Technische Universität München TUM School of Natural Sciences

Investigation of prokaryotic adrenergic protein targets in *Vibrio campbellii* & investigation of the catechol-reactive proteome

von

Angela-Maria Weigert Muñoz

München 2022

Technische Universität München TUM School of Natural Sciences

Investigation of prokaryotic adrenergic protein targets in Vibrio campbellii

&

investigation of the catechol-reactive proteome

Angela-Maria Weigert Muñoz

Vollständiger Abdruck der von der TUM School of Natural Sciences der Technischen Universität München zur Erlangung des akademischen Grades einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:Prof. Dr. Cathleen ZeymerPrüfer*innen der Dissertation:1. Prof. Dr. Stephan A. Sieber2. Prof. Dr. Matthias Feige3. Assoc. Prof. Dr. Megan Wright

Die Dissertation wurde am 29.12.2022 bei der Technischen Universität München eingereicht und durch die TUM School of Natural Sciences am 03.03.2023 angenommen.

You don't have to see the whole staircase. Just take the first step. - Martin Luther King

Danksagung

Zu allererst möchte ich mich bei meinem Doktorvater Prof. Stephan A. Sieber für die Betreuung meiner Arbeit bedanken, insbesondere für sein Vertrauen und seinen Rückhalt. In meiner Promotion hatte ich die Möglichkeit, ein methodisch vielseitiges und inhaltlich spannendes Thema zu bearbeiten, wobei ich die Freiheit hatte, viele eigene Ideen einzubringen. Meinen Horizont durfte ich auf Konferenzen und während eines kurzen Aufenthaltes an der Emory University in Atlanta, USA, erweitern. Für seine fortwährende fachliche wie außerfachliche Unterstützung bin ich sehr dankbar.

Weiterhin danke ich der Prüfungskommission dafür, dass sie sich die Zeit genommen hat, meine Arbeit zu begutachten.

Diese Arbeit wäre nicht möglich gewesen ohne den großartigen Beitrag einiger Kooperationspartner. Vor allem Elisabeth Hoyer, Kilian Schumacher und Prof. Kirsten Jung haben Expertise und eine Menge Arbeit in das Epinephrinprojekt fließen lassen. In diesem Projekt wurde ich weiterhin unterstützt durch Prof. Katja M. Taute und Dr. Marianne Grognot. Für ihre Arbeit bin ich allen sehr dankbar.

Annerose Kurz-Drexler und Dr. Daniela Vogt-Weisenhorn danke ich für die Präparierung der Mausneuronen. Kevin Meighen-Berger und Prof. Matthias Feige danke ich für die Durchführung der ER Stressassays. Lukas Niederegger und Prof. Corinna Hess danke ich für die Hilfe bei den CV Messungen. Diese Arbeiten waren für das Catecholprojekt unerlässlich. Für diverse Auswertungen von Daten des "Hacker Workflows" danke ich Dr. Stephan M. Hacker, dies war in beiden Projekten sehr hilfreich.

Auch innerhalb der Arbeitsgruppe gab es Kooperationen. Für seine Beharrlichkeit in den Alginatassays danke ich Patrick Allihn. Ricky Wirawan danke ich für die Fortsetzung dieses Projektes innerhalb einer herausragenden Masterarbeit und Markus Schwarz für dessen Übernahme. Jonas Drechsel danke ich für die großzügige Spende des Überfliegers DJ-1.

Für das kritische Lesen dieser Arbeit und ihre wertvollen Anmerkungen danke ich Till Reinhardt, Robert Macsics, Konstantin Eckel, Dietrich Mostert und Michael Zollo.

Für die gemeinsame Betreuung der HPLCs danke ich Thomas Gronauer, Max Bottlinger und Barbara Eyermann. Ines Hübner und Alexandra Geissler danke ich für die unkomplizierte Zusammenarbeit bei der Messung der HRMS Proben.

Mona Wolff, Katja Bäuml, Barbara Seibold und Christina Brumer danke ich dafür, dass sie jeden Tag den Doktoranden im Labor und der Bürokratie immens das Leben erleichtern.

Die Betreuung meiner Forschungspraktikanten hat mir großen Spaß gemacht, ich danke Juanita Ferreira Olmos, Larissa Tröbelsberger, Pedro Aragón Fernández und Elena Kratz für ihren Beitrag zu dieser Arbeit.

Meine Promotion begann in Lab C, in dem nur gelegentlich der Chickensong oder Vogelgesang den Freezerlärm übertönten. Dennoch hat es mit Theresa "the other ThAngela" Rauh, Martin Pfanzelt, Pavel Kielkowski und Jan-Niklas Dienemann immer etwas zu lachen gegeben. Nach dem Umzug ins CPA war Till Reinhardt zunächst mein einziger Sitznachbar, zu dem ich mich gerne häufig für ein bestätigendes "wird schon passen" umgedreht habe. Hin und wieder sorgten Fetzen von Denglisch von Stuart Ruddell, Meetings von Josef Braun, oder ein lautes "sooooo" von Michael Zollo für Erheiterung in dieser Ecke der Auswertezone.

Dietrich Mostert, Ines Hübner, Jonas Drechsel, Patrick Allihn, Patrick Zanon, Robert Macsics und Till Reinhardt danke ich für bitterernste Spielerunden, das regelmäßige gemeinsame Versumpfen in der Kaffeeküche oder anderswo, das nächtliche Hüte basteln, oder andere Aktionen zum ästhetischen Nachteil Zanis.

Allen anderen Kollegen danke ich für die vielen fachlich relevanten sowie die nicht fachlich relevanten Gespräche beim Mittagessen, Kaffeerunden oder nach Feierabend, sowie für ihre Kollegialität und Hilfsbereitschaft im Labor. Dass über so viele Jahre eine so positive Arbeitsatmosphäre besteht, ist nicht selbstverständlich.

Schließlich danke ich meinen Eltern und meiner Schwester, die mich ständig unterstützen und mir während dieser Zeit den Rücken freigehalten haben. Mein größter Dank gilt Jonas, der mich fortwährend motiviert und der mich versteht wie niemand sonst.

Abstract

Catecholamine hormones are important mediators of stress and neurological signalling in eukaryotes. Beyond that, catecholamines are specifically sensed by bacteria and they trigger a variety of prokaryotic responses that are crucial for virulence and host colonisation, e.g., increased motility. Despite great research effort, the precise mode of action and the molecular targets of catecholamine hormones in bacteria are not well understood. The aim of the first part of this thesis was to identify protein targets of catecholamines in the aquatic pathogen Vibrio campbellii and to elucidate the cellular pathways modulated by these hormones. Initial bioactivity assays demonstrated a bipartite mode of action which consists of promotion of bacterial growth under iron-limited conditions and enhanced colony expansion on soft agar. The catecholamine hormone epinephrine, which carries a catechol group, promoted both growth under iron limitation and motility on soft agar. The clinical adrenergic drug phenylephrine, on the other hand, had no effect on growth as it does not contain an intact catechol group, but it still promoted motility. Moreover, catecholamine-dependent motility on soft agar was blocked by the adrenergic antagonist labetalol. To enable the identification of prokaryotic adrenergic protein targets by chemical proteomics, photoreactive probes were synthesised based on the structural scaffold of the catecholamine hormone epinephrine and the clinical drug phenylephrine. The identification of protein targets of both chemical probes in live V. campbellii by mass spectrometry revealed the chemotaxis coupling protein CheW as a major adrenergic target. In vitro analyses confirmed binding of epinephrine, phenylephrine, and labetalol with affinity constants in the sub-micromolar range. Consistent with these results, adrenergic compounds influenced the chemotaxis of V. campbellii towards glucose. Therefore, the results of this study highlight CheW as an as yet unknown adrenergic prokaryotic target. Moreover, they point toward a potential novel regulatory mechanism in which the chemotactic control is modulated by small molecule binding to CheW.

Besides catecholamines, many other biologically relevant compounds including drugs and plant secondary metabolites carry catechol moieties. The catechol group is prone to oxidation, leading to the formation of quinones which react with nucleophilic amino acid residues in proteins. Therefore, catechol compounds can post-translationally modify proteins and thus alter their activity. However, the scope of catechol protein reactivity is poorly understood. The aim of the second part of this thesis was to elucidate the proteome targeted by structurally diverse catechol compounds using competitive chemical proteomics. First, a broadly reactive minimalist catechol probe was designed based on dopamine. Labelling experiments in live

human cells confirmed broad protein reactivity of the probe. Next, labelling was performed in competition with the catecholamine hormone dopamine to reveal protein targets of the parent compound. Analysis of the modification introduced by the probe on the proteome revealed a previously unknown cysteine-selective protein modification by an *O*-methylated probe metabolite. This finding provides an explanation for the cysteine reactivity of 3-*O*-methyl catechols such as capsaicin. Labelling was performed in competition with a suite of structurally diverse catechols from drugs and plant secondary metabolites as well as capsaicin to identify their protein targets. These experiments revealed stark differences in protein binding across the catechol compounds as some demonstrated broad protein reactivity whereas others showed no binding. Proteins of the endoplasmic reticulum were overrepresented among proteins targeted by the probe and certain competitors. Specifically, protein disulphide isomerases and proteins involved in the unfolded protein response were targeted by the probe and by dopamine. Thus, a chemical proteomics strategy was developed to reveal the protein target scope of a suite of structurally diverse catechols with biological relevance.

Zusammenfassung

Katecholaminhormone sind wichtige Botenstoffe in der eukaryotischen Stressantwort und in neurologischen Signalprozessen. Darüber hinaus werden Katecholamine spezifisch von Bakterien erkannt und sie stimulieren unterschiedliche prokaryotische Antworten, die essentiell sind für Virulenz und Wirtsbesiedelung, wie z.B. Motilität. Trotz großen Forschungsaufwands ist die genaue Wirkungsweise von Katecholaminen in Bakterien nicht vollständig aufgeklärt. Das Ziel des ersten Teils dieser Arbeit war es, Zielproteine von Katecholaminen im aquatischen Erreger Vibrio campbellii zu identifizieren und die zellulären Signalwege aufzuklären, die durch diese Hormone aktiviert werden. Erste Bioaktivitätstests zeigten einen zweiseitigen Wirkmechanismus. Einerseits verstärkten Katecholamine bakterielles Wachstum unter Eisenlimitierung, andererseits förderten sie die Ausbreitung von Kolonien auf weichem Agar. Das Katecholaminhormon Epinephrin, das eine Katecholgruppe besitzt, förderte sowohl das Wachstum unter Eisenlimitierung, als auch die Motilität auf weichem Agar. Der klinisch eingesetzte adrenerge Agonist Phenylephrin dagegen hatte keinen Einfluss auf das Wachstum aber verstärkte dennoch die Motilität. Für die Identifizierung prokaryotischer adrenerger Zielproteine mittels chemischer Proteomik wurden photoreaktive Sonden basierend auf den Strukturen des Katecholaminhormons Epinephrin und des klinischen Arzneimittels Über Massenspektrometrie wurde das Chemotaxis-Phenylephrin synthetisiert. Kopplungsprotein CheW als eines der Hauptinteraktoren beider Sonden in lebenden V. campbellii ermittelt. In vitro Bindungsstudien mit aufgereinigtem CheW bestätigten die Wechselwirkung des Proteins mit Epinephrin, Phenylephrin und Labetalol mit Affinitätskonstanten im sub-mikromolaren Bereich. Damit übereinstimmend beeinflussten die adrenergen Substanzen die Chemotaxis zu Glukose. Somit stellen die Ergebnisse dieser Studie CheW als einen bisher unbekannten adrenergen prokaryotischen Rezeptor heraus. Darüber hinaus deuten sie auf einen möglicherweise neuartigen Regulationsmechanismus hin, in welchem die chemotaktische Kontrolle durch die Bindung chemischer Liganden an CheW beeinflusst wird.

Neben Katecholaminen enthalten viele weitere biologisch relevante Verbindungen wie zum Beispiel Arzneimittel und sekundäre Pflanzenstoffe Katecholgruppen. Die Katecholgruppe neigt zur Oxidation zum Chinon, welches mit nukleophilen Aminosäureresten in Proteinen reagieren kann. Daher können Katecholverbindungen Proteine posttranslational modifizieren und so ihre Aktivität verändern. Das Ausmaß der Proteinreaktivität von Katecholverbindungen ist jedoch nur unzureichend bekannt. Das Ziel des zweiten Teils dieser Arbeit war es, mithilfe kompetitiver chemischer Proteomik das durch Katechole modifizierte Proteom zu entschlüsseln. Zunächst wurde, basierend auf der Struktur von Dopamin, eine minimalistische Katecholsonde mit umfangreicher Proteinreaktivität entwickelt. Diese umfangreiche Reaktivität wurde in Markierungsexperimenten in lebenden humanen Zellen bestätigt. Anschließend wurde die Markierung in Kompetition mit dem Katecholaminhormon Dopamin durchgeführt, wodurch Zielproteine der Ausgangsverbindung ermittelt werden konnten. Die Untersuchung der durch die Sonde im Proteome eingeführten Modifikation offenbarte eine bisher unbekannte cysteinselektive Proteinmodifikation durch einen O-methylierten Sondenmetaboliten. Diese Erkenntnis liefert eine Erklärung für die Cystein-Reaktivität von 3-O-Methylkatecholen wie zum Beispiel Capsaicin. Die Markierungsexperimente wurden in Kompetition mit einer Reihe strukturell verschiedener Katecholverbindungen aus Arzneimitteln und sekundären Pflanzenstoffen durchgeführt, sowie mit Capsaicin, um deren Zielproteine zu identifizieren. Bei diesen Experimenten zeigten sich deutliche Unterschiede im Ausmaß der Proteinmodifikation zwischen den verschiedenen Verbindungen, wobei einige Verbindungen eine breite Proteinreaktivität aufwiesen, während andere keine Bindung zeigten. Proteine des endoplasmatischen Retikulums waren unter den durch die Sonde und bestimmte Kompetitoren gebundenen Proteine überrepräsentiert. Insbesondere Proteindisulfidisomerasen und Proteine, die an der Antwort auf ungefaltete Proteine beteiligt sind, wurden von der Sonde und von Dopamin modifiziert. Zusammenfassend wurde eine Strategie entwickelt, um mithilfe chemischer Proteomik die Zielproteine einer Reihe strukturell unterschiedlicher Katechole mit biologischer Relevanz zu ermitteln.

Introductory remarks

Results of this thesis have been published as follows:

Weigert Muñoz, A.; Hoyer, E.; Schumacher, K.; Grognot, M.; Taute, K. M.; Hacker, S. M.; Sieber, S. A.;* Jung, K.,* Eukaryotic catecholamine hormones influence the chemotactic control of *Vibrio campbellii* by binding to the coupling protein CheW. *Proc Natl Acad Sci USA* **2022**, *119* (10), e2118227119.

Weigert Muñoz, A.; Meighen-Berger, K.; Hacker, S. M.; Feige, M. J.; Sieber, S. A., A chemical probe unravels the reactive proteome of health-associated catechols. *Manuscript in preparation*.

Journal publications not highlighted in this thesis:

Weigert Muñoz, A.; Zhao, W.;* Sieber, S.A.,* Monitoring host-pathogen interactions via chemical proteomics. *Manuscript in preparation*.

Schlagintweit, J. F.; Jakob, C. H. G.; Meighen-Berger, K.; Gronauer, T. F.; Weigert Muñoz, A.; Weiß, V.; Feige, M. J.; Sieber, S. A.; Correia, J. D. G.; Kühn, F. E., Fluorescent palladium(II) and platinum(II) NHC/1,2,3-triazole complexes: antiproliferative activity and selectivity against cancer cells. *Dalton Trans* **2021**, *50* (6), 2158-2166.

Jakob, C. H. G.;* **Weigert Muñoz, A.;*** Schlagintweit, J. F.; Weiß, V.; Reich, R. M.; Sieber, S. A.; Correia, J. D. G.; Kühn, F. E., Anticancer and antibacterial properties of trinuclear Cu(I), Ag(I) and Au(I) macrocyclic NHC/urea complexes. *J Organomet Chem* **2021**, *932*, 121643.

Zhao, W.; Cross, A. R.; Crowe-McAuliffe, C.; **Weigert Muñoz, A.**; Csatary, E. E.; Solinski, A. E.; Krysiak, J.; Goldberg, J. B.; Wilson, D. N.; Medina, E.; Wuest, W. M.; Sieber, S. A., The Natural Product Elegaphenone Potentiates Antibiotic Effects against *Pseudomonas aeruginosa*. *Angew Chem Int Ed Engl* **2019**, *58* (25), 8581-8584.

Karunakaran, S. C.; Cafferty, B. J.; Weigert Muñoz, A.; Schuster, G. B.; Hud, N. V., Spontaneous Symmetry Breaking in the Formation of Supramolecular Polymers: Implications for the Origin of Biological Homochirality. *Angew Chem Int Ed Engl* **2019**, *58* (5), 1453-1457.

Wright, M. H.; Tao, Y.; Drechsel, J.; Krysiak, J.; Chamni, S.; **Weigert Muñoz, A.**; Harvey, N. L.; Romo, D.; Sieber, S. A., Quantitative chemoproteomic profiling reveals multiple target interactions of spongiolactone derivatives in leukemia cells. *Chem Comm* **2017**, *53* (95), 12818-12821.

* authors contributed equally

Conference presentations:

Eukaryotic catecholamine hormones influence the chemotactic control of *Vibrio campbellii* by binding to the coupling protein CheW *Poster presentation, Gordon Research Seminar and Conference on Bioorganic Chemistry,* 11th–17th June 2022, Proctor Academy, Andover, New Hampshire, United States

Investigation of interkingdom adrenergic signalling in bacteria using chemical proteomics Poster presentation, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Symposium, 20th May 2021, online

Investigation of interkingdom adrenergic signalling in bacteria using chemical proteomics *Poster presentation, EMBO Workshop: Chemical Biology, 3rd-5th September 2020, online*

Table of contents

I –	Background	1
	1 Catechols – broad biological activity from chemical versatility	2
	2 Chemical proteomics for the identification of small molecule protein targets	3
	2.1 Characteristics of chemical probes for target identification	3
	2.2 Click chemistry in chemical proteomics	4
	2.3 Workflow variations	6
١I	- Investigation of prokaryotic adrenergic protein targets in V. campbellii	7
	1 Catecholaminergic interkingdom signalling	8
	1.1 The catecholaminergic endocrine system	8
	1.2 Catechol compounds in bacteria	10
	1.2.1 Catechols in siderophores	10
	1.2.2 Catecholamines as interkingdom signals	11
	1.2.2.1 Sensing via two-component systems	11
	1.2.2.2 Catecholamines in bacterial chemotaxis	13
	1.2.2.3 Catecholamines in iron supply	14
	1.3 Aim of the project – identification of prokaryotic adrenergic targets	15
	2 Results and discussion	16
	2.1 Synthesis of chemical probes	16
	2.1.1 First generation probe EPI-P1	16
	2.1.2 Second generation probes	16
	2.2 Bioactivity assays	18
	2.2.1 Colony spread on soft agar	18
	2.2.2 Investigation of siderophore properties	20
	2.3 Target identification by chemical proteomics	21
	2.3.1. Gel-based photoaffinity labelling	21
	2.3.2 MS-based photoaffinity labelling with EPI-P1	22
	2.3.3 MS-based photoaffinity labelling with PE-P and competition with PE	23
	2.3.4 MS-based photoaffinity labelling with PE-P in competition with EPI ar	ıd
	clinical antagonists	25
	2.4 Investigation of the mechanism of PE-P binding	29
	2.4.1 Labelling in presence of radical scavengers	29
	2.4.2 Labelling in lysate of different strains	29
	2.4.3 MS-based analysis of PE-P modification	30
	2.4.4 Identification of CheW binding sites	31
	2.5 Validation of CheW as adrenergic target	33
	2.5.1 Catecholamine binding to purified CheW	33
	2.5.2 Analysis of the CheW interaction network	33
	2.5.3 Effects of EPI and PE on the VC proteome	35
	2.5.4 Investigation of mechanisms behind catecholamine-dependent colony	
	spread	36
	2.6 Conclusion and outlook	40
	3 Experimental procedures	43

3.1 Chemical synthesis	.43
3.1.1 General remarks	. 43
3.1.2 Synthesis of 3-(but-3-yn-1-yl)-3-(2-iodoethyl)-3H-diazirine (PCL-I)	.43
3.1.3 Synthesis of (<i>R</i>)-4-(2-((2-(3-(but-3-yn-1-yl)-3 <i>H</i> -diazirin-3-yl)ethyl)amine))
-1-hydroxyethyl)-benzene-1,2-diol (EPI-P1)	.44
3.1.4 Amide coupling general protocol (second generation probes)	. 45
3.1.5 Synthesis of (R)-N-(2-(3,4-dihydroxyphenyl)-2-hydroxyethyl)hept-6-	
ynamide (EPI-P2)	.45
3.1.6 Synthesis of N-(2-hydroxy-2-(3-hydroxyphenyl)ethyl)hept-6-ynamide	
(PE-P)	.46
3.1.7 Synthesis of N-(2-hydroxy-2-(4-hydroxyphenyl)ethyl)hept-6-ynamide	
(OA-P)	. 46
3.2 Biochemical methods	. 48
3.2.1 General information	. 48
3.2.1.1 Chemical compounds	. 48
3.2.1.2 Bacterial culture	. 48
3.2.2 Bioactivity assays	. 51
3.2.2.1 Soft agar colony expansion assay	. 51
3.2.2.2 Growth assays	. 51
3.2.2.3 3D motility assay	. 51
3.2.2.4 3D chemotaxis assays	. 52
3.2.2.5 Data acquisition and analysis of 3D trajectories	. 52
3.2.2.6 Chemotaxis capillary assay	. 53
3.2.3 Proteomics methods	. 54
3.2.3.1 Preparative photolabelling with PE-P	. 54
3.2.3.2 Preparative photolabelling with EPI-P1	. 54
3.2.3.3 In situ analytical scale photolabelling	. 55
3.2.3.4 CuAAC for preparative scale photolabelling	. 55
3.2.3.5 CuAAC for analytical scale photolabelling	. 55
3.2.3.6 Analytical photolabelling in lysate with radical scavengers	. 56
3.2.3.7 Analytical photolabelling in lysate of different strains	. 56
3.2.3.8 SDS-PAGE	. 56
3.2.3.9 Enrichment, alkylation, and digest for photoaffinity labelling	
experiments	. 57
3.2.3.10 Chemoproteomics experiments with isoDTB tags	. 57
3.2.3.11 Co-IP	. 58
3.2.3.12 Whole proteome analysis	. 60
3.2.3.13 Peptide reconstitution (all proteomics experiments)	. 61
3.2.3.14 LC-MS/MS measurements	. 61
3.2.3.15 MS data analysis (photoaffinity labelling, co-IP, and full proteome	
experiments)	. 62
3.2.3.16 Analysis of isoDTB data	. 63
3.2.3.17 AlphaFold structure prediction	. 64
3.2.4 Biochemical and biotechnological methods	. 64

3.2.4.1 Construction of a plasmid coding for N-terminally His6-tagged	
CheW	64
3.2.4.2 Purification of 6His-CheW	64
3.2.4.3 Microscale thermophoresis	65
3.2.4.4 Strain construction	65
III – Investigation of the catechol-reactive proteome	67
1 Covalent protein modifications by catechols	68
1.1 Dopamine as a post-translational protein modification	68
1.1.1 Dopamine reactivity	68
1.1.2 Protein dopamination in Parkinson's disease	70
1.2 Plant secondary metabolites	72
1.3 Aims – investigation of the catechol-reactive proteome	74
2 Results and discussion	76
2.1 Probe synthesis and evaluation	76
2.1.1 Probe design	76
2.1.2 Chemical synthesis	77
2.1.3 Evaluation of protein binding	77
2.2 Labelling in live cells	79
2.2.1 Labelling in Hek293 cells	79
2.2.2 Investigation of proteome-wide probe modification	81
2.2.3 Labelling in neuronal cells	82
2.2.4 Labelling in competition with different catechol compounds	85
2.3 Measurement of flavonoid redox potentials	91
2.4 Conclusion and outlook	93
3 Experimental procedures	95
3.1 Chemical methods	95
3.1.1 Chemical Synthesis	95
3.1.1.1 General remarks	95
3.1.1.2 Amide coupling general protocol	95
3.1.1.3 Synthesis of <i>N</i> -(3,4-dihydroxyphenethyl)pent-4-ynamide (DA-P1).	95
3.1.1.4 Synthesis of N-(3,4-dihydroxyphenethyl)hex-5-ynamide (DA-P2)	96
3.1.1.5 Synthesis of <i>N</i> -(3,4-dihydroxyphenethyl)hept-6-ynamide (DA-P3).	96
3.1.1.6 Synthesis of <i>N</i> -(4-hydroxyphenethyl)hex-5-ynamide (DA-P4)	97
3.1.2 Cyclic voltammetry	97
3.2 Biochemical Methods	98
3.2.1 General information	98
3.2.1.1 Chemical compounds	98
3.2.1.2 Cell culture	98
3.2.1.3 Preparation of primary mouse neurons	98
3.2.2 Intact protein mass spectrometry	99
3.2.3 Proteomics methods	. 100
3.2.3.1 Preparative scale labelling in Hek293 cells	. 100
3.2.3.2 Analytical scale labelling in Hek293	. 100
3.2.3.3 Preparative and analytical scale labelling in primary mouse neurons	101
3.2.3.4 Labelling in heat-denatured lysate	. 101

3.2.3.5 CuAAC	101
3.2.3.6 SDS-PAGE	101
3.2.3.7 Enrichment, alkylation, and digest for target identification	102
3.2.3.8 Chemoproteomics experiments with isoDTB tags	102
3.2.3.9 Peptide reconstitution (all proteomics experiments)	102
3.2.3.10 LC-MS/MS measurements	103
3.2.3.11 Analysis of MS data from target identification experiments	103
3.2.3.12 Analysis of isoDTB data	103
3.2.3.13 GO term enrichment analyses	104
3.2.3.14 Heat maps	104
IV References	105
V Abbreviations	127
VI Appendix	131
1 NMR spectra	132
2 Protein tables	141

I – Background

1 Catechols – broad biological activity from chemical versatility

The 1,2-dihydroxybenzene moiety, also known as catechol, forms part of a breadth of natural products with biological relevance for plants, animals, and bacteria. Due to their chemical versatility, the cellular effects and biological modes of actions of catechols span a wide range (Figure I-1). As part of catecholamines, they are involved in animal stress response and neurological processes. Consequently, medicinal drugs that target these pathways often carry a catechol moiety. Its propensity to oxidation makes catechols antioxidative agents which are beneficial for cell physiology in general – however, oxidation products of dopamine (DA), for instance, are reactive and can post-translationally modify proteins leading to cell death, if excessive. In plants, the catechol group is part of polyphenol secondary metabolites which humans and animals consume regularly, and which impact their cell biology. Bacteria, on the other hand, use catechols to scavenge iron from the environment, making them indispensable for growth under nutrient limitation. Finally, catecholamines act as interkingdom signals between animal hosts and associated bacteria. This work focusses on different modes of actions of catechols in two biological kingdoms. In the first part, biological effects and protein targets of catecholamine hormones and related adrenergic drugs are investigated in bacteria. The second part explores covalent post-translational protein modifications (PTMs) by DA and plant secondary metabolites in human cells.

Figure I-1. Catechols exert diverse functions across biological kingdoms. R = residue.

2 Chemical proteomics for the identification of small molecule protein targets

Chemical proteomics is a versatile method to study the interaction of small molecules or larger biomolecules with proteins or whole proteomes in a global, unbiased way.¹⁻⁵ A compound of interest is derivatised to a chemical probe that enables the analysis of protein binding by visual or mass spectrometry (MS) methods. Small molecules are key players in cell physiology where they are critical for the function of proteins and the coordination of multicellular communities. Chemical proteomics has helped reveal previously unknown protein interactions with small molecules such as organic co-factors,⁶⁻⁹ PTMs,^{10,12-15} and hormone receptors.^{11,16} Furthermore, chemical proteomics is frequently applied to understand the mode of action of natural products with antibacterial or anticancer activities,¹⁷⁻²¹ or to characterise enzyme functions.³

2.1 Characteristics of chemical probes for target identification

To reveal protein interaction partners, the compound of interest is derivatised to a chemical probe that binds proteins irreversibly and can be ligated in a second step, for example, to a fluorescence reporter or an affinity handle. The fluorophore enables analysis of labelled proteins following SDS-PAGE separation by in-gel fluorescence scanning and the affinity handle facilitates enrichment and subsequent MS-based identification of target proteins (Figure I-2 A). For the probes to retain the protein targets of their parent compounds, it is essential that they display largely the same biological activity, therefore, modifications need to be minimal. One key feature of a chemical probe is the ability to form an irreversible bond to the protein interaction partner that is stable throughout the workflow. Intrinsically reactive compounds, typically electrophiles, or metabolically incorporated molecules such as PTMs require no further modification. Non-covalent binders on the other hand need to be equipped with photoreactive groups that generate broadly reactive species upon irradiation with UV light (Figure I-2 B). Conventional photocrosslinkers include benzophenones, aryl azides, and diazirines.²² Their activation yields a diradical, a nitrene, and a carbene, respectively (Figure I-2 C). These species are extremely reactive and their selectivity for target proteins is achieved by proximity. As a large number of proteins in human cells has high propensity to interact with the photocrosslinker moiety largely independent of the probe structure,²³ it is indispensable to use adequate controls in photolabelling experiments to discriminate against unspecific off-targets. Typically, competition of the probe by the parent compound, enrichment of probe-treated proteins compared to a negative control (e.g. a biologically inactive but structurally related small molecule) as well as biological validation of the identified targets are performed.

The second characteristic of chemical probes is a reporter tag, most typically a fluorescent dye or an affinity handle for the enrichment of labelled proteins. Historically, tags such as rhodamine dyes or biotin were directly incorporated in the probe,⁴ however, these compounds suffered from poor cell permeability and were more likely to interfere with protein binding due to steric hindrance. More recent probes carry latent tags that perturb cell permeability to a lesser extent and can be chemically derivatised after cell lysis in the presence of detergents. Most commonly, probes are derivatised with an alkyne or azide to enable copper-catalysed azide-alkyne cycloaddition (CuAAC), also known as copper-catalysed click chemistry.

2.2 Click chemistry in chemical proteomics

The term *click chemistry* was coined for modular reactions that have very high yields, are wide in scope, and proceed at simple reaction conditions (e.g., in the presence of water and oxvgen).²⁴ Their characteristically high driving force facilitates rapid, highly efficient, and selective reactions.²⁴ A prime example for click reactions is the 1,3-dipolar cycloaddition of an alkyne and an azide to form 1,2,3-triazoles,²⁴ which was developed by Rolf Huisgen,²⁵ although, it requires elevated temperatures, long reaction times, and lacks regioselectivity. These pitfalls were circumvented by the addition of a Cu(I) catalyst discovered by Morten Meldal and K. Barry Sharpless which enabled the selective formation of 1,4-disubstituted 1,2,3-triazole products in excellent yields, at room temperature, and in a variety of solvents including water (Figure I-2 D).²⁶⁻²⁷ Whilst probe labelling may be performed in live cells provided the probes are cell-permeable, non-toxic, and metabolically stable enough, ligation of probe-labelled proteins to a reporter tag by CuAAC needs to be performed after lysis as Cu(I) is cytotoxic. This two-step approach is compatible with typical chemoproteomics experiments where labelling is read out by in-gel fluorescence or by MS methods. It should be noted that for projects that require ligation in live cells, for instance to track labelling by fluorescence microscopy,¹² the Bertozzi lab developed bioorthogonal chemistries such as the strainpromoted azide-alkyne cycloaddition (SPAAC) and the Staudinger ligation.²⁸ However, for geland MS-based chemoproteomics, the synthetic tractability and the fast, oxygen-tolerant reaction make CuAAC superior to SPAAC and Staudinger ligation, respectively. Notably, the merit of click chemistry and its expansion to bioorthogonal chemistry was acknowledged with this year's Nobel Prize in chemistry awarded to Barry Sharpless, Morten Meldal, and Carolyn Bertozzi.

Figure I-2. Target identification by chemical proteomics. (A) Typical chemoproteomics workflow with photoaffinity labelling. The probe is added to live cells, incubated, and irradiated with UV light to enable covalent target engagement. For intrinsically reactive probes, irradiation is omitted. Following cell lysis, labelled proteins are ligated to reporter tags by copper-catalysed azide-alkyne cycloaddition (CuAAC). The tag can be a biotin affinity handle for avidin enrichment and MS-based identification of protein hits (top) or a rhodamine dye for ingel fluoresce detection (bottom). (B) Schematic representation of an intrinsically reactive probe (left) and a photoaffinity probe (right). (C) Commonly used photoreactive groups and photoactivation. (D) Reaction scheme of CuAAC; $Ln = ligand.^{4,22,29-30}$

2.3 Workflow variations

A valuable variation of chemoproteomics is a competitive approach where a covalent broadspectrum probe labels an enzyme class or a specific amino acid residue. ^{2-3,31} This way, protein binding of larger numbers of (typically intrinsically reactive) compounds can be monitored by screening for a decrease in probe labelling rather than derivatising several molecules to chemical probes. Furthermore, this set-up enables the direct comparison of different structures and can give insights into different reactivities and selectivities.

Another variant uses isotopically labelled desthiobiotin³² or biotin coupled to a TEV-cleavable linker³³ as affinity tags. Probe-modified peptides can be released from the affinity resin by elution with organic solvent or by proteolytic digest, respectively, and directly analysed and quantified by MS thanks to the isotopic labels. This is a very powerful method as it can give insights into the nature of modification and points to the protein-reactive species of the probe.

II – Investigation of prokaryotic adrenergic protein targets in *V*. *campbellii*

This chapter is based on the publication:

Weigert Muñoz, A.; Hoyer, E.; Schumacher, K.; Grognot, M.; Taute, K. M.; Hacker, S. M.; Sieber, S. A.; Jung, K., Eukaryotic catecholamine hormones influence the chemotactic control of *Vibrio campbellii* by binding to the coupling protein CheW. *Proc Natl Acad Sci USA* **2022**, *119* (10), e2118227119.

Contributions:

AW planned and conducted probe synthesis, growth assays, and all proteomics experiments and selected compounds for bioactivity assays. EH performed soft agar assays, CheW purification, and MST assays. KS performed capillary chemotaxis assays. MG and KMT planned, performed, and analysed 3D motility data. SMH analysed isoDTB data. SAS and KJ supervised the project. The CheW AlphaFold structure prediction was kindly provided by Dr. Anthe Janssen and Prof. Gerard van Westen from Leiden University.

1 Catecholaminergic interkingdom signalling

1.1 The catecholaminergic endocrine system

For humans and animals, arguably the most relevant catechol compounds are the catecholamines epinephrine (**EPI**), norepinephrine (**NE**), and **DA**, which regulate diverse processes in the brain and the peripheral nervous system. They share a common structure containing a catechol motif linked to a side-chain amine and are biosynthetically derived from tyrosine. **EPI** and **NE** act as hormones which are produced by the adrenal glands and secreted into the bloodstream from where they affect nearly all tissues. **NE** is furthermore a neurotransmitter which is also synthesised and released in the central nervous system. **DA** is largely produced in neuronal cell bodies where it acts as a neurotransmitter, although it is also present in the bloodstream. Their cognate receptors are G protein-coupled receptors) regulate the sympathetic nervous system and their activation by **NE** or **EPI** stimulates the so-called "fight or flight" response, which is characterised by an increase in heart rate, energy mobilisation, and redistribution of blood, amongst others. **DA**, on the other hand, is sensed by **DA** receptors which are primarily located in the brain. Thus, the dopaminergic system controls mainly neurological processes including motivation, motor control, and cognition.

The pharmacological activation of catecholaminergic GPCRs generally consists of noncovalent ligand binding to the extracellular receptor domain. This brings about a change of the receptor conformation inside the cells³⁴ which activates G proteins in the cytoplasm and results in altered levels of intracellular messengers such as cAMP or signalling lipids. Catecholaminergic antagonists are frequently used clinical drugs that block the activation by endogenous ligands.³⁵ Human adrenergic receptors are classified as α -type or β -type receptors, which are further divided into two to three subtypes. Similarly, there are two major classes of **DA** receptors, the D₁-like and the D₂-like family, each with several subtypes.³⁶ The subtypes transfer the signal to different signal relay pathways via varying G proteins which increases the variety of physiological effects and fine-tunes catecholaminergic signalling across tissues.

Both the adrenergic and dopaminergic systems are pharmaceutical targets of many clinical drugs that have varying selectivity for the receptor subtypes. Often, adrenergic drugs share a certain structural similarity with the catecholamines by retaining the catechol moiety (Figure II-1). Examples for this are dobutamine (**DB**) and isoprenaline (**IP**), both of which activate adrenoceptors, but also drugs that act on enzymes such as carbidopa (**CD**), or levodopa

(LD), a DA prodrug, and more. Interestingly, non-catechol analogues that carry only one hydroxy group can also have agonistic effects on adrenergic receptors, such as phenylephrine (PE) and octopamine (OA). PE is a clinically applied agonist of the α_1 -adrenergic receptor. OA is a neurotransmitter in invertebrates where it is sensed by specific GPCRs. Beyond that, trace amounts are also present in mammals and pharmacological activity on adrenergic receptors has been observed.³⁷⁻³⁸ Similarly, in the α - and β -antagonist labetalol (LAB) the catechol group is replaced by a hydroxybenzamide and in the β -blocker propranolol (PRO) by a naphthyl group. This demonstrates that the catechol group is common not only in hormones but also in clinical drugs. However, some examples shown in this section illustrate that an intact catechol group is not strictly required for protein receptor binding.

Figure II-1. Structures of catecholamines and related drugs. The catechol moiety is highlighted in blue. Note that DB, IP, LAB, and PRO are clinically applied as stereoisomeric mixtures.

1.2 Catechol compounds in bacteria

1.2.1 Catechols in siderophores

Iron is essential for the growth of any organism and bacteria require 10⁻⁵–10⁻⁷ M ferric iron. As in most habitats the iron concentration is magnitudes lower,³⁹ bacteria rely on diffusible iron chelating small molecules, termed siderophores, to obtain it from their environment. Ferric siderophore complexes are sensed by bacterial receptors and taken up to release the iron into the cytosol. Among the typical iron-chelator motifs in bacterial siderophores are hydroxamates and catechols.³⁹ Common siderophores of Gram-negative bacteria such as *Escherichia coli* and *Salmonella enterica* are enterochelin (also known as enterobactin), a triscatechol that forms a hexadentate ligand with iron,⁴⁰⁻⁴¹ and its glucosylated derivative salmochelin.⁴² More examples of catechol siderophores include corynebactin (*Corynebacterium glutamicum, Bacillus subtilis*),⁴³⁻⁴⁴ vibriobactin from *Vibrio cholerae*,⁴⁵ azotochelin,⁴⁶ protochelin,⁴⁷ aminochelin (all three from *Azotobacter vinelandii*),⁴⁸ and itoic acid (*B. subtilis*, Figure II-2).⁴⁹

Figure II-2. Examples of catechol siderophores. The catechol group (blue) is a common motif in bacterial siderophores.⁴⁰⁻⁵⁰

Bacteria further enhance their competitive advantages by utilising other iron chelators from the environment in addition to their own siderophores. These so-called *xenosiderophores* may be scavenged from other species,⁵¹ plant catechol polyphenols,⁵² or host catecholamine hormones.⁵³⁻⁵⁴ In the body fluids of eukaryotes, high-affinity iron-binding proteins such as transferrin maintain extremely low levels of available iron to restrict bacterial growth, a strategy termed *nutritional immunity*.⁵⁵ To circumvent this challenge, bacteria use enterobactin,

structurally related catechols, and even host catecholamines to remove iron from transferrin to restore growth despite iron limitation.^{53,56-57}

It is noteworthy that the range of molecules taken up as xenosiderophores appears to be quite broad. This is exploited in the design of *Trojan horse* antibiotics, where a siderophore moiety is conjugated to a drug to improve its cellular permeability. The marketed antibiotic cefiderocol, for instance, is a cephalosporin-catechol conjugate (*Fetroja*®) that is taken up via the siderophore-iron transport pathway of Gram-negative aerobic bacteria.⁵⁰ These examples highlight how the iron-binding properties make catechols an important bioactive molecule at the interface of bacteria and their environment.

1.2.2 Catecholamines as interkingdom signals

Interkingdom signalling refers to the chemical communication between organisms belonging to different biological kingdoms. As **EPI** and **NE** modulate intestinal physiology, these hormones are present at high concentrations (micromolar) in the gastrointestinal tract, where a great number of bacteria is constantly exposed to them.⁵⁸ In general, the co-evolution of eukaryotic organisms and microbes has fostered a breadth of small molecule-based interactions that facilitate the bidirectional molecular crossstalk across the two biological kingdoms and are essential for successful host colonisation by both symbiotic and pathogenic bacteria.⁵⁸ Evidence that host-associated animal hormones can be sensed by opportunistic bacterial pathogens as signals to adjust the expression of specific virulence genes,⁵⁹ for example, via specific receptors,^{11,15,60-61} has sparked major interest in this field of research. Specifically, catecholamine hormones modulate a variety of biological processes in prokaryotes, that are often associated with virulence.^{53,62-64} The mode of action of prokaryotic adrenergic signalling most likely involves different molecular mechanisms that shall be discussed in the following.

1.2.2.1 Sensing via two-component systems

There is evidence that certain opportunistic pathogens such as *Pseudomonas aeruginosa* and enterohaemorrhagic *E. coli* (EHEC) sense host hormones via two-component systems.^{11,15,60-61} Two-component systems are widespread signalling sensors in bacteria and consist of a transmembrane sensor domain and a cytoplasmic response regulator (Figure II-3).⁶⁵ They commonly sense signals in the periplasm or extracellular space and trigger the activation or

repression of gene transcription. The typically dimeric sensor is connected to an intracellular histidine kinase domain which autophosphorylates upon ligand binding and relays the phosphoryl group to an aspartyl residue of the response regulator. The latter commonly has a DNA-binding domain which acts as a transcription factor and thus directly regulates gene expression.⁶⁵

Figure II-3. Schematic representation of a prototypical two-component system. The binding of an extracellular signal (pink circle) to the histidine kinase (HK) sensory domain (blue) triggers its autophosphorylation at the cytoplasmic side (green rectangles). The phosphoryl group (orange circle) is transferred to the receiver domain (red rectangle) of the response regulator (RR). Phosphorylated RR binds to the DNA and initiates the transcription of target genes. Dashed, orange arrows indicate phosphoryl transfers. Adapted with modifications from Capra and Laub⁶⁶ and Allihn *et al.*¹⁵

The notion that catecholamines are sensed by a specific prokaryotic adrenergic receptor is corroborated by the observation that certain antagonists of the human receptors also antagonise adrenergic effects in bacteria.^{60,67-68} Early work from the Sperandio group identified two two-component systems, QseBC and QseEF, as potential prokaryotic adrenoceptors in EHEC. In vitro autophosphorylation assays using the purified histidine kinase QseC in liposomes revealed activation by **EPI** and **NE** that could be blocked by the α -adrenergic antagonist phentolamine but not by the β -blocker **PRO**.⁶⁰ Congruently, EHEC activated transcription of flagella and motility genes in response to **EPI** but no longer in the *qseC* knock-out mutant,⁶⁸ although it should be noted that deletion of *qseC* lead to an overall loss of virulence in animal models.⁶⁰ In an analogous experimental approach, QseE, was also discovered to respond to **EPI**.⁶¹ QseBC and QseEF are global regulators of the expression of genes related to flagella, motility, and many more that are critical for EHEC virulence.^{58,61} Moreover, QseBC also senses the quorum sensing signal AI-3,^{60,69} therefore, QseBC is a potential intersection of interkingdom and bacterial signalling.

These reports entailed a suite of studies seeking to corroborate QseC and QseE as global prokaryotic adrenergic receptors and claiming that homologues mediate adrenergic responses also in other species, sometimes generating inconclusive results. For instance, increased *V*. *cholerae* motility was observed in the presence of **EPI** and **NE**.⁷⁰ The authors proclaimed a

protein with 29% sequence identity of E. coli QseC as adrenergic receptor, although these effects were not abolished in a knockout mutant of the corresponding gene.⁷⁰ A similar study in V. campbellii found that NE and DA promoted motility and other virulence-associated processes but could not identify a receptor.⁷¹ Moreira et al. reported that catecholamines promoted S. enterica serovar Typhimurium virulence via QseC by comparing the transcription of QseC-dependent genes after infection of EPI/NE-free mice compared to wild-type.⁷² Another study in S. Typhimurium showed an increase in soft agar motility in the presence of NE and reduced virulence when the QseC homologue was deleted, however, both observations could not functionally be correlated.⁷³ A follow-up study seeking to do so found that mutants of every component of the QseBC two-component system as well as QseE still responded to **NE** with increased motility.⁷⁴ This was supported by others reporting that several species including EHEC were still responsive to catecholamines after these genes were knocked out.^{70,75-77} It is plausible that the prokaryotic adrenergic response could be mediated by multiple receptors.⁶² Furthermore, it is conceivable that there are other, as yet unexplored bacterial pathways that contribute to catecholamine signalling and virulence independent of twocomponent systems.

1.2.2.2 Catecholamines in bacterial chemotaxis

Others have observed a role of catecholamines in chemotaxis, a process in which bacteria navigate along chemical gradients towards attractants and away from repellents.⁷⁸⁻⁸⁰ Importantly, chemotaxis can substantially contribute to host invasion and infectivity of pathogens.⁸¹⁻⁸³ The individual components of the chemotaxis signalling cascades can vary largely across bacterial species but typically, the core of the chemotaxis complex is constituted by a transmembrane chemoreceptor (methyl-accepting chemotaxis protein, MCP) and a cytoplasmic histidine kinase CheA, which are bridged by the coupling protein CheW (Figure II-4).⁸⁴ The MCP senses extracellular stimuli and triggers the autophosphorylation of CheA in response. In *E. coli*, the phosphoryl group is ultimately transferred to the response regulator CheY which induces clockwise rotation of the flagellar motor resulting in an increase of the tumbling frequency that reorients the cell.⁸⁴ Unphosphorylated CheY, on the other hand, disconnects from the flagellar motor which promotes counter-clockwise rotation and minimises bacterial tumbling, leading to prolonged periods of straight swimming. In most species, CheA phosphorylation is inhibited by attractants (straight swimming) and stimulated by repellents (tumbling).⁸⁴

A study from the Sourjik group⁸⁵ found that **NE** was a weak attractant at low concentrations but behaved as a repellent at higher concentrations (≥ 1 mM) in *E. coli*. Furthermore, the two major MCPs, Tar and Tsr, mediated opposite responses, which contrasts with the behaviour of conventional chemotactic signals that specifically bind to the periplasmic sensor domain.⁸⁴ The authors therefore proposed that catecholamines might be sensed indirectly, although they emphasised that the response was specific and discriminated against chemically related compounds.⁸⁵

Figure II-4. Core components of a typical chemotaxis complex. Transmembrane chemoreceptors (blue) canonically sense extracellular signals (pink circles) that bind to the sensory domain. Intracellularly, chemoreceptors are connected to the histidine kinase CheA (green oval) via the scaffold protein CheW (purple oval). Receptor stimulation triggers a change in conformation that is transmitted to CheA via CheW. This results in CheA autophosphorylation and consequent transfer of the phosphoryl group (orange circle) to CheY (red rectangle). Phosphorylated CheY binds to the flagellar motor and induces clockwise flagellar rotation and increases bacterial tumbling rate. Note that details such as default rotation direction vary across species. Dashed, orange arrows indicate phosphoryl transfers. Simplified adaptation from Bi *et al.*⁸⁴

1.2.2.3 Catecholamines in iron supply

Catechols in general and specifically catecholamines are known to act as surrogate siderophores (see section II-1.2.1). As a consequence, they promote bacterial growth under iron-restricted conditions as they are encountered in the host. Experimentally, these conditions are typically mimicked by the addition of serum to the bacterial growth medium which contains high-affinity iron binding proteins such as transferrin.^{71,86-87} Since iron in general has extensive effects on the cell⁶² and siderophores can be critical for pathogenicity,⁸⁸ it is plausible that the modulation of cellular iron might also contribute to catecholaminergic responses other than growth.

This section highlights that adrenergic responses in bacteria are most likely multi-layered and it is crucial to consider the different effects and chemical properties of catechols (e.g., iron binding, covalent protein modification) in experiment design.

1.3 Aim of the project – identification of prokaryotic adrenergic targets

The two-component systems QseBC and QseEF are considered prokaryotic adrenergic receptors in EHEC,⁶⁰⁻⁶¹ however, uncertainties remain as to whether there are additional receptors,⁶² or about the role of homologues in other species.⁷³ One example is *Vibrio campbellii* (previously *Vibrio harveyi*) ATCC BAA-1116,⁸⁹ a marine, motile, bioluminescent γ -proteobacterium, and an opportunistic pathogen for fish, shrimp, squid, and other marine invertebrates.⁹⁰ Catecholamines not only promoted its growth under iron-limited conditions but also other biological processes with relevance for virulence such as siderophore production, biofilm formation, and swimming motility.⁷¹ As observed in other species,^{60,67-68} effects were reversible by clinical antagonists of human adrenoceptors. In this case, α -blockers including LAB but not the β -blocker **PRO** inhibited motility promotion by **NE**, suggesting that catecholamines act via a specific receptor.⁷¹ However, the identity of an adrenergic receptor in this species was not revealed.

The first part of this thesis aims to elucidate the cellular pathways behind catecholaminepromoted motility in *V. campbellii* and to identify the associated protein receptor using chemical proteomics. The focus was set on motility because it is crucial for symbiotic as well as pathogenic bacteria to colonise their host and required for *Vibrio* to establish virulence.⁹¹ The choice of organism was based on work by the Sperandio group, which proposed that adrenergic effects intersect with quorum sensing via QseC binding⁶⁰ as *V. campbellii* is an important model organism in this area of research.⁹²⁻⁹⁴

More precisely, the goal was to apply chemical proteomics to identify a protein that acts as a prokaryotic adrenergic receptor in a pharmacological sense. Therefore, the protein in question should show affinity to catecholamine hormones as well as to clinical antagonists that block motility enhancement by the hormones. Moreover, it was important to disentangle the effects associated with the potential protein of interest from those resulting from altered iron supply. As outlined in section II-1.1, **PE**, and potentially **OA**, target adrenergic receptors although they do not contain a catechol group. Therefore, this study focussed on catecholamines, adrenergic antagonists, and the non-catechol agonists **PE**, and **OA**.

2 Results and discussion

2.1 Synthesis of chemical probes

2.1.1 First generation probe EPI-P1

In order to perform target identification by chemical proteomics, synthesis of a chemical probe was required. To facilitate the identification of non-covalent protein interactors, a photoreactive group and an alkyne were incorporated. Since *V. campbellii* (VC) responded to both **NE** and **EPI** in preliminary bioactivity assays (see section II-2.2.1), the photocrosslinker was attached by alkylation of the **NE** amino group.⁹⁵ For this, a commercially available minimalist photocrosslinker was converted from an alcohol **PCL-OH** to the iodide **PCL-I** via *Appel* reaction following a published protocol.²⁹ The iodination product **PCL-I** was obtained in 62% yield. Next, **NE** was alkylated with **PCL-I**. This reaction was performed in DMF at 70 °C for 17 h in the absence of base to avoid decomposition of **NE**. **EPI-P1** was obtained in 62% yield (Scheme II-1 A). Purification was performed by flash column chromatography in the presence of acetic acid to stabilise the product which resulted in residual acid (42% [w/w]) in the final product that could not be removed without decomposition of the probe.

2.1.2 Second generation probes

Catecholamines are prone to oxidation to reactive *ortho*-quinones which are subject to an intraor intermolecular nucleophilic attack by the side chain amine. This can be avoided by converting the amine to an unreactive derivative. A second-generation probe was obtained attaching an alkyne handle by acylation of the **NE** amino group which indeed resulted in more stable products and more facile purification (Scheme II-1 B). Amide coupling was performed using EDC·HCl and HOBt in the presence of TEA and yielded **EPI-P2** in 16% yield.

To obtain structure-activity data in subsequent biological assays, probes were also synthesised based on **OA** and **PE** analogously to **EPI-P2**. It was important to apply probes that cannot act as siderophores to reveal iron-independent adrenergic effects. Non-catechol probes were synthesised by acylation of norphenylephrine (**NP**) to **PE-P** and of **OA** to **OA-P** using the same conditions as for **EPI-P2**. **PE-P** and **OA-P** were obtained in 65% and 54% yield, respectively. The yield of the non-catechol probes was higher in comparison to **EPI-P2**, probably due to increased stability of the starting material.

Scheme II-1. Synthesis of adrenergic probes. (A) Synthesis of first-generation probe EPI-P1. (B) Synthesis of second-generation probes EPI-P2, PE-P, and OA-P. PPh_3 = triphenylphosphine; eq. = equivalents; DMF = N,N-dimethylformamide; $EDC \cdot HCl = 1$ -(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride; HOBt = hydroxybenzotriazole; TEA = triethylamine.

2.2 Bioactivity assays

2.2.1 Colony spread on soft agar

Yang *et al.* observed that **NE** promoted VC motility by measuring the diameter of a bacterial colony incubated on semisolid agar containing **NE**.⁷¹ This protocol provided a quick first readout of potential catecholaminergic effects. Therefore, VC was incubated on semisolid agar containing **NE**, **EPI**, **PE**, or **OA** (50 μ M, Figure II-5 A and B). Consistent with the literature, **NE** slightly increased the swimming halo to 1.08 ± 0.02 compared to the solvent control (average of six independent replicates \pm standard deviation). The effect of **EPI** was stronger as the diameter was increased to 1.27 ± 0.01 . **PE**, although lacking one hydroxy group, had a comparably strong effect (1.22 ± 0.01), which had not been reported previously. This finding was especially intriguing as it opened up the possibility to make a **PE**-derived active chemical probe incapable of complexing iron but still promoting motility. Furthermore, it indicates that motility is enhanced independently of the siderophore properties of catecholamines in this experimental set up. Interestingly, **OA** did not significantly change the colony diameter (0.93 \pm 0.03), highlighting the importance of the position of the hydroxyl group.

Prokaryotic catecholaminergic responses are often reported to be sensitive to certain adrenergic antagonists, which corroborates that they are mediated via a specific receptor. Yang *et al.* observed that the α - and β -antagonist **LAB** blocks **NE** activity but not the β -blocker **PRO**.⁷¹ Therefore, **LAB** and **PRO** were tested (50 μ M, Figure II-5 C). **LAB** alone slightly reduced the motility halo relative to the solvent control (0.92 \pm 0.01). Bacteria treated with **LAB** in combination with either **EPI**, **NE**, or **PE** (50 μ M each), swam to 0.92 \pm 0.01, 0.99 \pm 0.02, and 0.97 \pm 0.01 compared to the solvent control. The difference of **LAB** alone compared to **LAB** plus agonist was statistically not significant (one-way ANOVA with Tukey's post hoc test), suggesting that **LAB** indeed blocked catecholamine activity and, hence, acted as an antagonist. **PRO** (50 μ M) alone did not affect the halo diameter compared to the solvent control (1.01 \pm 0.00). **PRO** in combination with either **EPI**, **NE**, or **PE** (50 μ M each) showed a comparable increase in colony halo as in the absence of **PRO** as the halo was increased to 1.20 \pm 0.13, 1.11 \pm 0.03, and 1.27 \pm 0.02 compared to the solvent control, respectively. These values were significantly different from samples treated with **PRO** alone, pointing out that **PRO** is not an antagonist of catecholamine-dependent motility.

Finally, the chemical derivatives **EPI-P1**, **EPI-P2**, **PE-P**, and **OA-P** were studied (50 μ M except **EPI-P1** at 60 μ M, Figure II-6 D). Satisfyingly, **EPI-P1** and **PE-P** largely retained the activity of the parent compound (1.29 ± 0.02 and 1.12 ± 0.01 halo increase, respectively).

EPI-P2 and **OA-P** only showed a weak increase $(1.04 \pm 0.01 \text{ and } 1.06 \pm 0.01, \text{ respectively})$. Interestingly, **OA-P** gained some activity compared to its parent compound, possibly resulting from the derivatisation at the amino group. **EPI-P1** and **PE-P** therefore provided suitable probes for the identification of target proteins.

Figure II-5. Effects of catecholamines and related compounds on soft agar colony expansion. (A) Images show VC colonies treated with 50 μ M EPI and an untreated control. (B) Swimming halo diameters of VC treated with parent compounds EPI, NE, PE, and OA. Significance is indicated relative to the respective solvent control. (C) Swimming halo diameters of VC treated with adrenergic antagonists LAB and PRO alone or in combination with EPI, NE, or PE. Significance is indicated relative to treatment with the respective antagonist alone. (D) Swimming halo diameters of VC treated with chemical probes EPI-P1, EPI-P2, PE-P, and OA-P. Significance is indicated relative to the respective solvent control. All compounds were added at 50 μ M except EPI-P1 at 60 μ M. Radial expansions were normalized to an untreated control. Error bars represent standard deviation, n = 6 independent experiments. Significance was determined performing a one-way ANOVA with Tukey's post hoc test (ns = not significant, * = *p* < 0.05, ** = *p* < 0.01, *** = *p* < 0.001). Experiments were performed by E. Hoyer (LMU). Adapted from Weigert Muñoz *et al.*¹⁶

2.2.2 Investigation of siderophore properties

Catecholamines promote bacterial growth under iron-limited condition by acting as surrogate siderophores which restore cellular iron supply. **EPI**, **PE**, and the chemical probes **EPI-P1**, **EPI-P2**, **PE-P**, and **OA-P** were next tested for their siderophore properties in VC grown in full growth medium (LB35) supplemented with 30% (v/v) adult bovine serum. The latter contains high-affinity iron binding proteins such as transferrin that restrict bacterial growth.

Figure II-6. Effects of catecholamines and related compounds on VC growth under iron-limited conditions. (A) Growth in LB35 medium supplemented with 30% (v/v) adult calf serum and in (B) serum-free LB35. VC was grown in a 96-well microtiter plate with interval shaking at 30 °C in the presence of compounds (50 μ M). Data show the average of triplicates. Adapted from Weigert Muñoz *et al.*¹⁶

In the presence of serum, VC treated with DMSO, **PE**, **PE-P**, or **OA-P** (50 μ M) showed greatly compromised growth and reached OD 0.09–0.19 after 20 h. The catechol compounds **EPI**, **EPI-P1**, and **EPI-P2** enabled bacterial growth to OD 0.70–0.88 after 20 h (Figure II-6 A) which was comparable to growth in serum-free medium (OD 0.62–0.68, 20 h) (Figure II-6 B). Furthermore, no such stark differences in growth were observed in the absence of serum.

These observations corroborate that a catechol moiety is required to overcome iron limitation. The lack of growth promotion in the iron rich medium furthermore indicates that this is primarily driven by improved iron supply. The ability of **PE** to promote motility on soft agar whilst showing no effect on growth under iron limitation illustrates that the adrenergic response of VC is likely multi-faceted and mediated via parallel mechanisms. The presence of **EPI-P1** and **PE-P** enhanced the colony diameter on soft agar, therefore, both probes were suitable for target identification. Growth assays indicated that **EPI-P1** has siderophore properties in contrast to **PE-P**. Therefore, the latter was the most fitting probe to selectively reveal VC adrenergic targets that promote motility independent of iron uptake.

2.3 Target identification by chemical proteomics

2.3.1. Gel-based photoaffinity labelling

General labelling quality of the probes was analysed by gel-based photoaffinity labelling. Stationary phase VC was incubated with **EPI-P1**, **EPI-P2**, **PE-P**, or **OA-P** (50 µM), and irradiated. Next, cells were lysed in PBS and insoluble proteins were separated and resuspended in 1% SDS. Both soluble and insoluble fractions were ligated to rhodamine-azide by CuAAC and separated by SDS-PAGE. Fluorescence scanning revealed labelling in both fractions by all four probes, indicating good cell permeability (Figure II-7). **EPI-P1** and **EPI-P2** labelled independent of UV irradiation. Both probes carried a catechol group that labelled proteins most likely following oxidation to an *ortho*-quinone or to reactive radical species. Irradiation increased labelling intensities for both probes but this was especially pronounced for **EPI-P2**, even though it did not carry a diazirine. This indicates that UV promoted the decomposition to reactive species. Surprisingly, both **PE-P** and **OA-P** showed UV-dependent labelling although they did not carry a conventional photocrosslinker. Labelling intensity of **OA-P** was relatively weak, consistent with its low activity in the motility assays.

Figure II-7. Photoaffinity labelling in live VC. Probes (50 μ M) or DMSO were added to live VC, incubated and irradiated. Following lysis, separation into soluble and insoluble (PBS) proteins, CuAAC to rhodamine-azide, and separation by SDS-PAGE, labelled proteins were visualised by fluorescence imaging. Gels were Coomassiestained (Coo.) to reveal total protein load (15 μ g per lane). Adapted from Weigert Muñoz *et al.*¹⁶

2.3.2 MS-based photoaffinity labelling with EPI-P1

Stationary VC was labelled with **EPI-P1** (7.5 μ M), irradiated, and lysed in 1% (v/v) triton X-100 (TX100). Labelled proteins were ligated to a biotin-containing linker by CuAAC. Following enrichment on avidin beads, proteins were digested, and the peptides analysed by liquid chromatography with tandem MS (LC-MS/MS).

legend	UniProt	gene	protein name
CheW	A7MS42	VIBHAR_03137	CheW-like domain-containing protein
1	A7MSY4	VIBHAR_00007	Iron-hydroxamate ABC transporter substrate-binding protein
2	A7MT36	VIBHAR_01351	Succinate dehydrogenase cytochrome b556 subunit
3	A7MUH3	VIBHAR_03044	Protease 4
4	A7MV17	VIBHAR_01530	Transporter
5	A7MWN4	VIBHAR_00869	Outer membrane channel protein TolC
6	A7MWW5	grpE	Protein GrpE
7	A7MX99	VIBHAR_00062	Peptidyl-prolyl cis-trans isomerase
8	A7MXZ7	frr	Riboso me-recycling factor
9	A7MY24	upp	Uracil phosph oribos yltransferase
10	A7MY64	VIBHAR 01273	OmpA-like domain-containing protein
11	A7MY66	VIBHAR 01269	Porin_4 domain-containing protein
12	A7MYY0	VIBHAR_03442	PNPLA domain-containing protein
13	A7MZS4	VIBHAR_01404	Colicin I receptor
14	A7N0 S3	VIBHAR_02285	Putrescine-binding periplasmic protein
15	A7N146	VIBHAR_03705	Single-stranded DNA-binding protein
16	A7N1 M5	VIBHAR_01558	Porin_4 domain-containing protein
17	A7N1N3	VIBHAR_01548	Lipoprotein
18	A7N1 T8	VIBHAR_03287	Outer membrane protein OmpK
19	A7N283	VIBHAR_06741	Porin_4 domain-containing protein
20	A7N3 X4	VIBHAR_05367	Phasin_2 domain-containing protein
21	A7N5U4	VIBHAR_04785	Peptidase M16
22	A7N6I6	VIBHAR_06262	OmpA-like domain-containing protein
23	A7N7I3	VIBHAR_05401	FtsX domain-containing protein
24	A7N7I4	VIBHAR_05402	ABC transporter permease
25	A7N7 K9	VIBHAR_0711 1	ABC transporter ATP-binding protein
26	A7N8H3	VIBHAR_05966	HTH tetR-type domain-containing protein

Figure II-8. Volcano plot of photoaffinity labelling with EPI-P1. Live VC was treated with **EPI-P1** (7.5 μ M) or DMSO, irradiated, and lysed in 1% (v/v) TX100 (without fractionation). Labelled proteins were ligated to biotin by CuAAC, enriched on avidin, and enzymatically digested. Resulting peptides were analysed by LC-MS/MS with label-free quantification using MaxLFQ,⁹⁶ filtered for proteins identified in three replicates, and missing values were imputed. Samples were compared using a two-sided two-sample *t*-test. The volcano plot shows proteins enriched by **EPI-P1** compared to the DMSO control. Proteins enriched above the cut-off ($-log_{10}(p-value) > 1.3$, $log_2(enrichment) > 2$) are considered significant and listed in the table. The experiment was performed in three independent replicates. Adapted from Weigert Muñoz *et al.*¹⁶

In total, 27 proteins were enriched above the cut-off (*p*-value ≤ 0.05 , enrichment ≥ 4), revealing broad reactivity (Figure II-8). Strikingly, an iron-hydroxamate ABC transporter substratebinding protein (A7MSY4, VIBHAR_00007)⁹⁷ and the colicin I receptor (A7MZS4, VIBHAR_01404)⁹⁸ were among the top hits. A7MZS4 is annotated as outer membrane receptor for ferrienterochelin and colicins in the KEGG database.⁹⁹⁻¹⁰² In E. coli, the colicin receptor I is encoded by the *cirA* gene, which transports catechol siderophores such as dihydroxybenzoyl serine.¹⁰³⁻¹⁰⁴ A BLAST search (blastp)¹⁰⁵ of the VC proteome for *E. coli* CirA yielded A7MZS4 as top hit (7e-105, 34.31%), as also reported by others.¹⁰⁶ This indicates that **EPI-P1** indeed acted as siderophore. Among the significant hits were two OmpA-like domain-containing proteins (A7MY64 and A7N6I6) which were annotated with the GO terms "porin activity" (GOMF) and "ion transport" (GOBP) in UniProt.¹⁰⁷⁻¹⁰⁹ Three protein hits designated as "porin 4 domain-containing protein" (A7MY66, A7N1M5, and A7N283) were annotated with the GO terms "porin activity" (all three) and "ion transmembrane transport" (A7MY66).¹¹⁰⁻¹¹² Unfortunately, annotation of these proteins is poor, therefore, it cannot be said whether the substantial representation of porins has a biological relevance or whether it stems from unspecific association. Intriguingly, OmpA has been hypothesised to be a potential entry point for catecholamine-iron complexes in *E. coli*.⁸⁷ The chemotaxis protein CheW (A7MS42)¹¹³ was enriched 3.9-fold in this dataset and was not among the most prominent hits. Nevertheless, it was an intriguing finding as it is directly related to motility and constitutes the core of the chemotaxis complex.¹¹⁴

2.3.3 MS-based photoaffinity labelling with **PE-P** and competition with **PE**

It is conceivable that the abundance of iron-uptake proteins interfered with the identification of further adrenergic targets using **EPI-P1**. Moreover, the tendency of **EPI-P1** to oxidise to highly reactive species might have further contributed to unspecific labelling. **PE-P**, devoid of the catechol moiety, was therefore promising to label proteins associated with motility more selectively. VC was treated with **PE-P** (10 µM), irradiated, and lysed. Control samples were treated with DMSO. A second control was treated with a 25-fold excess of **PE** before addition of the probe. Comparison of **PE-P** treated samples to DMSO-treated samples reveals targets of **PE-P**. Comparison of **PE-P** treated samples to 25-fold excess plus probe reveals which proteins are also bound by the parent compound when the excess of **PE** outcompetes binding by the probe. The target protein should thus be significantly enriched in both comparisons. To further improve protein coverage of potential protein targets localised in the membrane, the lysate was separated into a PBS-soluble and PBS-insoluble fraction and both fractions were processed separately. Insoluble proteins were redissolved in 1% SDS.

In the insoluble fraction, 23 proteins were significantly enriched and outcompeted by **PE** compared to 32 in the soluble (Figure II-9).

e MsrB

Figure II-9. Volcano plots of competitive photoaffinity labelling experiments with PE-P and PE. Live VC was treated with PE-P (10 µM), DMSO, or a 25-fold excess of PE prior to addition of PE-P. Bacteria were irradiated, lysed, separated into soluble (PBS) and insoluble proteins, ligated by CuAAC to biotin-azide, enriched on avidin beads, and digested, and peptides were analysed by LC-MS/MS. MS data were analysed by MaxLFQ,96 filtered for proteins identified in four replicates, and missing values were imputed. Samples were compared using a two-sided two-sample t-test. Top plot shows proteins enriched by **PE-P** compared to the DMSO control. Bottom plot shows proteins enriched by PE-P alone compared to samples treated with PE-P plus a 25-fold excess of PE. Proteins overlapping in both plots are highlighted in cyan. Tables show UniProt¹⁰⁸ identifiers of proteins enriched in both comparisons. (A) Insoluble fraction. (B) Soluble fraction. Experiments were performed in five independent replicates. Adapted from Weigert Muñoz et al.16

24

Consistent with the lack of growth promotion under iron limitation, **PE-P** did not enrich proteins associated with iron uptake. CheW (A7MS42) was significantly enriched in both fractions and, especially in the insoluble fraction, among the most prominent hits. Overall, the labelling was quite broad which required more experiments to further narrow down the hits to a potential receptor.

2.3.4 MS-based photoaffinity labelling with **PE-P** in competition with **EPI** and clinical antagonists

Colony spread was strongly increased in the presence of **EPI**. Therefore, **EPI** was anticipated to outcompete probe binding to a potential receptor involved in catecholamine-dependent motility. Labelling was performed with **PE-P** with a 10-fold excess of **EPI**. Competitor concentration was lower than in the **PE** experiment to minimise potential protein modification and precipitation by **EPI** oxidation products. Similar to **PE** competition experiments, 33 and 18 proteins were enriched and outcompeted in the insoluble and soluble fraction, respectively (Figure II-10).

To narrow down the potential hits even further, competition was also performed with **LAB** or **PRO**. **LAB** blocked catecholamine-dependent motility, indicating it might bind to the same protein as **EPI** and **PE**. As **PRO** showed no antagonism, outcompeted hits should therefore be considered unspecific off-targets. At a 10-fold excess, 35 proteins were enriched and outcompeted by **LAB** out of which only one was also outcompeted by **PRO** in the insoluble fraction (Figure II-11 A). In the soluble fraction, 32 proteins were enriched and outcompeted by **LAB**, out of which two were outcompeted also by **PRO** (Figure II-11 B).

The comparison of hits that were enriched and outcompeted by **PE**, **EPI**, and **LAB** but not by **PRO** yielded eight proteins in the insoluble fraction (Figure II-12 A) and five in the soluble fraction (Figure II-12 B). In the insoluble fraction, the der GTPase-activating protein YihI (A7MTV7),¹¹⁵ the 30S ribosomal protein S7 (A7MZ63),¹¹⁶ the translation initiation factor IF-1 (A7N1L7),¹¹⁷ a phosphatidylinositol kinase (A7MYT1),¹¹⁸ a DNA-binding response regulator (A7MUD0),¹¹⁹ and two poorly characterised proteins (A7MXS1 and A7N8F2)¹²⁰⁻¹²¹ were significant across all experiments. In the soluble fraction, A7MZ56 was also outcompeted by **PRO** and therefore considered unspecific. Two proteins were poorly annotated (A7MXS1 and A7N8F2),¹²⁰⁻¹²¹ the third was a restriction endonuclease subunit S (A7N2H7),¹²² and the last was CheW. Notably, of all differentially outcompeted proteins in both fractions, CheW was the

Figure II-10. Volcano plots of competitive photoaffinity labelling experiments with PE-P and EPI. Live VC was treated with **PE-P** (10 μ M), DMSO, or a 10-fold excess of **EPI** prior to addition of **PE-P**. Bacteria were irradiated, lysed, separated into soluble (PBS) and insoluble proteins, ligated by CuAAC to biotin-azide, enriched on avidin beads, digested, and peptides were analysed by LC-MS/MS. MS data were analysed by MaxLFQ,⁹⁶ filtered for proteins identified in three replicates, and missing values were imputed. Samples were compared using a two-sided two-sample *t*-test. (A) Insoluble fraction. Top plot shows proteins enriched by **PE-P** compared to the DMSO control. Bottom plot shows proteins enriched by **PE-P** alone compared to samples treated with **PE-P** plus a 10-fold excess of **EPI**. Proteins overlapping in both plots are highlighted in cyan. (B) Soluble fraction. Plot shows proteins enriched by **PE-P** alone compared to the DMSO control. Proteins outcompeted by a 10-fold excess of **EPI** are highlighted in cyan. Tables show UniProt¹⁰⁸ identifiers of proteins enriched in both comparisons. Experiments were performed in four independent replicates. Adapted from Weigert Muñoz *et al.*¹⁶

only protein that was also significantly enriched by **EPI-P1**. A closer inspection of the labelfree quantification (LFQ) values of CheW (insoluble fraction) treated with either **PE-P** alone, **PE-P** plus competitor, or DMSO showed that **PE-P** binding was indeed outcompeted by **PE**, **EPI**, and **LAB**, but not by **PRO** (Figure II-12 C). Therefore, from all the photoaffinity labelling experiments combined, CheW emerged as top hit and was prioritised for subsequent validation studies.

Figure II-11. Volcano plots of competitive photoaffinity labelling experiments with PE-P and clinical antagonists. Live VC was treated with PE-P (10 μ M), DMSO, or a 10-fold excess of LAB or PRO prior to addition of PE-P. Bacteria were irradiated, lysed, separated into soluble (PBS) and insoluble proteins, ligated by CuAAC to biotin-azide, enriched on avidin beads, digested, and peptides were analysed by LC-MS/MS. MS data were analysed by MaxLFQ,⁹⁶ filtered for proteins identified in three replicates, and missing values were imputed. Samples were compared using a two-sided two-sample *t*-test. (A) Insoluble fraction. Top left plot shows proteins enriched by PE-P alone compared

to samples treated with **PE-P** plus a 10-fold excess of **LAB**. Bottom plot shows proteins enriched by **PE-P** alone compared to samples treated with **PE-P** plus a 10-fold excess of **PRO**. Proteins overlapping in **PE-P**/DMSO and **PE-P**/LAB are highlighted in cyan, proteins overlapping in all three plots in blue. (B) Soluble fraction. Plot shows proteins enriched by **PE-P** compared to the DMSO control. Proteins outcompeted by a 10-fold excess of **LAB** are highlighted in cyan, proteins outcompeted by both **LAB** and **PRO** in blue. Tables show UniProt¹⁰⁸ identifiers of proteins enriched in **PE-P**/DMSO and **PE-P/LAB**. Experiments were performed in four independent replicates. Adapted from Weigert Muñoz *et al.*¹⁶

Figure II-12. Comparison of proteins outcompeted by PE, EPI, and LAB. For each condition, only proteins were considered that were also enriched compared to the DMSO control. (A) Insoluble fraction. (B) Soluble fraction. (C) LFQ intensities of CheW in samples treated with either PE-P alone, PE-P plus competitors, or DMSO (insoluble fraction). Adapted from Weigert Muñoz *et al.*¹⁶

2.4 Investigation of the mechanism of PE-P binding

2.4.1 Labelling in presence of radical scavengers

Figure II-13. Labelling in the presence of radical scavengers. In-gel fluorescence analysis of VC lysate treated with **PE-P** (50 μ M) in the presence of thiourea or tiron (with irradiation). Proteins were precipitated in acetone to remove radical scavengers before CuAAC to rhodamine-azide. Coo. = Coomassie. Adapted from Weigert Muñoz *et al.*¹⁶

Next, the unexpected UV-dependent labelling by **PE-P** was explored. To interrogate whether the labelling was based on a radical mechanism, labelling was performed in VC lysate with **PE-P** (50 μ M) in the presence of different radical scavengers (Figure II-13). Labelled proteins were precipitated in acetone and washed with methanol before CuAAC to remove radical scavengers that could interfere with the reaction. Thiourea quenched labelling slightly at 1 mM and completely at 10 mM. In the presence of 1 mM tiron (sodium 4,5-dihydroxybenzene-1,3disulfonate hydrate), no labelling was detectable. This indicates that UV induces fragmentation of the probe to reactive radical species which covalently bind to proteins.

2.4.2 Labelling in lysate of different strains

Next, labelling was compared in the lysates of VC and three other bioluminescent strains *Photorhabdus asymbiotica*, *Photorhabdus luminescens*, and *Aliivibrio fischeri*. Non-luminescent *Vibrio parahaemolyticus* and *S*. Typhimurium were included for comparison (Figure II-14). Labelling by **PE-P** (50 μ M) in the lysates of *V*. *parahaemolyticus*, *P*. *asymbiotica*, *P. luminescens*, and *A. fischeri* was distinct, although weaker than in VC, while it was absent in *S*. Typhimurium. Since labelling was performed in lysate, differences in uptake can be ruled out. Therefore, probe reactivity must be promoted by certain cellular components that are not specifically linked to bioluminescence and are most abundant in VC. The exact activation mechanism and whether the reactivity is promoted by a small molecule, a protein, or

another specific chemical condition present in these strains, are interesting subjects for further studies.

Figure II-14. Photoaffinity labelling in lysates of different strains. Lysates (1 $\mu g/\mu L$ protein in PBS) were treated with **PE-P** (50 μ M), irradiated, clicked to rhodamine-azide, and proteins were separated by SDS-PAGE. Total protein load (15 μ g per lane) was visualized by Coomassie staining (Coo.). *S.* Typ. = *S.* Typhimurium; *V. par.* = *V. parahaemolyticus*; *P. asy.* = *P. asymbiotica*; *P. lum.* = *P. luminescens*; *A. fis.* = *A. fischeri*; *V. cam.* = VC.

Enzymatic conversion of phenol derivatives to radicals can be catalysed, for instance, by an engineered ascorbate peroxidase (APEX).¹²³ The resulting phenol radicals are highly reactive, short-lived, and covalently react with electron-rich amino acids.¹²³⁻¹²⁷ As APEX is activated in the presence of H_2O_2 , it is used as a tool to map proteins in close proximity, e.g. by targeting APEX to an organelle of interest¹²³ or by fusing it to a bait protein.¹²⁸ A similar enzymatic activation of **PE-P** by an unknown enzyme upon UV irradiation is plausible.

2.4.3 MS-based analysis of PE-P modification

To further corroborate this hypothesis, recently developed isotopically labelled desthiobiotinazide (isoDTB) tags³² were used to inspect the modification of CheW and other proteins by **PE-P**. VC lysate was labelled with **PE-P** (10 μ M) and labelled proteins were ligated to heavy or light isoDTB tags in a 1:1 ratio and enriched. Following tryptic digest, unbound peptides were washed off the resin and modified peptides were eluted and detected by LC-MS/MS (Figure II-15 A). An unbiased analysis³¹ revealed modified peptides with the added mass corresponding to **PE-P** plus the light or heavy isoDTB tag (Figure II-15 B). Consistent with a radical binding mechanism, the modification was highly selective for tyrosine which constituted 90% of detected modified residues (Figure II-15 C and D).

Figure II-15. Proteome-wide analysis of PE-P modifications. (A) Schematic representation of workflow utilising isoDTB tags.³¹⁻³² Labelling with **PE-P** (blue circle, 10 μ M) in VC lysate was followed by irradiation, then samples were split in two and subjected to CuAAC with either light- (blue rectangle) or heavy-labelled (purple rectangle) isoDTB-azide. Differentially labelled lysates were combined in a ratio of 1:1, and proteins were digested. Following enrichment on avidin, modified peptides were eluted and analysed by LC-MS/MS. Peptides detected with a ratio of ~1:1 heavy:light tag were considered true hits. (B) Analysis of the masses of modification introduced by **PE-P** plus the light or heavy isoDTB tag, respectively, by an unbiased, proteome-wide search. (C) Analysis of the amino acid selectivity of **PE-P** labelling. (D) Potential structure (or regioisomer) of a **PE-P**-modified tyrosine corresponding to the observed modification mass. The analysis was performed in technical duplicates. PSM = peptide spectrum match. Adapted from Weigert Muñoz *et al.*¹⁶

2.4.4 Identification of CheW binding sites

In CheW, two tyrosine residues, Y_{44} and Y_{112} , were modified by the probe (Figure II-16 A–B). Mapping these residues into the predicted structure (AlphaFold,¹²⁹ kindly provided by Dr. Anthe Janssen and Prof. Gerard van Westen, Leiden University) revealed that the two tyrosines are in the vicinity of a conserved arginine, R_{64} , which is assumed to be involved in modulating CheA activity (Figure II-16 C).¹³⁰ Based on this structure, it is conceivable that ligand binding in this region may affect the interaction between CheA and CheW, although this requires further investigation.

Figure II-16. Identification of PE-P binding sites in CheW. (A) Extracted MS1 ion chromatograms of the two CheW peptides labelled by **PE-P** containing the Y₄₄ and the Y₁₁₂ binding site, respectively. Two replicates are shown of each peptide. Dashed lines define the quantified MS1 peaks and the expected m/z of the detected charge state is shown in the box. Peaks are labelled with the retention time (in min) and the deviation of the detected mass from the expected mass of the modified peptide (in ppm). ID denotes that an MS2 scan was acquired at the indicated retention time. (B) MS2 spectra with identified b- and y-ions. (C) Structure of VC CheW predicted with AlphaFold¹²⁹ and visualised with PyMOL.¹³¹ **PE-P** binding sites Y₄₄ and Y₁₁₂ are marked in orange, R₆₄ in red. The *E. coli* CheW structure (PDB:2HO9¹³², solution NMR) is shown for comparison (grey). CheW from *E. coli* and VC were overlayed in PyMOL, RMSD = 2.217 (1448 to 1448 atoms of 1771 total). R₆₂ and Y₄₂ are conserved in the *E. coli* proteir; an orthologue of Y₁₁₂ is absent. MS data analysis was performed by S. M. Hacker (TUM/Leiden University). The VC structure was kindly provided by A. Janssen and G. van Westen (Leiden University). Adapted from Weigert Muñoz *et al.*¹⁶

2.5 Validation of CheW as adrenergic target

2.5.1 Catecholamine binding to purified CheW

Binding of adrenergic compounds to CheW was next investigated by microscale thermophoresis (MST), which measures temperature-induced changes in fluorescence as a function of ligand concentration. **EPI**, **NE**, and **PE** were included as they promoted colony spread on soft agar, and the antagonist **LAB**. **PRO** could not be tested due to interference of its intrinsic fluorescence. **OA**, which had shown no activity, was included as a negative control. Concentration-dependent effects on the fluorescently labelled CheW were observed in the presence of **EPI**, **NE**, **PE**, and **LAB**, and dissociation constants K_d were determined ranging from 300 to 740 nM, indicating strong affinity binding (Figure II-17). It is especially noteworthy that **LAB** displayed affinity as it had no effect on motility by itself, indicating that it does indeed act like an antagonist. Consistent with its lack of activity in the soft agar assays, no binding could be observed for **OA**.

Figure II-17. Binding of adrenergic compounds to purified CheW. Binding affinities of adrenergic compounds to purified CheW (50 nM) were measured by MST. K_d values were determined from the Thermophoresis + T-Jump signal for data analysis (n = 3 independent measurements, error bars represent standard deviation). Experiments were performed by E. Hoyer (LMU). Adapted from Weigert Muñoz *et al.*¹⁶

2.5.2 Analysis of the CheW interaction network

Since binding of catecholamines to CheW could be verified *in vitro*, the next step was to investigate this in the cellular context. Therefore, co-immunoprecipitation (co-IP) of CheW in presence and absence of **EPI** was performed to reveal potential effects on protein-protein interactions. Moreover, this experiment was expected to corroborate the central role of CheW in the chemotaxis protein network by revealing its association with core chemotaxis proteins. Live VC was treated with 100 μ M **EPI** or DMSO. Next, disuccinimidyl sulfoxide (DSSO) was added to crosslink interacting proteins.¹³³ Following lysis, proteins of both **EPI**- and DMSO-treated samples were enriched by a CheW-specific antibody or by an equivalent amount of an unspecific isotype control, digested, and analysed by LC-MS/MS. Comparison of proteins

Figure II-18. Identification of CheW interaction partners by co-IP. Live VC was treated with **EPI** (100 μ M) or DMSO and proteins chemically crosslinked. Lysates were pulled down with an anti-CheW antibody or an isotype control. (A) Comparison of proteins enriched by the anti-CheW antibody to proteins enriched by the isotype control in both DMSO controls to identify CheW interaction partners. (B) Comparison of proteins enriched by the anti-CheW antibody in samples treated with **EPI** to DMSO controls. (C) UniProt¹⁰⁸ identifiers of proteins with the annotation "chemotaxis" in the GOBP^{26, 27} or KEGG^{100,102,134} database. Experiments were performed in four independent replicates. Samples were analysed by LC-MS/MS with label-free quantification, ⁹⁶ filtered for proteins identified in three replicates, and samples were compared using a two-sided two-sample *t*-test. Adapted from Weigert Muñoz *et al.*¹⁶

enriched by the CheW antibody against the isotype control (both DMSO-treated) revealed interaction partners of CheW (Figure II-18 A). Among the significantly enriched proteins were several hits that are annotated to be involved in chemotaxis in the GO¹³⁵⁻¹³⁶ or KEGG^{100,102,134} database including CheA, CheZ, several MCPs, and a number of CheVs,¹³⁰ confirming the validity of the antibody and the methodology. Comparison of **EPI**-treated with DMSO-treated samples (both CheW antibody) revealed no changes in the protein interaction network in the presence of **EPI** (Figure II-18 B). The catecholamines might therefore act by inducing conformational changes rather than affecting the associated protein network is in line with the

observation that chemotaxis receptor arrays remain intact upon activation.¹³⁷ Moreover, these data strongly corroborate the central role of the identified target (A7MS42) in chemotaxis.

2.5.3 Effects of EPI and PE on the VC proteome

To reveal potential proteomic effects behind increased motility in the presence of **PE** and **EPI**, VC colonies from swimming assays were harvested off agar plates containing **EPI** (100 μ M), PE (50 µM), or a DMSO control after 7 h or 24 h. Following lysis, the proteome was prepared for LC-MS/MS analysis (with LFQ). The analysis of dysregulated proteins was complicated by the poor annotation of proteins in VC. After 7 h exposition to **EPI**, six proteins were strongly upregulated (Figure II-19 A). Two of them, A7N237 and A7N8H5 are not well annotated.¹³⁸⁻¹³⁹ The other four, A7N0E3,¹⁴⁰ A7MS66,¹⁴¹ A7MZS8,¹⁴² and A7N8L7,¹⁴³ most likely have oxidoreductase activity. Two are even explicitly assumed to act on catechols or quinones, e.g. the A7N8L7 is annotated as "quercetin 2,3-dioxygenase" (UniProt)^{108,143} and A7N0E3 is a "FMN-dependent NADH:quinone oxidoreductase" acting as a "quinone reductase that provides resistance to thiol-specific stress caused by electrophilic quinones" (UniProt).^{108,140} In the 24 h samples, A7MS66, A7MZS8, A7N8H5, A7N8L7, and A7N0E3 were still strongly upregulated whilst A7N237 was no longer significantly dysregulated (Figure II-19 B). None of these hits were up- or downregulated in PE-treated samples. In general, PE seemed to elicit a weaker effect on the proteome and no clear-cut response could be observed (Figure II-19 C and D). The effect of EPI most likely is a cellular defence against oxidative stress caused by oxidised EPI species. Although the bacteria were harvested from a set-up in which a clear response to EPI and PE was observed, this was the only specific response on the proteome level. As it was not caused by PE, it is likely not the driver of colony spread. The lack of responsiveness on the protein abundance level is consistent with CheW as the major adrenergic target and indicates that catecholamines may affect colony spread without major alterations in the overall proteome.

Figure II-19. Whole proteome analysis of VC treated with adrenergic compounds. VC was harvested from soft agar plates containing compounds as indicated. Volcano plots show fold-change of protein abundance in VC treated (A) 7 h with **EPI** (100 μ M) or (B) treated 24 h compared to a DMSO control. Protein abundance in samples treated (C) 7 h with **PE** (50 μ M) or (D) treated 24 h compared to a DMSO control. Peptides were analysed by LC-MS/MS with LFQ, filtered for proteins identified in two (7 h) or four (24 h) replicates, and missing values were imputed. Samples were compared using a two-sided two-sample *t*-test; n = 3 (7 h) or n = 5 (24 h) independent replicates. Significantly dysregulated proteins (-log₁₀(*p*-value) > 1.3, log₂(enrichment) > 2) are shown as full circles and are listed in the tables.

2.5.4 Investigation of mechanisms behind catecholamine-dependent colony spread

Colony expansion on soft agar is frequently reported as an assay to determine swimming motility, though the underlying biological processes are more complex. Besides motility

behaviour, the colony diameter is further influenced by a combination of chemosensing, chemoattractant consumption, and growth.¹⁴⁴⁻¹⁴⁵ Therefore, a more thorough analysis of potential mechanisms behind catecholamine-promoted colony expansion was required. First, 3D trajectories of VC motility were measured in the presence or absence of **EPI**. For this, the movement of individual bacteria were microscopically tracked.

Figure II-20. 3D tracking of VC motility. (A) Example VC 3D trajectory shows run-reverse-flick motility turns alternating between reversals and flicks. (B) Average motile swimming speed in the presence of varying **EPI** concentrations; bacteria with an average swimming speed of at least 20 μ m/s were defined as motile. (C) Average turning frequency in the presence of varying **EPI** concentrations. Points represent technical replicates; open circles denote average with error bars as standard deviation. The analysis was performed for motile bacteria with a minimum trajectory duration of 1 s. Experiments were performed by M. Grognot and K. M. Taute (Harvard University). Adapted from Weigert Muñoz *et al.*¹⁶

VC motility followed a run-reverse-flick pattern (Figure II-20 A) with swimming speeds of $54 \pm 2 \mu m/s$ (Figure II-20 B) and a steady-state turning frequency of $0.52 \pm 0.03 \text{ s}^{-1}$ (Figure II-20 C). Both the swimming speed and turning frequency were not altered in the presence of **EPI**.

Figure II-21. Effects of *cheW* **deletion on VC motility.** (A) Rate of turn events as a function of turn angle in wild-type VC and the $\Delta cheW$ mutant determined from 3D motility tracking. Rates were determined based on 1,447 turn events detected in 1,295 s trajectory time (wild-type) and 29 events in 3,250 s ($\Delta cheW$). (B) Motility halo diameters from soft agar assays of VC wild-type and $\Delta cheW$ mutant after 24 h incubation with or without EPI (100 µM). Error bars represent standard deviation (wild-type n = 7 and mutant n = 6 independent replicates). (C) Soft agar plate showing wild-type and $\Delta cheW$ after 24 h incubation. Experiments were performed by M. Grognot and K. M. Taute (Harvard University) and by E. Hoyer (LMU). Adapted from Weigert Muñoz *et al.*¹⁶

The protein components of the chemotaxis cascade can vary greatly across species and some are known to encode more than one chemotaxis system,¹⁴⁴ therefore, it was important to inspect the motility of a deletion mutant of the identified CheW (A7MS42). While the swimming speed

was in a similar range as determined for the wild-type ($48 \pm 4 \mu m/s$), $\Delta cheW$ displayed a smooth swimming behaviour with a much lower turning frequency (Figure II-21 A). Interestingly, the mutant was severely compromised in its ability to spread on soft agar both in the presence and absence of **EPI** (Figure II-21 B and C). It has been observed previously that the $\Delta cheW$ mutant of another *Vibrio* species, which was unable to chemotact, could no longer spread on soft agar.¹⁴⁶ On soft agar, bacteria need to navigate through a lose agar mesh and smooth swimmers get stuck as they are unable to reorient themselves by tumbling.¹⁴⁴ These observations highlight that the identified protein (A7MS42) is indeed central for VC chemotaxis and its deletion severely impacts motility in general and also specifically affects spread in soft agar assays.

Figure II-22. Effects of adrenergic compounds on VC chemotaxis. (A) Experimental set-up of capillary-based assay. A capillary containing chemoattractant was inserted into a reservoir where the signal was absent, generating a diffusion gradient and causing bacteria to swim from the reservoir into the glass capillary. Bacterial numbers in the capillary were determined after 60 min. (B) Number of wild-type VC determined in capillary filled with different chemical attractants. (C) Number of $\Delta cheW$ VC determined in a capillary filled with glucose compared to the wild-type. (D) Number of wild-type VC determined in capillary filled with glucose (100 mM) in the presence of adrenergic compounds (50 μ M, homogenous concentration). Experiments were performed in HEPES-buffered artificial seawater. Bacterial numbers were normalised to an untreated control. Error bars denote standard deviation, n = 4 biological replicates. Statistical significance was determined using an unpaired two-tailed *t*-test (* = p < 0.05, ** = p < 0.01). Glc = glucose. Experiments were performed by K. Schumacher (LMU). Adapted from Weigert Muñoz *et al.*¹⁶

Finally, a closer look was taken on chemotaxis. Chemotaxis is the directional movement along the gradient of a chemical stimulus that allows bacteria to find optimum conditions. The role of adrenergic compounds in chemotaxis was studied in a capillary-based assay.¹⁴⁷ To a well with VC, a glass capillary containing a solution of the chemotactic signal was introduced, thus generating a gradient by diffusion (Figure II-22 A). The number of bacteria accumulated in the capillary after a given time compared to a control containing only medium reflected whether

the substance of interest elicits chemotaxis. Satisfyingly, a significant increase in the number of bacteria was observed in capillaries containing chitin (30% w/v) or glucose (10–100 mM) after 1 h, validating the methodology. Chemotaxis towards serine (10–100 mM) was less pronounced (Figure II-22 B). The $\Delta cheW$ mutant was drastically impaired in its ability to swim into the capillary both in the presence and absence of attractant, indicating disrupted chemotaxis signalling (Figure II-22 C). A gradient of **EPI** (50 µM in capillary) also led to an increased cell number in the capillary compared to the control, demonstrating that VC senses **EPI** as a chemoattractant (Figure II-22 D).

In E. coli, NE elicited a biphasic chemotactic response which contrasted with the behaviour of conventional chemotactic signals.⁸⁵ This response was similar to unconventional chemotactic signals which are not sensed by a specific periplasmic sensor domain,⁸⁴ although the response was specific and discriminated against chemically related compounds.⁸⁵ These observations are consistent with a specific sensor protein or protein domain that is located downstream of the MCP's periplasmic sensor in the chemotaxis complex, such as CheW. Being a central component of the core chemotaxis complex, interaction of CheW with small molecules might have more global implications for the entire chemotactic process compared to a conventional chemotactic signal and result in an overall modulation of chemotaxis. To explore this hypothesis, chemotaxis to attractants was monitored in the presence of adrenergic compounds. For this, bacteria were exposed to a gradient of the strong chemoattractant glucose whilst the concentration of adrenergic compounds in the medium was homogenous (in both the well and the capillary). Intriguingly, the number of bacteria in a glucose-containing capillary was significantly lower in the presence of a homogenous background of EPI or PE, indicating that these compounds indeed modulated chemotactic control (Figure II-22 E). NE had no significant effect, which is in line with its weak activity in the soft agar assays. Furthermore, the presence of OA, LAB, and PRO did not alter bacterial numbers in the glucose capillary, consistent with their lack of activity in the plate-based assays. Moreover, an equimolar combination of LAB with EPI suppressed the effects of the latter, demonstrating that also in this assay, LAB acted as an adrenergic antagonist. Hence, the specific effects of adrenergic compounds in the chemotaxis assay largely reflected the results from the soft agar assays and suggest that binding of **EPI** or **PE** to CheW affects the swimming behaviour of VC in chemical gradients.

2.6 Conclusion and outlook

The aim of this project was to elucidate the cellular processes behind catecholamine-dependent colony spread in VC. The key findings were the following:

- First, it was shown that catecholamine-promoted spread on soft agar is likely independent of altered iron supply as it could be observed for both **EPI** and **PE**, the latter of which carries no catechol group and should not act as siderophore, as was shown by the lack of growth stimulation in iron-deprived medium. Furthermore, **EPI** and **PE** were antagonised by the clinical adrenergic antagonist **LAB** in the soft agar assay. These observations pointed to a specific receptor that mediates adrenergic motility responses in VC.
- Second, CheW (A7MS42), which constitutes the core of the chemotaxis complex,¹¹⁴ was identified as a major adrenergic target as it was enriched in an untargeted chemical proteomics approach using two probes based on **EPI** and **PE**, respectively. It was demonstrated that **EPI**, **PE**, and **LAB** bind to CheW as they outcompeted binding of the chemical probe *in situ* and affinity constants in the nanomolar range were determined *in vitro*.
- Third, while adrenergic compounds did not seem to affect swimming speed or turning frequency of VC, chemotaxis to glucose was strongly reduced in the presence of **EPI** or **PE**. Again, this effect was antagonised in the presence of **LAB**. These findings are consistent with a modulation of VC chemotactic control by **EPI** and **PE**.

The extremely low turning frequency and loss of chemotaxis of a $\Delta cheW$ mutant proved the central role of the identified target protein in VC motility. Therefore, it is in fact plausible that small molecule binding to CheW can have extensive effects on chemotaxis and swimming behaviour.

The data illustrated in this thesis point towards CheW as a potential receptor protein which modulates chemotaxis in response to small molecule binding. These results are unexpected, considering that canonically, chemical stimuli are sensed by the periplasmic sensory domain of chemoreceptors.⁸⁴ However, non-conventional sensing mechanisms are reported in the literature, in which regulation occurs downstream of the sensory domain. For instance, cytoplasmic parts of chemoreceptors are involved in the sensing of certain physicochemical stimuli and repellents such as phenol.⁸⁴ Beyond that, uptake of sugars lowers the phosphorylation state of intracellular proteins of the phosphotransferase system (PTS). This causes PTS proteins to alter the activity of CheA, which acts directly downstream of CheW.

These examples highlight that chemotaxis is indeed significantly regulated by processes independent of the periplasmic sensory domain. It has previously been observed that *E. coli* chemotaxis to **NE** appears to follow a non-conventional mechanism and that it may be sensed indirectly.⁸⁵ Another consideration is that regulation of chemotaxis at the level of CheW appears in fact plausible. Certain bacterial species encode several coupling proteins, which enables a more fine-tuned control of chemotaxis.^{114,130} For instance, the coupling protein CheV consists of a CheW domain fused to a receiver domain and phosphorylation of the latter is assumed to modulate coupling efficiency.¹³⁰ Yet, the exact molecular mechanism behind the modulation of chemotactic control by adrenergic compounds remains to be unravelled.

Another open question is the physiological role of adrenergic modulation of chemotactic control. Chemotaxis and swimming motility overall are crucial for host colonisation and the infectivity of pathogens.^{83,144} Bacteria use chemotaxis to navigate along chemical gradients searching for the best environmental conditions. In many cases, chemotaxis reflects metabolic preferences, i.e., nutrients are sensed as chemoattractants and toxins as chemorepellents. In other cases, chemoattractants merely serve as cues indicating supportive environmental conditions. Host-associated chemicals are often sensed as chemoattractants¹⁴⁸ to guide the bacteria towards their host or to a specific site of infection.^{144,149} As a consequence, the regulation of chemotaxis in the physiological context of bacteria-host interaction is highly complex and not yet well understood.¹⁴⁴ Swimming motility entails a large energetic cost and may even negatively impact bacterial growth, therefore, bacteria need to gauge chemotactic activity according to their surroundings. It is assumed that E. coli invests energy in motile behaviour depending on the anticipated benefits.¹⁴⁴ For instance, during growth in poor carbon sources, motility is upregulated to promote chemotaxis towards potential additional nutrient sources, whilst motility is downregulated in a nutritionally rich environment.¹⁴⁴ These tradeoffs require multiple regulatory strategies.¹⁴⁴ Interestingly, the downregulation of chemotaxis appears favourable under certain conditions. For instance, a non-chemotactic, smooth swimming mutant of V. cholerae was found to outcompete wild-type bacteria in an infection model because the disability to chemotact likely allowed it to more widely spread out into the host.⁸³ The observation that V. cholerae from human stool is more infective compared to when grown in vitro was associated with improved motility and concurrent lack of chemotaxis.¹⁵⁰⁻¹⁵¹ Intriguingly, this was accompanied by reduced expression of CheW.¹⁵¹

In conclusion, it is tempting to speculate that chemotaxis towards glucose is reduced in the presence of **EPI** to prioritise localisation within the host over nutritional interests and that small molecule binding to CheW is an as yet unknown regulatory strategy. In this case, colonisation

of a specific niche within an animal host may be preferential over nutrient acquisition. Followup studies should examine chemotaxis in the presence of **EPI** or **PE** more closely, e.g., by elucidating whether adrenergic compounds reduce chemotaxis in global way or if this is specific for chemoattractants, or even specific signals. Another pressing point is whether CheW acts as an adrenergic sensor in other species and whether the modulation of chemotactic activity via ligand binding to CheW is a global mechanism.

3 Experimental procedures

3.1 Chemical synthesis

3.1.1 General remarks

Chemicals with reagent or higher grade as well as dry solvents were purchased from *Sigma Aldrich*, *Acros Organics*, or *Alfa Aesar*. 2-(3-But-3-ynyl-3*H*-diazirin-3-yl)-ethanol was purchased from *Ark Pharm Inc*.

Analytical thin layer chromatography was performed on aluminium-coated TLC silica gel plates (silica gel 60, F254, *Merck KGaA*) with visualisation by UV light ($\lambda = 254$ nm) or KMnO₄-stain (3.0 g KMnO₄, 20.0 g K₂CO₃, and 5 mL 5% [w/v] NaOH in 300 mL ddH₂O). Column chromatography was carried out using silica gel (40–63 µm (Si 60), *Merck KGaA*). High-resolution mass spectra (HRMS) were measured on a LTQ-FT Ultra (*Thermo Fisher*) equipped with an ESI ion source.

NMR spectra were measured at room temperature on Avance-III HD NMR systems with 300, 400, or 500 MHz (*Bruker Co.*). Chemical shifts are reported in parts per million (ppm) and residual proton signals of deuterated solvents were used as internal reference (¹H NMR: CDCl₃ $\delta = 7.26$ ppm, DMSO-d₆ $\delta = 2.50$ ppm, 0.04% [v/v] DCl in D₂O referenced to D₂O $\delta = 4.79$ ppm. ¹³C-NMR: CDCl₃ $\delta = 77.16$ ppm, DMSO-d₆ $\delta = 39.52$ ppm, 50% [v/v] AcOD in D₂O referenced to AcOD $\delta = 178.990$ ppm). Coupling constants (*J*) are reported in Hertz (Hz). Signal multiplicities are denoted with the following abbreviations: s – singlet, d – doublet, dd – doublet of doublets, dt – doublet of triplets, ddd – doublet of doublets, t – triplet, td – triplet of doublets, p – pentet, and m – multiplet. NMR data were analysed using MestReNova (*Mestrelab Research*).

3.1.2 Synthesis of 3-(but-3-yn-1-yl)-3-(2-iodoethyl)-3H-diazirine (PCL-I)⁹⁵

The reaction was carried out following a published protocol.²⁹ A solution of imidazole (74 mg, 1.08 mmol, 3.0 eq.) and triphenylphosphine (104 mg, 0.398 mmol, 1.1 eq.) in anhydrous CH_2Cl_2 (2 mL) was cooled to 0 °C. Pestled iodine (110 mg, 0.434 mmol, 1.2 eq.) was added

and the solution was stirred at 0 °C for 5 min. 2-(3-(But-3-ynyl)-3*H*-diazirin-3-yl)ethanol (50 mg, 0.361 mmol, 1.0 eq.) was added in CH₂Cl₂ (~1 mL) and the reaction mixture was stirred 7 h under the exclusion of light. The reaction was quenched with saturated aqueous Na₂S₂O₃ (2 mL) and the aqueous layer was extracted with EtOAc (2 x 5 mL). Combined organic layers were washed with brine (1 x 5 mL) and dried over Na₂SO₄. Solvents were removed under reduced pressure (\geq 50 mbar) and the residue was purified by column chromatography (EtOAc/n-hexane 1:20). Solvents were removed under reduced pressure (\geq 50 mbar) and the product was obtained as a colourless liquid (55 mg, 0.222 mmol, 62%).

TLC: $R_f = 0.53$ (EtOAc/n-hexane 1:20) [UV/KMnO₄]. ¹H-NMR (500 MHz, CDCl₃) δ [ppm]: 2.89 (t, J = 7.6 Hz, 2H, H-a), 2.12 (t, J = 7.6 Hz, 2H, H-d), 2.06-2.00 (m, 3H, H-b, H-e), 1.69 (t, J = 7.2 Hz, 2H, H-c). ¹³C-NMR (75 MHz, CDCl₃) δ [ppm]: 82.56, 69.57, 37.66, 31.96, 28.73, 13.39, -3.88. Analytical data are in accordance with literature reports.²⁹

3.1.3 Synthesis of (*R*)-4-(2-((2-(3-(but-3-yn-1-yl)-3*H*-diazirin-3-yl)ethyl)amino)-1-hydroxyethyl)-benzene-1,2-diol (**EPI-P1**)⁹⁵

NE (105 mg, 0.621 mmol, 3.5 eq.) was added to a solution of **PCL-I** (44 mg, 0.177 mmol, 1.0 eq.) in anhydrous DMF (6 mL) and it was stirred at 70 °C (with reflux) under argon for 17 h. Solvents were removed under reduced pressure and the residue was purified by column chromatography (MeOH/AcOH/CH₂Cl₂ 1:3:10) and solvents were removed under reduced pressure with toluene co-evaporation. The product **EPI-P1** was obtained as a mixture with acetic acid (**EPI-P1**:AcOH 1:3.5) as a brown solid (53 mg, 0.106 mmol, 62%).

TLC: $R_{\rm f} = 0.43$ (MeOH/AcOH/CH₂Cl₂ 1:3:7) [UV/KMnO₄]. ¹H-NMR (500 MHz, DCl/D₂O 38:962) δ [ppm]: 6.66–6.63 (m, 2H, H-a and H-b), 6.57 (dd, J = 8.2, 2.1 Hz, 1H, H-c), 4.63 (dd, J = 7.9, 5.2 Hz, 1H, H-d), 3.01–2.95 (m, 2H, H-e), 2.78 (td, J = 8.7, 2.1 Hz, 2H, H-f), 2.10 (t, J = 2.7 Hz, 1H, H-j), 1.80–1.74 (m, 13H, AcOH + H-i), 1.59 (ddd, J = 10.6, 6.4, 2.7 Hz, 2H, H-g), 1.42 (t, J = 7.1 Hz, 2H, H-h). ¹³C-NMR (101 MHz, AcOD/D₂O 1:1) δ [ppm]: 147.11, 147.04, 134.59, 120.99, 118.78, 116.23, 86.08, 72.85, 71.27, 56.17, 45.43, 33.56, 32.06, 29.07, 15.19. HRMS: (ESI) C₁₅H₂₀N₃O₃⁺ [M+H]⁺ calculated: 290.1499; found: 290.1499.

3.1.4 Amide coupling general protocol (second generation probes)

To a solution of 6-heptynoic acid (127 μ L, 0.950 mmol, 1.0 eq.) in DMF (10 mL), EDC·HCl (182 mg, 0.95 mmol, 1.0 eq.) and HOBt (128 mg, 0.95 mmol, 1.0 eq.) was added. The clear solution was stirred at 0 °C for 30 min and then at room temperature for 4 h. Anhydrous TEA (395 μ L, 2.85 mmol, 3.0 eq.; or 4 eq. if amine was HCl salt) was added followed by the amine (0.95 mmol, 1.0 eq.). The mixture was stirred overnight. Water (100 mL) was added, the mixture was extracted with 3 x EtOAc (30 mL), and combined organic phases were washed with brine (30 mL) and dried over Na₂SO₄. Solvents were removed under reduced pressure and the crude mixture was purified by SiO₂ chromatography (MeOH/CH₂Cl₂ 8:92).

3.1.5 Synthesis of (*R*)-*N*-(2-(3,4-dihydroxyphenyl)-2-hydroxyethyl)hept-6-ynamide (**EPI-P2**)

The reaction was performed with L-norepinephrine (161 mg, 0.950 mmol, 1.0 eq.) and the product was obtained as a pale orange amorphous solid (86 mg, 0.310 mmol, 16%).

TLC: $R_f = 0.37$ (MeOH/CH₂Cl₂ 8:92) [UV/KMnO₄]. ¹H-NMR: (500 MHz, DMSO-d₆) δ [ppm]: 8.78 (s, 1H, H-b), 8.68 (s, 1H, H-b), 7.77 (t, J = 5.6 Hz, 1H, H-h), 6.71 (d, J = 1.7 Hz, 1H, H-a), 6.65 (d, J = 8.0 Hz, 1H, H-c), 6.54 (dd, J = 8.0, 1.7 Hz, 1H, H-d), 5.18 (d, J = 4.1 Hz, 1H, H-f), 4.39 (dt, J = 8.3, 4.4 Hz, 1H, H-e), 3.23–3.17 (m, 1H, H-g), 3.00 (ddd, J = 13.1, 7.9, 5.1 Hz, 1H, H-g), 2.74 (t, J = 2.6 Hz, 1H, H-m), 2.13 (td, J = 7.0, 2.6 Hz, 2H, H-l), 2.08–2.04 (m, 2H, H-i), 1.54 (p, J = 7.4 Hz, 2H, H-j), 1.39 (p, J = 7.1 Hz, 2H, H-k). ¹³C-NMR: (101 MHz, DMSO-d₆) δ [ppm]: 172.10, 144.83, 144.19, 134.87, 116.88, 115.05, 113.46, 84.43, 71.29, 71.20, 46.96, 34.69, 27.52, 24.42, 17.48. HRMS: (ESI) C₁₅H₂₀NO₄⁺ [M+H]⁺ calculated: 278.1387, found: 278.1388.

3.1.6 Synthesis of *N*-(2-hydroxy-2-(3-hydroxyphenyl)ethyl)hept-6-ynamide (**PE-P**)

The reaction was performed with DL-norphenylephrine·HCl (180 mg, 1.00 mmol, 1.0 eq.) and the product was obtained as a white powder (169 mg, 0.648 mmol, 65%).

TLC: $R_f = 0.63$ (MeOH/CH₂Cl₂ 8:92) [UV/KMnO₄]. ¹**H-NMR:** (500 MHz, DMSO-d₆) δ [ppm]: 9.27 (s, 1H, H-c), 7.83 (t, J = 5.8 Hz, 1H, H-k), 7.09 (t, J = 7.8 Hz, 1H, H-e), 6.74 (s, 1H, H-a), 6.71 (d, J = 7.6 Hz, 1H, H-f), 6.61 (dd, J = 8.0, 2.5 Hz, 1H, H-d), 5.35 (d, J = 4.3 Hz, 1H, H-i), 4.48 (dt, J = 8.5, 4.5 Hz, 1H, H-h), 3.28–3.22 (m, 1H, H-j), 3.06–3.00 (m, 1H, H-j), 2.75 (t, J = 2.6 Hz, 1H, H-r), 2.13 (td, J = 7.0, 2.6 Hz, 2H, H-p), 2.07 (t, J = 7.4 Hz, 2H, H-m), 1.55 (p, J = 7.4 Hz, 2H, H-n), 1.38 (p, J = 7.1 Hz, 2H, H-o). ¹³C-NMR: (101 MHz, DMSO-d₆) δ [ppm]: 172.56, 157.62, 145.83, 129.35, 117.08, 114.35, 113.29, 84.86, 71.90, 71.68, 47.31, 35.12, 27.97, 24.85, 17.93. **HRMS:** (ESI) C₁₅H₁₂NO₃⁺ [M+H]⁺ calculated: 262.1438, found: 262.1438.

3.1.7 Synthesis of *N*-(2-hydroxy-2-(4-hydroxyphenyl)ethyl)hept-6-ynamide (**OA-P**)

The reaction was performed with DL-octopamine HCl (241 mg, 1.27 mmol, 1.0 eq.) and the product was obtained as a white powder (189 mg, 0.723 mmol, 54%).

TLC: $R_f = 0.47$ (MeOH/CH₂Cl₂ 9:91) [UV/KMnO₄]. ¹**H-NMR:** (300 MHz, DMSO-d₆) δ [ppm]: 9.22 (s, 1H, H-d), 7.76 (t, J = 5.7 Hz, 1H, H-i), 7.15–7.04 (m, 2H, H-a), 6.75–6.64 (m, 2H, H-b), 5.22 (d, J = 4.2 Hz, 1H, H-g), 4.47 (dt, J = 8.6, 4.6 Hz, 1H, H-f), 3.26–3.01 (m, 2H, H-h), 2.74 (t, J = 2.7 Hz, 1H, H-p), 2.13 (td, J = 7.0, 2.7 Hz, 2H, H-n), 2.06 (t, J = 7.3 Hz, 2H, H-k), 1.60–1.48 (m, 2H, H-l), 1.44–1.32 (m, 2H, H-m). ¹³C-NMR: (75 MHz, DMSO-d₆)

 δ [ppm]: 172.01, 156.34, 134.06, 127.10, 114.68, 84.37, 71.18, 71.14, 46.81, 34.63, 27.48, 24.38, 17.43. **HRMS:** (ESI) C₁₅H₁₈NO₃⁻ [M-H]⁻ calculated: 260. 1292; found: 260.1292.

3.2 Biochemical methods

3.2.1 General information

3.2.1.1 Chemical compounds

For proteomics experiments, synthesised probes were stored as DMSO stocks at -20 $^{\circ}$ C; unmodified parent compounds were dissolved in DMSO on the day of the experiment.

abbreviation	substance	supplier
EPI	DL-epinephrine hydrochloride	TCI Chemicals
NE	L-norepinephrine	Alfa Aesar
PE	(<i>R</i>)-(-)-phenylephrine hydrochloride	Sigma
LAB	labetalol hydrochloride	Sigma
PRO	propranolol hydrochloride	Sigma

Table II-1. Compounds used in this study.

3.2.1.2 Bacterial culture

Bacteria were stored as 50% (v/v) glycerol stocks at -80 °C. Unless otherwise specified, overnight cultures for growth assays, photolabelling, and co-IP experiments were grown from 50% (v/v) glycerol stocks inoculated 1:1000 into 20 mL medium for 15 h at the indicated temperatures and 200 rpm. Overnight cultures were then diluted 1:100 into fresh medium (60 mL) and grown to early stationary phase. For 3D motility and chemotaxis assays, overnight cultures were inoculated from individual *V. campbellii* colonies, grown on 2% (w/v) MB agar plates streaked from a glycerol stock, and grown to saturation in 2 mL MB at 30 °C, 200 rpm. Day cultures were inoculated with the overnight cultures at 1:200 dilution in 10 mL MB and grown at 30 °C, 250 rpm, until they reached OD₆₀₀ 0.3.

Table II-2. Bacterial culture conditions.

strain	medium	temperature
Vibrio campbellii (all strains)	LB35, MB, TMN	30 °C
Escherichia coli (all strains)	LB	37 °C
Photorhabdus asymbiotica	CASO	30 °C
Photorhabdus luminescens	CASO	30 °C
Aliivibrio fischeri	Medium 514c	25 °C
Vibrio parahaemolyticus	LB30	30 °C
Salmonella enterica serovar Typhimurium	LB	37 °C

Tuble II-5. We did used in this study.			
medium	ingredients		
LB	1% (w/v) peptone, 0.5% (w/v) NaCl, 0.5% (w/v) yeast extract, pH 7.5		
LB35	LB containing 3.5% (w/v) NaCl		
MB	Difco Marine Broth 2216		
TMNI	50 mM Tris-HCl, 300 mM NaCl, 5 mM MgCl ₂ , 5 mM glucose, pH		
	7.5		
LB30	LB containing 3% (w/v) NaCl		
CASO	1.7% (w/v) peptone from casein, 0.3% (w/v) peptone from soybean, 0.25% (w/v) K ₂ HPO ₄ , 0.5% (w/v) NaCl, 0.25% (w/v) glucose, pH 7.3		
MB	Difco Marine Broth 2216		
Medium 514c	Marine Bouillon (Carl Roth CP73)		
TMN	50 mM Tris-HCl, 300 mM NaCl, 5 mM MgCl ₂ , 5 mM glucose, pH 7.5		

Table II-3. Media used in this study.

 Table II-4. Strains and plasmids used in this study.

strain or plasmid	relevant genotype or description	reference		
Escherichia coli				
DH5αλpir	endA1 hsdR17 glnV44 (= supE44) thi-1 recA1 gyrA96 relA1 φ 80'lac Δ (lacZ)M15 Δ (lacZYA-argF)U169 zdg-232::Tn10 uidA::pir+	152		
WM3064	thrB1004 pro thi rpsL hsdS lacZ Δ M15 RP4-1360 Δ (araBAD)567 Δ dapA1341::[erm pir]	W. Metcalf, Univ. of Illinois, Urbana		
BL21(DE3)	F^{-} ompT gal dcm lon hsdSB(rB ⁻ mB ⁻) λ (DE3)	153		
	Vibrio campbellii			
V. campbellii ATCC BAA-1116	wild-type	89		
V. campbellii ΔcheW	clean deletion of <i>cheW</i>	This work ¹⁶		
Photorhabdus asymbiotica				
ATC43949	wild-type	154		
	Photorhabdus luminescens			
TT01	wild-type	155		
Aliivibrio fischeri				
DSM507	wild-type	156		
Salmonella enterica serovar Typhimurium				
LT2	wild-type	157		
	Vibrio parahaemolyticus			
RIMD 2210633	wild-type	T. Iida and T. Honda, Osaka University		

plasmids			
pET28a	Vector for expression of N-terminally 6xHis-tagged proteins with a thrombin site, Km ^R	Novagen	
pET28a- cheW	<i>cheW</i> cloned in the BamHI and XhoI sites of pET28a, Km^R	This work ¹⁶	
pNTPS138- R6KT	$mobRP4^+$ ori-R6K sacB; suicide plasmid for in-frame deletions, Km^R	158	
pNPTS138- R6KT- cheW	pNPTS-138-R6KT-derived suicide plasmid for clean deletion of <i>cheW</i> in <i>V. campbellii</i> , Km ^R	This work ¹⁶	

 Table II-5. Oligonucleotides used in this study.

name	sequence (restriction site in blue)	description
fwd_BamHI_up_c heW	TAGCCGGATCCTTGAACAGCACACTGAGACA GC	Generation
rev_EcoRI_down_ cheW	GCGTAGAATTCGCGAGAGGAATATGTCGGGTC	of the pNPTS138 -R6KT cheW
rev_start cheW _up	TGAGCCATAAAAGCTTGAGACATAGTTAATCC TCGTTAATG	plasmid for clean deletion of
fwd_start cheW _down	AAGCTTTTATGGCTCACCTGTAATTGGCTGATG AATCATGG	cheW in V. campbellii
fwd_BamHI_cheW	TAGCCGGATCCATGTCTCAAGCTTTTGAAG	Generation of the
		overexpress
		plasmid
		pET28a- cheW
		coding for
		N-terminal
rev_cheW_Stop_X		His ₆ -tagged
hol	TAGCCCTCGAGTTACAGGTGAGCCATCTCATC	cheW

3.2.2 Bioactivity assays

3.2.2.1 Soft agar colony expansion assay

Soft agar colony expansion assays were performed as described previously on LB35 plates containing 0.3% (w/v) agar.⁷¹ Catecholamines and antagonists were dissolved in water and added as supplements directly to the autoclaved medium before pouring plates. As control, the appropriate volume of water was added to the plates. A *V. campbellii* overnight culture was diluted in fresh LB35 (OD_{600} 1.0) and 5 µL culture was dropped in the centre of the plate with six independent replicates for each condition. After an incubation of 24 h at 30 °C, the colony diameter was measured. Radial expansions were normalized to an untreated control and significance was determined performing a one-way ANOVA with Tukey's post hoc test.

3.2.2.2 Growth assays

A *V. campbellii* overnight culture was diluted 1:100 in fresh LB35 medium (60 mL) and grown until early stationary phase (8 h, $OD_{600} \sim 5.0$). Compounds (1 µL 10 mM stock in DMSO for 50 µM final concentration) were dispensed into a clear flat-bottom 96-well plate (*Thermo Scientific*) and 199 µL of bacterial culture previously diluted to $OD_{600} 0.005$ in LB35 or in LB35 supplemented with 30% (v/v) of adult bovine serum (*Sigma*) was added. The plate was incubated in an Infinite® M200 Pro plate reader (*Tecan*) at 30 °C with 20 s shaking every 5 min. The absorbance at 600 nm was measured every 30 min. Blank values (only medium) were subtracted from data values and data were plotted in GraphPad Prism 5.03.

3.2.2.3 3D motility assay

Bacterial culture (20 μ L) was added to TMN (1 mL) containing **EPI** at the specified concentrations, mixed gently, and left on the bench for 30 min. The solutions were then flowed into sample chambers, consisting of three layers of parafilm as spacers between a microscopy slide and a #1 coverslip that had been heated and pressed to seal. After filling, the ends of the filled chamber were sealed with molten valap (a mixture of vaseline, lanolin, and paraffin) and immediately brought to the microscope for recording, all within 60 min of dilution from the day culture. **EPI** was diluted into TMN from a 50 mM stock solution in DMSO stored at -20 °C, within 3 h before the experiment.

3.2.2.4 3D chemotaxis assays

3D chemotaxis experiments were performed using a high-throughput chemotaxis assay¹⁵⁹ using a commercially available microfluidic device (Ibidi) consisting of two 65 µL reservoirs connected by a 1 mm-long channel with a height of 70 µm and a width of 1 mm. V. campbellii cultures were diluted into chemotaxis buffer without (creating solution A) or with the putative chemoattractant (creating solution B) to OD₆₀₀ 0.008 for EPI gradients or OD₆₀₀ 0.005 for serine and glucose gradients. Chemotaxis buffer consisted of TMN, with an added background of EPI or PE for some experiments as specified, and without glucose for glucose gradients. Chemoattractants included EPI, L-serine, and D-glucose at the specified concentrations. First, the entire microfluidic device was overfilled with solution A. Then, the content of one reservoir was exchanged by solution B. A linear chemical gradient was established in the narrow channel between reservoirs within approximately 30 min and was stable for several hours. About 40-60 min after closing the device, 3D bacterial trajectories were acquired in the middle of this gradient. For experiments with EPI gradients, EPI was prepared as a 40 mM stock in TMN within 3 h before the experiment. For serine chemotaxis experiments, EPI was prepared as 20 mM stock in TMN within 3 h before the experiments. For glucose chemotaxis experiments, **EPI** and **PE** were prepared as 60 mM stock in water, within 3 h before the experiment.

3.2.2.5 Data acquisition and analysis of 3D trajectories

Phase contrast microscopy recordings were obtained at room temperature (~21 °C) on a Nikon Ti-E inverted microscope using an sCMOS camera (PCO Edge 4.2) and a 40x objective lens (Nikon CFI SPlan Fluor ELWD 40x ADM Ph2, correction collar set to 1.2 mm to induce spherical aberrations).¹⁶⁰ For motility experiments, it was focused 135 μ m above the bottom surface of the sample chamber. One to four 1 or 1.5-min long recordings were obtained at 30 fps per condition in motility experiments, alternating between conditions. A typical 1.5-min motility recording yields 1,500–2,000 bacterial trajectories. For chemotaxis experiments, it was focused at the centre of the 70 μ m-tall channel in all three dimensions. Two to three 2–2.5-min long recordings were obtained at 30 fps per condition in chemotaxis experiments. Three biological replicates were performed for chemotaxis in a 100 μ M/mm **EPI** gradient, one otherwise. Biological replicates used cultures grown from different colonies.

3D trajectories were extracted from phase contrast recordings using a high-throughput 3D tracking method based on image similarity between bacteria and a reference library.¹⁶⁰ Trajectories shorter than 5 frames were discarded. Positions were smoothed using 2nd order
ADMM-based trend-filtering with regularisation parameter $\lambda = 0.3$, and speeds computed as forward differences in positions divided by the time interval between frames. All trajectories with an average speed below a 20 µm/s threshold were considered non-motile and discarded. The range of 3D bacterial trajectories was ~350 µm x 300 µm laterally (*x*, *y*) and 200 µm (*z*) in motility chambers, or the entire 70 µm height (*z*) of the channel in the chemotaxis device.

For motility experiments, trajectories with a minimum duration of 1 s were analysed for turn events. The turn event detection was based on the local rate of angular change of direction, computed from the dot product between the sums of the two consecutive velocity vectors preceding and subsequent to a time point. The threshold for a turn to begin was an α -fold rate relative to the median rate of angular change rate of the run segments, as determined in three iterations of the procedure. It was determined by visual inspection of trajectories that a factor $\alpha = 10$ gave satisfactory results. A new run begins with at least two time points (at least 0.066 s) below this threshold.

For chemotaxis experiments, the *z* position of the top and bottom of the chemotaxis chambers were identified by visual inspection of trajectory data, and all trajectory segments within 10 μ m of the top or bottom of the central channel were removed to avoid surface interaction effects. The drift velocity is the average of the *x* component of all instantaneous 3D speed vectors from all bacteria, *x* being the gradient direction. The noise on the drift measurement was estimated by a jack-knife resampling procedure consisting of dividing the data into subsets of 150 trajectories and computing the standard error of the mean drift obtained for different subsets.

3.2.2.6 Chemotaxis capillary assay

The capillary assay was performed following a published protocol¹⁴⁷ adapted for *Vibrio* species.¹⁶¹⁻¹⁶² Briefly, *V. campbellii* overnight cultures were diluted into LB35 medium (1:100) and grown to OD₆₀₀ 0.5. The cells were gently washed three times (10 min, 2,000 x *g*) and resuspended in HEPES-buffered artificial seawater (H-ASW: 100 mM MgSO₄, 20 mM CaCl₂, 20 mM KCl, 400 mM NaCl, and 50 mM HEPES, pH 7.5).¹⁶³ The OD₆₀₀ was adjusted to 0.1, and 200 μ L culture was transferred into a 96-well plate. The plate was covered with three layers of parafilm and the open end of a flame-sealed 1 μ L capillary (64 mm, *Drummond Scientific*) was inserted into the bacterial suspension. The capillaries were filled with either H-ASW alone or with attractants dissolved in H-ASW. Solutions containing attractants and cell suspensions were supplemented with catecholamines and antagonists as indicated. The hormones were either dissolved in H-ASW or diluted from a 100-fold concentrated stock solution in 0.1 M HCl

prepared immediately before the experiment (**EPI** and **NE**) and added directly after the wash steps. After 60 min incubation at room temperature, the contents of the capillaries were expelled and plated in appropriate dilutions on LB agar plates containing carbenicillin. The plates were incubated at 30 °C overnight and colony forming units were enumerated. Each experiment was conducted at least three times with four technical replicates per condition. Statistical significance was determined using an unpaired two-tailed *t*-test (* = p < 0.05, ** = p < 0.01).

3.2.3 Proteomics methods

3.2.3.1 Preparative photolabelling with PE-P

Overnight cultures of V. campbellii were diluted 1:100 into 60 mL fresh medium and grown until early stationary phase (30 °C, 200 rpm, 7 h, $OD_{600} \sim 5.0-5.2$). Bacteria were harvested by centrifugation (6,000 x g, 10 min, 4 °C), washed with PBS (10 mL), and adjusted to OD₆₀₀ 4.0 in 10 mL PBS. Competitors PE, EPI, LAB, PRO or DMSO were added from 1,000-fold concentrated DMSO stocks to the final concentrations as indicated and the suspensions were incubated 15 min, 30 °C, 200 rpm in 50 mL falcons with the lids fixed loosely. Next, DMSO or the photoprobe **PE-P** was added from a 1,000-fold concentrated stock (10 mM) to a final concentration of 10 µM and incubated 1 h, 30 °C, 200 rpm. Samples were transferred to 10 cm dishes and irradiated for 10 min with UV light (UV low-pressure mercury-vapour fluorescent lamp, Philips TL-D 18W BLB, 360 nm maximum) on a cooling pack. Labelled bacteria were centrifuged (6,000 x g, 10 min, 4 °C) and the pellet was washed twice with cold PBS (1 mL). Pellets were flash frozen and stored at -80 °C. Pellets were resuspended in 1 mL PBS + EDTAfree protease inhibitor (Roche) and sonicated 2 x 15 s, 60% intensity, on ice. Following centrifugation (16,060 x g, 30 min, 4 °C), the supernatant was removed ("soluble") and the pellet was resuspended in 1% (w/v) SDS/PBS with sonication for 2 x 15 s, 40% intensity. Cell debris was pelleted (16,060 x g, 10 min, r.t.) and the supernatant was transferred into a new tube ("insoluble").

3.2.3.2 Preparative photolabelling with EPI-P1

Preparative scale photolabelling experiments with **EPI-P1** were performed as with **PE-P** with the following exceptions: Labelling was performed in 5 mL culture and **EPI-P1** was added to 7.5 μ M (25 μ L from a 1.5 mM DMSO stock), the same volume of 5.25 mM acetic acid in DMSO was added as control. Samples were incubated for 30 min at 30 °C, 200 rpm and cultures

were irradiated for 5 min in 6 cm dishes. Bacteria were lysed in 450 μ L PBS + protease inhibitor with sonication (2 x 15 s, 60% intensity), then TX100 was added to 1% (v/v) and sonicated (1 x 10 s, 10% intensity) and samples were incubated for 30 min on ice. Insoluble debris was removed by centrifugation (16,060 x g, 20 min, 4 °C).

3.2.3.3 In situ analytical scale photolabelling

Analytical scale photolabelling experiments were performed as preparative scale experiments with the following exceptions: Probe concentration was 50 μ M (0.5% [v/v] DMSO). Irradiation of 1 mL labelled bacteria was performed in a 12-well dish. Lysis and fractionation into soluble and insoluble proteins was performed as for preparative experiments with **PE-P** (in 200 μ L).

3.2.3.4 CuAAC for preparative scale photolabelling

Protein concentration was determined using the Roti[®]-Quant kit (*Carl Roth*) and adjusted to ~1 μ g/ μ L in 500 μ L. SDS was added to 0.8% (w/v) in the "soluble" samples. Click reagents were added to the lysate from a premix to the following concentrations: 100 μ M rhodaminebiotin-azide tag¹⁶⁴ (10 mM stock in DMSO), 1 mM CuSO₄ (50 mM stock in water), 1 mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP, 52 mM stock in water), and 100 μ M tris((1-benzyl-4-triazolyl)methyl)amine (TBTA, 1.667 mM stock in 20% [v/v] DMSO/*t*-BuOH) and incubated 1 h, 25 °C, 400 rpm. Proteins were precipitated in 2 mL acetone at -20 °C overnight, pelleted (20,450 x *g*, 15 min, 4 °C), and washed twice with 1 mL ice-cold methanol with sonication (1 x 10 s, 10% intensity). Pellets were air-dried, proteins resolubilized in 1 mM dithiothreitol (DTT), 0.2% (w/v) SDS/PBS with sonication (1 x 10 s, 10% intensity), and transferred to LoBind microcentrifuge tubes.

3.2.3.5 CuAAC for analytical scale photolabelling

CuAAC for analytical labelling experiments was performed with rhodamine-azide (tetramethylrhodamine 5-carboxamido-(6-azidohexanyl), 5-isomer, *Base Click*). The click reaction was quenched by addition of the same volume of 2 x sample loading buffer (63 mM Tris/HCl, 10% [v/v] glycerol, 2% [w/v] SDS, 0.0025% [w/v] bromophenol blue, 5% [v/v] 2-mercaptoethanol).

3.2.3.6 Analytical photolabelling in lysate with radical scavengers

Lysate (in PBS) was adjusted to a protein concentration of 1 mg/mL and DMSO or **PE-P** was added to 50 μ M (0.1% [v/v] DMSO) in 60–100 μ L lysate in a 96-well plate. Samples were incubated for 1 h at 30 °C, 200 rpm and radical scavengers were added to 1 mM or 10 mM as indicated (11 μ L from a freshly made 10 mM or 100 mM stock in water), mixed thoroughly, and irradiated for 10 min. Proteins were precipitated in acetone and washed with methanol to remove the radical scavengers (as described above), resuspended in 1% (w/v) SDS/PBS (with vortexing and sonication) to the same protein concentration, and subjected to CuAAC with rhodamine-azide.

3.2.3.7 Analytical photolabelling in lysate of different strains

Overnight cultures were grown from colonies in 5–20 mL medium, diluted in fresh medium (20–60 mL), and grown for 8–9 h (*P. luminescens*: OD_{600} 4.17; *P. asymbiotica*: OD_{600} 4.18; *A. fischeri*: OD_{600} 1.81). Bacteria were harvested and washed as for photolabelling experiments and the pellets were frozen. Bacteria were resuspended in 2 mL PBS and lysed (3 x 15 s, 60% intensity) on ice, the suspension was centrifuged (21,000 x g, 30 min, 4 °C), and the supernatant transferred to a new tube. Protein concentration was adjusted to 1 µg/µL and labelling was performed as described above at 50 µM **PE-P** (1% [v/v] DMSO) but at room temperature and without shaking. No radical scavengers were added and CuAAC was performed directly after irradiation without acetone precipitation.

3.2.3.8 SDS-PAGE

Stacking gels consisted of 4% (w/v) acrylamide (in 50 mM Tris, pH 6.8) and resolving gels of 12.5% (w/v) acrylamide (in 300 mM Tris, pH 8.8) and were run in a Tris-glycine buffer (25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS, pH 8.3). Typically, 30 μ L sample (~15 μ g protein), 8 μ L fluorescent marker (BenchMarkTM Fluorescent Protein Standard, *Thermo Fisher*), and 12 μ L protein marker (Roti[®]-Mark Standard, *Carl Roth*) were loaded and gels were run at 150–300 V (depending on gel size) on a EV265 Consort power supply (*Hoefer*). Fluorescence was scanned in a LAS-4000 imaging system equipped with a Fujinon VRF43LMD3 lens and a 575DF20 filter (*Fujifilm*). Gels were stained in Coomassie staining solution (0.25% [w/v] Coomassie Brilliant Blue R-250, 9.2% [v/v] concentrated acetic acid, 45.4% [v/v] ethanol) overnight and destained in 10% (v/v) acetic acid, 40% (v/v) ethanol).

3.2.3.9 Enrichment, alkylation, and digest for photoaffinity labelling experiments

Protein LoBind microcentrifuge tubes and MS-grade reagents were used throughout MS sample preparation. Per sample, 50 µL avidin slurry (Sigma) was dispensed into a microcentrifuge tube and washed 3 x with 0.2% (w/v) SDS/PBS (3 min, 400 x g). Protein samples were centrifuged (21 000 x g, 10 min, r.t.) to remove particulates, then added to the beads, and incubated at room temperature under constant rotation for 1–2 h. Beads were pelleted, the supernatant discarded, and beads were washed with 0.5-1 mL of the following solutions: 2 x 1% (w/v) SDS/PBS, then 3 x 4 M urea/PBS, and 3 x 50 mM triethylammonium bicarbonate buffer (TEAB). The beads were resuspended in 100 µL 50 mM TEAB and reduced with 10 mM DTT (from 250 mM stock in water) at 55 °C for 30 min with shaking. Next, beads were washed with 0.5 mL TEAB, resuspended in 100 µL TEAB and thiols were alkylated with 20 mM iodoacetamide (from 500 mM stock in TEAB) at 25 °C from 30 min with shaking. Beads were washed twice with 100 μ L TEAB, resuspended in 100 μ L TEAB, and 1 μ g trypsin was added (from 0.5 μ g/ μ L in 50 mM acetic acid, *Promega*). Proteins were digested at 37 °C for 14 h under vigorous shaking. The digest was quenched with formic acid (1% [v/v] final concentration, pH 2-3), beads were washed twice with 100 µL 0.1% (v/v) formic acid, and the washes were combined with the supernatant.

Samples were desalted on stage tips consisting of three layers of C-18 material (Empore C18 disk-C18, 47 mm, *Agilent Technologies*) plunged into p200 tips which were inserted into holes in the lids of microcentrifuge tubes. The following solutions were added, and the stage tips were centrifuged ($\leq 1-2$ min, 500 x g) after every addition: stage tips were washed with 1 x 80 µL methanol and then equilibrated with 1 x 80 µL 80% (v/v) acetonitrile, 0.5% (v/v) formic acid and with 2 x 100 µL 0.5% (v/v) formic acid. Next, peptides were loaded and desalted with 1 x 150 µL 0.1% (v/v) formic acid. Stage tips were transferred to fresh LoBind microcentrifuge tubes and the peptides were eluted with 100 µL 80% (v/v) acetonitrile, 0.5% (v/v) formic acid. Solvents were removed in a speed vac and dry peptides were stored at -80 °C until analysis.

3.2.3.10 Chemoproteomics experiments with isoDTB tags

A pellet of *V. campbellii* grown to stationary phase (OD₆₀₀ ~5.0, ~24 mL) was washed 3 x with PBS, stored at -80 °C, and lysed in 1.5 mL PBS with sonication (5 x 15 s, 60% intensity, on ice). Insoluble proteins were removed by centrifugation (16,060 x g, 30 min, 4 °C). Protein concentration was adjusted to 1 mg/mL, and 2 mL lysate was labelled with 10 μ M **PE-P** (2 μ L of a 10 mM stock in DMSO) at 30 °C for 1 h, 200 rpm. Following 10 min UV-irradiation (UV

low-pressure mercury-vapour fluorescent lamp, *Philips* TL-D 18W BLB, 360 nm maximum) in a 6-well plate (Thermo Scientific), the lysate was split into 2 x 800 µL and adjusted to 1% (w/v) SDS (from a 10% (w/v) stock in PBS) before adding the click reagents as for the photoaffinity labelling experiments except using either heavy or light labelled isoDTB azide (100 μ M final from a 5 mM DMSO stock, isoDTB azide synthesised as reported previously³²). After the click reaction, heavy- and light-labelled lysates (800 µL each) were combined in 8 mL cold acetone and precipitated overnight at -20 °C. Precipitated proteins were centrifuged (10,178 x g, 10 min, 4 °C), the supernatant decanted, the pellet resuspended in 1 mL cold methanol with sonication (10% intensity), and pelleted again. The methanol wash was repeated, and protein pellets were air-dried and resuspended in 300 µL 8 M urea in 0.1 M TEAB with sonication (10% intensity). Samples were centrifuged (16,249 x g, 3 min) and reduced with 10 mM DTT (15 µL of 201 mM stock in water) for 45 min at 37 °C, 850 rpm. Next, thiols were alkylated with 20 mM iodoacetamide (15 µl from a 400 mM stock in water) for 30 min at 25 °C, 850 rpm (protected from light) and remaining iodoacetamide was quenched with 10 mM DTT for 30 min at 25 °C, 850 rpm. Then, 900 µL 0.1 M TEAB was added (to achieve pH ~8 and 2 M urea) and proteins were digested with 20 µg trypsin (40 µL from 0.5 µg/µL in 50 mM acetic acid, Promega) overnight at 37 °C with intense shaking. Per sample, 2 x 25 µL avidin slurry (Sigma) in Protein LoBind tubes was washed with 3 x 1 mL 1% (v/v) Nonidet P-40 (NP-40) in PBS with centrifugation (400 x g, 2 min). The tryptic digest was split into two portions, added to 600 µL 0.2% (v/v) NP-40 and then to the avidin beads and incubated for 2.5 h with constant rotation. Beads were then centrifuged $(1,000 \times g, 2 \min)$, the supernatant discarded, and the beads were resuspended in 600 µL 0.1% (v/v) NP-40, and transferred to a centrifuge column (Fisher Scientific) recombining the two portions of one sample. Beads were washed with 2 x 600 μ L 0.1% (v/v) NP-40, then with 3 x 600 μ L PBS, and with 3 x 600 μ L water, after every washing step the solutions were removed by suction. The columns were transferred into LoBind tubes and peptides were eluted with 400 μ L (in 3 batches) 50% (v/v) acetonitrile, 0.1% (v/v) on (5,000 x g, 3 min). Solvents were removed in a speed vac and dry peptides were stored at -80 °C until analysis.

3.2.3.11 Co-IP

A customised polyclonal rabbit antibody against 6His-CheW was obtained from *Kaneka Eurogentec*. For this purpose, heterologously produced and purified 6His-CheW was supplied as antigen in a Speedy 28-day immunisation programme with two rabbits as hosts. Polyclonal

IgG antibodies were obtained from 5 mL crude rabbit serum after the immunisation by affinity purification. Specificity of the antibody against CheW was verified by Western blot analyses.

V. campbellii from an overnight culture were diluted in LB35 medium and grown until early stationary phase, pelleted, washed with PBS, and resuspended in PBS to OD₆₀₀ 4.0 as for preparative photolabelling experiments with PE-P. Four replicates were used starting from independent overnight cultures. Next, 10 mL suspension in a 50 mL falcon was treated with 100 µM EPI (from 100 mM stock in DMSO) or DMSO and incubated 30 min, 30 °C, 200 rpm. Bacteria were harvested (6,000 x g, 5 min, r.t.) and resuspended in 2 mL PBS containing 100 µM EPI or the equivalent volume of DMSO. The DSSO crosslinker was added to 2 mM (from a 100 mM stock in DMSO, DSSO synthesised as described previously¹³³), and samples were incubated at 30 °C, 200 rpm for 30 min. Bacteria were pelleted (6,000 x g, 10 min, 4 °C), washed with 2 x 1 mL cold 50 mM Tris/HCl, pH 8.0 to quench the DSSO, and the pellet was flash-frozen and stored at -80 °C. The pellet was resuspended in 1 mL lysis buffer (50 mM Tris/HCl, pH 7.4, 150 mM NaCl, 5% [v/v] glycerol, 0.1% [v/v] NP-40) and sonicated 3 x 15 s, 60% intensity, on ice. The lysate was cleared by centrifugation (21,000 x g, 30 min, 4 °C) and the supernatant was sterile filtered (0.2 μ m). Protein amount was adjusted to 1 mg (1 μ g/ μ L). Per sample, 30 µL protein A/G bead slurry (Pierce Biotechnology, Thermo Fisher Scientific) in LoBind microcentrifuge tubes was equilibrated with 1 x 1 mL cold wash buffer (50 mM Tris/HCl, pH 7.4, 150 mM NaCl, 5% [v/v] glycerol, 0.05% [v/v] NP-40) and centrifuged (1,000 x g, 1 min, 4 °C). The supernatant was discarded and the lysate was added to the beads. Next, 2.5 µg antibody (167 µL from a 0.015 µg/µL stock in 50% [v/v] glycerol) or a rabbit mAb IgG XP® isotype control (1 µL, 2.5 µg/µL, Cell Signaling Technology) was added and incubated overnight at 4 °C under constant rotation. Samples were centrifuged (30 s, 500 x g, 4 °C), the supernatant discarded, and the beads washed with 2 x 1 mL cold wash buffer and 3 x 1 mL cold basic buffer (50 mM Tris/HCl, pH 7.4, 150 mM NaCl, 5% [v/v] glycerol). Proteins were reduced and digested by the addition of 25 µL IP elution buffer I (50 mM Tris/HCl, pH 8.0, 5 ng/µL trypsin, 2 M urea, 1 mM DTT) at 25 °C, 1,000 rpm for 30 min. To alkylate cysteines, 100 µL IP elution buffer II (50 mM Tris/HCl, pH 8.0, 2 M urea, 5 mM iodoacetamide) was added, and the samples were incubated overnight (~16 h) at 37 °C, 1,000 rpm. Formic acid was added to 1% (v/v) (pH 2–3) to quench the digestion and samples were desalted on stage tips.

Desalting was performed as for photolabelling experiments with slight modifications: two layers of C-18 material were used and stage tips were equilibrated with 1 x 80 μ L methanol, then 1 x 80 μ L 80% (v/v) acetonitrile, 0.5% (v/v) formic acid, and with 3 x 70 μ L 0.5% (v/v)

formic acid. Samples were centrifuged (16,249 x g, 2 min) and loaded, the beads were washed with 2 x 150 μ L 0.5% (v/v) formic acid and washes were loaded too. Peptides were desalted with 3 x 70 μ L 0.5% (v/v) formic acid and eluted with 2 x 30 μ L 80% (v/v) acetonitrile, 0.5% (v/v) formic acid. Solvents were removed in a speed-vac and dry samples were stored at -80 °C.

3.2.3.12 Whole proteome analysis

Bacteria were grown on soft agar motility plates as described above containing 100 µm EPI, 50 µM PE, or the appropriate volume of solvent as control. The plates were incubated at 30 °C for 7 h or 24 h and bacteria were harvested as previously described with minor changes.¹⁶⁵ Cells were washed off the surface with 2 ml ice-cold PBS, centrifuged (10,000 x g, 20 min, 4 °C), washed twice, and the pellets were frozen and stored at -80 °C. Bacterial pellets were lysed in 200 µL 100 mM Tris/HCl, pH 7.4 with sonication (3 x 15 s, 60% intensity, on ice). Next, 80 µL 10% (w/v) SDS, 1.25% (w/v) deoxycholic acid was added and samples were vortexed and incubated at 90 °C for 10 min. Nucleic acids were sheared by sonication (1 x 20 s, 10% intensity), insoluble debris removed by centrifugation (16,060 x g, 30 min) and the supernatant was transferred to a LoBind tube. The protein amount was adjusted across all replicates of a condition (20–200 µg) and samples were precipitated overnight with 1.2 mL acetone at -20 °C. Precipitated proteins were pelleted (21,000 x g, 15 min, 4 °C) and resuspended in 0.5–1 mL ice-cold methanol. Methanol washes were performed twice. Pellets were air-dried, resuspended in 200 µL denaturation buffer (7 M urea, 2 M thiourea in 20 mM HEPES, pH 7.5) with sonication (10% intensity) and reduced with 1 mM DTT (1 µL from 200 mM stock in water) for 1 h at 37 °C, 600 rpm. Thiols were alkylated with 5.5 mM iodoacetamide (2 µL from 550 mM stock in 50 mM TEAB) for 30 min at 25 °C, 600 rpm (protected from light) and excessive iodoacetamide was quenched with 4 mM DTT for 30 min at 25 °C, 600 rpm. Proteins were digested with LysC (1:200 LysC:total protein, 0.5 µg/µL, MS-grade, Wako) for 2 h at 25 °C, 600 rpm, then samples were diluted by adding 800 µL 50 mM TEAB and further digested with trypsin (1:100 trypsin:total protein, from 0.5 µg/µL in 50 mM acetic acid, Promega) for 16 h at 37 °C, 1000 rpm.

The digestion was quenched with 3% (v/v) formic acid (pH ~2.5) and samples were desalted on 50 mg SepPak C-18 columns (*Waters*). For this, columns were washed with 1 x 1 mL acetonitrile and 1 x 1 mL elution buffer (80% [v/v] acetonitrile, 0.5% [v/v] formic acid) and equilibrated with 3 x 1 mL 0.1% (v/v) trifluoroacetic acid (TFA). Peptides were added on the columns and washed with 3 x 1 mL 0.1% (v/v) TFA and with 1 x 500 μ L 0.5% (v/v) formic acid. Finally, peptides were eluted into 2 mL LoBind tubes with 3 x 250 μ L elution buffer, solvents were removed in a speed vac and dry peptides were stored at -20 °C.

3.2.3.13 Peptide reconstitution (all proteomics experiments)

Dry peptides were reconstituted in 30 μ L 1% (v/v) formic acid with vortexing and in a sonication bath (10 min) and filtered through centrifugal filters (0.22 μ m, Durapore, PVDF, *Merck KGaA*) pre-equilibrated with 300 μ L 1% (v/v) formic acid (16,249 x g, 2 min, r.t.). For full proteome experiments, peptides were reconstituted in a volume corresponding to a protein concentration of 1 μ g/ μ L.

3.2.3.14 LC-MS/MS measurements

Whole proteome peptide samples were analysed on an UltiMate 3000 nano HPLC system (Dionex) equipped with an Acclaim C18 PepMap100 (75 μ m ID \times 2 cm) trap column and an Aurora Series Emitter Column with Gen2 nanoZero fitting (75 μ m ID \times 25 cm, 1.6 μ m FSC C18) separation column (column oven heated to 40 °C) coupled to an Orbitrap Fusion (Thermo Fisher) in EASY-spray setting. Peptides were loaded on the trap column and washed with 0.1% (v/v) TFA before being transferred to the analytical column and separated in a 152 min gradient (buffer A: 0.1% [v/v] formic acid in water, buffer B: 0.1% [v/v] formic acid in acetonitrile, gradient: 5–22% [v/v] buffer B in 112 min, then to 32% [v/v] buffer B in 10 min, then to 90% [v/v] buffer B in 10 min and hold 90% [v/v] buffer B for 10 min, then to 5% [v/v] buffer B in 0.1 min and hold 5% [v/v] buffer B for 9.9 min) with a flow rate of 400 nL/min. The Orbitrap Fusion was operated in a TOP10 data dependent mode and full scan acquisition in the orbitrap was performed with a resolution of 120,000 and an AGC target of 2e5 (maximum injection time of 50 ms) in a scan range of 300-1,500 m/z. Monoisotopic precursor selection as well as dynamic exclusion (exclusion duration: 60 s) was enabled. Most intense precursors with charge states of 2-7 and intensities greater than 5e3 were selected for fragmentation. Isolation was performed in the quadrupole using a window of 1.6 m/z. Precursor ions were collected to an AGC target of 1e4 (maximum injection time of 35 ms). Fragments were generated using higherenergy collisional dissociation (HCD, normalized collision energy: 30%) and detected in the ion trap operating at a rapid scan rate.

Co-IP samples were measured on the Orbitrap Fusion with the same parameters as whole proteome samples except that precursors were selected with a maximum injection time of 100 ms.

Photoaffinity labelling peptide samples were analysed on an UltiMate 3000 nano HPLC system (Dionex) equipped with an Acclaim C18 PepMap100 (75 μ m ID \times 2 cm) trap column and a 25 cm Aurora Series emitter column (25 cm × 75 µm ID, 1.6 µm FSC C18) (Ionopticks) separation column (column oven heated to 40 °C) coupled to a Q Exactive Plus (*Thermo Fisher*) in EASY-spray setting. Peptides were loaded on the trap column and washed with 0.1% (v/v) TFA before being transferred to the analytical column and separated using a 152 min gradient (buffer A: 0.1% [v/v] formic acid in water, buffer B: 0.1% [v/v] formic acid in acetonitrile. Gradient of buffer B: 5% [v/v] for 7 min, increase to 22% [v/v] in 105 min, then to 32% [v/v] in 10 min, then to 90% [v/v] in 10 min, hold at 90% [v/v] for 10 min, decrease to 5% [v/v] in 0.1 min and hold at 5% [v/v] for 9.9 min) with a flow rate of 400 nL/min. The Q Exactive Plus was operated in a TOP10 data dependent mode and full scan acquisition in the orbitrap was performed with a resolution of 140 000 and an AGC target of 3e6 (maximum injection time of 80 ms) in a scan range of 300-1,500 m/z. Most intense precursors with charge states of > 1, a minimum AGC target of 1e3, and intensities greater than 1e4 were selected for fragmentation. Peptide fragments were generated using higher-energy collisional dissociation (HCD, normalized collision energy: 27%) and detected in the orbitrap with a resolution of 17 500 m/z. The AGC target was set to 1e5 (maximum injection time 100 ms) and the dynamic exclusion duration to 60 s. Isolation in the quadrupole was performed with a window of 1.6 m/z.

Differential isotopic labelling samples were measured on a Q Exactive Plus spectrometer with a different gradient (buffer B: 5% [v/v] for 7 min, increase to 40% [v/v] in 105 min, then to 60% [v/v] B in 10 min, and to 90% [v/v] B in 10 min, hold at 90% [v/v] for 10 min, then decrease to 5% [v/v] in 0.1 min and hold at 5% [v/v] for another 9.9 min) at the same flow rate. All parameters were the same as for photoaffinity labelling experiments except full MS scans were collected at a resolution of 70 000.

3.2.3.15 MS data analysis (photoaffinity labelling, co-IP, and full proteome experiments)

MS data were analysed using MaxQuant¹⁶⁶⁻¹⁶⁷ version 1.6.5.0 and peptides were searched against the UniProt database for *Vibrio campbellii* ATCC BAA-1116 / BB120 (taxon identifier 338187, downloaded on 17.02.2020). Cysteine carbamidomethylation was set as fixed

modification and methionine oxidation and N-terminal acetylation as variable modifications. Trypsin (without N-terminal cleavage to proline) was set as proteolytic enzyme with a maximum of two allowed missed cleavages. LFQ mode⁹⁶ was performed with a minimum ratio count of 2. The "match between runs" (0.7 min match and 20 min alignment time window) and second peptide identification options were activated. All other parameters were used as pre-set in the software. LFQ intensities were further processed with Perseus¹⁶⁸ version 1.6.1.1. Peptides of the categories "only identified by site", "reverse", or "potential contaminant" were removed and LFQ intensities were log₂-transformed.

Data were filtered to retain only protein groups identified in at least 3/4 valid values (experiments: competitive labelling **PE-P** vs. **EPI**; competitive labelling **PE-P** vs. **PRO/LAB**; co-IP), 4/5 valid values (competitive labelling **PE-P** vs. **PE**; full proteome **PE**; full proteome **EPI**, 24 h), 2/3 valid values (full proteome **EPI**, 7 h), or 3/3 valid values (labelling with **EPI-P1**) in at least one group and missing values were imputed (width 0.3, downshift 1.8, total matrix). A two-sided two-sample Student's *t*-test with permutation-based FDR (FDR 0.05) was performed and the significance cut-off was set at *p*-value = 0.05 ($-\log_{10}(p$ -value) = 1.3) and an enrichment factor of 2 ($\log_2(x) = 1$) or 4 ($\log_2(x) = 2$) as indicated in the plots. Protein IDs were matched to annotations downloaded from annotations.perseus-framework.org on 18.02.2020. Proteins with the annotation "chemotaxis" in the GOBP or KEGG database were highlighted in the co-IP plots.

The BLAST (blastp) search for siderophore transporters was conducted in GenBank¹⁶⁹ (November 2022) using the CirA (WP_000489247) *E. coli* sequence as query as previously reported.¹⁰⁶

3.2.3.16 Analysis of isoDTB data

Analysis software was set up as previously described³¹ using the MSconvert tool (version: 3.0.19172-57d620127) of the ProteoWizard software (version: 3.0.19172 64bit),¹⁷⁰ the FragPipe interface (version: 14.0),¹⁷¹⁻¹⁷² MSFragger (version: 3.1.1),¹⁷¹⁻¹⁷² Philosopher (version: 3.3.10),¹⁷³ IonQuant (version 1.4.6),¹⁷⁴ and Python (version: 3.7.3). The FASTA file (*Vibrio campbellii* ATCC BAA-1116/BB120; taxon identifier 338187, downloaded on 17.02.2020) was modified by adding the reverse sequences manually. Modifications were analysed as previously described.³¹ Amino acid selectivity was analysed and data were evaluated and filtered as previously published³¹ performing an Offset Search in

MSFragger¹⁷¹⁻¹⁷² with mass offsets set as 740.3974 or 746.4040. Run MS1 quant was enabled with Labelling based quant with masses set as 740.3974 or 746.4040. Specific amino acids were quantified and data were evaluated and filtered as previously published³¹ performing a Closed Search in MSFragger with variable modifications set to 740.3974 or 746.4040 on Tyr. Run MS1 quant was enabled with Labelling based quant with masses set as 740.3974 or 746.4040.

3.2.3.17 AlphaFold structure prediction

The sequence of CheW was retrieved from UniProt (Uniprot Code: A7MS42) and used as basis for the AlphaFold prediction on a local installation of the AlphaFold algorithm as released by Jumper *et al.*¹²⁹ Visualisation and alignment with the CheW structure from *E. coli* (PDB:2HO9, solution NMR) was done using the open source version of PyMOL 2.4.¹³¹

3.2.4 Biochemical and biotechnological methods

3.2.4.1 Construction of a plasmid coding for N-terminally His6-tagged CheW

The *cheW* gene of *V. campbellii* (VIBHAR_RS14640; old locus tag VIBHAR_03137) was cloned into vector pET28a using BamHI and XhoI as restriction sites, resulting in an extension of the sequence by codons for a N-terminal His₆ tag.

3.2.4.2 Purification of 6His-CheW

To purify CheW of *V. campbellii, E. coli* BL21(DE3) carrying the plasmid pET28a-*cheW* was cultivated in LB supplemented with kanamycin (50 mg/mL) at 37 °C. At OD₆₀₀ 0.6, 0.4 mM isopropyl β -D-1-thiogalactopyranoside (IPTG) was added to the culture to induce *cheW* expression at 30 °C for 4 h. Cells were harvested (20 min, 5,000 x g, 4 °C), resuspended, and disrupted by high-pressure cell disrupter (*Constant Systems Limited*) in ice-cold disruption buffer (20 mM Tris/HCl pH 7.5, 500 mM NaCl, 10 mM imidazole, 3 mg DNase, and 0.5 mM phenazine methosulfate [PMSF] in double-distilled water [ddH₂O]). After removal of intact cells and cells debris via centrifugation (5,000 x g, 30 min, 4 °C), membrane vesicles were removed by ultracentrifugation (45,000 x g, 60 min, 4°C), and the cell lysate was loaded onto a Ni-nitrilotriacetic acid (NTA) column (*Qiagen*). After a washing step (20 mM Tris/HCl

pH 7.5, 500 mM NaCl, 50 mM imidazole), the recombinant protein was eluted with elution buffer (20 mM Tris/HCl pH 7.5, 500 mM NaCl, 250 mM imidazole).

3.2.4.3 Microscale thermophoresis

PD-10 desalting columns packed with Sephadex G-25 resin (*GE Healthcare*) were used to exchange 6His-CheW protein buffer to MST buffer (PBS with 0.05% [v/v] Tween 20). Purified CheW was labelled using the RED-tris-NTA Labelling kit (*NanoTemper Technologies*) following the manufacturer's instructions. Ligands were dissolved in MST buffer and serially diluted. Fluorescently labelled 6His-CheW (50 nM) was mixed with ligand concentrations in a range of 7.63 nm–500 μ M. After 10 min incubation at room temperature, followed by centrifugation (10,000 x g, 10 min) to remove aggregates, the solution was soaked into Monolith NT. 115 Series Standard Treated Capillaries. MST measurements were carried out using a Monolith NT.115 instrument (*NanoTemper Technologies*) with 60% LED/ excitation power and medium MST power (40%). Three independent measurements were analysed (*NT Analysis software version 1.5.41, NanoTemper Technologies*) using the signal from Thermophoresis + T-Jump.

3.2.4.4 Strain construction

Construction of the $\Delta cheW$ marker-less in-frame deletion in *V. campbellii* ATCC-BAA 1116 was achieved using the suicide plasmid pNPTS138-R6KT-*cheW* as described previously.¹⁷⁵ Briefly, 600 bp upstream and downstream of *cheW* were amplified by PCR using *V. campbellii* ATCC-BAA 1116 genomic DNA as template. After PCR product purification, the fragments were fused by overlap PCR. The overlap PCR fragment was cloned into plasmid pNPTS138-R6KT using BamHI and EcoRI as restriction sites. The resulting plasmid pNPTS138-R6KT- $\Delta cheW$ was introduced into *V. campbellii* ATCC-BAA 1116 by conjugative mating using *E. coli* WM3064 as a donor in LB medium containing 2,6-diaminopimelic acid (DAP). Single-crossover integration mutants were selected on LB plates containing kanamycin but lacking DAP. Single colonies were grown over a day without antibiotics and plated onto LB plates containing 10% (w/v) sucrose to select for plasmid excision. Kanamycin-sensitive colonies were checked for targeted deletion by colony PCR using primers bracketing the site of the deletion.

III – Investigation of the catecholreactive proteome

This chapter is based on a manuscript in preparation.

Contributions:

All experiments were planned and performed by AW except for the following: Preparation of mouse neurons was performed by Annerose Kurz-Drexler with supervision by Dr. Daniela Vogt-Weisenhorn (Helmholtz Zentrum München); redox potentials were measured in collaboration with Lukas Niederegger with supervision by Prof. Dr. Corinna R. Hess (Technical University of Munich). Dr. Stephan M. Hacker (Technical University of Munich/Leiden University) analysed isoDTB data.

1 Covalent protein modifications by catechols

1.1 Dopamine as a post-translational protein modification

1.1.1 Dopamine reactivity

Figure III-1. Reaction trajectories of DA oxidation leading to protein modification and competing processes. DA is oxidised to **DA** quinone (**DAQ**) which undergoes intramolecular nucleophilic attack to form leukodopaminochrome (**LDAC**). **LDAC** oxidation and polymerisation yields the pigment eumelanin. **LDAC** oxidation to dopaminochrome (**DAC**) is followed by rearrangement to 5,6-dihydroxyindole (**DHI**). Nucleophilic protein side chains such as cysteine attack **DAQ** in a Michael-type addition. Protein-**DA** adducts may be further oxidised and react with additional **DA** molecules forming a protein-melanin conjugate termed neuromelanin. Adapted from Monzani *et al.*¹⁷⁶ with modifications. Note that other oxidation products such as **DA**-semiquinone radicals¹⁷⁶ or the **DHI** quinone¹⁷⁷ can also be protein-reactive (not shown for simplicity).

Under aqueous conditions at physiological pH, the catechol group is prone to rapid oxidation to a radical (following a one-electron oxidation) or to an *ortho*-quinone (two-electron oxidation).¹⁷⁶ **DA** oxidation is especially favoured at basic pH, in the presence of metal ions such as iron or copper, or under increased cellular oxidative stress.^{176,178} The oxidation products are reactive species that may undergo further chemical reactions or covalently modify cellular structures. **DA** quinone (**DAQ**), for instance, can cyclise via intramolecular nucleophilic attack by the amine side chain to form leukodopaminochrome (**LDAC**), a precursor of the natural pigment melanin.

Figure III-2. DA biosynthesis, storage, and metabolisation in dopaminergic neurons. (A) Pre-synaptic dopaminergic neurons produce **DA** in the cytosol and transfer it to designated vesicles via the VMAT2 transporter. Upon stimulation, **DA** is released into the synaptic cleft where it binds to postsynaptic **DA** receptors. To terminate the signal, **DA** is taken back up via the **DA** transporter (DAT). Astrocytes can also take up **DA** for degradation. (B) **DA** is synthesised from L-tyrosine via hydroxylation by the tyrosine hydroxylase (TH) to **LD** which is then decarboxylated to **DA** by the DOPA decarboxylase (DDC). (C) **DA** metabolisation involves deamination by a monoaminooxidase (MAO), oxidation by an aldehyde dehydrogenase (ADH), and hydroxymethylation by the catechol-*O*-methyltransferase (COMT). Adapted with modifications from Monzani *et al.*¹⁷⁶

DAQ may also be subjected to nucleophilic attack by protein side chains such as cysteine in a Michael-type addition and result in PTMs which can deactivate enzyme activity and cause

protein aggregation.¹⁷⁶ Protein-bound **DA** may be oxidised again and add to further **DA** molecules, forming a protein-melanin conjugate termed neuromelanin (Figure III-1).¹⁷⁶

Confining **DA** from the cytosol is crucial to avoid excessive modification of cellular structures¹⁷⁹ and the biosynthesis, storage, and degradation of **DA** need to be tightly regulated. **DA** is produced by dopaminergic neurons that store it in designated vesicles where pH ~5.6 is maintained.¹⁷⁸ Low pH minimises catechol oxidation¹⁷⁸ and prevents **DA** cyclisation and polymerisation by keeping the amine group protonated, thus abrogating its nucleophilicity. Upon neuronal stimulation, **DA** is released into the synaptic cleft where it binds to post-synaptic **DA** receptors and is then taken back up through the **DA** transporter (DAT) to terminate the signal (Figure III-2 A). The biosynthetic precursors are L-tyrosine and **LD**. **LD** is the standard treatment for PD as it passes the blood-brain barrier (Figure III-2 B). Inside the cell, **DA** is transferred back into the vesicles or otherwise degraded by two different pathways which both involve deamination by monoamine oxidases and methylation of the hydroxy group by the catechol-*O*-methyltransferase (COMT) (Figure III-2 C). **DA** precursors as well as metabolites are also protein-reactive.^{176,180}

1.1.2 Protein dopamination in Parkinson's disease

The accumulation of **DA** oxidation products is associated with both hereditary and sporadic forms of Parkinson's disease (PD).¹⁸¹ This neurological disorder is characterised by a loss of dopaminergic neurons and a consequent reduction of DA levels in the brain, resulting in impaired motoric and cognitive functions. It is known that covalent binding of DA or DA metabolites to particular proteins results in their functional inactivation.¹⁷⁶ Specifically, proteins with critical functions in the pathogenesis of PD have been studied in this context. Although the pathogenesis of PD is largely not understood and often idiopathic, the mutation of certain proteins is associated with hereditary forms of PD. Most commonly implicated are loss-of-function mutations in the E3 ubiquitin-protein ligase parkin (encoded by the PARK2 gene) which result in the selective degeneration of catecholaminergic neurons. A study seeking to shed light on sporadic, nonhereditary forms of PD revealed that parkin is modified by **DA** rendering it insoluble and abrogating its activity.¹⁸² Congruently, reduced solubility of parkin was observed in the brains of PD patients, thereby providing a potential mechanism of parkin inactivation in dopaminergic neurons with age.¹⁸² PD is furthermore characterised by the formation of Lewy bodies in the brain, consisting of insoluble protein aggregates (inclusion bodies). A major constituent of Lewy bodies is α-synuclein, which has been found to form toxic oligomers upon interaction with **DA** or structurally related catechols, although only a fraction of this interaction appeared to be covalent.^{176,183-184} Elevated oxidative stress is a further major contributor to PD development, and indeed, loss-of-function mutations of the protein deglycase DJ-1 (encoded by the *PARK7* gene), a redox-sensitive chaperone that regulates antioxidant gene expression, are associated with hereditary early-onset PD.^{181,185-187} Moreover, DJ-1 protects neurons from **DA** toxicity.¹⁸⁵ Modification of DJ-1 using radiolabelled **DA** has been revealed, however, the functional consequences were not elucidated.¹⁸⁸ Dopamination of cysteine residues in the active site of another PD risk factor, the glucocerebrosidase, was observed during elevated mitochondrial stress.¹⁸¹ The consequent inactivation of this lysosomal enzyme promoted lysosomal dysfunction and the accumulation of α -synuclein, two hallmarks of PD.¹⁸¹

Other proteins with critical functions not necessarily previously implicated in PD development are subject to **DA** post-translational modification. For instance, the **DA** metabolite 5,6-dihydroxyindole (**DHI**) modifies Nurr1, a transcription factor that regulates genes critical for dopaminergic neuron survival and maintenance and is critical for **DA** homeostasis.¹⁷⁷ Moreover, the glutathione-disulphide oxidoreductase glutaredoxin (Grx) is covalently modified by the **LD**-derived quinone leading to its inactivation.¹⁸⁰ Grx reduces glutathionylated proteins (Protein-SSG) to the free thiol form to restore protein function and its inhibition by **LD** was concomitant with increased apoptosis.¹⁸⁰ Similarly, a recent study found that **DA** modifies and functionally inhibits a member of the protein disulphide isomerases (PDIs), PDIA3.¹⁸⁹ PDIs are typically (but not exclusively) localised to the endoplasmic reticulum (ER), where they are involved in oxidative protein folding and are therefore critical to maintain cellular protein homeostasis. Interestingly, inhibition of PDIs can be neuroprotective, ¹⁹⁰ although this effect might be context-dependent, as higher levels of PDI are required for examples under circumstances of elevated ER stress.

Overall, post-translational modification by **DA** is not well understood. It is a complex process as it is not limited to oxidation products of **DA** alone but also involves its metabolites and precursors. Furthermore, due to the reactivity of the generated electrophiles, the chemical selectivity of protein dopamination is likely to be poor. It is therefore substantial to study these processes in a cellular context and in an unbiased manner.

1.2 Plant secondary metabolites

Figure III-3. Examples of catechol plant secondary metabolites.

Secondary metabolites are organic molecules that are not directly involved in the growth and development of an organism, but are important in ecological interactions. Plants use secondary metabolites for example as pigments, for defence, or as UV protection. The most abundant secondary metabolites in plants are phenolic compounds¹⁹¹ which include numerous catechols. Flavonoids such as quercetin (**QC**), taxifolin (**TF**), (-)-epicatechin (**EC**), and luteolin (**LU**), epigallocatechin gallate (**EG**), among many more, are contained in a large number of plant-based foods and drinks such as fruits, vegetables, herbs, nuts, wine, tea and cocoa.¹⁹² Examples of non-flavonoid catechols are caffeic acid (**KS**) from diverse sources, oleacein (**OL**) from olive oil, or capsaicin (**CP**), an *O*-methylated catechol derivative from chili peppers (Figure III-3).

The consumption of flavonoids and other plant polyphenols is generally considered beneficial for human health due to their antioxidative properties.¹⁹³ However, the biological effects go beyond antioxidation¹⁹⁴ and an extensive selection of literature reports biological effects that are mediated by specific interference with a particular enzymatic activity or metabolic pathway. Catechol phytochemicals are associated, for example, with anticancer,^{31,35,36} anti-inflammatory,¹⁹⁵⁻¹⁹⁶ antiangiogenesis,¹⁹⁷⁻¹⁹⁸ and neuroprotective effects.¹⁹⁴ Oral administration of the flavonoid isoquercetin (quercetin-3-*O*-glucopyranosid) has shown antithrombotic effects in a phase II clinical study by inhibition of extracellular PDIs.¹⁹⁹ Binding of **EG** to the 67-kDa laminin receptor,²⁰⁰ the urokinase,²⁰¹ and the inhibition of matrixmetalloproteases (MMP-2 and MMP-9)²⁰² have been proposed to mediate anticarcinogenic effects. Further cellular pathways targeted by plant catechols include fatty acid biosynthesis,²⁰³ NF- κ B signalling,²⁰⁴⁻²⁰⁵ mitosis,²⁰⁶

and a large number of kinases.²⁰⁶⁻²⁰⁷ Furthermore, some flavonoids are reported to interfere with steroid hormone signalling,²⁰⁷ e.g. by activating the oestrogen receptor α .^{195,208} These examples of reported bioactivities are not exhaustive^{207,209} and a particular catechol may target multiple pathways.^{198,210-211}

Overall, the biological effects of this compound class are not yet well understood. A host of animal studies reports the inhibition of carcinogenesis by plant polyphenols, however, the results are sometimes inconsistent.¹⁹³ Recent studies found that catechol compounds broadly inhibit the aggregation of tau and amyloid proteins and that this activity was promoted by their autooxidation.²¹²⁻²¹³ This, together with the breadth of target pathways,^{31,35,36} indicates that there is a general catechol target proteome that presumably highly depends on the biological context studied. To date, there is no clear consensus of the mode of action of plant polyphenols and related structures. The substantial number of reported target pathways indicates pleiotropic effects, therefore, an unbiased approach in live cells is needed to obtain a better understanding of catechol protein targets to functionally map catechol reactivity to different cell types, protein classes, and subcellular localisations.

1.3 Aims – investigation of the catechol-reactive proteome

The mode of action and the protein target scope of **DA** and plant catechols are not conclusively understood. Cellular effects and proteins modulated by catechols are quite diverse, indicating that the mode of action is broad and probably highly context-dependent. Therefore, the second part of this thesis aims to characterise the catechol-reactive proteome in a global, unbiased, and compound-centric manner using a broadly reactive chemical probe coupled with proteomics.

Figure III-4. Chemical proteomics strategies for the identification of catechol targets. Recently reported chemical probes based on **DA**,¹⁸⁹ n-octyl caffeate,²¹⁴ **CP**,²¹⁵ and 6-hydroxydopamine (6-OHDA)²¹⁶ (top) and competitive approach used in this work (bottom).

Recent studies have reported specific chemical probes of select catechols and related structures including **DA**,¹⁸⁹ **CP**,²¹⁵ n-octyl caffeate,²¹⁴ and 6-hdyroxydopamine (**6-OHDA**),²¹⁶ the latter being a neurotoxic oxidation product of **DA** (Figure III-4). In general, the analysis of protein

modification by **DA** using MS-based methods is challenged by the tendency of **DA**-protein adducts to precipitate,¹⁸² which interferes with their detection.¹⁷⁶ Hurben *et al.* applied *N*-propargyl **DA** (**DAyne**) to study **DA** targets in the neuronal cell line SH-SY5Y by chemical proteomics.¹⁸⁹ However, no competition by the parent compound **DA** was shown for MS-based data. Moreover, due to the presence of both an electrophilic and a nucleophilic residue, this probe likely polymerises and forms insoluble aggregates with labelled proteins to some extent, as is known for the parent compound.¹⁷⁶ Thus, target proteins might be missed in the MS-based analysis. Farzam *et al.* designed a probe based on **6-OHDA**, which was not cell permeable and could only be applied in lysate.²¹⁶ Zhang *et al.* recently applied a **CP**-probe to show addition to cysteine residues but the binding mechanism remained unresolved.²¹⁵

In this work, a broadly reactive chemical probe was designed based on **DA** with increased protein reactivity and cell permeability compared to the published **DA**-based probes.^{189,216} Unlike the previously described probe **DAyne**,¹⁸⁹ this new chemical probe is unable to polymerise. Due to its broad protein reactivity it was applied in competition with a suite of structurally diverse catechols from plants and drugs with the goal to globally characterise and functionally categorise the catechol-reactive proteome. This approach facilitated the direct comparison of multiple substances and the characterisation of the reactivity and target scope of a number of catechols.

2 Results and discussion

2.1 Probe synthesis and evaluation

2.1.1 Probe design

To maintain protein reactivity of the catechol, **DA** was derivatised at the amino group with an alkyne handle to facilitate ligation to reporter tags. The modification was introduced via an amide bond as this had yielded more stable products in the **EPI** project (see section II-2.1.2). **DA** oxidation products are prone to inter- or intramolecular nucleophilic attack by the amine leading to cyclisation, polymerisation, and, ultimately, the formation of insoluble aggregates.^{176,217} Polymerisation of **DA** oxidation products yields the skin pigment melanin. Sequential addition of **DA** can also occur on a protein, generating an insoluble protein-melanin conjugate known as neuromelanin, which physiologically forms in the brain (Scheme III-1).176,179

To facilitate MS-based detection of target proteins, it is convenient to counteract these side reactions by eliminating the nucleophilic side chain by acylation of the amine. Preventing polymerisation allows for more precise dosing of the probe improving experimental reproducibility. More importantly, sequential modification and consequent precipitation of target proteins is impeded, which would strongly interfere with MS-based identification. Lastly, attenuating side-reactions is expected to increase probe reactivity towards proteins.

Scheme III-1: Proposed protein reactivity of DA probes.

2.1.2 Chemical synthesis

Scheme III-2: Synthesis of DA probes. eq. = equivalents; DMF = N,N-dimethylformamide; $EDC \cdot HCl = 1$ -(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride; HOBt = hydroxybenzotriazole; TEA = triethylamine.

DA probes were synthesised analogously to the second-generation **EPI** probes (see section II-2.1.2). A terminal alkyne was introduced by acylation of the **DA** amino group using EDC·HCl and HOBt in the presence of TEA (Scheme III-2). **DA** probes were synthesised with a chain length of five to seven carbon atoms, yielding **DA-P1**, **DA-P2**, and **DA-P3** in yields of 27%, 58%, and 64%, respectively. A negative control probe, **DA-P4**, was obtained from coupling of 5-hexynoic acid to tyramine in 81% yield. Superior yield compared to **DA-P1**–**DA-P3** is likely due to the better stability of the starting material.

2.1.3 Evaluation of protein binding

DJ-1 is a redox-sensitive chaperone containing three reactive cysteines. It is assumed to play a role in the pathogenesis of PD¹⁸⁵⁻¹⁸⁶ and has been reported to be modified by **DA**.¹⁸⁸ To evaluate protein reactivity of the probes, purified DJ-1 was incubated exemplarily with **DA**, **DA-P2**, **DA-P3**, or **DA-P4** (100 equivalents) in PBS in the absence of any further catalyst and resulting adducts were analysed by HRMS (Figure III-5). DJ-1 was modified by two to three molecules of **DA-P2** and **DA-P3**, respectively. As expected, **DA-P4** showed no protein binding, corroborating the necessity for an intact catechol group.

However, no adducts of the parent compound **DA** could be observed. This is consistent with previous studies failing to detect **DA** modifications by MS methods.¹⁷⁶⁻¹⁷⁷ It has been suggested that this is caused by reversibility or neutral loss during ionisation.¹⁷⁷ Intriguingly, the modification by the probes was stable enough for MS analysis, suggesting that catechol modifications per se should be detectable. However, it is conceivable that a cysteine modification by **DA** is reversible by intramolecular nucleophilic attack of the amine (at the quinone) resulting in a displacement of the thiol via an addition-elimination-type mechanism. The absence of a nucleophilic residue in the probe, on the other hand, would render the modification irreversible. Another consideration is that the probes should be more reactive

towards proteins than **DA** due to its inability to cyclise. Finally, **DA** modification is known to promote protein precipitation,¹⁷⁶ which would interfere with MS detection. To sum up, superior protein binding of amide probes might stem from increased protein reactivity, irreversibility of binding, or the lack of protein precipitation – or a combination of these factors.

Figure III-5. Labelling of purified DJ-1. HRMS spectra of intact DJ-1 (5 μ M) incubated with probes (100 equivalents) in PBS.

Therefore, labelling was next performed in a competitive way to monitor **DA** binding by probe displacement. A reduction in labelling should reflect binding by **DA** even if it is transient or causes protein precipitation. DJ-1 (1 μ M) was pre-incubated with different concentrations of **DA** (12.5–200 μ M) before addition of **DA-P3** (25 μ M). The protein was precipitated by acetone to remove residual **DA** before CuAAC, as **DA** oxidation is promoted in the presence of copper.¹⁷⁶ Labelled protein was then ligated to rhodamine-azide, separated by SDS-PAGE, and fluorescence visualised (Figure III-6). Probe displacement was indeed visible with increasing **DA** concentrations. Subsequent Coomassie staining indicated protein precipitation at 100 μ M **DA**, corroborating that this likely interferes with MS-based detection to some extent. Importantly, the amide probes form protein adducts that are stable enough for MS-based detection and are thus suitable for proteomics experiments using **DA** as competitor.

Figure III-6. Competitive labelling of DJ-1. DJ-1 (1 μ M) was incubated with **DA** at different concentrations as indicated before addition of **DA-P3** (25 μ M). Labelled DJ-1 was ligated to rhodamine azide, separated by SDS-PAGE, and scanned for fluorescence (fluor.). Full protein load was visualised by Coomassie staining (Coo.).

2.2 Labelling in live cells

2.2.1 Labelling in Hek293 cells

Next, probes were assessed in live cells. Hek293 are non-dopaminergic,^{182,218} but reported to take up monoamine neurotransmitters including DA,²¹⁹ possibly via an organic cation transporter such as OCT1 (SLC22A1) which is expressed in this cell line (Human Protein Atlas version 21.1).²²⁰⁻²²¹

Live Hek293 cells were treated with **DA-P1**, **DA-P2**, **DA-P3**, or DMSO, lysed, and labelled proteins were ligated to rhodamine azide for a gel-based fluorescence scan (Figure III-7). After 1 h treatment, distinct labelling was observed with all probes starting from 15 μ M. While the overall labelling pattern was comparable, fluorescence intensity increased proportionally to the acyl chain length, which is known to influence cell permeability.²²² Even at the highest concentration (100 μ M), no protein precipitation was apparent from the Coomassie stain.

Figure III-7. Comparison of DA probes in live Hek293 cells. Cells were treated with **DA-P1**, **DA-P2**, **DA-P3**, or DMSO at different concentrations as indicated. Following lysis, labelled proteins were ligated to rhodamine azide, separated by SDS-PAGE, and imaged for fluorescence. Full protein load (15 µg per lane) was visualised with Coomassie stain (Coo.).

Protein targets were next analysed by MS using **DA-P3** (15 μ M) as it had shown the strongest labelling in the gel. Hek293 cells were treated either with **DA-P3**, DMSO, or with a 30-fold excess of **DA** followed by **DA-P3**, and labelled proteins were ligated to biotin-azide after lysis. Proteins were enriched on avidin, digested, and analysed by LC-MS/MS with LFQ.

Comparison of proteins enriched by **DA-P3** to the DMSO control revealed 236 hits $(-\log_{10}(p\text{-value}) \ge 2; 3946 \text{ identified}, Figure III-8 A and Table VI-1). The enrichment of proteins in probe-treated samples compared to samples pre-treated with$ **DA**revealed 205 hits (~5% of 3948 identified proteins, Figure III-8 B and Table VI-2). Considering only proteins that were identified in all three conditions (DMSO, only probe, competition), 149 proteins (63%) enriched by**DA-P3**compared to DMSO were also significantly outcompeted by**DA**, with most of non-significant hits still close below the cut-off (Figure III-8 B and C). These data strongly support that**DA-P3**mimics the protein reactivity of**DA/DAQ**.

Figure III-8. Competitive labelling in Hek293 cells. Live cells were treated with **DA-P3** (15 μ M), DMSO, or with a 30-fold excess of **DA** followed by **DA-P3**. Following lysis, labelled proteins were ligated to biotin-azide, enriched on avidin, digested, and peptides analysed by MS with LFQ.⁹⁶ LFQ data were filtered for proteins identified in three replicates in at least one condition and samples were compared using a two-sided two-sample *t*-test. (A) Volcano plot showing proteins enriched by **DA-P3** compared to the DMSO control. Proteins that were outcompeted by **DA** are highlighted in cyan. (B) Volcano plot showing proteins enriched by **DA-P3** compared to DMSO are highlighted in blue to visualise the overlap. See Tables VI-1–2 for details on significant protein hits. Proteins with missing values are shown with -log₁₀(*p*-value) = 0. (C) Overlap of proteins significantly enriched against DMSO (blue circle) and against a 30-fold excess of **DA** (cyan square). Only proteins that were identified in all samples of all three conditions were included. The tables show GO terms enriched among the significant proteins compared to proteins detected in total (*p*-value $\leq 10^{-5}$) in the comparison of **DA-P3** (D) to DMSO and (E) to a 30-fold excess of **DA**.

A GO term enrichment analysis using the GOrilla tool²²³⁻²²⁴ revealed that terms related to the ER were strongly enriched in both comparisons (Figure III-8 D–E). In the enrichment against the DMSO control, specifically ER stress and unfolded protein response (UPR, "response to ER stress", "ER unfolded protein response") as well as peptide disulphide oxidoreductases ("peptide disulphide oxidoreductase activity") were affected and enriched at least 3-fold compared to the total dataset.

2.2.2 Investigation of proteome-wide probe modification

Figure III-9. Analysis of modifications introduced by DA-P3 proteome-wide. Lysate from Hek293 treated *in situ* with DA-P3 (15 μ M) was ligated to heavy- or light-labelled isoDTB-azide, combined in a 1:1 ratio, digested, and peptides enriched on avidin. Modified peptides were eluted and analysed by LC-MS/MS. (A) Unbiased analysis of modifications in the proteome. Modifications detected in a ratio of ~1:1 were considered true hits. (B) Amino acid selectivity of the detected modification. PSM = peptide spectrum matches. (C) Structures of potential regioisomers of cysteine modifications corresponding to the observed mass. (D) Labelling in heat-denatured Hek293 lysate (0.5% deoxycholic acid, 0.5% NP-40/PBS) with DA-P3 (15 μ M). Δ = heat-denatured. MS data were analysed by S. M. Hacker (TUM/Leiden University).

Next, the mass of modification and amino acid selectivity of **DA-P3** were investigated using isoDTB tags³² to analyse probe-modified peptides from Hek293 cells by LC-MS/MS. In an unbiased analysis,^{16,31} added masses of 754.4120 and 760.4206 were detected which corresponds to **DA-P3** plus the heavy or the light tag, respectively, as well as an additional methyl group (Figure III-9 A). In human cells, the COMT transfers a methyl group onto the catechol moiety of catecholamine neurotransmitters, catechol oestrogens, or xenobiotics as part of a degradation pathway.²²⁵ Considering the large substrate range, methylation of **DA-P3** by COMT is plausible. Consistent with a Michael-type addition, 98% of all detected modified residues were cysteines (Figure III-9 B). The finding that an *O*-methylated catechol covalently modifies proteins was unexpected but consolidates a recent report describing protein modification by **CP**.²¹⁵ Likewise, **CP** modified cysteines. The authors could not provide a mechanistic explanation and hypothesised, that cysteine modification by **CP** was preceded by its conversion to a quinone.²¹⁵ The present results, however, strongly indicate that *O*-methylated catechols can directly modify cysteines, presumably via oxidation to the corresponding quinone

methide (Figure III-9 C). A comparable reaction is known between **CP** and glutathione.²²⁶ Of note, these data furthermore reflect the propensity of catechols to undergo cellular metabolisation.

To investigate the impact of enzymatic *O*-methylation on protein modification, labelling was performed in heat-denatured Hek293 lysate containing detergents (0.5% deoxycholic acid, 0.5% NP-40/PBS). This should inactivate any methyl-transferring enzymes by denaturation. A control experiment was performed in lysate without heat denaturation but containing equal concentrations of detergents and total protein. In-gel fluorescence analysis revealed that heat and detergents did not abrogate labelling, indicating that no enzymatic activity is required to activate DA-P3 (Figure III-9 D). Labelling in untreated lysate appeared more intense in the non-heated control and some additional bands were visible, however, this could be due to changes in protein abundance following heat treatment. Roughly 800 modifications were detected by MS, which is comparatively low (~3000 modifications in the EPI project with similar experimental conditions). Moreover, no methyl modification could be detected in the in vitro labelling of DJ-1, which was in any case performed in PBS in the absence of any potential methyl donor or corresponding enzymes. These observations indicate that O-methylated probes only constitute a subset of probe-modifications that could not entirely be detected by the MS workflow. Nevertheless, the reactivity of O-methylated catechols appears to be substantial and it is an interesting point for future research.

2.2.3 Labelling in neuronal cells

Elevated oxidative stress coupled to aberrant protein dopamination may be a driver in the pathogenesis of PD.^{176,181} DJ-1 protects neurons against **DA** toxicity,¹⁸⁵ and, consistently, loss-of-function mutations are associated with hereditary forms of the disease. Hence, *DJ-1* knock-out rodent models are frequently used in PD research^{181,185-187} To investigate dopamination in brain cells, labelling with **DA-P3** was performed in embryonic mouse neurons (cortex and hippocampus). Labelling was performed in both wild-type and *DJ-1* knock-out cells. A gelbased analysis with different concentrations of **DA-P3** displayed strong labelling at 15 μ M in both cell types, therefore, this concentration was chosen for further MS-based analyses (Figure III-10 A). In the MS data, a similar number of proteins was significantly enriched compared to the DMSO control in wild-type and knock-out (279 out of 3736 in wild-type and 185 out of 3154 in knock-out, Figure III-10 B and D, Tables VI-3–4). *DJ-1* knock-out cells should experience higher oxidative stress.¹⁸¹ In literature reports, increased **DA** oxidation in *DJ-1*

knock-out mutants was observed after several days.^{181,227} Potentially, the time-scale of chemoproteomics labelling is too short to monitor these differences. The above findings may indicate that cellular oxidative stress does not immediately impact catechol reactivity significantly even if it may promote **DA** toxicity in the long term. An analysis of GO term overrepresentation²²³⁻²²⁴ revealed significant enrichment of disulphide oxidoreductases and ER proteins in the wild type (Figure III-10 F). In the *DJ-1* knock-out cells, ER proteins and specifically proteins related to ER stress were overrepresented (Figure III-10 G). Hence, in this aspect, the results in primary neurons reproduced the findings from Hek293.

Labelling was also performed in competition with a 50- or a 100-fold excess of DA (750 µM and 1500 µM, respectively). Despite these high concentrations, competition of DA-P3 compared to **DA** plus **DA-P3** was poor even at 100-fold excess, and only one protein was enriched above the cut-off in each cell type, namely the signal recognition particle 19 kDa protein (Srp19) in wild-type, and the holocytochrome *c*-type synthase (Hccs) in knock-out cells (Figure III-10 B and D). Srp19 and Hccs were closely below the cut-off in knock-out and wildtype samples, respectively. The LFQ intensities of Hccs and Srp19 decreased in proportion to the DA concentration in both wild-type and knockout, indicating that these proteins are indeed modified by **DA** (Figure III-10 C and E). Srp19 is a subunit of the signal recognition particle (SRP) complex, which targets secretory and membrane proteins to the ER during ribosomal translation.²²⁸ This way, proteins are cotranslationally translocated into the ER through a specific transporter. The Srp19 subunit is essential for correct assembly of the eukaryotic SRP and the deregulation of SRP is associated with disease development.²²⁹ Holocytochrome c is an electron carrier in oxidative phosphorylation and thus essential for eukaryotic mitochondrial respiration. Hccs is required to covalently attach the heme cofactor to apocytochrome²³⁰⁻²³¹ and loss of the Hccs leads to severe cell damage.²³² Both proteins play a crucial role in cellular function and their potential dysregulation by **DA** binding warrants future investigation. The overall poor competition may be due to neuron-specific differences in uptake, storage, or enzymatic degradation of DA compared to Hek293 cells and requires further studies.

Figure III-10. Labelling with DA-P3 in live primary mouse neurons. (A) In-gel fluorescence detection of labelling with different concentrations of DA-P3 as indicated. (B) Volcano plot of MS-based labelling in wild-type cells showing proteins enriched by DA-P3 (15 μ M) compared to a DMSO control (left) or to a 100-fold excess of DA (right). (C) Profile plot of Srp19 LFQ intensities in the presence of 50-fold and 100-fold DA excess. (D) Volcano plot of MS-based labelling in *DJ-1* knock-out cells showing proteins enriched by DA-P3 compared to the DMSO control (left) or to a 100-fold excess of DA (right). (E) Profile plot of HCcs LFQ intensities in the presence of 50-fold and 100-fold DA excess. MS data from four biological replicates were analysed by MaxLFQ⁹⁶ and filtered for proteins identified in three replicates in at least one condition. Samples were compared using a two-sided two-sample *t*-test. Proteins were considered significant when they were enriched more than four-fold (log₂(enrichment) \geq 2) with a *p*-value of less than 0.01 (-log₁₀(*p*-value) \geq 2); proteins outcompeted by DA are

labelled in green; proteins that were above the cut-off in the enrichment experiment (against DMSO) are highlighted in blue; proteins with missing values are shown with $-\log_{10}(p-value) = 0$. (F) GO term enrichment analysis of proteins significantly enriched (against DMSO) in $DJ-1^{+/+}$ cells. G) GO term enrichment analysis of proteins significantly enriched (against DMSO) in $DJ-1^{+/-}$ cells. GO term enrichment analyses: p-value $\leq 10-3$. See Tables VI-3–4 for details on significant protein hits. Neurons were prepared by A. Kurz-Drexler (Helmholtz Zentrum).

Figure III-11. Labelling in competition with diverse catechols. (A) Structures of catechol competitors. (B) Ingel fluorescence analysis of labelling in competition with catechols. Live Hek293 cells were treated with a 10-fold excess of catechols (150 μ M) before addition of **DA-P3** (15 μ M). Full protein load (15 μ g per lane) was visualised by Coomassie staining (Coo.).

In light of the broad protein reactivity of **DA-P3**, labelling was next performed in competition with a suite of structurally diverse catechols to elucidate their protein target scope. A number of plant secondary metabolites (**QC**, **TF**, **EC**, **LU**, **EG**, **KS**) was included as well as medicinal drugs (**DB**, **CD**). Furthermore, **CP**, containing an *O*-methylated catechol group, was included

for comparison (Figure III-11 A). Hek293 cells were treated with a 10-fold probe excess (150 μ M) before addition of **DA-P3** (15 μ M). Gel-based analysis indicated that six catechols, namely **DB**, **QC**, **LU**, **EG**, **OL**, and **CP** outcompeted labelling to a large extent. In contrast, four compounds, namely **CD**, **TF**, **EC**, and **KS**, appeared much less reactive (Figure III-11 B).

Figure III-12. Labelling in competition with diverse catechols. Volcano plots show enrichment of proteins by DA-P3 (15 μ M) compared to DMSO or to a 10-fold excess of different catechols as indicated. Labelling was performed in live Hek293 cells. LFQ⁹⁶ values were filtered for proteins identified in three replicates in at least one condition. Samples were compared using a two-sided two-sample *t*-test. Proteins that were above the cut-off in the enrichment experiment (against DMSO) are highlighted in blue; proteins with missing values are shown with $-\log_{10}(p$ -value) = 0. The bar plot shows the number of proteins significantly outcompeted by each catechol (cyan) and non-significant hits (grey). The full bar represents the total number of detected proteins. The experiment was performed in three independent replicates. See Tables VI-5–10 for details on significant protein hits.

Indeed, this division of reactivity was also reflected by the MS data. LU, CP, OL, QC, DB, and EG showed strong competition with 180–286 proteins above the cut-off (with at least 3627 proteins quantified), whilst CD, TF, EC, and KS, did not outcompete binding to any protein (Figure III-12, Tables VI-5–10). It is worth highlighting that CP, carrying a 3-*O*-methylcatechol group, was among the reactive substances.

Figure III-13. Comparison of protein target scope of different catechols. Heat map shows LFQ intensities of proteins that were significantly outcompeted by all catechols categorised as reactive.

Interestingly, 17 proteins were consistently identified as significant hits in samples treated with DB, OL, QC, CP, LU, and EG, revealing an unanticipated broad overlap and indicating that some proteins may be susceptible to catechol modification largely independent of the structure (Figure III-13). Among them, four proteins were associated with the ER, namely ESYT1 (tethers the ER to the plasma membrane),²³³⁻²³⁴ SPCS2 (contributes to cotranslational translocation of nascent proteins into the ER),²³⁵ WFS1 (ER membrane glycoprotein involved in the regulation of cellular Ca²⁺ homeostasis),²³⁶ and HMGCR. HMGCR is localised in the ER membrane where it catalyses the rate-determining step in the biosynthesis of cholesterol and other isoprenoids and is therefore the main target of cholesterol-lowering drugs (statins).²³⁷⁻²³⁸ Interestingly, EG has previously been reported to act as a potent inhibitor of HMGCR activity in vitro.²³⁹ The other hits are involved in DNA replication (MCM-BP),²⁴⁰ mitosis (NCAPH),²⁴¹ microtubule assembly (MAP7D3),²⁴² regulation of nuclear receptor transcriptional activity (TACC1),²⁴³ mitotic progression (Nek9),²⁴⁴ regulation of p53 localisation and stability (USP10),²⁴⁵ second messenger production (PLCG1),²⁴⁶ modulation of Hsc70/Hsp70 chaperone activity (BAG3),²⁴⁷ Fe/S protein maturation (NUBP1),²⁴⁸ centriolar processes (CCP110),²⁴⁹⁻²⁵⁰ immune response (IRAK1),²⁵¹⁻²⁵² or have E2 enzyme activity (ATG3).²⁵³ These results indicate that catechols may affect cellular pathways very broadly.

Figure III-14. Enrichment of GO term frequencies in proteins outcompeted by different catechols. Significant proteins were compared against total detected proteins (after filtering) using the GOrilla tool;²²³⁻²²⁴ p-value $\leq 10^{-3}$. Compounds for which no GO term was significantly enriched are not shown. Red, dashed boxes mark ER-associated terms. IMP = inosine monophosphate; regul. = regulation; neg. = negative; pos. = positive; biosyn. = biosynthetic; ER = endoplasmic reticulum; UPR = unfolded protein response; intramol. = intramolecular; membr. = membrane.

GO term enrichment analyses²²³⁻²²⁴ of significantly outcompeted proteins (*p*-value $\leq 10^{-3}$) by individual catechols yielded 57 biological processes, 21 molecular functions, and 27 cellular components in total (Figure III-14). Across all categories, terms related to structural proteins (e.g., microtubule, cytoskeleton, cell adhesion) were most prominent. Moreover, as already observed for **DA**, ER-associated terms were enriched in samples treated with **DB** and **QC** in the cellular compartment category. In the **DA** competition experiments in both Hek293 cells and neurons GO terms specifically related to ER stress and PDIs were enriched. ER stress is accompanied by an accumulation of unfolded proteins and the UPR is a cellular response aiming to relieve unfolded protein load, e.g., by reducing protein biosynthesis, or else initiate apoptosis. PDIs maintain redox homeostasis and perform oxidative protein folding in the ER. Therefore, they are critical for cellular protein turnover. Interestingly, the inhibition of PDIs has been reported for catechols including **DA**, the flavonoid isoquercetin, and n-octyl caffeate.^{189,199,214} PDIs are interesting targets as they are thought to be important in cancer progression and represent potential antitumour targets.^{214,254} Moreover, cancer cells divide rapidly and have high protein turnover, resulting in constant ER stress. Therefore, they are more sensitive to PDI inhibition and perturbations of the UPR.²⁵⁴ Interestingly, the inhibition of PDIs can also result in neuroprotection.^{190,255} Altogether, future experiments should explore whether the modulation of ER-associated cellular processes accounts for some of the health-promoting biological effects attributed to catechols (see section III-1.2).

2.3 Measurement of flavonoid redox potentials

Strikingly, the flavonoids QC, TF, EC, and LU differed largely in their protein reactivity despite their structural similarity. In the flavonoid structure, two benzene rings are connected by a 3-carbon linker. In QC and LU, the C3 structure is unsaturated, generating a Michael acceptor. This feature is absent in DB, EG, CP, and DA-P3, all of which are very protein-reactive, indicating that this is most likely not the (sole) cause of reactivity. Since protein binding requires oxidation of the catechol moiety, redox potentials of the flavonoids were determined by cyclic voltammetry (CV, Figure III-15).

Figure III-15. Cyclic voltammograms of flavonoids. Plots show anodic peak potentials of the first oxidative events (second scan). Measurements were performed in a 0.1 M TBAF₆ acetonitrile solution under argon using glassy carbon as working and counter electrodes and Ag/AgNO₃ (10 mM AgNO₃) as reference electrode. For **EC**, the peak potential was determined from the first scan. $V_{Fc} = Volt$ versus ferrocene^{+/0}. Measurements were performed in collaboration with L. Niederegger (TUM).

For **QC**, the first oxidative event was measured at an anodic peak potential $E_{p,a} = 0.670 V_{Fc}$ ($V_{Fc} = V$ olt versus ferrocene^{+/0}). This was slightly lower than for the other flavonoids for which anodic peak potentials $E_{p,a} = 0.845 V_{Fc}$ (**LU**), $E_{p,a} = 0.845 V_{Fc}$ (**EC**), and 0.815 V_{Fc} (**TF**) were determined. **QC** and **LU** outcompeted probe binding to a large number of proteins (286 and 221, respectively), whereas **EC** and **TF** showed no competition. Therefore, redox potentials did not correlate with protein reactivity. Conceivably, differences in protein binding stem from a combination of several factors such as uptake, subcellular distribution, and enzymatic (de)activation.

2.4 Conclusion and outlook

The biological effects of catechol natural products are manifold including anticancer,^{197-198,200,202,256} antiangiogenic,¹⁹⁷ neuroprotective,^{194,257-259} antithrombotic,¹⁹⁹ and anti-inflammatory.²¹⁵ Similarly, the proposed target proteins and pathways are diverse,^{180,194,198-202,210-211,215,257-258,260} pointing to a broad mode of action and cellular target scope. In fact, some biological effects depend mainly on the presence of a catechol group.²¹²⁻²¹³ Assuming broad protein reactivity of the catechol group, general protein reactivity of a suite of catechols was studied in a compound-centric, unbiased approach using competitive chemical proteomics. This approach enabled the direct comparison of multiple substances present in nutrition and drugs.

In this project, a **DA**-based probe was synthesised which allowed the detection of protein labelling by MS methods *in vitro* and in live cells. Competition of **DA-P3** labelling by **DA** could be proven on purified DJ-1 and in Hek293 cells. A major limitation of this approach is that competitive labelling with **DA** appeared not to be applicable to brain-derived cells. Nevertheless, it was still possible to identify targets of **DA-P3** in neurons. Moreover, Hccs and Srp19, which were outcompeted by **DA** in neurons, are intriguing potential targets and the physiological consequences of **DA** modification should be explored in future studies.

Analysis of the mass of modification introduced by **DA-P3** revealed cysteine modification by a presumably methylated probe metabolite. This type of modification has not been reported before and provides a rationale for the protein reactivity of 3-*O*-methylated catechols such as **CP**.²¹⁵ It furthermore implies that methylated **DA** metabolites may also post-translationally modify proteins.

In situ competitive proteomics experiments revealed broad protein labelling by some catechols, namely **DB**, **QC**, **LU**, **EG**, **OL**, and **CP**. Interestingly, the overlap of protein hits was substantial with 17 proteins that were consistently outcompeted. An overrepresentation of proteins linked to the ER was observed among targets of **DA-P3**, **DA**, **QC**, and **DB**. **DA-P3** and **DA** in particular targeted proteins specifically related to ER stress, the UPR, and some PDIs. This finding is intriguing as the interference with ER stress mechanisms could provide an explanation for some of the biological effects attributed to catechols such as their anti-cancer activity. In the literature, protein homeostasis is discussed as an intriguing oncology target. Strategies include the inhibition of molecular chaperones such as Hsp90,²⁶¹ the proteasome,²⁶² and PDIs.²⁶³⁻²⁶⁵ Beyond cancer, PDIs have been implicated in the pathogenesis of neurological

and infectious diseases, amongst others.²⁶⁶⁻²⁶⁷ Interestingly, the cellular effects resulting from PDI inhibition appear to be highly context-dependent. In experimental models of different neurological diseases, small molecule PDI inhibitors had neuroprotective effects.^{190,255,268} It was observed that the mode of action involved the inhibition of apoptosis in response to certain stress stimuli and that these effects were independent of ER stress pathways.²⁶⁸ In the context of cancer, on the other hand, PDI inhibition disrupts protein homeostasis, causes ER stress, and triggers cell death.^{214,263} Intriguingly, targeting PDIs appears to have anti-cancer activity with minimal toxicity towards healthy cells.^{214,264} Future experiments should therefore aim to better understand the role of catechol natural products in ER physiology and elucidate whether catechol natural products themselves induce ER stress or whether they disrupt the ER stress response. Furthermore, functional inhibition of PDIs by catechols should be investigated.

3 Experimental procedures

3.1 Chemical methods

3.1.1 Chemical Synthesis

3.1.1.1 General remarks

See section II-3.1.1.

3.1.1.2 Amide coupling general protocol²⁶⁹

To a solution of carboxylic acid (1.0 eq.) in DMF (24 mL), EDC·HCl (1.0 eq.) was added followed by HOBt (1.0 eq.). The solution was stirred at 0 °C for 30 min and then at room temperature for 1.5 h, and anhydrous TEA (3.0 eq.) was added dropwise. The amine (1.0 eq.) was added and the mixture was stirred at room temperature overnight protected from light. EtOAc (100 mL) was added and the mixture was washed three times with water (30 mL). The combined aqueous phases were reextracted with EtOAc (20 mL), washed with brine (50 mL), and dried over Na₂SO₄. Solvents were removed under reduced pressure and the crude mixture was purified by SiO₂ chromatography (0.5% AcOH, 1–3% MeOH/CH₂Cl₂).

3.1.1.3 Synthesis of *N*-(3,4-dihydroxyphenethyl)pent-4-ynamide (**DA-P1**)

DA-P1 was obtained from dopamine HCl (569 mg, 3.00 mmol, 1.0 eq.) and 4-pentynoic acid (**AA-1**, 294 mg, 3.00 mmol, 1.0 eq.) as a grey solid (186 mg, 0.798 mmol, 27%).

TLC: $R_f = 0.26$ (0.5% AcOH, 3% MeOH/CH₂Cl₂) [UV/KMnO₄]. ¹H-NMR: (500 MHz, DMSO-d₆) δ [ppm]: 8.83–8.53 (m, 2H), 7.90 (t, J = 5.3 Hz, 1H), 6.65–6.60 (m, 1H), 6.58–6.54 (m, 1H), 6.45–6.40 (m, 1H), 3.20–3.13 (m, 2H), 2.75 (t, J = 2.6 Hz, 1H), 2.53–2.47 (m, 2H + DMSO), 2.36–2.30 (m, 2H), 2.27–2.21 (m, 2H). ¹³C-NMR: (75 MHz, DMSO-d₆) δ [ppm]: 170.05, 145.04, 143.52, 130.20, 119.21, 115.98, 115.49, 83.81, 71.26, 40.63, 34.70, 34.24, 14.26. **HRMS:** (ESI) C₁₃H₁₆NO₃⁺ [M+H]⁺ calculated: 234.1125; found: 234.1124.

3.1.1.4 Synthesis of N-(3,4-dihydroxyphenethyl)hex-5-ynamide (DA-P2)

DA-P2 was obtained from dopamine·HCl (284 mg,1.50 mmol, 1.0 eq.) and 5-hexynoic acid (**AA-2**, 168 mg, 166 μ L, 1.50 mmol, 1.0 eq.) as a brown oil (217 mg, 0.876 mmol, 58%).

TLC: $R_f = 0.34$ (0.5% AcOH, 3% MeOH/CH₂Cl₂) [UV/KMnO₄]. ¹H-NMR: (400 MHz, DMSO-d₆) δ [ppm]: 8.65 (s, 2H), 7.81 (t, J = 5.6 Hz, 1H), 6.62–6.56 (m, 1H), 6.56–6.51 (m, 1H), 6.43–6.35 (m, 1H), 3.13 (dt, J = 8.1, 6.0 Hz, 2H), 2.73 (t, J = 2.7 Hz, 1H), 2.47 (t, J = 7.5 Hz, 2H), 2.10 (td, J = 7.2, 1.9 Hz, 4H), 1.62 (p, J = 7.3 Hz, 2H). ¹³C-NMR: (101 MHz, DMSO-d₆) δ [ppm]: 171.25, 145.03, 143.48, 130.27, 119.19, 115.94, 115.45, 84.14, 71.42, 40.53, 34.69, 34.20, 24.29, 17.41. HRMS: (ESI) C₁₄H₁₈NO₃⁺ [M+H]⁺ calculated: 248.1281; found: 248.1281.

3.1.1.5 Synthesis of *N*-(3,4-dihydroxyphenethyl)hept-6-ynamide (**DA-P3**)

DA-P3 was obtained from dopamine HCl (398 mg, 2.10 mmol, 1.0 eq.) and 6-heptynoic acid (**AA-3**, 265 mg, 280 µL, 2.10 mmol, 1.0 eq.) as a brown oil (352 mg, 1.35 mmol, 64%). **TLC:** $R_{\rm f} = 0.46$ (5% MeOH/CH₂Cl₂) [UV/KMnO₄]. ¹**H-NMR:** (400 MHz, DMSO-d₆) δ [ppm]: 8.67 (s, 2H), 7.79 (t, J = 5.5 Hz, 1H), 6.64–6.58 (m, 1H), 6.58–6.53 (m, 1H), 6.44–6.37 (m, 1H), 3.20–3.10 (m, 2H), 2.74 (t, J = 2.6 Hz, 1H), 2.53–2.46 (m, 2H + DMSO-d₆), 2.13 (td, J = 7.0, 2.6 Hz, 2H), 2.03 (t, J = 7.4 Hz, 2H), 1.61–1.49 (m, 2H), 1.44–1.32 (m, 2H). ¹³**C-NMR:** (101 MHz, DMSO-d₆) δ [ppm]: 171.64, 145.02, 143.47, 130.25, 119.17, 115.93, 115.43, 84.36, 71.20, 48.59, 40.47, 34.78/34.73 (rotamers), 27.50, 24.39, 17.43. **HRMS:** (ESI) C₁₅H₂₀NO₃⁺ [M+H]⁺ calculated: 262.1438; found: 262.1438.

3.1.1.6 Synthesis of N-(4-hydroxyphenethyl)hex-5-ynamide (DA-P4)

DA-P4 was obtained from 4-(2-aminoethyl)phenol (412 mg, 3.00 mmol, 1.0 eq.) and 5-hexanoic acid (**AA-2**, 336 mg, 331 µL, 3.00 mmol, 1.0 eq.) as an off-white amorphous solid (565 mg, 2.44 mmol, 81%). **TLC:** $R_f = 0.42$ (3% MeOH, 0.5% AcOH/CH₂Cl₂) [UV/KMnO₄]. ¹**H-NMR:** (400 MHz, DMSO-d₆) δ [ppm]: 9.20 (s, 1H), 7.86 (t, J = 5.4 Hz, 1H), 6.97 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 8.4 Hz, 2H), 3.18 (q, J = 6.5 Hz, 2H), 2.77 (t, J = 2.6 Hz, 1H), 2.57 (t, J = 7.4 Hz, 2H), 2.17–2.08 (m, 4H), 1.64 (p, J = 7.2 Hz, 2H). ¹³**C-NMR:** (101 MHz, DMSO-d₆) δ [ppm]: 171.25, 155.61, 129.52, 129.43, 115.06, 84.12, 71.40, 40.48, 34.39, 34.17, 24.28, 17.38. **HRMS:** (ESI) C₁₄H₁₈NO₂⁺ [M+H]⁺ calculated: 232.1332; found: 232.1332.

3.1.2 Cyclic voltammetry

Measurements were performed with a BioLogic SP200 potentiostat using 3 mm diameter glassy carbon disk electrodes as working and counter electrodes. Ag/AgNO₃ (10 mM) was used as a reference electrode. CV measurements were carried out in a five neck glass cell under argon atmosphere with 0.1 M TBAPF₆ in acetonitrile as electrolyte. The concentration of the flavonoids was 1 mM and a scan rate of 100 mV/s was applied. Potentials are reported with reference to an internal standard of ferrocenium/ferrocene (Fc^{+/0}, indicated by V_{Fc}). Unless otherwise stated, peak potentials were determined from the second scan.

3.2 Biochemical Methods

3.2.1 General information

3.2.1.1 Chemical compounds

i abie ili il chemical compounds abea m emp staat	Table III-1:	Chemical	compounds	used in	this	study.
---	--------------	----------	-----------	---------	------	--------

code	name	CAS number	supplier
DA	dopamine·HCl	62-31-7	Alfa Aesar
DB	dobutamine · HCl	49745-95-1	TCI Chemicals
CD	carbidopa monohydrate	38821-49-7	Acros Organics
СР	capsaicin	404-86-4	Sigma Aldrich
EC	(-)-epicatechin	490-46-0	TCI Chemicals
EG	epigallocatechin gallate	989-51-5	Sigma Aldrich
KS	caffeic acid	331-39-5	Sigma Aldrich
LU	luteolin	491-70-3	TCI Chemicals
TF	(+)-taxifolin	480-18-2	TCI Chemicals
OL	oleacein	149183-75-5	Phytolab
QC	quercetin	849061-97-8	Cayman Chemical

Catechol compounds were stored as indicated by the manufacturer and chemical probes as 100 mM DMSO stocks at -20 °C.

3.2.1.2 Cell culture

All cells were grown in a humidified incubator at 37 °C in a 5% CO_2 atmosphere. For subculturing of human cell lines, cells were washed with PBS, detached with accutase® solution (*Sigma*), and split in a ratio of 1:9.

3.2.1.3 Preparation of primary mouse neurons

Primary neurons were prepared from cortex of E13.5–E14 embryos derived from matings of homozygous wild-type mice and homozygous DJ-1 deficient mice,²⁷⁰ respectively.

The day before isolating primary neurons, cell culture plates were coated with poly-D-lysinhydrobromide (50 μ g/mL, *Sigma*). Plates were washed once with PBS and coated additionally with laminin (1 μ g/mL, *Sigma*) 3 h before seeding primary neurons.

The pregnant mother was killed by cervical fracture, the uteri were removed and transferred to cold dissection medium (HBSS [Gibco] + 1% [v/v] penicillin-streptomycin [10.000 U/mL, Gibco] + 0.7% [v/v] HEPES [1 M, Thermo Fisher Scientific], and the embryos were dissected out. The heads were cut off the embryos and the brains were isolated in fresh petri dishes filled with cold dissection buffer. Next, the two hemispheres were separated and the meninges were carefully pulled off. After removing the olfactory bulbs and the hippocampus, the cortex halves were transferred to a 15 mL falcon tube filled with 10 mL dissection medium, constantly chilled on ice. Cortices of 2 embryos were collected in one falcon. Subsequently, the dissection medium was removed under sterile conditions and the tissue was washed with 1 mL trypsin solution (100 mL 0.25% [w/v] trypsin [Thermo Fisher Scientific] + 0.8 mL HEPES [1 M, Thermo Fisher Scientific]). Next, 1.5 mL fresh trypsin solution was added and the tube was incubated for 20 min at 37 °C and shaken every 5 min. Next, trypsin was removed and cells were washed twice with 10 mL serum medium (DMEM + 5% [v/v] FCS). Cells were left in 1.5 mL serum medium and triturated with a fire-polished Pasteur pipette until the suspension was homogenous. After centrifugation ($80 \ge g$, 5 min), the cell pellet was resuspended in 5 mL neuron growth medium (NeurobasalTM Plus Medium [Thermo Fisher Scientific] supplemented with 2% [v/v] B-27[™] Plus Supplement [*Thermo Fisher Scientific*], 0.25% [v/v] Glutamax [Thermo Fisher Scientific], and 100 U/mL penicillin/streptomycin [Thermo Fisher Scientific]), cells were counted and 1.5×10^6 cells were plated in the previously coated 60 mm plates. Per biological replicate, cells from two embryos were combined and seeded out on three plates to obtain different conditions (DMSO, only probe, competitor plus probe). Medium was partially exchanged (50:50) on day 2-3 and again after 7 days. Neurons were cultured for 14 days at 37 °C in a 5% CO₂ atmosphere before labelling.

3.2.2 Intact protein mass spectrometry

DJ-1 was kindly provided by Dr. Jonas Drechsel (purified as described previously²⁷¹). Chemical probes (500 μ M) were added to DJ-1 (5 μ M) in PBS from DMSO stocks and samples were incubated at room temperature with mild shaking and protection from light for 15 h. HRMS analysis of 1 μ L protein solution was carried out on a LTQ FT UltraTM mass spectrometer (*Thermo Scientific*) equipped with an electro spray ionisation (ESI) source operated in positive

ionisation mode coupled to a Dionex Ultimate 3000 HPLC system (*Thermo Scientific*). Samples were loaded on a desalting column, eluted with an acetonitrile gradient, and transferred to the MS unit. Protein spectra were deconvoluted using the Thermo Xcalibur software (*Thermo Scientific*).

3.2.3 Proteomics methods

3.2.3.1 Preparative scale labelling in Hek293 cells

Hek293 cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM high glucose, Sigma) supplemented with 2 mM L-glutamine and 10% (v/v) heat-inactivated FCS. For labelling, 10×10^6 cells were seeded to achieve 60–80% confluence on the following day. Competitors were added to 450–1500 μ M (**DA**) or 150 μ M (all other catechols) and 0.5% (v/v) DMSO in 10 mL FCS-free growth medium, swirled gently, and incubated 1 h, 37 °C, 5% CO₂. The probe was added to 15 μ M and 0.1% (v/v) DMSO, dishes were swirled, and the cells were incubated 1 h, 37 °C, 5% CO₂. After cell treatment, the medium was aspirated and cells were scraped off in 10 mL PBS (on ice), transferred to tubes, washed 1-2 x with 1 mL cold PBS (500 x g, 5 min, 4 °C), flash-frozen, and stored at -80 °C until lysis. Frozen cell pellets were resuspended in 1 mL lysis buffer (1% [v/v] NP-40, 1% [w/v] deoxycholic acid in PBS) + EDTA-free protease inhibitor cocktail (Roche) and SDS was added to 0.2% (w/v) (20 µL 10% [w/v] SDS/PBS). Cells were sonicated (2 x 15 s, 60% intensity) to shear nucleic acids, insoluble debris was pelleted (21,000 x g, 15 min, 4 °C), and the supernatant transferred to a new tube. For competition experiments (except **DA**), proteins were precipitated in acetone (\geq 4 x volumes) at -20 °C, washed twice with ice-cold methanol, air-dried, and resuspended in 0.8% (w/v) SDS/PBS as some catechols interfered with the protein concentration determination. Protein concentration was adjusted to 450 μ g in 1 mL lysis buffer + 0.2% (w/v) SDS or to 500 μ g in 500 µL 0.8% (w/v) SDS/PBS.

3.2.3.2 Analytical scale labelling in Hek293

Analytical gel-based labelling was performed as MS-based labelling seeding $0.5-0.75 \times 10^6$ cells in 3 mL medium in 6-well dishes. Competitors and probes were added from 200-fold concentrated stocks as indicated and labelling was performed in 1 mL medium. Cells were harvested in 1 mL PBS and lysed in 100 µL lysis buffer + protease inhibitor.

3.2.3.3 Preparative and analytical scale labelling in primary mouse neurons

The growth medium was removed and replaced with 2.5 mL fresh medium containing no antibiotics. **DA** was added to 1500 μ M and 0.5% (v/v) DMSO and incubated for 1 h at 37 °C, 5% CO₂. The probe **DA-P3** was added to 15 μ M and 0.1% (v/v) DMSO and incubated for 1 h at 37 °C, 5% CO₂. The medium was aspirated, cells were washed with 4 mL PBS and harvested by scraping in 300 μ L lysis buffer (1% [v/v] NP-40, 1% [w/v] deoxycholic acid) + protease inhibitor. The cell suspension was transferred to LoBind tubes, SDS was added to 0.2% (w/v) (6 μ L 10% [w/v] SDS/PBS) and frozen at -80 °C until lysis. Protein concentration was adjusted to 200 μ g in 326 μ L lysis buffer + 1% (w/v) SDS.

3.2.3.4 Labelling in heat-denatured lysate

Hek293 cells were grown to 95% confluence in a 15 cm dish, the medium was replaced by cold PBS (10 mL), and cells were scraped off the dish (on ice). Next, cells were pelleted (500 x *g*, 5 min, 4 °C), transferred into a microcentrifuge tube, and washed 2 x with PBS (1 mL). The cell pellet was shock-frozen and stored at -80 °C. Cells were resuspended in cold PBS + protease inhibitor (1 mL) and lysed by sonication (6 x 10 s, 75% intensity, Sonopuls HD 2070 ultrasonic rod, *Bandelin electronic GmbH*) on ice with cooling breaks. The lysate was clarified (20,000 x *g*, 45 min, 4 °C), the protein concentration adjusted to 0.675 mg/mL, and detergents added to 0.5% NP-40 (v/v) and 0.5% (w/v) deoxycholic acid. Lysate (500 µL) was heat-inactivated at 95 °C for 10 min with mild shaking. **DA-P3** was added to 100 µL lysate to 15 µM (1% [v/v] DMSO) and incubated 1 h, r.t., 400 rpm.

3.2.3.5 CuAAC

CuAAC was performed as in the **EPI** project (see section II-3.2.3.4 and II-3.2.3.5) except with biotin-PEG₃-azide (10 mM stock in DMSO, *Jena Bioscience*) for preparative scale. For analytical scale, samples were boiled (90 °C, 3 min, 400 rpm) and centrifuged (16,249 x g, 3 min) before SDS-PAGE.

3.2.3.6 SDS-PAGE

See section II-3.2.3.8.

3.2.3.7 Enrichment, alkylation, and digest for target identification

Protein LoBind microcentrifuge tubes and MS-grade reagents were used throughout MS sample preparation. Protein samples were centrifuged to remove particulates, added to 50 µL avidin slurry (Sigma) (pre-washed 3 x with 0.4% (w/v) SDS/PBS [400 x g, 3 min]), and incubated 1 h at room temperature under constant rotation. Samples were centrifuged, the supernatant discarded, and the beads were washed 3 x with 1 mL 0.4% (w/v) SDS/PBS, 2 x with 1 mL 6 M urea/ddH2O, and 3 x with 1 mL PBS. Beads were resuspended in 200 µL MS denaturation buffer (7 M urea, 2 M thiourea, 20 mM HEPES, pH 7.5) and reduced with 5 mM TCEP for 1 h at 37 °C with shaking. Next, thiols were alkylated with 10 mM iodoacetamide for 30 min at 25 °C with shaking and alkylation was quenched with 10 mM DTT for 30 min at 25 °C with shaking. Proteins were digested with 0.5 µg LvsC (from 0.5 µg/µL, MS-grade, Wako) for 2 h at 25 °C with shaking. Samples were diluted by addition of 800 µL 50 mM TEAB and proteins were digested with 0.75 µg trypsin (from 0.5 µg/µL in 50 mM acetic acid, Promega) for 16 h at 37 °C with vigorous shaking. The digest was stopped by addition of formic acid to 3% (v/v) (pH 2–3), the beads pelleted (16,249 x g, 3 min, r.t.), and the supernatant desalted. For desalting, 50 mg SepPak C18 columns (Waters) were washed with 1 x 1 mL acetonitrile and 1 x 1 mL elution buffer (80% [v/v] acetonitrile, 0.5% [v/v] formic acid/water) and then equilibrated with 3 x 1 mL 0.1% (v/v) TFA. Samples were loaded onto the columns and desalted with 3 x 1 mL 0.1% (v/v) TFA and 1 x 0.5 mL 0.5% (v/v) formic acid. Peptides were eluted into 2 mL LoBind tubes with 3 x 250 µL elution buffer and dried in a speed vac. Dried peptides were stored at -80 °C until LC-MS/MS analysis.

3.2.3.8 Chemoproteomics experiments with isoDTB tags

Hek293 cells were treated with **DA-P3** (15 μ M) *in situ* and lysed as for target identification experiments. Protein concentration was adjusted to 1 μ g/ μ L in 1400 μ L lysis buffer (1% [v/v] NP-40, 1% [w/v] deoxycholic acid/PBS) + 0.8% (w/v) SDS. CuAAC to isoDTB tags³² and MS sample preparation was carried out as in the **EPI** project (see section II-3.2.3.10).

3.2.3.9 Peptide reconstitution (all proteomics experiments)

See section II-3.2.3.13.

3.2.3.10 LC-MS/MS measurements

Samples were measured on a Q Exactive Plus (see section II-3.2.3.14).

3.2.3.11 Analysis of MS data from target identification experiments

MS data were analysed using MaxOuant¹⁶⁶⁻¹⁶⁷ version 1.6.5.0 and peptides were searched against the UniProt database for Homo sapiens (taxon identifier 9606, downloaded on 29.01.2019) where Titin and all proteins containing U, O, or X were removed or the UniProt database for Mus musculus (taxon identifier 10090, downloaded on 24.06.2022). Cysteine carbamidomethylation was set as fixed modification and methionine oxidation and N-terminal acetylation as variable modifications. Trypsin/P was set as proteolytic enzyme with a maximum of two allowed missed cleavages. LFQ mode⁹⁶ was performed with a minimum ratio count of 1. Protein quantification was performed with the minimal ratio count set to 1 and the match between runs (0.7 min match and 20 min alignment time window) and second peptide identification options were activated. All other parameters were used as pre-set in the software. LFQ intensities were further processed with Perseus¹⁶⁸ version 1.6.1.1. Peptides of the categories "only identified by site", "reverse", or "potential contaminant" were removed and LFQ intensities were log₂-transformed. Data were filtered to retain only protein groups identified in at least 3/3 valid values in human cell experiments and 3/4 valid values (mouse cells) in at least one group. A two-sided two-sample Student's t-test with permutation-based FDR (FDR 0.05) was performed and the significance cut-off was set at p-value = 0.01 $(-\log_{10}(p-value) = 2)$ and an enrichment factor of $4 (\log_2(x) = 2)$.

3.2.3.12 Analysis of isoDTB data

IsoDTB data were analysed as in the **EPI** project (see section II-3.2.3.16). In the FASTA file (*Homo sapiens*, taxon identifier 9606, downloaded on 29.01.2019 Titin and all proteins containing U, O, or X were removed and the reverse sequences were added manually. Mass offsets were set as 754.4120 or 760.4206; Labelling based quant masses were set as 754.4120 or 760.4206; Closed Search in MSFragger was performed with variable modifications set as 754.4120 or 760.4206 on Cys; Labelling based quant masses were set as 754.4120 or 760.4206.

3.2.3.13 GO term enrichment analyses

GO term enrichment analysis was performed using the GOrilla tool.²²³⁻²²⁴ Gene names of proteins enriched above the cut offs $(-\log_{10}(p\text{-value}) \ge 2; \log_2(\text{enrichment}) \ge 2)$ were used as target set (unranked) and compared against all proteins detected (after filtering). The *p*-value threshold was set to 10^{-3} – 10^{-5} as indicated.

3.2.3.14 Heat maps

Heat maps were generated with Origin 2021 (*OriginLab*) with hierarchical clustering using group average as cluster method and Euclidian distance.

IV References

- 1. Fonović, M.; Bogyo, M., Activity-based probes as a tool for functional proteomic analysis of proteases. *Expert Rev Proteomics* **2008**, *5* (5), 721-730.
- 2. Niphakis, M. J.; Cravatt, B. F., Enzyme inhibitor discovery by activity-based protein profiling. *Annu Rev Biochem* **2014**, *83*, 341-377.
- 3. Cravatt, B. F.; Wright, A. T.; Kozarich, J. W., Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. *Annu Rev Biochem* **2008**, *77*, 383-414.
- 4. Wright, M. H.; Sieber, S. A., Chemical proteomics approaches for identifying the cellular targets of natural products. *Nat Prod Rep* **2016**, *33* (5), 681-708.
- 5. Conway, L. P.; Li, W.; Parker, C. G., Chemoproteomic-enabled phenotypic screening. *Cell Chem Biol* **2021**, *28* (3), 371-393.
- 6. Fux, A.; Pfanzelt, M.; Kirsch, V. C.; Hoegl, A.; Sieber, S. A., Customizing functionalized cofactor mimics to study the human pyridoxal 5'-phosphate-binding proteome. *Cell Chem Biol* **2019**, *26* (10), 1461-1468.
- 7. Hoegl, A.; Nodwell, M. B.; Kirsch, V. C.; Bach, N. C.; Pfanzelt, M.; Stahl, M.; Schneider, S.; Sieber, S. A., Mining the cellular inventory of pyridoxal phosphatedependent enzymes with functionalized cofactor mimics. *Nat Chem* **2018**, *10* (12), 1234-1245.
- 8. Pfanzelt, M.; Maher, T. E.; Absmeier, R. M.; Schwarz, M.; Sieber, S. A., Tailored pyridoxal probes unravel novel cofactor-dependent targets and antibiotic hits in critical bacterial pathogens. *Angew Chem Int Ed* **2022**, *61* (24), e202117724.
- 9. Wilkinson, I. V. L.; Pfanzelt, M.; Sieber, S. A., Functionalised cofactor mimics for interactome discovery and beyond. *Angew Chem Int Ed* **2022**, *61* (29), e202201136.
- 10. Thinon, E.; Serwa, R. A.; Broncel, M.; Brannigan, J. A.; Brassat, U.; Wright, M. H.; Heal, W. P.; Wilkinson, A. J.; Mann, D. J.; Tate, E. W., Global profiling of co- and post-translationally *N*-myristoylated proteomes in human cells. *Nat Commun* **2014**, *5* (1), 4919.
- 11. Wright, M. H.; Fetzer, C.; Sieber, S. A., Chemical Probes Unravel an Antimicrobial Defense Response Triggered by Binding of the Human Opioid Dynorphin to a Bacterial Sensor Kinase. *Journal of the American Chemical Society* **2017**, *139* (17), 6152-6159.
- 12. Kielkowski, P.; Buchsbaum, I. Y.; Becker, T.; Bach, K.; Cappello, S.; Sieber, S. A., A pronucleotide probe for live-cell Imaging of protein AMPylation. *ChemBioChem* **2020**, *21* (9), 1285-1287.
- 13. Kielkowski, P.; Buchsbaum, I. Y.; Kirsch, V. C.; Bach, N. C.; Drukker, M.; Cappello, S.; Sieber, S. A., FICD activity and AMPylation remodelling modulate human neurogenesis. *Nat Commun* **2020**, *11* (1), 517.
- 14. Rauh, T.; Brameyer, S.; Kielkowski, P.; Jung, K.; Sieber, S. A., MS-based *in situ* proteomics reveals AMPylation of host proteins during bacterial infection. *ACS Infect Dis* **2020**, *6* (12), 3277-3289.

- 15. Allihn, P. W. A.; Hackl, M. W.; Ludwig, C.; Hacker, S. M.; Sieber, S. A., A tailored phosphoaspartate probe unravels CprR as a response regulator in *Pseudomonas aeruginosa* interkingdom signaling. *Chem Sci* **2021**, *12* (13), 4763-4770.
- Weigert Muñoz, A.; Hoyer, E.; Schumacher, K.; Grognot, M.; Taute, K. M.; Hacker, S. M.; Sieber, S. A.; Jung, K., Eukaryotic catecholamine hormones influence the chemotactic control of *Vibrio campbellii* by binding to the coupling protein CheW. *Proc Natl Acad Sci USA* 2022, *119* (10), e2118227119.
- Wright, M. H.; Tao, Y.; Drechsel, J.; Krysiak, J.; Chamni, S.; Weigert-Munoz, A.; Harvey, N. L.; Romo, D.; Sieber, S. A., Quantitative chemoproteomic profiling reveals multiple target interactions of spongiolactone derivatives in leukemia cells. *ChemComm* 2017, 53 (95), 12818-12821.
- Zhao, W.; Cross, A. R.; Crowe-McAuliffe, C.; Weigert-Munoz, A.; Csatary, E. E.; Solinski, A. E.; Krysiak, J.; Goldberg, J. B.; Wilson, D. N.; Medina, E.; Wuest, W. M.; Sieber, S. A., The natural product elegaphenone potentiates antibiotic effects against *Pseudomonas aeruginosa. Angew Chem Int Ed* 2019, 58 (25), 8581-8584.
- 19. Lakemeyer, M.; Zhao, W.; Mandl, F. A.; Hammann, P.; Sieber, S. A., Thinking outside the box–novel antibacterials to tackle the resistance crisis. *Angew Chem Int Ed* **2018**, *57* (44), 14440-14475.
- 20. Gleissner, C. M. L.; Pyka, C. L.; Heydenreuter, W.; Gronauer, T. F.; Atzberger, C.; Korotkov, V. S.; Cheng, W.; Hacker, S. M.; Vollmar, A. M.; Braig, S.; Sieber, S. A., Neocarzilin A is a potent inhibitor of cancer cell motility targeting VAT-1 controlled pathways. *ACS Cent Sci* **2019**, *5* (7), 1170-1178.
- Le, P.; Kunold, E.; Macsics, R.; Rox, K.; Jennings, M. C.; Ugur, I.; Reinecke, M.; Chaves-Moreno, D.; Hackl, M. W.; Fetzer, C.; Mandl, F. A. M.; Lehmann, J.; Korotkov, V. S.; Hacker, S. M.; Kuster, B.; Antes, I.; Pieper, D. H.; Rohde, M.; Wuest, W. M.; Medina, E.; Sieber, S. A., Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant *Staphylococcus aureus*, persisters and biofilms. *Nat Chem* 2020, *12* (2), 145-158.
- 22. Murale, D. P.; Hong, S. C.; Haque, M. M.; Lee, J.-S., Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein-protein interactions (PPIs). *Proteome Sci* **2017**, *15* (1), 14.
- 23. Kleiner, P.; Heydenreuter, W.; Stahl, M.; Korotkov, V. S.; Sieber, S. A., A whole proteome inventory of background photocrosslinker binding. *Angew Chem Int Ed* **2017**, *56* (5), 1396-1401.
- 24. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click chemistry: diverse chemical function from a few good reactions. *Angew Chem Int Ed* **2001**, *40* (11), 2004-2021.
- 25. Huisgen, R.; Szeimies, G.; Möbius, L., 1,.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen. *Chem Ber* **1967**, *100* (8), 2494-2507.
- 26. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. *Angew Chem Int Ed* **2002**, *41* (14), 2596-2599.

- 27. Tornøe, C. W.; Christensen, C.; Meldal, M., Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. *J Org Chem* **2002**, *67* (9), 3057-3064.
- 28. Sletten, E. M.; Bertozzi, C. R., From mechanism to mouse: a tale of two bioorthogonal reactions. *Acc Chem Res* **2011**, *44* (9), 666-676.
- 29. Li, Z.; Hao, P.; Li, L.; Tan, C. Y.; Cheng, X.; Chen, G. Y.; Sze, S. K.; Shen, H. M.; Yao, S. Q., Design and synthesis of minimalist terminal alkyne-containing diazirine photocrosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. *Angew Chem Int Ed* **2013**, *52* (33), 8551-8556.
- 30. Dubinsky, L.; Krom, B. P.; Meijler, M. M., Diazirine based photoaffinity labeling. *Bioorg Med Chem* **2012**, *20* (2), 554-570.
- Zanon, P. R. A.; Yu, F.; Musacchio, P.; Lewald, L.; Zollo, M.; Krauskopf, K.; Mrdović, D.; Raunft, P.; Maher, T. E.; Cigler, M.; Chang, C.; Lang, K.; Toste, F. D.; Nesvizhskii, A. I.; Hacker, S. M., Profiling the proteome-wide selectivity of diverse electrophiles. *ChemRxiv. Cambridge: Cambridge Open Engage; This content is a preprint and has not been peer-reviewed.* 2021.
- 32. Zanon, P. R. A.; Lewald, L.; Hacker, S. M., Isotopically labeled desthiobiotin azide (isoDTB) tags enable global profiling of the bacterial cysteinome. *Angew Chem Int Ed* **2020**, *59* (7), 2829-2836.
- 33. Weerapana, E.; Wang, C.; Simon, G. M.; Richter, F.; Khare, S.; Dillon, M. B.; Bachovchin, D. A.; Mowen, K.; Baker, D.; Cravatt, B. F., Quantitative reactivity profiling predicts functional cysteines in proteomes. *Nature* **2010**, *468* (7325), 790-795.
- 34. Altenbach, C.; Kusnetzow, A. K.; Ernst, O. P.; Hofmann, K. P.; Hubbell, W. L., Highresolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. *Proc Natl Acad Sci USA* **2008**, *105* (21), 7439-7444.
- 35. Vardanyan, R.; Hruby, V., Chapter 12 Adrenoblockers. In *Synthesis of Best-Seller Drugs*, Vardanyan, R.; Hruby, V., Eds. Academic Press: Boston, 2016; pp 201-214.
- Purves, D.; Augustine, G. J.; Fitzpatrick, D.; Hall, W. C.; Lamantia, A.-S.; McNamara, J. O.; Williams, S. M., *Neuroscience*. 3 ed.; Sinauer Associates, Inc.: Sunderland, MA 01375 U.S.A., 2004.
- 37. Kleinau, G.; Pratzka, J.; Nürnberg, D.; Grüters, A.; Führer-Sakel, D.; Krude, H.; Köhrle, J.; Schöneberg, T.; Biebermann, H., Differential modulation of beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists. *PloS One* **2011**, *6* (10), e27073.
- 38. Koh, A. H. W.; Chess-Williams, R.; Lohning, A. E., Differential mechanisms of action of the trace amines octopamine, synephrine and tyramine on the porcine coronary and mesenteric artery. *Sci Rep* **2019**, *9* (1), 10925.
- 39. Khan, A.; Singh, P.; Srivastava, A., Synthesis, nature and utility of universal iron chelator Siderophore: A review. *Microbiol Res* **2018**, *212-213*, 103-111.

- 40. O'Brien, I. G.; Gibson, F., The structure of enterochelin and related 2,3-dihydroxy-*N*-benzoyne conjugates from *Eschericha coli*. *Biochim Biophys Acta Gen Subj* **1970**, *215* (2), 393-402.
- 41. Pollack, J. R.; Neilands, J. B., Enterobactin, an iron transport compound from *Salmonella* Typhimurium. *Biochem Biophys Res Commun* **1970**, *38* (5), 989-992.
- 42. Müller, S. I.; Valdebenito, M.; Hantke, K., Salmochelin, the long-overlooked catecholate siderophore of *Salmonella*. *Biometals* **2009**, *22* (4), 691-695.
- 43. Bluhm, M. E.; Kim, S. S.; Dertz, E. A.; Raymond, K. N., Corynebactin and enterobactin: related siderophores of opposite chirality. *J Am Chem Soc* **2002**, *124* (11), 2436-2437.
- 44. May, J. J.; Wendrich, T. M.; Marahiel, M. A., The dhb operon of *Bacillus subtilis* encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. *J Biol Chem* 2001, 276 (10), 7209-7217.
- 45. Griffiths, G. L.; Sigel, S. P.; Payne, S. M.; Neilands, J. B., Vibriobactin, a siderophore from *Vibrio cholerae*. *J Biol Chem* **1984**, *259* (1), 383-385.
- 46. Duhme, A.-K.; Hider, R. C.; Khodr, H., Spectrophotometric competition study between molybdate and Fe(III) hydroxide on *N*,*N*'-bis(2,3-dihydroxybenzoyl)-l-lysine, a naturally occurring siderophore synthesized by *Azotobacter vinelandii*. *Biometals* **1996**, *9* (3), 245-248.
- 47. Taraz, K.; Ehlert, G.; Geisen, K.; Budzikiewicz, H.; Korth, H.; Pulverer, G., Protochelin, ein Catecholat-Siderophor aus einem Bakterium (DMS Nr. 5746) [1] / Protocheline a catecholate siderophore from a bacterium (DMS No. 5746) [1]. *Z Naturforsch B* **1990**, *45* (9), 1327-1332.
- 48. Page, W. J.; Tigerstrom, M. V., Aminochelin, a catecholamine siderophore produced by *Azotobacter vinelandii*. *Microbiology* **1988**, *134* (2), 453-460.
- 49. Ito, T.; Neilands, J. B., Products of "low-iron fermentation" with *Bacillus subilis*: isolation, characterization and synthesis of 2,3-dihydroxybenzoylglycine. *J Am Chem Soc* **1958**, *80* (17), 4645-4647.
- 50. Abdul-Mutakabbir, J. C.; Alosaimy, S.; Morrisette, T.; Kebriaei, R.; Rybak, M. J., Cefiderocol: a novel siderophore cephalosporin against multidrug-resistant Gramnegative pathogens. *Pharmacotherapy* **2020**, *40* (12), 1228-1247.
- Zhu, W.; Winter, M. G.; Spiga, L.; Hughes, E. R.; Chanin, R.; Mulgaonkar, A.; Pennington, J.; Maas, M.; Behrendt, C. L.; Kim, J.; Sun, X.; Beiting, D. P.; Hooper, L. V.; Winter, S. E., Xenosiderophore utilization promotes *Bacteroides thetaiotaomicron* resilience during colitis. *Cell Host Microbe* 2020, 27 (3), 376-388.
- 52. Luscher, A.; Gasser, V.; Bumann, D.; Mislin, G. L. A.; Schalk, I. J.; Köhler, T., Plantderived catechols are substrates of TonB-dependent transporters and sensitize *Pseudomonas aeruginosa* to siderophore-drug conjugates. *mBio* **2022**, *13* (4), e01498-22.

- 53. Sandrini, S. M.; Shergill, R.; Woodward, J.; Muralikuttan, R.; Haigh, R. D.; Lyte, M.; Freestone, P. P., Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. *J Bacteriol* **2010**, *192* (2), 587-594.
- 54. Perraud, Q.; Kuhn, L.; Fritsch, S.; Graulier, G.; Gasser, V.; Normant, V.; Hammann, P.; Schalk, I. J., Opportunistic use of catecholamine neurotransmitters as siderophores to access iron by *Pseudomonas aeruginosa*. *Environ Microbiol* **2022**, *24* (2), 878-893.
- 55. Marchetti, M.; De Bei, O.; Bettati, S.; Campanini, B.; Kovachka, S.; Gianquinto, E.; Spyrakis, F.; Ronda, L., Iron metabolism at the interface between host and pathogen: from nutritional immunity to antibacterial development. *Int J Mol Sci* **2020**, *21* (6), 2145-2188.
- 56. Carrano, C. J.; Raymond, K. N., Ferric ion sequestering agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. *J Am Chem Soc* **1979**, *101* (18), 5401-5404.
- 57. Sandrini, S.; Aldriwesh, M.; Alruways, M.; Freestone, P., Microbial endocrinology: host-bacteria communication within the gut microbiome. *J Endocrinol* **2015**, *225* (2), R21-R34.
- 58. Kendall, M. M.; Sperandio, V., What a dinner party! Mechanisms and functions of interkingdom signaling in host-pathogen associations. *mBio* **2016**, *7* (2), e01748-15.
- Wu, L. R.; Zaborina, O.; Zaborin, A.; Chang, E. B.; Musch, M.; Holbrook, C.; Turner, J. R.; Alverdy, J. C., Surgical injury and metabolic stress enhance the virulence of the human opportunistic pathogen *Pseudomonas aeruginosa*. *Surg Infect (Larchmt)* 2005, 6 (2), 185-195.
- 60. Clarke, M. B.; Hughes, D. T.; Zhu, C.; Boedeker, E. C.; Sperandio, V., The QseC sensor kinase: A bacterial adrenergic receptor. *Proc Natl Acad Sci USA* **2006**, *103* (27), 10420-10425.
- 61. Reading, N. C.; Rasko, D. A.; Torres, A. G.; Sperandio, V., The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. *Proc Natl Acad Sci USA* **2009**, *106* (14), 5889-5894.
- 62. Karavolos, M. H.; Winzer, K.; Williams, P.; Khan, C. M. A., Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems. *Mol Microbiol* **2013**, *87* (3), 455-465.
- 63. Freestone, P. P.; Sandrini, S. M.; Haigh, R. D.; Lyte, M., Microbial endocrinology: how stress influences susceptibility to infection. *Trends Microbiol* **2008**, *16* (2), 55-64.
- 64. Lyte, M.; Vulchanova, L.; Brown, D. R., Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. *Cell Tissue Res* **2011**, *343* (1), 23-32.
- 65. Jacob-Dubuisson, F.; Mechaly, A.; Betton, J.-M.; Antoine, R., Structural insights into the signalling mechanisms of two-component systems. *Nat Rev Microbiol* **2018**, *16* (10), 585-593.

- 66. Capra, E. J.; Laub, M. T., Evolution of two-component signal transduction systems. *Annu Rev Microbiol* **2012**, *66*, 325-347.
- Rasko, D. A.; Moreira, C. G.; Li, D. R.; Reading, N. C.; Ritchie, J. M.; Waldor, M. K.; Williams, N.; Taussig, R.; Wei, S.; Roth, M.; Hughes, D. T.; Huntley, J. F.; Fina, M. W.; Falck, J. R.; Sperandio, V., Targeting QseC signaling and virulence for antibiotic development. *Science* 2008, *321* (5892), 1078-1080.
- 68. Sperandio, V.; Torres, A. G.; Jarvis, B.; Nataro, J. P.; Kaper, J. B., Bacteria–host communication: The language of hormones. *Proc Natl Acad Sci USA* **2003**, *100* (15), 8951-8956.
- Kim, C. S.; Gatsios, A.; Cuesta, S.; Lam, Y. C.; Wei, Z.; Chen, H.; Russell, R. M.; Shine, E. E.; Wang, R.; Wyche, T. P.; Piizzi, G.; Flavell, R. A.; Palm, N. W.; Sperandio, V.; Crawford, J. M., Characterization of autoinducer-3 structure and biosynthesis in *E. coli*. *ACS Cent Sci* 2020, *6* (2), 197-206.
- Halang, P.; Toulouse, C.; Geißel, B.; Michel, B.; Flauger, B.; Müller, M.; Voegele, R. T.; Stefanski, V.; Steuber, J., Response of *Vibrio cholerae* to the catecholamine hormones epinephrine and norepinephrine. *J Bacteriol* 2015, *197* (24), 3769-3778.
- 71. Yang, Q.; Anh, N. D. Q.; Bossier, P.; Defoirdt, T., Norepinephrine and dopamine increase motility, biofilm formation, and virulence of *Vibrio harveyi*. *Front Microbiol* **2014**, *5* (584).
- 72. Moreira, C. G.; Weinshenker, D.; Sperandio, V., QseC mediates *Salmonella enterica* serovar typhimurium virulence *in vitro* and *in vivo*. *Infect Immun* **2010**, *78* (3), 914-926.
- 73. Bearson, B. L.; Bearson, S. M., The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of *Salmonella enterica* serovar Typhimurium. *Microb Pathog* **2008**, *44* (4), 271-278.
- 74. Bearson, B. L.; Bearson, S. M.; Lee, I. S.; Brunelle, B. W., The *Salmonella enterica* serovar Typhimurium QseB response regulator negatively regulates bacterial motility and swine colonization in the absence of the QseC sensor kinase. *Microb Pathog* **2010**, *48* (6), 214-219.
- 75. Hamed, A.; Pullinger, G.; Stevens, M.; Farveen, F.; Freestone, P., Characterisation of the *E. coli* and *Salmonella* qseC and qseE mutants reveals a metabolic rather than adrenergic receptor role. *FEMS Microbiol Lett* **2022**, *369* (1), 1-12.
- Merighi, M.; Septer, A. N.; Carroll-Portillo, A.; Bhatiya, A.; Porwollik, S.; McClelland, M.; Gunn, J. S., Genome-wide analysis of the PreA/PreB (QseB/QseC) regulon of *Salmonella enterica* serovar Typhimurium. *BMC Microbiol* 2009, 9, 42.
- 77. Pullinger, G. D.; Carnell, S. C.; Sharaff, F. F.; van Diemen, P. M.; Dziva, F.; Morgan, E.; Lyte, M.; Freestone, P. P. E.; Stevens, M. P., Norepinephrine augments *Salmonella enterica*-induced enteritis in a manner associated with increased net replication but independent of the putative adrenergic sensor kinases QseC and QseE. *Infect Immun* 2010, 78 (1), 372-380.

- 78. Bansal, T.; Englert, D.; Lee, J.; Hegde, M.; Wood, T. K.; Jayaraman, A., Differential effects of epinephrine, norepinephrine, and indole on *Escherichia coli* O157:H7 chemotaxis, colonization, and gene expression. *Infect Immun* **2007**, *75* (9), 4597-4607.
- 79. Sule, N.; Pasupuleti, S.; Kohli, N.; Menon, R.; Dangott, L. J.; Manson, M. D.; Jayaraman, A., The norepinephrine metabolite 3,4-dihydroxymandelic acid is produced by the commensal microbiota and promotes chemotaxis and virulence gene expression in enterohemorrhagic *Escherichia coli*. *Infect Immun* **2017**, *85* (10), e00431-48.
- Pasupuleti, S.; Sule, N.; Cohn, W. B.; MacKenzie, D. S.; Jayaraman, A.; Manson, M. D., Chemotaxis of *Escherichia coli* to norepinephrine (NE) requires conversion of NE to 3,4-dihydroxymandelic acid. *J Bacteriol* 2014, *196* (23), 3992-4000.
- Rivera-Chávez, F.; Lopez, C. A.; Zhang, L. F.; García-Pastor, L.; Chávez-Arroyo, A.; Lokken, K. L.; Tsolis, R. M.; Winter, S. E.; Bäumler, A. J., Energy taxis toward hostderived nitrate supports a *Salmonella* pathogenicity island 1-independent mechanism of invasion. *mBio* 2016, 7 (4), e00960-16.
- 82. Stecher, B.; Hapfelmeier, S.; Müller, C.; Kremer, M.; Stallmach, T.; Hardt, W. D., Flagella and chemotaxis are required for efficient induction of *Salmonella enterica* serovar Typhimurium colitis in streptomycin-pretreated mice. *Infect Immun* **2004**, *72* (7), 4138-4150.
- 83. Butler, S. M.; Camilli, A., Both chemotaxis and net motility greatly influence the infectivity of *Vibrio cholerae*. *Proc Natl Acad Sci USA* **2004**, *101* (14), 5018-5023.
- 84. Bi, S.; Sourjik, V., Stimulus sensing and signal processing in bacterial chemotaxis. *Curr Opin Microbiol* **2018**, *45*, 22-29.
- 85. Lopes, J. G.; Sourjik, V., Chemotaxis of *Escherichia coli* to major hormones and polyamines present in human gut. *ISME J* **2018**, *12* (11), 2736-2747.
- 86. Takase, H.; Nitanai, H.; Hoshino, K.; Otani, T., Requirement of the *Pseudomonas aeruginosa* tonB gene for high-affinity iron acquisition and infection. *Infect Immun* **2000**, *68* (8), 4498-4504.
- 87. Sandrini, S.; Masania, R.; Zia, F.; Haigh, R.; Freestone, P., Role of porin proteins in acquisition of transferrin iron by enteropathogens. *Microbiology* **2013**, *159* (Pt 12), 2639-2650.
- Jimenez, P. N.; Koch, G.; Papaioannou, E.; Wahjudi, M.; Krzeslak, J.; Coenye, T.; Cool, R. H.; Quax, W. J., Role of PvdQ in *Pseudomonas aeruginosa* virulence under ironlimiting conditions. *Microbiology* 2010, *156* (1), 49-59.
- 89. Lin, B.; Wang, Z.; Malanoski, A. P.; O'Grady, E. A.; Wimpee, C. F.; Vuddhakul, V.; Alves Jr, N.; Thompson, F. L.; Gomez-Gil, B.; Vora, G. J., Comparative genomic analyses identify the *Vibrio harveyi* genome sequenced strains BAA-1116 and HY01 as *Vibrio campbellii. Environ Microbiol Rep* **2010**, *2* (1), 81-89.
- 90. Austin, B.; Zhang, X.-H., *Vibrio harveyi*: a significant pathogen of marine vertebrates and invertebrates. *Lett Appl Microbiol* **2006**, *43* (2), 119-124.

- 91. Ottemann, K. M.; Miller, J. F., Roles for motility in bacterial-host interactions. *Mol Microbiol* **1997**, *24* (6), 1109-1117.
- 92. Bassler, B. L.; Wright, M.; Showalter, R. E.; Silverman, M. R., Intercellular signalling in *Vibrio harveyi*: sequence and function of genes regulating expression of luminescence. *Mol Microbiol* **1993**, *9* (4), 773-786.
- 93. Papenfort, K.; Bassler, B. L., Quorum sensing signal-response systems in Gramnegative bacteria. *Nat Rev Microbiol* **2016**, *14* (9), 576-588.
- 94. Anetzberger, C.; Reiger, M.; Fekete, A.; Schell, U.; Stambrau, N.; Plener, L.; Kopka, J.; Schmitt-Kopplin, P.; Hilbi, H.; Jung, K., Autoinducers act as biological timers in *Vibrio harveyi*. *PloS One* **2012**, *7* (10), e48310.
- 95. Weigert Muñoz, A.-M. Synthesis and evaluation of an epinephrine photoprobe for the identification of bacterial adrenergic targets. Master's thesis, Technical University of Munich, München, 2018.
- 96. Cox, J.; Hein, M. Y.; Luber, C. A.; Paron, I.; Nagaraj, N.; Mann, M., Accurate proteomewide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. *Molecular & Cellular Proteomics* **2014**, *13* (9), 2513-2526.
- 97. A7MSY4. https://www.uniprot.org/uniprotkb/A7MSY4/entry (accessed 11.11.22).
- 98. A7MZS4. https://www.uniprot.org/uniprotkb/A7MZS4/entry (accessed 11.11.22).
- 99. VIBHAR_01404 https://www.genome.jp/dbget-bin/www_bget?vha:VIBHAR_01404 (accessed 11.11.22).
- 100. Kanehisa, M., Toward understanding the origin and evolution of cellular organisms. *Protein Science: a Publication of the Protein Society* **2019**, *28* (11), 1947-1951.
- 101. Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M., KEGG: integrating viruses and cellular organisms. *Nucleic Acids Res* **2021**, *49* (D1), 545-551.
- 102. Kanehisa, M.; Goto, S., KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* **2000**, *28* (1), 27-30.
- 103. Hantke, K., Dihydroxybenzoylserine a siderophore for *E. coli. FEMS Microbiol Lett* **1990**, *55* (1-2), 5-8.
- 104. Nikaido, H.; Rosenberg, E. Y., Cir and Fiu proteins in the outer membrane of *Escherichia coli* catalyze transport of monomeric catechols: study with beta-lactam antibiotics containing catechol and analogous groups. *J Bacteriol* **1990**, *172* (3), 1361-1367.
- 105. Altschul, S. F.; Madden, T. L.; Schäffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* **1997**, *25* (17), 3389-3402.

106.	McRose, D. L.; Baars, O.; Seyedsayamdost, M. R.; Morel, F. M. M., Quorum sensing and iron regulate a two-for-one siderophore gene cluster in <i>Vibrio harveyi</i> . <i>Proc Natl Acad Sci USA</i> 2018 , <i>115</i> (29), 7581-7586.
107.	A7MY64. https://www.uniprot.org/uniprotkb/A7MY64/entry (accessed 11.11.22).
108.	UniProt: the universal protein knowledgebase in 2021. <i>Nucleic Acids Res</i> 2020 , <i>49</i> (D1), 480-489.
109.	A7N6I6. https://www.uniprot.org/uniprotkb/A7N6I6/entry (accessed 11.11.22).
110.	A7MY66. https://www.uniprot.org/uniprotkb/A7MY66/entry (accessed 11.11.22).
111.	A7N1M5. https://www.uniprot.org/uniprotkb/A7N1M5/entry (accessed 11.11.22).
112.	A7N283. https://www.uniprot.org/uniprotkb/A7N283/entry (accessed 11.11.22).
113.	A7MS42. https://www.uniprot.org/uniprotkb/A7MS42/entry (accessed 11.11.22).
114.	Huang, Z.; Pan, X.; Xu, N.; Guo, M., Bacterial chemotaxis coupling protein: Structure, function and diversity. <i>Microbiol Res</i> 2019 , <i>219</i> , 40-48.
115.	A7MTV7. https://www.uniprot.org/uniprotkb/A7MTV7/entry (accessed 11.11.22).
116.	A7MZ63. https://www.uniprot.org/uniprotkb/A7MZ63/entry (accessed 11.11.22).
117.	A7N1L7. https://www.uniprot.org/uniprotkb/A7N1L7/entry (accessed 11.11.22).
118.	A7MYT1. https://www.uniprot.org/uniprotkb/A7MYT1/entry (accessed 11.11.22).
119.	A7MUD0. https://www.uniprot.org/uniprotkb/A7MUD0/entry (accessed 11.11.22).
120.	A7MXS1. https://www.uniprot.org/uniprotkb/A7MXS1/entry (accessed 11.11.22).
121.	A7N8F2. https://www.uniprot.org/uniprotkb/A7N8F2/entry (accessed 11.11.22).
122.	A7N2H7. https://www.uniprot.org/uniprotkb/A7N2H7/entry (accessed 11.11.22).
123.	Rhee, H. W.; Zou, P.; Udeshi, N. D.; Martell, J. D.; Mootha, V. K.; Carr, S. A.; Ting, A. Y., Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. <i>Science</i> 2013 , <i>339</i> (6125), 1328-1331.
124.	Minamihata, K.; Goto, M.; Kamiya, N., Protein heteroconjugation by the peroxidase- catalyzed tyrosine coupling reaction. <i>Bioconjug Chem</i> 2011 , <i>22</i> (11), 2332-2338.
125.	Rogers, M. S.; Hurtado-Guerrero, R.; Firbank, S. J.; Halcrow, M. A.; Dooley, D. M.; Phillips, S. E.; Knowles, P. F.; McPherson, M. J., Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen. <i>Biochemistry</i> 2008 , <i>47</i> (39), 10428-10439.
126	Physicar D. Immoos C. E. Shimizu H. Sula E. Earman D. L. Doulos T. L. A revel

126. Bhaskar, B.; Immoos, C. E.; Shimizu, H.; Sulc, F.; Farmer, P. J.; Poulos, T. L., A novel heme and peroxide-dependent tryptophan-tyrosine cross-link in a mutant of cytochrome *c* peroxidase. *J Mol Biol* **2003**, *328* (1), 157-166.

- 127. Amini, F.; Kodadek, T.; Brown, K. C., Protein affinity labeling mediated by genetically encoded peptide tags. *Angew Chem Int Ed* **2002**, *41* (2), 356-359.
- 128. Xu, Y.; Fan, X.; Hu, Y., *In vivo* interactome profiling by enzyme-catalyzed proximity labeling. *Cell Biosci* **2021**, *11* (1), 27.
- 129. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D., Highly accurate protein structure prediction with AlphaFold. *Nature* 2021, *596* (7873), 583-589.
- 130. Alexander, R. P.; Lowenthal, A. C.; Harshey, R. M.; Ottemann, K. M., CheV: CheWlike coupling proteins at the core of the chemotaxis signaling network. *Trends Microbiol* **2010**, *18* (11), 494-503.
- 131. Schrödinger, L.; DeLano, W. PyMOL. http://www.pymol.org/pymol.
- 132. Jin, C., Li, Y. Solution structure of chemotaxis protein CheW from *Escherichia coli*. (accessed 11.11.22).
- 133. Fux, A.; Korotkov, V. S.; Schneider, M.; Antes, I.; Sieber, S. A., Chemical cross-linking enables drafting ClpXP proximity maps and taking snapshots of *in situ* interaction networks. *Cell Chem Biol* **2019**, *26* (1), 48-59.
- 134. Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M., KEGG for taxonomy-based analysis of pathways and genomes. *Nucleic Acids Res* **2022**.
- 135. Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.; Davis, A. P.; Dolinski, K.; Dwight, S. S.; Eppig, J. T.; Harris, M. A.; Hill, D. P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J. C.; Richardson, J. E.; Ringwald, M.; Rubin, G. M.; Sherlock, G., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet* 2000, 25 (1), 25-29.
- 136. The Gene Ontology resource: enriching a GOld mine. *Nucleic Acids Res* **2021**, *49* (D1), 325-334.
- 137. Briegel, A.; Beeby, M.; Thanbichler, M.; Jensen, G. J., Activated chemoreceptor arrays remain intact and hexagonally packed. *Mol Microbiol* **2011**, *82* (3), 748-257.
- 138. A7N237. https://www.uniprot.org/uniprotkb/A7N237/entry (accessed 11.11.22).
- 139. A7N8H5. https://www.uniprot.org/uniprotkb/A7N8H5/entry (accessed 11.11.22).
- 140. A7N0E3. https://www.uniprot.org/uniprotkb/A7N0E3/entry (accessed 11.11.22).
- 141. A7MS66. https://www.uniprot.org/uniprotkb/A7MS66/entry (accessed 11.11.22).
- 142. A7MZS8. https://www.uniprot.org/uniprotkb/A7MZS8/entry (accessed 11.11.22).
- 143. A7N8L7. https://www.uniprot.org/uniprotkb/A7N8L7/entry (accessed 11.11.22).

- 144. Colin, R.; Ni, B.; Laganenka, L.; Sourjik, V., Multiple functions of flagellar motility and chemotaxis in bacterial physiology. *FEMS Microbiol Lett* **2021**, *45* (6), 1–19.
- 145. Narla, A. V.; Cremer, J.; Hwa, T., A traveling-wave solution for bacterial chemotaxis with growth. *Proc Natl Acad Sci USA* **2021**, *118* (48), 2105138118-2105138130.
- 146. Ringgaard, S.; Zepeda-Rivera, M.; Wu, X.; Schirner, K.; Davis, B. M.; Waldor, M. K., ParP prevents dissociation of CheA from chemotactic signaling arrays and tethers them to a polar anchor. *Proc Natl Acad Sci USA* **2014**, *111* (2), E255-E264.
- 147. Adler, J., A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by *Escherichia coli*. *J Gen Microbiol* **1973**, *74* (1), 77-91.
- 148. Matilla, M. A.; Velando, F.; Tajuelo, A.; Martín-Mora, D.; Xu, W.; Sourjik, V.; Gavira, J. A.; Krell, T., Chemotaxis of the human pathogen *Pseudomonas aeruginosa* to the neurotransmitter acetylcholine. *mBio* **2022**, *13* (2), e03458-21.
- 149. Matilla, M. A.; Krell, T., The effect of bacterial chemotaxis on host infection and pathogenicity. *FEMS Microbiol Lett* **2018**, *42* (1), 40–67.
- 150. Merrell, D. S.; Butler, S. M.; Qadri, F.; Dolganov, N. A.; Alam, A.; Cohen, M. B.; Calderwood, S. B.; Schoolnik, G. K.; Camilli, A., Host-induced epidemic spread of the cholera bacterium. *Nature* **2002**, *417* (6889), 642-645.
- 151. Butler, S. M.; Nelson, E. J.; Chowdhury, N.; Faruque, S. M.; Calderwood, S. B.; Camilli, A., Cholera stool bacteria repress chemotaxis to increase infectivity. *Mol Microbiol* **2006**, *60* (2), 417-426.
- 152. Macinga, D. R.; Parojcic, M. M.; Rather, P. N., Identification and analysis of aarP, a transcriptional activator of the 2'-*N*-acetyltransferase in *Providencia stuartii*. *J Bacteriol* **1995**, *177* (12), 3407-3413.
- 153. Studier, F. W.; Moffatt, B. A., Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. *J Mol Biol* **1986**, *189* (1), 113-130.
- 154. Farmer, J. J., 3rd; Jorgensen, J. H.; Grimont, P. A.; Akhurst, R. J.; Poinar, G. O., Jr.; Ageron, E.; Pierce, G. V.; Smith, J. A.; Carter, G. P.; Wilson, K. L.; et al., *Xenorhabdus luminescens* (DNA hybridization group 5) from human clinical specimens. J Clin Microbiol 1989, 27 (7), 1594-600.
- 155. Fischer-Le Saux, M.; Viallard, V.; Brunel, B.; Normand, P.; Boemare, N. E., Polyphasic classification of the genus *Photorhabdus* and proposal of new taxa: *P. luminescens* subsp. *luminescens* subsp. nov., *P. luminescens* subsp. nov., *P. luminescens* subsp. nov., *P. temperata* sp. nov., *P. temperata* subsp. nov., *P. temperata* sp. nov., *P. temperata* subsp. nov., *P. temperata* subsp. nov., *P. temperata* sp. nov., *P. temperata* subsp. temperata subsp. nov. and *P. asymbiotica* sp. nov. Int J Syst Bacteriol **1999**, 49 Pt 4, 1645-1656.
- 156. Urbanczyk, H.; Ast, J. C.; Higgins, M. J.; Carson, J.; Dunlap, P. V., Reclassification of *Vibrio fischeri*, *Vibrio logei*, *Vibrio salmonicida* and *Vibrio wodanis* as *Aliivibrio fischeri* gen. nov., comb. nov., *Aliivibrio logei* comb. nov., *Aliivibrio salmonicida* comb. nov. and *Aliivibrio wodanis* comb. nov. *Int J Syst Evol Microbiol* **2007**, *57* (Pt 12), 2823-2829.

- 157. McClelland, M.; Sanderson, K. E.; Spieth, J.; Clifton, S. W.; Latreille, P.; Courtney, L.; Porwollik, S.; Ali, J.; Dante, M.; Du, F.; Hou, S.; Layman, D.; Leonard, S.; Nguyen, C.; Scott, K.; Holmes, A.; Grewal, N.; Mulvaney, E.; Ryan, E.; Sun, H.; Florea, L.; Miller, W.; Stoneking, T.; Nhan, M.; Waterston, R.; Wilson, R. K., Complete genome sequence of *Salmonella enterica* serovar Typhimurium LT2. *Nature* **2001**, *413* (6858), 852-856.
- 158. Lassak, J.; Henche, A. L.; Binnenkade, L.; Thormann, K. M., ArcS, the cognate sensor kinase in an atypical Arc system of *Shewanella oneidensis* MR-1. *Appl Environ Microbiol* **2010**, *76* (10), 3263-3274.
- 159. Grognot, M.; Taute, K. M., A multiscale 3D chemotaxis assay reveals bacterial navigation mechanisms. *Commun Biol* **2021**, *4* (1), 669.
- 160. Taute, K. M.; Gude, S.; Tans, S. J.; Shimizu, T. S., High-throughput 3D tracking of bacteria on a standard phase contrast microscope. *Nat Commun* **2015**, *6*, 8776.
- 161. Brennan, C. A.; Mandel, M. J.; Gyllborg, M. C.; Thomasgard, K. A.; Ruby, E. G., Genetic determinants of swimming motility in the squid light-organ symbiont *Vibrio fischeri*. *MicrobiologyOpen* **2013**, *2* (4), 576-594.
- 162. Sar, N.; McCarter, L.; Simon, M.; Silverman, M., Chemotactic control of the two flagellar systems of *Vibrio parahaemolyticus*. *J Bacteriol* **1990**, *172* (1), 334-341.
- 163. Ruby, E. G.; Nealson, K. H., Symbiotic association of *Photobacterium fischeri* with the marine luminous fish *Monocentris japonica*; a model of symbiosis based on bacterial studies. *Biol Bull* **1976**, *151* (3), 574-586.
- 164. Eirich, J.; Burkhart, J. L.; Ullrich, A.; Rudolf, G. C.; Vollmar, A.; Zahler, S.; Kazmaier, U.; Sieber, S. A., Pretubulysin derived probes as novel tools for monitoring the microtubule network via activity-based protein profiling and fluorescence microscopy. *Mol Biosyst* 2012, *8* (8), 2067-2075.
- 165. Laganenka, L.; López, M. E.; Colin, R.; Sourjik, V., Flagellum-mediated mechanosensing and RfIP control motility state of pathogenic *Escherichia coli. mBio* **2020**, *11* (2), e02269-19
- 166. Cox, J.; Mann, M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nat Biotechnol* 2008, 26 (12), 1367-1372.
- 167. Tyanova, S.; Temu, T.; Cox, J., The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. *Nat Protoc* **2016**, *11* (12), 2301-2319.
- 168. Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M. Y.; Geiger, T.; Mann, M.; Cox, J., The Perseus computational platform for comprehensive analysis of (prote)omics data. *Nat Methods* **2016**, *13* (9), 731-740.
- 169. Benson, D. A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D. J.; Ostell, J.; Sayers, E. W., GenBank. *Nucleic Acids Res* **2013**, *41* (Database issue), 36-42.
- 170. Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P., ProteoWizard: open source software for rapid proteomics tools development. *Bioinformatics* **2008**, *24* (21), 2534-2536.

- 171. Kong, A. T.; Leprevost, F. V.; Avtonomov, D. M.; Mellacheruvu, D.; Nesvizhskii, A. I., MSFragger: ultrafast and comprehensive peptide identification in mass spectrometrybased proteomics. *Nat Methods* **2017**, *14* (5), 513-520.
- 172. Yu, F.; Teo, G. C.; Kong, A. T.; Haynes, S. E.; Avtonomov, D. M.; Geiszler, D. J.; Nesvizhskii, A. I., Identification of modified peptides using localization-aware open search. *Nat Commun* **2020**, *11* (1), 4065.
- 173. da Veiga Leprevost, F.; Haynes, S. E.; Avtonomov, D. M.; Chang, H. Y.; Shanmugam, A. K.; Mellacheruvu, D.; Kong, A. T.; Nesvizhskii, A. I., Philosopher: a versatile toolkit for shotgun proteomics data analysis. *Nat Methods* **2020**, *17* (9), 869-870.
- Yu, F.; Haynes, S. E.; Teo, G. C.; Avtonomov, D. M.; Polasky, D. A.; Nesvizhskii, A. I., Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant. *Molecular & Cellular Proteomics* 2020, 19 (9), 1575-1585.
- 175. Brameyer, S.; Hoyer, E.; Bibinger, S.; Burdack, K.; Lassak, J.; Jung, K., Molecular design of a signaling system influences noise in protein abundance under acid stress in different γ-Proteobacteria. *J Bacteriol* **2020**, *202* (16), e00121-20.
- 176. Monzani, E.; Nicolis, S.; Dell'Acqua, S.; Capucciati, A.; Bacchella, C.; Zucca, F. A.; Mosharov, E. V.; Sulzer, D.; Zecca, L.; Casella, L., Dopamine, oxidative stress and protein–quinone modifications in Parkinson's and other neurodegenerative diseases. *Angew Chem Int Ed* 2019, 58 (20), 6512-6527.
- Bruning, J. M.; Wang, Y.; Oltrabella, F.; Tian, B.; Kholodar, S. A.; Liu, H.; Bhattacharya, P.; Guo, S.; Holton, J. M.; Fletterick, R. J.; Jacobson, M. P.; England, P. M., Covalent modification and regulation of the nuclear receptor Nurr1 by a dopamine metabolite. *Cell Chem Biol* 2019, 26 (5), 674–685.
- 178. Umek, N.; Geršak, B.; Vintar, N.; Šoštarič, M.; Mavri, J., Dopamine autoxidation is controlled by acidic pH. *Front Mol Neurosci* **2018**, *11*, 467.
- 179. Sulzer, D.; Bogulavsky, J.; Larsen, K. E.; Behr, G.; Karatekin, E.; Kleinman, M. H.; Turro, N.; Krantz, D.; Edwards, R. H.; Greene, L. A.; Zecca, L., Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. *Proc Natl Acad Sci USA* **2000**, *97* (22), 11869-11874.
- 180. Sabens, E. A.; Distler, A. M.; Mieyal, J. J., Levodopa deactivates enzymes that regulate thiol-disulfide homeostasis and promotes neuronal cell death: implications for therapy of Parkinson's disease. *Biochemistry* **2010**, *49* (12), 2715-2724.
- 181. Burbulla, L. F.; Song, P.; Mazzulli, J. R.; Zampese, E.; Wong, Y. C.; Jeon, S.; Santos, D. P.; Blanz, J.; Obermaier, C. D.; Strojny, C.; Savas, J. N.; Kiskinis, E.; Zhuang, X.; Krüger, R.; Surmeier, D. J.; Krainc, D., Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. *Science* 2017, 357 (6357), 1255-1261.
- 182. LaVoie, M. J.; Ostaszewski, B. L.; Weihofen, A.; Schlossmacher, M. G.; Selkoe, D. J., Dopamine covalently modifies and functionally inactivates parkin. *Nat Med* 2005, *11* (11), 1214-1221.

- 183. Bisaglia, M.; Tosatto, L.; Munari, F.; Tessari, I.; de Laureto, P. P.; Mammi, S.; Bubacco, L., Dopamine quinones interact with alpha-synuclein to form unstructured adducts. *Biochem Biophys Res Commun* 2010, 394 (2), 424-428.
- 184. Conway, K. A.; Rochet, J.-C.; Bieganski, R. M.; Lansbury, P. T., Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. *Science* **2001**, *294* (5545), 1346-1349.
- 185. Lev, N.; Barhum, Y.; Pilosof, N. S.; Ickowicz, D.; Cohen, H. Y.; Melamed, E.; Offen, D., DJ-1 protects against dopamine toxicity: implications for Parkinson's disease and aging. *J Gerontol A Biol Sci Med Sci* 2013, 68 (3), 215-225.
- 186. Bonifati, V.; Oostra, B. A.; Heutink, P., Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson's disease. *Journal of Molecular Medicine* **2004**, *82* (3), 163-174.
- 187. Blesa, J.; Phani, S.; Jackson-Lewis, V.; Przedborski, S., Classic and new animal models of Parkinson's disease. *J Biomed Biotechnol* **2012**, *2012*, 845618.
- 188. Van Laar, V. S.; Mishizen, A. J.; Cascio, M.; Hastings, T. G., Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. *Neurobiol Dis* **2009**, *34* (3), 487-500.
- 189. Hurben, A. K.; Erber, L. N.; Tretyakova, N. Y.; Doran, T. M., Proteome-wide profiling of cellular targets modified by dopamine metabolites using a bio-orthogonally functionalized catecholamine. *ACS Chem Biol* **2021**, *16* (11), 2581-2594.
- 190. Kaplan, A.; Stockwell, B. R., Structural elucidation of a small molecule inhibitor of protein disulfide isomerase. *ACS Med Chem Lett* **2015**, *6* (9), 966-971.
- 191. Teoh, E. S., Secondary metabolites of plants.
- 192. Bhagwat, S.; Haytowitz, D. B.; Holden, J. M. USDA database for the flavonoid content of selected foods, release 3.0. http://www.ars.usda.gov/nutrientdata/flav (accessed September 2022).
- 193. Yang, C. S.; Landau, J. M.; Huang, M. T.; Newmark, H. L., Inhibition of carcinogenesis by dietary polyphenolic compounds. *Annu Rev Nutr* **2001**, *21*, 381-406.
- 194. Ramassamy, C., Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. *Eur J Pharmacol* **2006**, *545* (1), 51-64.
- 195. Liu, H.; He, S.; Wang, T.; Orang-Ojong, B.; Lu, Q.; Zhang, Z.; Pan, L.; Chai, X.; Wu, H.; Fan, G.; Zhang, P.; Feng, Y.; Song, Y. S.; Gao, X.; Karas, R. H.; Zhu, Y., Selected phytoestrogens distinguish roles of ERα transactivation and ligand binding for anti-inflammatory activity. *Endocrinology* **2018**, *159* (9), 3351-3364.
- 196. Cho, S. Y.; Park, S. J.; Kwon, M. J.; Jeong, T. S.; Bok, S. H.; Choi, W. Y.; Jeong, W. I.; Ryu, S. Y.; Do, S. H.; Lee, C. S.; Song, J. C.; Jeong, K. S., Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-kappaB pathway in lipopolysaccharide-stimulated macrophage. *Mol Cell Biochem* 2003, 243 (1-2), 153-160.

- 197. Cao, Y.; Cao, R., Angiogenesis inhibited by drinking tea. *Nature* **1999**, *398* (6726), 381.
- 198. Fattori, V.; Hohmann, M. S.; Rossaneis, A. C.; Pinho-Ribeiro, F. A.; Verri, W. A., Capsaicin: current understanding of its mechanisms and therapy of pain and other preclinical and clinical uses. *Molecules* **2016**, *21* (7).
- 199. Zwicker, J. I.; Schlechter, B. L.; Stopa, J. D.; Liebman, H. A.; Aggarwal, A.; Puligandla, M.; Caughey, T.; Bauer, K. A.; Kuemmerle, N.; Wong, E.; Wun, T.; McLaughlin, M.; Hidalgo, M.; Neuberg, D.; Furie, B.; Flaumenhaft, R., Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. *JCI Insight* **2019**, *4* (4), e125851.
- 200. Tachibana, H.; Koga, K.; Fujimura, Y.; Yamada, K., A receptor for green tea polyphenol EGCG. *Nat Struct Mol Biol* **2004**, *11* (4), 380-381.
- 201. Jankun, J.; Selman, S. H.; Swiercz, R.; Skrzypczak-Jankun, E., Why drinking green tea could prevent cancer. *Nature* **1997**, *387* (6633), 561.
- 202. Garbisa, S.; Biggin, S.; Cavallarin, N.; Sartor, L.; Benelli, R.; Albini, A., Tumor invasion: molecular shears blunted by green tea. *Nat Med* **1999**, *5* (11), 1216.
- 203. Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J. V., Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. *J Biol Chem* **2005**, *280* (7), 5636-5645.
- 204. Seo, H. S.; Choi, H. S.; Choi, H. S.; Choi, Y. K.; Um, J. Y.; Choi, I.; Shin, Y. C.; Ko, S. G., Phytoestrogens induce apoptosis via extrinsic pathway, inhibiting nuclear factor-kappaB signaling in HER2-overexpressing breast cancer cells. *Anticancer Res* 2011, 31 (10), 3301-3313.
- 205. Carpi, S.; Scoditti, E.; Massaro, M.; Polini, B.; Manera, C.; Digiacomo, M.; Esposito Salsano, J.; Poli, G.; Tuccinardi, T.; Doccini, S.; Santorelli, F. M.; Carluccio, M. A.; Macchia, M.; Wabitsch, M.; De Caterina, R.; Nieri, P., The extra-virgin olive oil polyphenols oleocanthal and oleacein counteract inflammation-related gene and miRNA expression in adipocytes by attenuating NF-κB activation. *Nutrients* **2019**, *11* (12), 2855.
- 206. Boly, R.; Gras, T.; Lamkami, T.; Guissou, P.; Serteyn, D.; Kiss, R.; Dubois, J., Quercetin inhibits a large panel of kinases implicated in cancer cell biology. *Int J Oncol* **2011**, *38* (3), 833-842.
- 207. Murakami, A.; Ashida, H.; Terao, J., Multitargeted cancer prevention by quercetin. *Cancer Lett* **2008**, *269* (2), 315-325.
- 208. Puranik, N. V.; Srivastava, P.; Bhatt, G.; John Mary, D. J. S.; Limaye, A. M.; Sivaraman, J., Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (ERα) by various parameters and molecular modelling approach. *Sci Rep* 2019, *9* (1), 7450
- 209. Jeong, S. H.; Kim, H. H.; Ha, S. E.; Park, M. Y.; Bhosale, P. B.; Abusaliya, A.; Park, K. I.; Heo, J. D.; Kim, H. W.; Kim, G. S., Flavones: six selected flavones and their related signaling pathways that induce apoptosis in cancer. *Int J Mol Sci* 2022, 23 (18), 10965.

- 210. Khan, N.; Afaq, F.; Saleem, M.; Ahmad, N.; Mukhtar, H., Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. *Cancer Resarch* **2006**, *66* (5), 2500-2505.
- 211. Chapa-Oliver, A. M.; Mejía-Teniente, L., Capsaicin: from plants to a cancersuppressing agent. *Molecules* **2016**, *21* (8), 931.
- 212. Soeda, Y.; Yoshikawa, M.; Almeida, O. F.; Sumioka, A.; Maeda, S.; Osada, H.; Kondoh, Y.; Saito, A.; Miyasaka, T.; Kimura, T.; Suzuki, M.; Koyama, H.; Yoshiike, Y.; Sugimoto, H.; Ihara, Y.; Takashima, A., Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. *Nat Commun* **2015**, *6*, 10216.
- 213. Velander, P.; Wu, L.; Hildreth, S. B.; Vogelaar, N. J.; Mukhopadhyay, B.; Helm, R. F.; Zhang, S.; Xu, B., Catechol-containing compounds are a broad class of protein aggregation inhibitors: Redox state is a key determinant of the inhibitory activities. *Pharmacol Research* **2022**, *184*, 106409.
- 214. Robinson, R. M.; Reyes, L.; Duncan, R. M.; Bian, H.; Reitz, A. B.; Manevich, Y.; McClure, J. J.; Champion, M. M.; Chou, C. J.; Sharik, M. E.; Chesi, M.; Bergsagel, P. L.; Dolloff, N. G., Inhibitors of the protein disulfide isomerase family for the treatment of multiple myeloma. *Leukemia* **2019**, *33* (4), 1011-1022.
- 215. Zhang, Q.; Luo, P.; Xia, F.; Tang, H.; Chen, J.; Zhang, J.; Liu, D.; Zhu, Y.; Liu, Y.; Gu, L.; Zheng, L.; Li, Z.; Yang, F.; Dai, L.; Liao, F.; Xu, C.; Wang, J., Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis. *Cell Chem Biol* **2022**, *29* (8), 1248-1259.
- 216. Farzam, A.; Chohan, K.; Strmiskova, M.; Hewitt, S. J.; Park, D. S.; Pezacki, J. P.; Özcelik, D., A functionalized hydroxydopamine quinone links thiol modification to neuronal cell death. *Redox Biol* **2020**, *28*, 101377.
- 217. Hurben, A. K.; Tretyakova, N. Y., Role of protein damage inflicted by dopamine metabolites in Parkinson's disease: evidence, tools, and outlook. *Chem Res Toxicol* **2022**, 1789-1804.
- 218. Nawaratne, V.; McLaughlin, S. P.; Mayer, F. P.; Gichi, Z.; Mastriano, A.; Carvelli, L., Prolonged amphetamine exposures increase the endogenous human dopamine receptors 2 at the cellular membrane in cells lacking the dopamine transporter. *Front Cell Neurosci* **2021**, *15*, 681539.
- 219. Boxberger, K. H.; Hagenbuch, B.; Lampe, J. N., Common drugs inhibit human organic cation transporter 1 (OCT1)-mediated neurotransmitter uptake. *Drug Metab Dispos* **2014**, *42* (6), 990-995.
- 220. Pontén, F.; Jirström, K.; Uhlen, M., The Human Protein Atlas—a tool for pathology. *J Pathol* **2008**, *216* (4), 387-393.
- 221. Human Protein Atlas. https://www.proteinatlas.org/ENSG00000175003-SLC22A1/cell+line (accessed 11.11.22).

- 222. Morstein, J.; Capecchi, A.; Hinnah, K.; Park, B.; Petit-Jacques, J.; Van Lehn, R. C.; Reymond, J. L.; Trauner, D., Medium-chain lipid conjugation facilitates cell-permeability and bioactivity. *J Am Chem Soc* **2022**, *144* (40), 18532-18544.
- 223. Eden, E.; Lipson, D.; Yogev, S.; Yakhini, Z., Discovering motifs in ranked lists of DNA sequences. *PLoS Comput Biol* **2007**, *3* (3), e39.
- 224. Eden, E.; Navon, R.; Steinfeld, I.; Lipson, D.; Yakhini, Z., GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. *BMC Bioinform* **2009**, *10*, 48.
- 225. Zhu, B. T., Catechol-*O*-Methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: importance in pathophysiology and pathogenesis. *Curr Drug Metab* **2002**, *3* (3), 321-349.
- 226. Bley, K.; Boorman, G.; Mohammad, B.; McKenzie, D.; Babbar, S., A comprehensive review of the carcinogenic and anticarcinogenic potential of capsaicin. *Toxicol Pathol* **2012**, *40* (6), 847-873.
- 227. Zhang, S.; Wang, R.; Wang, G., Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem Neurosci 2019, 10 (2), 945-953.
- 228. Akopian, D.; Shen, K.; Zhang, X.; Shan, S. O., Signal recognition particle: an essential protein-targeting machine. *Annu Rev Biochem* **2013**, *82*, 693-721.
- 229. Faoro, C.; Ataide, S. F., Noncanonical functions and cellular dynamics of the mammalian signal recognition particle components. *Front Mol Biosci* **2021**, *8*, 679584.
- 230. San Francisco, B.; Bretsnyder, E. C.; Kranz, R. G., Human mitochondrial holocytochrome *c* synthase's heme binding, maturation determinants, and complex formation with cytochrome *c*. *Proc Natl Acad Sci USA* **2013**, *110* (9), E788-E797.
- 231. Babbitt, S. E.; San Francisco, B.; Mendez, D. L.; Lukat-Rodgers, G. S.; Rodgers, K. R.; Bretsnyder, E. C.; Kranz, R. G., Mechanisms of mitochondrial holocytochrome *c* synthase and the key roles played by cysteines and histidine of the heme attachment site, Cys-XX-Cys-His. *J Biol Chem* **2014**, *289* (42), 28795-28807.
- Prakash, S. K.; Cormier, T. A.; McCall, A. E.; Garcia, J. J.; Sierra, R.; Haupt, B.; Zoghbi, H. Y.; Van Den Veyver, I. B., Loss of holocytochrome *c*-type synthetase causes the male lethality of X-linked dominant microphthalmia with linear skin defects (MLS) syndrome. *Hum Mol Genet* 2002, *11* (25), 3237-3248.
- 233. Giordano, F.; Saheki, Y.; Idevall-Hagren, O.; Colombo, S. F.; Pirruccello, M.; Milosevic, I.; Gracheva, E. O.; Bagriantsev, S. N.; Borgese, N.; De Camilli, P., PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. *Cell* 2013, 153 (7), 1494-1509.
- 234. Chang, C. L.; Hsieh, T. S.; Yang, T. T.; Rothberg, K. G.; Azizoglu, D. B.; Volk, E.; Liao, J. C.; Liou, J., Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. *Cell Rep* **2013**, *5* (3), 813-825.

- 235. Liaci, A. M.; Steigenberger, B.; Telles de Souza, P. C.; Tamara, S.; Gröllers-Mulderij, M.; Ogrissek, P.; Marrink, S. J.; Scheltema, R. A.; Förster, F., Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage. *Mol Cell* 2021, *81* (19), 3934-3948.
- 236. Takei, D.; Ishihara, H.; Yamaguchi, S.; Yamada, T.; Tamura, A.; Katagiri, H.; Maruyama, Y.; Oka, Y., WFS1 protein modulates the free Ca(2+) concentration in the endoplasmic reticulum. *FEBS Lett* **2006**, *580* (24), 5635-5640.
- 237. Istvan, E. S.; Deisenhofer, J., Structural mechanism for statin inhibition of HMG-CoA reductase. *Science* **2001**, *292* (5519), 1160-1164.
- 238. Luskey, K. L.; Stevens, B., Human 3-hydroxy-3-methylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and sterol-regulated degradation. *J Biol Chem* **1985**, *260* (18), 10271-10277.
- 239. Cuccioloni, M.; Mozzicafreddo, M.; Spina, M.; Tran, C. N.; Falconi, M.; Eleuteri, A. M.; Angeletti, M., Epigallocatechin-3-gallate potently inhibits the *in vitro* activity of hydroxy-3-methyl-glutaryl-CoA reductase. *J Lipid Res* **2011**, *52* (5), 897-907.
- 240. Nishiyama, A.; Frappier, L.; Méchali, M., MCM-BP regulates unloading of the MCM2-7 helicase in late S phase. *Genes Dev* **2011**, *25* (2), 165-175.
- Martin, C. A.; Murray, J. E.; Carroll, P.; Leitch, A.; Mackenzie, K. J.; Halachev, M.; Fetit, A. E.; Keith, C.; Bicknell, L. S.; Fluteau, A.; Gautier, P.; Hall, E. A.; Joss, S.; Soares, G.; Silva, J.; Bober, M. B.; Duker, A.; Wise, C. A.; Quigley, A. J.; Phadke, S. R.; Wood, A. J.; Vagnarelli, P.; Jackson, A. P., Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. *Genes Dev* 2016, *30* (19), 2158-2172.
- 242. Yadav, S.; Verma, P. J.; Panda, D., C-terminal region of MAP7 domain containing protein 3 (MAP7D3) promotes microtubule polymerization by binding at the C-terminal tail of tubulin. *PloS One* **2014**, *9* (6), e99539.
- 243. Guyot, R.; Vincent, S.; Bertin, J.; Samarut, J.; Ravel-Chapuis, P., The transforming acidic coiled coil (TACC1) protein modulates the transcriptional activity of the nuclear receptors TR and RAR. *BMC Mol Biol* **2010**, *11*, 3.
- 244. Tan, B. C.; Lee, S. C., Nek9, a novel FACT-associated protein, modulates interphase progression. *J Biol Chem* **2004**, *279* (10), 9321-9330.
- 245. Yuan, J.; Luo, K.; Zhang, L.; Cheville, J. C.; Lou, Z., USP10 regulates p53 localization and stability by deubiquitinating p53. *Cell* **2010**, *140* (3), 384-396.
- 246. Lattanzio, R.; Piantelli, M.; Falasca, M., Role of phospholipase C in cell invasion and metastasis. *Adv Biol Regul* **2013**, *53* (3), 309-318.
- 247. Takayama, S.; Xie, Z.; Reed, J. C., An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. *J Biol Chem* **1999**, *274* (2), 781-786.
- 248. Stehling, O.; Netz, D. J.; Niggemeyer, B.; Rösser, R.; Eisenstein, R. S.; Puccio, H.; Pierik, A. J.; Lill, R., Human Nbp35 is essential for both cytosolic iron-sulfur protein assembly and iron homeostasis. *Mol Cell Biol* **2008**, *28* (17), 5517-5528.

- 249. Kleylein-Sohn, J.; Westendorf, J.; Le Clech, M.; Habedanck, R.; Stierhof, Y. D.; Nigg, E. A., Plk4-induced centriole biogenesis in human cells. *Dev Cell* 2007, 13 (2), 190-202.
- 250. Spektor, A.; Tsang, W. Y.; Khoo, D.; Dynlacht, B. D., Cep97 and CP110 suppress a cilia assembly program. *Cell* **2007**, *130* (4), 678-690.
- 251. Uematsu, S.; Sato, S.; Yamamoto, M.; Hirotani, T.; Kato, H.; Takeshita, F.; Matsuda, M.; Coban, C.; Ishii, K. J.; Kawai, T.; Takeuchi, O.; Akira, S., Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. *J Exp Med* 2005, 201 (6), 915-923.
- 252. Dunne, A.; Carpenter, S.; Brikos, C.; Gray, P.; Strelow, A.; Wesche, H.; Morrice, N.; O'Neill, L. A., IRAK1 and IRAK4 promote phosphorylation, ubiquitination, and degradation of MyD88 adaptor-like (Mal). *J Biol Chem* **2010**, *285* (24), 18276-18282.
- 253. Tanida, I.; Tanida-Miyake, E.; Komatsu, M.; Ueno, T.; Kominami, E., Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. *J Biol Chem* **2002**, *277* (16), 13739-13744.
- 254. Xu, S.; Sankar, S.; Neamati, N., Protein disulfide isomerase: a promising target for cancer therapy. *Drug Discov Today* **2014**, *19* (3), 222-240.
- 255. Özcelik, D.; Pezacki, J. P., Small molecule inhibition of protein disulfide isomerase in neuroblastoma cells induces an oxidative stress response and apoptosis pathways. *ACS Chem Neurosci* **2019**, *10* (9), 4068-4075.
- 256. Liang, Y. C.; Lin-Shiau, S. Y.; Chen, C. F.; Lin, J. K., Inhibition of cyclin-dependent kinases 2 and 4 activities as well as induction of Cdk inhibitors p21 and p27 during growth arrest of human breast carcinoma cells by (-)-epigallocatechin-3-gallate. *J Cell Biochem* **1999**, *75* (1), 1-12.
- 257. Palhano, F. L.; Lee, J.; Grimster, N. P.; Kelly, J. W., Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. *J Am Chem Soc* **2013**, *135* (20), 7503-7510.
- 258. Bieschke, J.; Russ, J.; Friedrich, R. P.; Ehrnhoefer, D. E.; Wobst, H.; Neugebauer, K.; Wanker, E. E., EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. *Proc Natl Acad Sci USA* **2010**, *107* (17), 7710-7715.
- 259. Li, J.; Zhu, M.; Manning-Bog, A. B.; Di Monte, D. A.; Fink, A. L., Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson's and Alzheimer's disease. *FASEB Journal* **2004**, *18* (9), 962-964.
- 260. Ehrnhoefer, D. E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E. E., EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. *Nat Struct Mol Biol* **2008**, *15* (6), 558-566.
- 261. Mitsiades, C. S.; Mitsiades, N. S.; McMullan, C. J.; Poulaki, V.; Kung, A. L.; Davies, F. E.; Morgan, G.; Akiyama, M.; Shringarpure, R.; Munshi, N. C.; Richardson, P. G.; Hideshima, T.; Chauhan, D.; Gu, X.; Bailey, C.; Joseph, M.; Libermann, T. A.; Rosen,
N. S.; Anderson, K. C., Antimyeloma activity of heat shock protein-90 inhibition. *Blood* **2006**, *107* (3), 1092-1100.

- 262. Richardson, P. G.; Mitsiades, C.; Hideshima, T.; Anderson, K. C., Bortezomib: proteasome inhibition as an effective anticancer therapy. *Annu Rev Med* **2006**, *57*, 33-47.
- 263. Vatolin, S.; Phillips, J. G.; Jha, B. K.; Govindgari, S.; Hu, J.; Grabowski, D.; Parker, Y.; Lindner, D. J.; Zhong, F.; Distelhorst, C. W.; Smith, M. R.; Cotta, C.; Xu, Y.; Chilakala, S.; Kuang, R. R.; Tall, S.; Reu, F. J., Novel protein disulfide isomerase inhibitor with anticancer activity in multiple myeloma. *Cancer Resarch* **2016**, *76* (11), 3340-3350.
- 264. Xu, S.; Butkevich, A. N.; Yamada, R.; Zhou, Y.; Debnath, B.; Duncan, R.; Zandi, E.; Petasis, N. A.; Neamati, N., Discovery of an orally active small-molecule irreversible inhibitor of protein disulfide isomerase for ovarian cancer treatment. *Proc Natl Acad Sci USA* **2012**, *109* (40), 16348-16353.
- 265. Ge, J.; Zhang, C. J.; Li, L.; Chong, L. M.; Wu, X.; Hao, P.; Sze, S. K.; Yao, S. Q., Small molecule probe suitable for *in situ* profiling and inhibition of protein disulfide isomerase. *ACS Chem Biol* **2013**, *8* (11), 2577-2585.
- 266. Khan, M. M.; Simizu, S.; Kawatani, M.; Osada, H., The potential of protein disulfide isomerase as a therapeutic drug target. *Oncol Res* **2011**, *19* (10-11), 445-453.
- 267. Benham, A. M., The protein disulfide isomerase family: key players in health and disease. *Antioxid Redox Signal* **2012**, *16* (8), 781-789.
- 268. Hoffstrom, B. G.; Kaplan, A.; Letso, R.; Schmid, R. S.; Turmel, G. J.; Lo, D. C.; Stockwell, B. R., Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. *Nat Chem Biol* **2010**, *6* (12), 900-906.
- 269. Elumalai, N.; Berg, A.; Natarajan, K.; Scharow, A.; Berg, T., Nanomolar inhibitors of the transcription factor STAT5b with high selectivity over STAT5a. *Angew Chem Int Ed Engl* **2015**, *54* (16), 4758-4763.
- 270. Pham, T. T.; Giesert, F.; Röthig, A.; Floss, T.; Kallnik, M.; Weindl, K.; Hölter, S. M.; Ahting, U.; Prokisch, H.; Becker, L.; Klopstock, T.; Hrabé de Angelis, M.; Beyer, K.; Görner, K.; Kahle, P. J.; Vogt Weisenhorn, D. M.; Wurst, W., DJ-1-deficient mice show less TH-positive neurons in the ventral tegmental area and exhibit non-motoric behavioural impairments. *Genes Brain Behav* 2010, 9 (3), 305-317.
- 271. Drechsel, J.; Mandl, F. A.; Sieber, S. A., Chemical Probe To Monitor the Parkinsonism-Associated Protein DJ-1 in Live Cells. *ACS Chem Biol* **2018**, *13* (8), 2016-2019.

V Abbreviations

ABC	adenosine triphosphate-binding cassette
AcOD	deuterated acetic acid
AcOH	acetic acid
ANOVA	analysis of variance
APEX	engineered ascorbate peroxidase
BLAST	basic local alignment search tool
CDCl ₃	deuterated chloroform
Co-IP	co-immunprecipitation
COMT	catechol- <i>O</i> -methyltransferase
CuAAC	copper-catalysed azide-alkyne cycloaddition
CV	cyclic voltammetry
D_2O	deuterated water
	2 6-diaminonimelic acid
DMFM	Dulbecco's Modified Fagle Medium
DME	N N-dimethylformamide
DMSO	dimethyl sulfoyide
DMSO da	deuterated dimethyl sulfoxide
	deexyribenucleic acid
DINA	disuscinimidul sulfovido
	distinitional
	domain of unknown function
	uomani oi unknown function 1 (2 dimethylamin arranyl) 2 athylaethydiimide hydroehlaride
EDC·HCI	1-(3-dimetrylaminopropy)-3-ethylcarbourinde hydrochloride
EHEC	enteronaemorrnagic E. coll
eq.	equivalents
EK	endoplasmic reticulum
ESI	electrospray ionisation
EtOAc	ethyl acetate
EtOH	ethanol
Fc	ferrocene
FCS	foetal calf serum
FDR	false discovery rate
FMN	flavin mononucleotide
GO	gene ontology
GOBP	gene ontology biological process
GOCC	gene ontology cellular compartment
GOMF	gene ontology molecular function
GPCR	G protein-coupled receptor
GST	glutathione S-transferase
H-ASW	HEPES-buffered artificial seawater
HBBS	Hanks' balanced salt solution
Hccs	holocytochrome <i>c</i> -type synthase
HEPES	2-(4-(2-hydroxyethyl)piperazin-1-yl)ethane-1-sulfonic acid
HOBt	hydroxybenzotriazole
HPLC	high-performance liquid chromatography
HRMS	high-resolution mass spectrometry
Hsc70/Hsp70	70-kDa heat shock cognate protein/70 kilodalton heat shock proteins
IgG	immunoglobulin G
IPTG	β-D-1-thiogalactopyranoside
isoDTB	isotopically labelled desthiobiotin azide
KEGG	Kyoto Encyclopedia of Genes and Genomes
LB	lysogeny broth
	/

LC-MS	liquid chromatography with mass spectrometry
LFQ	label-free quantification
LMU	Ludwig Maximilian University of Munich
m/z	mass-to-charge ratio
MCP	methyl-accepting chemotaxis protein
MeOH	methanol
MS	mass spectrometry
MS/MS	tandem mass spectrometry
MST	microscale thermophoresis
NADH	nicotinamide adenine dinucleotide
NMR	nuclear magnetic resonance
NP-40	Nonidet P-40
NTA	nitrilotriacetic acid
OD_{600}	optical density measured at 600 nm
OmpA	outer membrane protein A
PAGE	polyacrylamide gel electrophoresis
PAL	photoaffinity labelling
PRS	phosphate-buffered saline
PCI	photocrosslinker
PCR	polymerase chain reaction
PD	Parkinson's disease
PDR	nrotein data hank
PMSE	phonen data bank
DDh ₂	triphenylphosphine
	narts per million
DSM	partis per minion partide spectrum match
DTM	post translational protein modification
	post-translational protein mouncation
	polyginglidenfluoride
F V DF	room tomporature
1.l. D.	rotantion factor
	rect mean square deviation
RMSD	root-mean-square deviation
KNA	ribonucieic acid
SDS	sodium dodecyl sulphate
SPAAC	strain-promoted azide-alkyne cycloaddition
Srp19	signal recognition particle 19 kDa protein
$IBAPF_6$	tetrabutylammonium nexafluorophosphate
IBIA	tris((1-benzyi-4-triazolyi)metnyi)amine
t-BuOH	tert-butanol
TCEP	tris(2-carboxyethyl)phosphine hydrochloride
TEA	triethylamine
TEAB	triethylammonium bicarbonate buffer
TEV	Tobacco Etch Virus nuclear-inclusion-a endopeptidase
TFA	trifluoroacetic acid
TLC	thin-layer chromatography
Tris	tris(hydroxymethyl)aminomethane
TUM	Technical University of Munich
TX100	triton X-100; 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol
UPR	unfolded protein response
UV	ultraviolet
VC	Vibrio campbellii

1 NMR spectra

Figure VI-1. NMR spectra of 3-(but-3-yn-1-yl)-3-(2-iodoethyl)-3*H*-diazirine (**PCL-I**) in CDCl₃. (A) ¹H-NMR (500 MHz). (B) ¹³C-NMR (75 MHz).

Figure VI-2. NMR spectra of (*R*)-4-(2-((2-(3-(but-3-yn-1-yl)-3*H*-diazirin-3-yl)ethyl)amino)-1-hydroxyethyl)benzene-1,2-diol (**EPI-P1**) as a 1:3.5 mixture with acetic acid. (A) ¹H-NMR (500 MHz, DCl:D₂O 38:962). (B) 13 C-NMR (101 MHz, AcOD/D₂O 1:1).

Figure VI-3. NMR spectra of (*R*)-*N*-(2-(3,4-dihydroxyphenyl)-2-hydroxyethyl)hept-6-ynamide (**EPI-P2**) in DMSO-d₆. (A) ¹H-NMR (500 MHz). (B) ¹³C-NMR (101 MHz).

Figure VI-4. NMR spectra of *N*-(2-hydroxy-2-(3-hydroxyphenyl)ethyl)hept-6-ynamide (**PE-P**) in DMSO-d₆. (A) ¹H-NMR (500 MHz). (B) ¹³C-NMR (101 MHz).

Figure VI-5. NMR spectra of *N*-(2-hydroxy-2-(4-hydroxyphenyl)ethyl)hept-6-ynamide (**OA-P**) in DMSO-d₆. (A) ¹H-NMR (300 MHz). (B) ¹³C-NMR (75 MHz).

Figure VI-6. NMR spectra of *N*-(3,4-dihydroxyphenethyl)pent-4-ynamide (**DA-P1**) in DMSO-d₆. (A) ¹H-NMR (500 MHz). (B) ¹³C-NMR (75 MHz).

VI Appendix

Figure VI-7. NMR spectra of *N*-(3,4-dihydroxyphenethyl)hex-5-ynamide (**DA-P2**) in DMSO-d₆. (A) ¹H-NMR (400 MHz). (B) ¹³C-NMR (101 MHz).

Figure VI-8. NMR spectra of *N*-(3,4-dihydroxyphenethyl)hept-6-ynamide (**DA-P3**) in DMSO-d₆. (A) ¹H-NMR (400 MHz). (B) ¹³C-NMR (101 MHz).

Figure VI-9. NMR spectra of *N*-(4-hydroxyphenethyl)hex-5-ynamide (**DA-P4**) in DMSO-d₆. (A) ¹H-NMR (400 MHz). (B) ¹³C-NMR (101 MHz).

2 Protein tables

Protein IDs	Gene names	Protein names	-log ₁₀ (<i>p</i> -value)	log ₂ (enrichment)
075410	TACC1	Transforming acidic coiled-coil-containing protein 1	2.36	8.44
Q92575	UBXN4	UBX domain-containing protein 4	3.33	8.21
Q6NUQ1	RINT1	RAD50-interacting protein 1	6.43	7.64
Q9Y6A5	TACC3	Transforming acidic coiled-coil-containing protein 3	3.01	6.43
Q8N2G8	GHDC	GH3 domain-containing protein	2.23	6.35
P33981	TTK	Dual specificity protein kinase TTK	3.79	6.28
P46821	MAP1B	Microtubule-associated protein 1B	3.43	6.20
075330	HMMR	Hyaluronan mediated motility receptor	2.76	6.20
Q86XL3	ANKLE2	Ankyrin repeat and LEM domain-containing protein 2	4.02	6.18
P18031	PIPNI	1 yrosine-protein phosphatase non-receptor type 1	2.56	6.17
Q969V6	MKLI	Dantidul prolui aig trong igomoroga EKDD9	3.45	6.14
081800	FKDF0 SKA3	Spindle and kinetochore associated protein 3	4.00	6.04
Q61X90	CDCA2	Cell division cycle-associated protein 2	1 33	6.00
0911174	GGA2	ADP-ribosylation factor-binding protein GGA2	3.46	5.00
Q96PC5	MIA2	Melanoma inhibitory activity protein 2	3.13	5.98
032MZ4	LRRFIP1	Leucine-rich repeat flightless-interacting protein 1	5.83	5.98
095817	BAG3	BAG family molecular chaperone regulator 3	4.61	5.91
Q8ND24	RNF214	RING finger protein 214	3.99	5.81
P18850	ATF6	Cyclic AMP-dependent transcription factor ATF-6 alpha	4.44	5.69
O95197	RTN3	Reticulon-3	4.00	5.66
O95881	TXNDC12	Thioredoxin domain-containing protein 12	3.77	5.59
P20810	CAST	Calpastatin	3.15	5.58
Q2NKX8	ERCC6L	DNA excision repair protein ERCC-6-like	2.60	5.53
O60566	BUB1B	Mitotic checkpoint serine/threonine-protein kinase BUB1 beta	4.09	5.51
Q8N6T3	ARFGAP1	ADP-ribosylation factor GTPase-activating protein 1	5.00	5.51
Q8TEY7	USP33	Ubiquitin carboxyl-terminal hydrolase 33	4.70	5.39
Q9Y3/1	SH3GLB1	Endophilin-Bl	3.00	5.34
Q5VV42	CDKALI	Threonylcarbamoyladenosine tRNA methylthiotransferase	5.43	5.32
P30519	HMOX2	Heme oxygenase 2	5.41	5.31
Q96A49	DCTM	Synapse-associated protein 1	4.01	5.25
Q903W0	ITGR1	Integrin beta-1	3.04	5.15
09HC62	SENP2	Sentrin-specific protease 2	4 15	5.09
P29372	MPG	DNA-3-methyladenine glycosylase	3.52	5.05
O9UGP4	LIMD1	LIM domain-containing protein 1	6.07	4.95
P82094	TMF1	TATA element modulatory factor	3.66	4.65
015121	DEGS1	Sphingolipid delta(4)-desaturase DES1	2.20	4.65
Q8N2K0	ABHD12	Monoacylglycerol lipase ABHD12	3.59	4.65
Q8NG31	CASC5	Protein CASC5	2.87	4.65
Q08379	GOLGA2	Golgin subfamily A member 2	2.13	4.63
Q8NF37	LPCAT1	Lysophosphatidylcholine acyltransferase 1	5.37	4.59
P07942	LAMB1	Laminin subunit beta-1	2.95	4.56
Q31612	HLA-B	HLA class I histocompatibility antigen, B-73 alpha chain	2.95	4.56
Q9Y2W6	TDRKH	Tudor and KH domain-containing protein	4.86	4.52
P3/198	NUP62	Nuclear pore glycoprotein p62	4.79	4.50
P51617	IRAK I	Interleukin-1 receptor-associated kinase 1	3.59	4.46
Q9Y4P3	IBL2 BNE210	Iransducin beta-like protein 2	2.68	4.43
Q3W0B1	ΑΚΔΦ1	A kinase anchor protein 1 mitochondrial	2.89	4.43
Q92007	NUP35	Nucleoporin NUP53	5.34 6.41	4.40
09C0E8	INP	Protein lunanark	3.05	4.38
015005	SPCS2	Signal peptidase complex subunit 2	5.05	4.37
09C0C9	UBE2O	E2/E3 hybrid ubiquitin-protein ligase UBE2O	3.97	4.29
015270	SPTLC2	Serine palmitovltransferase 2	3.72	4.28
P04035	HMGCR	3-hydroxy-3-methylglutaryl-coenzyme A reductase	2.42	4.22
O99640	PKMYT1	Membrane-associated tyrosine- and threonine-specific cdc2- inhibitory kinase	2.36	4.21
O6WK74	RAB11FIP1	Rab11 family-interacting protein 1	3.11	4.20
Q12802	AKAP13	A-kinase anchor protein 13	2.67	4.19
Q95604	HLA-C	HLA class I histocompatibility antigen, Cw-17 alpha chain	3.28	4.18
Q53GS7	GLE1	Nucleoporin GLE1	3.53	4.18
O14967	CLGN	Calmegin	2.41	4.16
Q8N511	TMEM199	Transmembrane protein 199	4.59	4.13
Q9NSV4	DIAPH3	Protein diaphanous homolog 3	3.72	4.12
014976	GAK	Cyclin-G-associated kinase	4.44	4.12

Table VI-1: Proteins significantly enriched by DA-P3 (15 μ M) compared to a DMSO control in Hek293 cells.

Q99661	KIF2C	Kinesin-like protein KIF2C	2.08	4.06
Q5JRA6	MIA3	Melanoma inhibitory activity protein 3	4.22	4.05
P01891	HLA-A	HLA class I histocompatibility antigen, A-68 alpha chain	2.86	4.05
O95613	PCNT	Pericentrin	2.19	4.01
Q92551	IP6K1	Inositol hexakisphosphate kinase 1	4.10	4.01
Q66K74	MAPIS	Microtubule-associated protein 1S	2.74	4.00
Q/Z434	MAVS	Mitochondrial antiviral-signaling protein	5.30	3.90
060664	PLIN3 MAP7D1	Perilipin-3	2.25	3.8/
QSKQUS	MAP/DI FSVT1	MAP / domain-containing protein 1	5.74	3.87
Q9D5J8 O8N0X7	SPG20	Spartin	4 36	3.80
Q81(6X)	AUP1	Ancient ubiquitous protein 1	3 36	3.81
092615	LARP4B	La-related protein 4B	2.76	3.78
Q9Y6I9	TEX264	Testis-expressed sequence 264 protein	3.48	3.77
Q9NUQ3	TXLNG	Gamma-taxilin	2.98	3.75
075179	ANKRD17	Ankyrin repeat domain-containing protein 17	2.81	3.74
Q8WZA9	IRGQ	Immunity-related GTPase family Q protein	4.08	3.69
O60343	TBC1D4	TBC1 domain family member 4	4.47	3.66
P49790	NUP153	Nuclear pore complex protein Nup153	6.05	3.63
	~~~~	Eukaryotic peptide chain release factor GTP-binding subunit		
P15170	GSPT1	ERF3A	4.67	3.54
Q9P246	STIM2	Stromal interaction molecule 2	4.13	3.53
014910	LIN/A RMDN3	FIORENT HIL- / HOHOLOG A Regulator of microtubule dynamics protein 2	2.12	3.51 2.51
095861	RPNT1	3(2) 5-hisphosphate nucleotidase 1	4.00	3.31
086Y07	VRK2	Serine/threonine-protein kinase VRK?	2.37	3.50
Q00107	NUP50	Nuclear pore complex protein Nup50	4.36	3.44
P14314	PRKCSH	Glucosidase 2 subunit beta	2.69	3.42
P08240	SRPR	Signal recognition particle receptor subunit alpha	4.49	3.42
Q96T51	RUFY1	RUN and FYVE domain-containing protein 1	2.20	3.38
Q5T5U3	ARHGAP21	Rho GTPase-activating protein 21	2.95	3.36
Q9HD26	GOPC	Golgi-associated PDZ and coiled-coil motif-containing protein	2.79	3.36
Q5SNT2	TMEM201	Transmembrane protein 201	3.27	3.33
P60468	SEC61B	Protein transport protein Sec61 subunit beta	4.38	3.31
P27816	MAP4	Microtubule-associated protein 4	5.75	3.30
Q9Y2U8	LEMD3	Inner nuclear membrane protein Manl	4.38	3.29
Q6PJG6	BRATT SPDL1	BRCA1-associated ATM activator 1	2.26	3.29
Q90EA4	PDIA5	Protein disulfide isomerase A5	3.09	3.27
043683	RUR1	Mitotic checkpoint serine/threonine-protein kinase BUB1	2.11	3.20
A0MZ66	KIAA1598	Shootin-1	4.16	3.23
Q99961	SH3GL1	Endophilin-A2	4.14	3.23
Q9UI30	TRMT112	Multifunctional methyltransferase subunit TRM112-like protein	3.41	3.21
Q99614	TTC1	Tetratricopeptide repeat protein 1	4.46	3.21
Q96R06	SPAG5	Sperm-associated antigen 5	3.38	3.20
Q15084	PDIA6	Protein disulfide-isomerase A6	3.51	3.19
Q8IWC1	MAP7D3	MAP7 domain-containing protein 3	4.25	3.18
Q16204	CCDC6	Coiled-coil domain-containing protein 6	2.97	3.17
Q86VQ1	GLCCII	Glucocorticoid-induced transcript 1 protein	3.44	3.14
095292	VAPB	vesicie-associated membrane protein-associated protein B/C	3.47	3.14
Q811 A0	PCVT1A	Cytosketeton-associated protein 2-like	2.90	3.13
08ND83	SLAIN1	SI AIN motif-containing protein 1	3.43 3.02	3.07
O9HDC5	JPH1	Junctophilin-1	3.53	3.00
P46109	CRKL	Crk-like protein	3.23	3.03
O94966	USP19	Ubiquitin carboxyl-terminal hydrolase 19	3.03	3.02
		Arf-GAP with coiled-coil, ANK repeat and PH domain-containing		
Q15027	ACAP1	protein 1	3.53	3.02
O43303	CCP110	Centriolar coiled-coil protein of 110 kDa	3.78	2.92
Q5SQN1	SNAP47	Synaptosomal-associated protein 47	5.24	2.89
Q15398	DLGAP5	Disks large-associated protein 5	3.34	2.87
P50402	EMD	Emerin	4.38	2.87
Q9Y4K4	MAP4K5	Mitogen-activated protein kinase kinase kinase kinase 5	2.86	2.86
P22681	CBL	E3 ubiquitin-protein ligase CBL	2.19	2.85
Q92545	<i>TMEM131</i>	Transmembrane protein 131	3.06	2.84
Q9H7E9	C8orf33	UPF0488 protein C8orf33	3.46	2.84
0/5113	N4BP1	NEDD4-Dinding protein 1 Ovvsterol hinding protein related protein 11	2.47	2.84
QYDAB4	DSBPLII DSME2	Drysteror-binding protein-related protein 11	3.03	2.81
081763	r SIVIEZ VRK3	I noteasonie activator complex subunit 2 Inactive serine/threenine protein kinase VDV2	2.51	2.81
Q96HF7	ERO11	FRO1-like protein alpha	2.04	2.80
P04080	CSTB	Cystatin-B	2.05	2.79
015027	SEC16A	Protein transport protein Sec16A	3.65	2.78

Q96SK2	TMEM209	Transmembrane protein 209	3.09	2.75
Q9NYZ3	GTSE1	G2 and S phase-expressed protein 1	2.59	2.74
Q9H3P7	ACBD3	Golgi resident protein GCP60	2.35	2.74
075475	PSIP1	PC4 and SFRS1-interacting protein	2.34	2.73
Q96HA1	POM121	Nuclear envelope pore membrane protein POM 121	2.94	2.73
Q8NB90	SPATAS	Spermatogenesis-associated protein 5	2.18	2.72
P02343		Actin hinding protein anillin	3.06	2.71
014BN4	SIMAP	Sarcolemmal membrane-associated protein	2.12	2.71
09BSD7	NTPCR	Cancer-related nucleoside-triphosphatase	2.12	2.71
P11047	LAMC1	Laminin subunit gamma-1	2.01	2.68
P35670	ATP7B	Copper-transporting ATPase 2	2.74	2.68
P40855	PEX19	Peroxisomal biogenesis factor 19	3.54	2.66
Q6P2H3	CEP85	Centrosomal protein of 85 kDa	3.41	2.66
Q14145	KEAP1	Kelch-like ECH-associated protein 1	2.63	2.65
O60427	FADS1	Fatty acid desaturase 1	4.92	2.64
O60678	PRMT3	Protein arginine N-methyltransferase 3	2.04	2.63
Q92542	NCSTN	Nicastrin	2.04	2.62
Q9NXV2	KCTD5	BTB/POZ domain-containing protein KCTD5	4.32	2.62
Q9NRY5	FAM114A2	Protein FAM114A2	3.04	2.60
Q10043	DBN1 UM12	Dreonn Minor histocompatibility antigan H12	4.39	2.39
Q81C19	MAGT1	Magnesium transporter protein 1	2.38	2.50
09H910	HN1L	Hematological and neurological expressed 1-like protein	3.94	2.55
075131	CPNE3	Copine-3	4.14	2.53
08WU90	ZC3H15	Zinc finger CCCH domain-containing protein 15	3.04	2.52
E7EVH7	KLC1	Kinesin light chain 1	2.84	2.51
Q9UBP0	SPAST	Spastin	2.23	2.51
Q9HC38	GLOD4	Glyoxalase domain-containing protein 4	3.96	2.50
Q9Y4E8	USP15	Ubiquitin carboxyl-terminal hydrolase 15	2.13	2.50
O94901	SUN1	SUN domain-containing protein 1	3.57	2.49
Q9Y3C8	UFC1	Ubiquitin-fold modifier-conjugating enzyme 1	2.82	2.48
Q9Y2/7	VDAC3	Voltage-dependent anion-selective channel protein 3	4.11	2.48
Q6PL18 D20101	ATAD2	A l Pase family AAA domain-containing protein 2	2.51	2.47
P30101 P40763	PDIAS STAT2	Protein disulide-isomerase A5	2.01	2.47
08IVI 3	Clorf174	LIPF0688 protein C1orf174	3.69	2.40
O5TAX3	ZCCHC11	Terminal uridylyltransferase 4	2.25	2.43
O9BZI7	UPF3B	Regulator of nonsense transcripts 3B	2.09	2.42
Q5UIP0	RIF1	Telomere-associated protein RIF1	3.99	2.42
Q15003	NCAPH	Condensin complex subunit 2	4.03	2.41
A1X283	SH3PXD2B	SH3 and PX domain-containing protein 2B	2.60	2.41
P14635	CCNB1	G2/mitotic-specific cyclin-B1	3.24	2.41
Q9NT62	ATG3	Ubiquitin-like-conjugating enzyme ATG3	3.38	2.41
P48506	GCLC	Glutamatecysteine ligase catalytic subunit	3.42	2.41
Q6PIL5	FAMII/B	Protein FAMIT/B	2.68	2.40
D13209	DAHR	Protain disulfide isomerase	3.37	2.30
016352	INA	Alpha-interneyin	2.90	2.37
013111	CHAFIA	Chromatin assembly factor 1 subunit A	2.34	2.37
O8WXH0	SYNE2	Nesprin-2	3.40	2.33
O60547	GMDS	GDP-mannose 4,6 dehydratase	2.68	2.34
Q9Y2I1	NISCH	Nischarin	3.54	2.33
O43847	NRD1	Nardilysin	2.71	2.33
P22059	OSBP	Oxysterol-binding protein 1	3.36	2.33
Q9Y2Z0	SUGT1	Suppressor of G2 allele of SKP1 homolog	3.38	2.30
095336	PGLS	6-phosphogluconolactonase	2.27	2.27
Q15417	CNN3	Calponin-3	2.82	2.25
Q9Y2H6	FNDC3A MADV11D11	Fibronectin type-III domain-containing protein 3A	3.20	2.25
Q8NDC0 P10500	MAPKIIPIL TVN	Thioradovin	2.70	2.24
096IN0	ICOR	Ligand-dependent corepressor	2.00	2.24
004864	REL	Proto-oncogene c-Rel	2.32	2.22
Q00577	PURA	Transcriptional activator protein Pur-alpha	2.89	2.22
Q9NRL3	STRN4	Striatin-4	3.43	2.21
O60271	SPAG9	C-Jun-amino-terminal kinase-interacting protein 4	2.03	2.21
Q8N8S7	ENAH	Protein enabled homolog	3.63	2.20
Q9Y5K6	CD2AP	CD2-associated protein	2.35	2.20
P13861	PRKAR2A	cAMP-dependent protein kinase type II-alpha regulatory subunit	3.32	2.20
Q9H6S0	YTHDC2	Probable ATP-dependent RNA helicase YTHDC2	3.33	2.20
Q5JSH3	WDR44	WD repeat-containing protein 44	2.21	2.19
P22061	PCMT1	Protein-L-isoaspartate(D-aspartate) O-methyltransferase	3.16	2.19
Q9 Y 3P9	KABGAPI	Kab G1Pase-activating protein 1	5.03	2.19

075694	NUP155	Nuclear pore complex protein Nup155	2.63	2.17
P49589	CARS	CysteinetRNA ligase, cytoplasmic	2.73	2.17
P42166	TMPO	Lamina-associated polypeptide 2, isoform alpha	4.33	2.17
Q15654	TRIP6	Thyroid receptor-interacting protein 6	2.71	2.17
Q13162	PRDX4	Peroxiredoxin-4	3.86	2.15
Q9NZT2	OGFR	Opioid growth factor receptor	2.73	2.15
Q9BW91	NUDT9	ADP-ribose pyrophosphatase, mitochondrial	2.45	2.15
		Brain-specific angiogenesis inhibitor 1-associated protein 2-like		
Q9UHR4	BAIAP2L1	protein 1	4.27	2.12
Q6UVJ0	SASS6	Spindle assembly abnormal protein 6 homolog	4.50	2.12
Q5H8A4	PIGG	GPI ethanolamine phosphate transferase 2	2.94	2.12
O95757	HSPA4L	Heat shock 70 kDa protein 4L	3.34	2.10
P40222	TXLNA	Alpha-taxilin	3.85	2.10
Q9Y2G8	DNAJC16	DnaJ homolog subfamily C member 16	3.20	2.10
Q9Y266	NUDC	Nuclear migration protein nudC	2.95	2.10
P49792	RANBP2	E3 SUMO-protein ligase RanBP2	5.46	2.09
Q9HCU5	PREB	Prolactin regulatory element-binding protein	2.35	2.08
P27348	YWHAQ	14-3-3 protein theta	3.70	2.08
Q8NHH9	ATL2	Atlastin-2	3.02	2.08
O75044	SRGAP2	SLIT-ROBO Rho GTPase-activating protein 2	4.15	2.07
Q6P1N0	CC2D1A	Coiled-coil and C2 domain-containing protein 1A	2.87	2.07
Q5VZ89	DENND4C	DENN domain-containing protein 4C	3.23	2.07
P61586	RHOA	Transforming protein RhoA	2.93	2.05
P0DN79	CBS	Cystathionine beta-synthase	3.50	2.04
Q8WX93	PALLD	Palladin	2.44	2.04
Q9NPH2	ISYNA1	Inositol-3-phosphate synthase 1	3.85	2.02
Q86WB0	ZC3HC1	Nuclear-interacting partner of ALK	3.60	2.01
Q9BZE9	ASPSCR1	Tether containing UBX domain for GLUT4	2.02	2.01

Table	VI-2: Proteins	significantly	outcompeted by	v a 30-fold excess	of DA vs. 15	uM DA-P3 in	Hek293 cells.
				,			

Protein IDs	Gene names	Protein names	-log ₁₀ (p-value)	log ₂ (enrichment)
Q969V6	MKL1	MKL/myocardin-like protein 1	4.22	6.80
O75410	TACC1	Transforming acidic coiled-coil-containing protein 1	2.68	6.53
Q7Z3T8	ZFYVE16	Zinc finger FYVE domain-containing protein 16	2.22	5.82
Q6NUQ1	RINT1	RAD50-interacting protein 1	2.87	5.71
Q9Y371	SH3GLB1	Endophilin-B1	2.83	5.50
Q96A49	SYAP1	Synapse-associated protein 1	5.49	5.23
Q9NQC3	RTN4	Reticulon-4	2.76	5.19
Q8ND24	RNF214	RING finger protein 214	2.43	5.02
Q8N2G8	GHDC	GH3 domain-containing protein	2.08	4.98
P20810	CAST	Calpastatin	3.14	4.96
Q12802	AKAP13	A-kinase anchor protein 13	3.63	4.84
Q9HC62	SENP2	Sentrin-specific protease 2	2.90	4.70
Q32MZ4	LRRFIP1	Leucine-rich repeat flightless-interacting protein 1	2.32	4.69
Q8N6T3	ARFGAP1	ADP-ribosylation factor GTPase-activating protein 1	4.94	4.69
Q9HBM0	VEZT	Vezatin	2.24	4.51
Q9UJW0	DCTN4	Dynactin subunit 4	2.05	4.49
O8IX90	SKA3	Spindle and kinetochore-associated protein 3	2.35	4.49
075330	HMMR	Hyaluronan mediated motility receptor	2.32	4.40
P33981	TTK	Dual specificity protein kinase TTK	2.81	4.39
Q5W0B1	RNF219	RING finger protein 219	2.78	4.37
		Membrane-associated tyrosine- and threonine-specific cdc2-		
Q99640	PKMYT1	inhibitory kinase	2.16	4.37
Q2NKX8	ERCC6L	DNA excision repair protein ERCC-6-like	3.52	4.37
O95817	BAG3	BAG family molecular chaperone regulator 3	4.00	4.33
Q9NW68	BSDC1	BSD domain-containing protein 1	2.72	4.30
Q9UGP4	LIMD1	LIM domain-containing protein 1	3.43	4.28
Q9NSV4	DIAPH3	Protein diaphanous homolog 3	2.87	4.16
Q5UCC4	EMC10	ER membrane protein complex subunit 10	2.53	4.14
O60566	BUB1B	Mitotic checkpoint serine/threonine-protein kinase BUB1 beta	2.17	4.00
O95197	RTN3	Reticulon-3	2.62	3.93
Q9UJY4	GGA2	ADP-ribosylation factor-binding protein GGA2	3.43	3.93
Q69YH5	CDCA2	Cell division cycle-associated protein 2	2.31	3.90
P49069	CAMLG	Calcium signal-modulating cyclophilin ligand	2.10	3.88
Q92551	IP6K1	Inositol hexakisphosphate kinase 1	2.69	3.87
095613	PCNT	Pericentrin	2.77	3.85
P46821	MAP1B	Microtubule-associated protein 1B	3.60	3.85
Q6ZWJ1	STXBP4	Syntaxin-binding protein 4	2.23	3.84
Q8NG31	CASC5	Protein CASC5	2.33	3.82
O60427	FADS1	Fatty acid desaturase 1	4.16	3.82
Q9Y2W6	TDRKH	Tudor and KH domain-containing protein	3.27	3.80
075223	GGCT	Gamma-glutamylcyclotransferase	2.26	3.79

P20290	BTF3	Transcription factor BTF3	2.88	3.77
P98194	ATP2C1	Calcium-transporting ATPase type 2C member 1	2.57	3.75
Q92615	LARP4B	La-related protein 4B	2.57	3.74
Q96R06	SPAG5	Sperm-associated antigen 5	2.48	3.67
Q9C0E8	LNP	Protein lunapark	2.95	3.67
P51617	IRAKI	Interleukin-1 receptor-associated kinase 1	2.55	3.66
Q92575	UBXN4	UBX domain-containing protein 4	2.00	3.64
Q8NFQ8	IURIAIP2 RRATI	PRCA1 associated ATM activator 1	2.07	3.02
P28290	SSFA2	Sperm-specific antigen 2	2.87	3.61
05T8D3	ACRD5	Acvl-CoA-binding domain-containing protein 5	2.42	3.57
014318	FKBP8	Peptidyl-prolyl cis-trans isomerase FKBP8	2.35	3.57
P01891	HLA-A	HLA class I histocompatibility antigen, A-68 alpha chain	2.95	3.57
Q08379	GOLGA2	Golgin subfamily A member 2	2.22	3.56
P29372	MPG	DNA-3-methyladenine glycosylase	2.58	3.49
Q53GS7	GLE1	Nucleoporin GLE1	2.63	3.48
O95816	BAG2	BAG family molecular chaperone regulator 2	2.13	3.48
Q9Y6A5	TACC3	Transforming acidic coiled-coil-containing protein 3	2.47	3.47
Q9Y4P1	ATG4B	Cysteine protease ATG4B	3.23	3.47
014967	CLGN	Calmegin	2.80	3.41
P04035	HMGCR	3-hydroxy-3-methylglutaryl-coenzyme A reductase	2.31	3.41
Q8WZA9	IKGQ MAP7D1	Immunity-related GTPase family Q protein	3.30	2.38
09NZZ3	CHMP5	Charged multivesicular body protein 5	2.00	3.37
09NP61	AREGAP3	ADP-ribosylation factor GTPase-activating protein 3	2.32	3.35
05VV42	CDKAL1	Threonylcarbamoyladenosine tRNA methylthiotransferase	2.80	3.32
O60664	PLIN3	Perilipin-3	2.22	3.32
075113	N4BP1	NEDD4-binding protein 1	2.97	3.29
Q96PC5	MIA2	Melanoma inhibitory activity protein 2	2.45	3.27
P49585	PCYT1A	Choline-phosphate cytidylyltransferase A	3.45	3.25
Q8TEY7	USP33	Ubiquitin carboxyl-terminal hydrolase 33	2.05	3.24
Q9C0C2	TNKS1BP1	182 kDa tankyrase-1-binding protein	2.61	3.24
Q9Y6I9	TEX264	Testis-expressed sequence 264 protein	2.94	3.20
043169	CYB5B	Cytochrome b5 type B	2.52	3.14
060343 00V4D2	TBC1D4	Transduain hata lika mentain 2	2.60	3.13
Q914F3		Manganese_transporting ATPase 13A1	2.40	3.12
Q9H3P7	ACRD3	Golgi resident protein GCP60	2 21	3.09
095861	BPNT1	3(2).5-bisphosphate nucleotidase 1	2.00	3.09
Q8NF37	LPCAT1	Lysophosphatidylcholine acyltransferase 1	2.73	3.07
A6NDG6	PGP	Phosphoglycolate phosphatase	3.15	3.06
O00244	ATOX1	Copper transport protein ATOX1	2.24	3.04
Q6P1L5	FAM117B	Protein FAM117B	3.62	3.04
075179	ANKRD17	Ankyrin repeat domain-containing protein 17	2.54	3.03
Q66K74	MAPIS	Microtubule-associated protein 1S	2.76	3.03
Q8N511	TMEM199	Transmembrane protein 199	2.05	3.00
014018 00UKA4		A tripage angles protoin 11	2.22	2.93
Q90KA4 D37108	NUP62	Nuclear pore glycoprotein p62	3.46	2.93
P30519	HMOX2	Heme oxygenase 2	2 64	2.92
014910	LIN7A	Protein lin-7 homolog A	2.38	2.92
O14976	GAK	Cyclin-G-associated kinase	2.58	2.91
Q8N0X7	SPG20	Spartin	2.87	2.91
O00161	SNAP23	Synaptosomal-associated protein 23	2.01	2.89
Q6WKZ4	RAB11FIP1	Rab11 family-interacting protein 1	2.85	2.88
Q8N5S9	CAMKK1	Calcium/calmodulin-dependent protein kinase kinase 1	3.56	2.88
Q86VQ1	GLCCI1	Glucocorticoid-induced transcript 1 protein	2.72	2.85
043164	PJA2	E3 ubiquitin-protein ligase Praja-2	2.75	2.85
Q8IYA6	CKAP2L ESVT1	Cytoskeleton-associated protein 2-like	3.45	2.84
Q9B5J8	ESTII NUD25	Extended synaptotagmin-1	2.96	2.84
015005	SPCS2	Signal pentidase complex subunit 2	2.99	2.82
Q15005	LTV1	Protein LTV1 homolog	2.07	2.78
P08240	SRPR	Signal recognition particle receptor subunit alpha	3.29	2.73
Q5T5U3	ARHGAP21	Rho GTPase-activating protein 21	2.05	2.72
Q6P2H3	CEP85	Centrosomal protein of 85 kDa	3.18	2.71
Q8NB90	SPATA5	Spermatogenesis-associated protein 5	2.19	2.71
Q9HD26	GOPC	Golgi-associated PDZ and coiled-coil motif-containing protein	3.48	2.70
Q9HC38	GLOD4	Glyoxalase domain-containing protein 4	3.98	2.69
Q7Z434	MAVS	Mitochondrial antiviral-signaling protein	2.38	2.69
Q86Y07	VRK2	Serine/threonine-protein kinase VRK2	3.04	2.68
Q16204	CCDC6	Colled-coil domain-containing protein 6	2.55	2.67
Q6PGQ7	BORA	Protein aurora borealis	2.27	2.66

O5SON1	SNAP47	Synaptosomal-associated protein 47	4.58	2.66
A0MZ66	KIAA1598	Shootin-1	2.89	2.64
Q96IZ6	METTL2A	Methyltransferase-like protein 2A	2.37	2.62
Q9NQW6	ANLN	Actin-binding protein anillin	3.22	2.62
Q9BWU0	SLC4A1AP	Kanadaptin	2.56	2.62
O43683	BUB1	Mitotic checkpoint serine/threonine-protein kinase BUB1	3.51	2.61
O43303	CCP110	Centriolar coiled-coil protein of 110 kDa	4.00	2.61
Q92667	AKAP1	A-kinase anchor protein 1, mitochondrial	2.52	2.60
P01893	HLA-H	Putative HLA class I histocompatibility antigen, alpha chain H	2.05	2.58
Q9Y679	AUP1	Ancient ubiquitous protein 1	2.63	2.57
Q9C0C9	UBE2O	E2/E3 hybrid ubiquitin-protein ligase UBE2O	2.19	2.56
Q96TC7	RMDN3	Regulator of microtubule dynamics protein 3	3.05	2.56
Q9GZP4	PITHD1	PITH domain-containing protein 1	2.08	2.55
Q6UVJ0	SASS6	Spindle assembly abnormal protein 6 homolog	3.17	2.54
Q9NXV2	KCTD5	BTB/POZ domain-containing protein KCTD5	3.86	2.54
Q99614	TTC1	Tetratricopeptide repeat protein 1	2.28	2.53
P22681	CBL	E3 ubiquitin-protein ligase CBL	2.47	2.52
P27816	MAP4	Microtubule-associated protein 4	3.09	2.51
Q96HA1	POM121	Nuclear envelope pore membrane protein POM 121	3.29	2.49
P07942	LAMB1	Laminin subunit beta-1	2.08	2.49
P49247	RPIA	Ribose-5-phosphate isomerase	2.46	2.48
Q9NUQ3	TXLNG	Gamma-taxilin	2.98	2.48
Q5JRA6	MIA3	Melanoma inhibitory activity protein 3	2.03	2.46
O76024	WFS1	Wolframin	2.69	2.43
Q9Y2U8	LEMD3	Inner nuclear membrane protein Man1	2.65	2.43
Q9NP72	RAB18	Ras-related protein Rab-18	2.54	2.41
Q9UI30	TRMT112	Multifunctional methyltransferase subunit TRM112-like protein	2.49	2.41
		Eukaryotic peptide chain release factor GTP-binding subunit		
P15170	GSPT1	ERF3A	3.93	2.40
Q8IWC1	MAP7D3	MAP7 domain-containing protein 3	2.67	2.40
Q9NZT2	OGFR	Opioid growth factor receptor	2.71	2.39
P12109	COL6A1	Collagen alpha-1(VI) chain	2.27	2.39
Q99661	KIF2C	Kinesin-like protein KIF2C	3.29	2.38
Q99961	SH3GL1	Endophilin-A2	2.54	2.37
Q9Y4E8	USP15	Ubiquitin carboxyl-terminal hydrolase 15	2.45	2.34
Q96T51	RUFY1	RUN and FYVE domain-containing protein 1	2.02	2.33
P60468	SEC61B	Protein transport protein Sec61 subunit beta	2.45	2.33
Q9H7E9	C8orf33	UPF0488 protein C8orf33	3.14	2.31
P40763	STAT3	Signal transducer and activator of transcription 3	2.87	2.31
E7EVH7	KLC1	Kinesin light chain 1	3.49	2.31
P46109	CRKL	Crk-like protein	2.23	2.31
P49790	NUP153	Nuclear pore complex protein Nup153	2.37	2.30
Q9UKX7	NUP50	Nuclear pore complex protein Nup50	2.97	2.29
Q96KC8	DNAJC1	DnaJ homolog subfamily C member 1	4.40	2.28
Q8NDI1	EHBP1	EH domain-binding protein 1	2.05	2.26
O60784	TOM1	Target of Myb protein 1	3.44	2.25
Q9HDC5	JPH1	Junctophilin-1	3.23	2.25
Q14BN4	SLMAP	Sarcolemmal membrane-associated protein	2.16	2.24
Q9Y4K4	MAP4K5	Mitogen-activated protein kinase kinase kinase kinase 5	2.64	2.24
O60547	GMDS	GDP-mannose 4,6 dehydratase	2.65	2.24
Q9UHD1	CHORDC1	Cysteine and histidine-rich domain-containing protein 1	2.52	2.23
Q16512	PKN1	Serine/threonine-protein kinase N1	2.08	2.23
Q8NBK3	SUMF1	Sulfatase-modifying factor 1	2.80	2.22
Q9NRY5	FAM114A2	Protein FAM114A2	3.04	2.21
Q9Y3C8	UFC1	Ubiquitin-fold modifier-conjugating enzyme 1	2.48	2.21
O60232	SSSCA1	Sjoegren syndrome/scleroderma autoantigen 1	3.11	2.20
O75131	CPNE3	Copine-3	3.11	2.20
Q8ND83	SLAIN1	SLAIN motif-containing protein 1	2.68	2.20
P48506	GCLC	Glutamatecysteine ligase catalytic subunit	4.03	2.19
Q9NT62	ATG3	Ubiquitin-like-conjugating enzyme ATG3	3.19	2.18
P04080	CSTB	Cystatin-B	2.59	2.16
Q8IV63	VRK3	Inactive serine/threonine-protein kinase VRK3	2.11	2.15
Q2M3G4	SHROOM1	Protein Shroom1	2.67	2.15
O60678	PRMT3	Protein arginine N-methyltransferase 3	3.63	2.15
Q9H0U3	MAGT1	Magnesium transporter protein 1	2.20	2.14
Q9P246	STIM2	Stromal interaction molecule 2	2.97	2.13
P54646	PRKAA2	5-AMP-activated protein kinase catalytic subunit alpha-2	2.54	2.13
Q14554	PDIA5	Protein disulfide-isomerase A5	2.50	2.12
Q14145	KEAP1	Kelch-like ECH-associated protein 1	2.78	2.11
Q15398	DLGAP5	Disks large-associated protein 5	2.03	2.11
Q04864	REL	Proto-oncogene c-Rel	2.45	2.10
Q9Y478	PRKAB1	5-AMP-activated protein kinase subunit beta-1	2.16	2.10
Q13190	STX5	Syntaxin-5	2.56	2.10

Q8TC07	TBC1D15	TBC1 domain family member 15	2.42	2.10
P40855	PEX19	Peroxisomal biogenesis factor 19	2.38	2.09
O15027	SEC16A	Protein transport protein Sec16A	2.37	2.09
Q9UL46	PSME2	Proteasome activator complex subunit 2	2.60	2.09
P22059	OSBP	Oxysterol-binding protein 1	3.20	2.07
Q9BZI7	UPF3B	Regulator of nonsense transcripts 3B	2.51	2.06
Q96C19	EFHD2	EF-hand domain-containing protein D2	2.26	2.05
Q96I15	SCLY	Selenocysteine lyase	2.50	2.05
Q8IYL3	Clorf174	UPF0688 protein C1orf174	2.59	2.05
Q7Z4H7	HAUS6	HAUS augmin-like complex subunit 6	3.67	2.04
Q15003	NCAPH	Condensin complex subunit 2	3.66	2.04
Q96EA4	SPDL1	Protein Spindly	2.52	2.03
Q9Y5A7	NUB1	NEDD8 ultimate buster 1	2.03	2.02
Q12968	NFATC3	Nuclear factor of activated T-cells, cytoplasmic 3	2.06	2.02
Q96BW5	PTER	Phosphotriesterase-related protein	2.56	2.02
Q5H8A4	PIGG	GPI ethanolamine phosphate transferase 2	3.02	2.01
Q7Z569	BRAP	BRCA1-associated protein	2.61	2.01
Q9Y2H6	FNDC3A	Fibronectin type-III domain-containing protein 3A	2.74	2.01
Q8WU90	ZC3H15	Zinc finger CCCH domain-containing protein 15	2.41	2.00
Q9H6S0	YTHDC2	Probable ATP-dependent RNA helicase YTHDC2	2.82	2.00

## **Table VI-3:** Proteins significantly enriched by **DA-P3** (15 $\mu$ M) in *DJ-1*^{+/+} mouse neurons.

Protein IDs	Gene names	Protein names	-log ₁₀ (p-value)	log ₂ (enrichment)
Q9CQU0	Txndc12	Thioredoxin domain-containing protein 12	4.75	8.67
Q9JLV1	Bag3	BAG family molecular chaperone regulator 3	4.94	7.82
Q6GU23	Stat3	Signal transducer and activator of transcription	6.72	7.57
Q80YN3	Bcas1	Breast carcinoma-amplified sequence 1 homolog	5.34	7.52
Z4YM84	Acbd5		6.74	7.26
F8VQ95	Tacc1	Transforming acidic coiled-coil-containing protein 1	5.64	7.07
Q9CWE0	Mtfr11	Mitochondrial fission regulator 1-like	3.53	6.84
Q6P9S0	Mtss11	MTSS1-like protein	7.04	6.56
Q99KC8	Vwa5a	von Willebrand factor A domain-containing protein 5A	3.99	5.84
Q9ESW8	Pgpep1	Pyroglutamyl-peptidase 1	4.53	5.73
Q5DTJ4	Prrc2a	Protein PRRC2A	6.47	5.68
Q8WTY4	Ciapin1	Anamorsin	6.78	5.56
A2RS58	Crkl	Crk-like protein	4.31	5.29
P52479	Usp10	Ubiquitin carboxyl-terminal hydrolase 10	4.94	5.23
E9QAT4	Sec16a		4.04	5.21
A0A0R4J078	Ubxn4	UBX domain-containing protein 4	3.58	5.19
Q8C078	Camkk2	Calcium/calmodulin-dependent protein kinase kinase 2	5.43	5.10
Q5SWP3	Nacad	NAC-alpha domain-containing protein 1	3.75	5.06
Q544R7	Hmox2	Heme oxygenase 2	5.34	5.06
Q8K354	Cbr3	Carbonyl reductase [NADPH] 3	4.11	4.98
Q80WR0	Nup153		4.39	4.96
E9QKG6	Ankrd17	Ankyrin repeat domain-containing protein 17	3.08	4.91
Q6P5H2	Nes	Nestin	3.22	4.91
P70271	Pdlim4	PDZ and LIM domain protein 4	3.43	4.74
S4R2J9	Prrc2c	Protein PRRC2C	3.47	4.66
F7AA26	Pakap	A-kinase anchor protein 2	4.78	4.64
Q9DAW9	Cnn3	Calponin-3	3.60	4.60
Q9QYG0	Ndrg2	Protein NDRG2	4.16	4.60
Q9ES97	Rtn3	Reticulon-3	6.56	4.54
Q8C0M9	Asrgl1	Isoaspartyl peptidase/L-asparaginase	6.73	4.52
Q80WJ7	Mtdh	Protein LYRIC	6.05	4.51
Q9CY49	Tbl2	Transducin beta-like protein 2	4.45	4.47
Q9CQ65	Mtap	S-methyl-5-thioadenosine phosphorylase	4.79	4.45
A0A1W2P872			3.66	4.40
E9QP59	Lemd3	Inner nuclear membrane protein Man1	3.83	4.38
Q9D7S9	Chmp5	Charged multivesicular body protein 5	6.30	4.36
A0A0A6YW06	Enah	Protein enabled homolog	6.56	4.34
P48774	Gstm5	Glutathione S-transferase Mu 5	3.00	4.33
Q8BI84	Mia3	Melanoma inhibitory activity protein 3	4.97	4.33
Q8BGR3	Camk4	Calcium/calmodulin-dependent protein kinase type IV	4.47	4.32
Q921M8	Usp4	Ubiquitin carboxyl-terminal hydrolase	4.16	4.27
A2AMY5	Ubap2	Ubiquitin-associated protein 2	2.20	4.15
Q60865	Caprin1	Caprin-1	3.87	4.12
A2AG50	Map7d2	MAP7 domain-containing protein 2	2.45	4.11
Q3TDD8	Eif4b	Eukaryotic translation initiation factor 4B	7.21	4.09
Q8VBT0	Tmx1	Thioredoxin-related transmembrane protein 1	3.96	4.07
E9PUC4	Sphkap	A-kinase anchor protein SPHKAP	2.61	4.06
Q8BFU3	Rnf214	RING finger protein 214	3.06	4.05
Q3U7E0	Atp6v1g1	V-type proton ATPase subunit G 1	5.06	4.01

0801119	Parme?	Membrane-associated progesterone receptor component 2	4 16	4.01
058875	Tns3	Tensin-3	3.72	4 00
QUUDE	1100	Aminoacyl tRNA synthase complex-interacting	0112	
P31230	Aimp1	multifunctional protein 1	5.94	4.00
P49586	Pcvt1a	Choline-phosphate cytidylyltransferase A	3.22	4.00
O5NCM6	Epn2	Epsin-2	5.18	3.98
035465	Fkbp8	Peptidyl-prolyl cis-trans isomerase FKBP8	5.82	3.95
O9DBG7	Srpr	Signal recognition particle receptor subunit alpha	4.44	3.93
O8BIW1	Prune	Protein prune homolog	4.31	3.93
		Lamina-associated polypeptide 2. isoforms		
O3TNH0	Ттро	beta/delta/epsilon/gamma	4.37	3.92
O3TA75	Fxr2	Fragile X mental retardation syndrome-related protein 2	7.43	3.84
O9ERR1	Ndel1	Nuclear distribution protein nudE-like 1	2.72	3.83
O8CHP8	Pan	Phosphoglycolate phosphatase	6.50	3.83
064337	Sastm1	Sequestosome-1	3.74	3.05
201337	Systim	cAMP-dependent protein kinase type I-beta regulatory	5.11	5.17
0921L9	Prkar1b	subunit	5.51	3.79
A0A0I9YUR2	Specc1	Cytospin-B	2.88	3.78
A0A5F8MPP7	Sh3nrd2h	SH3 and PX domain-containing protein 2B	3 53	3.70
O8VIM9	Iraa	Immunity-related GTPase family O protein	3.92	3.68
Q8 V IIVI3	limah1	I IM and calponin homology domains, containing protein 1	1 79	3.08
D31022	Limen1	Divident 4	4.70	3.00
Q771/2	Aufa an 1	ADD riboxulation factor CTDess activities - modelin 1	5.22	3.04
Q9EPJ9	Arjgap1	ADF-HOOSYIAHOH FACTOR GTPASe-activating protein 1	4.01	3.04
Q0DZU/	SEPTA	Signal recognition particle 19 KDa protein	5.04	3.64
801168	Sh3bgrl	Sh5 domain-binding glutamic acid-rich-like protein	5.62	3.63
008997	Atox1	Copper transport protein ATOX1	4.57	3.63
P63040	CplxI	Complexin-1	3.94	3.62
Q91YQ3	Csdc2	Cold shock domain-containing protein C2	3.40	3.59
E9QMB7	Naa30	N-alpha-acetyltransferase 30	4.77	3.59
Q9CQU5	Zwint	ZW10 interactor	2.31	3.54
E9Q3M9	2010300C02Rik		3.11	3.54
A0A3B2WBC				
6			4.92	3.53
E9PVQ3	Spats21	SPATS2-like protein	3.25	3.52
Q922Q1	Marc2	Mitochondrial amidoxime reducing component 2	5.69	3.49
Q3UCZ5	Ptpn1	Tyrosine-protein phosphatase non-receptor type	5.71	3.46
Q8CCJ4	Amer2	APC membrane recruitment protein 2	5.27	3.45
Z4YJU8	Golga2	Golgin subfamily A member 2	4.11	3.45
A0A0G2JDN7	~		3.74	3.43
Q9CPV4	Glod4	Glyoxalase domain-containing protein 4	3.71	3.40
P62774	Mtpn	Myotrophin	3.32	3.40
O9CTE8	Alg5	Dolichyl-phosphate beta-glucosyltransferase	4.96	3.40
B7ZNS2	Dlgap4	Disks large-associated protein 4	4.15	3.38
061584	Fxrl	Fragile X mental retardation syndrome-related protein 1	6.22	3.36
A0A1D5RLY6	Manls	Microtubule-associated protein 1S	4 81	3 36
E9P743	Map15 Map4	Microtubule-associated protein	5.40	3 35
A0A668KL65	map 1		3.10	3.35
P/2669	Pura	Transcriptional activator protein Pur-alpha	7.04	3.34
055001	Impact	Protein IMPACT	5.42	3.34
00000115	Impuci Aashal	Long abain fatty acid. CoA ligasa ACSPG1	5.42	2 22
A0A1401 104	Space?	Signal pantidage complex subunit 2	0./0	2.32
D10620	Spcs2	Signal pepudase complex subunit 2	5.53	3.31
F10039	$I \lambda ll$	Initiation protoin line protoin line poly K2	6.44	3.25
AUAUA6YX/1	DCIKZ	Serine/Infreonine-protein kinase DULK2	4.07	3.24
Að Í JP4	Map/d1	MAP / domain-containing protein 1	6.26	3.19
Q0P1H0	Ankie2	Alikyiin repeat and LEM domain-containing protein 2	3.56	3.17
Q6NZD2	Snx1	Sorting nexin-1	4.84	3.16
V9GWW6	Mlip		3.65	3.15
Q9D898	Arpc5l	Actin-related protein 2/3 complex subunit 5-like protein	4.61	3.13
P27546	Map4	Microtubule-associated protein 4	9.04	3.13
D3YXP6	Pmvk	Phosphomevalonate kinase	2.01	3.12
Q9CQS8	Sec61b	Protein transport protein Sec61 subunit beta	5.20	3.10
Q91WT9	Cbs	Cystathionine beta-synthase	4.05	3.09
Q4FJL2	Rtn1	Reticulon	6.44	3.09
D3Z4S3	Ptrhd1	Putative peptidyl-tRNA hydrolase PTRHD1	5.61	3.07
Q8C0L0	Tmx4	Thioredoxin-related transmembrane protein 4	4.99	3.07
P17751	Tpil	Triosephosphate isomerase	6.04	3.04
Q99LR1	Abhd12	Monoacylglycerol lipase ABHD12	3.52	3.03
P60761	Nrgn	Neurogranin	6.26	3.03
Q80Z38	Shank2	SH3 and multiple ankyrin repeat domains protein 2	3.21	3.03
035551	Rabep 1	Rab GTPase-binding effector protein 1	3.15	3.03
O3U8S5	Capn2	Calpain-2 catalytic subunit	4 65	3.02
<u>(</u> == 550		Golgi-associated PDZ and coiled-coil motif-containing	1.00	5.02
A0A1W2P7V0	Gopc	protein	3.45	3.01

G90720         Sp56.         Contaction-banding protein 2         3.02         2.99           OPTLA2         Crohy2         Contaction-banding protein 1         5.78         2.91         2.96           OPTRW         Uofd         Ubgatin domain-containing protein UDFD1         4.14         2.95         2.91         2.96         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.91         2.	V9GXD9	Synrg	Synergin gamma	5.57	3.00
B9EFA2         Cindq2         Contaction-binding protein 12         2.91         2.96           GTDP3         Trial         Ternationceptic preperat protein 1801         4.14         2.95           QR1073         Ronaged         Ran GTBase-scitvating protein 1801         3.25         2.92           QR1073         Ronaged         Ran GTBase-scitvating protein 1         3.26         2.92           QR1073         Rong Dase-scitvating protein 1         3.26         2.90           QR1074         Rong Dase-scitvating protein 1         3.32         2.91           QR10756         After 1         Ribosom-binding protein 1         5.32         2.90           QR0756         After 1         Actin Tilament associated protein 1         3.32         2.88           QR074         Growald a         GRA Mornia- containing protein 1         3.72         2.84           QR074         Growald a         OTU domain- containing protein 1         3.79         2.86           QR074         Dashaft         Orocal contain CLIC-like protein 1         3.79         2.86           QR074         Dashaft         Orocal contain CLIC-like protein 1         3.79         2.86           QR074         Dashaft         Orocal contain CLIC-like protein 1         3.72         2.82	Q99JZ9	Srp54c		3.02	2.99
QTDVS         Trel         Ternatioopeptide repeat protein UBPD1         4.14         2.95           QRC167         Suna2         Double-transdat RNA-binding protein UBPD1         3.16         2.93           QRURF         Sungap         Rin GTbase-activiting protein         3.26         2.90           QRURF         Sungap         Syngaptopidin         QRURF         3.76         2.90           QRURF         Transdeout propercontaining protein         3.79         2.91           ANSI <i>Dolp</i> Dolp of Dunning protein         7.79         2.91           ANSI <i>Dolp</i> Dolp of Dunning protein         3.32         2.99           QRURF         Paul         Immediation protein IA         2.34         2.87           QRURZ         Ebhadin         Peroxisonal bifunctional anyme         4.01         2.85           QRURZI         Ebhadin         Peroxisonal bifunctional anyme         4.01         2.85           QRURZI         Ebhadin         Peroxisonal bifunctional anyme         4.01         2.85           QRURZI         Ebhadin         Orderin         3.51         2.44           QRURZI         Ebhadin         Droterin         3.51         2.44           QRURDI         Doubr	B9EJA2	Cttnbp2	Cortactin-binding protein 2	2.91	2.96
OTSEND         Ubiquitin domain-containing protein CBFD1         4.14         2.95           QCIOr         Suncal         Double-stranded RNA-binding protein Sulfern homolog 2         3.18         2.93           QUINS1         Synap O         Synapsprodin         2.35         2.91           QUINS1         Synapsprodin         2.35         2.91           QUINS1         Direly O         Financeoutide repeat-containing protein         7.24         2.90           QUINS1         Appl         Rikosome bending protein 1         7.24         2.90           QUINS6         Appl         Rikosome bending protein 1         7.24         2.90           QUINS6         Appl         Rikosome bending protein 1         7.24         2.90           QUINS6         Appl         Rikosome bending protein 1         7.21         2.88           QUINS6         Appl         Rikosome bending protein 4         4.00         2.86           QUINS6         Nuclear prote complex protein 1         3.79         2.86           QUINS6         Nuclear prote complex protein 1         3.79         2.86           QUINS6         Protein Classitor protein 1         3.79         2.86           QUINS6         Danglato tentininscontatronins protein 1         3.79	Q3TDF3	Ttc1	Tetratricopeptide repeat protein 1	5.78	2.95
Q8C167         Stan2         Double-stranded RNA-binding protein         3.26         2.92           Q3UR11         Syngop         Syngaptopin         2.25         2.91           Q8BK12         Inrodo         Timucleotid repeat-containing gene 69 protein         3.79         2.91           ATAV17         Relp1         Robicon-bunding protein 1         5.85         2.90           Q8WX2         Inrodo         Timucleotid repeat-containing protein 1         5.83         2.80           Q8WX6         Afap1         Actin finanet associated protein 1         5.83         2.80           Q8WX6         Afap1         Actin finanet associated protein 1         5.32         2.86           Q8WX6         Consolid         GRAM for the consolid protein 1         3.72         2.86           Q9W173         Song214         Nicelar proceromplex protein 1         3.79         2.86           Q9W173         Song214         Nicelar proceromplex protein 1         3.31         2.82           Q9W174         Song214         Nicelar proceromplex protein 1         3.31         2.82           Q9W174         Song214         Nicelar proceromplex protein 1         3.31         2.82           Q9W175         Song214         Nicelar proceromplex prophytas consolid protein 1	Q78JW9	Ubfd1	Ubiquitin domain-containing protein UBFD1	4.14	2.95
091YS2         Rangep1         Ren GTBase-activating protein 1         3.26         3.26           03URF1         Synpa (Synpapepoolin gene of protein 1         3.79         2.91           AAV17         Ripp1         Rhosome-binding protein 1         7.24         2.91           P00353         Pelp1         Polycic-Dinding protein 1         3.85         2.90           080756         App1         Action filtures: associated protein 1         3.22         2.88           080756         App1         Gene Science (Constraining protein 1         3.27         2.88           080757         Aromatic Gradinal Constraining protein 1         3.27         2.88           080757         Aromatic Gradinal Constraining protein 1         3.79         2.86           080737         Dradial Constraining crotein 1         3.79         2.86           080736         Dradial Constraining crotein 1         3.79         2.86           080787         Recept Coloride channel Col-Col-Color contein 1         3.79         2.86           080879         Hecs         Cylcol-Innomic containing protein 1         3.79         2.86           080879         Hecs         Cylcol-Innomic containing protein 1         3.79         2.86           080870         Dradial Col-Col-Col-Col-Col	Q8CJ67	Stau2	Double-stranded RNA-binding protein Staufen homolog 2	3.18	2.93
Q3URF1         Supp.         Symptropodin         2.35         2.01           Q3RNC1         Turoch         Trinucleotic repeat-containing gene 6B protein         3.70         2.91           Q3X3         Felp1         Robicon-binding protein 1         5.85         2.90           Q3N35         Felp1         Robicon-binding protein 1         5.85         2.90           Q3N76         Adap1         Actin filment-associated protein 1         3.32         2.85           Q3N74         Grandl         Grandl         Galaxia         2.81         2.85           Q3N74         Grandl         Grandl         Galaxia         2.81         2.85           Q3N74         Grandl         Galaxia         Q3N74         Q3N74         2.86           Q3N73         Nonclear proceorapides protein 1         3.51         2.85         2.85           Q3N873         Nonclear proceorapides protein 4         5.64         2.85           Q3N873         Data         Dechran         5.60         2.85           Q3N874         Monel Transportin-2         Q402         2.85         2.93         2.93         2.93           Q4PD03         Ppg2.55         refreitheconin-sportania 2.04         2.55         2.84         2.94 <td>Q91YS2</td> <td>Rangap1</td> <td>Ran GTPase-activating protein 1</td> <td>3.26</td> <td>2.92</td>	Q91YS2	Rangap1	Ran GTPase-activating protein 1	3.26	2.92
Q8BK2         Threb         Thinkeloudie repeat-containing gene 6B protein         3.79         2.91           P00355         Pelp1         Pelyt(c)-binding protein 1         5.85         2.00           Q0BVS6         Algal         Actin filament-associated protein 1         5.32         2.38           QuFK40         Ppal         Inorganic prophosphatse         5.21         2.34         2.85           QPRO24         Ebhadh         Peroxisomal bifancitonal enzyme         4.01         2.34         2.85           QPRO24         Ebhadh         Peroxisomal bifancitonal enzyme         4.06         2.86           ADAN3         Cfcc // Chloride channel CLC/ and proping the protein 1         3.70         2.66           ADAN3         Cfcc // Chloride channel CLC/ and protein 1         3.71         2.86           Q8FD03         Mp2/4         5.61         2.85           Q8FD03         Pp2/5         Settine threenine-protein phosphatase 2.5         5.60         2.85           Q8FD03         Lar-cland protein 1         3.33         2.82         Q8         Q467/Q5         1.87         1.87         2.84         Q47         2.81           Q8FD03         Larylin three numbrosition in the phosphatase 2.5         5.60         2.85         Q8         Q	Q3URF1	Synpo	Synaptopodin	2.35	2.91
AZAV17         Rrbp1         Ribosome-binding protein 1         7.24         2.21           Q80756         Aftep1         Actin filament-associated protein 1         3.32         2.89           Q80756         Aftep1         Actin filament-associated protein 1         3.32         2.89           Q80756         Aftep1         Actin filament-associated protein 1         3.32         2.89           Q80747         Granulla         GRAM domain-containing protein 1         3.31         2.85           Q80747         Dinald         OTU domain-containing protein 1         3.79         2.86           Q80703         Nap2141         Nuclear processonal biolegy protein 4         5.64         2.85           Q801703         Nap2141         Nuclear processonal biolegy protein 4         5.64         2.85           Q804791         Ilcca         Cytochrome c-type heme tysee         4.00         2.86           Q804791         Ilcca         Cytochrome c-type heme tysee         3.31         2.82           Q90250         Irask         Interbinkin-1 receptor associated kinase 4         2.64         2.81           Q90250         Irask         Interbinkin-1 receptor associated kinase 4         2.62         2.81           Q90470         Irask dowinin initiation factor associate	Q8BKI2	Tnrc6b	Trinucleotide repeat-containing gene 6B protein	3.79	2.91
P40133         P4p1         Pedy(2-binding protein 1         3.81         2.80           080Y56         Adp1         Inorganic symphosphatase         5.21         2.89           04F840         Ppa1         Inorganic symphosphatase         5.21         2.84           08W174         Chundh         Peroxisomal bifunctional anyme         4.01         2.84         2.87           09R0274         Dhudh         Peroxisomal bifunctional anyme         4.06         2.86           02R073         Bond         Ontic domain containing protein 1         5.70         2.86           02R073         Bond         Hockat prote complex protein 1         5.70         2.85           03R073         Bond         Elpd         Elpd         2.85         2.85           03R073         Bond         Debnin         Debnin         5.00         2.85           03R073         Larget         Debnin         5.31         2.84           047028         Larget         Larget hores for a social doff hings 4         2.64         2.81           047126         Gelm         Gelma doff hings 4         2.64         2.81           047127         Transportin-         2.89         2.80         2.80           047128	A2AVJ7	Rrbp1	Ribosome-binding protein 1	7.24	2.91
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	P60335	Pcbp1	Poly(rC)-binding protein 1	5.85	2.90
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q80YS6	Afap1	Actin filament-associated protein 1	3.32	2.89
$ \begin{array}{rrrr} 1980/14 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Q4FK49	Ppa1	Inorganic pyrophosphatase	5.21	2.88
$ \begin{array}{ccccc} QPRD24 & Database & 400 & 2.48 \\ ADARR4126 & Orad 4 & $	F8WJ/4	GramdIa	GRAM domain-containing protein TA	2.34	2.87
ADAMESIZE         Only         Office duame CDRC-like protein 1         4.00         2.260           Q80U93         Nup214         Nuclear pore complex protein Nup214         3.52         2.86           Q80U93         Nup214         Nuclear pore complex protein Nup214         3.52         2.86           Q80U93         Nup214         Nuclear pore complex protein Pup214         3.52         2.86           Q80U93         Hord         Cytochrome c-type hene lyase         4.02         2.85           Q80U93         Hord         Cytochrome c-type hene lyase         4.02         2.85           Q6PD03         Interfeuk1-1 receptor associated kinase 4         2.64         2.84           Q6PD24         Largel Interfeuk1-1 receptor associated kinase 4         2.64         2.81           Q6PD250         Inded         Interfeuk1-1 receptor associated kinase 4         2.24         2.80           Q91L20         Inded         Fuep102         5.22         2.81         2.89         2.80           Q91L20         Inded         Fuep102         5.22         2.81         2.81         2.81         2.80         2.81         2.81         2.81         2.81         2.81         2.81         2.81         2.81         2.81         2.81         2.81 <td>Q9R0Z4</td> <td>Ehhadh</td> <td>Peroxisomal bifunctional enzyme</td> <td>4.01</td> <td>2.87</td>	Q9R0Z4	Ehhadh	Peroxisomal bifunctional enzyme	4.01	2.87
ALAUM2Chino Cualmet Chine proteinJ. 372.800080093Mp2143.522.8600901873Elp4Elonguar complex protein Nup2143.522.860081879HccaCynochrone crype hene lyase4.022.850031879HccaCynochrone crype hene lyase4.022.85004103Ppp215asuburit alpha isoform3.512.8404203Ppp215asuburit alpha isoform3.512.84042038Larrel La -related protein phosphatase non-receptor type 125.222.81041042Tuposine, protein phosphatase non-receptor type 125.222.81041042Tuposine, protein phosphatase non-receptor type 125.222.81041042Tuposine, protein phosphatase non-receptor type 122.802.8004114Earth Landia - innino acid aminoransferase3.332.8204114Earth Landiao - innino acid aminoransferase3.322.80051040Larrel IdaLaccine-rich repeat-contarining protein 16A2.332.7804114Laccine-rich repeat-contarining protein 16A2.332.78041140Effg33Tunasitori initiation factor 4 gamma 33.262.77051050Liffg3Tunasitori initiation factor eff-28 subunit delta4.162.76061149Elffg34Translation initiation factor eff-28 subunit delta4.162.760700054Uff1Ubiquitn-fold modific-conjugating enzyme 15.212.740601040Uprotoin phoriborybran	AUAUK4J200	Claal	Chlorida ahannal CLIC lika protain 1	4.00	2.80
Optimization         Display	AZAEMIZ OSOLIO2	Num214	Nuclear pero complex protein Nup214	2.19	2.80
Optimization         Displant	Q80093	Nup214 Fln4	Flongator complex protein A	5.52	2.80
Open Program         Cytokinume C-type inter Prace         4.02         2.8.02           QSTRK3         Dohn J         Serine threconine-protein phosphatase 2A 56 kDa regulatory         0           Q6PQ03         Ppp2r5a         submit albuja isoform         3.51         2.84           Q6ZQ88         Larp1         La-related protein 1         3.33         2.82           Q9D250         Iradk         Interfeuktin-Treceptor-associated kinase 4         2.64         2.81           Q9J162         Tipp2         Transportin -2         2.89         2.80         2.80           Q4H726         Gelm         Glutamate-cystein ligase regulatory subunit         4.23         2.80           QTDBQ0         Protein disulfide-isomerase A6         6.72         2.80         2.80           QSTIN1         Bcat1         Branched-chain-aning protein 16A         2.35         2.78           A0A0N4SVL0         Eifder A         Translation initiation factor 4 gamma 3         3.26         2.77           Q8050         Gspr1         Translation initiation factor IF-2B subunit duta         4.16         2.76           Q314X23         Rasa         Ras GTPase-activating protein 3         504         2.75           Q8050         Gspr1         Translation initiation factor IF-2B subunit du	Q9EK/5	Elp4	Elongator complex protein 4	3.04	2.83
QFIRSDotaDefinitDefinitQ6PD03 $Ppp2r5a$ submit alpha isoform3.512.84Q6PD03 $Ppp2r5a$ submit alpha isoform3.512.84Q6D2Q38 $Larpl$ La-related protein 13.332.82Q9D250Irad4Interleukin-1 receptor-associated kinase 42.642.81Q9D162Tupo2Transportin-22.892.80Q4F12GGclmGlutamac-cysteine ligase regulatory subuit4.232.80Q4F12GGclmGlutamac-cysteine ligase regulatory subuit4.232.80Q4F12GGclmBranched-chain-anino-acid animotransferase3.832.78Q6EDY6IrrelGaLeukaryotic repation factor 4 gamma 33.262.77Q8R050Ggrd1Translation initiation factor 4 gamma 33.262.77Q8R050Ggrd1Tanslation initiation factor algamma 35.042.75Q6IDY5Kasa3Ras GTRase-activating protein 35.042.75Q3UG15Rasa3Ras GTRase-activating protein 35.042.75Q3UG15Kasa3Ras GTRase-activating protein 12.652.72Q3URD5SmalAlpha-1-syntrophin2.312.74Q4A40Golgi resident protein GCr004.752.70Q8R090UprtUraci phospherbosytransferase homolog3.062.75Q0CQ92FislMitochondrial fission 1 protein4.752.68Q52151Dyia5Non-syndromic hearing impairment protein 5 homolog3.29<	QODE / 9	Dbm1	Drobrin	4.02	2.63
OperDot         Ppp2:5d         Gold and apple to form         Displayable 2A 50 K00 (kgulado)         3.51         2.84           Q6ZQ38         Larp1         La-related protein 1         3.33         2.82           Q01250         Inald         Interlockin-1 (reciptor associated kinase 4         2.64         2.81           P3831         Pipn12         Tyrosine protein phosphatase non-receptor type 12         5.22         2.81           Q90162         Tinpo2         Transportin-2         2.89         2.80         Q41726         Gelm         Glutamate-cycteric ligase regulatory subunit         4.23         2.80           Q71D10         Redat         Protein disUfide-issomerse eA6         6.72         2.80         2.78           Q805DX6         GeftDY6         Luccine-ric/to repeat-containing protein 16A         2.35         2.78           A0A0MASVLD         Elfg2b4         Translation initiation factor elf-2B subunit delta         4.16         2.76           Q8050         Gypt1         ERF3A         Gold modifier-congulating enzyme 1         5.21         2.74           Q30405         Rasa         Ras GTPase-activating protein 3         5.04         2.75         Q30           Q00WS4         U/e1         Ubiquit-indord modifier-congulating enzyme 1         5.21 <td< td=""><td>QSIKKS</td><td>DUNI</td><td>Serine/threenine protein phosphatase 2A 56 kDa regulatory</td><td>5.00</td><td>2.63</td></td<>	QSIKKS	DUNI	Serine/threenine protein phosphatase 2A 56 kDa regulatory	5.00	2.63
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O6PD03	Pnn2r5a	subunit alpha isoform	3 51	2 84
Q9D250         Indef         Interleukin 1 receptor-associated kinase 4         2.64         2.81           P35831 <i>Pµµ12</i> Tyrosine-protein phosphatase non-receptor type 12         5.22         2.81           P35831 <i>Pµµ12</i> Tyrosine-protein phosphatase non-receptor type 12         5.22         2.89         2.80           Q4I7126         Ge(m)         Glutamate-cystein [gase regulatory subunit         4.23         2.80           Q3TIN1 <i>Bcall</i> Branched-chain-amino-acid aminotransferase         3.83         2.78           Q6EDV6         Leucin-ch-th repeat-containing protein 16A         2.35         2.78           A0A0N4SVL0 <i>Elf433</i> Eakaryotic translation initiation factor 4gamma 3         3.26         2.77           Q80650 <i>Gypt1</i> ERF3A         Translation initiation factor <i>GF2-B</i> subunit delta         4.16         2.76           Q01015 <i>Rasa3</i> Ras GTPase-acivating protein 3         5.04         2.75         MOW S4 <i>U[c]</i> Ubiquin-fold modifier-conjagaing enzyme 1         5.21         2.74           M020054 <i>Gapt</i> Usrait factor GF-2B subunit delta         6.16         2.75         2.70         2.70         2.71         2.74         2.65         2.72         2.70 <td>067058</td> <td>Iarn1</td> <td>I a-related protein 1</td> <td>3 33</td> <td>2.04</td>	067058	Iarn1	I a-related protein 1	3 33	2.04
SectorPriorInterconstructionProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProteinProtei	09D250	Irak4	Interleukin-1 recentor-associated kinase 4	2.64	2.82
Open Ca:         Transite programs by the respective open and the system	P35831	Ptnn12	Tyrosine-protein phosphatase non-receptor type 12	5.22	2.01
$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	0991 G2	Tupn12 Tupn02	Transportin-?	2.89	2.81
FTDBQO <i>Place</i> Provein disulfide-isonerase A66.722.280Q3TIN1 <i>Bcal1</i> Branched-chain-mino-acid aminoransferase3.832.78QANNASVLD <i>Eylf2st</i> Eukaryotic translation initiation factor 4 gamma 33.262.77A0A0NASVLD <i>Eylf2st</i> Eukaryotic peptide chain release factor GTP-binding subunit7.532.76Q8R050 <i>Gspt1</i> ERF3ATranslation initiation factor eIF-2B subunit delta4.162.75Q01015 <i>Rasa3</i> Ras GTPase-activating protein 35.042.75M0QWS4 <i>U[c1</i> Ubiquitin-fold modififer-conjugating enzyme 15.212.74B1AVZ0 <i>Uprt</i> Uracil phosphoribosyltransferase homolog3.062.73Q3UHD6Snx27Sorting nexin-274.462.72Q9CRD0 <i>Ociul1</i> OC1A domain-containing protein 12.652.72A0A0R4079Achd3Golgi resident protein GCP604.752.70Q8R90UPF0600 protein CSort51 homolog3.292.70Q9CQ02 <i>Fis1</i> Mitochondrial fission 1 protein4.262.67Q3ULD5 <i>Nos-syndromic</i> hearing impairment protein 5 homolog2.542.67Q3US1 <i>Dfna5</i> Non-syndromic hearing impairment protein 5 homolog2.542.67Q3US21 <i>Dfna5</i> Non-syndromic hearing impairment protein 5 homolog2.542.67Q3US21 <i>Dfna5</i> Non-syndromic hearing impairment protein 5 homolog2.542.67Q3US1 <i>Gbna6</i> Cystatin-B5.152.66 <tr<< td=""><td>Q11E02</td><td>Gelm</td><td>Glutamatecysteine ligase regulatory subunit</td><td>4 23</td><td>2.00</td></tr<<>	Q11E02	Gelm	Glutamatecysteine ligase regulatory subunit	4 23	2.00
Q3TDN1         Branched-chain-amino-acid aminotransferase         3.83         2.78           Q6EDV6         Lrrc16a         Leucine-rich repeat-containing protein 16A         2.35         2.78           Q6EDV6         Lrrc16a         Leucine-rich repeat-containing protein 16A         2.35         2.77           R0004SVL0         Eiglas         Eukaryotic translation initiation factor GTP-binding subunit         2           Q8R050         Gsprl         ERF3A         7.53         2.76           Q01051         Rasa3         Ras GTPase-activating protein 3         5.04         2.75           MOQWS4         Ufc1         Ubiquitin-fold modifier-conjugating enzyme 1         5.21         2.74           A2AKD7         Statal         Alpha-1-syntrophin         2.31         2.74           Q9CRD0         Our         Uprot         Uracil phosphoribosyltransferase homolog         3.06         2.73           Q0CRD0         Ocidal         OCIA domain-containing protein 1         2.65         2.72         Q           Q9CRD0         OUPro600 protein CSor61 homolog         3.29         2.70         Q         2.66           Q9C292         Fis1         Mitochondrial fission 1 protein         4.75         2.68         Q         2.51         2.67	F7DB00	Pdia6	Protein disulfide-isomerase A6	6.72	2.80
Q6EDY6         Lrc:16a         Leucine-rich repeat-containing protein 16A         2.35         2.78           A0A0X4SVLD         Ef/4g3         Eukaryotic translation initiation factor 4 gamma 3         3.26         2.77           Q6R050         Gspt1         Eukaryotic peptide chain release factor GTP-binding subunit         7.53         2.76           Q6R050         Gspt1         Eukaryotic peptide chain release factor GTP-binding subunit         4.16         2.75           Q0USD         Rasa3         Ras GTPase-activating protein 3         5.04         2.75           A2AKD7         Statul         Alpha-1-syntrophin         2.31         2.74           Q0UHD6         Snx27         4.46         2.72         2.44           Q0CRD0         Ociall         OCCIA domain-containing protein 1         2.65         2.72           Q9CRD0         Ociall         OCCIA domain-containing protein 1         2.66         2.75         2.70           Q9CRD0         Ociall         OCCIA domain-containing protein 1         2.66         2.75         2.70           Q9CRD0         Ociall         OCCIA domain-containing protein 1         2.66         2.75         2.66           Q3UED5         Field         Mitochondrial fission 1 protein         3.20         2.67         2.	O3TJN1	Bcat1	Branched-chain-amino-acid aminotransferase	3.83	2.78
A0A0N4SVL0 $Elf4g3$ Eukaryotic translation initiation factor 4 gamma 3         3.26         2.77           Q8050 $Gspt1$ ERR3A         7.53         2.76           Q8074 $Elf2b4$ Translation initiation factor eIF-2B subunit delta         4.16         2.75           MOWNS4 $U[t]$ Ubiquitin-fold modifier-conjugating enzyme 1         5.21         2.74           A2AKD7         Sintal         Alpha-1-syntrophin         2.31         2.74           B1AVZ0         Uprt         Uracil phosphoribosyltransferase homolog         3.06         2.73           Q9CRD0         Ocial Admain-containing protein 1         2.65         2.72           A0A0A4079         Actol         Actol         2.72           Q9CRD0         Ocial Admain-containing protein 1         2.65         2.72           A0A0A4079         Actol         Ocial Comain-containing protein 1         2.65         2.72           Q9CQD2         Fisl         Mitochondrial fission 1 protein         4.75         2.60           Q3U2S1         Dfna5         Non-syndromic hearing impairment protein 5 homolog         2.54         2.67           Q3UVP         Phad NEC7 domain-containing protein 1         3.20         2.67           Q3UVP	O6EDY6	Lrrc16a	Leucine-rich repeat-containing protein 16A	2.35	2.78
$P_{a}$ Eukaryotic peptide chain release factor GTP-binding subunit           Q8R050         Gspt1         ERF3A         Translation initiation factor eIF-2B subunit delta         4.16         2.76           Q61749         Exf2bA         Translation initiation factor eIF-2B subunit delta         4.16         2.76           Q3UG15         Rasa3         Ras GTPase-activating protein 3         5.04         2.74           A2AKD7         Sntal         Alpha-1-syntrophin         2.31         2.74           A2AKD7         Sntal         Alpha-1-syntrophin         2.31         2.74           B1AVZ0         Uprt         Uracil phosphoribosyltransferase homolog         3.06         2.73           Q3UHD6         Snt27         Sorting nexin-27         4.46         2.72           Q9CRD0         Ociall         OCIA domain-containing protein 1         2.65         2.72           A0A0R40079         Acbd3         Golgi resident protein GCrof0         4.75         2.68           Q62426         Cstb         Cystatin-B         5.15         2.67           Q3UNP4         Serbpl         Plaaminogen activator inhibitor 1 RNA-binding protein         4.09         2.66           Q3UNF1         Serbf2         Tro         Translin         4.76         2	A0A0N4SVL0	Eif4g3	Eukarvotic translation initiation factor 4 gamma 3	3.26	2.77
		5.0	Eukaryotic peptide chain release factor GTP-binding subunit		
(61749) $Eip2b4$ Translation initiation factor eIF-2B subunit delta         4.16         2.76 $(201G15)$ $Rasa3$ Ras GTPase-activating protein 3         5.04         2.75 $(201G15)$ $Rasa3$ Ras GTPase-activating protein 3         5.04         2.77 $(201G15)$ $Strata$ $Alpha-1$ -syntrophin         2.31         2.74 $A2AKD7$ $Strata$ $Alpha-1$ -syntrophin         2.31         2.74 $A2AKD7$ $Strata$ $Alpha-1$ -syntrophin         2.31         2.74 $A2AKD7$ $Strata$ $Alpha-1$ -syntrophin         2.31         2.74 $A0A0R4J079$ $Acbd3$ $Golgi$ resident protein GCP60         4.75         2.70 $A0A0R4J079$ $Acbd3$ $Golgi$ resident protein GCP60         4.75         2.70 $Q8EQ92$ $Fisl$ Mitochondrial fission 1 protein         4.75         2.68 $Q3U2S1$ $Dfha5$ Non-syndromic hearing impairment protein 5 homolog         2.54         2.67 $Q3UMP4$ $Serhp1$ Plasminogen activator inhibitor 1 RNA-binding protein         4.09         2.66 $Q3U1NC5$ $Tse2$	Q8R050	Gspt1	ERF3A	7.53	2.76
C3UC015         Reas A         Ras GTPase-activating protein 3         5.04         2.75           M0QWS4         U/c1         Ubiquitn-fold modifice-onjugating enzyme 1         5.21         2.74           B1AVZ0         Uprt         Uracil phosphoribosyltransferase homolog         3.06         2.73           Q3UHD6         Snx27         Sorting nexin-27         4.46         2.73           Q9CRD0         Ociad1         OC1A domain-containing protein 1         2.65         2.77           A0A0R4J079         Acbd3         Golgi resident protein GCP60         4.75         2.70           Q9CQ92         Fis1         Mitochondrial fission 1 protein         4.75         2.68           Q62426         Catb         Cystain-B         5.15         2.67           Q3U2S1         D/ha5         Non-syndromic hearing impairment protein 5 homolog         2.54         2.67           Q3U2S1         D/ha5         Non-syndromic hearing impairment protein 1         3.20         2.66           Q3UWP4         Serbp1         Plasminogen activator inhibitor 1 RNA-binding protein         4.09         2.66           Q3UNC5         Trave2d         60 kDa SS-A/Ro ribonucleoprotein         4.74         2.64           Q3TFF1         Gelc         Glutarate-cystein ligase cat	Q61749	Eif2b4	Translation initiation factor eIF-2B subunit delta	4.16	2.76
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q3UGJ5	Rasa3	Ras GTPase-activating protein 3	5.04	2.75
122AD7         Strad         Alpha-1-syntrophin         2.31         2.74           B1AVZ0         Uprt         Uracii phosphoribosyltransferase homolog         3.06         2.73           Q3UHD6         Snx27         Sorting nexin-27         4.46         2.72           Q0CRD0         Ociadl         OCIA domain-containing protein 1         2.65         2.72           A0A0R41079         Acbd3         Golgi resident protein GCP60         4.75         2.70           Q9CRD2         Fisl         Mitochondrial fission 1 protein         4.75         2.66           Q62426         Cstb         Cystatin-B         5.15         2.67           Q3UHP4         Serbpl         Plaaminogen activator inhibitor 1 RNA-binding protein         4.75         2.68           Q3UU5         Tsc22d2         Protein         2.74         2.66         2.61           Q3UIC5         Tsc22d2         Prove2         60 ADa SS-A/Ro ribonucleoprotein         4.47         2.64           Q3TEF1         Gclc         Glutamate-cystein eligase catalytic subunit         3.12         2.64           Q3TEF1         Gclc         Glutamate-cystein eligase catalytic subunit         3.12         2.64           Q3TEF1         Gclc         Glutamate-cystein eligase catalytic s	M0QWS4	Ufc1	Ubiquitin-fold modifier-conjugating enzyme 1	5.21	2.74
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A2AKD7	Snta1	Alpha-1-syntrophin	2.31	2.74
	B1AVZ0	Uprt	Uracil phosphoribosyltransferase homolog	3.06	2.73
	Q3UHD6	Snx27	Sorting nexin-27	4.46	2.72
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q9CRD0	Ociad1	OCIA domain-containing protein 1	2.65	2.72
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A0A0R4J079	Acbd3	Golgi resident protein GCP60	4.75	2.70
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q8BR90		UPF0600 protein C5orf51 homolog	3.29	2.70
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q9CQ92	Fis1	Mitochondrial fission 1 protein	4.75	2.68
	Q62426	Cstb	Cystatin-B	5.15	2.67
	Q3U2S1	Dfna5	Non-syndromic hearing impairment protein 5 homolog	2.54	2.67
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q5DTT2	Psd	PH and SEC7 domain-containing protein 1	3.20	2.67
Q3U1C5 $Txc22d2$ $2.74$ $2.65$ Q921W0 $Charpela$ Charged multivesicular body protein 1a $4.35$ $2.65$ Q545E6 $Tsn$ Translin $4.76$ $2.64$ Q3TEF1 $Gclc$ Glutamatecysteine ligase catalytic subunit $3.12$ $2.64$ Q3TEF1 $Gclc$ Glutamatecysteine ligase catalytic subunit $3.12$ $2.64$ Q8C0D5 $Efnull$ 1 $5.82$ $2.61$ B2KGP3 $Ppm1e$ Protein phosphatase 1E $6.23$ $2.61$ Q8R4H2 $Arhgef12$ Rho guanine nucleotide exchange factor 12 $4.75$ $2.60$ Q3TFD2 $Lpcat1$ $Lysophosphatidylcholine acyltransferase 14.112.60Q3TVDPsme2Protein subunit beta5.612.60Q3VV0Psme2Proteasome activator complex subunit 23.042.59Q9D066Impa1Inositol monophosphatase 16.712.59Q3UNH4Gprin1G protein-regulated inducer of neurite outgrowth 15.492.58Q3UB06Srpk1SRSF protein kinase 13.212.54Q9D94Rufy3Protein RUFY34.722.54Q9D94Arlg3Ubiquitin-like-conjugating enzyme ATG36.812.54Q9D94Arlg3Ubiquitin-like-conjugating enzyme ATG36.812.54Q3UB06Srpk1SRSF protein kinase 12.672.53Q3UB06Srpk1AP-3 complex subunit mu-12.672.53Q3US9$	Q3UMP4	Serbp1	Plasminogen activator inhibitor 1 RNA-binding protein	4.09	2.66
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q3U1C5	Tsc22d2		2.74	2.65
	Q921W0	Chmp1a	Charged multivesicular body protein 1a	4.35	2.65
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q545E6	Tsn	Translin	4.76	2.65
Q31EF1Gc/cGlutamate-cystene ligase catalytic subunit $3.12$ $2.64$ Q8C0D5Eftud111 $5.82$ $2.61$ Q8C0F3Ppm1eProtein phosphatase 1E $6.23$ $2.61$ Q8R4H2Arhgef12Rho guanine nucleotide exchange factor 12 $4.75$ $2.60$ Q3TFD2Lpcat1Lysophosphatidylcholine acyltransferase 1 $4.17$ $2.60$ Q47757CapzbF-actin-capping protein subunit beta $5.61$ $2.60$ G3X9V0Psme2Proteasome activator complex subunit 2 $3.04$ $2.59$ Q9D66InpalInositol monophosphatase 1 $6.71$ $2.59$ Q3UNH4Gprin1G protein-regulated inducer of neurite outgrowth 1 $5.49$ $2.58$ Q3UB06Srpk1SRSF protein kinase 1 $3.21$ $2.54$ Q9CPX6Atg3Ubiquitin-like-conjugating enzyme ATG3 $6.81$ $2.54$ Q9DBU8Ap3m1AP-3 complex subunit mu-1 $2.67$ $2.53$ P28667Marcks11MARCKS-related protein $3.86$ $2.52$ P26645MarcksMyristoylated alanine-rich C-kinase substrate $3.97$ $2.51$	Q8R562	Trove2	60 kDa SS-A/Ro ribonucleoprotein	4.47	2.64
Q8C0D5Eftud115.822.61B2KGP3 $Ppmle$ Protein phosphatase 1E6.232.61Q8R4H2 $Arhgef12$ Rho guanine nucleotide exchange factor 124.752.60Q3TFD2 $Lpcat1$ Lysophosphatidylcholine acyltransferase 14.172.60P47757 $Capzb$ F-actin-capping protein subunit beta5.612.60G3X9V0 $Psme2$ Proteasome activator complex subunit 23.042.59Q9D066Impa1Inositol monophosphatase 16.712.59Q88XK8 $Agap1$ containing protein 14.812.59Q3UB06 $Srpk1$ SRSF protein kinase 13.212.56Q9D394 $Rufy3$ Protein RUFY34.722.54Q9CPX6 $Atg3$ Ubiquitin-like-conjugating enzyme ATG36.812.54Q3TW96 $Uap111$ UDP-N-acetylhexosamine pyrophosphorylase-like protein 14.132.54Q9DBU8 $Ap3m1$ AP-3 complex subunit mu-12.672.53P28667 $Marcks11$ MARCKS-related protein 2-like2.572.51P26645 $Marcks$ Myristoylated alanine-rich C-kinase substrate3.972.51	Q3TEF1	Gele	Glutamatecysteine ligase catalytic subunit	3.12	2.64
Q8C0D3Ejud115.822.61B2KGP3 $Ppmle$ Protein phosphatase 1E6.232.61Q8R4H2 $Arhgefl2$ Rho guanine nucleotide exchange factor 124.752.60Q3TFD2 $Lpcat1$ Lysophosphatidylcholine acyltransferase 14.172.60P47757 $Capzb$ F-actin-capping protein subunit beta5.612.60G3X9V0 $Psme2$ Proteasome activator complex subunit 23.042.59Q9D066ImpalInositol monophosphatase 16.712.59Q8BXK8 $Agap1$ containing protein 14.812.59Q3UNH4 $Gprin1$ G protein-regulated inducer of neurite outgrowth 15.492.58Q3UB06 $Srpk1$ SRSF protein kinase 13.212.56Q9D394 $Rufy3$ Protein RUFY34.722.54Q9D10 $Akap9$ A-kinase anchor protein 92.272.54Q9DBU8 $Ap3m1$ AP-3 complex subunit mu-12.672.53Q3U590 $C2cd2l$ C2 domain-containing protein 2-like3.862.52Q3U590 $C2cd2l$ C2 domain-containing protein 2-like3.972.51	080005	El. 11	Elongation factor Tu GTP-binding domain-containing protein	E 00	0.61
B2K0F3 $Ppnite$ Protein phosphatase 1E $0.23$ $2.01$ Q8R4H2 $Arhgefl2$ Rho guanine nucleotide exchange factor 12 $4.75$ $2.60$ Q3TFD2 $Lpcatl$ Lysophosphatidylcholine acyltransferase 1 $4.17$ $2.60$ P47757 $Capzb$ F-actin-capping protein subunit beta $5.61$ $2.60$ G3X9V0Psme2Proteasome activator complex subunit 2 $3.04$ $2.59$ Q9D66ImpalInositol monophosphatase 1 $6.71$ $2.59$ Q8BXK8 $Agap1$ containing protein 1 $4.81$ $2.59$ Q3UNH4Gprin1G protein-regulated inducer of neurite outgrowth 1 $5.49$ $2.58$ Q3UB06Srpk1SRSF protein kinase 1 $3.21$ $2.56$ Q9D394Rufy3Protein RUFY3 $4.72$ $2.54$ Q9CPX6Atg3Ubiquitin-like-conjugating enzyme ATG3 $6.81$ $2.57$ Q9DBU8Ap3m1AP-3 complex subunit mu-1 $2.67$ $2.51$ P28667Marcksl1MARCKS-related protein $3.86$ $2.52$ Q3U590 $C2cd2l$ C2 domain-containing protein 2-like $2.57$ $2.51$	Q8C0D5	Effual Prm1c	I Protein phosphotose 1E	5.82	2.61
Q8K4H2Amge 12Kno guanne indecodue exchange factor 124.732.00Q3TFD2 $Lpcat1$ Lysophosphatidylcholine acyltransferase 14.172.60P47757 $Capzb$ F-actin-capping protein subunit beta5.612.60G3X9V0 $Psme2$ Proteasome activator complex subunit 23.042.59Q9D066Impa1Inositol monophosphatase 16.712.59Q8BXK8 $Agap1$ containing protein 14.812.59Q3UNH4 $Gprin1$ G protein-regulated inducer of neurite outgrowth 15.492.58Q3UB06 $Srpk1$ SRSF protein kinase 13.212.56Q9D394 $Rufy3$ Protein RUFY34.722.54Q9CPX6 $Atg3$ Ubiquitin-like-conjugating enzyme ATG36.812.54Q3TW96 $Uap111$ UDP-N-acetylhexosamine pyrophosphorylase-like protein 14.132.54Q9DBU8 $Ap3m1$ AP-3 complex subunit mu-12.672.53P28667Marcks11MARCKS-related protein3.862.52Q3U590C2cd21C2 domain-containing protein 2-like2.572.51P26645MarcksMyristoylated alanine-rich C-kinase substrate3.972.51	08D4U2	Ppm1e	Protein phosphatase LE Pho guanina puolootida avaluanza factor 12	0.23	2.01
Q31FD2LpcallLysophosphaludycholnie acylitatisterase 14.172.00P47757CapzbF-actin-capping protein subunit beta5.612.60G3X9V0Psme2Proteasome activator complex subunit 2 $3.04$ $2.59$ Q9D066Impa1Inositol monophosphatase 1 $6.71$ $2.59$ Q8BXK8Agap1containing protein 1 $6.71$ $2.59$ Q3UNH4Gprin1G protein-regulated inducer of neurite outgrowth 1 $5.49$ $2.58$ Q3UB06Srpk1SRSF protein kinase 1 $3.21$ $2.56$ Q9D394Rufy3Protein RUFY3 $4.72$ $2.54$ Q3TW96Uap111UDP-N-acetylhexosamine pyrophosphorylase-like protein 1 $4.13$ $2.54$ Q9DBU8Ap3m1AP-3 complex subunit mu-1 $2.67$ $2.53$ P28667Marcks11MARCKS-related protein 2-like $2.57$ $2.51$ P26645MarcksMyristoylated alanine-rich C-kinase substrate $3.97$ $2.51$	Q6K4H2	Arngej12	Kilo guannie nucleofide exchange factor 12	4.73	2.60
P47/137Cdp2DP-actin-capping protein southin beta3.612.60G3X9V0Psme2Proteasome activator complex subunit 23.042.59Q9D066Impa1Inositol monophosphatase 16.712.59Q8BXK8Agap1containing protein 14.812.59Q3UNH4Gprin1G protein-regulated inducer of neurite outgrowth 15.492.58Q3UB06Srpk1SRSF protein kinase 13.212.56Q9D394Rufy3Protein RUFY34.722.54Q3TW96Uap111UDP-N-acetylhexosamine pyrophosphorylase-like protein 14.132.54Q9DBU8Ap3m1AP-3 complex subunit mu-12.672.53P28667Marcks11MARCKS-related protein 2-like3.862.52Q3U590C2cd21C2 domain-containing protein 2-like3.972.51	Q311D2 D47757	Canab	E sotin comping protein subunit bets	4.17	2.00
OSAS V01 sme21 Hoteasonic activator complex subunit 23.042.39Q9D066Impa1Inositol monophosphatase 16.712.59Arf-GAPwith GTPase, ANK repeat and PH domain- containing protein 14.812.59Q3UNH4Gprin1G protein-regulated inducer of neurite outgrowth 15.492.58Q3UB06Srpk1SRSF protein kinase 13.212.56Q9D394Rufy3Protein RUFY34.722.54Q9CPX6Atg3Ubiquitin-like-conjugating enzyme ATG36.812.54Q3TW96Uap111UDP-N-acetylhexosamine pyrophosphorylase-like protein 14.132.54Q9DBU8Ap3m1AP-3 complex subunit mu-12.672.53P28667Marcks11MARCKS-related protein3.862.52Q3U590C2cd21C2 domain-containing protein 2-like3.972.51	G3X0V0	Cup20 Demo?	Proteasome activator complex subunit 2	3.01	2.00
Q8D000ImpulInterformation interformation0.712.39Q8BXK8Agap1Arf-GAP with GTPase, ANK repeat and PH domain- containing protein 14.812.59Q3UNH4Gprin1G protein-regulated inducer of neurite outgrowth 15.492.58Q3UB06Srpk1SRSF protein kinase 13.212.56Q9D394Rufy3Protein RUFY34.722.54Q9CPX6Atg3Ubiquitin-like-conjugating enzyme ATG36.812.54Q3TW96Uap111UDP-N-acetylhexosamine pyrophosphorylase-like protein 14.132.54Q9DBU8Ap3m1AP-3 complex subunit mu-12.672.53P28667Marcks11MARCKS-related protein 2-like3.862.52Q3U590C2cd21C2 domain-containing protein 2-like3.972.51	09D066	I sme2	Inosital monophosphatase 1	6.71	2.59
Q8BXK8Agap1Containing protein 14.812.59Q3UNH4Gprin1G protein-regulated inducer of neurite outgrowth 1 $5.49$ $2.58$ Q3UB06Srpk1SRSF protein kinase 1 $3.21$ $2.56$ Q9D394Rufy3Protein RUFY3 $4.72$ $2.54$ Q9CPX6Atg3Ubiquitin-like-conjugating enzyme ATG3 $6.81$ $2.54$ Q3TW96Uap111UDP-N-acetylhexosamine pyrophosphorylase-like protein 1 $4.13$ $2.54$ Q9DBU8Ap3m1AP-3 complex subunit mu-1 $2.67$ $2.53$ P28667Marcksl1MARCKS-related protein 2-like $2.57$ $2.51$ P26645MarcksMyristoylated alanine-rich C-kinase substrate $3.97$ $2.51$	Q9D000	тра	Arf GAD with GTDase ANK repeat and PH domain	0.71	2.39
Q3UNH4Gprin1G protein regulated inducer of neurite outgrowth 15.492.58Q3UB06Srpk1SRSF protein regulated inducer of neurite outgrowth 1 $5.49$ $2.58$ Q9D394Rufy3Protein RUFY3 $3.21$ $2.56$ Q9CPX6Atg3Ubiquitin-like-conjugating enzyme ATG3 $6.81$ $2.54$ Q3TW96Uap111UDP-N-acetylhexosamine pyrophosphorylase-like protein 1 $4.13$ $2.54$ Q9DBU8Ap3m1AP-3 complex subunit mu-1 $2.67$ $2.53$ P28667Marcksl1MARCKS-related protein 2-like $3.86$ $2.52$ Q3U590C2cd2lC2 domain-containing protein 2-like $2.57$ $2.51$ P26645MarcksMyristoylated alanine-rich C-kinase substrate $3.97$ $2.51$	O8BXK8	Agan1	containing protein 1	4 81	2 59
Q3UB06         Srpk1         SRSF protein kinase 1         3.21         2.56           Q9D394         Rufy3         Protein RUFY3         4.72         2.54           Q9CPX6         Atg3         Ubiquitin-like-conjugating enzyme ATG3         6.81         2.54           Q3TW96         Uap111         UDP-N-acetylhexosamine pyrophosphorylase-like protein 1         4.13         2.54           Q9DBU8         Ap3m1         AP-3 complex subunit mu-1         2.67         2.53           P28667         Marcks11         MARCKS-related protein 2-like         3.86         2.52           Q3U590         C2cd2l         C2 domain-containing protein 2-like         3.97         2.51	O3UNH4	Gprin1	G protein-regulated inducer of neurite outgrowth 1	5 49	2.58
Q9D394Rufy3Protein RUFY34.722.54Q9CPX6Atg3Ubiquitin-like-conjugating enzyme ATG36.812.54Q3TW96Uap111UDP-N-acetylhexosamine pyrophosphorylase-like protein 14.132.54E9QQ10Akap9A-kinase anchor protein 92.272.54Q9DBU8Ap3m1AP-3 complex subunit mu-12.672.53P28667Marcks11MARCKS-related protein 2-like3.862.52Q3U590C2cd2lC2 domain-containing protein 2-like2.572.51P26645MarcksMyristoylated alanine-rich C-kinase substrate3.972.51	O3UB06	Srpk1	SRSF protein kinase 1	3.21	2.56
Q9CPX6Atg3Ubiquitin-like-conjugating enzyme ATG3 $6.81$ $2.54$ Q3TW96Uap111UDP-N-acetylhexosamine pyrophosphorylase-like protein 1 $4.13$ $2.54$ E9QQ10Akap9A-kinase anchor protein 9 $2.27$ $2.54$ Q9DBU8Ap3m1AP-3 complex subunit mu-1 $2.67$ $2.53$ P28667Marcks11MARCKS-related protein 2-like $3.86$ $2.52$ Q3U590C2cd2lC2 domain-containing protein 2-like $2.57$ $2.51$ P26645MarcksMyristoylated alanine-rich C-kinase substrate $3.97$ $2.51$	09D394	Rufv3	Protein RUFY3	4.72	2.54
Q3TW96Uap111UDP-N-acetylhexosamine pyrophosphorylase-like protein 14.132.54E9QQ10Akap9A-kinase anchor protein 92.272.54Q9DBU8Ap3m1AP-3 complex subunit mu-12.672.53P28667Marcksl1MARCKS-related protein3.862.52Q3U590C2cd2lC2 domain-containing protein 2-like2.572.51P26645MarcksMyristoylated alanine-rich C-kinase substrate3.972.51	O9CPX6	Atg3	Ubiquitin-like-conjugating enzyme ATG3	6.81	2.54
E9QQ10         Akap9         A-kinase anchor protein 9         2.27         2.54           Q9DBU8         Ap3m1         AP-3 complex subunit mu-1         2.67         2.53           P28667         Marcksl1         MARCKS-related protein         3.86         2.52           Q3U590         C2cd2l         C2 domain-containing protein 2-like         2.57         2.51           P26645         Marcks         Myristoylated alanine-rich C-kinase substrate         3.97         2.51	O3TW96	Uap111	UDP-N-acetylhexosamine pyrophosphorylase-like protein 1	4.13	2.54
Q9DBU8         Ap3m1         AP-3 complex subunit mu-1         2.67         2.53           P28667         Marcksl1         MARCKS-related protein         3.86         2.52           Q3U590         C2cd2l         C2 domain-containing protein 2-like         2.57         2.51           P26645         Marcks         Myristoylated alanine-rich C-kinase substrate         3.97         2.51	E90010	Akap9	A-kinase anchor protein 9	2.27	2.54
P28667Marcksl1MARCKS-related protein2.65Q3U590C2cd2lC2 domain-containing protein 2-like2.572.51P26645MarcksMyristoylated alanine-rich C-kinase substrate3.972.51	O9DBU8	Ap3m1	AP-3 complex subunit mu-1	2.67	2.53
Q3U590C2cd2lC2 domain-containing protein 2-like2.572.51P26645MarcksMyristoylated alanine-rich C-kinase substrate3.972.51	P28667	Marcksl1	MARCKS-related protein	3.86	2.52
P26645 Marcks Myristoylated alanine-rich C-kinase substrate 3.97 2.51	Q3U590	C2cd2l	C2 domain-containing protein 2-like	2.57	2.51
	P26645	Marcks	Myristoylated alanine-rich C-kinase substrate	3.97	2.51

O8R127	Sccpdh	Saccharopine dehydrogenase-like oxidoreductase	5.29	2.51
008915	Ain	AH receptor-interacting protein	6.23	2.51
E6T836	Arhaan?6	Rho GTPase-activating protein 26	3.61	2.51
001447	Tmod2	Tropomodulin 2	2 75	2.30
Q9JKK/		110pointodunii-2	5.73	2.49
Q8VD3/	Sgip1	SH3-containing GKB2-like protein 3-interacting protein 1	4.22	2.48
A3KML3	Ywhaq	14-3-3 protein theta	6.61	2.48
Q543P6	AcotII	Acyl-coenzyme A thioesterase 11	4.48	2.48
A0A0R4J1Q0	Edc4	Enhancer of mRNA-decapping protein 4	2.10	2.48
Q9DB60	Fam213b	Prostamide/prostaglandin F synthase	2.93	2.46
B2RSC8	Nedd4	E3 ubiquitin-protein ligase NEDD4	3.10	2.45
Q8K0C9	Gmds	GDP-mannose 4,6 dehydratase	5.30	2.45
Q3URQ4	C78339		2.97	2.44
Q8BVU5	Nudt9	ADP-ribose pyrophosphatase, mitochondrial	3.31	2.44
P70268	Pkn1	Serine/threonine-protein kinase N1	3.14	2.44
099157	Mat2a	S-adenosylmethionine synthase	3.88	2.44
09WVK8	Cyn46a1	Cholesterol 24-hydroxylase	4.62	2.43
D61750	Vhn1	Drefoldin subunit 3	3.60	2.43
04EIO6	VUP1 Sominh6a	Comin D6	2.09	2.43
Q4FJQ0	Serpinboa		3.33	2.42
Q3UM45	Ppp1r/	Protein phosphatase 1 regulatory subunit /	3.8/	2.41
Q0PD38	Rab18	Ras-related protein Rab-18	4.01	2.41
Q3TCY0	Rab33b	Ras-related protein Rab-33B	2.61	2.40
Q542D6	Sptlc2	Serine palmitoyltransferase 2	2.50	2.40
Q6PDL0	Dync1li2	Cytoplasmic dynein 1 light intermediate chain 2	3.24	2.40
Q61249	Igbp1	Immunoglobulin-binding protein 1	3.47	2.40
Q3UE40	Gna13	Guanine nucleotide-binding protein subunit alpha-13	2.59	2.38
08BK64	Ahsa1	Activator of 90 kDa heat shock protein ATPase homolog 1	4.50	2.36
O3TEG0	A830010M20Rik		4.38	2.34
F8WHT3	Prrc2h		4 72	2.33
A2A6U3	SentQ	Sentin_9	2.76	2.33
A2A003	Pola?	Pol A like protein 2	2.70	2.33
Q6DU52	bolaz	bola-like protein 2	5.02	2.32
AUA008KLC0	Map2	Microtubule-associated protein 2	4.97	2.32
D3Z416	Negri	Neuronal growth regulator 1	3.99	2.31
A2ALS4	Rap1gap	Rap1 G1Pase-activating protein 1	2.84	2.31
A0A0A0MQE				
5	Camsap1	Calmodulin-regulated spectrin-associated protein 1	3.55	2.30
Q8VBT9	Aspscr1	Tether containing UBX domain for GLUT4	4.45	2.30
Q64433	Hspe1	10 kDa heat shock protein, mitochondrial	3.20	2.30
Q8BGT8	Phyhipl	Phytanoyl-CoA hydroxylase-interacting protein-like	5.90	2.30
Q8BTG7	Ndrg4	Protein NDRG4	3.82	2.29
Q8CIP4	Mark4	MAP/microtubule affinity-regulating kinase 4	3.35	2.26
		Small glutamine-rich tetratricopeptide repeat-containing		
O3TN35	Sgta	protein alpha	4.88	2.25
02M3X8	Phactr1	Phosphatase and actin regulator 1	3.43	2.25
051CG5	Acsl6	Long-chain-fatty-acidCoA ligase 6	4 14	2.28
Q91883	DYS254F	Ubiquitin-like protein 14	2 20	2.21
0211820	DA5254E Trall	Thioradovin like protein 1	4.00	2.24
Q3U6K9	I XIIII		4.00	2.24
A0A08/WQG4	Kthl		6.08	2.23
F8WJB9	Evl	Ena/VASP-like protein	2.06	2.22
Q9Z1E4	Gys1	Glycogen [starch] synthase, muscle	3.97	2.22
Q9CQB4	Uqcrb	Cytochrome b-c1 complex subunit 7	4.18	2.21
P34022	Ranbp1	Ran-specific GTPase-activating protein	5.07	2.21
A0A0G2JG35			5.00	2.19
A0A0R4J2B2	Kctd12	BTB/POZ domain-containing protein KCTD12	4.59	2.19
Q3THA0	Eif3g	Eukaryotic translation initiation factor 3 subunit G	7.50	2.18
Q3TWZ9	Cltb	· · · ·	3.29	2.18
0547J4	Mapt	Microtubule-associated protein	6.68	2.16
P14231	Atn1h?	Sodium/notassium-transporting ATPase subunit beta_2	3 05	2.10
067012	mKIAA0004	Methionine aminopentidase	2.95	2.10
Q02Q32	Ddu2u	ATD demondent DNA holicose DDY2V	2.03	2.14
Q3U484	Daxsy	ATP-dependent KNA nencase DDA3 Y	2.55	2.14
Q9DBK/	Ppp1r12a	Protein phosphatase 1 regulatory subunit 12A	2.62	2.14
A0A1D5RLL0			3.45	2.13
A0A171KXD3	Prmt1	Protein arginine N-methyltransferase 1	2.23	2.12
Q60625	Icam5	Intercellular adhesion molecule 5	2.69	2.12
Q3TLL4	Hgs	Hepatocyte growth factor-regulated tyrosine kinase substrate	3.76	2.12
Q3TWE3	P4hb	Protein disulfide-isomerase	6.15	2.12
Q9CQX2	Cyb5b	Cytochrome b5 type B	5.76	2.11
A2RTH5	Lcmt1		4.93	2.11
04FK36	Dstn	Destrin	3.26	2.11
P35235	Ptnn11	Tyrosine-protein phosphatase non-recentor type 11	7.00	2.11
055042	Snca	Alpha-synuclein	/ 30	2.11
058E70	Tnm3		5.00	2.10
DIADV2	5021/20C07D:1	Unabarastarized protain KIA A0020 homelos	2.20	2.10
	5051459G0/KlK	Distance with the second of the second of the second secon	5.30	2.09
	1 1 1/// 9 / / 4	ETOTEASOTHAL HDICHTTHE TECEDIOF ADKIVE	5 /U	7.08

Q3TX38	Vdac3	Voltage-dependent anion-selective channel protein 3	5.98	2.08
Q80UK0	Sestd1	SEC14 domain and spectrin repeat-containing protein 1	3.80	2.08
Q8BXR9	Osbpl6	Oxysterol-binding protein-related protein 6	2.92	2.08
Q7TPU5	Tbc1d15	TBC1 domain family member 15	3.58	2.07
A0A0R4J0S4	Llgl1	Lethal(2) giant larvae protein homolog 1	2.01	2.07
Q64737	Gart	Trifunctional purine biosynthetic protein adenosine-3	3.76	2.07
Q8CHT1	Ngef	Ephexin-1	3.36	2.06
Q3UYK6	Slc1a2	Amino acid transporter	3.69	2.06
D3YZP9	Ccdc6	Coiled-coil domain-containing protein 6	4.24	2.05
Q8CDA1	Inpp5f	Phosphatidylinositide phosphatase SAC2	3.84	2.04
P15105	Glul	Glutamine synthetase	2.70	2.04
Q8BMS9	Rassf2	Ras association domain-containing protein 2	2.95	2.04
P27773	Pdia3	Protein disulfide-isomerase A3	7.17	2.03
Q68FM6	Elfn2	Protein phosphatase 1 regulatory subunit 29	2.48	2.03
G3UX26	Vdac2	Voltage-dependent anion-selective channel protein 2	5.76	2.03
Q3UBU9	Fkbp3	Peptidyl-prolyl cis-trans isomerase	4.10	2.03
		Arf-GAP with GTPase, ANK repeat and PH domain-		
F8VQE9	Agap3	containing protein 3	3.29	2.02
P06837	Gap43	Neuromodulin	8.00	2.02
B2RRE3	Camsap2	Calmodulin-regulated spectrin-associated protein 2	4.63	2.02
F8WHP5	Ddhd1	Phospholipase DDHD1	4.57	2.02
A2ARP8	Map1a	Microtubule-associated protein 1A	4.82	2.01
P08228	Sod1	Superoxide dismutase [Cu-Zn]	2.58	2.00

Table VI-4: Proteins significantly enriched by DA	<b>-P3</b> (15 $\mu$ M) in <i>DJ-1^{-/-}</i> mouse neurons.
---------------------------------------------------	---------------------------------------------------------------------

Protein IDs	Gene names	Protein names	-log ₁₀ (p-value)	log ₂ (enrichment)
Q9CWE0	Mtfr11	Mitochondrial fission regulator 1-like	4.27	6.93
Q9CQU0	Txndc12	Thioredoxin domain-containing protein 12	4.48	6.58
A2RS58	Crkl	Crk-like protein	4.45	6.41
Q544R7	Hmox2	Heme oxygenase 2	5.56	5.96
A0A0R4J078	Ubxn4	UBX domain-containing protein 4	7.68	5.56
Q6GU23	Stat3	Signal transducer and activator of transcription	4.33	5.16
Q9CQ65	Mtap	S-methyl-5-thioadenosine phosphorylase	3.72	4.90
Q4FK36	Dstn	Destrin	4.58	4.89
Q6P9S0	Mtss11	MTSS1-like protein	3.02	4.85
Q8CHP8	Pgp	Phosphoglycolate phosphatase	4.94	4.81
P10639	Txn	Thioredoxin	3.37	4.68
B2RXC2	Itpkb		3.20	4.60
O35465	Fkbp8	Peptidyl-prolyl cis-trans isomerase FKBP8	6.09	4.46
Q8C0M9	Asrgl1	Isoaspartyl peptidase/L-asparaginase	5.03	4.44
Q9CPV4	Glod4	Glyoxalase domain-containing protein 4	3.54	4.39
Q8C078	Camkk2	Calcium/calmodulin-dependent protein kinase kinase 2	4.14	4.39
Z4YKC4	Eif4g3		2.79	4.35
Q9D898	Arpc51	Actin-related protein 2/3 complex subunit 5-like protein	4.84	4.27
Q60865	Caprin1	Caprin-1	3.91	4.16
Q4FK49	Ppa1	Inorganic pyrophosphatase	3.95	4.15
Q9QYG0	Ndrg2	Protein NDRG2	4.07	4.14
Q9ER73	Elp4	Elongator complex protein 4	3.87	4.10
Q9DAW9	Cnn3	Calponin-3	4.79	4.05
Q5DTJ4	Prrc2a	Protein PRRC2A	6.48	4.01
P48722	Hspa4l	Heat shock 70 kDa protein 4L	3.51	3.99
E9Q3M9	2010300C02Rik		3.75	3.96
Q6P5H2	Nes	Nestin	4.26	3.88
F7AA26	Pakap	A-kinase anchor protein 2	5.75	3.88
Q8BFU3	Rnf214	RING finger protein 214	6.16	3.88
P60335	Pcbp1	Poly(rC)-binding protein 1	5.43	3.85
Q9DBG7	Srpr	Signal recognition particle receptor subunit alpha	5.22	3.84
Q9ERU9	Ranbp2	E3 SUMO-protein ligase RanBP2	4.21	3.82
Q8BI84	Mia3	Melanoma inhibitory activity protein 3	3.80	3.81
Q9D7S9	Chmp5	Charged multivesicular body protein 5	6.03	3.81
Q3TA75	Fxr2		6.73	3.77
Q80WR0	Nup153		2.70	3.72
Q3TDD8	Eif4b	Eukaryotic translation initiation factor 4B	6.16	3.70
P49586	Pcytla	Choline-phosphate cytidylyltransferase A	2.44	3.68
		cAMP-dependent protein kinase type II-alpha regulatory		
A0A0A6YX73	Prkar2a	subunit	4.70	3.67
P08414	Camk4	Calcium/calmodulin-dependent protein kinase type IV	4.43	3.65
A0A1D5RL96	Kiaa1107	Uncharacterized protein KIAA1107	2.52	3.65
A2RTH5	Lcmt1		3.44	3.62
Q921M8	Usp4	Ubiquitin carboxyl-terminal hydrolase	5.36	3.61
Q99P72	Rtn4	Reticulon-4	6.23	3.61
Q9ES97	Rtn3	Reticulon-3	6.36	3.60

P60761	Nrgn	Neurogranin	6.58	3.59
E9QAT4	Sec16a		4.47	3.55
Q8VIM9	Irgq	Immunity-related GTPase family Q protein	3.64	3.52
A0A286YCI8	Sorbs1	Sorbin and SH3 domain-containing protein 1	3.21	3.49
Q91XL9	Osbpl1a	Oxysterol-binding protein-related protein 1	2.77	3.46
Q9ERR1	Ndel1	Nuclear distribution protein nudE-like 1	3.72	3.44
D3YU22	Limch1	LIM and calponin homology domains-containing protein 1	3.06	3.43
Q4FJQ6	Serpinb6a	Serpin B6	3.21	3.38
A0A654ICD2	Gjal	Gap junction alpha-1 protein	5.05	3.30
A0A0K4J0B4	Cmas Drkar1b	N-acymeuraminate cyndyfyfransferase	5.57	3.33
Q921L9	Ptnn1	Tyrosine-protein phosphatase non-recentor type	5 33	3.33
P48678	Imna	Prelamin-A/C	3.31	3 33
P84086	Cplx2	Complexin-2	6.67	3.30
P0C7L0	Wipf3	WAS/WASL-interacting protein family member 3	3.44	3.30
Q8VEF1	Gramd1a	GRAM domain-containing protein 1A	2.15	3.29
Q9CQS8	Sec61b	Protein transport protein Sec61 subunit beta	5.16	3.27
A2AJK8	Ttc1	Tetratricopeptide repeat protein 1	4.42	3.27
A2AAY5	Sh3pxd2b	SH3 and PX domain-containing protein 2B	6.00	3.25
Q8BTG7	Ndrg4	Protein NDRG4	2.38	3.25
P42669	Pura	Transcriptional activator protein Pur-alpha	6.17	3.21
Q8BP79	Hccs	Cytochrome c-type heme lyase	3.45	3.20
Q3U8S5	Capn2	Calpain-2 catalytic subunit	4.81	3.20
Q99LR1	Abhd12 Eis1	Monoacylglycerol lipase ABHD12	3.30	3.17
Q9CQ92	FISI Atri6v1a1	Mitochondrial fission 1 protein	3.05	3.15
Q307E0	Cianin1	Anamorsin	3.39	3.14
P28667	Marcksl1	MARCKS-related protein	3.94	3.08
A0A5F8MP98	Tns3	Tensin-3	3.48	3.05
O9JJU8	Sh3bgrl	SH3 domain-binding glutamic acid-rich-like protein	4.12	3.02
Q3UL43	Nup155	Nuclear pore complex protein Nup155	3.73	3.02
P61759	Vbp1	Prefoldin subunit 3	3.67	3.02
Q99PU5	Acsbg1	Long-chain-fatty-acidCoA ligase ACSBG1	5.99	3.01
E9PZ43	Map4	Microtubule-associated protein	4.39	3.00
Q91YS2	Rangap1	Ran GTPase-activating protein 1	4.88	2.98
O55042	Snca	Alpha-synuclein	2.66	2.97
D21220	4. 1	Aminoacyl tRNA synthase complex-interacting	5.01	2.07
P31230	Aimp1 Mtano2	Mitashandrial amidaving reducing component 2	5.01	2.97
Q922Q1	Mtarc2	Charged multivacional amidoxime reducing component 2	0.57	2.94
Q921W0	Arhaef12	Rho guanine nucleotide exchange factor 12	3.08	2.94
P35235	Ptnn11	Tyrosine-protein phosphatase non-receptor type 11	3.00	2.94
03TJN1	Bcat1	Branched-chain-amino-acid aminotransferase	2.95	2.94
B2KGP3	Ppmle	Protein phosphatase 1E	5.22	2.93
Q9CZZ4	Psmd9	26S proteasome non-ATPase regulatory subunit 9	4.27	2.90
P27546	Map4	Microtubule-associated protein 4	6.15	2.89
P62774	Mtpn	Myotrophin	4.38	2.88
K0BWC3	Palld	Palladin	2.50	2.87
		Eukaryotic peptide chain release factor GTP-binding subunit		
Q8R050	Gspt1	ERF3A	3.84	2.85
QONZD2	Shx1	Sorung nextn-1 Protein PDPC2C	3.91	2.81
P17751	rrrc2C Tnil	Triosenhosnhate isomerase	/.58	2.81
A0A3R2WRC	1011	mosephosphate isometase	/.11	2.60
6			7 67	2.80
A0A140LJG6	Spcs2	Signal peptidase complex subunit 2	5.06	2.79
E90137	Tex264		5.02	2.79
O55091	Impact	Protein IMPACT	3.80	2.76
Q0PD38	Rab18	Ras-related protein Rab-18	2.43	2.76
F7DBQ0	Pdia6	Protein disulfide-isomerase A6	8.06	2.76
E9PVQ3	Spats2l	SPATS2-like protein	3.25	2.75
Q61584	Fxr1	Fragile X mental retardation syndrome-related protein 1	2.34	2.74
Q3U7A6	Stau1	Double-stranded RNA-binding protein Staufen homolog 1	4.58	2.72
A2AVJ7	Rrbp1	Ribosome-binding protein 1	4.52	2.71
P26645	Marcks	Myristoylated alanine-rich C-kinase substrate	4.23	2.70
E9QP59	Lemd3	Inner nuclear membrane protein Man1	4.07	2.70
F/02/1	Palim4 Naa30	N alpha acetultranefarace 20	5.85	2.68
EAGME \	110030	In-aipina-accipitianisierase 30	4.13	2.08
O3TNH0	Tmpo	heta/delta/ensilon/gamma	4 20	267
062426	Cstb	Cystatin-B	4.20	2.07
09EPE9	Atp13a1	Manganese-transporting ATPase 13A1	3.65	2.64
0545B6	Stmn1	Stathmin	4.46	2.64

O6NSW3	Sphkap	A-kinase anchor protein SPHKAP	3.14	2.63
Q3TRK3	Dbn1	Drebrin	4.53	2.63
G3UX26	Vdac2	Voltage-dependent anion-selective channel protein 2	5.35	2.62
Q9CXW3	Cacybp	Calcyclin-binding protein	2.71	2.62
Q3TFD2	Lpcat1	Lysophosphatidylcholine acyltransferase 1	4.42	2.62
Q4FJL2	Rtn1	Reticulon	5.84	2.61
A8Y5P4	Map7d1	MAP7 domain-containing protein 1	6.41	2.58
		Small glutamine-rich tetratricopeptide repeat-containing		
Q3TN35	Sgta	protein alpha	3.62	2.58
Q91WT9	Cbs	Cystathionine beta-synthase	4.25	2.57
Q80WJ7	Mtdh	Protein LYRIC	4.95	2.55
Q543P6	Acot11	Acyl-coenzyme A thioesterase 11	4.42	2.54
Q2M3X8	Phactr1	Phosphatase and actin regulator 1	3.41	2.51
Q8CJ67	Stau2	Double-stranded RNA-binding protein Staufen homolog 2	3.69	2.50
B7ZNS2	Dlgap4	Disks large-associated protein 4	2.25	2.49
Q9D066	Impal	Inositol monophosphatase 1	5.62	2.44
A0A1D5RLY6	Map1s	Microtubule-associated protein 1S	3.56	2.44
Q3TN44	Cyb5b	Cytochrome b5 type B	4.65	2.44
B2RSC8	Nedd4	E3 ubiquitin-protein ligase NEDD4	3.96	2.44
Q3UNA7	Gele	Glutamatecysteine ligase catalytic subunit	4.37	2.44
Q80UG5	Sept9	Septin-9	3.43	2.42
Q64337	Sqstm1	Sequestosome-1	2.25	2.39
A0A08/WQG4	Ktn1		4.58	2.37
P63040	CplxI	Complexin-1	5.38	2.36
CODVICO		Arf-GAP with GTPase, ANK repeat and PH domain-		2.26
Q8BXK8	Agap1	containing protein 1	4.45	2.36
Q31L/9	Ahsa1	Activator of 90 kDa heat shock protein ATPase homolog 1	3.66	2.35
Q31V10	Appl2	DCC-interacting protein 13-beta	4.40	2.33
Q31HA0	Elf5g	Eukaryone translation initiation factor 5 subunit G	4.51	2.33
Q3UNH4	Gprin1	G protein-regulated inducer of neurite outgrowth 1	5.40	2.32
Q9D394	Kufy3	Protein RUFY 3	4.27	2.30
AUAIY/VLY5	Iah1	Isoamyl acetate-nydrolyzing esterase 1 nomolog	4.50	2.30
G3X9V0	Psme2	Proteasome activator complex subunit 2	4./3	2.29
008915	Alp	Translin	3.89	2.27
Q343E0	1 Sn	I I alisiiii Daliahyi mhaamhata hata aluaaayilteenafaraaa	4.20	2.27
Q9CIE8	Alg5	Cuanylete evelese soluble subunit alpha 2	2.11	2.23
Q9ERL9	Arfaanl	ADP ribosylation factor GTPace activating protain 1	3.44	2.22
Q9EFJ9	Arjgup1	Libiquitin like conjugating enzyme ATG3	5.11	2.22
USOPR5	Ndc1	Nucleonorin NDC1	2.46	2.21
08B765	Pam3	Phosphoacetylglucosamine mutase	2.40	2.20
Q6DZ03	Soga3	Protein SOGA3	2.01	2.20
008576	Runde 3a	RUN domain-containing protein 3A	2.23	2.18
09BC74	Vimn	Selenoprotein S	2.04	2.18
P47757	Canzh	F-actin-capping protein subunit beta	6.04	2.18
035551	Rahen1	Rab GTPase-binding effector protein 1	3.78	2.17
03TG12	Farsh	PhenylalaninetRNA ligase beta subunit	5.76	2.14
O3ULN6	Scendh	Saccharopine dehydrogenase-like oxidoreductase	5.33	2.13
08JZS0	Lin7a	Protein lin-7 homolog A	3.09	2.13
A2APL5	Slc1a2	Amino acid transporter	3.88	2.13
F6T836	Arhgap26	Rho GTPase-activating protein 26	5.03	2.12
O8BGT8	Phyhipl	Phytanoyl-CoA hydroxylase-interacting protein-like	5.67	2.12
Q3UDG2	Wars	TryptophantRNA ligase, cytoplasmic	3.25	2.11
Q3TWZ9	Cltb		5.57	2.11
Q3UHD6	Snx27	Sorting nexin-27	4.03	2.10
A2VCP7	Psmf1	Proteasome inhibitor PI31 subunit	2.96	2.10
Q3TX38	Vdac3	Voltage-dependent anion-selective channel protein 3	5.57	2.09
A0A0R4J2B2	Kctd12	BTB/POZ domain-containing protein KCTD12	2.52	2.08
E9Q9D6	R3hdm2	R3H domain-containing protein 2	4.10	2.08
Q8BLN5	Lss	Lanosterol synthase	2.24	2.08
Q8BVU5	Nudt9	ADP-ribose pyrophosphatase, mitochondrial	5.68	2.07
A0A668KLC6	Map2	Microtubule-associated protein 2	6.22	2.07
A3KML3	Ywhaq	14-3-3 protein theta	5.49	2.07
Q58E70	Трт3		5.64	2.05
A0A0A6YW88	Camkv	CaM kinase-like vesicle-associated protein	5.78	2.05
Q544Y7	Cfl1	Cofilin-1	6.03	2.03
A0PJL3	Sarm1	Sterile alpha and TIR motif-containing protein 1	2.25	2.03
R7RU63	Cttnbp2	Cortactin-binding protein 2	2.70	2.02
B1ATL6	Map2k4	Dual specificity mitogen-activated protein kinase kinase 4	4.82	2.02
Q99J57	Mat2a	S-adenosylmethionine synthase	4.48	2.02
D3YWL1	Rab3d	Ras-related protein Rab-3D	6.09	2.01
Q80UK0	Sestd1	SEC14 domain and spectrin repeat-containing protein 1	2.87	2.00
A0A0N4SW14	Ccdc136	Coiled-coil domain-containing protein 136	3.68	2.00

Protein IDs	Gene names	Protein names	-log ₁₀ (p-value)	log ₂ (enrichment)
Q8N2K0	ABHD12	Monoacylglycerol lipase ABHD12	2.34	5.66
09H773	DCTPP1	dCTP pyrophosphatase 1	2.39	5.16
096TC7	RMDN3	Regulator of microtubule dynamics protein 3	2.52	5.11
P33081	TTK	Dual specificity protein kinase TTK	3 55	5.10
0602112	CED85	Controsomal protein of 85 kDa	2.20	4.06
Q0F2H3	CEF 05	DAD50 interacting protein 1	2.29	4.90
QONUQI	RINII	RAD50-interacting protein 1	3.34	4.89
Q2NKX8	ERCC6L	DNA excision repair protein ERCC-6-like	3.64	4.88
P09132	SRP19	Signal recognition particle 19 kDa protein	2.80	4.63
Q96KC8	DNAJC1	DnaJ homolog subfamily C member 1	4.68	4.61
Q14534	SQLE	Squalene monooxygenase	3.51	4.55
O60664	PLIN3	Perilipin-3	2.05	4.54
Q9NP61	ARFGAP3	ADP-ribosylation factor GTPase-activating protein 3	3.11	4.52
P20290	BTF3	Transcription factor BTF3	2.15	4 32
015270	SPTLC2	Serine palmitovltransferase 2	3.48	4 17
D56062	STY17	Syntaxin 17	2.03	4.17
0011CD9	STAT7	Translogation protein SEC62 homolog	2.93	4.13
Q900P8	JEC05	The second protein SEC65 noniolog	2.70	4.11
Q66K14	IBCID9B	IBCI domain family member 9B	3.47	4.09
075330	HMMR	Hyaluronan mediated motility receptor	2.77	4.07
		Brain-specific angiogenesis inhibitor 1-associated protein 2-like		
Q9UHR4	BAIAP2L1	protein 1	3.38	3.99
Q8NF37	LPCAT1	Lysophosphatidylcholine acyltransferase 1	2.36	3.98
Q5JSH3	WDR44	WD repeat-containing protein 44	2.39	3.97
Q69YH5	CDCA2	Cell division cycle-associated protein 2	3.79	3.95
Q6WKZ4	RAB11FIP1	Rab11 family-interacting protein 1	2.57	3.89
O5SWX8	ODR4	Protein odr-4 homolog	2.63	3.85
Q8ND24	RNF214	RING finger protein 21/	2.62	3.83
D51116	EVD2	Eragile X montal raterdation syndrome related protein 2	2.02	2.80
P31110	FAR2	CDAM 1	3.24	5.60
Q96CP6	GRAMDIA	GRAM domain-containing protein TA	2.18	3.75
P82094	TMF1	TATA element modulatory factor	3.53	3.72
Q96IZ0	PAWR	PRKC apoptosis WT1 regulator protein	3.03	3.72
Q8NG31	CASC5	Protein CASC5	3.00	3.71
Q9BY89	KIAA1671	Uncharacterized protein KIAA1671	2.01	3.66
08WX93	PALLD	Palladin	2.17	3.65
09HBM0	VEZT	Vezatin	2.15	3.61
Q32M74	I RRFIP1	Leucine-rich repeat flightless-interacting protein 1	3 58	3 58
Q3214124	TMEM100	Transmombrane protein 100	2.63	2.57
Q0NJ11 D20510	IMEM199		2.03	3.57
P30519	HMOX2	Heme oxygenase 2	3.58	3.56
Q9P1Z2	CALCOCOI	Calcium-binding and coiled-coil domain-containing protein 1	2.77	3.56
O94830	DDHD2	Phospholipase DDHD2	3.06	3.55
P48651	PTDSS1	Phosphatidylserine synthase 1	2.04	3.52
Q96BW5	PTER	Phosphotriesterase-related protein	2.43	3.49
Q9HD26	GOPC	Golgi-associated PDZ and coiled-coil motif-containing protein	2.56	3.45
09BZF3	OSBPL6	Oxysterol-binding protein-related protein 6	2.91	3.45
P37198	NUP62	Nuclear pore glycoprotein p62	3 31	3.45
027191	INE2	Inverted formin 2	2.07	2.42
016204	CCDC4	Coiled coil domain containing protoin (	2.07	3.43
Q16204		Colled-coll domain-containing protein 6	2.54	3.43
Q99661	KIF2C	Kinesin-like protein KIF2C	3.19	3.38
Q00653	NFKB2	Nuclear factor NF-kappa-B p100 subunit	4.49	3.38
Q86Y07	VRK2	Serine/threonine-protein kinase VRK2	4.41	3.37
Q9UJY4	GGA2	ADP-ribosylation factor-binding protein GGA2	2.57	3.32
Q14807	KIF22	Kinesin-like protein KIF22	2.12	3.28
O95817	BAG3	BAG family molecular chaperone regulator 3	3.42	3.27
O9H4H8	FAM83D	Protein FAM83D	2.49	3.26
014318	FKRP8	Pentidyl-prolyl cis-trans isomerase FKRP8	4 38	3.20
00V547	NUR1	NEDDS ultimate buster 1	+.30 2 10	2.02
Q91JA7	ADECADI	ADD sile sulation factor CTD as activities methics 1	2.10	3.23
Q8N013	AKFGAPI	ADP-fibosylation factor GTPase-activating protein 1	2.71	3.21
Q6ZSR9		Uncharacterized protein FLJ45252	2.14	3.20
Q9HC38	GLOD4	Glyoxalase domain-containing protein 4	3.16	3.20
Q12802	AKAP13	A-kinase anchor protein 13	3.47	3.19
Q9Y6A5	TACC3	Transforming acidic coiled-coil-containing protein 3	3.50	3.15
Q00577	PURA	Transcriptional activator protein Pur-alpha	2.72	3.14
08N2G8	GHDC	GH3 domain-containing protein	2.08	3.07
09BSD7	NTPCR	Cancer-related nucleoside_triphosphatase	2.50	3.07
08N3F8	MICALL1	MICAL like protein 1	2.78	3.05
052E74	CED55	Controsomal protoin of 55 hDa	2.41	3.04
Q33EZ4	CEP33	Centrosomal protein of 55 KDa	2.29	3.04
Q9UNI6	DUSP12	Dual specificity protein phosphatase 12	2.50	3.04
Q9HD20	ATP13A1	Manganese-transporting ATPase 13A1	2.95	3.03
Q9BXB4	OSBPL11	Oxysterol-binding protein-related protein 11	2.07	3.03
O75170	PPP6R2	Serine/threonine-protein phosphatase 6 regulatory subunit 2	2.55	3.02
O9NOW6	ANIN	Actin-hinding protein anillin	2.13	3.02

Table VI-5: Proteins significantly outcompeted by a 10-fold excess of DB vs. 15  $\mu$ M DA-P3 in Hek293 cells.

Q96S59	RANBP9	Ran-binding protein 9	2.87	3.01
Q96B36	AKT1S1	Proline-rich AKT1 substrate 1	3.47	3.00
O60678	PRMT3	Protein arginine N-methyltransferase 3	2.12	2.99
Q9NQS7	INCENP	Inner centromere protein	3.22	2.97
Q5VV42	CDKALI	Threonylcarbamoyladenosine tRNA methylthiotransferase	3.15	2.95
Q914P3	IBL2 RUEV1	RUN and EVVE domain-containing protein 1	2.99	2.95
08IWC1	MAP7D3	MAP7 domain-containing protein 3	3.87	2.94
09Y2D5	AKAP2	A-kinase anchor protein 2	3.15	2.94
Q9HAP2	MLXIP	MLX-interacting protein	4.55	2.93
O43303	CCP110	Centriolar coiled-coil protein of 110 kDa	2.09	2.93
O14531	DPYSL4	Dihydropyrimidinase-related protein 4	2.26	2.88
095999	BCL10	B-cell lymphoma/leukemia 10	3.25	2.88
Q9BZE9	ASPSCR1	Tether containing UBX domain for GLUT4	3.27	2.87
Q08379	GOLGA2	Golgin subfamily A member 2	3.55	2.86
073137 09NT62	ATG3	Ubiquitin-like-conjugating enzyme ATG3	2.21	2.83
095197	RTN3	Reticulon-3	2.14	2.84
Q96SK2	TMEM209	Transmembrane protein 209	3.16	2.81
P18031	PTPN1	Tyrosine-protein phosphatase non-receptor type 1	2.09	2.80
O14976	GAK	Cyclin-G-associated kinase	3.80	2.78
Q16799	RTN1	Reticulon-1	2.12	2.77
Q9UJC3	HOOK1	Protein Hook homolog 1	3.56	2.76
P46821	MAPIB	Microtubule-associated protein 1B	2.58	2.75
060566	BUBIB	Mitotic checkpoint serine/threonine-protein kinase BUBI beta	2.58	2.74
Q9HDC5		Junctophilin-1	2.75	2.73
008378	GOLGA3	Golgin subfamily A member 3	2.84	2.72
08NBF2	NHLRC2	NHL repeat-containing protein 2	2.04	2.71
094763	URI1	Unconventional prefoldin RPB5 interactor 1	2.73	2.69
P51148	RAB5C	Ras-related protein Rab-5C	2.29	2.68
075475	PSIP1	PC4 and SFRS1-interacting protein	2.01	2.67
Q8NFH5	NUP35	Nucleoporin NUP53	2.31	2.67
Q04323	UBXN1	UBX domain-containing protein 1	2.90	2.65
Q7Z2Z2	EFTUDI	Elongation factor Tu GTP-binding domain-containing protein 1	2.39	2.65
099640	PKMYT1	inhibitory kinase	2 94	2.65
O8IXW5	RPAP2	Putative RNA polymerase II subunit B1 CTD phosphatase RPAP2	2.16	2.63
Q9C0E8	LNP	Protein lunapark	2.06	2.62
Q9HC52	CBX8	Chromobox protein homolog 8	4.39	2.61
Q16352	INA	Alpha-internexin	3.35	2.60
Q96GS4	C17orf59	Uncharacterized protein C17orf59	2.76	2.60
P20810	CAST	Calpastatin	2.11	2.60
Q92625	ANKSIA ESVT1	Ankyrin repeat and SAM domain-containing protein IA	2.68	2.59
Q9D3J8 P46109	CRKI	Extended Synaptotaginin-1	3.29	2.39
09Y4E8	USP15	Ubiquitin carboxyl-terminal hydrolase 15	2.36	2.59
O8TBM8	DNAJB14	DnaJ homolog subfamily B member 14	2.08	2.57
Q8N1F8	STK11IP	Serine/threonine-protein kinase 11-interacting protein	2.62	2.57
Q92575	UBXN4	UBX domain-containing protein 4	2.74	2.56
Q8TEY7	USP33	Ubiquitin carboxyl-terminal hydrolase 33	3.61	2.56
Q7Z5L2	R3HCC1L	Coiled-coil domain-containing protein R3HCC1L	2.36	2.55
006770		Leucine-rich repeat and calponin homology domain-containing	2 50	255
09NZT2	OGFR	Onioid growth factor receptor	5.39 2.71	2.55
09NRR5	UBOLN4	Ubiquilin-4	2.05	2.53
076024	WFS1	Wolframin	3.25	2.52
Q9Y2W6	TDRKH	Tudor and KH domain-containing protein	2.96	2.51
P08240	SRPR	Signal recognition particle receptor subunit alpha	3.30	2.50
Q9Y2V2	CARHSP1	Calcium-regulated heat stable protein 1	2.97	2.49
Q9UKX7	NUP50	Nuclear pore complex protein Nup50	2.73	2.48
P51617	IRAKI	Interleukin-1 receptor-associated kinase 1	2.34	2.48
077288	GPRINI	G protein-regulated inducer of neurite outgrowth 1	2.10	2.4/
Q7Z2R8	MIA3	Melanoma inhibitory activity protein 3	3.87	2.40
P22059	OSBP	Oxysterol-binding protein 1	3.42	2.40
Q9Y679	AUP1	Ancient ubiquitous protein 1	3.19	2.40
Q9P0L0	VAPA	Vesicle-associated membrane protein-associated protein A	3.39	2.40
Q8TD19	NEK9	Serine/threonine-protein kinase Nek9	2.34	2.38
Q9HCU5	PREB	Prolactin regulatory element-binding protein	2.95	2.37
P50402	EMD	Emerin	4.16	2.35
Q15005	SPCS2	Signal peptidase complex subunit 2	3.07	2.35
P49009	CAMLG	Calcium signal-modulating cyclopnilin ligand	3.94	2.35

Q8IZ21	PHACTR4	Phosphatase and actin regulator 4	2.68	2.34
Q9NYZ3	GTSE1	G2 and S phase-expressed protein 1	2.08	2.34
P29372	MPG	DNA-3-methyladenine glycosylase	4.56	2.34
		Arf-GAP with GTPase, ANK repeat and PH domain-containing		
Q96P47	AGAP3	protein 3	2.63	2.33
Q9UGV2	NDRG3	Protein NDRG3	2.08	2.31
Q5T5U3	ARHGAP21	Rho GTPase-activating protein 21	2.90	2.31
Q8NEN9	PDZD8	PDZ domain-containing protein 8	2.93	2.31
Q6PJ69	TRIM65	Tripartite motif-containing protein 65	2.63	2.30
O9BVO7	SPATA5L1	Spermatogenesis-associated protein 5-like protein 1	2.71	2.30
P04035	HMGCR	3-hydroxy-3-methylglutaryl-coenzyme A reductase	3.52	2.29
O9NZ52	GGA3	ADP-ribosylation factor-binding protein GGA3	2.03	2.29
099439	CNN2	Calponin-2	2.63	2.27
000587	CDC42EP1	Cdc42 effector protein 1	2.08	2 27
Q00507	RAR18	Ras-related protein Rab-18	3.40	2.27
086YI 3	ANKIE2	Ankyrin repeat and LEM domain containing protein 2	4.00	2.27
Q00AL5	ATP6V1C1	V type proton ATDase subunit C 1	2.85	2.27
012800	TECP2	Alpha globin transgription factor CP2	2.15	2.20
Q12800	MAVS	Mitochondrial antiviral signaling protain	2.13	2.20
Q7Z434	MAVS LADD4D	Vinochondriai anuvirai-signaning protein	3.92	2.20
Q92015	LARP4B	La-related protein 4B	3.07	2.20
A1X283	SH3PXD2B	SH3 and PX domain-containing protein 2B	2.00	2.26
P53384	NUBPI	Cytosolic Fe-S cluster assembly factor NUBP1	4.81	2.23
Q9H2G2	SLK	STE20-like serine/threonine-protein kinase	3.05	2.23
Q8N0X7	SPG20	Spartin	3.20	2.23
075410	TACCI	Transforming acidic coiled-coil-containing protein 1	2.21	2.22
Q15398	DLGAP5	Disks large-associated protein 5	2.52	2.22
Q99666	RGPD5	RANBP2-like and GRIP domain-containing protein 5/6	2.17	2.20
Q9Y4K3	TRAF6	TNF receptor-associated factor 6	2.62	2.19
Q5UIP0	RIF1	Telomere-associated protein RIF1	2.20	2.19
Q96KB5	PBK	Lymphokine-activated killer T-cell-originated protein kinase	5.06	2.18
Q69YQ0	SPECC1L	Cytospin-A	3.23	2.18
Q14694	USP10	Ubiquitin carboxyl-terminal hydrolase 10	2.93	2.18
		Eukaryotic peptide chain release factor GTP-binding subunit		
P15170	GSPT1	ERF3A	3.56	2.18
O00233	PSMD9	26S proteasome non-ATPase regulatory subunit 9	2.83	2.17
		1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-		
P19174	PLCG1	1	2.74	2.17
Q96R06	SPAG5	Sperm-associated antigen 5	2.56	2.15
Q86UK7	ZNF598	Zinc finger protein 598	2.88	2.14
Q66K74	MAP1S	Microtubule-associated protein 1S	2.15	2.13
09NU03	TXLNG	Gamma-taxilin	2.61	2.12
O9BTE3	MCMBP	Mini-chromosome maintenance complex-binding protein	2.63	2.12
09Y2G8	DNAJC16	DnaJ homolog subfamily C member 16	2.04	2.12
O9P0U3	SENP1	Sentrin-specific protease 1	2.65	2.10
07L5N7	LPCAT2	Lysophosphatidylcholine acyltransferase 2	3.26	2.10
094966	USP19	Libiquitin carboxyl-terminal hydrolase 19	3.81	2.09
09H6U6	BCAS3	Breast carcinoma-amplified sequence 3	2 42	2.09
05T6F2	IIRAP?	Ubiquitin-associated protein 2	3 /1	2.00
091115	RAC5	BAG family molecular chaperone regulator 5	3.02	2.08
000161	SNAP??	Synantosomal-associated protein 23	2.02	2.08
016513	PKN2	Synaptosoniai-associated protein 25	2.03	2.07
D51152	PAR12	Pag related protein Pab 13	2.10	2.07
D22691		E2 ubiquitin protein ligage CDI	2.31	2.00
075121	CDL CDNE2	Lo uoiquium-piotem ngase CDL	2.24	2.05
0/5151 D16615	CPINES ATD242		3.15	2.05
P10015	ATP2A2	Sarcopiasmic/endopiasmic renculum calcium ATPase 2	3.07	2.04
095140		TID41 lile protein	2.82	2.03
0/5663			2.32	2.03
Q043K3	LPCA14	Lysophospholipid acyltransferase LPCA14	2.59	2.03
P98194	ATP2CI	Calcium-transporting ATPase type 2C member 1	2.28	2.02
Q9BZI7	UPF3B	Regulator of nonsense transcripts 3B	2.01	2.02
Q9Y5K6	CD2AP	CD2-associated protein	2.09	2.02
Q9Y2U8	LEMD3	Inner nuclear membrane protein Man1	3.95	2.01
Q9H7E9	C8orf33	UPF0488 protein C8orf33	2.43	2.01
Q92551	IP6K1	Inositol hexakisphosphate kinase 1	2.61	2.00
Q8TCU4	ALMS1	Alstrom syndrome protein 1	2.22	2.00
Q9Y277	VDAC3	Voltage-dependent anion-selective channel protein 3	3.70	2.00

Table VI-6: Proteins significantly outcompeted by a 10-fold excess of QC vs. 15  $\mu$ M DA-P3 in Hek293 cells.

Protein IDs	Gene names	Protein names	-log ₁₀ (p-value)	log ₂ (enrichment)
Q9Y6A5	TACC3	Transforming acidic coiled-coil-containing protein 3	3.56	6.91
Q9UJY4	GGA2	ADP-ribosylation factor-binding protein GGA2	3.43	6.04
Q8IWC1	MAP7D3	MAP7 domain-containing protein 3	2.14	6.01

Q32MZ4	LRRFIP1	Leucine-rich repeat flightless-interacting protein 1	4.71	6.00
O60664	PLIN3	Perilipin-3	2.91	5.94
P09132	SRP19	Signal recognition particle 19 kDa protein	2.75	5.86
O15270	SPTLC2	Serine palmitoyltransferase 2	2.09	5.60
Q9H773	DCTPP1	dCTP pyrophosphatase 1	3.15	5.57
Q6P2H3	CEP85	Centrosomal protein of 85 kDa	2.49	5.57
Q8ND24	RNF214	RING finger protein 214	3.95	5.54
Q7Z318	ZFYVE16	Zinc finger FYVE domain-containing protein 16	3.11	5.48
075550	HMMK EPCC6I	DNA avaision repair protoin EPCC 6 like	3.00	5.38
Q2INKA8	ERCCOL PAR11FIP1	Pabl 1 family interacting protein 1	2.43	5.30
Q0WR24	MTFR11	Mitochondrial fission regulator 1-like	3.72	5.23
014976	GAK	Cyclin-G-associated kinase	2 65	5.19
060566	BUBIB	Mitotic checkpoint serine/threonine-protein kinase BUB1 beta	4 42	5.17
06NU01	RINT1	RAD50-interacting protein 1	2.09	5.13
Q8WX93	PALLD	Palladin	2.05	5.11
P20810	CAST	Calpastatin	2.52	4.91
P46821	MAP1B	Microtubule-associated protein 1B	3.74	4.90
O95197	RTN3	Reticulon-3	2.65	4.88
Q9BZE9	ASPSCR1	Tether containing UBX domain for GLUT4	3.12	4.82
Q8N2K0	ABHD12	Monoacylglycerol lipase ABHD12	2.40	4.78
Q14534	SQLE	Squalene monooxygenase	3.33	4.77
O95817	BAG3	BAG family molecular chaperone regulator 3	5.14	4.74
Q96BW5	PTER	Phosphotriesterase-related protein	2.57	4.70
P49247	RPIA	Ribose-5-phosphate isomerase	2.35	4.69
Q86VQ1	GLCCI1	Glucocorticoid-induced transcript 1 protein	2.83	4.65
Q5SQN1	SNAP47	Synaptosomal-associated protein 47	3.20	4.64
P56962	STX17	Syntaxin-17	3.90	4.61
094763	URII	Unconventional prefoldin RPB5 interactor 1	3.10	4.60
Q96KC8	DNAJCI	DnaJ homolog subfamily C member 1	3.94	4.58
Q96S59	RANBP9	Ran-binding protein 9	3.38	4.48
Q969V6	MKLI	MKL/myocardin-like protein 1	2.20	4.47
Q10/99	CRAMD14	CDAM domain containing protain 1A	4.88	4.40
Q90CP0	GRAMDIA OSPDI 6	OKAM domain-containing protein TA	2.01	4.30
Q9BZF3	ANIN	Actin hinding protein anillin	2.37	4.30
01/318	EKBP8	Pentidyl_prolyl_cis_trans_isomerase EKBP8	2.48	4.34
P40763	STAT3	Signal transducer and activator of transcription 3	2.92	4.31
05W0B1	RNF219	RING finger protein 219	2.20	4.31
P46109	CRKL	Crk-like protein	2.93	4.28
P82094	TMF1	TATA element modulatory factor	3.63	4.26
A1X283	SH3PXD2B	SH3 and PX domain-containing protein 2B	2.68	4.26
Q5VV42	CDKAL1	Threonylcarbamoyladenosine tRNA methylthiotransferase	2.55	4.25
Q9Y4P3	TBL2	Transducin beta-like protein 2	2.75	4.23
Q96GA3	LTV1	Protein LTV1 homolog	2.27	4.19
		Arf-GAP with GTPase, ANK repeat and PH domain-containing		
Q96P47	AGAP3	protein 3	2.42	4.16
Q8TBM8	DNAJB14	DnaJ homolog subfamily B member 14	2.45	4.14
Q5JSH3	WDR44	WD repeat-containing protein 44	2.07	4.12
Q3KQU3	MAP7D1	MAP7 domain-containing protein 1	2.85	4.09
P32929	CTH	Cystathionine gamma-lyase	2.01	4.08
Q9BXB4	USBPLII	Oxysterol-binding protein-related protein 11	2.42	4.07
09NW/69	RSDC1	BSD domain_containing protein 1	3.30	4.00
00111.63	MKINI	Muskalin	2.66	4.00
092575	I/RXN4	UBX domain-containing protein 4	2.00	4.04
092615	LARP4R	La-related protein 4B	2.50	4.02
09HBM0	VEZT	Vezatin	2.90	4 00
Q66K74	MAPIS	Microtubule-associated protein 1S	3.71	3.98
09Y5A7	NUB1	NEDD8 ultimate buster 1	3.51	3.97
Q8NFH5	NUP35	Nucleoporin NUP53	2.63	3.97
Q96IZ0	PAWR	PRKC apoptosis WT1 regulator protein	2.76	3.96
Q9NP61	ARFGAP3	ADP-ribosylation factor GTPase-activating protein 3	2.14	3.96
Q96PC5	MIA2	Melanoma inhibitory activity protein 2	3.80	3.93
Q8N2G8	GHDC	GH3 domain-containing protein	2.74	3.92
Q8TD19	NEK9	Serine/threonine-protein kinase Nek9	2.47	3.90
O43303	CCP110	Centriolar coiled-coil protein of 110 kDa	3.26	3.86
		Brain-specific angiogenesis inhibitor 1-associated protein 2-like		
Q9UHR4	BAIAP2L1	protein 1	2.73	3.84
Q12802	AKAP13	A-kinase anchor protein 13	2.98	3.84
Q08379	GOLGA2	Golgin subtamily A member 2	3.39	3.83
0/5157	ISC22D2	ISU22 domain family protein 2	2.61	3.81
Q86XL3	ANKLE2	Ankyrin repeat and LEM domain-containing protein 2	2.89	3.81

Q15003	NCAPH	Condensin complex subunit 2	3.06	3.77
Q9UJC3	HOOK1	Protein Hook homolog 1	3.14	3.75
Q8NBF2	NHLRC2	NHL repeat-containing protein 2	3.34	3.74
Q00577	PURA	Transcriptional activator protein Pur-alpha	2.89	3.73
Q08378	GOLGA3	Golgin subfamily A member 3	3.35	3.72
O43683	BUB1	Mitotic checkpoint serine/threonine-protein kinase BUB1	2.94	3.69
Q9BSJ8	ESYT1	Extended synaptotagmin-1	2.89	3.68
P30519	HMOX2	Heme oxygenase 2	4.56	3.67
075410	TACC1	Transforming acidic coiled-coil-containing protein 1	3.55	3.64
Q8IXW5	RPAP2	Putative RNA polymerase II subunit B1 CTD phosphatase RPAP2	2.26	3.64
P15170	GSPT1	Eukaryotic peptide chain release factor GTP-binding subunit ERF3A	3.66	3.61
P08240	SRPR	Signal recognition particle receptor subunit alpha	2.57	3.59
Q9HC38	GLOD4	Glyoxalase domain-containing protein 4	2.46	3.59
Q9UKA4	AKAPII	A-kinase anchor protein 11	2.19	3.57
Q96151	RUFYI	RUN and FYVE domain-containing protein 1	2.49	3.55
P51116	FXR2	Pragile X mental retardation syndrome-related protein 2	2.99	3.52
Q55WX8	ODR4	Protein odr-4 homolog	4.84	3.50
Q99001	CTSE1	C2 and S phase expressed protein 1	3.20	3.49
Q9N1Z3	GISEI	G2 and S phase-expressed protein 1	2.20	3.40
094650	DDHD2	Phospholipase DDHD2 Dibudeenveriesi diagon related protein 4	2.00	2.46
D14351	DF ISL4	Dinydropyrinidinase-related protein 4	3.30	2.42
P16051	TITNI NEVD2	Nuclear factor NE kappa P p100 subunit	2.20	2 20
013596	NFKD2 SNY1	Sorting nevin-1	2 30	3.39
Q13390	TRAF6	TNE recentor-associated factor 6	2.30	3.38
Q914K3	GOPC	Golgi-associated PDZ and coiled-coil motif-containing protein	3.30	3.35
P42566	EPS15	Endermal growth factor recentor substrate 15	2.90	3.35
P22059	OSRP	Ovysterol-binding protein 1	2.99	3.35
098679		Ancient ubiquitous protein 1	3.54	3.34
016512	PKN1	Serine/threonine-protein kinase N1	2.80	3 32
P37198	NUP62	Nuclear nore glyconrotein n6?	3.13	3 32
069YH5	CDCA2	Cell division cycle-associated protein 2	2.86	3.32
0772K8	GPRIN1	G protein-regulated inducer of neurite outgrowth 1	2.64	3.31
O9NUO3	TXLNG	Gamma-taxilin	3.97	3.31
Q66K14	TBC1D9B	TBC1 domain family member 9B	2.11	3.30
O9BY89	KIAA1671	Uncharacterized protein KIAA1671	2.03	3.29
P27816	MAP4	Microtubule-associated protein 4	2.93	3.29
O9H4H8	FAM83D	Protein FAM83D	2.02	3.28
P19174	PLCG1	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1	2.84	3.27
P48651	PTDSS1	Phosphatidylserine synthase 1	2.23	3.27
Q92625	ANKS1A	Ankyrin repeat and SAM domain-containing protein 1A	3.92	3.25
Q9UL15	BAG5	BAG family molecular chaperone regulator 5	4.28	3.24
Q9NRR5	UBQLN4	Ubiquilin-4	2.46	3.24
P19525	EIF2AK2	Interferon-induced, double-stranded RNA-activated protein kinase	2.50	3.23
Q15005	SPCS2	Signal peptidase complex subunit 2	4.61	3.21
Q9NZJ0	DTL	Denticleless protein homolog	2.68	3.20
Q14807	KIF22	Kinesin-like protein KIF22	2.16	3.19
P61758	VBP1	Prefoldin subunit 3	3.99	3.18
Q9NZT2	OGFR	Opioid growth factor receptor	2.59	3.18
O60547	GMDS	GDP-mannose 4,6 dehydratase	3.93	3.15
Q86Y07	VRK2	Serine/threonine-protein kinase VRK2	2.65	3.14
Q8TEY7	USP33	Ubiquitin carboxyl-terminal hydrolase 33	2.24	3.14
Q9UKX7	NUP50	Nuclear pore complex protein Nup50	3.33	3.13
Q9Y2D5	AKAP2	A-kinase anchor protein 2	2.82	3.13
D62151	DDDDDD	Serine/threenine-protein phosphatase 2A 55 kDa regulatory subunit	0.77	2.10
P63151	PPP2R2A	B alpha isoform	2.77	3.12
P53384	NUBP1	Cytosolic Fe-S cluster assembly factor NUBP1	4.72	3.11
Q9N162	AIGS	Acul Co A hinding domain containing protein 5	3.34	3.11
Q518D3	ACBDS	Acyl-CoA-binding domain-containing protein 5	2.40	3.10
Q313U3	ARTIGAP21	Interlowkin 1 recentor ecceptor descented kinger 1	2.37	3.10
015309	DICAP5	Disks large associated protein 5	2./1	2.10
095000	BCI 10	B-cell lymphoma/leukemia 10	2.13	2.10
096C19	EFHD?	EF-hand domain-containing protein D?	2.30	3.10
096684	Cl7orf59	Uncharacterized protein C17orf59	2.75	3.09
096A49	SYAP1	Synapse-associated protein 1	2.52	3.09
O8NFW8	CMAS	N-acylneuraminate cytidylyltransferase	2.20	3.07
014694	USP10	Ubiquitin carboxyl-terminal hydrolase 10	3.14	3.06
Q8N0X7	SPG20	Spartin	3.20	3.06
Q99666	RGPD5	RANBP2-like and GRIP domain-containing protein 5/6	3.96	3.05
Q9H2G2	SLK	STE20-like serine/threonine-protein kinase	3.03	3.04
Q9BQ70	TCF25	Transcription factor 25	2.89	3.02
Q9Y2G8	DNAJC16	DnaJ homolog subfamily C member 16	2.58	3.01

Q7Z4H7	HAUS6	HAUS augmin-like complex subunit 6	2.99	3.00
Q8N1F8	STK11IP	Serine/threonine-protein kinase 11-interacting protein	2.40	3.00
Q6PJG6	BRAT1	BRCA1-associated ATM activator 1	3.16	2.99
Q8WXE0	CASKIN2	Caskin-2	3.30	2.98
Q7Z434	MAVS	Mitochondrial antiviral-signaling protein	2.92	2.98
O94966	USP19	Ubiquitin carboxyl-terminal hydrolase 19	2.60	2.98
Q9BSD7	NTPCR	Cancer-related nucleoside-triphosphatase	2.12	2.94
O15027	SEC16A	Protein transport protein Sec16A	3.21	2.94
Q9HCU5	PREB	Prolactin regulatory element-binding protein	2.50	2.94
Q9NP72	RAB18	Ras-related protein Rab-18	2.76	2.93
Q92667	AKAPI	A-kinase anchor protein 1, mitochondrial	3.69	2.92
Q8N511	TMEM199	Transmembrane protein 199	3.60	2.91
Q96KB5	PBK	Lymphokine-activated killer T-cell-originated protein kinase	2.56	2.90
000233	PSMD9	26S proteasome non-ATPase regulatory subunit 9	4.50	2.89
D60784		Larget of Myb protein 1	2.56	2.89
P49009	DCNT	Dericentrin	2.93	2.88
D93013	FUNI	Emorin	2.31	2.87
09HDC5	IPH1	Iunctonbilin_1	3.08	2.80
Q911DC3	OYR1	Oxidation resistance protein 1	2.11	2.85
Q011373	SPAG5	Sperm-associated antigen 5	3.18	2.82
095793	STAU1	Double-stranded RNA-binding protein Staufen homolog 1	2 21	2.01
09H7E9	C8orf33	UPF0488 protein C8orf33	3.07	2.80
099873	PRMT1	Protein arginine N-methyltransferase 1	2.06	2.79
Q9UBU6	FAM8A1	Protein FAM8A1	3.09	2.79
Q9P0U3	SENP1	Sentrin-specific protease 1	2.75	2.76
Q13615	MTMR3	Myotubularin-related protein 3	3.49	2.76
Q53EZ4	CEP55	Centrosomal protein of 55 kDa	4.79	2.75
Q9Y371	SH3GLB1	Endophilin-B1	2.66	2.74
Q8NB90	SPATA5	Spermatogenesis-associated protein 5	2.62	2.73
Q7Z2Z2	EFTUD1	Elongation factor Tu GTP-binding domain-containing protein 1	2.92	2.72
Q8N6M0	OTUD6B	OTU domain-containing protein 6B	2.01	2.71
Q14247	CTTN	Src substrate cortactin	3.95	2.71
Q9Y4E8	USP15	Ubiquitin carboxyl-terminal hydrolase 15	3.40	2.71
Q9Y4C1	KDM3A	Lysine-specific demethylase 3A	3.76	2.71
P49790	NUP153	Nuclear pore complex protein Nup153	3.64	2.70
Q9BYB4	GNB1L	Guanine nucleotide-binding protein subunit beta-like protein 1	2.57	2.70
Q9H4A3	WNK1	Serine/threonine-protein kinase WNK1	2.23	2.69
Q8NHV4	NEDDI	Protein NEDDI	2.22	2.69
Q9BZX2	UCK2	Uridine-cytidine kinase 2	2.25	2.68
000427	CSPDI 0	Faily acid desalurase 1	5.07	2.08
Q90304	SI AIN1	SLAIN motif_containing protein 1	4.14	2.07
081721	PHACTR4	Phosphatase and actin regulator 4	2.04	2.07
075044	SRGAP2	SLIT-ROBO Rho GTPase-activating protein 2	2.29	2.65
P28290	SSEA2	Sperm-specific antigen 2	3.34	2.65
075694	NUP155	Nuclear pore complex protein Nup155	2.18	2.64
Q9UGP4	LIMD1	LIM domain-containing protein 1	3.94	2.64
P48506	GCLC	Glutamatecysteine ligase catalytic subunit	2.44	2.64
P20290	BTF3	Transcription factor BTF3	2.01	2.63
Q8N5G2	TMEM57	Macoilin	4.01	2.63
Q99567	NUP88	Nuclear pore complex protein Nup88	2.21	2.61
Q643R3	LPCAT4	Lysophospholipid acyltransferase LPCAT4	2.24	2.60
Q9Y277	VDAC3	Voltage-dependent anion-selective channel protein 3	3.73	2.59
076024	WFS1	Wolframin	2.21	2.59
Q8WZA9	IRGQ	Immunity-related GTPase family Q protein	3.02	2.57
Q9UJW0	DCTN4	Dynactin subunit 4	2.67	2.56
015269	SPILCI	Serine palmitoyltransferase 1	2.52	2.54
043379	WDR02	WD repeat-containing protein 62	2.16	2.53
Q9H013	KPAP3	RNA polymerase II-associated protein 5	2.40	2.51
09BTE3	MCMRP	Mini_chromosome maintenance complex_hinding protein	5.18 // 22	2.31
Q9D1E5	SASS6	Spindle assembly abnormal protein 6 homolog	4.55	2.50
09UBF8	PI4KB	Phosphatidylinositol 4-kinase beta	2 40	2.30
09Y2U8	LEMD3	Inner nuclear membrane protein Man1	2.97	2.45
O8NHH9	ATL2	Atlastin-2	2.32	2.45
Q8IYS1	PM20D2	Peptidase M20 domain-containing protein 2	2.62	2.44
P51858	HDGF	Hepatoma-derived growth factor	2.51	2.44
P49585	PCYT1A	Choline-phosphate cytidylyltransferase A	2.87	2.42
Q9Y2Z0	SUGT1	Suppressor of G2 allele of SKP1 homolog	2.18	2.41
Q99961	SH3GL1	Endophilin-A2	2.99	2.41
Q6PKG0	LARP1	La-related protein 1	3.49	2.41
Q9P2E9	RRBP1	Ribosome-binding protein 1	3.01	2.41

O9H910	HN1L	Hematological and neurological expressed 1-like protein	2.15	2.40
P06753	ТРМ3	Tropomyosin alpha-3 chain	2.33	2.40
O00161	SNAP23	Synaptosomal-associated protein 23	2.82	2.40
O9Y2W6	TDRKH	Tudor and KH domain-containing protein	2.63	2.39
Q71RC2	LARP4	La-related protein 4	5.50	2.38
Q96F86	EDC3	Enhancer of mRNA-decapping protein 3	2.57	2.37
Q8IW35	CEP97	Centrosomal protein of 97 kDa	2.42	2.37
Q06124	PTPN11	Tyrosine-protein phosphatase non-receptor type 11	3.53	2.37
Q9C0C9	UBE2O	E2/E3 hybrid ubiquitin-protein ligase UBE2O	3.20	2.35
Q01970	PLCB3	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3	2.29	2.35
Q9BVQ7	SPATA5L1	Spermatogenesis-associated protein 5-like protein 1	2.36	2.35
Q15653	NFKBIB	NF-kappa-B inhibitor beta	2.97	2.34
Q9H6U6	BCAS3	Breast carcinoma-amplified sequence 3	2.54	2.33
Q86V48	LUZP1	Leucine zipper protein 1	2.67	2.33
Q92551	IP6K1	Inositol hexakisphosphate kinase 1	3.11	2.33
Q81C07	TBCIDI5	TBC1 domain family member 15	2.03	2.33
Q9H0B6	KLC2	Kinesin light chain 2	2.43	2.33
A6NDG6	PGP	Phosphoglycolate phosphatase	2.92	2.33
A8CG34	POMI2IC	Nuclear envelope pore membrane protein POM 121C	3.09	2.32
015027	ACADI	Art-GAP with colled-coll, ANK repeat and PH domain-containing	2.04	2.22
Q13027	TMDO	Loming accorded nolymentide 2, iceform alpha	2.04	2.32
P42100 P48507		Clutamente cysteine ligase regulatory subunit	2.02	2.30
P48634	PRRC2A	Protein PRPC2A	2.39	2.29
099614	TTC1	Tetratricopentide repeat protein 1	2.40	2.29
Q99014	CHMP5	Charged multivesicular body protein 5	3.92	2.2)
098520	PRRC2C	Protein PRRC2C	3.52	2.29
09H0W8	SMG9	Protein SMG9	2 45	2.29
P0DN79	CBS	Cystathionine beta-synthase	3.20	2.28
P00390	GSR	Glutathione reductase, mitochondrial	2.03	2.28
095292	VAPB	Vesicle-associated membrane protein-associated protein B/C	3.32	2.28
O9NPH2	ISYNA1	Inositol-3-phosphate synthase 1	2.24	2.27
09UGV2	NDRG3	Protein NDRG3	4.22	2.26
Q15276	RABEP1	Rab GTPase-binding effector protein 1	2.10	2.25
O95486	SEC24A	Protein transport protein Sec24A	2.73	2.24
075179	ANKRD17	Ankyrin repeat domain-containing protein 17	2.12	2.23
O75348	ATP6V1G1	V-type proton ATPase subunit G 1	2.46	2.23
P60468	SEC61B	Protein transport protein Sec61 subunit beta	5.41	2.22
Q15477	SKIV2L	Helicase SKI2W	2.14	2.22
Q8IV63	VRK3	Inactive serine/threonine-protein kinase VRK3	2.65	2.22
Q9NQX3	GPHN	Gephyrin	2.22	2.22
Q02833	RASSF7	Ras association domain-containing protein 7	2.68	2.22
A0AVT1	UBA6	Ubiquitin-like modifier-activating enzyme 6	2.46	2.19
Q9NZL4	HSPBP1	Hsp70-binding protein 1	2.26	2.17
Q7L5N7	LPCAT2	Lysophosphatidylcholine acyltransferase 2	2.76	2.17
Q9BVS4	RIOK2	Serine/threonine-protein kinase RIO2	2.35	2.16
P02545	LMNA	Prelamin-A/C	3.79	2.15
043432 D14625	EIF4G3	Eukaryotic translation initiation factor 4 gamma 3	2.07	2.15
P14035		62/mmouc-specific cycliff-B1	3.22	2.14
Q9UP13	TRC1D12	TRC1 domain family member 13	2.41	2.14
08WWM7	ATXN2I	Atayin_2-like protein	2.37	2.15
O8WWK9	CKAP?	Cytoskeleton-associated protein 2	2.09	2.11
P52732	KIF11	Kinesin-like protein KIF11	2.56	2.10
09NWV8	BABAM1	BRISC and BRCA1-A complex member 1	3.85	2.09
O9UNY4	TTF2	Transcription termination factor 2	2.55	2.08
015154	PCM1	Pericentriolar material 1 protein	3.06	2.08
015365	PCBP1	Poly(rC)-binding protein 1	2.48	2.08
Q14BN4	SLMAP	Sarcolemmal membrane-associated protein	3.21	2.06
Q9Y3C8	UFC1	Ubiquitin-fold modifier-conjugating enzyme 1	2.82	2.06
P16615	ATP2A2	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	2.29	2.06
O00170	AIP	AH receptor-interacting protein	2.69	2.05
Q9HBM1	SPC25	Kinetochore protein Spc25	2.55	2.05
Q9UNF1	MAGED2	Melanoma-associated antigen D2	2.24	2.04
Q12756	KIF1A	Kinesin-like protein KIF1A	2.26	2.03
Q69YQ0	SPECC1L	Cytospin-A	2.79	2.03
O95905	ECD	Protein SGT1	2.86	2.03
Q9UL46	PSME2	Proteasome activator complex subunit 2	2.40	2.02
Protein IDs	Gene names	Protein names	-log ₁₀ (p-value)	log ₂ (enrichment)
------------------	------------------	-------------------------------------------------------------------	------------------------------	-------------------------------
Q8N2K0	ABHD12	Monoacylglycerol lipase ABHD12	2.93	7.26
Q32MZ4	LRRFIP1	Leucine-rich repeat flightless-interacting protein 1	3.19	6.89
Q9Y6A5	TACC3	Transforming acidic coiled-coil-containing protein 3	3.47	6.58
Q6P2H3	CEP85	Centrosomal protein of 85 kDa	5.03	6.32
Q8IWZ3	ANKHD1	Ankyrin repeat and KH domain-containing protein 1	2.99	6.24
Q8IWC1	MAP7D3	MAP7 domain-containing protein 3	2.34	6.16
P46821	MAPIB	Microtubule-associated protein 1B	3.29	6.10
095817	BAG3	BAG family molecular chaperone regulator 3	2.24	6.08
Q6NUQI	RINTI	RAD50-interacting protein I	2.61	5.95
060566	BUBIB	Mitotic checkpoint serine/threonine-protein kinase BUBI beta	5.00	5.88
D15270	SPILC2	Serine paimitoyitransierase 2	2.22	5.82
P40705	CCDC6	Coiled coil domain containing protain 6	2.03	5.05
Q10204 P56062	STY17	Syntaxin 17	2.53	5.36
05SON1	SNAP47	Synantosomal-associated protein 47	3.48	5.30
08ND24	RNF214	RING finger protein 214	2 23	5.35
075410	TACCI	Transforming acidic coiled-coil-containing protein 1	3.25	5.22
096GA3	LTV1	Protein LTV1 homolog	2.84	5.19
Q2NKX8	ERCC6L	DNA excision repair protein ERCC-6-like	3.84	5.18
<b>L</b>		Arf-GAP with GTPase. ANK repeat and PH domain-containing		
O96P47	AGAP3	protein 3	3.46	5.03
014976	GAK	Cyclin-G-associated kinase	2.19	4.97
P82094	TMF1	TATA element modulatory factor	2.98	4.95
Q15003	NCAPH	Condensin complex subunit 2	2.10	4.95
Q66K74	MAP1S	Microtubule-associated protein 1S	3.13	4.93
014531	DPYSL4	Dihydropyrimidinase-related protein 4	2.73	4.89
P27816	MAP4	Microtubule-associated protein 4	2.09	4.89
Q8TD19	NEK9	Serine/threonine-protein kinase Nek9	2.06	4.87
O95197	RTN3	Reticulon-3	2.86	4.84
P04035	HMGCR	3-hydroxy-3-methylglutaryl-coenzyme A reductase	2.79	4.73
Q9HC38	GLOD4	Glyoxalase domain-containing protein 4	3.19	4.71
Q5VV42	CDKAL1	Threonylcarbamoyladenosine tRNA methylthiotransferase	3.88	4.62
Q9UJC3	HOOK1	Protein Hook homolog 1	2.72	4.59
Q99661	KIF2C	Kinesin-like protein KIF2C	2.75	4.58
Q00577	PURA	Transcriptional activator protein Pur-alpha	2.48	4.57
Q5JSZ5	PRRC2B	Protein PRRC2B	2.66	4.57
Q9BZE9	ASPSCRI	Tether containing UBX domain for GLUT4	3.77	4.53
Q96859	RANBP9	Ran-binding protein 9	3.48	4.48
		Brain-specific angiogenesis inhibitor 1-associated protein 2-like	2.00	4 49
Q90HR4	BAIAP2LI CDVI	Cele libre constraint	2.88	4.48
P40109		NEDD8 ultimate huster 1	2.11	4.43
Q913A/	OSBPI 11	Ovveteral binding protein related protein 11	2.43	4.43
Q9DAD4	USP16	Ubiquitin carboxyl-terminal hydrolase 16	2.43	4.38
P19525	FIF2AK2	Interferon-induced double-stranded RNA-activated protein kinase	2.65	4.30
P22059	OSBP	Oxysterol-binding protein 1	3 34	4 25
043303	CCP110	Centriolar coiled-coil protein of 110 kDa	2.72	4.23
O9NUO3	TXLNG	Gamma-taxilin	2.25	4.21
09NT62	ATG3	Ubiquitin-like-conjugating enzyme ATG3	2.09	4.11
P51116	FXR2	Fragile X mental retardation syndrome-related protein 2	2.21	4.01
Q9UJW0	DCTN4	Dynactin subunit 4	4.41	4.00
O60343	TBC1D4	TBC1 domain family member 4	3.97	3.98
Q9H9A6	LRRC40	Leucine-rich repeat-containing protein 40	3.36	3.93
Q9NYZ3	GTSE1	G2 and S phase-expressed protein 1	2.35	3.91
Q8IZ21	PHACTR4	Phosphatase and actin regulator 4	3.03	3.87
Q9HD26	GOPC	Golgi-associated PDZ and coiled-coil motif-containing protein	2.43	3.87
		Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit		
P63151	PPP2R2A	B alpha isoform	3.03	3.85
Q9BSJ8	ESYT1	Extended synaptotagmin-1	3.62	3.85
Q9NQ88	TIGAR	Fructose-2,6-bisphosphatase TIGAR	2.22	3.83
Q15005	SPCS2	Signal peptidase complex subunit 2	2.74	3.83
Q7Z2Z2	EFTUDI	Elongation factor Tu GTP-binding domain-containing protein 1	2.01	3.82
Q90PC5	MIA2	Interationa infibitory activity protein 2	3.18	3.82
QOWLAY OPNOV7	INGQ SPC20	Sportin	2.44	3./6
QOINUA/	NHI PC2	NHL repeat-containing protain ?	2.41	2./3
Q011012	SIK	STE20-like serine/threenine_protein kingse	2.42	3./1
09B7X2	UCK?	Uridine-cytidine kinase 2	2.19	3.66
096C19	EFHD?	FF-hand domain-containing protein D2	2.00	3.63
2,0017		1-phosphatidylinositol 4.5-bisphosphate phosphodiesterase gamma-	2.23	5.05
P19174	PLCG1	1	3.49	3.63
	•		•	

## Table VI-7: Proteins significantly outcompeted by a 10-fold excess of LU vs. 15 µM DA-P3 in Hek293 cells.

09Y4E8	USP15	Ubiquitin carboxyl-terminal hydrolase 15	3.25	3.63
099961	SH3GL1	Endophilin-A2	2.79	3.62
A0MZ66	KIAA1598	Shootin-1	3.64	3.60
O08378	GOLGA3	Golgin subfamily A member 3	2.32	3.59
O8NFH5	NUP35	Nucleoporin NUP53	2.74	3.59
092615	LARP4B	La-related protein 4B	2.83	3.55
P29372	MPG	DNA-3-methyladenine glycosylase	3.19	3.52
004323	UBXN1	UBX domain-containing protein 1	2.32	3.52
09B0A1	WDR77	Methylosome protein 50	2.11	3 50
P98194	ATP2C1	Calcium-transporting ATPase type 2C member 1	2.87	3.49
095793	STAU1	Double-stranded RNA-binding protein Staufen homolog 1	2.07	3.47
095775 086YL3	ANKIE?	Ankyrin repeat and LEM domain containing protein 2	4.17	3.47
Q00/XL5	PRK	Lymphoking activated killer T cell originated protein kinase	3.10	3.47
Q90KD5	I DK SNV1	Sorting nevin 1	2.62	3.47
Q13390	JNAI TDID6	Thymoid recentor interacting metain 6	2.02	2.44
Q13034 D08240		Signal receptor-interacting protein 0	2.09	2.44
00UGV2	NDPC2	Drotoin NDDC2	3.80	2.49
Q900V2	NDKG5	Columnia 2	2.05	3.42
Q15417		Calponin-3	3.25	3.42
Q916/9	AUPI	Ancient ubiquitous protein 1	4.90	3.41
015027	SECTOA	Protein transport protein Sec16A	3.18	3.41
Q14318	FKBP8	Peptidyl-prolyl cis-trans isomerase FKBP8	2.67	3.39
Q9H613	RPAP3	RNA polymerase II-associated protein 3	3.21	3.36
P52888	THOPI	Thimet oligopeptidase	2.69	3.36
P51617	IKAKI	Interleukin-1 receptor-associated kinase 1	3.53	3.35
Q9NQX3	GPHN	Gephyrin	2.90	3.34
P0DN79	CBS	Cystathionine beta-synthase	2.20	3.34
Q9BTE3	MCMBP	Mini-chromosome maintenance complex-binding protein	3.83	3.33
Q86VQ1	GLCCI1	Glucocorticoid-induced transcript 1 protein	2.07	3.33
Q9P0U3	SENP1	Sentrin-specific protease 1	2.42	3.29
P12081	HARS	HistidinetRNA ligase, cytoplasmic	2.37	3.29
P04080	CSTB	Cystatin-B	2.40	3.27
P28290	SSFA2	Sperm-specific antigen 2	2.75	3.27
A6NDG6	PGP	Phosphoglycolate phosphatase	2.47	3.27
Q96SK2	TMEM209	Transmembrane protein 209	2.53	3.25
O14965	AURKA	Aurora kinase A	2.20	3.23
O95336	PGLS	6-phosphogluconolactonase	2.40	3.21
Q9BQ70	TCF25	Transcription factor 25	3.62	3.20
Q14694	USP10	Ubiquitin carboxyl-terminal hydrolase 10	2.82	3.19
A0AVT1	UBA6	Ubiquitin-like modifier-activating enzyme 6	2.80	3.16
Q5JRA6	MIA3	Melanoma inhibitory activity protein 3	3.74	3.16
Q8IY17	PNPLA6	Neuropathy target esterase	2.81	3.15
Q9UNF1	MAGED2	Melanoma-associated antigen D2	2.29	3.14
Q16513	PKN2	Serine/threonine-protein kinase N2	3.73	3.14
P11766	ADH5	Alcohol dehydrogenase class-3	2.11	3.12
Q9UI30	TRMT112	Multifunctional methyltransferase subunit TRM112-like protein	3.08	3.12
09UI10	EIF2B4	Translation initiation factor eIF-2B subunit delta	2.38	3.11
Q9C0C9	UBE2O	E2/E3 hybrid ubiquitin-protein ligase UBE2O	3.67	3.09
P48507	GCLM	Glutamatecysteine ligase regulatory subunit	2.56	3.08
Q8IW35	CEP97	Centrosomal protein of 97 kDa	2.51	3.07
Q69YH5	CDCA2	Cell division cycle-associated protein 2	2.10	3.05
09UL46	PSME2	Proteasome activator complex subunit 2	4.01	3.03
006124	PTPN11	Tyrosine-protein phosphatase non-receptor type 11	3.32	3.03
P54646	PRKAA2	5-AMP-activated protein kinase catalytic subunit alpha-2	2.37	3.02
O9UJY5	GGA1	ADP-ribosylation factor-binding protein GGA1	3.04	3.01
012756	KIF1A	Kinesin-like protein KIF1A	2.00	3.01
08WU90	ZC3H15	Zinc finger CCCH domain-containing protein 15	2.29	3.00
P53384	NUBPI	Cytosolic Fe-S cluster assembly factor NUBP1	3 95	2 99
08N5G2	TMEM57	Macoilin	2 70	2.55
05T8D3	ACBD5	Acyl-CoA-binding domain-containing protein 5	2.52	2.96
09NZZ3	CHMP5	Charged multivesicular body protein 5	3 39	2.95
09NSV4	DIAPH3	Protein dianhanous homolog 3	2 78	2.93
O9NUL3	STAU2	Double-stranded RNA-binding protein Staufen homolog 2	4 48	2.94
404087X1C	SIAUZ	Double-stranded RIVA-binding protein Stauten homolog 2	4.40	2.72
1	TMSB15B	Thymosin beta-15B	2.01	2 90
099567	NUP88	Nuclear pore complex protein Nup88	2.01	2.50
014247	CTTN	Src substrate cortactin	3.16	2.00
094966	USP19	Ubiquitin carboxyl-terminal hydrolase 19	4.07	2.07
P37108	NI/P62	Nuclear nore alycoprotein p62	2.07	2.03
043370	WDR62	WD repeat_containing protein 62	2.60	2.04
P55057	RID	RH3_interacting domain death agonist	2.09 4 17	2.02
P35080	DENO	Profilin_2	4.17	2.10
015355	PPM1C	Protain phosphatase 1G	2 41	2.11
013333 08WWM7	ATXN2I	Atayin_2_like protein	2.41	2.70
VO11 11 11/	111111461	r mann 2 nac protein	2.00	2.14

Q9ULT8	HECTD1	E3 ubiquitin-protein ligase HECTD1	2.65	2.73
Q86V48	LUZP1	Leucine zipper protein 1	2.51	2.72
Q9NPH2	ISYNA1	Inositol-3-phosphate synthase 1	4.08	2.72
Q99614	TTC1	Tetratricopeptide repeat protein 1	2.63	2.71
Q9NZL4	HSPBP1	Hsp70-binding protein 1	2.32	2.70
Q9UBP0	SPAST	Spastin	2.01	2.70
000161 D22021	SNAP23	Synaptosomal-associated protein 23	2.04	2.70
P23921	KKM1 KIE22	Ribonucleoside-dipnosphate reductase large subunit	2.64	2.68
095801	TTCA	Tetratricopentide repeat protein A	3.53	2.08
695801 F7FVH7	KIC1	Kinesin light chain 1	2 48	2.07
P54105	CLNSIA	Methylosome subunit pICln	2.31	2.64
09Y3C8	UFC1	Ubiquitin-fold modifier-conjugating enzyme 1	2.05	2.64
Q96F86	EDC3	Enhancer of mRNA-decapping protein 3	3.31	2.59
Q96A49	SYAP1	Synapse-associated protein 1	2.07	2.59
Q8TCG1	KIAA1524	Protein CIP2A	2.26	2.57
Q5SW79	CEP170	Centrosomal protein of 170 kDa	2.13	2.56
		Arf-GAP with coiled-coil, ANK repeat and PH domain-containing		
Q15027	ACAP1	protein 1	2.22	2.55
Q99873	PRMT1	Protein arginine N-methyltransferase 1	3.37	2.54
Q9UKX7	NUP50	Nuclear pore complex protein Nup50	3.79	2.53
Q9UHD8	Sept9	Septin-9 N alpha acatultransforma 10	2.90	2.51
O6PKG0	IARP1	I a-related protein 1	2.40	2.51
014C86	GAPVD1	GTPase-activating protein and VPS9 domain-containing protein 1	2.00	2.30
O8NEN9	PDZD8	PDZ domain-containing protein 8	2.21	2.48
P31153	MAT2A	S-adenosylmethionine synthase isoform type-2	4.79	2.47
Q96IW7	SEC22A	Vesicle-trafficking protein SEC22a	2.17	2.47
Q7Z5L2	R3HCC1L	Coiled-coil domain-containing protein R3HCC1L	2.14	2.46
Q71RC2	LARP4	La-related protein 4	4.62	2.45
Q96SU4	OSBPL9	Oxysterol-binding protein-related protein 9	2.91	2.43
P14635	CCNB1	G2/mitotic-specific cyclin-B1	3.91	2.41
014728		Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit	2.00	2.41
095347	SMC2	Structural maintenance of chromosomes protein 2	2.90	2.41
093547	PRRC2C	Protein PRRC2C	2.65	2.40
095905	ECD	Protein SGT1	2.28	2.40
P00390	GSR	Glutathione reductase, mitochondrial	2.76	2.39
Q9Y696	CLIC4	Chloride intracellular channel protein 4	3.37	2.39
O00233	PSMD9	26S proteasome non-ATPase regulatory subunit 9	2.66	2.38
075663	TIPRL	TIP41-like protein	2.20	2.37
Q9H6S0	YTHDC2	Probable ATP-dependent RNA helicase YTHDC2	4.08	2.36
Q15334	LLGL1	Lethal(2) giant larvae protein homolog 1	3.15	2.34
Q96SB4	SRPKI	SRSF protein kinase 1	2.84	2.34
043583	DENK CLASD2	CLID associating protein	2.21	2.33
D01803	ULASP2	CLIP-associating protein 2 Putative HLA class L histocompatibility antigen, alpha chain H	2.12	2.31
015021	NCAPD2	Condensin complex subunit 1	2.70	2.29
P60468	SEC61B	Protein transport protein Sec61 subunit beta	2 40	2.29
09Y5A9	YTHDF2	YTH domain-containing family protein 2	2.15	2.27
Q9NSD9	FARSB	PhenylalaninetRNA ligase beta subunit	2.18	2.25
P48634	PRRC2A	Protein PRRC2A	2.33	2.25
Q01433	AMPD2	AMP deaminase 2	2.58	2.25
Q9UBU6	FAM8A1	Protein FAM8A1	2.95	2.23
Q53GS7	GLE1	Nucleoporin GLE1	2.58	2.21
P50851	LRBA	Lipopolysaccharide-responsive and beige-like anchor protein	2.59	2.21
Q9H3K6	BOLA2	BolA-like protein 2	2.54	2.21
Q9P2E9	RRBP1	Ribosome-binding protein I	4.88	2.21
P49915	GMPS ESVT2	Extended synaptotagmin 2	2.37	2.21
08IV63	VRK3	Inactive serine/threonine-protein kinase VRK3	2 22	2.20
006210	GEPT1	Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1	2.22	2.20
013045	FLII	Protein flightless-1 homolog	2.22	2.19
Q96H79	ZC3HAV1L	Zinc finger CCCH-type antiviral protein 1-like	2.29	2.19
Q86WB0	ZC3HC1	Nuclear-interacting partner of ALK	2.07	2.18
O95163	IKBKAP	Elongator complex protein 1	2.85	2.18
014545	TRAFD1	TRAF-type zinc finger domain-containing protein 1	2.85	2.17
P22102	GART	Trifunctional purine biosynthetic protein adenosine-3	2.57	2.16
Q96T76	MMS19	MMS19 nucleotide excision repair protein homolog	2.67	2.13
P45984	MAPK9	Mitogen-activated protein kinase 9	2.96	2.12
043396	TXNL1	Thioredoxin-like protein 1	4.12	2.12
Q05682	CALDI ELD2	Caldesmon	2.66	2.11
		Elongator complex protein 2	2.79	2.11

Q9H4L5	OSBPL3	Oxysterol-binding protein-related protein 3	2.31	2.11
Q00341	HDLBP	Vigilin	2.51	2.10
P13807	GYS1	Glycogen [starch] synthase, muscle	2.07	2.09
Q96PZ0	PUS7	Pseudouridylate synthase 7 homolog	2.24	2.08
O00170	AIP	AH receptor-interacting protein	2.84	2.08
Q99543	DNAJC2	DnaJ homolog subfamily C member 2	2.59	2.08
Q9Y5Y2	NUBP2	Cytosolic Fe-S cluster assembly factor NUBP2	2.47	2.06
O76024	WFS1	Wolframin	2.21	2.06
Q9Y605	MRFAP1	MORF4 family-associated protein 1	2.01	2.05
P60660	MYL6	Myosin light polypeptide 6	2.34	2.02
O75821	EIF3G	Eukaryotic translation initiation factor 3 subunit G	2.66	2.01

Table VI-8: Proteins	s significantly outcomp	eted by a 10-fold excess	of <b>EG</b> vs. 15	µM DA-P3 in Hek293 cells.
----------------------	-------------------------	--------------------------	---------------------	---------------------------

Protein IDs	Gene names	Protein names	-log ₁₀ (p-value)	log ₂ (enrichment)
Q9Y6A5	TACC3	Transforming acidic coiled-coil-containing protein 3	2.61	7.64
Q8TD19	NEK9	Serine/threonine-protein kinase Nek9	3.30	7.04
P40763	STAT3	Signal transducer and activator of transcription 3	4.58	6.71
P09132	SRP19	Signal recognition particle 19 kDa protein	2.81	6.59
Q16204	CCDC6	Coiled-coil domain-containing protein 6	2.49	6.50
		Eukaryotic peptide chain release factor GTP-binding subunit		
P15170	GSPT1	ERF3A	2.02	6.40
Q15003	NCAPH	Condensin complex subunit 2	3.53	6.27
Q14694	USP10	Ubiquitin carboxyl-terminal hydrolase 10	2.89	6.24
Q96GA3	LTV1	Protein LTV1 homolog	4.08	6.09
Q8IWZ3	ANKHD1	Ankyrin repeat and KH domain-containing protein 1	2.71	5.54
095817	BAG3	BAG family molecular chaperone regulator 3	2.52	5.54
		1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-		
P19174	PLCG1	1	5.47	5.53
O9NT62	ATG3	Ubiquitin-like-conjugating enzyme ATG3	4.09	5.52
O9ULT8	HECTD1	E3 ubiquitin-protein ligase HECTD1	2.42	5.36
O9NOW6	ANLN	Actin-binding protein anillin	3.01	5.32
A0MZ66	KIAA1598	Shootin-1	2.56	5.32
09HC38	GLOD4	Glyoxalase domain-containing protein 4	3.55	5.31
P61758	VRP1	Prefoldin subunit 3	3 35	5 29
096C19	FFHD2	FE-hand domain-containing protein D?	2 47	5.22
D52888	THOP1	Thimat oligonantidasa	2.47	5.17
1 52666 006CV2	VCTD12	PTP/DOZ domain containing protain KCTD12	2.07	5.17
Q90CA2	RCIDI2	DID/POZ domani-containing protein KCID12	3.21	5.14
Q8IAW5	KPAP2	Putative RNA polymerase II subunit BTCTD prospratase RPAP2	2.20	5.12
Q9UNFI	MAGED2	Melanoma-associated antigen D2	2.08	5.11
Q9Y3/1	SH3GLB1	Endophilin-BI	2.40	5.05
A0AVT1	UBA6	Ubiquitin-like modifier-activating enzyme 6	2.50	5.03
P20810	CAST	Calpastatin	3.60	4.97
Q12756	KIF1A	Kinesin-like protein KIF1A	4.07	4.90
		Arf-GAP with GTPase, ANK repeat and PH domain-containing		
Q96P47	AGAP3	protein 3	3.11	4.88
Q9UKA4	AKAP11	A-kinase anchor protein 11	2.03	4.88
P0DN79	CBS	Cystathionine beta-synthase	2.32	4.83
P04035	HMGCR	3-hydroxy-3-methylglutaryl-coenzyme A reductase	2.02	4.77
P46109	CRKL	Crk-like protein	2.19	4.68
Q9UGP4	LIMD1	LIM domain-containing protein 1	3.13	4.68
P51617	IRAK1	Interleukin-1 receptor-associated kinase 1	3.06	4.66
Q99661	KIF2C	Kinesin-like protein KIF2C	3.67	4.58
Q9H3K6	BOLA2	BolA-like protein 2	2.21	4.56
A1X283	SH3PXD2B	SH3 and PX domain-containing protein 2B	2.24	4.52
O43303	CCP110	Centriolar coiled-coil protein of 110 kDa	4.60	4.48
Q9BTE3	MCMBP	Mini-chromosome maintenance complex-binding protein	2.97	4.44
P17812	CTPS1	CTP synthase 1	2.99	4.44
O9BZE9	ASPSCR1	Tether containing UBX domain for GLUT4	3.56	4.41
08TC07	TBC1D15	TBC1 domain family member 15	2.35	4.35
08N6T3	ARFGAP1	ADP-ribosylation factor GTPase-activating protein 1	2.67	4 33
P12081	HARS	HistidinetRNA ligase cytoplasmic	3.92	4 32
096859	RANRPQ	Ran-binding protein 9	2.07	4.32
000577	PI/RA	Transcriptional activator protein Pur-alpha	2.07	4.30
08IWC1	MAP7D?	MAP7 domain_containing protein 3	2.20 A 54	4.29
092616	GCN111	Translational activator GCN1	2.00	4.20
004066	USD10	Translational activator OCIVI	2.99	4.27
D27916	USF 19 MAD4	Microtybule accepted protein 4	3.84	4.22
r2/810	MAP4	Interotudule-associated protein 4	3.41	4.15
031272	PKKC2B	Protein PKKU2B	3.00	4.13
Q8N2K0	ABHD12	Monoacyigiycerol lipase ABHD12	2.09	4.11
0602/1	SPAG9	C-Jun-amino-terminal kinase-interacting protein 4	4.58	4.09
A6NDG6	PGP	Phosphoglycolate phosphatase	2.48	4.07
P82094	TMF1	TATA element modulatory factor	3.49	4.06

O95197	RTN3	Reticulon-3	2.21	4.04
P49588	AARS	AlaninetRNA ligase, cytoplasmic	2.16	4.02
Q9NUQ3	TXLNG	Gamma-taxilin	3.43	3.99
Q9Y2Z0	SUGT1	Suppressor of G2 allele of SKP1 homolog	2.86	3.93
P41227	NAA10	N-alpha-acetyltransferase 10	3.91	3.92
Q9H9A6	LRRC40	Leucine-rich repeat-containing protein 40	2.25	3.92
Q9C0C9	UBE20	E2/E3 hybrid ubiquitin-protein ligase UBE20	2.86	3.89
077677	BAG2 HUWE1	E3 ubiquitin-protein ligase HUWE1	2.04	3.86
006124	PTPN11	Tyrosine-protein phosphatase non-receptor type 11	3.95	3.86
O3KOU3	MAP7D1	MAP7 domain-containing protein 1	3.55	3.86
Q15154	PCM1	Pericentriolar material 1 protein	4.07	3.84
Q8IZ21	PHACTR4	Phosphatase and actin regulator 4	3.17	3.81
P04080	CSTB	Cystatin-B	3.18	3.81
Q8TEQ6	GEMIN5	Gem-associated protein 5	2.87	3.80
Q5T4S7	UBR4	E3 ubiquitin-protein ligase UBR4	2.56	3.79
060610	DIAPHI	Protein diaphanous homolog 1	4.05	3.76
095163	IKBKAP	Elongator complex protein 1	2.04	3.73
A0A08/AIC	TMSB15B	Thymosin beta-15B	2 12	3 68
08WZA9	IRGO	Immunity-related GTPase family O protein	3.41	3.68
O9NYZ3	GTSE1	G2 and S phase-expressed protein 1	2.69	3.67
Q8N0X7	SPG20	Spartin	3.47	3.66
O60256	PRPSAP2	Phosphoribosyl pyrophosphate synthase-associated protein 2	3.01	3.64
Q13131	PRKAA1	5-AMP-activated protein kinase catalytic subunit alpha-1	2.02	3.63
P53384	NUBP1	Cytosolic Fe-S cluster assembly factor NUBP1	3.06	3.60
P42345	MTOR	Serine/threonine-protein kinase mTOR	2.46	3.60
Q9NZL4	HSPBP1	Hsp70-binding protein 1	2.37	3.60
095613	PCNT	Pericentrin	2.30	3.58
015121	DEGSI VTHDC2	Sphingolipid delta(4)-desaturase DESI	2.20	3.58
P/9915	GMPS	GMP synthese [glutamine_hydrolyzing]	2.06	3.55
09NPH2	ISYNA1	Inositol-3-phosphate synthase 1	3.10	3.54
014166	TTLL12	Tubulintyrosine ligase-like protein 12	2.19	3.53
Q9BQ70	TCF25	Transcription factor 25	2.26	3.52
Q13085	ACACA	Acetyl-CoA carboxylase 1	2.15	3.52
Q13370	PDE3B	cGMP-inhibited 3,5-cyclic phosphodiesterase B	2.55	3.48
075821	EIF3G	Eukaryotic translation initiation factor 3 subunit G	3.18	3.48
P52565	ARHGDIA	Rho GDP-dissociation inhibitor 1	2.95	3.47
Q9BZX2	UCK2	Uridine-cytidine kinase 2	2.10	3.46
0/5153	CLUH	Clustered mitochondria protein homolog	2.59	3.44
014738	PPP2R5D	delta isoform	4 99	3 43
05T5U3	ARHGAP21	Rho GTPase-activating protein 21	3.22	3.40
Q9H7E9	C8orf33	UPF0488 protein C8orf33	3.80	3.39
Q6FI81	CIAPIN1	Anamorsin	4.64	3.37
Q6WKZ4	RAB11FIP1	Rab11 family-interacting protein 1	2.01	3.37
Q15417	CNN3	Calponin-3	2.34	3.36
P30520	ADSS	Adenylosuccinate synthetase isozyme 2	2.23	3.35
Q9UHD1	CHORDC1	Cysteine and histidine-rich domain-containing protein 1	2.46	3.35
Q8N2G8	GHDC	GH3 domain-containing protein	2.33	3.35
P49327	FASN	Fatty acid synthese	5.44 2.52	3.33
08TEX9	IPO4	Importin-4	3 50	3.34
001433	AMPD2	AMP deaminase 2	2.72	3.32
Q8N3C0	ASCC3	Activating signal cointegrator 1 complex subunit 3	3.38	3.32
P52732	KIF11	Kinesin-like protein KIF11	3.56	3.30
Q08378	GOLGA3	Golgin subfamily A member 3	2.95	3.30
Q06203	PPAT	Amidophosphoribosyltransferase	3.47	3.30
O00170	AIP	AH receptor-interacting protein	2.41	3.30
P56962	SIX1/	Syntaxin-1/	2.36	3.28
P53007	SEC24C	Protein transport protein Sec24C	2.10	3.28
P35573	AGI	Glycogen debranching enzyme	2.14	3.27
P14735	IDE	Insulin-degrading enzyme	2.81	3.26
Q8NHV4	NEDD1	Protein NEDD1	2.89	3.25
Q06210	GFPT1	Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1	2.65	3.25
Q5VV42	CDKAL1	Threonylcarbamoyladenosine tRNA methylthiotransferase	3.54	3.25
Q99543	DNAJC2	DnaJ homolog subfamily C member 2	3.21	3.22
Q9UL46	PSME2	Proteasome activator complex subunit 2	2.26	3.22
Q96A49	SYAP1	Synapse-associated protein 1	2.44	3.22
Q9BV44	THUMPD3	In UNIP domain-containing protein 3	3.33	3.21
r 34103	CLIVSIA	wearyrosome subunit picm	2.37	5.20

Q9HB20	PLEKHA3	Pleckstrin homology domain-containing family A member 3	2.33	3.20
P51570	GALK1	Galactokinase	2.63	3.19
014929	HAT1	Histone acetyltransferase type B catalytic subunit	2.11	3.17
Q9UGV2	NDRG3	Protein NDRG3	3.09	3.17
P48507	GCLM IDO5	Glutamatecysteine ligase regulatory subunit	3.54	3.16
014744	PRMT5	Protein arginine N-methyltransferase 5	2.31	3.15
08IYS1	PM20D2	Peptidase M20 domain-containing protein 2	2.78	3.13
08WWM7	ATXN2L	Ataxin-2-like protein	2.52	3.12
O95801	TTC4	Tetratricopeptide repeat protein 4	2.51	3.11
O75410	TACC1	Transforming acidic coiled-coil-containing protein 1	3.66	3.10
Q8ND83	SLAIN1	SLAIN motif-containing protein 1	2.45	3.09
Q99961	SH3GL1	Endophilin-A2	2.79	3.05
Q9Y266	NUDC	Nuclear migration protein nudC	2.69	3.03
Q99873	PRMT1	Protein arginine N-methyltransferase 1	2.34	3.01
Q92615	LARP4B	La-related protein 4B	2.01	2.99
Q00341	HDLBP	Vigilin Contamon subunit hata	2.48	2.97
P33018	LOPBI ANKZE1	Coatomer subunit beta	3.01	2.90
P56192	MARS	Methionine_tPNA ligase_cytoplasmic	2.33	2.90
099614	TTC1	Tetratricopentide repeat protein 1	3.17	2.95
096RS6	NUDCD1	NudC domain-containing protein 1	3.11	2.93
P45974	USP5	Ubiquitin carboxyl-terminal hydrolase 5	2.33	2.94
Q9NSV4	DIAPH3	Protein diaphanous homolog 3	2.29	2.93
Q2M1P5	KIF7	Kinesin-like protein KIF7	2.14	2.92
O15067	PFAS	Phosphoribosylformylglycinamidine synthase	2.21	2.92
Q6PKG0	LARP1	La-related protein 1	2.97	2.91
P22061	PCMT1	Protein-L-isoaspartate(D-aspartate) O-methyltransferase	2.64	2.91
015344	MID1	E3 ubiquitin-protein ligase Midline-1	2.31	2.90
P53396	ACLY	ATP-citrate synthase	2.69	2.90
E7EVH7	KLCI	Kinesin light chain 1	2.57	2.89
Q04/60	GLOI	Lactoylglutathione lyase	2.46	2.87
Q90B12	UBA2	SUMO-activating enzyme subunit 2	3.12	2.80
000299	NOR1	RNA-binding protein NOB1	2.07	2.64
09P1Y5	CAMSAP3	Calmodulin-regulated spectrin-associated protein 3	2.00	2.82
P19784	CSNK2A2	Casein kinase II subunit alpha	2.47	2.78
P53041	PPP5C	Serine/threonine-protein phosphatase 5	2.04	2.78
O60763	USO1	General vesicular transport factor p115	3.10	2.76
095373	IPO7	Importin-7	2.21	2.75
Q9UNH7	SNX6	Sorting nexin-6	2.46	2.75
095757	HSPA4L	Heat shock 70 kDa protein 4L	2.21	2.73
075122	CLASP2	CLIP-associating protein 2	3.05	2.72
P61088	UBE2N	Ubiquitin-conjugating enzyme E2 N	2.10	2.70
Q15181	PPAI ODP4	Drotoin odr 4 homolog	3.32	2.08
QJSWAO	ODR4	Protein our-4 nonoiog Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit	2.00	2.07
P30153	PPP2R1A	A alpha isoform	2.25	2.65
096SU4	OSBPL9	Oxysterol-binding protein-related protein 9	3.09	2.65
P20290	BTF3	Transcription factor BTF3	2.69	2.65
Q9UI10	EIF2B4	Translation initiation factor eIF-2B subunit delta	2.17	2.62
Q9H910	HN1L	Hematological and neurological expressed 1-like protein	2.41	2.62
P20618	PSMB1	Proteasome subunit beta type-1	2.85	2.62
Q14318	FKBP8	Peptidyl-prolyl cis-trans isomerase FKBP8	2.28	2.61
P26641	EEF1G	Elongation factor 1-gamma	2.13	2.61
002529	CBE1	Goigi-specific brefeldin A-resistance guanine nucleotide exchange	2.00	2.00
Q92538		lactor 1 Protoscomo subunit alpha tuna 1	3.80	2.00
P23780	PSMAI PEN1	Profilin 1	2.22	2.38
P27348	YWHAO	14-3-3 protein theta	2.12	2.58
P14635	CCNB1	G2/mitotic-specific cyclin-B1	3.91	2.56
O9BSJ8	ESYT1	Extended synaptotagmin-1	3.47	2.55
P61970	NUTF2	Nuclear transport factor 2	3.36	2.55
P11172	UMPS	Uridine 5-monophosphate synthase	2.68	2.55
Q9NRL3	STRN4	Striatin-4	2.10	2.54
Q9Y617	PSAT1	Phosphoserine aminotransferase	2.64	2.53
Q96HC4	PDLIM5	PDZ and LIM domain protein 5	3.75	2.53
Q9Y679	AUP1	Ancient ubiquitous protein 1	2.10	2.53
Q14671	PUMI	Pumilio homolog 1	2.16	2.53
Q9NZB2	FAM120A	Constitutive coactivator of PPAR-gamma-like protein 1	2.05	2.53
Q90AV4	PAPS	Arginine tPNA ligase outoplasmic	3.33	2.53
1 27120	nano -	rugnine-uxur ngase, cytopiasine	2.92	2.52

P00492	HPRT1	Hypoxanthine-guanine phosphoribosyltransferase	2.35	2.52
P35080	PFN2	Profilin-2	2.20	2.51
P48634	PRRC2A	Protein PRRC2A	2.09	2.51
Q9Y520	PRRC2C	Protein PRRC2C	3.76	2.51
Q92551	IP6K1	Inositol hexakisphosphate kinase 1	2.26	2.49
075116	ROCK2	Rho-associated protein kinase 2	2.52	2.48
Q9Y2D5	AKAP2	A-kinase anchor protein 2	2.53	2.48
P31939	ATIC	Bifunctional purine biosynthesis protein PURH	2.29	2.47
Q8NEN9	PDZD8	PDZ domain-containing protein 8	2.42	2.46
P61081	UBE2M	NEDD8-conjugating enzyme Ubc12	3.02	2.46
P10768	ESD	S-formylglutathione hydrolase	2.16	2.46
Q96GS4	C17orf59	Uncharacterized protein C17orf59	2.04	2.45
P60174	TPI1	Triosephosphate isomerase	2.05	2.45
O43175	PHGDH	D-3-phosphoglycerate dehydrogenase	2.24	2.44
Q9UBB4	ATXN10	Ataxin-10	2.44	2.44
P30519	HMOX2	Heme oxygenase 2	5.24	2.44
P06/33	ENOI	Alpha-enolase	2.36	2.43
095433	AHSAI	Activator of 90 kDa neat snock protein ATPase nomolog 1	3.02	2.43
Q15005	SPCS2	Signal peptidase complex subunit 2	3.88	2.39
Q90P15 P61201	EAUC/	COP0 signalosome complex subunit 2	2.33	2.39
P01201 P27109	NUP62	Nuclear pore alveoprotein p62	2.37	2.38
CORV32	ITPA	Inosine triphosphate pyrophosphatese	3.10	2.38
014545	TRAFD1	TRAE-type zinc finger domain-containing protein 1	2 58	2.37
P28074	PSMR5	Proteasome subunit beta type-5	2.56	2.30
09UKX7	NUP50	Nuclear pore complex protein Nup50	2.68	2.33
09Y3C8	UFC1	Ubiquitin-fold modifier-conjugating enzyme 1	2.38	2.34
P13797	PLS3	Plastin-3	2.56	2.34
016513	PKN2	Serine/threonine-protein kinase N2	3.28	2.32
P13639	EEF2	Elongation factor 2	2.55	2.32
P43487	RANBP1	Ran-specific GTPase-activating protein	2.75	2.31
Q13310	PABPC4	Polyadenylate-binding protein 4	2.54	2.31
P61221	ABCE1	ATP-binding cassette sub-family E member 1	2.59	2.30
P17858	PFKL	ATP-dependent 6-phosphofructokinase, liver type	2.61	2.28
		Arf-GAP with coiled-coil, ANK repeat and PH domain-containing		
Q15027	ACAP1	protein 1	2.37	2.28
Q9UEG4	ZNF629	Zinc finger protein 629	2.63	2.27
Q9Y3F4	STRAP	Serine-threonine kinase receptor-associated protein	2.25	2.26
Q9UHV9	PFDN2	Prefoldin subunit 2	2.43	2.23
Q16637	SMN1	Survival motor neuron protein	2.76	2.23
Q9NPI6	DCPIA	mRNA-decapping enzyme 1A	2.06	2.23
Q99700	ATXN2	Ataxin-2	2.24	2.23
P04049	KAFI	RAF proto-oncogene serine/threonine-protein kinase	2.21	2.23
P41240		1 yrosine-protein kinase USK	3.08	2.22
P00558	YPOT	Filosphoglycerate kinase 1	2.24	2.22
043392	EKBP3	Pentidul-prolyl cis_trans isomerase FKRP3	2.21	2.22
42RTX5	TARSI 2	Probable threoninetRNA ligase 2 cytoplasmic	2.03	2.22
096CP2	FLYWCH2	FLYWCH family member 2	2.35	2.21
P68363	TUBA1B	Tubulin alpha-1B chain	2.30	2.20
09P0U3	SENP1	Sentrin-specific protease 1	2.57	2.20
P60842	EIF4A1	Eukarvotic initiation factor 4A-I	2.16	2.20
Q00169	PITPNA	Phosphatidylinositol transfer protein alpha isoform	3.45	2.18
O76003	GLRX3	Glutaredoxin-3	2.68	2.16
Q86V48	LUZP1	Leucine zipper protein 1	2.86	2.16
Q71RC2	LARP4	La-related protein 4	3.00	2.16
O76024	WFS1	Wolframin	2.54	2.15
Q8NFW8	CMAS	N-acylneuraminate cytidylyltransferase	2.81	2.15
O94992	HEXIM1	Protein HEXIM1	2.32	2.14
Q8IYI6	EXOC8	Exocyst complex component 8	2.49	2.14
P08238	HSP90AB1	Heat shock protein HSP 90-beta	2.17	2.14
O43583	DENR	Density-regulated protein	2.35	2.13
Q13613	MTMR1	Myotubularin-related protein 1	2.38	2.12
Q96176	MMS19	MMS19 nucleotide excision repair protein homolog	3.98	2.11
043264	ZW10	Centromere/kinetochore protein zw10 homolog	2.50	2.10
P5/802	TAGLN2	1ransgelin-2	2.26	2.10
Q14247	CHIN CDV5	Sic substrate cortactin	2.13	2.09
Q00335		Cyclin-dependent-like kinase 5	2.87	2.09
060870	DIVAJUI	Draj nomolog sublamily C memoer 1	2.01	2.08
050403	ΡΑΝΊ	$PAB_{dependent nolv}(A)$ , specific ribonuclesse subunit $PAN^2$	3.11 2.21	2.08
P00036	UCHI 1	I highlight carboxyl terminal hydrolase isozyme I 1	2.21	2.08
09BR 42	TXNDC17	Thioredoxin domain-containing protein 17	2.97	2.07
V/DIA12	IMDUI/	rinoredoxin domain containing protoin 17	2.00	2.00

## VI Appendix

P04406	GAPDH	Glyceraldehyde-3-phosphate dehydrogenase	3.09	2.06
Q15819	UBE2V2	Ubiquitin-conjugating enzyme E2 variant 2	2.58	2.06
Q9UBE0	SAE1	SUMO-activating enzyme subunit 1	2.73	2.05
P50990	CCT8	T-complex protein 1 subunit theta	2.55	2.05
Q92667	AKAP1	A-kinase anchor protein 1, mitochondrial	3.09	2.03
P19623	SRM	Spermidine synthase	2.02	2.03
Q15042	RAB3GAP1	Rab3 GTPase-activating protein catalytic subunit	2.12	2.02
P61513	RPL37A	60S ribosomal protein L37a	2.56	2.01
P60900	PSMA6	Proteasome subunit alpha type-6	3.13	2.01
P62937	PPIA	Peptidyl-prolyl cis-trans isomerase A	5.08	2.01
Q9Y450	HBS1L	HBS1-like protein	3.14	2.01
Q14554	PDIA5	Protein disulfide-isomerase A5	2.11	2.00

Table	VI-9: Proteins	significantly	y outcompeted	d by a	10-fold excess	of OL vs.	15 µ	M DA-P3	in Hek293 cel	ls.

Protein IDs	Gene names	Protein names	-log ₁₀ (p-value)	log ₂ (enrichment)
O75330	HMMR	Hyaluronan mediated motility receptor	2.58	5.31
Q16204	CCDC6	Coiled-coil domain-containing protein 6	2.82	5.00
P46821	MAP1B	Microtubule-associated protein 1B	2.77	4.90
Q6NUQ1	RINT1	RAD50-interacting protein 1	2.56	4.84
Q9BXB4	OSBPL11	Oxysterol-binding protein-related protein 11	2.00	4.83
Q00653	NFKB2	Nuclear factor NF-kappa-B p100 subunit	3.18	4.30
O60343	TBC1D4	TBC1 domain family member 4	2.46	4.21
Q8WX93	PALLD	Palladin	2.51	4.06
P35237	SERPINB6	Serpin B6	2.08	3.97
Q8ND24	RNF214	RING finger protein 214	2.08	3.95
Q7Z4H7	HAUS6	HAUS augmin-like complex subunit 6	2.94	3.93
P30519	HMOX2	Heme oxygenase 2	2.37	3.91
O43353	RIPK2	Receptor-interacting serine/threonine-protein kinase 2	2.04	3.89
Q66K14	TBC1D9B	TBC1 domain family member 9B	3.28	3.88
Q8NBF2	NHLRC2	NHL repeat-containing protein 2	3.00	3.88
P56962	STX17	Syntaxin-17	2.38	3.77
Q7Z3T8	ZFYVE16	Zinc finger FYVE domain-containing protein 16	2.34	3.77
A1X283	SH3PXD2B	SH3 and PX domain-containing protein 2B	2.32	3.76
Q8TD19	NEK9	Serine/threonine-protein kinase Nek9	2.65	3.75
09UPO9	TNRC6B	Trinucleotide repeat-containing gene 6B protein	2.92	3.65
P40763	STAT3	Signal transducer and activator of transcription 3	3.61	3.64
P19525	EIF2AK2	Interferon-induced, double-stranded RNA-activated protein kinase	2.37	3.61
O8IXW5	RPAP2	Putative RNA polymerase II subunit B1 CTD phosphatase RPAP2	2.76	3.60
095817	BAG3	BAG family molecular chaperone regulator 3	4.59	3.58
07Z2Z2	EFTUD1	Elongation factor Tu GTP-binding domain-containing protein 1	3.30	3.57
P09132	SRP19	Signal recognition particle 19 kDa protein	2.14	3.54
O9UBF8	PI4KB	Phosphatidylinositol 4-kinase beta	2.77	3.53
Q60547	GMDS	GDP-mannose 4.6 dehvdratase	4.53	3.51
		Eukaryotic peptide chain release factor GTP-binding subunit		
P15170	GSPT1	ERF3A	3.02	3.50
Q9NZT2	OGFR	Opioid growth factor receptor	2.66	3.50
Q8N6T3	ARFGAP1	ADP-ribosylation factor GTPase-activating protein 1	2.33	3.48
Q96GA3	LTV1	Protein LTV1 homolog	2.42	3.48
O94830	DDHD2	Phospholipase DDHD2	2.42	3.44
Q9Y4K3	TRAF6	TNF receptor-associated factor 6	4.03	3.42
P22059	OSBP	Oxysterol-binding protein 1	2.46	3.41
Q66K74	MAP1S	Microtubule-associated protein 1S	2.62	3.40
P51617	IRAK1	Interleukin-1 receptor-associated kinase 1	2.98	3.38
Q8IWC1	MAP7D3	MAP7 domain-containing protein 3	2.57	3.38
Q9BZX2	UCK2	Uridine-cytidine kinase 2	2.67	3.37
Q9H910	HN1L	Hematological and neurological expressed 1-like protein	2.08	3.36
		Arf-GAP with GTPase, ANK repeat and PH domain-containing		
Q96P47	AGAP3	protein 3	3.25	3.36
Q96KB5	PBK	Lymphokine-activated killer T-cell-originated protein kinase	4.24	3.36
O75170	PPP6R2	Serine/threonine-protein phosphatase 6 regulatory subunit 2	3.05	3.35
Q9NT62	ATG3	Ubiquitin-like-conjugating enzyme ATG3	3.60	3.33
Q8TBM8	DNAJB14	DnaJ homolog subfamily B member 14	2.10	3.33
Q92625	ANKS1A	Ankyrin repeat and SAM domain-containing protein 1A	2.53	3.31
015121	DEGS1	Sphingolipid delta(4)-desaturase DES1	2.45	3.31
Q5SQN1	SNAP47	Synaptosomal-associated protein 47	2.23	3.29
Q9UNY4	TTF2	Transcription termination factor 2	3.05	3.24
Q9NQ88	TIGAR	Fructose-2,6-bisphosphatase TIGAR	2.29	3.23
Q6P1Q9	METTL2B	Methyltransferase-like protein 2B	2.79	3.22
		1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-		
P19174	PLCG1	1	2.35	3.21
Q9NPH2	ISYNA1	Inositol-3-phosphate synthase 1	3.00	3.19
Q9Y5T5	USP16	Ubiquitin carboxyl-terminal hydrolase 16	2.42	3.19

Q9UL63	MKLN1	Muskelin	2.36	3.16
Q9HD26	GOPC	Golgi-associated PDZ and coiled-coil motif-containing protein	3.35	3.12
O43303	CCP110	Centriolar coiled-coil protein of 110 kDa	2.74	3.09
Q969V6	MKL1	MKL/myocardin-like protein 1	2.68	3.08
Q9NQW6	ANLN	Actin-binding protein anillin	2.08	3.07
A0MZ66	KIAA1598 TMEM200	Snootin-1 Transmembrane protein 200	2.56	3.07
Q903K2	ARHGAP21	Rho GTPase-activating protein 21	2.03	3.00
015003	NCAPH	Condensin complex subunit 2	4.25	3.02
014976	GAK	Cyclin-G-associated kinase	2.01	2.99
Q9H6T3	RPAP3	RNA polymerase II-associated protein 3	3.05	2.97
Q5SWX8	ODR4	Protein odr-4 homolog	2.34	2.93
Q86UK7	ZNF598	Zinc finger protein 598	2.27	2.90
P13807	GYS1	Glycogen [starch] synthase, muscle	3.41	2.88
P48506	GCLC	Glutamatecysteine ligase catalytic subunit	2.32	2.87
Q7Z5L2	R3HCC1L	Colled-coll domain-containing protein R3HCC1L	2.69	2.87
Q310F2	UDAF2 BSDC1	BSD domain containing protein 1	2.70	2.80
043683	BJDC1 BUB1	Mitotic checkpoint serine/threonine-protein kinase BUB1	2.11	2.84
09Y2V2	CARHSP1	Calcium-regulated heat stable protein 1	2.69	2.81
Q96CX2	KCTD12	BTB/POZ domain-containing protein KCTD12	3.52	2.80
Q14694	USP10	Ubiquitin carboxyl-terminal hydrolase 10	2.13	2.79
Q69YQ0	SPECC1L	Cytospin-A	3.29	2.79
Q8N573	OXR1	Oxidation resistance protein 1	2.49	2.77
000178	GTPBP1	GTP-binding protein 1	2.69	2.76
095336	PGLS	6-phosphogluconolactonase	3.03	2.76
043396	IXNLI	Inforedoxin-like protein 1	2.44	2.76
Q8WZA9	IKGQ SPAG5	Sperm-associated antigen 5	2.90	2.74
P0DN79	CRS	Cystathionine beta-synthase	3.11	2.73
095793	STAU1	Double-stranded RNA-binding protein Staufen homolog 1	3.27	2.69
Q9NQX3	GPHN	Gephyrin	2.98	2.68
Q9H019	MTFR1L	Mitochondrial fission regulator 1-like	2.13	2.67
P53384	NUBP1	Cytosolic Fe-S cluster assembly factor NUBP1	3.42	2.66
O43318	MAP3K7	Mitogen-activated protein kinase kinase kinase 7	2.80	2.65
Q6PJG6	BRATI	BRCA1-associated ATM activator 1	2.49	2.63
Q5J5Z5	PRRC2B	Protein PKRC2B	3.44	2.63
013596	INA SNY1	Sorting nevin_1	2.24	2.03
09H3K6	BOLA2	BolA-like protein 2	2.88	2.61
Q9HDC5	JPH1	Junctophilin-1	2.24	2.60
Q15417	CNN3	Calponin-3	2.91	2.60
P04035	HMGCR	3-hydroxy-3-methylglutaryl-coenzyme A reductase	2.43	2.59
Q9NUQ3	TXLNG	Gamma-taxilin	3.68	2.58
Q9C0C9	UBE2O	E2/E3 hybrid ubiquitin-protein ligase UBE2O	3.02	2.58
P17812	CTPSI	CTP synthase 1	2.41	2.58
Q80VQ1	GLUUNI	SLAIN motif containing protain 1	2.06	2.57
Q8ND83	GTSE1	G2 and S phase-expressed protein 1	2.15	2.57
086WB0	ZC3HC1	Nuclear-interacting partner of ALK	3.24	2.54
P20839	IMPDH1	Inosine-5-monophosphate dehydrogenase 1	2.24	2.54
Q92551	IP6K1	Inositol hexakisphosphate kinase 1	2.55	2.54
O60610	DIAPH1	Protein diaphanous homolog 1	2.05	2.53
Q9UGP4	LIMD1	LIM domain-containing protein 1	3.41	2.53
Q9BWH6	RPAP1	RNA polymerase II-associated protein 1	2.04	2.51
075122	CLASP2	CLIP-associating protein 2	3.09	2.50
Q9UNFI O5TAY3	MAGED2	Terminal uridulultransferase 4	3.98 2.14	2.48
Q911AX3	DCTN4	Dynactin subunit 4	3.15	2.47
P27816	MAP4	Microtubule-associated protein 4	3.38	2.46
P52732	KIF11	Kinesin-like protein KIF11	2.93	2.44
Q14C86	GAPVD1	GTPase-activating protein and VPS9 domain-containing protein 1	2.71	2.44
P12081	HARS	HistidinetRNA ligase, cytoplasmic	2.10	2.43
Q9BTE3	MCMBP	Mini-chromosome maintenance complex-binding protein	3.37	2.42
Q9H7E9	C80rf33	UPF0488 protein C8orf33	5.72	2.41
Q9NP/2	KAB18	Kas-related protein Kab-18	2.40	2.41
045579	WDK02 FSYT1	Fxtended synaptotagmin-1	2.28	2.40
O9UPY3	DICER1	Endoribonuclease Dicer	2.24	2.40
09P1Z2	CALCOCO1	Calcium-binding and coiled-coil domain-containing protein 1	2.49	2.39
Q8N2G8	GHDC	GH3 domain-containing protein	2.38	2.37
Q9H4A3	WNK1	Serine/threonine-protein kinase WNK1	2.16	2.37
075410	TACC1	Transforming acidic coiled-coil-containing protein 1	3.04	2.37

Q5T4S7	UBR4	E3 ubiquitin-protein ligase UBR4	2.06	2.37
075663	TIPRL	TIP41-like protein	3.05	2.35
015654	TRIP6	Thyroid receptor-interacting protein 6	2.36	2.34
<b>O</b> 8TEW0	PARD3	Partitioning defective 3 homolog	2.07	2.34
095163	IKBKAP	Elongator complex protein 1	2.06	2.33
006124	PTPN11	Tyrosine-protein phosphatase non-receptor type 11	4.43	2.33
P61758	VBP1	Prefoldin subunit 3	3.06	2.33
Q9H2G2	SLK	STE20-like serine/threonine-protein kinase	2.68	2.30
Q8TC07	TBC1D15	TBC1 domain family member 15	2.43	2.30
A0AVT1	UBA6	Ubiquitin-like modifier-activating enzyme 6	3.74	2.30
Q96IZ0	PAWR	PRKC apoptosis WT1 regulator protein	2.27	2.29
O9BVS4	RIOK2	Serine/threonine-protein kinase RIO2	3.49	2.28
P28290	SSFA2	Sperm-specific antigen 2	2.45	2.27
Q15005	SPCS2	Signal peptidase complex subunit 2	3.30	2.26
Q96SB4	SRPK1	SRSF protein kinase 1	2.03	2.25
P54105	CLNS1A	Methylosome subunit pICln	2.32	2.23
Q16799	RTN1	Reticulon-1	3.69	2.22
Q5H9R7	PPP6R3	Serine/threonine-protein phosphatase 6 regulatory subunit 3	2.40	2.20
E7EVH7	KLC1	Kinesin light chain 1	2.37	2.20
Q14247	CTTN	Src substrate cortactin	2.99	2.20
O8TEO6	GEMIN5	Gem-associated protein 5	2.08	2.19
Q06210	GFPT1	Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1	2.14	2.19
09UJY5	GGA1	ADP-ribosylation factor-binding protein GGA1	2.87	2.18
Q9H9A6	LRRC40	Leucine-rich repeat-containing protein 40	3.01	2.18
09UGV2	NDRG3	Protein NDRG3	2.22	2.16
Q9BV44	THUMPD3	THUMP domain-containing protein 3	3.60	2.15
P41227	NAA10	N-alpha-acetyltransferase 10	2.45	2.12
P04080	CSTB	Cystatin-B	2.76	2.11
O76024	WFS1	Wolframin	3.23	2.11
Q53EZ4	CEP55	Centrosomal protein of 55 kDa	2.46	2.10
A6NDG6	PGP	Phosphoglycolate phosphatase	2.40	2.10
O94967	WDR47	WD repeat-containing protein 47	2.49	2.10
Q8WWM7	ATXN2L	Ataxin-2-like protein	3.43	2.09
Q8TEA1	NSUN6	Putative methyltransferase NSUN6	2.22	2.09
		Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit		
Q14738	PPP2R5D	delta isoform	3.57	2.09
Q9H0B6	KLC2	Kinesin light chain 2	3.55	2.07
Q9BYB4	GNB1L	Guanine nucleotide-binding protein subunit beta-like protein 1	2.02	2.07
Q8N9N8	EIF1AD	Probable RNA-binding protein EIF1AD	2.13	2.07
Q9Y4K4	MAP4K5	Mitogen-activated protein kinase kinase kinase kinase 5	2.29	2.07
O00233	PSMD9	26S proteasome non-ATPase regulatory subunit 9	2.55	2.06
		Leucine-rich repeat and calponin homology domain-containing		
Q96II8	LRCH3	protein 3	2.16	2.05
P48634	PRRC2A	Protein PRRC2A	2.46	2.05
Q14534	SQLE	Squalene monooxygenase	2.07	2.05
Q8IW35	CEP97	Centrosomal protein of 97 kDa	2.86	2.04
P23921	RRM1	Ribonucleoside-diphosphate reductase large subunit	3.98	2.04
O95801	TTC4	Tetratricopeptide repeat protein 4	3.12	2.04
P08243	ASNS	Asparagine synthetase [glutamine-hydrolyzing]	2.46	2.04
Q9Y2U8	LEMD3	Inner nuclear membrane protein Man1	2.32	2.04
O43164	PJA2	E3 ubiquitin-protein ligase Praja-2	2.60	2.02
Q6P158	DHX57	Putative ATP-dependent RNA helicase DHX57	2.44	2.01
P55786	NPEPPS	Puromycin-sensitive aminopeptidase	3.12	2.00
Q96GS4	C17orf59	Uncharacterized protein C17orf59	3.21	2.00
P28161	GSTM2	Glutathione S-transferase Mu 2	2.74	2.00

Table	VI-10:	Proteins	signifi	cantly	outcom	peted by	a 10-fo	ld excess	s of Cl	P vs. 1	[5 u]	M DA-	P3 in	Hek ₂₉₃	cells.
I unic		1 Iotemis	Signin	cuntry	outcom	pered by	u 10 10	ia encesi		L 10- 1	ισμ			110R2/5	comb.

Protein IDs	Gene names	Protein names	-log ₁₀ (p-value)	log ₂ (enrichment)
Q16204	CCDC6	Coiled-coil domain-containing protein 6	4.78	6.80
O15270	SPTLC2	Serine palmitoyltransferase 2	2.36	6.76
Q5JRA6	MIA3	Melanoma inhibitory activity protein 3	4.17	6.65
P22059	OSBP	Oxysterol-binding protein 1	2.18	6.38
Q6P2H3	CEP85	Centrosomal protein of 85 kDa	4.23	6.37
O60566	BUB1B	Mitotic checkpoint serine/threonine-protein kinase BUB1 beta	3.02	6.11
Q86XL3	ANKLE2	Ankyrin repeat and LEM domain-containing protein 2	2.31	6.08
O95817	BAG3	BAG family molecular chaperone regulator 3	3.23	5.98
Q9NQS7	INCENP	Inner centromere protein	4.92	5.92
O75330	HMMR	Hyaluronan mediated motility receptor	2.80	5.84
Q8IWC1	MAP7D3	MAP7 domain-containing protein 3	2.89	5.80
Q7Z3T8	ZFYVE16	Zinc finger FYVE domain-containing protein 16	2.29	5.64
P29372	MPG	DNA-3-methyladenine glycosylase	2.58	5.52
P46821	MAP1B	Microtubule-associated protein 1B	2.70	5.47

O60664	PLIN3	Perilipin-3	2.32	5.44
Q92575	UBXN4	UBX domain-containing protein 4	3.61	5.43
Q5VV42	CDKAL1	Threonylcarbamoyladenosine tRNA methylthiotransferase	2.91	5.41
Q9Y4P3	TBL2	Transducin beta-like protein 2	3.01	5.31
P48634	PRRC2A	Protein PRRC2A	2.01	5.25
P82094	TMF1	TATA element modulatory factor	2.58	5.25
Q86UK7	ZNF598	Zinc finger protein 598	2.77	5.19
Q96KC8	DNAJCI LADD4D	Draj homolog subfamily C member 1	4.28	5.18
Q92013	LARP4D USP10	La-related protein 4D	2.40	5.12
Q14094 08N2K0	ARHD12	Monoacylglycerol linase ABHD12	2.42	4 97
09111213	HOOK1	Protein Hook homolog 1	3.45	4.97
014807	KIF22	Kinesin-like protein KIF22	2.69	4.87
O8ND24	RNF214	RING finger protein 214	3.98	4.86
		Arf-GAP with GTPase, ANK repeat and PH domain-containing		
Q96P47	AGAP3	protein 3	2.91	4.84
Q8NFH5	NUP35	Nucleoporin NUP53	3.25	4.83
Q96R06	SPAG5	Sperm-associated antigen 5	2.91	4.81
Q96GA3	LTV1	Protein LTV1 homolog	3.54	4.81
Q96PC5	MIA2	Melanoma inhibitory activity protein 2	2.59	4.79
Q8WXH0	SYNE2	Nesprin-2	2.25	4.77
P56962	SIXI/ MADIS	Syntaxin-1 / Migratubula associated protain 18	2.93	4.76
08NBF2	NHI RC?	NHL repeat-containing protein 2	2.12	4.08
014976	GAK	Cyclin-G-associated kinase	2.39	4.07
08IY17	PNPLA6	Neuropathy target esterase	2.28	4 59
O9BZE9	ASPSCR1	Tether containing UBX domain for GLUT4	2.39	4.55
032MZ4	LRRFIP1	Leucine-rich repeat flightless-interacting protein 1	2.22	4.54
Q16799	RTN1	Reticulon-1	3.65	4.53
P09132	SRP19	Signal recognition particle 19 kDa protein	3.47	4.53
Q7Z4H7	HAUS6	HAUS augmin-like complex subunit 6	3.48	4.53
Q8WU90	ZC3H15	Zinc finger CCCH domain-containing protein 15	2.50	4.42
P40763	STAT3	Signal transducer and activator of transcription 3	4.10	4.41
D10174	DI CC1	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase	2.76	1.00
P19174	PLCGI	gamma-1	2.76	4.22
P04035	HMGCK	S-nydroxy-S-metnyigiutaryi-coenzyme A reductase	5.10	4.22
O9UHR4	RAIAP2I 1	protein 1	2 97	4 19
Q)UIII(4		protein 1	4.71	7.17
P51148	RAB5C	Ras-related protein Rab-5C	2.25	4.15
P51148 A0MZ66	RAB5C KIAA1598	Ras-related protein Rab-5C Shootin-1	2.25 2.48	4.15
P51148 A0MZ66 Q66K14	RAB5C KIAA1598 TBC1D9B	Ras-related protein Rab-5C Shootin-1 TBC1 domain family member 9B	2.25 2.48 2.37	4.15 4.13 4.09
P51148 A0MZ66 Q66K14 Q8WX93	RAB5C KIAA1598 TBC1D9B PALLD	Ras-related protein Rab-5C Shootin-1 TBC1 domain family member 9B Palladin	2.25 2.48 2.37 2.17	4.15 4.13 4.09 4.04
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15	RAB5C KIAA1598 TBC1D9B PALLD BAG5	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5	2.25 2.48 2.37 2.17 2.96	4.15 4.13 4.09 4.04 4.03
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A	2.25 2.48 2.37 2.17 2.96 2.74	4.15 4.13 4.09 4.04 4.03 4.02
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44	2.25 2.48 2.37 2.17 2.96 2.74 2.50	4.15 4.13 4.09 4.04 4.03 4.02 4.02
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 Q14965	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 O14965	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 VULVI	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6PL00	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 MKTEL2D	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.42	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 2.04
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6PLQ9 OQ96K2	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM200	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protain 200	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.42 2.46 3.27	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q96SK2 O9BZF3	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBP16	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein 209         Oxysterol-binding protein-related protein 6	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.42 2.46 3.27 2.78	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q96SK2 Q9BZF3 P46109	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein 209         Oxysterol-binding protein-related protein 6         Crk-like protein	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.42 2.46 3.27 2.78 4.54	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.85
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q96SK2 Q9BZF3 P46109 Q9BSJ8	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein-related protein 6         Crk-like protein         Extended synaptotagmin-1	$\begin{array}{r} 2.25 \\ 2.48 \\ 2.37 \\ 2.17 \\ 2.96 \\ 2.74 \\ 2.50 \\ 2.55 \\ 2.56 \\ 2.42 \\ 2.46 \\ 3.27 \\ 2.78 \\ 4.54 \\ 5.55 \end{array}$	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.85 3.85
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q96SK2 Q9BZF3 P46109 Q9BSJ8 O60610	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.46 3.27 2.78 2.46 3.27 2.78 4.54 5.55 2.32	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.85 3.85 3.85 3.85
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q96SK2 Q9BZF3 P46109 Q9BSJ8 O60610 P37198	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.46 3.27 2.78 4.54 5.55 2.32 2.14	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.85 3.85 3.85 3.82 3.81
P51148         A0MZ66         Q66K14         Q8WX93         Q9UL15         Q13111         Q5JSH3         O14965         P49137         Q9UL63         Q6F1Q9         Q96SK2         Q9BZF3         P46109         Q9BSJ8         O60610         P37198         P20290	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3	Ras-related protein Rab-5CShootin-1TBC1 domain family member 9BPalladinBAG family molecular chaperone regulator 5Chromatin assembly factor 1 subunit AWD repeat-containing protein 44Aurora kinase AMAP kinase-activated protein kinase 2MuskelinMethyltransferase-like protein 2BTransmembrane protein-related protein 6Crk-like proteinExtended synaptotagmin-1Protein diaphanous homolog 1Nuclear pore glycoprotein p62Transcription factor BTF3	$\begin{array}{c} 2.25 \\ 2.48 \\ 2.37 \\ 2.17 \\ 2.96 \\ 2.74 \\ 2.50 \\ 2.55 \\ 2.56 \\ 2.42 \\ 2.46 \\ 3.27 \\ 2.78 \\ 4.54 \\ 5.55 \\ 2.32 \\ 2.14 \\ 2.83 \end{array}$	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.85 3.85 3.85 3.85 3.85 3.82 3.81 3.80
P51148           A0MZ66           Q66K14           Q8WX93           Q9UL15           Q13111           Q5JSH3           O14965           P49137           Q9UL63           Q6FIQ9           Q96SK2           Q9BSJ8           O60610           P37198           P20290           O95793	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1	$\begin{array}{c} 2.25 \\ 2.48 \\ 2.37 \\ 2.17 \\ 2.96 \\ 2.74 \\ 2.50 \\ 2.55 \\ 2.56 \\ 2.42 \\ 2.46 \\ 3.27 \\ 2.78 \\ 4.54 \\ 5.55 \\ 2.32 \\ 2.14 \\ 2.83 \\ 2.97 \end{array}$	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.85 3.85 3.85 3.85 3.85 3.85 3.82 3.81 3.80 3.80
P51148         A0MZ66         Q66K14         Q8WX93         Q9UL15         Q13111         Q5JSH3         O14965         P49137         Q9UL63         Q6P1Q9         Q96SK2         Q9BZF3         P46109         Q9BSJ8         O60610         P37198         P20290         O95793         Q5T6F2	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2	$\begin{array}{c} 2.25 \\ 2.48 \\ 2.37 \\ 2.17 \\ 2.96 \\ 2.74 \\ 2.50 \\ 2.55 \\ 2.56 \\ 2.42 \\ 2.46 \\ 3.27 \\ 2.78 \\ 4.54 \\ 5.55 \\ 2.32 \\ 2.14 \\ 2.83 \\ 2.97 \\ 2.74 \end{array}$	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q96SK2 Q9BZF3 P46109 Q9BSJ8 O60610 P37198 P20290 O95793 Q5T6F2 Q9UPQ9	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2         Trinucleotide repeat-containing gene 6B protein	$\begin{array}{c} 2.25 \\ 2.48 \\ 2.37 \\ 2.17 \\ 2.96 \\ 2.74 \\ 2.50 \\ 2.55 \\ 2.56 \\ 2.42 \\ 2.46 \\ 3.27 \\ 2.78 \\ 4.54 \\ 5.55 \\ 2.32 \\ 2.14 \\ 2.83 \\ 2.97 \\ 2.74 \\ 2.15 \\ \end{array}$	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q96SK2 Q9BZF3 P46109 Q9BSJ8 O60610 P37198 P20290 O95793 Q5T6F2 Q9UPQ9 O43303	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2         Trinucleotide repeat-containing gene 6B protein         Centriolar coiled-coil protein of 110 kDa	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.46 3.27 2.78 4.54 5.55 2.32 2.14 2.83 2.97 2.74 2.74 2.74 2.55	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.77 3.76 3.72 3.75 3.72
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q96SK2 Q9BZF3 P46109 Q9BSJ8 O60610 P37198 P20290 O95793 Q5T6F2 Q9UPQ9 O43303 P19525 O606U	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110 EIF2AK2	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein 209         Oxysterol-binding protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2         Trinucleotide repeat-containing gene 6B protein         Centriolar coiled-coil protein of 110 kDa         Interferon-induced, double-stranded RNA-activated protein kinase	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.46 3.27 2.78 4.54 5.55 2.32 2.14 2.83 2.97 2.74 2.74 2.74 2.55 2.32 2.14 2.55 2.32 2.14 2.55 2.32 2.74 2.74 2.74 2.75 2.69 2.74 2.74 2.74 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.5	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.77 3.76 3.72 3.72 3.72
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q905K2 Q9BZF3 P46109 Q9BSJ8 O60610 P37198 P20290 O95793 Q5T6F2 Q9UPQ9 O43303 P19525 Q69YH5 Q09YH5	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110 EIF2AK2 CDCA2 ATC2	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein 209         Oxysterol-binding protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2         Trinucleotide repeat-containing gene 6B protein         Centriolar coiled-coil protein of 110 kDa         Interferon-induced, double-stranded RNA-activated protein kinase         Cell division cycle-associated protein 2	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.46 3.27 2.78 4.54 5.55 2.32 2.14 2.83 2.97 2.74 2.74 2.15 2.75 2.69 2.23	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q905K2 Q9BZF3 P46109 Q9BSJ8 O60610 P37198 P20290 O95793 Q5T6F2 Q9UPQ9 O43303 P19525 Q69YH5 Q99YH5 Q99YE62 Q99961	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110 EIF2AK2 CDCA2 ATG3 KIE2C	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein 209         Oxysterol-binding protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2         Trinucleotide repeat-containing gene 6B protein         Centriolar coiled-coil protein of 110 kDa         Interferon-induced, double-stranded RNA-activated protein kinase         Cell division cycle-associated protein 2         Ubiquitin-like-conjugating enzyme ATG3	$\begin{array}{c} 2.25 \\ 2.48 \\ 2.37 \\ 2.17 \\ 2.96 \\ 2.74 \\ 2.50 \\ 2.55 \\ 2.56 \\ 2.42 \\ 2.46 \\ 3.27 \\ 2.78 \\ 4.54 \\ 5.55 \\ 2.32 \\ 2.14 \\ 2.83 \\ 2.97 \\ 2.74 \\ 2.15 \\ 2.75 \\ 2.69 \\ 2.23 \\ 3.26 \\ 3.20 \\ \end{array}$	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.82 3.81 3.80 3.80 3.77 3.76 3.72 3.72 3.70 3.69
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q905K2 Q9BZF3 P46109 Q9BSJ8 O60610 P37198 P20290 O95793 Q5T6F2 Q9UPQ9 O43303 P19525 Q69YH5 Q99T62 Q99F61 Q90F61 Q90KZ4	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110 EIF2AK2 CDCA2 ATG3 KIF2C RAB11FIP1	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein 209         Oxysterol-binding protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2         Trinucleotide repeat-containing gene 6B protein         Centriolar coiled-coil protein of 110 kDa         Interferon-induced, double-stranded RNA-activated protein kinase         Cell division cycle-associated protein 2         Ubiquitin-like-conjugating enzyme ATG3         Kinesin-like protein KIF2C         Rab L1 family-interacting protein 1	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.46 3.27 2.78 4.54 5.55 2.32 2.14 2.83 2.97 2.74 2.15 2.75 2.69 2.23 3.46	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.89 3.85 3.85 3.85 3.85 3.85 3.85 3.82 3.81 3.80 3.80 3.77 3.76 3.72 3.72 3.70 3.69 3.68
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q905K2 Q9BZF3 P46109 Q9BSJ8 O60610 P37198 P20290 O95793 Q5T6F2 Q9UPQ9 O43303 P19525 Q69YH5 Q9NT62 Q9NT62 Q99C61 Q6WKZ4 O8NHH9	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110 EIF2AK2 CDCA2 ATG3 KIF2C RAB11FIP1 ATL2	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein 209         Oxysterol-binding protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2         Trinucleotide repeat-containing gene 6B protein         Centriolar coiled-coil protein of 110 kDa         Interferon-induced, double-stranded RNA-activated protein kinase         Cell division cycle-associated protein 2         Ubiquitin-like-conjugating enzyme ATG3         Kinesin-like protein KIF2C         Rab11 family-interacting protein 1         Atlastin-2	$\begin{array}{c} 2.25 \\ 2.48 \\ 2.37 \\ 2.17 \\ 2.96 \\ 2.74 \\ 2.50 \\ 2.55 \\ 2.56 \\ 2.42 \\ 2.46 \\ 3.27 \\ 2.78 \\ 4.54 \\ 5.55 \\ 2.32 \\ 2.14 \\ 2.83 \\ 2.97 \\ 2.74 \\ 2.15 \\ 2.75 \\ 2.69 \\ 2.23 \\ 3.46 \\ 3.29 \\ 3.29 \\ 4.16 \\ 3.47 \end{array}$	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.89 3.85 3.85 3.85 3.85 3.85 3.85 3.82 3.81 3.80 3.80 3.77 3.76 3.72 3.72 3.70 3.69 3.68 3.67 3.66
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q905K2 Q9BZF3 P46109 Q9BSJ8 O60610 P37198 P20290 O95793 Q5T6F2 Q9UPQ9 O43303 P19525 Q69YH5 Q9NT62 Q9NT62 Q99K61 Q6WKZ4 Q8NHH9 O8TD19	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110 EIF2AK2 CDCA2 ATG3 KIF2C RAB11FIP1 ATL2 NEK9	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2         Trinucleotide repeat-containing gene 6B protein         Centriolar coiled-coil protein of 110 kDa         Interferon-induced, double-stranded RNA-activated protein kinase         Cell division cycle-associated protein 2         Ubiquitin-like-conjugating enzyme ATG3         Kinesin-like protein KIF2C         Rab11 family-interacting protein 1         Atlastin-2	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.46 3.27 2.78 4.54 5.55 2.32 2.14 2.83 2.97 2.74 2.74 2.75 2.75 2.69 2.23 3.46 3.29 4.16 3.29 4.16 3.27	4.15 4.13 4.09 4.04 4.03 4.02 4.02 4.02 4.02 3.96 3.95 3.94 3.93 3.89 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q905K2 Q9BZF3 P46109 Q9BSJ8 O60610 P37198 P20290 O95793 Q5T6F2 Q9UPQ9 O43303 P19525 Q69YH5 Q9NT62 Q9NT62 Q9NT62 Q9P661 Q6WKZ4 Q8NHH9 Q8TD19 P61160	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110 EIF2AK2 CDCA2 ATG3 KIF2C RAB11FIP1 ATL2 NEK9 ACTR2	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2         Trinucleotide repeat-containing gene 6B protein         Centriolar coiled-coil protein of 110 kDa         Interferon-induced, double-stranded RNA-activated protein kinase         Cell division cycle-associated protein 2         Ubiquitin-like-conjugating enzyme ATG3         Kinesin-like protein KIF2C         Rab11 family-interacting protein 1         Atlastin-2         Serine/threonine-protein kinase Nek9         Actin-related protein 2	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.46 3.27 2.78 4.54 5.55 2.32 2.14 2.83 2.97 2.74 2.74 2.75 2.75 2.69 2.23 3.46 3.29 4.16 3.29 4.16 3.29	$\begin{array}{c} 4.15\\ 4.13\\ 4.09\\ 4.04\\ 4.03\\ 4.02\\ 4.02\\ 4.02\\ 4.02\\ 3.96\\ 3.95\\ 3.94\\ 3.93\\ 3.93\\ 3.93\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.85\\ 3.65\\ 3.66\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.64\\ 3.65\\ 3.65\\ 3.64\\ 3.65\\ 3.65\\ 3.65\\ 3.64\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.64\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\ 3.65\\$
P51148 A0MZ66 Q66K14 Q8WX93 Q9UL15 Q13111 Q5JSH3 O14965 P49137 Q9UL63 Q6P1Q9 Q905K2 Q9BZF3 P46109 Q9BSJ8 O60610 P37198 P20290 O95793 Q5T6F2 Q9UPQ9 O43303 P19525 Q69YH5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9UFQ5 Q9	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110 EIF2AK2 CDCA2 ATG3 KIF2C RAB11FIP1 ATL2 NEK9 ACTR2 UCK2	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein 209         Oxysterol-binding protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2         Trinucleotide repeat-containing gene 6B protein         Centriolar coiled-coil protein of 110 kDa         Interferon-induced, double-stranded RNA-activated protein kinase         Cell division cycle-associated protein 2         Ubiquitin-like-conjugating enzyme ATG3         Kinesin-like protein KIF2C         Rab11 family-interacting protein 1         Atlastin-2         Serine/threonine-protein kinase Nek9         Actin-related protein 2         Uridine-cytidine kinase 2 <td>$\begin{array}{c} 2.25 \\ 2.48 \\ 2.37 \\ 2.17 \\ 2.96 \\ 2.74 \\ 2.50 \\ 2.55 \\ 2.56 \\ 2.42 \\ 2.46 \\ 3.27 \\ 2.78 \\ 4.54 \\ 5.55 \\ 2.32 \\ 2.14 \\ 2.83 \\ 2.97 \\ 2.74 \\ 2.15 \\ 2.75 \\ 2.69 \\ 2.23 \\ 3.46 \\ 3.29 \\ 4.16 \\ 3.47 \\ 3.58 \\ 2.46 \\ 3.24 \\ \end{array}$</td> <td>4.15           4.13           4.09           4.04           4.03           4.02           4.02           4.02           3.96           3.95           3.94           3.93           3.89           3.85           3.85           3.85           3.81           3.80           3.77           3.76           3.72           3.70           3.69           3.68           3.67           3.66           3.65           3.64</td>	$\begin{array}{c} 2.25 \\ 2.48 \\ 2.37 \\ 2.17 \\ 2.96 \\ 2.74 \\ 2.50 \\ 2.55 \\ 2.56 \\ 2.42 \\ 2.46 \\ 3.27 \\ 2.78 \\ 4.54 \\ 5.55 \\ 2.32 \\ 2.14 \\ 2.83 \\ 2.97 \\ 2.74 \\ 2.15 \\ 2.75 \\ 2.69 \\ 2.23 \\ 3.46 \\ 3.29 \\ 4.16 \\ 3.47 \\ 3.58 \\ 2.46 \\ 3.24 \\ \end{array}$	4.15           4.13           4.09           4.04           4.03           4.02           4.02           4.02           3.96           3.95           3.94           3.93           3.89           3.85           3.85           3.85           3.81           3.80           3.77           3.76           3.72           3.70           3.69           3.68           3.67           3.66           3.65           3.64
P51148         A0MZ66         Q66K14         Q8WX93         Q9UL15         Q13111         Q5JSH3         O14965         P49137         Q9UL63         Q6P1Q9         Q9SK2         Q9BZF3         P46109         Q9BZF3         P46109         Q9BSJ8         O60610         P37198         P20290         O95793         Q5T6F2         Q9UPQ9         O43303         P19525         Q69YH5         Q9NT62         Q9NT616	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110 EIF2AK2 CDCA2 ATG3 KIF2C RAB11FIP1 ATL2 NEK9 ACTR2 UCK2 MTFR1L	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein 209         Oxysterol-binding protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 0         Thrinucleotide repeat-containing gene 6B protein         Centriolar coiled-coil protein of 110 kDa         Interferon-induced, double-stranded RNA-activated protein kinase         Cell division cycle-associated protein 2         Ubiquitin-like-conjugating enzyme ATG3         Kinesin-like protein KIF2C         Rab11 family-interacting protein 1         Atlastin-2         Serine/threonine-protein kinase Nek9         Actin-related protein 2         Uridine-cytidine kinase 2 <t< td=""><td>2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.46 3.27 2.78 4.54 5.55 2.32 2.14 2.83 2.97 2.74 2.74 2.75 2.75 2.69 2.23 3.46 3.29 3.29 3.26 3.29 4.16 3.27 2.75 2.69 2.23 3.46 3.29 3.26 3.29 3.46 3.29 3.26 3.29 3.26 3.26 3.29 3.26 3.26 3.26 3.26 3.27 2.75 2.69 2.23 3.46 3.29 3.26 3.29 3.26 3.26 3.27 2.75 2.69 2.23 3.46 3.29 3.26 3.29 3.26 3.26 3.29 3.26 3.29 3.26 3.26 3.29 3.26 3.27 2.23 3.46 3.29 3.26 3.29 3.26 3.29 3.26 3.29 3.26 3.29 3.26 3.29 3.26 3.27 2.23 3.26 3.26 3.27 2.23 3.26 3.26 3.29 3.26 3.27 2.23 2.23 3.26 3.29 3.26 3.26 3.29 3.26 3.29 3.26 3.26 3.27 2.23 2.23 2.25 2.25 2.55 2.55 2.55 2.55</td><td>4.15         4.13         4.09         4.04         4.03         4.02         4.02         4.02         3.96         3.95         3.94         3.93         3.89         3.85         3.85         3.85         3.81         3.80         3.77         3.76         3.72         3.70         3.69         3.69         3.66         3.65         3.64         3.61</td></t<>	2.25 2.48 2.37 2.17 2.96 2.74 2.50 2.55 2.56 2.42 2.46 3.27 2.78 4.54 5.55 2.32 2.14 2.83 2.97 2.74 2.74 2.75 2.75 2.69 2.23 3.46 3.29 3.29 3.26 3.29 4.16 3.27 2.75 2.69 2.23 3.46 3.29 3.26 3.29 3.46 3.29 3.26 3.29 3.26 3.26 3.29 3.26 3.26 3.26 3.26 3.27 2.75 2.69 2.23 3.46 3.29 3.26 3.29 3.26 3.26 3.27 2.75 2.69 2.23 3.46 3.29 3.26 3.29 3.26 3.26 3.29 3.26 3.29 3.26 3.26 3.29 3.26 3.27 2.23 3.46 3.29 3.26 3.29 3.26 3.29 3.26 3.29 3.26 3.29 3.26 3.29 3.26 3.27 2.23 3.26 3.26 3.27 2.23 3.26 3.26 3.29 3.26 3.27 2.23 2.23 3.26 3.29 3.26 3.26 3.29 3.26 3.29 3.26 3.26 3.27 2.23 2.23 2.25 2.25 2.55 2.55 2.55 2.55	4.15         4.13         4.09         4.04         4.03         4.02         4.02         4.02         3.96         3.95         3.94         3.93         3.89         3.85         3.85         3.85         3.81         3.80         3.77         3.76         3.72         3.70         3.69         3.69         3.66         3.65         3.64         3.61
P51148         A0MZ66         Q66K14         Q8WX93         Q9UL15         Q13111         Q5JSH3         O14965         P49137         Q9UL63         Q6P1Q9         Q9SK2         Q9BZF3         P46109         Q9BSJ8         O60610         P37198         P20290         O95793         Q5T6F2         Q9UPQ9         O43303         P19525         Q69YH5         Q9NT62         Q99661         Q6WKZ4         Q8TD19         P61160         Q9BZX2         Q9H019         O14531	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110 EIF2AK2 CDCA2 ATG3 KIF2C RAB11FIP1 ATL2 NEK9 ACTR2 UCK2 MTFR1L DPYSL4	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein 209         Oxysterol-binding protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 2         Trinucleotide repeat-containing gene 6B protein         Centriolar coiled-coil protein of 110 kDa         Interferon-induced, double-stranded RNA-activated protein kinase         Cell division cycle-associated protein 2         Ubiquitin-like-conjugating enzyme ATG3         Kinesin-like protein KIF2C         Rab11 family-interacting protein 1         Atlastin-2         Serine/threonine-protein kinase Nek9         Actin-related protein 2         Uridine-cytidine kinase 2 <td< td=""><td>2.25           2.48           2.37           2.17           2.96           2.74           2.50           2.55           2.56           2.42           2.46           3.27           2.74           2.55           2.56           2.42           2.46           3.27           2.74           2.55           2.32           2.14           2.83           2.97           2.74           2.15           2.75           2.69           2.23           3.46           3.29           4.16           3.47           3.58           2.46           3.24           2.68           2.67</td><td>4.15         4.13         4.09         4.04         4.03         4.02         4.02         4.02         3.96         3.95         3.94         3.93         3.89         3.85         3.85         3.85         3.81         3.80         3.77         3.76         3.72         3.70         3.69         3.68         3.67         3.66         3.64         3.64         3.61</td></td<>	2.25           2.48           2.37           2.17           2.96           2.74           2.50           2.55           2.56           2.42           2.46           3.27           2.74           2.55           2.56           2.42           2.46           3.27           2.74           2.55           2.32           2.14           2.83           2.97           2.74           2.15           2.75           2.69           2.23           3.46           3.29           4.16           3.47           3.58           2.46           3.24           2.68           2.67	4.15         4.13         4.09         4.04         4.03         4.02         4.02         4.02         3.96         3.95         3.94         3.93         3.89         3.85         3.85         3.85         3.81         3.80         3.77         3.76         3.72         3.70         3.69         3.68         3.67         3.66         3.64         3.64         3.61
P51148         A0MZ66         Q66K14         Q8WX93         Q9UL15         Q13111         Q5JSH3         O14965         P49137         Q9UL63         Q6P1Q9         Q9SK2         Q9BZF3         P46109         Q9BSJ8         O60610         P37198         P20290         O95793         Q5T6F2         Q9UPQ9         O43303         P19525         Q69YH5         Q99KZ4         Q88TD19         P61160         Q9BZX2         Q9H019         O14531         O60318	RAB5C KIAA1598 TBC1D9B PALLD BAG5 CHAF1A WDR44 AURKA MAPKAPK2 MKLN1 METTL2B TMEM209 OSBPL6 CRKL ESYT1 DIAPH1 NUP62 BTF3 STAU1 UBAP2 TNRC6B CCP110 EIF2AK2 CDCA2 ATG3 KIF2C RAB11FIP1 ATL2 NEK9 ACTR2 UCK2 MTFR1L DPYSL4 MCM3AP	Ras-related protein Rab-5C         Shootin-1         TBC1 domain family member 9B         Palladin         BAG family molecular chaperone regulator 5         Chromatin assembly factor 1 subunit A         WD repeat-containing protein 44         Aurora kinase A         MAP kinase-activated protein kinase 2         Muskelin         Methyltransferase-like protein 2B         Transmembrane protein 209         Oxysterol-binding protein-related protein 6         Crk-like protein         Extended synaptotagmin-1         Protein diaphanous homolog 1         Nuclear pore glycoprotein p62         Transcription factor BTF3         Double-stranded RNA-binding protein Staufen homolog 1         Ubiquitin-associated protein 0         Cell division cycle-associated protein 2         Ubiquitin-like-conjugating enzyme ATG3         Kinesin-like protein KIF2C         Rab11 family-interacting protein 1         Atlastin-2         Serine/threonine-protein kinase Nek9         Actin-related protein 2         Uridine-cytidine kinase 2         Mitochondrial fission regulator 1-like         Dihydropyrimidinase-related protein 4	$\begin{array}{c} 2.25 \\ 2.48 \\ 2.37 \\ 2.17 \\ 2.96 \\ 2.74 \\ 2.50 \\ 2.55 \\ 2.56 \\ 2.42 \\ 2.46 \\ 3.27 \\ 2.78 \\ 4.54 \\ 5.55 \\ 2.32 \\ 2.14 \\ 2.83 \\ 2.97 \\ 2.74 \\ 2.15 \\ 2.75 \\ 2.69 \\ 2.23 \\ 3.46 \\ 3.29 \\ 3.29 \\ 4.16 \\ 3.47 \\ 3.58 \\ 2.46 \\ 3.24 \\ 2.68 \\ 2.67 \\ 2.76 \\ \end{array}$	4.15           4.13           4.09           4.04           4.03           4.02           4.02           4.02           3.96           3.95           3.94           3.93           3.89           3.85           3.85           3.85           3.82           3.81           3.80           3.77           3.76           3.72           3.70           3.69           3.69           3.61           3.64           3.61           3.59

Q4VCS5	AMOT	Angiomotin	2.39	3.56
Q15003	NCAPH	Condensin complex subunit 2	3.21	3.53
P16615	ATP2A2	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	3.08	3.47
Q8IWZ3	ANKHD1	Ankyrin repeat and KH domain-containing protein 1	2.69	3.46
P31153	MAT2A	S-adenosylmethionine synthase isoform type-2	2.98	3.45
Q8WZA9	IRGQ	Immunity-related GTPase family Q protein	2.91	3.43
Q9HCU5	PREB	Prolactin regulatory element-binding protein	2.12	3.43
Q9BVS4	RIOK2	Serine/threonine-protein kinase RIO2	3.01	3.39
Q55WA8	ODR4	NEDD8 ultimate hustor 1	3.52	3.39
Q913A7	CHMP5	NEDD8 ululliate buster 1 Charged multivesicular body protein 5	2.09	3.30
075410		Transforming acidic coiled-coil-containing protein 1	3 33	3.33
09ULX3	NOB1	RNA-binding protein NOB1	2.54	3.31
014318	FKBP8	Peptidyl-prolyl cis-trans isomerase FKBP8	2.30	3.30
P09211	GSTP1	Glutathione S-transferase P	3.53	3.29
O75044	SRGAP2	SLIT-ROBO Rho GTPase-activating protein 2	2.09	3.29
Q8N2G8	GHDC	GH3 domain-containing protein	3.35	3.27
Q99873	PRMT1	Protein arginine N-methyltransferase 1	2.28	3.25
Q12756	KIF1A	Kinesin-like protein KIF1A	2.93	3.23
Q15417	CNN3	Calponin-3	3.45	3.20
P42166	TMPO	Lamina-associated polypeptide 2, isoform alpha	2.39	3.17
Q14C86	GAPVD1	GTPase-activating protein and VPS9 domain-containing protein 1	2.45	3.16
P20810	CAST	Calpastatin	2.91	3.16
Q15654	I KIPO VEZT	Vozotin	2.03	3.15
Q9HBM0	VEZI VTHDC2	Probable ATP dependent PNA belicase VTHDC2	2.22	3.14
008378	GOLGA3	Golgin subfamily A member 3	2.07	3.13
000233	PSMD9	26S proteasome non-ATPase regulatory subunit 9	3.11	3.10
09UNY4	TTF2	Transcription termination factor 2	2.74	3.06
P51617	IRAK1	Interleukin-1 receptor-associated kinase 1	2.30	3.04
P02545	LMNA	Prelamin-A/C	2.30	3.02
Q9NRG9	AAAS	Aladin	2.22	2.98
Q8N0X7	SPG20	Spartin	2.22	2.97
000640	DUIDEI	Membrane-associated tyrosine- and threonine-specific cdc2-	2.24	2.06
Q99640	PKMYII	Inhibitory kinase	2.34	2.96
Q92007		A-kinase anchor protein 1, mitochondrial	2.07	2.90
077272	FETUD1	Flongation factor Tu GTP-binding domain-containing protein 1	2.71	2.93
043491	EPB4112	Band 4 1-like protein 2	2.77	2.94
P50402	EMD	Emerin	3.79	2.88
Q5T8D3	ACBD5	Acyl-CoA-binding domain-containing protein 5	2.10	2.85
Q14126	DSG2	Desmoglein-2	3.27	2.84
Q71RC2	LARP4	La-related protein 4	2.21	2.82
P49792	RANBP2	E3 SUMO-protein ligase RanBP2	2.58	2.81
P49069	CAMLG	Calcium signal-modulating cyclophilin ligand	2.32	2.79
Q9H2G2	SLK	STE20-like serine/threonine-protein kinase	2.35	2.79
Q53GS7	GLEI	Nucleoporin GLE1	2.55	2.76
0/54/5 D12804	PSIPI	PC4 and SFRS1-interacting protein	2.82	2.76
P13804		Le releted protein 1	2.17	2.74
Q01 K00	EDC3	Enhancer of mRNA-decamping protein 3	3.47	2.74
Q20180	STK11IP	Serine/threonine-protein kinase 11-interacting protein	2.68	2.73
095336	PGLS	6-phosphogluconolactonase	3.00	2.73
09Y277	VDAC3	Voltage-dependent anion-selective channel protein 3	2.67	2.72
Q9Y5X3	SNX5	Sorting nexin-5	2.31	2.71
Q92545	TMEM131	Transmembrane protein 131	2.29	2.71
Q9Y2U8	LEMD3	Inner nuclear membrane protein Man1	2.51	2.68
Q9UGP4	LIMD1	LIM domain-containing protein 1	2.92	2.68
Q9Y613	FHOD1	FH1/FH2 domain-containing protein 1	2.37	2.68
Q15005	SPCS2	Signal peptidase complex subunit 2	5.00	2.67
Q5JSZ5	PRRC2B	Protein PRRC2B	2.64	2.67
P18850	ATF6	Cyclic AMP-dependent transcription factor ATF-6 alpha	3.12	2.62
Q13310	PABPC4	Polyadenylate-binding protein 4	3.29	2.62
P34105	ULIVSIA	Ivietuyiosome subunit piCin	2.68	2.58
P/0721	JEIII PSMR2	Protessome subunit bets type-2	2.50	2.55
0772K8	GPRIN1	G protein-regulated inducer of neurite outgrowth 1	2.50	2.54
P35659	DEK	Protein DEK	4 25	2.53
075694	NUP155	Nuclear pore complex protein Nup155	2.76	2.50
Q8N573	OXR1	Oxidation resistance protein 1	2.55	2.48
P27816	MAP4	Microtubule-associated protein 4	3.67	2.48
P11171	EPB41	Protein 4.1	2.20	2.47
A8CG34	POM121C	Nuclear envelope pore membrane protein POM 121C	2.35	2.46

O75083	WDR1	WD repeat-containing protein 1	2.01	2.44
Q8NHV4	NEDD1	Protein NEDD1	2.56	2.44
Q9BZF1	OSBPL8	Oxysterol-binding protein-related protein 8	2.05	2.42
O3KOU3	MAP7D1	MAP7 domain-containing protein 1	2.15	2.41
P01891	HLA-A	HLA class I histocompatibility antigen, A-68 alpha chain	2.25	2.38
015344	MID1	E3 ubiquitin-protein ligase Midline-1	2.56	2.37
O95757	HSPA4L	Heat shock 70 kDa protein 4L	3.77	2.37
Q8WWM7	ATXN2L	Ataxin-2-like protein	4.21	2.36
Q96AG4	LRRC59	Leucine-rich repeat-containing protein 59	2.57	2.36
O14802	POLR3A	DNA-directed RNA polymerase III subunit RPC1	2.13	2.36
Q9BTE3	MCMBP	Mini-chromosome maintenance complex-binding protein	2.56	2.34
Q8N3C0	ASCC3	Activating signal cointegrator 1 complex subunit 3	2.56	2.33
Q99614	TTC1	Tetratricopeptide repeat protein 1	3.48	2.33
Q99961	SH3GL1	Endophilin-A2	2.66	2.33
P17858	PFKL	ATP-dependent 6-phosphofructokinase, liver type	2.53	2.30
Q9UGV2	NDRG3	Protein NDRG3	2.42	2.30
O43264	ZW10	Centromere/kinetochore protein zw10 homolog	2.03	2.30
O76003	GLRX3	Glutaredoxin-3	3.52	2.30
O76024	WFS1	Wolframin	2.62	2.30
O43318	MAP3K7	Mitogen-activated protein kinase kinase kinase 7	2.87	2.25
Q8WYP5	AHCTF1	Protein ELYS	3.25	2.24
P41250	GARS	GlycinetRNA ligase	2.43	2.21
Q96T17	MAP7D2	MAP7 domain-containing protein 2	2.99	2.19
Q9H0B6	KLC2	Kinesin light chain 2	2.62	2.18
Q8IW35	CEP97	Centrosomal protein of 97 kDa	2.22	2.17
Q13283	G3BP1	Ras GTPase-activating protein-binding protein 1	2.32	2.16
P28290	SSFA2	Sperm-specific antigen 2	2.41	2.16
Q96CX2	KCTD12	BTB/POZ domain-containing protein KCTD12	2.19	2.16
P57740	NUP107	Nuclear pore complex protein Nup107	3.66	2.15
P51114	FXR1	Fragile X mental retardation syndrome-related protein 1	2.70	2.14
Q6PJG6	BRAT1	BRCA1-associated ATM activator 1	2.24	2.13
Q5UCC4	EMC10	ER membrane protein complex subunit 10	2.64	2.13
O43432	EIF4G3	Eukaryotic translation initiation factor 4 gamma 3	2.74	2.13
Q643R3	LPCAT4	Lysophospholipid acyltransferase LPCAT4	2.35	2.09
P11216	PYGB	Glycogen phosphorylase, brain form	2.11	2.08
P98194	ATP2C1	Calcium-transporting ATPase type 2C member 1	3.36	2.07
P08758	ANXA5	Annexin A5	2.97	2.04
O00161	SNAP23	Synaptosomal-associated protein 23	3.15	2.03
P53384	NUBP1	Cytosolic Fe-S cluster assembly factor NUBP1	2.49	2.03
Q9Y5Y2	NUBP2	Cytosolic Fe-S cluster assembly factor NUBP2	2.47	2.03
P52888	THOP1	Thimet oligopeptidase	2.58	2.02
Q02241	KIF23	Kinesin-like protein KIF23	2.83	2.02
Q9H4A3	WNK1	Serine/threonine-protein kinase WNK1	2.37	2.00