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Abstract

Automated vehicles have access to predictive information, which is unavailable for manually
operated ones or is afflicted with high uncertainty. The additional information includes the
desired vehicle trajectory and future road grade values. This thesis investigates how pre-
dictive information can be exploited to improve longitudinal motion tracking of automated
vehicles. A method from Receding Horizon Control is evaluated and compared to results
from an alternative approach based on deep reinforcement learning. Another focus is the
development of a combined state and parameter estimator to determine the unknown and
time-varying values of vehicle mass and driving resistance to achieve offset-free tracking.

Receding Horizon Control, also called model predictive control, has been primarily used
in the process industry, applying linear models to regulate to a constant set-point. It has only
been recently applied for automotive control, where short calculation cycles are mandatory.
We investigate a more complex nonlinear case, controlling to a time-varying reference trajec-
tory instead of a constant set-point. Additionally, it is uncommon to include advance knowl-
edge about future disturbances in the framework of predictive tracking control with time-
varying trajectories. Disturbances are mostly unknown, and their consideration increases
the complexity of the control problem. We show that advance knowledge about future road
grades can be exploited to impact tracking performance positively. This is only possible due
to a combined state and parameter observer, which can estimate the time-varying parameters
inherent to the physical vehicle dynamics model.

Therefore, one essential contribution of this thesis is a comparative study of different
recursive methods to estimate the vehicle state and the parameters relevant to longitudi-
nal motion. A first family of algorithms formulates the problem as augmented state space
equations, modeling the parameters as additional states. This approach proves reliable but
tends to show only slow convergence to the true values. Here, Bayesian algorithms based on
Kalman Filtering and particle filtering were applied. An alternative approach is to reformu-
late the motion equations into a form that is linear in the parameters. This is shown to be
challenging due to various reasons. Among these is the presence of measurement noise in
the variables and insufficient system excitation during phases of constant velocity. Existing
approaches show satisfying convergence to regions in the proximity of the true parameter
values in various simulation studies but do not robustly show offset-free behavior. Also, this
approach lacks the possibility of providing filtered values of the state variables.

This motivated the development of a novel, model-free smoothing algorithm, which can
achieve improved performance compared to existing approaches. The algorithm is based
on local polynomial approximation. It is able to leverage knowledge about the interrela-
tion between measurement channels, namely that they are higher-order derivatives of a base
channel. The optimal mathematical solution can be efficiently calculated and shows similar-
ities to the ones found in convolutional neural network layers. One can also use this method
to calculate additional higher-order derivatives not present in the measurement channels. As
a further contribution, we show how combining this novel smoothing algorithm with a hy-
brid and recursive state and parameter estimator can reduce the estimation error. The next
step is to combine this approach with a model predictive controller to achieve an adaptive,
nonlinear solution for offset-free tracking.
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Then, we investigate an alternative approach and apply model-free reinforcement learn-
ing to the predictive trajectory tracking problem. Here, an agent without prior knowledge
of the system behavior learns the control policy. Including advance knowledge about future
disturbances is, again, uncommon. Its inclusion raises questions during the practical imple-
mentation, for which we propose a solution capable of increasing the learning rate. Based on
experiments in a simulation environment, we analyze the performance of a solution found
by model-free deep reinforcement learning. We can show that the learned controller finds
a solution with a performance close to the optimal one given by the previously developed
model predictive control approach.

In the description of the methodical background, which lies in the intersection of control
systems theory and machine learning, an emphasis was put on easing readers from one field
to enter the other. An extensive review of historical developments on longitudinal control for
automated vehicles and a broad outlook on future work complement this thesis.

Zusammenfassung

Automatisierte Fahrzeuge haben Zugriff auf Informationen, die im manuellen Betrieb nicht
verfügbar sind. Die vorliegende Arbeit untersucht, wie diese Informationen gewinnbringend
für die automatisierte Fahrzeuglängsführung eingesetzt werden können. Dazu wird eine Me-
thode der modellprädiktiven Regelung entwickelt und einem Verfahren des Verstärkungsler-
nens gegenübergestellt. Als weiterer Schwerpunkt ergibt sich die Entwicklung von Zustands-
und Parameterschätzverfahren zur Ermittlung der genauen Fahrzeuggeschwindigkeit, der
Fahrzeugmasse sowie den Luft- und Rollwiderstandswerten. Dies ermöglicht, eine bleiben-
de Regelabweichung zu eliminieren.

Die modellprädiktive Regelung findet bereits länger in der Prozesstechnik Anwendung, in
der typischerweise langsame Regelzyklen vorherrschen und die Regelgröße auf einen kon-
stanten Wert hin stabilisiert wird. Wir betrachten hingegen die Folgeregelung zeitvarianter
Referenzen und berücksichtigen Vorwissen über zukünftig eintretende Störungen. Letzteres
ist bislang unüblich, da dies eine weitere Erhöhung der Komplexität zur Folge hat. Das Wis-
sen über zukünftige Fahrbahnsteigungen als bekannte Störgröße kann jedoch vorteilhaft zur
Steigerung der Regelgüte verwendet werden. Dies ist aber lediglich möglich, wenn die dem
Verfahren inhärenten, zeitvarianten Fahrzeugparameter durch einen Schätzmechanismus be-
rechnet werden.

Ein wesentlicher Beitrag dieser Arbeit untersucht deshalb vergleichend rekursive Schätz-
verfahren, um die für die Regelung notwendigen Zustandsgröße zusammen mit den Fahr-
zeugparametern hochgenau zu ermitteln. Ein Ansatz betrachtet das Problem als erweiterte
Zustandsgleichungen, bei der die unbekannten Parameter als zusätzliche Zustände modelliert
werden. Dazu werden Verfahren basierend auf Varianten der Kalman- sowie Partikelfilterung
geprüft. Diese erweisen sich als zuverlässig, eine Konvergenz auf die Realwerte findet jedoch
nur relativ langsam statt. Eine alternative Vorgehensweise besteht darin, die Gleichungen der
Fahrzeuglängsdynamik in eine Formulierung umzuwandeln, die linear in den Parametern ist.
Dies zeigt sich durch den in den Variablen vorhandenen Messfehler einerseits und durch ei-
ne nicht ausreichende Systemanregung während Fahrten mit konstanter Geschwindigkeit als
Herausforderung, die sich nur durch eine Kombination aus verschiedenen Gegenmaßnahmen
bewältigen lässt. Existierende Verfahren zeigen zwar ein befriedigendes Konvergenzverhalten
in die Nähe der echten Werte, können aber eine bleibende Abweichung nicht zufriedenstel-
lend eliminieren. Außerdem fehlt in diesen Verfahren die Möglichkeit, neben den Parametern
auch gefilterte Werte der Zustände zu berechnen.

Aus dieser Problemstellung heraus wurde deshalb ein neuartiges Verfahren entwickelt,



v

das eine im Vergleich zu existierenden Methoden verbesserte Glättung von dynamischen Grö-
ßen ermöglicht. Dies beruht auf der gleichzeitigen Schätzung mehrerer Messkanäle und der
Verwertung des Vorwissens darüber, dass die einzelnen verrauschten Messkanäle jeweils zeit-
liche Ableitungen zueinander darstellen. Die sich als Lösung ergebende mathematische For-
mulierung zeigt dabei Ähnlichkeit zu Faltenden Neuronalen Netzwerken, und lässt sich nicht
nur zur Ermittlung von geglätteten Werten, sondern auch zur Berechnung von weiteren, in
den Messungen nicht enthaltenen Ableitungen existierender Signale verwenden.

Es wird gezeigt, wie durch die Kombination dieses neuartigen Glättungsverfahrens mit ei-
nem rekursiven Parameterschätzer die Qualität der Lösung deutlich verbessert werden kann.
Im nächsten Schritt wird der so vorgeschlagene Zustands- und Parameterschätzer mit dem
Regler verbunden, wodurch sich ein adaptives, nichtlineares und modellprädiktives Verfah-
ren ergibt.

Ein weiterer Beitrag untersucht einen alternativen Ansatz aus dem Gebiet des tiefen Ver-
stärkungslernens zur Lösung des Folgeregelproblems. Hierbei soll ein Agent selbständig das
optimale Regelverhalten erlernen, ohne dabei Vorwissen über das Systemverhalten zu benö-
tigen.

Die Verwendung von Wissen über zukünftig eintretende Störungen ist auch hier unüblich,
weshalb sich bei der praktischen Umsetzung neuartige Fragestellungen ergeben. Es wird eine
Lösung vorgeschlagen, die den Lernvorgang unter gewissen Voraussetzungen beschleunigt.
In Simulationsexperimenten wird gezeigt, dass der so erhaltene Regler auf Basis des modell-
freien Verstärkungslernens sehr nahe an die optimale Lösung herankommen kann.

Bei der Beschreibung des methodischen Hintergrundes, der in der Überschneidung der
Forschungsgebiete Regelungstechnik und maschinellem Lernen liegt, wurde Wert darauf ge-
legt, den Lesern einen Einstieg in Inhalte des jeweils anderen Feldes zu erleichtern. Ein aus-
führlicher Rückblick auf die historische Entwicklung bestehender Konzepte der automatisier-
ten Fahrzeuglängsregelung sowie ein umfassender Ausblick runden die Arbeit ab.
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1
Introduction

“Prediction is very difficult, especially if it’s about the future.”

– Niels Bohr, 1885-1962

This thesis focuses on the control module responsible for longitudinal vehicle motion tracking
for automated vehicles. By incorporating predictive knowledge, typically not available in
manually driven vehicles, the motion tracking module can be improved to calculate optimal
commands to both power-train and brakes. This predictive knowledge, also called advance
knowledge, is, for example, the desired trajectories given by a planning module with a certain
look-ahead and information about future disturbances resulting from changing road grades.
Various reasons exist for why it is desirable to improve the tracking capability of automated
vehicles. For example, traffic throughput of smart intersections can be increased if vehicles
are able to move at minimal inter-vehicle distances. Passenger comfort can be increased, and
energy consumption can be reduced. A detailed discussion of these motivational reasons is
provided in Chapter 2.

First, we discuss the general vehicle control architecture of automated vehicles and how
this should be different from current implementations in today’s vehicles, which were de-
signed for manual driving together with Advanced Driver Assistance Systems (ADAS). We
will then investigate how methods from optimal control and reinforcement learning can be
applied to design such a predictive longitudinal motion tracking controller. We will look into
methods that are designed following a model-free approach and model-based methods that
rely on a physical system model derived from first principles. A difficulty for any of these
methods is that the longitudinal motion behavior changes over time due to changing vehi-
cle parameters, such as the vehicle mass, the aerodynamic drag, and the rolling resistance.
As an example, we want to mention the use case of people movers, which see a fluctuating
number of passengers between each stop, changing the vehicle mass substantially. Neverthe-
less, smooth motion tracking is always desired to ensure passenger comfort and safety. For
this reason, adaptation schemes are required to achieve optimal, offset-free tracking at all
times. As an essential part of this thesis, we will also look into state and parameter estima-
tion methods to obtain an adaptive control solution, considering the nonlinear behavior of
the longitudinal vehicle motion.

In the remainder of this chapter, we will first discuss what we mean by longitudinal motion
tracking in Section 1.1. Then, we want to present the goals and research questions this
thesis aims to answer in Section 1.2. We anticipate some of the results by listing the main
contributions in Section 1.3, and providing a summary of publications in Section 1.4. The

1
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structure of this thesis will be outlined in Section 1.5 before providing some taxonomy in
Section 1.6 and commonly used notation in Section 1.7.

1.1 Longitudinal vehicle motion tracking

First, we want to define more in detail what we mean by the longitudinal motion tracking
task and how this is different from other controllers typically present in an automated ve-
hicle. Figure 1.1 depicts a typical software architecture of automated vehicles focusing on

Figure 1.1: Schematic overview of different planning and control modules in a typical software architecture of an
automated vehicle. This thesis focuses on the longitudinal motion control module.

motion planning and control modules. Here, this should solely explain the functionality and
boundaries of the longitudinal motion tracking module as discussed in this thesis (see also
Section 4 and references therein). Similar block diagrams can be found in the literature
about automated vehicles or mobile robots, while variations in terminology, structure, and
interfaces exist. The decision-making process of an automated vehicle can be separated into
different layers. A mission planning layer (or sometimes denoted strategic layer) calculates
a route to a target destination, for example, on a map. Some behavioral planning layers
typically make decisions about lane selection and lane changes, as well as when to stop at
a crossing or when to enter. This layer is also often called the tactical or maneuver layer. A
motion planning layer calculates detailed vehicle trajectories to realize decisions made within
the higher-level modules. It usually considers vehicle kinematics and geometry and avoids
collisions with obstacles. Therefore, the motion planning layer is often called the reactive
planning layer. On the vehicle side, motion is realized by longitudinal and lateral actuators.
Longitudinal motion can be controlled via power-train and brakes, creating torques at the
wheels. Steering modules realize lateral motion.

Given reference trajectories, which are calculated in a motion planner, the motion tracking
module has the purpose of making sure that the actuators realize the desired motion. Such
a clear separation between these modules is only sometimes present in current literature, as
will be discussed more in detail in Section 4, but already preempts one of the proposals in
this thesis.

The motion tracking task can be further divided into the following sub-tasks: A lateral mo-
tion control module is responsible for actuating the vehicle’s steering. In specific scenarios, it
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also influences the longitudinal motion, for example, at the limit of friction. The longitudinal
motion tracking controller receives a desired longitudinal motion behavior from the motion
planner and transforms this input to actuator inputs of acceleration and brake. One of the
assumptions within this thesis is that the input from the motion planning module is provided
in the form of a reference trajectory, which, per definition, contains predictive information
about desired vehicle states together with a time stamp, indicating at which time in the future
this state should be reached. A feedback loop enables compensation of deviations between
the vehicle’s true and desired state. The optimal design of the longitudinal motion tracking
control module, as just described, is the subject of investigation in this thesis.

1.2 Focus of this work

Please refer to Section 1.6 for a taxonomy related to the topic of longitudinal vehicle control.

This thesis investigates how a predictive longitudinal motion tracking control module for
automated vehicles can be designed to achieve optimal performance regarding some cost
function. We aim to exploit all necessary predictive information that is expected to be avail-
able in automated vehicles and incorporate this information into the control solution. We
also want to provide unique control interfaces to upper-level modules and actuators in a
modular fashion, clearly separating motion planning tasks from motion execution. Doing so
enables a solution capable of working in all possible driving scenarios. We aim to encapsulate
the complexity inherent to longitudinal vehicle motion dynamics and hide complexity from
upper-level modules and actuators. This includes providing a solution to the control alloca-
tion problem, which in our case means calculating the control inputs to the partly redundant
actuators of power-train and brakes.

We also want to provide a more formal description, while some points might only be
made clear after reading the system description and analysis in Chapter 3. To summarize,
this thesis aims to:

• Design a longitudinal vehicle motion reference tracking controller for a nonlinear, time-
varying system with input constraints, considering actuator delays.

• Incorporate advance knowledge in the form of a time-varying reference trajectory and
a disturbance input known over a specific prediction horizon.

• Deal with nonlinear plant behavior and with unknown system parameters (within
bounds).

• Compensate for the time-varying character of the plant.

• Provide an optimal solution while considering state and input constraints to achieve
offset-free tracking.

• Also, we consider a stochastic system where measurement noise is present, and the
solution should be robust against measurement noise, including outliers.

• The system should be robust against model uncertainties and external disturbances.

In order to find solutions, approaches of two different domains are investigated. We in-
vestigate how results from the machine learning community can be applied, and also study
solutions developed by the controls community. More in detail, we will apply deep reinforce-
ment learning techniques for continuous control, and also develop an adaptive, nonlinear
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model predictive control scheme. Adaptation to time-varying parameters will be achieved in
the control-based solution by means of combined state and parameter estimation. We will
investigate variations and extensions of existing joint and dual Kalman-type and information
filtering techniques.

1.2.1 Research questions

We want to formulate the following research questions, for which we aim to find answers
within this thesis.

• Can optimal longitudinal trajectory tracking of time-varying references be achieved for
automated vehicles, even in the presence of (1) actuator delays, (2) unknown and
time-variant vehicle parameters, and (3) measurement noise?

• Can modern deep reinforcement learning be successfully applied to the problem of
predictive motion tracking in general and longitudinal vehicle motion tracking in par-
ticular?

• Can predictive information about future disturbances be incorporated into the rein-
forcement learning framework?

• How does a reinforcement learning controller perform compared to the solution ob-
tained by model predictive control?

• How robust is a model predictive controller to changes in the model due to time-varying
vehicle parameters, and can offset-free tracking still be achieved without sacrificing
performance?

• How and under which conditions can we learn the true unknown and time-varying
parameters in an online recursive fashion?

1.2.2 Out of scope of this work

Since the focus of this thesis is solely on designing a longitudinal motion tracking module, as
depicted above, the following topics are not targeted within this thesis.

We assume that a motion planning module provides target trajectories with a certain
look-ahead, but we do not deal with the question of how this planning module is designed.
The same applies to lower-level modules, which include brakes, power-train, and engine
control, as well as questions about how a power split should be optimally performed in
hybrid power-trains. This includes energy management of Hybrid Electric Vehicles (HEVs),
gear shift optimization, or brake pressure control.

Providing predictive trajectories with sufficient look-ahead as an output to the actuator
control modules will offer the necessary degree of freedom to allow for optimizations within
these units. We are also aware that feedback from actuators would also be necessary to
optimize the overall performance. However, these topics are not discussed further and are
left to different investigations. The envisioned hierarchical structure allows for encapsulating
complexity away from higher-layer modules.

We aim to provide a solution solely for a longitudinal trajectory tracking module while
generically supporting any possible scenario an automated vehicle will encounter. Hence,
ADAS specific solutions, like Cruise Control (CC), Adaptive Cruise Control (ACC), Cooper-
ative Adaptive Cruise Control (CACC), Predictive Cruise Control (PCC), would have to be
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solved within some higher, reactive motion planning layer, and therefore these topics are
not addressed in our discussion. This includes discussions and investigations about string
stability.

While we believe that increased motion tracking performance can positively impact sce-
narios like vehicle platooning and smart intersections, we will also have to leave investiga-
tions to quantify this impact to future work.

As a limitation, this work focuses on dynamic scenarios such that a passenger will perceive
the ride throughout as comfortable. This implies intentionally leaving vehicle maneuvers at
the limits of handling out of the scope of this thesis. One might argue that, especially in
mixed traffic, a vehicle has to be able to perform an emergency brake maneuver. This is true,
but we would rather see any emergency scenario, also for redundancy reasons, be covered
by a separate emergency control layer. This means that existing ADAS systems like Anti-lock
Braking and Emergency Braking would never be integrated into a motion tracking module as
investigated, while Hill Descent Control might be. Nevertheless, including such scenarios is
left to future work.

Also, we will not consider any lateral vehicle motion within this thesis. While there
certainly is an interplay between longitudinal and lateral motion concerning considerations
about both passenger comfort and limits of handling, these critical questions are considered
part of a higher-level module and, hence, are also not covered by this thesis. Of course, the
list of what we do not address within this thesis cannot be exhaustive.

1.3 Research contribution

While we will provide a detailed list of the contributions achieved within each relevant chap-
ter, here we want to give an overview of all contributions presented within this thesis. The
following summarizes the research contribution made in this thesis:

• A broad literature review on longitudinal vehicle motion control is presented in Sec-
tion 5.2.

• A novel controller architecture to realize longitudinal vehicle motion of automated ve-
hicles was proposed, published in the author’s work [BK16a]. It includes a predictive
motion tracking control module, which can track time-varying reference trajectories
while using all relevant, predictive information that is assumed to be available in fu-
ture automated vehicles. This includes advance knowledge in the form of future road
slope information, which acts as known disturbance on the controller.

• The predictive motion tracker is realized as Adaptive Nonlinear Model Predictive Con-
trol (ANMPC), receiving vehicle parameter estimates from a state and parameter ob-
server. A formulation of the ANMPC controller is given, which achieves offset-free track-
ing for the system under consideration and solves the control allocation problem within
this same framework. This builds on work presented in Buechel and Knoll [BK16a] and
Buechel and Knoll [BK16b].

• Since we combine model predictive control with state estimation and parameter learn-
ing techniques, we provide a detailed analysis of related work on vehicle mass and
parameter estimation and discuss many existing algorithms in detail.

• We conducted a comparative simulation study of different state and parameter esti-
mation methods. These include joint estimation schemes based on Extended Kalman
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Filters, Unscented Kalman Filters, and particle filters, which are based on a formula-
tion as an ordinary differential equation. It partly builds on work already published
in Buechel and Knoll [BK16a]. In addition, Kalman Filter methods with various en-
hancements applied to a formulation based on a Linear-in-Parameters (LiP) model are
considered.

• Experimental results are given to investigate the effect of signal smoothing prior to
performing the above-mentioned state and parameter estimation algorithms.

• Two novel smoothing algorithms are proposed, which we name Derivative-exploiting
Polynomial Least Squares (DeePLS) and Derivative-exploiting Polynomial Kalman
Smoother (DeePKS) in Chapter 5. The algorithms can operate on multiple measure-
ment channels simultaneously and incorporate knowledge of different measurement
channels being higher-order derivatives of a base channel. DeePLS can be seen as a
generalization and extension of Savitzky-Golay [SG64] smoothing (a method widely
used within the chemical processing community), while DeePKS is a recursive version
of the former. DeePKS can also be seen as the generalization of Polynomial Kalman
Smoother (PKS) [RB+14]. The generic formulation allows the incorporation of irregu-
larly sampled data and delayed and missing measurements. Both algorithms are shown
to reduce estimation errors compared to their existing counterparts. The DeePLS algo-
rithm is presented in Buechel [Bue22].

• Additionally, an interpretation of the DeePLS algorithm was provided as a combined
concatenation and convolution layer with a physics-informed, optimal kernel. This
brings valuable insights for physics-informed machine learning algorithms working on
multi-channel time-series data that involve derivatives.

• A proposed hybrid estimation scheme combines state estimation based on a formulation
as an ordinary differential equation with a parameter estimator based on a LiP model.
One crucial ingredient in this estimation scheme is to perform signal smoothing prior
to state and parameter estimation, using the DeePLS algorithm proposed in Chapter 5.
This improves estimation performance substantially in various simulation studies.

• As an alternative solution, we investigate the application of using Deep Reinforcement
Learning (DRL) for predictive tracking control and start with a broad review of various
Reinforcement Learning (RL) algorithms suited to solve the continuous tracking control
problem.

• We extend the framework of DRL to include predictive information, including advance
knowledge about future disturbances, and propose a solution that was previously pub-
lished in [BK18] for longitudinal motion tracking of automated vehicles.

• A novel research question arises when trying to train reinforcement learning agents
in the context of predictive motion tracking: how to design the reference trajectories
the agent experiences during learning. We propose to apply a method already known
within the systems identification community and empirically show that this increases
the sample efficiency during learning compared to a naive approach. This suggestion
was already published by the author in [BK18].

• A comparison between the method of Reinforcement Learning (RL) for predictive, con-
tinuous control and Model Predictive Control (MPC) applied to longitudinal motion
tracking is provided. This can be found in Section 9.2.2.
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• We provide an analysis of the proposed, learning-based, model predictive control solu-
tion and identify relevant building blocks to achieve robust learning even during phases
of insufficient excitation in Section 9.2.1.

• A broad outlook on future work related to the topics covered in this thesis is given in
Section 9.3.

1.4 Summary of publications

Parts of this dissertation build on the following papers, which were published in the course
of this thesis:

1. Buechel and Knoll [BK16a]. “A parameter estimator for a model based adaptive control
scheme for longitudinal control of automated vehicles” proposes the predictive control
architecture together with a joint state and parameter estimator.

2. Buechel and Knoll [BK16b]. “An adaptive nonlinear model predictive controller for
longitudinal motion of automated vehicles” combines and evaluates the proposed joint
state and parameter estimator with the predictive controller, which is capable of ex-
ploiting knowledge about future disturbances.

3. Buechel and Knoll [BK18]. “Deep reinforcement learning for predictive longitudinal
control of automated vehicles” compares the previously proposed model predictive con-
trol approach with a solution based on deep reinforcement learning.

4. Buechel [Bue22]. “Physics-informed kernels for convolutional smoothing of multi-
channel time-series data” presents a novel smoothing approach.

The following publications were presented during the author’s time as a guest at the Technical
University of Munich, as well as projects while working at the research institute of the Free
State of Bavaria, fortiss GmbH. While some may share ideas with this thesis, they are not a
core contribution to this work.

1. Buechel, Frtunikj, et al. [BF+15]. “An automated electric vehicle prototype showing
new trends in automotive architectures”.

2. Buechel, Hinz, et al. [BH+17]. “Ontology-based traffic scene modeling, traffic regula-
tions dependent situational awareness and decision-making for automated vehicles”.

3. Buechel, Schellmann, et al. [BS+19]. “Fortuna: Presenting the 5G-connected auto-
mated vehicle prototype of the project PROVIDENTIA”.

4. Hinz, Buechel, et al. [HB+17]. “Designing a far-reaching view for highway traffic
scenarios with 5G-based intelligent infrastructure”.

5. Hinz, Eichinger, Buechel, and Knoll [HE+17]. “Proactive video-based use of telecom-
munications technologies in innovative motorway scenarios”.

6. Kessler, Bernhard, Buechel, et al. [KB+19]. “Bridging the gap between open source
software and vehicle hardware for autonomous driving”.
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Figure 1.2: Thesis chapter overview.

1.5 Thesis outline

A graphical illustration of the chapters of this thesis and their inter-dependencies is given in
Figure 1.2. This thesis is structured into the following chapters.

Introduction (Chapter 1) This chapter provides an overview of this document. It depicts
the research questions treated and lists the contributions achieved within this thesis. A sum-
mary of the publications of the author of this thesis is included. Also, we provide some tax-
onomy to clarify some essential concepts and list some mathematical notation used within
this thesis.

Motivation (Chapter 2) Here, we give some background about longitudinal vehicle control
for automated vehicles, which is necessary to elaborate on the motivation and the solutions
proposed in this thesis. After defining different levels of vehicle automation, we adumbrate
the history of automated vehicles and vehicle control systems. We then define the tasks of
longitudinal vehicle control in detail and elaborate on the difference between longitudinal
control for manual vehicles with ADAS systems and automated vehicles. An analysis of the
physical effects determining the behavior of the control system is done, which later helps
to systematically derive the proposed control structure. To underline the importance of the
longitudinal controller for automated vehicles, we analyze future trends and the impact on



1.5 Thesis outline 9

control quality on various evaluation criteria.

System Description (Chapter 3) We derive a first-principles model of the longitudinal
vehicle dynamics, which is then used in the sections dedicated to model-based control and
estimation. A discussion of these equations, including ranges of expected vehicle parameters,
follows. This underlines the motivation to build an adaptive and predictive control scheme.

Related Work (Chapter 4) While topic-specific related work sections are included in each
of the subsequent chapters, this chapter aims to depict an overview of the state of the art in
longitudinal vehicle control in general.

Novel Smoothing Algorithms for Multichannel Time-Series Data (Chapter 5) In this
chapter, we propose two novel algorithms for smoothing multichannel time-series data, in-
corporating knowledge about the interrelation between measurement channels. Results are
used in the combined vehicle state and parameter estimator in Chapter 6.

State and Parameter Estimation (Chapter 6) In Chapter 6, we present a combined state
and parameter estimator that can track unknown and time-varying parameters. The proposed
solution is used in combination with the nonlinear model predictive controller presented in
Chapter 7. The proposed solution is built on the smoothing algorithm presented in Chap-
ter 5. The work builds on material published already in [BK16a], but contains substantial
unpublished contributions.

Adaptive Nonlinear Model Predictive Control (Chapter 7) This chapter builds the core
of the proposed model-based control approach. As can be seen in Figure 1.2, it will be
using results from Chapter 5 and Chapter 6. The author of this thesis previously published
preliminary results using the same approach in Buechel and Knoll [BK16b], but Chapter 7
contains substantial, previously unpublished work.

Predictive Deep Reinforcement Learning Controller (Chapter 8) Chapter 8 investigates
an alternative solution to the model predictive control approach discussed in Chapter 7,
based on deep reinforcement learning. The consideration of known future disturbances in RL
schemes poses novel challenges. We will present a proposal that improves the learning rate
compared to state-of-the-art algorithms. Results of this chapter were previously published in
the author’s paper [BK18].

Conclusion (Chapter 9) Chapter 9 concludes with a summary of the thesis and gives an
outlook on future research directions. A comparison between model predictive control and
reinforcement learning is given, together with an analysis of the structure of the ANMPC
approach seen from a machine learning perspective.

Appendix A: Background State and Parameter Estimation Appendix A provides the nec-
essary background for the algorithms used in Chapter 6.

Appendix B: Overview of Algorithms An overview of some of the algorithms used as
building blocks of the proposed estimator solution or as baselines is given in Appendix B.
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1.6 Taxonomy

In this section, we want to introduce or clarify some terminology that will be used through-
out this thesis. Nevertheless, we will introduce additional terms and expressions within the
relevant chapters if their understanding requires some context.

Levels of vehicle automation This thesis adopts the taxonomy of different levels of vehicle
automation defined by Society of Automotive Engineers (SAE) International [SAE18]. This is
currently the most commonly used definition within the automotive community. SAE defines
six mutually exclusive levels of automation, ranging from no driving automation (level 0)
to full driving automation (Level 5). For details, please refer to [SAE18]. Level 0 has no
automation, meaning that this refers to fully manual vehicles. In Level 1 vehicles, the longi-
tudinal or the lateral control is automated, while Level 2 vehicles are equipped with controls
in both dimensions. Levels 0 to 2 are only safe, with a human driver monitoring the environ-
ment at all times and reacting immediately in case the automation fails. Systems of Level 1
and Level 2 automation are typically also within the group referred to as Advanced Driver
Assistance System (ADAS) systems. At the same time, the term ADAS also includes passive
systems, which do not actively interfere with vehicle controls. This could be, for example,
a forward collision warning or lane-keeping feature. In conditional automation Level 3, the
automation system is already capable of monitoring the driving task and, in case of failure,
warns the driver and expects him to take over within a predefined period of time. A Level 4
vehicle works without the driver’s expectation to take over but is restricted to a limited num-
ber of driving tasks. In contrast, the remaining driving tasks must be carried out by a driver.
Examples of Level 4 driving would be a piloted parking application or a highway pilot. Full,
unlimited automation is defined as Level 5, for which a driver (and hence a steering wheel)
would become obsolete.

Throughout this thesis, we will denote vehicles with an Automated Driving System (ADS)
of Level 3 to Level 5 as Automated Vehicles (AVs). As we will learn in Section 4, longitudinal
control solutions for AVs will typically be fitting within some vehicle architecture similar to
what we presented in Figure 1.1. On the contrary, ADAS systems are typically designed
following a structure as discussed in Section 1.6.

Platooning Platooning is when several vehicles form road trains with virtual axles, follow-
ing each other with small inter-vehicle distances. The first vehicle in the road train, the lead
vehicle, might be manually driven while the followers operate in automated mode.

String stability One challenge with automated vehicle-following systems is the problem of
string stability. Spacing errors might be propagated throughout a vehicle platoon, and os-
cillations might be amplified. For safety reasons, uniform boundedness of all vehicle states
needs to be guaranteed. Manually driven vehicles in a platoon lose the string stability prop-
erty when inter-vehicle distances are too small, which can result in rear-end collisions in the
worst case. For a precise definition of string stability, see [Kai74]. See also Section 1.6 and
Section 4.3.5.

Cruise Control In the Cruise-Control scenario, the vehicle can automatically maintain a
desired, constant target velocity, and the driver is responsible for reducing speed in case of
violating a safety distance to a potential lead vehicle. This is considered to be of SAE Level 1.
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Adaptive Cruise Control Adaptive Cruise Control (ACC) additionally enhances a Cruise
Control system with the ability to keep a safe distance between the ego-vehicle and a preced-
ing lead vehicle. This requires a sensing system that provides the current distance between
the vehicles. Radar sensors are primarily used for this purpose due to the lower costs and
higher robustness compared to Lidar sensors. Limitations are given regarding the perfor-
mance of vehicle platoons using ACC. Due to dynamic delays and lags present in the longi-
tudinal vehicle dynamics, the safe distance cannot be set as a constant (constant-clearance-
following policy) but has to be increased with the platoon’s velocity (constant-time-headway
policy). Otherwise, vehicle platoons consisting of many vehicles with ACC systems following
each other have been proven to lose the property of string stability (see Section 1.6). Keeping
a constant time gap instead of a constant clearance between the vehicles means their distance
is increased proportionally to the vehicle’s speed.

Alarmingly, a recent study that conducted various experiments with production vehicles
suggests that many commercial ACC systems are not string stable [GG+19]. The reason
might be owed to using far too simplifying assumptions during the control design process
[XG11]. Refer to Section 4.3.5 for more information. This is where vehicle platoons using
CACC systems come in place, as will be discussed in the next section.

Cooperative Adaptive Cruise Control and Platooning Nevertheless, small distances be-
tween vehicles are desired to increase traffic throughput and reduce energy consumption
by reducing air drag. As discussed above, to overcome the burden of losing string stability,
Cooperative Adaptive Cruise Control (CACC) systems come in place. By enabling a com-
munication channel between the front vehicle of a platoon and its followers, investigations
showed that one could reduce the distance between vehicles compared to a regular platoon
using ACC only.

In CACC systems, control laws under the constant-clearance-following policy can theoret-
ically be applied without losing the string stability property. Shladover, Nowakowski, Lu, and
Hoogendoorn [SN+14] still suggested that it would be more likely to use a constant-time-
gap-following policy in a production CACC system for safety reasons. At the same time, the
full potential for fuel efficiency improvements can only be demonstrated using a constant-
clearance policy. Nevertheless, the time-headway can be reduced dramatically with CACC
systems (in the order of around 1.4 seconds when driving manually to a value of 0.6 seconds
when using CACC according to [SN+14].) This would increase lane capacity from about
2000 vehicles per hour to almost 4000 vehicles per hour.

Predictive Cruise Control Compared to other Cruise Control solutions, PCC systems typi-
cally do not only provide an acceleration set-point, which is then forwarded to the low-level
control unit. Instead, PCC solutions use predictive information, for example, about the status
of traffic lights at intersections, to generate a reference velocity, which is given to a lower-
level (see Section 1.6) tracking controller. See also [DAF21] for more information.

High-level and low-level controllers of ADAS solutions Longitudinal controls for ADAS
systems are typically designed for a limited scope of scenarios, like keeping a certain constant
vehicle speed or following a preceding vehicle. The control architecture of ADAS systems is
typically divided into a high-level and a low-level controller. A high-level longitudinal mo-
tion control module takes the velocities of the ego vehicle and lead vehicle and the relative
distance as inputs and aims to achieve the desired set speed and time gap between the ego ve-
hicle and the lead vehicle. It then typically calculates a desired vehicle acceleration set-value,
given to a lower-level longitudinal control module. For example, the lower-level controller
calculates the desired wheel torque value and compensates for disturbances like road grade
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changes or wind forces. The lower-level control module also splits between commands to the
engine or power-train and the brakes. Many variations exist, in which, for example, compen-
sation for the nonlinearity in the power-train is also integrated into the low-level controller,
and engine torque or throttle requests are calculated instead. Historically, evolution has been
taking place from pure Cruise Control solutions over ACC systems to CACCs or PCCs.

Motion planning Motion planning for automated vehicles is typically defined as the prob-
lem of finding a path or trajectory that brings the vehicle from an initial configuration to
a target state. One can distinguish between path and trajectory planning. Path planning is
typically referred to as the problem of “planning the future motion of the vehicle in the config-
uration space”. Trajectory planning is the “search of a time-parametrized solution” [GK+18].
The information is often encoded in waypoints (with a low spatial resolution) or trajectories
(with a resolution that suits the sampling time of the underlying tracking controller). Ve-
hicle speed profiles are either separately generated (in the most straightforward case, only
constant velocities) or implicitly included in the trajectories.

Motion tracking and vehicle motion control The module, which performs the motion
tracking task, will be called motion tracking module, interchangeably with motion tracking
controller and the shorthanded version tracking controller. In some occurrences, we will use
the term vehicle motion controller when it should be clear from the context that we refer to
the tracking module. See also Section 1.1 for more details.

Remark 1. According to the SAE [SAE16], longitudinal vehicle motion control is defined as
“the activities necessary for the real-time, sustained regulation of the x-axis component of vehicle
motion. [. . . ] Longitudinal vehicle motion control includes maintaining a set speed and detecting
a preceding vehicle in the path of the subject vehicle, maintaining an appropriate gap to the
preceding vehicle, and applying propulsion or braking inputs to cause the vehicle to maintain
that speed or gap.”

Although some of the definitions of the SAE are adopted in this thesis (see Section 1.6), this
definition is not in accordance with the one given above. The sub-task of detecting a preceding
vehicle we considered realized within the environment perception block, and we consider main-
taining an appropriate gap as part of the behavioral and motion planning blocks depicted in
Figure 1.1.

Predictive tracking control We use the term predictive tracking controller to describe an
algorithm that solves the task of tracking time-varying reference trajectories. This is in contra-
diction to set-point controllers, which operate under the restrictive assumption that reference
trajectories consist of constant future desired values. In addition, in predictive tracking, ad-
vance knowledge might be included to increase the controller’s tracking performance and
disturbance rejection capabilities.

Model predictive control A model predictive controller makes use of a model which de-
scribes the dynamic evolution of the controlled process over time. See Chapter 7 for an
introduction to the topic.

Advance knowledge In this dissertation, we will borrow the term advance knowledge,
which was already used before in the context of MPC by Rossiter, Schuurmans, and Grinnell
[RS+99] in 1999. We will use advance knowledge to refer to any given future information
that has an impact on the plant behavior. This information can be about desired trajec-
tory set-points, time-variant reference trajectories, or any quantity that impacts the plant
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behavior, like future disturbances. In our case, we will also use the term advance informa-
tion interchangeably with advance knowledge, and mostly mean the information about future
disturbances, together with time-varying trajectories, since this is regarded as given in the ex-
ample under investigation. Nevertheless, by using advance knowledge, we want to emphasize
that we want to stay more general than in our specific example.

Control allocation problem We want to borrow the following definition, given in [Har21]
“The control allocation problem is that of distributing a desired total control effort among a
redundant set of actuators”. In the case of longitudinal vehicle motion tracking, the redun-
dant set of actuators are brakes and the engine. Although brakes can only generate a negative
wheel torque and engines typically operate to induce a positive torque at the wheels, the lat-
ter may also operate within the negative torque range, which introduces redundancy. This is
especially the case when electric engines within a vehicle’s power-train operate in recupera-
tion mode and when combustion engines produce a negative drag torque. Then, to maximize
the recuperated energy and/or reduce wear and tear of brakes, it is desirable to apply them
only when necessary. See Section 7.3.10 for a more control-oriented discussion.

Reinforcement learning related terminology Since terminology related to reinforcement
learning is more easily presented in the context of an introduction to this broad field, please
refer to Section 8.2.

Filtering and smoothing We can define filtering as the causal process of estimating a signal
at a particular time given past noisy observations. In contrast, smoothing uses past and future
data to calculate the estimate. This makes smoothing non-causal.

1.7 Notation

While we will introduce mathematical symbols when appearing within each chapter, we
quickly want to highlight some of the most essential mathematical notation used within this
thesis. R denotes the set of real numbers. For both scalars and vectors, we use italic lower-
case, e.g., x , s. An exception is made in Chapter 5, where we will explicitly mention the cases
where bold symbols are used for vectors. Matrices are in italic upper case, e.g., A, B, and
the symbol I denotes the Identity matrix. Constants are in upright lower case, e.g., gravity
constant g.

For any vector x ∈ Rn, we write ∥x∥ to denote the Euclidean norm, and its square as
∥x∥2 = xT x , while the weighted squared ℓ2-norm is denoted as ∥x∥2

W = xTW x . The absolute
value of some number x is denoted as x = | − x |. We will use a MATLAB®-style notation, for
example for the vertical concatenation of vectors yi ∈ Rm×1 we write [y1; y2; . . . ; yn] ∈ Rn·m×1,
while the horizontal concatenation of vectors yi ∈ Rm×1 is written as [y1, y2, . . . , yn] ∈ Rm×n.
Similarly, A[r−k:r,:] denotes a matrix that consists of a selection of A, with the rows given by
the indices r − k to r, while : denotes that all columns are used. We further use θ̂ to denote
that we are talking about the estimation of the parameter vector θ .

We denote x ∼ N (µ,σ) for a random variable x drawn from a normal distribution with
mean µ and standard deviation σ. The expression r ∼ E will read as “sampled from”, in this
example a reward r is sampled from an environment E. E [X ] is used for the expectation of
a random variable X , i.e., E [X ] .

=
∑

x p(x)x , while p
�

s′, r|s, u
�

denotes the conditional proba-
bility, in this example of the transition to state s′ with reward r given state s and action u.
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Motivation

“Safety, Comfort, Speed and Economy: [. . . ] From the beginning of time, whenever
people have tried to get from one place to another, they have kept these same basic
aims in mind. The first is their desire for self-preservation; the second is their desire
for a pleasant trip; the third is their desire to reach their goal quickly; and the fourth
is their desire to spend as little money and effort on the way as possible. Now, for
self-preservation, read safety; for a convenient and pleasant trip, read comfort; for a
quick arrival, read speed; and for a saving of expense and effort, read economy.”

– Norman Bel Geddes, Magic Motorways (1940)

Since the invention of automobiles in the 19th century and of modern computers in the
second half of the 20th century, many efforts have been made to make automobiles be what
the etymological meaning of their name1 promises them to be: self-moving. Here, we allow
a modern interpretation, such that a vehicle is not only moving without being pulled by
animals but capable of driving in the absence of a driver. Efforts in this direction started
surprisingly early, even at a time when automobiles were purely mechanical masterpieces.
It was already around the year 1900 when the first predecessors of cruise control systems
appeared. After this period, mechanical parts have been gradually substituted by mechatronic
solutions in order to increase passenger safety and comfort and to reduce energy consumption
and emissions.

The first electronic throttle devices, appearing in the 1980s, enabled them to fit vehi-
cles with electronic cruise control systems. The first cruise controls were only built to keep
the vehicle at a constant speed for highway applications. In the late 1990s, these systems
were improved using sensor information, allowing the speed to be adapted according to the
movement of a preceding vehicle.

Since the 1980s, many research prototype vehicles have proven that, equipped with a
sensor set to perceive its environment together with electronic steer- and drive-by-wire solu-
tions, and given enough computational power, it is possible to achieve the vision of creating
fully automated vehicles.

Automated vehicles not only perceive the current state of their surroundings through their
sensors but also have some capability to predict what will happen in the future - at least over
a certain time horizon. Maps provide information about road characteristics like curvature or
road slope. Perception and prediction algorithms calculate information about the trajectories

1 automobile. From: Greek “αυτoς” (“self”) and Latin “mobilis” (“movable”).

15
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of other road users. All this information is typically used in decision-making and planning
modules to derive future actions with a certain look-ahead. This can help to increase the
safety of passengers and other road users, especially vulnerable road users.

In fully automated vehicles, drivers will become passengers - meaning that they will not
have to actively drive a car but instead be driven by the vehicle. This is why they are expected
to dedicate their travel time to other tasks [SS15]: working, reading, sleeping, or browsing
the internet will be among them. Partaking in these activities, a passenger’s focus on the
driving experience itself will fade. This leads to increased comfort requirements - especially
for passengers who are prone to motion sickness.

With increased vehicle automation and a high market penetration of such vehicles, new
cooperative scenarios will be made possible. These include the formation of vehicle platoons
and cooperative intersections, where vehicles entering from different directions are given
small alternating time slots to cross without stopping. Both scenarios are aiming for increased
traffic flow and reduced energy consumption.

Hence, the primary aims of passenger transport, as stated in the epigraph by American
visionary Norman Bel Geddes in 1940, still hold, but with an enhancement. The desire for
safety, comfort, speed, and economy nowadays is extended by a desire for sustainability.
This leads to the need for technology to either reduce fuel consumption and emissions when
looking at vehicles driven by Internal Combustion Engines (ICEs) or to increase efficiency
and reduce energy consumption in general for electrical power-trains. In order to achieve
these goals, automated vehicles with modular vehicle architectures2 require control modules
that are capable of transforming motion trajectories, desired by some planning module, into
actuator commands both for lateral and longitudinal motion.

For the reader to better understand the motivation behind this thesis work, it helps to
understand the historical developments of longitudinal vehicle motion control systems lead-
ing to today’s automated vehicle efforts. Also, we want to draw possible expectations about
future trends in this domain. The benefit for the reader to discuss the topics in this chapter
more in detail is intended to be two-fold: First, it will help to differentiate between vari-
ous components described in existing literature related to longitudinal vehicle motion control,
and understand differences and similarities to the module proposed in this thesis. Second,
it should serve to understand the benefits we expect from having a predictive vehicle mo-
tion tracking module with improved tracking capability, as will be suggested throughout the
remainder of this thesis.

2.1 Longitudinal vehicle motion control - history and future

2.1.1 Brief history of vehicle automation

Long before electronic versions of vehicle controls appeared in literature, the mechanical
predecessors of cruise controls could be found as early as 1900. The Wilson-Pilcher vehicle
(see Figure 2.1) was equipped with a governor acting on the throttle valve and the spark
ignition timing. The Automotor Journal [The04] stated: “By this arrangement, the driver can
regulate the normal speed of the engine by varying the strength of the governor-spring . . . .
He is also able to control the engine speed by a foot-pedal . . . . The strength of this spring
can be varied by the driver from the steering pillar, the hand-lever”.

A few mechanical speed regulators existed before electronic solutions appeared: The first
car that was marketed having an “Auto-Pilot” seems to be the 1958 Chrysler-Imperial [Clu04].

2 Alternative suggestions like end-to-end architectures will be discussed in Section 2.1.2
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Figure 2.1: A picture from “The Automotor Journal 1904” [The04] showing the speed control lever (G3) of the
Wilson-Pilcher vehicle, which was possibly the world’s first Cruise Control system. (Copyright: Creative Commons
CC0 1.0 Universal)

The system was built on a US patent from 1948 by Ralph R. Teetor, which mentions a “Speed
control device for resisting operation of the accelerator” [Tee48]. According to Shladover
[Shl95], who described the history of Advanced Vehicle Control Systems (AVCSs), the de-
velopment of automated longitudinal vehicle control systems is closely related to a vision of
Automated Highway Systems (AHSs), which was depicted during the General Motors "Futu-
rama" exhibition held at the 1939-40 New York World Fair. The main character of Futurama,
visionary Norman Bell Geddes, stated that to increase safety and comfort, human drivers
would have to be eliminated [Nor40]. According to his vision, radio-controlled electric cars
should be “. . . on advanced highways propelled by electromagnetic fields provided by cir-
cuits embedded in the roadway”. He believed that this would have already happened in his
future, 1960. Moreover, it was in the year 1960 that General Motors Corporation published
a report [Gar60] including a description of an automatic speed control system “for electronic
highways”. According to Shladover [Shl95], the system was proven on test tracks, so Ged-
des’ estimation was correct, but the system was far from reaching the maturity necessary
for series production. Fenton and Mayan [FM91] reports a long-range program on various
aspects of automated highway operations at The Ohio State University between 1964 and
1980, with the principal emphasis on electronic controllers for both longitudinal and lateral
vehicle control.

Several sources [Con18; Wik18] list Daniel Aaron Wisner as the inventor of the "Auto-
motive Electronic Cruise Control," who filed two patents on his inventions in the year 1968
[Wis68b; Wis68a]. “The advantage of electronic speed control over its mechanical predeces-
sor was that it could be integrated with electronic accident avoidance and engine manage-
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ment systems”. It is further stated that by 1974, many car manufacturers, for example AMC,
GM, Chrysler, and Ford, offered vehicles with an electronic cruise control.

Shladover [Shl95] reports early parallel developments on automatic steering control in
the 1960s in the United States, Europe and Japan. In England, experiments were conducted
in the late 1960s [Car70], while in Japan, a car followed an inductive cable at a speed of 100
km/h without any driver in 1967 at MITI’s Mechanical Engineering Laboratory [Osh65]. In
the 1970s, several projects investigating longitudinal control systems were conducted, such
as the Cabinentaxi system in Germany [Hes72] or the ARAMIS system in France [Mau74].
Meanwhile, in Japan, the first tests of visual vehicle control were performed in 1977 at the
Mechanical Engineering Laboratory in Tsukuba [TY+79], driving at speeds up to 30 km/h.

Although not in a scientific context, it may inspire many researchers worldwide, including
the author of this thesis; the year 1982 has to be mentioned. This year was when televi-
sion series “Knight Rider” was first screened, introducing the intelligent and self-driving car
“KITT”.

Shladover as well as Xiao and Gao [XG10] list the years 1986/87 as the beginning of the
"modern" history of advanced vehicle control systems, with the PATH Program (started in
1986) in Berkeley, California and the PROMETHEUS Program (1987 - 1994) in Europe.

Dickmanns [Dic02] mentions 1987 as a milestone in the development of automated vehi-
cles, guided by machine vision, with the presentation of the VaMoRs vehicle of the Universität
der Bundeswehr München. The demonstrator could navigate with engaged driving automa-
tion (both lateral and longitudinal control) on a free section of the German Autobahn over
20 km at speeds up to almost 100 km/h. As one outcome of the PROMETHEUS program, the
concept of ACC was presented by Broqua [Bro91] in the year 1991. Several prototype ve-
hicles were demonstrated during the program. “ViTA” was a modified van by Daimler-Benz,
which first demonstrated stop-and-go capability enabled by computer vision in 1991. The au-
tomated Mercedes SEL500 sedan vehicles “VaMP” and “VITA2” were showcased at the final
demonstration of the PROMETHEUS project in 1994. Until then, “already thousands of kilo-
meters have been driven in regular three-lane traffic including convoy driving and transition
into this mode from free-lane driving at speeds up to 130 km/h” [Dic02].

In 1989, neural network-based road following was demonstrated on the test vehicle
“ALVINN” - Autonomous Land Vehicle In a Neural Network [Pom89]. The neural network
processed camera images and point cloud data from a Lidar to output steering commands.

In 1995, two independent demonstrations showed (partially) automated long-distance
highway driving. Carnegie Mellon University (CMU)’s test vehicle “NavLab5” crossed the
USA from east to west, but only as Level 1 demonstrator controlling the lateral control, while
the longitudinal control was left to the driver. “VaMP” was a Level 2 demonstrator driving
1600 km from Munich to Denmark, with only 5 % intervention by the safety driver.

It was also in 1995 when the first Electronic Stability Control (ESC) systems and Global
Navigation Satellite Systems (GNNSs) were introduced in production vehicles. A group
around A. Broggi demonstrated their test vehicle “ARGO” in 1998, letting it drive with en-
gaged automation on standard roads [Bro99]. Nine years after the presentation of an ACC
system, Mercedes was the first to offer it in a production vehicle as an option called “Dis-
tronic” in the year 2000 [Dic02]. It used radar sensors to detect the lead vehicle.

In the Project “Demo 2000” [TK+01], a cooperative driving system for platooning with
inter-vehicle communication was showcased. The first parking assist function in a production
vehicle was released in 2003 by Toyota in the hybrid passenger car Prius [CNN03]. The
year 2004 started another milestone phase in research of automated driving vehicles, when
Defense Advanced Research Projects Agency (DARPA) offered a million dollar prize for the
winner of the “DARPA Grand Challenge 2004” [DAR04]. None of the 15 finalists were able to
complete the difficult desert track. In the renewed “DARPA Grand Challenge 2005”, already
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Figure 2.2: fortuna, the vehicle prototype built under the author’s supervision during this thesis, is an example of
a research prototype vehicle equipped with a driving automation system. (Photo by Martin Büchel)

five teams completed the track in the Mojave Desert, and the Stanford Racing Team won the
$2 million prize with its vehicle “Stanley” [TM+06].

In 2007, the DARPA Urban challenge was held. Vehicles had to demonstrate capabilities to
drive in (non-public) traffic, merge, pass, and cross intersections. The CMU with its vehicle
“BOSS” was the winning team, followed by “Junior”, Stanford University’s vehicle. More
information on the vehicles of the DARPA Urban Challenge can be found in [BI+09].

In 2010, A. Broggi’s group demonstrated a long-distance ride of four vehicles equipped
with a driving automation system from Parma, Italy, to arrive at the 2010 World Expo in
Shanghai, China, with almost no human intervention [BC+12a], at the “VISLAB Intercon-
tinental Autonomous Challenge”. The SARTRE Project (“Safe Road Trains for the Environ-
ment”) aimed to push the development of road trains (Platoons) on highways. It was funded
by the European Commission and took place between 2009 and 2012. The Grand Coopera-
tive Driving Challenges, held in 2011 and 2016, challenged international teams in a compe-
tition to demonstrate highway platooning scenarios. Vehicles were equipped with communi-
cation devices to interconnect to show cooperative driving capabilities [PS+12; EC+16].

Commercial development of automated vehicles was made public in 2010, with the foun-
dation of Google’s self-driving car project, running at the time of writing under Alphabet’s
subsidiary company Waymo. Traditional carmakers answered with demonstrations of their
capabilities in this field. Also in 2010, a modified Audi TT named “Shelley” climbed the leg-
endary mountain race course “Pikes Peak” at the limits of handling [FT+12; KG12]. Daimler
demonstrated the memorial “Bertha Benz Drive”, repeating the historic automobile journey
from August 1888, but 125 years later, and this time with engaged driving automation sys-
tem [ZD+13]. BMW followed to publish in 2015 about their testing efforts and experiences



20 2 Motivation

gained during the years starting from Spring 2011 [AR+15].
A newcomer to the market, Tesla, released its first version of Level 2 ADAS called “Au-

topilot” in 2014 [Tes15]. After a few accidents with fatalities, some countries forced Tesla to
remove the name “Autopilot” in favor of a name that leads to less expectations of customers
concerning safety [Lom]. Audi initially claimed the world’s first level 3 production vehicle to
be the 2017 Audi A8. The system, named traffic jam pilot, was designed to operate in traffic
up to 60 km/h on highways and multi-lane roads with a physical barrier separating the two
directions of traffic. Nevertheless, at the time of writing, the company was still waiting for
homologation of the ADAS system [Fle18].

Since then, an exploding number of other research institutes, car companies, and new-
comers have been actively developing vehicles with driving automation capability during the
last decade, and it would be out of the scope of this document to list them all. Nevertheless,
we want to mention two prototype vehicles that were created under the author’s supervision
during his time working at the research institute fortiss: First, the vehicle fortuna (see Fig-
ure 2.2) is a 5th Generation Telecommunication Standard (5G) connected vehicle with an
automated driving system ready to be used for tests on public roads. It is equipped with a
prototypical sensor set ready to provide Level 5 capabilities [BS+19]. Second, the electric
vehicle prototype of the project Robust and Reliant Automotive Computing Environment for
Future eCars (RACE) (see Figure 2.3 served as a demonstrator of a novel vehicle Electric /
Electronic (E/E) architecture, capable of delivering fail-operational behavior - a requirement
for Level 5 automated driving [BF+15].

2.1.2 Future trends

This section looks into possible future developments arising from increased vehicle automa-
tion and discusses the connection of various aspects to the longitudinal vehicle motion track-
ing module under investigation.

Development towards Level 5 autonomy

Reaching Level 5 autonomy induces that the Operational Desing Domain (ODD) as described
in Section 1.6 will be increased to grow to the entire space covered by today’s manual ve-
hicles. This also means that a shift away from driving primarily on flat roads as highways
will happen, for which a conventional ADAS system was designed. This means that future
vehicle control systems must be robust against the influences of high road grades on vehicle
dynamics.

Instead of solely designing the control system robust in a reactive manner, we want to
go one step further and propose to actively consider these influences by making use of the
advance knowledge of a known disturbance fed into the longitudinal controller. Another
proposal of this thesis (both already published in [BK16a]) is to design the motion tracking
module as a unified interface for the different driving tasks appearing in all possible scenarios.
This includes ACC scenarios, platooning, low- and high-speed driving, stop-and-go traffic,
parking scenarios, and all other driving tasks appearing on rural roads, highways, and cities,
which include smart connected intersections (as described in Section 2.1.2).

Increase of computational in-vehicle capacity

Vehicle automation leads to a high demand for computational power. Additional sensor
data processing, calculation of perception algorithms, mission planning, behavioral planning
modules, and additional vehicle control functions - all need more computational resources
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Figure 2.3: The vehicle prototype of the project RACE, also built under the author’s supervision while working on
this thesis. It demonstrates a novel vehicle software and E/E architecture for future automated vehicles. (Photo by
Martin Büchel)

compared to today’s production vehicles. Most of today’s prototype demonstrators for auto-
mated driving are equipped with various additional computers fitted into the trunk, all with
high-performance CPUs and GPUs. Due to the necessity of an increased in-vehicle computing
capacity, more resources will be available for novel tasks with a higher degree of automation
and longitudinal control functions.

Centralized vehicle architectures

Many research activities highlight the trend towards centralizing E/E architectures of future
vehicles [BC+12b; CL+12; SC+13]. With a centralized vehicle architecture, additional infor-
mation from sensors and other vehicle functions will become available to any other function.

An example of a vehicle demonstrator showing new trends in automotive E/E architec-
tures is the one built under the author’s supervision during their time at the research institute
fortiss GmbH. It is shown in Figure 2.3, and details can be found in the author’s publication
[BF+15]. In the future, the control system designer will have fewer restrictions when defin-
ing the interfaces than today with current production vehicles.

Connectivity

During the last decade, progress in technology and standardization of Vehicle to-Everything
(V2X) communication interfaces can be seen, and this progress will continue. With additional
information coming from other vehicles, infrastructure, and a back-end server, automated
and connected vehicles can get more information about environmental and road conditions,
the precise position of vehicles, and other traffic participants. With the new telecommuni-
cations standard 5G, V2X communication will be reliable for the first time, with guaranteed
latencies, enabling to build safety-critical functions based on mobile communication. This
will give connected vehicles more reliable information about future trajectories of other ve-
hicles. This information can be exploited to plan more reliable trajectories over a longer
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prediction horizon (see also Section 2.1.2). One example of a 5G connected vehicle proto-
type is the one presented by the author of this thesis in [BS+19], the vehicle fortuna (see
Figure 2.2).

Smart infrastructure

Future systems with smart infrastructure are investigated, for example, in the Providentia
project [HB+17; HE+17], to which the author of this thesis also contributed during the time
of this thesis at the research institute fortiss.

One of the targets of this project was to demonstrate how a vehicle’s (limited) field-of-
view can be enhanced by smart infrastructure. This was achieved using sensor data coming
from stationary equipment placed along a highway and transferred to the vehicle using V2X
communication.

In this way, the vehicle’s environment model can be enhanced, and traffic participants
that might otherwise be occluded will be made visible. Also, it is possible to provide addi-
tional predictive data to the vehicles. For example, predictions of future trajectories of other
traffic participants can be computed by the computing units of the infrastructure. Hence,
more reliable predictions with an increased prediction horizon will be made available (due
to extensive computational power in the back-end). Again, a trend is visible here that future
vehicles will have access to more precise information over a longer time horizon.

Cooperative driving

Due to enhancements in technology and standardization of V2X communication, future auto-
mated vehicles will be enabled to plan cooperatively and interactively. Anticipated planning,
considering other nearby vehicles’ plans, helps achieve sustainable, more comfortable, and
safer trajectories. At large scale, cooperative driving will help to robustly reduce traffic con-
gestion. Two special cases of cooperative driving will be discussed in more detail. Further
information about platooning will be mentioned in Section 2.1.2, and smart intersections are
discussed in Section 2.1.2

Platooning

Vehicle platoons can potentially increase the road traffic flow rate while decreasing energy
consumption and emissions. The main effect of energy consumption reduction is due to the
aerodynamic drag reduction. Regarding to [Ala11], a reduction of over 65 % is possible.
However, this examination is only valid for inter-vehicle distances of less than 5 meters. In
contrast, at 10 m of distance, only a reduction of 40 % is possible, and at 20 m, this value
decreases to around 30 %. Further information about vehicle platoon control can be found
in [SK+01] and [SP+04].

Shladover stated in [Shl95] that “Dynamic response of actuation systems (engine and brake
control systems) can be a serious limitation to longitudinal control system performance. Fast
response of these subsystems is needed to ensure that high-precision constant-spacing vehicle
follower control systems perform effectively and with asymptotic stability. [. . . ] The largest
technical issue in the design of regulation-layer controllers for longitudinal control is ensuring
robustness with respect to parameter variations, external force loadings, and sensor anomalies
under the full range of real-world operating conditions. This will require extensive experi-
mental work on full-scale vehicles in realistic operating environments.”

Only if the low-level longitudinal controller, combined with the actuators, can follow
a given trajectory without substantial deviations can the upper-level platoon controllers be
tuned less conservatively. Hence, small inter-vehicle distances can be realized. Seiler, Pant,
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and Hedrick investigated the negative effect of the time constant and dead-times of the longitu-
dinal acceleration control in [SP+04] on the relative vehicle distance and fuel consumption.
They identified that these effects pose fundamental limitations to longitudinal vehicle platoon
control.

Although one can expect that some progress has been made regarding actuator dynamics
by improving the electro-mechanical components, limitations still exist. With physical hard-
ware involved, the possibility of reducing time constants and delays within the actuators is
limited. A predictive acceleration controller, partly able to compensate for these limitations,
is an indirect enabler to reduce inter-vehicle distances of platoons and, hence, fuel consump-
tion.

Smart intersections

Various researchers have proposed smart intersections for automated vehicles. A centralized
controller, as in Tachet, Santi, and Sobolevsky [TS+16], Au, Zhang, and Stone [AZ+15] or
Wuthishuwong and Traechtler [WT13], could be used to enable traffic crossing from both
sides of an intersection simultaneously without stopping. In order to realize such a future
scenario, time slots are assigned to automated vehicles, and they have to pass the intersection
at precisely this time slot. The strategies above assume that deviations from the planned
trajectories are minor or not present at all. If, in reality, deviations would be greater than
a defined tolerance, this would lead to fatal outcomes. Hence, the throughput through an
intersection directly depends on the longitudinal variance. This, in return, requires that,
for optimal intersection throughput, each vehicle’s motion tracker can operate under the
restriction of small tracking error tolerances.

Mobility as a Service

The trend known under the term Mobility-as-a-Service (MaaS) will potentially lead to more
automated micro-buses on the roads, with people frequently hopping on and off the vehicle.
This means that one can expect a very high variance in the vehicle’s gross mass, acting as a
disturbance to a longitudinal motion tracking module.

Artificial intelligence and end-to-end architectures

In the past, various End-to-End solutions, probably starting with [Pom89], until more re-
cent attempts [BD+16; MS17a] were demonstrated as an alternative to rather classical ap-
proaches following the well-known “Sense-Plan-Act” scheme (as also depicted in Figure 1.1).

End-to-end approaches use raw sensor data (mainly camera images) and train deep neural
networks that directly act on the vehicle’s actuators. Currently, these approaches lack the
possibility to integrate a desired behavior, like, for example, following traffic rules, and are
hard to debug. This makes it challenging to fulfill the safety requirements of automated
vehicles. Although it is impressive that the approach already works for simple lane-keeping
scenarios, how such approaches can be scaled to more complex traffic scenarios is currently
under investigation. We want to believe that although data-centric approaches will become
very important, some kind of modular, hierarchical software structure will be present in
future automated vehicles. Very recent developments published by the company Wayve AI
[KH+18] underpin this opinion, as they stated that they use a rather “conventional” low-
lever actuator control module while standing in general for an automated driving solution
based on an end-to-end approach. This means that a longitudinal motion tracking module
will still play an important role when shifting to rather data-centric approaches.
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2.2 Impact of longitudinal motion tracking on automated vehicles

In this section, we want to discuss the impact of longitudinal motion tracking on automated
vehicles. We want to analyze the benefit of a high-precision motion tracking module by look-
ing at the following aspects: safety, comfort, speed, economy, efficiency, and sustainability.

Safety

Clearly, any undesired longitudinal motion of an automated vehicle endangers the safety of
passengers and other road users and has to be avoided at all times. This could be unexpected
breaking for no apparent reason, leading to a following vehicle crash into the ego-vehicle.
Undesired acceleration could cause accidents by running into obstacles or other road users.
Especially when looking at scenarios of vehicle platooning and smart intersections (as de-
picted by Sections 2.1.2 and 2.1.2), it is evident these can only be safely realized, when
strong guarantees can be given that a vehicle’s true trajectory will only deviate from the
desired one by some sufficiently small error margins. While violations of these safety mar-
gins might even cause vehicles to crash, it is also highly desirable to realize very small error
tolerances, as otherwise, these scenarios cannot be realized to their full potential.

Comfort

In automated vehicles, drivers will become passengers, and therefore, they can engage in
other activities, like sleeping, reading, working, writing text messages, or browsing the inter-
net. A study performed at the University of Michigan [SS15] concluded that “37 % of drivers
will engage in activities that increase the severity and frequency of motion sickness”. Further,
“6-12 % would experience moderate or severe motion sickness while being a passenger of a
self-driving car”.

Hence, the importance of ride comfort will rise with the degree of vehicle automation. The
motion tracking control unit is responsible for the quality of the vehicle’s motion, for example,
by reducing jerks that the passenger can feel. Therefore, the motion-tracking module will
have an increased influence on this subjective perception.

For this reason, we want to give some more profound insights into how physical proper-
ties and their comfort ranges can define a comfortable ride. Elbanhawi [Elb15] investigated
ride comfort measures in automated cars and concluded that traditional factors for comfort,
like air quality, sound and noise, temperature, and vibrations, will be removed by the fac-
tors of naturality, disturbances, apparent safety, and motion sickness in automated vehicles.
Naturality, the sense of being driven by a human driver, is influenced by lateral and longitu-
dinal vehicle motion. Some unwanted effects caused by a control module, like oscillations,
are causing an unnatural feeling. Elbanhawi mentions that disturbances, following their
taxonomy, can be both road disturbances (causing vertical vibrations) or load disturbances
(causing horizontal deviations). The latter has to be compensated by longitudinal control.
While the safety aspect mentioned by Elbanhawi is discussed in Section 2.2, we want to dis-
cuss the effect of motion sickness in more detail. Schaedler [Sch17] compared several studies
on the influencing factors for motion sickness and came to the conclusion that not only lateral
acceleration but also longitudinal acceleration has an impact on motion sickness, and Vogel,
Kohlhaas, and Baumgarten [VK+82] conducted experiments giving this evidence. Schaedler
further analyzed the physical quantities which can be directly related to causing discomfort.
The main goal for a comfortable ride is to minimize forces acting on the passenger, mainly
caused by acceleration and its time derivative jerk. For acceleration, a discomfort threshold
of around 1 m/s2 to 1.5 m/s2 is suggested, while for jerk, a maximum value of 3 m/s3 is
suggested. [ES15] defines the jerk threshold for discomfort at 0.5 to 0.9 m/s3.
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The influence of higher derivatives like snap, crackle, and pop seem less well understood,
while Schaedler proposes reducing the values. [ES15] further suggests reducing the fre-
quency content of acceleration, as horizontal acceleration in the range of 0.1 - 0.5 Hz seems
to have a negative effect, causing motion sickness.

Speed

In the sense of Norman Bel Geddes, who we quoted at the beginning of this chapter, we can
define the increased speed of a journey as a reduction of the time needed to drive from a
starting point to a target in traffic. We can look at this evaluation criteria as a road traf-
fic throughput that can be achieved. Reducing inter-vehicle distances, for example, with
platooning when driving on roads and highways, in smart intersections, or by cooperative
driving maneuvers - all these scenarios help to increase speed.

We already discussed in Section 2.1.2 that an improved longitudinal control quality is an
enabler for these intelligent transportation systems, mainly due to improved error tolerances.
We can most likely achieve this by an advanced motion tracking controller, with better refer-
ence tracking capability, and by a compensation of the “parasitic actuator delays and lags”,
as termed by [XD+08] in the context of string stability of vehicle platoons.

Efficiency

Overshoots and oscillations around the motion reference trajectories can be seen as directly
linked to the tracking performance of a longitudinal vehicle motion tracker. In a vehicle, this
means that kinetic energy will have to be produced during phases of overshoots, which cannot
be fully recuperated during phases of under-shoots. This will immediately lead to decreased
energy efficiency. Hence, improving the tracking performance of a motion-tracking module
will automatically lead to improved energy efficiency.

We will later present the results of a simulation study that suggests a potential of up to
around three percent in fuel consumption reduction when comparing a predictive controller
to a conventional PI controller.

Economy

The fuel or energy consumption reductions mentioned in the previous subsection 2.2 will help
to reduce ride costs. Reduced travel times, as mentioned in Section 2.2, will also impact the
ride costs. Another potential source of reduction is if inter-vehicle distances can be reduced
while platooning. Hence, tracking control quality directly and indirectly has the potential to
reduce travel costs.

Sustainability

European emission standards, for example, limit various exhaust gases, namely carbon monox-
ide (CO), hydrocarbon (THC), nitrogen oxides (NOx), and particulates, for vehicles with
internal combustion engines.

It would be clearly out of scope in this thesis to sufficiently derive and explain the effects
that lead to high emission values in an ICE engine. From the author’s professional work-
ing experience in combustion engines, it can be stated that dynamic transitions often cause
certain emissions to peak. Hence, a driver’s personal driving style has an important effect
on exhaust gas emissions in manual vehicles. Anticipating the torque which needs to be
produced in the future helps to operate a combustion engine at low emission levels.
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In automated vehicles, emission reductions are possible because of two effects: First,
the vehicle defines its “driving style”, meaning that highly dynamic driving patterns can be
avoided by constraining desired trajectories calculated in a planning module. Including such
constraints will most likely be an engineering target to maintain certain passenger comfort.
However, a second reason is that the trajectories from the planning module are known with a
certain look-ahead, which can be exploited both within the motion tracking module and also
in the actuator control module - which, in the case of a combustion engine, will be the engine
control unit. This is one of the reasons for this thesis to suggest using a predictive motion
tracking module, which can also forward the desired torque values to a power-train control
unit. After this suggestion was published in the author’s work [BK16a] and [BK16b], a study
performed by Ma and Wang [MW19] recently could demonstrate NOx reductions of 13 % in
the investigated driving cycle when using model predictive engine control, which could be
easily combined with the proposed tracking module.

Realizing this potential would not be possible with a conventional, acceleration set-point-
based low-level controller, as probably still can be found in most of today’s vehicles equipped
with ADAS systems.

2.3 Summary

We can summarize the following trends arising from a future shift of vehicle automation
levels towards SAE Level 5. First, increased longitudinal motion tracking accuracy will play
a crucial role in enabling scenarios like vehicle platooning and smart intersections to reach
their full potential. Predictive motion tracking has the potential to compensate or even elim-
inate “parasitic delays and lags” in the context of vehicle platooning. Different from typical
operation domains of conventional ADAS systems, when driving on roads with high road
slopes, the forces acting on a fully automated vehicle cannot be neglected. Nevertheless, one
can expect that future road slope information will be available to the vehicle. Hence, the
availability of advance information can be exploited for improved vehicle motion tracking
within automated vehicles.

Further, including predictive information in a motion tracking module is an enabler to
reduce energy consumption, and there is potential to reduce emissions in ICE-driven vehicles
when predictive control of actuators is realized. For example, up to 13 % of NOx reductions
could recently be demonstrated with predictive engine control on known target velocity pro-
files [MW19]. Increased passenger comfort is a distinctive feature for automated vehicles,
and it is directly impacted by motion tracking performance. The use of advanced predictive
control methods, which are computationally more expensive, is enabled by increased compu-
tational resources and centralized information systems, which we can expect to be available
in future vehicles.
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“If you can’t explain it simply, you don’t understand it well enough.”

– Albert Einstein

We want to derive the vehicle dynamics by building the equilibrium of forces acting on the
vehicle, and enhance the equations by including the power-train dynamics. A similar deriva-
tion can be found in [Raj11], but we additionally want to include the terms from resulting
forces due to road grade changes and wind effects.

The following assumptions are made: The influence of power-train elasticity and backlash
effects is small and we neglect it in the following analysis. The effect of tire slip is neglected,
since it is small during normal operation, where we assume our planning module will plan
trajectories far away from physical limits. It is assumed that the effect of power losses during
gear shifts is compensated by a power-train control unit and therefore only the case of a
transmission in steady state is considered.

3.1 Longitudinal vehicle dynamics

A sketch of the longitudinal forces acting on the vehicle is given in Figure 3.1. Applying
Newton’s second law of motion and building the dynamic equilibrium of forces, one will get:

m · v̇ = Ftire,f + Ftire,r − Fpitch − Faero − Fr,f − Fr,r, (3.1)

with vehicle mass m and vehicle speed v. Ftire,f and Ftire,r are the tire forces in longitudinal
direction of front and rear tires, Fpitch is the resulting gravity force, Faero is the aerodynamic
drag force, and Fr,f, Fr,r are the rolling resistance forces on the wheels.

3.1.1 Gravity force component

Fpitch is the resulting gravity force on the vehicle due to a time varying road slope ϕ(t), and
the gravity constant g:

Fpitch = m · g · sinϕ(t). (3.2)

Please note that the terms road slope and road grade are used interchangeable within this
thesis, being identical to the road plane elevation angle as defined per ISO8855 [ISO11].

27
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Figure 3.1: Longitudinal vehicle forces.

3.1.2 Aerodynamic drag

The aerodynamic drag force in longitudinal direction Faero was reported to be modeled as

Faero =
1
2
·ρair · cx(ψa) · Av(ψa) · v2

a , (3.3)

with air density ρair, the dimensionless longitudinal aerodynamic drag coefficient cx, the
frontal area of the vehicle Av and the air approach velocity va [Hak18]. Av(ψa) is also of-
ten denoted cross-sectional area and, together with cx(ψa), a function of the air approach
angle ψa. Air density is often calculated by the relation stated by the general gas equation
ρair =

pa
RairTamb

under the assumption of air being an ideal gas. In this equation, pa and Tamb

are ambient pressure and temperature, respectively, while Rair = 287.058 [Jkg−1K−1] is the
specific gas constant for idealized air. Measurement values are typically provided by an am-
bient pressure and ambient temperature sensor, at least in vehicles with combustion engines.
We can lump air density, drag coefficient and frontal area into the parameter:

Cd =
1
2
·

pa

RairTamb
· cx · Av. (3.4)

If we define vwind as the longitudinal wind speed in forward direction of the vehicle, we can
rewrite for the aerodynamic drag force:

Faero = Cd · sign (v − vwind) · (v − vwind)
2 . (3.5)

A more detailed discussion of the influence of side-wind components on the longitudinal
aerodynamic drag coefficient cx is out of scope of this thesis. More detailed information and
empirical data can be found in [Hak18], p. 154f. Instead, we want to highlight the fact that
the lumped aerodynamic drag coefficient Cd is hence an unkown, time varying parameter.
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3.1.3 Rolling resistance

Fr,f and Fr,r are the rolling resistance forces of front and rear wheels. As in [Raj11], we
approximate these forces by a linear correlation between the coefficient of rolling resistance
Cr and the (lumped) vertical tire force Fz, and write for rear and front wheels together:

Fr,f + Fr,r = Fr = CrFz = Cr ·m · g · cosϕ. (3.6)

Considering that rolling resistance forces are always directed against the vehicle’s moving
direction, this results with vehicle speed v in:

Fr,f + Fr,r = Fr = CrFz = Cr · sign(v) ·m · g · cosϕ. (3.7)

Often, Cr is regarded constant, which is a simplification which does not hold in practice. More
sophisticated models include other, nonlinear dependencies, e.g. on vertical tire force, tire
pressure, tire temperature and vehicle speed (see [Hak18] pp. 137). For driving on paved
roads, the following polynomial dependency has been modeled [RH95]:

Cr(v) = cr0
+ cr1

v + cr4
v4, (3.8)

while the curve was found to be approximately linear at lower vehicle speeds of up to around
80 km/h [Hak18].

3.1.4 Toe-in resistance

Haken [Hak18] notes that for stability and comfort reasons, wheels are typically symmetri-
cally pointing towards the center axis of the vehicle at a small toe-in angle δw ≈ αw ≪ 1
which is approximately the same as the side slip angle αw. This causes longitudinal forces
depending on the lateral force Fs according to

Ftr = Fs · sin(αw). (3.9)

Typically, the toe-in resistance can be neglected in relation to the rolling resistance [Hak18],
p. 145.

3.1.5 Cornering resistance

While driving around corners at a radius rv, the centrifugal force Fc = may =
1
rv

mv2 acts
on the center of gravity. This needs to be compensated by lateral forces on the wheels,
which cause longitudinal resistance components. Under rather strong simplifications, these
can be modeled by the single track model, often also named bicycle model. Then, one can
approximately state for the cornering resistance Fcr [Hak18], p. 147:

Fcr =
m2v4

x

4r2
v Cs

, (3.10)

using the cornering stiffness Cs. Haken [Hak18] mentions that the cornering resistance is
hence quadratic in the lateral acceleration value and has magnitudes which are approxi-
mately the same as the rolling resistance at values of 4 ms−1 lateral acceleration and a curve
radius rv of 100 m. See the reference [Hak18], p. 147 for more details on the simplifying
assumptions.
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Figure 3.2: Rotational forces and torques acting on the wheel.

3.1.6 Wheel dynamics

Wheel forces can be controlled by inducing torques to the wheel. This is realized by torques
created trough a vehicles power-train as well as by friction brakes. Wheel dynamics is de-
scribed by the equilibrium of forces and moments acting on the wheel (see Figure 3.2):

Iw · ω̇w = Twe − Tbr − reff · Ftire, (3.11)

with Iw being the lumped inertia of all wheels including drive shaft, differential and gearbox
elements rotating with the wheel, Twe the torque at the wheel induced by the engine, the
braking torque Tbr and the effective wheel radius reff. Please note that “engine” is used
here interchangeable with “power-train” as a torque producing unit in case of more complex
power-train configurations, as with hybrid vehicles. Equation (3.11) can be transformed into:

Ftire =
1

reff
(Twe − Tbr − Iw · ω̇w). (3.12)

With the relation between angular velocity of the wheel and the linear vehicle velocity, as-
suming no slip occurs:

ωw =
v

reff
. (3.13)

Building the time derivative of (3.13) one gets

ω̇w =
v̇

reff
, (3.14)

and by inserting (3.14) into (3.12), one gets the equation for the tire forces as

Ftire =
1

reff
· (Twe − Tbr)−

Iw

r2
eff

· v̇. (3.15)

We can simplify above equation (3.15), for readability reasons, by introducing the “mass
equivalent” resulting from the (lumped) wheel inertia mI as

mI
.
=

Iw

r2
eff

. (3.16)

Note that the brake torque can only act in direction against wheel rotation. Hence, if we
want to define Ftire for both positive and negative vehicle speeds, we need to rewrite (3.15)
as

Ftire =
1

reff
· (Twe − sign(v)Tbr)−mI · v̇. (3.17)
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3.1.7 Resulting equation for longitudinal vehicle motion

Hence, the resulting vehicle dynamics can be described condensing the sum of front and rear
tire forces to Ftire, as:

m · v̇ = Ftire −m · g · (sinϕ + Cr · sign(v) · cosϕ)− Cd · sign (v − vwind) · (v − vwind)
2 . (3.18)

Inserting (3.17) into (3.18), one obtains

(m+mI) · v̇ =
Twe − sign(v)Tbr

reff
−m · g · (sinϕ + Cr · sign(v) · cosϕ)

− Cd · sign (v − vwind) · (v − vwind)
2 . (3.19)

3.2 Power-train and brake dynamics

We derive the power-train equations for a conventional power-train as depicted in Figure 3.3.
It consists of an IC engine or an electric motor, a torque converter, a gearbox, a differential,
and wheels with brakes. Since we are interested in the sum of all forces acting on the vehicle
instead of individual wheels, we omit the fact that the torques are distributed to the wheels.
Instead, we reduce all wheels to a single wheel which produces the sum of all forces as a
result from the gearbox output torque, and include the inertia of a rotational parts rotating
with wheel speed ωw.

Figure 3.3: Schematic overview of typical components of a single engine driven power-train

3.2.1 Gearbox

For simplification, we neglect drive shaft elasticity, backlash effects and dynamics during gear
shift. With this assumptions, introducing the gear ratio ig = ωg/ωw and the transmission
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Figure 3.4: Block diagram of power-train model.

efficiency ηg, we have the following relation between torque into and out of the gearbox and
hence the equations for the transmission are given with (3.14) as

Twe = ηg · ig · Tg,in (3.20)

ωg = ig ·ωw =
ig
reff
· v. (3.21)

We insert this back into the wheel equation (3.17) to get

Ftire =
1

reff
· (ηg · ig · Tg,in − Tbr)−mI · v̇. (3.22)

3.2.2 Gearbox inertia

With the total inertia Ig of all parts necessarily rotating with the gearbox rotational speed ωg,
we can write

Ig · ω̇g = Ttc,out − Tg,in.

Solving for Tg,in we obtain

Tg,in = Ttc,out − ig ·
Ig

reff
v̇.

We can insert this back into (3.20) to get

Twe = ηg · ig · Ttc,out −ηg · i2
g ·

Ig

reff
v̇. (3.23)

We can insert this back into (3.22) to get

Ftire =
1

reff
·
�

ηg · ig · (Ttc,out − ig ·
Ig

reff
v̇)− Tbr

�

−mI · v̇. (3.24)

which is equivalent to

Ftire · reff = ηg · ig · Ttc,out −
1

reff
(ηg · i2

g · Ig + Iw)v̇ − Tbr. (3.25)

We introduce Iw,g as
Iw,g = ηg · i2

g · Ig + Iw, (3.26)
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to simplify (3.25) to

Ftire =
1

reff
·
�

ηg · ig · Ttc,out − Tbr
�

−
Iw,g

r2
eff

· v̇. (3.27)

3.2.3 Torque converter

A torque converter is an essential part of an automatic power-train. It allows to prevent
an ICE from stalling when the vehicle is at standstill or at very low speed. Building high-
fidelity models which are suited for real-time control applications is an ongoing research
topic [Lee17; AM12; Li16], as well as finding a methodology for the parameter identifica-
tion process of these models [MS17b]. [Lee17] proposed a model based on four first-order
nonlinear differential equations to approximate the dynamic behavior of the hydrodynamic
effects. A widely uses model for control purposes is the dynamic model of Kotwicki [Kot82].
It is a zero order model, describing the relation of the input torque to the torque converter
Ttc,in, to the output torque Ttc,out, as a nonlinear function of

Ttc,out = ftc(ωg,ωe, Ttc,in) = ftc(igωw,ωe, Ttc,in) = ftc(
ig
reff

v,ωe, Ttc,in). (3.28)

Another model suitable for real-time simulation is given in [SAE00]. It describes the behavior
of a torque converter in the following way:

Ttc,out = Ttc,in · Rtc,tq(itc), (3.29)

with Rtc being a nonlinear function of the speed ratio itc =
ωg
ωe

. The speed ratio follows the
equation

τtc,in Ṫtc,in + Ttc,in = sgn(1− itc)(
ωe

K(itc)
)2, (3.30)

with the time constant τtc,in and the capacity factor K(itc) also being a nonlinear function
(typically approximated by a look-up table) of the speed ratio itc. In order to optimize for
simulation performance, the recommendation is to set the time constant to zero to neglect
the transient behavior.

We can summarize these findings to express the turbine torque as a function of the im-
peller torque given by the following equations:

T tc,out = ftc(
ig
reff

v,ωe, Ttc,in) (3.31)

τtc Ṫtc,out + Ttc,out = T tc,out (3.32)

ωe = gtc(ωg, Ttc,out). (3.33)

In case of a torque converter in normal operation, we can write for the torque induced by the
engine at the wheel:

Twe = ηg · ig · Ttc,in · Rtc,tq(itc)−ηg · i2
g ·

Ig

reff
· v̇. (3.34)

In the case of a locked torque converter, it will be that

Ttc,out = Ttc,in, (3.35)
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and

ωe =ωg = ig ·ωw =
ig
reff
· v, (3.36)

and we can write for the tire force:

Ftire =
1

reff
·
�

ηg · ig · Ttc,in − Tbr
�

−
Iw,g

r2
eff

· v̇, (3.37)

and for the wheel torque induced by the power-train:

Twe = ηg · ig · Ttc,in −ηg · i2
g ·

Ig

reff
· v̇. (3.38)

3.2.4 Engine inertia

The engine dynamics can be derived from the equilibrium of moments

Ie · ω̇e = Te − Ttc,in, (3.39)

with the engine inertia Ie, the engine speed ωe, the engine net output torque after losses Te
and Ttc, which represents the load on the engine from the torque converter. We can transform
this to

Ttc,in = Te − Ie · ω̇e. (3.40)

Then, we can write for the torque at the wheel induced by the engine:

Twe = ηgig · (Te − Ie · ω̇e) · Rtc,tq (itc)−ηgi2
g ·

Ig

reff
· v̇ (3.41)

Twe = ηgig · Rtc,tq (itc) · Te −ηgig · Rtc,tq (itc) Ieω̇e −ηgi2
g ·

Ig

reff
· v̇ (3.42)

With ω̇e = ω̇g/itc =
ig
itc

v̇
reff

this yields

Twe = ηgigRtc,tq (itc) · Te −ηgi2
g

�

Rtc,tq (itc)

itc
Ie + Ig

�

1
reff
· v̇. (3.43)

For the case of a locked torque converter this is simplified to

Twe = ηgig · Te −ηgi2
g ·
�

Ie + Ig
� 1

reff
· v̇. (3.44)

In any case, the wheel torque is of the form:

Twe =
1
α(·)

Te − β(·)v̇, (3.45)

where α(·) = 1/
�

ηgigRtc,tq (itc)
�

is a function of the speed ratios and the power-train efficiency,

and β(·) = ηgi2
g

�

Rtc,tq(itc)
itc

Ie + Ig

�

1
reff

is additionally dependent on the power-train inertia. From
above equation, we can see that the wheel torque induced by the engine is reduced by a term
dependent on the vehicle acceleration v̇ = a. Inverting (3.45) we get

Te = α(·)Twe +α(·)β(·)v̇. (3.46)
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3.2.5 Engine torque response

The engine net torque Te results from a torque request T d
e to the engine control module.

Torque build up is delayed by various effects. First, looking at ICEs, actuator delays of throt-
tle, valves, Exhaust Gas Recirculation (EGR) and waste-gate actuators exist. Second, air flow
effects through the intake manifold system of an ICE have to be considered. Third, within
Engine Control Module (ECM), various limiting functions exist which are necessary to meet
emission regulations and have an effect on the dynamic engine response. A comprehensive
description of the effects is out of scope of this document. The interested reader is referred
to Rajamani [Raj11].

As an approximation, we can model the torque build up with a transfer function including
first-order dynamic behavior, similar as in [SK99; Dav13], with the time constant τe for
engine dynamics:

τe Ṫe + Te = Td
e (3.47)

Ṫe =
1
τe

�

Td
e − Te
�

. (3.48)

Typical time constants are in the range of τe = 0.15 s to 0.4 s regarding to [May99; Ise06;
XD+08]. Xiao, Darbha, and Gao also highlight the effect of these “parasitic delays and lags”
[XD+08] to string stability of vehicle platoons. The engine torque is limited between engine
speed dependent values of a drag torque and a maximal engine torque:

Tdrag(ωe)< Te < Tmax
e (ωe). (3.49)

3.2.6 Power-train torque response

If we want to see how the engine torque response relates to the response of the torque
induced by the engine at the wheel, we can investigate the following. From (3.46) we can
get by differentiation using the product rule:

Ṫe = α̇(·)Twe +α(·)Ṫwe + α̇(·)β(·)v̇ +α(·)β̇(·)v̇ +α(·)β(·)v̈, (3.50)

and inserting the above into (3.47) and some algebra, we get

τeα

α+τeα̇
Ṫwe + Twe =

Te − α̃v̇ − β̃ v̈
α+τeα̇

, (3.51)

where we introduced α̃= τeα̇β +τeαβ̇ +αβ and β̃ = τeαβ for readability. By defining

τpwt =
τeα

α+τeα̇
, (3.52)

and

Td
we =

Te − α̃v̇ − β̃ v̈
α+τeα̇

, (3.53)

we can state
τpwt Ṫwe + Twe = Td

we. (3.54)

From here we can see that the power-train torque also follows a first order differential equa-
tion (assuming the engine torque response is given by the same). Note, that in general, the
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time constant τpwt is time variant. An exception is the case of a locked torque converter, were
we have both α̇= 0 and β̇ = 0, and the formulae above results in

τe Ṫwe + Twe =
Te − β v̇ −τeβ v̈

α
= Td

we. (3.55)

At this point, it is clear that the interplay between the engine torque and wheel torque in-
duced it is quite complex, especially for an active torque converter. For the rest of the thesis,
we will assume that the power-train dynamics can be sufficiently described by a first order
dynamics with a time-invariant power-train time constant τpwt. If this is chosen to be a worst
case value, we can be assume that engine demand torque values calculated from a longi-
tudinal vehicle controller which outputs a wheel torque demand value will be in a feasible
range. We do not treat the problem of correctly modeling the torque converter behavior or
of calculating a suitable engine input value. We rather assume that such a controller is in
place which correctly controls a demanded wheel torque, for example by the inverse relation
resulting from the definition of Td

we in (3.53) which we can rewrite as:

Te = Td
we (α+τeα̇) + α̃v̇ + β̃ v̈. (3.56)

3.2.7 Brake torque

Simple models of the brake torque Tbr as a linear function of the brake pressure acting on the
brake cylinder were proposed, for example [DO+02]:

Tbr = Abr · rbr ·µbr · pbr, pbr ≥ 0, (3.57)

with the effective brake pad area Abr, the effective brake disc radius rbr, the brake friction co-
efficient µbr and the brake pressure pbr. These models neglect nonlinearity and temperature
dependence. The brake torque can only have positive values, acting against the rotational di-
rection of the wheel. [GW+97] modeled the dynamic behavior of the effective brake pressure
in dependence of the brake cylinder pressure pbr,cyl with the following first order dynamics:

τbr ṗbr + pbr = pbr,cyl, (3.58)

with time constants τbr between 50 ms and 250 ms.
A more elaborate model was proposed by Martinez, Velenis, et al. in [MV+15]. She pro-

posed a method to estimate the brake torque values from wheel speed sensor measurements.
It includes a model of the temperature behavior of the brake to take the temperature depen-
dence of the friction coefficient into account. The caliper pressure is modeled as a second
order under-damped system with first order delays.

For the remainder of this thesis, we want to assume that a brake controller is available
which is capable of estimating the brake parameters well enough to provide a torque based
interface. Then, we can model the brake torque Tbr dependent on a request T d

br to the brake
controller, approximated as a response with first order dynamics, with time constant τbr as

τbr Ṫbr + Tbr = T d
br. (3.59)

Regarding constraints, we assume the brake torque is limited between time invariant limits
given as:

0≤ Tbr ≤ Tmax
br . (3.60)
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3.3 Summary of longitudinal vehicle equations

We want to revisit the equation describing longitudinal vehicle dynamics from Section 3.1.7.
We can restate (3.19), by making v̇ explicit, as:

v̇ =
Twe − sign(v)Tbr

(m+mI) reff
−

mg
m+mI

· (sinϕ + Cr · sign(v) · cosϕ)

−
Cd

m+mI
· sign (v − vwind) · (v − vwind)

2 . (3.61)

If we additionally restate the power-train and brake torque dynamics from (3.54) and (3.59),
respectively, we wan summarize the following system of ordinary differential equations, de-
scribing the longitudinal vehicle motion including power-train and brake dynamics:

v̇ =
Twe − sign(v)Tbr

(m+mI) reff
−

mg
m+mI

· (sinϕ + Cr · sign(v) · cosϕ)

−
Cd

m+mI
· sign (v − vwind) · (v − vwind)

2
(3.62a)

Ṫwe =(−)
1
τpwt

Twe +
1
τpwt

T d
we (3.62b)

Ṫbr =(−)
1
τbr

Tbr +
1
τbr

T d
br. (3.62c)

3.4 Discussion of vehicle dynamics equations

In the following, we want to discuss the quantities affecting longitudinal vehicle motion more
in detail.

3.4.1 Effective wheel radius

Due to dynamic forces acting on the wheels, the effective wheel radius reff will increase
compared to that of an un-deformed wheel at higher rotational speeds. It is assumed that the
effective wheel radius can be obtained using an approach similar to [CG05]. Nevertheless,
for simplification in the dynamic equations of a prediction model, we will assume that it can
be treated as time invariant within short prediction horizons.

3.4.2 Wheel inertia

We previously defined the “mass equivalent” resulting from the lumped wheel inertia Iw in
dependency of the effective wheel radius in (3.16) as mI

.
= Iw

r2
eff

. From this dependency it is

clear that the assumptions about the effective wheel radius also apply for the mass equivalent
mI. The wheel inertia of one single mounted wheel of a passenger car has been found to lie
in a range between approximately 0.6 and 1.3 kg/m2 in a study performed in Metz, Akouris,
Agney, and Clark [MA+90]. Also, slight differences were found to exist between new and
worn tires. This leads to values of mI for a four-wheeled passenger car, assuming a wheel
radius of 0.3 m, in a range of about 25 to 60 kg. Nevertheless, in this study, we will treat the
wheel inertia and the resulting mass equivalent as known and time invariant.
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3.4.3 Vehicle mass

Changes in the vehicle mass result in almost direct proportional change in the resulting wheel
torque needed to achieve a given vehicle acceleration. Due to a changing number of passen-
gers and a changing vehicle load, the gross vehicle mass is known to vary. For example, an
existing passenger car known to have a high load capacity, like a Ford Mondeo 1.6 TDCi ECO-
netic [Webc], has a net weight of 1515 kg, and can carry up to 2690 kg including a carrier
[Webb], which results in a additional mass of over ±75 % compared to the empty vehicle. For
heavy duty vehicles with a net weight of around 10.000 kg and a gross weight of 40.000 kg
[Weba], the resulting mass increase is even up to ±400 %. While changes of vehicle mass due
to modifications in the load or the passenger number usually might be expected to happen
during standstill of the vehicle, the vehicle mass decreases additionally due to fuel consump-
tion effects in presence of internal combustion engines. Nevertheless, it might be also of
interest to detect changes due to the vehicle loosing freight.

In order to calculate a correct wheel torque demand value in a model-based feed-forward
controller, an estimation of the vehicle mass is necessary. If parameter errors are present, this
will lead to deviations in the desired vehicle acceleration. These errors have to be compen-
sated by a longitudinal controller.

3.4.4 Road plane elevation angle

A high road slope ϕ results in a longitudinal vehicle force which is proportional to the vehicle
mass, as could be seen from (3.2). We assume the road slope ϕ is available the controller
of an automated vehicle with a certain look-ahead. This information can be either made
available from high-definition maps in combination with a precise localization module, or by
the vehicle’s sensors, or a combination of these.

Previous literature (see Chapter 4 and Section 7.3) often assumed that the road slope
angle is not available from measurements and some work suggested estimators for this pa-
rameter. As will be seen there, the forces resulting from changes in road slope were mostly
neglected in previous literature and treated as disturbance to the control system.

3.4.5 Rolling resistance

The rolling resistance coefficient Cr is only constant for a certain combination of tire and
road surface, and at a constant tire pressure. Typical values for Cr have been reported to be
in the range of around 0.013 - 0.015 for passenger cars on dry asphalt surfaces according to
[WA+04; Won08].

Different tire pressures, tire wear or switching to a different tire (e.g. winter tires) may
result in a change in rolling resistance of up to ±60 % [XG10].

Hence, one has to expect that the rolling resistance coefficient will be changing when
driving on changing road surface conditions. Errors resulting from a wrong coefficient value
in a model based control scheme will either have to be treated as a disturbance, or efforts
have to be made to compensate by estimating the rolling resistance and treating it as time-
variant value Cr(t).
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3.4.6 Aerodynamic drag

The aerodynamic drag coefficient Cd of a given vehicle will vary when changes to the vehicle’s
surface are present. Additional loads on the roof, like for example roof boxes or sensors
mounted to the vehicle, the impact to the vehicle’s aerodynamics when pulling a trailer,
aerodynamic effects resulting from side-winds and also open windows will have an influence
on its value. A high variation of the coefficient is given in Platooning scenarios, where a
reduction of the aerodynamic drag value is desired by design. Typical values of the nominal
aerodynamic drag area cwAv as in (3.4) are between 0.25 and 2.45 m2 [Wik20; Huc08]. At
a given air density of 1.2 kg/m2 this would result in lumped drag coefficients Cd of between
0.15 and 1.5, with most passenger cars at around 0.4 to 0.65.

Regarding modifications of the vehicle’s aerodynamic shape (for example due to carrying
goods on a rooftop or pulling a caravan), Hucho reports values of cw · Av from 0.87 (0.48)
m2 up to 3.24 (3.11) m2 ([Huc08] p. 258, values in brackets are from a second car type).
This results in a factor of up to 6.5 the nominal value. A bicycle mounted on a rooftop was
reported to double the nominal drag coefficient (Hucho [Huc08], p. 337).

Investigations of the aerodynamic behavior of vehicle platoons showed that fuel reduc-
tions to values of less than 0.9 % of their nominal values can be realized (see [Huc08], Fig-
ure 4.136. Unfortunately, no data for distances less than 3 meters is given). In general, the
average aerodynamic platoon resistance is reduced with decreasing inter-vehicle distances.
Nevertheless, highly nonlinear effects due to turbulence in the air flow occur at very low dis-
tances. This resulted in experiments (Ewald 1984) to a reduction of the average cw values to
around 75% due to a reduction of the vehicle distances down to 0.5 car length in a platoon
on 10 vehicles. Lowering the distances further down increased the reduction at first to above
80%, falling down to the minimum achieved at zero distance of around 55% of the nominal
values (given with cw = 0.17). Alam [Ala11] reported reductions of up to 70 % of the cw
value for the following vehicle, and up to 15 % for the lead vehicle. While the data reported
from Ewald 1984 with passenger cars suggest that fuel consumption can be reduced at lower
distances, an optimal distance of around 9 meters was suggested by the Promote-Chaffeur
project (see [Huc08], p 679). This could be because only two vehicle were considered in
their measurements, and a profound discussion would exceed the scope of this work. In any
case, the results suggest that precise longitudinal control is important from two perspectives:
either to maintain the “sweetspot” at half a vehicle length to avoid turbulent behavior - or to
further reduce the aerodynamic drag by, possibly, another 20 %.

Hence, the possibility of considering predictive models of expected air drag changes in a
longitudinal control framework might be essential to safely reduce the inter-vehicle distances
into the zone of turbulent behavior.

3.4.7 Experimental determination of rolling resistance and aerodynamic drag

For a given setup and for reference value determination, values of both rolling resistance
coefficient Cr and aerodynamic drag constant Cd can be obtained by performing coast down
tests for which the vehicle speed trajectory is measured after letting a vehicle roll with de-
tached power-train until it stops. Due to wind disturbances, these test are performed in two
directions on a plane surface to compensate for wind forces and road slope disturbances.
Methodologies are described in [HK+85] or [DJ+09].
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3.4.8 Acceleration and velocity

We assume that the acceleration signal (corrected for bias, but noisy) is known from an
accelerometer. The velocity is available from wheel speed sensors. In order to be used within
a control loop, both signals need to be filtered.

3.4.9 Power-train torque generation and estimation

Torque generation

Let us restate relation (3.56) of engine torque value one needs in order to produce the de-
manded wheel torque induced at the wheel, which we derived in Section 3.2.6, and rewrite
it in a more generic fashion:

Te = Td
we (α+τeα̇) + α̃v̇ + β̃ v̈.

The second and third terms in this equation are vehicle acceleration and jerk dependent val-
ues arising from power-train inertia. This means that if we want to correctly compensate for
this inertia by means of feed-forward control, it is mandatory to tell a power-train control unit
the desired time derivatives of the vehicle speed. This information is implicitly contained in
vehicle speed trajectory information (since future values are included by definition). Hence,
if we design a predictive longitudinal trajectory tracking module, we can sufficiently serve a
power-train module with feed-forward control information.

Torque estimation

We assume that the wheel torque is not directly accessible from a measurement system, since
torque sensors are usually omitted in passenger vehicles due to cost constraints and robust-
ness targets. Nevertheless, we can assume that an estimation of this quantity is available
from the engine and power-train control unit [WS+18a]. During power-train development,
precise torque measurements from engine and power-train dynamometers are used in order
to calibrate integrated torque estimation functions within the ECM, the Hybrid Control Unit
(HCU) and the Transmission Control Unit (TCU) [BC+07]. These functions give on-line es-
timations of the engine or wheel torque. Especially the determination of the torque created
by ICEs is a non-trivial task. The ECM provides an estimation of the engines indicated torque
and torque losses as a multidimensional function of various engine parameters. Depending
on the type of engine, these parameters could be relative load, air/fuel ratio, spark advance,
intake and exhaust valve timings, valve lift and number of active cylinders for SI engines.
In Diesel engines, the resulting torque is mainly determined by the injection quantity and
start of combustion, which is given by the injection pattern of many pre-, main- and post
injections. These parametric torque models are calibrated for each engine with high effort on
a stationary engine test bed, collecting measurement data in the whole variation space over
weeks. The typical accuracy achieved by an EMS torque structure is around 5-10 % of the
real torque measured on an engine test bed [BC+07; LB+05].

In the case of electric engines, the indicated torque is proportional to the measured electri-
cal current and hence a torque estimation is also available in vehicles with electric or hybrid
power-trains. Additionally to the torque estimations, we assume that within the Power-train
Control Module (PCM), the value of desired power-train torque demand builds the interface
to the power-train control unit. For this reason, the author proposed in [BK16a] to include
the power-train torque estimations from the ECM or PCM as a virtual measurement value
within the longitudinal vehicle motion tracking module, or to be more specific, in a state and



3.5 System analysis 41

parameter estimator which aids the controller. More details will be given in chapters 6 and
7.

3.5 System analysis

In this section, we provide an analysis, or rather various different reformulations of the lon-
gitudinal vehicle motion model. These formulations will be used in different context within
the upcoming chapters of this thesis, and depending on the structure of these formulations,
different methods can be applied. This includes a generic model for a forward moving vehicle
in Section 3.5.1, systems of Ordinary Differential Equations (ODEs) which will be used for
control and estimation purposes in Sections 3.5.2 and Section 3.5.4 for their time discrete
counterparts, a system description which allows for simulation purposed including standstill
in Section 3.5.3, as well as a formulation as an explicit algebraic equation which is Linear-in-
Parameters in Section 3.5.5.

3.5.1 Generic formulations of longitudinal vehicle dynamics

In order to get a better understanding of the nonlinear vehicle dynamics we want to rewrite
the equations from Section 3.3 in different generic forms. Depending on the purpose, these
expressions will be specifically useful. We start by investigating the dynamics as a scalar
algebraic equation, before writing the equations in the common state space form. This can
lead to a system of ODEs or Differential-algebraic equations (DAEs), which we can write in
vector form.

To make it concise with existing literature mostly from the field of control systems, we
introduce a state vector which we denote x . Unless stated otherwise, we interpret as x =
(v Twe Tbr)T. Also, a control vector u = (T d

we T d
br)

T will be used, where d denotes the
desired values as input to the power-train control unit. Further, we have the the disturbance
ϕ(·), where (·) denotes a dependency which is not yet specified any further. During this
discussion, we will mostly limit our investigations for the moment to the case of a forward
moving vehicle where v(t)> 0 to make the presentation easier.

3.5.2 Simplified motion dynamic equations

In (3.61) we expressed the vehicle motion dynamics as ordinary differential equation, depen-
dent on the torques from power-train and brakes as well as the wind speed. If we neglect the
(typically unknown) wind speed as vwind = 0, we get:

v̇ =
Twe − sign(v)Tbr

(m+mI) reff
−

mg
m+mI

(sinϕ + Crsign(v) cosϕ)−
Cd

m+mI
sign (v) v2. (3.63)

If we further distinguish forward and backward vehicle motion this can be split into the
following equations:

v̇ =
Twe − Tbr

(m+mI) reff
−

mg
m+mI

(sinϕ + Cr cosϕ)−
Cd

m+mI
· v2, ∀v ≥ 0, (3.64)

and

v̇ =
Twe + Tbr

(m+mI) reff
−

mg
m+mI

(sinϕ − Cr cosϕ) +
Cd

m+mI
· v2, ∀v < 0. (3.65)
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Restricting vehicle speed to positive, forward motion v ≥ 0, we can hence summarize a
simplified system for longitudinal vehicle motion dynamics, derived from (3.62),

v̇ =
Twe − Tbr

(m+mI) reff
−

mg
m+mI

(sinϕ + Cr cosϕ)−
Cd

m+mI
· v2 (3.66a)

Ṫwe =
−1
τpwt

Twe +
1
τpwt

T d
we (3.66b)

Ṫbr =
−1
τbr

Tbr +
1
τbr

T d
br. (3.66c)

We want to also write this in vector form as follows :





v̇
Ṫwe
Ṫbr



=















Twe − Tbr

(m+mI) reff
−

mg
m+mI

(sinϕ + Cr cosϕ)−
Cd

m+mI
· v2

−1
τpwt

Twe +
1
τpwt

T d
we

−1
τbr

Tbr +
1
τbr

T d
br















. (3.67)

In above system, actuator delays for engine and brake are included as first order dynamics.

System of ordinary differential equations

We can write the longitudinal vehicle dynamics as a system of nonlinear explicit ODEs of the
form

ẋ(t) = f (x(t), u(t), d(t, ·)) (3.68a)

y(t) = h(x(t)), (3.68b)

with the state vector x(t), the input vector u(t) and the output vector y(t). The time varying
disturbance function d (t, ·) is assumed to be known. From (3.67) which stated the longitu-
dinal vehicle equation in vector form, we can rewrite:

ẋ(t) =
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(3.69a)

y(t) = x(t) =
�

v Twe Tbr
�T

. (3.69b)

System of semi-explicit differential algebraic equations

A different way to write the system dynamics equations of longitudinal vehicle motion is
that of a system of semi-explicit DAEs. This allows to include algebraic states in addition
to a differential state vector x(t), which in a standard state space form has to appear in its
differential form ẋ(t) on the left hand side of the state space equation. A system of semi-
explicit DAEs of is typically written in the general form

ẋ = f (x , z, u, d) (3.70a)

0= g(x , z, u, d) (3.70b)

y = h(x , z). (3.70c)

with the differential state vector x(t), and a nonlinear state dynamics function f , which is
also dependent on the algebraic state vector z(t). The nonlinear function g is an algebraic
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equation, by definition not depending on any differentials. As usual, we have the input
vector u(t) and the known disturbance d(t). The output vector y(t) is a function h of both
differential states as well as algebraic states.

Viewing the system dynamics as system of semi-explicit DAEs makes it possible, in a state
estimation scheme, to also include algebraic states as additional measurements. In the case
of longitudinal vehicle motion, in our case the vehicle acceleration, which is available as
(noisy) measurement observation, it might be useful to view the dynamics

In order to write the longitudinal vehicle dynamics equations in this fashion, we will
now directly rewrite it in a less general form than (3.70a), additionally exploiting linear
relationships within the general nonlinear functions f and g. With some algebra, (7.23) can
be brought into a form in which the state dynamics is linear in differential states, algebraic
states, inputs and disturbances - and the algebraic equation is further linear in parameters.
Additionally, the measurements are linear in the states (algebraic and differential). The
system just described has the general form

ẋ = Ax + Cz + Bu+ Dd (3.71a)

0= θTG(x , z, d) (3.71b)

y = H

�

x
z

�

, (3.71c)

while in our case it will be that D = 0. Above, G is a nonlinear measurement matrix of states,
algebraic states, control input and disturbance, and θ is a parameter vector. Considering that
x1 = v̇ = a = z and using (3.69a) we can write:
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(3.72b)

y = H
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. (3.72c)

Partitioned system of semi-explicit differential algebraic equations

We can also re-write (3.72) in a way which emphasizes the fact that the state vector contains
states which will always follow the inputs, according to the actuator dynamics, and states
which we really want to control. We do this by partitioning the state and write:

ẋ =

�

ẋ s

ẋu

�

=

�

f s(x s, z, d)
f u(xu, u)

�

(3.73a)

0= g(x s, xu, z, d,θ ) (3.73b)

y = h(x s, z). (3.73c)
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In case of the longitudinal vehicle dynamics, this yields a system of semi-explicit DAEs in the
form:

ẋ s = f s(x s, z) (3.74a)

ẋu = Au xu + Buu (3.74b)

0= gDAE (x
s, xu, z, d,θ ) (3.74c)

y = h (x s, z) , (3.74d)

with linear actuator dynamics. Specifically, this yields

ẋ s = z (3.75a)

ẋu =
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− (θ1 +mI)z − θ1g (sin d − θ3 cos d) (3.75c)
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�

, (3.75d)

with the algebraic state being the vehicle longitudinal acceleration ẋ s = z = a, the actuator
states ẋu = [xu

2 , xu
3] = [Twe, Tbr], and the parameter vector θ = [m, Cd, Cr]. Note that we kept

the original indexing of the state parameter vector with the idea to create less confusion.

3.5.3 System for simulation purposes

For simulation purposes, another system representation is of interest. Since we are inter-
ested to cover the full range of possible velocities, including negative ones, we consider the
algebraic constraints as given in (3.63). Additionally, for numeric stability, we approximate
the si gn(v) functions with the smooth functions tanh(ctv), with ct being a real positive scaling
factor to make the function steeper at the origin. This allows to simulate a vehicle also during
standstill conditions. We obtain the following DAE:
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This representation will be used, for example, for the experiments carried out with Simulation
Environment 6.3 and 7.1.

3.5.4 Discrete time state space forms
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Integral form

We can write system (3.66) from Section 3.5.2 as a time-discrete system in state space form
under the assumption that inputs u, disturbances d and parameters θ remain constant during
the sampling duration and discrete measurements are available at multiples of the sampling
time Ts = tk − tk−1. The system then takes the form:

xk = xk−1+ (3.77a)

∫ tk
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yk = xk = (vk, Twe,k, Tbr,k)
T. (3.77b)

Realization of this system can be done by (approximately) solving the integral using different
ODE solvers, or by implementing approximations using Runge-Kutta methods or the forward
Euler method, as described next. Approximation errors have to be considered when applying
these methods.

Forward Euler method

One possibility of obtaining a time discrete version of the state space model presented in
Section 7.4.2 is by the forward-Euler method, where we have to define a sampling time Ts.
Doing so, we obtain a time discrete version of (7.23) with k ∈ N:

xk+1 = fk(xk) + gk(dk) + Bk · uk (3.78a)

yk = H xk (3.78b)

(3.78c)
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Bk · uk =





0
Ts

τpwt+Ts
· u1,k

Ts
τbr+Ts

· u2,k



=





0 0
Ts

τpwt+Ts
0

0 Ts
τbr+Ts



 · uk (3.78g)

H =
�

1 0 0
�

. (3.78h)



46 3 System Description

This can also be expressed more compactly, but loosing information about the structure of
the system as:

vk+1 = vk + Ts
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(m+mI) reff
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Twe,k+1 =
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(T d

we,k − Twe,k) + Twe,k (3.79b)

Tbr,k+1 =
Ts

τbr + Ts
(T d

br,k − Tbr,k) + Tbr,k. (3.79c)

3.5.5 Explicit algebraic equation linear in unknown parameters

In order to apply linear regression techniques, as was already done for the estimation of ve-
hicle mass and tractive forces in [AE16; AE+16; Rho16], an implicit algebraic formulation,
which is linear in the unkown parameters is necessary. We will refer to this as the LiP formu-
lation. For this purpose, the equilibrium of forces expressed in the implicit algebraic equation
in (3.72b) needs to be re-written in the form

yθ = θTφ. (3.80)

in which yθ is a known observation vector (for the system under investigation even a scalar),
φ is a known regressor, and the unknown parameters are all collected in the parameter vector
θ . The equation in this form reads as

Twe − Tbr

reff
− amI = [m Cd m · Cr]





a+ g sinϕ(·)
v2

g cosϕ(·)



 , (3.81)

which can be easily derived from (3.64) or (3.72b) by bringing all the terms with unknown
parameters to the right hand side:

Twe − Tbr

reff
− amI = am+ Cd · v2 +mg sinϕ(·) +mgCr cosϕ(·). (3.82)

This establishes a linear relation from the parameter vector θ and a regressor vector φ to a
fictional, in our case scalar, “observation vector”

yθ =
Twe − Tbr

reff
− amI. (3.83)

The regressor φ is further given as

φ =





a+ g sinϕ(·)
v2

g cosϕ(·)



 , (3.84)

which clearly is depending on the variables of the vehicle speed v, which we considered
elsewhere as differential state, the algebraic state a, and the disturbance ϕ. The parameter
vector θ hence is defined as

θ = [m Cd m · Cr]
T. (3.85)

Remark 2. Establishing a linear relationship with a vector containing only unknown parameters
is only possible if we allow the product m · Cr in the parameter vector.
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While we can assume that all the variables in both the observation vector and the regressor
can be measured, we clearly cannot assume in practice that perfect measurements can be
obtained. Also, the general assumption often used to establish linear regression techniques,
namely that noise is only present as additive term in above equation, resulting in

yθ = θTφ + ν, (3.86)

is unfortunately not given in practice. This will be important when discussing solution strate-
gies for the parameter estimation problem in Section 6.4.2.

3.6 Conclusion

In this chapter, we introduced equations describing the control system of longitudinal vehicle
motion, including the predominating physical effects. We learned that the acceleration of the
vehicle is highly influenced by its mass and forces acting on the vehicle. A parameter with
high impact is the vehicle mass, which is variable due to a changing number of passengers
and load, but not directly accessible to measurements. Precise knowledge about the vehicle
mass is valuable in any model based control law. External longitudinal forces acting on the
vehicle are, among others, dependent on the road slope ϕ. We assume that information
about future road slope changes will be available in automated vehicles. Aerodynamic drag
and rolling resistance coefficients are also time varying parameters, and changes are directly
proportional to the resulting forces. We further discussed that the wheel torque build up
is delayed due to various effects. Anticipated planning could compensate this effect. To
summarize, we want to highlight:

• The quantities vehicles mass, aerodynamic drag and road friction cannot be considered
known and always constant during real world vehicle operation

• Vehicle mass is known to vary around ± 50 % for passenger cars and up to ± 400 % for
light duty vehicles

• Aerodynamic drag can vary up to ± 30 % - 70 %

• Road friction might vary around ± 60 %

• Wheel torque build up is delayed with a time constant of between 0.15 s to 0.4 s.

We also learned that we can reformulate the equations governing longitudinal vehicle motion
into different forms, and for example find a system of ODEs, or an equation which is linear
in the unknown parameters.





4
Related Work

“There is no such thing as a new idea. It is impossible. We simply take a lot of old ideas
and put them into a sort of mental kaleidoscope. We give them a turn and they make
new and curious combinations. We keep on turning and making new combinations
indefinitely; but they are the same old pieces of colored glass that have been in use
through all the ages.”

– Mark Twain’s Own Autobiography: The Chapters from the North American Review

This chapter gives an overview of existing literature about longitudinal vehicle motion control
in general, including solutions presented to solve the motion tracking problem. Literature
related to the state and parameter estimation problem will be presented, after having given
the necessary background, within Chapter 6, which is fully dedicated to this topic. The same
applies to publications around the topics of MPC, which is treated within Chapter 7 and can
be found in Section 7.3, as well as RL, which are discussed in Chapter 8, Section 8.3.

Introductions to previous developments regarding longitudinal motion control and expla-
nation of different types of ADAS systems can be found in Hedrick, Tomizuka, and Varaiya
[HT+94], Rajamani [Raj11], Dang [Dan12] and Horn and Watzenig [HW14]. A recent sur-
vey, including a discussion of future challenges, can be found in Guanetti, Kim, and Borrelli
[GK+18].

While a comprehensive discussion would be out of the scope of this thesis, we will men-
tion some prominent examples. We will start with what we regard as ADAS solutions before
focusing on controllers that were explicitly designed for the longitudinal motion-tracking
task. We want to mention that often, a clear separation is not possible. This, for example,
is the case when the proposed solutions contain a motion tracking module that only works
together with the proposed, scenario-specific solution, targeting a higher-level goal.

4.1 Longitudinal motion control for ADAS

ADAS controllers are typically designed for specific tasks, like following a leading vehicle on
a highway. This has the drawback that the control architecture often does not allow it to be
applied to the general automated driving problem, which covers all possible scenarios.

Early longitudinal motion controllers were implemented to solve the most basic Cruise
Control problem, which consists of maintaining a constant reference speed value, mostly in
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flat terrain as on highways. Rajamani [Raj11] gives a valuable introduction to these longitu-
dinal motion control solutions, typically structured into higher- and lower-level controllers.

High-level motion controllers typically calculate a desired vehicle acceleration set-value
command, which a low-level controller demands. For the higher-level controllers, the lower-
level system, which contains vehicle dynamics and dynamic power-train behavior, was typ-
ically modeled as first-order dynamics with constant time delays. This separation has the
advantage that the higher-level system can be typically formulated as a linear control prob-
lem, which facilitates control design.

Standard solutions applied a Proportional-Integral (PI) controller based on a control error
calculated as the difference between the actual measured vehicle speed and the given refer-
ence speed set-point value. The output of this PI controller is a desired acceleration, which is
then fed into the lower-level control module, which acts on the actuator. Such, the low-level
controller transforms the output of the higher-level module (typically the desired, current
value of the acceleration) into a throttle value at the current time point, inverting the vehicle
and power-train equation as given for example in [CD95].

In earlier implementations, instead of calculating an engine torque input value, mean
value models of the engine steady state dynamics had to be additionally inverted to calculate
a throttle value set point since torque-based ECMs were not available at that time. Addition-
ally, vehicle equations were simplified by neglecting the influence of the road grade for two
reasons: first, no road grade measurement value or estimation was available. Second, Cruise
Control scenarios were typically designed to be restricted to application on flat roads.

With the development of enhancements like ACC and platooning solutions, the focus was
put on controllers, which additionally performed the vehicle-following task. A review of the
development of ACC systems is given in Dang [Dan12], Björnander and Grunske [BG08]
and Xiao and Gao [XG10]. Solutions providing string stability guarantees (see Section 1.6
for a definition and Section 4.3.5 for literature discussing the influence of actuator time lags
and delays on the string stability of the platoon) were often the focus of the presentations.
Another novelty was the application of ACC systems in stop&go scenarios, as appearing in
traffic jams and urban traffic. Here, the vehicle needs to operate in the low-speed range
and be able to come to a stop. Emergency braking scenarios have to be included, where the
deceleration range is higher, typically up to negative acceleration values of -8 [m/s2].

In the following, we want to give a more detailed overview of existing solutions, catego-
rized into the applied control methodology.

4.1.1 Linear control schemes

Pure linear controllers were proposed early to the ACC problem. Ioannou, Xu, et al. [IX+93]
studied the application of Proportional-Integral-Derivative (PID) controllers with fixed gain
and adaptive gains. A PI controller, which was augmented with a linear driver model, could
be designed by Persson, Botling, Hesslow, and Johansson [PB+99]. A linear, optimal con-
troller with string stability was designed by Liang and Peng [LP99]. Following a constant-
time-headway policy, simple linear controllers could be proved to guarantee string stability
[RZ02]. More advanced ACC solutions include the work of Moon and Yi [MY08; MM+09],
who proposed to achieve naturalistic driving behavior by adapting acceleration limits to val-
ues obtained from a human driving database.

In order to meet satisfactory performance in real traffic situations, with abruptly changing
traffic patterns, vehicle cut-ins, lane changes, and hard braking of the preceding vehicle, more
elaborate control designs are necessary, according to Widmann, Daniels, et al. [WD+00].
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4.1.2 Sliding-mode control schemes

Swaroop, Hedrick, and Choi [SH+01] designed a robust adaptive sliding-mode controller
for a platooning scenario, which already included adaptation to changing vehicle mass, drag
coefficient, and rolling resistance. The limiting assumption was that road grade influence
was fully neglected. Another sliding-mode controller was proposed by Lu, Hedrick, et al.
[LH+02]. It can be applied for both ACC and CACC. The approach from Bartono [Bar04]
includes both the solution to the ACC problem and the lower-level controller. The higher-
level control is based on a nonlinear sliding-mode approach. For the adaptive lower-level
controller, see Section 4.2.8. Another approach using sliding-mode control is given in Ferrara
and Pisu [FP04]. The control scheme utilizes state information about the speed and accel-
eration of the leading vehicle, which is not measured. For this purpose, they introduce an
observer, which allows them to estimate the unknown information.

4.1.3 Fuzzy control schemes

Several solutions to cruise control problems were proposed based on fuzzy controllers.
Naranjo, González, García, and Pedro [NG+07] applied an adaptive fuzzy logic controller
to the ACC problem. Fuzzy reasoning rules, which aim to emulate human driving, were
incorporated into the approach. The fuzzy PID controllers were proposed for higher- and
lower-level control. The approach is able to cover both highway and stop-and-go scenarios.

Lin, Thi, and Wang [LT+17] presented an adaptive neuro-fuzzy predictive control design,
maintaining a safe distance to the lead vehicle while saving energy and ensuring passenger
comfort. The controller adapts to the behavior of the preceding vehicle in order to generate
predictive information about its motion. This information is then used in a fuzzy neural
network inference controller, which approximates the cost function of the optimal control
problem. Further examples for fuzzy control schemes were Tsai, Hsieh, and Chen [TH+10],
Cabello, Acuña, et al. [CA+11] and Mohtavipour, Mollajafari, and Naseri [MM+18].

4.1.4 Model predictive control

As mentioned in Eskandarian [Esk12], finding optimized controller performance while han-
dling actuator and state constraints with conventional control approaches can be challenging.
This is primarily due to the desire to meet multiple contradictory design objectives. In the
context of ACC solutions, these objectives typically are minimizing error when regulating a
time-gap to the preceding vehicle, preserving string stability, and increasing riding comfort
while minimizing fuel or energy consumption.

Model predictive control is a framework that can handle multiple objectives under state
and actuator constraints. This, together with recent progress in real-time capable MPC
schemes, explains the increasing number of publications suggesting this methodology for
the ACC and CACC problem.

A solution to the Adaptive Cruise Control problem based on model predictive control
is given by Corona, Lazar, De Schutter, and Heemels [CL+06]. They combine the motion
planning and longitudinal control layer in a hybrid MPC. It is based on a nonlinear vehicle
equation in which air and friction resistance are considered, but no road grade or vehicle
mass variation is taken into account. The nonlinearities are then eliminated by transforming
the problem into a piece-wise affine system to apply mixed-integer linear programming to
solve the underlying MPC optimization problem. This reduces the computational load while
accepting a sub-optimal solution to the original problem. A similar approach using combined



52 4 Related Work

state equations for vehicle and power-train dynamics, augmented by the control variables of
the ACC problem, was presented in [SO+12]. Vehicle parameters were considered as known
and constant. Naus, Bleek, et al. [NB+08] proposed a linear model predictive controller,
implemented as explicit MPC in order to reduce computational requirements.

Keulen, Naus, and Jager [KN+09] proposed an explicit model predictive controller to
design a predictive cruise controller for a Hybrid Electric Vehicle. It combined the generation
of an energy optimal speed reference with “disturbances” coming from an ACC module in a
sequential manner.

Asadi and Vahidi [AV11] utilized upcoming traffic signal information to improve fuel
economy and reduce trip time and proposed using MPC to realize a combined high-level
and low-level control scheme explicitly suited for this task. Li, Li, Rajamani, and Wang
[LL+11] included driver desired characteristics of the ACC behavior to the multi-objective
optimization in their MPC scheme. Restrictions on the acceleration level were also given
as constraints. Li, Jia, Li, and Cheng [LJ+15] proposed different methods of calculating
the optimal control solution within a model predictive control framework for fuel-economy-
oriented Adaptive Cruise Control. Qiu, Ting, et al. [QT+15] proposed a two-layer approach
to the Adaptive Cruise Control problem. The first layer applies an ancillary control law based
on linear model predictive control to calculate a desired vehicle acceleration. As a specialty,
it treats the acceleration and velocity of the leading vehicle as an unknown disturbance to a
nominal plant behavior. This helps to smooth out the behavior of the leading vehicle. The
low-level control module uses a simple PID controller to calculate throttle and brake input
signals. This approach cannot use any advance information by design on the actuator side.

Alrifaee, Liu, and Abel [AL+15] proposed a variant called Economic Model Predictive
Control (EMPC) for application to the Adaptive Cruise Control problem of electric vehicles.
In EMPC, instead of trying to stabilize a system to equilibrium, control actions are found
that minimize the actuator output necessary to maintain the system within its boundaries.
Schmied, Waschl, Quirynen, and Diehl [SW+15] uses Nonlinear Model Predictive Control
(NMPC) to design a CACC system that predicts the velocity profile of a predecessor vehicle out
of distance measurements and information about oncoming traffic lights. They demonstrate
the potential for fuel and emission savings, which arises mainly from the relaxed formula-
tion of the vehicle following the task by introducing a tolerance on the inter-vehicle distance.
This allows for reducing peak vehicle acceleration, which is the main driver for emissions and
fuel consumption, as discussed in Section 2.2. Zhu, Chen, and Xiong [ZC+16b] suggests a
two-layer approach where the upper layer is defined as a linear MPC problem, which creates
a demand acceleration for the lower level, and nonlinearities of the vehicle model are in-
corporated in a lower-level feed-forward control. Aerodynamic drag, rolling resistance, and
road grade influences are neglected and treated as disturbances. Turri, Kim, et al. [TK+17]
presented a model predictive controller for “eco-platooning”. It is based on the assumption
that a forecast of future accelerations can be shared by the lead vehicle. The controller is able
to compute trajectories that avoid any active braking by incorporating a terminal constraint
in the MPC formulation. This allows them to consider safety margins to the lead vehicle over
a longer horizon than the prediction horizon used in the controller, which helps to reduce the
computational load. Like many other ADAS solutions, road grade influences were neglected.

Xin, Xu, et al. [XX+22] used MPC for optimal energy management of a fuel cell hybrid
electric vehicle and included online vehicle mass estimation to improve performance. Con-
trary to the proposal of this thesis, vehicle parameter estimation was limited to vehicle mass
only, while the aerodynamic drag coefficient and the rolling resistance coefficient were as-
sumed to be constants. By including a vehicle mass estimation scheme alone, they found that
fuel consumption could be reduced by 0.1 %. They also found that their estimation algorithm
based on Recursive Least Squares (RLS) with multiple forgetting performed poorly in some



4.1 Longitudinal motion control for ADAS 53

scenarios, especially when trying to track a (quasi) continuously varying vehicle mass. Nev-
ertheless, they left further investigation about the reasons and how to improve performance
to future work. They did not mention the difficulty of vehicle mass estimation during phases
of insufficient excitation.

4.1.5 Dynamic programming

Hellström [Hel10] proposed an approach based on dynamic programming to reduce the fuel
consumption of heavy-duty vehicles. This could be classified as PCC solution. A similar
approach was realized and evaluated for sports cars by Radke [Rad13]. Using future road
and traffic information, the solution generates optimal, fuel-saving vehicle speed trajectories.
The approach is modular. The first module applies dynamic programming to generate a
predictive vehicle speed profile within certain upper and lower speed limits. An optimal gear
selection is also provided. The time-varying speed profile is then tracked by a PI controller
with feed-forward to compensate for the stationary vehicle and power-train forces. It is
modeled as an ideal plant (no time delay) and includes road grade changes. No adaptation
to changes in the aerodynamic drag or rolling resistance is present. It uses a simple vehicle
mass adaptation, but no results on the robustness of the approach to changing drag and
resistance parameters are provided.

4.1.6 Adaptive dynamic programming

Zhao, Wang, and Liu [ZW+13] proposed an actor-critic adaptive dynamic programming ap-
proach to the (linear) ACC problem. Zhao, Hu, et al. [ZH+14] applied supervised adaptive
programming to solve the ACC problem both for highways as well as stop-and-go scenarios
in a two-layer approach. The bottom layer, which manages throttle and brake commands,
uses a fuzzy gain scheduling scheme based on a PID control from [ZD12].

A similar but more sample-efficient approach was proposed by Wang, Zhao, and Cheng
[WZ+18a]. They suggested an adaptive cruise controller using adaptive dynamic program-
ming with experience replay.

4.1.7 Other ADAS solutions

A reference model-based nonlinear controller for the high-level ACC control was suggested by
Martinez and Canudas-de-Wit [MC07]. The reference model is nonlinear and ensures safety
constraints and comfort criteria, focusing on designing inter-vehicle distances achieved by
the approach closer to human behavior. However, nonlinearities within the vehicle dynamics
act as unknown disturbances to the control loop.

Zhu, Dai, et al. [ZD+17b] presented an adaptive longitudinal control method for the ACC
problem based on a combination of a higher-level controller using neural dynamic program-
ming and an internal model structure for the low-level control. The latter was based on the
internal model control approach from [WS+13].

Lefèvre, Carvalho, and Borrelli [LC+16] combined Robust Model Predictive Control
(RMPC) with a learning-based approach to adopt human driving styles. Car-following strate-
gies are learned off-line from human demonstrations. This model is used to compute desired
base accelerations. The reference acceleration is then modified by a predictive controller,
which enforces a set of comfort and safety constraints. The approach is designed specifically
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for car-following scenarios. It assumes that a lower-level controller exists, which can per-
fectly track the desired acceleration but does not further provide a solution. Hence, the work
targeted in this thesis goes towards a solution to this problem and perfectly complements
such an interesting approach.

4.2 Longitudinal motion tracking controllers

As mentioned above, typical ADAS solutions often designed the high-level control separately
from a low-level ADAS control module.

In most cases, the lower-level control module is designed in order to include power-train
dynamics as well as engine dynamics. Few authors suggested control modules dedicated
solely to vehicle motion tracking while leaving power-train and engine dynamics to a sepa-
rate module. Nevertheless, we want to include such combined approaches in the following
presentation.

As an interface, most approaches calculated a desired acceleration value in the high-level
module, which was then supposed to be realized by the lower-level module.

4.2.1 Feed-forward control

In many cases, starting with early publications that were presented during the PATH program,
low-level modules were realized as simply as feed-forward controls. By inverting both vehicle
dynamics equation, engine, and power-train dynamics, throttle values could commanded to
the engine, as in [CD95]. They built on power-train models, which have been presented,
as examples, by McMahon, Hedrick, and Shladover [MH+90] and Hedrick, Tomizuka, and
Varaiya [HT+94]. These approaches typically work under the assumption of known and
constant parameters within all underlying equations. Control errors arising from variations
and un-modeled dynamics had to be fully compensated by the higher-layer modules.

Some feed-forward part is typically included in the solutions described in the following.
We want to give an overview of the literature, again categorized, as far as possible, into the
family of primary control approaches suggested in the publication.

4.2.2 Proportional-Integral control schemes

Apart from lower-level solutions mentioned to be combined with higher-level controllers for
ADAS, some literature exists that is dedicated to AVs. Most of the early literature in this
category can be linked to publications around the DARPA challenges (see Section 2.1.1). In
Thrun, Montemerlo, et al. [TM+06], we find that Stanford Racing Team’s vehicle, Stan-
ley, was equipped with a drive-by-wire system and a PID controller to generate velocity
controls, working at 20Hz. [UA+08] and [BF+09] mention the implementation of a sim-
ple proportional-integral (PI) controller in combination with feed-forward terms to linearize
throttle and brake dynamics. No adaptation to a changing vehicle mass or consideration
of road grade is mentioned. Another vehicle from the DARPA challenge, Team AnnieWAY
[GL+12], applied an integral anti-windup feedback controller. The same controller was used
in Daimler’s vehicle Bertha [ZD+13]. The solution did not actively consider forces resulting
from aerodynamic drag and road slope, but these were treated as disturbances. Gehrling
[Geh00] proposed a solution in which the low-level control is based on a PID controller with
a feed-forward term. The influence of forces and effects of a changing vehicle mass and
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road grade is not actively considered but left to the integral control action. It mentions the
necessity of calculating the throttle angle, lacking a torque-based ECM structure.

We already mentioned in Section 4.1.4 that Qiu, Ting, et al. [QT+15] proposed to use a
simple PID controller to calculate throttle and brake input signal for the low-level part of the
MPC approach, which was the main contribution of the paper. This approach cannot make
use of any advance information by design on the actuator side.

4.2.3 Fuzzy control

Zhongpu and Dongbin [ZD12] applies a hybrid PID control strategy to realize a given vehicle
acceleration by acting on the throttle and brake. A fuzzy gain scheduling scheme based on
a PID control is used to control the throttle. A hybrid feed-forward and feedback control is
applied for acting on the brake. The fuzzy parameters are optimized off-line with a particle
swarm optimization algorithm. No evaluation on the robustness of the approach to chang-
ing vehicle parameters is given. As already mentioned in Section 4.1.3, Naranjo, Jiménez,
Gómez, and Zato [NJ+12] presented a fuzzy controller for the low-level drive-by-wire sys-
tem of a prototypical, automated vehicle and presented results from vehicle tests. In general,
solutions based on fuzzy logic benefit from the fact that they do not require a detailed model
but suffer from a very high tuning effort.

4.2.4 Gain scheduling

The application of gain scheduling PI and Linear Quadradic (LQ) controllers was examined
in [SO+11]. Hunt, Johansen, et al. [HJ+00] also used gain scheduling mechanisms in their
approach (see Section 4.2.6).

4.2.5 Internal Model Control

Wang, Sun, et al. [WS+13] presents an Internal Model Control structure for the speed track-
ing of autonomous land vehicles and conducts an experimental study. The model includes
non-parametric models obtained by vehicle experiments.

4.2.6 Neural network control

Hunt, Johansen, et al. [HJ+00] applied a neural-network-based controller, which was trained
by supervised learning. The network structure was a Takagi-Sugeno type fuzzy local con-
troller network [TS85], including up to second order Auto Regressive with Exogenous Input
(ARX) model. Gain scheduling mechanisms were used to adapt the controller behavior to
the nonlinear plant. For model identification, the vehicle dynamics were excited by Pseudo-
Random Binary Sequence (PRBS) signals. Due to the a-priori identification of the plant
behavior, no adaptation to time-varying vehicle parameters is given with this approach.

4.2.7 Model-free control

Model-free control [FJ13] is a control concept that works by approximating complex nonlin-
ear dynamics by an ultra-local model of the form

ẏ = F +αu,
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which is only valid during a very short sample time period. In the above equation, y is the
control output, F represents both un-modeled and neglected dynamics, u is the control input,
and α is a parameter that has to be tuned by the practitioner.

Based on the group’s previous works [CD+09], which was evaluated as robust to param-
eter changes, Polack, D’Andréa-Novel, et al. [PD+17] suggest adaptive model-free control to
track a reference target speed value. They did not take any engine dynamics into account
in their simulations. Menhour, D’Andrea-Novel, et al. [MD+18] compared the model-free
control approach to a flatness-based approach and classical PID control. They conclude that
model-free control can obtain better results without the need for a vehicle model.

As a disadvantage of the approach, no constraints can be considered, and no predictive
behavior can be realized. Also, since no model is involved, no meaningful parameter esti-
mates can be obtained in such an approach.

4.2.8 Adaptive control

Early contributions as [XI94] suggested using Adaptive Control schemes for the tracking task
while acting on the throttle. They only considered linear and no actuator dynamics, and their
results showed poor tracking behavior in real-world experiments. BMW Group’s Highly Auto-
mated Driving Project mentioned to apply a combination of controllers from Werling [Wer10]
and Bartono [Bar04]. The first is a combined lateral and longitudinal control strategy and
will be discussed in Section 4.3. The lower-level controller from Bartono [Bar04] inputs a
desired vehicle acceleration and calculates the necessary engine torque via an inverse power-
train model. It includes a disturbance estimator, which estimates the sum of all disturbing
forces resulting from vehicle mass changes, changes in air drag, rolling resistance, or wind.
This approach can realize offset-free reference point tracking, but no predictive behavior and
constraints can be handled. The disturbance estimator provides a value for lumped distur-
bances, making distinguishing between the effects of different parameter values impossible.
Also, in such a setting, although one could argue that for (a reactive) controller, the knowl-
edge of the true vehicle parameters might not be necessary, this is beneficial for various other
engineering tasks, as discussed in the introduction.

4.2.9 Model Predictive Motion Tracking

Very little work was found proposing to apply MPC for longitudinal vehicle motion tracking.
Murayama and Yamakita [MY09] as well as Sakai, Kanai, and Yamakita [SK+10] propose
specialized solutions using NMPC for speed tracking. Their approach is not modular and
directly includes actuator control, and they provide strategies to control engine parameters
like variable valve lift. Hence, this approach is particular and limited to applications in
vehicles with internal combustion engines.

As mentioned in Section 4.1.4, Asadi and Vahidi [AV11] included vehicle dynamics as
well as power-train equations into the suggested MPC approach, which is limited to the
scenarios at intersections, which were the focus of their work. After the author’s publications
[BK16a] and [BK16b] appeared, which suggested applying MPC for the longitudinal motion
tracking task in a modular structure, very recently, Walz and Hohmann; Walz, Schucht, Reger,
and Hohmann; Walz and Hohmann [WH19a; WS+18b; WH19b] also followed to suggest
a similar approach. His work is different in that it focuses on low-speed vehicle control
and on scenarios like, for example, climbing a curb. He could show in vehicle tests that a
model predictive controller can improve the tracking behavior considerably by taking into
account predictive information about the road profile, including obstacles. Nevertheless,
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while significant advances were made to include tire dynamics into the vehicle motion model,
his work was done under the assumption of known vehicle parameters, like vehicle mass. In
the present thesis, these parameters are considered unknown, and a strong focus will be
given to the parameter estimation problem under realistic assumptions in the remainder of
this work.

4.3 Other topics

4.3.1 Bi-level control

The work published by Werling [Wer10] can be categorized as a solution for AVs and was
specially designed for driving in structured environments in which way-point information is
exploited to generate motion trajectories. He proposes a bi-level control strategy for both lat-
eral and longitudinal control. The approach consists of three hierarchical control elements.
The first solves the motion trajectory planning problem, calculating collision-free trajectories
to follow given way-points along the road. A polynomial approach is used to provide optimal
trajectory sets, of which the collision-free one with the smallest initial jerk value is given
to a lower-level motion controller. The lower-level controller takes the trajectory as input
and calculates the desired tire force. Depending on the current vehicle speed, it switches
between different nonlinear control laws. The first is applied at high vehicle speed and based
on exact linearization. For slow driving maneuvers, different control laws are calculated de-
pending on the driving direction, based on Lyapunov theory. A third control element converts
the resulting longitudinal tire forces into a throttle position and brake pressure. Apart from
a static feed-forward control law, it contains an anti-windup integrator to compensate for
disturbances like wind drag, road slope, and vehicle mass changes. Lacking a torque inter-
face to the engine, a mapping procedure to calibrate the inverse Spark Ignition (SI) engine
characteristics is also mentioned.

4.3.2 Limits of handling

Some authors focused on solutions at the limits of handling. This is an important research
direction, where considering full vehicle body dynamics and parameter estimation, including
road friction coefficients, plays a crucial role. A broad literature exists on related topics.
Nevertheless, we focus on comfortable control solutions far away from these limits and see
vehicle maneuvers at the limits of handling out of the scope of this thesis. Still, we want
to mention a few publications containing longitudinal control solutions. Reschka, Böhmer,
et al. [RB+12] presented the longitudinal control approach of the vehicle “Leonie” of the
Stadtpilot project. They introduced the estimation of a “grip” value, which estimates the
road-tire friction in slippery road conditions. Kritayakirana and Gerdes [KG12] proposed a
controller based on the concept of the friction circle and demonstrated its performance in a
spectacular demonstration. An automated Audi TTS vehicle [FT+12] was climbing the Pikes
Peak Hill Climb, a legendary dirt road track in Colorado, USA.

4.3.3 Parking solution

A different topic is addressed in Bu and Tan [BT07]. They proposed a solution specifically
designed to stop a heavy-duty vehicle at a designated parking position.
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4.3.4 Solutions specific to prototypical AVs

Some publications can be found that present control solutions specific to prototypical hard-
ware implementations of automated vehicles. These are suited for vehicles that were
equipped with additional electro-mechanical actuators to realize interfaces for longitudinal
motion control. These devices act directly on the throttle and brake pedals designed for hu-
man operation. Typically, these devices had to be introduced because of a lack of availability
of electronic software interfaces when retrofitting vehicles. Another reason might have been
to keep the vehicle controls unmodified since modifications might have impacted the type-
approval necessary to operate on public roads. Examples of such solutions are ([UA+08] and
([BF+09]. These additional actuator components add time delays, lags, and backlash effects
to the control loop. From a control system perspective, direct access to the electronic throttle
is preferable to facilitate control.

4.3.5 Influence of actuator delays on string stability

String stability has been defined as the property to guarantee that inter-vehicle spacing errors
in a platoon do not amplify as they propagate through the platoon [Kai74].

As already mentioned in Section 1.6 and 1.6, actuator lags and time delays given within
the power-train and engine dynamics have a negative effect not only on the vehicle dynamics
of a single vehicle but highly influence the dynamics of the vehicle platoon. It was also shown
that reducing lags and time delays pose a significant challenge for the efficient implementa-
tion of vehicle platooning solutions [XG11]. A systematic study on limitations of spacing
policies for platoons was done in Solyom and Coelingh [SC13]. Xiao and Gao [XG11] inves-
tigated the practical string stability of homogeneous and heterogeneous platoons of Adaptive
Cruise Control vehicles, considering “parasitic time delays and lags of actuators”. They ana-
lyzed control systems with sliding-mode controllers. It concludes that the negative effect of
time delays is more significant than that of time lags. Ghasemi, Kazemi, and Azadi [GK+15]
provides theoretical results for the stability of a platoon by considering time delay and lag.
Chen, Wang, Alkim, and Arem [CW+18] also mentions the “detrimental effects on string
stability” of feedback delay and actuator lag. It investigates the possibilities of compensat-
ing for uncertain variations in the time delay using a robust min-max MPC approach for the
higher-level controller.

Chehardoli and Homaeinezhad [CH17a] also investigated different theoretical ap-
proaches to prove string stability for the problem formulation of linear time-varying delay
systems. The time delays on the actuator side are assumed to have values between 0.05 and
0.15 seconds. Alarmingly, a recent study that conducted various experiments with produc-
tion vehicles suggests that many commercial ACC systems are not string stable [GG+19].
The reason might be owed to using far too simplifying assumptions during the control design
process [XG11].

4.4 Not covered in this review

Many other topics have been treated within the existing literature, which can be seen related
to motion control in general, but not with longitudinal motion tracking specifically, and are
therefore not covered in this review:

The optimization of specific power-train components, for example energy management
of HEVs, Gear shift optimization are left to the power-train control unit in the suggested
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modular framework and therefore not treated here more in detail, although we learned that
some authors directly combined cruise control solutions, motion tracking and power-train
optimization into unified frameworks. By suggesting to forward predictive trajectories from
a motion tracking unit to a power-train controller, as done by this thesis, we enable the
power-train controller to be designed by optimal, predictive control principles but make the
higher layers independent from any power-train specific characteristics.

A broad range of literature deals with different aspects of vehicle platooning, like, for
example, platoon formation and coordination. We only want to refer to an overview given
in Shladover, Nowakowski, Lu, and Hoogendoorn [SN+14] and not treat this topic further.
Eco-routing deals with finding an optimal route considering timing and energy consumption
criteria Guanetti, Kim, and Borrelli [GK+18], but are left out from this review. Other systems
have a connection to longitudinal control but are not treated here. These are, for example,
ADAS systems like Anti-lock Braking , Hill Descent Control and Emergency Braking.

Also not covered within this chapter, since some more topic-specific background is needed
to properly discuss the existing literature, is work related to Nonlinear Model Predictive
Control (NMPC), Reinforcement Learning (RL) and smoothing algorithms. We will, therefore,
include sections within the particular chapters with related work for these topics. Therefore,
for literature that is specific to NMPC theory and applications, please refer to Section 7.3;
for the one related to RL refer to Section 8.3 and for polynomial filtering and smoothing
algorithms to Section 5.3.

4.5 Conclusion

Various solutions to the longitudinal vehicle motion control problem exist. Many authors
suggested a hierarchical control structure in which a higher-level control module calculates
a desired acceleration value, and a lower-level controller acts as a motion-tracking unit and
transforms this desired acceleration into actuator commands for the engine and brake.

Although this work focuses on the motion tracking part, we included a discussion on the
high-level control modules to understand their tasks, differences between the motion con-
troller and a motion tracking unit, and interfaces between these modules. We learned that
high-level control modules arose from the desire to provide solutions to ADAS specific sce-
narios, evolving from highway cruising over vehicle following towards driving in a platoon.
For AVs, a broad range of additional driving scenarios has to be covered. On the other hand,
on the actuator side, vehicle power trains also faced an evolution, starting from gasoline
engines, with the throttle-plate angle being an adequate interface, towards complex hybrid
power-trains, where additional actuators exist and much energy-saving potential lies in opti-
mizing the power split between these power sources.

With a broad range of power-train variants on one side and more complex driving scenar-
ios that are automated on the other side, a modular vehicle architecture is beneficial from an
engineering point of view. This includes the longitudinal control modules. Therefore, one of
the proposals, which builds the boundary conditions for the rest of the investigations done in
this thesis, is to design a motion-tracking unit capable of serving as an interface between the
motion planning unit and any existing or future power-train unit.

Shifting our attention back to the literature we discussed, we dare to formulate the fol-
lowing statements: Looking at the control algorithms that have been suggested, they evolved
from simple PID controllers in the early history of vehicle automation to more elaborate solu-
tions. In recent years, a rising number of authors proposed the application of MPC schemes,
although primarily as solutions to scenario-specific ADAS solutions. Benefits can be seen from
the possibilities to include predictive information on one hand, as well as considering state
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and actuator constraints.
Actuator delays were typically not considered in the tracking module but in the higher-

level controllers designed for cruise control scenarios. This limits the modularity of the over-
all architecture and might need to be revised when designing a system capable of solving
generic driving tasks.

Regarding vehicle motion tracking controllers, many approaches use simplifying assump-
tions to reduce model complexity. In most of the existing literature, the authors suggested
not considering forces resulting from tire resistance, aerodynamic drag, or gravity due to in-
clined roads, meaning that the resulting effects must be treated as a disturbance to the track-
ing controller. If these effects were considered at all, the related parameters are most widely
assumed, both known and time-invariant. In literature including adaptations to changing ve-
hicle parameters, for example in Bartono [Bar04] or Polack, D’Andréa-Novel, et al. [PD+17],
they were treated as a single resulting disturbance force, taking away the possibility of learn-
ing the true physical parameters, and hence correctly predicting into the future.

To the best of the author’s knowledge, at the time of first suggesting one of this thesis
proposal in [BK16a] and [BK16b], no existing publication was found that suggests incorpo-
rating advance information about future disturbances resulting from changing road grades
and design the motion tracking unit in a way that predictive information can still be for-
warded to the actuators. Therefore, we will dedicate the following sections of this thesis to
designing such a model predictive longitudinal tracking control module while looking into
various methods. In each section, we will include a methodology-specific analysis of related
work.



5
Novel Smoothing Algorithms for Multichannel
Time-Series Data

“Our beauty lies in this extended capacity for convolution.”

– Thomas Pynchon

A slightly modified version of this chapter has been published by the author of this thesis as
a preprint in [Bue22].

5.1 Introduction

For the controller we will propose in Chapter 7, we need estimations of the true values of
the engine speed, which serve as control inputs. In addition, knowing the true values of
both engine speed and acceleration can reduce Errors-in-Variables’ effect in the parameter
estimation problem, as discussed in Chapter 6. While a model-based approach of estimating
the states in a joint and dual estimation scheme is also discussed in Chapter 6, this chapter
is dedicated to a model-free approach for state estimation. Typically, model-free filtering and
smoothing algorithms for time-series data, for example, moving average, Butterworth, or
Savitzky-Golay filters, operate only on a single measurement channel. If filtering of multiple
channels, like in our case, speed and acceleration, needs to be performed, this happens by
running two concurrent and independent filters. Hence, information on the interrelation be-
tween measurement channels, namely that acceleration is the derivative of speed, cannot be
incorporated. Algorithms of the Kalman Filter family, as often used, for example, in tracking
problems, would be able to incorporate such information but need additional assumptions
about the evolution of the modeled quantities, in the form of, e.g., constant velocity or con-
stant acceleration assumptions, which might be too restrictive to obtain sufficient results.

This leads to the main question we want to answer in this chapter: How can we incorpo-
rate the knowledge of measurement channels being derivatives of each other in an otherwise
model-free smoothing algorithm?

As a result, a novel algorithm will be derived in this chapter, which can be used for
smoothing and filtering noisy, multi-channel time series data involving derivatives. A slightly
modified version of this chapter has been written by the author of this thesis and published,
by the time of writing, as a preprint in Buechel [Bue22]. Similar to the Savitzky-Golay con-
volutional smoothing and differentiation algorithm [SG64], the proposed algorithm is based
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on local polynomial regression. It can, therefore, be seen as a generalization of the Savitzky-
Golay (SaG) algorithm, which can be applied to non-uniformly sampled multi-channel sig-
nals consisting of a base channel together with their derivatives. Measurement data of such
a structure is given in many physical applications, for example, where noisy motion data is
available from measurements, including distance, velocity, and acceleration, or a subset of
those mentioned above. Filtering and smoothing motion data is also beneficial when solving
the control problem treated in this thesis. While the first of the two proposed algorithms
operates in a receding horizon fashion, the second can be interpreted as a recursive version
of the first.

The original SaG-smoother is restricted to process scalar-valued, uniformly sampled time-
series data over a symmetric measurement window with an odd-numbered amount of mea-
surement points. A variety of extensions and generalizations have been proposed earlier,
for example, to overcome the restriction of the measurement window having to be of odd
size and uniformly sampled [LY+05; SC+19], or to smooth multi-dimensional image data
[SA+04]. We will discuss some of these extensions and other related proposals in more detail
in Section 5.2.

The main contribution of the proposal in this chapter lies in performing the local approx-
imation by means of weighted polynomial least squares on all signal channels concurrently,
exploiting the knowledge about the differential relation between elements in the measure-
ment vectors. We will see that this leads to improved smoothing performance compared to
operating on each signal individually.

The proposed algorithm can be interpreted in various ways. First, as an extension and
generalization of SaG-smoothing [SG64], while it degrades to be identical in case it is applied
to a single channel signal obeying the restrictions mentioned earlier for SaG-smoothing.

Second, the algorithm can be interpreted as a method to efficiently calculate physics-
informed optimal kernels for convolutional layers in Machine Learning (ML) algorithms for
time-series data. Hence, it can be seen as an “approach to fix [. . . ] weights within the Neural
Network (NN) to physically meaningful values and make them non-modifiable during train-
ing” [WJ+22]. Based on polynomial regression, not only smoothing but also differentiation
of the signal channels can be efficiently performed from the polynomial coefficients of the
local approximation, up to the order of the polynomial used in the regression, in the same
fashion as in Savitzky and Golay [SG64]. The resulting derivative will inherit the smoothness
properties of the polynomial, which approximates the base signal. As an example, accelera-
tion estimations can be obtained from noisy velocity data. An estimation of a given signal’s
(delayed) time-derivative is needed in various control algorithms, for example, in Concur-
rent Learning Model Reference Adaptive Control [CJ10b]. The proposal was motivated by
the desire to obtain smoothed values of vehicle motion data of distance, velocity, and accel-
eration from noisy measurement data. This occurs in a variety of vehicle control and robotics
problems. Filtering motion data is also beneficial when solving the control problem treated
in this thesis.

As stated earlier, the original SaG-smoothing works on the principle of local polynomial
regression. It was, according to Menon and Seelamantula [MS14], motivated by Weierstrass’s
theorem [Bra59], which states that “every continuous function defined in a closed interval
can be uniformly approximated, as closely as desired, by a polynomial function” [MS14].

At the time of writing, we found more than 18.000 citations of the original paper [SG64]
in Google Scholar and more than 400.000 search results entering the term “Savitzky-Golay”
on the search engine Google. This indicates that Savitzky-Golay smoothing is an extensively
used tool. According to Schafer [Sch11], it is applied especially within the chemical process
domain, while it might be less known in other domains.

SaG smoothing [SG64] can be viewed in many different ways that are mathematically



5.2 Related work 63

equivalent. First, it can be seen as a “generalized moving average filter” [SA+04] or a gener-
alization of the “Finite Impulse Response (FIR) averager filter” [Orf10]. Since the smoothed
values are obtained by fitting a polynomial approximation of the noisy data points over the
sliding window by least squares regression, it has also been called a “digital smoothing poly-
nomial filter” or a “least squares smoothing filter” [Orf10]. Savitzky and Golay [SG64] showed
that the calculation of can also be performed by a convolution operation with a FIR of a charac-
teristic polynomial function, or as stated by Schafer [Sch11]: “we can think of least squares
smoothing as a shift-invariant discrete convolution process.” Orfanidis [Orf10] states that
“The Savitzky-Golay FIR smoothing filters, also known as polynomial smoothing, or least
squares smoothing filters [. . . ], are generalizations of the FIR averager filter that can pre-
serve better the high-frequency content of the desired signal, at the expense of not removing
as much noise as the averager” [Orf10], p. 427. Since the convolution operation has also
been named the “sliding dot-product of a flipped kernel with the signal” [Roh21], we can
also look at it as a way of obtaining optimal kernels in one-dimensional convolutional lay-
ers of neural networks. Additionally, we want to look at it as a model-free moving horizon
estimation algorithm.

This chapter will be organized as follows: After presenting related work and some existing
generalizations and extensions in Section 5.2, we will present the background on polynomial
filtering in Section 5.3. The derivation includes the connection between polynomial least
squares and the calculation by means of a convolution operation, as well as presenting an
efficient way of calculating the convolution vector using QR decomposition. It also includes
the PKS algorithm [RB+14; Rho16], a recent proposal for a recursive version of Savitzky-
Golay smoothing. This will give the foundation to derive the proposed algorithms neatly in
Section 5.4. We will evaluate the proposed algorithms in Section 5.5 before concluding in
Section 5.6.

5.2 Related work

Savitzky and Golay [SG64] derived polynomial least squares smoothing by considering var-
ious convolution functions and hence established the connection between polynomial least
squares smoothing and the convolution operation. While showing that zero-order polynomial
smoothing results in the moving average smoother, they provided various tables of convolu-
tion kernels for smoothing and differentiation for a variety of polynomial orders and window
sizes. Madden [Mad78] published "Comments on the Savitzky-Golay convolution method for
least squares fit smoothing and differentiation of digital data," in which they extended the
tables to greater window sizes while correcting some errors in the original numeric tables.
Orfanidis [Orf10] presented a derivation of the SaG-smoother in matrix form and discussed
how closed solutions to the matrix inverses involved in the calculation can be obtained.

Later in 2004, Sühling, Arigovindan, Hunziker, and Unser [SA+04] discussed multi-
resolution moment filters, among them an image noise-reduction method, which can be
viewed as a multi-dimensional extension of SaG filtering suited for image data. While the
original SaG smoothing and differentiation filter was restricted to work on uniformly sam-
pled data of an odd window length, Luo, Ying, and Bai [LY+05] extended it to work on even-
numbered data points within the moving window. Schafer [Sch11] provided a derivation of
the SaG smoother using matrix notation and discussed its frequency domain characteristics.

To alleviate the performance degradation of the original SaG algorithm in the presence of
non-normally distributed measurement noise, Menon and Seelamantula [MS14] introduced
a robust version of SaG-smoothing. The solution is achieved by ℓ1-norm error minimiza-
tion through the technique of iteratively re-weighted least squares under the assumption of
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heavy-tailed, Laplacian-distributed noise. Solano-Araque, Colin, et al. [SC+19] proposed
to determine vehicle acceleration from noisy, non-uniformly sampled speed data for control
purposes. Their work can also be seen as a generalization of the SaG algorithm in the sense
that it also does not require the measurement samples to be uniformly sampled. However,
contrary to the proposal of this article, it does not exploit any derivative information but
solely performs differentiation of a scalar signal in the fashion of SaG-differentiation [SG64].

Rhode, Bleimund, and Gauterin [RB+14] presented the Polynomial Kalman Smoother
(PKS), which can be seen as a recursive version of SaG-smoothing by means of Kalman fil-
tering. It is derived by defining the time shift of a polynomial function forward in time as a
linear matrix operation, which allows the application of the linear Kalman filter framework.
The PKS is limited to scalar-valued signals but can operate as a recursive algorithm on single
data points instead of a moving window. This reduces memory resources for computation
and theoretically directly allows causal filtering without delay, although typically, a delayed
estimation is provided Nevertheless, in [RB+14], they also did not exploit the interdepen-
dence between velocity and acceleration data but applied separate filters concurrently for
each measurement channel.

The algorithms that will be derived in the course of this chapter were originally motivated
by the work on PKS [RB+14], due to their proposal to formulate the time-shift as a linear
matrix operation, which led to the insight that differentiation of a polynomial can also be
formulated as a linear matrix operation. To the best of the author’s knowledge, this is the
first time to propose smoothing algorithms based on local polynomial regression, which ex-
ploits the interrelation of time derivatives between measurement channels. While the first
algorithm DeePLS we propose can be seen as a generalization of Savitzky-Golay smoothing,
the second algorithm DeePKS is a generalization of its recursive variant, the PKS.

5.3 Background polynomial filtering and smoothing

The Savitzky-Golay algorithm [SG64] is a data smoothing method for scalar-valued, uni-
formly sampled time series data. It is often referred to as SaG-filter, despite the fact that
typically smoothing is performed rather than filtering. The algorithm is based on a model-
free moving horizon approach on smoothing and is derived under the assumption that a
scalar trajectory can be locally approximated by a polynomial model of a given order n at
any given point in time. As already mentioned in the introduction, this assumption is for-
mulated in the Weierstrass’ theorem [Bra59]. The Savitzky-Golay algorithm can be viewed
as a generalization of moving average smoothing. In the original proposal [SG64], the poly-
nomial coefficients are estimated from data samples given in an equidistant time window
of length 2M + 1, which defines the moving window. The resulting polynomial coefficients
are optimal in a least squares sense regarding the error between the polynomial function
estimate and the noisy measurements available from the trajectory. The uniformly sampled
time-series data is centered around the smoothing point, which allows for very efficient cal-
culation of the smoothed value since its calculation is reduced to knowing the zero-th-order
polynomial coefficient. A more general derivation of the SaG smoothing algorithm as the one
presented in the original paper [SG64], which can also be applied in case measurements are
given at arbitrary points in time and for non-symmetric measurement windows, is presented
in Section 5.3.1. There, the derivation is directly given in matrix form, which allows for a
neater presentation. This derivation is similar to what can be found in Orfanidis [Orf10]
and Schafer [Sch11] and results in equations for implementation similar to [Mat19c]. This,
together with the preliminaries presented in Section 5.4, builds the necessary foundation to
derive the proposed algorithm in Section 5.4.3.
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5.3.1 Generic Polynomial Least Squares smoothing

In this subsection, we want to present the equations for the Savitzky-Golay smoother. This
builds a good foundation to derive the proposed algorithm. For this presentation, we will di-
rectly use matrix notation, in a similar fashion than presented in [Sch11], while we stay even
more generic to also allow for non-uniformly sampled data and non-symmetric measurement
windows.

Matrix form of polynomial evaluation

Let θ ∈ Rr×1 be defined as

θ
.
=
�

θn θn−1 . . . θ1 θ0
�T

, (5.1a)

where θi corresponds to the i-th order coefficient of a time dependent polynomial function
pn(t) : R1 → R1 of order n and θ is of length r = n+ 1. Note that for reasons which will be
made clear in Section 5.4.2, the vector θ is sorted such that the last element is the zero order
coefficient θ0. Then we can evaluate the polynomial function by calculating the vector inner
product

pn(t)
.
=

n
∑

i=0

ci t
i = τn(t)θ , (5.1b)

with the time-feature vector τ(t) ∈ R1×r :

τ(t)
.
=
�

tn tn−1 . . . t1 t0
�

, (5.1c)

containing decreasing powers of the time value t at which the polynomial function shall be
evaluated.

Vector-valued polynomial evaluation

We can also evaluate the polynomial at various points in time given by a time vector t ∈ Rm×1

defined in [tmin ∈ R−, tmax ∈ R+] and

t
.
=
�

tmin . . . t0 = 0 . . . tmax
�T

, (5.2)

which we define such that it includes the time t0 = 0. In order to do so, we define the feature
matrix Tn ∈ Rm×r for an n-th order polynomial such that

Tn(t )
.
=
�

t⊙n t⊙n−1 . . . t⊙0
�

, (5.3)

which is of the form

Tn(t ) =









tn
1 tn−1

1 . . . t0
1

tn
2 tn−1

2 . . . t0
2

...
...

. . .
...

tn
m tn−1

m . . . t0
m









=









τ(t1)
τ(t2)

...
τ(tm)









. (5.4)

Note that the matrix T is a right-left flipped version of the well studied Vandermonde matrix
[Tur66], which also appears in modern implementations of the SaG algorithm [Mat19c].
The fact that we have a flipped version results from our definition of the coefficient and
time-feature vectors to carry the zero-order coefficient at the end instead of the beginning.

The response vector x (t ), which contains the responses of the polynomial function Pn(t ) :
R1×m→ Rm×1 at all times given in t can then be calculated by the matrix product

x (t ) = Pn(t ) = Tn(t )θ . (5.5)
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Note that since we defined t0 = 0 to be in t , and evaluating a polynomial at its origin is
corresponding its zero-order coefficient, we have that

x0 = x(t0 = 0) = pn(0) = θ0. (5.6)

Polynomial Least Squares

Now let y(t ) be a vector of noisy measurements defined at the times given in t . Under a
Gaussian noise assumption, it is reasonable to obtain estimates of the parameter vector θ by
performing least squares regression. To be slightly more general, we want to minimize the
cost functional J as

θ̂ = arg min
θ

�

J = ∥y(t )− T θ∥2
W

	

. (5.7)

which is a weighted linear least squares problem with the diagonal weight matrix W =
diag {w} and the vector of weights, denoted by w, shall consist of positive, real weights.
Choosing W as the identity I would result in regular least squares. While a standard analyti-
cal solution to problem (5.7) is known to be

θ̂ =
�

T TWT
�−1 T TW y(t ), (5.8)

it can be solved more efficiently by means of QR-decomposition. This leads to the solution
[Orf10]:

QR=W
1
2 T (5.9)

θ̂ = R−1
�

QTW
1
2 y
�

, (5.10)

where Q, R are obtained from an economy-sized QR-decomposition.

Evaluation of full polynomial

If we are less interested in the polynomial coefficient vector itself but want to use the poly-
nomial as smoothed approximation x̂ of x at the entire time window defined in t , we could
do this by inserting (5.60) in (5.5) which leads to an expression similar to what can be found
in [Orf10; Mat19c]:

x̂ = T R−1
�

QT
�

W
1
2 y
��

(5.11a)

= T R−1
n
�

W
1
2
�

T R−1
�

�T �

W
1
2 y
�
o

(5.11b)

=
�

T R−1
� �

T R−1
�T

W y (5.11c)

= T TTW y , (5.11d)

where we substituted
Q =W

1
2 T R−1, (5.12)

and (5.12) directly follows from (5.59). As an advantage, since R is upper triangular per
definition of the QR-decomposition,

T = T R−1, (5.13)

can be efficiently calculated by forward-substitution without the need to build the inverse.
From (5.14) we can observe that vector x̂ , representing smoothed values over the entire mea-
surement window, can be calculated by a single matrix multiplication with the measurement
vector y as

x̂ = K y , (5.14)

once the kernel matrix K
.
= T TTW is calculated.
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Polynomial smoothing

Eventually, if we are not even interested in the full estimation vector x̂ , but want to obtain
smoothing at a single value x̂ i, within the measurement window, we can write

x̂ i = κi yi = K[i,:]yi , (5.15)

where κi denotes the i-th row of the matrix K, corresponding to the index in t where t =
t i. To perform smoothing for an entire measurement sequence of arbitrary length, one can
proceed in a receding horizon fashion, and repeatedly calculate (5.15) for each measurement
window, while moving it along the sequence. Note that the calculation given in (5.15) can
only be applied for the steady-state part (for a definition of steady-state and transient part in
this context see [Orf10], p.432) of the signal smoothing operation, where the center point of
the measurement window resides within the signal y , while the transients could be calculated
using the full kernel matrix K.

Calculation as a convolution operation

Using the vector product x̂ i = κi yi from (5.15) in each step while moving the measurement
window forward in time is equivalent to performing the convolution operation

x̂ i = y ∗ flip {κi} . (5.16)

using a flipped version of the kernel vector κi. This follows directly from the definition of
the discrete finite convolution. Note that if the measurement window is defined symmetric
around a center point at which the smoothing should be performed, the vector κi is also
symmetric and hence the convolution can be directly done as y ∗ κi. This is the case in the
definition of the original SaG-algorithm. We named the matrix K earlier as kernel matrix,
while more exactly, we should term it flipped kernel matrix.

Polynomial differentiation

A nice property of polynomial smoothing is the possibility to easily perform differentiation of
the smoothed signal up to the given polynomial order used for the estimation. If one is not
only interested in the smoothed value x0 = x(0), but additionally in the first k derivatives at
time t i = 0, which we denote (in reverse order) as

x̂ (k):(0)0
.
=
�

x (k)(0) x (k−1)(0) . . . ẋ(0) x(0)
�T

, (5.17)

one can write, similar to what can be found in [Orf10; Mat19c], for any k ≤ n

x̂ (k):(0)0 = gk ⊙ θ[r−k:r]. (5.18)

Here,

gk =
�

k! (k− 1)! . . . 1! 0!
�T

(5.19)

denotes a column vector of factorials starting from k down to zero. We want to emphasize
that it is sufficient to know the last k coefficients from the vector θ , which we denoted by
θ[r−k:r]. We will use this fact in our algorithm proposal in Section 5.4.2.
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Time shift

If we consider the polynomial function pn in (5.1b) given at a certain discrete time k:

xk(t) = τ(t)θk, (5.20)

the value xk(t) is the evaluation of the polynomial at the time relative to the time at the
index k, so in abolute term this would be at k∆t + t. Evaluating the polynomial function at
the relative time t +∆t will then be

xk(t +∆t) = τ(t +∆t)θk, (5.21)

where the same coefficient vector θk is used, and only the time operator has to be calculated
at the shifted time (t +∆t). Now we want to write this with the increased index k+ 1 as

xk+1(t) = τ(t)θk+1, (5.22)

from where we observe that if we have that xk ̸= xk+1, the coefficient vectors also must be
different, hence θk ̸= θk+1. Since per definition of the time indices we have that both

xk+1(t) = xk(t +∆t) (5.23)

τ(t +∆t)θk = τ(t)θk+1, (5.24)

we can calculate the coefficient vector θk+1, considering that the vector or matrix given by
Tn(t) is generally not square and hence not invertible, using the Moore-Penrose Pseudo-
inverse to get the relation

θk+1 = T (t)†T (t +∆t)θk. (5.25)

This can now also be written as a linear matrix equation of the form

θk+1 = Sθk, (5.26)

where we defined a shift operation matrix S as

S .
= T (t)†T (t +∆t). (5.27)

Please note that although mathematically correct, calculating the shift matrix this way is not
recommended due to the numerical inaccuracy involved, but it is easy to demonstrate the
existence of a square shift matrix this way.

Another algorithm for calculating S for a unit time shift is given in [RB+14] and the
reference herein, and it is based on binomial coefficients. We provide a modified and more
general version below, which is also suited for time shifts different from ∆t = 1, while it also
considers that our coefficient vector θ has been defined in reverse order, starting from the
coefficient of order n= r − 1:

Si, j =

� r− j
(r−i)!(i− j)! ·∆t(i− j) ∀ j ≤ i
0 ∀ j > i

, (5.28)

which is nothing else than the binomial coefficient of r − j over i − j for all j ≤ i. It yields a
squared lower triangular matrix of size r× r, which, for example, for a third order polynomial
is

S3(∆t = 1) =







1 0 0 0
3 1 0 0
3 2 1 0
1 1 1 1






. (5.29)

In above formula, the factor∆t(i− j) was inspired by the code example provided with [Rho16],
where in the comments, credits were given to Bleimund [Ble13] in his hand-written notes.
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5.3.2 Polynomial Kalman smoothing

As already stated in the related work section 5.2, Rhode [Rho16] proposed a recursive version
of SaG-smoothing using the framework of linear Kalman filtering. The PKS algorithm is built
on the local polynomial approximation of the signal which is smoothed, similar as in SaG-
smoothing. The core idea is the conclusion that one can formulate the time evolution of
the coefficients of the local polynomial, in linear, discrete state space form. This enables the
application of the linear Kalman filter framework, as we will show next.

5.3.3 The Polynomial Kalman Smoothing algorithm

Before presenting the PKS algorithm [Rho16], we want to give a derivation in our own
words, as background for the derivation of our generalized version of PKS, which we propose
in Section 5.4.4. As stated in (5.26), moving a polynomial approximation forward in time,
can be stated by the linear matrix equation

θk+1 = Sθk, (5.30)

with the shift matrix as defined in (5.28). We further stated in (5.5) that we can calculate the
estimated output vector for all times within the moving window, according the linear matrix
operation:

x̂ (t ) = Tn(t )θ . (5.31)

and to obtain a single value given at certain time of this window, we had in (5.1b)

x(t) = τ(t)θ .

If we consider an equidistant time grid, this equals for the rightmost value in the current
measurement window to

x̂(tmr
) = τ(tmr

)θ̂ = τ(mr∆t)θ̂ , (5.32)

where mr is the length of the right window. Now we can define a system

θk+1 = Sθk +ω (5.33)

y = Hθ̂ + ν, (5.34)

with the state vector θ , the dynamic matrix S and the measurement matrix becomes the
vector H = τ(tm), and the noise terms ω and ν as usual. We now can apply standard lin-
ear Kalman filter techniques to estimate the parameters θ̂ , from where we can obtain the
smoothed value at the window center as

x̂(t0) = x̂k−mr
= τ(t0)θ̂ . (5.35)

[Rho16] proposed to use a Kalman Filter variant using a forgetting factor λ, to obtain the
Polynomial Kalman Smoother (PKS) algorithm given in Algorithm 1, which we present with
changed notation for convenience.

5.4 Proposed algorithms

Before we present the novel algorithm for smoothing time-series data consisting of a base
channel and its derivatives, we want to give a formal problem formulation for the algorithm
to be derived.
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Algorithm 1 Polynomial Kalman Smoother [RB+14; Rho16]

Require: S, T , H, forgetting factor λ

1: Inputs:

θ̂+k−1, P+k−1, yk

2: θ̂−k = Sθ̂+k−1 ▷ A priori state estimate

3: P−k = SP+k−1S
T ▷ A priori estimation error covariance

4: Kk = P−k HT
�

HP−k HT +λ
�−1

▷ (optimal) Kalman Gain (A.75)

5: P+k =
1
λ

�

P−k − KkHP−k
�

▷ Estimation error covariance

6: θ̂+k = θ̂
−
k + Kk(yk −Hθ̂−k ) ▷ A posteriori state estimate

7: x̂k−mr
= τ(mr∆t)θ̂+k

8: return x̂k−mr
, θ̂+k , P+k

5.4.1 Problem formulation

We are given measurements y0 of a signal x(t) : R+→ R which is differentiable on R+ of class
C j. Additionally, we are a given a number of up to j measurement channels resulting from the
derivatives ẋ(t), ẍ(t), . . . , x ( j)(t). We seek to find estimations of the channels x̂ , ˆ̇x , ˆ̈x , . . . , x̂ ( j),
or a subset of those, at discrete points in time. We apply a moving horizon or moving window
approach, where in each iteration ι, we observe the measurements given within a time win-
dow defined in the non-empty set Uι = {R|tι −∆t l ≤ tι ≤ tι +∆tr} around the window center
at tι. We denote the concatenation of vectors containing all measurements given within Uι as

y j
0 =
�

y (0); y (1); . . . ; y ( j)
�

∈ Rm, (5.36)

and of their corresponding time stamps relative to the window center with

t =
�

t0; t1; . . . ; t j

�

∈ Rm, (5.37)

with m = m0 +m1 + · · ·+m j being the sum of the number of measurements of each channel
within the window. Similar, the concatenation of vectors

x j
0 = [x (t0); ẋ (t1); . . . ; x ( j)(t j)] (5.38)

denotes their corresponding true, but unknown, signal values. Assuming that the measure-
ments are subject to independent, Gaussian measurement noise, we can write

y j
0 = x j

0(t ) + ξ ≈ P(0):( j)n (t |θ )) + ξ, (5.39)

with noise vector ξ∼N (0,Σ) and Σ= diag
�

σ⊙2
	

is the diagonal covariance matrix of white

noise with standard deviations σi. Above, P(0):( j)n (t |θ ) : Rm×1 → Rm×1 are the polynomial
mappings of relative times given in t , by which the channels in x j

0 are locally approximated,
parameterized by their coefficient vector θ . We aim to find the estimates x̂ j

0 by using a least
squares approach, through estimates of the parameter vector θ̂ , which is the argument of the
optimization

θ̂ = arg min
θ

�

∥y −P(0):( j)n (t |θ )∥W

	

. (5.40)

From there, we can calculate the estimates x̂ using the polynomial mapping as x̂ =
P(0):( j)n
�

t |θ̂
�

, while in most cases, it will be sufficient to obtain the smoothed values in the
window center at t = 0 as

x̂ = P(0):( j)n

�

0|θ̂
�

. (5.41)
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Defining x̂ (k):(0)0
.
= [ x̂ (k)(0); . . . ; ˆ̇x(0); x̂(0)], we can formulate the following:

Problem 1. Given measurement tuples 〈y , t 〉 of a system following the relation described in
(5.39), and a diagonal weight matrix W , find estimates x̂ (k):(0)0 at the window center of the
signal channel x and its derivatives up to the order k ≤ j from the argument of the minimization
of the cost functional in (5.40).

In the following Sections 5.4.2, 5.4.2 and 5.4.2 we will present some preliminaries to
derive the solution to Problem 1 in Section 5.4.3, which will result in Algorithm 2.

5.4.2 Preliminaries

Proposed alternative calculation of kernel vectors

In this section, we want to derive a modified version of calculating the kernel vector κi. This
method theoretically allows to obtain κi more efficiently, which might be beneficial when
dealing with non-uniformly sampled data. For invariant time vectors t , as it is the case in the
original Savitzky-Golay setting, the projection or kernel matrix K and its central row are also
invariant, and hence it suffices to calculate them once in advance. In case of non-uniformly
sampled signals, the vectors t of relative times will become time-variant. This means that the
kernel matrix K has to be repeatedly recalculated within each iteration. We therefore want
to present a theoretically more efficient way of calculating the estimated value x̂0, or more
generally, the vector x̂ (k):(0)0 of all derivatives up to order k. We had in (5.18) that

x̂ (k):(0)0 = gi ⊙ θ̂[r−k:r]

can be used to evaluate the polynomial pn for x0 at time t i = 0 and get subsequent time
derivatives in one step, where only the parameters of order zero to k are needed. While full
vector θ̂ containing the polynomial coefficients was given in (5.60) as

θ̂ = R−1(QT W
1
2 y), (5.42)

we can calculate the reduced vector θ̂[r−k:r] directly from reduced matrices as

θ̂[r−k:r] = R̃−1Q̃TW
1
2 y , (5.43)

where

Q̃T =QT
[r−k:r,:] (5.44)

R̃= R[r−k:r,r−k:r] (5.45)

are the last k rows of the transposed matrix Q and the lower right block of size k of R. The
vector of desired derivatives up to order k can hence be rewritten using the reduced kernel
matrix K̃i as

x̂ (k):(0)0 = K̃k y , (5.46)

with
K̃k = gk ⊙
�

R̃−1Q̃TW
1
2

�

= gk ⊙ Ãk. (5.47)

where we introduced
Ãk

.
= R̃−1Q̃TW

1
2 . (5.48)

Note that above calculation can be efficiently obtained by means of backward-substitution
without the need of inverting R, because R is upper triangular [Bon21], p.19, (2.2). For the
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case one only wants to calculate the zero order coefficient θ̂0 = x̂0, the matrices in (5.43)
even reduce to the last diagonal entry of the matrix R and the last row of the transposed
matrix QT:

ρ = R[r,r] (5.49)

q =QT
[r,:] (5.50)

and we are able to write

θ̂0 =
1
ρ

qW
1
2 y . (5.51)

It is worth mentioning that for this to work, we had to use a vector θ defined in a way
that the last element corresponds to the zero-order coefficient θ0. This theoretically reduces
the computational complexity for the calculation of A from O(r2) to O(k2) [FM67], while it
remains to be investigated how this reduction can improve the overall performance of the
algorithm, given a certain overhead of indexing into the full matrices. See also Section 5.5.4.

Differentiation matrix

In this section, we want to present a generic way of performing differentiation of polynomial
functions using a linear matrix operation. This helps to derive the proposed algorithm. While
(5.18) allows to find x i and its derivatives only at time t i = 0, we need to write down the
differentiation of an entire vector x in a different way. We can write for the zero-th, first, and
j-th derivative of Pn(t):

x (t) = Tn(t) · θ = Tn(t) ·D0
n · θ (5.52a)

ẋ (t) =
d
d t
·{Tn(t) · θ }= Tn(t) ·D1

n · θ (5.52b)

x ( j)(t) =
d(i)

d t( j)
·{Tn(t) · θ }= Tn(t) ·D j

n · θ . (5.52c)

where we used differentiation matrix Dn ∈ Rr×r of order n for Pn(t) given as

Dn
.
=













0 · · · 0 0 0
n · · · 0 0 0
...

. . .
...

...
...

0 · · · 2 0 0
0 · · · 0 1 0













, (5.53)

and D0 = I is the identity matrix. This finding is similar to the one found in [Ami16], (1.4)
for polynomials of a monomial basis, but respecting the fact that we ordered the polynomial
coefficients in θ such that the last element corresponds to the zero order coefficient.

Integration operator

Although not necessarily needed for the derivation of the DeePLS algorithm, we want to
mention that integration as the inverse operation to differentiation can also be defined using
the derivative operation matrix D. D is square but does not have full rank, hence it is not
invertible. This becomes clear since when differentiating, the zero order term information
is lost during the operation, and therefore the operation is not invertible without loss of
information. Nevertheless, all other coefficients appear in the differentiated polynomial, and



5.4 Proposed algorithms 73

we can recover the original θ (0) only by setting the lost term c0
.
= 0. This can be done using

the Moore-Penrose pseudo-inverse of the differentiation operation matrix, and we can define
the integration operation as the inverse of differentiation as

D− j = D( j)†. (5.54)

We can see from
∫

ẋ = x(t)− x(0) = x(t)− c0 = τn(t)D(1)†D(1)θ (0), (5.55)

that only part of the equation is recovered on the right hand side by the expression D†D(1)

since the zero order coefficient c0 only appears on the left side of the equation. Indeed, one
can show that

D†D(1) =













1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1 0
0 · · · 0 0 0













, (5.56)

which is the identity matrix with a zero instead of a one at the element in lower right corner
of the matrix. We will use this in order to calculate the integral of a velocity signal defined
by their polynomial coefficients in the simulation example presented in Section 5.5.1.

5.4.3 Derivative-exploiting Polynomial Least Squares (DeePLS)

Now we are ready to derive the main proposal of this article. This can be seen as an en-
hancement and generalization of polynomial smoothing, and can be applied if a multitude
of measurement channels is available, which are derivatives of each other. Since the pro-
posed algorithm is able to exploit the interrelation between the measurement channels, we
want to name it as Derivative-exploiting Polynomial Least Squares (DeePLS). It uses a moving
window approach to calculate smoothed values by operating on all given and noisy measure-
ment channels within the current window concurrently, and fitting a polynomial by means
of weighted least squares. Standard polynomial least squares, as described earlier in Sec-
tion 5.3.1, as well as the SaG algorithm, to the contrary, only operate on a single measure-
ment channel.

In the following, we want to look at the evaluation steps within a single window, while
these steps have to be repeated in a receding horizon fashion if we desire to smooth (or
filter) an entire measurement sequence. The DeePLS algorithm will hence be the solution
for Problem 1: It can easily be seen from (5.52) that the vertical concatenation of several
derivatives of x (i) can be expressed as

x 0
j =









x (0)(t)
x (1)(t)

...
x ( j)(t)









= P(0):( j)n (t |θ ) =









Tn(t0)D0
n

Tn(t1)D1
n

...
Tn(t j)D

j
n









θ
.
= Φ(t 0

j )θ , (5.57)

which is a linear matrix operation. Remember that D0
n = I was defined to be the identity

matrix of appropriate size. We can rewrite Problem 1 with

Φ(t 0
j )

.
=









Tn(t0)D0
n

Tn(t1)D1
n

...
Tn(t j)D

j
n









, (5.58)
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as the weighted linear least squares problem (5.7)

θ̂ = arg min
θ

�

J = ∥y(t )−Φθ∥2
W

	

. (5.7 revisited)

with diagonal weight matrix W = diag {w} and the vector of weights denoted w consisting of
positive, real weights. This has the well known solution (see for example [Man80])

QR=W
1
2Φ (5.59)

θ̂ = R−1QTW
1
2 y = Ay , (5.60)

where Q, R are obtained from an economy-sized QR-decomposition, and

A
.
= R−1QTW

1
2 . (5.61)

Combining (5.60) and (5.18), we can state that the vector x̂ (k):(0)0 of derivatives of the poly-
nomial function P(0|θ ), evaluated at the center t = 0, is given, for any k ≤ n, as

x̂ (k):(0)0 = gk ⊙ θ̂[r−k:r] = gk ⊙ Ãk y = K̃k y , (5.62)

where

gk
.
=
�

k! (k− 1)! . . . 1! 0!
�T

(5.19 revisited)

denotes a column vector of factorials starting from k down to zero, and

Ãk
.
= A[r−k:r,:] (5.63)

is the sub-matrix formed by the lower k rows of A, and

Kk
.
= gk ⊙ Ãk. (5.64)

A summary of the proposed DeePLS algorithm can be found below in Algorithm 2.

Structure of the DeePLS algorithm

Figure 5.1 illustrates the structure of the DeePLS algorithm, operating on uniformly sampled
data (left) and sparse, non-uniformly sampled data (right). Data processing of time-series
measurements of a base channel (blue dots) together with their derivatives (red dots) is
illustrated in a top to bottom fashion. The measurement vectors containing data within the
moving window are first concatenated into a single vector in a multi-channel concatenation
layer. The resulting vector is then convoluted with the physics-informed kernel, which is the
main building block of DeePLS. In this example, we illustrate a kernel which consists of three
rows. Convolution with the first row (light blue) results in the smoothed value of the base
channel at the window center (blue triangle). The smoothed value for the derivative ˆ̇x at
the center position is obtained by convoluting the concatenated measurement vector with
the second row of the kernel. Additionally, the illustration shows the possibility to obtain
the second derivative of the base channel as a latent variable (yellowish), for which a third
row in the kernel matrix was used. On the right hand side, we can see how the algorithm
is applied to sparse and non-uniformly sampled data. This is possible as long as enough
measurement points are available (on all channels together) for the regression to be well-
defined. Otherwise, no meaningful kernel can be calculated to obtain smoothing.

To summarize, the DeePLS algorithm can be realized by a neural network structure, which
consists of a concatenation layer and a convolution layer. The kernel of the latter can be
designed in an optimal fashion thanks to the interpretation as a polynomial least squares
smoothing algorithm. This network structure can be used as smoothing layer and allows to
process non-uniformly sampled and sparse time-series data. Additionally, derivatives of sig-
nals can be calculated as latent variables, which potentially improve capabilities and learning
of neural networks applied to physical systems.
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Algorithm 2 Proposed Derivative-exploiting Polynomial Least Squares (DeePLS) algorithm.

Require: weight matrix W , differentiation matrix Dn of polynomial order n from (5.53),
vector of factorials gk from (5.19), maximum order k of derivatives to be calculated

1: Inputs:
< y0, t 0 >, . . . ,< y j , t j >

2: y j
0← concatenate{y0; . . . ; y j}

3: for all l in [0, j] do
4: Tn(tl)←

�

t⊙n
l t⊙n−1

l . . . t⊙0
l

�

▷ (5.3)
5: end for

6: Φ←









Tn(t0)D0
n

Tn(t1)D1
n

...
Tn(t j)D

j
n









▷ (5.58)

7: Q, R← qr
¦

W
1
2Φ
©

▷ (5.59)

8: Q̃T← last k rows of QT ▷ (5.44)
9: R̃← lower-right block sized k× k of R ▷ (5.45)

10: Ãk← R̃−1Q̃TW
1
2 (by backward - substitution) ▷ (5.48)

11: Kk← gk ⊙ Ãk ▷ (5.64)
12: x̂ (k):(0)0 ← K̃k y ▷ (5.62)
13: return x̂ (k):(0)0

Discussion of the proposed DeePLS algorithm

DeePLS reduces to the original SaG algorithm [SG64] in case that (a) no derivative mea-
surement information is available and only the zero-order channel is present in the signal,
and (b) for the case that the signal is uniformly sampled, and (c) the window is defined
symmetrically around the smoothing point t0 = 0.

The DeePLS algorithm consists of two main parts: (a) the calculation of optimal kernels
and (b) their convolution with a concatenated measurement vector, which is produced from
moving window data of all measurement channels. The kernels are optimal in the sense that
they minimize the weighted squared errors between the signal and a local polynomial approx-
imation and can be efficiently calculated by means of QR-decomposition. The convolution
operation is identical to a vector dot product operation.

For the solution of the weighted least squares problem (5.40) to be well-defined, we need
at least a total number of m ≥ r measurements contained in the measurement window, as
we have r unknown parameters. For m = r, an exact solution is obtained, and no smoothing
effect occurs. The fact that the number of measurement points available for the regression is
given as m = m0 +m1 + · · ·+m j, and hence always higher than treating each channel indi-
vidually, has two implications. First, smoothing is already possible when looking at smaller
window sizes compared to conventional, single-channel polynomial smoothing. This reduces
the time delay for causal filtering. Second, additional measurement values are available com-
pared to single channel SaG over the same time span. This effect is one explanation of why
the smoothing errors can be reduced with the proposed method.

Note that in case of uniformly sampled data and time-invariant weights, kernel matrix Kk
typically remains constant, and steps 2 to 11 of Algorithm 2 can be moved out to an initial-
ization phase and do not have to be performed within each iteration. This follows for the
fact that for time-invariant relative time vectors t and time-invariant weights w, matrix Φ is
also time-invariant. Another reason for time-variant relative time vectors t could be sparse
measurement vectors due to missing values. Then, the computational load for each iteration
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Figure 5.1: Illustration of the structure of the DeePLS algorithm. Left: operating on uniformly sampled data. Right:
DeePLS for re-sampling of non-uniformly sampled or sparse measurements.

reduces to the multiplication of matrix K̃k with the enhanced measurement vector y .
Note that, for ease of notation, the formulation of Algorithm 2 is given such that all sub-

sequent derivatives have to be present, but matrix Φ can easily be reformulated by omitting
missing measurement channels if only a subset of time-derivatives is given.

Hyper-parameters of DeePLS are (a) the polynomial order of the local approximation and
(b) the size of the measurement window. Additionally, in DeePLS, it is necessary to (c) pro-
vide adequate weights for the weighted least squares operation. Theoretically, in the presence
of Gaussian noise, matrix W has to be constructed square diagonal with inverses of the vari-
ances σ2

0,σ2
1, . . . ,σ2

j for each corresponding signal in the main diagonal (see Section 5.5.2).
Arbitrary weights could be used instead, for example, to put more emphasis on less recent
measurements. This could be desirable when choosing the smoothing points t0 = 0 such that
they lie on the right edge of the window, and hence ∆tr = 0, which allows the use of the
framework as a causal filter instead of a smoother one. Typically, when used as a smoothing
algorithm, one might choose the smoothing point to a central position within the moving
window because the estimation error obtained from the polynomial regression elsewhere is
higher.

Note that the calculation given in (5.18) can only be applied for the steady-state part (see
[Orf10], p.432) of the signal smoothing operation, while the transients need to be calculated
from (5.58) using an appropriate time vector.

5.4.4 Derivative-exploiting Polynomial Kalman Smoothing (DeePKS)

In analogy to the derivation of the Polynomial Kalman Smoother (PKS), we can formulate
a recursive version of the previously proposed DeePLS algorithm using the Kalman Filter
framework. We will name the resulting algorithm Derivative-exploiting Polynomial Kalman
Smoother (DeePKS). Let us assume as for the derivation of the DeePLS algorithm, that we
are observing a multi-channel measurement signal, consisting of a base channel and some of
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its higher order derivatives. We are given a collection of measurement tuples

Yk =
¦

< y0
k , t 0

k >, . . . ,< y j
k, t j

k >
©

, (5.65)

where y i is the measurement vector belonging to the i-th derivative, together with their
corresponding time stamps relative to the center point of the measurement window at the
current iteration k. With the concatenation of all measurements, y ∈ Rm and their true,
unnoisy counterparts x ∈ Rm, we can write

y (t ) = x (t ) + ξ= Φ (t )θ + ξ, (5.66)

where the matrix Φ(t ) was defined in (5.58) as

Φ(t )
.
=











Tn(t (0))D0
n

Tn(t (1))D1
n

...
Tn(t ( j))D

j
n











. (5.67)

Note that Φ is defined for an arbitrary amount of time-value vectors with relative times
around the center of a measurement window, and since the information to which channel
a certain time value is belonging to is encoded in Y, we could also write:

ynew = Φtnew
θ + ξ (5.68)

to denote that we wanted to calculate the Φ-matrix from the time vectors of new, unseen
measurement tuples defined at tnew, and further define Φtnew

= Φ (Ynew). Note that this also
includes the case of new observations only given at times at the rightmost edge of the mea-
surement window. Note also that (5.68) is a measurement equation that is linear in the
parameters θ . In addition, given an estimate for the parameter vector θ̂ , we could define a
different matrix Φ to obtain all the estimates of all channels but only at the center point t0
and write

x̂ t0
= Φ (t0) θ̂ . (5.69)

We are now ready to express the following linear state-space system by combining (5.30)
and (5.68) as follows

θk+1 = Sθk +ωk (5.70)

ynew,k = Φtnew,kθk + ξk. (5.71)

Above, θ was a vector containing the parameters of the current local approximation, S was
the shift matrix from (5.28), which allows to propagate the parameters forward in time to
the next center point of the measurement window in the next iteration. The measurement
tuples

Ynew =
�

< y0
new, t 0

new >, . . . ,< y j
new, t j

new >
	

(5.72)

contain new, unseen measurement values together with their time stamps relative to the
current center point of the measurement window. ω and ξ are noise vectors of appropriate
size.

Similar to the derivation of the Polynomial Kalman Smoother (PKS), we can now use a
linear Kalman filter to obtain estimates θ̂ at each iteration. This is the optimal, recursive
solution under the assumptions that (1) the parameters follow the random walk process



78 5 Novel Smoothing Algorithms for Multichannel Time-Series Data

given in (5.70) and (2) the noise vectors are drawn from zero mean normal distributions,
where

ω∼N (0,Q) (5.73)

ξ∼N (0, R) . (5.74)

Also, ynew should contain, as per definition, only previously unseen measurements. From
the Kalman filter, we obtain the estimated polynomial parameters, which we can then use
to obtain estimates at desired positions relative in time and of arbitrary channels of the base
channel and its derivatives by using the relation

x̂ti ,k = Φti ,k θ̂k. (5.75)

The resulting steps of the proposed Derivative-exploiting Polynomial Kalman Smoother
DeePKS are summarized in Algorithm 3.

Algorithm 3 Proposed Derivative-exploiting Polynomial Kalman Smoother (DeePKS)

Require: Shift matrix S ▷ as defined in (5.28)

1: Inputs:

Ynew
k =
¦

< y0
new, t 0

new >, . . . ,< y j
new, t j

new >
©

, θ̂+k−1, P+k−1, Rk, Qk−1

2: θ̂−k = Sθ̂+k−1 ▷ A priori state estimate

3: P−k = SP+k−1S
T +Qk−1 ▷ A priori estimation error covariance

4: H = Φ
�

Ynew
k

�

▷ as defined in (5.67)

5: Kk = P−k HT
k

�

HkP−k HT
k + Rk

�−1
▷ Kalman Gain (A.75)

6: P+k =
�

P−k − KkHkP−k
�

▷ Estimation error covariance

7: θ̂+k = θ̂
−
k + Kk(ynew,k −Hkθ̂

−
k ) ▷ A posteriori state estimate

8: x̂ti ,k = Φ(t i)θ̂+k ▷ Estimates of channels values at desired time ti

9: return x̂ti ,k, θ̂+k , P+k

Discussion of the proposed DeePKS algorithm

In the same way as the PKS algorithm [Rho16] can be interpreted as a recursive version of
the well-known SaG algorithm [SG64], DeePKS can be seen as a recursive version of DeePLS.
Hence, similar to before, DeePKS reduces to PKS in case (a) no derivative measurement
information is available, and only the zero-order channel is present in the signal, and (b) for
the case that the signal is uniformly sampled. Having said that, the following advantages
compared to PKS smoothing arise:

• DeePKS is able to incorporate information from multiple measurement channels in each
step

• The interrelation between these channels can be leveraged

• Thanks to its generic formulation, the application to non-uniformly sampled measure-
ment data is enabled

• It is able to process multiple measurements in one calculation step. This includes not
only data from the different, interrelated measurement channels but also delayed mea-
surement tuples.
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Both PKS and DeePKS are able to be used as causal filters instead of smoothing by setting the
center point to the rightmost edge(s) of the measurement window. Nevertheless, as with any
filtering technique, this will deteriorate the performance of the algorithms compared to the
smoothing result. The polynomial approximation works best at a true center point, which is
supported by data on both sides to the left and the right. Although we do not show these
results for the sake of brevity, this holds still true even for the recursive variant, which never
really performs any fitting directly to the data.

Also, for both PKS and DeePKS, recursive filtering and smoothing are realized by means
of Kalman Filtering. This is possible only by leveraging a state (aka parameter) propagation
model. This model is based on the assumption that the polynomial coefficients remain con-
stant, except for the random walk part of the equation with additive Gaussian noise. This
means that if the true process follows a trajectory that is described by a polynomial (of the or-
der chosen in the algorithms), both PKS and DeePKS are theoretically able to asymptotically
converge to the true trajectories. This assumption will, in practice, not hold. We will continue
a discussion of how this behavior could still be leveraged in the future in Section 9.3.

5.5 Evaluation

In order to evaluate the proposed DeePLS and DeePKS algorithm, we run a simulation exper-
iment to obtain smoothed estimations and compare the results to the ones calculated by the
standard SaG algorithm and its recursive counterpart PKS. We want to look at an example
which seems realistic in the context of longitudinal vehicle control, and design a sufficiently
differentiable longitudinal velocity trajectory, together with their corresponding trajectories
of distance and acceleration based on quintic polynomials. These have been used earlier in
the context of automated vehicle trajectory planning, for example in Werling [Wer10]. Find
details about the experiments and hyper-parameters in Sections 5.5.1 and 5.5.2. An evalua-
tion of the computational times needed to execute the algorithms is given in Section 5.5.4.

5.5.1 Experiment description

We define a set of polynomials using data tuples given in Table 5.1. Each row in Table 5.1
defines a quintic polynomial starting at time tstart and ending at tend. The velocities at the
start and end points are given by vstart and vend, respectively. The polynomial coefficients are
obtained with the additional condition that the acceleration at the start- and end-times has to
be zero to achieve smooth transitions with phases of piece-wise constant velocity trajectories,
which are used to fill the gaps between the polynomials.

Based from this reference velocity data, trajectories for distance and acceleration are then
calculated by integrating and differentiating, as shown in Section 5.4.2. All three measure-
ment data channels are then generated by uniformly sampling the reference trajectories in
a time grid from t = 0 to t = 50s with a sample time of Ts = 0.1s, and adding zero-mean,
Gaussian noise with a standard deviation of σd = 10, σv = 0.3, σa = 0.2 for distance, velocity
and acceleration, respectively.

5.5.2 Implementation details

We performed smoothing within a symmetric moving window and a central smoothing point
as required for SaG. All algorithms (SaG, DeePLS, PKS and DeePKS) ran with a window size
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Table 5.1: Data values defining piece-wise polynomial velocity profile

tstart tend vstart vend

0 6 0 5
7 13 5 2

16 24 2 5
27 33 5 3
37 43 3 5
44 50 5 0

of M = 4, which means that SaG ran on 2M + 1 = 9 samples, while DeePLS could exploit a
number of m j

0 = 27 measurements within the same moving window. PKS and DeePKS were
using the rightmost value(s) for update in a recursive manner. The polynomial order was set
to n= 5. For DeePLS, we set the weights to the inverses of the variances, leading to constant
weights wi = 1/σ2

i over the entire measurement window for each measurement channel. The
weighting matrix W was calculated using

W = diag

¨�

1

σ2
0

, . . . ,
1

σ2
0

,
1

σ2
1

, . . . ,
1

σ2
1

, . . . ,
1

σ2
j

, . . . ,
1

σ2
j

�«

. (5.76)

To evaluate the statistics of the results, Normalized Root Mean Square Error (NRMSE) was
calculated using

NRMSE= 1−
∥x − x̂∥
∥x − x̄∥

, (5.77)

where x̄ denotes the mean value of x . Values in Table 5.2 show mean values of NRMSE of
static parts of the results over all Monte Carlo runs. Note that the simulation example shown
was performed with uniformly sampled data only to make it comparable to SaG-smoothing,
but similar improvements can be expected for non-uniformly sampled data, while it remains
future work to find how the possibility of applying the proposed smoothing algorithms to
non-uniformly sampled and sparse measurement data can be beneficial.

5.5.3 Results

Figures 5.2 and 5.3 show the results. Figure 5.2 serves to show an overview over the tra-
jectories used in the experiment, while the smoothing results can be seen in Figure 5.3. The
latter provides a zoom into the region marked by a rectangle in the corresponding trajectory
of Figure 5.2.

We can see the ground truth together with the noisy measurement data, as well as the
smoothed values obtained by various smoothing methods. SaG and PKS serve as baselines,
to evaluate the proposed DeePLS and DeePKS algorithms.

First, in Figure 5.3 (top), a qualitative comparison is given, comparing ground truth tra-
jectories with the estimation results from both SaG and the proposed DeePLS algorithm.
Figure 5.3 (second row) shows the same comparison with PKS as a baseline together with
the proposed DeePKS results. In all rows of Figure 5.3, we can see results for the distance on
the left, the velocity in the center and the acceleration on the right hand side.

At the bottom of Figure 5.3, we illustrate the corresponding box plots for each of the
three signal channels, comparing SaG, PKS, DeePLS and DeePKS. In addition, a quantitative
comparison using NRMSE values, (both obtained from a series of 1000 Monte-Carlo runs),
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Figure 5.2: Overview of comparison of the true, noisy and estimated values for the proposed DeePLS and
DeePKS algorithms with results obtained by the Savitzky-Golay (SG) and the PKS method. Find a zoom into
the areas marked by rectangles in Figure 5.3.

is given in Table 5.2. We can observe that both DeePLS and DeePKS clearly outperform their
non-derivative exploiting counterpart.

5.5.4 Efficiency analysis of DeePLS algorithm

We performed an analysis of computation times for parts of the DeePLS algorithm to investi-
gate the effect of the proposed reduced order computation. The experiments were performed
on an ASUS ZenBook i7-10510U running Windows 10 Home with an Intel(R) Core(TM) i7-
10510U CPU @ 1.80 GHz (2.30 GHz TDP-up) with 16 GB RAM. The algorithms were imple-
mented in MATLAB® 2019b. Although Lines 3-11 of Algorithm 2 could have been run outside
the moving window iteration, since the kernel matrix in this example is time-invariant, we
ran the full algorithm for the sole purpose of evaluating the computation times. We run
1000 episodes and calculated the averaged evaluation times for calculating lines 7-11 of Al-
gorithm 2 as well as the evaluation time for line 10, while line 10 was calculated both using
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Table 5.2: NRMSE (mean over 1000 MC runs) of the proposed DeePLS and DeePKS algorithm compared to
Savitzky-Golay smoothing and PKS. Value of 1 means error free estimation.

NRMSE SaG PKS DeePLS DeePKS

ex 0.911 0.939 0.953 0.983
e ẋ 0.896 0.928 0.943 0.955
e ẍ 0.847 0.894 0.885 0.911

the reduced order backwards substitution and using the full matrices. The average times for
lines 7-10 were 11.18 µs (full) and 13.88 µs (reduced). It remains future work to investigate,
how the overall gain of the reduced matrix calculation would be, if present, when generating
C-code from the function.

As expected, the average execution time for line 10 of Algorithm 2 could be reduced,
namely from 6.54 µs, using full matrices, to 6.09 µs with backward-substitution using re-
duced matrices Q̃ and R̃. An in depth investigation on the computational efficiency of all the
proposed algorithms remains to future work.

5.6 Conclusion

5.6.1 Summary

Two novel smoothing algorithms were presented based on polynomial least squares, which
are capable of exploiting the knowledge that measurement channels in time series data in-
volve derivatives. We therefore named them Derivative-exploiting Polynomial Least Squares
(DeePLS) and Derivative-exploiting Polynomial Kalman Smoother (DeePKS).

The DeePLS algorithm can be interpreted in various ways. First, it is a generalization
of SaG-smoothing [SG64] to multi-channel time series data. Second, it can be seen as a
physics-informed method to obtain optimal kernels for the time-series convolution, by which
the smoothing can be calculated.

The DeePKS can be seen as a recursive version of Derivative-exploiting Polynomial Least
Squares (DeePLS). Hence, it can be interpreted as a generalization of the PKS algorithm
[Rho16], again to multi-channel time series data in the same fashion as before.

For DeePLS, the interpretation as a physics-informed method establishes connections be-
tween classical smoothing theory and modern ML algorithms. Thanks to the generic formu-
lation of the algorithms, they can be applied to sparse and non-uniformly sampled measure-
ment data. For DeePLS, this is valid as long as enough measurement points remain present
within the moving window for the problem to remain well-defined. Hence, the algorithms
can not only be used for smoothing and causal filtering but also as a re-sampling method. Ad-
ditionally, differentiation of signals can be performed to obtain additional derivatives as latent
states. In a simulation study, the performance was compared to the original SaG algorithm
and its recursive counterpart PKS, and we demonstrated that both algorithms outperform
their single-channel counterparts. This is achieved by leveraging the interrelation between
measurement channels.
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5.6.2 Discussion and future work

We want to first present a discussion on the proposed DeePLS algorithm. DeePLS is, at
its core, based on weighted least squares regression and hence underlies the independent
Gaussian noise assumption. This means, as a limitation, we do not expect the algorithm to
be inherently robust to heavy-tailed measurement noise distributions and outliers. This is a
known limitation for any least squares formulation, and it seems straightforward to extend
the algorithm to robust estimation schemes, for example, similar to the one in [MS14], or the
ones presented in Section A.9. Nevertheless, how this affects the mathematical properties of
the solution and, as a result, its computational efficiency remains to be investigated. Still,
we could see that thanks to performing the regression on an enhanced dataset by including
the measurement channels with the derivative data, the algorithm is much more robust to
outliers than when treating the channels individually, as in SaG and PKS.

We are looking forward to seeing the application of the proposed algorithm to real-world
examples, for example, in the field of vehicle control and robotics. Applying the proposed
algorithm as a way to obtain physics-informed kernels in convolutional neural network struc-
tures for time-series data involving derivatives seems a very promising path. Here, the proper-
ties of the DeePLS algorithm to allow irregularly sampled, sparse, and delayed measurement
data can be especially beneficial. Another nice property of the algorithms is the possibility
of providing additional, highly interpretable latent information, which are the higher-order
derivatives of the dynamical system under observation.

Also, the algorithm seems to reduce variance without introducing much bias. This might
explain why its application was improving the overall parameter estimation results in Chap-
ter 6 more than the other smoothing algorithms used for comparison. An in-depth study of
this behavior had to be left for future work.

Looking at the proposed DeePKS algorithm, we could observe that for the given scenario,
DeePKS clearly outperforms PKS. This is due to the fact that the former could leverage the
additional information given as the interrelation between measurement channels. Also, in the
given example, both PKS and DeePKS outperformed their non-recursive counterparts. This
likely will not be the case for any arbitrary trajectories, while a detailed analysis will have to
remain for future work. To understand this more in detail, let us consider the following.

Both PKS and DeePKS are recursive algorithms that are based on the Kalman filter frame-
work. The states to be estimated are the polynomial coefficients, and a propagation model
is used to formulate the state model of the Kalman filter. One has to consider that the un-
derlying state model expresses how, in an absolute time frame, time invariant polynomial
coefficients have to be modified to consider a new, one-step forward center location. This
means that, in reality, we aim to learn a constant set of absolute polynomial coefficients,
building up memory in the form of prior knowledge. For trajectories which, again in an abso-
lute time frame, are, in fact, described by a single polynomial and its time-derivatives, both
algorithms will be able to asymptotically converge to the true value (assuming the Gaussian
noise assumption also holds).

In the example we used to evaluate the algorithm, we constructed trajectories as a se-
quence of quintic polynomials. This means, in other words, that the polynomial coefficients
are piecewise constant in an absolute time frame. This enables both recursive algorithms to
outperform their moving horizon counterparts since the algorithms are actually able to learn
the true parameters within each sequence. Since such sequences have been previously pro-
posed to be realized for automated vehicles, we still considered such a scenario to evaluate
the algorithms.

Future work remains to critically evaluate how the algorithms perform for manually
driven vehicles, which, of course, do not follow such trajectories. Also, an interesting ques-
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tion is how far the performance can be increased by further exploiting knowledge about the
driven trajectories. For example, if one knows that the vehicle was just commanded to follow
a new sequence at a certain time, of which the coefficients are known, one could exploit
that knowledge. At least, the covariance matrix could be reset each time to a high level of
uncertainty when a new sequence was commanded. Alternatively, the prior could also be set
to the known coefficient values. Exploiting such prior knowledge could increase the perfor-
mance substantially. Nevertheless, if used for control purposes, as suggested in this work, it
might also have a dangerous outcome. The smoother could potentially output values that are
only closer to the commanded trajectory while the true trajectories diverge, and this could
deteriorate the overall control performance. Unfortunately, we will have to leave it to future
work to investigate such effects further.
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5.6.3 Contribution

The contributions presented in this chapter can be listed as follows:

• We proposed two novel algorithms for smoothing and filtering of time series data, which
we termed Derivative-exploiting Polynomial Least Squares (DeePLS) and Derivative-
exploiting Polynomial Kalman Smoother (DeePKS).

• These algorithms can be seen as a generalization of SaG-smoothing and PKS-smoothing
to multi-channel data and are based on local polynomial approximation of the data
channels

• The main proposal is to exploit the knowledge of measurement channels being higher-
order derivatives of a base channel.

• This enables an increase in smoothing performance and robustness compared to exist-
ing algorithms, which operate on single data channels only. Simulation studies were
carried out to support this claim.

• The generic formulation of the algorithms further allows to incorporate irregularly sam-
pled data as well as delayed and missing measurements

• For DeePLS, an interpretation of the algorithm was provided as a model-free but phys-
ically informed method to obtain optimal kernels for a convolution layer of a neural
network structure. We believe this brings valuable insights for physics-informed ma-
chine learning applied to multi-channel time-series data.
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Figure 5.3: Zoom of the comparison of the true, noisy and estimated values for the proposed DeePLS and
DeePKS algorithms with results obtained by the Savitzky-Golay (SG) and the PKS method. The areas shown
in the top rows are depicted in Figure 5.2 as rectangles. Bottom: Box-plot statistics over 1000 Monte-Carlo
simulations of estimation errors.



6
Combined Vehicle State and Parameter Estimation

“There is no such thing as absolute value in this world. You can only estimate what a
thing is worth to you.”

– Charles Dudley Warner

The content presented in this chapter builds on preliminary work that was previously pub-
lished by the author of this thesis in Buechel and Knoll [BK16a], but contains substantial
novel material, which is published for the first time within this thesis. The main contribution
will be an estimation scheme for combined state and parameter estimation, which leverages
the problem structure, is robust against measurement noise, is stable during phases of insuffi-
cient excitation, provides constrained parameter estimates, and shows improved performance
compared to various state-of-the-art solutions. For further details and an overview of these
contributions, please refer to Section 6.7.2.

6.1 Introduction

In this chapter, we propose a recursive method for the concurrent estimation of the true
vehicle state together with the parameters of longitudinal vehicle motion. More in detail,
with the state, we denote the vehicle’s acceleration and speed and the tractive forces de-
termined by the vehicle mass, the aerodynamic drag, and the rolling resistance parameters.
The knowledge of the true values of these parameters is beneficial for several applications
and especially useful for precise, offset-free, model-based motion tracking control, as we will
present in Chapter 7. There, we also show how the performance of such a controller degrades
under parametric uncertainty. Unfortunately, the vehicle state is (1) only observable through
noisy measurements, and simple low-pass filtering will result in delays, which can deterio-
rate a controller’s performance dramatically, which uses signals obtained in such a manner
directly as inputs. Even more important, (2) the vehicle parameters might change over time.

While we want to give a formal problem definition in Section 6.3.1, at this point, we want
to recall the (simplified) vehicle equation from (3.18):

m · v̇ = Ftire −m · g · (sinϕ + Cr · cosϕ)− Cd · v2. (3.18 revisited)

For a realistic approach, we have to consider the vehicle mass m, the coefficients of aerody-
namic drag Cd, as well as rolling resistance Cr as time-varying values. For example, as stated

87
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by Kidambi, Harne, et al. [KH+14], the vehicle mass of a passenger car might vary by up to
50 % from ride to ride due to a changing number of passengers and cargo. For light trucks
and cargo vans, the vehicle mass might even change by up to 400%. We see from (3.18)
that if we want to calculate a desired tire force from a desired acceleration value, we will
introduce an error that is directly proportional to the error between true and estimated ve-
hicle mass. Hence, the quality of any feed-forward controller using such a model is strongly
depending on a correct estimation.

Looking at the rolling resistance Cr, we might see changes over time due to different tire
characteristics (e.g., changing winter to summer tires, different tire inflation pressures) or
driving on varying surfaces like dirt roads or on snow. The National Highway Traffic Safety
Administration (NHTSA) reports up to 60 % change in rolling resistance values of different
tires and tire pressures [NHT09].

The aerodynamic drag, represented by the lumped coefficient Cd, might change due to
modification in the aerodynamic area of the vehicle, for example, when driving with a
mounted roof box. The installation of a roof box might increase the total drag by up to
30 % according to [AC+10]. Another reason for changes in the aerodynamic drag is when
a vehicle joins a platoon, where, according to [Ala11], a reduction of up to 65 % is possible
(see also Section 2.1.2).

This chapter is structured as follows: First, in the remainder of this introduction section,
we want to provide some motivational material for the state and parameter estimation of
the longitudinal vehicle dynamics. This includes the objectives and assumptions that lead to
requirements for such an algorithm. Also, we will highlight the importance of vehicle mass
estimation, in particular for a variety of tasks, besides enabling optimal control as demon-
strated in Chapter 7. We then give an overview of existing solutions for the estimation of
vehicle tractive forces parameters in Section 6.2. A formal description of the problem consid-
ered in this chapter is given in Section 6.3, together with an observability and identifiability
analysis in Section 6.3.2 and discuss various solution approaches in Sections 6.3.3 and 6.3.4.
Some preliminary investigations in Section 6.4 will serve to understand existing approaches
with their shortcomings in detail, while we will already propose some countermeasures in
experiments specifically designed for this purpose. In Section 6.5, we will present our pro-
posed solution for the problem of combined state and parameter estimation, which will then
be evaluated in a simulation study in Section 6.6. A discussion of the results is included. We
then summarize and conclude this chapter in Section 6.7.

6.1.1 Motivation

Among the time-varying vehicle parameters m, Cd, and Cr, most impact is produced by the
vehicle mass when used in a model-based, longitudinal vehicle motion control scheme. While
the main motivation for vehicle mass estimation in this thesis is by nature the potential to
substantially improve the tracking performance of a longitudinal controller, as discussed in
detail in Chapter 7, a variety of other applications benefit from the knowledge of the true
vehicle mass: For lateral motion control, the vehicle mass has an impact on the dynamic
stability of the vehicle. Vehicle mass is directly related to tire normal forces, which have an
influence on lateral and longitudinal tire force generation [Raj11]. As a consequence, active
safety systems like emergency brake and collision avoidance assist, anti-lock braking systems,
and stability control all benefit from precise knowledge of the current vehicle mass [WS+08].

It could be demonstrated by Carlson, Lohse-Busch, Diez, and Gibbs [CL+13] that for
passenger cars, a 10 % increase in vehicle mass results in up to 4.1 % increase in power con-
sumption. Neglecting the variation in vehicle mass will clearly lead to wrong predictions
about the range of HEVs and Electric Vehicles (EVs) and also to sub-optimal battery man-
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Figure 6.1: Example applications of an online vehicle mass estimator. Illustration inspired by Fechtner and
Schmulling [FS17].

agement strategies. Energy consumption can be reduced by optimizing transmission shift
strategies, which also benefit from a precise knowledge of the vehicle mass.

For commercial vehicles, other use cases for vehicle mass estimation have been reported.
These include monitoring the maximum allowed vehicle load or even building a system to
detect burglary incidents, which leads to a reduction of vehicle mass during parking.

For automated vehicles, vehicle mass estimation helps to optimize both longitudinal and
lateral control. In combination with estimations about the center of gravity and the vehicle
inertia, it can be used to improve planning and realize maneuvers at the limits of handling,
for example, for racing applications [KG12], but also for collision avoidance exploiting lateral
vehicle dynamics.

Inspired by the work of Fechtner and Schmulling [FS17], we give an overview of example
applications, which all will benefit from a precise vehicle mass estimation in the illustration
shown in Figure 6.1. Nevertheless, despite its importance, Kidambi, Harne, et al. from the
University of Michigan, in cooperation with Ford Motor Company, stated in 2014: “While sev-
eral [vehicle mass] estimation methods have been proposed in the literature, none have seen
widespread adoption in current vehicle technologies despite their potential to significantly
improve automotive controls” [KH+14].

6.1.2 Requirements

A vehicle state and parameter estimator should meet the following requirements (compare
[FK+08]):

• Real-time capability: The algorithm needs to be simple enough to run in real-time
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without consuming too much computational load

• Accuracy: estimation of vehicle mass within a 3-5 % error

• High convergence rates, ideally to detect changes within a few seconds after a vehicle
moves from standstill

• Low-cost solution: operation without additional sensors

• Provide estimation accuracy in terms of variance, which is beneficial for other compo-
nents, e.g., a robust controller.

• Reliability for successful operation

• Robustness against disturbances and measurement outliers

• Robust estimation even in phases of insufficient excitation

• The solution should be simple to calibrate

As we will show in Section 6.2, not all of these requirements could be fulfilled with existing
solutions. We focus on real-time capability, accuracy, and high convergence rates while pro-
viding a solution using sensor information as we expect it to be available in future automated
vehicles. Another focus will lie on the robustness of the approach against outliers and phases
of insufficient excitation.

6.1.3 Objective and assumptions

We want to provide combined estimates of the true vehicle state in terms of vehicle speed
and acceleration together with the true vehicle parameters m, Cd and Cr (see 3.18) from
noisy measurements. The estimator needs to provide estimated values at all times during
vehicle operation in an online fashion. For input into the estimator, we consider the following
information available from existing sensors, which we believe is a realistic assumption for
AVs:

• Vehicle speed v (from odometer)

• Acceleration a (from Inertial Measurement Unit (IMU))

• Road slope ϕ (from IMU, possibly fused together with information from High Definition
(HD)-map)

• Wheel torque estimations from engine Twe and brakes Tbr (from PCM).

We assume that the available sensor readings will be distorted by non-gaussian measurement
noise. The availability of a wheel torque estimation value holds for the assumption that
our vehicle is equipped with a torque-based power-train control structure. A simplifying
assumption is the absence of tire slip and wind. Hence, the remaining parameters in (3.18)
which are left to be determined are:

• Vehicle mass m

• Aerodynamic drag Cd

• Rolling resistance Cr.
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6.2 Related work vehicle state and parameter estimation

Various authors provided overviews of existing literature related to vehicle mass estimation
and discussed different solution approaches. They include Fathy, Kang, and Stein [FK+08],
Kidambi, Harne, et al. [KH+14] as well as Fechtner and Schmulling [FS17]. Inspired by these
references, existing methods for vehicle mass estimation can be classified into the following
categories, exploiting various effects that are influenced by the vehicle mass:

1. Estimation methods exploiting longitudinal vehicle dynamics.

2. Estimation methods exploiting lateral / yaw dynamics.

3. Other methods, including

• Power-train oscillations, which are influenced by variations in vehicle mass.

• Sensor based estimation exploiting suspension dynamics.

• Sensor based estimation exploiting tire pressure.

We want to follow these categories to analyze the related work in more detail:

Methods exploiting longitudinal vehicle dynamics

The method exploiting longitudinal vehicle dynamics is the most commonly found in litera-
ture and will also be proposed for this thesis. Many of the approaches found in the literature
are based on different assumptions about what is to be estimated and which signals are
available to an estimation algorithm.

For example, Bae, Ryu, and Gerdes [BR+01a] presented an approach taking into consid-
eration that road grad can be measured based on sensor readings of a dual antenna GNNS
system. It does not provide any estimations for rolling resistance and aerodynamic drag pa-
rameters, nor does it provide an uncertainty value for the vehicle mass estimation. Vahidi,
Stefanopoulou, and Peng [VS+03; VD+03; VS+05] proposed to apply recursive least squares
with multiple forgetting to estimate road grade and vehicle mass in parallel. Again, no esti-
mation of rolling resistance and aerodynamic drag is provided.

Various approaches were presented for the slightly different task of estimating road grade
and vehicle mass simultaneously, but assuming both rolling resistance and aerodynamic drag
as known quantities: First, Winstead and Kolmanovsky [WK05] presented an approach com-
bining an Extended Kalman Filter with a model predictive controller. This is motivated by
the fact that the performance of an Extended Kalman Filter (EKF) will degrade during phases
of insufficient excitation. By taking estimation error covariance into account in the objective
function of the MPC, the controller will not just track the desired velocity but also perform
additional excitation around the desired trajectory, depending on the error covariance of the
EKF. This has the advantage that it can increase the convergence rate of the estimation and
also avoid insufficient excitation. A clear drawback of this approach is that the additional
excitation has a negative impact on the tracking quality of the controller.

Another estimator of this category was presented by McIntyre, Ghotikar, et al. [MG+09].
They proposed to apply a two-stage estimation strategy to first determine a vehicle’s mass
using an adaptive least squares strategy and then freeze the vehicle mass and run a nonlinear,
Lyapunov-based estimator to estimate road grade in the second stage.

Raffone [Raf13] presented a road slope and vehicle mass estimation for light commercial
vehicles. They used a combination of linear Kalman filtering for road slope estimation and
RLS with a forgetting factor for observing the vehicle mass.
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An evaluation of different methods for vehicle mass and road grade estimation in parallel,
which exploit longitudinal dynamics, is given in Kidambi, Harne, et al. [KH+14]. They
propose to apply an accelerometer additionally to obtain better state estimations. Again, no
estimation of rolling resistance and aerodynamic drag is provided.

Fathy, Kang, and Stein [FK+08] found that inertial forces dominate longitudinal vehicle
forces and that drag, road grade induced, and rolling resistance forces affect vehicle dynamics
only at low frequencies. This finding is leveraged to propose a “fuzzy supervisor” in order
to determine which forces dominate vehicle dynamics. The supervisor is then used to switch
between separate estimations of vehicle mass and road grade by a RLS algorithm. Also, here,
no estimation of rolling resistance and aerodynamic drag is provided.

The author of this thesis proposed a solution in [BK16a], which can be seen as prelimi-
nary work to what will be presented in this chapter. The proposal was to make use of the full
measurement data available in AVs, namely acceleration, speed, road grade, and the torque
estimation at the tire. Further, a joint estimation scheme based on an extended Kalman Fil-
ter was proposed to provide an estimate of the vehicle mass together with state estimates
of velocity and acceleration. Compared to the solution in this chapter, in [BK16a], no esti-
mates of rolling resistance or drag coefficient were provided. The approach was non-standard
from an algorithmic point of view since it allowed the incorporation of (one-step delayed)
measurements of the first-order state derivative, in this case, vehicle acceleration, into the
filter.

Except for the approach from Winstead and Kolmanovsky [WK05], none of the above-
mentioned works properly discussed or addressed the topic of insufficient excitation and
parameter wind-up or provided any observability studies. In 2016, Rhode published his
thesis [Rho16] presenting robust and regularized algorithms for vehicle tractive force pre-
diction and mass estimation. It compares various estimation algorithms in both numerical
experiments and the application in a real vehicle. The algorithms are based on the Linear-in-
Parameters formulation of the longitudinal vehicle equation; hence, no filtered vehicle state
estimations were provided, and solely parameter estimation was performed. The algorithms
considered include recursive least-squares and robust variants based on M-estimator schemes
and Kalman filter variations, which have robust properties, like the M-Kalman filter and the
regularized M-Kalman filter. Further, the effect of Errors-in-Variables in linear least-squares
problems, together with various countermeasures, is discussed. Among them is the proposal
for a recursive generalized total least squares algorithm with noise covariance estimation
from [RH+16], as well as the method of instrumental variables is discussed. The problem
of insufficient excitation is also mentioned. To overcome estimator wind-up, a method is
proposed that combines the Stenlund-Gustafsson [SG02] anti-windup scheme with several
other estimator variants.

The methods proposed by Rhode do not include any combined state and parameter esti-
mation schemes. Nevertheless, he mentions performing pre-processing on vehicle speed and
acceleration signals with several stand-alone filters, amongst them Butterworth filters with
various cut-off frequencies as well as Savitzky-Golay (SaG) smoothing. Eventually, he re-
ports using a novel “Polynomial Kalman Smoother (PKS)” algorithm, which can be regarded
as a recursive version of SaG smoothing, see [RH+16]. PKS was applied in the context of
generalized total least squares estimation and used to provide mean values for estimating the
variance of the unknown measurement noise variances.

In distinction to [RH+16], Altmannshofer, Endisch, et al. [AE+16] achieved robustness
against measurement outliers by assuming that the measurement noise is distributed ac-
cording to a Student-t distribution, and they used real vehicle data to fit the parameters of
the distribution. Based on this knowledge, they investigated a similar filter as the robust
M-Kalman filters with Stenlund-Gustafsson anti-windup discussed in [RH+16]. Since no
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closed-form solution to the inverse problem is available under the assumption of Student-
t distributed measurement noise, the problem was reformulated as a maximum-likelihood
estimation problem and solved via Iteratively Reweighed Least Squares (IRLS). To reduce
the computational load for potential deployment on an embedded system, they terminated
the calculations after the first iteration. In addition, parameter constraints were enforced
by using a complementary linear program. Contrary to [RH+16], they do not apply the
method of Instrumental Variables in order to achieve convergence when Errors-in-Variables
are present, while their offline validation result on real-world vehicle data showed a certain
bias in the estimations. As a simplification, the longitudinal vehicle model was derived under
the small angle assumption regarding road slopes. Further information is provided in his
thesis [Bey19], most likely after he changed his name.

Xin, Xu, et al. [XX+22] applied RLS with multiple forgetting for online estimation of
vehicles mass, also to improve a model predictive vehicle controller for optimal energy man-
agement of a fuel cell hybrid electric vehicle. While they found that such a scheme can
substantially improve the controller’s performance, they noticed their estimation algorithm
to perform poorly in some scenarios, especially when trying to track a (quasi) continuously
varying vehicle mass. Nevertheless, they left further investigation about the reasons and how
to improve performance in future work. They did not mention the difficulty of vehicle mass
estimation during phases of insufficient excitation.

Looking at very recent work on parameter estimation exploiting longitudinal motion, Ko-
rayem, Khajepour, and Fidan [KK+21b] gave a review on vehicle-trailer state and parameter
estimation literature. While the study included many different parameter estimators, includ-
ing, for example, ones for estimating roll angles using neural network-based approaches,
the algorithms mentioned for trailer mass estimation were recursive least squares, extended
Kalman filters, and dual Kalman filters. Some approaches processed Lidar point clouds to
estimate hitch angles between vehicle and trailer using deep neural networks. While this is
not the focus of this thesis, one could imagine that current and future road slope estimations
could be performed or augmented by a similar approach.

Yu, Hou, Leng, and Huang [YH+22] suggested improving a conventional least squares ap-
proach with forgetting for vehicle mass estimation by combining it with a purely data-driven
approach. The data-driven approach uses a neural network that is trained to output the cor-
rect vehicle mass depending on various inputs from simulated data. Since in the model-based
approach, no countermeasures were taken against insufficient excitation, blending the neural
network result using a fuzzy system approach helps to improve the result. No estimates for
other parameters can be provided with this approach. The simulation results did not show
good convergence of the approach.

Yuan and Song [YS22] recently proposed a modified EKF for vehicle state estimation with
partial missing measurements caused by packet loss in sensor networks. We will also partly
address the topic of fault tolerance against lost packets in a different way when introducing
our proposal of the DeePLS and DeePKS smoothers in Chapter 5, while we will have to leave
a comparison and deeper discussion of this topic to future work.

The proposed algorithm developed in Section 6.5 was mostly inspired by the work of
Rhode, Hong, Hedrick, and Gauterin [RH+16] and Altmannshofer, Endisch, et al. [AE+16],
but with several substantial differences, as will be discussed in detail in the remainder of this
chapter.

Methods exploiting lateral / yaw vehicle dynamics

Some authors proposed to exploit the lateral and yaw vehicle dynamics. These include Best
and Gordon [BG00], who proposed an Extended Kalman Filter on the lateral vehicle dynam-
ics to estimate a variety of vehicle parameters.
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Wenzel, Burnham, Blundell, and Williams [WB+04] and [WB+06] suggested the use of
a dual Extended Kalman Filter setup to estimate vehicle states and parameters in parallel but
separately on the lateral and yaw dynamics of the vehicle. They validated their approach in
a simulation environment.

Huang and Wang [HW12] applies an adaptive compensator together with a Lyapunov-
based control law based on the approach from [AG10] to a simplified bicycle model for
tracking both vehicle speed and yaw rate. It is combined with an estimation of vehicle mass
and yaw moment of inertia, which interacts with the control law to provide the excitation
of the vehicle, which is necessary for fast convergence. The approach is applicable only to
nonlinear systems that are affine in the parameters, and no estimation of rolling resistance
and aerodynamic drag is provided.

Other methods

Fremd [Fre87] patented a method measuring first order power-train oscillations which are
dominated by the vehicle mass. This involves the installation of a special measurement de-
vice. Kim and Ro [KR00] developed a multi-body dynamic model of a quarter-car suspension
system and used a reduced-order model to identify its parameters. Rajamani and Hedrick
[RH95] presented a methods exploiting the suspension dynamics to estimate the sprung mass.
Both methods are based on the availability of additional suspension sensors. Chaklader
[Cha00] patented a solution based on measuring the tire pressure and temperature of at least
one tire in order to estimate the vehicle mass. It relies on sensor measurements of additional
sensors.

Summary and discussion

To summarize, we found several methods for online vehicle mass estimation, of which the
ones exploiting longitudinal vehicle dynamics dominate. Some approaches are based on the
availability of sensors, which we regard as additional to what we expect to be available in
the future AVs (including low-cost vehicles). This includes a tire pressure and temperature
sensor or a measurement device to capture high-frequency power-train oscillations.

Most of the authors proposed applying a combined estimation of vehicle mass parallel to
road grade. We believe that road grade will be available in AVs, even with a certain look-
ahead from an HD map, and therefore do not consider such a solution necessary for the
application in the future AVs.

On the methodical side, we found two algorithms predominantly used: EKF and RLS
based methods, both based on a Linear-in-Parameters formulation. Kalman filter-based meth-
ods bring the advantage of additionally providing variance estimates.

We found two approaches [WK05; HW12] which linked the parameter estimation solu-
tions to their control algorithms. Their objective was to enforce additional system excitation,
which helps to increase convergence rates but comes at the cost of losing tracking perfor-
mance. We find that the main objective of a controller should be to provide optimized track-
ing performance and that decisions about future trajectories of a vehicle should be solely
taken within the trajectory planning module (on that level of granularity, on a higher level, a
decision-making module of course also affects the vehicle’s trajectories).

To the best of the author’s knowledge, the only ones who suggested estimating the vehicle
mass together with the tractive force parameters (coefficients of rolling resistance and aero-
dynamic drag) were Rhode [Rho16] as well as Altmannshofer (who seems to have changed
his name to Beyer later on) [AE+16; Bey19]. Together with [WK05; HW12], they also ad-
dressed the topic of insufficient excitation and parameter estimator wind-up while suggesting
different solutions.
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Table 6.1: Overview on methods which have been proposed for vehicle mass and parameter estimation

Method exploits Algorithm Provides

Publication Lo
n

g.
dy

n
am

ic
s

La
t.

dy
n

am
ic

s

Po
w

er
-t

ra
in

os
ci

ll
at

io
n

s

Su
sp

en
si

on
dy

n
am

ic
s

Ti
re

pr
es

su
re

R
ec

u
rs

iv
e

le
as

t
sq

u
ar

es

Ex
t.

K
al

m
an

Fi
lt

er

O
th

er

C
d
,C

r
es

ti
m

at
io

n

Ve
hi

cl
e

st
at

e
es

ti
m

at
io

n

U
n

ce
rt

ai
n

ty

N
o

ad
d.

se
n

so
r

re
qu

ir
ed

R
ea

lw
or

ld
va

li
da

ti
on

[BR+01a] x - - - - x - - - - - - x
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An overview of the methods that were applied to vehicle mass estimation is given in
Table 6.1. As shown in Table 6.1, to the best of the author’s knowledge, the concurrent
estimation of states and parameters (in the combination of vehicle mass, rolling resistance,
coefficient, and aerodynamic drag coefficient), while also addressing the problem of param-
eter wind-up during insufficient excitation has not been proposed yet. This will be the case
for the proposal we will discuss in the remainder of this chapter.

6.3 Problem formulation, analysis and solution approaches

In this section, we want to provide some preliminary results in order to be able to present the
proposed approach in Section 6.5. For a general, application-agnostic introduction to state
and parameter learning, please refer to Chapter A.

First, we want to provide a formal problem description for the combined state and param-
eter estimation problem based on the longitudinal vehicle motion equation, which includes
the formulation of various mathematical interpretations. We will see that based on these
different interpretations, distinct solution schemes can be formulated.

The first one is a reformulation of the vehicle motion equation as an equation, which is
Linear-in-Parameters (Section 6.3.1). This interpretation allows, in general, the application
of well-known recursive linear regression schemes, but we will see in Section 6.4.2 that the
naive approach will not be able to cope with effects occurring under realistic assumptions.
This method has already been applied in the context of vehicle state and parameter estima-
tion in related literature, for example, in Rhode [Rho16] and Altmannshofer and Endisch
[AE16]. One drawback of the approach is that it only provides a solution to the parameter
estimation problem, while it is not directly possible to obtain filtered values of the vehicle
states v and a at the current time step.

Another common formulation is the one as state space equation as an Ordinary Differ-
ential Equation (ODE) (see Section 6.3.1). Various Joint Estimation and Dual Estimation
schemes are available based on this formulation. These allow us to provide estimates of both
the states and the parameters concurrently.

Nevertheless, it is not straightforward to include measurements of the differential state
a with a formulation based on ODEs. Therefore, we will present an approach that can be
interpreted as a dual estimation scheme, which combines the method formulated as LiP with
a state observer based on the ODE formulation in Section 6.5.

6.3.1 Problem formulations

We consider the longitudinal vehicle motion, which was already discussed earlier and can be
modeled using the equation (3.18)

m · v̇ = Ftire −m · g · (sinϕ + Cr · cosϕ)− Cd · v2. (3.18 revisited)

We are given noisy measurements of the vehicle speed v and the acceleration a = v̇. Ad-
ditionally, although not explicitly appearing in (3.18), we can also assume to have noisy
measurements of the traveled distance s, and we know per definition that v = ṡ.

Additionally, we are provided with the knowledge about wheel torque from engine Twe,k
and brakes Tbr,k, as well as road grade information ϕ, which we can regard as known in-
put and disturbance value, respectively, although this interpretation is not important for the
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estimation problem. We, therefore, define a known input vector ue as

ue
k =





Twe,k
Tbr,k
ϕk



 , (6.1)

where the superscript in ue
k should denote that this is the input for the estimation problem,

and hope that in this way, the reader will be easily able to distinguish it from the control
input, which was denoted simply u without any superscript in other parts of this thesis.

The aim is to provide estimates x̂ of the true states x together with the parameters θ̂ ,
defined as

θ =
�

m Cd Cr
�T

, (6.2)

with vehicle mass m, aerodynamic drag Cd and rolling resistance Cr, which we all assume to
be time-varying.

As we will see, depending on the exact mathematical formulation, the quantities v, a,
and s can be regarded as states, algebraic states, used to calculate virtual measurements or
omitted from the formulation. The state vector x for which we want to obtain estimates
should, as a minimal requirement, at least consist of the vehicle speed v in order to serve as
feedback value for the predictive controller developed in Chapter 7 and Chapter 8. Ideally,
we also want to additionally provide estimates of the true acceleration values a.

Looking at the evolution of the system over time, we are given noisy measurements
Yt

.
= [y0, y1, . . . , yk], as well as past and current inputs U e

t
.
= [ue

0, ue
1, . . . , ue

k] at discrete
points in time. For simplicity, we will assume these values to be uniformly sampled, with
t = kTs, but include a more general case in the discussions in Chapter 5.

Note that in the formulation of the dynamics above, we omitted any actuator dynamics,
compared to the formulation in (3.75a), since we consider both wheel torques Twe and Tbr
together with the disturbance ϕ as known inputs for the purpose of state and parameter
estimation.

Formulation as Linear-in-Parameters (LiP) equation

A simple, yet not straightforward formulation can be obtained by reordering (3.18) such that
a Linear-in-Parameters model, as also discussed in Section 3.5.5, will be obtained. Such a
model has the general form (see also (3.86):

y θ̄ = θ̄ Tφ + ν, (6.3)

where in the problem under investigation, the (virtual) measurement, the vector of unknown
parameters, and the feature vector are given as

y θ̄ =
Twe − Tbr

reff
− amI (6.4a)

θ̄ = [m Cd m · Cr]
T (6.4b)

φ =





a+ g sinϕ(·)
v2

g cosϕ(·)



 , (6.4c)

respectively. A detailed derivation can be found in Section 3.5.5. Note that this could only be
established by using a modified parameter vector θ̄ instead of θ which contains m ·Cr instead
of Cr. Note that the assumption of additive noise, as expressed above, does not hold since
the regressor/feature vector φ is also subject to imperfect knowledge since it is composed of
both v and a, which are accessible only through noisy measurements. More formally, both
the virtual measurement y θ̄k

�

ue
k, yk

�

and the feature vector φ
�

ue
k, yk

�

are functions of inputs
and measurements.
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Formulation as Ordinary Differential Equation (ODE)

A standard formulation for Ordinary Differential Equations (ODEs) can be of the following
general form:

ẋ(t) = f (x(t), ue(t),θ ) +ω (6.5a)

y(t) = h (x (t) , ue (t) ,ν) , (6.5b)

and more specifically, it follows the ODE given in (3.66b),

v̇ =
Twe − Tbr

(θ1 +mI) reff
−

θ1g
θ1 +mI

(sinϕ + θ3 cosϕ)−
θ2

θ1 +mI
· v2 (6.6a)

y = v + νv , (6.6b)

with θ = [m, Cr, Cd]
T and ue = [Twe, Tbr]T and the process and measurement noise ω and ν,

respectively. Note that in this formulation, the measurement equation is a function of the dif-
ferential state x only, and measurements of algebraic states ẋ cannot be easily incorporated.

6.3.2 Structural observability and identifiability analysis

We provide some additional background and definitions regarding observability and struc-
tural identifiability in Section A.10. As we will see from the investigations in the following
subsections, the states and parameters of the longitudinal vehicle motion dynamics are lo-
cally observable and structurally identifiable. For the Linear-in-Parameters model, in case
the vehicle drives at constant speeds, the identifiability property will be lost. In this case, by
definition, the acceleration becomes zero.

In the following, we will first perform a structural observability and identifiability analysis
as explained in Section A.10. Then, we will investigate the circumstances for the recursion
derived from the Linear-in-Parameters form of the vehicle dynamics to be well-defined.

Analysis for the Ordinary Differential Equation model

We want to perform structural observability and identifiability analysis for the longitudinal
vehicle system defined by the time-continuous system

ẋ(t) =







Twe−Tbr
(m+mI) reff

+ −Cd
m+mI

· x1
2 + −mg

m+mI
(sinϕ + Cr cosϕ)

−1
τpwt

x2 +
1
τpwt

u1
−1
τbr

x3 +
1
τbr

u2.






(6.7a)

y(t) = x(t) =
�

v Twe Tbr
�T

, (6.7b)

with the known inputs u1 = Td
we, u2 = Td

br and u3 = ϕ.
We used the software tool STRIKE-GOLDD2 [VE+19], which is based on the Symbolic

Toolbox of MATLAB®, to calculate the observability-identifiability matrix and perform the
observability rank tests. We investigated several assumptions on the shape of the input vari-
ables, including constant inputs and ramp-shaped inputs. For the sake of brevity, and since
the resulting extended observability-identifiability matrix is large enough to become unread-
able when printed on a single page, we omit any intermediate results, but the usage of the
toolbox is straightforward given the model equations. Table 6.2 shows various evaluations
of the extended observability-identifiability matrix for different assumptions regarding the
shape of the input signals. For simplicity, we show only a subset for Tbr = 0.
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Table 6.2: Identifiability of parameters and observability of time-varying, known input depending on system exci-
tation for model (6.7) with Tbr = 0.

Input trajectory Parameter identifiable

Ṫwe ϕ m Cd Cr

Ṫwe = 0 ϕ̇ = 0 ✓ ✓ ✓

Ṫwe = 0 ϕ̇ ̸= 0 ✓ ✓ ✓

Ṫwe ̸= 0 ϕ̇ = 0 ✓ ✓ ✓

Ṫwe ̸= 0 ϕ̇ ̸= 0 ✓ ✓ ✓

We find that the model is Fully Input-State-Parameter Observable (FISPO): All its states
are observable. All its parameters are locally structurally identifiable. Note that local struc-
tural identifiability does not automatically render practical identifiability. If we perform the
same analysis for the model without input dynamics and neglecting any brake torque, we
obtain the result that the parameters are only locally identifiable in case of a time-varying
input Ṫwe. This means that for constant wheel torque, practical unidentifiability might still
occur.

Analysis for Linear-in-Parameters model

Now we want to perform a identifiability analysis using the Linear-in-Parameters model from
(3.81) and Section 6.3.1, which is given as

Twe − Tbr

reff
− a mI = [m Cd m · Cr]





a+ g sinϕ
v2

g cosϕ



 ,

with the regressor φ being

φ =





a+ g sinϕ
v2

g cosϕ



 .

In order for the inverse (regression) problem to be well-defined, we know that for a Full
Information Estimation (FIE), we need the information matrix ΦΦT of the regressor ΦN =
[φ1,φ2, . . . ,φN ] to be invertible, which means that for a certain N , the matrix obtained by
the sum

ΦNΦ
T
N =

N
∑

i=1





(ai + g sinϕi)
2 vi

2 (ai + g sinϕi) g cosϕi (ai + g sinϕi)
vi

2 (ai + g sinϕi) vi
4 g vi

2 cosϕi
g cosϕi (ai + g sinϕi) g vi

2 cosϕi g2 cosϕi
2



 (6.8)

will have full rank. This is given in general for N = 3 unless we have that ai = 0, which
is, of course, the case for constant speed vi = v = const. Then, the matrix of the sum (6.8)
degenerates to

ΦNΦ
T
N =

N
∑

i=1





(g sinϕi)
2 v2 (g sinϕi) g cosϕi (g sinϕi)

v2 (g sinϕi) v4 g v2 cosϕi
g cosϕi (g sinϕi) g v2 cosϕi g2 cosϕi

2



∀ai = 0, (6.9)
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which has a rank < 2 and degenerates even further to rank = 1 if we assume the road grade
to be constant:

ΦNΦ
T
N =





3 g2 sinϕ2 3 g v2 sinϕ 3 g2 cosϕ sinϕ
3 g v2 sinϕ 3 v4 3 g v2 cosϕ

3 g2 cosϕ sinϕ 3 g v2 cosϕ 3 g2 cosϕ2



 , (6.10)

and this becomes obvious if we additionally set the road grade value to zero ϕ = 0:

ΦNΦ
T
N =





0 0 0
0 3 v4 3 g v2

0 3 g v2 3 g2



 ∀ai = 0,ϕ = 0. (6.11)

For a recursive regression, the regressor needs to be Persistently exciting (PE) (see Defini-
tion A.10.4). This can be written as

0< αI≤

j+S
∑

i= j





(ai + g sinϕi)
2 vi

2 (ai + g sinϕi) g cosϕi (ai + g sinϕi)
vi

2 (ai + g sinϕi) vi
4 gvi

2 cosϕi
g cosϕi (ai + g sinϕi) gvi

2 cosϕi g2cosϕi
2



≥ αI<∞. (6.12)

With all diagonal entries being positive for all real parameters, this can only be fulfilled if all
diagonal entries are unequal to zero, and hence, all the following conditions are fulfilled

N
∑

i=1

ai + g sinϕi ̸= 0 (6.13)

N
∑

i=1

vi ̸= 0 (6.14)

N
∑

i=1

g2 cosϕi
2 ̸= 0. (6.15)

The last condition is fulfilled for all realistic, small road-grade angles, the second only for
nonzero vehicle speed over the entire sequence. The first condition above is clearly violated
for ai = 0 and ϕi = 0, but also, assuming constant road grade and acceleration over a short
horizon, if a = −gsinϕ.

This means that the Linear-in-Parameters estimation is not PE under the above-mentioned
conditions, which includes phases of constant vehicle speeds at zero road grade.

6.3.3 Possible solution approaches

For application in a vehicle, we are interested in a solution that is able to run at reduced
memory demand and provides immediate results in an embedded system.

Solutions based on the Linear-in-Parameters model

Recursive solutions exist for the LiP problem, like RLS or linear Kalman filtering. Neverthe-
less, the assumptions under which these algorithms are guaranteed to converge are quite
restrictive in practice, and we want to investigate them in the remainder of this section. As a
general advantage of the LiP approach, one can mention that the processing of all available
measurement channels is directly supported.
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Solutions based on the Ordinary Differential Equation model

The existing solutions based on the state space formulation of the problem can be sepa-
rated by looking at different categories. Both joint estimation schemes and dual estimation
approaches can be applied. Again, for implementation on an embedded device, recursive
methods or moving horizon approaches, which operate on mini-batches of a fixed size, are
required. The latter has the drawback that additional measurement data storage needs to
be realized, which increases the memory footprint of the solution. We focus our investiga-
tions first on recursive solutions of the Kalman filter family. These algorithms are known to
be a generalization of recursive least squares. Since we are dealing with a nonlinear sys-
tem, we investigate Extended Kalman Filters (EKF), Sigma-Point Kalman filters, Square-root
formulations of those, and particle filters as preferred methods.

We also looked into Moving Horizon Estimation, but these results are only discussed
briefly in the future work section of this work since we found the benefit of the method is not
worth the increased computational costs that come with the necessity to solve a nonlinear
program at every time step. Methods from nonlinear model adaptive control also seemed
interesting candidates but were found to be too restricted in terms of the assumptions on the
structure of the nonlinearity to be applied to the given problem.

As a result, the discussion in the remainder of this section is mostly focused on Kalman
filter-based methods, with the exception of the particle filter.

6.3.4 Challenges and shortcomings of existing approaches

Challenges for Linear-in-Parameters (LiP) estimation

We already learned in Section 6.3.2 that for our longitudinal vehicle model, under regular
operation conditions, we cannot guarantee that the system is sufficiently excited for recursive
parameter estimation to be well defined.

The assumptions under which recursive least squares methods and linear Kalman filters
are guaranteed to converge for Linear-in-Parameters models are the following. First, only
normally distributed (Gaussian) output noise is assumed. Second, the persistent excitation
condition has to be fulfilled. Both assumptions do not hold in practice. As we will show
next, Errors-in-Variables and non-normal measurement distributions can lead to bias and
even unstable estimation. All of these are present in real-world measurements for the given
problem.

General shortcomings of the LiP approach The estimation schemes formulated for the
Linear-in-Parameters model only allow the estimation of the parameters in the equation but
do not provide any filtering or smoothing of the vehicle states. In order to improve the perfor-
mance of a control algorithm, one does not want to use the raw, noisy measurements directly
as input to the control algorithm. For this reason, an additional mechanism is necessary to
provide filtered estimates of the vehicle states.

As we will see in Section 6.4.3, applying filtering, or rather smoothing prior to the pa-
rameter estimation methods can also increase the performance of the estimators based on
Linear-in-Parameters Kalman filters. Since a smoothed value in a causal setting per definition
is delayed, we will propose to use an additional state filter in the method we will present in
Section 6.5.3.

Another shortcoming is that for the LiP formulation, it was necessary to introduce the
combined parameter θ , which only contains the product mCr. Therefore, it is not possible to
consider constraints on the parameter Cr directly.
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Errors-in-Variables Assuming only Gaussian output noise for linear regression problems is
equivalent to assuming that the feature vector is known perfectly at all times. Facing ad-
ditional noise in the independent variables is known as the “Errors-in-Variables” problem
[MM00; Söd07], which causes attenuation bias. We will demonstrate this effect in a simula-
tion study in Section 6.4.2. To reduce this bias, various methods have been proposed. Among
them, and also previously applied to (recursive) vehicle parameter estimation, is Recursive
Generalized Total Least-Squares (RGTLS) [RB+14], as well as the method of Instrumental
Variables (IV) (see Rhode [Rho16] and references therein, as well as the short summary of the
method in Section A.8.6). Rhodes’s comparison of methods dealing with Errors-in-Variables
came to the conclusion that IV outperforms RGTLS for vehicle parameter estimation prob-
lems (see [Rho16], Section 5, Figure 5.10). This is why we decided to focus on the method
of Instrumental Variables with Kalman Filtering in our analysis and did not further investi-
gate Recursive Generalized Total Least Squares. The interested reader can find an overview
and additional literature on the topic in [Rho16], Section 3.6.

Insufficient excitation We presented the term persistent excitation in Section A.10.4 and
mentioned that this is the condition under which recursive linear regression is known to
converge. Not surprisingly, insufficient excitation is present if the PE condition is not fulfilled.
Then, the regression problem becomes ill-defined, and no convergence can be guaranteed.

To understand why insufficient excitation can lead to diverging parameter estimates, let
us first provide some intuition about how Kalman filtering works under regular, persistently
exciting conditions: In principle, two mechanisms are working against each other. First, the
innovation drives the estimates toward the most probable solution. The Kalman Gain acts
as a control mechanism to allow faster or slower adaptation and is proportional to the error
covariance matrix. If the confidence in the prior knowledge is high, no or only little adaption
takes place. How much this confidence is increased depends now on the information content
of the incoming data. If the data is rich, which is under high excitation, the confidence of the
estimator in its prior estimate becomes higher and would eventually become infinite. This
means the information matrix becomes infinite, and the error covariance matrix becomes
zero. With zero error covariance, we would have zero Kalman Gain, and the adaptation
mechanism would stop forever. This would also mean, in the case of time-varying parameters,
that no further learning and, hence, no tracking of the true parameters could take place. But,
under time-varying parameters, the covariance matrix needs to be lower-bounded in order to
allow tracking of upcoming parameter variations.

Now, the second mechanism, which is there to establish these lower bounds, is by adding
parameter noise to the covariance estimate in each time step. So, looking at the evolution
of the covariance or information matrix, rich incoming data leads to the effect of increased
information, while the parameter noise increases the uncertainty by adding to the error co-
variance matrix.

Now, how does this mechanism change under insufficient excitation? Then, the unin-
formative incoming data does not lead to a decrease of the uncertainty. If the increase in
uncertainty due to the parameter noise term is bigger, the error covariance matrix will grow
without bounds as long as the system is insufficiently excited. This effect is called estimation
error covariance wind-up and means that some of the eigenvalues of the covariance matrix
grow to unacceptably large values [SG02]. The result is numerical problems and a high
sensitivity to noise.

Since the Kalman filter for the parameter estimation problem can be seen as a generalized
variant of linear recursive least squares, this effect is also happening in a similar fashion
within the RLS family of algorithms.

Apart from different variable forgetting schemes that have been proposed for RLS, a coun-
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termeasure that can be applied to Kalman Filter formulations with scalar observations was
presented by Stenlund and Gustafsson [SG02]. Apart from their original proposal to name it
Adaptive Kalman Filtering, today it is commonly known, after the names of the originators, as
Stenlund-Gustafsson anti-windup scheme (see Section A.8.5). The term adaptive in Stenlund-
Gustafsson filtering is related to the process noise covariance matrix, which is controlled in
an adaptive fashion, depending on the information content of the incoming data. Then, the
parameter error covariance matrix can be driven to a desired value, which turns out to guar-
antee not only lower but also upper bounds, even during insufficient excitation. This desired
value for the error covariance matrix is the tuning parameter of the Stenlund-Gustafsson (SG)
scheme. A detailed analysis of the convergence properties and covariance bounds is given in
Evestedt and Medvedev [EM05]. The topic of insufficient excitation within RLS and Kalman
Filter (KF) schemes is still an area of active research; see, for example, Shin and Lee [SL20].

Again, the application of Stenlund-Gustafsson adaptation to the vehicle parameter esti-
mation problem has already been previously proposed by [Rho16] and also [AE16].

We will also use the SG adaptation scheme in our studies, and the effect of the algo-
rithm under lack of sufficient excitation will be demonstrated, again, the simulation study in
Section 6.4.2. See also Figure 6.2 for the results.

Measurement outliers Standard recursive least-squares and Kalman Filter implementa-
tions are based on the assumption that only additive, zero-mean, and normally distributed
measurement noise is present. This Gaussian noise assumption is violated in the presence
of measurement outliers or if the probability density functions of the noise process follow
distinct distributions.

In the context of vehicle parameter estimation as considered in this chapter, we know
from investigations performed by Altmannshofer, Endisch, et al. [AE+16] that the measure-
ment noise distribution for the Linear-in-Parameters model shows heavier tails than given
by the Gaussian probability distribution. They suggested that the noise distribution of data
obtained from vehicle experiments can be approximated as well as Student-t distributions
[Stu08]. This distribution is similar to the Gaussian one but shows heavier tails, as presented
in Section A.9.5.

As a countermeasure to the presence of outliers, both [RH+16] and [AE+16] suggested
to apply robust M-estimation schemes [MP+21]. We presented M-estimation schemes in Sec-
tion A.9 and discussed existing approaches, of which some resemble standard linear Kalman
filters but with additional weight factors that depend on the loss function of the M-estimation
scheme.

We will demonstrate in a simulation study in Section 6.4.2 how the presence of heavy-
tailed noise can deteriorate the performance of recursive Linear-in-Parameters estimation and
how robust M-estimation schemes can help to regain acceptable performance.

Challenges for Joint and Dual Estimation schemes

In general, the application of joint estimation schemes works by augmenting the state space
with ordinary differential equations for constant parameters and is straightforward. Standard
estimators can be used afterward, but the observability of the augmented system has to be
given. For nonlinear systems, the observability is operation point dependent, and phases
without observability might be reached. For the given problem, observability was investigated
in Section 6.3.2. If standard Kalman filter-based estimators are used, one has to consider that
they are designed under the Gaussian noise assumption, and only a certain robustness is given
in the presence of outliers. Also, here, it is not straightforward to constrain the solution, and
special care has to be taken. Due to the increased dimension of the augmented state space in
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joint estimation schemes, higher computational costs arise. For dual estimation approaches,
one has to consider that the state and the parameter estimator cannot just be applied without
further measures, and interdependence has to be considered.

Signal pre-processing for vehicle applications

As will be shown in the subsequent sections, the correct signal pre-processing method can
have a beneficial impact, especially on the methods for the LiP approach. This has been
suggested earlier for the problem of vehicle parameter estimation. For example, [RH+16]
applied Savitzky-Golay smoothers and prosed a recursive version of it, which they called PKS
smoother, to pre-process raw measurements of vehicle speed and acceleration.

Theoretically, with Kalman filters, applying signal filters prior to using the data within
the Kalman filter is not necessary and might even deteriorate their performance under nom-
inal measurement noise conditions. Nevertheless, as we will also demonstrate in the next
sections, the effects of Errors-in-Variables can be reduced by doing so. Typically, each mea-
surement channel is treated independently of the remaining measurements when applying
these filtering or smoothing operations. Since we are dealing with distance, speed, and
acceleration values, which per definition have an interrelation as one being the first-order
derivative of the other, the following question arose: can we exploit this knowledge without
imposing any further assumptions about the evolution of these quantities? The result of these
investigations led to the proposed DeePLS algorithm, which is presented in Chapter 5, and
its recursive counterpart, the DeePKS smoother.

In the following sections, we will investigate how combining the DeePLS algorithm can
improve the parameter estimation quality of the problem under investigation.

6.4 Preliminary investigations

In this section, we want to present two simulation studies to analyze various estimators and
pre-processing methods based on the LiP formulation. First, we want to explain some details
on the simulation environment used for these studies.

6.4.1 Simulation environment 6.1

Simulation environment description

The purpose of this simulation environment is to create trajectories for the signals x(t), Φ(t),
a(t), v(t), and θ (t) which obey the Linear-in-Parameters equation

x(t) = Φ (a(t), v(t), t)θ (t). (6.16)

Above, x is the state, θ a parameter vector, while t = [1,1e5] s. Φ is a regressor vector
calculated from the trajectories of a(t) and v(t). All trajectories are then sampled at a sample
time of ∆t = 1s. This data will then be used as ground truth to calculate several noisy
observations, which will then be used to compare the performance of various estimation
algorithms.

This experiment was inspired by the one described in [Rho16], Section 3.5.6, but modified
to be more similar to the longitudinal vehicle parameter estimation problem.
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Calculation of parameter vector. We define a time-variant parameter vector θ as follows:

θ (t) =

(�

1 2 3
�

, if t ≤ 50000
�

1 2.5 3
�

, otherwise.
(6.17)

Calculation of acceleration and speed trajectories. We further calculated trajectories of
acceleration a(t), velocity v(t), and in addition, although not directly needed for the calcula-
tion of Φ, the distance d(t) according to

a(t) = sin
�

2π t
50

�

sin
�π t

50

�

(6.18)

v(t) =
25
�

3 sin
�

π t
50

�

− sin
�3π t

50

��

3π
+ 12 (6.19)

d(t) =
40000 cos
�

π t
100

�6

9π2
−

20000cos
�

π t
100

�4

3π2
+ 12 t, (6.20)

were the expressions for v and d were obtained by integration of the sinusoidal acceleration
given in expression (6.19).

Calculation of regressor vector. Next, we obtained a time-varying regressor vector Φ(t)
according to

Φ(t) =
�

v(t) + νv (a(t) + νa)
2 g
�

, (6.21)

with the gravitational constant g = 9.81 and the trajectories for a and v as defined in (6.18).
This formulation resembles the regressor of the Linear-in-Parameters formulation of the lon-
gitudinal vehicle equation given in (6.4), with zero road grade. νv and νa is measurement
noise to simulate Errors-in-Variables and its definition will be scenario dependent. To calcu-
late the ground truth, these are set to zero.

Calculation of noisy observations. We then calculate noisy observations for the measured
output y(t) The Observations y(t) then calculated according to

y(t) = Φ(t)θ (t) + νy , (6.22)

where νy denotes output noise and will be drawn from distributions that are scenario-
dependent.

Scenario 1. Only Gaussian output noise For Scenario 1, we use normally distributed
output noise νy with σ2

y = 0.02 only, while νa, νv, νd are set to zero.

Scenario 2: Errors-in-Variables We also add Gaussian noise to the signals in the regressor
vector, where the variances of the normal distribution were chosen to be σ2

y = 0.02 and
σ2

a,v,d = 0.005.

Scenario 3: Insufficient Excitation To additionally simulate a phase of insufficient excita-
tion, we calculate all signals in analogy to Scenario 2, but this time, we set

a(2500≤ t ≤ 7500) = 0 (6.23)

v(2500≤ t ≤ 7500) = v(2499). (6.24)

prior to the calculation.
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Scenario 4: Measurement outliers In a last variation, which introduced outliers, instead
of using normally distributed noises, we sample noise from a Student-t distribution for all
noise values with νs = 3 degrees of freedom.

6.4.2 Simulation study: Effect and countermeasures for challenges in LiP estimation

We want to demonstrate how the various challenges of Errors-in-Variables, insufficient exci-
tation, and the presence of measurement outliers deteriorate the naive, recursive parameter
estimation algorithms based on Linear-in-Parameters Kalman filtering. Also, how various
countermeasures proposed in the literature help to overcome these challenges. For this pur-
pose, we perform the following experiment.

Experiment 6.1

We run various simulations with Simulation Environment 6.1 described in Section 6.4.1. In
this simulation environment, noisy trajectory data is generated, which is calculated based
on the piece-wise constant parameter vector θ . We run all different scenarios described in
simulation environment 6.1, for which different algorithms try to obtain the true parameter
estimates. We quickly want to repeat the simulation scenarios which are simulated:

1. Scenario 1: Only Gaussian output noise is present

2. Scenario 2: Errors-in-Variables (additionally)

3. Scenario 3: Insufficient excitation (additionally)

4. Scenario 4: Measurement outliers (additionally)

For all four scenarios, we calculate estimates by using the four algorithms shown in Table 6.3.

Table 6.3: Overview over Algorithms and their ingredients used for Experiment 6.1.

Algorithm name Instrumental
Variables

(IV)

Anti-
windup

(SG)

Robust
Estimation

(M)

Constraints
(C)

Algorithm

KF x x x x Algorithm 8

KF-IV ✓ x x x Algorithm 9

SG-KF-IV ✓ ✓ x x Algorithm 11

M-SG-KF-IV ✓ ✓ ✓ x Algorithm 15

We obtain a 4× 4 matrix of result plots, which can be observed in Figure 6.2.

Result discussion for Experiment 6.1

Results of Experiment 6.1 are shown in Figure 6.2. We see a 4× 4 matrix of result plots with
different challenges for the estimators in each column and different algorithms in each row.
We will discuss each column in the following.
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Figure 6.2: Comparison of simulation results of Experiment 6.1. Thin lines show true, bold lines show estimated
values for θ1 (black), θ2 (red) and θ3 (blue).

Gaussian output noise and standard Kalman Filter (KF) Figure 6.2, Column 1.
Top-left of Figure 6.2, we can observe how well a standard Kalman filter behaves when only
Gaussian output noise is present. We can see that the parameter estimates converge quickly
to the true values, and the filter is also capable of adjusting to the parameter step happening
at t = 5000.

Errors-in-Variables and Instrumental Variables (IV) Figure 6.2, Column 2.
For the plot in Column 2, we added Errors-in-Variables and observed that the standard
Kalman Filter is not capable of producing bias-free parameter estimates anymore. One pos-
sible countermeasure is shown below in the second subfigure from top and left. The entire
second row shows results of an algorithm denoted by KF − IV , which uses Instrumental
Variables to compensate the bias introduced by the Errors-in-Variables.
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Insufficient excitation and anti-windup (SG) Figure 6.2, Column 3.
The results of column 3 correspond to Scenario 3, where a phase of insufficient excitation
was present, which is marked by the gray area in the plots. Both the standard Kalman filter
(KF) and the version with Instrumental Variables (KF-IV) suffer from the parameter-windup
effect during the phase of insufficient excitation. This causes the filter to become unstable
and diverge.

The third row in Figure 6.2 shows results of the SG-KF-IV Kalman filter (see Algorithm 11),
which additionally uses the parameter noise adaptation scheme according to Stenlund-
Gustafsson [SG02]. We can see that this mitigates the effect of insufficient excitation and
eliminates divergence caused by the error-covariance wind-up. While during insufficient ex-
citation, parameter learning cannot take place, tracking θ2 to the new value at t = 5000
is impossible since not enough information is available to the algorithm. Nevertheless, as
soon as the excitation is again rich enough, at t = 7500s, the algorithm quickly adapts to the
modified parameter value.

Measurement outliers and robust M-estimation Figure 6.2, Column 4.
In the last column of Figure 6.2, results are shown with measurement noise containing out-
liers according to Scenario 4. One can see that with all algorithms discussed so far, in rows
one to three, the effect of outliers cannot be mitigated. The bottom row of Figure 6.2 shows
results of a robust M-Estimation algorithm (M-SG-KF-IV, see Algorithm 15).

Conclusion from Experiment 6.1 From the observations of Figure 6.2, we could conclude
that the best choice for an estimator that can deal with all the challenges present in real-
world estimation would be the robust M-estimation Stenlund-Gustafsson Kalman Filter with
Instrumental Variables, which we denoted with the M-SG-KF-IV algorithm (see Algorithm 15)
throughout this thesis. Remember that this algorithm is similar to the one proposed by
[Rho16], p. 162, except that we did not use a Huber loss function but used an M-estimation
scheme as used by [AE16], which applied a loss function derived from the Student-t distri-
bution. So far, this observation is in line with the experiments performed in [Rho16], where
he found this algorithm to also perform best.

Nevertheless, as we will see from the more detailed Monte-Carlo simulation study pre-
sented in Section 6.4.3, we will find that for this particular scenario, the method of Instru-
mental Variables is not robustly providing error covariance matrices which are positive defi-
nite, and therefor often shows diverging parameter estimates. Let us, therefore, have a closer
look at these additional results before drawing early conclusions.

6.4.3 Simulation study: Effect and importance of signal pre-processing for recursive
LiP estimation

The purpose of this study is to compare (1) different estimation strategies and algorithmic
ingredients together with (2) various signal pre-processing methods and to evaluate their
estimation performance. This is with regard to (a) robustness to Errors-in-Variables, (b)
insufficient excitation, and (c) measurement outliers in the form of non-normal measurement
noise.

Experiment 6.2

In this experiment, we also use Simulation Environment 6.1 described in Section 6.4.1, while
the simulations are performed only on Scenario 4. As a reminder, Scenario 4 was configured
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to run with (a) Errors-in-Variables, (b) insufficient excitation, and (c) measurement outliers
in the form of heavy-tailed measurement noise drawn from a Student-t distribution.

The experiment consists of performing a Monte-Carlo simulation using noise data ob-
tained from a random generator with different seeds over a number of 100 simulations. This
series of Monte-Carlo simulations runs over a broad variety of combinations of (1) different
estimation algorithms and (2) different pre-processing methods, which will be listed next.

Overview of algorithms used for comparison A selection of the algorithms used for com-
parison and evaluation is shown in Table 6.4. Additionally, we also run variants of the same
algorithms using the regular form of the covariance update, while the algorithms listed are
given using the more robust Joseph’s form (see Section A.9.6). Nevertheless, this resulted
in the exact same result as with the corresponding algorithm, and therefore, we omit these
results. Note that most of these algorithms and ingredients were also proposed and investi-
gated by Rhode [Rho16]. While we re-implemented these algorithms for consistency in our
own environment, we evaluated the results against the code examples provided by Rhode
[Rho16] for download as supplementary material. An exception is the algorithm proposed
by Altmannshofer, Endisch, et al. [AE+16] and M-SG-KF-IV-C, which is a combination of the
algorithms by [Rho16] and [AE+16].

Table 6.4: Overview over Algorithms used for Experiment 6.2.

Algorithm name Instrumental
Variables

(IV)

Anti-windup
(SG)

Robust
Estimation

(M)

Constraints
(C)

Algorithm

KF x x x x Algorithm 8

KF-IV ✓ x x x Algorithm 9

SG-KF x ✓ x x Algorithm 10

SG-KF-IV ✓ ✓ x x Algorithm 11

SG-KF-C x ✓ x ✓ Algorithm 12

M-KF x x ✓ x Algorithm 13

M-SG-KF x ✓ ✓ x Algorithm 14

M-SG-KF-IV† ✓ ✓ ✓ x Algorithm 15

M-SG-KF-C‡ x ✓ ✓ ✓ Algorithm 16

M-SG-KF-IV-C ✓ ✓ ✓ ✓ Algorithm 17

† Modified from [Rho16], with Student-t loss function as in [AE+16]

‡ Altmannshofer, Endisch, et al. [AE+16]

Overview of methods used for signal pre-processing We used the following smoothing
and filtering algorithms prior to the estimation algorithms, while the pre-processed data was
used as input to the estimators.

• Butterworth filter (BW) [But30]

• SaG-smoother [SG64]

• PKS-smoother [Rho16]
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• DeePLS-smoother (see our proposed Algorithm 2)

• DeePKS-smoother (see our proposed Algorithm 3)

While the first ones are well known, the last two are the smoothing algorithms, which we
will propose in Chapter 5, the DeePLS, and the DeePKS algorithm. The results are given in
Table 6.5 and Figure 6.3, while a discussion can be found in Section 6.2.

Comments on Experiment 6.2

Although also a candidate for tackling the Errors-in-Variables problem, we did not consider
evaluating any Recursive Generalized Total Least-Squares (RGTLS) approach since the exist-
ing algorithms lack robustness against outliers as reported in [Rho16], p. 159.

The choice of filtering and smoothing algorithms was originally motivated by Rhode
[Rho16], who mentioned on page 135 that they used “a third order Butterworth filter with
1 Hz cut-off frequency” on all CAN signals in their publications [RG12] and [RB+14], where
they applied a total least-squares approach. Nevertheless, he stated that for his final experi-
ments, “all CAN signals pass a bank of independent PKS with the same configuration.” This is
the reason we include the PKS method in our investigations. We will propose a generalization
of PKS in Chapter 5. Since the proposed method of DeePLS smoothing is a generalization of
SaG, the latter was also included.

Discussion of results for Experiment 6.2

The results of Experiment 6.2 can be found in Table 6.5 and a visualization of the error
statistics of a selection of best-performing algorithm and pre-processing method is shown in
Figure 6.3.

Discussion of Table 6.5 We find error statistics over all simulation runs in the form of the
norm of the Root Mean Square Error (RMSE) of the parameter estimation errors vector. For
each combination of the pre-processing method with an estimation algorithm, we show the
median, minimum, and standard deviation of the norm of the root mean squared error. In
the rightmost column, we further show an indicator if, over all runs, the error covariance
matrix P within the Kalman filter variant was positive definite. We can observe that the latter
was not the case for all estimation algorithm variants which used instruments (IV). The table
is sorted, showing results with the lowest median RMSE on top.

We can observe that the best results, in terms of median RMSE, are the ones obtained
using our proposed pre-processing smoothers DeePLS and DeePKS. At the bottom, methods
involving Instrumental Variables IV perform worst, although the minimum values show that
in some cases, good results can be obtained. These are examples only, as the one shown in
the results of the previous Experiment 6.1, while the variance in these results is very high.
We observed that the filters with IVs can be tuned such that specific examples achieve good
results, but we did not manage to find a setting that was consistently good over all Monte-
Carlo runs. Rhode already mentioned in [Rho16] p.182 that the method of Instrumental
Variables is only applicable under certain conditions. One of them would be if the noise is
auto-correlated, for example, when white noise runs through a Butterworth filter. Note that
for this experiment, we did not use colored measurement noise but used noise drawn from a
Student-t distribution. In any case, a more solid investigation of the exact conditions under
which the method can be applied would be necessary for the application in a production
environment. In summary, we found this method very difficult to apply.

Looking back at the top performers, we find it surprising that the SG-KF-C method per-
formed best in this example. Only looking at Experiment 6.1, we would have expected that
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a robust variant with an M-Estimation scheme would perform best. Nevertheless, the results
are very close, while the M-SG-KF-C filter, in second place, shows less in the standard devi-
ation. This could be interpreted in that in exchange for performance, the robustness of the
approach against different noise settings is traded. In any case, it seems that the proposed
smoothers (DeePLS and DeePKS) are able to robustly improve the results for a variety of
estimators.

We want to explain this by the capability of the algorithms to leverage measurements from
more than one channel, which inherently makes them robust against outliers - even without
explicitly considering that the noise patterns are non-normally distributed. This seems to
have a positive effect on the parameter estimators and makes the need for robust parameter
estimators (using the M-scheme) redundant. This can be seen very well in the graphical
presentation of Figure 6.3.

Discussion of Figure 6.3 Figure 6.3 shows a selection of the best performing Kalman Filter
variants over different pre-processing methods of a Monte-Carlo simulation performed over
100 runs from Experiment 6.2. More details of the same simulation study are provided in the
numerical Table 6.5.

Looking at Figure 6.3, we can see Box - Charts with the error statistics of the norm of
the RMSE of the parameter estimation errors. Results are grouped from left to right with
estimators running on raw data (“none”), through a Butterworth filter (BW), a Savitzky-
Golay (SaG) smoother and the proposed DeePLS-smoother. As expected from Experiment 6.1,
without any pre-processing, the robust estimator variants (M) clearly outperform their non-
robust counterparts. In this scenario, the effect of adding constraints is relatively low, but of
course, in practice, this seems a useful way to be more robust against spurious outliers that
might occur in reality. The results using Butterworth filters on all signals can be observed to
show higher errors. This is most likely the case since they introduced an unequal lag into the
measurements, leading to this effect.

With Savitzky-Golay (SaG) smoothers, we can already see an improvement for all shown
estimators. We still see that the robust M-estimators outperform the non-robust versions,
both in absolute errors as well as in the variance of the results.

The results obtained using the proposed DeePLS smoother clearly outperform all others.
Also, the pre-processing obtained by the DeePLS smoother seems to robustly improve the
results, such that the estimator, based only on the SG anti-windup, is able to outperform the
others. This can also be seen when looking at numerical values presented in Table 6.5. For
example, the best result obtained using the SaG-smoother is over 28 percent over the median
error seen with DeePLS.

Conclusions from Experiment 6.2

We could see that pre-processing the values with smoothing algorithms prior to running
the estimators can lead to substantial performance gains. The method that performed best
for this scenario was the proposed Derivative-exploiting Polynomial Least Squares (DeePLS)
method. It also seems the method is very robust to the heavy-tailed noise without any further
algorithmic considerations. In this particular scenario, the recursive version of the proposed
algorithm, DeePKS, also showed good performance but did not outperform our other method.
This can most likely be explained by the fact that the trajectories in Experiment 6.2 are based
on sine waves and, therefore, are difficult to reconstruct using a method suited for signals,
which can be described as piece-wise constant polynomials.

Clearly, from the results obtained by this experiment, the method of Instrumental Vari-
ables (IV) seems not to be the method of first choice, at least not without further studies on
the conditions when this method fails.
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Figure 6.3: Comparison of various filtering methods and algorithms for the Linear-in-Parameters estimation prob-
lem of Experiment 6.2. Box-plots of error statistics (∥RMSE∥) over 100 Monte-Carlo simulations. We can observe
how the proposed DeePLS smoother helps to reduce estimation bias and variance, performing best.

6.4.4 Simulation study: Comparison of existing Joint Estimation algorithms

In this simulation study, we want to evaluate and compare the performance of various joint
estimation schemes, which allow for concurrent estimation of states and parameters. We
identified the algorithms EKF, Unscented Kalman Filter (UKF), and Particle Filter (PF) as
promising candidates for the vehicle state and parameter estimation problem. To evaluate
the algorithms, we will perform simulations of the scenario and experiment described in the
following Section 6.3.

Experiment 6.3

We run a comparison of the following five joint estimation algorithms

1. Extended Kalman Filter (EKF)

2. Unscented Kalman Filter (UKF)

3. Particle Filter (PF) with N = 1e4, N = 1e5 and N = 1e6 particles.

We created a ground truth of vehicle trajectories from Simulation Environment 6.2, which
we use for recursive joint estimation of the parameters m, Cd, Cr, and to concurrently ob-
tain a filtered vehicle speed value. The simulation scenario we use to evaluate the estima-
tion algorithms consists of tracking a dynamic vehicle speed reference trajectory, which is
based on velocity data defined by the Worldwide harmonized Light-duty vehicles Test Cy-
cles (WLTC) Class 3 cycle, which is part of the Worldwide Harmonised Light Vehicle Test
Procedure (WLTP) procedure defined by United Nations Economic Commission for Europe
(UNECE) [UNE19]. The road slope is held constant at values of zero. Note that here, we
use the unmodified reference trajectories as defined by the WLTP. For the particle filter, we
performed a hyper-parameter sweep with different numbers of particles: N = 1e4, N = 1e5
and N = 1e6, since with lower numbers, no meaningful result could be obtained.
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Simulation environment 6.2

The simulation environment is, in principle, identical to the one given in Simulation Envi-
ronment 8.1, using parameters as given in Table 6.6. See Section 8.5.1 for further details.
Here, the ground truth was created using the baseline PID controller to follow the desired
trajectory, as described in Chapter 7. For the Unscented Kalman Filter, we used the same
parameters as for the Extended Kalman Filter. The parameters specific for the UKF where
chosen as α= 0.5, β = 2 and κ= 0.

For the particle filters, we used the same state transition function with the augmented
state as for the Kalman filters and added normally distributed process noise with a noise
covariance matrix diagonal given as [1e − 5; 1e − 7; 1e − 7; 1e − 8; 1e − 6]2. To calculate the
measurement likelihood function, the assumption of a multivariate normal error distribution
with zero mean and variance one was taken. An overview of all the parameters for the
estimators EKF, UKF and PF are shown in Table 6.6.

Implementation details of Simulation Environment 6.2

Simulation Environment 6.2 was realized in MATLAB® [Mat19b] R2019a. The sample time
for both simulation and estimation algorithms was chosen to be 10 ms. In order to track
the reference speed profiles, we used a standard PI controller with feed-forward, which was
also used as a baseline in Chapter 7, where further implementation details can be found. We
added noise to the measurements of vehicle speed and acceleration, with standard deviations
of σv = 0.03 and σa = 0.02, respectively. The initial values for the estimated vehicle states
were assumed to be known, with the vehicle starting at a standstill. The initial value of the
parameter estimates m̂0 was set to 1400 kg instead of the true value of 1200kg. Ĉd,0 was set
to a value of 10 % above the true value of 0.015. Ĉr,0 was set to a 20 % above the true value
of 0.4262 used in the simulation. Please also note that we start the simulation at t=11s of
the WLTP cycle, which is the time when the vehicle starts moving in the WLTP cycle.

Table 6.7: Simulation results: RMSE values of joint estimation algorithms. The UKF outperforms all alternative
solutions.

RMSE UKF EKF PF, N=1e4 PF, N=1e5 PF, N=1e6

v 0.0055728 0.0064713 0.3708564 0.6626081 0.0354357
m 15.9673384 15.9677569 19.0084108 18.2456309 17.7620933
Cd 0.0105784 0.0116569 0.0372842 0.0488737 0.0090376
Cr 0.0002899 0.0002935 0.0007469 0.0004780 0.0003290

Discussion of results for joint estimation comparison

Figure 6.4 shows a comparison of simulation results for the different joint estimation algo-
rithms, namely the EKF, the UKF and three Particle Filters (PFs) with a varying number of
particles N . The plot shows the average computation times (on a logarithmic scale) on the
abscissa versus the norm of the Root Mean Square Errors (RMSE) of the estimated states and
parameters on the ordinate.

Particle filter results One can observe that although the particle filter improves with a
higher number of particles N , one cannot find an improvement over the less computationally
intensive alternatives, the UKF and the EKF, which have considerably lower computation
times. Quantitative details of the results can also be found in the detailed error statistics
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Figure 6.4: Results from Experiment 6.3. Comparison of simulation results for different joint estimation algorithms
Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and particle filters (PF) with different sample sizes
N. Plot shows average computation times (on a logarithmic scale) versus the norm of the Root Mean Square
Errors (RMSE). Find a discussion in Section 6.2.

given in Table 6.7. We omit a presentation of qualitative results for the sake of brevity but
want to mention that the particle filter with the lowest number of particles (N=1e4) is not
capable of converging even to the vicinity of the true parameter solution.

Kantas, Doucet, et al. [KD+14] reports this behavior is a known problem when applying
the particle filter to the parameter estimation problem, arising due to particle degeneracy.
If an insufficient number of particles are present in the region of the true parameter combi-
nation, it is very unlikely that new particles are generated in that region. We tested several
different re-sampling methods, which were reported to help mitigate this problem. These
were the residual, stratified, and systematic methods, together with dynamically triggering
the re-sampling, based on the number of effective particles as described in [LB+15]. As
mentioned in Kantas, Doucet, et al. [KD+14], increasing the particles to a number of N=1e6
helps to partly overcome this problem. Due to the complexity of O(N) of the particle filter,
this increases the computation time by a factor of 100. Please note that the experiment was
performed only on a single run and not on a series of Monte Carlo simulations. This lies
in the fact that one single run for the particle filters with N=1e4, N=1e5, and N=1e6 lasts
more than 25 hours to simulate the WLTP cycle of 1800 seconds in real-world time. While
this provides sufficient data for the evaluation of the computation times, only the tendency
of the estimation quality becomes evident. Nevertheless, we did not find a Monte Carlo sim-
ulation would lead to any other insights for the following reasons. First, the particle filter
seemed to be rather difficult to tune, at least for our application. An additional drawback is
the stochastic nature of the Sequential Monte Carlo filter. This not only adds complexity to
the tuning process but is also not a desirable property when using the filter output to adapt
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Figure 6.5: Relative comparison of estimation performance between EKF and UKF.

a model used in a closed-loop controller. Last but not least, finding the following statement
in the preface of Rawlings, Mayne, and Diehl [RM+17], in the context of model predictive
control, does not motivate to explore this path any further: “As with many sample-based
procedures, however, it seems that all of the available sampling strategies in particle filtering
do run into the curse of dimensionality. The low density of samples in a reasonably large-
dimensional space (say N = 5) leads to inaccurate state estimates. For this reason, we omit
further discussion of particle filtering in this edition.”

Also, in a setting where the process and measurement noise is unimodal and close to
normally distributed, the Unscented Kalman Filter can be seen as an "intelligent" particle
filter (see [Sim06], p. 471), in which the particles are not randomly distributed.

Comparison between EKF and UKF Looking at the numerical results given in Table 6.7,
we can calculate a relative improvement of the UKF compared to the EKF. This relative im-
provement is illustrated in a graphical way in Figure 6.5. We find the RMSE of the vehicle
speed estimation reduced by over 13% and over 9% for the aerodynamic drag parameter Cd.
Hence, the UKF clearly outperforms the EKF. This comes at the increased computational cost
of a mean value of 0.88 ms for the UKF versus only 0.45 ms for the EKF in our experiments.

Result discussion As just discussed, the comparison between EKF and UKF shows improve-
ments in performance when using the Unscented Kalman Filter. Another advantage of the
Unscented Kalman filter lies in the reduced implementation effort since no a priori calculation
of the Jacobians has to be provided. Another advantage could be the improved robustness
in the presence of locally weakly unobservable states. [MO+09] showed this in their exper-
iments but without giving further theoretical insights. The trade-off between performance
and estimation quality clearly has to be discussed in an overall context for automotive en-
gineering. One might want to consider that for the purpose of calculating the input to an
adaptive nonlinear feedback controller, being able to run at a higher frequency than the con-
troller is a desirable property. This has been reported to help stabilize the adaptive control
loop, as mentioned in [GP17].

To conclude, the Kalman Filter variants show good performance at a very low compu-
tational cost. We also need to mention at this point that our implementation was not yet
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optimized for performance and that generating efficient C-code would be possible from our
current implementation in MATLAB®. With this possibility in mind, we will further evaluate
the joint UKF estimator in the experiments of Section 6.6.

6.4.5 Conclusion of results from preliminary investigations

We learned that although, at first glance, solutions based on the Linear-in-Parameters form of
the longitudinal motion equation seem quite straightforward, many additional countermea-
sures are necessary to be able to provide a robust solution under realistic noise assumptions.
These countermeasures have already been explored in the baseline solutions presented in
Rhode [Rho16] and Altmannshofer, Endisch, et al. [AE+16], but their results can be sub-
stantially improved by using our proposed signal smoothing algorithm from Chapter 5.

Still, the joint estimation schemes similar to the one proposed in our own work in [BK16a]
seem an interesting path to consider.

Clearly, one major disadvantage of the approach based on the LiP formulation is the
shortcoming that it does not explicitly allow for estimation and filtering of the state value.
This becomes especially important in the context of longitudinal tracking, an aspect that was
not directly discussed in both references.

Another disadvantage of the approach is that one cannot directly estimate all three un-
known parameters independently, since to obtain the equation in LiP form, we needed to
perform a transformation which only allows to measure the combined parameter Cr ·m. This
also means that constraints can also only be applied to this combined parameter, which turns
out to be a rather limiting factor when considering constraints. One advantage of the LiP-
based estimators, at least when combined with the proposed DeePLS scheme, is the capability
to converge at a very fast rate to the vicinity of the true parameters.

Therefore, we still want to consider both approaches in further evaluations. To obtain
smooth estimations for the vehicle state as well, in the subsequent sections, we want to
enhance the estimators based on the LiP formulation with another estimator solely for this
purpose. We will present this solution in the following section.

6.5 Proposed solution for combined vehicle state and parameter estima-
tion

As just mentioned in Section 6.4.5, we found that the solution based on the LiP formulation
of the longitudinal motion equation has the capability to converge quickly to the vicinity of
the true parameters. This was at least true if the estimator is combined with our proposed
signal smoothing algorithm DeePLS, which we will derive in Chapter 5. To compensate for
the shortcoming that with this approach, only parameters but no states can be estimated, we
want to propose an enhancement, where we combine the LiP-based estimator with a con-
ventional state estimator. We will propose to use an estimator of the Kalman filter family for
this task also. Combining state and parameter estimators in separate algorithms is typically
termed a dual filtering approach. It is well known that in order to achieve convergence of the
solutions, one needs to consider the fact that the two problems are interlinked. Therefore,
the algorithms need to be interlinked as well.

We want to stress at this point that the way we treat the problems is non-standard. We
rather want to benefit from the best of the two worlds: the fast convergence properties of the
parameter estimator based on the LiP approach and combine it with a state estimator based
on a formulation of an ordinary differential equation. We are only aware of solutions for dual
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estimators, where both the parameter and the state estimator are based on a formulation as
ODE.

The remainder of this section is organized as follows: In Subsection 6.5.1, we explain the
overall architecture of the proposed approach. In Subsection 6.5.2, we derive an enhance-
ment of the algorithm, on which we base the state estimator of the dual estimation scheme. In
Subsections 6.5.3 and 6.5.4, we summarize two variants of the obtained algorithm, of which
the first one is based on signal pre-processing using our DeePLS algorithm for smoothing,
while the second uses DeePKS. Both of these smoothers will be derived as novel algorithms
in Chapter 5. In Subsection 6.5.5, we want to critically discuss some of the limitations of the
proposed approach.

6.5.1 Proposed dual estimation scheme

We propose a combined state and parameter estimation algorithm that has the following
architecture.

Similar to dual estimation algorithms, we propose to use separate but interlinked algo-
rithms for state and parameter estimation. The parameter estimator shall consist of the con-
strained M-estimation filter with adaptive process noise according to the Stenlund-Gustafsson
anti-windup scheme, and hence be similar to the one proposed in [AE+16], but with the fol-
lowing differences: First, we use Joseph’s form of the Kalman filter equations to improve
numeric stability by making sure the covariance matrix remains positive and definite. Sec-
ond, and most important, we want to feed the algorithm with the smoothed input values
calculated by the DeePLS smoothing algorithm, which we develop in Chapter 5. We evalu-
ated this algorithm already in Section 6.4.3 and found improved performance compared to
the baseline solutions.

For the state estimation algorithm, we propose to apply a filter from the Kalman filter
family but will have to derive an enhancement that allows us to consider the dependency of
the current state of the parameter estimator. For this purpose, we choose to base these en-
hancements on a Square-root Central Difference Information Filter Square-root Central Dif-
ference Information Filter (SRCDIF) as originally developed by Liu, Worgotter, and Markelic
[LW+12]. The reasons for this choice are as follows:

First, from our experiments comparing the EKF with the UKF in Section 6.4.4, we learned
that the Sigma-Point filter showed improved performance at only a slightly increased com-
putational cost. Second, when considering the dependency from the interlinked parameter
estimator, we found numerical issues due to non-positive-definite error covariance matrices
when using the standard UKF filter. The proposed SRCDIF was reported to prove stable and
provide guarantees for the positive-definiteness of the error covariance matrices at reduced
computational costs than other variants.

Next, we want to present a slight modification or enhancement to the original algorithm
as proposed in [LW+12]. While the standard SRCDIF assumes that parameters of the state
evolution function are known, in our formulation, we treat them as random Gaussian vari-
ables, of which we know the mean and the error covariance matrix. This allows the creation
of the necessary link to the parameter estimator. Find the derivation of this algorithm in
Section 6.5.2.



118 6 Combined Vehicle State and Parameter Estimation

6.5.2 SRCDIF-PU: Modified Square-root central difference information filter with param-
eter uncertainty

Here we present a modified formulation of the SRCDIF algorithm [LW+12] presented in
section A.6.5, which explicitly incorporates the dependency of time-varying parameters for-
mulated as random variables θk ∼ N

�

θ̄ ,Qθ
�

. Find motivation for this in the previous Sec-
tion 6.5.3. The system under consideration is given as

xk = f (xk−1, uk−1,ωk−1,θk−1) (6.25)

yk = h(xk) + νk, (6.26)

where x ∈ Rn, u ∈ Rnu , ω ∈ Rnω are the state, input and process noise vectors, and y ∈ Rny ,
ν ∈ Rnν are the measurement/observation vector and measurement noise vector, respectively.
We also assume the noises to be normally distributed as in (A.105). Note that the above
system is less general than the one considered before since only additive measurement noise
is present. Similar to section A.6.5, we define an augmented sigma-point matrix consisting
of state vectors process noise vectors, but additionally, we explicitly augment the sigma-point
matrix with parameter noise vectors X θi :

X̃ =





X
Xω

X θ



 . (6.27)

Algorithm 1 from [LW+12] can then be enhanced as:

1. Initialize filter

x̂+0 = E [x0] (6.28)

Ŝ+x ,0 = chol
�

E
�

(x0 − x̂+0 )(x0 − x̂+0 )
T
�	

(6.29)

Sω =
p

Q = chol {Q} (6.30)

Sν =
p

R= chol {R} (6.31)

Sωθ =
Æ

Qθ = chol
�

Qθ
	

(6.32)

(6.33)

2. For k = 1, 2, . . . ,∞ perform:

Generate sigma-points for prediction:

x̃k−1 =





xk−1
ω̄

θ̄k−1



=





xk−1
0
θ̂k−1



 (6.34)

S̃k−1 =





Sxk−1
0 0

0 Sω 0
0 0 Sωθ



 (6.35)

X̃k−1 =
�

x̃k−1 x̃k−1 + hS̃k−1 x̃k−1 − hS̃k−1

�

. (6.36)
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Prediction equations:

X−k = f (Xk−1, uk−1,Xωk−1,X θk−1) (6.37)

x̂−k =
2n+1
∑

i=1

w(m)i X−i,k (6.38)

A=
r

w(c1)
2

�

X−2:n+1,k −X−n+2:2n+1,k

�

(6.39)

B =
r

w(c2)
2

�

X−2:n+1,k +X−n+2:2n+1,k − 2X−1,k

�

(6.40)

Ŝ−xk
= qr
��

A B
�	

(6.41)

ι−k =
�

Ŝ−xk

�−T ��

Ŝ−xk

�−1
x̂−k

�

=
�

Ŝ−xk

�T
\Ŝ−xk
\ x̂−k (6.42)

Ŝ−ιk = qr
n
�

Ŝ−xk

�−1
I
o

(6.43)

Generate sigma-points for measurement update:

X̃ y
k =
�

x̂−k x̂−k + hŜ−xk
x̂−k − hŜ−xk

�

(6.44)

Measurement update:

Y−k = h
�

X̃ y
k

�

(6.45)

ŷk =
2n+1
∑

i=1

w(m)i Y−i,k (6.46)

P̂xk ỹk
=
r

w(c1)
2 Ŝ−xk

�

Y−2:n+1,k −Y−n+2:2n+1,k

�T
(6.47)

U =
�

Ŝ−xk

�−T ��

Ŝ−xk

�−1
P̂xk ỹk

�

S−T
ν (6.48)

ι̂+k = ι̂
−
k + US−1

ν

�

yk − ŷ−k + P̂T
xk ỹk
ι̂−k

�

(6.49)

S+ιk = cholupdate
¦

Ŝ−ιk , U ,+
©

(6.50)

In above algorithm, equations (6.38)-(6.50) are not affected by the changes. We can further
extend the algorithm given in [LW+12] as presented above in order to calculate the state
and covariance matrix as follows:

Ŝ+xk
= qr
n
�

S+ιk

�−1
I
o

(6.51)

P̂xk
= Ŝ+xk

�

Ŝ+xk

�T
(6.52)

x̂+k = P̂xk
ι̂+k . (6.53)

6.5.3 Proposed DeePLS-Dual based state and parameter estimation

For concurrent estimation of states and parameters applied to longitudinal vehicle dynamics
estimation, we propose Algorithm 4. It can be seen as a dual estimation algorithm, which
combines the parameter estimator based on a LiP formulation, DeePLS-M-SG-KF-C, with the
enhanced Square-root Central Difference Information Filter SRCDIF-PU. The parameter esti-
mator is a robust and constrained Kalman Filter-based algorithm with an anti-wind-up mech-
anism, which is fed by the output of the proposed DeePLS smoother of Chapter 5.

In Algorithm 4, the 0-index for example in θ̂0,k and Pθ0,k
denotes this is the value given at

the current center point of the moving window of the DeePLS algorithm (see Section 5.4.3).
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Algorithm 4 Proposed DeePLS-Dual algorithm for combined state and parameter estimation.

Require: see requirements of DeePLS, M-SG-KF-C and SRCDIF-PU
1: Inputs:

< y0, t 0 >, . . . ,< y j , t j > ▷ as defined
for Algorithm 2

2: v̂0,k, â0,k← from Algorithm DeePLS ▷ as proposed in Algorithm 2
3: yθ0,k, Φ0,k← from LiP formulation of long. veh. dynamics ▷ see (6.4)

4: θ̂0,k, Pθ0,k
← from Algorithm M-SG-KF-C ▷ as given in Algorithm 16

5: Sωθ ← chol {Pθ}
6: x̂+k , Px ,k← from Algorithm SRCDIF-PU ▷ as proposed in Section 6.5.2
7: return x̂+k , Px ,k, θ̂0,k, Pθ0,k

6.5.4 Proposed DeePKS-Dual based state and parameter estimation

The DeePKS-based Dual state and parameter estimator as we propose in Algorithm 5 is iden-
tical to the algorithm presented in Section 6.5.3, except here we use the DeePKS smoother as
a signal pre-processing unit.

Algorithm 5 Proposed DeePKS-Dual algorithm for combined state and parameter estimation.

Require: see requirements of DeePKS, M-SG-KF-C and SRCDIF-PU
1: Inputs:

< y0, t 0 >, . . . ,< y j , t j > ▷ as defined
for Algorithm 3

2: v̂0,k, â0,k← from Algorithm DeePKS ▷ as proposed in Algorithm 3
3: yθ0,k, Φ0,k← from LiP formulation of long. veh. dynamics ▷ see (6.4)

4: θ̂0,k, Pθ0,k
← from Algorithm M-SG-KF-C ▷ as given in Algorithm 16

5: Sωθ ← chol {Pθ}
6: x̂+k , Px ,k← from Algorithm SRCDIF-PU ▷ as proposed in Section 6.5.2
7: return x̂+k , Px ,k, θ̂0,k, Pθ0,k

6.5.5 Limitations of the proposed approach

As commented earlier, the parameter estimates for both Algorithm 4 and Algorithm 5 are pro-
vided only for the center points of the current moving window of the smoothing algorithms.
While the center points of the smoothing algorithms could, in theory, also be set to the right-
most value of the window, this would be identical to the current values. In practice, to obtain
optimal smoothing results, the recommendation is to choose this to be the symmetric point
of the window. We use the just-mentioned setting for all our experiments. Hence, typically,
the parameter estimates would then be delayed by a number of m samples.

In the case of tracking time-invariant parameters θ , the delayed estimate is, in fact, iden-
tical to the non-delayed value. Also, for piece-wise constant parameters, they would be
identical most of the time. Nevertheless, this could be of relevance if general time-varying
parameters need to be tracked.
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6.6 Evaluation of the proposed algorithms

We will evaluate the proposed combined state and parameter estimation algorithm in an ex-
periment based on the simulation of a driving scenario described in Section 6.3. As a baseline,
we will use the algorithm based on the Linear-in-Parameters model proposed by [AE+16],
which we also evaluated in the experiments described earlier in the preliminary investiga-
tions in Section 6.4.3. We will use this algorithm both on raw measurements as well as on
pre-processed data from the PKS-smoother proposed in Rhode [Rho16]. We then compare
the estimation performance to the following algorithms proposed in this thesis: First, a joint
estimation algorithm based on an Unscented Kalman Filter. A similar algorithm based on the
joint estimation scheme was also proposed earlier in the author’s publication in [BK16a]. We
will provide details about this algorithm in Section 6.4.4, and denote it here as “UKF joint”.
Second, we compare the results to two variants of the proposed dual estimation algorithm
from Section 6.5. The first uses pre-processed data resulting from DeePLS smoothing, which
we will refer to as “DeePLS dual”, and the second one from DeePKS smoothing. The latter
will be termed “DeePKS dual”. Remember that these algorithms can be seen as a combination
of a Square-root central difference filter SRCDIF for the state estimation part and a robust
Linear-in-Parameters estimation scheme for the parameter estimation part. The latter oper-
ates on data smoothed by the proposed smoothing algorithms presented in Chapter 5. The
enhanced performance of this algorithm was already discussed in Section 6.2, which also
explains the reasoning behind this choice of algorithms.

In this section, we first want to provide some details about the experiment used to evalu-
ate the proposed algorithms before presenting and discussing the results in subsection 6.6.3.

6.6.1 Experiment description

Simulation environment 6.3

The simulation environment we use to evaluate the estimation algorithms consists of track-
ing a dynamic vehicle speed reference trajectory similar to what we used in Scenario 2 of
Simulation Environment 7.1 and presented in Section 7.5.1.

There, the reference was based on velocity data defined by the WLTC Class 3 cycle, which
is part of the WLTP procedure defined by UNECE. The scenario differs in that a different
modification rule is applied to the original speed profile, which is given by the formula

vd(t) =







2.5 if
�

vd
W LT C < 2.5 ∧ t ∈ [100s, 1500s]

�

∨ (t ∈ [440s, 600s])∨ (t ∈ [1000s, 1460s])
vd

W LT C(t) else,
(6.54)

which basically means that except for the initial acceleration and the final deceleration phase,
the minimum velocity is kept to a value of 2.5 [m/s2]. Additionally to the modification
from Chapter 7, in the sections between 100 and 1500, 440 and 600, as well as 1000 to
1460 seconds, the vehicle speed reference is also kept at 2.5 [m/s2]. The reason for this
modification is to add long-lasting stationary phases to the original cycle. Phases of constant
velocity are challenging for the estimator since, with zero acceleration, insufficient excitation
is present for the Linear-in-Parameters-based approach (see analysis in Section 6.3.2). For
further details, like the re-sampling method used and the definition of a variable road grade,
please refer to Section 7.5.1. Parameters used for Simulation Environment 6.3 can be found
in Table 6.8. The vehicle speed and acceleration profiles obtained are illustrated in Figure 6.6.
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Figure 6.6: Vehicle speed and acceleration profiles of Simulation Environment 6.3, obtained as modification of a
WLTC cycle as described in Section 6.3.

Experiment 6.4

For this experiment, we evaluate various combined state and parameter estimation algo-
rithms and compare the results. We use data obtained from Simulation Environment 6.3,
which is initially generated in a closed loop fashion using the ANMPC controller described
in Section 7.5.1 together with the joint UKF estimator from Section 6.4.4 (UKF joint). The
obtained ground truth trajectories are then used as a basis to create a variety of noisy tra-
jectories for a Monte Carlo study by adding Gaussian noise obtained from a random number
generator with different seeds. We then feed this data into different estimators as follows:

• M-SG-KF-C (see Algorithm 16)

• PKS + M-SG-KF-C (see Algorithm 16 and 1)

• DeePLS dual (see proposed Algorithm 4)

• DeePKS dual (see proposed Algorithm 5)

• UKF joint (as proposed in Section 6.4.4)
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The M-SG-KF-C algorithm (see Algorithm 16) is used as a first baseline. For a second base-
line, we also combined this algorithm with the PKS data pre-processing scheme presented
in [Rho16], which we denote with “PKS + M-SG-KF-C”. Find results of this experiment in
Section 6.6.3, in Figure 6.7, 6.8 and Figure 6.9.

6.6.2 Implementation details

In order to make the results as independent from hyper-parameter tuning as one can probably
achieve, we used the same set of parameters for all the algorithms we compare wherever
they exist. If different parameters are needed due to the type of the algorithm, we derived
them from the same set of “meta-parameters”. What we mean by this is that, for example,
we can derive the square root of the state covariance matrix Sx of the SRCDIF algorithm,
which is used within the DeePLS-dual framework, from the initial state uncertainty standard
deviation x̂ std

0 by just building the diagonal matrix. The augmented state covariance matrix
P0 for the joint UKF algorithm, however, was calculated as [ x̂ std

0 , p̂std
0 ]

2, also using the initial
state uncertainty, but also the initial parameter uncertainty standard deviation p̂std

0 . The only
difference we had to make to get reasonable results was by setting the process noise standard
deviation wstd

x to algorithm-specific values. This meta-parameter is used for the calculation
of the augmented process noise covariance matrix of the joint UKF algorithm, as well as the
square root of the process noise covariance matrix of the SRCDIF used in DeePLS-dual. In
the CRAWKF algorithm, no such parameter exists since the true state is not event estimated
by the nature of the algorithm. This choice can easily be justified since these parameters
are, unlike the other ones, not directly motivated by problem formulation itself but rather
algorithm-specific.

We perform a Monte Carlo Simulation over ten runs with a variation of measurement
noise sampled from distributions with different random seeds. As a remark, we want to
note that this evaluation takes around 20 hours on a high-performance laptop, and from
undisclosed experiments on the first few minutes of the WLTP cycle, but with 50 Monte Carlo
runs, we found that the error statistics are well covered already with this reduced number
of 10 runs. The initial values for all parameter estimation algorithms were set to m0 = 1800,
Cd,0 = 0.8 and Cr,0 = 0.018, compared to the true values of m = 1500, Cd = 0.65 and Cr =
0.015. You can find a list of estimator parameters used in Experiment 6.4 in Table 6.9. In the
following, we want to provide some further algorithm-specific details.

M-SG-KF-C settings The M-SG-KF-C algorithm (see Algorithm 16) is identical to the al-
gorithm called CRAWKF in Altmannshofer, Endisch, et al. [AE+16], except that we use
the numerically more stable calculation formula for the covariance update derived from
Joseph’s form (as presented in Section A.9.6). This does not change the results of our exper-
iments. The parameter constraints were set to obey m ∈ [1000,3000], Cd ∈ [0.1, 1] and Cr ∈
[0.012,0.05]. This leads per definition of the estimated parameter in the Linear-in-Parameters
model of θ = [m, Cd, m · C r]T to θmax = [3000, 1,0.05]T and θmin = [1000, 0.1,0.0012]T. Re-
member, one can only estimate the lumped parameter m·C r using the LiP model, as discussed
earlier. Also, M-SG-KF-C is only capable of providing parameter estimates but cannot provide
any filtered values for the states, as discussed in Section 6.3.4

UKF joint settings To propagate the state dynamics within the UKF, we realized the in-
tegration of the general continuous-time state space description of the longitudinal vehicle
dynamics as given in (3.69a), using a fourth-order Runge-Kutta scheme with M = 5 steps
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per interval as given in Algorithm 18 of Section B. We modeled the system dynamics with
additive noise for both process and measurement noise.

DeePLS / PKS / DeePKS settings Please find a general description and derivation of all
pre-processing algorithms, PKS, DeePKS, and DeePLS in Chapter 5. For this experiment, we
run all algorithms in a smoothing setting, which means that the center point of the moving
window, on which the algorithms operate, is the half window size of M = 8 samples plus one
in the past from the current sample. This also means that we have to delay the parameter
estimation by the same amount of samples. Both DeePLS and DeePKS run on the multi-
channel data consisting of vehicle speed and acceleration, while for PKS, two separate banks
of smoothers run on each channel. All parameters for the dual estimators, consisting of
parameters for SRCDIF and the LiP estimator, can be found in Table 6.9.

6.6.3 Results

We can find results of a Monte Carlo simulation of Experiment 6.4 in Figure 6.7, 6.8 and
Figure 6.9. Numerical results are given in Table 6.10. We calculated statistics of the residuals
over time for the estimates of the vehicle mass parameter, the aerodynamic drag parameter,
and the rolling resistance. For the proposed joint UKF algorithm (which can be seen as an
extension of the algorithm proposed in [BK16a]) and the proposed dual estimators based on
DeePLS and DeePKS, we also calculated errors of the state estimates for the vehicle speed v,
while by nature of the baseline algorithm M-SG-KF-C proposed in [AE+16], no such estimate
is provided.

Looking at the error statistics given in Table 6.10, we can see that the proposed DeePLS
dual estimator clearly outperforms the other estimators. We can also see that adding PKS
smoothing prior to the baseline algorithm M-SG-KF-C does not improve the results. The
proposed multi-channel variant of PKS, namely the DeePKS algorithm, did also not help to
improve the results in this scenario. For this reason, we focus on the rest of the visualizations
on the remaining algorithms.

Looking at the residuals over time shown in Figure 6.7 first, we can observe that the
proposed DeePLS dual estimator outperforms the other estimators. All three parameter esti-
mates converge faster to the proximity of the true values compared to the baseline algorithm
M-SG-KF-C [AE+16] and the joint UKF algorithm. Also, as can be seen from the Box-chart
evaluation in Figure 6.9, not only the average and median RMSE values are smaller over the
various runs of the Monte Carlo simulation, but the standard deviation and outliers are also
reduced by the proposed algorithms. In terms of the variance of estimation results, the joint
UKF performs best, while the DeePLS dual algorithm shows the lowest average and median
RMSE values.

Table 6.10: Average RMSE values obtained in Experiment 6.4

.

v m Cd Cr ∥ · ∥

DeePLS dual 0.00426 3.80063 0.01383 0.00008 3.80066

M-SG-KF-C NaN 4.89674 0.01780 0.00029 4.89678

UKF joint 0.00783 6.37527 0.03120 0.00030 6.37536

PKS + M-SG-KF-C NaN 10.56086 0.08369 0.00141 10.56119

DeePKS dual 0.00452 11.23993 0.08300 0.00144 11.24024
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Result discussion

From the preliminary results in Section 6.4, one could already expect that the DeePLS based
parameter estimator will outperform the other algorithms considered. We also see that
adding PKS and its multi-channel counterpart is not achieving a better result. We believe
this is due to the low-pass characteristics of the filters, which add bias to the following esti-
mation. While the fastest convergence to the vicinity of the true parameters is achieved with
the DeePLS-based dual estimator, we see that the Joint UKF solution also reliably converges
to the true parameters. The baseline algorithms and the PKS-based estimators, nevertheless,
show a certain bias, which becomes especially visible in the zoomed plot of Figure 6.8.

200 400 600 800 1000 1200 1400 1600 1800
-20

-10

0

10

20

30

40

DeePKS dual
DeePLS dual
M-SG-KF-C
PKS + M-SG-KF-C
UKF joint

200 400 600 800 1000 1200 1400 1600 1800
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

DeePKS dual
DeePLS dual
M-SG-KF-C
PKS + M-SG-KF-C
UKF joint

200 400 600 800 1000 1200 1400 1600 1800
-3.00

-2.00

-1.00

0.00

1.00

10-3

DeePKS dual
DeePLS dual
M-SG-KF-C
PKS + M-SG-KF-C
UKF joint

Figure 6.7: Simulation results of Experiment 6.4. Comparison of estimation of the proposed DeePLS dual esti-
mator (red) and the joint UKF estimator (black) with other estimators. Dark-colored lines show average residuals
over time (in seconds) of the parameter estimates for vehicle mass em (top), aerodynamic drag eCd

(center), and
rolling resistance eCr

(bottom). Light-colored areas show confidence intervals as residuals ±σ.
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6.7 Conclusion

6.7.1 Summary and discussion

In this chapter, we discussed various options to realize a combined state and parameter es-
timator that is able to learn and track the parameters relevant to the longitudinal motion of
the vehicle. These are the speed as system state and the longitudinal vehicle parameters of
a variable vehicle mass, rolling resistance coefficient, and aerodynamic drag. We reviewed
existing literature in this area, both from an application and an algorithmic point of view.

We are considering approaches based on the longitudinal vehicle motion model, which
do not need additional vehicle sensors but can leverage the information from all sensors we
assume to be present in automated vehicles. These are vehicle speed, acceleration, and road
grade but also virtual sensors like the power-train and brake forces acting on the wheels.

We found two main categories especially suited for the task. First, methods based on
a reformulation of the vehicle motion equation, leading to a Linear-in-Parameters model.
This, in theory, allows the application of recursive least-squares methods, but our analysis
has shown that this is only the case when neglecting the noise characteristics one needs to
consider under realistic assumptions. Based on existing literature that also followed this
approach, we conducted a series of experiments and found that special care is needed to
create a solution that can be robustly applied. We found that applying the correct signal pre-
processing methods can be the key to improving the quality of the estimators and producing
robust results. Especially using the smoothing method, which was developed in Chapter 5
for this purpose, could help to make the estimator converge faster and more reliably to the
true result.

One drawback of this first approach is the fact that it is not possible to obtain filtered val-
ues for the state concurrently with the parameter estimates. For this reason, we investigated
two main paths. The first one is to use a formulation as an ordinary differential equation and
perform joint estimation schemes, which augment the original state space and add the param-
eters as virtual states. The second one is a dual estimation scheme, where states and parame-
ters are estimated in two interlinked but separate estimators. We found that we can leverage
the advantages of the parameter estimation scheme based on the Linear-in-Parameters model
and use this in combination with a state estimator to create a problem-specific dual estima-
tion scheme.

To find out which algorithms are suited to solve the problem formulated as an ordinary
differential equation, we performed another comparison of methods to find that the Sigma
Point Kalman filter family offers both good convergence as well as computation times, which
make an application feasible on an embedded system.

Based on these findings, two algorithms were compared to baseline approaches in further
simulation experiments. First, a joint estimation scheme that uses an Unscented Kalman Fil-
ter to estimate states and parameters concurrently. Second, we developed a solution using
a dual estimation scheme. The latter can be split into two parts: the parameter estima-
tor and the state estimator. The parameter estimator uses smoothed data obtained from
the proposed DeePLS algorithm in a pre-processing step, while the algorithm that performs
the estimation is a robust, constrained Linear Kalman Filter with an anti-covariance-windup
mechanism (M-SG-KF-C as in Algorithm 16). For the state estimator, we chose an enhanced
version of a Square-root Central Difference Filter (SRCDIF) since this allows us to easily con-
sider the interdependence of the estimation error covariance coming from the interlinked
parameter estimator. Also, this filter is known for its guarantees of providing positive definite
error covariance matrices, which otherwise would cause numerical instabilities of the overall
solution.
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The solution we found is real-time capable and provides accurate results in our simulation
experiments, which converge, unlike the baseline algorithms, to the true parameter values,
and to the vicinity in a reasonable time. Thanks to using a Bayesian approach, we additionally
obtain estimates of the confidence of the solution. We considered constraints and robustness
against disturbances.

6.7.2 Contribution

The work presented in this chapter partly builds on work published in the author’s publication
[BK16a] but extends this work significantly and includes substantial, previously unpublished
work. A short summary of the main contributions presented in this chapter can be given as
follows:

• Detailed review of related work on vehicle mass and tractive force parameter estimation
in general and various algorithmic solutions in particular for methods based on the
longitudinal vehicle motion model.

• Analysis regarding observability and persistence of excitation for different problem for-
mulations

• Discussion and comparison of various possible solution approaches, including the one
proposed by the author of this thesis in [BK16a]

• Detailed analysis of the effects of real-world conditions for Linear-in-Parameters esti-
mation, with illustrative experimental results.

• Comparison and analysis of joint estimation schemes based on an ordinary difference
equation formulation

• Proposal and evaluation of a novel hybrid dual estimation algorithm for combined state
and parameter estimation, which builds on the DeePLS algorithm proposed in Chapter 5
and [Bue22], and outperforms all baseline algorithms found in the literature.
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Table 6.5: Comparison of different combinations of parameter estimation methods with different pre-processing
algorithms in Experiment 8.1. Table values show result statistics over 100 Monte-Carlo runs. Sorted for lowest
median values of ∥RMSE∥ on top. Right: positive-definiteness of error covariance matrix P.

Method Preprocessing
∥RMSE∥

P > 0

median min std

SG-KF-C DeePLS* 0.244 0.228 0.007 ✓
M-SG-KF-C DeePLS* 0.246 0.238 0.004 ✓
SG-KF DeePLS* 0.246 0.229 0.008 ✓
M-SG-KF DeePLS* 0.250 0.238 0.025 ✓
M-SG-KF-C DeePKS* 0.266 0.249 0.047 ✓
M-SG-KF DeePKS* 0.266 0.251 0.044 ✓
SG-KF-C DeePKS* 0.271 0.246 0.014 ✓
SG-KF DeePKS* 0.271 0.248 0.015 ✓
M-SG-KF-C SaG 0.313 0.293 0.007 ✓
M-SG-KF SaG 0.323 0.301 0.013 ✓
SG-KF-IV none 0.324 0.164 35.315 x

SG-KF-IV DeePLS 0.324 0.237 8.424 x

SG-KF-C SaG 0.373 0.317 0.135 ✓
SG-KF SaG 0.376 0.319 0.134 ✓
SG-KF-IV SaG 0.383 0.319 0.904 x

SG-KF-IV DeePKS 0.396 0.259 5.798 x

M-SG-KF-C† none 0.484 0.459 0.011 ✓
M-SG-KF none 0.489 0.462 0.016 ✓
M-SG-KF-C PKS 0.512 0.403 0.209 ✓
SG-KF-IV PKS 0.513 0.322 3.301 x

KF-IV none 0.519 0.147 104.141 x

KF-IV DeePLS 0.532 0.439 9.494 x

KF DeePLS 0.542 0.485 0.019 ✓
M-SG-KF PKS 0.551 0.405 0.218 ✓
M-KF DeePLS 0.608 0.573 0.017 ✓
KF-IV SaG 0.637 0.536 0.957 x

KF-IV PKS 0.640 0.486 16.771 x

M-SG-KF-C BW 0.707 0.614 0.113 ✓
KF SaG 0.709 0.619 0.132 ✓
M-KF SaG 0.732 0.688 0.016 ✓
SG-KF PKS 0.737 0.581 0.053 ✓
SG-KF-C PKS 0.745 0.580 0.055 ✓
M-KF PKS 0.761 0.633 0.268 ✓
KF DeePKS 0.771 0.729 0.029 ✓
KF-IV DeePKS 0.814 0.702 7.130 x

M-KF DeePKS 0.814 0.784 0.017 ✓
KF PKS 0.876 0.788 0.043 ✓
M-SG-KF-IV SaG 0.967 0.294 21243001.164 x

SG-KF-C BW 1.100 1.000 0.070 ✓
SG-KF BW 1.129 1.021 0.069 ✓
KF BW 1.194 1.064 0.076 ✓
SG-KF-C none 1.408 1.178 0.125 ✓
SG-KF none 1.408 1.178 0.126 ✓
M-KF none 1.426 1.390 0.017 ✓
KF none 1.777 1.685 0.056 ✓
SG-KF-IV BW 1.985 1.884 0.044 x

KF-IV BW 2.008 1.892 0.041 x

M-KF BW 4.172 2.752 0.449 ✓
M-SG-KF-IV BW 4.431 1.299 1036160.062 x

M-SG-KF BW 5.179 2.376 0.673 ✓
M-SG-KF-IV DeePKS 330.480 0.262 85362.685 x

M-SG-KF-IV-C PKS 422.181 0.379 168950.020 x

M-SG-KF-IV‡ PKS 472.599 0.321 722540.715 x

M-SG-KF-IV‡ none 626.096 0.236 852155.516 x

† as in Altmannshofer, Endisch, et al. [AE+16], ‡ as in Rhode [Rho16]
* ours, as proposed in Chapter 5



6.7 Conclusion 129

Table 6.6: Estimator parameter used in Experiment 6.3.

Symbol Description Value Unit

ϕ Road grade 0 / sinusoidal [deg]
m True vehicle mass 1200 [kg]
m̂0 Initial value of estimated vehicle mass 1400 [kg]
mI Mass resulting from power-train inertia 50 [kg]
ηpwt Power-train efficiency 0.89 [-]
Rpwt Power-train ratio 8.446 [-]
reff Effective wheel radius 0.3 [m]
g Gravitational constant 9.81 [N]
Cr Rolling resistance coefficient 0.0150 [-]
Cd Lumped aerodynamic drag coefficient 0.4262 [kg/m]
Ĉr,0 Initial estimation of Cr 0.0150 · 1.1 [-]
Ĉd,0 Initial estimation of Cd 0.4262 · 1.2 [kg/m]
Ts Simulation sampling time 0.01 [s]
τe Time constant of engine torque response 0.20 [s]
τbr Time constant of brake torque response 0.05 [s]
Q0 (Initial) process noise covariance matrix q1,1 = (1e−5)2 [(m/s)2]

q2,2 = (1e−7)2 [(m/s−1)2]
q3,3 = (1e−7)2 [kg2]

q4,4 = (1e−10)2 [(kg/m)2]
q5,5 = (1e−8)2 [−]

R Measurement noise covariance matrix r1,1 = (2e−2)2 [(m/s)2]
r2,2 = (2e−2)2 [(m/s−1)2]

P0 Initial error covariance matrix p1,1 = (0.33)2 [(m/s)2]
p2,2 = (0.33)2 [(m/s−1)2]

p3,3 = (11)2 [kg2]
p4,4 = (0.001)2 [(kg/m)2]

p5,5 = (0.0001)2 [−]
α Alpha parameter of UKF 0.5 [-]
β Beta parameter of UKF 2.0 [-]
κ Kappa parameter of UKF 0.0 [-]
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Table 6.8: Simulation parameters for Simulation Environment 6.3

Symbol Description Value Unit

Ts Simulation sampling time 0.01 [s]
m True vehicle mass 1500 [kg]
Cr Rolling resistance coefficient 0.015 [-]
Cd Lumped aerodynamic drag coefficient 0.65 [kg/m]
mI Mass equivalent from power-train inertia 40 [kg]
reff Effective wheel radius 0.3 [m]
τe Time constant of engine torque response 0.5 [s]
τbr Time constant of brake torque response 0.1 [s]
g Gravitational constant 9.81 [N]
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Table 6.9: Parameters used in Experiment 6.4

Parameter Description Value

Ts Sample time 0.01
σv Measurement noise std. dev. for v 0.03
σa Measurement noise std. dev. for a 0.02
x̂0 Initial values [0.1; 0; 0]
p̂0 Initial parameter estimation [1700; 0.8; 0.018]
x̂ std

0 Initial state uncertainty std. dev. [1; 3e-4; 3e-04]/3
p̂std

0 Initial parameter uncertainty std. dev. [35; 2.8e-3; 3.1e-4]/3
wstd

x Process noise std. dev. UKF [5e-6; 1e-5; 1e-5]
wstd

p Parameter noise std. dev. [1e-9; 1e-11; 1e-9]
vstd Measurement noise std. dev. [0.02; 1e-6; 1e-6]
diag {P0} Augmented state covariance UKF [ x̂ std

0 , p̂std
0 ]

2

diag {Q} Process noise covariance UKF [wstd
x , wstd

p ]
2

diag {R} Measurement noise covariance UKF [vstd]2

α UKF specific parameter 0.5
β UKF specific parameter 2.0
κ UKF specific parameter 0.0
w DeePLS / DeePKS weights 1/[σv;σa]2

N Polynomial order for PKS / DeePLS / DeePKS 5
M Half window size PKS / DeePLS / DeePKS 8
θmax Upper parameter limit for LiP estimation [3000; 1; 150]
θmin Lower parameter limit for LiP estimation [1000; 0.1; 12]
diag {Pd} Stenlund-Gustafsson “target” state covariance [3, 1e-4, 3e-3]
diag {Pθ} Parameter covariance M-SG-KF-C [8e7, 16.2, 380880]/3
νs Degrees of freedom of Student-t dist. 20
σ̂s Scale parameter of Student-t dist. 5.47722557505166
r Virtual meas. variance in M-SG-KF-C 1296
wstd

x Process noise std. dev. SRCDIF [8e-4; 1e-4; 1e-4]
diag {Sx} Square-root of state covariance SRCDIF x̂ std

0
diag
�

Sqx

	

Square-root of process noise covariance SRCDIF wstd
x

diag {Sr} Square-root of meas. noise covariance SRCDIF vstd
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Figure 6.8: Zoomed version of Figure 6.7, with results of Experiment 6.4.
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Figure 6.9: Visualization of the error statistics of Experiment 6.4. Box plot of RMSE values for errors of vehicle
speed (top left), vehicle mass (bottom left), aerodynamic drag (top right), and rolling resistance (bottom right). For
details, see Section 6.6.3.





7
Adaptive Nonlinear Model Predictive Control

“Utilizing a nonlinear approach and companion competencies makes it possible for
people to move from good performance to great.”

– John H. Zenger, *1931

In this chapter, a solution to the longitudinal vehicle motion tracking problem via Adaptive
Nonlinear Model Predictive Control (ANMPC) is presented. The work introduced in this
chapter builds on preliminary work that the author of this thesis published in Buechel and
Knoll [BK16a] and Buechel and Knoll [BK16b], but includes substantial novel and previ-
ously unpublished material. Find an overview of the contributions within this chapter in
Section 7.6.3.

7.1 Introduction

We then consider the problem of longitudinal vehicle motion tracking and develop a solution
within the Model Predictive Control (MPC) framework. In the existing literature, lower-
level control modules typically receive the desired acceleration at the current point in time
as a control input from the higher-level module. We already discussed in Section 2.2 that
when considering future automated vehicles, we assume that not only the reference point at
the current point in time is available, but, in addition, a reference motion trajectory can be
provided to the tracking unit by some higher-level control or motion planning module. By
definition, this contains reference data with a certain look-ahead into the future. Addition-
ally, advance knowledge regarding future disturbances arising from a time-varying road slope
is assumed to be available. Contrary to most common implementations, we desire that our
solution can exploit this information to calculate optimal control input trajectories while con-
sidering both input and state constraints. One very natural choice of control algorithms for
such requirements is the one of Model Predictive Control (MPC), which can exploit knowl-
edge about the system behavior utilizing a model-based approach based on the longitudinal
vehicle motion dynamics.

This way, we aim to achieve optimal performance when tracking arbitrary reference tra-
jectories by exploiting the nonlinear vehicle model. Nevertheless, we face a substantial dif-
ficulty if we aim to apply this approach in real vehicles: The model parameters, like vehicle
mass and friction and drag coefficients, are known to be time-varying within a substantial

135
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parameter range (see Section 3.4). Under these circumstances, the tracking performance of
a standard MPC controller will degrade, and offset-free tracking will not be possible without
any additional ingredients.

Existing approaches propose to augment the system with a disturbance model to achieve
asymptotic offset-free tracking. This disturbance model is typically implemented in a way
such that all effects of the various unknown parameters are lumped together into a distur-
bance vector whose dimension is less than that of the unknown model parameters for various
reasons. Unfortunately, this comes with an unavoidable degradation of the closed-loop be-
havior of the controller. Also, the knowledge of the true, physical system parameters remains
hidden.

The reasons above are why we aim to explore a different approach: We use estimations
of the true vehicle parameters, together with state estimations of measured but noisy state
observations, and combine it with a nonlinear, model-predictive control scheme. The state-
and parameter estimations will be calculated by the combined and dual state- and parameter
observer, which is presented in Chapter 6. This enables the use of the true parameters also
for other tasks, such as lateral control. As discussed in detail in Chapter 6, the observer
presented therein can track the time-varying parameters under insufficient excitation, which
occurs in phases of zero longitudinal vehicle acceleration.

In addition, we need to solve the control allocation problem while considering actuator-
specific dynamics. The consideration of advance information, which is time-variant over the
prediction horizon, differs from a standard approach in other existing MPC formulations. To
incorporate all these requirements, a non-standard MPC formulation will be presented for
nonlinear systems with actuator delays, which can achieve offset-free asymptotic tracking
under certain assumptions.

Furthermore, we validate the proposed controller’s feasibility, performance, and accuracy
in longitudinal tracking tasks in various numerical experiments, demonstrating that the AN-
MPC controller substantially outperforms a baseline controller. We will see that the proposed
controller is able to keep the optimal performance of the nominal case, in which the model
parameters are assumed to be known. Also, effects from actuator dynamics and lags and the
nonlinear motion dynamics can be eliminated or at least reduced to a minimum.

The obtained control solution is easy to tune while offering a trade-off between tracking
performance and reduced economic cost. It meets the requirements of a modular vehicle
control architecture and can easily be extended to include additional operating modes. Also,
optimal input trajectories are calculated instead of input set-values. This information is typi-
cally not exploited in lower-level control modules since it is unavailable from non-predictive
control schemes or if a manual driver is in the loop. However, in a standard receding horizon
scheme, only the first input at the current time step is used, and the rest of the information
in the trajectories is discarded. Hence, it might be a substantial benefit for the overall vehicle
performance if this additional information is kept and exploited, but further analysis in this
direction exceeds the scope of this presentation.

This chapter is organized as follows: We first introduce some background on MPC in
Section 7.2, followed by a selection of related work in Section 7.3. The latter includes an
introduction to topic-related taxonomy. The proposed solution will then be presented in
Section 7.4. Results based on simulation studies, which highlight the advantages of the
approach, are given in Section 7.5. Section 7.6 finally gives a conclusion and outlook on
future enhancements.
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7.2 Model predictive control background

Model Predictive Control (MPC), also denoted Receding Horizon Control (RHC), is a con-
trol scheme that provides optimal control inputs by exploiting a system model. By planning
several steps into the future and evaluating the cost of a given control trajectory, the op-
timal input sequence can be found by minimizing the cost of an Optimal Control Problem
(OCP). This also allows incorporating advance information regarding known disturbances
and a time-varying reference trajectory, while considering state and input constraints. In
order to obtain a closed-loop controller, the controls are applied according to the receding
horizon principle, which will be explained next.

7.2.1 Receding horizon principle

t−5 t−4 t−3 t−2 t−1 t t+1 t+2 . . . t+Nc
. . . t+Np

disturbance advance knowledge

predicted output

optimal control action

past future

control horizon

prediction horizon

advance knowledge horizon

disturbance (measured) disturbance (advance knowledge)

plant output (measured) plant output (predicted)

control action (past) control action (feedforward)

reference trajectory

Figure 7.1: Receding horizon control scheme.

The solution of this Optimal Control Problem (OCP) could, in theory, be taken as an
open loop control for the control horizon and fed to the plant. Due to inaccuracies in the
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model and unknown external or internal disturbances, the solution might diverge from the
predicted one. In order to compensate for these errors, a feedback loop is introduced: Only
the first control input of the solution to the OCP is applied, and then the algorithm repeats
to find the optimal control sequence, this time based on the true new state rather than the
predicted one. Since the prediction horizon, over which the optimal trajectories are found,
remains constant but is moved forward at each time step, this is typically referred to as the
receding horizon principle. An illustration of the receding horizon control principle is given in
Figure 7.1.

7.2.2 Advantages of model predictive control

Several advantages arise from exploiting the knowledge of the plant behavior in MPC. Solving
the OCP leads to optimal results for the nominal (error-free) system and, as long as the system
model is accurate, also for the real plant. Here, optimal is with respect to a cost functional,
defined over the prediction horizon.

Second, one of the most valuable properties of MPC for practical application is that both
input and state constraints can be handled. Also, thanks to the predictive nature of the
method, the incorporation of advance knowledge in the form of time-varying reference val-
ues and future disturbances is enabled. Note that this is not standard in common MPC
formulations but will be exploited in our proposal.

Next, multi-variable control problems can be handled in this fashion without having to
modify the control scheme. This includes problems in which the controls have a redundant
effect on the plant. As such, MPC intrinsically provides a solution to the dynamic control
allocation problem, under consideration of actuator dynamics. The control allocation problem
was already discussed in Section 1.6. To summarize, we can list the following advantages
arising from the application of MPC:

• optimal solution w.r.t. some given cost functional

• consideration of state and input constraints

• consideration of advance knowledge

• suited for multi-variable control problems

• directly provides a solution to the control allocation problem under consideration of
actuator dynamics

7.2.3 Formal description of model predictive control

Next, we want to give a formal description of MPC and the inherent receding horizon princi-
ple. For the general, nonlinear, discrete-time system

x t+1 = f (x t , ut), (7.1)

with x ∈ Rnx , u ∈ Rnu and f : Rnx ×Rnu −→ Rnx×nu . We consider a (finite horizon, and hence
truncated) cost function over the prediction horizon of N time steps:

JN (x0, U) =
N−1
∑

k=0

l(xk, uk) + Vf (xN ), (7.2)
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with the input trajectory U
.
= ut:t+N−1 and the stage cost l(x , u). The terminal cost Vf (xN )

aims to replace the value of the costs starting from t+N to a desirably infinite horizon - since
this is typically infeasible to compute for nonlinear problems. The aim is to find a solution
at each time step t = 0, 1,2, . . . of the OCP, minimizing the cost according to the following
expression (see for example [GP17]):

VN (x t)
.
=min

U
JN (xk|t , U)

subject to xk+1|t = f (xk|t , uk|t) ∀ k ∈ Np,
x0|t = x0,
uk|t ∈ U
xk|t ∈ X ∀ k ∈ Np
xN |t ∈ X f

(7.3)

The control input and state constraint sets are denoted by U and X , respectively. Generally,
a terminal state constraint is necessary to achieve stability, achieved by the constraint set
condition, which enforces the last state of the prediction horizon to lie within X f . Under
certain assumptions, the terminal constraint can be omitted, as discussed in Section 7.3.6.
Also, variations of the formulation given in (7.3) exist, as we will show in Section 7.3.8.
The solution to the OCP (7.3) is the optimal input trajectory, denoted by U∗t , with the first
element u∗0|t(x t). u∗0|t(x t) is then applied as control input, which leads to the system evolving
according to:

x t+1 = f (x t , u∗0|t(x t)). (7.4)

Repeatedly proceeding with this procedure in a receding horizon fashion results in a closed-
loop system. In a particular case, the problem can be explicitly solved, and the resulting
controller is known as the Linear Quadradic Regulator (LQR): If the system described by f is
linear, this linear structure can be exploited. Additionally, the prediction horizon needs to be
infinite, the reference trajectory needs to be constant, set to the origin, costs are quadratic,
and no constraints are present.

7.3 Related work and taxonomy

We already listed previous work related to the application of longitudinal vehicle motion
tracking control in Chapter 4. In this section, we want to highlight some important topics
related to the background and theory of MPC.

It is out of scope to present a comprehensive survey on the broad literature about MPC.
Instead, we refer to a variety of books and surveys available on the topic, like, for example,
[HR08], Rawlings and Mayne [RM09], and Gruene and Pannek [GP17]. Mayne, Rawlings,
Rao, and Scokaert [MR+00] published an excellent survey on constrained model predictive
control. Nevertheless, this section aims to introduce some important concepts and terminol-
ogy appearing within MPC literature, which helps to understand the proposal of this chapter.
The presentation is done together with some references for further reading.

7.3.1 Brief history of MPC

MPC has its roots in the theory of optimal control, with foundations starting in the 1950-ties
including the principle of dynamic programming Bellmann [Bel54] and the famous Pontrya-
gin minimum principle Pontryagin, Boltyanskǐı, and Mishchenko [PB+61]. Some authors
believe it was further developed during the Apollo Lunar program in the 1960-ties [Rus13].
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MPC was initially mostly found to be applied in process control. There, slow processes
eased the application, which was more computationally intensive than other model-free con-
trol schemes, as, for example, PID control. It is often sufficient to achieve set-point regular-
ization in process control, while constraint handling might be necessary.

First, results for stability were only available for linear time-invariant systems. Then,
NMPC schemes were found to be stabilizing, using terminal constraints and terminal penal-
ties. Later, conditions for stabilizing NMPC without terminal constraints and costs were es-
tablished [Mac02; Ros03; GP11; GP17]. Solutions for reference trajectory tracking were only
found later, especially for the nonlinear case [MM12].

7.3.2 Set-point regulation vs. trajectory tracking

The stage cost in MPC often is formulated as a quadratic cost function of the form:

ℓ(xk, uk) = ∥xk − xs∥
2
Q + ∥uk − us∥

2
R , (7.5)

where (xs, us) is a control set-point. Depending on the control set-point used, control tasks
can be divided into set-point regulation and trajectory tracking.

In set-point regulation problems, the aim is to design a controller that drives a system to
a constant, time-invariant target set-point and which can stabilize it there. Since the origin
can be arbitrarily defined, this set-point is usually set to the origin, hence (xs, us) = (0,0) and
f (xs, us) = 0. The stage cost then typically has to penalize the distance of the current state to
the origin, and the stage cost is reduced to:

ℓ(xk, uk) = ∥xk∥
2
Q + ∥uk∥

2
R . (7.6)

Trajectory tracking MPC is the problem of tracking a time-variant set-point trajectory. Note
that in this formulation, although xs, us are in general time-variant, they are still considered
as constants during the entire prediction horizon, so that the OCP is identical to solve than
for the regulation problem. As discussed in [RV09], fewer applications consider the case
of tracking time-varying references (xs,k, us,k) which changes within the prediction horizon,
since this increases the complexity for solving the OCP.

7.3.3 Advance knowledge for anticipative predictive control

If, in addition to tracking time-varying references, advance knowledge about future distur-
bances is considered, this further increases the parameter space. This is why current litera-
ture typically neglects such information, as discussed in Dughman and Rossiter [DR17]. The
system dynamics then is described by

x t+1 = f (x t , ut , dt), (7.7)

and the cost functional is of the form JN (x0, U , D), where D
.
= dt:t+Na−1 is the known distur-

bance or advance knowledge trajectory over the advance knowledge horizon Na.

7.3.4 Adaptive MPC

Adaptive MPC seeks to improve system performance by updating the model online based
on measurement data while calculating an optimal control policy for the nominal, adapted
system.
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Mayne, Rawlings, Rao, and Scokaert [MR+00] stated in the year 2000 that “although
adaptation was one of the earliest motivations for model predictive control, a stabilizing
adaptive model predictive controller for constrained systems has not yet been developed. A
prior requirement for progress in this area, as in output-feedback model predictive control
with state estimation is a good methodology for achieving robustness.”.

[Joh11] gives a short introduction to NMPC in general, including adaptive NMPC. One
of the main difficulties for obtaining general stability results for general nonlinear ANMPC
is that, unlike with linear systems, the separation principle does not hold. The separation
principle states that it is sufficient to prove stability separately for controller and observer to
obtain overall stability when combining the two. Nevertheless, some results in this direction
were presented. In 2009 Adetola, DeHaan, and Guay [AD+09] proposed a method for the
adaptive model predictive control of constrained nonlinear systems and provided stability
results. Unfortunately, it is restricted to nonlinear models of the form

ẋ = f (x , u) + g(x , u)θ , (7.8)

which is affine in the unknown parameter vector θ . Also, stability investigations did not
include any presence of noise.

The more recent work of Vatankhah and Farrokhi [VF19] presents a framework for non-
linear adaptive model predictive control of constrained systems with offset-free tracking be-
havior using an adaptive neural network predictor. The control algorithm is restricted to
single-input, single-output, and non-affine time-discrete systems with a NARX structure un-
der disturbances. By nature, the method is not based on a first-principle model, and deriving
results regarding the optimality of the approach is challenging to obtain. For more results on
the stability of the combination of observers with NMPC, see Findeisen, Imsland, Allgöwer,
and Foss [FI+03], Roset, Lazar, Heemels, and Nijmeijer; Messina, Tuna, and Teel [RL+06;
MT+05] for an overview.

7.3.5 Other concepts in MPC

Robust MPC

“A controller is said to be robust when stability is maintained and performance specifications
are met for a specified range of model variations and a class of noise signals” [BM99]. As with
any robust control policy, robust MPC also aims to achieve robust performance and stability
despite the presence of uncertainty. A drawback of robust MPC is that robust controllers gen-
erally do not adapt to changes in the plant, and “therefore their performance is limited by the
quality of the model plus the uncertainty description initially available” [AD+09]. Neverthe-
less, robust and adaptive approaches exist. Until now, to the best of the author’s knowledge,
no general formulation for optimal adaptive and robust control for general nonlinear systems
exists. Current approaches are typically restricted to a particular type of system and are also
restricted in the way that they can only follow certain predefined, restricted dynamics, as, for
example, in [PB+21].

While the combination of adaptive and robust control solutions is interesting, if not
mandatory, for guarantees in automated driving, this thesis focuses solely on adaptive op-
timal control while taking measures to design the adaptation mechanism so that they remain
robust, e.g., to measurement outliers. This will be discussed in Chapter 6, while we need
to regard robust adaptive MPC as future work. Nevertheless, the reader shall be referred to
[BM99] for an excellent survey about the origins of the field.
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Economic NMPC

EMPC is an advance control scheme which is very promising. While traditional MPC relies
on positive-definite cost functions, typically quadratic ones, to provide stability, economic
MPC aims to relax this and introduce more generic cost functions. Rather than stabilizing
the controlled system to a desired state or output, the focus is, e.g., on minimizing monetary
costs, time, or energy - hence the name of the method, while keeping the system within
given boundaries. Unfortunately, stability proofs for closed-loop performance can be complex
in practice. Nevertheless, results exist and can be found in Ellis, Durand, and Christofides
[ED+14] or Faulwasser, Grüne, and Müller [FG+18]. These include stability results for
EMPC with and without terminal constraints and costs.

7.3.6 Stability of NMPC

All MPC applications rely on the solution of the OCP. This is why an essential condition
when wanting to answer the question of whether a certain MPC controller is stabilizing is the
question of feasibility.

Feasibility is only given if a solution to the OCP can be found at each time step. Addition-
ally, this solution needs to be found in time in order to provide the control input for the next
control step. More on feasibility can be found, e.g., in [GP17], p. 177. An important prop-
erty is the one of recursive feasibility. Recursive feasibility is given if a system starts at a point
contained in the set of feasible solutions, and the resulting state after applying the control
(the first input from the solution of the OCP) still lies within the set of feasible solutions.

Since, for the case of set-point regulation, at any point in time, the target state is the same,
establishing conditions for recursive feasibility is typically an easier task than for trajectory
tracking MPC.

Looking at the timeline in the historical development of NMPC, according to [GP17], p.
115f, the first stability results using terminal constraints can be dated back to the 1980s. Dif-
ferent theoretical foundations exist for designing stabilizing nonlinear MPC; see, for example,
Nicolao, Magni, and Scattolini [NM+98], Wan and Kothare [WK03], and Magni and Scat-
tolini [MS06]. The first approaches to proof stability for NMPC used the concept of terminal
constraints, while only later, schemes without terminal constraints were established. To the
contrary, stabilizing NMPC without terminal constraints appeared much later, with results
starting around 2001 [GP17; FG+18].

Stabilizing NMPC with Terminal Constraints

A sketch of the proof can be found, for example, in [FG+18], p.10. The idea of stabilizing
NMPC with terminal constraints can be summarized as follows: If the infinite horizon prob-
lem was computationally tractable, one could establish proof that, for the set-point regulation
problem, the system would be stabilized at infinite time. Since the horizon is truncated, we
already introduced a terminal penalty for the remaining cost from the end of the horizon
to infinity in (7.2). Instead of ensuring that the system arrives at the steady state origin at
infinity, in a similar way, it is enough to ensure the system comes close enough to the origin.
This is reflected in the terminal set X f . The informal proof can be given as follows: If the
system arrives at a point close enough from the origin at the end of the prediction horizon,
and additionally, a control law exists, which stabilizes any point within the terminal set to
the origin, the MPC law is stabilizing. In other words, stability can be formally established by
a sub-optimal but stabilizing control law of the form

u= k(x) ∀x ∈ X f . (7.9)
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Stability can then be proved for the case that VN is a Lyapunov-Function. See [GP17], Chap-
ter 5 for more detailed proof. As a remark, interestingly, the stability proof using terminal
constraints includes a terminal control law u = k(x), although this control law is actually
never used to control the system.

Stabilizing NMPC without Terminal Constraints

This topic is treated, for example, in Faulwasser, Grüne, and Müller [FG+18] and Gruene and
Pannek [GP17] or the references within. Not having to consider terminal constraints typically
allows a significant speedup in the computation of the solution to the OCP. Additionally,
adding terminal constraints might result in an (unnecessarily) small feasible set, depending
on the prediction horizon. Various approaches have been proposed to guarantee the stability
of NMPC without terminal constraints. Three main ideas are (taken from [FG+18] with
modified references in brackets):

1. Replace Vf by Vβf = βVf , with β > 0 sufficiently large, such that a suitable terminal
constraint X f is satisfied without being explicitly stated in the OCP, cf. [RM09].

2. Require that Vf is a global Control Lyapunov Function (CLF) [JH05].

3. Drop the terminal penalty (Vf (x) = 0), suppose specific bounds on the optimal value func-
tion, and require a sufficiently long prediction horizon [JY+01; GM+05; Gru09].

Approach 3 means that under certain assumptions, it is possible to show that for a suffi-
ciently long prediction horizon, NMPC is stabilizing without terminal constraints and costs.

7.3.7 Offset-free tracking and integral action

Offset is understood to be the steady-state tracking error to which a closed loop system con-
verges when tracking an (asymptotically) constant reference value. Offset appears due to
plant-model mismatches like un-modeled dynamics, uncertain parameters, and un-modeled
disturbances.

Integral action is generally understood as a countermeasure to eliminate steady-state off-
set. Citing Ruscio [Rus13], we find that: “Standard MPC algorithms usually do not achieve
integral action and there is one main reason for this. The answer is that integral action is not
necessarily optimal.”

A recent survey about common methods for offset-free tracking is given by Jimoh, Ku-
cukdemiral, Bevan, and Orukpe [JK+20], which were restricted to linear and time-discrete
state space systems with deterministic disturbances. Several authors suggested achieving
offset-free tracking by using a disturbance model together with an observer to estimate the
disturbance state. Typically, the system dynamics is augmented with an estimated distur-
bance, which is modeled as constant (plus some additive white noise in some cases [MM12;
JK+20]. Various formulations were presented, some of which have been later discovered to
be equivalent [RR+09]. For more information, see the discussion in [PG+15].

An alternative to the approach mentioned above has been presented as incremental model-
based MPC, also termed velocity model approach (see, e.g., [PR01], [PR03], [Rus13]). In this
approach, the input change ∆uk instead of the input value uk is computed by using the state
change ∆xk = xk − xk−1 instead of the state value xk. Augmenting the system with the offset
value has been shown to enable offset-free tracking of constant references for Linear Time-
Invariant (LTI) systems. See again the review [PG+15] and references therein. According to
Werner [Wer21], existing velocity algorithms are all either limited to LTI systems or obtain a
quasi-Linear Parameter-Varying (LPV) system by linearization.
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Looking at nonlinear formulations, [VF19] stated only in 2019 that “although offset-free
tracking in the MPC is not a new method, works related to the NMPC are limited”. Never-
theless, Morari and Maeder [MM12] is one example in which they extended the concepts of
linear offset-free MPC to nonlinear systems.

All examined results had in common that they were designed to track a set point that
remained constant throughout the entire prediction horizon, while most formulations were
required to also calculate a target value. The latter can be seen as the steady-state value to
which the system would settle under consideration of the constant, estimated disturbance
([PG+15], [MM12]).

We want to look closer at the approach for offset-free tracking of nonlinear systems given
by Morari and Maeder [MM12]. Here, the nonlinear model is augmented with a disturbance
model of the form (see [MM12] (8), with only slightly adapted notation):

xk+1 = faug (xk, dk, uk)

dk+1 = dk

yk = haug (xk, dk) .
(7.10)

Note that in this formulation, dk is a general unknown disturbance vector, contrary to the
use in the rest of this thesis, where we used d to describe the known disturbance input. An
observer of the form

x̂k+1 = faug( x̂k, d̂k, uk) + ℓx

�

yφ,k − haug( x̂k, d̂k)
�

d̂k+1 =d̂k + ℓd

�

yφ,k − haug( x̂k, d̂k)
�

,
(7.11)

was discussed “for clarity and due to its practical importance”. However, they also mentioned
that “the arguments in this paper extend easily to other observers such as the Extended
Kalman Filter.” In above equation, the measured output is denoted by yφ,k. It is important
to mention that the results of this paper are derived under the assumption that both an
asymptotically constant reference as well as disturbance is present, i.e.

rk→ r∞
dφ,k→ dφ,∞.

(7.12)

An important ingredient for the output to asymptotically reach the target, meaning that yk→
r∞, is that a target ( x̄ , ū) is added in the cost function, which is defined as a solution to the
equilibrium problem ([MM12], (10), again with adapted notation):

x̄ = faug( x̄ , d̂k, ū)

rk = haug( x̄ , d̂k).
(7.13)

Then, solving the following OCP in a receding horizon fashion was proven to lead to asymp-
totically offset-free tracking of an asymptotically constant reference and disturbance:

min
x̄ , ū

u0, . . . , uN−1

F (xN − x̄) +
N−1
∑

k=0

ℓ (xk − x̄ , uk − ū)

s.t. x0 = x̂ t , d0 = d̂t ,

x̄ = faug ( x̄ , d0, ū) ,

rk = haug ( x̄ , d0) ,

x̄ ∈ X , ū ∈ U ,

xk+1 = faug (xk, d0, uk) , k = 1, . . . , N − 1,

xk+1 ∈ X , uk ∈ U , k = 0, . . . , N − 1,

(7.14)
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with ℓ(0,0) = 0 and F(0) = 0. Note that in this formulation, the solution to the equilibrium
problem x̄ , ū is part of the OCP. Alternatively, instead of directly integrating the equilibrium
problem into the optimization, it is mentioned that it is possible to solve this in a separate
optimization problem. For details about the proof, the reader is referred to [MM12]. Here,
we only want to mention, that it involves that the disturbance estimator is able to estimate
the true plant output yφ,∞ asymptotically error-free. For the linear case, it is then enough
that the model has to be observable, which can be proven easily by well-known observability
conditions. In the nonlinear case, some additional requirements have been presented. This
includes that the observer is designed to be nominally error-free at steady-state, which means
that no stationary solutions with nonzero estimation error exist (see [MM12], Assumption 4
and (30).)

Two main approaches have been discussed in [MM12] regarding the disturbance models.
The first is the pure output disturbance model, with one disturbance state for every output
variable:

xk+1 = f (xk, uk)

dk+1 = dk

yk = h(xk) + dk,

(7.15)

which implies that dim y = dim d. The second, and also rather simple method, is the pure
input disturbance model. This was mentioned to often lead to better closed-loop perfor-
mance while not suffering from observability issues when dealing with plants that contain
integrators:

xk+1 = f (xk, uk + dk)

dk+1 = dk

yk = h(xk),
(7.16)

where they assumed that u, d, and y all to have the same dimension. They also mention that
from the viewpoint of achieving offset-free tracking of asymptotically constant references, it
is sufficient to choose d such that its dimension is not higher than the one of the output and
that doing so would increase the complexity for the observer.

7.3.8 Solution strategies to the optimal control problem

Providing a solution to the OCP at each time step typically is a computationally expensive
task, which makes it challenging to achieve the small sample times needed for fast and ac-
curate control. While a vast increase in computational power could be observed over the
last decades, it is still a limiting factor, especially for real-time embedded platforms found in
automotive platforms.

That is why efficient solution strategies are required. In the following, we will discuss a
few existing methods which have been proposed to solve the control problem more efficiently.
Again, an in-depth introduction to this broad field would exceed the scope of this thesis,
and the reader is referred to excellent introductions given, for example, by [Die16]. In
general, three main approaches exist to solve the optimal control, which are (1) dynamic
programming, (2) indirect approaches, and (3) direct approaches. The following summarizes
the explanations given in Diehl, Bock, et al. [DB+06]:

Dynamic Programming uses Bellmann’s principle of optimally [Bel57] to recursively com-
pute a feedback control. For the continuous time case, this leads to the Hamilton-Jacobi-
Bellmann equation, which is a Partial Differential Equation (PDE) in state space. This method
usually suffers from Bellmann’s “curse of dimensionality” and is therefore restricted to small-
dimensional problems.
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Indirect Methods use Pontryagin’s maximimum principle [PB+61], which is a necessary
condition. A Boundary Value Problem (BVP) can be derived in ODEs, which can be solved
numerically. The approach follows a principle termed as “first optimize, then discretize”. “The
numerical solution of the BVP is mostly performed by shooting techniques or by collocation.
The two major drawbacks are that the underlying differential equations are often difficult
to solve due to strong nonlinearity and instability and that changes in the control structure,
i.e., the sequence of arcs where different constraints are active, are difficult to handle: they
usually require a completely new problem setup. Moreover, higher index DAEs arise on so-
called singular arcs, which necessitate specialized solution techniques” [DB+06].

Direct Methods attack the original, infinite-dimensional problem by transforming it into
a finite-dimensional Nonlinear Program (NLP). This paradigm has been termed as “first dis-
cretize, then optimize”. One of the most important advantages of direct methods has been
found to be that the approach facilitates consideration of inequality constraints [DB+06].
The original, continuous problem is typically approximated by a piece-wise constant param-
eterization of the controls to reduce complexity. This assumption aligns with the practice
of realizing the controller on an embedded platform with a given sample time. The various
direct methods might substantially differ in the way the state trajectory is handled. This
leads to different strategies about how to transcribe the original problem into a nonlinear
optimization problem of the general form:

min J(x) (7.17a)

g(x) = 0 (7.17b)

h(x)≤ 0. (7.17c)

Examples of such transcription methods are direct single-shooting, direct multiple-shooting
as well as direct collocation methods. These transcription methods lead to a different size
of the nonlinear optimization problem above. This results counter-intuitively to a different
complexity since higher-dimensional problems can be much easier to solve.

Before shortly giving some essentials on the different methods, we want to look into how
the resulting NLP can be solved. A solution is typically found by the method of Sequen-
tial Quadratic Programming (SQP) - an iterative method, solving local approximation of the
original problem by quadratic programming. To do so, equality constraints are considered
by formulation of a dual problem, which, informally, includes the “distance” to the equal-
ity constraint. The dual problem then becomes unconstrained but also has to minimize this
“distance”, also called dual variables or Langrange multipliers, named after the inventor of
the method. Inequality constraints are more challenging to consider, as they can be active
or non-active at a certain point, while the transitions at the boundaries are not continuous.
By a generalization of the method of Lagrange multipliers, developed by Karush-Kuhn-Tucker
(KKT), necessary first-order conditions, termed as “KKT conditions”, can be derived. Details
can be found in [Die16]. Again, a variety of iterative methods exists:

In the active set method, active and inactive constraints at the current points are identified
to solve a subset of the problem, which only considers the active set. In this sub-problem, they
are treated as equality constraints, which facilitates the calculation of the resulting quadratic
sub-problem. Iteratively checking for all constraints and adding them, whenever necessary,
to the active set eventually leads to a feasible solution to the problem. The method allows
to warm-start the algorithm, which can be exploited when the quadratic program has to be
solved as part of a sequential quadratic programming problem. However, the computational
costs increase exponentially with the problem size [Won11].

The interior-point method is an alternative to the active set method for solving the un-
derlying quadratic programs, which might face difficulties with the non-smoothness arising
from the inequality conditions. The resulting conditions are replaced by smooth approxima-
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tions, typically logarithmic barrier functions. This method has been found to be especially
interesting for large problems with more than approximately 15 states ([Gon11]).

Single shooting

Single shooting is a sequential approach to solving the optimal control problem. Here, only
the initial state x0 and the control vector U = u0:N−1 act as variables, while the other states
are recursively eliminated by the system dynamics equation. The NLP formulated in this way
has comparably few dimensions but might be challenging to solve due to a high degree of
nonlinearity arising from the recursive forward propagation of the state.

Direct multiple shooting

A different approach is taken in direct multiple shooting [Boc84]. A higher-dimensional,
nonlinear program is obtained by partitioning the prediction horizon in discrete intervals
and treating each of the sub-intervals as boundary value problems. This means that not
only the control vector U together with the initial state x0 build the free variables, but the
entire state trajectory X = x0:N is included as free variables at the so-called shooting nodes.
Additional equality constraints have to be added to ensure the continuity of the trajectory.
Informally stated, the end-states of each sub-interval have to match the initial state of their
subsequent interval.

This leads to Quadratic Programs (QPs) as sub-problems which are typically “a very sparse
linear system and can be solved at a cost linear with N .” ([Die16], p. 133.). Suppose the
original problem is that of receding horizon control. In that case, the algorithm can be very
effectively warm-started since the (time-shifted) state predictions of the last control should
be very close to the ones of the optimal solution for the current problem.

Collocation methods

In direct collocation methods, the entire state trajectory is parameterized as piece-wise low-
order polynomials, which are then included as decision variables in the NLP. This leads to
even higher-dimensional but very sparse problems.

Real-time iteration

Real-time iteration [DS03] tackles a problem termed as online dilemma: Finding the solution
to the OCP cannot be processed in zero time. While time passes by, until a solution is found,
the system state moves from its current state (for which the solution is calculated) to a new
state. This might lead to sub-optimal controls or in the worst case, even loss of stability. To
further reduce the delay inherent with the computation time needed to solve the sequential
quadratic program, in principle, “only one optimization iteration is performed per sampling
instant, and the obtained estimate for the optimal solution is shifted suitably to allow overall
fast convergence” [DS03]. Hence, only an approximation of the optimal control trajectory
is found, but at a reduced computation time. In addition, the computation time of each
cycle is divided into a short feedback phase and a more prolonged preparation phase. The
preparation phase can be processed in the previous cycle before measurement feedback is
available. This reduces the delay within each cycle until the control is available.
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7.3.9 Available software tools

Various tools exist, partly as open-source software packages, which provide solutions to the
numerical problems involved with solving OCPs. In the preliminary studies for this work
[BK16a; BK16b], the nonlinear optimization routine fmincon was used, which is available
within the software package MATLAB® [Mat16]. Another library, which was considered for
the implementation of the controllers within this thesis, was ACADO Toolkit [HF+11]. It
provides very efficient solver implementations based on code generation. Some efforts were
made to use the latter in the present thesis, but it was incompatible with up-to-date software
libraries. This was why the implementation was eventually done in another open-source tool
named “CasADi”. CasADi [AG+19] is, in its current form, a general-purpose tool for gradient-
based numerical optimization with a strong focus on optimal control. At its core, it supports
algorithmic differentiation (AD) using a syntax borrowed from computer algebra systems
(CAS) and has interfaces to common languages like C++, Python, and MATLAB®/Octave.

It supports ODE/DAE integration and sensitivity analysis, nonlinear programming, and
interfaces to other numerical tools, like QP solvers and NLP solvers. These are, for exam-
ple, the SUNDIALS suite [HB+05] with its integrators CVodes and IDAS, or the open-source
primal-dual interior-point solver Ipopt [WB06] for NLPs and qpOASES for QPs, along with
some commercially distributed packages. It also supports the generation of C-code but for a
limited selection of solvers, which themselves support this.

Another open-source library is MPCTools [RR16]. It provides interfaces to CasADi solvers
for all components of MPC: the estimator, the target calculator, and the regulator.

Very recently, at the time of writing, the software library acados [VF+21] was released,
which can be seen as the successor of the library ACADO Toolkit. It is “a collection of solvers
for fast embedded optimization intended for fast embedded applications. Its interfaces to
higher-level languages make it useful for quickly designing an optimization-based control
algorithm by putting together different algorithmic components that can be readily connected
and interchanged . . . The main features of acados are: efficient optimal control algorithms
targeting embedded devices implemented in C ..., user-friendly interfaces to MATLAB® and
Python, and compatibility with the modeling language of CasADi.” Unfortunately, it is not
yet fully available at the time when the implementation of this thesis work started; this could
be worth a try for the authors’ new academic projects, while at the time of reading, this
information might be outdated already.

Another example is the commercially available solver Forces Pro [ZD+17a], for which
temporary licenses seem to be available for free for academic purposes upon request. Both
frameworks could be used to generate efficient code suited for running on embedded systems.
They both have been reported to be up to a magnitude faster [ZD+17a] than Ipopt [WB06],
which we used for our experiments within the CasADi framework.

7.3.10 The control allocation problem and solution approaches

We already gave a general and informal definition of the term control allocation problem in
Section 1.6, and learned that we have to solve this problem whenever we have to distribute a
desired total control effort among a set of redundant actuators. A more detailed discussion of
this topic can be found, for example, in the dissertation of [Kir18], which is solely dedicated
to this topic.

More formally, for a controller to be uniquely defined, one has to be able to find a unique
mapping from a desired system output to the control input vector that drives the system. This



7.3 Related work and taxonomy 149

means that if we consider the desired system output

yd = f y(x , u, t), (7.18)

and the control problem consists of finding a control input that fulfills:

u= f −1
y (x , yd , t). (7.19)

If the inverse mapping given above is not unique, we have an over-actuated or redundant
system, and the inversion is, without considering further criteria, an ill-defined problem.
Performing this non-unique inversion is called solving the control allocation problem. In its
most simplistic form, it might be that the system can be rewritten in the form

yd = f y(x ,δ, t) (7.20)

δ = Bu, (7.21)

where the effective, virtual control input δ to the system is given as a static, linear mapping
Bu. Now, even if the mapping f y is invertible, but not the matrix B, meaning that B−1 does not
exist, no unique inversion exists. In other words, inputs are redundant whenever the input
matrix B ∈ Rn×m does not have full column rank, and so perturbations of u in null-space
directions do not affect the systems dynamic, as discussed in Section A.3. Various methods
have been proposed as solutions to the control allocation problem. These can be mainly
categorized into static and dynamic control allocation methods.

One simple solution, which belongs to the group of static methods, would be to use the
pseudo-inverse to calculate

u= B†δ, (7.22)

or the weighted pseudo-inverse in case one wants to enforce favored actuator positions (see
Section A.3.2). A limitation is that these methods fail in case actuator constraints are present
(see [Kir18], p. 14). Other engineering targets, such as energy minimization, pose additional
difficulties.

An extension, which is only feasible in case a fixed hierarchy of actuator utilization can be
specified, is daisy chaining. Here, redundant controls are applied, starting with controls that
were given a high priority, and the lower-priority controls are only used in case the control
target cannot be reached due to higher controls being saturated. No guarantee can be given
that a feasible solution is found (see [Kir18], p. 16). Another iterative process taken into
account is the method of Redistributed Pseudo-Inverse. Here, an initial solution is obtained by
the method of the weighted pseudo-inverse. In case this solution led to constraint violations,
the constraint-violating controls are set to their saturated values, and a new solution is calcu-
lated from this subset. The process continues until a feasible solution is found. Other possible
methods include direct allocation (see [Kir18], p. 17) and numerical optimization methods.
The latter has the advantage of the possibility of including additional cost terms, in order
to favor, for example, solutions with reduced actuation energy while coming at increased
computational costs.

Looking at dynamic allocation approaches, additional solutions exist for linear plants,
including methods using integral action in the control allocation law as well as LQR laws
(see [Kir18], 2.1.7 and 2.2, respectively).

Using MPC to solve the control allocation problem is known to be a very versatile method.
It allows to include actuator dynamics and constraints of each actor individually while offering
the possibility to formulate additional targets for selecting favored solutions, for example,
reducing actuator energy. MPC also allows the direct integration of the control allocation
problem into a control task. However, this comes at the expense of increased complexity
regarding computational power and implementation effort.



150 7 Adaptive Nonlinear Model Predictive Control

An example of the application of model predictive control solely to solve the control allo-
cation problem in heavy-duty vehicles is given in Sinigaglia, Tagesson, Falcone, and Jacobson
[ST+16].

Hence, it is straightforward to solve the control allocation problem directly within a model
predictive control scheme, not only dedicated to splitting the control effort to the redundant
actuators but also to solve a higher-level control target. In our case, as we will see in the
remainder of this section, this higher-level purpose will be longitudinal motion tracking.

7.4 Proposed solution

In this section, a proposal for a novel formulation of NMPC is presented, which is especially
suited as a longitudinal motion tracking algorithm for automated road vehicles. We first
present the proposed control architecture of AVs, in which the tracking controller is embed-
ded. This is done in Section 7.4.1. Then, we give a formal description of the control problem
in Section 7.4.2. Next, the proposed formulation of the adaptive, nonlinear model predictive
control (ANMPC) strategy is presented in Section 7.4.3.

7.4.1 Proposed control architecture

Vehicle

 
 
 
 
 
 
 
 
 
 
 
 
 

Longitudinal Motion Tracking Module

Mission
Planning
Module

Behavioural
Planning
Module

Motion
Planning
Module

Vehicle State and
Parameter Estimator
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Figure 7.2: Block diagram of the proposed longitudinal vehicle control architecture including the adaptive, model
predictive control motion tracking module.

Figure 7.2 depicts the longitudinal motion tracking module as proposed, together with
it’s embedding within a general, control oriented system architecture of an automated vehi-
cle. The proposal regarding the control architecture has already been presented within the
author’s publication [BK16a].

Let us look at Figure 7.2 in more detail. The longitudinal vehicle motion tracking module
receives a time-varying reference trajectory from a motion planning control unit. This motion
planning unit could itself be a model predictive controller, solving all sorts of driving scenario
related control problems, like, for example the CACC problem. Alternatively, it could be a
planning module in the sense that it computes trajectories in a feed-forward manner.
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The perception module provides predictive advance knowledge about future road grade
changes. They might come from map information, from sensory data (e.g., Lidar), or, even
more likely, fused from different sources.

The output of the predictive longitudinal motion tracking module is two trajectories,
which serve as an input to the power-train control module and the brake control module.
By definition, these trajectories also contain predictive information that the just-mentioned
lower-level modules can exploit.

In order to operate in a closed loop, the longitudinal motion tracking module also receives
sensory feedback from the vehicle, which are noisy measurement readings of vehicle speed
and acceleration, as well as (estimations) of the true tire forces resulting from the engine (or
power-train) and the brakes.

Within the motion tracking controller, a vehicle state and parameter estimator acts as a data
fusion module to provide filtered sensor information about vehicle speed and acceleration
and estimations about the relevant vehicle parameter estimates. These are estimations of
vehicle mass and the coefficients for rolling resistance and a (lumped) air resistance. The
vehicle state and parameter estimator output is then leveraged in the vehicle dynamics model
within the model predictive controller. Details about the estimator module can be found in
Chapter 6, which can be seen as substantial extensions of the work presented in [BK16a].

7.4.2 Problem formulation

Plant model description

In this subsection, we want to present a nonlinear, continuous-time state-space form of
the equations describing the longitudinal vehicle dynamics. In Section 3.5.2, we describe
simplified equations for the longitudinal vehicle motion dynamics model in the form of a
continuous-time system of ODEs in (3.66). For control purposes, we want to rewrite this in
state space form while we transform it, solely for the purpose of giving some structure, into
a system of the following form:

ẋ(t) = f (x(t),θ (t)) + g (d(t),θ (t)) + B · u(t) (7.23a)

y(t) = H x(t). (7.23b)

If we define the elements of the input vector u(t) = [u1, u2]T as the demand values to power-
train u1 = T d

we and brake u2 = T d
br, the road slope angle as known disturbance d = ϕ, and the

state vector x and the parameter vector θ as

x(t) =





v(t)
Twe(t)
Tbr(t)



 , θ (t) =





m(t)
Cd(t)
Cr(t)



 , (7.23c)
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this will lead to the functions f and g and the matrices B and H given as:

f (x ,θ ) =















−θ2

θ1 +mI
· x2

1 +
x2 − x3
�

θ1 +mI
�

reff
−1
τpwt

x2

−1
τbr

x3















(7.23d)

g (d,θ ) =







−θ1g
θ1 +mI

(sin d + θ3 cos d)

0
0






(7.23e)

B · u=





0
1
τpwt
· u1

1
τbr
· u2



=





0 0
1
τpwt

0

0 1
τbr



 · u (7.23f)

H =
�

1 0 0
�

, (7.23g)

where we omitted time dependency this time for readability reasons. Remember that we
presented this system already before in (3.74a) as semi-explicit DAE, where we performed a
partitioning into system relevant states x s and actuator states xu and wrote:

ẋ s = f s(x s, z) (7.24a)

ẋu = Au xu + Buu (7.24b)

0= gDAE
�

x s, xu, z, d, θ̂
�

(7.24c)

y = h (x s, z) , (7.24d)

where we had linear and stable actuator dynamics. We will use this representation to derive
the proposed method for the target calculation within the proposed offset-free MPC approach.

Assumptions

The formulation of (7.23) was already done under several assumptions, which we want to
summarize here. Further, we want to discuss additional assumptions which will be taken
solely for control purposes and allows to formulate an OCP which can be efficiently solved in
a model predictive scheme.

Consideration of unknown and time-varying parameters

In reality, most parameters that appear in (7.23), except the gravitational constant g, are
time-varying. These are the effective tire radius reff, the time constants of power-train and
brake τpwt and τbr, respectively, as well as the parameters contained in the parameter vector
θ . The mass equivalent resulting from the tire inertia mI can be regarded as constant. To
formulate the optimal control problem over a limited time horizon, we will assume that
all the parameters mentioned, including θ , will not change substantially during the limited
prediction horizon and treat them as time-invariant over this horizon.

Due to dynamic forces acting on the wheels, the effective wheel radius reff will increase
in dependency on the rotational speed. We assume it would be possible to obtain the time-
variant value using an approach similar to [CG05], which could then be used during each
cycle. Nevertheless, for simulation purposes, we neglect entirely this influence and assume it
is time-invariant.
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The vehicle mass m is time-variant but generally only changes slowly while the vehicle
is moving (e.g., due to fuel consumption). Nevertheless, it might happen that a vehicle
loses load or that passengers jump onto the rolling vehicle. We assume that the parameter
estimation module proposed in Chapter 6 can provide a meaningful estimation, which we
will use in the model predictive controller, but treat the parameter value as time-invariant
during the entire prediction horizon. The same applies to the other two parameters of the
parameter vector θ , the aerodynamic drag coefficient Cd, and the rolling resistance Cr, which
was the motivation behind this notation. Hence, estimations of the full parameter vector θ̂
are assumed available from the estimator.

The actuator delay coefficients of the power-train and brake, τe and τbr, are also gen-
erally assumed to be constant. While these values might vary in reality, we assume that an
empirically derived worst-case value is used in the tracking module. This clearly will lead to
somewhat restrictive behavior, and investigations about how this can be avoided are left to
future work.

Also, we assume to have knowledge about the maximal wheel torque values, which can
be provided by the power-train and the brakes, and assume these values to be constant. In
practice, again, these values will vary, depending on the operating point of an engine, for
example, or the wear and tear of brakes. The same applies to the value of the minimum
negative wheel torque value induced by the engine due to engine drag effects. All these
values act as actuator limits within the tracking control module. For simplicity, we assume
these values to be known and constant.

Consideration of advance knowledge

We assume that at each time t at which a control output should be calculated, for each
discrete sampling point k in time, defined over a prediction horizon of length Np into the
future, a vehicle speed reference trajectory

Y d
t =
�

vd
t|t vd

t+1|t . . . vd
t+Np|t

�

, (7.25)

as well as a vehicle acceleration trajectory:

Zd
t =
�

ad
t|t ad

t+1|t . . . ad
t+Np|t

�

(7.26)

is available. In general, we do not pose any restrictions on the shape of these trajectories,
except that they should lie within the feasible sets vd

k ∈ Y, ad
k ∈ Z for the state and the

algebraic state, respectively, and the acceleration values match the speed trajectory except
by some round-off errors. In addition to many existing MPC formulations, we do not only
consider reference values as time-varying over the prediction horizon but also further assume
that a vector containing future road grade values, which can be seen as known disturbances D

Dt =
�

ϕt|t ϕt+1|t . . . ϕt+Na|t
�

, (7.27)

given over the entire advance knowledge horizon, which we consider in this presentation to
be of the same length as the prediction horizon Na = Np. We neglect the dependence of ϕ
from the distance the vehicle travels and assume the values are obtained from a prediction
of the given reference trajectory. Under the assumption that the true vehicle trajectory will
not deviate very far from the reference, we will neglect the errors arising from this simplifica-
tion. Nevertheless, the proposed framework could also be enhanced to include the distance
traveled by the vehicle as another state, which would allow to correctly consider road grade
information parameterized by distance rather than by time. Currently, this is left to future
work.
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As a note on the feasibility of the tracking control problem, we want to mention the
following. If we require the controller to track a given trajectory without any tracking error at
all times, restrictions have to be stated concerning the shape of the reference trajectory. Error-
free tracking would be possible only under the assumption that vd is Lipschitz continuous,
with Lipschitz constant smaller than a certain value. This limit depends on the current road
slope and all the vehicle parameters, as seen from (3.61), but also from the friction limits.
Additionally, due to actuator delays, further restrictions regarding the second derivative of
the reference trajectory would be necessary. We do not require that these restrictions be
fulfilled by the reference trajectory if we allow the controller to deviate temporarily from the
reference. For the work done in this thesis, we want to restrict ourselves only in a way that we
assume the final value of the given reference trajectory is feasible, such that asymptotically
offset-free tracking will be possible.

Objective

We want to find the control inputs u1 and u2 at each discrete time step over the control
horizon in order to optimally track the vehicle speed reference value. In contrast, a trade-
off between minimizing the tracking error, reducing the control input energy and achieving
a comfortable vehicle motion should be possible by tuning. As mentioned, the controller
should be capable of dealing with the unknown time-variant vehicle parameters vehicle mass,
aerodynamic drag, and rolling resistance coefficient. Since the control matrix B in (7.23) is
not square and full-rank, the above objective means that in addition, the controller has to
solve the control allocation problem, as described in Section 7.3.10.

7.4.3 Proposed model predictive control formulation

Optimal control problem

To achieve the above objective, we formulate the following OCP according to the multiple-
shooting paradigm presented in Section 7.3.8. The formulation was inspired by the work of
[MM12]. This implies that the time-continuous formulation in (7.23) has to be discretized.
Hence, the following OCP will be solved at each discrete time t to find the optimal control
sequence U = u0:Np−1|t . Note that to reduce complexity, this could also be modified to consider
only a reduced control sequence of length Nc < Np while keeping the controls constant at the
remaining times over the prediction horizon, but for ease of presentation, we will omit this
option in the following and use Nc = Np = N . We formulate the optimal control problem,
according to a multiple-shooting approach, as follows:

minimize
U ,X

J(U , Ū , X , Y d , D)

subject to xk+1 = fd(xk, uk, θ̂k, dk) ∀ k ∈ [0, N],
x0 = bx t ,
bθk = bθt ,
u−1 = u0|t−1,
uk, ūk ∈ U , ∀ k ∈ [0, N − 1],
xk ∈ X , ∀ k ∈ [0, N]

(7.28a)

Note that in this formulation, both the control matrix U and the state trajectory matrix X =
x0:N are considered free variables. Ū = ū0:N is the target input trajectory, see Section 7.4.3
for details. The system dynamics described by xk+1 = fc(xk, uk, θ̂k, dk) here is the time-
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discretized version of the continuous-time system which can be written as:

ẋ s = fs(x
s, z) (7.29)

ẋu = Au xu + Buu (7.30)

0= gDAE
�

x s, xu, z, d, θ̂
�

(7.31)

y = h (x s, z) . (7.32)

The arguments of the OCP are the optimal input and state trajectories U∗ and X ∗, where the
first column of the matrix U∗ will act as an input to the system in a receding horizon fashion.

Target input calculation

Above OCP in (7.28) depends on the target input trajectory Ū , which we derive as follows:
Basically, it is defined for any given references Y d and Zd , and, for any given parameter
estimate θ̂ , and has to fulfill the equilibrium of the actuator dynamics together with the
algebraic constraint

0= Au x̄u
k + Buūk (7.33a)

0= gDAE
�

x s
k, x̄u

k , zd
k , dk, θ̂k

�

(7.33b)

yd
k = h
�

x s
k, zd

k

�

. (7.33c)

This can be interpreted as the solution to the system dynamics when neglecting actuator
dynamics. For an asymptotically constant reference yd

k = const., the inputs obtained in such
a way will be asymptotically identical to the optimal solution u∗∞ = ū∞.

Note that the reason for formulating the above conditions using the system description
of a semi-explicit DAE was not mandatory since one could transform it to a system of ODEs.
Nevertheless, this offers a neat possibility to require that information about the target tra-
jectory is used, which consists not only of the differential state xd , but also the algebraic
state zd . Also note that to solve the above equations for the target input, a DAE solver is not
necessarily required.

Objective function

In order to meet the control objectives mentioned in Section 7.4.2, we formulate the objective
function J as

J
�

U , Ū , X , x̄ , Y d , D
�

= J ỹ

�

Y, Y d
�

+ Jũ (U , Ū) + J∆u (U) , (7.34)

where output reference tracking is obtained by J ỹ(Y, Y d), which is the cost penalizing devia-
tions ỹ = yk − yd

k from the time-variant output reference and defined as

J ỹ(Y, Y d) =
N
∑

k=1

∥yk − yd
k ∥

2
Qk

. (7.35)

The cost terms related to the control inputs Jũ(U , Ū) and the control increments J∆u(U) are
defined as:

Jũ(U , Ū) =
N−1
∑

k=0

∥uk − ūk∥
2
Rk

(7.36)

J∆u(U) =
N−1
∑

k=0

∥∆uk∥
2
Sk

. (7.37)

In Jũ, the deviations ũk = uk − ūk of the inputs to the target input values are penalized. With
the cost term J∆u (U), smoother trajectories are achieved by penalizing squared differences
of subsequent actuator values ∆uk = uk − uk−1.
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Discussion of the proposed controller

The above formulation is similar to and inspired by the work of Morari and Maeder [MM12],
as explained in detail in Section 7.3.7 but differs from their formulation in the following
ways:

First, [MM12] only considers targets of both state and input ( x̄ , ū), which were derived
as the equilibrium regarding the full state vector x , which yields a single target which is
then used for the entire prediction horizon. By restricting the equilibrium condition only to
the actuator states x s, we are enabled to calculate a time-variant target trajectory. This is
possible by using the state-partitioned formulation as semi-explicit DAE, as given in (3.74a).
Nevertheless, for the case of an asymptotically constant reference yd as well as constant θ and
d, the formulation becomes asymptotically identical to the one in [MM12], if we interpret the
unknown parameter vector θ as unknown disturbance and ignore the presence of the known
disturbance d (be aware of the different meaning of d in [MM12]).

Another distinction is that unlike [MM12], we did not directly include the equilibrium
conditions (7.33) into the optimization problem. This possibility was also mentioned by
[MM12], Section 6.2, and is due to the fact that we have to deal with an over-actuated
system for which no unique solution to the actuator equilibrium conditions exists without
further regularization terms. This could also be solved within the optimization as done by
[MM12]. However, for the example of longitudinal vehicle dynamics, we found it easier to
require that the solution of (7.33) additionally fulfills some static control allocation condition
in order to avoid, as much as possible, situations in which both engine and brakes produce
torques on the wheels which work against each other.

As another distinction, the formulation of the system dynamics as partitioned, semi-
explicit DAE was chosen, which offers the possibility to formulate the actuator equilibrium
conditions while also being able to calculate time-variant input targets over the prediction
horizon. By doing so, we can exploit the fact that we are given a reference trajectory consist-
ing of output Y d and algebraic state Zd .

A further difference is, as we see from the cost function that we additionally include a
cost term that penalizes input differences, which is required to achieve a more comfortable
behavior.

Note: it is not necessary to include additional terminal costs of the form JN (xN , x̄) (as
discussed in Section 7.3.6) to the objective function as typically found in other formulations
[MM12]. Due to the fact that the actuator states xu follow their independent, stable dynam-
ics, and we penalize both the terminal output with ∥yN − yd

N∥
2
QN

contained in J ỹ(Y, Y d), as
well as the last input ∥uN−1 − ūN−1∥RN−1

together with actuator equilibrium condition (7.33),
this is (asymptotically) equivalent to directly penalizing deviations of the full state vector
within a separate terminal cost term. Of course, the formulation of [MM12] is for more
general systems than those in our presentation.

Formulation for longitudinal vehicle tracking

In our example, the feasible set for states and inputs are defined as box constraints X ∈
[xmin, xmax] and U ∈ [umin, umax] with the following values

xmin = [vmin, Twe,drag, 0]T (7.38)

xmax = [vmax, Twe,max, Tbr,max]
T (7.39)

umin = [Twe,drag, 0]T (7.40)

umax = [Twe,max, Tbr,max]
T. (7.41)

We solve the target by the actuator equilibrium condition together with the algebraic con-
straint (7.33), which for the vehicle dynamics as given in (3.75a) yields for each time k:
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0=

�

− 1
τpwt

0

0 − 1
τbr

�

x̄u +

� 1
τpwt

0

0 1
τbr

�

ū (7.42a)

0= −θ2

�

x s
1

�2
+

x̄u
2 − x̄u

3

reff
− (θ1 +mI)z − θ1g (sin d − θ3 cos d) (7.42b)

yd = [x s,d
1 zd]T, (7.42c)

and we can eliminate the first and the last equation by noting that we assumed to be also
given a reference acceleration denoted by zd

k . The second equation yields

ūk = x̄u
k , (7.43)

which follows from Au = −Bu, and is clear from the fact each actuator state follows its individ-
ual first-order dynamics. What remains is the equation for the algebraic constraint, omitting
time indices for readability and from

0= −θ2

�

x s,d
1

�2
+

ū1 − ū2

reff
− (θ1 +mI)z

d − θ1g (sin d − θ3 cos d) , (7.44)

it is clear that this has no unique solution for ū. Instead, we first substitute T̄w = ū1 − ū2,
for which we obtain a unique solution and will split the target wheel torque according to the
torque split first introduced in Section 8.5.1.

ū1 = T̄w

ū2 = 0,

�

T̄w > Twe,drag (7.45)

ū1 = Twe,drag

ū2 = Twe,drag − T̄w

�

T̄w ≤ Twe,drag. (7.46)

We want to emphasize that this way, we will get an entire, and time-variant target trajectory
Ū0:N |t at each time t.

Note that, although this is just a static control allocation procedure, but for the target
ū instead of the true input u. Like this, the model predictive controller is still capable of
weighting to follow the static allocation against following the dynamic trajectory on the way
toward the target value. Like this, whenever necessary, the model predictive controller will
dynamically deviate from the static values and, therefore, achieve improved dynamic tracking
compared to the purely static case.

Also, we can achieve asymptotic offset-free tracking while avoiding the case that both
brakes and engine work against each other - except in transients close to the switching point.

As outlined in Sections 7.3.7 and 7.4.3, we could also integrate the solution for the input
target ū as a constraint within the optimization. Nevertheless, the solution above seemed
more straightforward to achieve in that the controller avoids concurrently applying brakes
against the engine torque. In any case, this could also be achieved with proper regularization,
but has been left to future work.

7.5 Evaluation

7.5.1 Simulation environment 7.1

A simulation environment was implemented, which is based on the longitudinal vehicle dy-
namics (3.76) as given in Section 3.5.3. This model was also evaluated with real-world
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experiments in [RH+16; AE+16], which both found a good correlation between measure-
ments and simulation. We realized two simulation scenarios, which we want to describe in
detail in the following. Further implementation details are given in Section 7.5.1.

Scenario 1

The first simulation scenario aims to demonstrate the advantages and challenges of the pro-
posed predictive controller compared to the baseline PI controller described in Section 7.5.1.
The scenario consists of a piece-wise constant velocity reference, which the controllers have
to track. Additionally, road grade changes are conducted, also in a step-wise fashion, re-
sulting in a piece-wise constant shape of the disturbance, which aims to evaluate the step
response as well as the disturbance response capability of the two controllers. The target
reference can be seen as a discontinuous simplification of the one occurring in a low-speed
scenario through a parking garage. As can be seen in Figure 7.3 (top), the vehicle should fol-
low a speed profile with an initial value of 5 m/s, starting from a standstill. At time t = 10 s,
the reference speed value is abruptly reduced to a value of 1 m/s (e.g., to drive around a
corner). At t = 15 s, the vehicle enters a ramp, which results in the road grade changing
from 0 to 0.15 rad until at t = 20 s, the vehicle leaves the ramp and continues driving on a
horizontal plane. Another speed step to 5 m/s is carried out at t = 25 s, to remain constant
until t = 30 s. Between t = 40 s and t = 45 s, the vehicle is simulated to be on a second
ramp, only this time, the ramp is steeper with a gradient of ϕ = 0.35 rad. In a real driving
scenario, such a discontinuous change of the road grade disturbance would not occur. Nev-
ertheless, analyzing step responses brings valuable insights into the controller performance.
The author’s preliminary work published in [BK16b] also used a similar experiment.

We will conduct a variety of different experiments on this scenario: The first experiment
aims to demonstrate the advantage of the proposed predictive control scheme compared to
a baseline PI controller in a nominal setting (without any noise or parameter uncertainty).
Details can be found in Section 7.1, and simulation results can be seen in Figure 7.3.

Experiment 7.2 and Experiment 7.3 demonstrate the robustness of both the baseline PI
controller (see Section 7.2) and the non-adaptive NMPC controller (see Section 7.3) to wrong
assumptions about the values of the vehicle model parameters, as well as the occurrence of
measurement noise.

Experiment 7.4 demonstrates how the optimal behavior can be restored when combining
the NMPC controller with the state and parameter estimator from Chapter 6 to an ANMPC,
despite the previously unknown parameters and the occurrence of measurement noise.

Scenario 2

The second scenario we use to evaluate the proposed control algorithm consists of tracking
a dynamic vehicle speed reference trajectory. The reference is based on velocity data defined
by the WLTC Class 3 cycle, which is part of the WLTP procedure defined by UNECE [UNE19],
where the cycle data is available for download. Two modifications to the original cycle data
have been made. First, the desired vehicle speed profile was modified from the cycle data
vd

W LT C . Second, we added a variable road grade profile. The modifications are calculated as
follows: The original speed profile is modified according to the formula

vd(t) =

�

2.5 if vd
W LT C < 2.5 ∧ t ∈ [100s, 1500s]

vd
W LT C(t) else,

(7.47)

which means that except the initial acceleration and the final deceleration phase, the mini-
mum velocity is kept to a value of 2.5 [m/s2]. The reason for this choice will be made clear
and discussed in detail in Chapter 6. Please refer to Section 6.3 for more details.
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In order to create trajectory data defined on a time grid with a higher resolution than one
second of the original data provided by the WLTC cycle data mentioned above, we perform
a re-sampling step using the interpolation algorithm makima with default parameters using
the MATLAB® command interp1.

Additionally, we define a variable road grade, while the original cycle is defined on flat
terrain only. We do this by first calculating an approximation of the distance s, which the
vehicle travels when following the reference speed profile as a cumulative sum of the velocity.
Next, we calculate a road grade profile according to the formula

ϕ = 0.2 · sin(0.0005 · 2πs), (7.48)

where s is the distance traveled. By modifying the WLTC cycle in the described manner, we
are able to evaluate the proposed controller also in a challenging but realistic driving scenario
while providing an easily reproducible evaluation cycle. See Figure 7.7 for an illustration of
the resulting velocity and road grade profile.

Implementation details of Simulation Environment 7.1

Simulation Environment 7.1 was implemented in MATLAB®. The final results were produced
using R2021a. In order to solve the DAE, we used the MATLAB® interface of the open-source
framework for numerical optimization CasADi [AG+19], which integrates the DAE solver
IDAS from the SUNDIALS suite [HB+05]. The values of all parameters used within the
simulation can be found in Table 7.1.

Table 7.1: Simulation parameter

Symbol Description Value

Ts Simulation sample time [s] 0.01

m Vehicle mass [kg] 1500

Cd Aerodynamic drag coefficient [kg/m] 0.65

Cr Rolling resistance coefficient [-] 0.015

mI Mass equivalent resulting from power-train inertia [kg] 40

reff Effective wheel radius [m] 0.3

Twe,drag Maximum negative power-train drag torque [Nm] -300

Twe,max Maximum wheel torque induced by engine [Nm] 1600

Twe,max Maximum wheel torque induced by brakes [Nm] 1800

τpwt Time constant of torque response [s] 0.5

τbr Time constant of brake response [s] 0.1

g Gravitational constant [N] 9.81

NMPC controller implementation In order to realize the controller and solve the underly-
ing OCP given in (7.28), the MATLAB® interface of the open-source framework for numerical
optimization CasADi [AG+19] was used. For this purpose, we find a time discrete formu-
lation from a fourth-order Runge-Kutta M -step approximation of the longitudinal vehicle
dynamics (7.23) as defined in Section B, where a step size of M = 1 was used. CasADi was
parameterized to use the interior-point method solver Ipopt [WB06] with default parameters,
except the following:
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• max_iter = 2000

• acceptable_tol = 1e-8

• acceptable_obj_change_tol = 1e-6.

The NMPC controller was running at a reduced sample time of TMPC = 0.1 s. The controller
parameters used are summarized in Table 7.2.

Table 7.2: Parameter settings for NMPC controller

Symbol Description Value

Np Prediction horizon 20

Nc Control horizon 20

Na Advance knowledge horizon 20

Qk Speed deviation weight 50000

Rk Input weight diag([0.001,0.05])

Sk Input difference weight diag([0.02,0.02])

TMPC Controller sampling time [s] 0.1

The adaptive NMPC controller uses the state and parameter observer as described in
Section 6.5.3 in order to provide the estimated values for x̂ and θ̂ . On a side note, we want
to mention that an intermediate solution was implemented using the DAE solver IDAS from
the SUNDIALS suite [HB+05], but since this led to substantially longer evaluation times
without any notable improvements in control accuracy, which was why this solution was
abandoned.

Baseline PI controller The baseline controller is implemented as a cascaded PI controller
with a feed-forward part. The outer loop controls vehicle speed and calculates a set point
for the inner loop based on vehicle acceleration. A feed-forward part that corrects for the
known disturbances is included to actively consider the known disturbance. This leads to the
calculation of a desired wheel torque value T d

w according to

T d
w = reff

�

ad (m+mI) +mg (sinϕ + Cr cosϕ) + Cd ·
�

vd
�2�
+ uPI, (7.49)

where uPI is the correction term, calculated as the output of the inner-loop PI-controller.
Both inner and outer-loop controllers include an anti-windup scheme on the integral part.
To solve the control allocation problem, the desired wheel torque is split into a power-train
and a brake torque value identical to the static method described previously in Section 8.5.1.
The PI controller was running at the same sampling time as the simulation with Ts = 0.01
s. The PI controller cascade was tuned to be robust to parameter changes, as can be seen in
Experiment 2. This resulted in values K v

p = 2 and K v
i = 0.3 for the outer loop controller, and

Ka
p = 1 and Ka

i = 15 for the inner loop of the cascade.

7.5.2 Experiment description

To evaluate the approach, we run various experiments with Simulation Environment 7.1,
which contained the two simulation scenarios
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• Scenario 1: Step response regarding reference [vd , ad]T, disturbance steps on ϕ,

• Scenario 2: A modified WLTP test cycle.

In these scenarios, we conducted various experiments, which will be described in more detail
in Sections 7.1 to 7.5. Table 7.3 aims to provide an overview of the experiments discussed in
this chapter.

Experiment Description Results

Experiment 7.1 Scenario 1, NMPC (nominal) vs. PI (nominal) Figure 7.3

Experiment 7.2 Scenario 1, PI (nominal) vs. PI (realistic) Figure 7.4

Experiment 7.3 Scenario 1, NMPC (nominal) vs. NMPC (realistic) Figure 7.5

Experiment 7.4 Scenario 1, NMPC (nominal) vs. ANMPC (realistic) Figure 7.6

Experiment 7.5 Scenario 2, PI (realistic) vs. ANMPC (realistic)
Figure 7.7,
Table 7.5

Table 7.3: Overview of experiments discussed within this chapter. All experiments conducted in Simulation Envi-
ronment 7.1.

Experiment 7.1

Experiment 7.1 was conducted in Scenario 1, which is described in Section 7.5.1, and com-
pares the performance of a NMPC controller to the one of the baseline PI controller described
in Section 7.5.1. We used the nominal model in the controllers, meaning that all model pa-
rameters were time-invariant and known to the controllers and that no measurement noise
was present. Since perfect knowledge of the vehicle states and parameters is given, no state
and parameter estimator is necessary for this experiment. The results can be seen in Fig-
ure 7.3 and a discussion can be found in Section 7.5.3.

Experiment 7.2

Experiment 7.2 serves to compare the performance of the baseline PI controller in Scenario
1, under both nominal and realistic assumptions. Nominal means that no measurement noise
is present in the first simulation (PI 1), and the model parameters for the feed-forward part
are perfectly known. The second time (labeled as PI 2 in Figure 7.4), the simulation was
performed using noisy measurements and with wrong vehicle parameter values. As can be
seen in the bottom subplot of Figure 7.4, the parameter estimations used in the controller
were a value of Òm = 1800 instead of m = 1500 kg, bCd = 0.8 instead of Cd = 0.65 and
bCr = 0.018 instead of Cr = 0.015, respectively. No filter was used, and the unfiltered, noisy
measurement error was directly used as a control error.

Experiment 7.3

Experiment 7.3 aims to demonstrate that the predictive but non-adaptive NMPC controller
has limited robustness against deviations between the real and the estimated vehicle pa-
rameter values. Non-adaptive here means that this experiment was not using the proposed
parameter adaptation scheme from Chapter 6.

Hence, Experiment 7.3 is, in principle, a repetition of Experiment 7.2, only that instead
of the PI controller, we run the (non-adaptive) NMPC controller in both a nominal setting
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(no noise, parameters known) and a realistic setting (noise present, parameters unknown).
All estimated and real vehicle parameter values were also kept identical to before. Also, the
unfiltered, noisy vehicle speed measurement was directly used in the controller. This is to
highlight that a filter or state estimator is beneficial to achieve smooth performance. Results
are shown in Figure 7.5.

Experiment 7.4

In Experiment 7.4, the simulation for Scenario 1 is performed twice to compare (1) the
NMPC controller in the nominal setting (with perfect plant parameter knowledge and without
measurement noise) to the response of the (2) adaptive ANMPC controller, which uses the
state and parameter estimator from Section 6.5.3 in Chapter 6. The results are shown in
Figure 7.6. The initial values for the parameter estimates were chosen to be identical to the
ones already used in Experiment 7.2.

Experiment 7.5

In Experiment 7.5, we evaluate the results of a simulation of the modified WLTC cycle as
described in Scenario 2. The performance of two controllers is compared: the baseline
PI controller from Section 7.5.1, and the proposed ANMPC controller as described in Sec-
tion 7.5.1. Results are shown in Figure 7.7 as well as Table 7.5, and a discussion of the
results, including the evaluation of the tracking error performance and the control effort is
found in Section 7.5.3.

7.5.3 Result discussion

General discussion of Experiments 7.1 to 7.4

Comparing the performance of the two controllers in Figure 7.3, which shows the results of
Experiment 7.1, one can observe that the proposed NMPC outperforms the PI controller in
various ways.

First, the predictive controller has less tendency to show over- and undershoot phenom-
ena as a reaction to the reference speed changes, and only minor deviations from the refer-
ence speed value occur due to the sudden change in road grade, which causes a discontinuous
disturbance. This can be explained by the observation that overshoots under the PI controller
are mainly caused by the presence of integral action, which is not the case for the proposed
predictive controller.

Second, we can observe a deviation from the reference speed when looking at the PI
response at time t = 40 s, when entering the steep ramp. In comparison, the NMPC controller
only shows a slight deviation around the times when the road grade changes happen. This
can be explained by the following: Although the PI controller has a feed-forward part that
immediately reacts when the road grade change is measured, the presence of actuator delay
reduces the effect of this immediate action. This, together with the fact that the actuator
runs into its saturation due to the engine’s torque limit, results in a situation where the PI
controller does not manage to fully recover from the disturbance until leaving the ramp.

This effect can be considered similar to the one that motorists might observe when driving
an unknown car with a weaker engine as which they are used to onto a steep ramp. In such a
situation, anticipated driving might prevent the engine from stalling: if the driver accelerates
sufficiently before entering the ramp, this helps compensate for a delayed engine torque
build-up.
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The proposed NMPC shows such an anticipated behavior. Looking at the resulting speed
for the NMPC controller, we can see that in all step responses, the vehicle starts to accelerate
(or decelerate) in an anticipated fashion already before the step happens. Before entering
the ramps, the vehicle has built up enough speed reserve to withdraw the disturbance. The
vehicle can quickly recover from the disturbance and track the reference value again. This is
especially true for the second and higher road grade disturbance.

Another observation one can make is that the speed trajectories show a non-symmetric
behavior regarding speed increase and decrease: when decreasing speed, the gradients of
the NMPC response are considerably lower than when accelerating. This is a result of the
optimized power-train and brake split behavior obtained from solving the control allocation
problem also in an optimal fashion. Since the weight to penalize the brake actuator was
chosen to be higher than the one for the engine, the predictive controller tries to avoid
braking. This can also be seen looking at the brake torque values at the bottom of Figure 7.3.
This illustrates another advantage of the proposed predictive controller: it can be easily
parameterized to avoid wear and tear of brakes.

Looking at the results of Experiment 7.2 in Figure 7.4, one can observe that the PI con-
troller is widely robust against the deviations between true and estimated vehicle parameters.
It is further very well known that the control error needs to be additionally filtered in some
way to avoid noisy control output values, which would cause jerks and unnecessary actua-
tor wear otherwise. Nevertheless, such a filter is left away in this presentation to highlight
the fact that (1) filtering the state (= vehicle speed value) is necessary also for the baseline
controller and (2) as a reminder that filtering the state typically comes along with additional
delay and reduced controller dynamics. Hence, also a PI controller might benefit from the
state and parameter estimator presented in Chapter 6.

In Experiment 7.3, we compared the NMPC controller in a nominal and a realistic setting
with uncertain parameters. From the results in Figure 7.5, we can notice two main observa-
tions. First, the NMPC controller without parameter adaptation is prone to overshoots as a
reaction to set-point changes. Second, and more concerning, in the phases during which the
road grade differs from zero, the controller is not able to perform offset-free tracking. This is
due to the fact that no integral action is present.

In Figure 7.6 of Experiment 7.4, one can observe that by combining the NMPC controller
with the estimator, the optimal control performance of the nominal system can be retained.
In the bottom subplot of Figure 7.6, the progress of the vehicle parameter estimates are
displayed. Despite the presence of measurement noise and a deviation between the true
vehicle parameter and their believed initial values, the parameter estimator is able to quickly
converge to a region sufficiently close to the true values such that the influence on control
performance becomes neglectable. A more detailed analysis of the estimator performance
can be found in Section 6.5.3.

Tracking performance

To evaluate the tracking performance of the different controllers, we compare the RMSE val-
ues of the resulting velocity trajectories to the reference values. The results of this evaluation
for both Scenario 1 and Scenario 2 from data obtained in Experiments 7.1 to 7.4 can be seen
in Table 7.4.

For further analysis, we can interpret Experiments 7.1 to 7.4 in a way that we run Sce-
nario 1 for all the controllers (PI, NMPC, ANMPC) both under nominal and realistic con-
ditions (with and without the presence of measurement noise and wrong model parameter
assumptions). One can observe that the model predictive controllers’ tracking performance
is generally much better than that of the baseline PI controller but degrades in a realistic
setting without any adaptation. Combining the NMPC controller with the state and param-
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eter estimator to make it adaptive keeps the performance close to optimal under realistic
assumptions.

Controller

Scenario PI NMPC ANMPC

Scenario 1 (nominal) 1.0536 0.7507 0.7507

Scenario 1 (realistic) 1.0547 0.7942 0.7508

Table 7.4: Root mean square error (RMSE) of the tracking errors for different controllers under nominal and
realistic conditions obtained from simulation results of Scenario 1.

Looking at the results of Experiment 7.5, which are given in Figure 7.7 and Table 7.5, we
can observe that the proposed controller is able to follow the reference trajectory of Scenario
2 very accurately. This can especially be seen looking at the third row of the figure, which
shows a zoom in to the trajectories obtained in the part of the cycle which is marked by a
rectangle in the first row, and also looking at the tracking error ev = v−vd in the fourth row of
the plot. We find that the adaptive, model-predictive controller is able to follow the reference
with substantially less tracking error than the baseline controller: the resulting RMSE value
of the proposed controller is even more than 90 % reduced compared to the baseline. This
could be obtained even though the control effort is approximately equal, or even slightly
less than with the baseline controller, as we will see in Section 7.5.3. The accurate tracking
performance of the proposed controller is made possible thanks to the predictive nature of the
controller, as well as using the estimates of the state and parameter estimator, which shows
convergence to the true vehicle parameters, as one can see in the bottom of Figure 7.7.

Control effort

In order to evaluate the control effort the proposed control algorithm produces compared to
the baseline controller, we performed simulations of the modified WLTC test cycle described
in Scenario 2. We evaluate two simulation runs with: (1) the baseline PI controller, (2) the
proposed ANMPC controller with the controller parameters as used in Experiments 7.1 to 7.4.

According to Pavlovic, Marotta, et al. [PM+16], in the case of a vehicle driven by an ICE,
the average CO2 emissions one has to expect during a test cycle depends on the average
power at the wheelbase [PM+16], according to the linear relation

CO2 = kv P(t) + D (7.50)

where the power follows the equation

P(t) = Ftire(t)v(t) [W ] (7.51)

where the first equation is the Willans equation with the Willans coefficient kv, and the P(t)
is the power at the wheelbase, depending on the tire force. The above relation is used within
the WLTP framework to correct the test results for deviations from the target speed values
[PM+16]. From the relationship we derived in (3.15), it becomes clear that the only source
of fuel consumption is the engine gross torque at the wheel and that this would be even higher
if the engine works against the brakes. So we want to look at the wheel torque induced by
the engine, corrected by the engine drag torque as an indicator for fuel consumption, which
is proportional to CO2, in the following. In reality, other factors besides fuel quantitiy also
determine the engine’s torque. Nevertheless, lacking a more sophisticated engine model,
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this can be used as a rough approximation, which can be used for a relative comparison.
Therefore, we evaluate the average of the net wheel torque induced by the engine

Tfc =mean
�

Twe,k − Twe,drag,k
�

(7.52)

over the entire driving cycle and compare the values to the result under the baseline con-
troller. We find a reduction of at least 1 percent for a setting that is optimized for tracking
performance, where the reduction of the RMSE of the tracking error is over 90 %. The results
are summarized in Table 7.5.

Controller
Avg. eng. torque Tracking error (RMSE)

abs. rel. abs. rel.

PI 540.17 100 % 0.18423 100 %

ANMPC 535.59 99.15 % 0.01269 6.89 %

Table 7.5: Evaluation results for Experiment 7.5. The tracking error (RMSE) could be substantially reduced (-
93 %), while the average gross engine torque as an indication of fuel consumption was also slightly less (-1 %)

One of the benefits of the proposed ANMPC approach is that the controller can easily be
tuned to balance the weight parameters to either improve tracking performance (in exchange
to control effort and allowing less smooth actuator commands) or to reduce control effort (at
the expense of tracking performance)

Computation times

The execution time for solving the OCP of Experiment 7.5 on a Windows 10 Laptop with an
Intel®Core™i7-10510U CPU running at 2.30 GHz and 16 GB RAM was in average 22.19 ms,
with a standard deviation of 2.02 ms, a maximum value of 63.68 ms and a minimum value
of 15.86 ms. These results were obtained from a typical simulation of Experiment 7.5, which
we consider representative due to the large number of 180.000 samples. As mentioned, the
implementation was performed using the MATLAB® interface to CasADi [AG+19], with Ipopt
[WB06] as a solver. Considering that the controller sample time was 100 ms, and that one
can expect a speedup by at least one magnitude from using an optimized solver according
to [ZD+17a], one might expect that the implementation of the controller would be feasible
also on a real-time platform. Further investigations in this direction have to be considered as
future work and will be discussed more in detail in Section 9.3.2.

7.6 Conclusion

7.6.1 Summary

This chapter presented a proposal for a novel solution to the longitudinal vehicle motion
tracking problem of automated vehicles. The proposed control scheme is an adaptive, non-
linear, model predictive controller (ANMPC), which, contrary to standard MPC formulations,
is also able to incorporate advance knowledge about future values of both a time-varying
reference speed, as well as a time-varying road grade. Most state-of-the-art predictive con-
trol schemes consider the reference constant over the entire prediction horizon, and do not
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include any known disturbances as input to the system dynamics. To retain optimal perfor-
mance under parametric uncertainties, as another proposal, the NMPC controller is combined
with the state and parameter estimator from Chapter 6, which makes the control scheme
adaptive. This offers the possibility to achieve offset-free tracking when the estimator has
converged to the true values. Several simulation studies have been carried out and showed
promising results, which demonstrate that the proposed ANMPC controller is able to provide
superior control performance compared to the baseline controller, despite the challenges
arising from parametric uncertainties. Additionally, it could be shown how the control per-
formance of a standard MPC formulation degrades under parametric uncertainty while the
proposed controller achieves a behavior that is close to the optimal solution under nominal
conditions. As another benefit, the proposed solution inherently solves the control allocation
problem and, therefore, is able to calculate optimal actuator commands, which can be sent to
the redundant actuators of the engine and brakes. Evaluations of the proposed controller in
simulation studies of different driving scenarios showed promising results in order to further
investigate towards a future embedded implementation and experiments with real vehicles.

7.6.2 Discussion

The proposed approach has several advantages compared to other control schemes for the
purpose of longitudinal vehicle motion tracking. These advantages are:

• The proposed ANMPC controller is able to achieve optimal tracking behavior also in the
presence of external but known disturbances. This is possible by including time-varying
advanced information into a model predictive control scheme, which additionally al-
lows the consideration of actuator delays, lags, and constraints.

• The proposed controller retains optimal and asymptotically offset-free trajectory track-
ing behavior even under parametric uncertainties. This can be achieved thanks to the
combination of the controller with a robust state and parameter estimator.

• Thanks to the consideration of actuator delays and lags within the longitudinal motion
tracking module, higher-level motion control design is facilitated, provided that the
high-level controller provides predictive information.

• The model predictive control scheme inherently provides a solution to the control allo-
cation problem, with the ability to consider specific actuator delays and lags for each
redundant actuator.

• The approach is intuitively tunable for either high tracking performance or improved
passenger comfort and economic performance by modifying the weights within the
objective function.

• The proposed control module not only provides actuator commands given at the current
time, but optimal actuator command trajectories are calculated over the full control
horizon. This additional information can, in the future, be further exploited within
lower-level actuator control modules, which themselves are designed in a predictive
fashion. Although no investigation in such direction has been performed within this
thesis, other results which were published recently [MW19] show this might have the
potential to further reduce emissions (up to 13 % NOx reductions in the cited study) or
energy consumption in future electric vehicles.

• An additional advantage might be the fact that not only the proposed longitudinal
motion tracking controller but also control units designed for other tasks may benefit
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from the available parameter estimates. Important examples are emergency brake assist
functions or active safety assist functions, including lateral motion control at the limits
of handling, which all heavily depend on correct vehicle mass estimates.

As there is “no free lunch”, the advantages can only be achieved at the expense of a compu-
tationally more expensive solution as well as increased implementation effort. Nevertheless,
we already stated in the introduction that we assume it is reasonable to argue that in future
vehicles, more powerful computing hardware will be available at reduced costs. This was also
discussed in the work of, e.g., Di Natale and Sangiovanni-Vincentelli [DS10], Stahle, Mercep,
Knoll, and Spiegelberg [SM+13], and Buechel, Frtunikj, et al. [BF+15] on recent develop-
ments on automotive hardware. This might alleviate the increased computational cost of the
approach in the future. Also, much progress has been made in the last years, especially in
the development of powerful and fast numeric solvers, together with novel ideas on how to
reformulate the nonlinear program involved with solving the optimal control problem, and
one can expect that these developments will all help to further reduce the computational
effort needed for a solution. For a discussion about future work related to motion tracking,
please refer to Section 9.3.2.

7.6.3 Contribution

The results in this chapter are based on previous work, which was already published in
the author’s paper [BK16b]. In [BK16b], an ANMPC scheme was proposed, to the best of
the author’s knowledge, for the first time as a solution to the longitudinal motion tracking
control problem of automated vehicles. In [BK16b], the predictive controller was combined
with the state and parameter estimator from another of the author’s publication [BK16a],
which can be seen as the predecessor of the results from Chapter 6. For contributions related
to the state and parameter estimator, the reader is referred to Section 6.7.2. We first want
to review the contributions already published in the preliminary work before listing novelties
appearing for the first time in this chapter. To the best of the author’s knowledge, in [BK16a]
and [BK16b] we were the first ones to propose:

• a novel control architecture for automated vehicles that introduces a predictive longitu-
dinal motion tracking unit. This enables motion tracking for various driving scenarios
in a modular fashion

• a predictive tracking controller that not only considers time-variant references but also
time-variant advance knowledge of future disturbances. Both are typically not included
in other MPC formulations due to the increased complexity of the resulting optimal
control problem.

• the combination of the NMPC scheme with the state and parameter estimator proposed
in Section 6.5.3, which enables to achieve offset-free tracking under uncertain and time-
varying vehicle model parameters. Compared to other offset-free tracking schemes, the
resulting Adaptive Nonlinear Model Predictive Control (ANMPC) scheme retains the
optimal dynamic behavior.

Subsequent investigations led to enhancements and improvements of the approach compared
to the results presented in [BK16b], and are regarded as contributions that are presented for
the first time within this thesis. These include:

• a novel tracking MPC formulation for a type of nonlinear system is provided, which
can achieve offset-free tracking in combination with a state and parameter estimator.
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This formulation presents a novel method for computing the target values, which are
inherent in offset-free predictive control.

• the control allocation problem is additionally solved implicitly within the optimal con-
trol problem by reformulating it as a multi-output problem. This eliminates the need
for a separate control allocation module dedicated to splitting the total desired wheel
torque into the redundant actuators of engine or power-train torque and brake torque.
Additionally, this bears the advantage that individual actuator delays and lags of both
engine and brakes, as they appear in reality, can be considered with this approach.

• the reformulation of the original optimal control problem using a multiple-shooting
approach, which leads to substantially reduced computation times needed for the nu-
merical solution of the resulting NLP.

• a variety of simulation studies were carried out to demonstrate the capabilities of the
proposed approach.

• an extensive discussion of background, related work, and possible future work is pro-
vided.
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Figure 7.3: Simulation results of Experiment 7.1. Comparison between PI baseline controller and NMPC, both in
a nominal setting. The predictive controller (NMPC) shows superior tracking capability compared to the baseline
PI controller. Details are discussed in Section 7.5.3.
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Figure 7.4: Simulation results of Experiment 7.2. Comparison of the baseline PI controller in a nominal (PI 1)
and a realistic setting (PI 2). The PI controller shows a certain robustness against deviations between real and
estimated vehicle parameter values. Details are discussed in Section 7.2.
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Figure 7.5: Simulation results of Experiment 7.3. Comparison of NMPC controller in a nominal (NMPC 1) and a
realistic (NMPC 2) setting. Without further countermeasures, the NMPC controller is not robust against deviations
between real and estimated vehicle parameter values, especially when high road grades are present.
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Figure 7.6: Simulation results of Experiment 7.4. Comparison of the nominal predictive controller (NMPC) and
the proposed adaptive (ANMPC) controller. The latter achieves optimal performance despite the presence of
deviations between values of real and estimated vehicle parameters, as well as measurement noise. Details are
discussed in Section 7.4.
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Figure 7.7: Simulation results of Experiment 7.5. The proposed adaptive controller ANMPC is able to follow the
reference trajectory with increased performance compared to the baseline PI controller. The third subplot shows
a zoom to the region marked by the rectangle in the first subplot.





8
Predictive Deep Reinforcement Learning Controller

“Good and evil, reward and punishment, are the only motives to a rational creature:
these are the spur and reins whereby all mankind are set on work, and guided.”

– John Locke, 1632 - 1704

Note: The main results discussed in this chapter were already presented in the author’s pub-
lication “Deep reinforcement learning for predictive longitudinal control of automated ve-
hicles” [BK18] during the Intelligent Transportation Systems Conference 2018 (Copyright
©2018, IEEE). In addition to these results, this chapter includes an introduction to reinforce-
ment learning background, a detailed explanation of the selection process of the algorithm,
which builds the foundation of the proposal in Buechel and Knoll [BK18], and a detailed
discussion on the approach.

8.1 Introduction

The recent success of Reinforcement Learning (RL), especially deep reinforcement learning,
motivates us to analyze its application to the predictive longitudinal vehicle motion tracking
problem. This Chapter presents results which were partly presented in [BK18] after intro-
ducing the basics of reinforcement learning, its principles, and some of the main algorithmic
concepts.

In 2017, the application of Deep reinforcement learning algorithms led to media attention
when the programs “AlphaGo” and “AlhpaZero” defeated the human-master Go player Lee
Sedol [SH+16] and won against the world champion chess program, Stockfish 8 [SH+17b].
It was perceived by the public as a breakthrough in artificial intelligence, mainly because the
algorithms were able to teach themselves in self-play, only knowing the rules but without
programming any prior knowledge. The solutions found by RL algorithms to the problems
were highly creative and gained new insights into winning strategies in the well-studied
problems of playing chess and Go.

While the algorithms applied for playing games are not directly applicable to real-world
control problems, where continuous instead of discrete action and state spaces exist, contin-
uous control problems were studied recently within the RL community. This led to significant
progress in this subdomain [SB18]. There is evidence that RL algorithms are capable of
finding a close-to-optimal solution compared to MPC approaches [EG+09].

175
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One significant distinction lies in the RL approach to solving control problems: the agent
learns by self-interaction with the environment. On the one hand, this property brings many
advantages: the derivation of analytical models, and especially the determination of their
parameters, becomes obsolete. This is a desirable property, not only for domains where the
derivation of such models is complicated or the determination of parameters is impossible.
The application of MPC and especially NMPC is a time-consuming task and requires highly
qualified staff, not only for the design but also for the calibration of the controller. Hence,
it would be interesting for the industry to find and calibrate controllers automatically using
(standardized) reinforcement learning algorithms.

Recent studies [DR17] show that the computational complexity of solving the optimal
control problem in the NMPC approach still poses challenges for real-world applications when
long prediction horizons in combination with small sampling times arise.

Another drawback of model predictive control besides finding a useful model is the need
to accurately determine the model parameters since parameter deviations might impact the
controller’s robustness. Estimating these parameters also might pose challenges, as we dis-
cuss in Chapter 6.

Looking at the problem under investigation in this thesis, we find that other researchers
also started working in the direction of model-free longitudinal vehicle tracking in order to
avoid the determination of model parameters [PD+17], although not utilizing reinforcement
learning, but by using an ultra-local, linear model of the plant. As an alternative to the MPC
approach presented in Chapter 7, we want to analyze the application of a sub-field of Deep
reinforcement learning, namely model-free RL, to the predictive longitudinal vehicle motion
tracking problem.

This chapter is organized as follows: we first provide the necessary RL background in
Section 8.2. Then, we give an overview of related work in Section 8.3. Section 8.4 presents
the proposed solution before evaluation details are given in Section 8.5. Results are presented
and discussed in Section 8.6. The concluding Section 8.7 includes a list of the contributions
presented in this chapter.

8.2 Reinforcement learning background

Before presenting our results, we want to give some background about RL, which is neces-
sary to understand the proposed solution. A complete tutorial on RL is out of scope of this
work. However, the interested reader is referred to the books Reinforcement learning: an
introduction by Sutton and Barto [SB18] (the second edition following the original publica-
tion of 1998) and Reinforcement learning : state-of-the-art by Wiering and Otterlo [WO12].
The latter provides information about recent developments in special topics of RL besides
giving an introduction. Reinforcement learning and optimal control Bertsekas [Ber19] is very
much recommended for readers with a control systems background, as it widely uses the
notation common within this field and builds many bridges between control systems and re-
inforcement learning communities. An excellent online tutorial can be found on the website
of OpenAI [Ope]. This background section contains material from these sources, condensed
to give the reader the building blocks of the algorithms used in the considerations and the
proposed solution. It is deliberately held informal to focus on basic concepts rather than the
mathematical background, which can be found in the above sources.

In the remainder of this section, we first want to introduce the taxonomy widely used in
RL literature, but not without emphasizing differences and similarities to control literature.
We then highlight the reinforcement learning principle and give an overview of different
classes of reinforcement learning algorithms. Additionally, we will discuss some properties of
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different RL algorithms, which aim to help understand the contributions of this work.

8.2.1 Reinforcement learning and deep reinforcement learning

Reinforcement learning can be defined as a family of machine learning algorithms that seek
solutions to the problem of sequential decision-making. Deep reinforcement learning com-
bines reinforcement learning with function approximation using deep neural networks. We
want to start with similarities between the control loop framework, which will be more fa-
miliar to the reader with a control systems background. We then want to formally define the
framework of Markov Decision Processs (MDPs), which can be regarded as the mathematical
foundation for most modern RL algorithms (see Figure 8.1). In closed-loop control, a con-

Figure 8.1: The principle of reinforcement learning and its similarity to a continuous control loop.

troller sends a control signal (typically denoted by u) to a process. The feedback is handed to
the controller, which calculates the next action to apply. This feedback could be the control
error, the measured output of the controlled variable, the full state vector in the case of a fully
observable system, or a subset of it when controlling a partially observed system (Figure 8.1,
top). In the case of MPC, the action is optimal with respect to the cost function as long as
some assumptions on both model and environment hold.

In reinforcement learning, an agent replaces the controller. The agent performs an action
on the process, usually named by the term environment (Figure 8.1, bottom). The action in
RL literature is typically denoted by a. Since a in the context of vehicle control is already
used for the physical quantity of acceleration, we will stick to the notation u for the action
in the remainder of this thesis. The agent follows a certain policy, which is a mapping from
states to actions. A policy might be stochastic (with a certain probability to perform a specific
action) or deterministic. The underlying mathematical principals of RL are derived on the
assumption that the process is a MDP (see Section 8.2.2). The state of the process will evolve
depending on the action, and it can be observed via the observations. In addition to the
observations, a reward signal is given to the agent. This reward might be influenced by
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the very last action performed (immediate reward), or by an action taken earlier (delayed
reward). The agent’s objective is to maximize the total reward it will receive in its lifetime.

8.2.2 Markov Decision Process

More formally, in a Markov Decision Process (MDP), an agent interacts with an environment
E at each discrete time-step t. At each time t, the agent receives an observation ot about the
environment’s state x t ∈ X . Again, we stick to the notation common in the control community
rather than using the machine learning notation, where s is typically used to denote the state.
According to Wiering and Otterlo, “A state is a unique characterization of that is important
in a state of the problem that is modeled. For example, in chess, a complete configuration
of board pieces of both black and white is a state” [WO12]. The environment E might be
stochastic and is modeled with an initial state distribution p(x1). The observation might be
the full state (fully observed) but also only contain parts of the state information (partially
observed) while we focus on the former case. Also, a common setup for DRL is that the
observation is a multi-variable state function, for example, an environment image.

Based on that observation, the agent then performs an action ut ∈ U . Actions are used
to control the environment and are not limited to control signals but could rather also be
some discrete decision like entering a door or not or moving a piece of chess to a certain
position. The set of actions U(x) is the subset of all possible actions that can be performed in
a certain state. By applying an action ut in a state x t , the system transitions from x t to a new
state x t+1 ∈ X . This transition is based on the probability distribution over the set of possible
transitions.

The transition function T (x t , ut , x t+1) is defined as T : X × U × X → [0, 1], which is the
probability that, starting in state x t and performing action ut , the system will end up in state
x t+1. T is also called the transition dynamics of the MDP.

The agent then receives a scalar reward rt , which is dependent on the reward function
R(x t , ut , x t+1), defined as R : X ×U ×X → R (some other definitions exist, see [WO12], p12).
We want to give a reward for the transition between states x t and x t+1 given the action ut .
The reward can be looked at as the negative cost in optimal control. While in optimal control,
one usually tries to minimize the cost, the agent aims to maximize the reward.

In an MDP, the state and reward depend only on the state of the process in the time step
occurring immediately before, as well as the action taken in that state. Previously visited
states do not influence the process.

p(x t+1|x t , ut , x t−1, ut−1, . . . ) = p(x t+1|x t , ut) = T (x t , ut , x t+1) . (8.1)

This substantial property is called the Markov property. It means that the state must include
all necessary information to fully describe the effect of a particular action. For dynamical
systems, this might be, for example, to include the acceleration value as a derivation of the
velocity. We want to summarize the formal definition of an MDP as follows:

Definition 1. A Markov decision process is a tuple 〈X ,U , T, R〉 in which X is a set of states,
U a set of actions, T a transition function defined as T : X × U × X → [0, 1] and R a reward
function defined as R : X × U ×X → R.

For many tasks, like playing chess, X and U are finite sets of states and actions. The model
of the MDP is defined by T and R. Approximations of T and R are also referred to as models.
If any of T and R are time-dependent, the MDP is non-stationary. Otherwise, it is stationary.
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Episode

An episode, also called roll-out, is a trajectory τr, defined as a sequence of states and actions
in the environment

τr = (x0, u0, x1, u1, . . . ).

A task is called episodic if there exists one or more terminal or goal states in which the
execution of any actions leads back to this same terminal state or the process ends. The game
of chess, for example, is episodic. Finite, fixed horizon tasks run for a certain fixed time.

Policies

A policy is a function that provides the action in dependency of the state x . It can be either
deterministic; then it is often denoted as µ and defined as µ : X → U . Stochastic policies are
commonly denoted π and defined as a probability π(x , u) = p(u|x) defined for discrete action
spaces as π : X×U → [0, 1] such that for each x , it holds that π(x , u)≥ 0 and

∑

u∈U π(x , u) = 1.
In the case of continuous action spaces, π represents a Probability Density Function (PDF) on
the action space, and the sum becomes

∫

u∈U π(x , u)du= 1.

Return and regret

The goal in RL is to find an agent that follows an optimal policy. We need to discuss more in
detail what optimal means. We defined the reward as an immediate measure of how good
it was to end up in the current state. Since we want to collect as much reward as possible
in the long term, we need to define a measure of cumulative reward over time, which we
name as return for a certain episode G(τr). One way that would work for episodic tasks is
to define the optimal policy as the one which creates the most reward over a whole episode,
and hence, building the sum over expected rewards during the whole episode length would
be viable. However, for stochastic processes, we would have to keep repeating episodes over
an infinite number of trials. For infinite tasks, we could build the sum over infinite steps, but
this is very inconvenient since the sum would become infinite too. Hence, one method could
be to build the sum of expected rewards only over a limited horizon of time steps into the
future, and hence, optimal would be to perform the action that produces the most expected
return over that horizon. This is the principle of receding horizon control. Another method
to measure how much reward will be collected in the future is to define the return as

G(τr) =
∞
∑

t=1

γt rt , (8.2)

the infinite horizon discounted future reward. γ is the discount factor, with 0 ≤ γ < 1.
This definition is widely used because of its nice mathematical property of giving a bounded
infinite sum. A measure to compare a policy to the optimal one is to define the regret as the
difference of the return of any policy π to the return gained due to following the optimal
policy, denoted by π∗.

The goal of reinforcement learning

As already stated, the goal in RL is to find an agent that follows an optimal policy. We can
now define more formally the expected return given a policy π in a stochastic world with

J(π) = E [τr ∼ π|G(τr)] . (8.3)
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We want to maximize the expected return hence the optimization problem of RL can be seen
as

π∗ = argmax
π

J(π), (8.4)

with π∗ being the optimal policy.

Value functions

A measure of how good it is to be in a certain state is the expected return for that state when
following a certain policy. It is denoted with Vπ(x), the value of a state x under policy π,
hence the expected return under policy π, defined as the (state) value function:

Vπ(x) = E [τr ∼ π|G(τr)] x0 = x . (8.5)

Another value function is the action-value function, which is the value of a policy when start-
ing in state x , taking an arbitrary action u in that state, and only then following the policy π
from that state on. It is defined as the Q-function:

Qπ(x , u) = E [τr ∼ π|G(τr)] x0 = x , u0 = u. (8.6)

The value functions under an agent acting according to the optimal policy π∗, are the optimal
value functions V ∗(x) = Vπ

∗
(x) and Q∗(x , u) =Qπ

∗
(x , u).

If an agent knew the optimal values of all the successor states that can be reached from
a given state, this information could be exploited to find the optimal actions. To exploit
this information, it would be additionally required to have knowledge about the transition
function, aka about to which successor state a given action would lead. The advantage of the
action-value function is that it already incorporates the action into the value. This enables
an agent, once it knows the action-value function, to consult it for the action-values of all
possible actions in a given state. In order to act optimally, it suffices to take the action with
the highest Q-value. Note: While the immediate reward r only measures how good a certain
action is in a myopic sight of one step ahead, the value functions describe how good a policy
is in the long run.

Another value function is the Advantage function, defined as the difference between
action-value and the value function:

Aπ(x , u) =Qπ(x , u)− Vπ(x). (8.7)

Exploration - Exploitation trade-off

In reality, the value functions are not known to the agent during reinforcement learning. If
an agent wants to collect as much reward as possible, it needs to act to what in its belief is
the optimal policy. This behavior exploits its knowledge about optimality. Since this policy
was gained with limited knowledge, it will most likely be sub-optimal, and therefore, it needs
to explore different, possibly better ways of acting. This inherently bares the risk of perform-
ing worse on the first run until a different strategy proves to be better. Hence, the agent
needs to trade optimality by exploitation against potentially worse outcomes while exploring
alternative policies.

Credit assignment

The case when reward is delayed brings a problem called the credit assignment problem. This
is the difficulty of judging which action at which time led to the delayed reward. In this
context, a related difficulty is when the reward function is sparse, meaning that, for example,
no or zero reward is given most of the time, and only in some states, reward is achieved, for
example, when successfully finishing a game.
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8.2.3 Solving Markov Decision Processes

We stated in Section 8.2.2 that reinforcement learning aims to find the optimal policy that
maximizes the return, which is the long-term reward we get in an environment. Many dif-
ferent algorithms have been developed to calculate the optimal policy. Most make use of a
fundamental approach developed by Richard E. Bellmann called:

Bellmann’s Principle of Optimality

“Principle of Optimality: an optimal policy has the property that whatever the ini-
tial state and initial decisions are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decisions.”

– Richard E. Bellmann, 1954 [Bel54]

Bellmann equation

This principle can be expresses formally in the Bellmann Equation [Bel57], if we rewrite the
value function for the discounted reward in a recursive manner:

Vπ(x) =E
π

�

rt + γrt+1 + γ
2rt+2 + . . . |x t = x

�

=E
π
[rt + γVπ(x t+1)|x t = x]

=
∑

ut

π(ut |x t)
∑

x t+1

T (x t ,π(x t), x t+1) [R(x t , ut , x t+1) + γVπ(x t+1)] .
(8.8)

Similarly, this can also be done for the action-value function.

Temporal difference learning

The Principle of Optimality and the recursive formulation of the Bellmann equation have an
important consequence for learning. This is, that the immediate reward already brings some
information about the nature of the environment and the returns that can be achieved. This
information can be recursively used to optimize the value function approximation according
to the following rule:

Vt+1(x t) = Vt(x t) +α
�

rt + γVt(x t+1)− Vt(x t)
�

, (8.9)

with the learning rate α. The equation above goes back to [Sut88] and only uses one-step
ahead experience and is called TD(0), with TD denoting temporal difference and (0) denoting
the look-ahead further than the one-step temporal difference error. Other variants exist,
using more steps along the environment. See, for example, Wiering and Otterlo [WO12], p.
37 for more information.

Q - learning

From the Bellmann equation for the action-value function, the Q-learning algorithm [Wat89]
can be derived. It iteratively updates an estimation of the Q-function, according to the fol-
lowing update rule:

Q t+1(x t , ut) =Q t(x t , ut) +α
�

Q∗t −Q t(x t , ut)
�

, (8.10)
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again with a learning rate α. We can rewrite (8.10) using the Bellmann equation as

Q t+1(x t , ut) =Q t(x t , ut) +α
�

rt + γmax
u

Q t(x t+1, u)−Q t(x t , ut)
�

. (8.11)

Here, the Q-function is updated each time in the direction of the optimal Q-function, ap-
proximated by the current reward plus the discounted maximum of the estimated Q-function
evaluated at the successor state.

Classification of solution strategies for MDPs

Many more different solution strategies exist to solve MDPs, and it is out of scope to give a
comprehensive review. Instead, we want to give some information on how to classify different
families of these solution strategies. This provides a foundation to understand the decisions
made for the choice of the proposed algorithm.

Using the Bellmann equation, in case the transition and reward functions are known,
MDPs can be solved using Dynamic Programming [Bel57]. This is typically regarded as a
planning problem. Reinforcement learning deals with the problem of unknown transition
functions and the algorithms can be classified according to what is learned:

• the model

• the policy

• the value function / action-value function.

If a model of the transition function is learned, they are named model-based, otherwise model-
free approaches. Another classification is into value function based versus policy based algo-
rithms. The different approaches are not mutually exclusive, and many hybrid solutions
exist. Policy-based algorithms directly store a representation of an approximation to the op-
timal policy. Value-based algorithms store a representation of the value (either the value or
the action-value function). If only a policy and no value function are stored, the algorithms
are often referred to as direct policy search or actor-only (see Wiering and Otterlo [WO12], p.
212).

In the intersection between value-based and policy-based algorithms, there is a family of
combined methods that use both strategies. These are named actor-critic algorithms. Fig-
ure 8.2 illustrates the different families of algorithms for solving MDPs. The areas in grey
depict the algorithms regarded as RL. Model-based approaches are commonly only regarded
as reinforcement learning when the model is learned during the training phase. The area
depicted in white represents algorithms for which both the transfer function and the reward
function are known. These can be seen as planning problems, or when run in a closed loop,
they fall into the category of classical control algorithms. Adaptive approaches of classical
control, especially adaptive MPC, can be seen as borderline to reinforcement learning. In the
following, we want to discuss each strategy in more in detail.

Model-based versus model-free reinforcement learning

Methods that exploit the knowledge about the transition dynamics and the reward function
are called model-based. Once a model is available, the optimal action can be computed using
dynamic programming, as done in optimal control. If we do not have full prior knowledge,
a model of the system behavior has to be learned. In the control domain, this process is
called system identification and is usually done prior to the controller acting on the plant.
Supervised learning techniques are mainly applied when neural networks are used to ap-
proximate model behavior. This is often referred to as neuro-dynamic programming. As a
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Figure 8.2: Model-based vs. model-free reinforcement learning. The structure of model-based RL is very similar
to adaptive MPC if a neural network is used to represent the model of the environment, and the parameters of this
model are modified over time. Illustration based on David Silver [Sil15].

distinction, we want to consider one property: in reinforcement learning, the agent typically
learns while interacting with the environment. In neuro-dynamic programming, the model is
learned during a system identification phase.

The methods that were derived for solving the optimal action can then be used over all
domains. They typically have in common that they exploit the model to simulate the reward
or cost that specific actions will produce without having visited these states. Contrary to
model-based RL approaches, the agent can directly learn the optimal action using model-free
reinforcement learning - without needing to identify the transition dynamics or its parame-
ters.

Policy based algorithms

Policy-based algorithms directly store a representation of the policy πθ for all possible states,
with θ being the parameters of the policy. Through optimization of θ , the agent wants to
learn the optimal policy. πθ might be stored as a table or approximated using neural network
function approximation.

Value function based algorithms

Instead of holding a representation of the policy, value function-based algorithms either learn
a representation of the value function Vπ(x), approximated by Vθ (x), or the action-value
function Qπ(x , u), approximated by Qθ (x , u). The latter is named Q-learning, as already
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presented in its basic form in (8.11). The action-value function can be directly exploited to
select the action as an argument when maximizing the Q-value.

Actor-critic algorithms

Some algorithms store both a representation of the policy (actor) and the critic (which es-
timates a value function). The critic is then used to provide information on how (in which
direction) the actor has to be updated during optimization.

On-policy versus off-policy RL

Another distinction is often made regarding how the policy is derived during learning. On-
policy algorithms need to directly apply the action derived from the current policy, while
off-policy algorithms can learn from a different policy. The property if a RL algorithm is
learning on-policy or off-policy has important practical implications. One of them is the
restriction of on-policy algorithms of needing to explore with its current belief of an optimal,
stochastic policy - otherwise, no exploration will be possible. Off-policy algorithms allow the
use of a deterministic policy, as often desired in continuous control, while exploration can be
realized independently of the current policy. Another implication is that off-policy algorithms
can perform a learning update with data collected at any time during training. This can
be exploited in highly stochastic environments or when data collected recently is correlated,
for example, using a concept called Experience Replay as used in Mnih, Kavukcuoglu, et al.
[MK+13] (see Section 8.2.5).

Approximate dynamic programming and neuro-dynamic programming

In optimal control, dynamic programming is widely used to solve the problem of finding a
controller that minimizes the cost function of a dynamical system over time. According to
Sutton and Barto [SB18], “dynamic programming is widely considered the only feasible way
of solving general stochastic optimal control problems. It suffers from what Bellman called
the curse of dimensionality, meaning that its computational requirements grow exponentially
with the number of state variables. However, it is still far more efficient and more widely
applicable than any other general method.”

Bertsekas and Tsitsiklis [BT96] originated the term “neuro-dynamic programming” to re-
fer to the combination of dynamic programming and artificial neural networks. Another term
currently in use is “approximate dynamic programming”. One can also say that adaptive dy-
namic programming is a subset of or equivalent to reinforcement learning [LV09]. However,
the distinct terms arose due to its origins in different research communities: While reinforce-
ment learning is usually used in the machine learning community, approximate dynamic
programming is rather used in the control systems community. Naturally, the algorithms and
methods within the control systems group were typically derived along mathematically sound
stability proofs. Consequently, the systems or environments under investigation usually need
to follow some underlying assumptions. These assumptions may lie in that a mathemati-
cal description of the system under investigation is available in the first place or that this
description falls into a specific type - for example, about linearity or structure of existing non-
linearity. This poses some restrictions. On the contrary, in the machine learning community,
very often, one of the main assumptions is that the agent needs to learn to interact with the
environment without any prior knowledge about the environment. This aims to be applicable
for any future tasks and as a step to general Artificial Intelligence (AI) - but may suffer from
lack of explainability of certain effects, for example, when no convergence is achieved during
learning.
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Online versus offline learning

The reinforcement learning setup is generally considered as online learning, meaning that
either model, policy, or value functions are learned while the agent interacts with the en-
vironment. Offline learning typically means that the learning phase is performed after data
collection previously happened - without the agent interacting with the environment. Some
algorithms combine offline supervised learning with reinforcement learning approaches to
improve the resulting behavior, create a better starting point, make the exploration phase
feasible in real environments, or a combination of all. For an example, see Hwangbo, Lee,
et al. [HL+19].

Properties of the environment

Another classification can be done regarding the nature of the state and action spaces of
the environment. Many RL algorithms were developed to solve games and simple, academic
grid-world examples. They typically can be perfectly modeled by a finite set of discrete states
and a set of discrete actions that the agent can perform. For agents acting in the physical
world, which intrinsically consists of an infinite set of continuous states, such a simplified
model might not sufficiently describe the effects (although it is possible by discretizing the
continuous state space). Also, more is needed to select from a discrete set of actions, for
example, when an agent tries to solve the inverted pendulum problem. The ability to perform
continuous actions (on the torque acting on the pendulum in this example) might be crucial
to solve the problem. For discrete state and/or action spaces, representing the necessary
functions within a RL setup in tabular data might be possible. If this becomes infeasible due to
the vast number of states or because continuous state and/or action spaces are present, neural
networks are typically used as representations since they offer the capability of interpolation
on one hand or can reduce the storage needed for the parameters.

8.2.4 Metrics for reinforcement learning algorithms

Various metrics exist in order to judge how well an agent behaves. This is useful for bench-
marking agents and algorithms or for judging the improvement of an agent during its learning
phase. We want to list the most common and important ones in the following:

Performance

The performance of a reinforcement learning agent is directly linked to its objective of maxi-
mizing return. It is dependent on the definition of the reward and the return. While for the
reasons given previously, the discounted return (8.2) might be used during learning, for eval-
uation, we might want to calculate the un-discounted return. Due to stochastic environments
and maybe also stochastic policies, the performance can only be evaluated over a number of
validation test runs, which leads to a metric of average performance and its variance. Special
care has to be taken when evaluating performance in order to properly benchmark new al-
gorithms since some experiments, especially in deep RL, might be highly sensitive to changes
in hyper-parameters, as shown in Henderson, Islam, et al. [HI+18].

Sample complexity

Sample complexity describes how many actions an agent has to perform to learn the optimal
policy. If sample complexity is low, an algorithm is called sample efficient. Again, due to the
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stochastic nature of many RL algorithms and the environments they are acting in, sample
efficiency can only be measured as the statistics over a broad number of training runs.

Robustness

Robustness of an algorithm in RL is often referred to as the capability to learn successfully on a
variety of problems without the need for hyper-parameter tuning. In contrast, robustness of a
policy is the ability to perform close-to-optimal performance under environmental parameter
changes. In the control systems community, robustness is typically understood as the ability
to achieve a stable closed-loop behavior of a control system under (bounded) uncertainty in
parameters or disturbances. In model-based control, the term might be often understood as
robustness to model mis-specification.

8.2.5 Important reinforcement learning algorithms

It is out of scope to give a comprehensive overview even of the most important algorithms
in a field where intense research is happening and ground-breaking new algorithms are pub-
lished monthly. We still want to mention some prominent examples in the following, classi-
fying according to the attributes described above. We further want to introduce some of the
underlying concepts of these algorithms. This helps to understand the decision process for
selecting a certain algorithm for the experiments on the system of investigation within this
thesis.

Temporal difference algorithms

We already presented Temporal Difference (TD) learning in Section 8.2.3 and the basic
Q-learning algorithm in Section 8.2.3. Q-learning also uses the temporal difference error
to estimate the Q-function. An example of an extension of the Q-learning algorithm is
Double Q-Learning (DQL) [Has10], which is an approach to tackle a problem arising in
Q-learning, namely poor performance because of over-estimations of action values. It uses
two Q-function estimates to concurrently estimate the maximum of the Q-value with less
bias than in Q-learning with a single Q-function. An early algorithm in this group is SARSA
[RN94], an extension of the Q-learning algorithm. Instead of building the maximum in the
temporal difference error as in Q-learning, the target is built by using another Q-value depen-
dent on a further action step. The name is derived from the tuple needed in the algorithm,
generated by the sequence of state-action-reward-state-action. This makes it an on-policy
algorithm. Although often seen in a discrete setting, it was initially developed primarily for
continuous action spaces and using neural networks as function approximators.

Policy search algorithms

These methods search the optimal policy directly in the policy space. They can be further
distinguished into policy gradient methods and gradient-free methods. Policy gradient meth-
ods build a noisy estimate of the gradient by sampling from the environment. The family
of REINFORCE [Wil92] algorithms is also referred to as Monte Carlo policy-gradient, since
it uses full Monte Carlo trajectories to build the gradient estimate. Since policy gradient
methods are based on local search, they might get stuck in local optima; at least, they mostly
lack theoretical proofs for convergence to global optima. Another family of policy search
methods is gradient-free methods. They search for the optimal policy without using gradi-
ent information, but by “exploring in the parameter space rather than in the action space”
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[MG+18]. Various methods exist, like, for example, Random Search [MG+18] or Genetic
Algorithms [SM+17]. Hybrid solutions exist, which also explore parameter space but use the
information sampled that way to compute gradients in policy space, like Evolution Strategies
[SH+17a].

Model-based approaches

Probabilistic Inference for Learning COntrol (PILCO) [DR11] is a model-based approach to
policy search, using Gaussian-Process models for the system dynamics. Maintaining the
model allows us to compute the policy gradient analytically for efficient optimization of the
policy parameters. PILCO is limited to episodic settings, while value-function-based methods
offer the possibility to work in non-episodic environments. Normalized Advantage Func-
tions (NAF) [GL+16] also learns a model but can be rather seen as a hybrid solution (see
section 8.2.5).

Combination of model-based and temporal difference algorithms

Many algorithms were proposed on the intersection between model-based and temporal dif-
ference algorithms. A fundamental concept for this family of algorithms was presented and
named DYNA by Sutton [Sut91]. It concurrently learns a model and performs updates in
a model-free setting while additionally using the model to create hypothetical experiences,
which are also used to update the value function.

Using deep neural networks for function approximation

The early algorithms were used on small-sized, discrete problems where functions could be
represented in a tabular manner. Neural networks were applied to approximate policy or
value functions to generalize on continuous state or action spaces. The first deep learning
model to learn from pixel input date was probably presented with Deep Q-Network (DQN)
[MK+13]. They trained a convolutional neural network to learn a Q-function and applied it
to learning to play Atari computer games.

Recent extensions of the DQN algorithm are Dueling Deep Q-Networks (Dueling-DQN)
[WS+16] and Double Deep Q-Network (Double-DQN) [VG+16]. The first aims to learn a
value and an advantage function in parallel, combining them into a single (dueling) network
architecture. The latter transforms the idea of Double Q-Learning DQL [Has10] to learning
with deep function approximators. A similar evolution has happened with policy and value
function-based methods, combining several approaches into new algorithms.

Delayed target networks

The DQN algorithm [MK+13] also made use of the concept of delayed target networks in or-
der to stabilize learning. Instability arises from how the Q-function is updated in Q-learning.
To calculate the update of the Q-function, the maximum value of the (same) Q-function is
needed. Having the same value on both sides of the equation leads to instability. To over-
come this, a separate copy of the target network is held, which is only updated in a delayed
fashion. Various update schemes have been proposed.

Experience Replay

Experience replay most likely goes back to ideas presented in Lin [Lin92]. In combination
with neural network approximation, experience replay addresses a difficulty when training
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neural network representations in Q-Learning with data collected in a local area of the state
space. The weight changes have an unwanted effect on the global behavior of the network.
This effect can be reduced with data samples taken from the whole area of the state space.
For example, Neural Fitted Q-iteration (NFQ) [Rie05] is a particular variant of Q-Learning
that combines Experience Replay with a method to speed up learning from [EG+05]. Many
other algorithms exist that also adopted the idea of Experience Replay.

As a side note, we want to mention direct links to the work of Concurrent Learning Model
Reference Adaptive Control by Chowdhary [Cho10], who works within the adaptive control
systems community. Chowdhary could establish stability and convergence proofs for states
and parameters of systems lacking sufficient excitation by using stored data concurrently
with new data. The current limitations of this approach are that it only applies to systems
with a specific structure and time-invariant parameters and that no measurement noise is
included in the analysis of the stability proofs. A very interesting idea is the data selection
scheme, which was proposed by Chowdhary. This method establishes guarantees for the
information content in the replay memory to be sufficient for further learning [CJ11], which
avoids catastrophic forgetting. See Section 9.3 for more information.
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DDQN
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DDPG

REINFORCE

Policy-basedActor-criticValue-based Model-based
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Figure 8.3: Overview over important existing RL methods for continuous control. Illustration inspired by David
Silver [Sil15].

Risk awareness in policy improvement

Learning with policy-gradient-based algorithms might be unstable when parameter update
steps are too big. This is often intuitively explained as falling from a cliff when hiking to
a mountain top. In areas with highly changing gradients, it might be helpful to adjust the
step size accordingly. Trust Region Policy Optimization (TRPO) [SL+15] does this with a
constraint on the Kullback–Leibler divergence (also called relative entropy) on the step size
at each iteration. While this can guarantee a monotonic policy improvement, it comes at
a high computational cost. A similar idea with reduced computational complexity was pro-
posed in Proximal Policy Optimization (PPO) [SW+17]. PPO has been found to perform
very well on many tasks while being much more straightforward than TRPO, regarding both
implementation effort and computational complexity.
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Parallelization

Asynchronouos Advantage Actor-Critic (A3C) [MB+16] is an actor-critic algorithm that
maintains both a policy and an estimate of the value function. The updates are done using
an estimate of the advantage function exploiting asynchronous parallel actor-learners. This
parallelization technique dramatically improves learning speed on multi-core CPUs.

Hybrid solutions

Normalized Advantage Functions (NAF) [GL+16] is a continuous variant of the Q-Learning
algorithm. It uses the advantage function to improve learning. While the algorithm is off-
policy, the original paper proposes incorporating a learned (local linear) model for on-policy
imagination roll-outs and shows significant improvements in sample efficiency.

Generalized Advantage Estimation (GAE) [SM+15] is an actor-critic method that uses
the advantage function for the critic and applies TRPO for the learning of both the actor and
the critic network. The advantage function is learned using the TD(λ) temporal difference
error, which provides a way to tune the bias-variance trade-off. Good results were achieved
on various continuous control tasks. To learn more on TD(λ), see for example Sutton and
Barto [SB18], p. 292.

Deep Deterministic Policy Gradient (DDPG) [LH+15] can be seen as a combination of the
Deterministic Policy Gradient (DPG) algorithm [SL+14] with DQN. It makes use of learning
a Q-function with experience replay and a target network to stabilize learning. It addition-
ally uses Batch Normalization [IS15], a technique deployed to stabilize the learning of deep
neural networks.

8.2.6 (Deep) reinforcement learning for continuous control

There are some special requirements for reinforcement learning algorithms when applied to
continuous control problems.

Formal description

Continuous controllers act in continuous spaces; hence the state space is such that X ∈ Rnx

and the action space is in U ∈ Rnu , with nx ∈ N and nu ∈ N the dimension of the state and
the action space, respectively. The transition function T will be a probability density function
(see also [WO12], p.209) such that

∫

X ′
T (x t , ut , x t+1)d x t+1 = p

�

x t+1 ∈ X ′|x t = x and ut = u
�

, (8.12)

with X ′ ⊆ X . The transitions can also be written as time discrete, time-invariant, general
nonlinear, and stochastic control systems with additive noise with the system dynamics func-
tion

x t+1 = T (x t , ut) +ωT (x t , ut), (8.13)

with T : X ×U → X being a deterministic transition function and ωT (x , u) being a zero-mean
(e.g., Gaussian) noise vector with the same size as the state vector. In the same manner, the
reward function can also contain noise, such that

rt+1 = R(x t , ut , x t+1) +ωR(x t , ut , x t+1), (8.14)
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Table 8.1: Comparison of important (deep) reinforcement learning algorithms
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Q-learning - x - x x - - - D D tabular learning

SARSA - x x - x - - *- D C on-policy Q-learning

PILCO x - x - - x - x C C GP dynamics model

REINFORCE x x - - x - - D,C C MC policy gradient

NFQ - x - x x - - x D,C D Experience Replay +
Fitted Q-iteration

DQN - x - x x - - x D D Deep networks
to play Atari

NAF x x * x x - - x D,C C *on-policy
imagination rollouts

TRPO - x - x - x - - D,C C exact PG
step-size limitation

PPO - x - x - x - - D,C C efficient PG
step-size limitation

GAE - x x - - - x - D,C C Advantage actor-critic +
TRPO

A3C - x x - x x x - D,C C Advantage F.
Parallelization CPU

DPG - x - x - x - x D,C C Deterministic
policy gradient

DDPG - x - x - - x x D,C C DPG + DQN

with ωR also being a zero mean noise term. If ωT and ωR are zero, the transition func-
tion is deterministic otherwise it is stochastic. The MDP is stationary if T and R are time-
independent. Otherwise, it is non-stationary. Continuous control problems can only have
continuous state spaces; the action space can be discrete or continuous.

Challenges with continuous control problems

Many reinforcement learning algorithms have been designed for problems with small finite
state and action spaces. In such domains, policy and value functions can, for example, be rep-
resented as look-up tables. In the continuous control domain, one has to deal with infinite
state spaces, and the control signals are within infinite action spaces. This poses a variety
of challenges. Discretization of a continuous state space is often done in practice in order
to transform a continuous space problem into a discrete one. A naive approach would be
to discretize along all state space dimensions in equidistant quantization intervals. A more
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general approach is tile coding. The interested reader is referred to [WO12], p. 214. One
major issue with tile coding is that the Markov property might be lost, which might have
implications for the feasibility of the approaches for MDPs, for example, that convergence
proofs for the MDP case do not hold anymore. While it might be feasible to discretize the
state and action spaces for some problems, this inherently will lead to sub-optimal perfor-
mance. Increasing the number of states by decreasing the discretization step size leads to the
problem of the curse of dimensionality [Bel57] and often hinders the realization of discrete
RL formulations for continuous problems. Function approximation plays an important role
when dealing with continuous spaces. In order to apply reinforcement learning to real-world
control problems, the agent has to conduct experience in the real world. It might be infea-
sible to run randomly initialized policies for safety reasons or to not destroy the plant. This
poses challenges, especially for tasks and algorithms with high sample complexity. Running
experiments in simulated environments before the real-world application requires a precise
model of the environment or plant. Deviations between simulation and plant behavior might
result in a policy that performs optimally in simulation but does not perform well in the real
world. This is often referred to as Simulation-to-Reality gap or Sim-to-Real gap. Another
challenge in continuous control is that the policy has to be computed in real-time. Hence,
algorithms need to be computationally efficient. A more detailed overview of challenges is
given in Andrew Bagnell [And14].

8.3 Related work

A vast amount of literature exists on continuous control applications in the context of
robotics. Besides the examples already given in the background section 8.2.5, see Andrew
Bagnell [And14] for a good overview. In this section, we want to give an overview of work
done with applications of deep learning and RL in the automotive domain, with a focus on
control applications. Again, it would be out of scope to give a comprehensive overview,
mainly due to the topic’s popularity in recent years. Please also note that this review was per-
formed around 2019/2000 and hence does not contain more recent work. Next, we highlight
work on reinforcement learning applied to the longitudinal vehicle motion control problem
and further distinguish publications of the (predictive) tracking control problem, as inves-
tigated in this thesis. Instead, the interested reader is referred to the surveys from Elallid,
Benamar, et al. [EB+22], Kalandyk [Kal21] and Farazi, Ahamed, Barua, and Zou [FA+20],
of which the two last-mentioned included a reference to the author’s paper [BK18].

8.3.1 Deep (reinforcement) learning for automated vehicle control

Some authors proposed to apply deep learning to directly learn vehicle controls based on
raw sensor inputs in a so-called “end-to-end” fashion. These approaches recently gained
much publicity by demonstrating impressive modern (deep) learning capabilities. Never-
theless, the overall behavior often shows sub-optimal behavior compared to more modular
approaches based on rather “classical” decision-making algorithms. The vital question of
incorporating traffic rules into such an approach is currently also open. Despite the recent
publicity, probably the first known application of end-to-end learning (in a supervised man-
ner) was demonstrated on the vehicle ALVINN by Pomerleau [Pom89] and goes back to 1989.
A prominent and more recent example of the application of deep learning was presented by
Bojarski, Del Testa, et al. [BD+16] in 2016. The solution was not based on RL; instead,
a Convolutional Neural Network (CNN) was trained in a supervised manner to output the
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steering commands of the vehicle. Training data was recorded from manual test drives, con-
taining the steering angle and the camera images of three cameras: one centered and two
tilted to the left and right. The center camera was matched to the desired steering angle,
while the tilted ones were used to incorporate a corrective input.

Chi and Mu [CM17] uses an architecture with recurrent neural networks (LSTM) to in-
clude inference on historical states. Bansal, Krizhevsky, and Ogale [BK+18] recently pre-
sented an approach called ChauffeurNet for higher-level decision-making/behavior genera-
tion of AVs. The examples mentioned above were all based on supervised deep learning.
Looking at the approaches based on reinforcement learning, we find that Sallab, Abdou,
Perot, and Yogamani [SA+17] surveyed recent advances in deep reinforcement learning and
proposed a framework for an end-to-end deep RL pipeline for automated driving. Se-Young
Oh, Jeong-Hoon Lee, and Doo-Hyun Choi [SJ+00] proposed a vision-based road-following
approach similar to the one presented in [BK+18] but using reinforcement learning in com-
bination with a lane edge feature extraction-based image processing algorithm.

Riedmiller, Montemerlo, and Dahlkamp [RM+07] showed in 2007 that it is possible to
learn the steering task of an automated vehicle with reinforcement learning, purely con-
ducted on a robotic vehicle and without prior simulation. They applied their NFQ algorithm
[Rie05]. The agent was trained to receive a reward based on the difference between a given
target trajectory and location data from a GPS sensor. Kendall, Hawke, et al. [KH+18]
claimed to be the first example of deep reinforcement learning on-board of a real automated
vehicle. They applied the DDPG algorithm to the lane-keeping task using visual input. Hy-
perparameter tuning was done in simulation before executing training episodes on an actual
vehicle.

Williams, Wagener, et al. [WW+17] developed an information-theoretic MPC controller
which exploits a model learned via model-based reinforcement learning. They applied it
to make a model-sized car drift through the curve on a dirt track. Preceding work for the
steering and acceleration control of an AV performing a power drift to backward park into a
parking space used a method based on multiple LQRs [KP+10]. Reinforcement learning work
with solutions to the decision-making problem includes Mirchevska, Blum, et al. [MB+17].
They apply a Fitted Q-iteration algorithm in combination with Extremely Randomized Trees
as a function approximator to learn high-level decision-making in highway scenarios involv-
ing interactions with other road users. They proposed leaving low-level steering and accel-
eration commands to classic planning and control modules. They later proposed combining
RL with formal verification methods in order to achieve safe exploration of the agent in
[MP+18].

Wang, Chan, and de La Fortelle [WC+18] applied a deep Q-learning algorithm to the
automated lane change problem. Hoel, Wolff, and Laine [HW+18] trained a deep Q-network
agent to handle high-level speed and lane change decisions for a truck-trailer combination
in a simulated environment. Xu, Tang, and Tomizuka [XT+18] recently combined deep
reinforcement learning with an approach from classical robust control for the lateral control
of a vehicle. Again, many researchers were and still are exploring RL applications in various
fields of vehicle automation, and this list is far from comprehensive.

8.3.2 Reinforcement learning in other automotive applications

We also want to mention some work not (directly) related to automated vehicle control. The
early work of Frost [Fro96] applied reinforcement learning to dynamic vehicle roll control in
1996. Bischoff, Nguyen-Tuong, et al. [BN+13] proposed to apply reinforcement learning for
the position control of a throttle valve of a combustion engine. They applied an algorithm
called PILCO, which is in the family of model-based policy search algorithms.
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Various authors investigated applying (deep) RL for optimizing the energy management
strategy of a hybrid vehicle. Both Lin, Wang, et al. [LW+14] and Qi, Wu, et al. [QW+16]
applied the TD(λ) algorithm [Sut88] to the problem. Hu, Li, et al. [HL+18] proposed to use
DQN [MK+13], while Liessner, Dietermann, and Bäker [LD+19; LS+19] applied the DDPG
algorithm proposed in [LH+15]. Pietquin and Tango [PT12] used RL to learn from human
interaction when calibrating a partial ADAS system to reduce the risk of forward collisions.
Further publications can also be found in the recent survey paper by Elallid, Benamar, et
al. [EB+22]. The work mentioned above only represents a tiny section of publications that
appeared to date at the time of writing this section and is far from comprehensive, which
would be out of the scope of this thesis.

8.3.3 Reinforcement learning for cruise control

The application of model-free policy gradient reinforcement learning to the Adaptive Cruise
Control problem was investigated by Desjardins and Chaib-draa [DC11]. They studied using
a discrete control policy and found that it results in oscillating behavior when used in Adap-
tive Cruise Control scenarios. They proposed to modify their algorithm to allow continuous
actions in future work. Wei, Zou, et al. [WZ+18b] presented a supervised reinforcement
learning (SRL)-based framework for longitudinal vehicle dynamics control of a CACC sys-
tem. An interesting approach combining classical control with reinforcement learning was
presented by Dai, Li, et al. [DL+05]. They suggested tuning fuzzy controllers using rein-
forcement learning and applied the method to longitudinal vehicle motion control in a Cruise
Control scenario with a leading vehicle. In contrast to our work, aiming to incorporate pre-
dictive information in the approach, this is not possible with the suggested approach due
to the nature of fuzzy controllers. Similarly, Wang, Xu, et al. [WX+14] used Least-squares
Policy Iteration to tune the parameters of a PI controller. This approach to solving the Cruise
Control problem was validated on an experimental vehicle. To adopt the problem of using a
discrete action space, they conducted experiments prior to the training phase in order to find
suitable candidates for combinations of proportional and integral coefficients. This reduced
set of actions was then used in reinforcement learning. While leaving little room for opti-
mization to the RL agent, this requires a considerable tuning effort. Again, due to the nature
of a PI controller calculating the control signal, incorporating advance knowledge is impos-
sible. In work presented in [WZ+15], they used supervised learning to learn an automated
vehicle’s upper level ACC controller.

Also, here, many researchers are active in this interesting field, and this list should be
seen as an introduction rather than a comprehensive study. For further reading, the work
done by Lin, McPhee, and Azad [LM+19], which compares deep reinforcement learning and
MPC for adaptive cruise control, might be an exciting starting point. Again, the recent work
of Elallid, Benamar, et al. [EB+22] includes a broad overview of existing publications.

8.3.4 RL for predictive reference tracking and vehicle motion control

Ng, Clark, and Huissoon [NC+08] applied Monte Carlo RL to tune the parameters of a gain-
scheduling approach to the lower-level vehicle motion controller. Zhu, Dai, et al. [ZD+17b]
applied a method based on a combination of Neural Dynamic Programming and Internal
Model Control. The first was applied for the acceleration decision-making, while the latter
was used for the acceleration tracking. To the best of the author’s knowledge, no application
of reinforcement learning for longitudinal vehicle motion tracking has been proposed before
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the author’s publication in [BK18]. Especially a novelty of the proposed approach is the in-
corporation of advance knowledge about future disturbances and to allow arbitrary reference
trajectories.

After the publication of the author’s work in [BK18], [PR+19] proposed to apply a FIR
filter within the critic network estimating the value function for linear systems with the aim
to use it for linear longitudinal output control of a road vehicle. It addresses the problem of
partial observability due to unobserved actuator dynamics.

After a personal meeting between the author and Puccetti in Munich in 2018 with discus-
sions about the proposed method in [BK18], the work of [KW+19] from 2019 as well as Köpf,
Puccetti, Rathgeber, and Hohmann from 2020 might have been inspired by my proposal.
[KW+19] elaborated the idea to include predictive reference trajectories into Qlearning and
contributed some very nice theoretical results on the convergence to arbitrary trajectories in
a linear setting. In a pre-print version of [KW+19], it was also acknowledged that our work
in [BK18] was the first to propose such a framework. Their results were further developed in
[KP+20], where the application of the resulting method in a real vehicle was presented. Con-
trary to the author’s work, they proposed a setting in which the agent remains also learning
during deployment, which results in an adaptive controller for which they included stability
investigations, although under the limiting assumption of a linear system.

Looking at suggested general frameworks for continuous predictive control, [SG16] pro-
posed a model-free predictive controller based on RL. Their approach is limited to a control
horizon of length one, which we consider insufficient for our application. It is realized by a
fuzzy inference system, which is used together with Q-learning.

8.4 Proposed solution

This section will present the proposed solution after elaborating on the underlying assump-
tions and a formal problem description.

8.4.1 Assumptions

We assume that an automated vehicle’s longitudinal motion tracking controller receives an
arbitrary reference speed trajectory over a look-ahead over a prediction horizon of Np sam-
ples from a planning module. In this section, we will name this tracking control module
interchangeably by the term agent. The advance information of the expected future road
slope values is also provided to the longitudinal motion tracking control module with the
look-ahead of Na samples. The actions calculated by the agent are wheel torque demand
commands T d

we, which are demanded by a power-train control module. We assume this mod-
ule is available to the agent and splits the demand values into actuator commands for the
power train and brake.

The reinforcement learning agent has the task of realizing trajectory tracking despite
unknown actuator dynamics and unknown disturbances. These disturbances include external
forces, like wind forces and changes in the rolling resistance, as well as internal ones, like
actuator inaccuracies. The advance information containing both the reference trajectory and
a known future disturbance is given to the control module, and the agent seeks to maximize
the return by following an optimal policy that is able to compensate for actuator delays and
optimally tracks the desired trajectory despite the disturbance. To investigate the feasibility
of the approach, we want to assume that our environment is static.
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Figure 8.4: The Predictive reinforcement learning Controller architecture enables the incorporation of advance
knowledge about desired reference values and expected disturbances. Figure reprinted with permission from the
author’s publication [BK18]. Copyright ©2018, IEEE.

8.4.2 Formal problem description

We formulate our control system as a Markov Decision Process to solve it via reinforcement
learning. As a novelty, we incorporate the advance knowledge into the observation vector.

General formulation of predictive control agent with incorporated advance knowledge

We assume the environment provides access to fully observable state information given by
the state vector x ∈ X . The agent acts by the bounded control u ∈ U . The target is to track
arbitrary but bounded reference values ρ ∈ P ⊂ X , while ρ might contain full reference
state information or only at least one of the states. We assume the environment is (output)
controllable under the control u. The agent has further access to future reference values
given in the reference trajectory vector

ρt:t+Np
= [ρt ;ρt+1; . . . ;ρt+Np

],

containing information from the target values ρ for at least one of the environment states at
all time steps over the prediction horizon Np. We can then use ρt:t+Np

to calculate a trajectory
tracking error vector et:t+Np

according to

et:t+Np
= [et ; et+1; . . . ; et+Np

],

with ei = ρi − x t . Additionally, the advance knowledge vector

αt:t+Na
= [αt ;αt+1; . . . ;αt+Na

],

containing predictive information about known disturbances acting on the environment is
assumed to be known over the advance knowledge horizon Na. In order to incorporate
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advance knowledge and to let the agent learn a predictive control policy, we compose an
augmented observation vector ot as a concatenation of the state vector x t , the elements of
the trajectory tracking error et:t+Np

and the advance knowledge vector αt:t+Na
to

ot = [x t ; et:t+Np
;αt:t+Na

]. (8.15)

We further assume that the trajectory tracking problem is feasible and the prediction and
advance knowledge horizons are long enough for the agent to stabilize the system. The
dimension of the observation vector can be calculated according to

dim(o) = dim(x) + Np + Na. (8.16)

We denote a controller using predictive information as described above as Predictive Rein-
forcement Learning Controller with incorporated Advance Knowledge (PRLC-A).

PRLC-A for longitudinal vehicle motion tracking

We define the vehicle state vector as x t = [vt , at], with the vehicle’s acceleration at and speed
vt at time t. We assume to receive a speed reference trajectory with desired speed values
over a prediction horizon Np

vd
t:t+Np

= [vd
t , vd

t+1, . . . , vd
t+Np
],

from a higher-level longitudinal motion planning module. We use this information to calcu-
late our trajectory tracking error et:t+Np

according to

et:t+Np
= [et , et+1, . . . , et+Np

]T,

where errors at times i are calculated as ei = vd
i − vt . Instead of directly using vd , we calculate

the deviation of desired speed values from the actual vehicle speed at each time step over the
prediction horizon. We further include advance knowledge information about current and
future road slope ϕ in the advance knowledge vector αt:t+Na

:

αt:t+Na
= [ϕt ,ϕt+1, . . . ,ϕt+Na

].

This results according to (8.15) in an observation vector

ot = [vt , at , et , et+1, . . . , et+Np
,ϕt ,ϕt+1, . . . ,ϕt+Na

]T,

while for simplicity we keep the advance knowledge horizon Na = Np identical to the predic-
tion horizon. According to (8.16), the length of our observation vector is then given by:

dim(o) = dim(x) + 2 · Np = 2+ 2 · Np.

If we want to include predictive information over two seconds with a sample time of 100 ms,
this will, as an example, result in an observation vector dimension of

dim(o) = 42 for Np = 20.

Action definition

We let our agent perform a one-dimensional action ut ∈ R1 at each time t, which is defined
as the desired wheel torque

ut = Td
we,

which we split into torque demand values for engine and brake according to (8.28) as de-
scribed in Chapter 7.
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Reward function

Our main objective is to minimize the tracking error between reference speed trajectory and
resulting vehicle speed for all time steps. So, with a perfect controller, the norm of the
difference between the actual and the desired value, given with

|vd
t − vt | ,

would be zero for all t (assuming that our reference trajectory is smooth and feasible). While
in classical control, quadratic costs are prevalent because they have mathematical properties
that can be exploited in many algorithms, Engel and Babuska [EB14] found that quadratic
costs have a negative impact on the steady-state error behavior in reinforcement learning.
This finding can be explained by the small gradient in the proximity of the origin of quadratic
functions. They proposed to use the ℓ1-norm instead.

We additionally want to penalize high actuator values and, therefore, add a term depen-
dent on ut . We define the resulting reward as

r (x t , ut) = −
�

wv,r · |vd
t − vt |+wu,r · |ut |

�

, (8.17)

with the weighting factors wv,r and wu,r as tunable hyper-parameters to penalize tracking
errors and high action values, respectively.

Objective

We previously defined the return in (8.2) as the finite sum of discounted future reward given
by:

G(τr) =
N
∑

t=1

γt rt , (8.18)

with the discount factor γ ∈ [0,1]. We now want to use a reinforcement learning algorithm in
order to learn a policy π(x), which maximizes the expected return E(G) from the start state.
We want this policy to be deterministic in order to be able to deploy it as a controller with
reproducible results in deterministic environments, while it may also be stochastic.

8.4.3 Learning and deployment setup

In supervised machine learning, splitting the available data into different sets is common to
perform training, validation and test. During training, the networks’ performance is validated
on the validation data set, not used for training. This helps to detect over-fitting tendencies
and tune hyper-parameters. The final network performance is then tested on the test data
set.

In RL, especially with on-policy algorithms, the collection of data samples is profoundly
connected to learning, and the task to solve is considered as given. This is why, typically, no
such separation is present. Hence, in RL, only a split between training and test time is com-
mon. In a standard RL setup, the agent interacts during training time with the environment
through exploration and exploitation, while the collected data samples are used to update
the agent’s policy, model, value function, or all of the above. Different formulations exist in
which a separation between the exploration, learning, and application phase is made (see,
for example [WO12], Chapter 2.2, “The batch reinforcement learning problem”, p48ff). The
training setup we want to use for our reinforcement learning agent is similar to the growing
batch reinforcement learning problem described there but with some additions.
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Figure 8.5: Overview of the learning and deployment phase. During learning, various iterations between training
and validation are performed. At the end of the learning phase, the parameters of the policy network are frozen,
and the deterministic policy will be deployed as a closed-loop controller in the vehicle.

For this feasibility study, we want to distinguish between a learning phase and a deploy-
ment (or application) phase (Figure 8.5). See Section 8.7.2 for a discussion about the bene-
fits, drawbacks, and implications of this design choice. During the learning phase, the policy
network parameters are updated, while in the deployment phase, the previously trained pol-
icy network is used without any further learning.

For the setup of predictive reinforcement learning, we suggest further introducing a sep-
aration of the learning phase into two parts: A training and a validation setup, similar to
best practice in supervised learning. We already learned in Section 8.4.2 that we augment
the agents’ observations with predictive information. This information can be seen as exter-
nal input defining the state of the environment. Since we included the reference trajectories
in our observations, they have a profound impact on the rewards the agents see and what
follows, as in the states visited by the agent. Figure 8.6 should help visualize how the predic-
tive information is an external source to the observations the agent sees during learning. In
the training phase, we allow the engineer to choose arbitrary reference trajectory sequences.
The agent is trained and improved in a reinforcement learning manner, having to perform
actions to explore the environment. As another distinction of the training phase, stochas-
ticity is added into the exploration process by adding exploration noise to the deterministic
actions from the policy network. This is necessary for sufficient exploration and common
practice for deterministic policy learning. A noise generator block symbolically represents
this in Figure 8.6. The training phase is terminated after a given number of training steps.

After a training phase has ended, the performance is evaluated in a validation phase. To
make the a comparison of the agents performance possible, two things are necessary. First, no
action or exploration noise is added. Second, a fixed set of validation reference trajectories is
used instead of arbitrary reference trajectories. Various iterations between the training and
validation phases happen during the learning process. With each iteration, the improvement
of the agent can be determined in the validation phase. When a saturation of the learning
curve has happened, the learning phase is stopped, and the agent with the best performance
is selected.

Then, the previously learned agent is used in a deployment setup. With policy or actor-
critic agents, the policy can be extracted from the agent in order to used it as a closed loop
controller (see Figure 8.7). This has the advantage that inference of a policy network is
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Figure 8.6: Illustration of the training phase as depicted in Fig. 8.5. A trajectory generator provides the reference
and advance knowledge trajectories, and action noise is added to a deterministic policy for exploration.

computationally cheap and, as we will show in section 8.6.1, widely independent of the
prediction horizon. We want to refer to Section 8.7.2 for a detailed discussion about this
design choice’s benefits, drawbacks, and implications.

8.4.4 Design of the excitation signal

We just learned that in the suggested learning setup, the engineer has to choose reference
trajectories with advance information which are used during the training phase. We are not
aware of any existing literature bringing answers to this question published before our own
work in [BK18]. As we want to show later, the choice of reference trajectories during the
training phase plays a crucial role for learning performance.

One intuitive choice of reference trajectories during the training phase would be to train
our agent on the same scenario we want to evaluate. One might also believe that our agent
will learn to perform well on this single scenario quickly but perform poorly on a different
one which lies outside the state and action space visited during learning due to extrapolation
effects. This would be similar to over-fitting in supervised learning. In order to perform well
in the whole state space, we also need to visit these states during learning. Covering the
whole state space during vehicle testing might be a challenge on test tracks. Considering
to perform the training on vehicle test beds gives additional possibilities to the design of
advance knowledge trajectories.

To design the trajectories of the reference and the known disturbance, we suggest apply-
ing a method from nonlinear dynamic system identification as used in Nelles [Nel01], which
is broadly used in the domain of internal combustion engine identification, and propose to
use Amplitude-modified Pseudo-Random Binary Sequence (APRBS) [VM+05; DZ11] for the
training phase. Next, we want to learn more about this method and the signal type involved.
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Figure 8.7: Illustration of the validation and application phase as depicted in Fig. 8.5. The reference and advance
knowledge trajectories are either validation trajectories or real world data coming from a planning module and a
map. No exploration noise is added.

APRBS signals

Amplitude-modified Pseudo-Random Binary Sequences (APRBSs) is a sequence of steps with
arbitrary amplitudes and a varying step length. They are derived by creating sequences of
variable length from PRBS signals. PRBSs have the property to be generated by a determin-
istic algorithm, while the statistical behavior is that of a true random sequence in the sense
that the elements are uncorrelated. That is the reason for the name pseudo-random. PRBS
signals can be calculated using linear feedback shift registers (see Sung and Lee [SL03]).

The output of these registers can then be used to trigger a true random number generator,
for example, with uniform distribution, to determine the amplitude of the APRBS signal.
Details about the calculation of APRBS reference signals are given in Deflorian and Zaglauer
[DZ11]. An example of an APRBS originating from a PRBS is given in Figure 8.8.

8.4.5 Considerations for algorithm selection

Many different RL algorithms exist and new ones are presented regularly. This makes the
selection of the best algorithm for the predictive longitudinal motion vehicle tracking task
challenging. We discussed some important RL algorithms in Section 8.2.5 without the focus
of applicability to the longitudinal tracking task. In this subsection, we want to discuss some
consideration which led to the selection of the algorithm which was used in [BK18].

Among the various RL algorithmic families, we want to first discuss model-based ap-
proaches. One of the key problems of model-based RL is that models introduce model bias;
that is, they believe that the learned model is correct and exploit that information, and this
leads to sub-optimal behavior. Learning of continuous models has been found intractable in
the past for many applications. For example, H. van Hasselt stated: “[. . . ] models of contin-
uous MDPs quickly become intractable to solve, making explicit approximations of these less
useful” [WO12], p 242.

Exploiting a model might be computationally costly. Although a model can be, as long as
it is good enough, beneficial in order to execute planning steps, this comes at a high cost.
This cost is the same as we face in MPC algorithms and depends on the prediction horizon.
Since we want to achieve long prediction horizons for stability and performance reasons, a
way to decrease the computational cost involved is precisely what we try to reduce by using
RL as an alternative method.
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Figure 8.8: Illustration of an Amplitude modified Pseudo Random Binary Sequence (APRBS, below), generated
from the Pseudo Random Binary Sequence (PRBS, above). Amplitudes are uniformly distributed random num-
bers.

Still, PILCO (see section 8.2.5), which learns a Gaussian Process Model, has been success-
fully demonstrated on continuous control tasks. However, these were all low-dimensional
problems, and Nagabandi, Kahn, Fearing, and Levine found that “the most high-dimensional
task demonstrated with PILCO [. . . ] has 11 dimensions” [NK+17]. Since we want to in-
corporate advance knowledge over a long time horizon, we have an increased augmented
observation space size, which could possibly be challenging for PILCO.

The planning steps within model-based RL frameworks are very similar to the NMPC
approach. Also, one question arises when considering a model-based approach for the given
problem: why should a model and the model structure be learned at all, when the underlying
physics is mostly well known and available? But then, the problem reduces to learning the
model parameters, and this is exactly what is investigated in the remaining chapters of this
thesis. These were the thoughts which led to the decision of rather investigating a model-free
approach, but of course, no final answer can be given to the question of which approach will
be best.

If we look further into various model-free approaches, we consider the following: In
order to realize small sample times, we desire short computation times in order to find the
optimal action at each time step. This can be easily realized by maintaining an efficiently
computable representation of a policy function. A (deep) neural network representation has
this property, and since it stores an approximation of the policy function, it can be directly
used in continuous action spaces.

Among the approaches to learning the policy parameters, we find that policy gradient
methods, actor-critic approaches, and evolutionary algorithms can be applied. A benchmark
of various recent RL algorithms for continuous control was published in Duan, Chen, Schul-
man, and Abbeel [DC+16] in 2016. According to the authors, the algorithms that performed
best over several tasks are the Truncated Natural Policy Gradient (TNPG) algorithm [DC+16],
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TRPO [SL+15], as well as the DDPG algorithm [LH+15]. Classical algorithms, like REIN-
FORCE [Wil92], suffered from convergence to local optima. Among these, we prefer to obtain
a representation of a deterministic policy during learning since we want our controller behav-
ior to be deterministic. Although this could also be realized from stochastic representations
and evaluating the mean value, we consider it beneficial to have a deterministic function
directly since this is more efficient to store.

8.4.6 Proposed algorithm

Following the considerations above, we want to build our algorithm on basis of DDPG
[LH+15]. It is model-free, can learn in an off-policy fashion and belongs to the family of
actor-critic networks. It uses Deep Neural Networks (DNNs) as approximators for actor and
critic, which enables to learn policies in high-dimensional and continuous state and action
spaces. For completeness, we want to provide a short version of the explanation of the al-
gorithm from the original paper [LH+15] in the following before presenting the algorithm
with our modifications: DDPG is based on Q-learning and hence uses a representation of the
action-value function Q(x , u) which, for a deterministic policy µ(x) and using the Bellmann
equation, can be expressed as

Qµ(x t , ut) = E
rt ,x t+1∼E

[r(x t , ut) + γQ
µ (x t+1,µ (x t+1))], (8.19)

with rt , x t+1 ∼ E denoting that r, x are sampled from the environment. Since Qµ is only
dependent on the environment but not on the policy, it can be learned off-policy, taking
actions from a distinct behavior policy β . The action-value function Q is approximated by a
DNN with parameters θQ, which can be updated, minimizing the mean square error given as
the loss, sampled from the behavior policy

L(θQ) = E
x t∼ρβ ,ut∼β ,rt∼E

�

�

Q
�

x t , ut |θQ
�

− yt

�2�
, (8.20)

where
yt = r(x t , ut) + γQ

�

x t+1,µ
�

x t+1|θQ
��

, (8.21)

and ρβ is the state visitation distribution of the behavior policy β as in [LH+15], (4) and
(5). In order to stabilize learning, DDPG applies an idea from [MK+13] and uses replay
buffers and a separate target network which calculates yt . Replay buffers act to randomly
choose samples out of the history of collected tuples of starting state, action, target state and
reward. This incorporates the idea of letting the algorithm see independent and identically
distributed samples, an assumption of the underlying Markov Chain theory, which does not
necessarily hold in dynamic environments. The actor policy µ(x |θµ) is updated using:

∇θµJ ≈ E
x t∼ρβ

�

∇uQ(x , u|θQ)|x=x t ,u=µ(x t )∇θµµ(x |θ
µ)|x=x t

�

, (8.22)

as in [LH+15], (6). This was proven to be the policy gradient in [SL+14]. In order to make
the learning components less sensitive to state information of different units and ranges
across different environments, a technique called batch normalization [IS15] is applied. To
stabilize Q-learning, copies of the actor and critic network are created and used for calculat-
ing the target values (Equation 8.21). The weights of these target networks are updated to
slowly track the learned networks according to:

θQ′← τQθ
Q + (1−τQ)θ

Q′ (8.23)

θµ′← τµθµ + (1−τµ)θµ′, (8.24)
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with τQ,τµ ≪ 1 being the Polyak-Ruppert averaging factors. The proposed algorithm is
given in Algorithm 6) and was published by the author of this thesis in [BK18]. It is an
enhancement to the DDPG algorithm [LH+15], modified to include the generation of APRBS
reference trajectories for each episode during learning

Algorithm 6 Enhanced DDPG algorithm for tracking control (modified from [LH+15]).

1: Randomly initialize critic network Q(x , u|θQ) and actor network µ(x |θµ) with weights θQ

and θµ

2: Initialize target network Q′ and µ′ with weights
3: θQ′ ← θQ,θµ

′
← θµ

4: Initialize replay buffer B
5: for episode = 1, M do
6: Initialize a random process N for action exploration
7: Create reference trajectory signal using APRBS Generator
8: Receive initial observation state x1
9: for t = 1, T do

10: Select action ut = µ(st |θµ) +N according to current policy and exploration noise
11: Execute action ut and observe reward rt and new state x t+1
12: Store transition (x t , ut , rt , x t+1) in B
13: Sample a random mini-batch of N transitions (x i , ui , ri , x i+1) from B
14: Set yi = ri + γQ′(x i+1,µ′(x i+1|θµ

′
)|θQ′)

15: Update critic by minimizing the loss:
16: L(θQ) = 1

N

∑

i(yt −Q(x t , ut |θQ))2

17: Update the actor policy using the sampled policy gradient:
18: ∇θµJ ≈
19: 1

N

∑

i∇uQ(x , u|θQ)|x=x i ,u=µ(x i)∇θµµ(x |θ
µ)|x i

20: Update the target networks:
21: θQ′ ← τQθ

Q + (1−τQ)θQ′

22: θµ
′
← τµθµ + (1−τµ)θµ

′

23: end for
24: end for

8.5 Evaluation details

To validate the proposed controller, we used real-world data from a driving scenario in a
parking garage for the road grade profile to create a realistic disturbance profile. We also
created demand velocity trajectories based on these real-world experiments and used these
as references to feed a simulation environment. The idea was to emulate that the vehicle
should follow a speed profile with different speed levels coming from a planning module, in
which higher speeds are requested for longer straight, open passages, and speed is reduced
to drive around corners or in tight passages while steep ramps are traversed. The resulting
speed and road grade profile is illustrated in Figure 8.13.

8.5.1 Simulation environment 8.1

We use the time-discrete vehicle dynamics model as presented in the author’s publication
[BK18], which is equivalent to the time-discrete longitudinal vehicle motion model as derived
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in Section 3.5.4, but using a slightly different notation. Also, the model additionally includes
a significantly simplified, stationary power-train model, which is reduced to the power-train
efficiency and -ratio given by Twe,k = ηpwt ipwt Te,k. This was done to achieve meaningful
values for engine and drag torques. In order to stay consistent with the rest of the formulae
in this thesis, we do not restate the identical versions as they were described in [BK18].
Nevertheless, all equations should be mathematically equivalent between this chapter and the
ones given in [BK18]; the results shown later are a repetition of the ones already published
therein. All the experiments were conducted for this feasibility study under the assumption
that no measurement noise or other disturbances, like time-varying parameters, were present.
Note that since this has to be expected within a potential real-world application, we do not
pose this restriction in our analysis in the remaining chapters of this thesis. Find a summary
of the parameters used for all the experiments in this chapter in Table 8.2.

Table 8.2: Simulation parameters used for the experiments presented in Section 8.6

Symbol Description [Unit]

m Vehicle mass [kg] 2000

mI Mass resulting from power-train inertia [kg] 50

ηpwt Power-train efficiency [-] 0.89

ipwt Power-train ratio [-] 8.446

reff Effective wheel radius [m] 0.3

Te,drag Maximum negative engine drag torque [Nm] -20

g Gravitational constant [N] 9.81

Cr Rolling resistance coefficient [-] 0.015

Cd Aerodynamic drag coefficient 0.4262 [kg/m]

N Prediction horizon 20

Ts Sampling time for simulation and controllers [s] 0.05

τe Time constant of engine torque response [s] 0.15

τbr Time constant of brake torque response [s] 0.05

Input substitution The formulation as a multi-input problem with the action space defined
as

u=

�

u1
u2

�

=

�

T d
we

T d
br

�

, (8.25)

with the desired wheel torque values induced by the engine or power-train T d
we and by the

brake T d
br poses additional complexity within a RL framework, since the control allocation

problem needs to be solved by the agent additionally to the tracking problem. From an
economic point of view, we want to avoid having brakes applied unless the vehicle needs to
decelerate. Otherwise, the engine must work against the brakes, increasing fuel consumption
and abrasion. Clearly, the agent must consider penalties for mutually applying the brakes and
commanding power-train torque at the same time to learn that this is an undesired behavior.
We want to introduce the following input substitution to solve the control allocation problem
already within the problem formulation and reduce complexity for the RL framework. This
solution was originally also proposed within a model-predictive control framework in the
author’s publication [BK16b] and was re-used in [BK18]: Derived from the relation that in
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steady state operation, it will be that

Twe − Tbr = T d
we − T d

br ∀ Ṫ d
we, Ṫ d

br = 0. (8.26)

We define
u= T d

we − T d
br, (8.27)

and want to achieve that the brake is only applied if the negative drag torque from the
power-train is not sufficient to achieve deceleration:

Td
br = 0,

Td
we = u

«

u> Twe,drag (8.28a)

Td
br = Twe,drag − u

Td
we = Twe,drag

«

u≤ Twe,drag (8.28b)

with
(−)Tmax

br ≤ u≤ Tmax
we . (8.28c)

Like this, we can achieve to drive the vehicle dynamics to any state given by u between
the maximum brake torque and the maximum wheel torque induced by power-train. As
a drawback of this solution, we should consider limiting certain trajectories to the slower
power-train dynamics in case we still want to have positive torque values on the wheel.

Note that the equations above are mathematically equivalent to the ones stated in [BK18],
but a different formulation appears due to using Twe instead of Te, involving the need for less
compact formulae due to the transformation.

8.5.2 Implementation details

The longitudinal vehicle dynamics model, according to the description in Section 8.5.1, was
implemented as OpenAI gym [BC+16] environment in Python. The RL agent was trained
with a modified baseline implementation from [DH+17] (in Python and Tensorflow), where
the modifications are given according to Algorithm 6. The network structure for actor
and critic networks are shown in Figure 8.9 and Figure 8.10, respectively. DNNs for actor
and critic contained 1 input layer and 2 hidden layers with Rectified Linear Units (RELUs)
[GB+11] and a tangens-hyperbolicus layer for the output. We used 300 and 200 units in the
first and second hidden layer, respectively. The training was done with the following hyper-
parameter settings (see also Table 8.3): We used an Adam optimizer [KB14] for parameter
learning, with learning rates of 10−4 for the actor-network and 10−3 for the critic network.

As proposed in the original DDPG paper [LH+15], we included L2 weight decay of 10−2

for the critic network Q(x , u), and the initialization of the final layer weights and biases were
sampled from a uniform distribution

�

−3× 10−3, 3× 10−3
�

. The other layers were initialized

from uniform distributions
�

− 1p
f
, 1p

f

�

, where f is the number of inputs (fan-in) to the layer.

Remark 3. We would recommend trying the Xavier initialization [GB10] or the Kaimin initial-
ization [HZ+15] in case of using RELUs for future experiments, especially when using deeper
networks. See also information provided in this link:[Lin] for a short introduction.

We used mini-batch sizes of 64 and a replay buffer size of 106 for training. The discount
factor was γ= 0.99 and for the soft target updates we set τQ = τµ = 0.01.
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Table 8.3: Hyper-parameters used for Reinforcement learning

Hyperparameter Actor Network Critic Network

Learning rate 10-4 10-3

L2 weight decay − 10-2

discount factor γ 0.99

soft target updates τQ,τµ 0.01

Minibatch sizes 64

Replay buffer size 106

Action noise Gaussian, σ = 0.02
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Figure 8.9: Schematic structure of Actor network. The number of inputs depends on the length of the prediction
horizon.

Exploration noise

In order to allow exploration, we applied action noise during the training phase of the learn-
ing process. We achieved good results with Gaussian noise with σ = 0.02, since learning
performance with parameter noise as proposed by [PH+18] did not show good learning
performance, but this finding was not analyzed any further.

Remark 4. Action smoothing is recommended for direct learning in the real world since Gaussian
noise makes the actuators jitter at high frequency, potentially damaging the hardware. Thus,
temporally correlating the exploration, for example, by using Ornstein-Uhlenbeck action noise
[UO30], might be important.
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Figure 8.10: Schematic structure of critic network. The number of inputs depends on the length of the prediction
horizon. The action value is directly fed into the first hidden layer.

8.6 Results

8.6.1 Comparison of learning speed

We evaluate the learning performance by training a DDPG agent with reference and advance
knowledge information from the real-world data set from Figure 8.13. In other words, we
let our agent learn by repeatedly driving through a simulated parking garage, and evaluate
the performance on the same driving scenario by calculating the evaluation return. We then
perform training runs on APRBS sequences and evaluate the parking garage data set as be-
fore, and compare the results. Figure 8.11 shows the comparison of the learning curves as
a mean over 20 runs with a total of 1M steps with 95 % confidence intervals. The learning
speed of our approach using APRBS signals is considerably better than when training on the
evaluation data set.

8.6.2 Training using APRBS sequence

We can see a typical APRBS sequence of steps of random length and vehicle speed demand
values in Figure 8.12. One can see that the PRLC-A controller learns well to generate smooth
transitions to the step demand values, thanks to the predictive nature. Perturbations on the
acceleration signal are due to exploration noise, which is necessary during training. Once
we observe the agent’s performance has converged, we stop training and use the generated
policy in a closed-loop manner without any action noise.

8.6.3 Comparison of computation times

A comparison of computation times to calculate the control action of the NMPC approach
from [BK16b] with the PRLC-A controller is given in Table 8.4. Times shown are mean
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Figure 8.11: Comparison of learning speed when the agent trains on different data sets. The learning performance
when learning on APRBS signals, as we propose, is considerably better. Figure reprinted with permission from
the author’s publication [BK18]. Copyright ©2018, IEEE.

values over 2500 cycles and evaluated on a Laptop with an Intel Core i7-6700HQ CPU with
2.6GHz and 16GB RAM. The NMPC controller was implemented in MATLAB® and the PRLC-A
was inference only with Tensorflow on a CPU, so both were not optimized for fast execution.
We want to emphasize that a direct and fair comparison of the resulting computation times
between the two methods could not be done for several reasons: First, the implementation
was done in different languages (MATLAB®, Phyton). Second, various ways exist to formulate
the nonlinear program when solving the NMPC problem. For the comparison which was done
in [BK18], a single-shooting approach was implemented, which is well known to lead to
longer computation times than, for example, a multiple-shooting approach, as demonstrated
in the results of Chapter 7.

Also, the development of efficient numeric algorithms to solve the NMPC problem is
an area of active research. Torrisi [Tor17], for example, recently presented a method to
solve a similar NMPC formulation, which requires O

�

N(n2
x + nx nu)
�

Floating-Point Opera-
tions (FLOPs) (see p.8). At the same time, they cited an active-set method which requires
O
�

(Nnu)2
�

FLOPs, and an interior-point method exploiting sparsity of the MPC which re-
quires O
�

N(n3
x + n2

x nu)
�

FLOPs (see p.55). Above, N denotes the prediction horizon of the
NMPC controller, and nx and nu are the state and input dimensions, respectively.

Therefore, we want to list the results from the author’s original paper [BK18] regarding
the execution times, but instead of providing absolute values, we show percentages of the
computation times relative to the result with N = 10, which was the smallest prediction
horizon used. The message of Table 8.4 is that we find the execution time of the PRLC-A
controller to be almost insensitive to increased prediction horizons - which is a desirable
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Figure 8.12: Vehicle speed response during learning. The predictive policy learns a smooth response behavior to
a sequence of short APRBS step responses. The perturbations on the acceleration a are due to action noise and
only occur during learning. Please consider the different time-scale compared to Figures 8.13 and 8.14. Figure
reprinted with permission from the author’s publication [BK18]. Copyright ©2018, IEEE.

property to realize long prediction horizons.

Table 8.4: Evaluation of relative computation times of PRLC-A compared to NMPC for different prediction horizons.
Values given are relative compared to the time obtained for a horizon N = 10 for each algorithm.

Prediction horizon

Controller N=10 N=15 N=20

PRLC-A 100.00 % 100.00 % 100.09 %

NMPC 100.00 % 154.99 % 218.60 %

8.6.4 Evaluation of PRLC-A controller

We then evaluated the performance of a resulting controller, which was trained on APRBS
signals in comparison to other existing control solutions. First, a standard PI controller was
tuned to aperiodic step responses in flat terrain and the relevant speed range to avoid un-
comfortable oscillations. Second, the NMPC controller from [BK16b] was evaluated, which
includes identical advance knowledge to calculate the optimal control command.

We evaluate the controllers on the parking garage data set from Figure 8.13. Figure 8.14
shows the same evaluation but includes the comparison data. It shows a zoom to the most
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Figure 8.13: Evaluation of a predictive reinforcement learning controller in a real-world example. The reference
speed trajectories are taken from a driving scenario in a parking garage. The Predictive reinforcement learning
Controller with incorporated advance knowledge about future road grade changes (PRLC-A)performs well in track-
ing the desired vehicle speed vd . Figure reprinted with permission from the author’s publication [BK18]. Copyright
©2018, IEEE.

critical part between seconds 90 and 115 of the data set when right after climbing up the
ramp at increased speed, the vehicle is requested to slow down in order to safely pass a
narrow passage at a gate.

We can observe that the PI controller has difficulties coping with the disturbance due to
the ramp and produces a big undershoot when decelerating. The PRLC-A controller performs
close to the optimal solution of the NMPC controller.

8.7 Conclusion

8.7.1 Summary

It could be demonstrated that it is possible to incorporate advance information about future
disturbances and achieve a predictive, reinforcement learning-based tracking controller. The
predictive longitudinal vehicle motion tracking problem served as an example to empirically
demonstrate the capability of such an approach.

A novelty appearing in the proposed predictive RL setting is the need to design both the
trajectories to be tracked and the information about future disturbances that are given to the
agent during learning. This appears when learning in a simulated environment, a common
setting for training reinforcement learning agents.

A significant finding was that the advance information design has a substantial impact
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Figure 8.14: Comparison of tracking performances of the proposed PRLC-A controller with results from a PI
controller and a NMPC controller. The Predictive reinforcement learning Controller shows a performance close to
the optimal solution of the NMPC. Figure reprinted with permission from the author’s publication [BK18]. Copyright
©2018, IEEE.

not only on the learning speed but also on the resulting tracking performance. The proposed
method to use APRBS signals to design the trajectories in such a setting was experienced to
substantially improve the sample efficiency during the learning process.

Simulation studies were performed to compare a trained reinforcement learning agent
to conventional controllers, namely a PI-control scheme and a nonlinear, model-predictive
controller. The simulation studies revealed that RL agents achieved close-to-optimal perfor-
mance compared to the tracking performance of a model predictive controller and performed
better than a PI-controller. Comparing the computational costs of different agents with the
ones achieved by a model predictive control scheme, it could be empirically shown that
inferring the policy of a RL agents scales well with the prediction horizon used in the con-
troller. While the computational cost of MPC schemes is known to increase, in many cases
prohibitively, with the prediction horizon, the neural network inference times were observed
to remain widely constant. This makes the proposed approach interesting, especially for
applications where large prediction horizons in combination with small sample times are
desired or needed. Nevertheless, many obstacles still have to be considered for a practical
implementation of the approach. These obstacles will be discussed in detail in the following
Section 8.7.2.
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8.7.2 Discussion

While the investigations showed that it is, in principle, possible to let an RL agent learn
predictive tracking behavior, we already mentioned in Section 8.7.1 that there still seem to
be many obstacles in the way in order to successfully apply such a reinforcement learning
based control scheme to real-world applications.

One of the challenges to face is that learning rates were observed to be considerably
slow. Learning performance in general, which by design is the result of a stochastic process,
showed a significantly high variance between the training runs. Also, an untrained agent will
likely not be able to track any desired trajectory for a considerably long duration. This has
a wide-reaching impact. First, it seems out of reach to perform the learning phase directly
in a real vehicle, not without any modifications and enhancements regarding networks and
learning algorithm used. With data obtained from a real vehicle, training times necessary for
convergence will rather increase due to noise and other stochastic effects present in reality.
While one could think of moving the training phase onto a vehicle test bench instead of real
roads for safety reasons, this option is very costly and might introduce some modeling errors
due to the simulated road - vehicle interaction. Nevertheless, applying transfer learning
techniques might facilitate application from simulation to test-bed and then to road.

Still, the difficulties arising when RL based solutions are ported from simulation envi-
ronments to real-world applications are well known within the machine learning community
and commonly termed “simulation to reality gap”, often shorthanded by Sim2Real - gap. This
poses challenges to the application under investigation, too.

A consequence of the high variance observed between different training runs is that
the engineer faces challenges when choosing the best agent. At least, time- and resource-
consuming evaluation runs must be performed.

One potentially prohibiting observation was that in some cases, agents started to diverge
during training. This observation went in hand with the fact that learning curves generally
had a high variance. This effect is also known as catastrophic forgetting and appears with
deep neural networks as nonlinear function approximators, which are generally not proven
to converge to the optimal solution.

At this point, it is worth discussing another observation made when performing the ex-
periments described in Section 8.6. We already learned that the design of reference tra-
jectories and advance knowledge information given to an agent during learning has a high
impact on the sample efficiency and the controller performance. Contrary to first intuition,
using identical trajectories during learning and during evaluation test runs did not lead to an
“over-fitting” effect: My expectation was that one might observe reasonably good evaluation
performance under such a setting. At the same time, the agents eventually might perform
much worse on different, previously unseen reference- and advance knowledge trajectories.
Instead, as demonstrated, the agent’s performance was reasonably better on any given trajec-
tory when using the proposed APRBS signals during training. While these findings were not
elaborated on in more detail, we do not want to leave them unmentioned. Retrospectively,
this might be intuitively explained by the fact that in order to be able to learn, it is important
that the information content provided during the learning process is rich enough. This goes in
line with the substantial findings from Chapter A and Chapter 6, that poor excitation during
learning does not only prohibit learning but also might lead to diverging learning behavior if
no special algorithmic precautions are put in place.

At the time of performing the experiments with RL, the observation of this sometimes
catastrophic learning behavior, together with the fact that deterministic behavior under a
deterministic environment is a desirable property of any controller in safety-relevant appli-
cations, led the author to propose a learning setting as described earlier in Section 8.4.3,
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with a separation between training phase and deployment phase: During the learning phase,
the policy network parameters are updated, while in the deployment phase, the previously
trained policy network is used without any further learning. However, using previously
trained agents in a deployment phase appears to have further consequences. While such
a setting might be desirable when considering safety and homologation aspects due to its
deterministic behavior, this entirely removes any adaptive component from the controller.
While this might not be restrictive for time-invariant systems, for the given use-case of longi-
tudinal vehicle motion tracking, we stated that one of the major challenges is that both the
vehicle mass and the driving resistances are expected to change considerably during regular
vehicle operation. This means that an agent’s performance would need to be robust enough
to such changes.

Unfortunately, some preliminary investigations on the robustness of policies learned with
the method described in [BK18], which are not discussed further within this thesis, showed
considerably low robustness to parameter variations as well as to external disturbances. As a
consequence, while the proposed learning scheme looks viable at first glance or for other use
cases, retrospectively, a practical application in the proposed setting to the use-case under
investigation seems, at least at present, out of reach. This is why the focus of the discussion
in the remainder of this thesis is put to an alternative solution, which will be presented in
Chapters 6 and 7. Some more comments on alternatives to this approach are discussed in the
discussion of possible future work which can be found in Chapter 9. A discussion including
a summary table comparing the proposed RL approach to a model-predictive control scheme
can be found in Section 9.2.2.

8.7.3 Contribution

In this section, a summary of the contributions from the work described in this chapter is
provided. Note that the main contributions of this chapter were previously published in the
author’s publication [BK18]. Nevertheless, in addition, we thoroughly discussed the choice of
algorithm based on a broad review of literature available for continuous control. Of course,
one has to consider that in such a fast-moving field like DRL, where new and sometimes
even ground-braking algorithms are proposed on a monthly, if not weekly, basis, this review
will most likely already be outdated at the time a reader will read this thesis. Nevertheless,
describing the decision process that led to the proposed algorithm might help researchers in
the future-facing similar questions. The work published in [BK18] was the first to propose
using (deep) reinforcement learning to solve automated vehicles’ longitudinal vehicle motion
tracking problem.

Looking at the algorithmic side of the work presented in this chapter, the major con-
tribution might be the proposition to include advance knowledge information into the RL
framework to enable a predictive tracking controller setting. This enables the agent to learn
truly predictive policies. To the best of the author’s knowledge, no prior work existed before
[BK18] to use RL in such a setting. This was later also done by Puccetti, Rathgeber, and
Hohmann [PR+19] and his collaborators [KW+19], which might have been inspired by a
personal meeting between Puccetti and the author of this thesis prior to their publications.
This was partly acknowledged in their first pre-print version of [KW+19].

In addition, some empirical findings related to this proposal can be considered as further
contributions. For example, the need for designing advance knowledge trajectories that the
agent experiences during learning arises as a novelty in the proposed setup. Here, we could
show that the design of advance knowledge trajectories used during training has a major
impact on the sample efficiency of the algorithm. Hence, another proposal was to apply a
Design of Experiments (DOE) method known from systems identification literature, namely
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using APRBS signals to design the trajectories that need to be tracked during training in
simulation. This could reduce training times by orders compared to tracking references taken
from a “real world” data set. To summarize, the main contributions of the work presented in
this chapter can be listed as follows:

• A discussion of existing literature on RL algorithms which are suited for continuous
control tasks in general and to solve the longitudinal vehicle motion tracking problem
specifically.

• Proposition to apply reinforcement learning to learn a controller for predictive longitu-
dinal motion tracking of automated vehicles. This was published in the author’s work
[BK18]. To the best of the author’s knowledge, the application of RL in such a setting
was novel at the time of publishing.

• Proposition to incorporate predictive information including advance knowledge about
future disturbances, into the framework of DRL. This was published in the author’s
work [BK18].

• Suggesting a method for designing the reference and advance knowledge trajectories
to be experienced by the agent during learning. This suggestion is empirically shown
to improve both sample efficiency and the tracking performance of the resulting agent.
This was published in the author’s work [BK18].
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Conclusion

“The scientific man does not aim at an immediate result. He does not expect that his
advanced ideas will be readily taken up. His work is like that of the planter—for the
future. His duty is to lay the foundation for those who are to come, and point the way.
He lives and labors and hopes.”

– Nikola Tesla, Serbo-Austrian inventor,
Co-alumnus Graz University of Technology, 1856 – 1943

9.1 Summary

We investigated predictive methods for longitudinal tracking of automated vehicles, where
knowledge about future trajectories can be incorporated to improve control performance.
First, we analyzed a model-free approach based on Reinforcement Learning (RL). We showed
that, although not typically done in standard RL formulations, one can obtain predictive be-
havior by including the advance knowledge about future trajectories into the reward func-
tion. This posed the question of how to construct trajectories during the interactive learning
phase of a reinforcement learning agent, and we proposed an approach that led to improved
learning behavior.

As a second approach to achieve predictive tracking, we chose to investigate the perfor-
mance of a control algorithm within the Model Predictive Control (MPC) framework. In
various simulation studies, we showed that the performance of MPC under nominal condi-
tions, where perfect knowledge about the model parameters is assumed, substantially outper-
formed the one achieved by a baseline controller based on Proportional-Integral (PI) control.
However, under realistic assumptions, where vehicle parameters are not known a priori, the
baseline controller only showed negligible performance losses, while standard model predic-
tive approach formulations deteriorated substantially. To achieve a result without sacrificing
much of the potential performance gains of the nominal case, we suggest combining the non-
linear model predictive tracking controller with a concurrent state and parameter estimator
to achieve an adaptive control solution. Due to the importance of the state and parame-
ter estimator, we dedicate a substantial portion of this work to an in-depth analysis of both
existing and proposed solutions. We found that the performance of estimators can be sub-
stantially improved by performing specific signal smoothing prior to running the estimation
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algorithms. This insight led to the development of two novel smoothing algorithms based
on polynomial smoothing, which outperform existing solutions. This is achieved by includ-
ing prior knowledge about the interrelation of signals being higher-order derivatives of each
other, but without having to add any further knowledge about the process that generates the
signals.

To summarize, in this work, we could find answers to the following research questions
already posted in the introduction of this thesis. We want to briefly address each of these
questions and add some new questions whose answers could be found in this thesis.

Can optimal longitudinal trajectory tracking of time-varying references be achieved for
automated vehicles, even in the presence of (1) actuator delays, (2) unknown and
time-variant vehicle parameters, and (3) measurement noise? We demonstrated that
we could improve tracking performance by incorporating information about future road
grade changes and considering time-varying reference trajectories. Using a NMPC scheme,
we can consider actuator delays and directly solve the control allocation problem within the
tracking module. Thanks to the combination of the controller with a combined state and
parameter estimator, we achieve a solution that quickly converges to the optimal one even
under parameter uncertainty, time-varying parameters, and measurement noise.

Can modern deep reinforcement learning be successfully applied to the problem of
predictive motion tracking in general, and longitudinal vehicle motion tracking in par-
ticular? We demonstrated that reinforcement learning could be applied to obtain a vehicle
motion-tracking controller. However, many obstacles still need to be addressed to apply the
technology safely to real vehicles. We will address the most important ones in the discussion
in Section 9.2.2.

Can predictive information about future disturbances be incorporated into the rein-
forcement learning framework? As a novelty, we also showed that it is possible to incor-
porate the information on future disturbances and desired trajectories into a reinforcement
learning control scheme.

How does a reinforcement learning controller perform compared to the solution ob-
tained by model predictive control? The performance of the proposed adaptive and pre-
dictive control scheme was compared to the results, which can be achieved by a model-free
RL approach. Under some simplifying assumptions, the reinforcement learning agent can
obtain a performance close to the optimal model predictive solution. This can be achieved at
a fraction of the computational cost, especially considering long prediction horizons. Never-
theless, the assumptions are somewhat restrictive, and a detailed discussion will be provided
in Section 9.2.2.

How robust is a model predictive controller to changes in the model due to time-vary-
ing vehicle parameters, and can offset-free tracking still be achieved without sacrificing
performance? By combining the model predictive controller with a state and parameter
estimator, we achieve an adaptive, nonlinear model predictive controller ANMPC, which can
eliminate the tracking offset arising from imperfect measurements of the true state and lack-
ing knowledge about the vehicle parameters.

How and under which conditions can we learn the true unknown and time-varying
parameters in an online recursive fashion? We investigated the conditions under which
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observability or persistency of excitation is achieved. This was done based on different
problem formulations which can be used for parameter learning. We found that insufficient
excitation is given when trying to follow a constant vehicle speed trajectory, posing difficul-
ties for parameter learning within a Linear-in-Parameters (LiP) framework. We investigated
various countermeasures and obtained a robust estimator scheme allowing for combined
state and parameter estimation.

The questions above were already posed in the introduction in Section 1.2.1. In addi-
tion, new questions arose during this thesis. Find open questions in Section 9.3, which is
dedicated to future work. Some answers could be found, which are as follows:

How does the choice of reference trajectories used during training of a reinforcement
learning agent that considers predictive information impact sample efficiency? We
could show that in the proposed setting, the shape of the reference and advance knowl-
edge trajectories has an impact on the learning rates of the reinforcement learning agent. We
then proposed a method that is capable of substantially improving sample efficiency.

Can the performance of parameter and state estimation be improved using signal
pre-processing methods like smoothing and filtering? By design, Bayesian state and pa-
rameter estimators are able to deal with measurement errors. Nevertheless, if the underlying
assumptions are violated, and for example, Errors-in-Variables are present, the performance
can degrade substantially. In such cases, additional smoothing and filtering prior to running
the estimators can improve (or restore) performance. This insight led to the development of
a novel signal smoothing algorithm we presented in Chapter 5.

Can we exploit knowledge about general physical properties of signals in filtering and
smoothing algorithms without the need for an explicit physical model? Moreover, can
incorporating such knowledge help to improve smoothing performance? We discov-
ered a novel smoothing algorithm, which can be interpreted as a generalization of the well-
known SaG smoother and has improved smoothing capabilities in the setting where multiple
noisy measurement channels are available, which are derivatives of a base channel. This
is the case in the given problem, where we deal with noisy vehicle speed and acceleration
measurements. We show that the estimation results can be improved substantially when
operating a proposed estimation algorithm on the values obtained from this smoother.

9.2 Discussion

While we have already discussed many findings related to the various topics within each
of the preceding chapters, and the reader is invited to read these sections to get an overall
picture, here we want to discuss some more overarching aspects. This includes a discus-
sion about the comparison between model predictive control and model-free reinforcement
learning for the problem under investigation. In addition, we want to provide an overview
of the building blocks of the proposed learning control architecture. This overview is rather
generic and can be understood as an outlook on future work for control systems with learning
capabilities.
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9.2.1 Architecture for learning control

In this subsection, we want to depict and analyze some essential elements of our proposed
learning control architecture, which can (1) learn without catastrophic forgetting and (2)
provide offset-free tracking. This is an attempt to help future researchers understand some
crucial elements that might be needed to build future artificial intelligence systems success-
fully. We can find an illustration of the proposed architecture in Figure 9.1.

This architecture was partly motivated by recent work of LeCun [LeC22]. However, this
might not be obvious initially and is thought of as a starting point for discussing lessons
learned during this thesis. As shown in Figure 9.1, a central element naturally occurring

Figure 9.1: Proposed control and learning architecture depicting some ingredients that might be necessary for
any artificial intelligence control module.

in model predictive control is a world model. To optimally interact within its environment,
an agent (or model predictive controller) leverages this world model in a state predictor to
generate predictive actions. A perception module (bottom) provides predictive information
to all other modules. This might not only be observations directly given by the environment
but also from stored information and extrinsic sources, which one could interpret as long-
term memory. In the case of our tracking control module, we use predictive information
in the form of advance knowledge, or future disturbances and hand this to the predictive
control module. We also store past observations of past noisy measurements. The moving
window smoothing approach used in the DeePLS algorithm (left) can also be seen as short-
term memory, on which an encoder operates to obtain richer information than contained
solely within the raw measurements. The module also leverages information from the world
model, which in our case is the interrelation between measurement channels, to increase
the information content produced by the encoder. As such, one can see this as a physically
informed module.

The output of the encoder (in our case, the DeePLS smoother) is first fed into an informa-
tion content estimator. While in our case, this can hardly be recognized as an own module,
this might be a crucial part necessary for the overall mechanism to work. In the proposed es-
timator, the Information Content Estimator is present in the form of the Stenlund-Gustafsson
noise covariance adaptation. Essentially, this mechanism extracts the information content of
the current sample relevant for the Linear-in-Parameters Kalman filter and adjusts its learn-
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ing rate by adjusting the process noise covariance matrix. As discussed in detail in Chapter 6,
this is essential to avoid parameter wind-up, leading to catastrophic forgetting, and lets the
parameter estimator learn only during phases in which rich information content is observed,
and prohibits learning in phases of insufficient excitation. Such a mechanism is necessary
for learning and adapting the parameters of a world model, which we assume will always be
over-parameterized.

The parameter estimator module can leverage knowledge from the world model and act to
adjust its parameters. It should be robust and ideally also able to consider constraints, which
in a physical world will always be present, and disregarding them could potentially lead to
facing singularities. We realized the parameter estimator as an adaptive (using Stenlund-
Gustafsson), robust, and constrained Kalman filter.

The next module in our learning-based control architecture is the state estimator, which
extracts the current state information. In our case, this was realized by the SRCDIF algorithm.

The MPC module then uses the state information provided by the previous modules and
the future target provided by a predictive target generator. We assumed the latter to be
existing in the form of a planning module for automated vehicles. Actions are generated by
minimizing a cost function of predicted trajectories versus desired trajectories. It might be
important to note that for achieving offset-free results, one had to include the target costs
into this cost function, which are obtained by imagination of the actions necessary in infinity
during steady state operation.

9.2.2 Comparison between RL and MPC approach

One question that might interest the practitioner and the scientist could be: “Which approach
should be chosen for similar tracking control problems, or in general? Reinforcement learn-
ing or model predictive control? What are the advantages and drawbacks of each approach?”.
We try to answer these questions in this subsection and provide an overview in a table that
compares reinforcement learning control to NMPC and can be found in Table 9.1. This ta-
ble was partly inspired by a similar comparison, which was given for linear time-invariant
systems in Görges [Gör17].

One benefit of any model-free approach is that there is no need to derive a model from first
principles to realize a controller. While this is a considerable advantage for problems where
a first principles model cannot be derived easily, this was possible for the given problem of
longitudinal vehicle control. This benefit alone does not justify applying a reinforcement
learning-based approach, mainly since other model-free control algorithms exist, like any
PID-based controller. Also, as soon as stability considerations are of interest, one should
start deriving a model to be able to perform an analysis. Not including any physically based
model also comes with additional drawbacks. One drawback is that not having a model
dramatically reduces the interpretability of results. Another one is that knowledge about
model parameters can often be exploited for various applications, as shown in the example
of the vehicle mass in Section 6.1.1. For state-of-the-art reinforcement learning, where (at
least a significant portion) of the training typically happens within a simulation environment,
one might argue that in order to provide the simulation environment, knowledge about the
environment model needs to exist prior to the application of the approach. The question, why
not directly leverage this knowledge in a model-based approach, clearly seems legitimate.

Another advantage of the model predictive approach is that considering constraints is
directly supported within the framework, although it might be computationally more expen-
sive. While through the incorporation of barrier functions into the reward function, one
might be able to achieve sufficient performance within the RL framework. This is neither
straightforward nor can strong guarantees be achieved.



220 9 Conclusion

Table 9.1: Comparison of model predictive control to reinforcement learning for continuous control

Property MPC RL Comments

First principles model – + Not required for training of
model-free RL variants

Estimation of true physical pa-
rameters

++ – – MPC: in combination with pa-
rameter estimation. Cannot be
incorporated in model-free RL

Online adaptation to time-
varying parameters

+ - only during RL training, difficult
with safety-critical systems

Optimality criteria + ++ Delayed reward possible in RL

Incorporation of advance knowl-
edge

++ + Possible in RL with proposed ap-
proach

Input / action constraint han-
dling

++ + RL: only constant time-invariant

State constraint handling ++ – – Difficult to obtain

Training time n.a. – –

Execution time – ++ Policy inference in RL indepen-
dent of time horizon

Interpretability ++ – –

Offset-free tracking ++ – Hard to obtain in RL

Stability mature immature

Robustness mature immature

So why would one want to use reinforcement learning instead of model-based predic-
tive control? One benefit of the RL based approach is the reduced computation time during
inference, which we also empirically proved to be vastly independent of long prediction hori-
zons. This makes reinforcement learning particularly attractive if long prediction horizons
are necessary. Another interesting property seems to be the possibility that in the future, a
“one serves all” solution approach might be possible, thanks to the universal function approx-
imator property of the neural networks learning the policy. Still, as of today, many problem-
dependent ingredients have to be added to apply the approach successfully. Therefore, more
is needed to achieve this vision.

One of the main drawbacks of the reinforcement learning-based approach seems not to
be obvious at first. Although RL is an interactive learning procedure, one might think that
it would be straightforward to achieve online adaptation to account for an environment or
system with time-varying parameters. This does not hold true for many reasons. First, the
before-mentioned advantage of an RL agent being able to perform inference on its policy
network only holds for the setting where an already trained agent is deployed for control
purposes. Including the training also during deployment would substantially increase the
computational cost. Furthermore, the most prohibitive factor when wanting to do so is that
with today’s RL methods, no guarantees can be given about the performance of such a so-
lution. This is especially difficult since, for further learning, any RL agent will find itself in
the exploration-exploitation dilemma. Some work in this direction already exists mainly un-
der the term of Adaptive Dynamic Programming (see for example [ZZ+13] and references



9.3 Future Work 221

therein). However, under prohibitively restrictive assumptions, and we want to refer to Sec-
tion 9.3 for this discussion. A long path in this promising direction seems to be ahead of
future researchers. These will have to consider stability, robustness, and feasibility consider-
ations when performing learning directly on real systems to avoid the Sim2Real gap (see also
[HL+19] about the Sim2Real gap).

Advances can probably be made best when closing the gap between the different research
communities of machine learning on the one hand and the control community on the other.
Future solutions should be capable of incorporating problem-specific model knowledge. Ad-
ditionally, they should allow learning and adaptation of model parameters and unmodeled
dynamics, covering effects one cannot model with reasonable effort. Another interesting path
is the one of learning cost functions, which is typically referred to as inverse reinforcement
learning. This could be helpful in many cases where cost functions cannot be defined that
easily but could be inferred from demonstrations.

At this point, it might be of interest to note that other authors have also found that
“model-free RL is extremely sample-inefficient” and that “reward is not enough” [LeC22].
Hence, reinforcement learning might only provide a generic solution to some problems in
the future. Nevertheless, RL provides many valuable findings, and investigating the problem
of machine learning and artificial intelligence from its point of view will help to understand
many difficulties, challenges, and solution approaches.

9.3 Future Work

“The best way to predict the future is to invent it.”

– Alan Curtis Kay, American computer scientist, *1940

With each solution found while researching this thesis, numerous new questions emerged.
Solutions could already be found for some of them, but many still remain unanswered. We
want to list the most important ones while providing at least a direction into where one could
start searching for answers. While most of the interesting answers can probably be found at
the intersection of different research fields, we still want to categorize them according to the
main topics covered within this work.

9.3.1 Longitudinal vehicle motion tracking specific topics

Vehicle model and assumptions It would be interesting to validate the proposed approach
in a real vehicle. We found that such an evaluation is only possible for a research institute
in cooperation with a car manufacturer since more documentation of the sensor readings,
especially the virtual sensors, is needed to perform this task with a research prototype vehicle.
This is typically considered as protected know-how and not provided to third parties. Also,
a modified controller interface would be necessary, but this is hindered by the fact that this
would impact the road approval for safe road operation, which is necessary by legal bodies.
Hence, real vehicle experiments had to be left to future work.

Next, evaluating the proposed controller and the other higher- and lower-level modules in
an automated vehicle would be particularly interesting. This could also be performed in sim-
ulation, provided the other control modules are available. In this context, the improvements
we expect to see in scenarios like smart intersections could be evaluated.
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One motivation to propose the predictive controller architecture was to increase energy
efficiency while keeping emissions low, at least for ICE engines. The full potential of this
proposal can only be evaluated in a real vehicle and evaluating the interplay with a power-
train and engine controller. As already stated in Section 2.2, after the author’s work [BK16a]
and [BK16b] was published, a study performed by Ma and Wang [MW19] could demonstrate
NOx reductions of 13 % by using model predictive engine control on a known driving cy-
cle. The expectation would be to see similar improvement also on unkown velocity profiles
when combined with the proposed approach of this thesis. Such a combination would be
straightforward, thanks to the predictive nature of the proposed tracking module.

It is further of interest to test the robustness of the approach under some additional con-
ditions, which had to be left out in the course of this thesis. These include the presence of
wind as an external and unknown disturbance, the presence of heteroscedastic noise, offsets
(aka non-zero mean noise) on the torque estimates coming from the power-train module,
and plant/model mismatch. Concerning the vehicle model, a further extension could be to
include curve resistance forces when driving in curves, as in Radke [Rad13], p 15, and in
[Rho16].

Our analysis was based on the assumption that the effect of wind speed and the resulting
forces can be neglected. Enhancing the equations and adding wind speed as an additional
unknown parameter in the proposed approach is, in principle, possible. Although we did
not show these results, we also investigated the observability conditions for a model under
the constant parameter assumptions and found this system to be observable. Nevertheless,
wind gusts and forces from wind produced by overtaking and oncoming vehicles will show
substantial time-varying behavior. It remains open work to investigate how these forces can
be estimated or how the resulting disturbances will impose difficulties for robust control.
Looking at vehicle-to-vehicle and vehicle-to-infrastructure communication, one could also
consider incorporating knowledge from other information sources to improve control. Here,
future wind disturbance prediction could be based on meteorological data, which contains
spectral densities of wind phenomena, as, for example, given in [Huc08] p. 291.

One effect that could be easily handled by the MPC approach is the presence of actuator
lags, which will be present not only because of communication delays between the modules in
a real vehicle. Nevertheless, while constant lags could be handled, considering time-varying
lags might be challenging.

Also, while in principle, the proposed estimator was designed to track time-varying pa-
rameters, investigations had to be left to future work, which brings more insights into this
approach’s limits. While slowly time-varying or piece-wise constant parameters are quite eas-
ily tracked by the proposed estimator, it is still challenging to correctly track the reduction
in the aerodynamic coefficient when, for example, approaching the preceding vehicle in pla-
tooning scenarios. This is especially limited due to the poor conditioning of the estimator
under noise. Here, adding prior knowledge and modeling the reduction in aerodynamic drag
based on the distance to the lead vehicle might be feasible.

Another extension could be to correctly model the dependency of road grade within the
prediction model from a distance traveled rather than time. So far, it was regarded as suf-
ficient to parameterize the road grade on time, assuming a constant velocity. Suppose this
simplifying assumption would prove to be insufficient in real word tests. In that case, one
could easily modify the prediction model, but bearing in mind that this would increase the
order of the control problem. Nevertheless, including both the traveled distance and the jerk
in the equations for the system dynamics would also have other advantages. First, this would
enable the formulation of additional state constraints. Like this, one could not only penalize
high jerk values indirectly by including the control output differences in the cost function
but also directly limit them through state constraints. However, one has to consider that
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adding additional state constraints increases the computational burden of solving the OCP.
Second, there is a possibility of running the controller in a mode in which, for example, trav-
eled distance is the output - which certainly is of interest for the Smart Intersection scenario
explained earlier.

Possible enhancements One interesting future path could include prior knowledge about
changing parameters. Let us illustrate what we mean by this. The Bayesian filters used
in the proposed approach allow the incorporation of prior knowledge in the form of initial
error covariance matrices. The choice of these parameters has a considerable impact on
the performance of the estimators. For constant parameters, the error covariance will then
decrease during learning. We learned that this also decreases the ability to track time-varying
parameters or a new parameter value for piece-wise constant parameters. In some instances,
one could incorporate knowledge about changing parameters by resetting the covariance
matrices to higher values. For example, information like if the vehicle came to a stop and
doors were opened will increase the probability that one has to face an immediate change
in the true vehicle mass due to passengers and loads entering or leaving the vehicle. On
the other hand, it is improbable that the vehicle mass changes abruptly while the vehicle is
moving with doors closed. One could also add dependencies on geospatial information, for
example, when a vehicle is detected to leave a paved road, increasing the probability that the
rolling resistance will change. This could be derived from vehicle GPS information together
with map information. Many interesting scenarios could be considered, and solutions could
be coded or learned by leveraging artificial intelligence models.

9.3.2 Predictive and adaptive (learning) control

The obtained results motivate to continue and perform further investigations in various direc-
tions. This can be to improve the proposed controller further, as well as develop an improved
algorithmic foundation for similar control problems.

Unified framework Which unified framework allows the investigation of more general
nonlinear systems in the presence of process and measurement noise, which enters in a
non-additive manner and also allows the integration (uncertain) knowledge about future
disturbances? The recently published work from Powell [Pow19] seems to be a promising
starting point in this direction, trying to unify concepts from stochastic optimal control and
that of reinforcement learning and trying to bring together existing work from “15 different
research communities”.

Adaptive dynamic programming Adaptive dynamic programming (ADP) can be seen as
analogous to reinforcement learning but includes rigorous theoretical investigations about
convergence and stability. For more details, see, for example [ZZ+13], who stated that “in
the field of ADP, a function approximation structure is used to approximate the solution
of the Hamilton-Jacobi-Bellman (HJB) equation. The approximate optimal control policy is
obtained by using the offline iteration algorithm or the online update algorithm.” Examples
of ADP are found in Lewis and Vrabie [LV09], Wang, Liu, and Wei [WL+12] and Wang, Zhao,
and Cheng [WZ+18a].

Unfortunately, the discipline still seems immature in that solutions found are typically very
restrictive about the systems investigated, especially since these systems are often considered
deterministic. For tracking problems, another very restrictive assumption is, for example in
Wang, Liu, and Wei [WL+12] “Finite-horizon neuro-optimal tracking control for a class of
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discrete-time nonlinear systems using adaptive dynamic programming approach”, that the
reference trajectory is generated by an exo-system, that means

rk+1 = Φ(rk), (9.1)

which does not allow for generic trajectory tracking, as discussed in this thesis. Nevertheless,
this is an area of promising active research, where, for example, in Köpf, Ramsteiner, et al.
[KR+20] and his recently published thesis [Köp22], some of the restrictions, as mentioned
earlier, were already addressed.

Stability considerations While this thesis focussed on the general feasibility and the perfor-
mance comparison of predictive reinforcement learning with predictive control while trying
to do so under realistic assumptions, rigorous proofs of the stability of the nonlinear model
predictive controller in combination with the online state estimator are still pending. We
deliberately performed investigations in this thesis that are not restricted to concepts that per
se allow for stability proofs. We, therefore, included approaches for which a stability proof
might be more difficult. We wanted to determine the potential benefits of such an approach,
and our results motivate performing control theoretic investigations for the proposed setting.
Currently, no existing work for the unrestricted problem is known to the author, as considered
within this thesis.

While literature exists, as discussed in Section 7.3.6, which investigates the question of
stability of model predictive control schemes, the necessary assumptions for those proofs, to
the best of the author’s knowledge, do not hold in the problem under investigation. Many
stability proofs for NMPC have been presented only for the nominal system, which assumes
that no parametric uncertainty nor measurement noise is present. While literature exists
investigating the robustness of MPC against these uncertainties, they are typically dedicated
to proving that the system response will stay within a specific region around the nominal
system. Here, we wanted to consider realistic assumptions regarding the nonlinearity of the
system and the measurement noise distributions, including arbitrary reference trajectories
and disturbances, while aiming for an optimal solution. The assumption of arbitrary reference
trajectories could be restricted to lie in the space of the ones parameterized by, for example,
smooth polynomials (see also [KP+20]).

Looking at existing literature, offset-free tracking schemes with rigorous proof for nonlin-
ear MPC have been presented, for example, in [MM12], but were limited to asymptotically
stationary references and disturbances. Also, the proof was provided under a determinis-
tic setting without any measurement noise. Another restriction was that only asymptotic
stability behavior was investigated, while global closed-loop stability was assumed apriori.
They also mentioned that while some robust output feedback formulations exist for linear
systems, extending these methods to general nonlinear systems is generally difficult. Next,
the approach’s disturbance observer must be designed so that observability is always given.
In order to achieve this, the authors suggested reducing the dimension of the observed dis-
turbances to be smaller than the system output. While this seems valuable in order to prove
stability for constant references, such a formulation yields sub-optimal behavior during tran-
sients, and the system’s true parameters remain unknown. Also, the approach does not allow
for the inclusion of advance knowledge - which is one of the main proposals of this work.

Looking at stabilizing MPC with infeasible reference trajectories, very recently published
work is the one of Batkovic, Ali, Falcone, and Zanon [BA+21]. When tracking infeasible
trajectories under certain terminal conditions, they proved Input-to-State stability for Linear
Time-Variant (LTV) systems. Additionally, they proved that the stability results could be ex-
tended for sub-optimal terminal conditions, where the controlled system is stabilized around
a neighborhood of the optimal trajectory.
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This might be another valuable starting point for further investigations. Also here, the
simultaneous estimation and control approach, as seen in [CH16; CH17b] could be another
promising starting point while combining with ideas from [CJ10b] could provide solutions
also for insufficiently excited systems. Clearly, establishing rigorous stability results for gen-
eral nonlinear systems with time-varying parameters and unmodeled dynamics is an impor-
tant research direction, and the lack of existing results which are valid under fully realistic
assumptions is alarming.

Compliance with safety requirements The longitudinal motion control unit of automated
vehicles is a safety-relevant component and must fulfill specific safety requirements to be de-
ployed in production vehicles. Various challenges are posed by this need, which was regarded
as out of the scope of this work.

For the proposed model-predictive control scheme, the solver used to solve the NLP must
be ASIL-D compliant. To the best of the author’s knowledge, no such solver is available that
fulfills this requirement for general nonlinear NMPC. This is challenging for many reasons.
First, the optimal solution is rarely found with iterative algorithms, especially under run-time
restrictions. The impact of the deviation of the solution found to the optimal one is hard
to consider. Moreover, with NMPC, the algorithm might get stuck in local minima. Stability
proofs of MPC typically rely on the assumption that the solver can find the optimal solution of
the OCP. Therefore, the interplay between the disciplines of numerical methods and system
theory has to be considered. Hence, this is an essential topic for future research. One paper
we want to mention in this context is the one of Diehl and Schlöder [DS03], where the
real-time iteration scheme was proposed. This is a scheme with which timing guarantees for
embedded systems can be obtained.

Explicit NMPC One solution method which seems very promising is Explicit MPC. Explicit
MPC controllers might be easier to validate for meeting ASIL-D requirements since all possible
solutions of the OCP are calculated offline in advance and stored in look-up tables [GF+18].
This also means that the numeric calculation does not have to be performed during run-
time, which can dramatically speed up computation. Various authors have been proposing
the application of explicit linear MPC (e.g., [Joh04] and recently [GF+18] for lateral vehicle
control). Results for explicit NMPC also exists and can be found in [BB+16a; Joh04; ZC+16a;
NB+08; TM+18; CD+17].

One open question arising from this thesis work is whether it will be possible to include
general time-varying advance information in an explicit NMPC scheme. The curse of dimen-
sionality will likely make such an approach very memory-demanding.

Persistence of excitation in machine learning Armed with the knowledge that in adap-
tive control, persistence of excitation Persistence of Excitation (PoE) plays a crucial role in
parameter convergence, this can be exploited in general machine learning problems. Since
any machine learning problem can be interpreted as a parameter estimation problem, one
needs to make sure that persistence of excitation is also given. This can be used in many
different ways. One similar work already following such ideas was just recently published,
[SS+21], demonstrating neural network robustness in the sense of withstanding adversar-
ial attacks when a PoE motivated learning scheme is applied for gradient descent learn-
ing. Another example is the work of Karg, Köpf, Braun, and Hohmann [KK+21a], which
is dedicated to constructing excitation signals that are provably persistently exciting when
resulting from transformations by polynomials. This helps Adaptive Dynamic Programming
algorithms, which use polynomial function approximators.
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Since neural network parameters of certain types of networks can also be learned using
Kalman filters (and derivates) [MW01], another interesting direction can be to apply a
Stenlund-Gustafsson type anti-windup scheme for these filters for neural network parame-
ter learning. This could also lead to substantially more robust learning when non-sufficiently
exciting data is present. Nevertheless, this method is restricted to small networks unless
Ensemble methods are used.

Improving computational efficiency In order to further reduce the computational costs
of the approach, various possibilities exist which have not been investigated yet. First, the
costs of solving the optimal control problem most likely can be further reduced by reformu-
lation of the control problem using a direct collocation method [HP86; DB+06]. Here, an
approximation of the problem is parameterized using polynomials, so the integration of the
system dynamics is indirectly solved within the optimization problem. This leads to a higher
dimensional but sparse problem, which may be faster to solve numerically.

Another possibility would be to formulate the problem using the real-time iteration
scheme [Die01; DS03; DB+06; GZ+20], which divides the solution to the problem into
a phase that can be pre-computed before the information is available for the full problem.
This reduces the effect in practical applications that controls are only available with a specific
time lag originating from the time necessary to compute the solution. Also, results from the
previous time steps are exploited to warm-start the algorithm, which may result in a solution
that is sufficiently accurate only after the first iteration of the numerical optimization of the
underlying NLP.

Recently, as already stated in Section 7.3.9, a variety of fast solvers for optimal control
problems have been released, which have been reported to be up to a magnitude faster
[ZD+17a] than Ipopt [WB06], which we used for our experiments within the CasADi frame-
work. Apart from these, many other solution approaches exist for solving optimal control
problems efficiently, which is also worth investigating for the given problem. See, for exam-
ple, the overview and comparison presented in Biral, Bertolazzi, and Bosetti [BB+16b] and
Diehl [Die16].

Deep model predictive control Very recent work published by the group of Girish Chowd-
hary, who proposed the framework of Concurrent learning within the Model Reference Adap-
tive Control (MRAC) scheme, combined these techniques with deep neural network learning.
In April 2021, they published the paper named Deep model predictive control for a class of non-
linear systems [MG+21]. This is an auspicious research direction, combining system knowl-
edge with neural network-based learning of unmodeled system dynamics. Unfortunately, the
class of nonlinear systems for which a stability proof could be established is very restrictive
with:

xk+1 = f (xk) + g(xk)(uk + h(xk)), (9.2)

where both f (xk) and g(xk) are known functions, while the learning and adaptation only
work on the matched uncertain and constant function h(xk). Unfortunately, these require-
ments are not given in the problem under investigation in this thesis.

9.3.3 State and parameter learning

Estimation schemes based on Differential Algebraic Equations (DAEs) Since the longi-
tudinal vehicle model can also be described in the form of a semi-explicit DAE, one could also
extend the joint estimation approach to use a variation of Kalman Filters, which are based
on DAEs instead of ODEs, like the one proposed in [BR+01b] and [JK+07], [KR+10] or an
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Unscented Kalman Filter variant as in [KB+12]. Formulations exist which can also incorpo-
rate the algebraic state as a measurement. It remains to be evaluated if this could improve
the joint estimation solution such that it even outperforms the one achieved by the proposed
dual estimation approach.

Reinforcement learning While we found model-free reinforcement learning to be the more
promising approach in this thesis work, in hindsight, model-based RL might have some es-
sential advantages, the most prominent being the increased sample efficiency. Nevertheless,
one might ask why, if a model is used at all, one should not also include as much information
about the environment as is available to be able to further exploit this knowledge. Hence, it
seems consequent to incorporate knowledge about model equations derived from first princi-
ples. While this leads to a solution of an adaptive model-based approach, as proposed, many
hybrid solutions are possible. For example, the advantage of a policy network regarding in-
ference times clearly could be leveraged. One possibility would be to train a policy network
from data provided by MPC. This can be done either offline in the sense of transfer learning
or online-adaptive and could lead to feasible approximate controls in cases that permit the
computationally expensive calculation of the solution of the optimal control problem. One
has to consider that this approach is essentially similar to the one of Explicit MPC, which we
already discussed in Section 9.3.2, when talking about safety requirements. A combination of
reinforcement learning with NMPC can be used to tune the parameters of an MPC controller
via RL. This was, for example, proposed by [GZ20].

Apart from the question of whether RL as such can provide a competitive solution for
tracking control problems, many improvements can be obtained to the proposed RL solution.
Many new algorithms for RL are presented on a regular basis. Among them are algorithms
that can improve sample efficiency and are also suited for continuous control tasks, including
SAC [HZ+18] and TD3 [HZ+18].

Concurrent learning approach Another framework considering the case of insufficient ex-
citation was the proposed one of Chowdhary and Johnson [CJ10a] and the subsequent de-
velopments in [CJ11; MC+12; CY+13; CW+12; CM+13] on concurrent learning control,
which combines parameter estimation in the context of MRAC. Unfortunately, we also found
the underlying assumptions too restricted to apply to our problem under investigation. In
concurrent learning control, despite insufficient excitation, parameter learning is realized by
enhancing the input to the estimator by additional data batches stored in memory. By care-
fully selecting the data points kept in the memory batch, the convergence of the learning
scheme has been proven under certain assumptions. This approach is very similar to the
practice of experience replay, which was introduced in the RL community.

Some RL algorithms, like for example DDPG, which was also used, in an enhanced form,
for the investigations in Chapter 8, also maintain mini-batches of previous data samples in
memory. Learning is performed using a mixture of old and recent data points. Most im-
portantly, the concurrent learning scheme provided theoretical answers about the conditions
under which learning is still successful: in principle, this is the case as long as the information
content within the memory increases. Hence, carefully selecting and updating the data sam-
ples in the memory by monitoring the information content increases the learning rate. The
proposed criterion was to maximize the minimum singular value of the information matrix in
the data memory. Unfortunately, current restrictive assumptions of the approach prohibited
its application to the problem under investigation. The approach has numerous restrictions:
first, and quite obviously, learning from old data samples is only meaningful as long as the
information in the memory is up to date. This means one can only learn constant parameters,
while this thesis aimed to investigate a system with time-varying parameters. Nevertheless,
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this assumption could be relaxed for the vehicle mass if mass reductions arising from fuel
consumption are not present in electric vehicles. Then, it would be sufficient to model the
vehicle mass as piece-wise constant. Second, and even more hindering, is that the concurrent
learning model reference adaptive control approach was presented only for a very limiting
class of nonlinear systems with a certain structure, which is not given in the problem under
investigation. Third, as the name suggests, the approach relies on a reference model whose
output is tracked by the adaptive control scheme. Apart from the fact that it is hard to find
a meaningful reference model, this leads to sub-optimal performance. Another restriction is
that the approach was initially derived for the deterministic case only.

Nevertheless, extensions have been proposed recently, and the idea of concurrent learn-
ing, not necessarily restricted to the MRAC framework, seems a beneficial one when wanting
to learn from insufficiently excited data. Some investigations of combining concurrent learn-
ing into the framework of Moving Horizon Estimation (MHE) have been carried out within
this thesis but are still ongoing, and this might bring some interesting results. It seems that
a lot can be similarly explored in the future as done by [MG+21], considering more general
nonlinear models, time-varying parameters, and non-normal measurement noise distribu-
tions.

Moving Horizon Estimation Our proposed approach for state and parameter estimation
could be enhanced to the one of nonlinear Moving Horizon Estimation (MHE) ([RR+01],
[HR05] and a survey in [AB20]). For example, [ZF+13] proposed to apply MHE for the
estimation of road-tire friction parameters of automated vehicles. Moving horizon estimators
can be seen as the inverse problem of MPC, operating on a moving window of measurement
data. They use past control actions as additional inputs to find the initial state at the be-
ginning of the measurement horizon by solving a nonlinear program at each iteration. One
advantage of MHE, in analogy to MPC, is that state constraints can be easily considered.

One difficulty with this approach is that to produce a convergent solution, one needs to
find a reasonable estimation of the arrival cost. This is typically done by penalizing the state
estimation at the horizon’s beginning with the difference to an estimated value of a converg-
ing approximate solution. Often, Kalman filters are used to provide this estimated state for
the arrival cost. Hence, MHE does not help directly to stabilize the estimator but will only
be able to improve on the solution found by the arrival cost estimator. Another advantage is
that since the arrival cost estimator can estimate past states, smoothing instead of filtering is
possible, which may improve the solution. For this reason, an estimator based on MHE can be
directly combined with the proposed parameter estimator, which also provides values lying
in the past. Another advantage of MHE is that state constraints (and parameter constraints in
joint estimation schemes) can be easily incorporated. How much the improvements by such
an approach justify the additional computational costs needs to be validated. We already
implemented a version of MHE during the work of this thesis without finding significant im-
provements, but we are facing substantial difficulties in overcoming numerical instabilities
during phases of insufficient excitation, where the optimization problem becomes ill-defined.
A method suited for the case of insufficient excitation was proposed in [SJ11], but it could
not resolve these issues for our control problem. For MHE, a converging arrival cost estimator
is mandatory, at least for horizons short enough to be feasible for real-time implementation.
We found that the small performance gain does not rectify the effort and the high computa-
tional cost involved, especially since the time needed to solve the nonlinear program comes
on top of the time needed for the arrival cost estimator. With many prospering developments
in numerical computation for both MPC and MHE, we find the Moving Horizon approaches
still an interesting path to follow for combined state and estimation problems.
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Formal convergence guarantees without overly restrictive assumptions How can we
formally guarantee parameter convergence for a nonlinear observer while tracking reference
trajectories, which include phases of insufficient excitation?

One challenge for rigorous proofs in the context of combined learning and control is that
the separation principle does not hold for nonlinear systems. This means more is needed
to provide stability proofs for the controller and the observer separately. Answers might be
found in a dual framework that combines estimation and tracking, like the ones investigated
in simultaneous estimation and control, see for example [CH16; CH17b]. The advantage of
this approach is that a stability proof can be established more easily when treating learning
and control in a unified framework. Unfortunately, it seems that the proofs could only be
established so far under the restrictive assumption that the system is always observable.

Probably one of the most important aspects to be investigated in the future is the ques-
tion of rigorous stability proofs, which also hold under realistic assumptions in the presence
of non-normal measurement noise. One difficulty when establishing proofs in probabilistic
settings seems to be that these are often under the assumption of a particular given mea-
surement error distribution, while in practice, the true distribution often cannot be deter-
mined a priory, or it might change over time due to drift. Another one is that parameters
in such frameworks are typically assumed to be random variables drawn from a particular
distribution. In most cases, these distributions are of infinite support, which contradicts the
knowledge that a physical parameter is bounded and, for example, can only be a positive real
number. Other distributions with finite support are not easily mathematically tractable. New
approaches should be explored that allow for uncertainty but do not need to be of a strictly
probabilistic nature, which often makes a solution intractable. Looking into suggestions pro-
posed by LeCun [LeC22], although for different applications and reasons, abandoning prob-
abilistic approaches could be a starting point for such a journey.





A
Background State and Parameter Estimation

“Never memorize something that you can look up.”

– Albert Einstein

This chapter presents existing literature and aims to provide the necessary mathematical
foundation for the algorithms derived and used for learning and tracking the vehicle parame-
ters in Chapter 6. The content was widely collected from different textbook sources, of which
we want to mention Simon [Sim06], Thrun [Thr02] and Brunton and Kutz [BK17], as well as
the dissertation of Merwe [Mer04]. First, we want to show different views on the state and
parameter learning or estimation problem, like the formulation as joint and dual estimation
problems. We do so in Section A.1.

Next, we want to introduce optimal solutions methods to the linear regression problem
as an important foundation for many more advance solution techniques, like recursive and
stochastic methods like the Kalman Filter. We also discuss underlying assumptions and nec-
essary conditions for convergence of these algorithms, and introduce the terminology of ob-
servability and identifiability, together with formal methods to investigate, if one is able to
learn the parameters in an online, recursive fashion. We then discuss alternative formulations
of the existing algorithms, which not only leads to additional insights, but also provides some
less common but (numerically) more robust and more computationally efficient existing solu-
tions. In Section A.9, we talk about existing methods which are robust against measurement
outliers. By deriving optimal solutions (or approximations to optimal solutions) to above
problems, we want to enable the reader to understand differences and similarities between
these methods, and hence allow to easily see connections between them.

What will not be covered in this review, is the method of Generalized least squares, since
this was applied to vehicle parameter estimation in [RB+14] but found to be less accurate in
[Rho16]. Methods using Expectation Maximization (EM) [DL+77] will also not be covered
in a broader manner, while the algorithm of Iteratively Reweighed Least Squares can be seen
as a special case of EM [DL+77].

A.1 State and parameter estimation problem

First we want to give an informal description of the state and parameter estimation problem:

231
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Problem 2. Given a system/environment which was influenced at each time by measured sys-
tem/environment inputs, we want to reproduce all unknown and immeasurable characteristic
states and parameters of that system/environment by looking at the evolution in time of what
we can observe from that system/environment. Characteristic states and parameters are the ones
which are needed to exactly calculate the future evolution of the system/environment, assuming
that all future inputs and disturbances to that system would be known.

We can further reduce this problem to general nonlinear systems, for which a description
is available in the form:

Σd :

¨

xk = f (xk−1, uk−1,θk−1,ωk−1)
yk = h(xk, uk,θk,νk).

(A.1)

System Σd in equation (A.1) describes the (time discrete, nonlinear) evolution of states xk at
discrete times k ∈ N+, in dependency of states xk−1 at the previous time step, previous inputs
uk−1 and parameters θk−1, of which we assume the latter (for the moment) to be unknown.
Additionally, we assume the evolution of the system states is corrupted by disturbance ωk−1.
The second equation in (A.1) provides the relation between observations y and system states,
inputs and parameters, while the observations are corrupted by disturbances ν.

We want to find estimates of states and parameters, denoted by x̂ t and θ̂t , which are as
close as possible to the true states and parameters. By defining the estimation errors

εx = ( x̂k − xk) (A.2)

εθ = (θ̂k − θk), (A.3)

we can reformulate this objective into: we want to find estimates such that estimations errors
are as close as possible to zero. We can further make this statement more general by defining
a stage cost function dependent on the estimation errors of the form

ℓk(εx ,k,εθ ,k), (A.4)

and minimize some cost functional of the form

J[1:k](ℓ1,ℓ2, . . . ,ℓk). (A.5)

Now we are able to state the following problem:

Problem 3. Given the system description Σd and vectors containing information about past
inputs u[1:k−1] and past and current observations y[1:k], we want to find the evolution of state
estimates x̂ t and parameters θ̂t for all t ∈ [1 : k] such that the cost J[1:k] related to estimation
errors εx and εθ is minimized. .

Clearly, to facilitate (or even allow) a solution to Problem 3, we might want to add some
assumptions. These can be of the following types:

1. If information about the evolution of system parameters θ is available, we want to
exploit this information.

2. Since the disturbances ω and ν for now are assumed to be unknown, we want to add
some assumptions about them.

3. If functions f and h are known and of a simpler, for example linear form, we want to
exploit this knowledge
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Further, the solutions will depend on the formulation of the stage cost ℓ and the cost func-
tional Jk. We want to discuss different possibilities more in detail. There are two main
approaches in the literature of how to solve Problem 3. The first is termed joint estimation
and the second dual estimation. In joint estimation, the parameters are considered as addi-
tional states and a state space equation for their evolution is formulated. Then, the two state
vectors can be combined into an augmented state vector, which allows to solve the two prob-
lems concurrently based on the augmented state equation. On the contrary, dual estimation
looks at the problem as two separate, but linked problems: one of estimating the evolution
of states, and another of estimating the parameters of the system under investigation. In the
following sections, we want to look at these possibilities more in detail.

A.1.1 Joint estimation problem

If we consider the evolution of system Σd in equation (A.1) and additionally assume to have
some knowledge about the evolution of parameters θ in time of the form

θk = g(xk−1, uk−1,θk−1,ωθk−1), (A.6)

which is a state space description of the “parameter states” θ , we can combine the system
state and the parameter states evolution into one augmented state, which we define as the
vector x̃ = [x θ]T, and rewrite the system equations as one combined equation

x̃k = f̃ ( x̃k−1, uk−1, ω̃k−1), (A.7)

eliminating the parameters from the system equation. This approach reduces the combined
estimation problem to a state estimation problem. In the case that our unknown parameters
are constant, this facilitates the procedure. We could then write

θk = θk−1 +ω
θ
k−1, (A.8)

to express the fact that the parameters are constant. The parameter noise ωθ , as the non-
zero additive disturbances ωθ are often termed, also allows for some parameter drift. We can
further augment the error vector to write

e =

�

εx
εθ

�

=

�

x̂k − xk

θ̂k − θk

�

= ˆ̃xk − x̃k, (A.9)

and perform a combined state and parameter estimation by running an observer on the aug-
mented state x̃k.

A.1.2 Dual estimation problem

The dual estimation approach differs from the joint estimation approach in that the state and
parameter estimation are considered as two separate, but linked problems. While erroneously
one could believe it is sufficient to just run one estimator for the states and another estimator
for the parameters, inter-dependencies have to be taken into account. Also here, we start with
modeling the parameter evolution in state space form, for example as a constant parameter
model as in (A.8), but together with an observation model in the form

θ̂k = θ̂k−1 +ω
θ
k−1 (A.10)

yk = h(xk, uk, θ̂k,νk). (A.11)
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Now in order to combine results from a state estimator running in parallel, using its state
estimate x̂k, this leads to

θ̂k = θ̂k−1 +ω
θ
k−1 (A.12)

yk = h( x̂k, uk,θk,νk). (A.13)

where one has to consider the fact that x̂k itself is a function of the previous state estimate.
This will be discussed more in detail in Section A.8.3, where the Dual EKF is presented.

A.1.3 Parameter estimation problem

If we do not have any unknown states in the sense that states follow some (known) dynamic
state evolution, but only observations following some known dependency from parameters
and independent variables, we talk about a pure parameter estimation problem. Formally,
we write for this general regression problem:

θk = θk−1 +ω
θ
k−1 (A.14)

yk = h(φk,θk,νk), (A.15)

which is similar to the problems above, but we wrote the measurement equation (or regres-
sion equation) in dependency from the independent regressor variable φ to highlight the fact
that we do not expect it to follow any dynamic evolution. If the regression function is linear
of the form:

yk = φ
T
kθ + νk, (A.16)

the parameter estimation problem results in a linear regression problem (see section A.3).

A.1.4 Deterministic and stochastic estimation problem

Looking at the disturbances ω and ν, we can (assuming the inputs u are deterministic) dis-
tinguish between the system Σd being deterministic and stochastic. If the disturbances are
deterministic and known, we can treat them as inputs and the problem reduces to a pure de-
terministic state and parameter estimation problem. If they are deterministic but unknown,
we additionally have to solve the input estimation problem. If the disturbances are (at least
partly) stochastic, we need to solve a stochastic estimation problem. One additional helpful
assumption for stochastic systems is that the noisy disturbances are zero mean, that is, for
t →∞

1
k

k
∑

t=1

νk→ 0 (A.17)

1
k

k
∑

t=1

ωk→ 0. (A.18)

That means that, given an infinitely large history of inputs and observations, we could use
this property and instead of directly trying to estimate the states and parameters, we could
calculate estimations of the disturbances by letting their means be as close as possible to zero.
We could then use the estimates of disturbances at each time step to reconstruct the evolution
of states and parameters. We can reformulate this for the realistic case of estimation over a
finite history of past inputs and observations by formulating stage costs

ℓ
ν,ω
k (νk,θk), (A.19)



A.2 Solution approaches to state and parameter estimation 235

and aiming to minimize some cost functional of the form

Jν,ω
[1:k](ℓ

ν,ω
1 ,ℓν,ω

2 , . . . ,ℓν,ω
k ). (A.20)

Alternatively, we can use probabilistic formulations to find optimal estimations, assuming
that some knowledge about the statistical distribution of the random variables ν and ω is
given:

νk ∼ ρν (A.21)

ωk ∼ ρω, (A.22)

denoting that ν and ω are drawn from the PDFs ρν and ρω, respectively.

A.2 Solution approaches to state and parameter estimation

We learned in the previous section A.1 that one way of looking at the state and parameter
estimation problem is aiming to minimize some cost functional, which is depending on the
estimation error. We also mentioned that another way of formulating the problem is by taking
a probabilistic view on the matter. Many different solution approaches have been proposed in
the literature. Depending on the assumptions, optimal solutions can be found in some sense,
and in certain cases, starting from different viewpoints can lead to the same algorithms.

In this section, we want to give a quick overview of the most common approaches, which
helps to understand the algorithms used in this thesis, and of course it would be far beyond
the scope of this manuscript to provide a comprehensive overview.

A.2.1 Minimum mean squared error estimation

A common choice for defining the stage costs in optimization problems are sums of quadratic
functions. These are easy to compute and result in positiv (semi-) definite and convex cost
functionals. In the deterministic case, we can formulate the estimation errors as deterministic
variables, and want to minimize the mean squared estimation error

MSE =
1
k

k
∑

t=1

eT
kek =

1
k

k
∑

t=1

�

( ˆ̃xk − x̃k)
T( ˆ̃xk − x̃k)
	

=
1
k
∥ ˆ̃xk − x̃k∥

2
. (A.23)

Minimizing the Mean Squared Error (MSE) is the same as minimizing

min MSE =min

¨

J[1:k] =
k
∑

t=1

tr
�

ekeT
k

	

=
k
∑

t=1

eT
kek =

k
∑

t=1

�

( ˆ̃xk − x̃k)
T( ˆ̃xk − x̃k)
	

«

. (A.24)

For problems with stochastic disturbances, the estimations (and hence the estimation errors)
become random variables, and we have to take the expectations of the above, and with

tr
�

E
�

ekeT
k

�	

= tr
n

Cov
�

ˆ̃xk

�

o

, (A.25)

we can also minimize the trace of the covariance matrix of the state estimation. This is an
intuitive optimization criterion, since we want our estimates to have small variances. As
we will show in the next sections, minimizing the squared errors also results from a proba-
bilistic viewpoint under the assumption of Gaussian error and noise distributions, and since
these are commonly used in practice, the resulting family of algorithms and their underlying
mathematical properties are of great importance.
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A.2.2 Probabilistic approach

The observed errors εk can also be viewed as random variables, drawn from a certain prob-
ability distribution p(ε|w), parameterized by some parameter vector w. In order to make
the presentation less abstract, let us directly assume that the probability distribution follows
a normal distribution p = N (εk|µ,σ2). For independent and identically distributed errors,
we can write for the probability of a certain error observation with M samples (see [Bis06],
p.26):

p
�

ε|µ,σ2
�

= L(µ,σ2) =
M
∏

k=1

N (εk|µ,σ2) (A.26)

The expression on the right is called the likelihood function of the normal distribution. It
expresses how probable the observed errors are, given the parameters µ,σ2. Given some
observations, we can now infer the parameters of the probability distribution by maximizing
the likelihood function. This results in the sample mean and the sample standard deviation
of the dataset [Bis06], p.27. On the other hand, we might want to find an estimation of the
value of another parameter θ , given a model ε(θ ). Again, we can do so by maximizing the
likelihood, this time with respect to the parameter θ .

If, as above, the estimation is based solely on the observations which we made, this is
termed a frequentist approach. This is in contrast to a Bayesian approach, named after the
mathematician Thomas Bayes (1701–1761), and aims at incorporating knowledge available
prior to the inference process. In the Bayesian setting, the uncertainty in the estimated vari-
ables is expressed through a probability distribution over θ . Then, by using Bayes’ Theorem

pX |Y (x |y) =
pY |X (y|x)

pY (y)
× pX (x), (A.27)

which is of the form:
posterior∝ likelihood× prior. (A.28)

a posterior distribution pX |Y (x |y) of the random variable X can be computed as a function
of the observation y and the prior pX (x). Like this, prior knowledge about the estimated pa-
rameters can be additionally incorporated. This can be advantageous but can rise difficulties
as well, for example that it might be hard to find informative priors which are also mathe-
matically convenient. A prominent example of an estimator based on the Bayesian approach
is the Kalman Filter (see Section A.6).

A.2.3 Maximum likelihood estimation and M-Estimation

Another possibility to derive estimators for state and parameter estimation is to maximize the
likelihood within probabilistic frameworks. Since this is typically used in connection with the
desire to make estimators more robust against outliers, which produce non-Gaussian error
distributions, we will treat this topic within Section A.9, which is entirely dedicated to robust
estimation

A.3 Linear regression
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A.3.1 Solution of a system of linear equations as an estimation problem

Many complex and nonlinear estimation problems can be broken down into eventually solv-
ing systems of linear equations, and therefor we want to use this as a starting point. The
problem is finding a solution to the system of linear equations in matrix form, given by 1

y = Φθ , (A.29)

where y ∈ Rm is a known vector of results or observations, and Φ ∈ Rm×n is a known data
matrix. A solution is given by a vector of unknown parameters θ ∈ Rn. Solution strategies
are well known results from fundamental linear algebra, but since they are essential for the
understanding of more complex algorithms, we want to repeat these results in detail. We can
distinguish between mainly three cases:

Exact solution

Under the conditions that Φ is a squared matrix of size n, and it is invertible, we can calculate
an exact solution by expressing θ explicitly using the matrix inverse and writing

θ = Φ−1 y. (A.30)

The condition that Φ is invertible can also be expressed by the rank condition

rank {Φ}= n, (A.31)

or that matrix Φ is of full rank since dim(Φ) = n. This is equal of saying that we need n
equations for solving for n variables, and these equations need to be linearly independent.
If we have n = 3, we could then think of each equation giving a plane in three dimensional
space, and if none of the three planes is parallel, we have a unique intersection point.

Under-determined case

In case rank {Φ} < n, the system is under-determined and there is not enough information
to provide a unique solution. This can happen if Φ is a rectangular matrix with less than n
rows, or some rows are linearly dependent. In the above three dimensional example, if we
only had two intersecting planes, and others either missing or parallel to one of the two, we
had missing information and the resulting intersection would be a line. Hence, all (infinite
numbered) solutions on this line were the solution space of the systems of equations.

If we want to provide one of these infinite solutions, we need to add further assumptions
as a selection criterion. A valid and often used selection criterion is to add a cost function
dependent on Φ to find a unique solution, while the resulting optimization problem based on
that cost function could be given as

θ̂ = argmin∥θ∥2 (A.32)

s.t. y = Φθ , (A.33)

minimizing the norm of θ . Adding additional criteria on penalizing the parameter values
in some form is termed regularization, and many approaches exist, but we do not further
discuss this here, since they are known to introduce bias into the estimation.

1 Many textbooks write this in Ax = b notation
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Over-determined case

In case rank {Φ} > n, the system is over-determined and it is not possible to provide a so-
lution which exactly fulfills all given equations. Nevertheless, if the reason for having more
equations than unknowns is the presence of (possibly Gaussian) noise in a variety of noisy
measurements, we can reformulate the problem as

y = Φθ + ν, (A.34)

and find the solution which explains the data with the minimum (in a 2-norm sense) error

θ̂ = argmin∥ν∥2 (A.35)

s.t. y −Φθ , (A.36)

which is equivalent to writing
θ̂ = argmin∥y −Φθ∥2 . (A.37)

We will discuss the solution of this case in Section A.3.2.

A.3.2 Linear least squares estimation

Let us assume now that we obtained problem (A.29) by taking noisy measurements from a
signal which was produced by linear process

yk = φ
T
kθ + νk, (A.38)

then we will be able to put all measurements taken up to time k into the observation vec-
tor y = [y1, y2, . . . yk] containing k available measurements, and the regressor matrix Φ by
stacking the regressor vectors Φ= [φ1;φ2, . . . ;φk], then we will be able to write

y = Φθ + ν, (A.39)

with the observation matrix Φ, the state vector θ and with zero mean noise in the vector ν.
We want to find the minimum mean squared error solution for the parameter vector θ ∈ Rn.
This can be done by minimizing the error vector

e = ν= y −Φθ , (A.40)

which is the same as “minimizing the noise” (in an ℓ2-norm sense) leading to

min J =min ∥e∥2 = (y −Φθ )T(y −Φθ ). (A.41)

We expand
(y −Φθ )T(y −Φθ ) = yT y − θTΦT y − yTΦθ + θTΦTΦθ , (A.42)

and solve above optimization by building the derivative with respect to θ̂ and setting the
result to zero

∂

∂ θ
J = 0− yTΦ− yTΦ+ 2θ̂TΦTΦ= 0, (A.43)

and solving for θ̂

−2ΦT y = −2ΦTΦθ̂ (A.44)

θ̂ = (ΦTΦ)−1ΦT y . (A.45)
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The matrix product Φ† = (ΦTΦ)−1ΦT is called the left “Moore-Penrose pseudo inverse” (see
for example also in [Sim06], p. 81) and it is important to understand the details of this
equation. The pseudo-inverse only exists if (ΦTΦ)−1 is invertible. This is only the case if Φ is
full rank, and n ≤ k, meaning that it has linearly independent columns. In other words, if at
least as many (linearly independent) measurement error equations are available, as there are
unknown variables contained in θ . The linear least squares approach described here is also
termed ordinary least squares. Since we had to build a batch of measurements and regressor
vectors to formulate above problem, it has also been termed batch linear least squares before.

In order to realize the calculation of the ordinary least squares solution in (A.45), different
approaches are used [Lee12]. These include (i) the Cholesky factorization of ΦTΦ, (ii) the
QR-factorization of Φ and (iii) the Singular Value Decomposition (SVD).

A.3.3 Weighted linear least squares

In the ordinary least squares solution, we found the parameters by minimizing the sum of
squared errors, which is the ℓ2-norm of the error vector. This can be generalized by finding a
minimum to a weighted ℓ2-norm instead, which transforms the cost function to

min ∥e∥2
W =min J = (y −Φθ )TW (y −Φθ ), (A.46)

where W is a symmetric, positive semi-definite weighting matrix. Similar to the derivation
above, the solution can then be shown to be [PT+07]

(ΦTWΦ)−1ΦTW y . (A.47)

As a special case, if W = diag(w) is a diagonal matrix with the entries of a weight vector w,
then the cost function is

∥e∥2
W =
∑

wie
2
i . (A.48)

A.3.4 Alternative solution methods to the linear least-squares problem

In the following, we will present the following alternative solution methods to the linear least-
squares problem: The QR-decomposition, which we will use extensively in the derivation of
the DeePLS algorithm in Chapter 5, and it is also used as efficient method within the SRCDIF
algorithm, see Section A.6.5. The latter also makes use of the Efficient Least Squares method,
which can be found in Section A.3.4.

QR - decomposition

An alternative method for computing the least-squares solution of y = Φθ + ν is by using
the QR-decomposition. In this orthogonal projection method, the feature matrix Φ ∈ Rm×n is
decomposed as

Φ=QR, (A.49)

where Q ∈ Rm×m is an orthogonal matrix and R ∈ Rm×n is an upper triangular matrix such
that

Φ=Q

�

R1
0

�

. (A.50)
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An orthogonal matrix Q is one for which QQT = QTQ = I holds, which means that QT = Q−1.
The matrix R1 ∈ Rm×m above is a square right triangular matrix. Let us define the following
operator for the QR-decomposition:

QR= qr {·} . (A.51)

It can be shown that the solution for θ̂ for the underdetermined case (m < n) can be calcu-
lated as

θ̂ =Q

�
�

RT
1

�−1
y

0

�

, (A.52)

as for the over-determined case (m> n) as

θ̂ = R−1
1

�

QT
1 y
�

. (A.53)

In the last equation above, Q1 is an m× n matrix, which contains only the first n columns of
Q. In both cases, the solution can be obtained efficiently without inverting the matrix R1 by
using forward substitution (or backward substitution, respectively).

A very common algorithm to obtain the QR-decomposition is the Householder-algorithm,
which can be computed with a complexity (in terms of floating point multiplications) of
2
3 n3 + n2 + 1

3 n− 2= O
�

n3
�

In order to solve the weighted least-squares problem, we minimize the cost function as
previously given in (A.46), we can find the solution as

Q1R1 =W
1
2Φ (A.54)

θ̂ = R−1
1

�

QT
1

�

W
1
2 y
��

, (A.55)

where again Q1, R1 are obtained from an economy-sized QR-decomposition. This can easily
be shown if the weighted normal equations are rewritten as

�

W
1
2Φ
�T �

W
1
2Φ
�

θ̂ =
�

W
1
2Φ
�T �

W
1
2 y
�

, (A.56)

where the square root of the weighting matrix exists since W is positive semi-definite
[PT+07].

Efficient least squares

Efficient least squares solves the linear equation P x = b by using the Cholesky factor S (sat-
isfying P = SST), resulting in the expression x = S−T

�

S−1 b
�

. This reduces the computational
complexity of the least-squares operation to O

�

n2
�

[LW+12].

A.4 Recursive linear regression

A.4.1 From full information estimation to recursive estimation

We defined our cost functional above in (A.20) to include stage costs starting from time t = 1
until the current time t = k, which we silently expressed in the subscript of J[1:k]. Using all
this available information in an estimator is commonly termed as Full Information Estimation
(FIE). Instead, we could also divide the data into two separate batches, one running from
time t = 1 to time t = k − N , and another running from t = k − N + 1 to t = k. Minimizing
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the two cost functions resulting from this action would not change the optimization problem
since we defined the running costs to depend only on current values at time t:

J[1:k](ℓ1,ℓ2, . . . ,ℓk) = J[1:k−N] + J[k−N+1:k]. (A.57)

The cost J[1:k−N] in equation (A.57) is termed arrival cost. A recursive estimation scheme,
which at the current time only solves the optimization problem of minimizing J[k−N+1:k] over
the horizon of the last N samples is called Moving Horizon Estimation (MHE).

If the horizon length is reduced to N = 1, and the estimator recursively operates only on
the current data at time t = k, the estimator scheme is called recursive.

A.4.2 Recursive Linear Least-Squares estimation

For the purpose of computational inexpensive online estimation, recursive versions of the
linear least-squares algorithm were proposed. The recursive least-squares algorithm can be
given as follows:

θ̂k = θ̂k−1 + Kk

�

yk −φT
kθ̂k−1

�

(A.58)

with a time-varying adaptive gain Kk, calculated as a function of the covariance matrix Pk.
The dynamics of Pk, or rather its inverse Υk can generally be given by

Υk = ΛkΥk−1 +φkφ
T
k. (A.59)

The matrix Υk = P−1
k is usually termed the information matrix or the precision matrix, while Λ

is the forgetting matrix (see also section A.6.4). From (A.59), we can see that the information
matrix, and hence the information content, is increased by the term given as the matrix φkφ

T
k.

This formulation therefor is useful to get an intuition about the fact that this term determines
the increase in information about the system. Let us memorize this term as we will find in
when discussing conditions, under which RLS will converge.

Different formulations exist which are mathematically identical, but many times they are
based on the covariance matrix formulation instead. For lecture notes on the topic, including
proofs that the recursive version is equivalent to the batch processing version, see Islam
and Bernstein [IB19]. There, a Recursive Least Squares (RLS) version with the forgetting is
provided in which the gain K is given as

Kk = Pkφk

�

λI+φTPkφ
�−1

(A.60)

and a covariance matrix update rule as

Pk+1 =
1
λ

Pk −
1
λ

Pkφk

�

λI+φT
kPkφk

�−1
φT

kPk. (A.61)

As a side note, in [IB19], φ was defined as transposed vector. The reason for a forgetting
factor λ < 1 is that the algorithm maintains its ability to identify the plant parameters and
this is the case also for time-varying parameters. In order for RLS to converge, necessary
conditions were provided in [JJ+82]. An important condition is the notion of persistent
excitation (see Section A.10.4).

While standard RLS uses a constant forgetting factor λ, variants with variable forgetting
factors have been proposed in order to improve convergence for the estimation of time-
variant parameters. While standard recursive least squares is a fundamental algorithm for
estimation and adaptive control, variable-rate forgetting schemes are still an area of active
research. For an example, in which also the convergence of RLS schemes is discussed, see
[BG+20].
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A.5 From least squares to recursive Bayesian state estimation

Until now, ordinary least squares and recursive least squares dealt with the problem of es-
timating parameters, of which we know nothing about their evolution in time but observe
measurements, which are known to follow the relation

y = φTθ + ν. (A.62)

A more general problem is the one of obtaining estimates of states x , where we assume that x
follows a certain (known) dynamics, but again we are only able to observe noisy observations,
while we assume to know the relation between the state x and the observation y. Next, we
will explain this concept for the linear, deterministic case, which leads to the well known
Luenberger Observer. Then, we will formulate a more general, stochastic problem, for which
the Kalman filter is the optimal solution. This aims to present the connection of the two
concepts. The Kalman filter will then be discussed in detail in Section A.6.

A.5.1 The Luenberger Observer

The Luenberger observer is an algorithm able to provide convergent estimates of the full state
of a linear state-space system given only the system outputs. Let us consider the system

xk = F xk−1 + Buk−1 (A.63a)

yk = H xk, (A.63b)

of which F, B and H are known matrices. The Luenberger observer can be viewed as a state-
space controller, which drives the output error

εk = yk − ŷk (A.64)

to zero. In the equation above, ŷk is the output of the calculation

x̂k = F x̂k−1 + Buk−1 (A.65a)

ŷk = H x̂k, (A.65b)

where x̂ denotes an estimate of the unknown state vector. The aim is to find a “controller”
that drives the system error to zero, which is given if we find a matrix K such that

εk+1 = Kεk, (A.66)

where K needs to be a stabilizing matrix and hence K needs to have poles within the unit
circle for asymptotic stability. This can be realized by adding a corrective term to the system
dynamics equations as

x̂k = F x̂k−1 + Buk−1 + Kεk (A.67a)

ŷk = H x̂k. (A.67b)

It can be shown that with this choice, the error dynamics results in

εk+1 = Kεk = (F − KC)εk, (A.68)

and we are able to choose K, given that the system is observable, to place the poles of K.
Note that the Luenberger observer above was derived from a deterministic setting without
any measurement noise.
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A.5.2 The state estimation problem of stochastic dynamical systems

If we additionally consider additive, Gaussian noise both on the process and the measurement
equation of system (A.63), this leads to the linear, time-discrete and time-invariant system of
the form

Σ :



























xk = F xk−1 + Buk−1 +ωk−1

yk = H xk + νk

ωk ∼N (0,Qk)
νk ∼N (0, Rk)

P0 = E
�

�

x0 − x̂−0
� �

x0 − x̂−0
�T
�

.

(A.69)

The disturbances are known to be white, zero mean and uncorrelated noise drawn from the
normal distributions with the process noise covariance matrix Q and the measurement noise
covariance matrix R. It is further assumed that the system parameters in the matrices F, G
and H are known.

Additionally, in order to derive state estimation algorithm, in a Bayesian setting, one
needs to provide some kind of prior knowledge about the system. Above, this is given in the
form of that the state estimation error covariance matrix P0 at initialization time is assumed
to be known. Given (A.69), one is able to derive an optimal observer gain in each step. The
resulting equations are the ones of the linear Kalman filter, as we will show in Section A.6.

A.6 The Kalman Filter family

The Kalman Filter is known to be - in many senses - the optimal recursive solution to the
stochastic, linear, time-discrete state estimation problem for the system given in (A.69)
[Sim06]. It is named after Rudolph Emil Kalman, who published his seminal paper R. E.
Kalman. “A new approach to linear filtering and prediction problems”. In: Journal of basic
Engineering 82.1 (1960), pp. 35–45. Since then, the Kalman filter and its various deriva-
tions found themselves to be the solution to many real world problems. By today, more
than 1.420.000 search results for the term “Kalman” within academic papers can be found
in Google Scholar and no less than 14 million search results are given by the search engine
Google. The original paper proposed the problem formulation in today’s well known state
space formulation, and derived the Kalman filter equations by using orthogonality proper-
ties. Many approaches are known to lead to the same results for the linear Kalman filter
equations (see for example Simon [Sim06] or Thrun [Thr02]). In this section, we want to
derive Kalman Filter equations from different viewpoints.

As already stated in Section A.5.1, one can view the Kalman Filter as an adaptive version
of a Luenberger observer. If we consider additive, Gaussian noise both on the process and the
measurement equation as given in equation (A.69), the Kalman filter can be seen as a way to
optimally (in a least-squares sense) choose an adaptive observer gain Kk.

Also, the Kalman Filter can be proven to be a generalized variant of Recursive Least-
Squares (see for example Rhode [Rho16], p.91).

In this section, we want to start by introducing the linear, time-discrete Kalman Filter in
Section A.6.1. Next, we want present the Extended Kalman Filter [SS+62] in Section A.6.2,
which is an extension for systems following nonlinear dynamics. The Extended Kalman Filter
applies the linear Kalman Filter after linearizing a nonlinear system in its operating point.

For highly nonlinear transition functions, the Extended Kalman Filter might have poor
performance because of errors in the propagation of the covariances due to linearization



244 Appendix A Background State and Parameter Estimation

effects. The Unscented Kalman Filter can reduce these errors by performing a so called
unscented transformation of the covariances. This is done by propagating so-called Sigma
points which have the same mean and covariance and are normally distributed. Like this,
the true covariance can be recovered since these Sigma points undergo the full nonlinear
transformation, while the EKF only performs a linearized transformation of the covariance.
But, as a drawback, this comes a increased computational cost. If even more points, so called
particles, are used to propagate arbitrary probability density functions, this leads to the so
called particle filter. Variants for time-continuous, hybrid and time-discrete systems exist.

A.6.1 Linear Kalman Filter

First, we want to provide the steps to realize the linear, discrete-time Kalman Filter. A deriva-
tion of the equations can be found in Simon [Sim06], pp 124-129.

Let us consider the system Σ given in (A.69). We can only perceive the true states xk
of the system by observing the state outputs yk with added measurement noise. We have
only limited knowledge about the state transitions due to process noise affecting the state
propagation. It is assumed that the system parameters in the matrices F, B and H are known,
together with the process noise covariance matrix Q and the measurement noise matrix R.
The Kalman Filter can then be used to obtain apriori state estimations x̂− and a posteriori
state estimations x̂+ at each time step with the following algorithm.

1. Initialize filter

x̂+0 = E [x0] (A.70)

P̂+0 = E
�

(x0 − x̂+0 )(x0 − x̂+0 )
T
�

(A.71)

2. For k = 1, 2, . . . perform:

Measurement update:

Calculate a posteriori state estimate:

x̂+k = x̂−k + Kk(yk −H x̂−k ) (A.72)

Calculate estimation error covariance:

P+k = P−k − KkHP−k = (I− KkH)P−k (A.73)

or using Joseph’s form

= (I− KkH)P−k (I− KkH)T + KkRkKT
k (A.74)

Compute (optimal) Kalman gain:

Kk = P−k HT
�

HP−k HT + Rk

�−1
(A.75)

Time update:

Calculate a priori state estimate:

x̂−k+1 = F x̂+k + Buk (A.76)

Calculate a priori estimation error covariance:

P−k+1 = F P+k FT +Qk. (A.77)

In the different expressions for the estimation error covariance P, the last expression (A.74) is
the computationally more expensive, but also more robust Joseph’s form. It always provides
a positive definite result, and it remains valid also for other than the optimal Kalman gain.
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A.6.2 Extended Kalman Filter

The Extended Kalman Filter is obtained by applying a linear Kalman Filter to a linearized
nonlinear system. It does not provide an optimal filter as the Kalman Filter does in the linear
case. Nevertheless, it is widely applied in engineering solutions due to its recursive nature
and the resulting computational efficiency. We want to provide the background similar to
Simon [Sim06], pp 407-409, but using our own notation. The time-discrete, nonlinear system
and measurement equations are given as follows:

xk = f (xk−1, uk−1,ωk−1) (A.78)

yk = h(xk,νk) (A.79)

ωk ∼N (0,Qk) (A.80)

νk ∼N (0, Rk) , (A.81)

with state vector xk ∈ Rn, the system dynamics function f , the system input u and process
noise ω drawn from a multivariate normal distribution N determined by the process noise
covariance matrix Q ∈ Rn×n. Further, we have the measurement equation given with the
observations vector yk ∈ Rm, the measurement function h and measurement noise νk the
measurement noise covariance matrix R ∈ Rm×m.

The EKF is then obtained by linearizing the above equations around the system state.
Therefor, a Taylor series expansion of the state equation is performed around the a posteriori
state estimation x̂+k−1 and ωk−1. The measurement equation is linearized around the a priori
state estimation x̂−k and νk = 0.

It can be shown that, after performing the Taylor series expansion, the system and mea-
surement equations can be rewritten with the linear, time-discrete equations

xk = Fk xk−1 + Bkũk−1 + ω̃k−1 (A.82)

yk = Hk xk + zk + ν̃k (A.83)

ω̃k ∼N
�

0, LkQk LT
k

�

(A.84)

ν̃k ∼N
�

0, MkRkMT
k

�

(A.85)

with the matrices F, H, L, M given by the Jacobians as in (A.90) and (A.91) and the known
signals

ũk = fk( x̂
+
k , uk, 0)− Fk x̂+k (A.86)

zk = hk( x̂
−
k , 0)−Hk x̂−k . (A.87)

Then, the discrete-time Extended Kalman Filter algorithm is as follows:

1. Initialize filter

x̂+0 = E [x0] (A.88)

P̂+0 = E
�

(x0 − x̂+0 )(x0 − x̂+0 )
T
�

(A.89)

2. For k = 1,2, . . . perform:

Compute Jacobians Fk, Lk, Hk, Mk

Fk =
∂ f
∂ x

�

�

�

�

x̂+k−1,uk−1

, Lk =
∂ f
∂ω

�

�

�

�

x̂+k−1,uk−1

(A.90)

Hk =
∂ h
∂ x

�

�

�

�

x̂−k

, Mk =
∂ h
∂ ν

�

�

�

�

x̂−k

(A.91)
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Perform time update of state estimate and estimation error covariance:

x̂−k = fk−1( x̂
+
k−1, uk−1, 0) (A.92)

P−k = Fk−1P+k−1FT
k−1 + Lk−1Qk−1 LT

k−1 (A.93)

Compute Kalman gain K:

Kk = P−k HT
k

�

HkP−k HT
k +MkRkMT

k

�−1
(A.94)

Perform measurement update of state estimate

x̂+k = x̂−k + Kk(yk −Hk x̂−k ) (A.95)

Calculate estimation error covariance:

P+k = (I− KkHk)P
−
k (I− KkHk)

T + KkRkKT
k . (A.96)

Note that for noise terms entering the equations in an additive manner, the Jacobians M and
L are the identity matrix.

A.6.3 Sigma-Point Kalman Filters

The Extended Kalman Filter approximates a nonlinear function by linearizing in each oper-
ating point and works with linearized transformations of probability density functions. As
long as the linearized transformation of means and covariances are approximately equal to
the nonlinear transformations, it provides sufficient results. The Unscented Kalman Filter is
a method to reduce the error obtained in the Extended Kalman Filter due to linearization
effects, by performing a nonlinear transformation on single points instead of an entire prob-
ability density function. These points, called sigma-points, are chosen so that they have the
same mean and covariance than the one which needs to be transformed. This is called an
unscented transformation. The interested reader is referred to [Sim06], pp. 433-446 for an
overview with detailed description and derivation of the UKF equations. The UKF was origi-
nally proposed by Julier and Uhlmann[JU97] with modifications in [Jul02]. Merwe [Mer04]
provides detailed analysis and presented variants including an improved version, introduc-
ing a recursive square-root formulation to avoid the computation of the matrix square-root
operation as in the basis versions.

Unscented transformation

The principle behind the UKF is the unscented transformation [JU97]: Consider that a ran-
dom vector x ∈ Rn with mean x̄ and covariance P x is transformed through a nonlinear
function y = g(x), with g : Rn → Rm. We therefore consider a set of so called Sigma points,
which are a set of 2n+ 1 weighted samples:

Si = {wi ,χi}, i ∈ 1, . . . , p, p = 2n+ 1 (A.97)

The sigma-points are propagated through the function:

yi = g(χi). (A.98)

We can then calculate the weighted average of the transformed Sigma points.

ȳ =
p
∑

i=0

wi yi ,
p
∑

i=0

wi = 1, (A.99)
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as well as the covariance by the weighted outer product of the transformed points:

Pyi
=

p
∑

i=0

wi (yi − ȳi) (yi − ȳi)
T (A.100)

Note that the calculation for both the sigma-points and the weights are defined in a deter-
ministic manner such that they fully capture the mean and covariance of the original random
variable x . In order to match this requirement, the sigma-points have been previously de-
fined in different ways. Before we show the scaled unscented transformation [Jul02], let us
directly provide a general system description for which we demonstrate the UKF.

This choice of sigma-points ensures that the first and second moment of the distribution
with the covariance matrix P is preserved:

x̂n =
1

2nx

2nx
∑

i=1

xi
n (A.101)

Pxn
=

1
2nx

2nx
∑

i=1

�

x i
n − x̂n

� �

x i
n − x̂n

�T
. (A.102)

Note that only the mean and covariance (first and second order moments) are preserved.

Uncented Kalman filter

Here we want to present the UKF Julier and Uhlmann [JU97] and Julier [Jul02] similarly to
the presentations in Simon [Sim06] and Merwe [Mer04]. We consider the nonlinear, time
discrete system dynamics as follows:

xk = f (xk−1, uk−1,ωk−1) (A.103)

yk = h(xk, uk,νk), (A.104)

where x ∈ Rn, u ∈ Rnu , ω ∈ Rnω are the state, input and process noise vectors, and y ∈ Rny ,
ν ∈ Rnν are the measurement / observation vector and measurement noise vector, respec-
tively. As with the Kalman filter, we consider Gaussian process and measurement noise

ωk ∼N (0,Qk) (A.105)

νk ∼N (0, Rk) . (A.106)

Note that both the process noise ω can enter the system dynamics f : Rn ×Rnu ×Rnω → Rn

and the measurement noise term ν can enter h : Rn × Rnu × Rnν → Rny in a non-additive
fashion which allows for a more general description. To take this into account, we can define
an augmented state vector as

x̃ ≜





x
ω

ν



 , (A.107)

with dimension n= nx + nω+ nν. The expectation of this augmented state at time k−1 given
the information available at k− 1 is

x̃k−1|k−1 = x̃+k−1
.
=





xk−1|k−1
0nν×1

0nω×1



 , (A.108)
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and its augmented state covariance matrix is composed from the covariance matrices as fol-
lows:

P̃k−1|k−1 =





Pk−1|k−1 0nx×nω 0nx×nν

0nω×nx Qk−1 Pωνk−1
0nν×nx Pνωk−1 Rk−1



 , (A.109)

where Pνω = Pων = 0 might be zero in case of uncorrelated noises. The above values are
initialized prior to starting the algorithm with

x̂+0 = E [x0] (A.110)

P+x ,0 = E
�

∥x0 − x̂+0 ∥
2
�

. (A.111)

From this information, one can calculate a matrix containing a set of sigma-points as follows:

X̃i,k−1|k−1
.
=







x̃+, i = 1
x̃+ + γSi , i = 2, . . . , n+ 1
x̃+ − γSi , i = n+ 2, . . . , 2n+ 1

(A.112)

where Si is the i-th column of the matrix

S =
p

P̃, (A.113)

and
p

P̃ is the square root of the matrix P̃ with the following properties:

p

P̃
Tp

P̃ = P̃. (A.114)

which can be robustly and efficiently calculated by using the Cholesky decomposition. In
(A.112), γ is a scaling parameter calculated as:

γ=
p

n+λ, λ= α2(n+κ)− n, (A.115)

where α and κ are tuning parameters (see section A.6.3). In addition to (A.112), we calcu-
lated a set of weights which are chosen such that

wm
1 =

λ

n+λ
i = 1

wc
1 =

λ

n+λ
+
�

1−α2 + β
�

i = 1

wm
i = wc

i =
1

2 (n+λ)
i = 2, . . . , 2n+ 1

(A.116)

where wm denotes weights for the mean and wc stands for weights used to calculate the
covariance matrices in the subsequent steps.

The sigma-points defined by the augmented matrix X̃ now contain the sigma-points for
states and noises:

X̃ =





X
Xω

X ν



 . (A.117)

In order to perform the prediction step of the UKF, we now propagate all sigma-points
through the system dynamics:

X−k = f
�

Xk−1, uk−1,Xωk−1

�

(A.118)

Yk = h
�

Xk−1, uk−1,X νk−1

�

, (A.119)
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from which we can obtain an approximation of the predicted means as weighted averages

x̂−k ≈
2n+1
∑

i=1

wm
i Xi,k (A.120)

ŷk ≈
2n+1
∑

i=1

wm
i Yi,k, (A.121)

and the covariance matrices from

P−xk xk
≈

2n+1
∑

i=1

wc
i

�

X−k − x̂−k
� �

X−k − x̂−k
�T

(A.122)

Pỹk ỹk
≈

2n+1
∑

i=1

wc
i

�

Yi,k − ŷk

� �

Yi,k − ŷk

�T
(A.123)

Pxk ỹk
≈

2n+1
∑

i=1

wc
i

�

X−k − x̂−k
� �

Yi,k − ŷk

�T
, (A.124)

where P x y is the cross-covariance matrix. To perform the measurement update step of the
Kalman filter, we now calculate the (optimal) Kalman gain matrix different from the standard
Kalman filter as

Kk = Pxk ỹk

�

Pỹk ỹk

�−1
, (A.125)

while the posterior estimation of ˆ̃x and the state covariance update steps are similar to the
standard formulas:

ˆ̃x+k =
ˆ̃x− + Kk (yk − ŷk) , (A.126)

P+xk xk
= P−xk xk

− KkPỹk ỹk
KT

k . (A.127)

Note that the covariance matrix Pỹk ỹk
is used above. We can substitute the expression given

above for the optimal Kalman gain into (A.127), which yields

P+xk xk
= P−xk xk

− Pxk ỹk

�

Pỹk ỹk

�−1
Pỹk ỹk

�

Pxk ỹk

�

Pỹk ỹk

�−1�T
(A.128)

= P−xk xk
− Pxk ỹk

�

Pxk ỹk

�

Pỹk ỹk

�−1�T
(A.129)

= P−xk xk
− Pxk ỹk

�

Pỹk ỹk

�−1
PT

xk ỹk
(A.130)

= P−xk xk
− Pxk ỹk

Υ ỹk ỹk
PT

xk ỹk
. (A.131)

where the expression (A.130) follows from symmetry of the covariance matrix Pỹk ỹk
and

using the information matrix form Υ ỹk ỹk
=
�

Pỹk ỹk

�−1
in (A.131). In the same fashion, one can

rewrite (A.126) using the cross-covariance form of the Kalman gain as

ˆ̃x+k =
ˆ̃x− + Pxk ỹk

�

Pỹk ỹk

�−1
(yk − ŷk) . (A.132)

We will use these alternative expressions later when deriving the information form of the
sigma-point filters.

Some comments on the Uncented Kalman Filter

In (A.115), we must choose κ ≥ 0 in order to guarantee that the covariance matrix remains
positive definite. The choice of this value is regarded as non critical, and typically a good
default value is reported to be κ= 0 [Mer04].
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The value α needs to be in the range of 0≤ α≤ 1, and controls the distance of the sigma-
points to the mean value. To avoid the sampling of non-local effects of strong nonlinearities,
a recommendation is to choose it to be a very small number [Mer04], p. 56.
β ≥ 0 is a non-negative weighting term and can be used to incorporate knowledge of

higher order moments of the given prior distribution. The optimal choice for Gaussian priors
was given as β = 2 [Mer04], but one needs to take care that this statement only holds under
certain assumptions, while including knowledge about the transforming function could lead
to different results [Jul02].

Regarding implementation effort, one can benefit that the UKF does not require the cal-
culation of the Jacobians. But instead, three additional tuning parameters have to be chosen
(the three unscented transformation parameters α, β and κ). The computational complexity
is slightly higher than for the EKF, since it requires the computation of a matrix square-root
at each time step.

Sterling interpolation and the Central Difference Filter

Apart from the unscented Kalman filters, another derivative-less Kalman filter family has been
proposed using Sterling interpolation. According to Merwe [Mer04], p. 62, both [NP+00]
and [IX00] independently derived such formulations, which they called divided difference
filter and central difference filter.

As outlined more in detail in Merwe [Mer04], p. 62, instead of calculating a Taylor series
expansion, on can approximate a nonlinear function over a certain interval using (second
order) Sterling polynomial interpolation. This is given by:

f (x) = f ( x̄) + D̃∇x f +
1
2!

D̃2
∇x f . (A.133)

Here, D̃∇x f and D̃2
∇x f are the first and second order central divided difference operators acting

on f (x), which are given (for the scalar case) as:

D̃∇x f = (x − x̄)
f ( x̄ + h)− f ( x̄ − h)

2h
(A.134)

D̃2
∇x f = (x − x̄)2

f ( x̄ + h)− f ( x̄ − h)− 2g ( x̄)
h2

. (A.135)

Here, h is the interval length or central difference step size and x̄ is the prior mean of x
around which the expansion is done. As stated in Merwe [Mer04], p. 62, “one can thus
interpret the Sterling interpolation formula as a Taylor series wehre the analytical deriva-
tives are replaced by central divided differences.” In order to apply above formulas for the
multivariate case, the following transformation is necessary:

z = S−1
x x (A.136)

f̃ (z)
.
= f (Sxz) = f (x), (A.137)

where Sx is the Cholesky factor of the covariance matrix of x , Px , such that Px = SxST
x . This

transformation leads to a decoupling of the variables in x , leading to mutually uncorrelated
individual components of z:

Pz = E
�

(z − z̄)(z − z̄)T
�

= I. (A.138)

For the sake of brevity, further derivation of the Central Difference Kalman Filter (CDKF) is
ommited at this point, and the interested reader is referred to [Mer04], pp. 62 - 68, where a
neat discussion is presented.
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A.6.4 Information Filter

An alternative way of calculating the Kalman filter equations is in the so called information
form. Here, instead of propagating the error covariance matrix P forward in time, its inverse
Υ

.
= P−1 is used. Various approaches can be taken to derive the time and measurement update

equation of the Kalman filter in information form. One is by applying the matrix inversion
lemma to represent the Kalman filter equations using information parameters instead of the
moment parameters. As shown in Simon [Sim06], one can write for the measurement update
equation of the covariance matrix P:

�

P+k
�−1
=
�

P−k
�−1
+HT

kR−1
k Hk, (A.139)

and it is easy to see that by substituting the definition of the information matrix this yields

Υ+k = Υ
−
k +HT

kR−1
k Hk. (A.140)

Applying the matrix inversion lemma to the time-update equation (A.77) for the covariance
matrix P yields:

�

P−k+1

�−1
=
�

FkP+k FT
k +Qk

�−1
(A.141)

Υ−k+1 =Q−1
k −Q−1

k Fk

�

Υ+k + FT
kQ−1

k Fk

�−1
FT

kQ−1
k . (A.142)

The following summarizes the full information filter algorithm containing time and measure-
ment update equations:

1. Initialize filter

x̂+0 = E [x0] (A.143)

Υ̂+0 =
�

E
�

(x0 − x̂+0 )(x0 − x̂+0 )
T
�	−1

(A.144)

2. For k = 1,2, . . . perform:

Time update:

Calculate a priori state estimate:

x̂−k = Fk−1 x̂+k−1 + Gk−1uk−1 (A.145)

Calculate a priori information matrix:

Υ−k =Q−1
k−1 −Q−1

k−1Fk−1

�

Υ+k−1 + FT
k−1Q−1

k−1Fk−1

�−1
FT

k−1Q−1
k−1 (A.146)

Measurement update:

Calculate information update:

Υ+k = Υ
−
k +HT

kR−1
k Hk (A.147)

Compute Kalman gain:

Kk =
�

Υ+k
�−1

HT
kR−1

k (A.148)

Calculate a posteriori state estimate:

x̂+k = x̂−k + Kk

�

yk −Hk x̂−k
�

. (A.149)

Note that in case of constant matrices R and Q, the matrix inversions appearing in above
equations can be calculated during the initialization process.
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Information space representation

One can also transform the Kalman filter equations into a information space representation,
which is based on the information state vector ι .

= Υ x instead of the state vector x . A deriva-
tion can be found for example in [Mut98], p. 27. The resulting information state vector
update formulas then take the form (for the measurement update)

ι̂+k = ι̂
−
k +HT

kR−1 yk (A.150)

ι̂+k = ι̂
−
k + ik, (A.151)

where the information state contribution ik from an observation yk is defined as

ik = HT
kR−1 yk. (A.152)

Similarly, the associated information matrix Ik
.
= HT

kR−1
k Hk is defined such that the measure-

ment update of the information matrix becomes a simple sum between the a priori informa-
tion plus the additional information given from a measurement:

Υ+k = Υ
−
k + Ik. (A.153)

Information filter for parameter estimation

If we consider the dynamics of constant parameters driven by Gaussian noise, we can write

θk = θk−1 +ωθ (A.154)

with the dynamics matrix being the unity matrix. Then the equations from the Kalman and
information filter become:

P−k = P+k−1 +Qk−1 (A.155)

Υ−k =Q−1
k−1 −Q−1

k−1

�

Υ+k−1 +Q−1
k−1

�−1
Q−1

k−1 (A.156)

or alternatively

Υ−k = Υ
+
k−1 − Υ

+
k−1

�

Υ+k−1 +Q−1
k−1

�−1
Υ+k−1 (A.157)

Υ+k = Υ
−
k +HT

kR−1
k Hk (A.158)

Kk =
�

Υ+k
�−1

HT
kR−1

k (A.159)

x̂−k = x̂+k−1 (A.160)

x̂+k = x̂−k + Kk

�

yk −Hk x̂−k
�

. (A.161)

From (A.157) and (A.158) we get

Υ+k =
�

I− Υ+k−1

�

Υ+k−1 +Q−1
k−1

�−1�

︸ ︷︷ ︸.
=Λk−1

Υ+k−1 +HT
kR−1

k Hk, (A.162)

with the forgetting matrix Λ. Above equation shows the evolution of the information matrix,
which is driven by the measurements as

Υ+k = Λk−1Υ
+
k−1 +HT

kR−1
k Hk (A.163)

Υ+k = Λk−1Υ
+
k−1 + Ik. (A.164)
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We can also write

Λk−1 := I− Υ+k−1

�

Υ+k−1 +Q−1
k−1

�−1
(A.165)

= I− Υ+k−1

�

I− P+k−1

�

P+k−1 +Qk−1

�−1�
P+k−1 (A.166)

= P+k−1

�

P+k−1 +Qk−1

�−1
, (A.167)

where we derived the last equations by applying above matrix inversion lemma again. This
representation makes it easy to see that for Qk−1 = 0, Λk−1 = I, which means that in this
case, no forgetting (and therefor no reduction of information), takes place. Since, unless we
can and want to influence the trajectory of the system, the information gain Ik = HT

kR−1
k Hk is

solely given by the nature of the system evolution. What remains as a design parameter, is
the parameter noise covariance matrix Q.

A.6.5 Square-root formulations

Square-root forms of Kalman filters and their derivates have been originally developed to
avoid numerical problems on embedded computers with limited numerical precision. The
basic idea is to predict and update the square-root of the covariance matrix, instead of the
covariance itself. This was shown to dramatically improve the numerical properties of the
solution under certain circumstances [LW+12].

More in detail, the idea of square-root filtering is to decompose the covariance matrix P
into the matrix square-root such that P = SST. If then, instead of propagating P directly,
its square-root S is propagated, one can make sure that the resulting covariance matrix
will always be positive semi-definite [Sim06]. The Cholesky Matrix Square Root Algorithm
[Sim06], p. 160 can be used to calculate a possible solution for S from a given P. The
reason for gaining precision by working with the matrix square-root is that the condition
number of the matrix P is the square of the condition number of the matrix S, and hence one
achieves twice the precision when calculating the matrix inverse on a computer with limited
numerical precision, or when the elements of the covariance matrix have very different nu-
merical ranges. The latter appears frequently when dealing with different variable scaling,
for example due to the use of different units.

Various square-root forms of different filter types have been proposed since the 1960s,
which all follow this basic idea. They include square-root forms of the Kalman filter (see
section A.6.5), of sigma-point filters (see for example [Mer04]) and of information filters
(see section A.6.5).

In the following subsections, we want to shortly present some ideas and information
about the different filter types of square-root filtering. This mostly aims to help the reader
categorize different filter methods. Nevertheless, a profound treatment of square-root forms
of all filters would be out of scope of this presentation.

Square-root form of the Kalman filter

According to [Sim06], p. 158, the square-root form of the Kalman filter was most likely
originally proposed by Potter [PS63] and used in the Apollo manned mission.

A profound treatment of square-root forms of the standard, linear Kalman filter would
be out of scope of this presentation, but the interested reader is referred to [Sim06], section
6.3. At this point, we only want to point out that various algorithms have been proposed to
calculate the update of the square-root of the covariance matrix. Since the matrix square-root
is not unique, these algorithms might find different results. Besides Potter’s algorithm [PS63],
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alternatives include algorithms based on orthogonal transformations, like the Householder’s
algorithm, the Gram-Schmidt algorithm, modified Gram-Schmidt algorithm or the Givens
transformation (see [Sim06], p. 163 and references therein).

Square-root sigma-point information filtering

In section A.6.5, we already learned some background information about square-root Kalman
filters. The main idea behind this form of Kalman filter is to propagate the matrix square-
root of the error covariance matrix instead of the covariance itself, which results in higher
numerical robustness and precision. This idea can be applied to different variants of Kalman
filters, and instead of propagating the square-root of the error covariance matrix, for example,
one can propagate the square-root of the information matrix. Here, we want to present
the square-root form of sigma-point information filters as proposed by Liu, Worgotter, and
Markelic [LW+12]. This variant is essentially a combination of information filtering and the
square-root formulation, while for the covariance calculation, sigma-points are generated. As
with the original sigma-point algorithm family, the generation of sigma-points can be either
done via the unscented transform or by using Stirling’s interpolation, resulting in the central
difference form of a sigma-point filter. In that sense, besides the properties of the original
sigma-point algorithms, using a square-root formulation inherits the increased numerical
properties of the square-root algorithms. Again, these are improved numerical accuracy,
higher precision and preservation of symmetry. In their paper [LW+12], they showed that the
square-root central difference filter also preserves the positive-definiteness of the information
matrix, and hence this filter is preferable to the square-root unscented information filter as
well all the non-square root versions. As in the original paper, we will refer to the square-root
version of the sigma-point information filters as Square-root Unscented Information Filter
(SRUIF) and SRCDIF.

Square-root central difference information filter (SRCDIF)

As outlined in [LW+12], the SRCDIF applies three powerful matrix factorization techniques,
namely

• the QR-decomposition

• the Cholesky Factor update

• and Efficient least-squares

Details on the QR-decomposition can be found in Section A.3.4. The Cholesky Factor update
[Mat19a] is an efficient method to calculate the Cholesky factor

chol
�

A+ x xT
	

= cholupdate {R, x ,+} , (A.168)

from the Cholesky factor R = chol {A}. Efficient least-squares solves the linear equation
P x = b by using the Cholesky factor S (satisfying P = SST), resulting in the expression
x = S−T
�

S−1 b
�

. This reduces the computational complexity of the least-squares operation to
O
�

n2
�

[LW+12].
Here we summarize the SRCDIF as presented in [LW+12], but with slightly modified

notation for consistency. The system considered in [LW+12] is given as

xk = f (xk−1, uk−1,ωk−1) (A.169)

yk = h(xk) + νk, (A.170)
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where x ∈ Rn
x , u ∈ Rnu , ω ∈ Rnω are the state, input and process noise vectors, and y ∈ Rny ,

ν ∈ Rnν are the measurement / observation vector and measurement noise vector, respec-
tively. We also assume the noises to be normally distributed as in (A.105). Note that above
system is less general than the one considered for the UKF since only additive measurement
noise is present.

Similar to the equations in section A.6.3, we define an augmented sigma-point matrix
consisting of state vectors and process noise vectors:

X̃ =
�

X
Xω

�

∈ Rn×2n+1, (A.171)

where n= nx+nω is the dimension of the augmented state vector. Algorithm 1 from [LW+12]
can then be rewritten as:

1. Initialize filter

x̂+0 = E [x0] (A.172)

Ŝ+x0
= chol
�

E
�

(x0 − x̂+0 )(x0 − x̂+0 )
T
�	

(A.173)

Sω =
p

Q = chol {Q} (A.174)

Sν =
p

R= chol {R} (A.175)

2. For k = 1,2, . . . ,∞ perform:

Generate sigma-points for prediction:

x̃k−1 =

�

xk−1
ω̄

�

(A.176)

S̃k−1 =

�

Sxk−1
0

0 Sωk−1

�

(A.177)

X̃k−1 =
�

x̃k−1 x̃k−1 + hS̃k−1 x̃k−1 − hS̃k−1

�

. (A.178)

Prediction equations:

X−k = f (Xk−1, uk−1,Xωk−1) (A.179)

x̂−k =
2n+1
∑

i=1

w(m)i X−i,k (A.180)

A=
r

w(c1)
2

�

X−2:n+1,k −X−n+2:2n+1,k

�

(A.181)

B =
r

w(c2)
2

�

X−2:n+1,k +X−n+2:2n+1,k − 2X−1,k

�

(A.182)

Ŝ−xk
= qr
��

A B
�	

(A.183)

ι−k =
�

Ŝ−xk

�−T ��

Ŝ−xk

�−1
x̂−k

�

(A.184)

Ŝ−ιk = qr
n
�

Ŝ−xk

�−1
I
o

(A.185)

Generate sigma-points for measurement update:

X̃ y
k =
�

x̂−k x̂−k + hŜ−xk
x̂−k − hŜ−xk

�

(A.186)
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Measurement update:

Y−k = h
�

X̃ y
k

�

(A.187)

ŷk =
2n+1
∑

i=1

w(m)i Y−i,k (A.188)

P̂xk ỹk
=
r

w(c1)
2 Ŝ−xk

�

Y−2:n+1,k −Y−n+2:2n+1,k

�T
(A.189)

U =
�

Ŝ−xk

�−T ��

Ŝ−xk

�−1
P̂xk ỹk

�

S−T
ν (A.190)

ι̂+k = ι̂
−
k + US−1

ν

�

yk − ŷ−k + P̂T
xk ỹk
ι̂−k

�

(A.191)

S+ιk = cholupdate
¦

Ŝ−ιk , U ,+
©

. (A.192)

In above algorithm, I is the identity matrix of appropriate size. The weighting parameters
w(m)i , w(c1)

i and w(c2)
i are calculated as follows [LW+12]:

wm
1 =

h2 − n
h2

i = 1

wm
i =

1
2h2

i = 2, . . . , 2n+ 1

w(c1)
i =

1
4h2

i = 2, . . . , 2n+ 1

w(c2)
i =

h2 − 1
4h2

i = 2, . . . , 2n+ 1

. (A.193)

Note that different from the paper, we used 1-indexing in the sums and definitions above,
which is also used in MATLAB®. The scaling parameter h is the scalar central difference
interval size, which defines the spread of the distribution of the sigma-points. The optimal
value for h was reported in [Mer04], p. 68, to be the square root of the kurtosis of the
prior distribution of z = S−1

x x . For Gaussian distributions, this leads to an optimal value of
hopt =

p
3 [Mer04; LW+12].

A.7 The particle filter

As an alternative to Kalman filtering, we quickly introduce the background to particle filtering
techniques. We will perform a comparison between Kalman filter techniques and the particle
filter in Chapter 6. We only want to roughly highlight the idea behind particle filtering here
for the sake of brevity, but a full tutorial on particle filtering can be found, for example, in
Simon [Sim06]. The particle filter algorithm works as follows [Sim06]. Suppose our system
is given as

xk = fk−1 (xk−1, uk−1,ωk−1) (A.194)

yk = hk (xk,νk) (A.195)

withωk and νk being independent white noise processes with known PDFs. The particle filter
then subsequently performs the following steps:

1. Randomly generate a number of N particles, distributed according to the assumed
known PDF of the initial state p(x0), denoted by x+0,i(i = 1, ...N).
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2. For k = 1,2, . . . do

(a) Propagation step: propagate the particles to obtain a priori particles x−0,i by using
the known process equation and the known PDF of the process noise

x−k,i = fk−1

�

x+k−1,i , uk−1,ωi
k−1

�

(i = 1, . . . , N) (A.196)

with each ωi
k−1 noise vector is randomly generated on the basis of the known PDF

of ωk−1.

(b) Compute the relative likelihood qi of each particle, given the measurement ob-
servation yk. This can be done by evaluating the PDF p(yk|x−k,i) on basis of the
measurement equation and the PDF of the measurement noise.

(c) Then normalize the relative likelihoods so that the sum of all equals to one:

qi =
qi
∑N

j=1 q j

(A.197)

(d) Resampling step: generate a set of a posteriori particles x+k,i on basis of the ob-
tained relative likelihoods

(e) Now, given the set of a posteriori particles which are distributed according to the
PDF p (xk|yk), any statistical measure can be calculated, for example the mean and
covariance.

A variety of variants exist, especially regarding the details of how the resampling step is
performed. An overview is given in [LB+15].

A.8 Parameter estimation using Kalman filters

A.8.1 Parameters only estimation

We already outlined the problem formulation for the parameters-only estimation in state
space form in Section A.1.3 as

θk = θk−1 +ω
θ
k−1 (A.198)

yk = h(φk,θk,νk). (A.199)

The application of the Extended Kalman filter or Uncented Kalman filter to this problem is
straightforward, one only has to use the parameter vector θk in place of the state vector xk.
For measurement equations which are Linear-in-Parameters, by adding the assumption of
constant parameters, the linear Kalman Filter can be applied on the system

θk = θk−1 +ω
θ
k−1 (A.200)

yk = φ
T
kθk + νk. (A.201)

The formulation of the linear Kalman filter equations for this special case is given in Algo-
rithm 8. Note that thanks to the parameter noise ωθ , this formulation also allows to track
time-varying parameters to certain degree, since this will keep the parameter estimation error
covariance matrix lower bounded.
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A.8.2 Enforcing parameter constraints

The assumption of parameters being Gaussian random variables might be, for many real
world applications, somewhat contradictory to the true range of physical values which pa-
rameters can have. For example, parameter estimates being negative might often be phys-
ically impossible. Therefore, various methods to deal with enforcing parameter constraints
within parameters-only Kalman Filtering have been proposed.

The naive solution of just saturating parameters to certain box constraints can cause insta-
bility of the Kalman Filter algorithm, since optimality conditions are then violated. A survey
on methods to overcome this situation is given in Simon [Sim10], and other solutions were
presented for example in Rao, Rawlings, and Lee [RR+01] and Kandepu, Imsland, and Foss
[KI+08]. Altmannshofer, Endisch, et al. [AE+16] applied the method proposed by Timmons,
Chizeck, et al. [TC+97], which we will shortly present in the following along the lines of Alt-
mannshofer, Endisch, et al. The algorithm is derived for the Linear-in-Parameters problem.
We consider linear equality and inequality constraints, which can be formulated as the linear
matrix inequality

Lθ̂ ≤ c, (A.202)

where L = [I,−I]T, and c = [θmax,−θmin]T. The minimization of an original unconstrained
cost function

J(θ̂ ) =
1
2
(y −Φθ )T (y −Φθ ) (A.203)

can be written as constrained problem using the Lagrangian

L(θ̂ ,η) = J(θ̂ )−ηT
�

c − Lθ̂
�

, (A.204)

where η is the vector of Lagrangian variables. This optimization problem has to satisfy the
Karush-Kuhn-Tucker conditions, which in this case yields

c − Lθ̂ ≥ 0 (A.205a)

η≥ 0 (A.205b)

ηT
�

c − Lθ̂
�

= 0 (A.205c)

−ΦT
�

y −Φθ̂
�

+ LTη= 0. (A.205d)

Solving (A.205d) for θ̂ yields

θ̂c =
�

ΦTΦ
�−1
ΦT y −
�

ΦTΦ
�−1

LTη (A.206)

= PΦT y − P LTη (A.207)

= θ̂ − P LTη, (A.208)

for the constrained solution θ̂c using the fact that
�

ΦTΦ
�−1
= P and that the unconstrained

solution is given as θ̂ = PΦT y . Above, both the unconstrained solution θ̂ and P can be used
from the current solution found by a recursive algorithm. The Lagrangian variable η can be
found by solving a complementary linear program, for which additional slack variables µ are
introduced, to solve

µ= c − Lθ̂c ≥ 0, (A.209)

which yields

µ= LP LTη+ c − Lθ̂ (A.210a)

µ≥ 0 (A.210b)

η≥ 0 (A.210c)

µTη= 0. (A.210d)
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To solve this linear complementarity program efficiently, Lemke’s pivoting algorithm as
found in Almqvist [Alm19] can be used, as also suggested by Altmannshofer, Endisch, et
al. [AE+16].

A.8.3 Combined state and parameter estimation using Kalman Filters

Joint estimation using Kalman filters

Both Kalman Filter and particle filter frameworks can be used to estimate unknown system
parameters together with the system states in a joint estimation framework, which we pre-
sented in Section A.1.1. According to Simon [Sim06], the first one to apply this method using
a Kalman Filter might have been Kopp and Orford [KO63]. The application of the various
filters is straightforward, since the state vector x in the Kalman Filter equations only has to
be substituted by the augmented state vector x̃ .

Dual Extended Kalman Filter

As outlined in Section A.1.2, the dual estimation problem finds estimates both for states and
parameters of a system given as

xk = f (xk−1, uk−1,θk−1,ωk−1) (A.211)

yk = h(xk, uk,νk), (A.212)

and a parameter model given in state space form as

θk = θk−1 +ω
θ
k−1 (A.213)

yθk = g(xk, uk,θk,νθk ). (A.214)

Again, we assume independent white Gaussian noise processes for all the noise terms above.
As proposed by Wan and Nelson [WN97] and further elaborated in Nelson [Nel00] and
Haykin [Hay01] we can solve the dual estimation problem using EKFs.

In principle, the method works by concurrently running two separate Kalman filters for
the state and parameter estimation. Nevertheless, special care has to be taken when deriving
the Jacobians used in the Taylor expansion of the EKF equations. Since the filters are con-
nected, there is an inter-dependency between the state estimation value and the parameter
estimation value used for obtaining the state estimation. This becomes evident, if we re-write
above system for the parameter evolution as

θk = θk−1 +ω
θ
k−1 (A.215)

yθk = g( f (xk−1, uk−1,θk−1,ωk−1), uk,θk,νθk ). (A.216)

Here, we replaced the value for the state xk by its function representation. We obtain the
following equations for the two EKFs: Definition of the Jacobians:

F̂k =
d f
�

xk, uk, θ̂−k ,ωk

�

dxk

�

�

�

�

�

xk= x̂+k

L̂k =
d f
�

xk, uk, θ̂−k ,ωk

�

dωk

�

�

�

�

�

ωk=ω̄

Ĥ x
k =

dh
�

xk, uk, θ̂−k ,νk

�

dxk

�

�

�

�

�

xk= x̂−k

M̂ x
k =

dh
�

xk, uk, θ̂−k ,νk

�

dνk

�

�

�

�

�

νk=ν̄

Ĥθk =
dg
�

x̂−k , uk,θ ,νθk
�

dθ

�

�

�

�

θ=θ̂−k

M̂θ
k =

dg
�

x̂−k , uk,θ , ek

�

dνθk

�

�

�

�

νθk=ν̄
θ
k

,

(A.217)
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where the recursive calculation of the total derivative of the weight matrix has to be considered,
and following the chain rule results in:

Ĥθk =
dg
�

x̂−k , uk,θ
�

dθ

�

�

�

�

�

θ=θ̂−k

=

dg
�

x̂−k , uk,θ
�

dθ
=
∂ g
�

x̂−k , uk,θ
�

∂ θ
+
∂ g
�

x̂−k , uk,θ
�

∂ x̂−k

d x̂−k
dθ

d x̂−k
dθ
=
∂ f
�

x̂+k−1, uk−1,θ
�

∂ θ
+
∂ f
�

x̂+k−1, uk−1,θ
�

∂ x̂+k−1

d x̂+k−1

dθ

d x̂+k−1

dθ
=

d x̂−k−1

dθ
− K x

k−1

dg
�

x̂−k−1, uk−1,θ
�

dθ
.

(A.218)

Theoretically, the dependency of Kk−1 on the parameter estimation would have to be con-
sidered, but practically, this dependence is known to be small and hence can be neglected
[Nel00; Hay01]. In case that the observation equation g(·) = C xk, the total derivative results
to [Nel00] p. 102:

Ĥθk =
dg
�

x̂−k , uk,θ
�

dθ

�

�

�

�

�

θ=θ̂−k

=

dg
�

x̂−k , uk,θ
�

dθ
= C

d x̂−k
dθ
=
∂ f
�

x̂+k−1, uk−1,θ
�

∂ θ
+
∂ f
�

x̂+k−1, uk−1,θ
�

∂ x̂+k−1

d x̂+k−1

dθ

d x̂+k−1

dθ
=
�

I− K x
k−1C
� d x̂−k−1

dθ
+
∂ K x

k−1

∂ θ

�

yθk − C x̂−k−1

�

,

(A.219)

where
∂ K x

k−1

∂ θ
≈ 0 is typically neglected.

Summary of Dual EKF equations We can summarize the Dual EKF steps are as follows:
Initialization:

θ̂+0 = E [θ0] , P+
θ̃ ,0
= E
�

�

θ0 − θ̂+0
� �

θ0 − θ̂+0
�T�

x̂+0 = E [x0] , P+x̃ ,0 = E
�

�

x0 − x̂+0
� �

x0 − x̂+0
�T
�

.
(A.220)

Computation: for k = 1,2, . . . calculate: Time update for parameter filter:

θ̂−k = θ̂
+
k−1 (A.221)

P−
θ̃ ,k
= P+

θ̃ ,k−1
+Qθ (A.222)

Time update for state filter:

x̂−k = f
�

x̂+k−1, uk−1, θ̂−k , ω̄
�

(A.223)

P−x̃ ,k = F̂k−1P+x̃ ,k−1 F̂T
k−1 + L̂k−1QL̂T

k−1 (A.224)

Measurement update for state filter:

K x
k = P−x̃ ,kĤT

k

�

ĤkP−x̃ ,kĤT
k + M̂kRM̂T

k

�−1
(A.225)

x̂+k = x̂−k + K x
k

�

yk − h
�

x̂−k , uk, θ̂−k , ν̄
��

(A.226)

P+x̃ ,k = P−x̃ ,k − K x
k Rk

�

K x
k

�T
(A.227)
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Measurement update for parameter filter:

Kθk = P−
θ̃ ,k

�

Ĥθk
�T
h

Ĥθk P−
θ̃ ,k

�

Ĥθk
�T
+ M̂θ

k Rθ
�

M̂θ
k

�T
i−1

(A.228)

θ̂+k = θ̂
−
k + Kθk
�

yθk − h
�

x̂−k , uk, θ̂−k , ē
��

(A.229)

P+
θ̃ ,k
= P−

θ̃ ,k
− Kθk Pz̃,k

�

Kθk
�T

. (A.230)

A.8.4 One-step Kalman filter equations

Alternatively, the prediction and correction step of the classical Kalman filter equations can
be merged into single equations. This will be useful for the derivation of the Stenlund-
Gustafsson filter in Section A.8.5. As derived more in detail in [Sim06], p. 131, one can
combine the covariance propagation formula (A.77) with the posterior covariance update
formula (A.73) and write for the a priori state error covariance update:

P−k+1 = Fk

�

P−k − KkHkP−k
�

FT
k +Qk

= FkP−k FT
k − FkKkHkP−k FT

k +Qk

= FkP−k FT
k − FkP−k HT

k

�

HkP−k HT
k + Rk

�−1
HkP−k FT

k +Qk

(A.231)

where for the last equation, the identity Kk = P−k HT
k

�

HkP−k HT
k + Rk

�−1
for the optimal Kalman

gain as given in (A.75) was used. This last equation in (A.231) is termed a time-discrete
matrix Ricatti equation. Similar, the following equations can be derived for the a posteriori
state and error covariance matrix:

x̂+k = (I− KkHk)
�

Fk−1 x̂+k−1 + Gk−1uk−1

�

+ Kk yk

P+k = (I− KkHk)
�

Fk−1P+k−1FT
k−1 +Qk−1

�

.
(A.232)

For a system with unity dynamics Fk = I and no input, as given in parameter estimation
problems, this simplifies to:

P−k+1 = (I− KkHk)P
−
k +Qk

= P−k − KkHkP−k +Qk

= P−k − P−k HT
k

�

HkP−k HT
k + Rk

�−1
HkP−k +Qk.

(A.233)

and
x̂+k = (I− KkHk) x̂+k−1 + Kk yk

P+k = (I− KkHk)
�

P+k−1 +Qk−1

�

.
(A.234)

Alternatively, we can instead also combine (A.74) and (A.77) to get Josephs form of the one-
step Kalman filter equation:

P−k+1 = Fk

�

(I− KkHk)P
−
k (I− KkHk)

T + KkRkKT
k

�

FT
k +Qk. (A.235)

A.8.5 Stenlund-Gustafsson anti-windup scheme

A modification of the Kalman filter for the least-squares parameter estimation problem is the
Stenlund-Gustafsson anti-windup scheme originally proposed in Stenlund and Gustafsson
[SG02]. It can be applied to parameter estimation problems which are Linear-in-Parameters
and have a scalar observation. The algorithm can be interpreted as a process-noise adaptation
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scheme for Kalman filtering. Consider a scalar, Linear-in-Parameters observation of a constant
parameter vector with the observation

yk = φ
T
kθ + ν, (A.236)

and a constant parameter model, but with some additive, white Gaussian noise

θk+1 = θk +ωθ ,k. (A.237)

Let us recall the Kalman filter equations for recursive estimation of the parameter vector θ :
The parameter update is given by

θ̂k+1 = θ̂k + Kk

�

yk −φT
kθ̂k

�

(A.238)

with the optimal (in the minimum a posteriori parameter error covariance matrix sense
[EM05]) Kalman gain

Kk =
P−k φk

rk +φT
kP−k φk

. (A.239)

The principle of the Stenlund-Gustafsson algorithm becomes obvious, by looking at the co-
variance matrix update formula, given in the one-step update form, which we derived in
Section A.8.4. For the parameter estimation problem, for which the system dynamic matrix is
the identity matrix, and a scalar observation, meaning that Rk = rk ∈ R1, the discrete Ricatti
equation from (A.233) becomes

P−k+1 = P−k −
P−k φkφ

T
kP−k

rk +φT
kP−k φk

+Qk. (A.240)

In the parameter estimation problem, the parameter covariance matrix Q can be seen as a
design parameter. From (A.240), it can easily be seen that by choosing the parameter noise
covariance matrix as suggested by Stenlund-Gustafsson [SG02]:

Qk =
Pdφkφ

T
kPd

rk +φT
kPdφk

(A.241)

results in a system with the equilibrium point at the design matrix Pd . Further details and
a profound discussion on convergence properties for the Stenlund-Gustafsson filter can be
found in [EM05] and [ME09].

A.8.6 Instrumental Variables Kalman Filter

In many cases, the assumption, that in the measurement equation

yk = φ
T
kθk + νk (A.242)

only additive Gaussian output noise ν is present, does not hold in practice. Rather, one is
faced with additional noise in the independent variable, such that

yk =
�

φk + νφ,k

�T
θk + νk. (A.243)

This is known as the “Errors-in-Variables” problem [MM00; Söd07], which causes attenuation
bias. To reduce this bias, various methods have been proposed. One method to mitigate these
unwanted effects is the one of Instrumental Variabless (IVs) (see for example [PS12] and
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references therein), which was already proposed in the context of vehicle mass estimation
[RH+16; Rho16]. See a discussion on alternative solutions to this more general problem in
Section 6.3, and a simulation study which demonstrates the effect of both Errors-in-Variables
and the method of IV in Section 6.4.2. Here, for the sake of brevity, we only want to quickly
introduce the method in the context of Kalman Filtering for parameter estimation.

The method of Instrumental Variables introduces data variables called instruments, which
need to be uncorrelated with the errors in the feature vector, but correlated with the true
regressors. Delayed measurements of the regressors have been successfully used in the past to
serve as instruments. For the method to work, the Errors-in-Variables needs to be independent
and zero mean, and the regressors need to be changing slowly between measurement samples
[MM00]. A realization of the method can be achieved within the Kalman Filtering framework
by modifying the calculation of the Kalman Gain (A.75), (see Section A.6) to

Kk =
�

P−k Φ
IV
k

� �

r +ΦT P−k Φ
IV
k

�−1
, (A.244)

where ΦIV
k are the instruments, and typically just delayed values of ΦIV

k = Φk−niv
are used.

We will use this technique in combination with other methods in the Kalman-like algorithms
KF-IV (Algorithm 9), SG-KF-IV (Algorithm 11), M-SG-KF-IV (Algorithm 15).

A.9 Robust estimation

While both RLS and Kalman filtering where derived under the assumption of zero-mean,
Gaussian noise, in practice, measurement distributions are often non-Gaussian since mea-
surements include outliers. To take these effects into account, various robust estimation
schemes have been developed. One possibility to take outliers into account is to assume
noise distributions which are different from the Gaussian, and show heavier tails. Algo-
rithms can the be derived, for example by maximum likelihood estimation schemes under
the assumption that noise distributions are known. Unfortunately, typically no closed form
solutions exist for such cases, and iterative algorithms have to be applied, with the drawback
of increased computational load while only providing approximate solutions. Similar to the
duality of a Gaussian noise assumption and the application of a quadratic cost function, al-
ternatively to assuming a certain noise distribution with a known PDF, one can set a certain
cost function instead. Here, any cost function which will penalize higher errors less than the
quadratic function can be seen as a valid instrument to put less weight on outliers, and hence
create a more robust behavior with respect to outliers. A general family of robust estimation
schemes is M-estimation, which we will explain next in Section A.9.2. This builds the founda-
tion for the derivation of the equations for a special member of this family, which is based on
the assumption that measurement noise is distributed according to the Student-t distribution.
We will use this algorithm in our proposed solution presented in Section 6.5. An interesting
fact is that recursive M-estimators, solved using iteratively re-weighed least squares (of which
only the first iteration is performed), can be seen as a general form of a Kalman filter, if a
weight parameter is included. Using different cost functions to derive the algorithms then
only have an influence on this weight parameter. This will be shown in Section A.9.6. For
Gaussian noise, which is equivalent to squared losses, the resulting weight is the unit weight,
and the algorithm is reduced to standard Kalman Filtering. This means that the M-estimator
based on Kalman Filtering can be seen as a generalization of the Linear Kalman Filter.
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A.9.1 Maximum likelihood estimation

A maximum likelihood estimate is the point where the likelihood function is maximized,
and hence the derivative of the likelihood function with respect to the estimated parameter
becomes zero. For independent and identically distributed observations / residuals ei, the
maximum likelihood estimate θ̂ satisfies

θ̂ = argmax L(e,θ ) = argmax
θ

� n
∏

i=1

p (ei ,θ )

�

, (A.245)

or, equivalently,

θ̂ = argminℓ(e,θ ) = argmin
θ

� n
∑

i=1

− log (p (ei ,θ ))

�

. (A.246)

The last expression is equivalent since taking the logarithm of an objective function does
not change the location of the extremum, but has the nice property that the product of the
terms becomes a sum after taking the logarithm. We used the likelihood function L(e,θ ) and
the log-likelihood function ℓ(e,θ ) in the expressions above, while the function p denotes the
probability density function of a given probability distribution.

A.9.2 M-estimation

As outlined in section A.2.3, least squares regression can be seen as a special case of a more
general class of estimation algorithms, namely Maximum Likelihood Estimation (MLE). An
even broader class of estimation algorithms than maximum likelihood estimation is termed
M-estimation. M-Estimators minimize the value of an objective function, which sums a num-
ber of m outcomes of a (nonlinear) weight function ρ, dependent on residuals ei:

θ̂ = argmin
θ

m
∑

i=1

ρ(ei). (A.247)

In M-estimation, the residuals are assumed to be models which are linear in the parameters
of the form ei = φTθ . In the special case that the weighting function ρ is the negative
log-likelihood of a probability distribution, the M-estimator becomes a maximum likelihood
estimator.

For M-estimators, more general functions with certain properties can be used instead of
the ones derived from true probability and likelihood functions. A very popular one is the
Huber loss function, proposed originally by Huber [Hub73]. A recent survey of functions
used in robust estimation can be found in [MP+21]. If derived from true probability density
functions, densities which have heavier tails than the Gaussian distribution help to down-
weight outliers, as can be seen from the next sections.

A.9.3 Iteratively re-weighted least squares

Finding a solution to the maximum likelihood problem in general involves the solution of a
nonlinear function and no closed form algebraic expression can be derived. Such problems
can be solved by iteratively re-weighted least squares, which we want to shortly present here.
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The parameters minimizing the objective function as given in (A.247) fulfill the following
equality, obtained by finding the root of the derivative of (A.247):

n
∑

i=1

ψ (ei)φi = 0, (A.248)

with the influence function defined as ψ = ∂ ρ
∂ e . Defining weights as wi(ei) =

ψ(ei)
ei

, this can be
rewritten as

n
∑

i=1

wieiφi =
n
∑

i=1

wi

�

yi −φT
i θ
�

φi = 0, (A.249)

which is equivalent to solving a weighted least squares problem of the form

min
θ

n
∑

i=1

w2
i e2

i . (A.250)

Since the weights wi(ei(θ )) are depending on the unknown parameters, this can only be
solved in a iterative manner, and the algorithm is termed Iteratively Re-weighted Least
Squares (IRLS). At each iteration, the weights have to be updated and an updated parameter
can be calculated using

θi+1 =
�

ΦTWiΦ
�−1
ΦTWi y, (A.251)

with the regressor matrix Φ composed of rows of vectors φT, and the diagonal weight matrix
W = diag{wi}. As shown for example in [Gre84], the iteratively re-weighted least squares
algorithm can be derived from performing Newton-Raphson steps at each iteration. A more
general derivation along this lines looks like the following: Let us aim to find the maximum
of the log-likelihood function ℓ(θ )

ℓ(e(θ )) =
m
∑

i=1

− log (p (e(θ ))) , (A.252)

which is a function of the residuals e(θ ), which is again a function of the unknown parameter
vector θ . We need to find θ such that the gradient of the likelihood fulfills

∇ℓ(e(θ )) = Jℓ =
∂

∂ θ
ℓ=
�

∂ e
∂ θ

�T ∂ ℓ

∂ e
= DTα= 0, (A.253)

where the matrix D = ∂ e
∂ θ and a vector α = ∂ ℓ

∂ e , as well as the Jacobian Jℓ were introduced.
As shown in [Gre84], a Newton-Raphson step for an iterative solution would be to solve the
system of linear equations:

−Hℓ(θ ) (θi+1 − θi) = Jℓ = DTα, (A.254)

with the Hessian Hℓ. Expanding Hℓ yields

∂

∂ θ

�

�

∂ e
∂ θ

�T ∂ ℓ

∂ e

�

=
∑ ∂ ℓ

∂ ei

∂ 2ei

∂ θ∂ θT
+
�

∂ ei

∂ θ

�T ∂ 2ℓ

∂ e∂ eT

�

∂ ei

∂ θ

�

. (A.255)

A general strategy to simplify the expression of the Hessian is by approximating the terms on
the right by their expectations at the current parameter values (also denoted Fisher scoring
[Gre84]). Then, the Hessian can be written as

Hℓ(θ ) = DTW D, (A.256)
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where the weight matrix W = E
�

∂ ℓ
∂ e

�

∂ ℓ
∂ e

�T�

was introduced. The Newton step can then be
rewritten as

θi+1 = θi − (DTW D)−1DTα (A.257)

θi+1 = (D
TW D)−1DTW
�

Dθi −W−1α
�

︸ ︷︷ ︸

z

. (A.258)

In the last expression, matrices where factored out in order to see that this is the solution to
a weighted least squares problem of the from

θ̂ = argmin
θ
(W−1α+ D(θ − θ ∗)TW (W−1α+ D(θ − θ ∗). (A.259)

In the case that the residuals are given by e = y−Φθ , then D = −Φ. For independent residuals,
the weighting matrix results into a diagonal matrix, and the weighted least squares problem
simplifies with the diagonal entries wi of the weight matrix to:

θ̂ = arg min
θ

m
∑

i=1

wi(zi −φT
i θ )

2, (A.260)

while the Newton step is found as the solution to

ΦTWΦ(θi+1 − θi) = Φ
T ∂ ℓ

∂ e
. (A.261)

A.9.4 Maximum likelihood estimation for normal distribution

If we want to minimize the residuals ek of a linear model given by ek = yk −φT
kθ under the

assumption that the residuals follow a Gaussian normal distribution pn(e), given by the PDF

pn(e) =
1

σn
p

2π
exp

�

−
(e−µn)

2

2σ2
n

�

. (A.262)

Taking the negative logarithm for the normal PDF yields

− log pn(e) = − log

�

1

σn
p

2π

�

+

�

1
2σ2

n

�

(e−µn)
2 = C1 + C2 (e−µn)

2 . (A.263)

Since both the additive and multiplicative constants do not alter the location of an extremum
of the above function, the maximum likelihood estimation under the assumption of normally
distributed residuals with zero mean, can easily be seen equivalent to minimizing the square
of the residuals:

θ̂MLE,N = argmin
θ

∑

(ei)
2 , e ∼N (0,σn) . (A.264)

A.9.5 Maximum likelihood estimation for Student-t distribution

Maximum likelihood estimation based on the Students-t distribution was already used in
the context of vehicle and parameter estimation in Altmannshofer, Endisch, et al. [AE+16].
Since our proposed method will include, in parts, this method, we want to shortly present
some of the background, following the lines of Altmannshofer, Endisch, et al. [AE+16].

The Student-t distribution was originally developed to represent “the frequency distri-
bution of standard deviations of samples drawn from a normal population” [Stu08]. An
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interesting side fact is that the original paper was published by William Sealy Gosset un-
der the pseudonym “Student”, to hide the fact that his employer, the Guinnes Brewery, was
employing statisticians [Box81]. The PDF of the non-standardized Student-t distribution, is
given, for the uni-variate case as

pS(e(θ )) =
Γ
�

ν+1
2

�

Γ
�

ν
2

�

�

1

σ2
Sνπ

�1/2




ν+
�

ei(θi)−µS
σS

�2

ν





− ν+1
2

, (A.265)

where Γ represents the Gamma function, and ν is an additional parameter which describes
the distribution, termed the degrees of freedom. The Student-t distribution is similar in
shape than the normal distribution, but has heavier tails. This leads to maximum likelihood
estimators based on Student-t being more robust to outliers. Taking the logarithm of the
probability density function yields

− log (pS(e(θ )) = C1 + C2 log





ν+
�

ei(θi)−µS
σS

�2

ν



 . (A.266)

The maximum likelihood estimate for the Student-t distribution e ∼ DStudent-t(0,σS ,ν) be-
comes the result of an M-estimator:

θ̂MLE,St = arg min
θ

∑

ρ (ei (θi)) , (A.267)

with

ρ (e (θ )) = log





ν+
�

e(θ )
σS

�2

ν



 . (A.268)

This is a nonlinear optimization problem, which can be solved, for example, using IRLS (see
section A.9.3). The influence function ψ= ∂ ρ/∂ e then takes the form

ψ (e (θ )) =
2 e

σ2
S ν+ e2

, (A.269)

and the weights wi =ψ(ei)/ei for IRLS (see Section A.9.3) are calculated as

wi =
2

σ2
S ν+ e2

i

. (A.270)

Note that the variance of the Student-t distribution, although σS is a scale parameter, is not
given by σ2

S, but defined (only for ν > 2) as follows:

Var(X∼St) = σ
2
S
ν

ν− 2
. (A.271)

A.9.6 M-estimation using Kalman filtering techniques

As we showed in Section A.9.2, the M-estimation problem can be solved by an iterated, re-
weighted least squares algorithm. A recursive version of weighted least squares estimation
in the context of M-estimation was previously proposed in [ZC+00], while they termed their
algorithm a recursive least M-Estimate (RLM) adaptive filter for robust filtering. Based on
this, [RH+16] presented an algorithm in a form similar to the least-squares formulation
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Kalman filter and proposed its application to estimate longitudinal vehicle parameters. In
other words, [ZC+00] used a formulation based on a forgetting factor λ, while [RH+16]
used a formulation using parameter noise covariance Q to achieve a forgetting. Additionally,
they proposed to set Q to a value equivalent to the one proposed by Stenlund and Gustafsson
[SG02] in order to avoid wind-up under lack of excitation. We want to shortly derive the
equations for the recursive, Kalman-like M-estimator in the following. Remember that the
iterated re-weighted least squares solution to the M-estimation problem minimizes

J(e) =
∑

ρ(ei), (A.272)

which is equivalent to minimizing

J(e) =
∑

eT
i w(ei)ei . (A.273)

The regular Kalman filter for a constant state model, as it is the case for parameter estimation,
seeks to minimize a squared cost function J(e) =

∑

eT
i ei, but uses a regularized cost function

to incorporate prior knowledge instead:

JKF = ∥x − x0∥
2
P−1

0
+ ∥e∥2

R−1 . (A.274)

The weights are inverses of the state error covariance matrix P0 and the measurement noise
covariance matrix R. Since the cost function for the M-estimator is a weighted sum in the first
place, one has to additionally consider this weight in the error terms to derive the equations
for the robust Kalman filter:

JKF = ∥x − x0∥
2
P−1

0
+ ∥e∥2

R−1W . (A.275)

If we define a new modified inverse weight matrix R̃−1 = R−1W , the cost function becomes
identical to the one for the Kalman filter. We therefor can use the same equations as for the
Kalman filter, but have to replace the measurement covariance matrix R with R̃=W−1R. The
Kalman gain is then given by

Kk = P−k φ
�

R̃+φTP−k φ
�−1

, (A.276)

which can we rewritten in terms of R and the (scalar) weight wk as

Kk = wkP−k φ
�

R+wkφ
TP−k φ
�−1

, (A.277)

where we factored out the weight parameter. The discrete Ricatti equation will then have the
form:

P−k+1 = P−k − Kkφ
T
kP−k +Qk (A.278)

= P−k −wkP−k φ
�

R+wkφ
T
kP−k φ
�−1
φT

kP−k +Qk. (A.279)

The full algorithm, including Stenlund-Gustafsson adaptation, is given as follows: Consider-
ing the system

θk = θk−1 + ω̃k−1 (A.280)

yk = φ
T
kθk + ν̃k. (A.281)

The robust, Kalman filter like M-estimation procedure with Stenlund-Gustafsson noise co-
variance adaptation works as follows:
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1. Initialize filter

θ̂0 = E [x0] (A.282)

P− = E
�

(x0 − x̂+0 )(x0 − x̂+0 )
T
�

(A.283)

P̂d = user defined (A.284)

2. For k = 1,2, . . . perform:

ek =
�

yk −φT
kθ̂k−1

�

(A.285)

wk =
ψ(ek)

ek
, depending on influence function (A.286)

Kk =
�

wkP−k φk

� �

Rk +wkφ
T
kP−k φk

�−1
(A.287)

θ̂k = θ̂k−1 + Kkek (A.288)

Qk = wkPdφ
�

R+wkφ
T
kPdφ
�−1
φT

kPd (A.289)

P−k+1 = (I− Kkφk)P
−
k +Qk. (A.290)

The algorithm above is identical to the one given in [RH+16], if one rewrites the matrix
inverse in the form of a scalar denominator, as possible for the scalar case.

Proposed modification of error covariance update in M-estimation algorithm We want
to introduce a slight modification to the error covariance update in equation (A.290) of the
M-estimation algorithm presented in Section A.9.6. The modification can be derived showing
that one can split the one-step update into

P+k = (I− Kkφk)P
−
k (A.291)

P−k+1 = P+k +Qk, (A.292)

and alternatively use the update formula known as Joseph’s form, see [Sim06] and (A.74).
In order to adapt this to the given problem of M-estimation, we again have to replace the
measurement covariance matrix R with R̃=W−1R, which yields:

P+k = (I− KkHk)P
−
k (I− KkHk)

T + KkR̃kKT
k (A.293)

= (I− KkHk)P
−
k (I− KkHk)

T + Kk
1

wk
RkKT

k . (A.294)

Using Joseph’s form is known to guarantee a positive definite covariance matrix as a result
(see [Sim06]). This formulation is, for the optimal Kalman Gain, mathematically identical
to the version used in (A.290), but numerically more stable. We introduced this formulation
in an attempt to make Kalman Filtering using Instrumental Variables more stable, where
we found a tendency of the error covariance matrix to become indefinite. A more detailed
discussion can be found in Section 6.4.3. Nevertheless, as we will see there, this could not
solve the difficulties we faced when the error covariance matrix did not stay positive definite
when applying the method of Instrumental Variables IV.

A.10 Observability, identifiability and persistent excitation

The reconstruction of the full state and parameter information from lower-dimensional out-
put data is only possible under certain conditions, which we want to summarize here. Next,
we want to clarify some taxonomy and provide background and definitions.
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A.10.1 State observability

The notion of (state) observability is widely used to express the conditions to reconstruct the
state information from input-output data of dynamical systems. A system is observable only
if there is a unique relationship between the input-output behavior and the system state. If
only a subspace of the full state space information can be observed, a system is generally not
observable, and some of the states remain unobservable.

A.10.2 Detectability

A slightly weaker definition than observablility is the notion of detectability. A system is said
to be detectable, when all the unobservable states are stable, or in other words, if all un-
stable states are observable (for a more formal definition, see for example Grimm, Messina,
Tuna, and Teel [GM+05]). A special case exists, for which the unobservable states are sta-
ble. Then it might be sufficient to ignore the unobservable states, and we might be able to
stabilize the system without knowledge of these stable substates. This is commonly termed
detectability. The concept of observability was introduced by Rudolf E. Kalman [Kal60a] for
linear systems together with its dual controllability. Detectability can be regarded as the dual
of stabilizability in control systems theory.

A.10.3 Identifiability

When analyzing systems with unknown parameters, the concept of parameter identifiabil-
ity aims to answer the question if the system parameters can be estimated by observing
the system output. The mathematical property of structural identifiability was introduced to
describe, if it is theoretically possible to determine the true value of a parameter from ob-
servations of the model output [CD80; God99; VE+19]. While structural identifiability does
not take into account limitations which may arise from data quantity or quality, practical
identifiability also accounts for these effects and aims to describe if a system, given certain
input-output data, is parameter identifiabel in practice.

Identifiability can be analyzed for example by augmenting the state by the unknown pa-
rameters and performing an observability analysis. As noted for example by [VE+19] and
references therein, for general nonlinear systems, structural identifiability does not only de-
pend on the system dynamics but also on:

• specific values of initial conditions

• the system output definition

• the type of perturbations introduced to the system by its input signals

The last point is related to the notion of persistent excitation, which is discussed in Sec-
tion A.10.4. Necessary and sufficient conditions for observability and identifiablility were
provided by various authors, probably starting from Kalman [Kal60a] for linear systems, Wal-
ter [Wal82] for nonlinear discrete and continuous system, and Isidori [Isi85] for nonlinear
continuous systems. An extension to nonlinear DAEs can be found in Gerdin [Ger06].

In order to provide necessary conditions for observability and identifiability, we consider
the general description of a nonlinear and time-continuous system Σ in state space form given
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as

Σ :











ẋ(t) = f (x(t), u(t), w(t),θ ))
y(t) = h(x(t),θ )
x0 = x(t0,θ ),

(A.295)

where f and h are analytic vector functions, θ ∈ Rq is the vector of system parameters,
u(t) ∈ Rr the input vector of known inputs (which might include known disturbances together
with control inputs), w(t) ∈ Rs the input vector of unknown inputs or disturbances, x(t) ∈ Rn

the state variable vector and y(t) ∈ Rm the output vector. For the purpose of jointly estimating
the parameters θ , system Σ will be enhanced by x̃ = (x ,θ ) and θ̇ = 0. Note that for the
purpose of determining the structural identifiability, we only consider a deterministic system
without any process and measurement noise. The identifiability of the augmented system can
be determined by calculating the rank of the observability-identifiabilty matrix OI( x̃), see for
example [VE+19], which is defined as

OI( x̃) =















∂
∂ x̃ h( x̃)

∂
∂ x̃ (L f h( x̃))
∂
∂ x̃ (L

2
f h( x̃))
...

∂
∂ x̃ (L

n+q−1
f h( x̃))















, (A.296)

with L f h( x̃) being the Lie derivative of h with respect to f , defined by:

L f h( x̃) =
∂ h( x̃)
∂ x̃

f ( x̃ , u), (A.297)

and higher order Lie derivatives being recursively calculated as:

L2
f h( x̃) =

∂L f h( x̃)

∂ x̃
f ( x̃ , u), (A.298)

... (A.299)

Li
f h( x̃) =

∂Li−1
f h( x̃)

∂ x̃
f ( x̃ , u). (A.300)

For constant inputs u(t) = u, OI( x̃) this yields to

OI( x̃) =















∂
∂ x̃ y(t)
∂
∂ x̃ ẏ(t)
∂
∂ x̃ ÿ(t)

...
∂
∂ x̃ yn+q−1(t)















, (A.301)

and the rank test of the Observability-Identifiability Condition (OIC) can be directly applied:

Theorem 1 (Observability-Identifiability Condition (OIC, see [VE+19], Section D, Theorem
2)). If the system Σ given by (A.295) with constant input u satisfies rank {OI( x̃0)}= n+q, with
OI( x̃0) given by (A.301), then it is observable and (at least locally) identifiable in a neighborhood
N( x̃0) of x̃0.
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Villaverde, Evans, Chappell, and Banga [VE+19] recently proposed advances in nonlinear
system identification and offer a methodology of determining whether a certain time-varying
input is sufficiently exciting to guarantee structural identifiability by considering if the time
derivative of this input must be non-zero. In their proposal, they consider extended Lie
derivatives to correctly consider the effect of time-varying inputs, and assesses whether an
observability-identifiability matrix has full rank. Previous methods might have failed and
wrongly classified a identifiable model as unidentifiable, if a time-varying input is required
and a constant input would not excite the system dynamics sufficiently. The extended Lie
derivative in case of time-varying inputs u(t), defined for output functions which do not
directly depend on the input (h( x̃) and not h( x̃ , u)) by:

L f h( x̃) =
∂ h( x̃)
∂ x̃

f ( x̃ , u), (A.302a)

Li
f h( x̃) =

∂Li−1
f h( x̃)

∂ x̃
f ( x̃ , u) +

j=i−2
∑

j=0

∂Li−1
f h( x̃)

∂ u( j)
u( j+1), (A.302b)

with u( j) and u( j+1) denoting the j th and the ( j + 1)th derivatives of the input u(t). This
preserves the correspondence between output derivatives and Lie derivatives and allows to
perform the rank test with conditions for the derivatives of the input variable. For example,
if OI( x̃) has full rank for u̇(t) = 0, a constant input is sufficient for structural identifiability.
If OI( x̃) does not have full rank for u̇(t) = 0 but for u̇(t) ̸= 0, ü(t) = 0, a input ramp is neces-
sary. An extension for additionally considering the estimation of unknown inputs is given in
[VT+19]. They also provide a software tool written in the language MATLAB®, called Strike-
Goldd2, which is licensed under the GNU General Public License v3 (GPLv3) [VE+19]. We
use Strike-Goldd2 [VT+19] for examining the structural identifiabililty properties of the lon-
gitudinal vehicle motion dynamics in Section 6.3.2.

A.10.4 Conditions for convergence of recursive least squares

Typical assumptions for recursive least squares include the measurement noise to be inde-
pendent, zero-mean and Gaussian, perfect knowledge of the feature vector φ as well as the
input signal to be persistently excited. Before giving formal definitions of what persistently
exciting inputs are, we want to give some intuition for the concept.

Persistent excitation

From the information update equation in (A.59), we could see that the term φkφ
T
k is the

reason for the information matrix to increase in recursive least squares. Comparing this to
the batch version solution to the over-determined linear least squares regression problem in
(A.45), we learned that one is able to obtain a solution by calculating the Moore-Penrose
Pseudo Inverse Φ† = (ΦTΦ)−1ΦT, which is only well defined if the matrix (ΦTΦ)−1 is invertible,
and in other words, has full rank. Similar to that, various definitions have been proposed for
necessary conditions on a regressor signal in the context of recursive least squares estimation.
Examples can be found for example in Gaudio [Gau20] for the continuous time case, and in
Johnstone, Johnson, Bitmead, and O. Anderson [JJ+82] and Shin and Lee [SL20] for the
time-discrete case, where the former defines:

Definition 2. ([JJ+82]). We say that the vector sequence {φk} is persistently exciting (PE) if
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for some constant integer S and all j there exist positive constants α and β such that

0< αI≤
j+S
∑

i= j

φiφ
T
i ≤ βI<∞. (A.303)





B
Overview of Algorithms

“Pure mathematics is, in its way, the poetry of logical ideas.”

– Albert Einstein

Here we want to present an overview of some of the most important existing estimation
algorithms used in this thesis. Please note that this list is not comprehensive, since some of
the algorithms, especially the ones proposed in this thesis, can be found directly within each
chapter.

Linear Kalman Filter The linear Kalman Filter (KF) can be found in Algorithm 7.

Algorithm 7 Linear Kalman Filter [Kal60a].

Require: F , B, H

1: Inputs:

x̂+k−1, P+k−1, Qk−1, Rk, uk−1, yk

2: P−k = F P+k−1FT +Qk−1 ▷ A priori estimation error covariance (A.77)

3: Kk = P−k HT
�

HP−k HT + Rk

�−1
▷ (optimal) Kalman Gain (A.75)

4: x̂−k = F x̂+k−1 + Buk−1 ▷ A priori state estimate

5: x̂+k = x̂−k + Kk(yk −H x̂−k ) ▷ A posteriori state estimate

6:
P+k = P−k − KkHP−k = (I− KkH)P−k

= (I− KkH)P−k (I− KkH)T + KkRkKT
k

▷ Estimation error covariance in

standard or Joseph’s form
7: return x̂+k , P+k

Kalman Filter version for parameters-only estimation (KF) For the parameters-only es-
timation problem, the following state space formulation can be used:

θk = θk−1 +ω
θ
k−1 (B.1)

yθk = φ
T
kθ + νk. (B.2)

Applying the linear Kalman Filter to this system yields the Kalman Filter for parameters-only
estimation, as given in Algorithm 8.

275
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Algorithm 8 KF: Kalman Filter for parameters-only estimation [Kal60a].

Require: r

1: Inputs:

yθk , θ̂k, P−k , Φk, Qk

2: ek = yθk −Φ
T
kθ̂k ▷ Prediction error

3: Kk =
�

P−k Φk

� �

r +ΦT P−k Φk

�−1
▷ Kalman Gain

4: θ̂k+1 = θ̂k + Kkek ▷ Parameter estimate correction

5: P−k+1 =
�

I− KkΦ
T
k

�

P−k
�

I− KkΦ
T
k

�T
+ KkrKT

k ▷ Covariance update, Joseph’s form

6: P−k+1 = P+k +Qk ▷ A priori estimation error covariance

7: return θ̂k+1, P−k+1

Kalman Filter with Instrumental Variables (KF-IV) For the Kalman Filter with Instrumen-
tal Variables, we used instruments ΦIV

k such that ΦIV
k = Φk−niv

with a delay of niv samples.

Algorithm 9 KF-IV: Kalman Filter with Intrumental Variables. Modified from [Rho16].

Require: r

1: Inputs:

yθk , θ̂k, P−k , Φk, ΦIV
k , Qk

2: ek = yθk −Φ
T
kθ̂k ▷ Prediction error

3: Kk =
�

P−k Φ
IV
k

� �

r +ΦT P−k Φ
IV
k

�−1
▷ Kalman Gain for IV

4: θ̂k+1 = θ̂k + Kkek ▷ Parameter estimate update

5: P+k =
�

I− KkΦ
T
k

�

P−k
�

I− Kk

�

ΦIV
k

�T
�T
+ KkrKT

k ▷ modified Joseph’s form for IV

6: P−k+1 = P+k +Qk ▷ A priori estimation error covariance

7: return θ̂k+1, P−k+1

Kalman Filter with Stenlund-Gustafsson (SG) Process Noise Covariance Adaptation
(SG-KF) The Kalman Filter with Stenlund-Gustafsson (SG) process noise covariance adap-
tation is provided in Algorithm 10.

Kalman Filter with Stenlund-Gustafsson (SG) Process Noise Covariance Adaptation and
Instrumental Variables (SG-KF-IV) The Stenlund-Gustafsson Kalman Filter with Intrumen-
tal Variables is can be found in Algorithm 11.

Kalman Filter with Stenlund-Gustafsson (SG) Process Noise Covariance Adaptation with
Contraints (SG-KF-C) The Kalman Filter with Stenlund-Gustafsson (SG) process noise co-
variance adaptation which additionally considers constraints is provided in Algorithm 12.

Robust M-Estimation Kalman Filter (M-KF) A robust version of the M-Estimation Kalman
Filter is given in Algorithm 13.
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Algorithm 10 SG-KF: Stenlund-Gustafsson Kalman Filter. Modified from [Rho16].

Require: Pd , r, νs, σs

1: Inputs:

yθk , θ̂k, P−k , Φk

2: ek = yθk −Φ
T
kθ̂k ▷ Prediction error

3: Kk =
�

P−k Φk

� �

r +ΦT P−k Φk

�−1
▷ Kalman Gain

4: θ̂k+1 = θ̂k + Kkek ▷ Parameter estimate correction

5: Qk =
�

PdΦkΦ
T
kPd

� �

r +ΦT
kPdΦk

�−1
▷ SG cov. adaptation [SG02]

6: P+k =
�

I− KkΦ
T
k

�

P−k
�

I− KkΦ
T
k

�T
+ KkrKT

k ▷ Covariance update, Joseph’s form

7: P−k+1 = P+k +Qk ▷ A priori estimation error covariance

8: return θ̂k+1, P−k+1

Algorithm 11 SG-KF-IV: Stenlund-Gustafsson Kalman Filter with Instrumental Variables.
Modified from [Rho16].
Require: Pd , r, νs, σs

1: Inputs:

yθk , θ̂k, P−k , Φk, ΦIV
k

2: ek = yθk −Φ
T
kθ̂k ▷ Prediction error

3: Kk =
�

P−k Φ
IV
k

� �

r +ΦT P−k Φ
IV
k

�−1
▷ Kalman Gain for IV

4: θ̂k+1 = θ̂k + Kkek ▷ Parameter estimate update

5: Qk =
�

PdΦkΦ
T
kPd

� �

r +ΦT
kPdΦk

�−1
▷ SG cov. adaptation [SG02]

6: P+k =
�

I− KkΦ
T
k

�

P−k
�

I− Kk

�

ΦIV
k

�T
�T
+ KkrKT

k ▷ modified Joseph’s form for IV

7: P−k+1 = P+k +Qk ▷ A priori estimation error covariance

8: return θ̂k+1, P−k+1

M-Estimation Stenlund-Gustafsson Kalman Filter (M-SG-KF) The M-Estimation
Stenlund-Gustafsson Kalman Filter as given in Algorithm 14 combines robust M-Estimation
based on the Student-t distribution as proposed by [AE+16] with Stenlund-Gustafsson anti-
windup [SG02].

M-Estimation Stenlund-Gustafsson Kalman Filter with Instrumental Variables (M-SG-K-
F-IV) Find the M-Estimation Stenlund-Gustafsson Kalman Filter with Intrumental Variables
(M-SG-KF-IV) in Algorithm 15. It combines robust M-Estimation, with the anti-windup mech-
anism from [SG02] together with Instrumental Variables. We use a modified variant which
uses Joseph’s form for the covariance update, which is essentially a combination to the one
proposed by [Rho16] and the weight derived from the Student-t distribution as given in
[AE+16].

M-Estimation Stenlund-Gustafsson Kalman Filter with Constraints For the M-
Estimation Stenlund-Gustafsson Kalman Filter with Constraints as in Algorithm 16, we used
the projection method suggested by Altmannshofer, Endisch, et al. [AE+16], which is real-
ized by Lemke’s pivoting algorithm as found in Almqvist [Alm19]. The Linear Complementary
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Algorithm 12 SG-KF-C: Stenlund-Gustafsson Kalman Filter with Contraints. Modified from
[AE+16].

Require: Pd , r, c = [θmax,θmin]T, L = [I,−I]T

1: Inputs:

yθk , θ̂k, P−k , Φk

2: ek = yθk −Φ
T
kθ̂k ▷ Prediction error

3: Kk =
�

P−k Φk

� �

r +ΦT P−k Φk

�−1
▷ Kalman Gain

4: θ̂k+1 = θ̂k + Kkek ▷ Parameter estimate correction

5: Qk =
�

PdΦkΦ
T
kPd

� �

r +ΦT
kPdΦk

�−1
▷ SG cov. adaptation [SG02]

6: P+k =
�

I− KkΦ
T
k

�

P−k
�

I− KkΦ
T
k

�T
+ KkrKT

k ▷ Covariance update, Joseph’s form

7: qk = c − Lθ̂+k ▷ Offset for Linear Complementarity Problem (LCP)

8: if qk < 0 then

9: Mk = LP+k LT ▷ Matrix for LCP

10: η= LCPSolve(M , q) ▷ Solution of LCP

11: θ̂k+1 = θ̂−k − P+k LTη ▷ Constrained parameter estimate

12: end if

13: P−k+1 = P+k +Qk ▷ A priori estimation error covariance

14: return θ̂k+1, P−k+1

Program was solved using the MATLAB® function provided by Almqvist [Alm19].

M-Estimation Stenlund-Gustafsson Kalman Filter with Instrumental Variables and con-
straints (M-SG-KF-IV-C) Find the M-Estimation Stenlund-Gustafsson Kalman Filter with
Intrumental Variables (M-SG-KF-IV) and constraints in Algorithm 17. It combines robust M-
Estimation, with the anti-windup mechanism from [SG02] together with Instrumental Vari-
ables. Additionally, constraints are enforced in the fashion as used by [AE+16]. We use a
modified variant which uses Joseph’s form for the covariance update, which is essentially
a combination to the one proposed by [Rho16] and the weight derived from the Student-t
distribution as given in [AE+16].

Runge-Kutta method For completeness, we also want to provide the Runge-Kutta algo-
rithm [Run95]. With the general continuous-time state space description of the longitudinal
vehicle dynamics as given in (3.69a), we can approximate the integration using a fourth
order Runge-Kutta algorithm as described in Algorithm 18.
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Algorithm 13 M-KF: M-Estimation Kalman Filter. Modified from [Rho16].

Require: r, νs, σs

1: Inputs:

yθk , θ̂k, P−k , Φk

2: ek = yθk −Φ
T
kθ̂k ▷ Prediction error

3: wk = 2/
�

νsσ
2
s + e2

k

�

▷ Approx. weight for Student-t M-estimator

4: Kk =
�

wk · P−k Φk

� �

r +wk ·ΦT P−k Φk

�−1
▷ M - Kalman Gain

5: θ̂k+1 = θ̂k + Kkek ▷ Parameter estimate update

6: P+k =
�

I− KkΦ
T
k

�

P−k
�

I− KkΦ
T
k

�T
+ Kk

r
wk

KT
k ▷ modified Joseph’s form

7: P−k+1 = P+k +Qk ▷ A priori estimation error covariance

8: return θ̂k+1, P−k+1

Algorithm 14 M-SG-KF: M-Estimation Stenlund-Gustafsson Kalman Filter. Modified from
[AE+16].
Require: Pd , r, νs, σs

1: Inputs:

yθk , θ̂k, P−k , Φk

2: ek = yθk −Φ
T
kθ̂k ▷ Prediction error

3: wk = 2/
�

νsσ
2
s + e2

k

�

▷ Approx. weight for Student-t M-estimator

4: Kk =
�

wk · P−k Φk

� �

r +wk ·ΦT P−k Φk

�−1
▷ Kalman Gain

5: θ̂−k+1 = θ̂k + Kkek ▷ Parameter estimate correction

6: Qk =
�

wk · PdΦkΦ
T
kPd

� �

r +wk ·ΦT
kPdΦk

�−1
▷ SG cov. adaptation [SG02]

7: P+k =
�

I− KkΦ
T
k

�

P−k
�

I− KkΦ
T
k

�T
+ Kk

r
wk

KT
k ▷ modified Joseph’s form

8: P−k+1 = P+k +Qk ▷ A priori estimation error covariance

9: return θ̂k+1, P−k+1

Algorithm 15 M-SG-KF-IV: M-Estimation Stenlund-Gustafsson Kalman Filter with Intrumen-
tal Variables. Modified from [Rho16].
Require: Pd , r, νs, σs

1: Inputs:

yθk , θ̂k, P−k , Φk, ΦIV
k

2: ek = yθk −Φ
T
kθ̂k ▷ Prediction error

3: wk = 2/
�

νsσ
2
s + e2

k

�

▷ Approx. weight for Student-t M-estimator. As in [AE+16]

4: Kk =
�

wk · P−k Φ
IV
k

� �

r +wk ·ΦT P−k Φ
IV
k

�−1
▷ Kalman Gain for IV

5: θ̂k+1 = θ̂k + Kkek ▷ Parameter estimate update

6: Qk =
�

wk · PdΦkΦ
T
kPd

� �

r +wk ·ΦT
kPdΦk

�−1
▷ SG cov. adaptation [SG02]

7: P+k =
�

I− KkΦ
T
k

�

P−k
�

I− Kk

�

ΦIV
k

�T
�T
+ Kk

r
wk

KT
k ▷ modified Joseph’s form for IV

8: P−k+1 = P+k +Qk ▷ A priori estimation error covariance

9: return θ̂k+1, P−k+1
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Algorithm 16 M-SG-KF-C: M-Estimation Stenlund-Gustafsson Kalman Filter with Constraints.
Modified from [AE+16].

Require: Pd , r, νs, σs, c = [θmax,θmin]T, L = [I,−I]T

1: Inputs:

yθk , θ̂k, P−k , Φk

2: ek = yθk −Φ
T
kθ̂k ▷ Prediction error

3: wk = 2/
�

νsσ
2
s + e2

k

�

▷ Approx. weight for Student-t M-estimator

4: Kk =
�

wk · P−k Φk

� �

r +wk ·ΦT P−k Φk

�−1
▷ Kalman Gain

5: θ̂−k+1 = θ̂k + Kkek ▷ Parameter estimate correction

6: Qk =
�

wk · PdΦkΦ
T
kPd

� �

r +wk ·ΦT
kPdΦk

�−1
▷ SG cov. adaptation [SG02]

7: P+k =
�

I− KkΦ
T
k

�

P−k
�

I− KkΦ
T
k

�T
+ Kk

r
wk

KT
k ▷ modified Joseph’s form

8: qk = c − Lθ̂+k ▷ Offset for LCP

9: if qk < 0 then

10: Mk = LP+k LT ▷ Matrix for LCP

11: η= LCPSolve(M , q) ▷ Solution of LCP

12: θ̂k+1 = θ̂−k − P+k LTη ▷ Constrained parameter estimate

13: end if

14: P−k+1 = P+k +Qk ▷ A priori estimation error covariance

15: return θ̂k+1, P−k+1
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Algorithm 17 M-SG-KF-IV-C: M-Estimation Stenlund-Gustafsson Kalman Filter with Intru-
mental Variables and constraints. Modified and combined from [Rho16] and [AE+16].

Require: Pd , r, νs, σs, c = [θmax,θmin]T, L = [I,−I]T

1: Inputs:

yθk , θ̂k, P−k , Φk, ΦIV
k

2: ek = yθk −Φ
T
kθ̂k ▷ Prediction error

3: wk = 2/
�

νsσ
2
s + e2

k

�

▷ Approx. weight for Student-t M-estimator. As in [AE+16]

4: Kk =
�

wk · P−k Φ
IV
k

� �

r +wk ·ΦT P−k Φ
IV
k

�−1
▷ Kalman Gain for IV

5: θ̂k+1 = θ̂k + Kkek ▷ Parameter estimate update

6: Qk =
�

wk · PdΦkΦ
T
kPd

� �

r +wk ·ΦT
kPdΦk

�−1
▷ SG cov. adaptation [SG02]

7: P+k =
�

I− KkΦ
T
k

�

P−k
�

I− Kk

�

ΦIV
k

�T
�T
+ Kk

r
wk

KT
k ▷ modified Joseph’s form for IV

8: qk = c − Lθ̂+k ▷ Offset for LCP

9: if qk < 0 then

10: Mk = LP+k LT ▷ Matrix for LCP

11: η= LCPSolve(M , q) ▷ Solution of LCP

12: θ̂k+1 = θ̂−k − P+k LTη ▷ Constrained parameter estimate

13: end if

14: P−k+1 = P+k +Qk ▷ A priori estimation error covariance

15: return θ̂k+1, P−k+1

Algorithm 18 Runge-Kutta of 4th order with M steps per sampling interval Ts [Run95].

1: ∆t = Ts/M
2: x+ = xk
3: for j = 1, M do
4: k1 = f (x+, uk, dk,θk, wk)
5: k2 = f (x+ +∆t/2k1, uk, dk,θk, wk)
6: k3 = f (x+ +∆t/2k2, uk, dk,θk, wk)
7: k4 = f (x+ +∆tk3, uk, dk,θk, wk)
8: x+ = x+∆t/6

�

k1 + 2k2 + 2k3 + k4

�

9: end for
10: xk+1 = x+
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[PB+61] L. S. Pontryagin, V. G. Boltyanskǐı, and E. F. Mishchenko. “The mathematical
theory of optimal processes”. In: Gosudarstv. Izdat. Fiz.-Mat. Lit. Moscow, 1961
(cit. on pp. 139, 146).

[PB+99] M. Persson, F. Botling, E. Hesslow, and R. Johansson. “Stop and go controller
for adaptive cruise control”. In: IEEE International Conference on Control Appli-
cations. 1999 (cit. on p. 50).

https://doi.org/10.1109/TVT.2007.897632
https://doi.org/10.1080/10798587.2012.10643247
https://arxiv.org/abs/1708.02596
http://arxiv.org/abs/1708.02596
https://books.google.de/books?isbn=1446545776
https://books.google.de/books?isbn=1446545776
https://doi.org/10.1016/S0005-1098(00)00089-3
https://linkinghub.elsevier.com/retrieve/pii/S0005109800000893
https://linkinghub.elsevier.com/retrieve/pii/S0005109800000893
https://spinningup.openai.com/en/latest/index.html
https://www.ece.rutgers.edu/%7B~%7Dorfanidi/intro2sp/
https://doi.org/10.1002/rnc.5712


References 323

[PD+17] P. Polack, B. D’Andréa-Novel, M. Fliess, A. de La Fortelle, and L. Menhour.
“Finite-Time Stabilization of Longitudinal Control for Autonomous Vehicles via
a Model-Free Approach”. In: IFAC-PapersOnLine 50.1 (2017), pp. 12533–12538.
ISSN: 24058963. DOI: 10.1016/j.ifacol.2017.08.2191. arXiv: 1704.01383. URL:
http://arxiv.org/abs/1704.01383 (cit. on pp. 56, 60, 176).

[PG+15] G. Pannocchia, M. Gabiccini, and A. Artoni. “Offset-free MPC explained: Novel-
ties, subtleties, and applications”. In: IFAC-PapersOnLine 48.23 (2015), pp. 342–
351. ISSN: 24058963. DOI: 10.1016/j.ifacol.2015.11.304. URL: http://dx.doi.
org/10.1016/j.ifacol.2015.11.304 (cit. on pp. 143, 144).

[PH+18] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour,
P. Abbeel, and M. Andrychowicz. “Parameter Space Noise for Exploration”. In:
ICLR. 2018, pp. 1–18. arXiv: 1706.01905. URL: http://arxiv.org/abs/1706.
01905 (cit. on p. 206).

[PM+16] J. Pavlovic, A. Marotta, B. Ciuffo, S. Serra, G. Fontaras, K. Anagnostopoulos, S.
Tsiakmakis, V. Arcidiacono, S. Hausberger, and G. Silberholz. “Correction of Test
Cycle Tolerances: Evaluating the Impact on CO2 Results”. In: Transportation
Research Procedia 14.December (2016), pp. 3099–3108. ISSN: 23521465. DOI:
10.1016/j.trpro.2016.05.250. URL: http://dx.doi.org/10.1016/j.trpro.2016.05.
250 (cit. on p. 164).

[Pom89] D. Pomerleau. “Alvinn: An autonomous land vehicle in a neural network”. In:
Advances in Neural Information Processing Systems 1 (1989), pp. 305–313 (cit.
on pp. 18, 23, 191).

[Pow19] W. B. Powell. “From Reinforcement Learning to Optimal Control: A unified
framework for sequential decisions”. In: (2019). arXiv: 1912.03513. URL: http:
//arxiv.org/abs/1912.03513 (cit. on p. 223).

[PR+19] L. Puccetti, C. Rathgeber, and S. Hohmann. “Actor-Critic Reinforcement Learn-
ing for Linear Longitudinal Output Control of a Road Vehicle”. In: 2019 IEEE
Intelligent Transportation Systems Conference (ITSC). Auckland, NZ: IEEE, 2019,
pp. 2907–2913. ISBN: 9781538670231 (cit. on pp. 194, 213).

[PR01] G. Pannocchia and J. Rawlings. “The velocity algorithm LQR: a survey”. In:
Texas-Wisconsin Modeling and Control Consortium September (2001), pp. 1–21.
URL: http://jbrwww.che.wisc.edu/tech-reports/twmcc-2001-01.pdf (cit. on
p. 143).

[PR03] G. Pannocchia and J. B. Rawlings. “Disturbance models for offset-free model-
predictive control”. In: AIChE Journal 49.2 (2003), pp. 426–437. DOI: 10.1002/
aic.690490213 (cit. on p. 143).

[PS+12] J. Ploeg, S. Shladover, H. Nijmeijer, and N. van de Wouw. “Introduction to
the Special Issue on the 2011 Grand Cooperative Driving Challenge”. In: IEEE
Transactions on Intelligent Transportation Systems 13.3 (2012), pp. 989–993.
ISSN: 1524-9050. DOI: 10.1109/TITS.2012.2210636. URL: http://ieeexplore.
ieee.org/document/6266747/ (cit. on p. 19).

[PS12] R. Pintelon and J. Schoukens. System identification - a frequency domain ap-
proach. 2012. ISBN: 9780470640371 (cit. on p. 262).

[PS63] J. Potter and R. Stern. “Statistical filtering of space navigation measurements”.
In: Proc. AIAA Guidance Control Conference (1963) (cit. on p. 253).

https://doi.org/10.1016/j.ifacol.2017.08.2191
https://arxiv.org/abs/1704.01383
http://arxiv.org/abs/1704.01383
https://doi.org/10.1016/j.ifacol.2015.11.304
http://dx.doi.org/10.1016/j.ifacol.2015.11.304
http://dx.doi.org/10.1016/j.ifacol.2015.11.304
https://arxiv.org/abs/1706.01905
http://arxiv.org/abs/1706.01905
http://arxiv.org/abs/1706.01905
https://doi.org/10.1016/j.trpro.2016.05.250
http://dx.doi.org/10.1016/j.trpro.2016.05.250
http://dx.doi.org/10.1016/j.trpro.2016.05.250
https://arxiv.org/abs/1912.03513
http://arxiv.org/abs/1912.03513
http://arxiv.org/abs/1912.03513
http://jbrwww.che.wisc.edu/tech-reports/twmcc-2001-01.pdf
https://doi.org/10.1002/aic.690490213
https://doi.org/10.1002/aic.690490213
https://doi.org/10.1109/TITS.2012.2210636
http://ieeexplore.ieee.org/document/6266747/
http://ieeexplore.ieee.org/document/6266747/


324 References

[PT+07] W. H. Press, S. a. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes 3rd Edition: The Art of Scientific Computing. Vol. 1. 2007, p. 1262. ISBN:
0521880688. URL: https://www.amazon.com/Numerical-Recipes-3rd-Edition-
Scientific/dp/0521880688 (cit. on pp. 239, 240).

[PT12] O. Pietquin and F. Tango. “A reinforcement learning approach to optimize the
longitudinal behavior of a Partial Autonomous Driving Assistance System”. In:
Frontiers in Artificial Intelligence and Applications. Vol. 242. IOS Press, 2012,
pp. 987–992. ISBN: 9781614990970. DOI: 10.3233/978-1-61499-098-7-987
(cit. on p. 193).

[QT+15] W. Qiu, Q. U. Ting, Y. U. Shuyou, G. U. O. Hongyan, and C. Hong. “Autonomous
Vehicle Longitudinal Following Control Based On Model Predictive Control”. In:
Proceedings of the 34th Chinese Control Conference. Hangzhou, 2015, pp. 8126–
8131 (cit. on pp. 52, 55).

[QW+16] X. Qi, G. Wu, K. Boriboonsomsin, M. J. Barth, and J. Gonder. “Data-Driven Re-
inforcement Learning–Based Real-Time Energy Management System for Plug-
In Hybrid Electric Vehicles”. In: Transportation Research Record: Journal of the
Transportation Research Board 2572.January (2016), pp. 1–8. ISSN: 0361-1981.
DOI: 10.3141/2572-01 (cit. on p. 193).

[Rad13] T. Radke. “Energieoptimale Laengsfuehrung von Kraftfahrzeugen durch Einsatz
vorausschauender Fahrstrategien”. PhD thesis. Karlsruher Institut fuer Tech-
nologie (KIT), 2013. ISBN: 9783731500698. URL: http://dx.doi.org/10.5445/
KSP/1000035819 (cit. on pp. 53, 222).

[Raf13] E. Raffone. “Road slope and vehicle mass estimation for light commercial
vehicle using linear Kalman filter and RLS with forgetting factor integrated
approach”. In: 16th International Conference on Information Fusion (2013),
pp. 1167–1172 (cit. on pp. 91, 95).

[Raj11] R. Rajamani. Vehicle dynamics and control. Springer, 2011. ISBN: 0-387-26396-9
(cit. on pp. 27, 29, 35, 49, 50, 88).

[RB+12] A. Reschka, J. R. Böhmer, F. Saust, B. Lichte, and M. Maurer. “Safe, dynamic and
comfortable longitudinal control for an autonomous vehicle”. In: IEEE Intelligent
Vehicles Symposium, Proceedings (2012), pp. 346–351. DOI: 10.1109/IVS.2012.
6232159 (cit. on p. 57).

[RB+14] S. Rhode, F. Bleimund, and F. Gauterin. Recursive generalized total least squares
with noise covariance estimation. Vol. 19. 3. IFAC, 2014, pp. 4637–4643. ISBN:
9783902823625. DOI: 10.3182/20140824-6-za-1003.01568. URL: http://dx.
doi.org/10.3182/20140824-6-ZA-1003.01568 (cit. on pp. 6, 63, 64, 68, 70,
102, 110, 231).

[RG12] S. Rhode and F. Gauterin. “Vehicle mass estimation using a total least-squares
approach”. In: IEEE Conference on Intelligent Transportation Systems, Proceed-
ings, ITSC Iv (2012), pp. 1584–1589. DOI: 10.1109/ITSC.2012.6338638 (cit.
on p. 110).

[RH+16] S. Rhode, S. Hong, J. K. Hedrick, and F. Gauterin. “Vehicle tractive force pre-
diction with robust and windup-stable Kalman filters”. In: Control Engineering
Practice 46 (2016), pp. 37–50. ISSN: 09670661. DOI: 10.1016/j.conengprac.
2015.10.002. URL: http://dx.doi.org/10.1016/j.conengprac.2015.10.002
(cit. on pp. 92, 93, 95, 103, 104, 158, 263, 267–269).

https://www.amazon.com/Numerical-Recipes-3rd-Edition-Scientific/dp/0521880688
https://www.amazon.com/Numerical-Recipes-3rd-Edition-Scientific/dp/0521880688
https://doi.org/10.3233/978-1-61499-098-7-987
https://doi.org/10.3141/2572-01
http://dx.doi.org/10.5445/KSP/1000035819
http://dx.doi.org/10.5445/KSP/1000035819
https://doi.org/10.1109/IVS.2012.6232159
https://doi.org/10.1109/IVS.2012.6232159
https://doi.org/10.3182/20140824-6-za-1003.01568
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01568
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01568
https://doi.org/10.1109/ITSC.2012.6338638
https://doi.org/10.1016/j.conengprac.2015.10.002
https://doi.org/10.1016/j.conengprac.2015.10.002
http://dx.doi.org/10.1016/j.conengprac.2015.10.002


References 325

[RH95] R. Rajamani and J. K. Hedrick. “Adaptive Observers for Active Automotive Sus-
pensions: Theory and Experiment”. In: IEEE Transactions on Control Systems
Technology 3.1 (1995), pp. 86–93. DOI: 10.1109/87.370713 (cit. on pp. 29, 94,
95).

[Rho16] S. Rhode. “Robust and Regularized Algorithms for Vehicle Tractive Force Predic-
tion and Mass Estimation”. PhD thesis. Karlsruher Institut für Technologie KIT,
2016 (cit. on pp. 46, 63, 68–70, 78, 82, 92, 94, 96, 102–104, 108–110, 116,
121, 123, 128, 222, 231, 243, 263, 276–279, 281).

[Rie05] M. Riedmiller. “Neural Fitted Q Iteration – First Experiences with a Data Ef-
ficient Neural Reinforcement Learning Method”. In: Machine Learning: ECML
2005. Ed. by J. Gama, R. Camacho, P. B. Brazdil, A. M. Jorge, and L. Torgo.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 317–328. ISBN: 978-3-
540-31692-3. DOI: 10.1007/11564096_32. URL: papers3://publication/uuid/
9B068F19-A3AD-43B0-BD3C-2219189F765D (cit. on pp. 188, 192).

[RL+06] B. J. Roset, M. Lazar, W. P. Heemels, and H. Nijmeijer. “A stabilizing output
based nonlinear model predictive control scheme”. In: Proceedings of the IEEE
Conference on Decision and Control (2006), pp. 4627–4632. ISSN: 01912216.
DOI: 10.1109/cdc.2006.377814 (cit. on p. 141).

[RM+07] M. Riedmiller, M. Montemerlo, and H. Dahlkamp. “Learning to Drive a Real Car
in 20 Minutes”. In: 2007 Frontiers in the Convergence of Bioscience and Infor-
mation Technologies. IEEE, 2007, pp. 645–650. ISBN: 978-0-7695-2999-8. DOI:
10.1109/FBIT.2007.37. URL: http://ieeexplore.ieee.org/document/4524181/
(cit. on p. 192).

[RM+17] J. B. Rawlings, D. Q. Mayne, and M. Diehl. Model Predictive Control: Theory,
Computation, and Design. 2nd Editio. Vol. 197. Nob Hill Publishing, LLC, 2017.
ISBN: 978-0975937730 (cit. on p. 115).

[RM09] J. Rawlings and D. Mayne. Model predictive control: Theory and design. Nob Hill
Pub, Llc, 2009. ISBN: 978-0975937709 (cit. on pp. 139, 143).

[RN94] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems.
Volume 37. September. University of Cambridge, Department of Engineering
Cambridge, England, 1994 (cit. on p. 186).

[Roh21] B. Rohrer. End to End Machine Learning. 2021. URL: https : / / end - to - end -
machine-learning.teachable.com/ (visited on 04/09/2022) (cit. on p. 63).

[Ros03] J. Rossiter. Model-Based Predictive Control: A Practical Approach. CRC Press,
2003, p. 344. ISBN: 0203503961. URL: https://books.google.com/books?hl=
en%7B%5C&%7Dlr=%7B%5C&%7Did=owznQTI-NqUC%7B%5C&%7Dpgis=
1 (cit. on p. 140).

[RR+01] C. V. Rao, J. B. Rawlings, and J. H. Lee. “Constrained linear state estimation - A
moving horizon approach”. In: Automatica 37.10 (2001), pp. 1619–1628. ISSN:
00051098. DOI: 10.1016/S0005-1098(01)00115-7 (cit. on pp. 228, 258).

[RR+09] M. R. Rajamani, J. B. Rawlings, and S. J. Qin. “Achieving state estimation equiv-
alence for misassigned disturbances in offset-free model predictive control”. In:
AIChE Journal 55.2 (2009), pp. 396–407. ISSN: 00011541. DOI: 10.1002/aic.
11673. URL: https://onlinelibrary.wiley.com/doi/10.1002/aic.11673 (cit. on
p. 143).

https://doi.org/10.1109/87.370713
https://doi.org/10.1007/11564096_32
papers3://publication/uuid/9B068F19-A3AD-43B0-BD3C-2219189F765D
papers3://publication/uuid/9B068F19-A3AD-43B0-BD3C-2219189F765D
https://doi.org/10.1109/cdc.2006.377814
https://doi.org/10.1109/FBIT.2007.37
http://ieeexplore.ieee.org/document/4524181/
https://end-to-end-machine-learning.teachable.com/
https://end-to-end-machine-learning.teachable.com/
https://books.google.com/books?hl=en%7B%5C&%7Dlr=%7B%5C&%7Did=owznQTI-NqUC%7B%5C&%7Dpgis=1
https://books.google.com/books?hl=en%7B%5C&%7Dlr=%7B%5C&%7Did=owznQTI-NqUC%7B%5C&%7Dpgis=1
https://books.google.com/books?hl=en%7B%5C&%7Dlr=%7B%5C&%7Did=owznQTI-NqUC%7B%5C&%7Dpgis=1
https://doi.org/10.1016/S0005-1098(01)00115-7
https://doi.org/10.1002/aic.11673
https://doi.org/10.1002/aic.11673
https://onlinelibrary.wiley.com/doi/10.1002/aic.11673


326 References

[RR16] M. Risbeck and J. Rawlings. MPCTools: Nonlinear model predictive control tools
for CasADi (Octave interface). 2016. URL: https://bitbucket.org/rawlings-group/
octave-mpctools (cit. on p. 148).

[RS+99] J. Rossiter, J. Schuurmans, and B. Grinnell. “Optimal use of advance knowl-
edge in the presence of constraints”. In: IFAC Proceedings Volumes 32.2 (1999),
pp. 1856–1861. ISSN: 1474-6670. DOI: 10.1016/S1474- 6670(17)56315- 6.
URL: https://www.sciencedirect.com/science/article/pii/S1474667017563156
(cit. on p. 12).

[Run95] C. Runge. “Ueber die numerische Auflösung von Differentialgleichungen”. In:
Mathematische Annalen 46.2 (1895), pp. 167–178. ISSN: 00255831. DOI: 10.
1007/BF01446807 (cit. on pp. 278, 281).

[Rus13] D. D. Ruscio. “Model Predictive Control with Integral Action: A simple MPC
algorithm”. In: Modeling, Identification and Control 34.3 (2013), pp. 119–129.
ISSN: 03327353. DOI: 10.4173/mic.2013.3.2 (cit. on pp. 139, 143).

[RV09] J. Rossiter and G. Valencia-Palomo. “Feed Forward Design in MPC”. In: Control
Conference (ECC), 2009 European (2009), pp. 5–10. ISSN: ‘ (cit. on p. 140).

[RZ02] R. Rajamani and C. Zhu. “Semi-autonomous adaptive cruise control systems”.
In: IEEE Transactions on Vehicular Technology 51.5 (2002), pp. 1186–1192. ISSN:
00189545. DOI: 10.1109/TVT.2002.800617 (cit. on p. 50).

[SA+04] M. Sühling, M. Arigovindan, P. Hunziker, and M. Unser. “Multiresolution mo-
ment filters: Theory and applications”. In: IEEE Transactions on Image Processing
13.4 (2004), pp. 484–495. ISSN: 10577149. DOI: 10.1109/TIP.2003.819859
(cit. on pp. 62, 63).

[SA+17] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani. “Deep Reinforcement Learn-
ing Framework for Autonomous Driving”. In: Electronic Imaging (2017), pp. 70–
76. arXiv: arXiv:1704.02532v1. URL: https://arxiv.org/pdf/1704.02532.pdf
(cit. on p. 192).

[SAE00] SAE International. Hydrodynamic Drive Test Code. 2000. URL: https://www.sae.
org/standards/content/j643%7B%5C_%7D200005/ (cit. on p. 33).

[SAE16] SAE. SAE Document J3016 - Taxonomy and Definitions for Terms Related to On-
Road Motor Vehicle Automated Driving Systems. 2016. URL: https://www.sae.
org/standards/content/j3016%7B%5C_%7D201609/ (cit. on p. 12).

[SAE18] SAE. SAE Document J3016 - Taxonomy and Definitions for Terms Related to On-
Road Motor Vehicle Automated Driving Systems. 2018. URL: https://www.sae.
org/standards/content/j3016%7B%5C_%7D201806/ (cit. on p. 10).

[SB18] R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction. Sec-
ond Edi. Vol. 9. 5. Cambridge, MA: The MIT Press, 2018, p. 1054. ISBN:
9780262039246. DOI: 10.1109/TNN.1998.712192. arXiv: 1603.02199. URL:
http://incompleteideas.net/book/RLbook2018.pdf (cit. on pp. 175, 176, 184,
189).

[SC+13] S. Sommer, A. Camek, K. Becker, C. Buckl, A. Zirkler, L. Fiege, M. Armbruster,
G. Spiegelberg, and A. Knoll. “RACE: A Centralized Platform Computer Based
Architecture for Automotive Applications”. In: Vehicular Electronics Conference
(VEC) and the International Electric Vehicle Conference (IEVC). IEEE, 2013. DOI:
10.1109/IEVC.2013.6681152 (cit. on p. 21).

https://bitbucket.org/rawlings-group/octave-mpctools
https://bitbucket.org/rawlings-group/octave-mpctools
https://doi.org/10.1016/S1474-6670(17)56315-6
https://www.sciencedirect.com/science/article/pii/S1474667017563156
https://doi.org/10.1007/BF01446807
https://doi.org/10.1007/BF01446807
https://doi.org/10.4173/mic.2013.3.2
https://doi.org/10.1109/TVT.2002.800617
https://doi.org/10.1109/TIP.2003.819859
https://arxiv.org/abs/arXiv:1704.02532v1
https://arxiv.org/pdf/1704.02532.pdf
https://www.sae.org/standards/content/j643%7B%5C_%7D200005/
https://www.sae.org/standards/content/j643%7B%5C_%7D200005/
https://www.sae.org/standards/content/j3016%7B%5C_%7D201609/
https://www.sae.org/standards/content/j3016%7B%5C_%7D201609/
https://www.sae.org/standards/content/j3016%7B%5C_%7D201806/
https://www.sae.org/standards/content/j3016%7B%5C_%7D201806/
https://doi.org/10.1109/TNN.1998.712192
https://arxiv.org/abs/1603.02199
http://incompleteideas.net/book/RLbook2018.pdf
https://doi.org/10.1109/IEVC.2013.6681152


References 327

[SC+19] E. Solano-Araque, G. Colin, G. M. Cloarec, A. Ketfi-Cherif, and Y. Chamaillard.
“Determining vehicle acceleration from noisy non-uniformly sampled speed
data for control purposes”. In: IFAC-PapersOnLine 52.5 (2019), pp. 66–71. ISSN:
24058963. DOI: 10.1016/j.ifacol.2019.09.011 (cit. on pp. 62, 64).

[SC13] S. Solyom and E. Coelingh. “Performance limitations in vehicle platoon control”.
In: IEEE Intelligent Transportation Systems Magazine 5.4 (2013), pp. 112–120.
ISSN: 19391390. DOI: 10.1109/MITS.2013.2272174 (cit. on p. 58).

[Sch11] R. Schafer. “What Is a Savitzky-Golay Filter? [Lecture Notes]”. In: IEEE Signal
Processing Magazine 28.4 (July 2011), pp. 111–117. ISSN: 1053-5888. DOI: 10.
1109/MSP.2011.941097. URL: http://ieeexplore.ieee.org/document/5888646/
(cit. on pp. 62–65).

[Sch17] M. Schaedler. “Development of a Method to Evaluate Longitudinal Motion Con-
trol for Automated Vehicles Entwicklung einer Methode zur Evaluierung von
Längsdynamikregelungen für automatisierte Fahrzeuge Wissenschaftliche Ar-
beit zur Erlangung des Grades Master of”. Master Thesis. Technical University
of Muncih, 2017 (cit. on pp. 24, 25).

[SG02] B. Stenlund and F. Gustafsson. “Avoiding windup in recursive parameter esti-
mation”. In: Preprints of reglermöte 2002 (2002), pp. 148–153 (cit. on pp. 92,
102, 103, 108, 261, 262, 268, 277–281).

[SG16] H. Shah and M. Gopal. “Model-free predictive control of nonlinear pro-
cesses based on reinforcement learning”. In: IFAC-PapersOnLine (2016). ISSN:
24058963. DOI: 10.1016/j.ifacol.2016.03.034 (cit. on p. 194).

[SG64] A. Savitzky and M. J. E. Golay. “Smoothing and Differentiation of Data by
Simplified Least Squares Procedures.” In: Analytical Chemistry 36.8 (1964),
pp. 1627–1639. ISSN: 0003-2700. DOI: 10 . 1021 / ac60214a047. URL: https :
//pubs.acs .org/doi/abs/10.1021/ac60214a047 (cit. on pp. 6, 61–64, 75,
78, 82, 109).

[SH+01] D. Swaroop, J. K. Hedrick, and S. B. Choi. “Direct adaptive longitudinal control
of vehicle platoons”. In: IEEE Transactions on Vehicular Technology 50.1 (2001),
pp. 150–161 (cit. on p. 51).

[SH+16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antono-glou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M.-l. Leach, K.
Kavukcuoglu, T. Graepel, and D. Hassabis. “Mastering the Game of Go with
Deep Neural Networks and Tree Search”. In: Nature 529.7587 (2016), pp. 484–
489. ISSN: 14764687. DOI: 10.1038/nature16961. arXiv: 1610.00633. URL:
http://dx.doi.org/10.1038/nature16961 (cit. on p. 175).

[SH+17a] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. “Evolution Strategies
as a Scalable Alternative to Reinforcement Learning”. In: arXiv preprint (2017),
pp. 1–13. arXiv: 1703.03864. URL: http://arxiv.org/abs/1703.03864 (cit. on
p. 187).

[SH+17b] D. Silver, T. Hubert, J. Schrittwieser, I. Antono-glou, M. Lai, A. Guez, M. Lanc-
tot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hass-
abis. “Mastering Chess and Shogi by Self-Play with a General Reinforcement
Learning Algorithm”. In: arXiv preprint (2017), pp. 1–19. ISSN: 23289503. DOI:
10.1002/acn3.501. arXiv: 1712.01815. URL: http://arxiv.org/abs/1712.01815
(cit. on p. 175).

https://doi.org/10.1016/j.ifacol.2019.09.011
https://doi.org/10.1109/MITS.2013.2272174
https://doi.org/10.1109/MSP.2011.941097
https://doi.org/10.1109/MSP.2011.941097
http://ieeexplore.ieee.org/document/5888646/
https://doi.org/10.1016/j.ifacol.2016.03.034
https://doi.org/10.1021/ac60214a047
https://pubs.acs.org/doi/abs/10.1021/ac60214a047
https://pubs.acs.org/doi/abs/10.1021/ac60214a047
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1610.00633
http://dx.doi.org/10.1038/nature16961
https://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864
https://doi.org/10.1002/acn3.501
https://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815


328 References

[Shl95] S. E. Shladover. “Review of the State of Development of Advanced Vehicle Con-
trol Systems (AVCS)”. In: Vehicle System Dynamics 24.24 (1995), pp. 6–7. DOI:
10.1080/00423119508969108 (cit. on pp. 17, 18, 22).

[Sil15] D. Silver. UCS Course on Reinforcement Learning. 2015. URL: http://www0.cs.
ucl.ac.uk/staff/d.silver/web/Teaching.html (cit. on pp. 183, 188).

[Sim06] D. Simon. Optimal State Estimation Kalman, H, and Nonlinear Approaches. Wi-
ley, 2006 (cit. on pp. 115, 231, 239, 243–247, 251, 253, 254, 256, 259, 261,
269).

[Sim10] D. Simon. “Kalman filtering with state constraints: a survey of linear and non-
linear algorithms”. In: IET Control Theory & Applications 4.8 (2010), p. 1303.
ISSN: 17518644. DOI: 10.1049/iet-cta.2009.0032 (cit. on p. 258).

[SJ+00] Se-Young Oh, Jeong-Hoon Lee, and Doo-Hyun Choi. “A new reinforcement
learning vehicle control architecture for vision-based road following”. In:
IEEE Transactions on Vehicular Technology 49.3 (2000), pp. 997–1005. ISSN:
00189545. DOI: 10 . 1109 / 25 . 845116. URL: http : / / ieeexplore . ieee . org /
document/845116/ (cit. on p. 192).

[SJ11] D. Sui and T. A. Johansen. “Moving horizon observer with regularisation for de-
tectable systems without persistence of excitation”. In: International Journal of
Control 84.6 (2011), pp. 1041–1054. ISSN: 00207179. DOI: 10.1080/00207179.
2011.589081 (cit. on p. 228).

[SK+01] D. Swaroop, J. Karl Hedrick, and S. B. Choi. “Direct adaptive longitudinal con-
trol of vehicle platoons”. In: IEEE Transactions on Vehicular Technology 50.1
(2001), pp. 150–161. ISSN: 00189545. DOI: 10.1109/25.917908 (cit. on p. 22).

[SK+10] Y. Sakai, M. Kanai, and M. Yamakita. “Torque Demand Control by Nonlinear
MPC for Speed Control of Vehicles with Variable Valve Lift Engine”. In: Proceed-
ings of the IEEE Multi-Conference on Systems and Control. 2010, pp. 494–499.
ISBN: 9783902661722. DOI: 00164 (cit. on p. 56).

[SK99] A. G. Stefanopoulou and I. Kolmanovsky. “Analysis and control of transient
torque response in engines with internal exhaust gas recirculation”. In: IEEE
Transactions on Control Systems Technology 7.5 (1999), pp. 555–566. DOI: 10.
1109/87.784419 (cit. on p. 35).

[SL+14] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. “Deter-
ministic Policy Gradient Algorithms”. In: Proceedings of the 31st International
Conference on Machine Learning (ICML-14) (2014), pp. 387–395. ISSN: 1938-
7228 (cit. on pp. 189, 202).

[SL+15] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region
Policy Optimization”. In: Proceedings of the 32nd International Conference on
Machine Learning (ICML-15). 2015, pp. 1889–1897. DOI: 10.1063/1.4927398.
arXiv: 1502.05477. URL: http://arxiv.org/abs/1502.05477 (cit. on pp. 188,
202).

[SL03] S. W. Sung and J. H. Lee. “Pseudo-random binary sequence design for finite
impulse response identification”. In: Control Engineering Practice 11.8 (2003),
pp. 935–947. ISSN: 09670661. DOI: 10.1016/S0967-0661(03)00035-2 (cit. on
p. 200).

[SL20] H. S. Shin and H. I. Lee. “A New Exponential Forgetting Algorithm for Recursive
Least-Squares Parameter Estimation”. In: arXiv April (2020). ISSN: 23318422.
arXiv: 2004.03910 (cit. on pp. 103, 272).

https://doi.org/10.1080/00423119508969108
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://doi.org/10.1049/iet-cta.2009.0032
https://doi.org/10.1109/25.845116
http://ieeexplore.ieee.org/document/845116/
http://ieeexplore.ieee.org/document/845116/
https://doi.org/10.1080/00207179.2011.589081
https://doi.org/10.1080/00207179.2011.589081
https://doi.org/10.1109/25.917908
https://doi.org/00164
https://doi.org/10.1109/87.784419
https://doi.org/10.1109/87.784419
https://doi.org/10.1063/1.4927398
https://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
https://doi.org/10.1016/S0967-0661(03)00035-2
https://arxiv.org/abs/2004.03910


References 329

[SM+13] H. Stahle, L. Mercep, A. Knoll, and G. Spiegelberg. “Towards the Deployment
of a Centralized ICT Architecture in the Automotive Domain”. In: 2nd Mediter-
ranean Conference on Embedded Computing (MECO) (2013), pp. 66–69. DOI:
10.1109/MECO.2013.6601320 (cit. on p. 167).

[SM+15] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. “High - Di-
mensional Continuous Control Using Generalized Advantage Estimation”. In:
(2015). arXiv: 1506.02438. URL: http://arxiv.org/abs/1506.02438 (cit. on
p. 189).

[SM+17] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. “Deep
Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training
Deep Neural Networks for Reinforcement Learning”. In: arXiv preprint (2017).
arXiv: 1712.06567. URL: http://arxiv.org/abs/1712.06567 (cit. on p. 187).

[SN+14] S. E. Shladover, C. Nowakowski, X.-Y. Lu, and R. Hoogendoorn. Using Cooper-
ative Adaptive Cruise Control (CACC) to Form High-Performance Vehicle Streams.
Tech. rep. June. 2014, p. 54. URL: http://escholarship.org/uc/item/3m89p611
(cit. on pp. 11, 59).

[SO+11] P. Shakouri, A. Ordys, D. S. Laila, and M. Askari. “Adaptive Cruise Con-
trol System: Comparing Gain-scheduling PI and LQ Controllers”. In: 18th
IFAC World Congress. Vol. 18. PART 1. Milano, 2011, pp. 12964–12969. ISBN:
9783902661937. DOI: 10.3182/20110828-6-IT-1002.02250 (cit. on p. 55).

[SO+12] P. Shakouri, A. Ordys, and M. R. Askari. “Adaptive cruise control with stop&go
function using the state-dependent nonlinear model predictive control ap-
proach”. In: ISA Transactions 51.5 (2012), pp. 622–631. ISSN: 00190578. DOI:
10.1016/j.isatra.2012.05.001. URL: http://dx.doi.org/10.1016/j.isatra.2012.
05.001 (cit. on p. 52).

[Söd07] T. Söderström. “Errors-in-variables methods in system identification”. In: Auto-
matica 43.6 (2007), pp. 939–958. ISSN: 00051098. DOI: 10.1016/j.automatica.
2006.11.025 (cit. on pp. 102, 262).

[SP+04] P. Seiler, A. Pant, and K. Hedrick. “Disturbance propagation in vehicle strings”.
In: IEEE Transactions on Automatic Control 49.10 (2004), pp. 1835–1841. ISSN:
00189286. DOI: 10.1109/TAC.2004.835586 (cit. on pp. 22, 23).

[SS+21] K. Sridhar, O. Sokolsky, I. Lee, and J. Weimer. “Improving Neural Network Ro-
bustness via Persistency of Excitation”. In: (2021). arXiv: 2106.02078. URL:
http://arxiv.org/abs/2106.02078 (cit. on p. 225).

[SS+62] G. L. Smith, S. F. Schmidt, and L. A. McGee. Application of statistical filter theory
to the optimal estimation of position and velocity on board a circumlunar vehicle.
National Aeronautics and Space Administration, 1962 (cit. on p. 243).

[SS15] M. Sivak and B. Schoettle. “Motion Sickness in Self-Driving Vehicles”. In: April
(2015), pp. 1–15 (cit. on pp. 16, 24).

[ST+16] A. Sinigaglia, K. Tagesson, P. Falcone, and B. Jacobson. “Coordination of motion
actuators in heavy vehicles using Model Predictive Control Allocation”. In: IEEE
Intelligent Vehicles Symposium, Proceedings 2016-Augus.Iv (2016), pp. 590–596.
DOI: 10.1109/IVS.2016.7535447 (cit. on p. 150).

[Stu08] Student. “The Probable Error of a Mean”. In: Biometrika 6.1 (1908), p. 1. ISSN:
00063444. DOI: 10.2307/2331554 (cit. on pp. 103, 266).

https://doi.org/10.1109/MECO.2013.6601320
https://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
http://escholarship.org/uc/item/3m89p611
https://doi.org/10.3182/20110828-6-IT-1002.02250
https://doi.org/10.1016/j.isatra.2012.05.001
http://dx.doi.org/10.1016/j.isatra.2012.05.001
http://dx.doi.org/10.1016/j.isatra.2012.05.001
https://doi.org/10.1016/j.automatica.2006.11.025
https://doi.org/10.1016/j.automatica.2006.11.025
https://doi.org/10.1109/TAC.2004.835586
https://arxiv.org/abs/2106.02078
http://arxiv.org/abs/2106.02078
https://doi.org/10.1109/IVS.2016.7535447
https://doi.org/10.2307/2331554


330 References

[Sut88] R. S. Sutton. “Learning to predict by the methods of temporal differences”.
In: Machine Learning 3.1 (1988), pp. 9–44. ISSN: 0885-6125. DOI: 10.1007/
BF00115009. URL: http://link.springer.com/10.1007/BF00115009 (cit. on
pp. 181, 193).

[Sut91] R. S. Sutton. “Dyna, an integrated architecture for learning, planning, and re-
acting”. In: ACM SIGART Bulletin 2.4 (1991), pp. 160–163. ISSN: 01635719.
DOI: 10.1145/122344.122377 (cit. on p. 187).

[SW+15] R. Schmied, H. Waschl, R. Quirynen, and M. Diehl. “Nonlinear MPC for Emission
Efficient Cooperative Adaptive Cruise Control”. In: IFAC - PapersOnLine 48.2014
(2015), pp. 160–165. ISSN: 24058963. DOI: 10.1016/j.ifacol.2015.11.277 (cit.
on p. 52).

[SW+17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy
Optimization Algorithms”. In: (2017). arXiv: 1707.06347. URL: http://arxiv.
org/abs/1707.06347 (cit. on p. 188).

[TC+97] W. D. Timmons, H. J. Chizeck, F. Casas, V. Chankong, and P. G. Katona.
“Parameter-Constrained Adaptive Control”. In: Industrial & Engineering Chem-
istry Research 36.11 (Nov. 1997), pp. 4894–4905. ISSN: 0888-5885. DOI: 10.
1021/ie9606597. URL: https://pubs.acs.org/doi/10.1021/ie9606597 (cit. on
p. 258).

[Tee48] R. R. Teetor. Speed Control Device for Resisting Operation of the Accelerator. 1948.
URL: https://patents.google.com/patent/US2519859 (cit. on p. 17).

[Tes15] Tesla. Ihr Autopilot ist da | Tesla Deutschland. 2015. URL: https://www.tesla.
com/de%7B%5C_%7DDE/blog/your - autopilot - has - arrived? redirect=no
(visited on 08/30/2018) (cit. on p. 20).

[TH+10] C. C. Tsai, S. M. Hsieh, and C. T. Chen. “Fuzzy longitudinal controller design
and experimentation for adaptive cruise control and stop&Go”. In: Journal of
Intelligent and Robotic Systems: Theory and Applications 59.2 (2010), pp. 167–
189. ISSN: 09210296. DOI: 10.1007/s10846-010-9393-z (cit. on p. 51).

[The04] The Automotor Journal. The Automotor Journal. 1904. URL: https://archive.
org/details/TheAutomotorJournalFirstHalf1904 (cit. on pp. 16, 17).

[Thr02] S. Thrun. “Probabilistic robotics”. In: Communications of the ACM 45.3 (2002),
pp. 52–57. ISSN: 00010782. DOI: 10.1145/504729.504754 (cit. on pp. 231,
243).

[TK+01] S. Tsugawa, S. Kato, K. Tokuda, T. Matsui, and H. Fujii. “A cooperative driv-
ing system with automated vehicles and inter-vehicle communications in Demo
2000”. In: IEEE Intelligent Transportation Systems Conference (ITSC). 2001. ISBN:
0-7803-7194-1. DOI: 10.1109/ITSC.2001.948783 (cit. on p. 18).

[TK+17] V. Turri, Y. Kim, J. Guanetti, K. H. Johansson, and F. Borrelli. “A model predictive
controller for non-cooperative eco-platooning”. In: Proceedings of the American
Control Conference (2017), pp. 2309–2314. ISSN: 07431619. DOI: 10.23919/
ACC.2017.7963297 (cit. on p. 52).

[TM+06] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,
P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C.
Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S.
Ettinger, A. Kaehler, A. Nefian, and P. Mahoney. “Stanley: The robot that won
the DARPA Grand Challenge”. In: Journal of Field Robotics 23.9 (2006), pp. 661–

https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009
http://link.springer.com/10.1007/BF00115009
https://doi.org/10.1145/122344.122377
https://doi.org/10.1016/j.ifacol.2015.11.277
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1021/ie9606597
https://doi.org/10.1021/ie9606597
https://pubs.acs.org/doi/10.1021/ie9606597
https://patents.google.com/patent/US2519859
https://www.tesla.com/de%7B%5C_%7DDE/blog/your-autopilot-has-arrived?redirect=no
https://www.tesla.com/de%7B%5C_%7DDE/blog/your-autopilot-has-arrived?redirect=no
https://doi.org/10.1007/s10846-010-9393-z
https://archive.org/details/TheAutomotorJournalFirstHalf1904
https://archive.org/details/TheAutomotorJournalFirstHalf1904
https://doi.org/10.1145/504729.504754
https://doi.org/10.1109/ITSC.2001.948783
https://doi.org/10.23919/ACC.2017.7963297
https://doi.org/10.23919/ACC.2017.7963297


References 331

692. ISSN: 15564959. DOI: 10.1002/rob.20147. URL: http://doi.wiley.com/10.
1002/rob.20147 (cit. on pp. 19, 54).

[TM+18] D. Tavernini, M. Metzler, P. Gruber, and A. Sorniotti. “Explicit Nonlinear Model
Predictive Control for Electric Vehicle Traction Control”. In: IEEE Transactions
on Control Systems Technology PP (2018), pp. 1–14. ISSN: 1558-0865. DOI: 10.
1109/TCST.2018.2837097 (cit. on p. 225).

[Tor17] G. Torrisi. “Low-Complexity Numerical Methods for Nonlinear Model Predictive
Control”. PhD thesis. ETH Zürich, 2017. URL: https://doi.org/10.3929/ethz-a-
010025751 (cit. on p. 208).

[TS+16] R. Tachet, P. Santi, and S. Sobolevsky. “Revisiting street intersections using slot-
based systems”. In: PLoS one 11.3 (2016). DOI: 10.1371/journal.pone.0149607
(cit. on p. 23).

[TS85] T. Takagi and M. Sugeno. “Fuzzy Identification of Systems and Its Applications
to Modeling and Control”. In: IEEE Transactions on Systems, Man and Cybernetics
SMC-15.1 (1985), pp. 116–132. ISSN: 21682909. DOI: 10.1109/TSMC.1985.
6313399 (cit. on p. 55).

[Tur66] L. R. Turner. Inverse of the Vandermonde Matrix with applications. Ohio, 1966
(cit. on p. 65).

[TY+79] S. Tsugawa, T. Yatabe, T. Hirose, and S. Matsumoto. “An automobile with artifi-
cial intelligence”. In: Proceedings of the 6th international Joint Conference on Ar-
tificial Intelligence (IJCAI). Tokyo: IJCAI, 1979, pp. 893–895. ISBN: 0934613478.
URL: https://dl.acm.org/citation.cfm?id=1623117 (cit. on p. 18).

[UA+08] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan,
D. Duggins, T. Galatali, C. Geyer, et al. “Autonomous Driving in Urban Environ-
ments: Boss and the Urban Challenge”. In: Journal of Field Robotics 25.8 (2008),
pp. 425–466 (cit. on pp. 54, 58).

[UNE19] UNECE. WLTP Test cycle data. 2019. URL: https://unece.org/DAM/trans/doc/
2012/wp29grpe/WLTP-DHC-12-07e.xls (cit. on pp. 112, 158).

[UO30] G. E. Uhlenbeck and L. S. Ornstein. “On the Theory of the Brownian Motion”.
In: Physical Review 36.5 (1930), pp. 823–841. ISSN: 0031899X. DOI: 10.1103/
PhysRev.36.823 (cit. on p. 206).

[VD+03] A. Vahidi, M. Druzhinina, A. G. Stefanopoulou, and H. Peng. “Simultaneous
Mass and Time-Varying Grade Estimation for Heavy-Duty Vehicles”. In: Proceed-
ings of the American Control Conference (ACC). Denver, Colorado, 2003. ISBN:
0-7918-3713-0. DOI: 10.1115/IMECE2003-43848. URL: http://proceedings.
asmedigitalcollection.asme.org/proceeding.aspx?articleid=1591351 (cit. on
p. 91).

[VE+19] A. F. Villaverde, N. D. Evans, M. J. Chappell, and J. R. Banga. “Input-dependent
structural identifiability of nonlinear systems”. In: IEEE Control Systems Letters
3.2 (2019), pp. 272–277. ISSN: 24751456. DOI: 10.1109/LCSYS.2018.2868608
(cit. on pp. 98, 270–272).

[VF+21] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli,
B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl. “acados—a modular open-
source framework for fast embedded optimal control”. In: Mathematical Pro-
gramming Computation (2021). ISSN: 1867-2949. DOI: 10.1007/s12532-021-
00208-8 (cit. on p. 148).

https://doi.org/10.1002/rob.20147
http://doi.wiley.com/10.1002/rob.20147
http://doi.wiley.com/10.1002/rob.20147
https://doi.org/10.1109/TCST.2018.2837097
https://doi.org/10.1109/TCST.2018.2837097
https://doi.org/10.3929/ethz-a-010025751
https://doi.org/10.3929/ethz-a-010025751
https://doi.org/10.1371/ journal.pone.0149607
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1109/TSMC.1985.6313399
https://dl.acm.org/citation.cfm?id=1623117
https://unece.org/DAM/trans/doc/2012/wp29grpe/WLTP-DHC-12-07e.xls
https://unece.org/DAM/trans/doc/2012/wp29grpe/WLTP-DHC-12-07e.xls
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1115/IMECE2003-43848
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1591351
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1591351
https://doi.org/10.1109/LCSYS.2018.2868608
https://doi.org/10.1007/s12532-021-00208-8
https://doi.org/10.1007/s12532-021-00208-8


332 References

[VF19] B. Vatankhah and M. Farrokhi. “Nonlinear Adaptive Model Predictive Control of
Constrained Systems with Offset-Free Tracking Behavior”. In: Asian Journal of
Control 21.5 (2019), pp. 2232–2244. ISSN: 19346093. DOI: 10.1002/asjc.1655
(cit. on pp. 141, 144).

[VG+16] H. Van Hasselt, A. Guez, and D. Silver. “Deep Reinforcement Learning with Dou-
ble Q-Learning”. In: Thirtieth AAAI Conference on Artificial Intelligence. 2016.
URL: www.aaai.org (cit. on p. 187).

[VK+82] H. Vogel, R. Kohlhaas, and R. von Baumgarten. “Dependence of Motion Sickness
in Automobiles on the Direction of Linear Acceleration”. In: European Journal
of Applied Physiology (1982) (cit. on p. 24).

[VM+05] M. Vogels, E. Martini, K. Gschweitl, P. Mathis, H. Altenstrasser, and M. Buechel.
“Dynamic Powertrain Calibration: Using Transient DoE and Modelling Tech-
niques”. In: Design of Experiments (DoE): In: Engine Development II, Haus der
Technik Fachbuch 49 (2005) (cit. on p. 199).

[VS+03] A. Vahidi, A. G. Stefanopoulou, and H. Peng. “Experiments for Online Estima-
tion of Heavy Vehicle’s Mass and Time-Varying Road Grade”. In: ASME 2003
International Mechanical Engineering Congress and Exposition (2003), pp. 451–
458 (cit. on p. 91).

[VS+05] A. Vahidi, A. Stefanopoulou, and H. Peng. “Recursive least squares with forget-
ting for online estimation of vehicle mass and road grade: theory and experi-
ments”. In: Vehicle System Dynamics 43.1 (2005), pp. 31–55. ISSN: 0042-3114.
DOI: 10.1080/00423110412331290446. URL: http://www.tandfonline.com/
doi/abs/10.1080/00423110412331290446 (cit. on pp. 91, 95).

[VT+19] A. Villaverde, N. Tsiantis, and J. Banga. “Full observability and estimation of
unknown inputs, states, and parameters of nonlinear biological models”. In:
Journal of the Royal Society Interface 16.156 (2019) (cit. on p. 272).

[WA+04] J. Wang, L. Alexander, and R. Rajamani. “Friction Estimation on Highway Ve-
hicles using Longitudinal Measurements”. In: Journal of Dynamic Systems, Mea-
surement, and Control 126.2 (2004), pp. 265–275 (cit. on p. 38).

[Wal82] E. Walter. IdentifiabiIity of State Space Models. Springer, 1982. ISBN: 978-3-642-
61823-9 (cit. on p. 270).

[Wat89] C. J. C. H. Watkins. “Learning from delayed rewards”. PhD thesis. Kings College,
1989 (cit. on p. 181).

[WB+04] T. A. Wenzel, K. J. Burnham, M. V. Blundell, and R. A. Williams. “Approach to
vehicle state and parameter estimation using extended Kalman filtering”. In:
Proceedings of the International Symposium on Advanced Vehicle Control (AVEC).
2004 (cit. on p. 94).

[WB+06] T. A. Wenzel, K. J. Burnham, M. V. Blundell, and R. A. Williams. “Dual ex-
tended Kalman filter for vehicle state and parameter estimation”. In: Vehicle
System Dynamics 44.2 (Feb. 2006), pp. 153–171. ISSN: 0042-3114. DOI: 10.
1080/00423110500385949. URL: http://www.tandfonline.com/doi/abs/10.
1080/00423110500385949 (cit. on pp. 94, 95).

[WB06] A. Wächter and L. T. Biegler. “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming”. In: Mathematical
Programming 106.1 (2006), pp. 25–57. ISSN: 00255610. DOI: 10.1007/s10107-
004-0559-y (cit. on pp. 148, 159, 165, 226).

https://doi.org/10.1002/asjc.1655
www.aaai.org
https://doi.org/10.1080/00423110412331290446
http://www.tandfonline.com/doi/abs/10.1080/00423110412331290446
http://www.tandfonline.com/doi/abs/10.1080/00423110412331290446
https://doi.org/10.1080/00423110500385949
https://doi.org/10.1080/00423110500385949
http://www.tandfonline.com/doi/abs/10.1080/00423110500385949
http://www.tandfonline.com/doi/abs/10.1080/00423110500385949
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y


References 333

[WC+18] P. Wang, C.-Y. Chan, and A. de La Fortelle. “A Reinforcement Learning Based Ap-
proach for Automated Lane Change Maneuvers”. In: (Apr. 2018). arXiv: 1804.
07871. URL: http://arxiv.org/abs/1804.07871 (cit. on p. 192).

[WD+00] G. R. Widmann, M. K. Daniels, L. Hamilton, L. Humm, B. Riley, J. K. Schiffmann,
D. E. Schnelker, and W. H. Wishon. “Comparison of Lidar-Based and Radar-
Based Adaptive Cruise Control Systems”. In: SAE Technical Paper Series 1.345
(2000). DOI: 10.4271/2000-01-0345 (cit. on p. 50).

[Weba] Weblink. Scania Lowliner R 490 - ES-GE Nutzfahrzeuge GmbH. URL: https://
www.es-ge.de/scania-r490-lowliner/ (visited on 07/15/2021) (cit. on p. 38).

[Webb] Weblink. Technische Daten Ford Mondeo 1.6 TDCi ECOnetic Turnier (85 kW /
116 PS), 6-Gang Handschaltung (seit Februar 2015) - AutoKlicker. URL: https:
//www.autoklicker.de/autokatalog/ford-mondeo-16-tdci-econetic-technische-
daten13213.html (visited on 07/15/2021) (cit. on p. 38).

[Webc] Weblink. Top-Liste maximale Zuladung: Autos, die richtig wegpacken können |
AUTO MOTOR UND SPORT. URL: https://www.auto-motor-und-sport.de/reise/
top-liste-maximale-zuladung-autos-die-richtig-wegpacken-koennen/ (visited
on 07/15/2021) (cit. on p. 38).

[Wer10] M. Werling. “Ein neues Konzept für die Trajektoriengenerierung und -stabili-
sierung in zeitkritischen Verkehrsszenarien”. PhD thesis. Karlsruhe Institut für
Technologie (KIT), 2010. ISBN: 9783866446311 (cit. on pp. 56, 57, 79).

[Wer21] H. Werner. “A Velocity Algorithm for Nonlinear Model Predictive Control”. In:
IEEE Transactions on Control Systems Technology 29.3 (2021), pp. 1310–1315.
DOI: 10.1109/TCST.2020.2979386 (cit. on p. 143).

[WH19a] F. Walz and S. Hohmann. “Model predictive longitudinal motion control for
low velocities on known road profiles”. In: Vehicle System Dynamics 0.0 (2019),
pp. 1–19. ISSN: 0042-3114. DOI: 10.1080/00423114.2019.1618880. URL: https:
//doi.org/00423114.2019.1618880 (cit. on p. 56).

[WH19b] F. Walz and S. Hohmann. “On model-based longitudinal feed-forward motion
control for low velocities on known road profiles”. In: Vehicle System Dynamics
57.8 (2019), pp. 1126–1142. ISSN: 17445159. DOI: 10.1080/00423114.2018.
1498111. URL: https://doi.org/10.1080/00423114.2018.1498111 (cit. on
p. 56).

[Wik18] Wikipedia. Cruise Control (wikipedia). 2018. URL: https://en.wikipedia.org/
wiki/Cruise%7B%5C_%7Dcontrol (visited on 05/30/2018) (cit. on p. 17).

[Wik20] Wikipedia. Automobile Drag Coefficient. 2020. URL: https://en.wikipedia.org/
wiki / Automobile % 7B % 5C _ %7Ddrag % 7B % 5C _ %7Dcoefficient (visited on
07/14/2020) (cit. on p. 39).

[Wil92] R. J. Williams. “Simple Statistical Gradient-Following Algorithms for Connec-
tionist Reinforcement Learning”. In: Machine Learning 8.3 (1992), pp. 229–256.
ISSN: 15730565. DOI: 10.1023/A:1022672621406 (cit. on pp. 186, 202).

[Wis68a] D. A. Wisner. Speed control for automotive vehicles. 1968. URL: https://patents.
google.com/patent/US3511329A/en (cit. on p. 17).

[Wis68b] D. A. Wisner. Speed control for motor vehicles. 1968. URL: https://patents.google.
com/patent/US3570622A/en (cit. on p. 17).

https://arxiv.org/abs/1804.07871
https://arxiv.org/abs/1804.07871
http://arxiv.org/abs/1804.07871
https://doi.org/10.4271/2000-01-0345
https://www.es-ge.de/scania-r490-lowliner/
https://www.es-ge.de/scania-r490-lowliner/
https://www.autoklicker.de/autokatalog/ford-mondeo-16-tdci-econetic-technische-daten13213.html
https://www.autoklicker.de/autokatalog/ford-mondeo-16-tdci-econetic-technische-daten13213.html
https://www.autoklicker.de/autokatalog/ford-mondeo-16-tdci-econetic-technische-daten13213.html
https://www.auto-motor-und-sport.de/reise/top-liste-maximale-zuladung-autos-die-richtig-wegpacken-koennen/
https://www.auto-motor-und-sport.de/reise/top-liste-maximale-zuladung-autos-die-richtig-wegpacken-koennen/
https://doi.org/10.1109/TCST.2020.2979386
https://doi.org/10.1080/00423114.2019.1618880
https://doi.org/00423114.2019.1618880
https://doi.org/00423114.2019.1618880
https://doi.org/10.1080/00423114.2018.1498111
https://doi.org/10.1080/00423114.2018.1498111
https://doi.org/10.1080/00423114.2018.1498111
https://en.wikipedia.org/wiki/Cruise%7B%5C_%7Dcontrol
https://en.wikipedia.org/wiki/Cruise%7B%5C_%7Dcontrol
https://en.wikipedia.org/wiki/Automobile%7B%5C_%7Ddrag%7B%5C_%7Dcoefficient
https://en.wikipedia.org/wiki/Automobile%7B%5C_%7Ddrag%7B%5C_%7Dcoefficient
https://doi.org/10.1023/A:1022672621406
https://patents.google.com/patent/US3511329A/en
https://patents.google.com/patent/US3511329A/en
https://patents.google.com/patent/US3570622A/en
https://patents.google.com/patent/US3570622A/en


334 References

[WJ+22] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar. “Integrating Scientific
Knowledge with Machine Learning for Engineering and Environmental Sys-
tems”. In: ACM Computing Surveys 1.1 (Mar. 2022), pp. 1–35. ISSN: 0360-0300.
DOI: 10.1145/3514228. URL: https://dl.acm.org/doi/10.1145/3514228 (cit.
on p. 62).

[WK03] Z. Wan and M. V. Kothare. “Efficient scheduled stabilizing model predictive con-
trol for constrained nonlinear systems”. In: International Journal of Robust and
Nonlinear Control 346.August 2002 (2003), pp. 331–346 (cit. on p. 142).

[WK05] V. Winstead and I. Kolmanovsky. “Estimation of road grade and vehicle mass
via model predictive control”. In: Proceedings of the IEEE Conference on Control
Applications (CCA) (2005), pp. 1588–1593. ISSN: 1085-1992. DOI: 10.1109/
CCA.2005.1507359 (cit. on pp. 91, 92, 94, 95).

[WL+12] D. Wang, D. Liu, and Q. Wei. “Finite-horizon neuro-optimal tracking control for
a class of discrete-time nonlinear systems using adaptive dynamic programming
approach”. In: Neurocomputing 78.1 (2012), pp. 14–22. ISSN: 09252312. DOI:
10.1016/j.neucom.2011.03.058. URL: http://dx.doi.org/10.1016/j.neucom.
2011.03.058 (cit. on p. 223).

[WN97] E. A. Wan and A. T. Nelson. “Dual Kalman filtering methods for nonlinear pre-
diction, smoothing, and estimation”. In: Advances in Neural Information Process-
ing Systems 1 (1997), pp. 793–799. ISSN: 10495258 (cit. on p. 259).

[WO12] M. Wiering and M. van. Otterlo. Reinforcement learning : state-of-the-art.
Springer, 2012, p. 638. ISBN: 9783642276446 (cit. on pp. 176, 178, 181, 182,
189, 191, 197, 200).

[Won08] J. Wong. Theory of ground vehicles. John Wiley & Sons, 2008. ISBN: 978-
0470170380. URL: https://books.google.de/books?isbn=0470170387 (cit.
on p. 38).

[Won11] E. Wong. “Active-Set Methods for Quadratic Programming”. PhD thesis. Univer-
sity of California, 2011 (cit. on p. 146).

[WS+08] J. Wang, J. Steiber, and B. Surampudi. “Autonomous ground vehicle control
system for high-speed and safe operation”. In: Proceedings of the American Con-
trol Conference (2008), pp. 218–223. ISSN: 07431619. DOI: 10.1109/ACC.2008.
4586494 (cit. on p. 88).

[WS+13] J. Wang, Z. Sun, X. Xu, D. Liu, J. Song, and Y. Fang. “Adaptive Speed Tracking
Control for Autonomous Land Vehicles in All-Terrain Navigation: An Experimen-
tal Study”. In: Journal of Field Robotics 30.1 (2013), pp. 102–128 (cit. on pp. 53,
55).

[WS+16] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Frci-
tas. “Dueling Network Architectures for Deep Reinforcement Learning”. In:
33rd International Conference on Machine Learning, ICML 2016. Vol. 4. In-
ternational Machine Learning Society (IMLS), 2016, pp. 2939–2947. ISBN:
9781510829008. arXiv: 1511.06581 (cit. on p. 187).

[WS+18a] F. Walz, T. Schucht, J. Reger, and S. Hohmann. “Shaft Torque and Backlash
Estimation for Longitudinal Motion Control of All-Wheel-Drive Vehicles”. In:
2018 IEEE Conference on Control Technology and Applications (CCTA) (2018),
pp. 1434–1440 (cit. on p. 40).

https://doi.org/10.1145/3514228
https://dl.acm.org/doi/10.1145/3514228
https://doi.org/10.1109/CCA.2005.1507359
https://doi.org/10.1109/CCA.2005.1507359
https://doi.org/10.1016/j.neucom.2011.03.058
http://dx.doi.org/10.1016/j.neucom.2011.03.058
http://dx.doi.org/10.1016/j.neucom.2011.03.058
https://books.google.de/books?isbn=0470170387
https://doi.org/10.1109/ACC.2008.4586494
https://doi.org/10.1109/ACC.2008.4586494
https://arxiv.org/abs/1511.06581


References 335

[WS+18b] F. Walz, T. Schucht, J. Reger, and S. Hohmann. “Shaft Torque and Backlash Es-
timation for Longitudinal Motion Control of All-Wheel-Drive Vehicles”. In: 2018
IEEE Conference on Control Technology and Applications, CCTA 2018 (2018),
pp. 1434–1440. DOI: 10.1109/CCTA.2018.8511096 (cit. on p. 56).

[WT13] C. Wuthishuwong and A. Traechtler. “Vehicle to infrastructure based safe trajec-
tory planning for autonomous intersection management”. In: 13th International
Conference on ITS Telecommunications (ITST) (2013), pp. 175–180. ISSN: 1687-
1499. DOI: 10.1109/ITST.2013.6685541 (cit. on p. 23).

[WW+17] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A.
Theodorou. “Information theoretic MPC for model-based reinforcement learn-
ing”. In: 2017 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, May 2017, pp. 1714–1721. ISBN: 978-1-5090-4633-1. DOI: 10 . 1109 /
ICRA.2017.7989202. URL: http://ieeexplore.ieee.org/document/7989202/
(cit. on p. 192).

[WX+14] J. Wang, X. Xu, D. Liu, Z. Sun, and Q. Chen. “Self-learning Cruise Control
using Kernel-based Least Squares Policy Iteration”. In: IEEE Transactions on
Control Systems Technology 22.3 (2014), pp. 1078–1087. ISSN: 10636536. DOI:
10.1109/TCST.2013.2271276 (cit. on p. 193).

[WZ+15] B. Wang, D. Zhao, C. Li, and Y. Dai. “Design and implementation of an adap-
tive cruise control system based on supervised actor-critic learning”. In: 2015
5th International Conference on Information Science and Technology, ICIST 2015.
Institute of Electrical and Electronics Engineers Inc., Oct. 2015, pp. 243–248.
ISBN: 9781479974894. DOI: 10.1109/ICIST.2015.7288976 (cit. on p. 193).

[WZ+18a] B. Wang, D. Zhao, and J. Cheng. “Adaptive cruise control via adaptive dynamic
programming with experience replay”. In: Soft Computing 23.12 (2018), pp. 1–
14. ISSN: 14337479. DOI: 10.1007/s00500-018-3063-7. URL: https://doi.org/
10.1007/s00500-018-3063-7 (cit. on pp. 53, 223).

[WZ+18b] S. Wei, Y. Zou, T. Zhang, X. Zhang, and W. Wang. “Design and Experimental Val-
idation of a Cooperative Adaptive Cruise Control System Based on Supervised
Reinforcement Learning”. In: Applied Sciences 8.7 (2018), pp. 2076–3417. ISSN:
2076-3417. DOI: 10.3390/app8071014. URL: http://www.mdpi.com/2076-
3417/8/7/1014 (cit. on p. 193).

[XD+08] L. Xiao, S. Darbha, and F. Gao. “Stability of string of adaptive cruise control
vehicles with parasitic delays and lags”. In: IEEE Conference on Intelligent Trans-
portation Systems, Proceedings, ITSC (2008), pp. 1101–1106. DOI: 10 .1109/
ITSC.2008.4732532 (cit. on pp. 25, 35).

[XG10] L. Xiao and F. Gao. “A comprehensive review of the development of adaptive
cruise control systems”. In: Vehicle System Dynamics 48.10 (2010), pp. 1167–
1192. ISSN: 0042-3114. DOI: 10.1080/00423110903365910. URL: http://www.
tandfonline.com/doi/abs/10.1080/00423110903365910 (cit. on pp. 18, 38,
50).

[XG11] L. Xiao and F. Gao. “Practical String Stability of Platoon of Adaptive Cruise Con-
trol Vehicles”. In: IEEE Transactions on Intelligent Transportation Systems 12.4
(2011), pp. 1184–1194. ISSN: 1524-9050. DOI: 10.1109/TITS.2011.2143407.
URL: http://ieeexplore.ieee.org/document/5782989/ (cit. on pp. 11, 58).

[XI94] Z. Xu and P. Ioannou. “Adaptive Throttle Control for Speed Tracking”. In: Vehicle
System Dynamics 23.1 (1994), pp. 293–306. ISSN: 17445159. DOI: 10.1080/
00423119408969063 (cit. on p. 56).

https://doi.org/10.1109/CCTA.2018.8511096
https://doi.org/10.1109/ITST.2013.6685541
https://doi.org/10.1109/ICRA.2017.7989202
https://doi.org/10.1109/ICRA.2017.7989202
http://ieeexplore.ieee.org/document/7989202/
https://doi.org/10.1109/TCST.2013.2271276
https://doi.org/10.1109/ICIST.2015.7288976
https://doi.org/10.1007/s00500-018-3063-7
https://doi.org/10.1007/s00500-018-3063-7
https://doi.org/10.1007/s00500-018-3063-7
https://doi.org/10.3390/app8071014
http://www.mdpi.com/2076-3417/8/7/1014
http://www.mdpi.com/2076-3417/8/7/1014
https://doi.org/10.1109/ITSC.2008.4732532
https://doi.org/10.1109/ITSC.2008.4732532
https://doi.org/10.1080/00423110903365910
http://www.tandfonline.com/doi/abs/10.1080/00423110903365910
http://www.tandfonline.com/doi/abs/10.1080/00423110903365910
https://doi.org/10.1109/TITS.2011.2143407
http://ieeexplore.ieee.org/document/5782989/
https://doi.org/10.1080/00423119408969063
https://doi.org/10.1080/00423119408969063


336 References

[XT+18] Z. Xu, C. Tang, and M. Tomizuka. “Zero-shot Deep Reinforcement Learning Driv-
ing Policy Transfer for Autonomous Vehicles based on Robust Control”. In: The
21st IEEE International Conference on Intelligent Transportation Systems. 2018,
pp. 2865–2871. ISBN: 9781728103228 (cit. on p. 192).

[XX+22] W. Xin, E. Xu, W. Zheng, H. Feng, and J. Qin. “Optimal energy management of
fuel cell hybrid electric vehicle based on model predictive control and on-line
mass estimation”. In: Energy Reports 8 (2022), pp. 4964–4974. ISSN: 23524847.
DOI: 10.1016/j.egyr.2022.03.194. URL: https://doi.org/10.1016/j.egyr.2022.
03.194 (cit. on pp. 52, 93).

[YH+22] Z. Yu, X. Hou, B. Leng, and Y. Huang. “Mass estimation method for intelligent
vehicles based on fusion of machine learning and vehicle dynamic model”. In:
Autonomous Intelligent Systems 2.1 (2022). DOI: 10.1007/s43684-022-00020-8.
URL: http://dx.doi.org/10.1007/s43684-022-00020-8 (cit. on p. 93).

[YS22] H. Yuan and X. Song. “A Modified EKF for Vehicle State Estimation With Partial
Missing Measurements”. In: IEEE Signal Processing Letters 29 (2022), pp. 1594–
1598 (cit. on p. 93).

[ZC+00] Y. Zou, S. C. Chan, and T. S. Ng. “Recursive Least M-estimate (RLM) adaptive
filter for robust filtering in impulse noise”. In: IEEE Signal Processing Letters
7.11 (2000), pp. 324–326. ISSN: 10709908. DOI: 10.1109/97.873571 (cit. on
pp. 267, 268).

[ZC+16a] H. Zhang, A. Chakrabarty, R. Ayoub, G. T. Buzzard, and S. Sundaram.
“Sampling-based explicit nonlinear model predictive control for output track-
ing”. In: 2016 IEEE 55th Conference on Decision and Control, CDC 2016 Cdc
(2016), pp. 4722–4727. DOI: 10.1109/CDC.2016.7798989 (cit. on p. 225).

[ZC+16b] M. Zhu, H. Chen, and G. Xiong. “A Model Predictive Speed Tracking Control
Approach for Autonomous Ground Vehicles”. In: Mechanical Systems and Signal
Processing (2016), pp. 1–15. ISSN: 08883270. DOI: 10.1016/j.ymssp.2016.03.
003 (cit. on p. 52).

[ZD+13] J. Ziegler, T. Dang, U. Franke, H. Lategahn, P. Bender, M. Schreiber, T. Strauss,
N. Appenrodt, C. G. Keller, E. Kaus, C. Stiller, and R. G. Herrtwich. “Making
Bertha Drive - An Autonomous Journey on a Historic Route”. In: IEEE Intelligent
Transportation Systems Magazine 11.4 (2013), pp. 1–10. ISSN: 1939-1390 (cit.
on pp. 19, 54).

[ZD+17a] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari. “FORCES NLP: an efficient
implementation of interior-point methods for multistage nonlinear nonconvex
programs”. In: International Journal of Control 93.1 (2017), pp. 13–29. ISSN:
13665820. DOI: 10 . 1080 / 00207179 . 2017 . 1316017. URL: https : / / www.
tandfonline.com/doi/abs/10.1080/00207179.2017.1316017 (cit. on pp. 148,
165, 226).

[ZD+17b] Q. Zhu, B. Dai, Z. Huang, Z. Sun, and D. Liu. “An Adaptive Longitudinal
Control Method for Autonomous Follow Driving Based on Neural Dynamic
Programming and Internal Model Structure”. In: International Journal of Ad-
vanced Robotic Systems 14.6 (2017), pp. 1–13. ISSN: 17298814. DOI: 10.1177/
1729881417740711 (cit. on pp. 53, 193).

[ZD12] X. Zhongpu and Z. Dongbin. “Hybrid Feedback Control of Vehicle Longitudi-
nal Acceleration”. In: Chinese Control Conference (CCC) (2012), pp. 7292–7297.
ISSN: 19341768 (cit. on pp. 53, 55).

https://doi.org/10.1016/j.egyr.2022.03.194
https://doi.org/10.1016/j.egyr.2022.03.194
https://doi.org/10.1016/j.egyr.2022.03.194
https://doi.org/10.1007/s43684-022-00020-8
http://dx.doi.org/10.1007/s43684-022-00020-8
https://doi.org/10.1109/97.873571
https://doi.org/10.1109/CDC.2016.7798989
https://doi.org/10.1016/j.ymssp.2016.03.003
https://doi.org/10.1016/j.ymssp.2016.03.003
https://doi.org/10.1080/00207179.2017.1316017
https://www.tandfonline.com/doi/abs/10.1080/00207179.2017.1316017
https://www.tandfonline.com/doi/abs/10.1080/00207179.2017.1316017
https://doi.org/10.1177/1729881417740711
https://doi.org/10.1177/1729881417740711


References 337

[ZF+13] M. Zanon, J. V. Frasch, and M. Diehl. “Nonlinear Moving Horizon Estimation
for combined state and friction coefficient estimation in autonomous driving”.
In: 2013 European Control Conference, ECC 2013 (2013), pp. 4130–4135. DOI:
10.23919/ecc.2013.6669832 (cit. on p. 228).

[ZH+14] D. Zhao, Z. Hu, Z. Xia, C. Alippi, Y. Zhu, and D. Wang. “Full-range Adaptive
Cruise Control Based on Supervised Adaptive Dynamic Programming”. In: Neu-
rocomputing 125.2014 (2014), pp. 57–67. ISSN: 09252312. DOI: 10.1016/j .
neucom.2012.09.034 (cit. on p. 53).

[ZW+13] D. Zhao, B. Wang, and D. Liu. “A supervised Actor-Critic approach for adap-
tive cruise control”. In: Soft Computing 17.11 (2013), pp. 2089–2099. ISSN:
14327643. DOI: 10.1007/s00500-013-1110-y (cit. on p. 53).

[ZZ+13] H.-G. Zhang, X. Zhang, Y.-H. Luo, and J. Yang. “An Overview of Research on
Adaptive Dynamic Programming”. In: Acta Automatica Sinica 39.4 (Apr. 2013),
pp. 303–311. ISSN: 18741029. DOI: 10.1016/S1874-1029(13)60031-2. URL:
https :// linkinghub.elsevier.com/retrieve/pii/S1874102913600312 (cit. on
pp. 220, 223).

https://doi.org/10.23919/ecc.2013.6669832
https://doi.org/10.1016/j.neucom.2012.09.034
https://doi.org/10.1016/j.neucom.2012.09.034
https://doi.org/10.1007/s00500-013-1110-y
https://doi.org/10.1016/S1874-1029(13)60031-2
https://linkinghub.elsevier.com/retrieve/pii/S1874102913600312

	Contents
	Introduction
	Longitudinal vehicle motion tracking
	Focus of this work
	Research questions
	Out of scope of this work

	Research contribution
	Summary of publications
	Thesis outline
	Taxonomy
	Notation

	Motivation
	Longitudinal vehicle motion control - history and future
	Brief history of vehicle automation
	Future trends

	Impact of longitudinal motion tracking on automated vehicles
	Summary

	System Description
	Longitudinal vehicle dynamics
	Gravity force component
	Aerodynamic drag
	Rolling resistance
	Toe-in resistance
	Cornering resistance
	Wheel dynamics
	Resulting equation for longitudinal vehicle motion

	Power-train and brake dynamics
	Gearbox
	Gearbox inertia
	Torque converter
	Engine inertia
	Engine torque response
	Power-train torque response
	Brake torque

	Summary of longitudinal vehicle equations
	Discussion of vehicle dynamics equations
	Effective wheel radius
	Wheel inertia
	Vehicle mass
	Road plane elevation angle
	Rolling resistance
	Aerodynamic drag
	Experimental determination of rolling resistance and aerodynamic drag
	Acceleration and velocity
	Power-train torque generation and estimation

	System analysis
	Generic formulations of longitudinal vehicle dynamics
	Simplified motion dynamic equations
	System for simulation purposes
	Discrete time state space forms
	Explicit algebraic equation linear in unknown parameters

	Conclusion

	Related Work
	Longitudinal motion control for ADAS
	Linear control schemes
	Sliding-mode control schemes
	Fuzzy control schemes
	Model predictive control
	Dynamic programming
	Adaptive dynamic programming
	Other ADAS solutions

	Longitudinal motion tracking controllers
	Feed-forward control
	Proportional-Integral control schemes
	Fuzzy control
	Gain scheduling
	Internal Model Control
	Neural network control
	Model-free control
	Adaptive control
	Model Predictive Motion Tracking

	Other topics
	Bi-level control
	Limits of handling
	Parking solution
	Solutions specific to prototypical AVs
	Influence of actuator delays on string stability

	Not covered in this review
	Conclusion

	Novel Smoothing Algorithms for Multichannel Time-Series Data
	Introduction
	Related work
	Background polynomial filtering and smoothing
	Generic Polynomial Least Squares smoothing
	Polynomial Kalman smoothing
	The Polynomial Kalman Smoothing algorithm

	Proposed algorithms
	Problem formulation
	Preliminaries
	Derivative-exploiting Polynomial Least Squares (DeePLS)
	Derivative-exploiting Polynomial Kalman Smoothing (DeePKS)

	Evaluation
	Experiment description
	Implementation details
	Results
	Efficiency analysis of DeePLS algorithm

	Conclusion
	Summary
	Discussion and future work
	Contribution


	Combined Vehicle State and Parameter Estimation
	Introduction
	Motivation
	Requirements
	Objective and assumptions

	Related work vehicle state and parameter estimation
	Problem formulation, analysis and solution approaches
	Problem formulations
	Structural observability and identifiability analysis
	Possible solution approaches
	Challenges and shortcomings of existing approaches

	Preliminary investigations
	Simulation environment 6.1
	Simulation study: Effect and countermeasures for challenges in LiP estimation
	Simulation study: Effect and importance of signal pre-processing for recursive LiP estimation
	Simulation study: Comparison of existing Joint Estimation algorithms
	Conclusion of results from preliminary investigations

	Proposed solution for combined vehicle state and parameter estimation
	Proposed dual estimation scheme
	SRCDIF-PU: Modified Square-root central difference information filter with parameter uncertainty
	Proposed DeePLS-Dual based state and parameter estimation
	Proposed DeePKS-Dual based state and parameter estimation
	Limitations of the proposed approach

	Evaluation of the proposed algorithms
	Experiment description
	Implementation details
	Results

	Conclusion
	Summary and discussion
	Contribution


	Adaptive Nonlinear Model Predictive Control
	Introduction
	Model predictive control background 
	Receding horizon principle
	Advantages of model predictive control
	Formal description of model predictive control

	Related work and taxonomy
	Brief history of MPC
	Set-point regulation vs. trajectory tracking
	Advance knowledge for anticipative predictive control
	Adaptive MPC
	Other concepts in MPC
	Stability of NMPC
	Offset-free tracking and integral action
	Solution strategies to the optimal control problem
	Available software tools
	The control allocation problem and solution approaches

	Proposed solution
	Proposed control architecture
	Problem formulation
	Proposed model predictive control formulation

	Evaluation
	Simulation environment 7.1
	Experiment description
	Result discussion

	Conclusion
	Summary
	Discussion
	Contribution


	Predictive Deep Reinforcement Learning Controller
	Introduction
	Reinforcement learning background
	Reinforcement learning and deep reinforcement learning
	Markov Decision Process
	Solving Markov Decision Processes
	Metrics for reinforcement learning algorithms
	Important reinforcement learning algorithms
	(Deep) reinforcement learning for continuous control

	Related work
	Deep (reinforcement) learning for automated vehicle control
	Reinforcement learning in other automotive applications
	Reinforcement learning for cruise control
	RL for predictive reference tracking and vehicle motion control

	Proposed solution
	Assumptions
	Formal problem description
	Learning and deployment setup
	Design of the excitation signal
	Considerations for algorithm selection
	Proposed algorithm

	Evaluation details
	Simulation environment 8.1
	Implementation details

	Results
	Comparison of learning speed
	Training using APRBS sequence
	Comparison of computation times
	Evaluation of PRLC-A controller

	Conclusion
	Summary
	Discussion
	Contribution


	Conclusion
	Summary
	Discussion
	Architecture for learning control
	Comparison between RL and MPC approach 

	Future Work
	Longitudinal vehicle motion tracking specific topics
	Predictive and adaptive (learning) control
	State and parameter learning


	Background State and Parameter Estimation
	State and parameter estimation problem
	Joint estimation problem
	Dual estimation problem
	Parameter estimation problem
	Deterministic and stochastic estimation problem

	Solution approaches to state and parameter estimation
	Minimum mean squared error estimation
	Probabilistic approach
	Maximum likelihood estimation and M-Estimation

	Linear regression
	Solution of a system of linear equations as an estimation problem
	Linear least squares estimation
	Weighted linear least squares
	Alternative solution methods to the linear least-squares problem

	Recursive linear regression
	From full information estimation to recursive estimation
	Recursive Linear Least-Squares estimation

	From least squares to recursive Bayesian state estimation
	The Luenberger Observer
	The state estimation problem of stochastic dynamical systems

	The Kalman Filter family
	Linear Kalman Filter
	Extended Kalman Filter
	Sigma-Point Kalman Filters
	Information Filter
	Square-root formulations

	The particle filter
	Parameter estimation using Kalman filters
	Parameters only estimation
	Enforcing parameter constraints
	Combined state and parameter estimation using Kalman Filters
	One-step Kalman filter equations
	Stenlund-Gustafsson anti-windup scheme
	Instrumental Variables Kalman Filter

	Robust estimation
	Maximum likelihood estimation
	M-estimation
	Iteratively re-weighted least squares
	Maximum likelihood estimation for normal distribution
	Maximum likelihood estimation for Student-t distribution
	M-estimation using Kalman filtering techniques

	Observability, identifiability and persistent excitation
	State observability
	Detectability
	Identifiability
	Conditions for convergence of recursive least squares


	Overview of Algorithms
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	References

