condition, stating that the foreground is also homotopy
equivalent to a subcomplex obtained from the ambient com-
plex by only removing 3-cells and 2-cells. Such a subcom-
plex is then clearly homotopy-equivalent to the complement
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of a 1-complex.
We will now observe that the above assumptions imply

that the foreground and the background are connected and
have a free fundamental group and vanishing higher funda-
mental groups. In particular, the homotopy type is already
determined by the first Betti number 1; moreover, a map in-
ducing an isomorphism in homology is already a homotopy
equivalence. To see this, first note that both foreground and
background are assumed to have the homology of a graph,
in particular, homology is trivial in degree 2. By Alexander
duality [1], then, both foreground and background have triv-
ial reduced cohomology in degree 0, meaning that they are
connected. This implies that both have a free fundamental
group (as any connected graph) and vanishing higher ho-
motopy groups. In particular, since homology in degree 1
is the Abelianization of the fundamental group, these two
groups are isomorphic. This in turn implies that in our set-
ting a map that induces isomorphisms in homology already
induces isomorphisms between all homotopy groups. By
Whitehead’s theorem [54], such a map is then a homotopy
equivalence.

The following theorem shows that under our assump-
tions on the images admitting foreground and background
skeleta, the existence of certain nested inclusions already
implies the homotopy-equivalence of foreground and back-
ground, which we refer to as topology preservation.

Theorem 1. Let LA ✓ A ✓ KA and LB ✓ B ✓ KB

be connected subcomplexes of some cell complex. Assume
that the above inclusions are homotopy equivalences. If the
subcomplexes also are related by inclusions LA ✓ B ✓
KA and LB ✓ A ✓ KB , then these inclusions must be
homotopy equivalences as well. In particular, A and B are
homotopy-equivalent.

Proof. An inclusion of cell complexes map is a homotopy
equivalence if and only if it induces isomorphisms on all
homotopy groups. Since the inclusion LA ✓ B ✓ KA

induces an isomorphism, the inclusion LA ✓ B induces a
left-inverse, and since B ✓ KB induces an isomorphism,
the inclusion LA ✓ KB also induces a left-inverse. At the
same time, since the inclusion LB ✓ A ✓ KB induces an
isomorphism, the inclusion A ✓ KB induces a left-inverse,
and since LA ✓ A induces an isomorphism, the inclusion
LA ✓ KB also induces a right-inverse. Together, this im-
plies that the inclusion LA ✓ KB induces an isomorphism.

Together with the isomorphisms induced by LA ✓ A and
B ✓ KB , we obtain isomorphisms induced by LA ✓ B and
by A ✓ KB , which compose to an isomorphism between
the homotopy groups of A and B.

1Betti numbers: β0 represents the number of distinct connected-
components, β1 represents the number of circular holes, and β2 represents
the number of cavities, for depictions see Supplementary material

Corollary 1.1. Let VL and VP be two binary masks admit-
ting foreground and background skeleta, such that the fore-
ground skeleton of VL is included in the foreground of VP

and vice versa, and similarly for the background. Then the
foregrounds of VL and VP are homotopy equivalent, and the
same is true for their backgrounds.

Note that the inclusion condition in this corollary is sat-
isfied if and only if clDice evaluates to 1 on both foreground
and background of (VL, VP ).

This proof lays the ground for a general interpretation
of clDice as a topology preserving metric. Additionally,
we provide an elaborate explanation of clDice topological
properties, using concepts of applied digital topology in the
theory section of the Supplementary material [24, 23].

4. Training Neural Networks with clDice
In the previous section we provided general theoretic

guarantees how clDice has topology preserving properties.
The following chapter shows how we applied our theory
to efficiently train topology preserving networks using the
clDice formulation. 2

4.1. Soft-clDice using Soft-skeletonization:

Extracting accurate skeletons is essential to our method.
For this task, a multitude of approaches has been proposed.
However, most of them are not fully differentiable and
therefore unsuited to be used in a loss function. Popular
approaches use the Euclidean distance transform or utilize
repeated morphological thinning. Euclidean distance trans-
form has been used on multiple occasions [42, 55], but re-
mains a discrete operation and, to the best of our knowl-
edge, an end-to-end differentiable approximation remains
to be developed, preventing the use in a loss function for
training neural networks. On the contrary, morphological
thinning is a sequence of dilation and erosion operations
[c.f. Fig. 3].

Importantly, thinning using morphological operations
(skeletonization) on curvilinear structures can be topology-
preserving [35]. Min- and max filters are commonly used as
the grey-scale alternative of morphological dilation and ero-
sion. Motivated by this, we propose ‘soft-skeletonization’,
where an iterative min- and max-pooling is applied as a
proxy for morphological erosion and dilation. The Algo-
rithm 1 describes the iterative processes involved in its com-
putation. The hyper-parameter k involved in its computa-
tion represents the iterations and has to be greater than or
equal to the maximum observed radius. In our experiments,
this parameter depends on the dataset. For example, it is
k = 5...25 in our experiments, matching the pixel radius of
the largest observed tubular structures. Choosing a larger
k does not reduce performance but increases computation

2https://github.com/jocpae/clDice
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Figure 3. Based on the initial vessel structure (purple), sequential bagging of skeleton voxels (red) via iterative skeletonization leads to a
complete skeletonization, where d denotes the diameter and k > j > i iterations.

Algorithm 1: soft-skeleton
Input: I, k

I 0  maxpool(minpool(I))
S  ReLU(I � I 0)

for i 0 to k do
I  minpool(I)
I 0  maxpool(minpool(I))
S  S + (1� S) � ReLU(I � I 0)

end
Output: S

Algorithm 2: soft-clDice
Input: VP , VL

SP  soft-skeleton(VP )
SL  soft-skeleton(VL)

Tprec(SP , VL) |SP �VL|+✏
|SP |+✏

Tsens(SL, VP ) |SL�VP |+✏
|SL|+✏

clDice 
2⇥ Tprec(SP ,VL)⇥Tsens(SL,VP )

Tprec(SP ,VL)+Tsens(SL,VP )

Output: clDice

Figure 4. Algorithm 1 calculates the proposed soft-skeleton, here
I is the mask to be soft-skeletonized and k is the number of itera-
tions for skeletonization. Algorithm 2, calculates the soft-clDice
loss, where VP is a real-valued probabilistic prediction from a seg-
mentation network and VL is the true mask. We denote Hadamard
product using �.

time. On the other hand, a too low k leads to incomplete
skeletonization.

In Figure 3, the successive steps of our skeletonization
are intuitively represented. In the early iterations, the struc-
tures with a small radius are skeletonized and preserved un-
til the later iterations when the thicker structures become
skeletonized. This enables the extraction of a parameter-

free, morphologically motivated soft-skeleton. The afore-
mentioned soft-skeletonization enables us to use clDice as a
fully differentiable, real-valued, optimizable measure. The
Algorithm 2 describes its implementation. We refer to this
as the soft-clDice.

For a single connected foreground component and in the
absence of knots, the homotopy type is specified by the
number of linked loops. Hence, if the reference and the pre-
dicted volumes are not homotopy equivalent, they do not
have pairwise linked loops. To include these missing loops
or exclude the extra loops, one has to add or discard de-
formation retracted skeleta of the solid foreground. This
implies adding new correctly predicted voxels. In contrast
to other volumetric losses such as Dice, cross-entropy, etc.,
clDice only considers the deformation-retracted graphs of
the solid foreground structure. Thus, we claim that clDice
requires the least amount of new correctly predicted voxels
to guarantee the homotopy equivalence. Along these lines,
Dice or cross-entropy can only guarantee homotopy equiv-
alence if every single voxel is segmented correctly. On the
other hand, clDice can guarantee homotopy equivalence for
a broader combinations of connected-voxels. Intuitively,
this is a very much desirable property as it makes clDice
robust towards outliers and noisy segmentation labels.

4.2. Cost Function

Since our objective here is to preserve topology while
achieving accurate segmentations, and not to learn skeleta,
we combine our proposed soft-clDice with soft-Dice in the
following manner:

Lc = (1� α)(1� softDice) + α(1� softclDice) (3)

where α 2 [0, 0.5]. In stark contrast to previous works,
where segmentation and centerline prediction has been
learned jointly as multi-task learning [50, 47], we are not
interested in learning the centerline. We are interested in
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learning a topology-preserving segmentation. Therefore,
we restrict our experimental choice of alpha to α 2 [0, 0.5].
We test clDice on two state-of-the-art network architec-
tures: i) a 2D and 3D U-Net[38, 6], and ii) a 2D and 3D
fully connected networks (FCN) [47, 13]. As baselines, we
use the same architectures trained using soft-Dice [27, 45].

4.3. Adaption for Highly Imbalanced Data

Our theory (Section 3), describes a two-class problem
where clDice should be computed on both the foreground
and the background channels. In our experiments, we show
that for complex and highly imbalanced dataset it is suffi-
cient to calculate the clDice loss on the underrepresented
foreground class. We attribute this to the distinct properties
of tubularness, sparsity of foreground and the lack of cavi-
ties (Betti number 2) in our data. An intuitive interpretation
how these assumptions are valid in terms of digital topology
can be found in the supplementary material.

5. Experiments
5.1. Datasets

We employ five public datasets for validating clDice and
soft-clDice as a measure and an objective function, respec-
tively. In 2D, we evaluate on the DRIVE retina dataset
[43], the Massachusetts Roads dataset [28] and the CREMI
neuron dataset [12]. In 3D, a synthetic vessel dataset with
an added Gaussian noise term [39] and the Vessap dataset
of multi-channel volumetric scans of brain vessels is used
[48, 34]. For the Vessap dataset we train different mod-
els for one and two input channels. For all of the datasets,
we perform three fold cross-validation and test on held-out,
large, and highly-variant test sets. Details concerning the
experimental setup can be found in the supplementary ma-
terial.

5.2. Evaluation Metrics

We compare the performance of various experimental
setups using three types of metrics: volumetric, topology-
based, and graph-based.

1. Volumetric: We compute volumetric scores such as
Dice coefficient, Accuracy, and the proposed clDice.

2. Topology-based: We calculate the mean of absolute
Betti Errors for the Betti Numbers β0 and β1 and the
mean absolute error of Euler characteristic, χ = V �
E+F , where V, E, and F denotes number of vertices,
edges, and faces.

3. Graph-based: we extract random patch-wise graphs for
the 2D/3D images. We uniformly sample fixed num-
ber of points from the graph and compute the Street-
moverDistance (SMD) [4]. SMD captures a Wasser-
stein distance between two graphs. Additionally we
compute the F1 score of junction-based metric [7].

5.3. Results and Discussion

We trained two segmentation architectures, a U-Net and
an FCN, for the various loss functions in our experimental
setup. As a baseline, we trained the networks using soft-dice
and compared it with the ones trained using the proposed
loss (Eq. 3), by varying α from (0.1 to 0.5).

Quantitative: We observe that including soft-clDice in any
proportion (α > 0) leads to improved topological, volu-
metric and graph similarity for all 2D and 3D datasets, see
Table 1. We conclude that α can be interpreted as a hy-
per parameter which can be tuned per-dataset. Intuitively,
increasing the α improves the clDice measure for most ex-
periments. Most often, clDice is high or highest when the
graph and topology based measures are high or highest, par-
ticularly the β1 Error, Streetmover distance and Opt-J F1
score; quantitatively indicating that topological properties
are indeed represented in the clDice measure.

In spite of not optimizing for a high soft-clDice on
the background class, all of our networks converge to
superior segmentation results. This not only reinforces
our assumptions on dataset-specific necessary conditions
but also validates the practical applicability of our loss.
Our findings hold for the different network architectures,
for 2D or 3D, and for tubular or curvilinear structures,
strongly indicating its generalizability to analogous binary
segmentation tasks.

Observe that CREMI and the synthetic vessel dataset
(see Supplementary material) appear to have the smallest
increase in scores over the baseline. We attribute this to
them being the least complex datasets in the collection, with
CREMI having an almost uniform thickness of radii and
the synthetic data having a high signal-to-noise ratio and
insignificant illumination variation. More importantly, we
observe larger improvements for all measures in case of the
more complex Vessap and Roads data see Figure 5. In direct
comparison to performance measures reported in two recent
publications by Hu et al. and Mosinska et al. [17, 29], we
find that our approach is on par or better in terms of Accu-
racy and Betti Error for the Roads and CREMI dataset. It is
important to note that we used a smaller subset of training
data for the Road dataset compared to both while using the
same test set.

Hu et al. reported a Betti error for the DRIVE data,
which exceeds ours; however, it is important to consider
that their approach explicitly minimizes the mismatch of the
persistence diagram, which has significantly higher com-
putational complexity during training, see the section be-
low. We find that our proposed loss performs superior to
the baseline in almost every scenario. The improvement ap-
pears to be pronounced when evaluating the highly relevant
graph and topology based measures, including the recently
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Table 1. Quantitative experimental results for the Massachusetts road dataset (Roads), the CREMI dataset, the DRIVE retina dataset and
the Vessap dataset (3D). Bold numbers indicate the best performance. The performance according to the clDice measure is highlighted in
rose. For all experiments we observe that using soft-clDice in Lc results in improved scores compared to soft-Dice. This improvement
holds for almost α > 0; α can be interpreted as a dataset specific hyper-parameter.

Dataset Network Loss Dice Accuracy clDice β0 Error β1 Error SMD [4] χerror Opt-J F1 [7]

Roads

FCN soft-dice 64.84 95.16 70.79 1.474 1.408 0.1216 2.634 0.766
Lc,α = 0.1 66.52 95.70 74.80 0.987 1.227 0.1002 2.625 0.768
Lc,α = 0.2 67.42 95.80 76.25 0.920 1.280 0.0954 2.526 0.770
Lc,α = 0.3 65.90 95.35 74.86 0.974 1.197 0.1003 2.448 0.775
Lc,α = 0.4 67.18 95.46 76.92 0.934 1.092 0.0991 2.183 0.803
Lc,α = 0.5 65.77 95.09 75.22 0.947 1.184 0.0991 2.361 0.782

U-NET

soft-dice 76.23 96.75 86.83 0.491 1.256 0.0589 1.120 0.881
Lc,α = 0.1 76.66 96.77 87.35 0.359 0.938 0.0457 0.980 0.878
Lc,α = 0.2 76.25 96.76 87.29 0.312 1.031 0.0415 0.865 0.900
Lc,α = 0.3 74.85 96.57 86.10 0.322 1.062 0.0504 0.827 0.913
Lc,α = 0.4 75.38 96.60 86.16 0.344 1.016 0.0483 0.755 0.916
Lc,α = 0.5 76.45 96.64 88.17 0.375 0.953 0.0527 1.080 0.894

Mosinska et al. [29, 17] - 97.54 - - 2.781 - - -
Hu et al. [17] - 97.28 - - 1.275 - - -

CREMI

U-NET

soft-dice 91.54 97.11 95.86 0.259 0.657 0.0461 1.087 0.904
Lc,α = 0.1 91.76 97.21 96.05 0.222 0.556 0.0395 1.000 0.900
Lc,α = 0.2 91.66 97.15 96.01 0.231 0.630 0.0419 0.991 0.902
Lc,α = 0.3 91.78 97.18 96.21 0.204 0.537 0.0437 0.919 0.913
Lc,α = 0.4 91.56 97.12 96.09 0.250 0.630 0.0444 0.995 0.902
Lc,α = 0.5 91.66 97.16 96.16 0.231 0.620 0.0455 0.991 0.907

Mosinska et al. [29, 17] 82.30 94.67 - - 1.973 - - -
Hu et al. [17] - 94.56 - - 1.113 - - -

DRIVE retina

FCN

soft-Dice 78.23 96.27 78.02 2.187 1.860 0.0429 3.275 0.773
Lc,α = 0.1 78.36 96.25 79.02 2.100 1.610 0.0393 3.203 0.777
Lc,α = 0.2 78.75 96.29 80.22 1.892 1.382 0.0383 2.895 0.793
Lc,α = 0.3 78.29 96.20 80.28 1.888 1.332 0.0318 2.918 0.798
Lc,α = 0.4 78.00 96.11 80.43 2.036 1.602 0.0423 3.141 0.764
Lc,α = 0.5 77.76 96.04 80.95 1.836 1.408 0.0394 2.848 0.794

U-Net soft-Dice 74.25 95.63 75.71 1.745 1.455 0.0649 2.997 0.760
Lc,α = 0.5 75.21 95.82 76.86 1.538 1.389 0.0586 2.737 0.767

Mosinska et al. [29, 17] - 95.43 - - 2.784 - - -
Hu et al. [17] - 95.21 - - 1.076 - - -

Vessap data

FCN, 1 ch soft-dice 85.21 96.03 90.88 3.385 4.458 0.00459 5.850 0.862
Lc,α = 0.5 85.44 95.91 91.32 2.292 3.677 0.00417 5.620 0.864

FCN, 2 ch

soft-dice 85.31 95.82 90.10 2.833 4.771 0.00629 6.080 0.849
Lc,α = 0.1 85.96 95.99 91.02 2.896 4.156 0.00447 5.980 0.860
Lc,α = 0.2 86.45 96.11 91.22 2.656 4.385 0.00466 5.530 0.869
Lc,α = 0.3 85.72 95.93 91.20 2.719 4.469 0.00423 5.470 0.866
Lc,α = 0.4 85.65 95.95 91.65 2.719 4.469 0.00423 5.670 0.869
Lc,α = 0.5 85.28 95.76 91.22 2.615 4.615 0.00433 5.320 0.870

U-Net, 1 ch soft-dice 87.46 96.35 91.18 3.094 5.042 0.00549 5.300 0.863
Lc,α = 0.5 87.82 96.52 93.03 2.656 4.615 0.00533 4.910 0.872

U-Net, 2 ch

soft-dice 87.98 96.56 90.16 2.344 4.323 0.00507 5.550 0.855
Lc,α = 0.1 88.13 96.59 91.12 2.302 4.490 0.00465 5.180 0.872
Lc,α = 0.2 87.96 96.74 92.52 2.208 3.979 0.00342 4.830 0.861
Lc,α = 0.3 87.70 96.71 92.56 2.115 4.521 0.00309 5.260 0.858
Lc,α = 0.4 88.57 96.87 93.25 2.281 4.302 0.00327 5.370 0.868
Lc,α = 0.5 88.14 96.74 92.75 2.135 4.125 0.00328 5.390 0.864

introduced OPT-Junction F1 by Citraro et al. [7]. Our re-
sults are consistent across different network architectures,
indicating that soft-clDice can be deployed to any network
architecture.
Qualitative: In Figure 5, typical results for our datasets
are depicted. Our networks trained on the proposed loss
term recover connections, which were false negatives when
trained with the soft-Dice loss. These missed connections

appear to be particularly frequent in the complex road and
DRIVE dataset. For the CREMI dataset, we observe these
situations less frequently, which is in line with the very high
quantitative scores on the CREMI data. Interestingly, in
the real 3D vessel dataset, the soft-Dice loss oversegments
vessels, leading to false positive connections. This is not
the case when using our proposed loss function, which
we attribute to its topology-preserving nature. Additional
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qualitative results can be inspected in the supplementary.

Computational Efficiency: Naturally, inference times
of CNNs with the same architecture but different train-
ing losses are identical. However, during training, our
soft-skeleton algorithm requires O(kn2) complexity for
an n ⇥ n 2D image where k is the number of iterations.
As a comparison, [17] needs O(c2mlog(m)) (see [15])
complexity to compute the 1d persistent homology where
d is the number of points with zero gradients in the
prediction and m is the number of simplices. Roughly, c is
proportional to n2, and m is of O(n2) for a 2D Euclidean
grid. Thus, the worst complexity of [17] is O(n6log(n)).
Additionally, their approach requires an O(clog(c)) com-
plexity to find an optimal matching of the birth-death pairs.
We note that the total run-time overhead for soft-clDice
compared to soft-Dice is marginal, i.e., for batch-size of 4
and 1024x1024 image resolution, the former takes 1.35s
while the latter takes 1.24s on average (<10% increase) on
an RTX-8000.

Future Work: Although our proposed soft-skeleton ap-
proximation works well in practice, a better differentiable
skeletonization can only improve performance, which we
reserve for future research. Any such skeletonization can
be readily plugged into our approach. Furthermore, theo-
retical and experimental multi-class studies would sensibly
extend our study.

6. Conclusive Remarks
We introduce clDice, a novel topology-preserving

similarity measure for tubular structure segmentation.
Importantly, we present a theoretical guarantee that clDice
enforces topology preservation up to homotopy equiva-
lence. Next, we use a differentiable version of the clDice,
soft-clDice, in a loss function, to train state-of-the-art 2D
and 3D neural networks. We use clDice to benchmark
segmentation quality from a topology-preserving per-
spective along with multiple volumetric, topological, and
graph-based measures. We find that training on soft-clDice
leads to segmentations with more accurate connectivity
information, better graph-similarity, better Euler character-
istics, and improved Dice and Accuracy. Our soft-clDice
is computationally efficient and can be readily deployed
to any other deep learning-based segmentation tasks such
as neuron segmentation in biomedical imaging, crack
detection in industrial quality control, or remote sensing.
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Nils Börner and Giles Tetteh.

Image Label Soft-Dice Ours

Figure 5. Qualitative results: from top to bottom we show two rows
of results for: the Massachusetts road dataset, the DRIVE retina
dataset, the CREMI neuron data and 2D slices from the 3D Vessap
dataset. From left to right, the real image, the label, the predic-
tion using soft-Dice and the U-Net predictions using Lc(α = 0.5)
are shown, respectively. The images indicate that clDice segments
road, retina vessel connections and neuron connections which the
soft-Dice loss misses, but also does not segment false-positive ves-
sels in 3D. Some, but not all, missed connections are indicated
with solid red arrows, false positives are indicated with red-yellow
arrows. More qualitative results can be found in the Supplemen-
tary material.
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Abstract. A comprehensive representation of an image requires under-
standing objects and their mutual relationship, especially in image-to-
graph generation, e.g., road network extraction, blood-vessel network
extraction, or scene graph generation. Traditionally, image-to-graph gen-
eration is addressed with a two-stage approach consisting of object detec-
tion followed by a separate relation prediction, which prevents simulta-
neous object-relation interaction. This work proposes a unified one-stage
transformer-based framework, namely Relationformer that jointly pre-
dicts objects and their relations. We leverage direct set-based object
prediction and incorporate the interaction among the objects to learn
an object-relation representation jointly. In addition to existing [obj]-
tokens, we propose a novel learnable token, namely [rln]-token. Together
with [obj]-tokens, [rln]-token exploits local and global semantic reason-
ing in an image through a series of mutual associations. In combination
with the pair-wise [obj]-token, the [rln]-token contributes to a computa-
tionally efficient relation prediction. We achieve state-of-the-art perfor-
mance on multiple, diverse and multi-domain datasets that demonstrate
our approach’s effectiveness and generalizability. (Code is available at
https://github.com/suprosanna/relationformer).

Keywords: Image-to-graph generation · Road network extraction ·
Vessel graph extraction · Scene graph generation

1 Introduction

An image contains multiple layers of abstractions, from low-level features to
intermediate-level objects to high-level complex semantic relations. To gain a
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2D Road Network
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3D Vessel Graph
(undirected)
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(directed)Satellite Images Microscopic Images Natural Images

a) b) c)

Fig. 1. Examples of relation prediction tasks. Note that the 2D road network extraction
and 3D vessel graph extraction tasks have undirected relations while the scene graph
generation task has directed relations.

complete visual understanding, it is essential to investigate different abstrac-
tion layers jointly. An example of such multi-abstraction problem is image-
to-graph generation, such as road-network extraction [18], blood vessel-graph
extraction [41], and scene-graph generation [55]. In all of these tasks, one needs
to explore not only the objects or the nodes, but also their mutual dependencies
or relations as edges.

In spatio-structural tasks, such as road network extraction (Fig. 1a), nodes
represent road-junctions or significant turns, while edges correspond to struc-
tural connections, i.e., the road itself. The resulting spatio-structural graph con-
struction is crucial for navigation tasks, especially with regard to autonomous
vehicles. Similarly, in 3D blood vessel-graph extraction (Fig. 1b), nodes repre-
sent branching points or substantial curves, and edges correspond to structural
connections, i.e., arteries, veins, and capillaries. Biological studies relying on a
vascular graph representation, such as detecting collaterals [52], assessing struc-
tural robustness [21], emphasize the importance of efficient extraction thereof. In
case of spatio-semantic graph generation, e.g. scene graph generation from natu-
ral images (Fig. 1c), the objects denote nodes and the semantic-relation denotes
the edges [22]. This graphical representation of natural images is compact, inter-
pretable, and facilitates various downstream tasks like visual question answering
[19,25]. Notably, different image-to-graph tasks have been addressed separately
in previous literature (see Sect. 2), and to the best of our knowledge, no unified
approach has been reported so far.

Traditionally, image-to-graph generation has been studied as a complex mul-
tistage pipeline, which consist of an object detector [43], followed by a separate
relation predictor [24,32]. Similarly, for spatio-structural graph generation, the
usual first stage is segmentation, followed by a morphological operation on binary
data. While a two-stage object-relation graph generation approach is modular,
it is usually trained sequentially, which increases model complexity and infer-
ence time and lacks simultaneous exploration of shared object-relation represen-
tations. Additionally, mistakes in the first stage may propagate into the later
stages. It should also be noted that the two-stage approach depends on multiple
hand-designed features, spatial [59], or multi-modal input [8].

We argue that a single-stage image-to-graph model with joint object and rela-
tion exploration is efficient, faster, and easily extendable to multiple downstream
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tasks compared to a traditional multi-stage approach. Crucially, it reduces the
number of components and simplifies the training and inference pipeline (Fig. 2).
Furthermore, intuitively, a simultaneous exploration of objects and relations
could utilize the surrounding context and their co-occurrence. For example,
Fig. 1c depicting the “kid” “on” a “board” introduces a spatial and semantic
inclination that it could be an outdoor scene where the presence of a “tree” or
a “helmet”, the kid might wear, is highly likely. The same notion is analogous
in a spatio-structural vessel graph. Detection of a “bifurcation point” and an
“artery” would indicate the presence of another “artery” nearby. The mutual
co-occurrence captured in joint object-relation representation overcomes indi-
vidual object boundaries and leads to a more informed big picture.

Recently, there has been a surge of one-stage models in object detection
thanks to the DETR approach described in [7]. These one-stage models are
popular due to the simplicity and the elimination of reliance on hand-crafted
designs or features. DETR exploits a encoder-decoder transformer architecture
and learns object queries or [obj]-token for object representation.

To this end, we propose Relationformer, a unified one-stage framework
for end-to-end image-to-graph generation. We leverage set-based object detec-
tion of DETR and introduce a novel learnable token named [rln]-token in tan-
dem with [obj]-tokens. The [rln]-token captures the inter-dependency and co-
occurrence of low-level objects and high-level spatio-semantic relations. Rela-
tionformer directly predicts objects from the learned [obj]-tokens and classifies
their pairwise relation from combinations of [obj-rln-obj]-tokens. In addition
to capturing pairwise object-interactions, the [rln]-token, in conjunction with
relation information, allows all relevant [obj]-tokens to be aware of the global
semantic structure. These enriched [obj]-tokens in combination with the relation
token, in turn, contributes to the relation prediction. The mutually shared rep-
resentation of joint tokens serves as an excellent basis for an image-to-graph gen-
eration. Moreover, our approach significantly simplifies the underlying complex
image-to-graph pipeline by only using image features extracted by its backbone.

We evaluate Relationformer across numerous publicly available datasets,
namely Toulouse, 20 US Cities, DeepVesselNet, and Visual Genome, compris-
ing 2D and 3D, directed- and undirected image-to-graph generation tasks. We
achieve a new state-of-the-art for one-stage methods on Visual Genome, which
is better or comparable to the two-stage approaches. We achieve state-of-the-art
results on road-network extraction on the Toulouse and 20 US Cities dataset.
To the best of our knowledge, this is the first image-to-graph approach working
directly in 3D, which we use to extract graphs formed by blood vessels.

2 Related Work

Transformer in Vision: In recent times, transformer-based architectures have
emerged as the de-facto gold standard model for various multi-domain and multi-
modal tasks such as image classification [13], object detection [7] and even its
application of out-of-distribution detection [23]. DETR [7] proposed an end-to-
end transformer-based object detection approach with learnable object queries
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Detection Transformer
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Fig. 2. This illustrates a general architectural evolution of transformers in computer
vision and how Relationformer advances the concept of a task-specific learnable token
one step further. The proposed Relationformer is also shown in comparison to the
conventional two-stage relation predictor. The amalgamation of two separate stages
not only simplifies the architectural pipeline but also co-reinforces both of the tasks.

([obj]-tokens) and direct set-based prediction. DETR eliminates burdensome
object detection pipelines (e.g., anchor boxes, NMS) of traditional approaches
[43] and directly predicts objects. Building on DETR, a series of object detection
approaches improved DETR’s slow convergence [62], adapted a pure sequence-
to-sequence approach [15], and improved detector efficiency [50]. In parallel, the
development of the vision transformer [13] for image classification offered a pow-
erful alternative. Several refined idea [34,53] have advanced this breakthrough
and transformer in general emerges as a cutting-edge research topic with focus
on novel design principle and innovative application. Figure 2, shows a pictorial
overview of transformer-based image classifier, object detector, and relation pre-
dictor including our proposed method, which we referred to as Relationformer.

Spatio-Structural Graph Generation: In a spatio-structural graph, the most
important physical objects are edges, i.e., roads for a road network or arteries
and veins in vessel graphs. Conventionally, spatio-structural graph extraction
has only been discussed in 2D with little-to-no attention on the 3D counter-
part. For 2D road network extraction, the predominant approach is to segment
[4,37] followed by morphological thinning to extract the spatial graph. Only few
approaches combine graph level information processing, iterative node genera-
tion [3], sequential generative modelling [9], and graph-tensor-encoding [18]. Belli
et al. [5] for the first time, adopted attention mechanisms in an auto-regressive
model to generate graphs conditioned on binary segmentation. Importantly, to
this date, none of these 2D approaches has been shown to scale to 3D.

For 3D vessel-network extraction, segmentation of whole-brain microscopy
images [39,52] has been combined with rule-based graph extraction algorithms
[49]. Recently, a large-scale study [41] used the Voreen [38] software to extract
whole-brain vascular graph from binary segmentation, which required compli-
cated heuristics and huge computational resources. Despite recent works on 3D
scene graphs [1] and temporal scene graphs [20], to this day, there exists no
learning-based solution for 3D spatio-structural graph extraction.

Considering two spatio-structural image-to-graph examples of vessel-graph
and road-network, one can understand the spatial relation detection task as a link
prediction task. In link-prediction, graph neural networks, such as GraphSAGE
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[16], SEAL [60] are trained to predict missing links among nodes using node
features. These approaches predict links on a given set of nodes. Therefore,
link prediction can only optimize correct graph topology. In comparison, we
are interested in joint node-edge prediction, emphasizing correct topology and
correct spatial location simultaneously, making the task even more challenging.

Spatio-Semantic Graph Generation: Scene graph generation (SGG) [35,55]
from 2D natural images has long been studied to explore objects and their inter-
dependencies in an interpretable way. Context refinement across objects [55,59],
extra modality of features [35,48] or prior knowledge [46] has been used to model
inter-dependencies of objects for relation prediction. RTN [24,26] was one of
the first transformer approaches to explore context modeling and interactions
between objects and edges for SGG. Li et al. [29] uses DETR like architecture to
separately predict entity and predicate proposal followed by a graph assembly
module. Later, several works [12,36] explored transformers, improving relation
predictions. On the downside, such two-stage approaches increase model size,
lead to high inference times, and rely on extra features such as glove vector
[42] embedding or knowledge graph embedding [47], limiting their applicability.
Recently, Liu et al. [33] proposed a fully convolutional one-stage SGG method. It
combined a feature pyramid network [31] and a relation affinity field [40,61] for
modeling a joint object-relation graph. However, their convolution-based archi-
tecture limits the context exploration across objects and relations. Contemporary
to us [10] used transformers for the task of SGG. However, their complex pipeline
for a separate subject and object further increases computational complexity.
Crucially, there has been a significant performance gap between one-stage and
two-stage approaches. This paper bridges this gap with simultaneous contextual
exploration across objects and relations.

3 Methodology

In this section, we formally define the generalized image-to-graph generation
problem. Each of the presented relation prediction tasks in Fig. 1 is a special
instance of this generalized image-to-graph problem. Consider an image space
I ∈ RD×#ch, where D =

∏d
i=1 dim[i] for a d dimensional image and #ch denotes

the number of channels and dim[i] denotes the dimension of the ith spatial axis.
Now, an image-to-graph generator F predicts F(I) = G for a given image I,
where G = (V, E) represents a graph with vertices (or objects) V and edges (or
relations) E . Specifically, the ith vertex vi ∈ V has a node or object location
specified by a bounding box vi

box ∈ R2×d and a node or object label vi
cls ∈ ZC .

Similarly, each edge eij ∈ E has an edge or relation label eij
rln ∈ ZL, where we

have C number of object classes and L types of relation classes. Note that G
can be both directed and undirected. The algorithmic complexity of predicting
graph G depends on its size, |G| = |V| + |E| which is of order complexity O(N2)
for |V| = N . It should be noted that object detection as a special case of the
generalized image-to-graph generation problem, where E = φ. In the following,
we briefly revisit a set-based object detector before expanding on our rationale
and proposed architecture.
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3.1 Preliminaries of Set-Based Object Detector

Carion et al. [7] proposed DETR, which shows the potential of set-based object
detection, building upon an encoder-decoder transformer architecture [54]. Given
an input image I, a convolutional backbone [17] is employed to extract high level
and down scaled features. Next, the spatial dimensions of extracted features
are reshaped into a vector to make them sequential. Afterwards, these sequen-
tial features are coupled with a sinusoidal positional encoding [6] to mark an
unique position identifier. A stacked encoder layer, consisting of a multi-head
self-attention and a feed-forward network, processes the sequential features. The
decoder takes N number of learnable object queries ([obj]-tokens) in the input
sequence and combines them with the output of the encoder via cross-attention,
where N is larger than the maximum number of objects.

DETR utilizes the direct Hungarian set-based assignment for one-to-one
matching between the ground truth and the predictions from N [obj]-tokens.
The bipartite matching assigns a unique predicted object from the N predictions
to each ground truth object. Only matched predictions are considered valid. The
rest of the predictions are labeled as ∅ or ‘background’. Subsequently, it com-
putes the box regression loss solely for valid predictions. For the classification
loss, all predictions, including ‘background’ objects, are considered.

In our work, we adopt a modified attention mechanism, namely deformable
attention from deformable-DETR (def-DETR) [62] for its faster convergence and
computational efficiency. In DETR, complete global attention allows each token
to attend to all other tokens and hence capture the entire context in one image.
However, information about the presence of an object is highly localized to a spa-
tial position. Following the concept of deformable convolutions [11], deformable
attention enables the queries to attend to a small set of spatial features deter-
mined from learned offsets of the reference points. This improves convergence
and reduces the computational complexity of the attention operation.

3.2 Object-Relation Prediction as Set-Prediction and Interaction

A joint object-relation graph generation requires searching from a pairwise com-
binatorial space of the maximum number of expected nodes. Hence, a naive
joint-learning for object-relations requires O(N2) number of tokens for N num-
ber of objects. This is computationally intractable because self-attention is
quadratically-complex to the number of tokens. We overcome this combinato-
rially challenging task with a carefully engineered inductive bias. Here it is to
exploit learned pair-wise interactions among N [obj]-tokens and combine refined

pair-wise [obj]-tokens with an additional (N + 1)
th

token, which we refer to as
[rln]-token. One can think of the [rln]-token as a query to pair-wise object
interaction.

The [rln]-token captures the additional context of pair-wise interactions
among all valid predicted classes. In this process, related objects are incentivized
to have a strong correlation in an embedding space of, and unrelated objects are
penalized to be dissimilar. The [rln]-token attends to all N [obj]-tokens along
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Fig. 3. Specifics of the Relationformer architecture. The image is first processed by
a feature extractor, which generates [patch]-tokens for the input of the transformer
encoder. Next, transformer decoder takes learnable [obj]-tokens and a [rln]-token along
with output from encoder. Decoder processes them through a series of self- and cross-
attention operations. The object head processes the final [obj]-tokens from the decoder
to produce the bounding box and object classes. The relation head takes a tuple of
the final [obj-rln-obj]-token combination and classifies their relation. Combining the
output of the object and relation head yields the final graph.

with contextualized image features that enrich its local pairwise and global image
reasoning. Finally, we classify a pair-wise relation by combining the pair-wise
[obj]-tokens with the [rln]-token. Thus, instead of O(N2) number of tokens,
we only need N + 1 tokens in total. These consist of N [obj]-tokens and one
[rln]-token. This novel formulation allows relation detection with a marginally
increased cost compared to one-stage object detection.

Here, one could present a two-fold argument: 1) There is no need for an extra
token as one could directly classify joint pairwise [obj]-tokens. 2) Instead of one
single [rln]-token, one could use as many as all object-pairs. To answer the
first question, we argue that relations can be viewed as a higher order topologi-
cal entity compared to objects. Thus, to capture inter-dependencies among the
relations the model requires additional expressive capacity, which can be shared
among the objects. The [rln]-token reduces the burden on the [obj]-tokens by
specializing exclusively on the task of relation prediction. Moreover, [obj]-tokens
can also attend to the [rln]-token and exploit a global semantic reasoning. This
hypothesis is confirmed in our ablation. For the second question, we argue that
individual tokens for all possible object-pairs will lead to a drastic increase in
the decoder complexity, which may results in computationally intractability.

3.3 Relationformer

The Relationformer architecture is intuitive and without any bells and whistles,
see Fig. 3. We have four main components: a backbone, a transformer, an object
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detection head and a relation prediction head. In the following, we describe each
of the components and the set-based loss formulations specific to joint object-
relation graph generation in detail.

Backbone: Given the input image I, a convolutional backbone [17] extracts
features f I ∈ RDf ×# emb, where Df is the spatial dimensions of the features
and # emb denotes embedding dimension. Further, this feature dimension is
reduced to demb, the embedding dimension of the transformer, and flattened by
its spatial size. The new sequential features coupled with the sinusoidal positional
encoding [6] produce the desired sequence which is processed by the encoder.

Transformer: We use a transformer encoder-decoder architecture with
deformable attention [62], which considerably speeds up the training conver-
gence of DETR by exploiting spatial sparsity of the image features.

Encoder: Our encoder remains unchanged from [62], and uses multi-scale
deformable self-attention. We use a different number of layers based on each
task’s requirement, which is specified in detail in the supplementary material.

Decoder: We use N + 1 tokens for the joint object-relation task as inputs to the
decoder, where N represents the number of [obj]-tokens preceded by a single
[rln]-token. Contextualized image features from the encoder serve as the second
input of our decoder. In order to have a tractable computation and to leverage
spatial sparsity, we use deformable cross-attention between the joint tokens and
the image features from the encoder. The self-attention in the decoder remains
unchanged. The [obj]-tokens and [rln]-token go through a series of multi-hop
information exchanges with other tokens and image features, which gradually
builds a hierarchical object and relational semantics. Here, [obj]-tokens learn to
attend to specific spatial positions, whereas the [rln]-token learns how objects
interact in the context of their semantic or global reasoning.

Object Detection Head: The object detection head has two components.
The first one is a stack of fully connected network or multi layer-perceptron
(MLP), which regresses the location of objects, and the second one is a single
layer classification module. For each refined [obj]-token oi, the object detec-
tion head predicts an object class ṽi

cls = W cls(o
i) and an object location

ṽi
box = MLPbox(o

i), ṽi
box ∈ [0, 1]2×d in parallel, where d represents the image

dimension, W cls is the classification layer, and MLPbox is an MLP. We use the
normalized bounding box co-ordinate for scale invariant prediction. Note that for
the spatio-structural graph, we create virtual objects around each node’s center
by assuming an uniform bounding box with a normalized width of Δx.

Relation Prediction Head: In parallel to the object detection head, the input
of the relation head, given by a pair-wise [obj]-token and a shared [rln]-token,
is processed as ẽij

rln = MLPrln({oi, r, oj}i�=j). Here, r represents the refined [rln]-
token and MLPrln a three-layer fully-connected network headed by layer normal-
ization [2]. In the case of directional relation prediction (e.g., scene graph), the
ordering of the object token pairs {oi, r, oj}i�=j determines the direction i → j.
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Table 1. Brief summary of the datasets used in our experiment. For more details
regarding dataset preparation, please refer to supplementary material.

Dataset Description Data split

Edge type 2D/3D Image type Image size Train Val Test

Toulouse [5] Undirected 2D Binary 64 × 64 80k 12k 19k

20 US Cities [18] Undirected 2D RGB 128 × 128 124k 13k 25k

Synthetic vessel [51] Undirected 3D Grayscale 64 × 64 × 64 54k 6k 20k

Visual Genome [27] Directed 2D RGB 800 × 800 57k 5k 26k

Otherwise (e.g., road network, vessel graph), the network is trained to learn
object token order invariance as well.

3.4 Loss Function

For object detection, we utilize a combination of loss functions. We use two stan-
dard box prediction losses, namely the �1 regression loss (Lreg) and the general-
ized intersection over union loss (LgIoU) between the predicted ṽbox and ground
truth vbox box coordinates. Besides, we use the cross-entropy classification loss
(Lcls) between the predicted class ṽcls and the ground truth class vcls.

Stochastic Relation Loss: In parallel to object detection, their pair-wise rela-
tions are classified with a cross-entropy loss. Particularly, we only use predicted
objects that are assigned to ground truth objects by the Hungarian matcher.
When two objects have a relation, we refer to their relation as a ‘valid’-relation.
Otherwise, the relation is categorized as ‘background’. Since ‘valid’-relations are
highly sparse in the set of all possible permutations of objects, computing the
loss for every possible pair is burdensome and will be dominated by the ‘back-
ground’ class, which may hurt performance. To alleviate this, we randomly sam-
ple three ‘background’-relations for every ‘valid’-relation. From sampled ‘valid’-
and ‘background’-relations, we obtain a subset R of size M , where R ⊆ NP 2.
To this end, Lrln represents a classification loss for the predicted relations in R.
The total loss for simultaneous object-relation graph generation is defined as:

Ltotal =
∑N

i=1

[
1vi

cls /∈∅(λregLreg(v
i
box, ṽ

i
box) + λgIoULgIoU(vi

box, ṽ
i
box))

]

+ λcls

∑N
i=1 Lcls(v

i
cls, ṽ

i
cls) + λrln

∑
{i,j}∈R Lrln(eij

rln, ẽij
rln) (1)

where λreg, λgIoU, λcls and λrln are the loss functions specific weights.

4 Experiments

Datasets: We conducted experiments on four public datasets for road network
generation (20 US cities [18], Toulouse [5]), 3D synthetic vessel graph generation
[51], and scene-graph generation (Visual Genome [27]). The road and vessel
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Table 2. Quantitative comparison of Relationformer with the different baselines for
undirected graph generation datasets. Relationformer achieves a near-perfect solution
for the Toulouse dataset and improves the results on the 20 US Cities dataset over
baseline models. Relationformer translates a similar trend in 3D and significantly out-
performs the heuristic-based approach on the synthetic vessel dataset.

Dataset Model Graph-level metrics Node det. Edge det.

SMD ↓ Prec. ↑ Rec. ↑ F1 ↑ mAP ↑ mAR ↑ mAP ↑ mAR ↑
Toulouse (2D) RNN [5] 0.04857 65.41 57.52 61.21 0.50 5.01 0.21 2.56

GraphRNN [5] 0.02450 71.69 73.21 72.44 1.34 4.15 0.34 1.01

GGT [5] 0.01649 86.95 79.88 83.26 2.94 13.31 1.62 9.75

Relationformer 0.00012 99.76 98.99 99.37 94.59 96.76 83.30 89.87

20 US Cities (2D) RoadTracer [3] N.A. 78.00 57.44 66.16 N.A. N.A. N.A. N.A.

Seg-DRM [37] N.A. 76.54 71.25 73.80 N.A. N.A. N.A. N.A.

Seg-Orientation [4] N.A 75.83 68.90 72.20 N.A. N.A. N.A. N.A.

Sat2Graph [18] N.A. 80.70 72.28 76.26 N.A. N.A. N.A. N.A.

Relationformer 0.04939 85.28 77.75 81.34 29.25 42.84 21.78 33.19

Synthetic Vessel (3D) U-net [45]+heuristics 0.01982 N/A N/A N/A 18.94 29.81 17.88 27.63

Relationformer 0.01107 N/A N/A N/A 78.51 84.34 78.10 82.15

*N.A. indicates scores are not readily available. † N/A indicates that the metric is not
applicable.

graph generation datasets are spatio-structural with a binary node and edge
classification task, while the scene-graph generation dataset is spatio-sematic and
has 151 node classes and 51 edge classes, including ‘background’ class (Table 1).

Evaluation Metrics: Given the diversity of tasks at hand, we resort to widely-
used task-specific metrics. Following is a brief description, while details can be
found in the supplementary material. For Spatio-Structural Graphs, we use four
different metrics to capture spatial similarity alongside the topological simi-
larity of the predicted graphs. 1) Street Mover Distance (SMD) [5] computes
a Wasserstein distance between predicted and ground truth edges; 2) TOPO
Score [18] includes precision, recall, and F-1 score for topological mismatch; 3)
Node Detection yields mean average precision (mAP) and mean average recall
(mAR) for the node; and 4) Edge Detection yields mAP and mAR for the edges.
For Spatio-semantic Graphs, the scene graph detection (SGDet) metric is the
most challenging and appropriate for joint object-relation detection, because it
does not need apriori knowledge about object location or class label. Hence, we
compute recall@K, mean-recall@K, and no-graph constraint (ng)-recall@K for
K = {20, 50, 100} on the SGDet following Zellers et al. [59]. Further, we evaluate
the quality of object detection using average precision, AP@50 (IoU = 0.5) [30].

4.1 Results

Spatio-Structural Graph Generation: In spatio-structural graph generation, both
correct graph topology and spatial location are equally important. Note that the
objects here are represented as points in 2D/3D space. For practical reasons, we
put a hypothetical box of Δx = 0.2 at the points and treat the boxes as objects.
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The Toulouse dataset poses the least difficulty as we predict a graph from
a binary segmentation. We notice that existing methods perform poorly. Our
method improves the SMD score by three orders of magnitude. All other met-
rics, such as TOPO-Score (prec., rec., and F–1), indicate near-optimal topolog-
ical accuracy of our method. At the same time, our performance in node and
edge mAP and mAR is vastly superior to all competing methods. For the more
complex 20 U.S. cities dataset, we observe a similar trend. Note that due to
the lack of existing scores from competing methods (SMD, mAP, and mAR),
we only compare the TOPO scores, which we outperform by a significant mar-
gin. However, when compared to the results on the Toulouse dataset, Relation-
former yields lower node detection scores on the 20 U.S. cities dataset, which
can be attributed to the increased dataset complexity. Furthermore, the edge
detection score also deteriorates. This is due to the increased proximity of edges,
i.e., parallel roads.

For 3D data, such as vessels, no learning-based comparisons exist. Hence, we
compare to the current best practice [49], which relies on segmentation, skele-
tonization, and heuristic pruning of the dense skeleta extracted from the binary
segmentation [14]. The purpose of pruning is to eliminate redundant neighboring
nodes, which is error-prone due to the voxelization of the connectivity, leading to
poor performances. Table 2 clearly depicts how our method outperforms the cur-
rent method. Importantly, we find that our method effortlessly translates from
2D to 3D without major modifications. Moreover, our 3D model is trained end-
to-end from scratch without a pre-trained backbone. To summarize, we propose
the first reliable learning-based 3D spatio-structural graph generation method
and show how it outperforms existing 2D approaches by a considerable margin.

Scene Graph Generation: We extensively compare our method to numerous exist-
ing methods, which can be grouped based on three concepts. One-stage methods,
two-stage methods utilizing only image features, and two-stage methods utiliz-
ing extra features. Importantly, Relationformer represents a one-stage method
without the need for extra features. We find that Relationformer outperforms
all one stage methods in Recall and ng-Recall despite using a simpler backbone.
In terms of mean-Recall, a metric addressing dataset bias, we outperform [33]
and our contemporary [10] @50 and perform close to [10] @20.

In terms of object detection performance, we achieve an AP@50 of 26.3, which
is close to the best performing one- and two-stage methods, even though we use
a simpler backbone. Note that the object detection performance varies sub-
stantially across multiple backbones and object detectors. For example, BGNN
[28] uses X-101FPN, FCSGG [33] uses HRNetW48-5S-FPN, whereas Relation-
former and its contemporary RelTR [10] use a simple ResNet50 [17] backbone.

Comparing our Relationformer to two-stage models, we outperform all mod-
els that use no extra features in all metrics. Moreover, we perform almost equal
to the remaining two-stage models, which use powerful backbones [28], bi-label
graph resampling [28], custom loss functions [32], and extra features such as word
[24] or knowledge graph embeddings [8]. Therefore, we can claim that we achieve
competitive performances without custom loss functions or extra features while
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using significantly fewer parameters. We also achieve much faster processing
times, measured in frames per second (FPS) (see Table 3). For example, BGNN
[28], which was the top performer in a number of metrics, requires three times
more parameters and is an order of magnitude slower than our method.

Table 3. Quantitative results of Relationformer in comparison with state-of-the-art
methods on the Visual Genome dataset. Relationformer achieves new one-stage state-
of-the-art results and bridges the performance gap with two-stage models, while reduc-
ing model complexity and inference time significantly without the need for any extra
features (e.g., glove vector, knowledge graph, etc.). Importantly, Relationformer out-
performs two-stage models that previously reported mean-Recall@100 and ng-Recalls.

Method Extra Feat. Recall mean-Recall ng-Recall AP # param (M)↓ FPS ↑
@20 @50 @100 @20 @50 @100 @20 @50 @100 @50

Two-Stage MOTIFS [59] ✓ 21.4 27.2 30.5 4.2 5.7 6.6 – 3 0.5 35.8 20.0 240.7 6.6

KERN [8] ✓ 22.3 27.1 – – 6.4 – – 30.9 35.8 20.0 405.2 4.6

GPS-Net [32] ✓ 22.3 28.9 33.2 6.9 8.7 9.8 – – – – – –

BGT-Net [12] ✓ 23.1 28.6 32.2 – – 9.6 – – – – – –

RTN [24] ✓ 22.5 29.0 33.1 – – – – – – – – –

BGNN [28] ✓ 23.3 31.0 – 7.5 10.7 – – – – 29.0 341.9 2.3

GB-Net [58] ✓ – 26.3 29.9 – 7.1 8.5 – 29.3 35.0 – – –

IMP+ [56] ✗ 14.6 20.7 24.5 2.9 3.8 4.8 – 22.0 27.4 20.0 203.8 10.0

G-RCNN [57] ✗ – 11.4 13.7 – – – – 28.5 35.9 23.0 – –

One-Stage FCSGG [33] ✗ 16.1 21.3 – 2.7 3.6 – 16.7 23.5 29.2 28.5 87.1 8.3∗

RelTR [10] ✗ 20.2 25.2 – 5.8 8.5 – – – – 26.4 63.7 16.6

Relationformer ✗ 22.2 28.4 31.3 4.6 9.3 10.7 22.9 31.2 36.8 26.3 92.9 18.2∗

#param are taken from [10]. * Frame-per-second (FPS) is computed in Nvidia GTX 1080 GPU.
Note that ‘-’ indicates that the corresponding results are not available to us.

Figure 4 shows qualitative examples for all datasets used in our experiments.
Qualitative and quantitative results from both spatio-structural and spatio-
semantic graph generation demonstrate the efficiency of our approach and the
importance of simultaneously leveraging [obj]-tokens and the [rln]-token. Rela-
tionformer achieves benchmark performances across a diverse set of image-to-
graph generation tasks suggesting its wide applicability and scalability.

4.2 Ablation Studies

In our ablation study, we focus on two aspects. First, how the [rln]-token and
relation-head guide the graph generation; second, the effect of the sample size in
training transformers from scratch. We select the complex 3D synthetic vessel
and Visual Genome datasets for the ablation. Further ablation experiments can
be found in the supplementary material.

Table 4 (Left) evaluate the importance of the [rln]-token and different
relation-head types. First, we train def-DETR only for object detection as pro-
posed in [7,62], second, we evaluate Relationformer w/ and w/o [rln]-token and
use a linear relation classification layer (models w/o the [rln]-token use only con-
catenated pair-wise [obj]-tokens for relation classification). Third, we replace the
linear relation head with an MLP and repeat the same w/ and w/o [rln]-tokens.
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Fig. 4. Qualitative results (better viewed zoomed in) from road-network, vessel-graph,
and scene-graph generation experiments. Across all datasets, we observe that Rela-
tionformer is able to produce correct results. The segmentation map is given for better
interpretability of road network satellite images. For vessel-graphs, we surface-render
the segmentation of corresponding greyscale voxel data. For scene graphs, we visualize
the attention map between detected [obj]-tokens and [rln]-token, which shows that
the [rln]-token actively attends to objects that contribute to relation formation.
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Table 4. (Left) shows ablation on the [rln]-token and relation head type on Visual
Genome. [rln]-token significantly improves relation prediction for both types of relation
heads. Importantly, the improvement is larger for the linear classifier than for the MLP.
(Right) shows ablation on the [rln]-token and train-data size on synthetic vessel. [rln]-
token significantly improves both node and edge detection. Additionally, the scores
improves with train-data size, suggesting further scope by training on more data.

Model Visual Genome Synthetic Vessel

[rln]-token Rel. Head AP SGDet recall [rln]-token Train data SMD Node det. Edge det.

@50 @20 @50 @100 mAP mAR mAP mAR

def-DETR N/A N/A 26.4 N/A N/A N/A N/A 100% N/A 77.5 83.5 N/A N/A

Relationformer ✗ Linear 24.1 16.6 22.0 25.2 ✗ 100% 0.0129 75.5 81.6 76.3 80.4

Relationformer ✓ Linear 25.3 20.1 25.4 28.3 ✓ 25% 0.0138 17.0 32.1 11.5 28.3

Relationformer ✗ MLP 26.0 19.2 26.4 29.4 ✓ 50% 0.0124 39.2 53.5 33.3 48.9

Relationformer ✓ MLP 26.3 22.2 28.4 31.3 ✓ 100% 0.0110 78.5 84.3 78.1 82.1

We observe that a linear relation classifier w/o [rln]-token is insufficient
to model the mutual relationships among objects and diminishes the object
detection performance as well. In contrast, we see that the [rln]-token signifi-
cantly improves performance despite using a linear relation classifier. Using an
MLP instead of a linear classifier is a better strategy whereas the Relation-
former w/[rln]-token shows a clear benefit. Unlike the linear layer, we hypothe-
size that the MLP provides a separate and adequate embedding space to model
the complex semantic relationships for [obj]-tokens and our [rln]-token.

From ablation on 3D vessel (Table 4 (Right)), we draw the same conclusion
that [rln]-token significantly improve over Relationformer w/o [rln]-token. Fur-
ther, a high correlation between performance and train-data size indicates scope
for improvement by increasing the sample size while training from scratch.

Limitations and Outlook: In this work, we only use bipartite object matching,
and future work will investigate graph-based matching [44]. Additionally, incor-
porating recent transformer-based backbones, i.e., Swin-transformer [34] could
further boost the performance without compromising the simplicity.

5 Conclusion

Extraction of structural- and semantic-relational graphs from images is the
key for image understanding. We propose Relationformer, a unified single-stage
model for direct image-to-graph generation. Our method is intuitive and easy to
interpret because it is devoid of any hand-designed components. We show consis-
tent performance improvement across multiple image-to-graph tasks using Rela-
tionformercompared to previous methods; all while being substantially faster and
using fewer parameters which reduce energy consumption. Relationformer opens
up new possibilities for efficient integration of a image-to-graph models to down-
stream applications in an end-to-end fashion. We believe that our method has
the potential to shed light on many previously unexplored domains and can lead
to new discoveries, especially in 3D.
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former: out-of-distribution detection transformer. arXiv preprint arXiv:2107.08976
(2021)

24. Koner, R., et al.: Relation transformer network. arXiv preprint arXiv:2004.06193
(2020)

25. Koner, R., Li, H., Hildebrandt, M., Das, D., Tresp, V., Günnemann, S.: Graphhop-
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Discussion

This dissertation dedicatedly focuses on the methodological advancement of structural
and functional analysis of vascular images. In this pursuit, the core contributions are
presented in Chapter 5-8 in the form of four first-authored peer-reviewed conferences
and journal publications. The chapters are self-contained and have their respective
discussion section. In the spirit of this cumulative thesis, I will limit the discussion
to prevalent challenges, key findings, and current limitation below. Chapter 5 and 6
consider functional analysis from 4D-Flow MRI images, where physical constraints
for velocity and pressure distribution are studied into the deep models. Chapter 7
and 8 deal with structural analysis of images and consider topological and graph
constraints while developing the methodology.

Chapter 5 - Velocity-To-Pressure (V2P) - Net: Inferring Relative
Pressures from Time-Varying 3D Fluid Flow Velocities

Pressure distribution inside critical blood vessels is an important bio-marker for
neurovascular pathogens, which can be computed from measured velocity. We
provided a hybrid network architecture for this computation and tried to hit the sweet
spot between the efficiency of CNN and the geometry specific customization of neural
implicit functions. We introduced a general framework to linearly disentangle the
velocity component responsible for pressure gradient. Both the CNN and the MLP
proved to be helpful in modeling different sources of pressure gradient by our proposed
linear disentanglement. The CNN component of our model is generalizable across
different geometry. However, the MLP has to be optimized for each geometry, which
remains a main limitation of the current work. Nevertheless, the proposed strategy
showed promising results and shades lights on the potential of physics informed deep
models. To further improve the estimation accuracy of hemodynamic quantities,
adequate resolution of the flow velocity is necessary, which is studied in the next
chapter. Nevertheless, the proposed solution is based on a generic framework, which
in principle could be adopted into similar problem.
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9. Discussion

Chapter 6 - SRflow: Deep Learning Based Super Resolution of 4D-flow
MRI Data

Next, we looked into the super-resolution problem of the velocity field, which is needed
for stable and accurate hemodynamic quantity estimation. Traditional regression
loss for super-resolution considers a generic mean-squared-error loss on the velocities
without dedicated emphasis on its direction. Notably, the asymmetry in the value of
magnitude and directional loss makes it challenging to combine them effectively. We
proposed an alternative approach to emphasize the direction of predicted velocity
with respect to the reference velocity during training by computing projections onto
each other. This, in turn, converts the loss surface for each velocity into an inclined
one according to their direction. The experiment shows consistent improvement when
the loss is used in conjunction with standard ℓ1 loss. A drawback is the relatively
low performance of standalone usage of the proposed loss, which we attribute to the
decreased sensitivity of the loss at the exploitation phase of the optimization.

Chapter 7 - clDice - a Novel Topology-Preserving Loss Function for
Tubular Structure Segmentation

For vessel segmentation, its connectivity is the most crucial aspect. Usual voxel-
wise losses do not emphasize the connectivity mainly because lack of metric and
differentiable loss to support them. We bridged this gap by focusing on the skeleton of
segmentation than the segmentation itself. Checking the inclusivity of the predicted
skeleton onto reference segmentation and vice versa results in a metric to efficiently
capture connectivity. Theoretically, we showed that our formulation is sufficient to
preserve the network topology. Further, this can be approximated in a differentiable
fashion to use as a loss. Our experiments showed improved connectivity not only in
the 3D vessel segmentation task but also in other similar 2D tasks. A limitation of
the current realization of the differentiable skeleton is that it is an approximation of
the true skeleton. Nevertheless, our solution is the most efficient compared to existing
topology preserving methods till date and opens up the possibility to apply a stricter
criteria for skeletonization.

Chapter 8 - Relationformer: A Unified Framework for Image-to-Graph
Generation

Next, we look into the direct graph extraction from vascular images without the
intermediate segmentation stages. This calls for a paradigm shift in the network
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architecture. We bridge the voxel representation in image space with the graph
representation in the vessel network space with the model set-based prediction of
transformers. We borrowed concepts from the computer vision community for a
single-stage predictor and proposed a unified architecture, which is applicable not only
to vessel extraction but also to similar tasks in computer vision, such as road-network
extraction and scene-graph extraction. Our generic architecture advances task-specific
token learning in the vision transformer setup. A limitation of this approach is that
it still operates on the node level to find prediction-to-reference matches during the
computation of loss because of its computational intractability at the graph level.
Nevertheless, this showed that it is possible to predict graphs from images in an
end-to-end fashion and will encourage future research.
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Outlook

With modern deep learning tools, on one side, every task can be learned end-to-
end thoroughly in a data-driven way. On the other hand, it comes with a few
associated drawbacks, such as heavy reliance on data, poor explainability, and
domain generalization. While these are ubiquitous challenges, there are some specific
bottlenecks in considering various physical constraints in deep models, as presented
in this thesis. Additionally, new imaging modalities to do functional and structural
in the future would also call for novel tailor made solutions.

In general, the PDE constraints reduce the requirement for additional data
and make the model personalized but at the cost of partly losing generalizability.
Future research direction could, in principle, take advantage of the neural implicit
representation field and introduce prior in the model for increased generalizability
across the computation domain. Importantly, moving from voxel representation
toward point cloud [29] and mesh [30] representation is also emerging as an alternative
domain to analyze functional properties of vessels such as pressure and wall shear
stresses.

Advancement in the skeletonization process is also highly needed to ensure
correct skeletonization during training. For that, in practice, one could use re-
parameterization tricks to go from real-valued distribution to discrete values and even
perform otherwise non-differentiable skeletons.

Since transformer-based architectures are heavily data-hungry, strategies to reduce
that are of immense interest. One such direction would be to dissect the model and
determine which part is responsible for low-level feature extraction and which part
took care of relational modeling. This will allow us to transfer-learn the reusable
relational modeling part and only fine-tune the modality dependant components.

Further, integration of functional aspects of the network can be integrated into the
graph extraction model. For example, a differentiable flow simulator [31, 32] on a graph
could be integrated to provide additional functional feedback to the network. This
will lead a step forward to the grand goal of modeling inter-structural and functional
dependencies of the blood vessels under normal and pathogenic conditions.
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Todorov-Völgyi, M. Düring, M. Dichgans, M. Piraud, et al. “Machine learning
analysis of whole mouse brain vasculature.” In: Nature methods 17.4 (2020),
pp. 442–449.

[2] S. He, Y. Li, Y. Feng, S. Ho, S. Ravanbakhsh, W. Chen, and B. Póczos.
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1

Supplementary Material: Deep Learning Based Super2

Resolution of 4D-flow MRI Data3

1 QUANTITATIVE RESULT

Methods s PVNR (dB) ↑ RMSspeed (ms−1) ↓ Edir ↓ RMSdiv (s−1) ↓
Cubic Spline ×2 32.42± 0.491 0.0348± 0.00987 0.0126± 0.00017 0.0019± 0.00051
WDSR-3D ×2 37.84± 0.705 0.0187± 0.00578 0.0097± 0.00005 0.0015± 0.00041
SRflow (ℓ1) ×2 38.12± 0.696 0.0182± 0.00563 0.0090± 0.00009 0.0014 ± 0.00039
SRflow (mp-ℓ1) ×2 37.71± 0.553 0.0168± 0.00508 0.0086± 0.00008 0.0015± 0.00040
SRflow (opt) ×2 39.14 ± 0.629 0.0161 ± 0.00487 0.0084 ± 0.00008 0.0014 ± 0.00038

Cubic Spline ×3 27.33± 0.444 0.0621± 0.01720 0.0317± 0.00030 0.0023± 0.00063
WDSR-3D ×3 34.55± 0.682 0.0269± 0.00826 0.0102 ± 0.00008 0.0018± 0.00054
SRflow (ℓ1) ×3 35.15 ± 0.634 0.0254 ± 0.00767 0.0093± 0.00008 0.0015 ± 0.00044
SRflow (mp-ℓ1) ×3 34.64± 0.495 0.0271± 0.00786 0.0119± 0.00002 0.0019± 0.00054
SRflow (opt) ×3 35.20 ± 0.520 0.0253 ± 0.00732 0.0102 ± 0.00008 0.0015 ± 0.00042

Cubic Spline ×4 24.53± 0.394 0.0851± 0.02302 0.0554± 0.00049 0.0027± 0.00077
WDSR-3D ×4 33.22± 0.540 0.0313± 0.00914 0.0102± 0.00012 0.0018± 0.00050
SRflow (ℓ1) ×4 33.50± 0.676 0.0304± 0.00930 0.0105± 0.00014 0.0020± 0.00057
SRflow (mp-ℓ1) ×4 33.18± 0.520 0.0315± 0.00910 0.0095 ± 0.00012 0.0018± 0.00049
SRflow (opt) ×4 33.87 ± 0.642 0.0293 ± 0.00888 0.0097 ± 0.00015 0.0017 ± 0.00048

Table S1: Experiment-1 Part A: Synthetic Cerebrovascular Results

Methods s PVNR (dB) ↑ RMSspeed (ms−1) ↓ Edir ↓ RMSdiv (s−1) ↓
Cubic Spline ×2 28.37± 2.046 0.0274± 0.01348 0.0228± 0.01275 0.0096± 0.00439
WDSR-3D ×2 29.33± 2.227 0.0248± 0.01260 0.0220± 0.00579 0.0071 ± 0.00347
SRflow (ℓ1) ×2 29.45± 2.202 0.0245± 0.01246 0.0209± 0.00625 0.0068 ± 0.00329
SRflow (mp-ℓ1) ×2 30.01± 2.215 0.0226± 0.01148 0.0182± 0.00490 0.0072± 0.00341
SRflow (opt) ×2 30.56 ± 2.393 0.0220 ± 0.01149 0.0146 ± 0.00403 0.0072± 0.00346

Cubic Spline ×3 23.81± 1.831 0.0447± 0.02161 0.0684± 0.03950 0.0092± 0.00422
WDSR-3D ×3 26.21± 1.809 0.0334± 0.01628 0.0525± 0.02257 0.0071± 0.00353
SRflow (ℓ1) ×3 26.99± 1.923 0.0312± 0.01544 0.0425± 0.01636 0.0064 ± 0.00330
SRflow (mp-ℓ1) ×3 26.80± 2.020 0.0314± 0.01555 0.0425± 0.01318 0.0070± 0.00352
SRflow (opt) ×3 27.36 ± 2.014 0.0300 ± 0.01489 0.0367 ± 0.01250 0.0067± 0.00350

Cubic Spline ×4 21.31± 1.738 0.0583± 0.02795 0.1214± 0.06776 0.0091± 0.00437
WDSR-3D ×4 25.15± 1.637 0.0368± 0.01760 0.0738± 0.03595 0.0068± 0.00341
SRflow (ℓ1) ×4 25.55 ± 1.736 0.0359± 0.01733 0.0616 ± 0.02935 0.0063 ± 0.00331
SRflow (mp-ℓ1) ×4 25.08± 1.835 0.0370± 0.01802 0.0677± 0.02744 0.0068± 0.00352
SRflow (opt) ×4 25.61 ± 1.848 0.0354 ± 0.01740 0.0611 ± 0.02672 0.0066± 0.00352

Table S2: Experiment-1 Part B: In Vivo Cerebrovascular 4D-flow MRI Results

Performance comparison of our proposed method with the baseline model and cubic-spline-based4
interpolation. We compare three different loss functions in our study for the proposed network to investigate5
contributions each of its contributions to the vector-field super-resolution. Higher (↑) PVNR and lower6
(↓) RMSspeed, Edir and RMSdiv indicates better performance. We pairwise report Wilcoxon signed rank7
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between the best performing methods (shown in bold) and the other methods for all the metrics. Methods8
that do not differ significantly from the best performing one (p-value> 0.001), are also reported in bold.9

Methods s PVNR (dB) ↑ RMSspeed (ms−1) ↓ Edir ↓ RMSdiv (s−1) ↓
Cubic Spline ×2 23.53± 3.009 0.0936± 0.03924 0.2316± 0.15496 0.0131± 0.00872
WDSR-3D ×2 24.80± 2.477 0.0805± 0.02708 0.1902 ± 0.13379 0.0113 ± 0.00741
SRflow (ℓ1) ×2 24.82 ± 2.481 0.0805± 0.02696 0.1898 ± 0.13372 0.0113 ± 0.00745
SRflow (mp-ℓ1) ×2 24.81± 2.666 0.0762 ± 0.02561 0.1929± 0.13352 0.0136± 0.00872
SRflow (opt) ×2 24.86 ± 2.532 0.0760 ± 0.02542 0.1892 ± 0.13317 0.0130± 0.00835

Cubic Spline ×3 21.60± 3.642 0.1252± 0.06540 0.3096± 0.18966 0.0108± 0.00825
WDSR-3D ×3 23.17± 2.774 0.1016± 0.03806 0.2495± 0.16765 0.0090 ± 0.00663
SRflow (ℓ1) ×3 23.16± 2.784 0.1021± 0.03857 0.2485± 0.16736 0.0090 ± 0.00659
SRflow (mp-ℓ1) ×3 23.15± 2.865 0.0949 ± 0.03669 0.2499± 0.16787 0.0109± 0.00788
SRflow (opt) ×3 23.26 ± 2.735 0.0983 ± 0.03621 0.2482 ± 0.16734 0.0094 ± 0.00694

Cubic Spline ×4 20.55± 4.061 0.1476± 0.08548 0.3609± 0.20501 0.0100± 0.00822
WDSR-3D ×4 22.27± 3.031 0.1156± 0.04693 0.2865± 0.18165 0.0082 ± 0.00633
SRflow (ℓ1) ×4 22.25± 3.065 0.1168± 0.04817 0.2845 ± 0.18102 0.0082 ± 0.00626
SRflow (mp-ℓ1) ×4 22.29 ± 3.076 0.1061 ± 0.04399 0.2869± 0.18090 0.0102± 0.00782
SRflow (opt) ×4 22.38 ± 2.963 0.1115± 0.04442 0.2843 ± 0.18081 0.0086 ± 0.00663

Table S3: Experiment-2 Part A: In Vivo Cardiovascular 4D-flow MRI Results

Methods s PVNR (dB) ↑ RMSspeed (ms−1) ↓ Edir ↓ RMSdiv (s−1) ↓
Cubic Spline ×2 28.37± 2.046 0.0274± 0.01348 0.0228± 0.01275 0.0096± 0.00439
WDSR-3D ×2 30.93± 2.155 0.0191± 0.00948 0.0096± 0.00184 0.0107± 0.00460
SRflow (ℓ1) ×2 32.20± 2.373 0.0182± 0.00912 0.0062± 0.00147 0.0102± 0.00456
SRflow (mp-ℓ1) ×2 33.38± 2.678 0.0166± 0.00885 0.0057± 0.00149 0.0083 ± 0.00388
SRflow (opt) ×2 33.52 ± 2.703 0.0164 ± 0.00878 0.0053 ± 0.00160 0.0083 ± 0.00394

Cubic Spline ×3 23.81± 1.831 0.0447± 0.02161 0.0684± 0.03950 0.0092± 0.00422
WDSR-3D ×3 25.59± 1.628 0.0373± 0.01592 0.0190± 0.00450 0.0127± 0.00520
SRflow (ℓ1) ×3 27.03± 1.855 0.0289± 0.01374 0.0244± 0.00684 0.0089± 0.00378
SRflow (mp-ℓ1) ×3 30.23± 2.373 0.0231± 0.01187 0.0139± 0.00393 0.0070 ± 0.00336
SRflow (opt) ×3 30.46 ± 2.473 0.0228 ± 0.01188 0.0120 ± 0.00345 0.0070 ± 0.00333

Cubic Spline ×4 21.31± 1.738 0.0583± 0.02795 0.1214± 0.06776 0.0091± 0.00437
WDSR-3D ×4 27.82± 2.192 0.0296± 0.01497 0.0281± 0.00772 0.0062 ± 0.00306
SRflow (ℓ1) ×4 28.22± 2.271 0.0288± 0.01463 0.0236 ± 0.00669 0.0063 ± 0.00310
SRflow (mp-ℓ1) ×4 27.31± 1.501 0.0277 ± 0.01978 0.0346± 0.00749 0.0111± 0.00468
SRflow (opt) ×4 28.30 ± 2.321 0.0279 ± 0.01456 0.0242 ± 0.00723 0.0067 ± 0.00325

Table S4: Experiment-2 Part B: In Vivo Cerebrovascular 4D-flow MRI Results
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Figure S1: In-plane dynamics for Synthetic Cerebrovascular Data from Experiment-1 Part A: (A→ E) shows
the one cardiac cycle dynamics for PVNR for corresponding slices (A→ E) of the aneurysm geometry, respectively,
for the upscaling factor of 2×. All learning-based solutions outperform cubic-spline based super-resolution. SRflow
(opt) and SRflow (mp− ℓ1) produces the best score in all 5 cases.

Figure S2: Flow Profile for Synthetic Cerebrovascular Data from Experiment-1 Part A:The first row shows the
velocity profile of the reference data at the peak systolic time for five different cross-sections, as shown in Fig S1.
The subsequent rows show the error in the velocity profile for different predictions. We observe that the cubic spline
has a significant amount of error, and SRflow (opt) creates the least amount of error for all five cross-sections.

Frontiers 3



Supplementary Material: clDice - a
Novel Topology-Preserving Loss
Function for Tubular Structure
Segmentation

113



Supplementary Material for clDice - a Novel Topology-Preserving Loss Function
for Tubular Structure Segmentation

Suprosanna Shit * 1 Johannes C. Paetzold ∗ 1 Ivan Ezhov1 Anjany Sekuboyina1

Alexander Unger1 Andrey Zhylka2 Josien P. W. Pluim2 Ulrich Bauer1 Bjoern H. Menze1
1Technical University of Munich 2 Eindhoven University of Technology

1. Theory - clDice in Digital Topology
In addition to our Theorem 1 in the main paper, we are

providing intuitive interpretations of clDice from the digital
topology perspective. Betti numbers describe and quantify
topological differences in algebraic topology. The first three
Betti numbers (β0, β1, and β2) comprehensively capture
the manifolds appearing in 2D and 3D topological space.
Specifically,

• β0 represents the number of connected-components,
• β1 represents the number of circular holes, and
• β2 represents the number of cavities (Only in 3D)

Figure 1. Examples of the topology properties. Left, a hole in 2D,
in the middle a hole in 3D and right a cavity inside a sphere in 3D.

Using the concepts of Betti numbers and digital topology
by Kong et al. [3, 6], we formulate the effect of topological
changes between a true binary mask (VL) and a predicted
binary mask (VP ) in Fig. 2. We will use the following defi-
nition of ghosts and misses, see Figure 2.

1. Ghosts in skeleton: We define ghosts in the predicted
skeleton (SP ) when SP 6⊂ VL. This means the pre-
dicted skeleton is not completely included in the true
mask. In other words, there exist false-positives in the
prediction, which survive after skeletonization.

2. Misses in skeleton: We define misses in the predicted
skeleton (SP ) when SL 6⊂ VP . This means the true
skeleton is not completely included in the predicted
mask. In other words, there are false-negatives in the
prediction, which survive after skeletonization.

The false positives and false negatives are denoted by
VP \VL and VL\VP , respectively, where \ denotes a set dif-
ference operation. The loss function aims to minimize both

*The authors contributed equally to the work

errors. We call an error correction to happen when the value
of a previously false-negative or false-positive voxel flips
to a correct value. Commonly used voxel-wise loss func-
tions, such as Dice-loss, treat every false-positive and false-
negative equally, irrespective of the improvement in regards
to topological differences upon their individual error cor-
rection. Thus, they cannot guarantee homotopy equivalence
until and unless every single voxel is correctly classified. In
stark contrast, we show in the following proposition that
clDice guarantees homotopy equivalence under a minimum
error correction.

Proposition 1. For any topological differences between VP
and VL, achieving optimal clDice to guarantee homotopy
equivalence requires a minimum error correction of VP .

Proof. From Fig 2, any topological differences between
VP and VL will result in ghosts or misses in the foreground
or background skeleton. Therefore, removing ghosts and
misses are sufficient conditions to remove topological dif-
ferences. Without the loss of generalizability, we consider
the case of ghosts and misses separately:

For a ghost g ⊂ SP ,∃ a set of predicted voxels E1 ⊂
{VP \ VL} such that VP \ E1 does not create any misses
and removes g. Without the loss of generalizability, let’s
assume that there is only one ghost g. Now, to remove g,
under a minimum error correction of VP , we have to min-
imize |E1|. Let’s say an optimum solution E1min exists.
By construction, this implies that VP \ E1min removes g.

For a miss m ⊂ V {
P ,∃ a set of predicted voxels E2 ⊂

{VL \ VP } such that VP ∪ E2 does not create any ghosts
and removes m. Without the loss of generalizability, let’s
assume that there is only one miss m. Now, to remove
m, under a minimum error correction of VP , we have to
minimize |E2|. Let’s say an optimum solution E2min

exists. By construction, this implies that VP ∪ E2min

removes m.

Thus, in the absence of any ghosts and misses, from
Lemma 1.1, clDice=1 for both foreground and background.
Finally, Therefore, Theorem 1 (from the main paper) guar-
antees homotopy equivalence.

Lemma 1.1. In the absence of any ghosts and misses
clDice=1.
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Figure 2. Upper part, left, taxonomy of the iff conditions to preserve topology in 3D using the concept of Betti numbers [3, 4]; interpreted
as the necessary violation of skeleton properties for any possible topological change in the terminology of ghosts and misses (upper part
right) . Lower part, intuitive depictions of ghosts and misses in the prediction; for the skeleton of the foreground (left) and the skeleton of
the background (right).

Proof. The absence of any ghosts SP ∈ VL implies
Tprec = 1; and the absence of any misses SL ∈ VP implies
Tsens = 1. Hence, clDice=1.

1.1. Interpretation of the Adaption to Highly Un-
balanced Data According to Digital Topology:

Considering the adaptions we described in the main
text, the following provides analysis on how these assump-
tions and adaptions are funded in the concept of ghosts
and misses, described in the previous proofs. Importantly,
the described adaptions are not detrimental to the perfor-
mance of clDice for our datasets. We attribute this to the
non-applicability of the necessary conditions specific to the
background (i.e. II, IV, VI, VII, and IX in Figure 1), as
explained below:

• II. → In tubular structures, all foreground objects are

eccentric (or anisotropic). Therefore isotropic skele-
tonization will highly likely produce a ghost in the
foreground.

• IV.→ Creating a hole outside the labeled mask means
adding a ghost in the foreground. Creating a hole in-
side the labeled mask is extremely unlikely because no
such holes exist in our training data.

• VI.→ The deletion of a hole without creating a miss is
extremely unlikely because of the sparsity of the data.

• VII.and IX. (only for 3D) → Creating or removing a
cavity is very unlikely because no cavities exist in our
training data.

2. Additional Qualitative Results
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Figure 3. Qualitative results: for the Massachusetts Road dataset and for the DRIVE retina dataset (last row). From left to right, the real image, the label,
the prediction using soft-dice and the predictions using the proposed Lc(α = 0.5), respectively. The first three rows are U-Net results and the fourth row
is an FCN result. This indicates that soft-clDice segments road connections which the soft-dice loss misses. Some, but not all, missed connections are
indicated with solid red arrows, false positives are indicated with red-yellow arrows.
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Figure 4. Qualitative results: 2D slices of the 3D vessel dataset for different sized field of views. From left to right, the real image, the label, the
prediction using soft-dice and the U-Net predictions using Lc(α = 0.4), respectively. These images show that soft-clDice helps to better segment the vessel
connections. Importantly the networks trained using soft-dice over-segment the vessel radius and segments incorrect connections. Both of these errors are
not present when we train including soft-clDice in the loss. Some, but not all, false positive connections are indicated with red-yellow arrows.

3. Comparison to Other Literature:

A recent pre-print proposed a region-separation ap-
proach, which aims to tackle the issue by analysing discon-
nected foreground elements [5]. Starting with the predicted
distance map, a network learns to close ambiguous gaps by
referring to a ground truth map which is dilated by a five-
pixel kernel, which is used to cover the ambiguity. How-
ever, this does not generalize to scenarios with a close or

highly varying proximity of the foreground elements (as is
the case for e.g. capillary vessels, synaptic gaps or irregular
road intersections). Any two foreground objects which are
placed at a twice-of-kernel-size distance or closer to each
other will potentially be connected by the trained network.
This is facilitated by the loss function considering the gap
as a foreground due to performing dilation in the training
stage. Generalizing their approach to smaller kernels has
been described as infeasible in their paper [5].



4. Datasets and Training Routine

For the DRIVE vessel segmentation dataset, we perform
three-fold cross-validation with 30 images and deploy the
best performing model on the test set with 10 images. For
the Massachusetts Roads dataset, we choose a subset of 120
images (ignoring imaged without a network of roads) for
three-fold cross-validation and test the models on the 13 of-
ficial test images. For CREMI, we perform three-fold cross-
validation on 324 images and test on 51 images. For the 3D
synthetic dataset. we perform experiments using 15 vol-
umes for training, 2 for validation, and 5 for testing. For the
Vessap dataset, we use 11 volumes for training, 2 for vali-
dation and 4 for testing. In each of these cases, we report
the performance of the model with the highest clDice score
on the validation set.

5. Network Architectures

We use the following notation: In(input channels),
Out(output channels),
B(output channels) present input, output, and bottleneck
information(for U-Net); C(filter size, output channels)
denote a convolutional layer followed by ReLU and batch-
normalization; U(filter size, output channels) denote
a trans-posed convolutional layer followed by ReLU and
batch-normalization; ↓ 2 denotes maxpooling; ⊕ indicates
concatenation of information from an encoder block. We
had to choose a different FCN architecture for the Mas-
sachusetts road dataset because we realize that a larger
model is needed to learn useful features for this complex
task.

5.1. Drive Dataset

5.1.1 FCN :

IN(3 ch) → C(3, 5) → C(5, 10) → C(5, 20) →
C(3, 50)→ C(1, 1)→ Out(1)

5.1.2 Unet :

ConvBlock : CB(3, out size) ≡ C(3, out size) →
C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size) →
⊕→ C(3, out size)

Encoder : IN(3 ch) → CB(3, 64) → CB(3, 128) →
CB(3, 256)→ CB(3, 512)→ CB(3, 1024)→ B(1024)

Decoder : B(1024) → UB(3, 1024) → UB(3, 512) →
UB(3, 256)→ UB(3, 128)→ UB(3, 64)→ Out(1)

5.2. Road Dataset

5.2.1 FCN :

IN(3 ch) → C(3, 10) → C(5, 20) → C(7, 30) →
C(11, 30) → C(7, 40) → C(5, 50) → C(3, 60) →
C(1, 1)→ Out(1)

5.2.2 Unet :

Same as Drive Dataset, except we used 2x2 up-convolutions
instead of bilinear up-sampling followed by a 2D-
convolution with kernel size 1.

5.3. Cremi Dataset

5.3.1 Unet :

Same as Road Dataset.

5.4. 3D Dataset

5.4.1 3D FCN :

IN(1 or 2 ch) → C(3, 5) → C(5, 10) → C(5, 20) →
C(3, 50)→ C(1, 1)→ Out(1)

5.4.2 3D Unet :

ConvBlock : CB(3, out size) ≡ C(3, out size) →
C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size) →
⊕→ C(3, out size)

Encoder : IN(1 or 2 ch) → CB(3, 32) → CB(3, 64) →
CB(3, 128)→ CB(5, 256)→ CB(5, 512)→ B(512)

Decoder : B(512) → UB(3, 512) → UB(3, 256) →
UB(3, 128)→ UB(3, 64)→ UB(3, 32)→ Out(1)

Table 1. Total number of parameters for each of the architectures
used in our experiment.

Dataset Network Number of parameters
Drive FCN 15.52K

UNet 28.94M
Road FCN 279.67K
Cremi UNet 31.03M

3D FCN 2ch 58.66K
Unet 2ch 19.21M



6. Soft Skeletonization Algorithm
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Figure 5. Scheme of our proposed differentiable skeletonization.
On the top left the mask input is fed. Next, the input is reatedly
eroded and dilated. The resulting erosions and dilations are com-
pared to the image before dilation. The difference between thise
images is part of the skeleton and will be added iteratively to ob-
tain a full skeletonization. The ReLu operation eliminates pixels
that were generated by the dilation but are not part of the oirginal
or eroded image.

7. Code for the clDice similarity measure and
the soft-clDice loss (PyTorch):

7.1. clDice measure

from sk image . morphology import s k e l e t o n i z e
import numpy as np
def c l s c o r e ( v , s ) :

re turn np . sum ( v* s ) / np . sum ( s )
def c l D i c e ( v p , v l ) :

t p r e c = c l s c o r e ( v p , s k e l e t o n i z e ( v l ) )
t s e n s = c l s c o r e ( v l , s k e l e t o n i z e ( v p ) )
re turn 2* t p r e c * t s e n s / ( t p r e c + t s e n s )

7.2. soft-skeletonization in 2D

import t o r c h . nn . f u n c t i o n a l a s F
def s o f t e r o d e ( img ) :

p1 = −F . max pool2d ( − img , ( 3 , 1 ) , ( 1 , 1 ) , ( 1 , 0 ) )
p2 = −F . max pool2d ( − img , ( 1 , 3 ) , ( 1 , 1 ) , ( 0 , 1 ) )
re turn t o r c h . min ( p1 , p2 )

def s o f t d i l a t e ( img ) :
re turn F . max pool2d ( img , ( 3 , 3 ) , ( 1 , 1 ) , ( 1 , 1 ) )

def s o f t o p e n ( img ) :
re turn s o f t d i l a t e ( s o f t e r o d e ( img ) )

def s o f t s k e l ( img , i t e r ) :
img1 = s o f t o p e n ( img )
s k e l = F . r e l u ( img−img1 )
f o r j in range ( i t e r ) :

img = s o f t e r o d e ( img )
img1 = s o f t o p e n ( img )
d e l t a = F . r e l u ( img−img1 )
s k e l = s k e l + F . r e l u ( d e l t a − s k e l * d e l t a )

re turn s k e l

7.3. soft-skeletonization in 3D

import t o r c h . nn . f u n c t i o n a l a s F

def s o f t e r o d e ( img ) :
p1 = −F . max pool3d ( − img , ( 3 , 1 , 1 ) , ( 1 , 1 , 1 ) , ( 1 , 0 , 0 ) )
p2 = −F . max pool3d ( − img , ( 1 , 3 , 1 ) , ( 1 , 1 , 1 ) , ( 0 , 1 , 0 ) )
p3 = −F . max pool3d ( − img , ( 1 , 1 , 3 ) , ( 1 , 1 , 1 ) , ( 0 , 0 , 1 ) )

re turn t o r c h . min ( t o r c h . min ( p1 , p2 ) , p3 )

def s o f t d i l a t e ( img ) :
re turn F . max pool3d ( img , ( 3 , 3 , 3 ) , ( 1 , 1 , 1 ) , ( 1 , 1 , 1 ) )

def s o f t o p e n ( img ) :
re turn s o f t d i l a t e ( s o f t e r o d e ( img ) )

def s o f t s k e l ( img , i t e r ) :
img1 = s o f t o p e n ( img )
s k e l = F . r e l u ( img−img1 )
f o r j in range ( i t e r ) :

img = s o f t e r o d e ( img )
img1 = s o f t o p e n ( img )
d e l t a = F . r e l u ( img−img1 )
s k e l = s k e l + F . r e l u ( d e l t a − s k e l * d e l t a )

re turn s k e l

8. Evaluation Metrics
As discused in the text, we compare the performance of var-
ious experimental setups using three types of metrics: vol-
umetric, graph-based and topology-based.

8.1. Overlap-based:

Dice coefficient, Accuracy and clDice, we calculate
these scores on the whole 2D/3D volumes. clDice is calcu-
lated using a morphological skeleton (skeletonize3D from
the skimage library).

8.2. Graph-based:

We extract graphs from random patches of 64×64 pixels
in 2D and 48× 48× 48 in 3D images.

For the StreetmoverDistance (SMD) [1] we uniformly
sample a fixed number of points from the graph of the pre-
diction and label, match them and calculate the Wasserstein-
distance between these graphs. For the junction-based met-
ric (Opt-J) we compute the F1 score of junction-based met-
rics, recently proposed by [2]. According to their paper
this metric is advantageous over all previous junction-based
metrics as it can account for nodes with an arbitrary number



of incident edges, making this metric more sensitive to end-
points and missed connections in predicted networks. For
more information please refor to their paper.

8.3. Topology-based:

For topology-based scores we calculate the Betti Errors
for the Betti Numbers β0 and β1. Also, we calculate the
Euler characteristic, χ = V −E+F , whereE is the number
of edges, F is the number of faces and V is the number of
vertices. We report the relative Euler characteristic error
(χratio), as the ratio of the χ of the predicted mask and
that of the ground truth. Note that a χratio closer to one is
preferred. All three topology-based scores are calculated on
random patches of 64 × 64 pixels in 2D and 48 × 48 × 48
in 3D images.

9. Additional Quantitative Results

Table 2. Quantitative experimental results for the 3D synthetic
vessel dataset. Bold numbers indicate the best performance. We
trained baseline models of binary-cross-entropy (BCE), softDice
and mean-squared-error loss (MSE) and combined them with our
soft-clDice and varied the α > 0. For all experiments we observe
that using soft-clDice in Lc results in improved scores compared
to soft-Dice. This improvement holds for almost α > 0. We
observe that soft-clDice can be efficiently combined with all three
frequently used loss functions.

Loss Dice clDice
BCE 99.81 98.24
Lc, α = 0.5 99.76 98.25
Lc, α = 0.4 99.77 98.29
Lc, α = 0.3 99.76 98.20
Lc, α = 0.2 99.78 98.29
Lc, α = 0.1 99.82 98.39
Lc, α = 0.01 99.83 98.46
Lc, α = 0.001 99.85 98.42
soft-Dice 99.74 97.07
Lc, α = 0.5 99.74 97.53
Lc, α = 0.4 99.74 97.07
Lc, α = 0.3 99.80 98.13
Lc, α = 0.2 99.74 97.08
Lc, α = 0.1 99.74 97.08
Lc, α = 0.01 99.74 97.07
Lc, α = 0.001 99.74 97.12
MSE 99.71 97.03
Lc, α = 0.5 99.62 98.22
Lc, α = 0.4 99.65 97.04
Lc, α = 0.3 99.67 98.16
Lc, α = 0.2 99.70 97.10
Lc, α = 0.1 99.74 98.21
Lc, α = 0.01 99.82 98.32
Lc, α = 0.001 99.84 98.37
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A Transformer and Deformable-DETR

The core of a transformer [12] is the attention mechanism. Let us consider an
image feature map f I , the qth query with associated features f q and kth key

with associated image features fk
I . One can define the multi-head attention for

M number of heads and K number of key elements as

MultiHeadAttn
(
f q,f I

)
=

M∑

m=1

Wm

[
K∑

k=1

Amqk ·W ′
mfk

I

]

where W ′
m and Wm are learnable weights. The attention weights Amqk ∝

exp

{
f⊤

q W ′′⊤
m W ′′′

mfk
I√

dk

}
are normalized as

∑K
k=1 Amqk = 1, where W ′′

m,W ′′′
m are

also learnable weights and dk is the temperature parameter. To differentiate
position of each element uniquely, f q and f I are given a distinct positional
embedding.

In our work, we use the multi scale deformable attention [14]. Let us consider
the reference point associated with f q as xq. First, for them

th attention head, we

need to compute the kth sampling offset ∆xmqk based on the query features f q.
Subsequently, the sampled image features f I(xq +∆xmqk) go through a single

layer W
′
m followed by a multiplication with the attention weight Amqk, which

is also obtained from the query features f q. Finally, another single layer Wm

merges all the heads. Formally, the deformable attention operation (DefAttn)
for M heads and K sampling points is defined as:

DefAttn(f q,xq,f I) =
M∑

m=1

Wm

[
K∑

k=1

Amqk ·W
′
mf I(xq +∆xmqk)

]
(1)

⋆ equal contribution
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The multi-scale deformable attention for L number of level is given as

MSDefAttn(f q,xq, {f l
I}Ll=1) =

M∑

m=1

Wm

[
L∑

l=1

K∑

k=1

Amlqk ·W
′
mf l

I(ϕl(xq) +∆xmlqk)

]

where ϕl rescales the normalized reference point coordinates appropriately in
the corresponding image space.

B Dataset

Here we describe the individual datasets used in our experimentation in detail.
We also elaborate on generating train-test sets for our experiments. For 20 U.S.
Cities and 3D synthetic vessel we extract overlapping patches from large images.
This provides us a large enough sample size to train our Relationformer from
scratch. Since, a DETR like architecture is not translation invariant because of
learned [obj]-tokens in the decoder, extracting overlapping patches drastically
increases the effective sample size within a limited number of available images.

B.1 Toulouse Road Network

The Toulouse Road Network dataset [1] is based on publicly available satellite
images from Open Streetmap and consists of semantic segmentation images with
their corresponding graph representations. For our experiments we use the same
split as in the original dataset paper with 80,357 samples in the training set,
11,679 samples in the validation set, and 18,998 samples in the test set [1].

B.2 20 U.S. Cities Dataset

For the 20 U.S. Cities dataset [3], there are 180 images with a resolution of
2048x2048. We select 144 for training, 9 for validation, and 27 for testing. From
those images, we extract overlapping patches of size 128x128 to construct the
final train-validation-test split. We crop the RGB image and the corresponding
graph followed by a node simplification. Following Belli et al. [1], we prune the
dense nodes by computing the angle between two road-segments at each node
of degree 2 and only keep a node if the road curvature is less than 160 degrees.
This allows eliminating redundant nodes and simplifying the graph prediction
task. Fig. 1 illustrates the pruning process.

B.3 3D Synthetic Vessels

Our synthetic vessel dataset is based on publicly available synthetic images gen-
erated in Tetteh et al. [11]. In this dataset, the ground truth graph was generated
by [10] and from that, corresponding voxel-level semantic segmentation data was
generated. Grey valued data was obtained by adding different noise levels to the
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Image Patch Segmentation Patch Cropped Graph Pruned Graph 

Fig. 1. Preprocessing steps for the 20 U.S. Cities dataset. The same steps are followed
in the 3D Synthetic Vessel dataset curation.

segmentation map. Specifically, we train on greyscale ”images” and their corre-
sponding vessel graph representations, where each node represents a bifurcation
point, and the edges represent their connecting vessels. The whole dataset con-
tains 136 3D volumes of size 325x304x600. First, we choose 40 volumes to create
a train and validation set and next pick 10 volumes for the test set. From this,
we extract overlapping patches of size 64x64x64 to construct the final train-
validation-test set. Similar to the 20 U.S. cities dataset, we prune nodes having
degree 2 based on the angle between two edges.

B.4 Visual Genome

Visual Genome is one of the largest scene graph datasets consisting of 108,077
natural images [6]. However, the original dataset suffers from multiple annotation
errors and improper bounding boxes. Lu et al. [9] proposed a refined version of
Visual Genome with the most frequent occurring 150 objects classes and 50
relation categories. It also proposed its own train/val/test splits and is the most
widely used data-split [13,5,7,8] for SGG. For fair comparison, we only train on
the Visual Genome dataset and do not use any pre-training.

C Metrics Details

Metrics for Spatio-Structural Graph: We use three different kinds of metrics
to capture spatial similarity alongside the topological similarity of the pre-
dicted graphs. The graph-level metrics include; 1) Street Mover Distance (SMD):
SMD[1] compute Wasserstein distance between the uniformly sampled fixed
number of points (See Fig. 2) from the predicted and ground truth edges; and
2) TOPO Score: TOPO Score[3] computes precision, recall, and F-1 score for
topological mismatch in terms of the false-positive and false-negative topolog-
ical loop. Alongside, we use 3) Node Detection: For this, we report mean av-
erage precision (mAP) and mean average recall (mAR) over a threshold range
[0.5,0.95,0.05] for node box prediction. Similarly, we use 4) Edge Detection: We
compute the mAP and mAR for the edge in the same way as above. The edge
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Graph Sampled Points Node Objects Edge Objects 

Fig. 2. Sampled points, node objects and edge objects for computing different spatio-
structural graph metrics. The same notion is used for 3D graphs.

boxes are constructed from the center points of two connecting nodes (See Fig.
2). For vertical and horizontal edges we assume an hypothetical width of 0.15 to
avoid objects with near zero width.

Metrics for Spatio-Semantic Graph: We evaluate Relationformer on the most
challenging Scene Graph Detection(SGDet) metrics and its variants. Unlike other
scene graph metrics like Predicate Classification (PredCls) or Scene Graph classi-
fication (SGCls) , SGDet does not use apriori information on class label or object
spatial position and does not rely on complex RoI-align based spatial features.
SGDet jointly measures the predicted boxes (with 50% overlaps) class labels of
an object, and relation labels. The variants of SGDet include 1) Recall: Recall
at the different K (20, 50 and 100) of predicted relation that reflects overall re-
lation prediction performance, 2) Mean-Recall: mean-Recall computes mean of
each relation class-wise recall that reflects the performance under the relational
imbalance or long-tailed distribution of relation class, 3) ng-Recall: ng-Recall is
recall w/o graph constraints on the prediction, which takes the top-k predictions
instead of just the top-1. Additionally, we use 4) AP@50: Average precision at
50% threshold of IOU reflects an average object detection performance.

D Model Details

Table 1. The model parameters used in Relationformer experiments across the various
datasets. Specifically, we list details on the backbone and the transformer’s number of
layers, feature dimension and other details.

DataSet Backbone
Transformer

MLP Dim
Enc. Layer Dec. Layer # [obj]-tokens demb

Toulouse ResNet-50 4 4 20 256 512
20 US cities ResNet-101 4 4 80 512 1024
Synth Vessel SE-Net 4 4 80 256 1024
Visual Genome ResNet-50 6 6 200 512 2048
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Table 1, describes the backbone and important parameters of the Relation-
former. We experiment with different ResNet backbones to show the flexibility
of our Relationformer. In order to reduce energy consumption, we use the lighter
ResNet50 for most 2D datasets. For the 3D experiment, we used Squeeze-and-
Excite Net [4]. We used the number of encoder and decoder layers and the
number of [obj]-tokens in the increasing order of dataset complexity. We find
that four transformer layers and 20 [obj]-tokens suffice for Toulouse, while we
need four transformer layers and 80 [obj]-tokens are required for 20 U.S. cities
and synthetic vessel datasets. We need 6 layers of transformer and 200 [obj]-
tokens for the visual genome. The ablation on the number of transformer layers
and number of [obj]-tokens are shown in the next section.

E Training Details

Table 2. A list of the important set of parameters used in Relationformer for respective
training. Furthermore, we list the weights for bipartite matching costs and training
losses.

DataSet
Batch
Size

Learning
rate

Epoch
Cost Coeff. Loss Coeff.
cls reg gIoU λreg λgIoU λcls λrln

Toulouse 64 10−4 50 2 5 0 5 2 2 1

20 US cities 32 10−4 100 3 5 0 5 2 3 4

3D Vessel Net 48 10−4 100 2 5 0 2 3 3 4

Visual Genome 16 10−4 25 3 2 3 2 2 4 6

Table. 2, summarizes some principal parameters we use in the training. We
use AdamW optimizer with a step learning rate. For scene graph generation,
we use the prior statistical distribution or frequency-bias [13] of relation for
each subject-object pair. To minimize the data imbalance for a relation label
present in the Visual Genome, we use log-softmax distribution [7] to soften
the frequency bias. Finally, we add this distribution with the predicted relation
distribution from the relation head. For the spatio-structural dataset, we set
the cost coefficient for the GIoU in the bipartite matcher to be zero because
we assume 0.2 widths of the normalized box for each node. Hence, ℓ1 cost is
sufficient to consider for the spatial distances.

F More Ablation Studies on [obj]-tokens and Transformer

We conduct two more ablation studies on Visual Genome for analyzing the
influence of [obj]-tokens and optimal number of layers in transformer for the
joint graph generation. Furthermore Figure. 3 gives additional insight how [rln]-
token is beneficial for joint object-relation graph.
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Table 3. Impact of the [obj]-tokens on
joint object and relation detection.

#[obj]-tokens AP@50 R@20 R@50 R@100

75 25.1 20.6 26.1 29.5
100 25.8 21.1 27.4 30.6
200(ours) 26.3 22.2 28.4 31.3
300 26.3 21.9 27.9 31.0

Table 4. Impact of the transformer’s
layers on joint object-relation detection

# layer AP@50 R@20 R@50 R@100

4 24.6 20.5 26.5 28.8
5 25.2 21.0 27.2 29.9
6(ours) 26.3 22.2 28.4 31.3

As shown in Table 3, it can be observed that increasing [obj]-tokens does
increase object and relation detection performance. However, it becomes rela-
tively stable with increasing object quarries. DETR-like architectures rely on an
optimal number of [obj]-tokens to balance positive and negative simple which
also helps in object detection as observed in [2]. Thus, in a joint object and rela-
tion prediction, a gain might come from optimal number [obj]-tokens, as relation
prediction is linearly co-related to object detection performance. It demonstrates
that joint object and relation detection can perfectly coexist without hurting the
object detection performance. Instead, it can exploit [obj]-tokens enriched with
global relational reasoning for efficient relation extraction.

During the ablation with transformer layers, we observe decreasing number
of transformer layers shows an initial gain in object and relation detection. How-
ever, they lead to early plateau and inferior performance as depicted in table 4.
One intuitive reason is that with less parameter and insufficient contextualiza-
tion Relationformer quickly learn the initial biases present in both object and
relation detection and failed to learn the complex global scenario. We use the
same number of layers for both encoder and decoder.

G Qualitative Results

Fig. 4 and 5 shows additional qualitative example from our experiments.
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Fig. 3. Typical qualitative results (please zoom in) from our ablation on the synthetic
vessel-graph and visual genome datasets. We observe that Relationformer w/o [rln]-
token is missing vessel edges while Relationformer w/ [rln]-token produces correct
edges. For visual genome, we can see w/o [rln]-token the [obj]-tokens have to carry
extra burden for relation prediction and sometimes fail to incorporate the global rela-
tion. However, the inclusion of [rln]-token provides an additional path to flow relation
information that benefits the joint object and relation detection.
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Fig. 4. Qualitative results (please zoom in) for the 20 US cities road-network and syn-
thetic vessel-graph experiments. We observe that Relationformer is able to produce
correct results. The segmentation map is given for better interpretability of road net-
work satellite images. For vessel-graphs, we surface-render the segmentation of the
corresponding greyscale voxel data.
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Fig. 5. Qualitative results (please zoom in) from the Toulouse road-network and scene-
graph generation experiments. For both datasets, we observe that Relationformer is
able to generate an accurate graph. For scene graphs, we visualize the attention map
between detected [obj]-tokens and [rln]-token, which shows that the [rln]-token ac-
tively attends to objects that contribute to relation formation.
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Abstract. We propose an automatic solution for the CADA 2020 chal-
lenge to detect aneurysm from Digital Subtraction Angiography (DSA)
images. Our method relies on 3D U-net as the backbone and heavy data
augmentation with a carefully chosen loss function. We were able to gen-
eralize well using our solution (despite training on a small dataset) that
is demonstrated through accurate detection and segmentation on the test
data.

Keywords: Aneurysm · Detection · Segmentation

1 Introduction

The leading cause of hemorrhagic stroke is the rupture of intracranial aneurysms.
Aneurysms, in general, are vascular anomalies manifested as local dilation or
balloon-like structure of blood vessels. Identifying intracranial aneurysm in the
early stages of its development can reduce the risk of rupture and offer improved
treatment planning. However, intracranial aneurysm detection is extremely chal-
lenging due to the variability in locations, shapes, and sizes. In clinical prac-
tice, different modalities are used for different stages of the diagnostic protocol.
For preliminary screening, contrast-agent free modalities, such as TOF MRA
or 3DRA, are the crucial and most commonly used modalities. Whereas images
using contrast agents, such as DSA images, are used for advanced stages of
treatment planning upon requirements.

Earlier approaches to detect cerebral aneurysms rely on 2D image processing,
such as sphere enhancing filter [4]. It has been reported [2] that the convolutional
neural network (CNN) based aneurysms detection method generalize better and
can help radiologists to find more aneurysms without substantially decreasing
their specificity. Deep learning-based methods can be classified into two cate-
gories, such as 1) global classification and 2) voxel-wise segmentation. While the
former [6,16] is more memory and computation efficient, the latter is more useful

c© Springer Nature Switzerland AG 2021
A. Hennemuth et al. (Eds.): CADA 2020, LNCS 12643, pp. 51–57, 2021.
https://doi.org/10.1007/978-3-030-72862-5_5
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Fig. 1. Few training samples: The first, second, and third row shows the axial,
sagittal, and coronal slice of the training examples, respectively. The odd columns
show images, and the even columns show the corresponding ground truth annotation.
Note the variability in the shape of the aneurysm to be detected by the network.

in providing the exact location and volume of the aneurysm. Several 2D U-net
based [13] and 3D DeepMedic based [12] approaches were made to segment the
aneurysms. The 3D network gives an extra performance gain at the cost of an
increase in computational budget.

Detection and segmentation of cerebral aneurysm at an early stage is criti-
cal for clinical treatment planning. Digital subtraction angiography (DSA) is a
commonly used modality to identify cerebrovascular pathology. An automatic
algorithm to detect aneurysm from DSA images will accelerate the time require-
ments of the treatment pipeline. Keeping this in mind, we look for an effective
solution to the CADA 2020 challenge. Some samples, along with their respec-
tive ground truth annotation, are presented in Fig. 1. We identify that the key
features that separate aneurysm from a healthy vessel is the local blob-like struc-
ture, which can not be differentiated in 2D slices processing. Hence, we opt for a
3D approach. We also identify that given the amount of training samples, solving
it as a pure object detection task would be difficult to learn [7]. Alternatively,
the segmentation task is much easier to solve, and detection can be a simple
post-processing stage. Given the number of aneurysms in a scan can vary, we
rely on the assumption that no two aneurysms are adjacent to each other in voxel
space and can be separated as different objects from the binary segmentation.
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Fig. 2. Schematic overview of our proposed pipeline for detecting aneurysm
from DSA images. The 128 × 128 × 128 patch is processed with the Aν − net to
produce the segmentation result. The segmentation result is processed to get rid of
boundary artifacts. Subsequently, we do blob analysis and fit bounding boxes around
each instance of segmented aneurysms to produce the individual aneurysm label.

Further, to enforce the network to learn shape-based discriminative features, we
employ heavy data augmentation as described in Sec. 2.1. An overview of our
proposed solution is presented in Fig. 2.

2 Methods

In this short paper, we describe our submission to the CADA 2020 challenge. We
implement our segmentation as a three dimensional (3D) binary segmentation.
After successful binary segmentation, we count the individual objects, and the
final prediction considers one background class (“0”) and “n” foreground classes
depending on the number of objects in a 3D image volume.

The network architecture is inspired by the encoding-decoding architectures
with skip connections. In other words, we use an architecture, which is very simi-
lar to the commonly used 3D U-Net architecture with some modifications [1]. We
decide to use U-Net, because this is a very successful architecture for diverse med-
ical imaging tasks [3,5,8,10,11,15]. We refer to our solution as Aν-net, which are
homophones of ‘Aneu-net’ and ‘an U-net.’ The network architecture is depicted
in Fig. 3.

Since Dice loss provides an edge at handling class imbalance [8,10] and cross-
entropy loss is beneficial for smooth training convergence [9,14], we use both.
The total loss function of our method is as follows:

Ltotal = LDice + LCrossEnt (1)

2.1 Implementation Details

Our encoder has four-stages with each stage having two residual blocks. We used
instance normalization and parametric ReLU as the activation function. As a
loss for the network, we used an equally weighted sum of the Dice Loss and the
weighted cross entropy loss. The weights for the cross-entropy are [0.01 0.99]
for the background and foreground, respectively. We did not use any additional



54 S. Shit et al.

Max Pool 2x2x2

UpConv 3x3x3

Conv 1x1x1

Input Image
16

2 x Conv 3x3x3 + IN +  PReLU

32

64

12
8 25

6

25
6

6412
8

64

32 3232

12
8

6464

16 16 21
Segmentation Mask

Fig. 3. Schematic overview of our proposed method: Our proposed Aν-net archi-
tecture is described in detail. The output of the final layer goes through a softmax layer
before computing the loss function. For the dice loss, we exclude the background chan-
nel and only consider the foreground channel.

training data for this task. We used on the fly data augmentations such as
random flipping in all three axes, random [90, 180, 270]-degree rotation along all
three axes. We normalized the intensity value of each 3D scan to be of zero mean
and unit standard deviation. All networks are implemented in Pytorch using the
MONAI package. We use the Adam optimizer with a learning rate of 10−3. The
network was trained for 1000 epochs with a batch size of 2 and cubes of 128
voxels per dimension, keeping the configuration of the weight that performs best
on the validation set, which split from the training set. The patches were sampled
with a 4:1 ratio of the center of the patch being a foreground or background.
These strategies help to alleviate the high-class imbalance in the data.

2.2 Detection from Segmentation

We post-process the predicted segmentation of the network to detect and fit the
bounding box. We remove any segmentation which is smaller than 150 voxels.
We select this threshold from the lower bound of the distribution of aneurysm
size of the training data. We also remove artifacts that may appear in the bound-
ary of the image by a simple masking. Subsequently, we do a blob analysis to
identify the number of disconnected objects in the prediction. We thereby fit a
rectangular bounding box to each instance of the segmented aneurysms.

3 Experiments and Results

We train on 100 scans and validate on 9 scans. We chose our model based on the
best dice score on the validation set. We observe a dice score of 82.3 for our best
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Fig. 4. Qualitative results: The first, second, and third columns represent the axial,
sagittal, and coronal slice of the typical sample, respectively, from the test set. The odd
rows denote the DSA images, and the even rows show the corresponding prediction from
our method. We observe that our model effectively learns to detect multiple aneurysms
at the same time.
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model on the validation set. However, since the dice score largely varies based
on the size of the aneurysm, we suspect that it may have produced a little lower
dice score for the test set where most of the aneurysms were medium or small.
We attribute this to the fact that during training we did not prioritize small
aneurysms over the big ones. Figure 4 shows some qualitative results on the test
dataset. Table 1 summarises our performance on the test dataset obtained from
the official leaderboard.

Table 1. Our score on the test dataset under the team name IBBM as per the two
leaderboards: https://cada.grand-challenge.org/evaluation/leaderboard/ and https://
cada-as.grand-challenge.org/evaluation/leaderboard/.

Task Detection Segmentation

Score 0.8562 0.6817

4 Conclusions

We provide an effective solution for the CADA 2020 challenge using a simple
U-net, without any additional training data and ensemble approach. We achieve
accurate segmentation and detection results on all the test cases except a single
case where our model does not detect any aneurysm. A minor drawback of
our method is that it may struggle to differentiate multiple aneurysms located
in one/two voxels’ proximity to each other. Nonetheless, our proposed method
can serve as a benchmark for developing more complex models aiming to better
learn the discriminative anatomical features for aneurysm detection. Specifically,
attention module can be used to improve performance on small aneurysms and
distinguish aneurysms, which are close apart.
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