
Pezhman Nasirifard

Reducing Coordination in

Permissioned Blockchains

with Con�ict-free

Replicated Data Types

TUM School of Computation, Information and Technology

Reducing Coordination in Permissioned

Blockchains with Con�ict-free

Replicated Data Types

Pezhman Nasirifard

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology
der Technische Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Pramod Bhatotia
Prüfer*innen der Dissertation: 1. Prof. Dr. Hans-Arno Jacobsen

2. Prof. Dr. Kaiwen Zhang

Die Dissertation wurde am 22.12.2022 bei der Technische Universität München eingereicht und
durch die TUM School of Computation, Information and Technology am 12.05.2023

angenommen.

Abstract

Since the introduction of Bitcoin, numerous permissionless and permissioned blockchains
have been proposed with the prospect of disrupting various industries. The main property
contributing to their popularity is o�ering decentralized trust and providing a safe and
live environment for the execution of decentralized applications in Byzantine distributed
systems. Blockchains often rely on coordination-based consensus protocols to o�er trust
and Byzantine Fault Tolerance (BFT). Furthermore, these coordination-based protocols
serialize the transactions into a global order to preserve the correctness of the application’s
state stored on the blockchain. However, the required coordination to reach consensus
has been a bottleneck for scalability and transaction throughput and has induced high
transaction latency. These problems hinder the widespread adoption of blockchains
despite their signi�cant potential. To improve the scalability, throughput, and transaction
latency of permissioned blockchains, we proposed two Con�ict-free Replicated Data

Types-based (CRDTs) approaches to reduce the coordination in the system.

We �rst provide a CRDT-based scalability solution for Hyperledger Fabric (Fabric),
materialized in a new system called FabricCRDT. Fabric is one of the most prominent
permissioned blockchains and provides a complete ecosystem for developing production-
grade decentralized applications. However, Fabric’s coordination-based protocol
induces high latency, which results in a high percentage of concurrent and con�icting
transactions. Consequently, Fabric’s optimistic concurrency control mechanism causes
the failure of these con�icting transactions. Our proposed solution in FabricCRDT
detects the con�icting concurrent transactions automatically and employs CRDT-based
techniques to resolve the values of con�icting transactions and merges them without data
loss or corruption. Furthermore, to facilitate the adoption of permissioned blockchains,
we maintain FabricCRDT backward compatible with existing Fabric applications.
The evaluation of FabricCRDT and its comparison to Fabric demonstrate the
signi�cantly increased throughput of successful transactions on FabricCRDT com-
pared to Fabric. Although FabricCRDT’s CRDT-based approach does not require
coordination for the correct execution of applications, it uses Fabric’s coordination-
based protocol for backward compatibility purposes.

Second, we propose OrderlessChain, a novel permissioned blockchain based on a
novel BFT coordination-free protocol without serializing transactions into a global order.

iii

Although serializability is required to preserve the correctness of many applications,
application-level correctness requirements exist that are not dependent on the order of
transactions, known as Invariant Con�uence (I-con�uence). The I-con�uent applications
can execute in a coordination-free manner bene�ting from the improved scalability
compared to the coordination-based approaches. The safety and liveness of I-con�uent
applications are studied in non-Byzantine environments, but the correct execution of such
applications remains a challenge in Byzantine coordination-free environments. By using
the properties of permissioned blockchains and CRDTs, OrderlessChain provides a
solution for the safe and live execution of I-con�uent applications in a Byzantine envi-
ronment. We extensively evaluated OrderlessChain and compared its coordination-
free protocol to the coordination-based protocols of Fabric and FabricCRDT. Our
evaluation con�rms the signi�cant potential of our BFT coordination-free approach as a
scalable alternative over coordination-based permissioned blockchains for I-con�uent
applications. Furthermore, to demonstrate the applicability of OrderlessChain to
other domains, we adapted OrderlessChain with novel CRDTs to o�er a blockchain-
based secure federated learning solution and a private decentralized �le storage system.

iv

Zusammenfassung

Seit der Einführung von Bitcoin wurden zahlreiche Permissionless und Permissioned
Blockchains vorgeschlagen, die die Aussicht haben, verschiedene Branchen zu verändern.
Die Haupteigenschaft, die zu ihrer Beliebtheit beiträgt, ist das Angebot von dezentralem
Vertrauen und die Bereitstellung einer Safe und Live Umgebung für die Ausführung von
dezentralen Anwendungen in byzantinischen verteilten Systemen. Blockchains basieren
häu�g auf koordinationsbasierten Konsensprotokollen, um Vertrauen und BFT (Byzantine

Fault Tolerance) zu bieten. Darüber hinaus serialisieren diese koordinationsbasierten Proto-
kolle die Transaktionen in einer global gültigen Sortierung, um die Korrektheit des auf der
Blockchain gespeicherten Anwendungsdaten zu bewahren. Die für die Konsens�ndung
erforderliche Koordinierung hat sich jedoch als Engpass für die Skalierbarkeit und den
Transaktionsdurchsatz erwiesen und zu einer hohen Transaktionslatenz geführt. Diese
Probleme behindern die breite Einführung von Blockchains trotz ihres großen Potenzials.
Um die Skalierbarkeit, den Durchsatz und die Transaktionslatenz von Permissioned
Blockchains zu verbessern, in dieser Arbeit werden zwei auf Con�ict-free Replicated Data
Types (CRDTs) basierende Ansätze vorgeschlagen, um die Koordination im System zu
reduzieren.

Zunächst wird eine CRDT-basierte Skalierbarkeitslösung für Hyperledger Fabric
(Fabric) geboten, die in einem neuen System namens FabricCRDT realisiert ist.
Fabric ist eine der bekanntesten Permissioned Blockchains und bietet ein komplettes
Ökosystem für die Entwicklung produktionsreifer dezentraler Anwendungen. Das koordi-
nationsbasierte Protokoll von Fabric führt jedoch zu einer hohen Latenzzeit, was einen
hohen Prozentsatz an gleichzeitigen und kon�iktreichen Transaktionen zur Folge hat.
Folglich führt der optimistische Gleichzeitigkeitssteuerungsmechanismus von Fabric
zum Scheitern dieser widersprüchlichen Transaktionen. Die von uns vorgeschlagene
Lösung in FabricCRDT erkennt sich gegenseitig beeinträchtigenden Transaktio-
nen automatisch und setzt CRDT-basierte Techniken ein, um die Kon�ikte aufzulösen
und sie ohne Datenverlust oder Beschädigung zusammenzuführen. Um die Einführung
von Permissioned Blockchains zu erleichtern, ist FabricCRDT rückwärtskompatibel
mit bestehenden Fabric-Anwendungen. Die Evaluierung von FabricCRDT und
der Vergleich mit Fabric zeigen, dass der Durchsatz erfolgreicher Transaktionen
auf FabricCRDT im Vergleich zu Fabric signi�kant höher ist. Obwohl der CRDT-
basierte Ansatz von FabricCRDT keine Koordination für die korrekte Ausführung von

v

Anwendungen erfordert, verwendet er das koordinationsbasierte Protokoll von Fabric,
um Abwärtskompatibilität zu gewährleisten.

Zweitens wird OrderlessChain vorgeschlagen, eine neuartige Permissioned Block-
chain, die auf einem neuartigen koordinationsfreien BFT-Protokoll basiert, ohne Transak-
tionen in eine globale Reihenfolge zu bringen. Obwohl die Serialisierbarkeit erforderlich
ist, um die Korrektheit vieler Anwendungen zu bewahren, gibt es Korrektheitsanfor-
derungen auf Anwendungsebene, die nicht von der Reihenfolge der Transaktionen ab-
hängen, bekannt als Invariant Con�uence (I-con�uence). Die I-con�uence-Anwendungen
können koordinationsfrei ausgeführt werden und pro�tieren von der besseren Skalier-
barkeit im Vergleich zu koordinationsbasierten Ansätzen. Die Safety und Liveness von
I-con�uence-Anwendungen wurden in nicht-byzantinischen Umgebungen untersucht,
aber die korrekte Ausführung solcher Anwendungen bleibt eine Herausforderung in
byzantinischen koordinationsfreien Umgebungen. Durch die Nutzung der Eigenschaften
von Permissioned Blockchains und CRDTs bietet OrderlessChain eine Lösung für
die Safe und Live Ausführung von I-con�uence-Anwendungen in einer byzantinischen
Umgebung. OrderlessChain wurde evaluiert und sein koordinationsfreies Protokoll
mit den koordinationsbasierten Protokollen von Fabric und FabricCRDT verglichen.
Die Evaluierung bestätigt das erhebliche Potenzial unseres koordinationsfreien BFT-
Ansatzes als skalierbare Alternative zu koordinationsbasierten Permissioned Blockchains
für I-con�uence-Anwendungen. Um die Anwendbarkeit von OrderlessChain auf
andere Domänen zu demonstrieren, wurde OrderlessChain mit neuartigen CRDTs
angepasst, um eine Blockchain-basierte sichere Federated Learning-Lösung und ein
privates dezentrales Dateispeichersystem anzubieten.

vi

Acknowledgments

This doctoral dissertation and the included research were carried out at the Department
of Computer Science at the Technical University of Munich under the supervision of Prof.
Hans-Arno Jacobsen.

I would like to express my sincere gratitude to Prof. Hans-Arno Jacobsen for his
motivation, continuous support, and guidance he provided over the years. He o�ered
me a great deal of freedom during my academic journey and encouraged me to go in
di�erent exciting directions. I also sincerely thank Prof. Ruben Mayer for advising me,
continuously providing valuable feedback on my work, and being a reliable supporter. I
would like to thank Prof. Viktor Leis for supporting me at the end of my Ph.D.

I would like to thank the rest of my thesis committee: Prof. Kaiwen Zhang from École de
technologie supérieure for agreeing to be my second examiner and Prof. Pramod Bhatotia
for accepting to chair the committee.

Many thanks go to all my former and present colleagues. The pandemic showed me
the signi�cance of great colleagues in making a Ph.D. more enjoyable. I would like to
especially thank Dr. Jose Rivera and Dr. Martin Jergler for providing the stepping stone
to our chair and Dr. Christoph Doblander, Alexander Isenko, and Herbert Woisetschläger
for investing countless hours in maintaining our infrastructure and o�ering valuable
help and insights. I sincerely thank Jeeta Ann Chacko for being an awesome o�cemate.

I want to sincerely thank all my students I was honored to supervise and lecture. Their
work provided me with valuable input and made the collaboration on various publications
besides the works discussed in this dissertation possible.

Outside the academic world, I greatly thank my dearest parents, Motahareh and Nejatali,
for making everything possible and providing me with all the opportunities I have had in
life. I sincerely thank all my dear friends for supporting me and being interested in and
asking about my work. Last but not least, my in�nite gratitude goes to Prof. Christian
Strobel for standing by my side on my good and several bad days, emotionally and
mentally supporting me with all he could give, and making my every day less challenging.
I am very proud of you. You Rock!

vii

Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

1 Introduction 1

1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Approach . 6

1.3.1 A CRDT-based Approach to Fabric 7
1.3.2 A Coordination-free Permissioned Blockchain 8

1.4 Contributions . 9
1.5 Organization . 12

2 Background 15

2.1 Hyperledger Fabric Permissioned Blockchain 15
2.1.1 Architecture . 16
2.1.2 Fabric’s Coordination-based Protocol 17

2.2 Con�ict-free Replicated Data Types . 19
2.3 Invariant Conditions and Invariant Con�uence 21

3 Related Work 23

3.1 Scalability Solutions of Fabric . 24
3.2 CRDTs in non-Byzantine and Byzantine Systems 26
3.3 Invariant Conditions of Distributed Applications 29

ix

CONTENTS

3.4 Asynchronous Federated Learning in Byzantine Environments 31
3.5 Blockchain-based File Storage Systems 33

4 FabricCRDT: A CRDT-enabled Permissioned Blockchain 35

4.1 Multiversion Concurrency Control-based Failures 36
4.2 Architecture and Design . 40

4.2.1 System Model . 40
4.2.2 Design Requirements . 41
4.2.3 Transaction Lifecycle . 42

4.3 Implementation . 43
4.3.1 Merging CRDT Transactions . 43
4.3.2 Enabling JSON CRDT on FabricCRDT 46

4.4 Potentials and Limitations of FabricCRDT over Fabric 49
4.5 Evaluation . 51

4.5.1 Experimental Applications . 51
4.5.2 Workloads, Control Variables and Metrics 52
4.5.3 Experimental Setup . 54
4.5.4 Experimental Results for IoT Applications 54
4.5.5 Discussion . 60

4.6 Summary . 61

5 OrderlessChain: A Permissioned Blockchain without Coordination 63

5.1 System Model . 64
5.2 Architecture and Protocol . 69

5.2.1 Architecture . 69
5.2.2 Protocol and Transaction Lifecycle 70

5.3 Realizing Decentralized Use Cases on OrderlessChain 72
5.3.1 Application Modeling . 72
5.3.2 CRDT Abstractions . 73

5.4 Implementation . 76
5.4.1 Developing CRDT-enabled Smart Contracts 77
5.4.2 Applying CRDT Transactions . 78

5.5 Preserving Invariant Conditions . 80
5.6 Byzantine Fault Tolerance . 82
5.7 Evaluation . 85

x

CONTENTS

5.7.1 Experimental Applications . 85
5.7.2 Workloads, Control Variables and Metrics 86
5.7.3 Experimental Setup . 88
5.7.4 Experimental Results for Synthetic Applications 88
5.7.5 Experimental Results for the Voting and Auction Applications . . 94
5.7.6 Discussion . 96

5.8 Summary . 99

6 Extended Applications of OrderlessChain 101

6.1 OrderlessFL: A Blockchain-based Federated Learning System 101
6.1.1 Architecture and FL Protocol . 104
6.1.2 flCRDT: A Federated Learning CRDT 106
6.1.3 Evaluation . 108

6.2 OrderlessFile: A Blockchain for File Storage 109
6.2.1 FileCRDT: A CRDT for File Storage 110
6.2.2 Architecture and Protocol . 111
6.2.3 Evaluation . 114

6.3 Summary . 115

7 Conclusions 117

7.1 Summary . 117
7.2 Future Work . 120

List of Acronyms and Abbreviations 123

List of Figures 125

List of Tables 127

List of Algorithms 129

Bibliography 131

xi

1

Introduction

The emergence of blockchain technologies o�ered the prospect of disrupting a wide range
of domains and industries, from e-government to �nancial and healthcare sectors [1, 2,
3]. The main property of blockchains that contributed to their explosive popularity is the
decentralized trust that enables individuals and organizations to execute decentralized
applications safely and transactions in Byzantine distributed systems without requiring
centralized trust [4, 5].

Despite the signi�cant potential and the initial enormous hype surrounding blockchains,
its various open problems hinder the wide adoption of blockchain technologies [6, 7]. The
problems such as low scalability, limited transaction throughput, high transaction latency,
and several more have made the realization of several use cases challenging [8, 9]. The
low scalability and throughput problems are rooted in the employed coordination-based
protocols, which require coordination among nodes to reach consensus in order to ensure
decentralized trust and execute applications correctly [8, 10, 11].

This work proposes solutions for reducing the coordination and improving the scalability
and adoption of existing and novel permissioned blockchains. First, we propose a
Con�ict-free Replicated Data Type-based (CRDT) [12] approach to signi�cantly improve the
throughput of the prominent permissioned blockchain of Hyperledger Fabric [13]
realized in a new system called FabricCRDT. Second, we use properties of CRDTs and

1

1.1. MOTIVATION

permissioned blockchains to o�er a novel scalable and coordination-free permissioned
blockchain named OrderlessChain for the safe and trusted execution of decentralized
applications in Byzantine environments.

1.1 Motivation

Since the introduction of Bitcoin in 2008 by Satoshi Nakamoto [14], the popularity
of blockchain technologies has increased rapidly [1, 3, 15]. The primary property
contributing to blockchain’s fast growth is the decentralized trust that enables the
safe execution of applications in trustless Byzantine environments. Blockchains o�er
decentralized trust by employing various Byzantine Fault Tolerant (BFT) coordination-
based protocols [10, 16, 17]. Although BFT protocols have existed long before the
introduction of Bitcoin and have been studied comprehensively in academia [18, 19], many
blockchain systems provide a complete solution for hosting decentralized applications,
processing transactions, and storing the applications’ state in immutable ledgers. Since the
applicability of Bitcoin is limited mainly to cryptocurrency-related applications, several
permissionless and permissioned blockchains have been proposed to realize a wide range
of use cases in numerous �elds and industries, including �nance, e-government, IoT,
healthcare, and supply-chain management [1, 2, 3, 20, 21, 22].

Despite the potential of blockchains for developing a wide range of decentralized applica-
tions, and even with the introduction of many blockchains that provide clients with novel
ways of processing transactions and storing data in trustless environments [13, 23, 24,
25, 26, 27], the limited scalability of several blockchains due to their coordination-based
protocols hinders their widespread adoptions [15, 26, 28]. The scalability and throughput
of several existing blockchains fall signi�cantly behind existing non-BFT distributed
systems. Their signi�cantly limited performance makes realizing blockchain-based use
cases unrealistic and prohibitively ine�cient [4, 15].

The low scalability is severe in the case of popular permissionless blockchains such
as Bitcoin and Ethereum [23], which process merely tens of transactions per second,
inducing low throughput, very high transaction latency, and very volatile transaction

2

1. INTRODUCTION

processing fees [7, 9]. The primary reason for the poor performance is the employed
coordination-based BFT Proof-of-Work-based (PoW) protocols [6]. Furthermore, the PoW-
based protocols are extremely energy intensive and contribute signi�cantly to CO2

emissions and intensifying climate change [29, 30]. Although several scalability solutions
have been proposed to address the scalability of permissionless blockchains ranging
from optimizing the internal components of PoW-based systems [31] to various novel
coordination-based BFT consensus protocols such as the Proof-of-Stake protocols [32],
the coordination required to reach consensus remains a bottleneck [10, 16, 17].

In contrast to permissionless blockchains, where participants can freely join the network
and process transactions, permissioned blockchains exist where the identity of partici-
pants is known, and only authenticated authorized participants can join the network [5,
27]. Permissioned blockchains such as Hyperledger Fabric (Fabric) [13] use
this permissioned property to o�er signi�cantly more scalable coordination-based pro-
tocols with higher transaction throughput and lower latency than their permissionless
blockchain counterparts. Despite the improved scalability of permissioned blockchains,
their employed BFT and non-BFT protocols, such as Raft [33], Practical-BFT [34], or
BFT-SMaRt [35], require coordination to reach a consensus which also causes scalability
bottlenecks [8, 36].

According to the Scalability Trilemma [37, 38], scaling blockchains without limiting
security and decentralization stays challenging. Decreasing coordination is critical for
improving the scalability of any distributed systems, and in order to materialize the true
potentials of permissioned blockchains and enable their widespread adoption, improving
the scalability of coordination-based protocols through reducing coordination and o�ering
high transaction throughput with low latency plays a vital role [39, 40].

1.2 Problem Statement

We aim to reduce coordination in permissioned blockchains, and consequently improve
their scalability, facilitate their adoptions, and enable realizing a wide range of use cases
across di�erent domains. We realize two primary research objectives in this dissertation:

3

1.2. PROBLEM STATEMENT

1. Fabric is currently among the most prominent permissioned blockchain for various

enterprise use cases [8, 36]. However, its coordination-based protocol is a scalability

bottleneck. We seek to provide a scalability solution for Fabric to improve its

throughput.

2. We aim to reduce coordination in BFT permissioned blockchains to improve their

scalability while o�ering a safe system for the correct execution of a wide range of

decentralized applications in a trustless Byzantine environment.

In both objectives, reducing coordination is an essential requirement. However, besides
facilitating decentralized trust, coordination to reach consensus enables the blockchain
to agree on the total global order of transactions for a serialized execution. Serializ-
ability is required to preserve the correctness of the application’s state stored on the
blockchain [39]. For example, in the case of a decentralized banking application, the
application’s correctness de�nition may require the system to prevent a client’s negative
account balance. As every node in the blockchain sequentially executes the transactions
in the same order, preserving this correctness requirement is relatively straightforward.
However, the coordination-based serialization for preserving the application’s correctness
is a scalability bottleneck [25, 26].

For use cases where the identity of participants is known, permissioned blockchains,
such as Fabric, constitute a viable solution [5, 25]. In permissioned blockchains, despite
the known identity of participants, they do not necessarily trust each other. Fabric
takes advantage of its permissioned property to implement a coordination-based protocol
for a trusted execution of transactions and for preserving the application’s correctness.
Fabric uses an optimistic three-phase execute-order-validate (EOV) protocol, where
the transactions are initially concurrently executed without changing the application’s
state on the ledger. Then, the transactions are serialized into a total global order and are
validated and committed. The independent concurrent transactions, which read and write
individual parts of the application’s state, are valid and committed successfully. However,
the concurrent transactions that read and write the identical parts of the application’s
state may con�ict and are invalidated and fail to commit. This technique is inspired
by the concurrency control mechanisms implemented in several distributed databases,
which preserve the application’s correctness while enabling the concurrent execution of
transactions for improved scalability, throughput, and latecy [41, 42, 43].

4

1. INTRODUCTION

However, the latency between the start (execution) and end (commit) of a transaction
in Fabric is hundreds of milliseconds to seconds due to additional steps required
to ensure the trusted execution of transactions. The added latency is signi�cantly
higher than the latency for processing transactions in distributed databases that use
a similar technique [8]. Consequently, the added latency increases the probability of
the arrival of dependent concurrent transactions, causing their failures. Several studies
show that realistic enterprise use cases, from digital voting applications to medical
record management systems, contain highly concurrent and dependent transactions, and
executing such applications on Fabric results in up to 90% transaction failures [8, 36, 44].
Such a high transaction failure rate is a signi�cant bottleneck to Fabric. Furthermore,
once a transaction fails, the only option for clients is to create a new transaction and
resubmit, which adds to the complexity of Fabric’s application development.

Several works propose various approaches for decreasing the transaction con�ict rate
and increasing the throughput of successful transactions on Fabric [36, 44, 45, 46,
47]. Some studies propose various approaches to reordering transactions in Fabric
to decrease the dependencies among concurrent transactions and reduce transaction
failure rates or early abort the con�icting trasanctions [36, 44, 45]. Also, some studies
propose di�erent optimization approaches to decrease Fabric’s internal latency for
processing transactions and thus increase its throughput [46, 47, 48, 49]. However, non
of the existing works o�er a solution to eliminating the transaction failure of concurrent
transactions. Therefore, we aim to propose a solution that enables Fabric to manage
the con�icting transactions internally without rejecting the transactions or coordinating
with other nodes in the network. The proposed solution can signi�cantly improve the
throughput of Fabric and simplify the application development process.

Although we aim to eliminate the failures of concurrent transactions, reducing coordina-
tion o�ers the most signi�cant contribution to improving the performance and scalability
of permissioned blockcains [39]. A coordination-free permissioned blockchain enables
the concurrent execution of transactions, leading to higher throughput and lower latency.
However, simply eliminating the coordination may jeopardize the correctness depending
on the application’s requirements. For example, in the case of the banking application
with the non-negative account balance requirement, a coordination-free permissioned

5

1.3. APPROACH

blockchain cannot preserve this requirement [39, 40].

In contrast, there exist application-level correctness requirements that can be preserved
in a coordination-free distributed system, which are known as Invariant Con�uent (I-
con�uent) invariant conditions [39]. For example, transactions that only deposit funds to
an account can execute without coordination. In other words, the I-con�uent transactions
can be processed in any order while preserving application-level correctness, and the
�nal state of the application is independent of the order of the transactions. Bailis et
al. [39] demonstrated that unordered transactions preserve the I-con�uent invariants of
applications in non-Byzantine and eventually consistent environments. In other words,
applications with I-con�uent invariants are safe and live in non-Byzantine coordination-
free environments. The authors also showed the improved throughput and latency of
taking advantage of coordination-free approaches.

However, preserving the safety and liveness of applications in a Byzantine environment
depends on paying a high coordination cost in other systems, and existing works rely on
coordination rounds to prevent the Byzantine participants from intentionally violating the
application’s correctness [50, 51, 52, 53]. We seek to o�er a solution to a BFT coordination-
free environment where I-con�uent applications remain safe and live. Therefore, we
bene�t from improved scalability while ensuring trust in a Byzantine environment.

1.3 Approach

In summary, the objectives of this dissertation are twofold. We �rst aim to provide
a scalability solution for Fabric to signi�cantly increase its successful transaction
throughput. We achieve this goal by o�ering a CRDT-based [12] approach for internally
resolving transaction con�icts and preventing the failure of concurrent transactions.
Second, we seek to o�er a coordination-free permissioned blockchain for the safe and
live execution of decentralized applications without paying the high coordination cost.
We o�er a BFT coordination-free protocol that uses the permissioned property of the
system and CRDTs for the correct execution of transactions without coordination. The
following section brie�y explains our approaches to realizing these objectives.

6

1. INTRODUCTION

1.3.1 A CRDT-based Approach to Fabric

The high transaction latency induced by Fabric’s three-phase protocol and the relatively
high dependency among transactions in real-world use cases causes the failure of a high
number of concurrent dependent transactions by Fabric’s optimistic concurrency
control mechanism [8, 36]. To address the high rate of con�icting transaction failures,
we propose an approach to internally resolving the con�icts of concurrent transactions
and preventing their consequent failures. Thereby we eliminate the failures caused
by Fabric’s concurrency control mechanism and successfully commit every valid
transaction while preserving the application’s correctness.

Our approach to resolving the con�icts of concurrent transactions uses CRDTs, which
are abstract data types that converge to the same state on distributed nodes without
coordination among nodes to reach a consensus. As we aim to improve the scalability
of Fabric and increase its adoption, we realize the signi�cance of maintaining our
approach backward-compatible with the available applications developed for Fabric.
Hence, we extend Fabric with CRDT-enabled functionalities into a new system called
FabricCRDT, which o�ers the same functionalities as Fabric regarding hosting and
executing decentralized applications while o�ering a novel environment for executing
CRDT-enabled applications.

FabricCRDT follows the same three-phase protocol as Fabric for executing and
ordering transactions. However, FabricCRDT bypasses Fabric’s optimistic concur-
rency control mechanism and employs CRDT-based techniques for detecting con�icting
transactions and merging their values without causing data loss or corruption. A
plethora of CRDTs, from CRDT Counters to Maps and Sets [12, 54], can be realized
on FabricCRDT. Although our proposed solution is CRDT-agnostic, the speci�cation
of CRDTs must be supported in the application execution environment of FabricCRDT.
In order to o�er the potential of developing a wide range of use cases, we enable
a JSON CRDT-based [54] approach that encapsulates JSON objects. Since JSON is a
standard data structure used in various applications and systems, enabling FabricCRDT
with JSON CRDT functionalities provides a solution for realizing these applications on
FabricCRDT, bene�ting from its decentralized trust.

7

1.3. APPROACH

To understand the potentials and limitations of FabricCRDT over Fabric, we
perform extensive evaluations of both systems by developing IoT-based applications. Our
evaluations demonstrate that our approach can eliminate con�icting transaction failures
and signi�cantly improve successful transaction throughput over Fabric. Also, by
avoiding the failures of con�icting transactions, FabricCRDT simpli�es the complexity
of developing decentralized CRDT-compatible applications.

1.3.2 A Coordination-free Permissioned Blockchain

As explained, reducing coordination is critical for improving the scalability of permis-
sioned blockchains. However, decreasing and eliminating coordination in Byzantine
distributed systems is challenging without paying the high coordination cost while provid-
ing a safe and live environment for executing applications and preserving their invariant
conditions. We identify that the invariant conditions of applications can be classi�ed
into I-con�uent and non-I-con�uent invariant conditions, where I-con�uent invariant
conditions can be preserved in coordination-free non-Byzantine environments [55].

To address the problem of preserving I-con�uent invariant conditions in Byzantine
environments, we propose an approach for a BFT coordination-free two-phase execution-

commit protocol for the safe and live execution of I-con�uent applications. Our proposed
protocol is materialized in OrderlessChain, a novel, strongly eventually consistent,
asynchronous permissioned blockchain. OrderlessChain’s network consists of
several organizations and clients, where the organizations host and execute applications
and store a replica of the applications’ state in immutable ledgers. Clients create and
submit transactions for executing the applications and interact with the application’s
state. For processing transactions according to our protocol, clients �rst submit proposals
to be executed and signed by organizations. After the successful conclusion of the
�rst phase, clients create and send signed transactions based on the proposals to the
organizations to be validated and committed. The application developers assign an
endorsement policy to every application, which speci�es which organizations must
execute and sign the proposals for the transaction to be valid. Endorsement policies
also establish which organizations must validate and commit transactions. In other
words, they specify the trust requirements of the applications. Furthermore, endorsement

8

1. INTRODUCTION

policies enable OrderlessChain to prevent the Byzantine behavior of malicious
clients and organizations without coordination. Honest organizations detect Byzantine
behavior by verifying the signature of the organizations and clients according to the
endorsement policy.

Since OrderlessChain’s protocol uses a coordination-free approach and the trans-
actions are not serialized into a total global order, di�erent organizations validate and
commit transactions in di�erent orders. In order to preserve the I-con�uent invariant
conditions of applications, we must be able to process the transactions in any order while
converging to the same state. In order words, the transactions must be commutative

and convergent. Since CRDTs o�er such properties, OrderlessChain uses a CRDT-
based approach to modeling and implementing decentralized applications using CRDT

Maps, Grow-only Counters, and Multi-Value Registers [12, 54] to create commutative and
convergent transactions.

To demonstrate the applicability of OrderlessChain to various domains, we devel-
oped a few decentralized applications and systems, including a digital voting application,
an auction application, a secure and decentralized �le storage system, and a private
federated learning (FL) environment [56]. We extensively evaluate the performance of
OrderlessChain and compare the scalability of our coordination-free approach
to the coordination-based protocols of FabricCRDT and Fabric. Our evaluations
demonstrate the signi�cant scalability gain, highly improved transaction throughput,
and decreased latency for hosting and executing I-con�uent applications using Or-
derlessChain’s coordination-free approach over coordination-based permissioned
blockchains.

1.4 Contributions

The main contributions of FabricCRDT as a scalability solution of Fabric are:

i. We study the applicability of CRDTS to permissioned blockchains since, despite their
signi�cant contribution to the scalability of non-Byzantine production-grade systems,

9

1.4. CONTRIBUTIONS

their potential for improving the scalability of permissioned blockchains has received
limited research attention. We propose a novel approach for enabling CRDTs on the
permissioned blockchains that automatically resolve transaction con�icts without
data loss, resulting in signi�cantly improved throughput of transactions.

ii. We o�er a scalability solution for Fabric to increase the adoption of permissioned
blockchains to various �elds and industries by extending Fabric with CRDT-
enabled functionalities into a new system called FabricCRDT. It remains backward
compatible with existing Fabric applications while enabling the realization of
new scalable CRDT-based applications, incentivizing the adoption of permissioned
blockchains.

iii. We reduce the complexity of developing decentralized applications by eliminating
the failures of concurrent and con�icting transactions. Therefore, developers are
discharged from the additional e�ort required to implement mechanisms to handle
scenarios containing such failures.

iv. We o�er a simpli�ed CRDT-based programming model for developing CRDT-based
applications without the typical complexity of CRDT-enabled systems. This pro-
gramming model requires a minimal learning curve for developers familiar with
Fabric. We also provide insights into the appropriate use cases for CRDT-enabled
permissioned blockchains.

v. We implement a prototype of FabricCRDT and evaluate and demonstrate our
system’s improved scalability and throughput over Fabric as a CRDT-enabled
permissioned blockchain.

The main contributions of the coordination-free approach of OrderlessChain are:

i. We introduce a novel coordination-free protocol for o�ering Byzantine fault tolerance
without requiring the nodes to coordinate to reach a consensus. By reducing
coordination, we signi�cantly improve scalability and transaction throughput and
decrease the latency. We also o�er proof of the protocol’s BFT property.

ii. We demonstrate OrderlessChain, a novel, strongly eventually consistent, and
asynchronous permissioned blockchain based on our proposed BFT coordination-free

10

1. INTRODUCTION

protocol, capable of executing safe and live applications. Our system eliminates the
coordination’s overhead and signi�cantly improves the throughput and scalability
over coordination-based permissioned blockchains.

iii. We present a novel approach for creating Turing-complete decentralized applications
based on CRDTs. Our approach preserves the I-con�uent invariant conditions of
applications in a coordination-free Byzantine environment and ensures their correct
executions. We demonstrate that our approach is more scalable than the existing
CRDT-enabled permissioned blockchains, and we o�er the potential for realizing
new use cases.

iv. We implement a complete prototype of OrderlessChain and demonstrate that
our system improves throughput and latency for I-con�uent applications compared
to coordination-based permissioned blockchains. Furthermore, we open-sourced the
system code for the public [57].

v. To demonstrate the applicability of OrderlessChain to various domains and
industries, we introduce OrderlessFL, an OrderlessChain-based FL system.
OrderlessFL uses a novel CRDT for concurrent and asynchronous aggregation
of FL models. OrderlessFL o�ers a safe and private environment for training
Machine Learning models, where malicious participants cannot tamper with model
updates. OrderlessFL is also open-sourced [58].

vi. We also introduce OrderlessFile, an OrderlessChain-based private and
distributed �le storage system, to demonstrate our system’s applicability as an
alternative to non-transparent and centralized cloud-based storage systems. Or-
derlessFile uses a novel CRDT for splitting �les into shards which are safely and
privately replicated and stored where Byzantine participants cannot tamper with
data and violate its integrity. OrderlessFile’s code is also open-sourced [59].

Parts of the contents of this dissertation are published or under submission to the following
venues:

• P. Nasirifard, R. Mayer, and H.-A. Jacobsen. “FabricCRDT: A Con�ict-Free Repli-
cated Datatypes Approach to Permissioned Blockchains.” In: Proceedings of the

11

1.5. ORGANIZATION

20th International Middleware Conference. Middleware ’19. Davis, CA, USA: ACM,
2019 [55].

• P. Nasirifard, R. Mayer, and H.-A. Jacobsen. “OrderlessChain: A CRDT-based
Coordination-free Blockchain Without Global Order of Transactions." In: Proceed-
ings of the 24th International Middleware Conference. Middleware ’23. Bologna,
Italy: ACM, 2023 [60].

• P. Nasirifard, R. Mayer, and H.-A. Jacobsen. “OrderlessChain: A CRDT-Enabled
Blockchain without Total Global Order of Transactions.” In: Proceedings of the
23rd International Middleware Conference: Demos and Posters. Middleware ’22.
Quebec, Quebec City, Canada: ACM, 2022 [61].

• P. Nasirifard, R. Mayer, and H.-A. Jacobsen. “OrderlessFL: A CRDT-Enabled Permis-
sioned Blockchain for Federated Learning.” In: Proceedings of the 23rd International
Middleware Conference: Demos and Posters. Middleware ’22. Quebec, Quebec
City, Canada: ACM, 2022 [62].

• P. Nasirifard, R. Mayer, and H.-A. Jacobsen. “OrderlessFile: A CRDT-Enabled
Permissioned Blockchain for File Storage.” In: Proceedings of the 23rd International
Middleware Conference: Demos and Posters. Middleware ’22. Quebec, Quebec
City, Canada: ACM, 2022 [63].

1.5 Organization

The remainder of the dissertation is organized as follows. First, in Chapter 2, we
provide the background material on Fabric and its three-phase protocol for processing
transactions. We also introduce CRDTs and discuss their internal mechanisms for
resolving con�icts without coordination, and describe the I-con�uence concepts for
preserving the application’s invariant conditions in coordination-free distributed systems.

Chapter 3 introduces the related work of the contributions of this dissertation, including
the existing scalability solutions for Fabric and existing works for executing CRDT-
enabled applications in Byzantine and non-Byzantine environments. The chapter also

12

1. INTRODUCTION

elaborates on the previous studies for reducing coordination in distributed systems for
enhancing scalability. We also present state-of-the-art of blockchain-based FL and �le
storage systems.

Chapter 4 presents our approach to o�ering the CRDT-enabled permissioned blockchain of
FabricCRDT. We �rst provide the exact cause of transaction failures due to Fabric’s
optimistic concurrency control mechanism, which we address with FabricCRDT.
We introduce our CRDT-based approach to eliminating such failures and elaborate on
modeling and creating CRDT-based applications on FabricCRDT. Our evaluation
demonstrates the improved scalability and throughput of FabricCRDT over Fabric.

Chapter 5 presents OrderlessChain, our coordination-free approach to executing
safe and live I-con�uent applications in Byzantine distributed environments. We provide
a detailed explanation of OrderlessChain’s architecture and protocols and explain
our method for realizing several decentralized CRDT-based applications. The signi�cant
improvement to the throughput and latency of our coordination-free approach over
coordination-based protocol is demonstrated through our evaluations. To establish the
applicability of OrderlessChain to other domains, we introduce an Orderless-
Chain-bassed FL system and �le storage system in Chapter 6.

Finally, Chapter 7 covers the concluding remarks on FabricCRDT for eliminating
the failure of concurrent and con�icting transactions and on our BFT coordination-free
solution materialized in OrderlessChain.

13

2

Background

In the following chapter, we introduce the required background materials for this dis-
sertation. In Chapter 4, we present FabricCRDT, a scalability solution for Fabric
using Con�ict-free Replicated Data Types (CRDTs). Therefore, in Section 2.1, we provide a
detailed explanation of Fabric’s components and its protocol for executing, ordering,
and committing transactions. We continue in Section 2.2 by giving an overview of CRDTs.

In Chapter 5, we continue to o�er a more scalable blockchain system named Or-
derlessChain. OrderlessChain takes advantage of CRDTs and permissioned
properties of permissioned blockchains, such as Fabric, to provide a coordination-free
approach for the safe execution of Invariant Con�uent applications. Hence, we explain the
concept of Invariant Con�uence and its independence from coordination in a distributed
environment in Section 2.3.

2.1 Hyperledger Fabric PermissionedBlockchain

Hyperledger Fabric (Fabric) is an open-source permissioned blockchain initiated
by the Linux Foundation [13]. Here, we explain the speci�cations and structure of Fabric
v1.4 since we used this long-term supported version in our work.

15

2.1. HYPERLEDGER FABRIC PERMISSIONED BLOCKCHAIN

2.1.1 Architecture

In contrast to permissionless blockchains such as Bitcoin and Ethereum [14, 23], where
every entity can freely join the network and process transactions, joining a permissioned
blockchain, such as Fabric, is limited to authenticated and authorized participants.

Fabric provides a complete ecosystem for hosting decentralized applications and
processing transactions for executing them and interacting with their state. Fabric’s
ecosystem o�ers a wide range of features and services, including decentralized trust,
storing the application state on the ledger, an isolated transaction execution environment,
private communication channels, and sophisticated identity and membership manage-
ment. Blockchain developers can use general-purpose programming languages like Go

Language [64] or JavaScript to implement smart contracts known as chaincodes. The
chaincode consists of several functions that encapsulate the application’s logic. The
clients interact with chaincodes by creating and submitting transactions. For modifying
the data stored on the ledger, developers use the chaincode shim in the chaincode. The
shim is a language-speci�c library provided by Fabric’s ecosystem and provides APIs
to read and write data from and to the ledger.

The two main components of Fabric’s network are peers and orderers. Each peer belongs
to an organization, which de�nes the trust boundary of the system. Each organization
may consist of several peers. However, every peer belongs to only one organization.
The peers within one organization trust each other. However, although the identity of
a peer from one organization is known to the peer of other organizations, the peers of
di�erent organizations do not trust each other. The peers also use private communication
channels to communicate with other peers and orderers.

An Endorsement Policy is assigned to each application hosted on Fabric. The en-
dorsement policy speci�es which peers from which organizations must execute and
commit the transactions. In other words, the application’s endorsement policy de�nes
the application’s decentralized trust requirement.

Peers are responsible for hosting the chaincodes, executing transactions, and storing the
data on their local copy of the ledger. The peer’s ledger consists of two components: (1)

16

2. BACKGROUND

an append-only hash-chain log and (2) a world state key-value database such as LevelDB or
CouchDB [42, 65]. The hash-chain log contains every failed or successful transaction the
peer has received since the beginning of time. The database represents the current state of
the application’s data stored on the ledger. By sequentially executing all valid transactions
in the hash-chain log starting from the genesis block, we reach the current state of the
application stored in the database. Fabric uses the database as an optimization step
since sequentially executing the transactions in the has-chain log each time to reach the
application’s current state is prohibitively ine�cient and computationally expensive.

The orderers receive transactions from clients in the network and serialize and batch the
transactions to global order. Furthermore, the batches of the ordered transactions into
blocks are sent to peers to be processed and committed to the ledger. A simple ordering
service may consist of one orderer component. However, an ordering service consisting
of only one orderer is a single point of failure. In order to o�er fault tolerance, Fabric
may employ a network of several orderers, which use a coordination-based protocol
such as Paxos [66] or Raft [33] to reach a consensus on the global order of transactions.
Although these protocols may o�er Crash fault tolerance, Fabric’s ordering service is
not BFT.

2.1.2 Fabric’s Coordination-based Protocol

Fabric follows a coordination-based three-phase execute-order-validate (EOV) trans-
action lifecycle. A complete work�ow for executing and committing a transaction is
depicted in Figure 2.1.1 and follows these steps:

Phase 1 / Execute – The client creates a transaction proposal TPi , which contains the
name of the chaincode and the chaincode’s function, the input parameters, and the
endorsement policy of the application. The client submits the proposal to the peers
speci�ed by the endorsement policy in parallel (Step 1 in Figure 2.1.1). Each peer executes
the chaincode against the local copy of the world state database, signs the execution
results, and sends the results back to the client (Step 2). The results are read-write-sets,
where read sets contain the keys read during execution with their version numbers, and
write sets contain the key-value pairs to be written to the ledger. Peers do not modify

17

2.1. HYPERLEDGER FABRIC PERMISSIONED BLOCKCHAIN

Client

World
State DB

World
State DB

Orgq / Peer1

TP1

TP2

TP1 TP2

TS1 TS2
TS1

TS1 TS2
TS1

TP1 TP2

TS1 TS2

TS1 TS2

TS1 TS2

Blockn

Blockn

Execute

Chaincode

Chaincode

Step 1

Step 2Hash-Chain Log

Hash-Chain Log

Step 2

Step 3
Step 4

Ordering
Service

Step 5

Step 5

Order Validate

Blockn-1

Blockn

Blockn+1Orgm / Peer1

Orgm / Peer1

Orgq / Peer1

Figure 2.1.1: Transaction lifecycle on Fabric.

their local copy of the ledger during this phase and only execute the proposal in an
isolated manner, also known as peers simulate the proposal.

Phase 2 / Order – Once the client has received an adequate number of endorsements
that satisfy the endorsement policy, it creates a transaction TSi containing the proposal’s
payload, endorsements, and other metadata. Finally, the client sends the transaction to
the ordering service (Step 3). The ordering service receives the transactions from every
client in the network, serializes transactions into a total global order, and batches them
into new blocks (Step 4). The ordering service is con�gured to create blocks based on
three criteria: (1) a maximum number of transactions in the block, (2) a maximum allowed
size, and (3) a timeout period. Once a block is created, the ordering service broadcasts
the new block to the peers (Step 5).

Phase 3 / Validate – Peers perform two validations on the transactions of the incoming
blocks and then commit the transactions: (1) For the �rst validation, a peer in parallel
veri�es whether the transactions are endorsed correctly based on the endorsement policy.
This validation ensures the decentralized trust on Fabric and is also known as Validation
System Chaincode (VSCC) validation. (2) Second, a peer sequentially compares the version
of the keys in the transaction’s read-sets with its local copy of the world state database to
ensure that the records that were read during the endorsement phase have not changed
concurrently in the database. This validation ensures data consistency and is known as
Multiversion Concurrency Control (MVCC) validation. The transactions that successfully
pass both validations are considered valid. Finally, the peer appends every valid and

18

2. BACKGROUND

invalid transaction to the hash-chain log and updates the world state database with the
write-set of the valid transactions.

2.2 Con�ict-free Replicated Data Types

Con�ict-free Replicated Data Types (CRDTs) are abstract data types that can be replicated
on several replicas with the guarantee to eventually converge to the same state without
requiring a coordination-based consensus protocol [12, 67]. In other words, CRDTs
converge to the same state in the presence of concurrent transactions in a coordination-
free distributed system. CRDTs provide well-de�ned interfaces, representing various
general-purpose data structures such as counters, sets, lists, maps, and JSON objects [54,
67, 68, 69, 70, 71, 72, 73].

CRDTs o�er the properties of the general-purpose data structures by extending them
with some metadata, making concurrent and con�icting transactions on these data types
commutative and convergent. Commutative and convergent transactions can be applied
in di�erent orders on replicas, resulting in the same state independent of the order of the
applied transactions, provided no transactions are lost or duplicated. Since concurrent
transactions can result in con�icting values, CRDTs use built-in mechanisms to resolve
con�icts without coordination. Shapiro et al. [12] formalized CRDTs and proved their
Strong Eventual Consistency (SEC) property in an eventually consistent distributed system.
An SEC system has two requirements:

1. Eventual Delivery of Transactions: If a transaction is delivered to one correct
replica, then all correct replicas will eventually receive the transaction.

2. Strong Convergence of Replicas: If the same set of transactions is applied on
every correct replica, then the replica’s state immediately converges to the same
state.

CRDTs are generally divided into two main categories: State-based CRDTs and Operation-

based CRDTs. State-based CRDTs exchange the whole or delta state of the data type

19

2.2. CONFLICT-FREE REPLICATED DATA TYPES

and merge the local state with the received state. For operation-based CRDTs, replicas
propagate the state by sending modi�cation operations to other replicas. For example,
a counter data type that only increments a value by one can be converted to a grow-
only CRDT counter by de�ning an increment operation that increments the value of
the counter by one. The grow-only CRDT counter is relatively easy to create since the
increment operation is inherently commutative, although not idempotent. Therefore, the
grow-only CRDT counter converges to the same state independent of the order of applied
operations, yet the same operation cannot be applied more than once. For interacting
with this counter over the network, replicas send increment operations. Provided that an
asynchronous distributed system where the delivery of messages eventually succeeds
without message loss or duplication, the counter eventually converges to the same value
on all replicas.

However, modi�cation operations for several other data types are not commutative. For
instance, assigning a value to a single-value register is not inherently commutative. For
converting a register to a CRDT, the register needs to be extended with metadata, de�ning
its behavior in the presence of concurrent modi�cations. This is achieved with the help
of the happened-before relation [12] that de�nes the causal order between two events
based on Logical Clocks [74]. An event E1 happened before event E2, if and only if (1) E1
happened before E2 in one replica, or (2) E1 is the event of sending a message M from the
sending replica and E2 is the event of receiving message M on the receiving replica, or
(3) there exists an event E such that E1 happened before E and E happened before E2. To
transform a single-value register to a CRDT, the update operations should include the
logical clocks established in which order the operations have happened. Suppose the
happened-before relation based on the logical clock cannot be explained. In that case,
the register acts as a multi-value register and stores the con�icting values until the �nal
value is decided based on the application’s logic.

The theoretical foundation for de�ning the requirements of several CRDTs has been
studied thoroughly [54, 67, 68, 69, 70, 71, 72, 73]. Among existing CRDTs, a JSON
CRDT represents a complex general-purpose data structure [54]. A JSON object is a tree
structure consisting of other structures like maps and lists. In JSON, a map is a dictionary
of key-value pairs where keys are string constants and values are either primitive values
like strings or numbers or complex structures like other maps and lists. In this work, we

20

2. BACKGROUND

assume that maps are unordered structures and that the values in the maps are either
a string, a map, or a list. In JSON, lists are ordered arrays of objects, a combination of
primitive values or complex structures, like strings, numbers, maps, or lists.

2.3 Invariant Conditions and Invariant Con�uence

Di�erent applications have di�erent correctness requirements. For example, a distributed
banking application may be required to prevent the customers’ account balances from
dropping below zero. Developers specify the correctness of an application by de�ning
a set of invariant conditions {I1, ..., Is} on the application’s state. Each Ij represents a
requirement that replicas must preserve during the application’s lifecycle. Preserving
invariant conditions in a distributed system with globally serialized transactions using
techniques such Total Order Broadcast [75] to o�er State Machine Replication [76, 77]
is relatively straightforward. Since each transaction preserves the invariant conditions,
serialization enables the replicas to apply the transactions sequentially in isolation and
preserve the invariant conditions.

Replica1

Account Balance: 100 €

Replica2

Account Balance: 100 €

Deposit(40 €)

Deposit(70 €)

Deposit(70 €)

Deposit(40 €)

Replica1

Account Balance: 100 €

Replica2

Account Balance: 100 €

Withdraw(40 €)

Withdraw(70 €)

Withdraw(70 €)

Withdraw(40 €)

(a) non-I-Confluent invariant conditions. (b) I-Confluent invariant conditions.

Figure 2.3.1: Non-I-Con�uent and I-Con�uent invariant conditions.

However, serialization comes at a high coordination cost. In a coordination-free dis-
tributed system, the replicas may receive the transactions in di�erent orders. Hence,
preserving invariant conditions is challenging. For example, consider a replica that stores
the account balance of a customer with an account balance of {Balance ∶ 100euros}, as
shown in Figure 2.3.1(a). The replica can accept only one of the withdrawal transactions
of Witℎdraw(40euros) and Witℎdraw(70euros). Applying both transactions results in

21

2.3. INVARIANT CONDITIONS AND INVARIANT CONFLUENCE

a negative account balance and violates the application’s invariant conditions. With
coordination, the replicas can agree to accept one of the two transactions.

Bailis et al. [39] studied preserving invariant conditions in a non-Byzantine coordination-
free distributed system and introduced the notion of Invariant Con�uence (I-con�uence).
A set of transactions {TS1, ..., T Sm} are I-con�uent concerning an invariant condition Ij if
the transactions can be applied in di�erent orders on di�erent replicas while preserving
Ij .

Consider the mentioned withdrawal transactions as an example of a non-I-con�uent trans-
action set. However, two deposit transactions Deposit(40euros) and Deposit(70euros)
are I-con�uent, as applying these transactions in any order on di�erent replicas does not
violate the non-negative invariant condition, as shown in Figure 2.3.1(b).

Hence, the I-con�uent transactions must have these two properties:

1. Commutativity: The transactions can be applied in any order.

2. Convergence: The �nal state is independent of the order of transactions.

Bailis et al. proved that only I-con�uent transactions could be executed on a coordination-
free distributed system and non-I-con�uent transactions require coordination among the
system’s replicas [39]. Furthermore, as we discussed the commutative and convergent
properties of CRDTs in the previous section, CRDTs are a viable method to implement
applications with I-con�uent invariant conditions.

In this dissertation, for the sake of simplicity, we interchangeably use the phrases, I-
con�uent applications, I-con�uent invariants, I-con�uent transactions. All these phrases
imply that the set of transactions interacting with the application’s state is I-con�uent
concerning the application’s invariant conditions. We also interchangeably refer to
invariant conditions by using only the term invariants.

22

3

Related Work

The following chapter presents the collective state-of-the-art, discussed in this dissertation.
In the upcoming chapters, we �rst introduce FabricCRDT, a CRDT-based scalability
solution of Fabric, to eliminate transaction failures. We explain the existing works on
scalability solutions of Fabric in Section 3.1.

We continue by introducing OrderlessChain, a coordination-free BFT permissioned
blockchain, which o�ers a safe environment for the execution of decentralized and
distributed applications with I-con�uent invariant conditions. OrderlessChain
achieves this by using properties of CRDTs and permissioned blockchains. In Section 3.2,
we review the related works on CRDTs in Byzantine and non-Byzantine distributed
environments. We also discuss the previous works on preserving the invariant conditions
of distributed applications in Section 3.3.

To demonstrate the applicability and contributions of OrderlessChain to other
domains and industries, we introduce two new systems of OrderlessFL and Order-
lessFile. OrderlessFL is built upon OrderlessChain to o�er a safe blockchain-
based federated learning (FL) system using novel CRDTs. We introduce the state-of-
the-art of such FL systems in Section 3.4. Finally, OrderlessFile is an extension of
OrderlessChain for providing secure and private blockchain-based distributed �le
storage. In Section 3.5, we review the existing blockchain-based �le storage systems.

23

3.1. SCALABILITY SOLUTIONS OF FABRIC

3.1 Scalability Solutions of Fabric

The high computational overhead and the low throughput of Proof-of-Work-based (PoW)

consensus protocols of permissionless blockchains, such as Bitcoin and Ethereum [14,
23], are signi�cant bottlenecks hindering the widespread adoption of blockchains in
enterprise and industry [6, 26]. In addition to low scalability, the high �nancial cost
of processing transactions on permissionless blockchains and their prohibitively high
and environmentally damaging energy consumption make PoW-based BFT protocols
infeasible for permissioned blockchains [7, 30, 78].

Permissioned blockchains such as MultiChain [79], R3 Corda [27], Quorum [80], and
Fabric [13] make use of various non-PoW-based coordination-based consensus pro-
tocols. MultiChain uses a modi�ed version of Practical BFT protocol [34]. R3 Corda
uses a combination of Single Notaries, Raft [33] and BFT-SMaRt [35]. Quorum, as a
permissioned implementation of Ethereum, takes advantage of Raft and Istanbul BFT [81].
Fabric currently uses a Paxos [66] or Raft-based coordination-based consensus protocol.
Furthermore, the Paxos or Raft-based ordering service of Fabric is not BFT. A malicious
orderer may jeopardize the system by tampering with transactions or avoiding batching
them into the blocks. However, other studies propose BFT ordering services for Fabric,
based on BFT-SMaRt [82, 83]. The coordination-based protocols used in permissioned
blockchains are more performant and scalable regarding throughput and latency than
their permissionless counterparts. However, the required coordination among nodes
to reach consensus is yet a scalability bottleneck [5, 36, 84, 85]. Speci�cally, in the
case of Fabric, many transactions fail due to Fabric’s optimistic coordination-based
protocol [8, 41, 86].

Several works propose various approaches for improving the scalability and throughput
of Fabric [36, 44, 45, 87, 88]. Ankur et al. [36] propose transaction reordering techniques
inspired by transaction processing of databases [89] to improve Fabric’s throughput by
early aborting con�icting transactions. The authors decrease the number of con�icting
transactions by reordering the transactions in the ordering service according to the
transaction’s dependency graph. Although the authors demonstrate the practicality of
reordering for decreasing transaction failures, they do not aim for the total elimination of
failures. Similarly, Pingcheng et al. [44] introduce a solution for improving the throughput

24

3. RELATED WORK

of Fabric by creating con�ict graphs of transactions and reordering the transactions to
decrease the con�icted and failed transactions. Seep et al. [45] propose an approach for
ordering and prioritizing transactions based on a weighted fair queueing mechanism to
o�er clients di�erent and improved Quality of Service. However, they do not eliminate
transaction failures. Xu et al. [87] also present a transactions reordering method that
assigns higher priority to read-only transactions and �lters out stale transactions to
decrease the transaction abort and failure rates. Sun et al. [90] also o�er a transaction
reordering approach for decreasing transaction failure rates. To improve Fabric’s
throughput, Goren�o et al. [88] introduce XOX Fabric that o�ers an approach for re-
executing and committing the con�icted failed transactions. Furthermore, their approach
prevents unintentional Distributed Denial-of-Service (DDoS) attacks, as the system re-
executes the failed transactions without requiring the clients to resubmit them.

Several works focus on determining di�erent bottlenecks of Fabric and o�ering
solutions for mitigating the issues [46, 47, 48, 49]. Zsolt et al. [48] also identify that the
coordination-based ordering service of Fabric is a bottleneck. The authors introduce
StreamChain and improve the performance of the ordering service by replacing Fabric’s
block processing mechanism with stream processing approaches. They use virtual
blocks to decrease the end-to-end latency required for committing transactions and
increase the throughput. The authors of FastFabric [49] o�er extensive analysis and
re-architecting guidelines of Fabric to improve several bottlenecks, including the
consensus mechanism, I/O, and computational overhead for ordering and validating
transactions and repeated validation of certi�cates for endorsement policies. They
implement improvements such as decoupling and parallelizing several internal processes
of Fabric and integrate caching to reduce the I/O latency. xFabLedger [46] is an
extension to Fabric, which stores the ledger data on a remote database to increase the
storage scalability of the peers. Thakkar et al. [47] increase the throughput of Fabric
by introducing a new component named Sparse Peer, which only validates and commits
a subset of transactions. They identify that the high latency of validation and commit
phases is a bottleneck for Fabric. Therefore, the authors implement a new pipeline to
validate and commit transactions in parallel to signi�cantly increase valid transactions’
throughput.

The various explained studies provide valuable insights into di�erent approaches to

25

3.2. CRDTS IN NON-BYZANTINE AND BYZANTINE SYSTEMS

improving the performance of Fabric. These works o�er solutions for improving the
scalability of Fabric by decreasing the internal latency of Fabric and increasing
the throughput of valid transactions. However, they do not eliminate the transaction
failure of valid transactions or necessarily improve the performance of the coordination-
based protocol of Fabric. In contrast, FabricCRDT o�ers CRDT-based solutions to
eliminate valid transaction failures. OrderlessChain also o�ers a coordination-free
BFT protocol with signi�cantly higher scalability, throughput, and lower latency than
the coordination-based protocol of Fabric.

3.2 CRDTs in non-Byzantine and Byzantine Systems

CRDTs have been an impactful technique to improve the scalability and performance of
various production-grade non-Byzantine applications, including distributed databases,
distributed �le systems, and collaborative editing tools [72, 91, 92, 93, 94, 95]. Riak [72]
is a key-value store that uses several CRDTs, including �ags, registers, counters, sets,
and maps, to enable highly available concurrent reads and writes. Concordant [96]
is an edge-�rst distributed database that uses delta-based CRDTs to o�er Just-Right

Consistency [94]. AntidoteDB [97] is a geo-replicated database that uses several CRDTs,
such as the Last-Writer-Wins Register [98], Multi-Value Register, maps, and sets, to create
a highly available transactional database. Dynomite [99], a distributed data storage
built upon Redis [93], and Memcached [100] uses CRDTs to create a self-healing system.
Similarly, SoundCloud [101] implemented Roshi [91], which uses Last-Write-Wins-Element

Set [94] to store large-scale timestamped events. Several applications, such as the note-
taking application on Apple’s iOS [102] and the GPS navigation system from TomTom [103]
have reported using CRDTs to synchronize the client’s data across several mobile devices.
Although these applications and systems demonstrate the applicability of CRDTs to
several domains and can be implemented on FabricCRDT and OrderlessChain,
they do not consider the e�ect of potential Byzantine participants on the correct execution
of their systems. In contrast, FabricCRDT and OrderlessChain provide a safe
environment for the execution of CRDT-enabled applications in a Byzantine environment
based on permissioned blockchains.

26

3. RELATED WORK

Despite the established bene�ts of CRDTs for improving the scalability of non-Byzantine
distributed applications through decreasing the coordination and resolving con�icting
writes automatically, the applicability of CRDTs to Byzantine environments, especially
in blockchains, has received less research attention.

A few studies propose approaches for secure CRDT-enabled distributed databases in a
Byzantine environment without using conventional BFT coordination-based protocols [40,
104, 105, 106, 107]. Barbosa et al. [104] propose a secure CRDT-enabled storage system
based on AntidoteDB using Homomorphic Encryption [108]. Kleppmann [105] proposes
a generalized solution for o�ering BFT CRDTs by extending operation-based CRDTs.
The author models the operations into a Directed Acyclic Graph (DAG) and ensures
the eventual delivery of operations in the network. Kleppmann and Howard [40] also
present an approach for processing I-con�uent transactions on Byzantine distributed
databases. The authors introduce a BFT and eventually consistent replicated database
and propose an approach for creating a DAG-based dependency graph of transactions.
Non-faulty nodes periodically retrieve the missing dependent transactions from other
non-faulty nodes. However, their work focuses on peer-to-peer databases and does not
o�er an environment for the trusted execution of decentralized applications. Similarly,
Matrix [106], a decentralized publish/subscribe-based middleware, o�ers a DAG-based
CRDT approach to instant messaging in Byzantine environments. Auvolat et al. [107]
o�er state-based CRDT sets and maps using Merkle Trees, which is safe for any number
of Byzantine nodes in open networks, where nodes can join and leave freely. However,
they only support CRDT sets and maps. In contrast to these coordination-free systems,
which o�er solutions for speci�c CRDT applications and systems, FabricCRDT and
OrderlessChain o�er a general-purpose BFT environment for executing a wide
range of Turing complete CRDT applications.

Furthermore, some studies propose coordination-based BFT approaches for executing
CRDT applications [50, 51, 109, 110]. Zhao et al. [50] propose a BFT collaborative editing
environment based on commutative operations of CRDTs. However, for safe and secure
execution, this coordination-based approach requires 3f + 1 nodes where at most, f nodes
can be Byzantine. Shoker et al. [51] propose a BFT and partition-tolerant system for
executing CRDT applications that use BFT-SMaRt. Hence, this approach requires 3f + 1
nodes for safe execution. Cholvi et al. [109] propose a BFT Distributed Grow-only Set,

27

3.2. CRDTS IN NON-BYZANTINE AND BYZANTINE SYSTEMS

which stores a set of immutable records using a collection of BFT atomic operations.
However, this work is limited to grow-only sets with restricted applicability and requires
3f + 1 nodes for safe execution. SCEW [110] introduces a BFT client-centric peer-to-
peer environment for creating web applications using coordination-based Practical
BFT. As these approaches use coordination-based protocols to o�er BFT, similar to
the coordination-based protocols used in blockchains, the required coordination to reach
consensus is a scalability bottleneck. Here, OrderlessChain o�ers a coordination-
free approach to o�er trust in a trustless Byzantine environment which can tolerate any
number of Byzantine nodes.

Very few works study the applicability of CRDTs to permissionless and permissioned
blockchains [52, 111, 112, 113]. Vegvisir [111] introduces a DAG-structured blockchain
for CRDT-enabled applications. Vegvisir o�ers a power-e�cient blockchain for IoT
devices that tolerates network partitioning. However, it does not support executing
smart contracts. Fabric developers have introduced a proposal to enhance Fabric’s
concurrency control by using built-in plugins for parallel execution of basic updates such
as incrementing or decrementing counters [114]. However, the implementation of this
proposal has not been released, and the available information on the proposal is limited
and lacks technical details. RAMBLE [112] proposes a blockchain-based BFT censorship-
resistant asynchronous distributed messaging protocol with similar functionalities to
Twitter [115] based on gossip-based epidemic broadcasts and CRDT sets. MEChain [113]
proposes a blockchain-based secure and private Electronic Health Record storage system.
The authors use operation-based CRDTs for storing multi-layer structured health-related
data. Setchain [52] o�ers a solution for decreasing coordination in BFT blockchains by
only partially ordering transactions. Setchain uses epochs as synchronization barriers
where transactions that belong to the same epoch are not ordered, while transactions
from di�erent epochs are ordered. However, their solution is only limited to grow-
only sets and still requires some round of coordination. Contrary to these blockchains,
FabricCRDT and OrderlessChain o�er techniques not limited to speci�c CRDTs
and provide a safe environment for executing a wide range of CRDT-based use cases.
Furthermore, OrderlessChain o�ers a scalable approach to o�ering BFT without
requiring communication-heavy coordination among nodes to reach a consensus.

28

3. RELATED WORK

3.3 Invariant Conditions of Distributed Applications

Reducing coordination plays a vital role in improving the scalability of any distributed
system [39], which has been an active �eld of research. Over the past few decades, several
studies have proposed approaches to decrease the high coordination costs, increasing
the throughput and decreasing latency in non-Byzantine distributed environments while
preserving the application’s invariant conditions [116, 117, 118, 119, 120]. Pedone et
al. [116] de�ne the Generic Broadcast problem in non-Byzantine Crash Fault Tolerant

environments, where the messages in the network are only globally ordered provided that
the semantics of messages are potentially con�icting. They demonstrate the improved
latency over the coordination-based Atomic Broadcast protocols [121], where all messages
are globally ordered. Lamport [117] improves the e�ciency of the coordination-based
Paxos protocol and o�ers Generalized Paxos in a non-Byzantine system by adapting the
State Machine Replication [76, 77] de�ned in Paxos for partially ordering of non-con�icting
messages and enabling their concurrent execution. Lamport [118] enhances the proposed
approach further to the lower bounds of coordination for partially ordering messages. Li
et al. [119] propose preserving invariant conditions by o�ering global coordination only
when the application requires strong consistency. Otherwise, their proposed solution
uses a faster, eventually consistent method with less coordination but o�ers weaker
consistency. Lloyd et al. [120] propose COPS, a geo-replicated key-value storage. This
system replicates key-value pairs across nodes in a coordination-free manner while
preserving the causal relations of pairs.

In contrast to the studies for reducing coordination in non-Byzantine systems, some
studies o�er solutions to preserve invariant conditions without coordination in non-
Byzantine environments [122, 123, 124, 125]. O’Neil [122] introduces a transactional
escrow method for dividing the available resources among nodes, where the resources can
be consumed independently on the node without coordinating with other nodes. Balegas
et al. [123] use the escrow methods to de�ne Bounded CRDT Counter, which preserves
the invariant condition of not turning negative. They perform this by specifying a �xed
number of decrement operations each node can perform so the total number of decrement
operations does not exceed the counter’s value. Once the limit of decrement operations is
reached on one node, the node coordinates with other nodes to query and retrieve other
nodes’ non-consumed decrement operations. Balegas et al. [124] extend their method

29

3.3. INVARIANT CONDITIONS OF DISTRIBUTED APPLICATIONS

further for preserving invariant conditions on other data types. Furthermore, Liu et
al. [125] introduce time-limited warranties, during which distributed objects preserve and
lock speci�c invariant conditions. Therefore, the clients acquiring such warranties do
not need to communicate with nodes to validate and preserve the invariant conditions.

For minimizing and eliminating coordination among nodes, Bailis et al. [39] propose
I-con�uence, a formal framework for analyzing the application-level invariant conditions
over the node’s state to determine whether coordination among nodes is necessary.
Since identifying I-con�uent invariant conditions can be cumbersome for application
developers, Whittaker et al. [126] propose Lucy, which automatically checks whether
the invariant conditions of an application are I-con�uent using an interactive I-con�uent
decision-making procedure. I-con�uence shares similarities with Left Commuting Opera-

tions introduced by Friedmann and Birman [127]. However, the I-con�uence identi�es
the invariants that can be preserved without coordination. The left commuting method
identi�es the possible order of operations to preserve the application’s serializability
de�nition. Furthermore, I-con�uent shares similarities with the Consistency And Logical

Monotonicity (CALM) theorem [128, 129, 130]. CALM theorem proves that monotonic
transactions can be processed in a coordination-free manner.

These works motivate the necessity of reducing coordination to increase scalability and
o�er valuable and practical solutions for preserving invariant conditions without or with
reduced coordination. However, they are designed for non-Byzantine environments, and
the increased di�culty of preserving the invariants in a Byzantine environment is not
considered, where the malicious participants can intentionally violate the invariant con-
ditions. OrderlessChain o�ers coordination-free solutions to preserving invariant
conditions in Byzantine environments.

In order to address the Byzantine participants, Pires et al. [131] o�er a BFT design of
Generalized Paxos for partially ordering the transactions in a trustless environment.
As a BFT model of Generic Broadcast, Raykov et al. [132] propose a partially ordered
environment where only the con�icting transactions are ordered. The authors use the
Recovery Consensus mechanism to ensure that the same set of non-con�icting messages
is concurrently executed and con�icting messages are ordered using coordination-based
protocols. Martin et al. [53] propose FaB Paxos, a BFT Paxos approach. Although FaB

30

3. RELATED WORK

Paxos o�ers a low bound of communicated messages required to o�er BFT, it still uses
a coordination-based approach. Guerraoui et al. [133] o�ers a theoretical proof that
the conventional PoW-based protocol, as used in Bitcoin, is unnecessary to execute
payment systems safely and to prevent double-spending attacks [134]. They use a
Reliable Broadcast-based [135] approach to o�er BFT, which is coordination-based. Also,
their work is limited to theoretical proof and o�ers no implementation or quantitative
evaluation. Similarly, Collins et al. [136] propose Astro based on the reliable broadcast
for transferring funds. However, their work is only limited to processing payments.

Although these studies o�er BFT while reducing coordination, they do not eliminate the
coordination requirement and are restricted to limited use cases. OrderlessChain
uses the permissioned property of permissioned blockchains to o�er scalable and safe
coordination-free approaches for executing several types of applications in Byzantine
distributed environments.

3.4 Asynchronous Federated Learning in Byzantine

Environments

Machine Learning (ML)-related research has been one of the fastest-growing areas in
academia and industry over the past decade [137, 138]. However, as ML’s popularity has
increased, the concern over ML’s potential privacy risks has also increased [139, 140].
A standard conventional ML pipeline requires a tremendous amount of raw data to be
processed and trained by a central organization, which introduces serious privacy risks for
the owners of the shared raw data [138, 140]. Various privacy-preserving distributed ML
approaches have been proposed to address these issues [137, 139, 140]. One of the most
prominent solutions to private ML is federated learning (FL) [56, 137]. FL o�ers a privacy-
preserving solution by providing a collective approach to train models where the clients
train the models locally without sharing the raw data with di�erent organizations [56,
141].

Although a conventional FL system, as initially introduced by McMahan et al. [56], o�ers
more privacy than existing distributed ML systems, their proposed FL solution does not

31

3.4. ASYNCHRONOUS FEDERATED LEARNING IN BYZANTINE ENVIRONMENTS

consider the Byzantine behavior of participants. Several works study the potential threats
of malicious participants to an FL system, including the Data Poisoning, Inference Attacks,
Membership Inference Attacks [142, 143], which result in a signi�cantly reduced privacy.

Several works propose permissionless and permissioned blockchain-based FL systems
to o�er a trusted and secure training environment in the presence of Byzantine partici-
pants [144, 145, 146, 147, 148, 149, 150, 151]. BlockFlow [144] proposes an Ethereum-based
FL system to hold Byzantine workers accountable who jeopardize the training process.
They also employ Di�erential Privacy [152] to o�er more privacy. However, the model
updates and FL aggregation are performed o�-chain due to Ethereum’s processing and
storage limitations. BlockFLA [149] also propose an Ethereum and Fabric-based FL
solution for detecting anomalies caused by malicious behavior and holding the Byzantine
participants accountable. BAFFLE [145] uses a private Ethereum to o�er an FL system
without central aggregation, implementing several smart contracts to perform model
aggregation locally. Due to the storage limitations of used blockchains, they partition
models stored on the system. Zhao et al. [146] propose an Algorand-based BFT FL system
for IoT devices. Due to the blockchain limitations, similar to BAFFLE, the authors also
use an o�-chain solution based on InterPlanetary File System (IPFS) [153] to store the
model updates. Wu et al. [147] introduce FedBC, which o�er’s a Fabric-based FL
system. However, they also make use of third-party IPFS for storage. GFL [148] also takes
advantage of Ethereum and IPFS to o�er a blockchain-based FL system.

These works provide valuable solutions to the BFT FL systems and demonstrate the
potential and limitations of blockchains for FL systems. However, these systems rely on
coordination-based protocols and, in the worst-case scenarios, use PoW-based blockchains.
Hence, the scalability of these systems is limited due to the inherent scalability issues
of coordination-based protocols. Furthermore, due to the storage and computational
processing limitations on various blockchains, the explained systems often use third-
party solutions for storing the model updates and aggregating the updates with the
global models, which may be potentially Byzantine. In contrast, in OrderlessFL’s
proposed approach, we o�er a BFT solution using a coordination-free approach without
the limitations of coordination-based protocols. Also, we o�er an on-chain storage
solution where Byzantine participants cannot tamper with model updates.

32

3. RELATED WORK

Besides the potential threats of Byzantine participants in FL systems, one other problem
in asynchronous FL systems is the concurrent aggregations of the ML models and the
gradient staleness problem [154, 155]. We introduce flCRDT with OrderlessFL,
demonstrating the applicability and contributions of CRDTs in FL systems for concurrent
and asynchronous aggregation of FL models and mitigating the gradient staleness problem.
However, to the best of our knowledge, no work exists that studies the CRDTs in the
FL environment. We use the logical clocks included in the CRDT operations to mitigate
the gradient staleness problem. A few studies propose timestamp-based solutions to
constrain the gradient staleness [155, 156, 157, 158, 159]. Ho et al. [156] propose a
network of distributed parameter servers where faster workers aggregate their models
more frequently. They enforce a timestamped maximum staleness limit for slower
workers. Jiang et al. [157] extend Ho et al.’s approach and propose heterogeneity-aware
distributed parameter servers where the learning rate of ML training depends on the
model updates’ staleness. Li et al. [158] o�er an explicit vector clock-based approach
for enabling parallel training by distributed parameter servers. Zhang et al. [155] also
de�ne a staleness penalty based on the logical clock of model updates for Asynchronous
Stochastic Gradient Descent in distributed deep learning systems for bounding the gradient
staleness. Similarly, Xie et al. [159] propose a logical clock-based approach for mitigating
and penalizing stale updates. flCRDT’s approach for mitigating gradient staleness is
inspired based on these explained works.

3.5 Blockchain-based File Storage Systems

Cloud storage and Storage-as-a-Service have been expanding rapidly in the cloud providers
industry [160]. Despite the high availability and low cost of cloud storage, clients
must trust the cloud providers to safely and securely store their data [161, 162]. Many
blockchain-based �le storage systems have been proposed to o�er decentralized trust,
provide a secure alternative to cloud-based storage solutions, and enable providers to
rent out their excess storage [163, 164, 165, 166]. Stroj [163] is a blockchain-based cloud
storage where providers can rent their excess hardware and bandwidth to the clients.
Furthermore, Storj uses a sharding mechanism to split �les and store and replicate the
shards on the providers. Storj uses a combination of Ethereum-based systems to store

33

3.5. BLOCKCHAIN-BASED FILE STORAGE SYSTEMS

the �le’s metadata and a Proof of Space protocol to o�er decentralized trusted storage.
Sia [164] also o�ers a PoW-based solution for providers to rent out their excess hardware.
Sia splits the �les into shards and encrypts and stores the shards on di�erent providers.
The providers are compensated for the provided resources using Sia’s cryptocurrency
called SiaCoin. FileCoin [165] provides blockchain-based o�-chain storage using IPFS,
where the providers are compensated using FileCoin’s native cryptocurrency. FileCoin
uses Proof-of-Spacetime and Proof-of-Replication to ensure clients that the system safely
and securely stores and replicates the �les on various providers in a decentralized manner
for a speci�c time. However, Guidi et al. [167] demonstrate the lack of decentralization
of FileCoin in contrast to its developers’ claims. BlockStore [166] o�ers blockchain-based
o�-chain �le storage with an Ethereum-based payment system to enable providers to
monetize their excess storage.

A few studies proposed CRDT-based decentralized �le storage in non-Byzantine dis-
tributed environments [168, 169]. However, the applicability of CRDT-enabled blockchains
for BFT �le storage has received no research or industry attention. As explained, existing
systems rely on coordination-based or PoW-based protocols, which limits the scalability
of these systems. Furthermore, they use o�-chain third-party solutions due to the storage
limitations on blockchains, which may introduce new security threats. In contrast,
OrderlessFile, built upon the BFT coordination-free protocol of OrderlessChain,
securely and safely replicates �les on-chain using a novel CRDT for splitting �les into
shards.

34

4

FabricCRDT: A CRDT-enabled

Permissioned Blockchain

The signi�cant scalability limitations of PoW-based protocols used in permissionless
blockchains and their prohibitively high costs make them infeasible for several real-world
use cases in business and industry [4, 11, 26]. For decentralized enterprise use cases
where the identity of participants is known, permissioned blockchains constitute a viable
alternative. One of the most prominent permissioned blockchains is Fabric, which
o�ers signi�cantly higher throughput and transactional guarantees than Bitcoin and
Ethereum while allowing the deployment of Turing complete applications [86].

Although Fabric is signi�cantly more scalable than its permissionless counterparts,
Fabric follows an optimistic three-phase protocol to ensure data consistency, which
causes the failure of a signi�cant number of concurrent and con�icting transactions in
real-world use cases [8, 41]. In this chapter, we introduce FabricCRDT, an extension of
Fabric. FabricCRDT takes advantage of CRDTs, to address the failures of concurrent
transactions. Our approach uses CRDTs to merge and automatically resolve the con�icts
of concurrent transactions instead of causing the failure of transactions. Hence, by
eliminating transaction failures, FabricCRDT signi�cantly improves the throughput
and scalability of Fabric.

35

4.1. MULTIVERSION CONCURRENCY CONTROL-BASED FAILURES

The content of this chapter is based on the paper published on FabricCRDT [55].

The remainder of the chapter is organized as follows. First, we provide a detailed
explanation of Multiversion Concurrency Control mechanism and the causes for the failure
of concurrent transactions in Section 4.1. In Section 4.2, we describe the architecture,
design requirements, and the transaction lifecycle of FabricCRDT. In Section 4.3, we
introduce our approach for integrating and implementing CRDTs on FabricCRDT. We
explain our approach’s potential and limitations in comparison to Fabric in Section 4.4.
Finally, we evaluate FabricCRDT and demonstrate its improved performance over
Fabric in Section 4.5.

4.1 Multiversion Concurrency Control-based Failures

In order to establish the problem better, which FabricCRDT addresses, we discuss
Fabric’s optimistic concurrency control mechanism and the causes of transaction
failures in more detail.

A transaction proposal invokes the chaincode on Fabric, which during the chaincode
execution, based on the application’s logic, interacts with the stored application’s state
on the ledger in three ways:

• Read-Transaction: Execution of chaincode only results in reading key-value pairs
from the ledger.

• Write-Transaction: Chaincode only writes key-value pairs to the ledger without
reading any pairs during its execution.

• Read-Write-Transaction: Chaincode reads key-value pairs from the ledger and
writes key-value pairs to the ledger.

The execution of a transaction TSi results in a read-set and a write-set included in a
read-write-set as follows:

36

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

ReadWriteSetTSi =< ReadSetTSi ,WriteSetTSi >

The read-set includes a set of keys and the version number of the key’s value that a peer
retrieved from the ledger during the execution of the chaincode, as follows:

ReadSetTSi = {(KR
1 , VN

R
1),, (K

R
n , VN

R
n)}

A read-transaction creates a ReadWriteSetTSi only with ReadSetTSi and an empty write-
set. Furthermore, read-transactions do not change the ledger’s state, and clients may not
send the transactions to be ordered and committed.

The write-set contains the key-value pairs created during the execution of the chaincode.
The write-set of a transaction TSi is modeled as follows:

WriteSetTSi = {(KW
1 , VW

1),, (KW
m , VW

m)}

The read-write-set of write-transactions only contains a write-set. A read-write-transaction
contains both sets in its read-write-set. To commit a successfully validated transaction, the
write-set of the transaction is applied to the ledger. The ledger contains the application’s
world state in the format of key, value, and value’s version number tuples, as follows:

WorldState = {(KWS
1 , VWS

1 , VNWS
1),, (KWS

q , VWS
q , VNWS

q)}

Applying the write-set to the ledger may cause a con�ict and subsequent failure of the
transaction known as the Multiversion Concurrency Control (MVCC) Failure. Formally
speaking, an MVCC con�ict occurs if there exists a key KR

l ∈ {KR
1 , ..., KR

n } with version
number VN R

l in the TSi’s read-set, and there exist KWS
l ∈ {KWS

1 , ..., KWS
q } in the world

state, where KR
l = KWS

l and VN R
l ≠ VNWS

l , the version number of Kl in the read-set and
world state are unequal [8].

37

4.1. MULTIVERSION CONCURRENCY CONTROL-BASED FAILURES

Intuitively speaking, and to illustrate the problem better, imagine that at time T , peer P1
has the world state:

WorldState = {(KWS
1 , VWS

1 , VNWS
1), (KWS

2 , VWS
2 , VNWS

2), (KWS
3 , VWS

3 , VNWS
3)}

P1 receives a block containing �ve transactions with corresponding read-write-sets, and
the transactions are ordered in the block as follows:

1. ReadWriteSetTS1 =< ReadSetTS1 ∶ {(KR
2 , VN R

2)},WriteSetTS1 ∶ {(KW
2 , VW

2)} >

2. ReadWriteSetTS2 =< ReadSetTS2 ∶ {(KR
1 , VN R

1), (KR
2 , VN R

2)},WriteSetTS2 ∶ {(KW
3 , VW

3)} >

3. ReadWriteSetTS3 =< ReadSetTS3 ∶ {(KR
2 , VN R

2)},WriteSetTS3 ∶ {(KW
3 , VW

3)} >

4. ReadWriteSetTS4 =< ReadSetTS4 ∶ {(KR
3 , VN R

3)},WriteSetTS4 ∶ {(KW
2 , VW

2)} >

5. ReadWriteSetTS5 =< ReadSetTS5 ∶ {},WriteSetTS5 ∶ {(KW
3 , VW

3)} >

Given that all �ve transactions pass the endorsement policy validation as explained in
the background chapter (not explicitly shown here), P1 sequentially validates the �ve
transactions in the block by comparing the version number of each key in the read-
set to the version number in the world state. A transaction is considered valid if both
version numbers are equal. If the version numbers are unequal, the peer invalidates the
transaction as an MVCC con�ict. The key’s mismatch results from updates committed
by preceding valid transactions. The initial transactions may be included either in the
previous blocks or in the same block but preceding the current position of the con�icting
transaction. Committing keys in the write-set of the valid transactions causes the version
number of keys in the world state database to change. Therefore, P1 marks TS1 as valid
and TS2 and TS3 as invalid because the write-set of TS1 updates K2 so that its new version
number is VNWS

2 + 1 and the version number of K2 in TS2 and TS3’s read-set does not
match (VN R

2 ≠ VNWS
2 + 1). P1 marks TS4 as valid, since TS3 is invalid and version number

of K3 is not updated. Finally, TS5 is valid due to the empty read-set and independence
from the version number of keys in the world-state.

38

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

This multiversion concurrency control mechanism is a commonly used optimistic con-
currency control model in database systems to increase the throughput and decrease
the latency instead of blocking mechanisms such as shared locks [8, 41]. Although
this mechanism is necessary for ensuring data consistency and isolation of transactions
required for preserving the application’s invariant conditions, the relatively high latency
between the creation of the read-write-set and the validation of the read-set in Fabric
can result in a large number of transactions in a block failing, especially when a small
set of frequently accessed keys are included [8, 36, 88]. This high latency consists of the
endorsement latency, the ordering latency, and the commit latency [86], as de�ned below:

1. Endorsement Latency: It is the time needed for the client to acquire all the
required endorsements, which, depending on the endorsement policy and the
complexity of chaincodes, varies signi�cantly for di�erent transactions.

2. Ordering Latency: It is the time required for the transaction to be batched in one
block and broadcast to the peers. The ordering service batches transactions into
a block based on several criteria, including the maximum number of transactions,
the maximum total size of transactions in a block, and a timeout period for creating
blocks. The ordering service creates a block for higher transaction arrival rates as
soon as the maximum size is reached. However, the transaction can be delayed
for lower arrival rates until the timeout period is reached. The timeout period is a
con�gurable parameter on the order of seconds.

3. Commit Latency: That is the time a peer takes to validate transactions in the
block and commit them to the ledger.

These delays are inherent to the design of Fabric and can not be signi�cantly reduced
without fundamental changes to the system. The delay may be a few seconds depending
on the system con�guration of Fabric. Although the MVCC failures cause minor
issues for processing read-transactions, realistic use cases consist of a large number of
read-write-transactions, where the version number of keys in their read-set depends on
the keys in the write-set of preceding transactions [8, 41]. This dependency imposes
MVCC con�icts on many transactions containing such hotkeys. According to the Hotkey

Theorem [88], if the average delay for a transaction containing a hotkey is l, then the
maximum throughput for all transactions containing the hotkeys is 1/l.

39

4.2. ARCHITECTURE AND DESIGN

Once a transaction fails, the only option for clients is to create a new transaction and
resubmit, which adds to the complexity of Fabric application development. There-
fore, providing a solution that enables Fabric to manage the con�icting transactions
internally without rejecting the transactions can signi�cantly improve the scalability and
throughput of Fabric and simplify the application development process.

Without inherently changing the design of Fabric, we proposed using CRDTs for
automatically resolving the con�icts and merging the key’s values without causing the
failures of con�icting keys.

4.2 Architecture and Design

In the following section, we explain the system model. Followed by the design require-
ments of FabricCRDT that our design must satisfy. We also describe our approach for
executing CRDT transactions on FabricCRDT.

4.2.1 System Model

FabricCRDT, as an extension of Fabric, shares the exact system model and failure
model with Fabric. FabricCRDT is a strongly eventually consistent permissioned
blockchain consisting of a set of peers {P1, ..., Pn} and a set of clients {C1, ..., Cr}.

Every peer and client has a unique identi�er. The identity of each peer is known to
every other peer and client in the network. Each peer belongs to only one organization,
representing an entity, which may range from individuals to businesses. The organi-
zations de�ne the trust boundaries in the system. In other words, peers from di�erent
organizations do not necessarily trust each other, despite their known identities. However,
the peers within one organization trust each other.

Peers and clients can communicate with other non-failed peers by sending and receiving
messages. We consider every message and transaction to be delivered eventually, despite

40

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

arbitrary delays. However, the order of the transactions in a block is not guaranteed
to be the same order of transactions when issued by clients or arrived at the ordering
service. The ordering service does not guarantee to prevent duplicate transactions. This
work assumes that clients do not intentionally submit duplicate transactions. If duplicate
transactions are submitted, FabricCRDT also processes duplicate transactions.

4.2.2 Design Requirements

We de�ne four design requirements that FabricCRDT must satisfy:

1. Backward Compatibility – We aim to extend Fabric with CRDT-enabled
functionalities with minimal changes to the original design of Fabric. This way,
we keep the learning curve minimal for developers who have already designed
applications for Fabric. Also, the applications developed for Fabric remain
compatible with FabricCRDT.

2. No Transaction Failure – FabricCRDT should be able to commit all valid
CRDT-based transactions successfully. We de�ne valid transactions as the trans-
actions submitted by the client which pass the endorsement policy validation
successfully.

3. No Update Loss – By committing all valid transactions in a block, FabricCRDT
eventually converges to the same state on all peers, and all client’s updates are
preserved while using CRDT techniques to merge con�icting transactions.

4. Use Case Generality – To accommodate developers with the possibility of realiz-
ing a wide range of use cases, the CRDT approach used for merging con�icting
transactions in FabricCRDT should provide developers with a general-purpose
data structure to submit data to the ledger.

41

4.2. ARCHITECTURE AND DESIGN

4.2.3 Transaction Lifecycle

To achieve the discussed design requirements, we deploy a CRDT-based approach for
dealing with con�icting transactions internally. As explained, Fabric rejects transac-
tions with an outdated version number of key-value pairs in the read-set and discards
these transactions’ write-set. Committing key-value pairs of write-set with an outdated
version may result in data inconsistencies. To avoid the failure of con�icting transactions
and data inconsistencies, FabricCRDT does not reject transactions but instead merges
the values of the con�icting transactions using CRDT techniques.

Since we aim to keep Fabric applications compatible with FabricCRDT and to
ful�ll the Backward Compatibility requirement, we de�ne a new type of transaction
that encapsulates all CRDT-related functionalities. Figure 4.2.1 displays the transaction
lifecycle in FabricCRDT, where CRDT and non-CRDT transactions coexist.

The non-CRDT transactions are standard transactions of Fabric that do not modify
CRDT values on the ledger. These transactions follow the three-phase transaction lifecycle
of Fabric, as explained in the background chapter, including being ordered into a block,
validated for endorsement VSCC, and MVCC validities.

Client

TS2

CRDT
TS3

CRDT
TS1

Execution

&

Ordering

TS2 CRDT
TS3

CRDT
TS1

Blockn

Peerm

1. VSCC Validation /
2. MVCC Validation /
3. Commit

1. VSCC Validation /
2. CRDT Merge /
3. Commit

TS2

CRDT
TS1

CRDT
TS3+

Peerm-1

1. VSCC Validation /
2. MVCC Validation /
3. Commit

1. VSCC Validation /
2. CRDT Merge /
3. Commit

TS2

CRDT
TS1

CRDT
TS3+

Figure 4.2.1: Transaction lifecycle on FabricCRDT.

Although the CRDT-enabled transactions have a structure similar to standard Fabric
transactions, their invocation of chaincode modi�es CRDT-encapsulated values on the
ledger. The CRDT transactions follow the �rst two phases of the transaction lifecycle of

42

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

Fabric, as demonstrated in Figure 4.2.1. As these phases are explained in the background,
we forgo repeating the procedure description.

During the last phase, the CRDT transactions on FabricCRDT are only veri�ed for
endorsement VSCC validation. Then, provided the successful endorsement validation,
instead of the MVCC validation, the transaction values of con�icting transactions are
merged automatically using CRDT techniques before being committed to the ledger.
The CRDT procedures used for con�ict resolution depend on the type of CRDT object.
For example, managing grow-only CRDT counters requires di�erent techniques than
merging JSON CRDTs. In our prototype of FabricCRDT, we support merging JSON
CRDTs, as explained in the following sections.

4.3 Implementation

In the following section, we explain the implementation of FabricCRDT in detail.
We introduce our approach to integrating CRDTs into the system. We also explain
the mechanism for merging JSON objects using CRDT techniques. We implemented
FabricCRDT based on Fabric v1.4.0.

4.3.1 Merging CRDT Transactions

The CRDT transactions in a block bypass the MVCC validation and are merged before
getting committed. Algorithm 1 explains our approach for committing transactions in a
block on FabricCRDT.

For resolving the CRDT transactions in a block, �rst, we iterate through all transactions
in the block, and for each transaction, we iterate through the key-value pairs in the
transaction’s write-set (Lines 3 to 14 in Algorithm 1). If the key-value pair is not marked
as a CRDT, we skip the key-value pair to be handled as a non-CRDT transaction. However,
if the key-value pair is �agged as a CRDT, the algorithm �rst checks if a CRDT object
with the same key already exists in a local set containing all CRDT objects (Line 7). If a

43

4.3. IMPLEMENTATION

Algorithm 1: Merging CRDT transactions in a block on FabricCRDT.
1 ValidateMergeCRDTTransactions (Block)

input :Block, a block received from the orderer.

output :MergedCRDTSBlock, a block with merged CRDT transactions to be

committed to the ledger.

2 CRDTs = newSet()
3 foreach TSi in Block.Transactions do
4 foreach keyj , valuej in TSi .WriteSet do
5 if valuej .I sCRDTObject() then
6 valuej .SkipMVCCValidation()
7 CRDT = CRDTs.GetObjectI f Exists(keyj)
8 if CRDT == Null then
9 CRDT = I nitEmptyCRDT (keyj , valuej)

10 CRDTs.SetObject(CRDT)
11 MergeCRDT (CRDT , valuej)
12 CRDTs.SetObject(CRDT)
13 else

14 // Skip it and let it be handled as non-CRDT transactions.

15 DoMVCCValidationOnNonCRDT Transactions(Block)
16 foreach TSi in Block.Transactions do
17 foreach keyj , valuej in TSi .WriteSet do
18 if valuej .I sCRDTObject() then
19 CRDT = CRDTs.GetObjectI f Exists(keyj)
20 DataTypeObject = CRDT .ConvertCRDT ToDataType()
21 valuej = DataTypeObject.ConvertToBinary()
22 TSi .U pdateWriteSet(keyj , valuej)

23 return Block

CRDT object does not exist, the algorithm instantiates a new CRDT object with the key
and adds it to the set (Lines 9 and 10). The type of CRDT object depends on the type of
CRDT value in the key-value pair. For example, for a JSON CRDT, an empty JSON CRDT
object is instantiated. Afterward, the peer converts the binary value of the key-value pair
to the corresponding type and merges it with the CRDT object. Then, the set containing
all CRDT objects is updated (Lines 10 to 12). We discuss the steps required for merging
the individual CRDTs in the following subsection.

44

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

After the �rst iteration, the peer performs MVCC validation on non-CRDT transactions
(Line 15). Afterward, the algorithm iterates through every transaction’s write-set once
more to check if a CRDT object exists for that key in the local CRDT set (Lines 16 to 22).
If a CRDT object exists (Line 19), then the CRDT object is converted to the corresponding
data type. For example, a JSON CRDT is converted to a JSON object (Line 20). The
converted object represents the data type with all the CRDT-related metadata cleaned up
and removed. Finally, the object is converted into a byte array that replaces the key-value
pair’s value in the transaction’s write-set (Lines 21 and 22). The second iteration through
every transaction’s write-set is necessary because the peer is unaware of all key-value
pairs of CRDT transactions in the block that need to be merged until the end of the �rst
iteration. Once all CRDT transactions are merged, the peer �nalizes and cleans up the
metadata of CRDT objects and updates the write values of the corresponding transactions
with the new converged value (Lines 20 to 22), which is then committed to the ledger by
the peer.

Figure 4.3.1: JSON objects in CRDT transactions’ write-set.

For example, consider two JSON objects in the write-sets of two di�erent transactions with
the same key, as depicted in Figure 4.3.1. Since the values have JSON types, Algorithm 1
creates one JSON CRDT with the identi�er Device1 and extends and merges the created
JSON CRDT with both values.

The result of merging the two CRDT values is shown in Figure 4.3.2. The write-set of
Transaction 2 is identical to the write-set of Transaction 1, which is committed to the
ledger.

45

4.3. IMPLEMENTATION

Figure 4.3.2: Merged JSON objects in CRDT transactions’ write-set.

4.3.2 Enabling JSON CRDT on FabricCRDT

Although the approach discussed in Algorithm 1 is independent of the CRDTs, plenty of
CRDTs exist with di�erent speci�cations and requirements for resolving con�icts. Hence,
every CRDT requires speci�c implementation. In our prototype of FabricCRDT, we
focused on implementing and integrating JSON CRDT [54], which provides a general-
purpose data structure for complex use cases and enables us to ful�ll the Use Case

Generality design requirement.

We implemented JSON CRDT based on the theoretical work of Kleppmann et al. [54]
and a Go language-based JSON CRDT implementation [170]. The authors of JSON CRDT
introduce the formal semantics and an approach for implementing an API for interacting
with a JSON CRDT. The approach provides an API for modifying JSON CRDT objects,
such as inserting, assigning, deleting, and reading values from the object. The reading
API does not cause any modi�cation to the object. Modifying the object is performed
using CRDT operations, which have globally unique identi�ers.

Although necessary for ensuring the automatic con�ict resolution among several pro-
cesses, the modi�cation API described by the authors is cumbersome for chaincode

46

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

developers due to its complexity. In FabricCRDT, every peer observes the transactions
in a block in the same order. We exploit this property to simplify the API. To use the JSON
CRDTs in the chaincode, similar to chaincodes on Fabric, developers should create
JSON objects. However, for submitting the key-value pairs to the ledger, the developer
should use the CRDT-speci�c putCRDT method we implemented in the chaincode shim.
This method only informs the peer that this value is a CRDT and does not perform direct
modi�cation on the CRDT. The operations required for merging the JSON CRDTs are
performed on the peers without the directions of the chaincode developer.

Algorithm 2 describes our approach for merging JSON CRDTs. This algorithm is the
MergeCRDT function in line 11 of Algorithm 1. Algorithm 2 is adapted based on an
existing implementation of JSON CRDT [170]. It iterates through each key-value pair in
the JSON object, where the value is either a string, a list, or a map (Line 2 in Algorithm 2).
The items included in the list or map may include nested maps or lists. For each value in
the JSON object, �rst, we create an empty elements list and an empty dependencies list
(Lines 3 and 4). The elements list de�nes the path from the head of the JSON CRDT to
the location where the modi�cation of the JSON CRDT is applied. A modi�cation to the
JSON object is interaction, such as adding or deleting. The dependencies list contains
the unique identi�er of all operations which should be performed before the current
operation is executed. We ensure that the operations identi�ers are globally unique by
using an instance of a Lamport clock [74] for each JSON CRDT instantiation. The Lamport
clock is incremented by one with every newly applied operation to ensure the causal
order of the operations is preserved.

If the value of a key in the JSON object is a string, the algorithm executes lines 6 to 9.
First, it extends the elements with the current key and increments the Lamport clock by
one. Then, the modi�cation is applied to the JSON CRDT, based on the dependencies list,
and the location in the JSON CRDT where the modi�cation occurs (Line 8).

For applying the operation, �rst, we check if all dependencies in the operation’s depen-
dencies list are already applied. If some of the operations are missing, we queue the
operation until all dependencies are applied. If there is no pending operation, we apply
the operation by using the operation’s elements to span from the head of the JSON CRDT.
For every element in the elements, if the element already exists, we add the identi�er of

47

4.3. IMPLEMENTATION

Algorithm 2: Merging a JSON object with the JSON CRDT on FabricCRDT.
1 MergeCRDT (J SONCRDT , J SONObj)

input : J SONCRDT , an initialized JSON CRDT object.

input : J SONObj, a JSON object to be added to the JSON CRDT object.

2 foreach keyi , valuei in J SONObj do
3 elements = newElementsList()
4 dependencies = newDependenciesList()
5 if valuei .I sString() then
6 CreateElement(elements, keyi)
7 J SONCRDT .IncrementClock()
8 ApplyOperation(J SONCRDT , dependencies, elements, keyi , valuei)
9 dependencies.Add(J SONCRDT .OperationID())

10 else if valuei .I sList() then
11 foreach listValuej in valuei .GetListI tems() do
12 CreateElement(elements, keyi)
13 RecursivelyAddListI temToJSONCRDT (J SONCRDT ,

keyi , listValuej , dependencies, elements)
14 RemoveElement(elements, keyi)

15 else if valuei .I sMap() then
16 foreach mapKeyj , mapValuej in valuei .GetMapI tems() do
17 CreateElement(elements, keyi)
18 RecursivelyAddMapI temToJSONCRDT (J SONCRDT ,

mapKeyj , mapValuej , dependencies, elements)
19 RemoveElement(elements, keyi)

the current operation to the element to track the current operation’s dependencies. If
the element is missing in the JSON CRDT, we add the element to the JSON CRDT and
the operation’s identi�er to the element’s dependencies. Once we reach the end of the
path and the modi�cation location is reached, we apply the modi�cation to the JSON
CRDT. For adding the element, we insert a key-value pair with the key as the operation
identi�er and the value as the string value from the JSON object.

When the value of the JSON object is a list, we iterate through the list’s items (Lines 12
to 14). For every list item, �rst, we append the element with the current key in the JSON
object, then call a recursive function that extends the JSON CRDT with the list item’s
content. We use a recursive function since the value of the list item could either be a

48

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

string, a list, or a map, which may contain further nested list or map items. The recursive
function extends the JSON CRDT with the string value described in the algorithm (Lines
6 to 9). If the value is a list or a map, it extends the JSON CRDT (Lines 11 to 14 or 16 to 19,
respectively.) When the value of the JSON object is a map (Lines 16 to 19), we follow the
same approach as the list type, but we extend the element with the key of the key-value
pairs in the map instead of the key of the current JSON object.

To limit the complexity of our prototype, the JSON lists in our system only support string,
map, and list. Therefore, when clients require to use other data types, such as numbers
or Boolean, they should convert the desired data type to strings.

4.4 Potentials and Limitations of FabricCRDT over

Fabric

Numerous CRDT use cases, such as data metering, global voting platforms, and shared
document editing applications, bene�t from the decentralized trust o�ered by Fabric-
CRDT [67, 70, 171, 172, 173, 174]. Our CRDT-enabled permissioned blockchain facilitates
the realization of these use cases.

FabricCRDT, as an extension to Fabric, supports all use cases that can be imple-
mented on Fabric. However, based on FabricCRDT’s design requirements, by taking
advantage of CRDTs, we o�er two additional properties that bene�t the CRDT use cases.
FabricCRDT ensures that (1) all submitted transactions that pass the endorsement
policy validation are committed successfully (No Transaction Failure requirement) and
(2) as an SEC system, no client updates are lost when concurrent updates on the shared
key-value pairs are submitted (No Update Loss requirement).

One major use case that bene�ts from FabricCRDT are collaborative document editing
platforms [171, 175]. These platforms provide an environment for clients to work
on shared documents concurrently. Due to the inherent concurrent nature of these
platforms, con�icts from updating the shared content may frequently occur. CRDTs
are a practical technique for resolving these kinds of con�icts [171, 175]. Developers

49

4.4. POTENTIALS AND LIMITATIONS OF FABRICCRDT OVER FABRIC

can create FabricCRDT-based document editing applications using CRDT features
that our system o�ers, like JSON CRDTs. On FabricCRDT, documents are stored as
JSON objects, and edit updates are committed as CRDT transactions. According to our
design requirements, updates are merged without losing the client’s data, and no CRDT
transaction containing the updates fails, so clients do not need to redo and resubmit their
edits. Clients also bene�t from the trust and security that FabricCRDT o�ers.

Another prominent application of permissioned blockchains is supply-chain management
applications for tracing and ensuring the quality of di�erent products from food to
pharma industries [176, 177]. During transportation and storage, sensitive goods like
drugs, fresh fruits, and vegetables should be kept within speci�c conditions, such as
temperature, humidity, and light. To ensure that these goods are treated in compliance
with regulations and guidelines, sensors continuously monitor the goods and record
the readings on the blockchain to keep them secured against manipulations. Although
storing a stream of sensor readings from IoT devices can be implemented on Fabric,
we argue that this use case is a better �t for FabricCRDT. Depending on the system’s
design, di�erent readings from di�erent IoT devices may collide, for example, when a
temperature sensor and a humidity sensor concurrently submit records to update a shared
list of the sensor readings of the same good. Using FabricCRDT, it is ensured that
con�icts are merged automatically and that all sensor data end up in the world state (No
Update Loss requirement). Due to the resource limitations of IoT devices (e.g., regarding
energy), the extra e�ort required for resubmitting failed transactions may be prohibitive.
FabricCRDT makes it possible for IoT devices to submit transactions once without
needing to e concerned about transaction failures and data loss (No Transaction Failure

requirement).

There exist limitations to FabricCRDT. Use cases that require transactional isolation
of repeatable reads [178] or contain non-I-con�uent invariant conditions may not be
implemented on our system, as FabricCRDT commits transactions even if their
read-set is outdated. This includes use cases for transferring assets. For example,
�nancial applications like SmallBank [36] or FabCoin [13], developed for Fabric, are
bad choices to be adapted as a CRDT-based blockchain application. These applications
represent asset creation and transfers between owners. Interacting with the state of

50

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

such applications using CRDT-transactions results in vulnerabilities, such as the double-
spending attack [134], where an attacker submits several transactions to transfer a
single asset to numerous owners. On Fabric, only one of the attacker’s transactions
is successfully committed. The MVCC validation fails the other transactions since the
�rst successfully committed transaction outdates the read-set of other transactions.
However, FabricCRDT skips the MVCC validation, merges the transactions’ values,
and successfully commits all of the attacker’s transactions.

4.5 Evaluation

In the following section, we provide a comprehensive evaluation of FabricCRDT. We
also conducted several experiments to compare the performance of FabricCRDT to
Fabric.

4.5.1 Experimental Applications

The blockchain research community needs a standard workload and benchmarking
approach for evaluating di�erent blockchain systems. Benchmarks such as TPC-C [179]
and TPC-H [180] from the database community are not directly applicable to blockchains.
They are created for database systems and are not directly compatible with FabricCRDT
and Fabric. Adapting these workloads to the transactional structures of Fabric or
other blockchain systems requires a steady community e�ort.

As explained in the previous section, the supply-chain use cases are among the regular
applications of permissioned blockchains. To evaluate the performance of FabricCRDT
and Fabric, we developed an IoT-based application to monitor the temperature of
perishable goods in a supply-chain scenario, as follows:

IoT Application – We implemented a set of chaincodes for FabricCRDT and Fabric
for storing temperature records. Each chaincode receives and stores a set of temperature
readings of an IoT device. The device also sends its identi�er. Upon execution, the

51

4.5. EVALUATION

chaincode �rst reads a key-value pair from the ledger, where the key is the device’s
identi�er, and the value is a JSON object containing the previous temperature readings of
the device. Then, the new temperature reading is inserted into the JSON object. Finally,
the device’s identi�er and the modi�ed JSON object are sent as a key-value pair to be
committed to the ledger.

For example, Figure 4.5.1 shows the JSON object that a transaction submits to be commit-
ted with one property for the device’s identi�er and a list containing three temperature
readings. For each experiment, the structure of the JSON object and the number of
submitted JSON objects di�er and are control variables, which we specify accordingly.
However, the logic and behavior of the chaincode are the same for all experiments.

Figure 4.5.1: Sample JSON object submitted by a transaction of IoT application.

4.5.2 Workloads, Control Variables and Metrics

We created a custom workload based on the IoT application. While creating the workload,
we focused on understanding the limitations and potentials of a CRDT-enabled Fabric.
Since standard transactions in FabricCRDT and Fabric are processed based on
identical work�ows, both systems show similar performance for con�ict-free workloads.
For this reason, we evaluate the performance of FabricCRDT on workloads of con-
�icting read-write-transactions for every except one experiment. We perform one set of
experiments with workloads consisting of con�icting and non-con�icting transactions in
di�erent ratios.

The experiments consist of several control variables. Some control variables are set
constant for all experiments. However, others are con�gured di�erently for every
experiment. We �rst explain the constant control variables. During the execution

52

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

of the experiment, a �xed number of four clients submitted 10,000 transactions on
FabricCRDT and Fabric. The load on the peers is distributed uniformly. The
number of organizations, peers per organization, orderers, and channels is constant. All
experiments of FabricCRDT and Fabric are conducted with a network of three
organizations, two peers per organization, one orderer node, and one channel. We
con�gured the number of organizations, peers, orderers, and channels constant since
FabricCRDT uses the same components as Fabric, responsible for the communication
between di�erent components over the network. Hence, we focus on evaluating and
comparing the internal mechanism of peers in FabricCRDT and Fabric. We also
con�gured the maximum and preferred number of bytes for a block to 128 MB and the
blocking timeout to 2 seconds.

The experiments also include several control variables con�gured di�erently for each
experiment. The transaction arrival rate is a control variable, de�ned as transactions per
second (tps) of the system as the total number of transactions submitted by all clients to
the system. The other control variable is the block size regarding the maximum number
of transactions in a block. We con�gured the number of read-write key-value pairs in the
chaincode. The complexity of JSON objects written to the ledger concerning the number
of keys and their nesting depth is also a control variable.

Each experiment is conducted on an initially empty ledger. Before executing the ex-
periment, we populate the ledger with keys read during the experiment. The executed
experiments do not include any Byzantine or non-Byzantine failures.

We collect several performance metrics during the experiment. We measure the transac-

tion throughput, the average transaction latency, and the number of successfully committed

transactions. The transaction throughput is the total number of successfully committed
transactions divided by the total time required to commit these transactions. The
transaction latency is the response time per transaction from sending the proposal until
receiving the acknowledgment from the peer on whether the transaction is committed
successfully. The number of successfully committed transactions speci�es the total
number of transactions in the workload successfully committed to the ledger by the
peers.

53

4.5. EVALUATION

4.5.3 Experimental Setup

We deployed FabricCRDT and Fabric networks on a Kubernetes v1.11 cluster
consisting of three controller nodes, three worker nodes, one DNS and load balancer

node, and one Network File System node. All nodes run on Ubuntu 16.04 virtual machines
(VMs) with 16 vCPUs and 41 GB RAM. All VMs are initiated on the OpenStack Mitaka’s

KVM and interconnected by 10 GB Ethernet. We use CouchDB [42] as the world state
database and Apache Kafka/Zookeeper [181, 182] for the ordering service.

We used Hyperledger Caliper (Caliper) v0.1.0 [183] for generating and submitting transac-
tions and collecting the performance metrics. Caliper is a performance benchmarking
framework developed by the Hyperledger Project to study the performance of a few
blockchains, such as Fabric and Ethereum. We extended and adapted Caliper to be able
to evaluate FabricCRDT.

4.5.4 Experimental Results for IoT Applications

Table 4.5.1 displays the control variables and their default values for the IoT application
on FabricCRDT and Fabric. For each experience, as explained in the following parts,
we set a few control variables to speci�c con�gurations and the other control variables
to the default value.

Table 4.5.1: Default values of control variables for the IoT experimental application.

Control Variable Default Con�guration

FabricCRDT’s maximum block size 25 transactions
Fabric’s maximum block size 400 transactions
Transaction arrival rate 300 tps
Number of read key-value pairs per transaction 1 pair
Number of write key-value pairs per transaction 1 pair
Number of keys in JSON object 2 keys
Depth of each key’s value 1st key: 1 depth, 2nd key: 2 depth

E�ect of Di�erent Block Sizes – We examine the impact of the block size on the
total number of successful transactions, the throughput of successful transactions, and

54

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

the average latency of successful transactions. We gradually increased the maximum
allowed number of transactions in a block from 25 to 1000 transactions. Each chaincode
invocation reads one key-value pair from the ledger and writes one key-value pair back.
The JSON object written to the ledger has two keys, containing a string constant and a
list, as speci�ed for the default values in Table 4.5.1.

In order to �nd the best con�guration of FabricCRDT and Fabric under worst-case
workloads, all transactions modify identical keys. Hence, the transactions depend on
each other and are con�icting. FabricCRDT merges every key-value pair of every
transaction in each block. Therefore, a higher number of transactions in a block potentially
induces a higher overhead for the peer to merge a higher number of JSON CRDTs.

25 50 10
0

20
0

30
0

40
0

60
0

80
0

1,
00
00

100

200

(a) Maximum Number of Transactions in Block

Th
ro

ug
hp

ut
(tp

s)

25 50 10
0

20
0

30
0

40
0

60
0

80
0

1,
00
0 0

100

200

(b) Maximum Number of Transactions in Block

Av
er

ag
e

La
te

nc
y

(s)

25 50 10
0

20
0

30
0

40
0

60
0

80
0

1,
00
00

0.5

1
⋅104

(c) Maximum Number of Transactions in Block

Co
m

m
itt

ed
Tr

an
sa

ct
io

ns

FabricCRDT Fabric

Figure 4.5.2: E�ect of block size on FabricCRDT and Fabric.

The results of the experiments are summarized in Figure 4.5.2. In Figure 4.5.2(a), we
observe that FabricCRDT demonstrates a higher throughput for smaller block sizes.
The main reason for the degradation of throughput in FabricCRDT with larger block
sizes is the higher overhead required for merging a higher number of JSON CRDTs. For

55

4.5. EVALUATION

FabricCRDT, the highest throughput overall was 267 transactions per second for a
block size of 25 transactions.

Figure 4.5.2(b) shows that FabricCRDT demonstrates a higher transaction latency for
larger block sizes because of the lower throughput, resulting in more time required to
commit the transactions. In Figure 4.5.2(c), we observe that FabricCRDT successfully
commits all submitted transactions. In Fabric, several con�icting transactions fail due
to MVCC validation, while in FabricCRDT, all con�icts are automatically merged, and
all transactions are successfully committed.

In the following experiments, we set the block size to 25 transactions per block for
FabricCRDT and 400 transactions per block for Fabric. This way, we run both
systems in their best con�guration to get a fair comparison.

E�ect of Di�erent Number of Reads andWrites – To understand the e�ect of a higher
number of key-value pairs in the transaction’s read-write-set, we gradually increased the
number of key-value pairs that were read from and written to the ledger in the chaincode.
We con�gured 1, 3, or 5 key-value pairs for each experiment to be read and written, as
shown in Table 4.5.2. During each experiment, we kept the read and wrote keys identical
for all transactions. For example, in the experiment with �ve reads and �ve write keys,
we read or write the same set of 5 distinct keys in every transaction.

Table 4.5.2: E�ect of an increasing number of read and write key-value pairs.

Control Variable Executed Con�guration

Number of read key-value pairs per transaction {1, 3, 5 } pair
Number of write key-value pairs per transaction {1, 3, 5 } pair

Figure 4.5.3 summarizes the results of the experiments. As expected, we observe in
Figure 4.5.3(a) that the throughput of FabricCRDT decreases as the read-write-set
grows because of the increased overhead for merging a higher number of CRDTs. We
observe that FabricCRDT is a�ected by both the number of reads and writes in the
transactions. In comparison to FabricCRDT, Fabric shows a lower transaction
throughput (Figure 4.5.3(a)) and a lower total number of successful transactions (Fig-

56

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

ure 4.5.3(c)). However, FabricCRDT has a higher commit latency in comparison to
Fabric (Figure 4.5.3(b)).

1–1 3–1 5–1 3–3 5–3 5–50

100

200

300

(a) Number of Read – Write Key-Values

Th
ro

ug
hp

ut
(tp

s)

1–1 3–1 5–1 3–3 5–3 5–5 0

20

40

(b) Number of Read – Write Key-Values

Av
er

ag
e

La
te

nc
y

(s)

1–1 3–1 5–1 3–3 5–3 5–50

0.5

1
⋅104

(c) Number of Read Key-Values – Write Key-Values in a Transaction

Co
m

m
itt

ed
Tr

an
sa

ct
io

ns

FabricCRDT Fabric

Figure 4.5.3: E�ect of a di�erent number of read and write key-value pairs.

Impact of Varying Complexity of JSON Objects – We evaluate the e�ect of varying
complexity of JSON objects committed to the ledger. In particular, we study the changes
to the throughput and latency of FabricCRDT, as merging more complex JSON
objects induces more overhead. Table 4.5.3 shows the experiment’s con�guration. Each
transaction reads one JSON object from the ledger with a speci�c number of keys and a
speci�c nesting depth of the values. Then, the transaction modi�es the JSON object and
writes back the JSON object to the ledger.

For example, Figure 4.5.4 illustrates a JSON object with “3-3 complexity”. In other words,
the transaction submits a JSON object with three key-value pairs, where each value has a
depth of three from the root of the JSON object.

Figure 4.5.5 summarizes the results of the experiments. We observe that the throughput
decreases and the latency increases for FabricCRDT as the complexity of JSON objects

57

4.5. EVALUATION

Figure 4.5.4: A JSON object with “3-3” complexity.

Table 4.5.3: Impact of di�erent complexity of JSON objects.

Control Variable Executed Con�guration

Number of keys in JSON object {2, 3, 4, 5, 6 } keys
Depth of each key’s value {2, 3, 4, 5, 6 } depth

increases, as demonstrated in Figure 4.5.5(a) and Figure 4.5.5(b), respectively. The reason is
the increased overhead for merging larger CRDT objects. Unlike FabricCRDT, Fabric
does not interact with the content of the JSON objects. Therefore, the throughput and
latency of Fabric are not correlated to the complexity of the JSON objects.

Impact of Increasing Transaction Arrival Rates – We evaluated the e�ect of increas-
ing transaction arrival rates on FabricCRDT and Fabric. We gradually increased
the transactions arrival rate from 100 to 500 tps.

As the results of the experiments in Figure 4.5.6(a) show, FabricCRDT’s throughput
increases until it reaches a saturation point at about 250 tps. Meanwhile, Figure 4.5.6(b)
shows that the latency increases as the transaction arrival rate increases for Fabric-
CRDT. The enormous increase in latency in FabricCRDT is attributed to the e�ects
of queuing when the transaction arrival rate exceeds the throughput.

Impact of Di�erent Percentage of Con�icting Transactions – In order to understand

58

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

2–2 3–3 4–4 5–5 6–60

100

200

300

(a) Keys in JSON Object – Nesting Depth

Th
ro

ug
hp

ut
(tp

s)

2–2 3–3 4–4 5–5 6–6 0
10
20
30
40

(b) Keys in JSON Object – Nesting Depth

Av
er

ag
e

La
te

nc
y

(s)

2–2 3–3 4–4 5–5 6–60

0.5

1
⋅104

(c) Number of Keys in JSON Object – Nesting Depth of Each Key’s Value

Co
m

m
itt

ed
Tr

an
sa

ct
io

ns

FabricCRDT Fabric

Figure 4.5.5: E�ect of the increasing complexity of JSON objects.

the limitations and potentials of FabricCRDT, in the previous experiments, we used
workloads where all transactions are con�icting. However, in the real-world deployment
of FabricCRDT and Fabric, the con�ict rate of transactions in the workload varies,
and blocks contain con�icting and non-con�icting transactions. To study the e�ects of
di�erent percentages of con�icting transactions in the workload, we gradually increased
the con�ict rate in the transactions. For each experiment, a �xed percentage of transac-
tions are con�icting, where the con�icting transactions are merged in FabricCRDT
and rejected in Fabric.

Figure 4.5.7 summarizes the results of the experiment. We observe for workloads where
a lower percentage of transactions are con�icting, that the throughput and latency of
FabricCRDT are similar to Fabric (Figure 4.5.7(a) and Figure 4.5.7(b)). However,
when the percentage of con�icting transactions increases, the number of failures also
increases in Fabric (Figure 4.5.7(c)), while no failures occur in FabricCRDT.

59

4.5. EVALUATION

100 200 300 400 500
0

100

200

(a) Transaction Arrival Rate per Second

Th
ro

ug
hp

ut
(tp

s)

100 200 300 400 500
0

5

10

(b) Transaction Arrival Rate per Second

Av
er

ag
e

La
te

nc
y

(s)

100 200 300 400 500
0

0.5

1
⋅104

(c) Transaction Arrival Rate per Second

Co
m

m
itt

ed
Tr

an
sa

ct
io

ns

FabricCRDT Fabric

Figure 4.5.6: Impact of increasing transaction arrival rates for IoT application..

4.5.5 Discussion

FabricCRDT bypasses the MVCC validation and merges the con�icting transactions
instead of rejecting them. Therefore, it successfully commits all transactions in all
experiments. In stark contrast, Fabric only successfully commits very few transactions
for a higher transactions con�ict rate. The signi�cantly improved successful commit
rate of FabricCRDT contributes considerably to increasing Fabric’s throughput
and improving its scalability by eliminating transaction failures. Besides the improved
throughput, eliminating the transaction failures and o�ering the No Transaction Failure

and No Update Loss decreases the developer’s burden for developing blockchain-based
applications. Handling a large number of transaction failures in the application, as
observed in Fabric, increases the complexity of developing applications.

In our experiments, we observed that FabricCRDT, in comparison to Fabric, su�ers
from a higher latency, directly resulting from the extra processing time required for merg-
ing many JSON CRDTs. As the JSON object increases in size, its metadata and complexity

60

4. FABRICCRDT: A CRDT-ENABLED PERMISSIONED BLOCKCHAIN

0% 20% 40% 60% 80%0

100

200

(a) Percentage of Con�icting Transactions

Th
ro

ug
hp

ut
(tp

s)

0% 20% 40% 60% 80% 0

5

10

(b) Percentage of Con�icting Transactions

Av
er

ag
e

La
te

nc
y

(s)

0% 20% 40% 60% 80%0

0.5

1
⋅104

(c) Percentage of Con�icting Transactions in the Workload

Co
m

m
itt

ed
Tr

an
sa

ct
io

ns

FabricCRDT Fabric

Figure 4.5.7: E�ect of di�erent percentages of con�icting transactions.

increase when more keys and values are added. However, in most of our evaluations, we
investigated the worst-case scenarios where all transactions in a block are con�icting
and must be merged. For scenarios where con�icting and non-con�icting transactions
coexist, experiments show that Fabric and FabricCRDT have comparable latency
and throughput.

4.6 Summary

This chapter introduced an approach to eliminating failures of the concurrent dependent
transactions on Fabric. We presented FabricCRDT, an extension of Fabric, that
successfully commits con�icting and concurrent transactions. FabricCRDT employs
an approach for identifying con�icting transactions within one block and uses a CRDT-
based technique to resolve the con�ict transactions and merge their values without data
loss.

61

4.6. SUMMARY

We conducted extensive evaluations to study the performance of FabricCRDT and
its improved throughput over Fabric. Our �nding con�rms the applicability of our
approach for signi�cantly improving throughput by avoiding transaction failures and
decreasing the development e�ort required for creating real-world blockchain-based
applications.

Despite the improved throughput, FabricCRDT can correctly execute I-con�uent
applications. This is because FabricCRDT refrains from MVCC-based validations used
by Fabric, which preserves the I-con�uent invariant conditions on Fabric. Another
limitation of Fabric is its decreased performance as the size of JSON CRDT increases,
demonstrating the requirement for pruning and cleaning metadata from objects.

62

5

OrderlessChain: A Permissioned

Blockchain without Coordination

In this chapter, we present OrderlessChain, a coordination-free permissioned
blockchain without total global order of transactions. As explained in the previous
chapters, coordination to reach a consensus to o�er Byzantine Fault Tolerance and to
serialize transactions in a trustless and distributed system is a bottleneck for scalability.
In general, decreasing coordination plays a vital role in improving the performance of
any distributed systems [39]. A coordination-free blockchain could enable the concurrent
execution of transactions, leading to higher throughput and lower latency. However,
simply eliminating the coordination may jeopardize the correctness depending on the
application. For example, a payment processing application may require rejecting
transactions that result in the payee’s account’s balance turning negative. A coordination-
free blockchain cannot preserve this requirement [39, 40].

In contrast, I-con�uent invariant conditions can be preserved in a coordination-free
distributed system. For example, transactions that only deposit funds to an account
can execute without coordination. In other words, the I-con�uent transactions can be
processed in any order while preserving application-level correctness, and the �nal state of
the application is independent of the order of the transactions. Hence the transactions are
commutative and convergent. One technique capable of creating I-con�uent commutative

63

5.1. SYSTEM MODEL

and convergent transactions is CRDTs [12].

Unordered transactions preserve the I-con�uent invariants of applications in non-Byzantine
and eventually consistent environments. In other words, applications with I-con�uent
invariants are safe and live in non-Byzantine coordination-free environments [39].
However, preserving the safety and liveness of applications in a Byzantine environment
depends on paying a high coordination cost in coordination-based protocols [8, 25, 26,
36, 49, 184]. By providing a Byzantine coordination-free environment where I-con�uent
applications continue to be safe and live, we bene�t from improved performance while
ensuring trust in a trustless environment. Therefore, OrderlessChain uses the
properties of permissioned blockchains and CRDTs to o�er a coordination-free innovative
two-phase execute-commit protocol for creating safe and live applications in a Byzantine
environment.

This chapter is based on papers on OrderlessChain, either published or under
submission [60, 61, 185].

The remainder of the chapter is organized as follows. We explain OrderlessChain’s
system and failure models in Section 5.1. In Section 5.2, we introduce our novel coordination-
free two-phase protocol for the trusted execution of transactions in a trustless environ-
ment. Then, we present our approach to model OrderlessChain’s use cases with
CRDT in Section 5.3. In Section 5.4, we describe implementing the modeled use cases. We
also demonstrate our approach for preserving I-con�uent application-level correctness
requirements in Section 5.5. In Section 5.6, we study the e�ect of Byzantine actors
and provide proof for OrderlessChain’s Byzantine Fault Tolerance. Finally, in
Section 5.7, we evaluate the performance of OrderlessChain and compare it to the
coordination-based protocols of Fabric and FabricCRDT.

5.1 System Model

SystemModel – OrderlessChain is a strongly, eventually consistent, asynchronous
permissioned blockchain. An OrderlessChain network consists of a set of organiza-

64

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

tions {O1, ..., On} and a set of clients {C1, ..., Cr}. Organizations can communicate with
other non-failed organizations by sending and receiving messages.

A unique identi�er is assigned to each organization and client. The identity of each
organization is known to every other organization and client in the network. An
organization represents entities that range from large corporations to small businesses
or even individuals. The purpose of organizations is to de�ne trust boundaries in the
system. Although the organizations’ identity is known to each other, the organizations
do not necessarily trust each other.

Running Example – To better convey our system model and design, we create a voting
application to which we refer throughout the paper. Each voter Voteri can vote for one
party among the candidate parties in {P1, ..., Pn}. The network consists of n organizations,
each representing one distinct party. Each organization receives and stores votes from
voters. We consider the application correct if each voter votes for at most one party.
We chose this use case since voting applications are among popular blockchain use
cases [186]. Additionally, studies have shown that coordination in highly concurrent
use cases is a bottleneck [8, 36]. For example, in the case of Fabric, Chacko et al.
demonstrated that up to 90 percent of transactions for a digital voting application fail
due to Fabric’s coordination-based protocol.

Application’s World State – Each organization stores a replica of the application’s
state as a set of key-value pairs represented by STOi , which represents the application
state at organization Oi . Since OrderlessChain is an SEC system, the replicated
application states STO1 , ..., STOn at organizations O1, ..., On may diverge from each other,
but will eventually converge to the same state. At any given point in time, we de�ne the
application’s world state STApp as STApp = ∪ni=1STOi as the union of the application state at
all organizations where the values of identical keys are merged based on the techniques
discussed in this paper.

Invariant Conditions – The developer imposes an application’s correctness by de�ning
a set of invariant conditions {I1, ..., Is} on STApp . Each invariant Ij speci�es a constraint
over STApp . We de�ne the application correctness as follows:

De�nition 5.1.1. STApp Correctness. Let STApp be the application’s world state that does

65

5.1. SYSTEM MODEL

not violate the invariant conditions {I1, ..., Is}. Let the transaction set {TS1, ..., T Sm} be I-
con�uent with regard to {I1, ..., Is}. Then, committing the transactions {TS1, ..., T Sm} does
not violate any invariant conditions {I1, ..., Is} over STApp .

Application’s Endorsement Policy – The application developers specify the endorse-

ment policy for the application. The endorsement policy speci�es which organizations
must sign and commit the transactions. The process of obtaining the signature is called
endorsing. The application’s endorsement policy has the format EP ∶ {q of n}, where
n is the number of organizations in the system, and q is the minimum number of
organizations required for endorsing as well as committing a transaction. In other
words, the endorsement policy determines the trust requirements of the application and
enables the developer to adjust the amount of trust required.

In the context of our voting example, consider an election with four participating parties
P1, P2, P3, P4 where each party is represented by an a�liated organization OP1 , OP2 , OP3 , OP4 .
Consider the following two possible endorsement policies: EP1 ∶ {2 of 4} and EP2 ∶ {4 of 4}.
EP1 requires that votes are endorsed and committed by at least two out of the four
organizations. EP2 indicates that all four organizations must endorse and commit the
voter’s vote. Furthermore, we identify one invariant condition: maximally one vote per

voter. The application is correct if the maximally one vote per voter invariant is preserved
over STApp and committing transactions do not violate this invariant.

Transaction Model – A transaction is valid as follows:

De�nition 5.1.2. Transaction Validity. Let the application’s endorsement policy be

EP ∶ {q of n}. Let STApp be correct concerning the invariant conditions. Let the transaction
TSi be I-con�uent concerning the invariant conditions. Then, TSi is valid if and only if it
satis�es these two requirements:

1. Signature Validity: TSi is endorsed by at least q organizations and the client signed

the transaction.

2. Invariant Conditions Validity: Applying TSi does not violate any invariants.

66

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

We de�ne the transaction TSi to be committed as follows:

De�nition 5.1.3. Commi�ed Transaction. Let the application’s endorsement policy be

EP ∶ {q of n}. Let the transaction TSi be valid. Then, TSi is successfully committed if and

only if at least q organizations individually process and commit the transaction successfully.

For the voting example with EP1 ∶ {2 of 4}, a transaction is considered valid if it is
signed by the client and is endorsed by at least two organizations. Additionally, the
valid transaction must not violate the maximally one vote per voter invariant. Also, to
consider the transactions as committed, at least two organizations must commit a valid
transaction.

Failure Model – We consider the organizations and clients to be potentially Byzantine.
Byzantine organizations or clients can fail arbitrarily. We consider an organization to
be non-faulty if and only if the organization processes every transaction according to
OrderlessChain’s protocol. The transactions can be delivered in any order di�ering
from the sent order; they may also be duplicated, lost, or corrupted during transmission.
The safety and liveness properties of applications running on OrderlessChain are
de�ned as follows:

De�nition 5.1.4. Safety. Only valid transactions are successfully committed.

De�nition 5.1.5. Liveness. Every valid transaction is eventually successfully committed.

We have two kinds of failures:

1. Signature Failure: When a transaction does not receive the required endorsements
based on the endorsement policy, or the client’s signature is not valid.

2. Organization Failure: Any Byzantine failures of the organizations, including
crash and omission failures and the organizations’ arbitrary behavior, such as
intentionally jeopardizing the system through tempering with messages, forging
signatures, or software bugs.

Intuitively speaking, consider the two possible endorsement policies for our voting
example. EP1 requires the endorsement and committing of at least two organizations.

67

5.1. SYSTEM MODEL

Therefore, at most, one of the four organizations can be Byzantine, so the other non-faulty
organizations can prevent committing invalid transactions and keep the application safe.
With more than one Byzantine organization, the client may collude with the Byzantine
organizations and collect the two required endorsements and commits for the invalid
transactions. The non-faulty organizations cannot prevent it. However, the voting
application with EP2 is safe for up to three Byzantine organizations, as the remaining
one non-faulty organization can prevent the successful commit of invalid transactions.
For liveness with EP1, the client must communicate with at least two organizations. As
there are four organizations, liveness can tolerate two Byzantine failures. However, the
liveness of EP2 cannot tolerate any Byzantine failures, as any faulty organization can
hinder the transaction from being endorsed or committed by all four organizations.

Formally speaking, for an application with the endorsement policy EP ∶ {q of n} and
with up to f Byzantine organizations, the application is safe if q ≥ f + 1. Additionally, the
application is live if n − q ≥ f . We provide proof of the safety and liveness of Order-
lessChain in Section 5.6. The safety and liveness condition of OrderlessChain
in a Byzantine environment di�ers from the conventional 3f + 1 requirement, as we do
not require the organizations to coordinate to reach a consensus. Instead, we use the
permissioned property of the system and the organizations’ known identity to endorse
the transactions, where consequently, the non-faulty organizations prevent endorsing
and committing invalid transactions.

In the case of a network partition, an application with the endorsement policy of
EP ∶ {q of n} can remain available if the number of organizations in every partition
satis�es the safety and liveness requirements. Hence, OrderlessChain is available
under network partitions according to the CAP theorem [187], if in every partition there
exists at least q organizations, and once the network partition is resolved, the state of
partitions can be merged based on the techniques discussed in this paper.

68

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

5.2 Architecture and Protocol

In the following section, we �rst explain the architecture of OrderlessChain’s
network and internal components of organizations. Afterward, we describe our two-
phase execute-commit protocol for executing and committing transactions.

5.2.1 Architecture

Organizations are responsible for hosting smart contracts, receiving and executing
transactions, and managing a replica of the application’s ledger. Every application
running on OrderlessChain makes use of an isolated ledger, which contains the
application state STOi . The application’s ledger on every organization consists of two
components: (1) an append-only hash-chain log; (2) a database. The hash-chain log
contains all transactions that the organization has received since the beginning of time in
a hash-chain data structure. By sequentially executing every transaction in the hash-chain
log, we reach the application state STOi . For a more e�cient approach, an organization
applies each transaction to its database when the transaction is appended to the log.
Therefore, the database represents the current application state STOi .

The messages are authenticated using digital signatures based on a standard Public Key

Infrastructure (PKI) [188]. Organizations and clients use PKI to authenticate and sign
transactions and verify the integrity of the messages.

Developers create smart contracts, which are programs containing the application’s logic.
OrderlessChain supports executing smart contracts with a Turing-complete logic
written in the Go language [64]. Each smart contract can contain any number of functions.
Each function encapsulates a task that the application performs. To execute a smart
contract, clients submit a request to an organization that executes the smart contract
with the provided inputs and returns a result.

69

5.2. ARCHITECTURE AND PROTOCOL

5.2.2 Protocol and Transaction Lifecycle

OrderlessChain follows a two-phase execute-commit protocol and transaction life-
cycle. Clients �rst submit transaction proposals to be executed by organizations. If the
�rst phase succeeds, clients send the transactions to the organizations to be committed.
Figure 5.2.1 demonstrates the complete transaction lifecycle for an application with
endorsement policy EP ∶ {q of n}.

Organizationn
Client

Smart Contract

DB
 Append-
only Log

Organizationn-1

TP1

TP2

TP3

TP1

TP2

TP3

TP3

TP2

TP1

TP3

TP2

TP1

Organizationn

Organizationn-1

TS1

TS1

TS2

TS2

TS3

TS3

TS2

TS3

TS1

TS2

TS1

TS3

TS1

TS1

TS2

TS2

RCPT1

RCPT2

Execution Phase Commit Phase

REJ3

RCPT1

RCPT2

REJ3

Smart Contract

DB
 Append-
only Log

Step 2 Step 4

Step 4Step 2

Step 1

Step 1

Step 3

Step 3

Step 5

Figure 5.2.1: Transaction lifecycle on OrderlessChain.

Phase 1 / Execution Phase – The client prepares a transaction proposal TPi containing
the client’s identi�cation, the smart contract’s identi�er, the function to be invoked,
and the input parameters. The client broadcasts the proposal to at least q organizations
according to the endorsement policy (Step 1 in Figure 5.2.1).

Organizations receive the proposal and execute the smart contract with the provided
parameters. The execution result is a set of I-con�uent operations for modifying the
application’s state, created based on the CRDT methodology. These I-con�uent operations
preserve the application’s invariant conditions, which we explain in detail in the following
sections. The operations are added to a write-set. Then, the organization hashes and
signs the write-set with its private key and creates a signature. Finally, the organization

70

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

delivers the write-set with the created signature as a response (endorsement) to the client
(Step 2 in Figure 5.2.1). This signature ensures that the client or other organizations
cannot tamper with the operations in the endorsement’s write-set, as tampering makes
the signature invalid.

Phase 2 / Commit Phase – The client waits until it receives the minimum number of
endorsements required by the endorsement policy. If the write-sets of all endorsements
contain identical operations, the client assembles a transaction TSi . The identical op-
erations in the endorsements show that organizations followed the same protocol for
executing the smart contract. Suppose some Byzantine organizations do not execute
the smart contract de�ned by the developer or based on the provided input parameters.
In that case, the operations will not match the operations created by non-Byzantine
organizations and will cause the transaction to fail. The client adds the endorsement’s
write-set to the TSi’s write-set. The client hashes and signs the transaction’s write-set
with its private key to create a signature and includes it in the transaction. The client
also includes the received endorsements in the transaction.

The client sends back the transactions to at least q organizations as speci�ed by the
endorsement policy (Step 3). These organizations could be di�erent from those who
initially endorsed the proposal. If an organization has not previously committed the
transaction, it validates and commits each received transaction according to the de�nitions
above. Before committing a transaction, organizations verify whether the transaction’s
endorsements and the client’s signature are valid (signature validation) and whether
endorsements satisfy the endorsement policy. The organization hashes the transaction’s
write-set to verify the validity of endorsements and the client’s signature. It uses the public
keys of endorsing organizations and clients to verify their signatures. This veri�cation
shows that the endorsing organizations created identical write-sets, and the client did not
tamper with the write-set. If the transaction passes the signature validation, it is marked
as valid. Otherwise, the transaction is invalid.

The organizations update their database with the write-set of valid transactions, whereas
all valid and invalid transactions are appended to the hash-chain log. For appending the
transaction to the log, the organization creates a block Blockℎ =< TSi , Hasℎ(Blockℎ−1) >,
which contains the transaction and the hash of the last block Blockℎ−1 in the log. Then,

71

5.3. REALIZING DECENTRALIZED USE CASES ON ORDERLESSCHAIN

the organization appends the created block to the log. For valid transactions, a receipt
RCPTi = HasℎSign(Blockℎ, Valid), which is the signed hash of the block containing the
transaction, is sent to the client (Step 4). If the transaction is invalid, the organization
sends a rejection REJi = HasℎSign(Blockℎ, I nvalid) to the client. As the receipt contains
the hash of the block, which is dependent on the hash of previous blocks in the log,
the organization cannot modify the content of the transaction without destroying and
invalidating RCPTi of TSi and other transactions. The client waits until it receives the
minimum number of receipts required by the endorsement policy. The client can archive
the transaction’s receipts for bookkeeping purposes.

After sending the client’s receipt, the organization periodically gossips the transactions
to other organizations (Step 5). Upon receiving a transaction from another organization,
the organization checks the ledger to determine if the transaction has already been
received from other organizations or the client. If the transaction has already been
processed, the organization ignores it and avoids committing it again; otherwise, it is
committed following the above-explained procedure. If a client sends a transaction that
the organization has received from other organizations or a duplicate transaction from
the client itself, it does not commit it again. Instead, a receipt or rejection is sent to the
client.

5.3 RealizingDecentralizedUseCases on Orderless-

Chain

By discussing two use cases, we explain the possible use cases of OrderlessChain
and the system’s internal approach for creating CRDT-based I-con�uent applications.

5.3.1 Application Modeling

To implement a use case in a smart contract, we need to model the application as data
structures that match the use case’s description and contain the application’s data. We

72

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

Party1 Map

Keys: Voter1

Register:
Empty

Votern........

Register:
True

Auction Map

Keys: Bidder1 Biddern........

Counter:10 Counter:25Values: Values:

(a) Data structure of a participating party. (b) Data structure of an auction.

Figure 5.3.1: Application modeling for the voting and auction applications.

discuss modeling two use cases:

Voting Application – One possible solution for modeling our running voting example in
a smart contract is shown in Figure 5.3.1(a): For every party participating in the election,
we require a map containing key-value pairs. The key is the voter’s identi�cation, and
the value is a register that stores a Boolean value for the vote sent by the voter for this
party.

Auction Application – Auction applications are among the common and popular use
cases of blockchains [189]. An auction is a highly concurrent use case that can bene�t
from a coordination-free approach. Consider an auction and a set of bidders {Bidder1,
..., Biddern}. The bidder Bidderi submits bids. Each bid contains the amount it wishes to
add to its previous bid. The bidder must be able only to increase its last bid. Based on
this description, we realize one invariant condition: increase-only bids.

One possible design is as follows, as shown in Figure 5.3.1(b): Each auction is modeled as
a map containing key-value pairs. The key is the bidder’s identi�cation, and the value is
a counter. The counter stores the cumulative bids of the bidders. The counter’s value can
only be increased, and the value is increased with every new bid sent by the bidder.

5.3.2 CRDT Abstractions

As explained, CRDTs provide a solution for creating commutative convergent update
operations, and we use CRDTs in smart contracts. The proposed OrderlessChain
protocol is independent of CRDTs used in smart contracts. CRDTs are also replaceable

73

5.3. REALIZING DECENTRALIZED USE CASES ON ORDERLESSCHAIN

with alternative techniques that provide commutable operations to develop new types
of applications, such as Operational Transformation [190, 191]. However, there exists a
plethora of CRDTs for various data types. To enable the execution of these CRDTs, their
speci�cations need to be supported by the smart contract execution environment. In the
current implementation, OrderlessChain supports the speci�cations of grow-only
counters (G-Counter) [12], CRDT Maps [54], and multi-value registers (MV-Register) [54].
We chose these three CRDTs as they satisfy the requirements of the voting and auction
applications. Other use cases may require further CRDTs. For enabling the support for
other CRDTs, their design requirements, according to the available literature, must be
added to OrderlessChain [12, 68, 171].

Table 5.3.1: Modi�cation and read APIs of the CRDTs.

CRDT Modi�cation APIs Read API

G-Counter AddValue(value, clock) Read()
CRDT Map I nsertValue(key, value, clock) Read(key)
MV-Register AssignValue(value, clock) Read()

The three CRDTs represent the following data structures:

• G-Counter: It is a monotonically increasing numeric variable.

• CRDTMap: This CRDT is built upon a map data structure. A map is an unordered
data structure containing key-value pairs. The key is a unique identi�er; the value
can be any object.

• MV-Register: This is a shared variable capable of containing multiple values at a
time.

Every CRDT provides modi�cation and read APIs as shown in Table 5.3.1. Using the read
APIs in the smart contracts causes no side e�ects and requires no CRDT operation. The
developers create operations in the smart contract containing modi�cation API calls. The
value must be null for deleting a value with modi�cation APIs of CRDT Map and MV-
Register. The modi�cation APIs contain a logical clock used to infer the happened-before
relations. For creating more complex data structures, maps can be nested, where the
value of the key-value pairs can be either a new CRDT Map, G-Counter, or MV-Register.

74

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

These CRDTs are used for voting and auction applications as follows:

Voting application – As previously shown in Figure 5.3.1(a), each party is modeled as a
map, and the voter’s votes are modeled as key-value pairs in the party’s map where the
values are registers. Therefore, we use a CRDT Map to model the party’s map and the
MV-Register as the votes’ register.

Auction application – In the modeled auction application shown in Figure 5.3.1(b), we
use a map for modeling the auction and increase-only counters for bids. Hence, we use a
CRDT Map to model the auction’s map and G-Counters to model the bids of each bidder.

To evaluate an operation’s e�ects, the operation needs to be applied to the CRDT, which
may cause con�icts. The CRDTs must provide a built-in mechanism for resolving con�icts
of modi�cation operations. We identify the con�icting operations of the three CRDTs
and o�er a con�ict resolution accordingly:

• G-Counter: Every operation increase the counter’s value. Hence, the modi�cation
operations are inherently commutative and cause no con�ict.

• CRDT Map: The modi�cation operations that modify di�erent keys in the map
are commutative and non-con�icting and can be applied concurrently. However,
the operations that modify identical keys are con�icting. The con�ict is resolved
based on the happened-before relations among operations. If the happened-before
relation can be inferred, the operations are applied based on the relation; however,
if the happened-before relation cannot be inferred, a new map is created, and the
con�icting values are added to the new map as new key-value pairs, as shown in
Figure 5.3.2.

• MV-Register: On MV-Register, every modi�cation operation is con�icting, and the
value of the register is determined based on the happened-before relation among
clocks. However, if the happened-before relation cannot be inferred from the clocks,
the register stores all values, as shown in Figure 5.3.3, and the client may specify
which value to use as the �nal value of the register.

75

5.4. IMPLEMENTATION

Empty

Party1 Map

Voter1

VoteRegister2:
Empty

Party1 Map

Operation1: InsertValue(Voter1, VoteRegister1, Clock1)

Operation2: InsertValue(Voter1, VoteRegister2, Clock2)

Clock1 happened-before Clock2

Empty

Party1 Map

Voter1

Party1 Map

Operation3: InsertValue(Voter1, VoteRegister3, Clock3)

Operation4: InsertValue(Voter1, VoteRegister4, Clock4)

No happened-before relation between Clock3 and Clock4

Clock3

VoteRegister4:
Empty

VoteRegister3:
Empty

Clock4

Figure 5.3.2: Applying CRDT Map modi�cation operations.

VoteRegister1:
False

Party1 Map

Operation1: AssignValue(True, Clock1)

Operation2: AssignValue(False, Clock2)

Clock1 happened-before Clock2

Party1 Map

Operation3: AssignValue(True, Clock3)

Operation4: AssignValue(False, Clock4)

No happened-before relation between Clock3 and Clock4

Voter1

VoteRegister1:
[True, False]

Voter1

VoteRegister1:
Empty

Party1 Map

Voter1

VoteRegister1:
Empty

Party1 Map

Voter1

Figure 5.3.3: Applying MV-Register modi�cation operations.

5.4 Implementation

We implemented a prototype of OrderlessChain with the Go language [64] and Pro-

tocol Bu�er-based gRPC [192]. We decided on these technologies due to high-performant
built-in support for concurrent programming in Go. Due to the e�cient serialization and
deserialization of gRPC, we used this framework. We open-sourced the code and the
smart contracts discussed in this paper [57].

76

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

5.4.1 Developing CRDT-enabled Smart Contracts

Developers use our Smart Contract Library (SCL) for developing smart contracts and
de�ning the logic of applications. The smart contract includes functions that encapsulate
di�erent functionalities of the application. To enable developers to interact with data
stored on the ledger, SCL o�ers interfaces for de�ning operations called CRDT APIs.

Each client keeps track of a Lamport clock [74], which is passed into the smart contract
with proposals. The client increments the clock with every submitted proposal. Each
client’s Lamport clock is independent of the clock of other clients. Furthermore, each
CRDT object has a unique identi�cation on the ledger. The read API does not require
creating any operation, and SCL only requires the identi�cation of the CRDT object to
retrieve it.

For modi�cations, in addition to the identi�cation of the CRDT object, each operation
includes four components:

1. Operation Identi�er: The identi�cation of the operation is unique per CRDT
object and is a combination of the client’s identi�cation and the client’s Lamport
clock.

2. Modi�cation Value and Type: The value that the operation modi�es and the
type of CRDT.

3. Client’s Clock: The client’s Lamport clock.

4. Operation Path: Developers can create nested CRDT structures for creating more
complex data structures. The path speci�es the location of the modi�cation, starting
from the root of the CRDT object.

For example, in the voting application with four parties, Figure 5.4.1 shows the function in
the smart contract for creating the operations for voting for a party. The function creates
four operations for voting for party P1. One operation sets the voter’s MV-Register on
party P1 to true, and the other three operations set the voter’s MV-Register on the other

77

5.4. IMPLEMENTATION

three parties to false. These four operations are included in the write-set of proposals for
submitting a vote.

Figure 5.4.1: The smart contract of the voting application to cast a vote.

5.4.2 Applying CRDT Transactions

Developers can implement functions in smart contracts for invoking read APIs and
retrieving the values of CRDT objects. Subsequently, clients can submit proposals to an

78

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

organization Oi for reading the values. In our voting example, the developer can imple-
ment a function to read the number of votes submitted to a party. As OrderlessChain
is an SEC system, the application state STOi may diverge from the application states on
other organizations. Therefore, reading the values at Oi only re�ects the modi�cations
applied at Oi .

To compute the CRDT object’s value in response to read API calls, the organization
should retrieve and apply every operation in the ledger submitted for the CRDT object.
As the number of operations increases, the time required for applying operations also
increases. This increasing overhead is a well-known problem of CRDTs [193, 194]. Hence,
we implemented an optimization to address this issue. As Section 5.2 explains, the ledger
contains a database beside the hash-chain log. The database is updated with every valid
transaction. It consists of a conventional key-value database, namely LevelDB [65], and an
in-memory cache. Upon the transaction commit, the operations are inserted into LevelDB.
We do so as retrieving the operations from LevelDB is more e�cient than retrieving them
from the log during a cache miss. The value of the CRDT object in the cache is updated
with the transaction’s operations according to Algorithm 3. In response to read API calls,
the organizations return the value of the CRDT object from the cache. This approach
o�ers read-your-writes consistency from the client’s point of view [195].

Algorithm 3 demonstrates our approach for applying each operation to the CRDT object.
For every operation, before applying it, the CRDT object is traversed from its root until
it reaches the location de�ned by the operation’s path (Line 3). As the object can be a
nested structure, parts of the path might not have been added to the object yet. Therefore,
the missing parts are created and added. Additionally, the location contains the clocks of
the previously applied operations. Once the location for modi�cation is reached (Line 4),
the changes are applied (Line 5). For applying the changes, as we explained in the CRDT
abstractions, the built-in con�ict resolution is applied depending on the type of object
and the clocks of previously applied operations. Additionally, the operation’s clock is
appended to the location’s clocks. The time and space complexity of Algorithm 3 is O(n),
where n is the number of operations being applied. Hence, the complexity of applying of
operation is O(1).

In Section 5.6, we prove the SEC property. However, �rst, we demonstrate that the

79

5.5. PRESERVING INVARIANT CONDITIONS

Algorithm 3: Applying CRDT operations to the object on OrderlessChain.
1 ApplyOperations (CRDTObj, Operations)

input :CRDTObj, a reference to the CRDT object.

input :Operations, the modi�cation operations.

2 foreach Opi in Operations do
3 CRDTObj.Create(Opi .OpPatℎ)
4 Location = CRDTObj.GetModif yLoc(Opi .OpPatℎ)
5 CRDTObj.Apply(Location, Opi .Val, Opi .ValType, Opi .Clock)

application state STOi is independent of the order of transactions. We formulate the
following lemma:

Lemma 5.4.1. Independent of the processing order of transactions in the transaction set

{TS1, ..., T Sm} in organization Oi , application state STOi converges to the same state for all i.

Proof. The write-set of every transaction in {TS1, ..., T Sm} only contains CRDT modi�ca-
tion operations. As CRDTs are provided with the built-in con�ict resolution mechanism,
applying the operations in the write-set of operations by using Algorithm 3 ensures that
transactions can be processed in any order while converging to the same state. Hence,
the convergence of STOi is independent of the order of transactions.

5.5 Preserving Invariant Conditions

As explained, submitting a set of transactions {TS1, ..., T Sm} in a coordination-free manner
preserves the invariants {I1, ..., Is} if the set of transactions is I-con�uent concerning the
invariants. Organizations can commit a set of I-con�uent transactions without additional
validations while preserving the invariants. Since the CRDT operations in the write-
set of transactions modify the application’s state, the operations must be I-con�uent.
As developers de�ne the logic for creating operations in a smart contract, they must
implement the identi�ed invariants as I-con�uent operations.

In the case of our voting application, we realized themaximally one vote per voter invariant.
We consider an election with two participating parties to determine that the invariant

80

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

can be preserved by creating I-con�uent operations. As explained in Section 5.4, every
transaction TSVote that submits a vote has two operations in the write-set. One operation
sets the voter’s MV-Register in the elected party’s map to true. The other operation sets
the voter’s MV-Register for the non-elected parties to false.

VoteRegister1:
False

Party1 Map

Voter1

VoteRegister1:
True

Party2 Map

Voter1

Operation1: {[Party1/Voter1], MV-Register, True, Voter1Clock1}

Operation2: {[Party2/Voter1], MV-Register, False, Voter1Clock1}

Operation3: {[Party1/Voter1], MV-Register, False, Voter1Clock2}

Operation4: {[Party2/Voter1], MV-Register, True, Voter1Clock2}

TSVoter1
Vote1 (Vote of Voter1 for Party1)

TSVoter1
Vote2 (Vote of Voter1 for Party2)

Voter1Clock1 and Voter1Clock2 from Voter1. Hence, Voter1Clock1 happened-before Voter1Clock2

Figure 5.5.1: Preserving the invariant condition of the voting application.

There is no coordination among organizations, so the voter can submit several votes.
However, the maximally one vote per voter invariant requires that we only count one
of the votes. Consider the following transaction set {TSVoter1Vote1 , T SVoter1Vote2 }, submitted by
Voter1, as shown in Figure 5.5.1. Each transaction contains two operations. Voter1
submitted two votes for two di�erent parties, where there exists a happened-before
relation between operations in TSVoter1Vote1 and TSVoter1Vote2 . Therefore, independent of the order
they are processed, based on the CRDT’s con�ict resolution mechanism, operations in
TSVoter1Vote2 overwrite the e�ects of operations in TSVoter1Vote1 . Hence, we count only one of the
votes submitted by the Voter1. The maximally one vote per voter invariant is preserved,
and the transactions are I-con�uent concerning the invariant.

We can similarly reason that the auction application is I-con�uent concerning the increase-
only bids invariant.

81

5.6. BYZANTINE FAULT TOLERANCE

5.6 Byzantine Fault Tolerance

We assume that organizations or clients can be potentially Byzantine. We discuss four
potential attacks by Byzantine clients and the approach of the system to prevent these
attacks. Hence, Byzantine clients cannot jeopardize the system:

1. A Byzantine client might send proposals to the organizations without submitting
the transaction to be committed. This behavior does not leave any lasting side
e�ects on the system. However, it can be used for DDoS attacks on the system
and decrease performance. However, note that only authenticated clients can
communicate with the organizations. Therefore, if the authenticated Byzantine
clients try to overload the system, they can be detected, and their permissions can
be revoked.

2. A Byzantine client may send the transactions to some organizations during the
commit phase and avoid sending them to other organizations. As the organizations
gossip the transactions to other organizations after committing the transaction, all
organizations eventually receive the transactions.

3. Clients may send the wrong logical clocks to the organizations with the proposals.
If clients send di�erent clocks to di�erent organizations with the same proposal,
then the operations in the endorsements do not match. Hence, the client cannot
create a valid transaction and cannot successfully commit the transaction.

4. Suppose the client does not increment the clock with every proposal. In that
case, no happened-before relation between clocks can be inferred, and the CRDT’s
con�ict resolution mechanism manages the operations accordingly, as explained in
Section 5.3, without causing data corruption.

To discuss the safety and liveness concerning Byzantine organizations, we introduce the
following theorem:

Theorem 5.6.1. Let the endorsement policy for an application be EP ∶ {q of n} with

n ≥ q > 0. Then, for up to f Byzantine organizations, the application is safe if and only if

q ≥ f + 1. Furthermore, the application is live if and only if n − q ≥ f .

82

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

Proof. According to our de�nition of safety and liveness, the safe and live Order-
lessChain must prevent committing invalid transactions and eventually commit valid
transactions.

Byzantine organizations may attempt to jeopardize the system by either responding with
wrong messages or avoiding responding altogether. Wrong messages include forged
signatures from organizations and clients, transactions with tampered or corrupted
write-set operations, incorrectly executed smart contracts, or duplicated or lost messages.
As the integrity of messages sent by organizations and clients can be examined, the
signatures cannot be forged, and the organizations can independently prove the validity
of organizations’ and clients’ signatures. As the system commits every transaction only
once, and multiple executions of proposals do not leave any lasting side e�ects, duplication
of messages has no e�ect. Therefore, if the messages are suspected to be lost, they can be
resent by clients.

Additionally, if a client’s transaction fails due to the Byzantine organizations’ wrong
messages, the client can resubmit the proposals to another set of organizations and
resend the transaction. On OrderlessChain, the developers identify and de�ne the
application logic for creating I-con�uent update operations. Therefore, the invariants
are preserved as long as the write-set operations are not tampered with and the smart
contract is executed as de�ned by the developer. As the write-set of every endorsement
must include identical operations, as long as there exists at least one non-faulty organiza-
tion among the q endorsing organizations, which creates the write-set operations that
can be di�erentiated from the tampered operations or the incorrectly executed smart
contact, creating a valid transaction is impossible, and the application is safe. Hence, the
application is safe if and only if q ≥ f + 1.

Byzantine organizations may not respond to clients. For the application to be live, the
client must endorse and commit the transaction on q among n organizations. Therefore,
the transaction can reach at least q organizations if and only if n − q ≥ f . Therefore, the
application is live if and only if n − q ≥ f .

We demonstrated that liveness and safety depend on the application’s endorsement
policy. In other words, the safety and liveness can be tailored to the application’s

83

5.6. BYZANTINE FAULT TOLERANCE

requirements. For example, for the voting application with four parties, the regulation
of a fair election may dictate that all parties endorse every vote. Therefore, we need
EP ∶ {4 of 4}. If the regulations demand the endorsement of at most two parties, we can
have an EP ∶ {2 of 4}.

Furthermore, since the Byzantine behavior of organizations can be observed, and the
identity of organizations is known to each other, the organizations have the incentive to
behave honestly, as otherwise, they may face the consequences. For example, a Byzantine
party jeopardizing the election may face legal consequences.

The following theorem demonstrates that STApp is SEC.

Theorem 5.6.2. Let the application be safe and live. Then, the application’s world state

STApp is SEC.

Proof. According to the de�nition of SEC in the background chapter, an SEC system
must satisfy two requirements of eventual delivery of transactions and strong convergence

of nodes. In Theorem 5.6.1, we demonstrated that every valid transaction is committed
for a safe and live application. Additionally, non-faulty organizations gossip about the
transaction to other non-faulty organizations. Therefore, provided that the application
is safe and live, every non-faulty organization eventually receives a valid transaction.
Hence, eventual delivery of transactions is satis�ed.

In Lemma 5.4.1, we proved that independent of the order of transactions in the transaction
set {TS1, ..., T Sm}, the application state STOi at organization Oi converges to the same
state for all i. As the eventual delivery of transactions requirement for the safe and
live application is satis�ed, if the transaction set {TS1, ..., T Sm} is delivered to the non-
faulty organization Oi , the same set is delivered to every other non-faulty organization.
Therefore, according to Lemma 5.4.1, all STOi converges to the same state, and the
requirement strong convergence of nodes is satis�ed. Hence, the application’s world state
STApp of a safe and live application on OrderlessChain is SEC.

84

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

5.7 Evaluation

We �rst evaluate OrderlessChain. Then, we compare it to Fabric and Fabric-
CRDT. We decided to compare our system to these systems, as Fabric is the most
prominent coordination-based permissioned blockchain capable of executing Turing-
complete applications similar to OrderlessChain. FabricCRDT , to the best of
our knowledge, is the only permissioned blockchain capable of running CRDT-enabled
applications.

We compare OrderlessChain to a prototype of Fabric and FabricCRDT, which
we implemented based on the Go language, gRPC, and LevelDB. We do so because the
original Fabric and FabricCRDT o�er many security and network-related features
that we do not provide in OrderlessChain. As these features impose performance
penalties, we replaced the original implementations for a fair comparison since we
intended to compare our coordination-free protocol to their coordination-based protocols
and not our source code to their codes. The extensive evaluation of Fabric performed
by Chacko et al. [8] demonstrates these performance issues and con�rms the fairness of
our approach for using our prototypes of Fabric and FabricCRDT. Furthermore,
the CRDT approach in FabricCRDT does not use the cache we implemented as an
optimization. For fairness, we also implemented such a cache in FabricCRDT.

5.7.1 Experimental Applications

We developed a synthetic application for evaluating OrderlessChain. Based on the
examples discussed, we also implemented voting and auction applications for comparing
OrderlessChain to Fabric and FabricCRDT. Every application consists of one
smart contract, and in total, we developed seven smart contracts. Each smart contract
has one modify-function for modifying the data on the ledger and one read-function for
retrieving data from the ledger.

Synthetic Application – For a controlled evaluation of OrderlessChain, we
implemented a synthetic application. The application’s smart contract includes two

85

5.7. EVALUATION

functions Modif y(ClientI di , Clocki , ObjCount, OpsPerObjCount, CRDT Type) and
Read(ObjCount). The Modif y function receives the client identi�cation and clock, the
number of CRDT objects to be modi�ed, the number of operations per each CRDT object
modi�cation, and the CRDT type. CRDT type is either a G-Counter, CRDT Map, or
MV-Register. The write-set of the transaction includes ObjCount × OpsPerObjCount
operations. The Read function reads a speci�c number of CRDT objects as speci�ed by
ObjCount .

Voting Application – We developed applications based on the voting example for
OrderlessChain, Fabric, and FabricCRDT. The application’s smart contract for
OrderlessChain has two functions: Vote(Voteri , Clocki , Partyj , Electionl) and
ReadVoteCount(Partyj , Electionl). For an election with n parties, the Vote function
results in n total operations (one operation per object) in the write-set as explained
in Section 5.4. ReadVoteCount retrieves the current number of votes of Partyj . The
smart contracts for Fabric and FabricCRDT also include Vote and ReadVoteCount
functions, which are implemented based on the best practices for developing smart
contracts on these systems [8, 13].

Auction Application – The auction applications are implemented for Orderless-
Chain, Fabric, and FabricCRDT. The application’s smart contract of Orderless-
Chain has two functions: Bid(Bidderi , Clocki , BidIncreasei , Auctionj) and
GetH igℎestBid(Auctionj). The Bid function includes one operation in its write-set for
increasing the bidder’s G-Counter. GetH igℎestBid reads the current highest bid. The
smart contracts for Fabric and FabricCRDT also include a Bid and a GetH igℎestBid
function.

5.7.2 Workloads, Control Variables and Metrics

Each experiment is executed on an initially empty ledger. We submit a workload
containing transactions invoking the modify- and read-functions in the smart contracts,
also referred to as modify- and read-transactions. The workload includes a speci�c
percentage of modify-transactions and read-transactions, uniformly distributed during
the execution of the experiment. Each organization receives a speci�c percentage of the

86

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

load on the system. We de�ne the transaction arrival rate as transactions per second (tps)
of the system as the total number of transactions per second submitted by all clients to the
system. The other control variables are the number of organizations, endorsement policies,
the Byzantine failures of organizations, and the number of organizations to which each
organization gossips the transaction, which we refer to as the Gossip Ratio. The gossips
are propagated at one-second intervals. For the endorsement policies of EP ∶ {q of n},
the clients send the proposals and transactions to exactly q organizations. Organizations
can contain several peers on Fabric and FabricCRDT. In our experiments, each
organization of these systems consists of one peer. Additionally, the blocks created by
Fabric’s and FabricCRDT’s ordering service have a size of 50 transactions. Based on
our investigation and other studies [8], this block size yields good performance. Each
experiment is executed for 180 seconds.

For the synthetic application, we used 1000 clients. ObjCount , OpsPerObjCount , and
CRDT Type are control variables. We de�ned 1000 voters, eight elections, and eight
parties per election for the voting application. We de�ned 1000 bidders, eight auctions,
and a gradually growing number of bids for the auction application. We chose these
values according to the scalability evaluation of Fabric done by other authors [8]. The
input parameters for modify- and read-transactions are randomly selected from these
prede�ned values based on a uniform distribution during the experiment.

Each experiment is executed at least three times, and the results are averaged. At the end
of each experiment, the performance metrics are collected. We measure the transaction

throughput, the average transaction latency, the 1st percentile transaction latency, and
the 99th percentile transaction latency. The transaction throughput is the total number
of successfully committed transactions divided by the total time taken to commit these
transactions. The transaction latency is the response time per transaction from sending
the proposal until receiving the commit receipts from organizations, according to the
endorsement policy.

87

5.7. EVALUATION

5.7.3 Experimental Setup

Each organization of OrderlessChain, Fabric, and FabricCRDT runs on an
individual KVM-based Ubuntu 20.04 VM, and di�erent organizations do not share VM
resources. Each VM uses 9.8 GB of RAM and four vCPUs. Since the VMs are located
within a single cluster and are connected via LAN, we used Ubuntu’s NetEm (network

emulation) and tc (tra�c control) facilities for adding 100 ms delay, 4 ms jitter, and 100
Mbits rate control to all links for emulating a WAN. We chose these values by observing
the delays and bandwidth between two Ubuntu servers in two cities in Europe and
North America, provided by two cloud providers. The ordering service of Fabric and
FabricCRDT runs on a separate VM.

We also developed a distributed benchmarking tool written in the Go language that
orchestrates a distributed deployment of clients, generates and submits transactions, and
collects performance metrics.

5.7.4 Experimental Results for Synthetic Applications

Table 5.7.1 displays the control variables, their default values, and the executed exper-
imental con�gurations for the synthetic application on OrderlessChain. One of
the control variables is set to the executed con�gurations for each experiment, and the
other control variables are set to the default value. The results of the experiments are
summarized from Figure 5.7.1 to Figure 5.7.11. In Figure 5.7.1, Figure 5.7.2, Figure 5.7.4,
Figure 5.7.5, Figure 5.7.6, Figure 5.7.7, Figure 5.7.8, Figure 5.7.9, the left �gure demonstrates
the average, 1st, and 99th percentiles transaction latencies for executed con�gurations.
The right �gure shows the throughput of the transaction.

Impact of Increasing Transaction Arrival Rates – As shown in Figure 5.7.1, we
observe that the throughput increases with an increasing transaction arrival rate. Al-
though the latency increases as the load on the system increase, we observe that the
throughput increases ten folds while the latency decreases two folds. This result con�rms
the scalability of OrderlessChain for an increasing load on the system.

88

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

Table 5.7.1: Control variables of the evaluated synthetic application.

Control Variable Default Value Executed Con�guration

(1) TS Arrival Rate 3000 tps {1000 tps, ..., 10,000 tps}
(2) Number of Orgs 16 Orgs {8 Orgs, ..., 32 Orgs}
(3) Operations per Obj 1 Op {2 Ops, ..., 16 Ops}
(4) Number of Obj 1 Obj {2 Objs, ..., 16 Objs}
(5) Endorsement Policy {4 of 16} {{2 of 16}, ..., {16 of 16}}
(6) CRDT Type G-Counter {G-Counter, MV-Register, Map}
(7) Workload (Read/Modify) R50M50 {R10M90, ..., R90M10}
(8) Gossip Ratio 1 Org {1 Org, ..., 15 Orgs}
(9) Byzantine Orgs 0 Failure {1 Failure, 2 Failures, 3 Failures}

100
0tp

s

200
0tp

s

300
0tp

s

400
0tp

s

500
0tp

s

600
0tp

s

700
0tp

s

800
0tp

s

900
0tp

s

100
00t

ps
0

500

1,000

Transaction Arrival Rate

La
te

nc
y

(m
s)

100
0tp

s

200
0tp

s

300
0tp

s

400
0tp

s

500
0tp

s

600
0tp

s

700
0tp

s

800
0tp

s

900
0tp

s

100
00t

ps
0

0.5

1
⋅104

Transaction Arrival Rate

Th
ro

ug
hp

ut
(tp

s)

Modify Transactions Read Transactions Modify and Read Combined

Figure 5.7.1: Impact of increasing transaction arrival rates.

E�ect of Increasing Number of Organizations – We studied the e�ect of increasing
the number of organizations on throughput and latency, as shown in Figure 5.7.2.
For each experiment, we set the endorsement policy to EP ∶ {4 of NumerOf Orgs}.
We observe that the system scales for an increasing number of organizations without
a�ecting the throughput and latency. This result shows that OrderlessChain scales
horizontally, and by increasing the number of organizations in the system, it can process
a higher number of transactions per second. These �ndings are further con�rmed by the
experiments we executed to compare the average latency to throughput for an increasing
number of organizations and arrival rates, as shown in Figure 5.7.3.

E�ect of Increasing Number of Operations per Object – The result for an increasing
number of operations per object demonstrates that the throughput and latency are

89

5.7. EVALUATION

8O
rgs

16O
rgs

24O
rgs

32O
rgs

0
200
400
600

Number of Organizations

La
te

nc
y

(m
s)

8O
rgs

16O
rgs

24O
rgs

32O
rgs

0

1,000

2,000

3,000

Number of Organizations

Th
ro

ug
hp

ut
(tp

s)

Modify Transactions Read Transactions Modify and Read Combined

Figure 5.7.2: E�ect of an increasing number of organizations.

0 0.2 0.4 0.6 0.8 1
⋅104

0

200

400

600

Throughput (tps)

La
te

nc
y

(m
s)

16 Orgs
24 Orgs
32 Orgs

Figure 5.7.3: Latency to throughput for an increasing number of organizations.

una�ected by the number of operations, as shown in Figure 5.7.4. The reason is that
applying every operation requires O(1). Since applying di�erent objects’ operations is
performed in parallel, the number of operations per object is not a bottleneck.

Impact of Increasing Number of Objects – In contrast to the increasing number
of operations per object, we observed that the latency increases for a higher number
of objects in the transaction, as shown in Figure 5.7.5. This increased latency can be
explained due to our approach to lock the objects in the cache to avoid concurrent reads
and writes while applying the modify-transactions. Therefore, transactions with more
objects must wait for the lock on the objects to be released before their operations are
applied, causing the latency to increase.

E�ect of Di�erent Endorsement Policies – With an increasing number of organi-

90

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

2O
ps

4O
ps

6O
ps

8O
ps

10O
ps

12O
ps

14O
ps

16O
ps

0
200
400
600

Operations per Object

La
te

nc
y

(m
s)

2O
ps

4O
ps

6O
ps

8O
ps

10O
ps

12O
ps

14O
ps

16O
ps

0

1,000

2,000

3,000

Operations per Object

Th
ro

ug
hp

ut
(tp

s)

Modify Transactions Read Transactions Modify and Read Combined

Figure 5.7.4: E�ect of an increasing number of operations per object.

2O
bjs

4O
bjs

6O
bjs

8O
bjs

10O
bjs

12O
bjs

14O
bjs

16O
bjs

0

0.5

1

1.5
⋅104

Number of Objects

La
te

nc
y

(m
s)

2O
bjs

4O
bjs

6O
bjs

8O
bjs

10O
bjs

12O
bjs

14O
bjs

16O
bjs

0

1,000

2,000

3,000

Number of Objects

Th
ro

ug
hp

ut
(tp

s)

Modify Transactions Read Transactions Modify and Read Combined

Figure 5.7.5: Impact of an increasing number of objects.

zations required by the endorsement policy, we observe that the latency increases as
the load on the organization increase, as shown in Figure 5.7.6. The increased load on
the organizations causes the transactions to be queued to be processed and committed,
subsequently increasing the latency.

E�ect of Di�erent CRDT Types – We observed that latency and throughput are
independent of CRDT types, demonstrated in Figure 5.7.7. The reason is that applying
each CRDT operation requires O(1), and independent of the CRDT, one operation is
included in every modify-transactions.

Impact of Di�erent Percentage of Read- and Modify-Transactions – We gradually
decreased the modify-transactions in the workload from 90 percent to 10 percent. As

91

5.7. EVALUATION

2of
16

4of
16

6of
16

8of
16
10o

f16
12o

f16
14o

f16
16o

f16
0

1,000

2,000

Endorsement Policy

La
te

nc
y

(m
s)

2of
16

4of
16

6of
16

8of
16
10o

f16
12o

f16
14o

f16
16o

f16
0

1,000

2,000

3,000

Endorsement Policy

Th
ro

ug
hp

ut
(tp

s)

Modify Transactions Read Transactions Modify and Read Combined

Figure 5.7.6: E�ect of di�erent endorsement policies.

G-C
ou

nter

MV-Reg Map
0

200
400
600

CRDT Type

La
te

nc
y

(m
s)

G-C
ou

nter

MV-Reg Map
0

1,000

2,000

3,000

CRDT Type

Th
ro

ug
hp

ut
(tp

s)

Modify Transactions Read Transactions Modify and Read Combined

Figure 5.7.7: E�ect of di�erent CRDT types.

shown in Figure 5.7.8, we observed that the latency and throughput were una�ected by
varying the percentage of read- and modify-transactions.

E�ect of Increasing Gossip Ratio – We also studied the e�ect of increasing the Gossip
Ratio by increasing the number of organizations. As shown in Figure 5.7.9, we do not
observe a signi�cant change in latency and throughput for an increasing gossip ratio either.
The reason is that the bandwidth is not a bottleneck, and most of the gossiped transactions
have been sent by the clients and are previously committed by the organizations. Hence,
the gossiped transactions must not be committed.

Impact of Byzantine Organizations – We studied the e�ects of organizations’ Byzan-

92

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

R10M
90

R20M
80

R30M
70

R40M
60

R50M
50

R60M
40

R70M
30

R80M
20

R90M
10

0
200
400
600

Workload

La
te

nc
y

(m
s)

R10M
90

R20M
80

R30M
70

R40M
60

R50M
50

R60M
40

R70M
30

R80M
20

R90M
10

0

1,000

2,000

3,000

Workload

Th
ro

ug
hp

ut
(tp

s)

Modify Transactions Read Transactions Modify and Read Combined

Figure 5.7.8: Impact of di�erent percentage of read- and modify-transactions.

1O
rg

3O
rgs

5O
rgs

7O
rgs

9O
rgs

11O
rgs

13O
rgs

15O
rgs

0
200
400
600

Gossip Ratio

La
te

nc
y

(m
s)

1O
rg

3O
rgs

5O
rgs

7O
rgs

9O
rgs

11O
rgs

13O
rgs

15O
rgs

0

1,000

2,000

3,000

Gossip Ratio

Th
ro

ug
hp

ut
(tp

s)

Modify Transactions Read Transactions Modify and Read Combined

Figure 5.7.9: E�ect of increasing gossip ratio.

tine failures. As shown in Figure 5.7.10, three randomly selected organizations behaved
arbitrarily for a speci�c period during the experiment. The Byzantine organizations
either randomly avoid responding to clients’ proposals or transactions or endorse the
proposals incorrectly. The Byzantine organizations also randomly avoid forwarding the
transactions to other organizations. We included three Byzantine organizations as, based
on the EP ∶ {4 of 16}, the safety and liveness of the application can tolerate up to three
Byzantine failures. We observed that the throughput decreases with every Byzantine
failure. However, the latency is not a�ected. The reason for the decreasing throughput is
that clients cannot collect an adequate number of endorsements due to the Byzantine
organization not responding and the signature validation failure caused by the wrongly
endorsed proposals.

93

5.7. EVALUATION

0 20 40 60 80 100 120 140 160 180
0

1,000

2,000

3,000

f ∶ 1

30 s

f ∶ 2

70 s

f ∶ 3

110 s

f ∶ 0

150 s

Experiment Time (s)

Th
ro

ug
hp

ut
(tp

s)

Figure 5.7.10: Throughput across experiments with Byzantine organizations.

Since clients can observe organizations that wrongly endorse or do not respond while
other organizations respond with lower latency, they can avoid Byzantine organizations.
To demonstrate this, we ran experiments where the clients avoided the Byzantine
organization and changed to another randomly selected organization. As shown in
Figure 5.7.11, the throughput returns to its pre-failure value immediately after clients
avoid the Byzantine organizations, as shown by the solid green lines.

0 20 40 60 80 100 120 140 160 180
0

1,000

2,000

3,000

f ∶ 1

30 s

f ∶ 2

70 s

f ∶ 3

110 s

f ∶ 0

150 s

Experiment Time (s)

Th
ro

ug
hp

ut
(tp

s)

Figure 5.7.11: Experiments with clients avoiding Byzantine organizations.

5.7.5 Experimental Results for the Voting and Auction Applica-

tions

We executed the voting and auction applications to compare our coordination-free
approach of OrderlessChain to the coordination-based protocols of Fabric and
Fabric. These experiments are conducted with eight organizations, the EP ∶ {4 of 8}
endorsement policy, and the uniform workload of 50 percent read-transactions and 50

94

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

percent write-transactions. Furthermore, no Byzantine organizations exist, and the gossip
ratio for OrderlessChain is set to one.

We increased the transaction arrival rate from 500 tps to 2500 tps for the voting and
auction applications on the three systems. For FabricCRDT, we observed that latency
signi�cantly increases for a higher transaction arrival rate due to its state-based CRDT
implementation, so we limited the transaction latency for FabricCRDT to 240 sec-
onds, after which they are timed out and not considered for throughput and latency
determination.

The observed throughput of the voting and auction applications are shown in Figure 5.7.12.
The average, 1st and 99th percentiles transaction are demonstrated in Figure 5.7.13. As
shown in Figure 5.7.12, we observe that OrderlessChain demonstrates a higher
throughput of modify- and read-transactions for both applications. Although Fabric’s
read-transactions reach 2000 tsp, the throughput signi�cantly drops at 2500 tsp arrival
rates for both applications since the coordination-based ordering service becomes a
bottleneck. Furthermore, we observe that many modify-transactions of the voting
application fail due to the MVCC validation explaining its low throughput. This �nding
con�rms the �nding of Chacko et al. regarding the low throughput of highly concurrent
applications on Fabric [8]. Although we used caching for the CRDT approach in
FabricCRDT, its approach still is a bottleneck, and we observe low throughput and
high latency for read- and modify-transactions of voting and auction applications.

As shown in Figure 5.7.13, OrderlessChain’s latency remains constant under in-
creasing arrival rates. Fabric’s latency signi�cantly increases for higher arrival rates
for both applications. As mentioned, the reason is that Fabric’s central ordering
service is a bottleneck. The increased latency causes more transactions to fail due
to MVCC validation, which explains the signi�cant throughput decrease for Fabric.
FabricCRDT demonstrates irregular latency patterns as timed-out transactions are
not considered.

95

5.7. EVALUATION

500
tps

100
0tp

s

150
0tp

s

200
0tp

s

250
0tp

s0

500

1,000

1,500

2,000

(a) Transaction Arrival Rate for the Voting Application (tps)

Th
ro

ug
hp

ut
(tp

s) OrderlessChain Modify Fabric Modify, FabricCRDT Modify
OrderlessChain Read Fabric Read FabricCRDT Read

500
tps

100
0tp

s

150
0tp

s

200
0tp

s

250
0tp

s0

500

1,000

1,500

2,000

(b) Transaction Arrival Rate for the Auction Application (tps)

Th
ro

ug
hp

ut
(tp

s) OrderlessChain Modify Fabric Modify, FabricCRDT Modify
OrderlessChain Read Fabric Read FabricCRDT Read

Figure 5.7.12: Throughput of voting and auction applications.

5.7.6 Discussion

We initiated this work to study to which extent we can reduce the coordination in a
trustless environment while preserving the application’s invariant conditions and o�ering
Byzantine Fault Tolerance. We introduced a coordination-free protocol for Byzantine
Fault Tolerance and proved its feasibility. However, as demonstrated, preserving invariant
conditions without coordination depends on the application running on the permissioned
blockchains. Suppose the invariant conditions can be modeled as I-con�uent invariants.
In that case, coordination is unnecessary, and our approach can signi�cantly improve
throughput and latency compared to coordination-based approaches.

However, coordination to order the transactions is required for applications with non-
I-con�uent invariants. For example, suppose we require an invariant condition for

96

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

500
tps

100
0tp

s

150
0tp

s

200
0tp

s

250
0tp

s
0

500

1,000

(a) Arrival Rate for Vote App (tps)

La
te

nc
y

(m
s)

OrderlessChain Modify
OrderlessChain Read

500
tps

100
0tp

s

150
0tp

s

200
0tp

s

250
0tp

s
0

200

400

600

800

1,000

(b) Arrival Rate for Auction App (tps)

La
te

nc
y

(m
s)

OrderlessChain Modify
OrderlessChain Read

500
tps

100
0tp

s

150
0tp

s

200
0tp

s

250
0tp

s
0

0.5

1
⋅105

52
2

/5
20

53
2

/5
29

55
0

/5
47

34
09

/3
49

7

(c) Arrival Rate for Vote App (tps)

La
te

nc
y

(m
s)

Fabric Modify
Fabric Read

500
tps

100
0tp

s

150
0tp

s

200
0tp

s

250
0tp

s
0

0.5

1
⋅105

53
8

/5
38

52
9

/5
28

54
0

/5
40

69
7

/7
02

(d) Arrival Rate for Auction App (tps)

La
te

nc
y

(m
s)

Fabric Modify
Fabric Read

500
tps

100
0tp

s

150
0tp

s

200
0tp

s

250
0tp

s
0

0.5

1

⋅105

57
2

/6
01

14
5

/1
44

92
/1

44

56
/5

6

(e) Arrival Rate for Vote App (tps)

La
te

nc
y

(m
s)

FabricCRDT Modify
FabricCRDT Read

500
tps

100
0tp

s

150
0tp

s

200
0tp

s

250
0tp

s
0

2

4

6
⋅105

(f) Arrival Rate for Auction App (tps)

La
te

nc
y

(m
s)

FabricCRDT Modify
FabricCRDT Read

Figure 5.7.13: Latency of voting and auction applications.

97

5.7. EVALUATION

specifying a deadline for the end of an election or an auction, and the transactions
that arrive after this deadline must be rejected. This is a non-I-con�uent invariant and
requires coordination to be preserved. One approach for enabling OrderlessChain
to preserve such invariants is extending our system with coordination-based protocols
such as the protocol used by Fabric and enabling this protocol when required. For
example, given that the end of an election or an auction speci�es only a short period
of time of the whole time these events are running, which can be up to a few hours or
days, the coordination-based protocol can be enabled when we are close to the end of an
election or auction. Otherwise, we use our coordination-free approach during the long
period when the non-I-con�uent invariant is not relevant and bene�t from the increased
throughput and latency.

There exist several I-con�uent CRDT-based use cases [70, 169, 172, 173, 174, 194, 196, 197,
198, 199, 200], from key-value stores to multi-user collaborative environments, which
can be implemented on OrderlessChain, bene�ting from the trust and scalability
our system o�ers. Furthermore, there exist CRDT, and I-con�uent automation tools such
as Katara [201] and Lucy [126], which decrease the development e�ort for modeling
CRDT applications and identifying the I-con�uent invariants. Katara o�ers a solution for
automatically synthesizing CRDTs from sequential non-CRDT implementations. In other
words, Katara provides a solution for studying the logic of applications and proposing
CRDTs for converting the application into a CRDT-enabled application. Lucy also provides
an environment for determining whether invariant conditions are I-con�uent. By taking
advantage of such tools, developers can more easily develop applications that can be
developed on OrderlessChain and eliminate the unnecessary coordination that
limits the scalability.

We implemented additional use cases on OrderlessChain as proof of concept. We
implemented an IoT-based supply chain use case to monitor the health of temperature-
sensitive products during transit. We also implemented a trusted distributed �le storage
and a private and distributed federated learning system by extending OrderlessChain
with customized CRDTs, which we discuss in the next chapter. The development of these
applications on OrderlessChain was relatively straightforward.

98

5. ORDERLESSCHAIN: A PERMISSIONED BLOCKCHAIN WITHOUT COORDINATION

5.8 Summary

In this work, we presented OrderlessChain, a coordination-free permissioned
blockchain without total global order of transactions. OrderlessChain uses the
permissioned property of permissioned blockchains to o�er a BFT coordination-free
protocol. Furthermore, OrderlessChain takes advantage of CRDTs to enable the
development of safe and live I-con�uent applications in a Byzantine environment.

We extensively evaluated OrderlessChain to demonstrate our system’s scalability
and Byzantine Fault Tolerance. We also executed several experiments, comparing the per-
formance of OrderlessChain’s coordination-free protocol to the coordination-based
protocols of Fabric and FabricCRDT. We demonstrated a signi�cant improvement
in the scalability of our coordination-free design over coordination-based alternatives for
I-con�uent applications.

99

6

Extended Applications of

OrderlessChain

The following chapter introduces two systems as two new use cases of Orderless-
Chain to demonstrate the applicability of our system to other domains. In Section 6.1,
we introduce OrderlessFL, a permissioned blockchain-based federated learning (FL)

system, which uses flCRDT, a novel CRDT for asynchronous and concurrent aggrega-
tion of FL model updates. The other system proposed in Section 6.2 is OrderlessFile, a
permissioned blockchain-based �le storage system. OrderlessFile uses FileCRDT,
a new CRDT for sharding data and concurrently replicating and storing �les.

The content of this chapter is based on the papers published on OrderlessFL , and
OrderlessFile [62, 63].

6.1 OrderlessFL: A Blockchain-based Federated

Learning System

Organizations across various industries and sectors, from health care to IoT infrastruc-
tures, produce a large amount of data that can be used for improving Machine Learning

101

6.1. ORDERLESSFL: A BLOCKCHAIN-BASED FEDERATED LEARNING SYSTEM

(ML) models and potentially create more generalized and accurate ML models [150, 151].
However, the raw data can often not be shared among organizations due to privacy issues
and various regulations limiting data access. To make use of the data locked within data
silos, FL has gained popularity as a solution to privacy-preserving ML [137, 150, 151, 202].

FL enables the users to collectively collaborate to train global ML models without
transferring and sharing their private data with other participants. In traditional ML
approaches, a central entity often retrieves and stores large amounts of data from various
organizations and trains the model on the central entity side.

Training

Local
Private
Data Worker1

Parameter Server

MGlobal MUpdate1

Aggregate(MGlobal, <MUpdate1, ..., MUpdate3>)

Training

Worker3

Training

Worker2

MGlobal MUpdate2 MUpdate3MGlobal

Local
Private
Data

Local
Private
Data

MGlobal

Figure 6.1.1: A conventional synchronous federated learning system.

A conventional synchronous FL system, as shown in Figure 6.1.1, consists of several
workers and a central Parameter Server (PS) [141]. PS manages a global ML model, receives
model updates from workers, and aggregates the model updates with the global model
using an FL aggregation protocol such as FedAvg [56, 203]. The PS selects the workers
participating in the training round based on some eligibility prerequisites. The workers
fetch the global model from the PS and train it locally based on their local data, using a
training algorithm such as the Stochastic Gradient Descent [204, 205]. Once the training
is over, the model updates are sent to PS to be aggregated and integrated with the global
model.

FL o�ers a more private distributed ML approach so that no data is shared with other
participants. For enhancing privacy, the conventional approach is often integrated

102

6. EXTENDED APPLICATIONS OF ORDERLESSCHAIN

with other privacy-preserving solutions, such as Di�erential Privacy and Homomorphic

Encryption [108, 152, 206, 207]. However, the central and potentially Byzantine PS can
jeopardize the system in several ways [145, 150, 151]. For example, the model updates can
be intentionally tampered with or not be aggregated with the global model. In order to
o�er a BFT solution where the Byzantine workers and PS cannot jeopardize the system,
several blockchain-based solutions have been proposed. However, most of the existing
blockchain-based FL solutions use PoW-based solutions, which su�er from the PoW’s
scalability limitations [150, 151]. Also, the non-PoW-based blockchain solutions rely on
coordination-based solutions with limited scalability due to the coordination to reach
a consensus. Furthermore, due to the blockchain’s storage limitation, they depend on
third-party o�-chain storage solutions such as InterPlanetary File System (IPFS) [153].
However, integrating third-party solutions into any system may introduce new security
and privacy threats.

Besides the potential risks of Byzantine PS, the performance of synchronous FL is a�ected
by slow workers or stragglers [202]. During the execution of an asynchronous FL protocol,
the PS must wait for the end of the training on the stragglers before aggregating the
model updates. As the number of workers increases, the negative e�ect of stragglers
on the system’s performance increases and causes a scalability bottleneck. In contrast,
asynchronous FL protocols exist, where faster workers’ model updates are more frequently
integrated with the global model. Although this approach mitigates the e�ect of stragglers
of synchronous FL protocols, it introduces the gradient staleness problem, where the
workers train on an outdated global model and prevents the convergence of the global
model [154, 155].

Training a distributed ML model shares similar problems with the concurrent reads and
writes in distributed computing. One technique for addressing the problems is CRDTs.
By o�ering a CRDT-enabled FL system, where the ML models are created using CRDTs,
we enable the concurrent and asynchronous aggregation of FL models. Furthermore, we
can use the logical clock-based timestamped CRDT operations to measure the staleness
of model updates to limit and mitigate the gradient staleness problem.

In order to address these issues, we adapted and extended OrderlessChain to
OrderlessFL and introduced flCRDT, a novel CRDT enabling the concurrent and

103

6.1. ORDERLESSFL: A BLOCKCHAIN-BASED FEDERATED LEARNING SYSTEM

asynchronous aggregation of models in FL. flCRDT uses the properties of CRDTs to
mitigate the gradient staleness problem. OrderlessFL is a permissioned blockchain-
based FL system using flCRDT and o�ers a safe protocol for storing and aggregating
models where Byzantine actors cannot tamper with the models. Furthermore, to avoid
the potential risks of third-party solutions, OrderlessFL o�ers a complete solution
for storing and aggregating models on-chain.

6.1.1 Architecture and FL Protocol

OrderlessFL is an SEC asynchronous permissioned blockchain-based FL system.
Since OrderlessFL is an extension of OrderlessChain, the system model of
OrderlessChain discussed in the previous chapter also applies to OrderlessFL.

An OrderlessFL network consists of a set of organizations {O1, ..., On} and a set of
workers {W1, ...,Wr}. Organizations store and distribute global ML models and receive
and aggregate updates, and are equivalent to PS in an FL protocol. The workers receive a
global model from an organization and train the model using its local data. The system
uses the following training-aggregation two-phase asynchronous FL protocol, shown in
Figure 6.1.2:

Organizationp+1

Organizationp

Organizationp-1

Training

MSign

Organizationp

 Mδ
 MVersion
 MClock

MSign Append-
only Log

Blockh

RCPT
Worker

Step 2

Step 4

Step 5

TS

Training Phase Aggregation Phase

MSign MSign

TS
 Log

 Log

 Log

MSign

MSign

MSign

MSign

MGlobal
 MVersion

Step 3

Step 1

Data

Figure 6.1.2: Work�ow for training a model on OrderlessFL.

104

6. EXTENDED APPLICATIONS OF ORDERLESSCHAIN

Phase 1 / Training Phase – The worker �rst contacts any organization to receive
< MGlobal , MVersion >, the weights of the global model and the model’s current version
(Step 1 in Figure 6.1.2). The model architecture and learning algorithm are global system
con�guration settings. The worker initializes a model with MGlobal and trains the model
using its local data. Afterward, M� = MLocal −MGlobal , the weight di�erence between
the locally trained and global models, is calculated. The worker also keeps track of a
logical clock MClock , incrementing it with every update. Then, the worker creates a model
signature MSign = Hasℎ(< M� , MVersion, MClock >) and sends it to the organizations (Step
2). The organization signs MSign with its private key based on public key cryptography
and sends the signed response, also known as an endorsement, to the worker (Step 3).

Phase 2 / Aggregation Phase – The worker waits to receive the endorsements from
organizations and veri�es the signatures’ validity. If every endorsement is valid, a
transaction TS that contains the endorsements and < M� , MVersion, MClock > is created
and sent to the organizations (Step 4). The organization appends TS to its append-
only hash-chain log by creating a block Blockℎ =< Hasℎ(TS), Hasℎ(Blockℎ−1) >, which
contains TS and the hash of the previous block, and appends the block to the log. The
organization veri�es whether every endorsement in TS is valid. This ensures that every
organization has received identical data from the worker and that the client did not
tamper with the endorsements. Hence Byzantine malicious behavior is prevented. For
valid transactions, a hashed and signed receipt RCPT = HasℎSign(Blockℎ, Valid) is sent
to the worker (Step 5). A signed rejection is sent otherwise. As the receipt contains
the block’s hash value which is also dependent on the previous blocks, any Byzantine
modi�cation of the organization invalidates the receipts of TS and other transactions.
Finally, the organization aggregates M� of the valid transaction into the global model,
explained below.

We open-sourced the code of the system on GitHub [58].

105

6.1. ORDERLESSFL: A BLOCKCHAIN-BASED FEDERATED LEARNING SYSTEM

Key:

Value:

Neuron1 Neuronn

[weight1, .., weightm] [weight1, .., weighto]

Model Version Clock Workers Clock: [Worker1, ... Workerl]

Layer1:

Layer2:

Layer3:

Neurons and Weights

Neurons and Weights

Layer1 Layer2Layer3

....

Figure 6.1.3: Modeling a Deep Neural Network model with flCRDT.

6.1.2 flCRDT: A Federated Learning CRDT

We introduce flCRDT, a nested CRDT for modeling a wide range of ML models. In this
work, we only discuss modeling a Deep Neural Network (DNN) [208, 209], as shown in
Figure 6.1.3. However, flCRDT can be extended to other ML models including but not
limited to Regression Models and Decision Trees [210].

A DNN model consists of several layers, with every layer consisting of several neurons
with their weights [208, 209]. For accommodating a multi-layer data structure, flCRDT
is a nested data structure. The layers and neurons are modeled as nested data structures
in an instance of flCRDT. The root of flCRDT is a map consisting of key-value pairs,
where the key is a unique identi�er of the layer, and the value consists of nested maps
containing other layers or the neurons’ weights. flCRDT also contains two logical
clocks: a model clock and a workers’ vector clock. The model clock stores the model
version and increments it with every aggregated update. The workers’ vector clock stores
the observed clocks of workers.

Algorithm 4 displays our approach used by organizations to aggregate M� with the
global model. The organization proceeds to aggregate M� if it has observed all previous
updates sent by the worker (Line 2). Otherwise, the update is queued (Line 10). Before
updating the model, the model version and the worker’s clock are incremented (Lines 3
and 4). For mitigating the gradient staleness, a staleness penalty is calculated based on
the current model version of MGlobal and the global model used by the worker (Line 5).

106

6. EXTENDED APPLICATIONS OF ORDERLESSCHAIN

Algorithm 4: Aggregating the FL model update with the global model on
OrderlessFL.
1 AggregateToGlobalModel (MGlobal , M� , MVersion, MClock ,WorkerID)

input :MGlobal , the global model at the organization.

input :M� , a model update from worker.

input :MVersion, the global model’s version number used by the worker.

input :MClock , the worker’s clock.
input :WorkerID, the identi�er of the the worker.

2 if MClock −MGlobal .WorkerClocks[WorkerID] == 1 then
3 MGlobal .Version+ = 1
4 MGlobal .WorkerClocks[WorkerID]+ = 1
5 StalenessPenalty = (MGlobal .Version −MVersion)−1
6 UpdateRate = StalenessPenalty ∗ MGlobal .WorkerClocks.Lengtℎ−1
7 foreach layer in MW� .Layers do
8 MGlobal .Layers[layer]+ = M� .Layers[layer] ∗ UpdateRate

9 else

10 MGlobal .EnqueueUpdate(< M� , MVersion, MClock ,WorkerID >)
11 MGlobal .ProcessQueuedUpdates()

As the di�erence between the versions of the two global models increases, the e�ect of
the staleness penalty is more signi�cant. Hence, the model update’s staleness implies the
model update’s signi�cance in being integrated with the global model.

Furthermore, we calculate an update rate based on the staleness penalty and the number
of workers in the workers’ vector clock (Line 6). We do so to calculate the average weights
of the model updates concerning the workers in the system. Then, we iterate over the
layers and aggregate each layer of the model update with the global model using the
update rate (Lines 7 and 8). Finally, the queued updates are processed following the same
procedure explained in Algorithm 4 (Line 11).

In order to determine whether OrderlessFL is I-con�uence, we specify its invariant
condition: only the client’s latest model update is applied. flCRDT tracks the model
version number and the worker’s observed vector clock, and the model updates also
contain the version number of the global model used for training. Since Algorithm 4
ensures that the worker’s model update is only aggregated when the previous updates of

107

6.1. ORDERLESSFL: A BLOCKCHAIN-BASED FEDERATED LEARNING SYSTEM

the worker are aggregated, OrderlessFL can preserve the invariant condition. Hence,
it is I-con�ict concerning the recognized invariant.

Figure 6.1.4: Structure of the evaluated DNN models on OrderlessFL.

6.1.3 Evaluation

For evaluating the performance of OrderlessFL, we deployed eight organizations.
We evaluated the protocol for aggregating model updates and accuracy for training DNN
models.

We trained the models using TensorFlow 2/Keras [211]. We trained three convolutional
DNN models with 102, 203, and 305 thousand trainable parameters. Each model contains
four sequential layers as shown in Figure 6.1.4, which is adapted from a straightforward
exiting model [212]: one Flatten Layer, oneDense Layer with ReLUActivation Function, one
Dropout Layer, and �nally, one Dense Layer for classi�cation. We used the Adam optimizer

and crossentropy loss function. The models are trained on the MNIST dataset [213].

To evaluate the performance of our approach for aggregating model updates, we gradually

108

6. EXTENDED APPLICATIONS OF ORDERLESSCHAIN

increased the transactions arrival rate from 50 tps to 400 tps. Each transaction submits
a model update. Each experiment is executed at least three times for 60 seconds, and
the experiments’ results are averaged. The average latency to throughput is shown in
Figure 6.1.5. As we aimed to evaluate the scalability of our approach concerning model
aggregation, the latency does not include the time required to retrieve the model from an
organization and train the model (Step 1 in Figure 6.1.2 is excluded). The latency only
re�ects the time from the beginning of step 2 till the end of step 5 of the protocol.

We observe that the latency gradually increases for the higher arrival rates. We also
observe the increased latency for larger models. The reason is that deserializing model
updates and aggregating model updates with the global model are CPU-bounded tasks,
which causes CPU saturation for the higher workload on the organizations causing the
transactions to be queued before being processed.

We also measured the accuracy of the aggregated global model with 102 thousand trainable
parameters for predicting the correct labels based on the test subset of the MNIST dataset
and observed up to 85% accuracy.

0 50 100 150 200 250 300
0

2

4

6

8

⋅104

Throughput (tps)

La
te

nc
y

(m
s)

102 KParam
203 KParam
305 KParam

Figure 6.1.5: Latency to throughput for training three DNN models.

6.2 OrderlessFile: A Blockchain for File Storage

Cloud storage services are an integral part of cloud ecosystems [161, 162]. Although
cloud storage o�ers a�ordable and available Storage-as-a-Service, most cloud providers

109

6.2. ORDERLESSFILE: A BLOCKCHAIN FOR FILE STORAGE

lack transparency on the privacy and security of stored �les [161]. Hence, clients must
trust the service-level agreements and be con�dent that providers do not tamper with the
stored data and store them safely. Several blockchain-based distributed and decentralized
�le storage systems have been proposed to address these issues [160, 161, 162]. Although
blockchain-based �le storage systems are more secure and private than conventional
cloud providers, several existing systems are based on PoW-based solutions such as
Bitcoin and Ethereum [163, 164] and su�er from the common scalability issues of PoW-
based protocols. Furthermore, due to the storage limitations on blockchains, existing
solutions use various o�-chain systems such as IPFS, which might present other security
and privacy issues.

To address the scalability issues and limitations of stored �le size, we extended Order-
lessChain with FileCRDT, introducing OrderlessFile. OrderlessFile is a
private and distributed permissioned blockchain-based �le storage. It o�ers a scalable
and safe protocol for replicating and storing encrypted �les on-chain where Byzantine
participants can not tamper with data and violate its integrity. FileCRDT enables the
clients to split �les into shards that are stored and replicated on OrderlessFile. Like
conventional �le storage, OrderlessFile can store various types of data, from DNS
records to extensive IoT and machine learning datasets.

6.2.1 FileCRDT: A CRDT for File Storage

We introduce FileCRDT for sharding and storing �les. The structure of FileCRDT is
shown in Figure 6.2.1. Each �le stored on OrderlessFile has a unique identi�er and
is versioned based on a logical clock tracked by the client. The logical clock indicates the
�le’s version number, and the client increments it with every new version of the �le sent
to be uploaded.

FileCRDT is a nested data structure in the format of key-value pairs. Depending on
the �le size and OrderlessFile’s con�guration settings, the �le is split into shards,
where each shard is stored as a key-value pair in an instance of FileCRDT. The key
is the shard’s identi�er which is unique per �le. The value is another key-value data
structure, where the key is the �le’s version, and the value is a multi-value register [54]

110

6. EXTENDED APPLICATIONS OF ORDERLESSCHAIN

containing the shard data. The purpose of keeping track of the versions is to resolve
the con�icting updates sent by the client and prevent data corruption as the shards are
gradually transmitted to be stored.

Keys:

Values:

Shard1 Shardn.....

VersionP-1 VersionP

[Data1] [Data1]

VersionP-1

[Datan]

FileCRDT <FileID>

Figure 6.2.1: Structure of FileCRDT for sharding and storing a �le.

6.2.2 Architecture and Protocol

The system model of OrderlessFile is similar to the system model of Order-
lessChain since OrderlessFile is an extension of OrderlessChain. Order-
lessFile’s network consists of several organizations and clients. The organizations
are responsible for receiving and storing client �les in their ledger. The clients can
communicate with every non-failed organization and upload and download �les to the
system.

For uploading �les, clients follow a two-phase endorsement-storage protocol, as shown in
Figure 6.2.2:

Phase 1 / Endorsement Phase – Depending on the �le size and the maximum allowed
shard size, the client �rst splits the �le into shards. The allowed shard size is a global
system con�guration setting, which is set by the consortium of the organizations. For
every shard, a shard signature SSm = Hasℎ(< Encrypt(Sℎardm), Versionp >) is created
based on the shard’s encrypted data and the �le’s current version. SSm is sent to the
organizations (Step 1 in Figure 6.2.2). The client sends SSm to all organizations or a
subset of them, depending on the replication factor intended for storing the �le. The
organization signs SSm with its private key based on public key cryptography and sends

111

6.2. ORDERLESSFILE: A BLOCKCHAIN FOR FILE STORAGE

 Append-
only Log

 Append-
only Log

OrganizationL+1

 Append-
only Log

OrganizationL

OrganizationL-1

Shard0

Shardn

File

SSm

SSm

SSm

Endorsed
 SSm

Endorsed
 SSm

OrganizationL

Encrypted
Shardm

Endorsed
SSm Append-

only Log

Blockk

RCPTi

Encrypted
Shardm

FileCRDTClient

Step 1

Step 2

Step 3

Step 4

........

TSi

Endorsement Phase Storage Phase

Endorsed
SSm

Endorsed
SSm

Versionp

TSi
Endorsed

 SSm

Figure 6.2.2: Work�ow for uploading �les on OrderlessFile.

the signed response, also called an endorsement, to the client (Step 2).

Phase 2 / Storage Phase – The client waits to receive the endorsements from orga-
nizations and veri�es their validity by using the organization’s public key to prevent
Byzantine behavior of the organizations. If every endorsement is valid, the client creates
a transaction TSi that contains the endorsements, the encrypted shard data, the shard’s
identi�er, and the �le’s version. The client sends the transaction to the same organizations
(Step 3). The organization appends the transaction to an append-only hash-chain log. The
organization �rst creates a block Blockk =< Hasℎ(TSi), Hasℎ(Blockk−1) >, which contains
the hash value of TSi and the hash of the previous block and appends the block to the log.

Afterward, the organization validates every endorsement in TSi to ensure that the
organizations endorsed the identical SSm. If the transaction is valid, a receipt RCPTi =
HasℎSign(Blockk , Valid) is created and sent to the client (Step 4). The organization
sends a signed rejection containing the block’s hash for an invalid transaction. Since the
created block contains the hash of the transaction and the previous block, the Byzantine
organization cannot tamper with the content of the transaction without invalidating the
receipt of TSi and the previous transactions. If TSi is valid, the organization updates the
instance of FileCRDT that contains the �le.

112

6. EXTENDED APPLICATIONS OF ORDERLESSCHAIN

The shard in FileCRDT is modi�ed based on the shard’s identi�er and the �le’s version.
If a con�icting shard with an identical version exists, the shard data is added to the multi-
value register, and the client decides which data to use. Finally, the organization iterates
through the shards to verify whether every shard has a Versionp key. If Versionp key
exits in every shard in FileCRDT instance, the key-value pairs with the key Versionp−1
are removed to free up disk space.

 Append-only Log

OrganizationL+1OrganizationLOrganizationL-1

FileCRDT

Encrypted Shard1

Encrypted Shardn

........

 Append-only Log

FileCRDT

Encrypted Shard1

Encrypted Shardn

........

 Append- only Log

FileCRDT

Encrypted Shard1

Encrypted Shardn

........

Client

TP TPFileCRDT FileCRDT
Step 1

Step 2 Step 2

Figure 6.2.3: Work�ow for downloading �les on OrderlessFile.

For downloading a �le, the client follows the procedure shown in Figure 6.2.3. The client
sends a transaction proposal of TP containing the �le’s identi�er to any organizations in
the network (Step 1 in Figure 6.2.3). If the organization stores a replica of the �le in an
instance of FileCRDT, it serializes FileCRDT into binary and sends the data to the
client (Step 2).

Finally, the client deserializes FileCRDT instance, decrypts the shards, and veri�es
whether the client’s signature on the encrypted shard is valid. The client may send
several requests to every organization that stores a replica to compare encrypted shard
data from one organization to another if the client suspects any Byzantine behavior.

113

6.2. ORDERLESSFILE: A BLOCKCHAIN FOR FILE STORAGE

For OrderlessFile, we consider one invariant condition: The latest version of the �le

is stored. FileCRDT tracks the version of the �le in the shard’s key-value pairs, and
OrderlessFile only removes the older version of the shard’s data once the shards of the
newer version are entirely uploaded. Therefore, OrderlessFile ensures that only the
latest version of the �les is stored, and the data of the latest version overwrite the previous
versions. It preserves the system’s invariant conditions. Hence, OrderlessFile is
I-con�uence concerning the invariant.

We open-sourced the code on GitHub [59].

6.2.3 Evaluation

For evaluating OrderlessFile, we deployed a network of 16 organizations with 1000
clients downloading and uploading �les concurrently. The workload consists of half
download and half upload transactions uniformly distributed during the experiments.
Each experiment is executed at least three times for 60 seconds, and the experiments’
results are averaged. Each client owns one �le consisting of ten shards with a replication
factor of two. We gradually increased the maximum shard size from 25KB to 100KB.

Figure 6.2.4 show the average latency to the throughput of upload and download trans-
actions. For uploading transactions, latency remains constant for smaller shard sizes.
However, the latency increases for larger shard sizes as they result in more signi�cant
transactions that require more time to be transmitted. Furthermore, larger shard sizes
have a more signi�cant overheard on the organization for deserializing the transactions
and writing the data on the disk, which increases the average latency for transactions
with larger shard sizes. The latency for download requests increases as throughput and
the shard size increase since larger �les require more time to be transmitted.

114

6. EXTENDED APPLICATIONS OF ORDERLESSCHAIN

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
00

500

1,000

(a) Upload throughput (tps)

La
te

nc
y

(m
s)

25KB
50KB
75KB
100KB

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
00

20

40

60

80

(b) Download throughput (tps)
La

te
nc

y
(m

s)

25KB
50KB
75KB
100KB

Figure 6.2.4: Latency to the throughput of download and upload transactions.

6.3 Summary

In this chapter, we introduced two use cases of OrderlessChain to demonstrate
the applicability of our system in other domains. First, we introduced OrderlessFL,
an extension of OrderlessChain for executing FL protocols. OrderlessFL uses
flCRDT, a novel CRDT for concurrent and asynchronous aggregation of FL models
where the gradient staleness problem is mitigated.

The other use case is extending OrderlessChain to the cloud provider’s domains.
We introduced OrderlessFile, a safe and secure blockchain-based �le storage as
an alternative to the non-transparent storage services provided by the cloud providers.
OrderlessFile uses FileCRDT, a customized CRDT for sharding and secretly storing
and replicating data on OrderlessFile.

Our evaluation of both systems demonstrates the applicability of OrderlessChain to
other domains. Also, the development e�ort required for extending OrderlessChain
to these systems was straightforward, indicating the practicality of our system.

115

7

Conclusions

In this dissertation, we provided two CRDT-based approaches for reducing coordination
in permissioned blockchains and improving their scalability. First, we o�ered a CRDT-
based solution that uses the CRDTs’ automatic con�ict resolution mechanism to eliminate
the failures of concurrent transactions in Fabric. Second, we introduced Orderless-
Chain, a scalable permissioned blockchain for the safe and live execution of I-con�uent
applications in a Byzantine coordination-free environment. We also demonstrated the
applicability of OrderlessChain to several domains, including FL and distributed
�le storage systems. In the following chapter, we summarize the concluding remarks of
this work and o�er an outlook on future work.

7.1 Summary

FabricCRDT o�ers a novel CRDT-based approach to address the failure of concurrent
transactions in Fabric. The high latency induced by Fabric’s three-phase protocol
and its MVCC validation mechanism causes the failure of a high percentage of dependent
concurrent transactions. Our proposed solution detects con�icting transactions within
one block automatically and applies CRDT-based techniques to resolve the con�icts
and merge the value of the transactions without resulting in data loss, corruption, or

117

7.1. SUMMARY

inconsistency.

FabricCRDT’s proposed solution is CRDT-agnostic, and the protocol is independent
of the CRDT used in chaincodes. However, to enable developers to model and develop
applications based on various CRDTs, the exact speci�cation of each CRDT must be
supported by FabricCRDT’s chaincode execution environment. In order to enable the
development of a wide range of applications, we enabled the support for executing JSON
CRDTs. Furthermore, to facilitate the adoption of permissioned blockchains and decrease
the learning curve for developing decentralized applications, we maintain FabricCRDT
backward compatible with existing applications developed for Fabric. In other words,
based on application design requirements, the developers of FabricCRDT have the
option between Fabric’s three-phase protocol with MVCC validation or creating CRDT-
enabled applications where the con�icts of concurrent transactions are resolved internally
without developers’ intervention.

We evaluated FabricCRDT and compared its performance to Fabric by developing
IoT-based supply chain applications for monitoring the temperature of perishable goods.
The result of our experiments demonstrates the improved throughput of successful
transactions on FabricCRDT over Fabric. Our approach successfully commits every
valid transaction, while a high percentage of the transaction fails on Fabric due to
MVCC validation-related failures. We reduced the complexity of developing decentralized
applications by eliminating the failure of con�icting transactions. Since we ensure the
successful commit of every correctly endorsed transaction, the developer is not required
to consider concurrency-related failures and handle corresponding failure scenarios.

Despite the signi�cantly improved throughput, FabricCRDT’s use cases are limited
to applications with exclusively I-con�uent invariant conditions. The reason is that
FabricCRDT forgoes Fabric’s optimistic MVCC validation for improving the scala-
bility and throughput, which is used for preserving non-I-con�uent invariant conditions.
Furthermore, as observed in the evaluation, as the size of JSON CRDT objects increases,
the latency of transactions increases. The increased metadata causes this added latency
in the JSON CRDT object, which decreases the e�ciency of the proposed algorithms for
applying the modi�cations to JSON CRDT objects. FabricCRDT must periodically
prune the metadata to improve its memory utilization and e�ciency.

118

7. CONCLUSIONS

Even though by enabling CRDT functionalities on FabricCRDT, we eliminate the
coordination required for the correct execution of I-con�uent applications, we used
Fabric’s coordination-based protocol in FabricCRDT for backward compatibility
purposes. In order to realize the potentials of CRDTs in coordination-free permissioned
blockchains, we proposed OrderlessChain. OrderlessChain uses a novel BFT
coordination-free protocol for the safe and live execution of applications without paying
the high coordination cost. OrderlessChain’s organizations do not require coordi-
nation to reach a consensus to prevent Byzantine failures or serialize transactions into a
total global order.

The proposed coordination-free protocol takes advantage of the permissioned property
of blockchains to prevent Byzantine failures by enforcing endorsement policies. This
approach enables OrderlessChain’s honest and non-faulty organizations to detect
Byzantine failures and prevent malicious behaviors without coordinating with other
organizations.

We introduced several applications across various �elds using the operation-based
CRDT approach of OrderlessChain, including voting and auction applications,
a distributed �le storage system, and an FL system. We modeled these applications and
systems using several CRDTs, including CRDT Maps, G-Counters, MV-Registers, and two
novel CRDTs namely flCRDT and FileCRDT. By modeling the applications based
on the supported CRDTs, OrderlessChain creates commutative and convergent
transactions that can be processed in any order without requiring the organizations to
coordinate for transaction serialization. Thus, it preserves the applications’ I-con�uent
invariant conditions without coordination.

The extensive evaluation of OrderlessChain using the synthetic application demon-
strated its scalability, high transaction throughput, and low latency. To display the
potential of our coordination-free approach over the coordination-based protocols of
Fabric and FabricCRDT, we conducted several experiments using the voting and
auction applications. The results of their experiments demonstrated the signi�cantly
higher throughput and lower latency of OrderlessChain compared to Fabric and
FabricCRDT.

Furthermore, we introduced OrderlessFL and OrderlessFile, which provide safe

119

7.2. FUTURE WORK

and private environments for realizing FL solutions and distributed �le storage systems,
respectively. The evaluation of these systems and the relatively e�ortless adaptions and
extension of OrderlessChain with the novel CRDTs flCRDT and FileCRDT
demonstrates the applicability of OrderlessChain to other domains and industries.

OrderlessChain’s use cases are limited to applications that are I-con�uent. Never-
theless, as discussed in previous chapters, many applications with I-con�uent invariant
conditions exist that are compatible with OrderlessChain. They bene�t from the
scalability and decentralized trust of OrderlessChain.

In summary, our evaluations and the realized decentralized applications con�rm the
applicability and the signi�cant potential of the BFT coordination-free protocol of
OrderlessChain as a scalable alternative over coordination-based permissioned
blockchains for I-con�uent applications.

7.2 Future Work

Although the proposed solutions of FabricCRDT and OrderlessChain are CRDT-
agnostic, the speci�cations of various CRDTs must be implemented in the smart contract
execution environment. We explained the integration of various CRDTs in both systems,
and enabling the support for these CRDTs did not require a signi�cant e�ort. However,
future research should provide a generalized solution for realizing CRDT-adoptable
applications. For example, the approaches used in Katara [201] for automatically creating
CRDT-enabled applications from sequential non-CRDT implementations may also be
implemented on FabricCRDT and OrderlessChain. Furthermore, despite the
improved performance of OrderlessChain’s operation-based CRDT modi�cation
approach over FabricCRDT’s approach, future studies should address the problems
regarding the high memory utilization and low e�ciency of CRDTs, as the size of the
CRDT objects increases.

Preserving the non-I-con�uent invariant conditions of applications in coordination-free
Byzantine environments remains a challenge and an open problem. As this dissertation
demonstrates, reducing and eliminating coordination is critical for improving the scala-

120

7. CONCLUSIONS

bility and throughput of permissioned blockchains. Therefore, future research should
propose solutions for the correct execution of CRDT-based applications with non-I-
con�uent invariant conditions in BFT coordination-free environments. One potential
approach for addressing this problem is taking advantage of Reversible CRDTs [214].
Through using the reversibility property of such CRDTs, coordination-free protocols on
eventually consistent permissioned blockchains may be feasible, where the malicious
modi�cations of CRDTs or the modi�cations that violate non-I-con�uent invariant
conditions are reversed. Hence, permissioned blockchains based on these protocols
o�er a scalable, safe, and live BFT system for the correct execution of non-I-con�uent
applications.

121

List of Acronyms and Abbreviations

BFT Byzantine Fault Tolerance

CRDT Con�ict-free Replicated Data Type

DAG Directed Acyclic Graph

DDoS Distributed Denial-of-Service

DNN Deep Neural Network

EOV Execute-Order-Validate

EP Endorsement Policy

FL Federated Learning

G-Counter Grow-Only Counter

I-con�uence Invariant Con�uence

IoT Internet of Things

IPFS InterPlanetary File System

JSON JavaScript Object Notation

ML Machine Learning

MVCC Multiversion Concurrency Control

MV-Register Multi-Value Register

PKI Public Key Infrastructure

PoW Proof-of-Work

PS Parameter Server

SCL Smart Contract Library

SEC Strong Eventual Consistency

123

TPS Transactions per Second

VM Virtual Machine

VSCC Validation System Chaincode

124

List of Figures

2.1.1 Transaction lifecycle on Fabric. 18
2.3.1 Non-I-Con�uent and I-Con�uent invariant conditions. 21

4.2.1 Transaction lifecycle on FabricCRDT. 42
4.3.1 JSON objects in CRDT transactions’ write-set. 45
4.3.2 Merged JSON objects in CRDT transactions’ write-set. 46
4.5.1 Sample JSON object submitted by a transaction of IoT application. . 52
4.5.2 E�ect of block size on FabricCRDT and Fabric. 55
4.5.3 E�ect of a di�erent number of read and write key-value pairs. 57
4.5.4 A JSON object with “3-3” complexity. 58
4.5.5 E�ect of the increasing complexity of JSON objects. 59
4.5.6 Impact of increasing transaction arrival rates for IoT application.. . . 60
4.5.7 E�ect of di�erent percentages of con�icting transactions. 61

5.2.1 Transaction lifecycle on OrderlessChain. 70
5.3.1 Application modeling for the voting and auction applications. 73
5.3.2 Applying CRDT Map modi�cation operations. 76
5.3.3 Applying MV-Register modi�cation operations. 76
5.4.1 The smart contract of the voting application to cast a vote. 78
5.5.1 Preserving the invariant condition of the voting application. 81
5.7.1 Impact of increasing transaction arrival rates. 89
5.7.2 E�ect of an increasing number of organizations. 90
5.7.3 Latency to throughput for an increasing number of organizations. . . 90

125

LIST OF FIGURES

5.7.4 E�ect of an increasing number of operations per object. 91
5.7.5 Impact of an increasing number of objects. 91
5.7.6 E�ect of di�erent endorsement policies. 92
5.7.7 E�ect of di�erent CRDT types. 92
5.7.8 Impact of di�erent percentage of read- and modify-transactions. . . 93
5.7.9 E�ect of increasing gossip ratio. 93
5.7.10 Throughput across experiments with Byzantine organizations. . . . 94
5.7.11 Experiments with clients avoiding Byzantine organizations. 94
5.7.12 Throughput of voting and auction applications. 96
5.7.13 Latency of voting and auction applications. 97

6.1.1 A conventional synchronous federated learning system. 102
6.1.2 Work�ow for training a model on OrderlessFL. 104
6.1.3 Modeling a Deep Neural Network model with flCRDT. 106
6.1.4 Structure of the evaluated DNN models on OrderlessFL. 108
6.1.5 Latency to throughput for training three DNN models. 109
6.2.1 Structure of FileCRDT for sharding and storing a �le. 111
6.2.2 Work�ow for uploading �les on OrderlessFile. 112
6.2.3 Work�ow for downloading �les on OrderlessFile. 113
6.2.4 Latency to the throughput of download and upload transactions. . . 115

126

List of Tables

4.5.1 Default values of control variables for the IoT experimental application. 54
4.5.2 E�ect of an increasing number of read and write key-value pairs. . . 56
4.5.3 Impact of di�erent complexity of JSON objects. 58

5.3.1 Modi�cation and read APIs of the CRDTs. 74
5.7.1 Control variables of the evaluated synthetic application. 89

127

List of Algorithms

1 Merging CRDT transactions in a block on FabricCRDT. 44

2 Merging a JSON object with the JSON CRDT on FabricCRDT. 48

3 Applying CRDT operations to the object on OrderlessChain. 80

4 Aggregating the FL model update with the global model on OrderlessFL. 107

129

Bibliography

[1] W. Chen, Z. Xu, S. Shi, Y. Zhao, and J. Zhao. “A Survey of Blockchain Applications in Di�erent
Domains.” In: Proceedings of the 2018 International Conference on Blockchain Technology and

Application. ICBTA 2018. Xi’an, China: ACM, 2018, pp. 17–21. isbn: 9781450366465. doi: 10.
1145/3301403.3301407.

[2] L. Carter and J. Ubacht. “Blockchain Applications in Government.” In: Proceedings of the 19th Annual
International Conference on Digital Government Research: Governance in the Data Age. dg.o ’18. Delft,
The Netherlands: ACM, 2018. isbn: 9781450365260. doi: 10.1145/3209281.3209329.

[3] T. Alladi, V. Chamola, R. M. Parizi, and K.-K. R. Choo. “Blockchain Applications for Industry 4.0 and
Industrial IoT: A Review.” In: IEEE Access 7 (2019), pp. 176935–176951. doi: 10.1109/ACCESS.
2019.2956748.

[4] K. Wüst and A. Gervais. “Do you Need a Blockchain?” In: 2018 Crypto Valley Conference on

Blockchain Technology (CVCBT). 2018, pp. 45–54. doi: 10.1109/CVCBT.2018.00011.

[5] C. Cachin and M. Vukolic. “Blockchain Consensus Protocols in the Wild.” In: CoRR abs/1707.01873
(2017). arXiv: 1707.01873.

[6] C. Berger and H. P. Reiser. “Scaling Byzantine Consensus: A Broad Analysis.” In: Proceedings of the
2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers. SERIAL’18. Rennes,
France: ACM, 2018, pp. 13–18. isbn: 9781450361101. doi: 10.1145/3284764.3284767.

[7] D. Bradbury. “The Problem with Bitcoin.” In: Computer Fraud and Security 2013.11 (2013), pp. 5–8.
issn: 1361-3723. doi: 10.1016/S1361-3723(13)70101-5.

[8] J. A. Chacko, R. Mayer, and H.-A. Jacobsen. “Why Do My Blockchain Transactions Fail? A Study
of Hyperledger Fabric.” In: Proceedings of the 2021 International Conference on Management of

Data. SIGMOD ’21. Virtual Event, China: ACM, 2021, pp. 221–234. isbn: 9781450383431. doi:
10.1145/3448016.3452823.

[9] S. Tikhomirov. “Ethereum: State of Knowledge and Research Perspectives.” In: Foundations and
Practice of Security. Cham: Springer International Publishing, 2018, pp. 206–221. isbn: 978-3-319-
75650-9.

131

https://doi.org/10.1145/3301403.3301407
https://doi.org/10.1145/3301403.3301407
https://doi.org/10.1145/3209281.3209329
https://doi.org/10.1109/ACCESS.2019.2956748
https://doi.org/10.1109/ACCESS.2019.2956748
https://doi.org/10.1109/CVCBT.2018.00011
https://arxiv.org/abs/1707.01873
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1016/S1361-3723(13)70101-5
https://doi.org/10.1145/3448016.3452823

BIBLIOGRAPHY

[10] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang. “An Overview of Blockchain Technology:
Architecture, Consensus, and Future Trends.” In: 2017 IEEE International Congress on Big Data

(BigData Congress). 2017, pp. 557–564. doi: 10.1109/BigDataCongress.2017.85.

[11] J. Eberhardt and S. Tai. “On or O� the Blockchain? Insights on O�-Chaining Computation and
Data.” In: European Conference on Service-Oriented and Cloud Computing. Springer International
Publishing, 2017, pp. 3–15. isbn: 978-3-319-67262-5.

[12] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. “Con�ict-Free Replicated Data Types.”
In: Stabilization, Safety, and Security of Distributed Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 386–400. isbn: 978-3-642-24550-3.

[13] E. Androulaki, A. Barger, V. Bortnikov, et al. “Hyperledger Fabric: A Distributed Operating System
for Permissioned Blockchains.” In: Proceedings of the Thirteenth EuroSys Conference. EuroSys ’18.
Porto, Portugal: ACM, 2018. isbn: 9781450355841. doi: 10.1145/3190508.3190538.

[14] S. Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System.” In: Decentralized Business Review
(2008).

[15] A. Ha�d, A. S. Ha�d, and M. Samih. “Scaling Blockchains: A Comprehensive Survey.” In: IEEE
Access 8 (2020), pp. 125244–125262. doi: 10.1109/ACCESS.2020.3007251.

[16] N. Chaudhry and M. M. Yousaf. “Consensus Algorithms in Blockchain: Comparative Analysis,
Challenges and Opportunities.” In: 2018 12th International Conference on Open Source Systems and

Technologies (ICOSST). 2018, pp. 54–63. doi: 10.1109/ICOSST.2018.8632190.

[17] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun. “A Review on Consensus Algorithm
of Blockchain.” In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
2017, pp. 2567–2572. doi: 10.1109/SMC.2017.8123011.

[18] M. Barborak, A. Dahbura, and M. Malek. “The Consensus Problem in Fault-Tolerant Computing.”
In: ACM Comput. Surv. 25.2 (June 1993), pp. 171–220. issn: 0360-0300. doi: 10.1145/152610.
152612.

[19] M. Treaster. “A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems.” In:
CoRR abs/cs/0501002 (2005). arXiv: cs/0501002.

[20] D. Dujak and D. Sajter. “Blockchain Applications in Supply Chain.” In: SMART Supply Network.
Cham: Springer International Publishing, 2019, pp. 21–46. isbn: 978-3-319-91668-2. doi: 10.
1007/978-3-319-91668-2_2.

[21] D. Tse, B. Zhang, Y. Yang, C. Cheng, and H. Mu. “Blockchain Application in Food Supply Infor-
mation Security.” In: 2017 IEEE International Conference on Industrial Engineering and Engineering

Management (IEEM). 2017, pp. 1357–1361. doi: 10.1109/IEEM.2017.8290114.

[22] P. Zhang, D. C. Schmidt, J. White, and G. Lenz. “Chapter One - Blockchain Technology Use Cases in
Healthcare.” In: Blockchain Technology: Platforms, Tools and Use Cases. Ed. by P. Raj and G. C. Deka.
Vol. 111. Advances in Computers. Elsevier, 2018, pp. 1–41. doi: 10.1016/bs.adcom.2018.
03.006.

132

https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/ACCESS.2020.3007251
https://doi.org/10.1109/ICOSST.2018.8632190
https://doi.org/10.1109/SMC.2017.8123011
https://doi.org/10.1145/152610.152612
https://doi.org/10.1145/152610.152612
https://arxiv.org/abs/cs/0501002
https://doi.org/10.1007/978-3-319-91668-2_2
https://doi.org/10.1007/978-3-319-91668-2_2
https://doi.org/10.1109/IEEM.2017.8290114
https://doi.org/10.1016/bs.adcom.2018.03.006
https://doi.org/10.1016/bs.adcom.2018.03.006

BIBLIOGRAPHY

[23] C. Dannen. Introducing Ethereum and Solidity. Springer, 2017. doi: 10.1007/978-1-4842-
2535-6.

[24] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. “Zcash Protocol Speci�cation.” In: Tech. rep.
2016–1.10. Zerocoin Electric Coin Company, Tech. Rep. (2016).

[25] L. S. Sankar, M. Sindhu, and M. Sethumadhavan. “Survey of Consensus Protocols on Blockchain
Applications.” In: 2017 4th International Conference on Advanced Computing and Communication

Systems (ICACCS). IEEE, 2017, pp. 1–5. doi: 10.1109/ICACCS.2017.8014672.

[26] S. Kim, Y. Kwon, and S. Cho. “A Survey of Scalability Solutions on Blockchain.” In: 2018 International
Conference on Information and Communication Technology Convergence (ICTC). 2018, pp. 1204–1207.
doi: 10.1109/ICTC.2018.8539529.

[27] M. Hearn and R. G. Brown. “Corda: A Distributed Ledger.” In: Corda Technical White Paper (2016).

[28] Q. Zhou, H. Huang, Z. Zheng, and J. Bian. “Solutions to Scalability of Blockchain: A Survey.” In:
IEEE Access 8 (2020), pp. 16440–16455. doi: 10.1109/ACCESS.2020.2967218.

[29] L. Badea and M. C. Mungiu-Pupazan. “The Economic and Environmental Impact of Bitcoin.” In:
IEEE Access 9 (2021), pp. 48091–48104. doi: 10.1109/ACCESS.2021.3068636.

[30] A. De Vries. “Bitcoin’s Growing Energy Problem.” In: Joule 2.5 (2018), pp. 801–805.

[31] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse. “Bitcoin-NG: A Scalable Blockchain Protocol.”
In: 13th USENIX symposium on networked systems design and implementation (NSDI 16). 2016,
pp. 45–59.

[32] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, et al. “Proof-of-Stake Consensus Mechanisms for Future
Blockchain Networks: Fundamentals, Applications and Opportunities.” In: IEEE Access 7 (2019),
pp. 85727–85745. doi: 10.1109/ACCESS.2019.2925010.

[33] D. Ongaro and J. Ousterhout. “In Search of an Understandable Consensus Algorithm.” In: 2014
USENIX Annual Technical Conference (USENIX ATC 14). Philadelphia, PA: USENIX Association,
2014, pp. 305–319. isbn: 978-1-931971-10-2.

[34] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance and Proactive Recovery.” In: ACM
Trans. Comput. Syst. 20.4 (2002), pp. 398–461. issn: 0734-2071. doi: 10.1145/571637.
571640.

[35] A. Bessani, J. Sousa, and E. E. Alchieri. “State Machine Replication for the Masses with BFT-SMART.”
In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 2014,
pp. 355–362. doi: 10.1109/DSN.2014.43.

[36] A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich. “Blurring the Lines between Blockchains
and Database Systems: The Case of Hyperledger Fabric.” In: Proceedings of the 2019 International
Conference on Management of Data. SIGMOD ’19. Amsterdam, Netherlands: ACM, 2019, pp. 105–122.
isbn: 9781450356435. doi: 10.1145/3299869.3319883.

[37] Ethereum Wiki Project.On Sharding Blockchains. Accessed: 2020-05-25. url:https://github.
com/ethereum/wiki/wiki/Sharding-FAQ.

133

https://doi.org/10.1007/978-1-4842-2535-6
https://doi.org/10.1007/978-1-4842-2535-6
https://doi.org/10.1109/ICACCS.2017.8014672
https://doi.org/10.1109/ICTC.2018.8539529
https://doi.org/10.1109/ACCESS.2020.2967218
https://doi.org/10.1109/ACCESS.2021.3068636
https://doi.org/10.1109/ACCESS.2019.2925010
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1145/3299869.3319883
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ

BIBLIOGRAPHY

[38] K. Zhang and H.-A. Jacobsen. “Towards Dependable, Scalable, and Pervasive Distributed Ledgers
with Blockchains.” In: 2018 IEEE 38th International Conference on Distributed Computing Systems

(ICDCS). 2018, pp. 1337–1346. doi: 10.1109/ICDCS.2018.00134.

[39] P. Bailis, A. Fekete, M. J. Franklin, et al. “Coordination Avoidance in Database Systems.” In: vol. 8.
3. VLDB Endowment, 2014, pp. 185–196. doi: 10.14778/2735508.2735509.

[40] M. Kleppmann and H. Howard. “Byzantine Eventual Consistency and the Fundamental Limits of
Peer-to-Peer Databases.” In: CoRR abs/2012.00472 (2020). arXiv: 2012.00472.

[41] A. Sharma, F. M. Schuhknecht, and J. Dittrich. “Accelerating Analytical Processing in MVCC Using
Fine-Granular High-Frequency Virtual Snapshotting.” In: Proceedings of the 2018 International

Conference on Management of Data. SIGMOD ’18. Houston, TX, USA: ACM, 2018, pp. 245–258.
isbn: 9781450347037. doi: 10.1145/3183713.3196904.

[42] Apache Software Foundation. CouchDB. url: https://couchdb.apache.org/.

[43] SAP. HANA. url: https://sap.com/products/hana.html.

[44] P. Ruan, D. Loghin, Q.-T. Ta, et al. “A Transactional Perspective on Execute-Order-Validate
Blockchains.” In: Proceedings of the 2020 ACM SIGMOD International Conference on Management

of Data. SIGMOD ’20. Portland, OR, USA: ACM, 2020, pp. 543–557. isbn: 9781450367356. doi:
10.1145/3318464.3389693.

[45] S. Goel, A. Singh, R. Garg, M. Verma, and P. Jayachandran. “Resource Fairness and Prioritization
of Transactions in Permissioned Blockchain Systems (Industry Track).” In: Proceedings of the
19th International Middleware Conference Industry. Middleware ’18. Rennes, France: ACM, 2018,
pp. 46–53. isbn: 9781450360166. doi: 10.1145/3284028.3284035.

[46] B. Pi, Y. Pan, E. Zhou, et al. “xFabLedger: Extensible Ledger Storage for Hyperledger Fabric.” In:
2021 IEEE 11th International Conference on Electronics Information and Emergency Communica-

tion (ICEIEC)2021 IEEE 11th International Conference on Electronics Information and Emergency

Communication (ICEIEC). 2021, pp. 5–11. doi: 10.1109/ICEIEC51955.2021.9463838.

[47] P. Thakkar and S. Natarajan. “Scaling Blockchains Using Pipelined Execution and Sparse Peers.”
In: Proceedings of the ACM Symposium on Cloud Computing. SoCC ’21. Seattle, WA, USA: ACM,
2021, pp. 489–502. isbn: 9781450386388. doi: 10.1145/3472883.3486975.

[48] Z. István, A. Sorniotti, and M. Vukolić. “StreamChain: Do Blockchains Need Blocks?” In: Pro-
ceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers. SE-
RIAL’18. Rennes, France: ACM, 2018, pp. 1–6. isbn: 9781450361101. doi: 10.1145/3284764.
3284765.

[49] C. Goren�o, S. Lee, L. Golab, and S. Keshav. “FastFabric: Scaling Hyperledger Fabric to 20000
Transactions per Second.” In: International Journal of Network Management 30.5 (2020). doi:
10.1002/nem.2099.

[50] W. Zhao, M. Babi, W. Yang, et al. “Byzantine Fault Tolerance for Collaborative Editing with
Commutative Operations.” In: 2016 IEEE International Conference on Electro Information Technology

(EIT). 2016, pp. 0246–0251. doi: 10.1109/EIT.2016.7535248.

134

https://doi.org/10.1109/ICDCS.2018.00134
https://doi.org/10.14778/2735508.2735509
https://arxiv.org/abs/2012.00472
https://doi.org/10.1145/3183713.3196904
https://couchdb.apache.org/
https://sap.com/products/hana.html
https://doi.org/10.1145/3318464.3389693
https://doi.org/10.1145/3284028.3284035
https://doi.org/10.1109/ICEIEC51955.2021.9463838
https://doi.org/10.1145/3472883.3486975
https://doi.org/10.1145/3284764.3284765
https://doi.org/10.1145/3284764.3284765
https://doi.org/10.1002/nem.2099
https://doi.org/10.1109/EIT.2016.7535248

BIBLIOGRAPHY

[51] A. Shoker, H. Yactine, and C. Baquero. “As Secure as Possible Eventual Consistency: Work in
Progress.” In: Proceedings of the 3rd International Workshop on Principles and Practice of Consistency

for Distributed Data. PaPoC ’17. Belgrade, Serbia: ACM, 2017. isbn: 9781450349338. doi: 10.
1145/3064889.3064895.

[52] M. Capretto, M. Ceresa, A. F. Anta, A. Russo, and C. Sánchez. “Setchain: Improving Blockchain
Scalability with Byzantine Distributed Sets and Barriers.” In: 2022 IEEE International Conference

on Blockchain (Blockchain). 2022, pp. 87–96. doi: 10.1109/Blockchain55522.2022.
00022.

[53] J.-P. Martin and L. Alvisi. “Fast Byzantine Consensus.” In: IEEE Transactions on Dependable and

Secure Computing 3.3 (2006), pp. 202–215. doi: 10.1109/TDSC.2006.35.

[54] M. Kleppmann and A. R. Beresford. “A Con�ict-Free Replicated JSON Datatype.” In: IEEE Trans-

actions on Parallel and Distributed Systems 28.10 (2017), pp. 2733–2746. doi: 10.1109/TPDS.
2017.2697382.

[55] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. “FabricCRDT: A Con�ict-Free Replicated Datatypes
Approach to Permissioned Blockchains.” In: Proceedings of the 20th International Middleware

Conference. Middleware ’19. Davis, CA, USA: ACM, 2019, pp. 110–122. isbn: 9781450370097. doi:
10.1145/3361525.3361540.

[56] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas. “Communication-E�cient
Learning of Deep Networks from Decentralized Data.” In: Proceedings of the 20th International

Conference on Arti�cial Intelligence and Statistics. Vol. 54. Proceedings of Machine Learning Research.
PMLR, 2017, pp. 1273–1282.

[57] P. Nasirifard.OrderlessChain Source Code. url:https://github.com/orderlesschain/
orderlesschain.

[58] P. Nasirifard. OrderlessFL Source Code. url: https://github.com/orderlesschain/
orderlessfl.

[59] P. Nasirifard. OrderlessFile Source Code. url: https://github.com/orderlesschain/
orderlessfile.

[60] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. “OrderlessChain: A CRDT-based Coordination-free
Blockchain Without Global Order of Transactions.” In: Proceedings of the 24th International

Middleware Conference. Middleware ’23. Bologna, Italy: ACM, 2023.

[61] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. “OrderlessChain: A CRDT-Enabled Blockchain without
Total Global Order of Transactions: Poster Abstract.” In: Proceedings of the 23rd International

Middleware Conference: Demos and Posters. Middleware ’22. Quebec, Quebec City, Canada: ACM,
2022, pp. 5–6. isbn: 9781450399319. doi: 10.1145/3565386.3565486.

[62] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. “OrderlessFile: A CRDT-Enabled Permissioned Blockchain
for File Storage: Poster Abstract.” In: Proceedings of the 23rd International Middleware Conference:

Demos and Posters. Middleware ’22. Quebec, Quebec City, Canada: ACM, 2022, pp. 15–16. isbn:
9781450399319. doi: 10.1145/3565386.3565491.

135

https://doi.org/10.1145/3064889.3064895
https://doi.org/10.1145/3064889.3064895
https://doi.org/10.1109/Blockchain55522.2022.00022
https://doi.org/10.1109/Blockchain55522.2022.00022
https://doi.org/10.1109/TDSC.2006.35
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1145/3361525.3361540
https://github.com/orderlesschain/orderlesschain
https://github.com/orderlesschain/orderlesschain
https://github.com/orderlesschain/orderlessfl
https://github.com/orderlesschain/orderlessfl
https://github.com/orderlesschain/orderlessfile
https://github.com/orderlesschain/orderlessfile
https://doi.org/10.1145/3565386.3565486
https://doi.org/10.1145/3565386.3565491

BIBLIOGRAPHY

[63] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. “OrderlessFL: A CRDT-Enabled Permissioned Blockchain
for Federated Learning: Poster Abstract.” In: Proceedings of the 23rd International Middleware

Conference: Demos and Posters. Middleware ’22. Quebec, Quebec City, Canada: ACM, 2022, pp. 7–8.
isbn: 9781450399319. doi: 10.1145/3565386.3565487.

[64] Golang, Go Programming Language. url: https://golang.org/.

[65] LevelDB. url: https://github.com/google/leveldb.

[66] L. Lamport. “Paxos Made Simple.” In: ACM SIGACT News (Distributed Computing Column) 32, 4

(Whole Number 121, December 2001) (2001), pp. 51–58.

[67] N. Preguiça, C. Baquero, and M. Shapiro. “Con�ict-Free Replicated Data Types (CRDTs).” In:
Encyclopedia of Big Data Technologies. Springer International Publishing, 2018, pp. 1–10. isbn:
978-3-319-63962-8. doi: 10.1007/978-3-319-63962-8_185-1.

[68] N. M. Preguiça. “Con�ict-free Replicated Data Types: An Overview.” In: CoRR abs/1806.10254
(2018). arXiv: 1806.10254.

[69] H. Liang and X. Feng. “Abstraction for Con�ict-Free Replicated Data Types.” In: Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation.
PLDI 2021. Virtual, Canada: ACM, 2021, pp. 636–650. isbn: 9781450383912. doi: 10.1145/
3453483.3454067.

[70] S. Weiss, P. Urso, and P. Molli. “Logoot: A Scalable Optimistic Replication Algorithm for Collabora-
tive Editing on P2P Networks.” In: 2009 29th IEEE International Conference on Distributed Computing

Systems. 2009, pp. 404–412. doi: 10.1109/ICDCS.2009.75.

[71] N. Preguica, J. M. Marques, M. Shapiro, and M. Letia. “A Commutative Replicated Data Type for
Cooperative Editing.” In: 2009 29th IEEE International Conference on Distributed Computing Systems.
2009, pp. 395–403. doi: 10.1109/ICDCS.2009.20.

[72] R. Brown, S. Cribbs, C. Meiklejohn, and S. Elliott. “Riak DT Map: A Composable, Convergent
Replicated Dictionary.” In: Proceedings of the First Workshop on Principles and Practice of Eventual

Consistency. PaPEC ’14. Amsterdam, The Netherlands: ACM, 2014. isbn: 9781450327169. doi:
10.1145/2596631.2596633.

[73] P. S. Almeida, A. Shoker, and C. Baquero. “Delta State Replicated Data Types.” In:CoRR abs/1603.01529
(2016). arXiv: 1603.01529.

[74] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System.” In: Commun. ACM

21.7 (1978), pp. 558–565. issn: 0001-0782. doi: 10.1145/359545.359563.

[75] X. Défago, A. Schiper, and P. Urbán. “Total Order Broadcast and Multicast Algorithms: Taxonomy
and Survey.” In: ACM Comput. Surv. 36.4 (2004), pp. 372–421. issn: 0360-0300. doi: 10.1145/
1041680.1041682.

[76] C. E. Bezerra, F. Pedone, and R. Van Renesse. “Scalable State-Machine Replication.” In: 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 2014, pp. 331–342.
doi: 10.1109/DSN.2014.41.

136

https://doi.org/10.1145/3565386.3565487
https://golang.org/
https://github.com/google/leveldb
https://doi.org/10.1007/978-3-319-63962-8_185-1
https://arxiv.org/abs/1806.10254
https://doi.org/10.1145/3453483.3454067
https://doi.org/10.1145/3453483.3454067
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.1145/2596631.2596633
https://arxiv.org/abs/1603.01529
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1109/DSN.2014.41

BIBLIOGRAPHY

[77] A. Bessani, J. Sousa, and E. E. Alchieri. “State Machine Replication for the Masses with BFT-SMART.”
In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 2014,
pp. 355–362. doi: 10.1109/DSN.2014.43.

[78] J. Polge, J. Robert, and Y. Le Traon. “Permissioned Blockchain Frameworks in the Industry: A
Comparison.” In: ICT Express 7.2 (2021), pp. 229–233. issn: 2405-9595. doi: 10.1016/j.icte.
2020.09.002.

[79] G. Greenspan.MultiChain Private Blockchain –White Paper. 2015. url:https://multichain.
com/download/MultiChain-White-Paper.pdf.

[80] J. P. Morgan Chase. A Permissioned Implementation of Ethereum. 2018. url: https://github.
com/ConsenSys/quorum.

[81] H. Moniz. “The Istanbul BFT Consensus Algorithm.” In: CoRR abs/2002.03613 (2020). arXiv: 2002.
03613.

[82] A. Barger, Y. Manevich, H. Meir, and Y. Tock. “A Byzantine Fault-Tolerant Consensus Library
for Hyperledger Fabric.” In: 2021 IEEE International Conference on Blockchain and Cryptocurrency

(ICBC). 2021, pp. 1–9. doi: 10.1109/ICBC51069.2021.9461099.

[83] J. Sousa, A. Bessani, and M. Vukolic. “A Byzantine Fault-Tolerant Ordering Service for the Hy-
perledger Fabric Blockchain Platform.” In: 2018 48th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN). 2018, pp. 51–58. doi: 10.1109/DSN.2018.00018.

[84] A. Baliga, I. Subhod, P. Kamat, and S. Chatterjee. “Performance Evaluation of the Quorum Blockchain
Platform.” In: CoRR abs/1809.03421 (2018). arXiv: 1809.03421.

[85] A. Baliga, N. Solanki, S. Verekar, et al. “Performance Characterization of Hyperledger Fabric.”
In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT). 2018, pp. 65–74. doi: 10.
1109/CVCBT.2018.00013.

[86] P. Thakkar, S. Nathan, and B. Viswanathan. “Performance Benchmarking and Optimizing Hyper-
ledger Fabric Blockchain Platform.” In: (2018), pp. 264–276. doi: 10.1109/MASCOTS.2018.
00034.

[87] X. Xu, X. Wang, Z. Li, et al. “Mitigating Con�icting Transactions in Hyperledger Fabric-Permissioned
Blockchain for Delay-Sensitive IoT Applications.” In: IEEE Internet of Things Journal 8.13 (2021),
pp. 10596–10607. doi: 10.1109/JIOT.2021.3050244.

[88] C. Goren�o, L. Golab, and S. Keshav. “XOX Fabric: A Hybrid Approach to Transaction Execution.”
In: CoRR abs/1906.11229 (2019). arXiv: 1906.11229.

[89] B. Ding, L. Kot, and J. Gehrke. “Improving Optimistic Concurrency Control through Transaction
Batching and Operation Reordering.” In: Proc. VLDB Endow. 12.2 (2018), pp. 169–182. issn: 2150-
8097. doi: 10.14778/3282495.3282502.

[90] Q. Sun and Y. Yuan. “GBCL: Reduce Concurrency Con�icts in Hyperledger Fabric.” In: 2022 IEEE
13th International Conference on Software Engineering and Service Science (ICSESS). 2022, pp. 15–19.
doi: 10.1109/ICSESS54813.2022.9930267.

137

https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1016/j.icte.2020.09.002
https://doi.org/10.1016/j.icte.2020.09.002
https://multichain.com/download/MultiChain-White-Paper.pdf
https://multichain.com/download/MultiChain-White-Paper.pdf
https://github.com/ConsenSys/quorum
https://github.com/ConsenSys/quorum
https://arxiv.org/abs/2002.03613
https://arxiv.org/abs/2002.03613
https://doi.org/10.1109/ICBC51069.2021.9461099
https://doi.org/10.1109/DSN.2018.00018
https://arxiv.org/abs/1809.03421
https://doi.org/10.1109/CVCBT.2018.00013
https://doi.org/10.1109/CVCBT.2018.00013
https://doi.org/10.1109/MASCOTS.2018.00034
https://doi.org/10.1109/MASCOTS.2018.00034
https://doi.org/10.1109/JIOT.2021.3050244
https://arxiv.org/abs/1906.11229
https://doi.org/10.14778/3282495.3282502
https://doi.org/10.1109/ICSESS54813.2022.9930267

BIBLIOGRAPHY

[91] Roshi: A Large-scale CRDT Set Implementation for Timestamped Events. url: https://github.
com/soundcloud/roshi.

[92] B. Nédelec, P. Molli, A. Mostefaoui, and E. Desmontils. “LSEQ: An Adaptive Structure for Sequences
in Distributed Collaborative Editing.” In: Proceedings of the 2013 ACM Symposium on Document

Engineering. DocEng ’13. Florence, Italy: ACM, 2013, pp. 37–46. isbn: 9781450317894. doi: 10.
1145/2494266.2494278.

[93] G. Younes, A. Shoker, P. S. Almeida, and C. Baquero. “Integration Challenges of Pure Operation-
Based CRDTs in Redis.” In: First Workshop on Programming Models and Languages for Distributed

Computing. PMLDC ’16. Rome, Italy: ACM, 2016. isbn: 9781450347754. doi: 10 . 1145 /
2957319.2957375.

[94] M. Shapiro, A. Bieniusa, N. M. Preguiça, V. Balegas, and C. Meiklejohn. “Just-Right Consistency:
Reconciling Availability and Safety.” In: CoRR abs/1801.06340 (2018). arXiv: 1801.06340.

[95] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma. “Yjs: A Framework for Near Real-Time P2P
Shared Editing on Arbitrary Data Types.” In: Engineering the Web in the Big Data Era. Springer
International Publishing, 2015, pp. 675–678. isbn: 978-3-319-19890-3.

[96] Concordant. The Concordant Vision. 2020. url: https://concordant.io/uploads/
visionpaper-concordant_2020.pdf.

[97] P. Lopes, J. Sousa, V. Balegas, et al. “Antidote SQL: Relaxed When Possible, Strict When Necessary.”
In: CoRR abs/1902.03576 (2019). arXiv: 1902.03576.

[98] M. Zawirski, C. Baquero, A. Bieniusa, N. Preguiça, and M. Shapiro. “Eventually Consistent Register
Revisited.” In: Proceedings of the 2nd Workshop on the Principles and Practice of Consistency for

Distributed Data. PaPoC ’16. London, United Kingdom: ACM, 2016. isbn: 9781450342964. doi:
10.1145/2911151.2911157.

[99] Net�ix. Dynomite. url: https://github.com/Netflix/dynomite.

[100] B. Fitzpatrick. “Distributed Caching with Memcached.” In: Linux journal 2004.124 (2004), p. 5.

[101] SoundCloud. url: https://soundcloud.com/.

[102] Apple. Notes. url: https://icloud.com/notes.

[103] TomTom. GPS Navigation with TomTom. 2016. url: https : / / speakerdeck . com /
ajantis/practical-data-synchronization-with-crdts-strangeloop-
2016.

[104] M. Barbosa, B. Ferreira, J. Marques, B. Portela, and N. Preguiça. “Secure Con�ict-Free Replicated
Data Types.” In: International Conference on Distributed Computing and Networking 2021. ICDCN ’21.
Nara, Japan: ACM, 2021, pp. 6–15. isbn: 9781450389334. doi: 10.1145/3427796.3427831.

[105] M. Kleppmann. “Making CRDTs Byzantine Fault Tolerant.” In: Proceedings of the 9th Workshop on

Principles and Practice of Consistency for Distributed Data. PaPoC ’22. Rennes, France: ACM, 2022,
pp. 8–15. isbn: 9781450392563. doi: 10.1145/3517209.3524042.

138

https://github.com/soundcloud/roshi
https://github.com/soundcloud/roshi
https://doi.org/10.1145/2494266.2494278
https://doi.org/10.1145/2494266.2494278
https://doi.org/10.1145/2957319.2957375
https://doi.org/10.1145/2957319.2957375
https://arxiv.org/abs/1801.06340
https://concordant.io/uploads/visionpaper-concordant_2020.pdf
https://concordant.io/uploads/visionpaper-concordant_2020.pdf
https://arxiv.org/abs/1902.03576
https://doi.org/10.1145/2911151.2911157
https://github.com/Netflix/dynomite
https://soundcloud.com/
https://icloud.com/notes
https://speakerdeck.com/ajantis/practical-data-synchronization-with-crdts-strangeloop-2016
https://speakerdeck.com/ajantis/practical-data-synchronization-with-crdts-strangeloop-2016
https://speakerdeck.com/ajantis/practical-data-synchronization-with-crdts-strangeloop-2016
https://doi.org/10.1145/3427796.3427831
https://doi.org/10.1145/3517209.3524042

BIBLIOGRAPHY

[106] F. Jacob, C. Beer, N. Henze, and H. Hartenstein. “Analysis of the Matrix Event Graph Replicated Data
Type.” In: IEEE Access 9 (2021), pp. 28317–28333. doi: 10.1109/ACCESS.2021.3058576.

[107] A. Auvolat and F. Taïani. “Merkle Search Trees: E�cient State-Based CRDTs in Open Networks.”
In: 2019 38th Symposium on Reliable Distributed Systems (SRDS). 2019, pp. 221–22109. doi: 10.
1109/SRDS47363.2019.00032.

[108] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti. “A Survey on Homomorphic Encryption Schemes:
Theory and Implementation.” In: ACM Comput. Surv. 51.4 (2018). issn: 0360-0300. doi: 10.
1145/3214303.

[109] V. Cholvi, A. F. Anta, C. Georgiou, et al. “Byzantine-tolerant Distributed Grow-only Sets: Speci�ca-
tion and Applications.” In: CoRR abs/2103.08936 (2021). arXiv: 2103.08936.

[110] M. Sauwens, K. Jannes, B. Lagaisse, and W. Joosen. “SCEW: Programmable BFT-Consensus with
Smart Contracts for Client-Centric P2P Web Applications.” In: Proceedings of the 8th Workshop

on Principles and Practice of Consistency for Distributed Data. PaPoC ’21. Online, United Kingdom:
ACM, 2021. isbn: 9781450383387. doi: 10.1145/3447865.3457965.

[111] K. Karlsson, W. Jiang, S. Wicker, et al. “Vegvisir: A Partition-Tolerant Blockchain for the Internet-
of-Things.” In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS).
2018, pp. 1150–1158. doi: 10.1109/ICDCS.2018.00114.

[112] M. Imam, S. Takiar, and J. Wang. “RAMBLE: Reliable Asynchronous Messaging for Byzantine
Linked Entities.” In: (2017).

[113] H. Y. Wu, L. J. Li, H.-Y. Paik, and S. S. Kanhere. “MEChain: A Multi-layer Blockchain Structure
with Hierarchical Consensus for Secure EHR System.” In: 2021 IEEE 20th International Conference

on Trust, Security and Privacy in Computing and Communications (TrustCom). 2021, pp. 976–987.
doi: 10.1109/TrustCom53373.2021.00136.

[114] Enhanced Concurrency Control. Accessed: 2019-05-06. 2019. url:https://jira.hyperledger.
org/browse/FAB-10711.

[115] Twitter. url: https://twitter.com/.

[116] F. Pedone and A. Schiper. “Generic Broadcast.” In: Distributed Computing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 94–106. isbn: 978-3-540-48169-0.

[117] L. Lamport. “Generalized Consensus and Paxos.” In: (2005).

[118] L. Lamport. “Lower Bounds for Asynchronous Consensus.” In: Distributed Computing 19.2 (2006),
pp. 104–125.

[119] C. Li, D. Porto, A. Clement, et al. “Making Geo-Replicated Systems Fast as Possible, Consistent
When Necessary.” In: Proceedings of the 10th USENIX Conference on Operating Systems Design and

Implementation. OSDI’12. Hollywood, CA, USA: USENIX Association, 2012, pp. 265–278. isbn:
9781931971966.

139

https://doi.org/10.1109/ACCESS.2021.3058576
https://doi.org/10.1109/SRDS47363.2019.00032
https://doi.org/10.1109/SRDS47363.2019.00032
https://doi.org/10.1145/3214303
https://doi.org/10.1145/3214303
https://arxiv.org/abs/2103.08936
https://doi.org/10.1145/3447865.3457965
https://doi.org/10.1109/ICDCS.2018.00114
https://doi.org/10.1109/TrustCom53373.2021.00136
https://jira.hyperledger.org/browse/FAB-10711
https://jira.hyperledger.org/browse/FAB-10711
https://twitter.com/

BIBLIOGRAPHY

[120] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. “Don’t Settle for Eventual: Scalable
Causal Consistency for Wide-Area Storage with COPS.” In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. SOSP ’11. Cascais, Portugal: ACM, 2011, pp. 401–416.
isbn: 9781450309776. doi: 10.1145/2043556.2043593.

[121] F. Cristian, H. Aghili, R. Strong, and D. Dolev. “Atomic Broadcast: From Simple Message Di�usion
to Byzantine Agreement.” In: Information and Computation 118.1 (1995), pp. 158–179.

[122] P. E. O’Neil. “The Escrow Transactional Method.” In: ACM Trans. Database Syst. (1986), pp. 405–430.
doi: 10.1145/7239.7265.

[123] V. Balegas, D. Serra, S. Duarte, et al. “Extending Eventually Consistent Cloud Databases for
Enforcing Numeric Invariants.” In: 2015 IEEE 34th Symposium on Reliable Distributed Systems

(SRDS). 2015, pp. 31–36. doi: 10.1109/SRDS.2015.32.

[124] V. Balegas, S. Duarte, C. Ferreira, et al. “Putting Consistency Back into Eventual Consistency.” In:
Proceedings of the Tenth European Conference on Computer Systems. EuroSys ’15. Bordeaux, France:
ACM, 2015. isbn: 9781450332385. doi: 10.1145/2741948.2741972.

[125] J. Liu, T. Magrino, O. Arden, M. D. George, and A. C. Myers. “Warranties for Faster Strong
Consistency.” In: 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI

14). Seattle, WA: USENIX Association, 2014, pp. 503–517. isbn: 978-1-931971-09-6.

[126] M. Whittaker and J. M. Hellerstein. “Checking Invariant Con�uence, In Whole or In Parts.” In:
SIGMOD Rec. 49.1 (2020), pp. 7–14. issn: 0163-5808. doi: 10.1145/3422648.3422651.

[127] R. Friedman and K. Birman. Trading Consistency for Availability in Distributed Systems. Tech. rep.
1996.

[128] J. M. Hellerstein. “The Declarative Imperative: Experiences and Conjectures in Distributed Logic.”
In: SIGMOD Rec. 39.1 (2010), pp. 5–19. issn: 0163-5808. doi: 10.1145/1860702.1860704.

[129] T. J. Ameloot, F. Neven, and J. Van Den Bussche. “Relational Transducers for Declarative Network-
ing.” In: J. ACM 60.2 (2013). issn: 0004-5411. doi: 10.1145/2450142.2450151.

[130] N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier. “Logic and Lattices for
Distributed Programming.” In: Proceedings of the Third ACM Symposium on Cloud Computing.
SoCC ’12. San Jose, California: ACM, 2012. isbn: 9781450317610. doi: 10.1145/2391229.
2391230.

[131] M. Pires, S. Ravi, and R. Rodrigues. “Generalized Paxos Made Byzantine (and Less Complex).” In:
Stabilization, Safety, and Security of Distributed Systems. Cham: Springer International Publishing,
2017, pp. 203–218. isbn: 978-3-319-69084-1.

[132] P. Raykov, N. Schiper, and F. Pedone. “Byzantine Fault-Tolerance with Commutative Commands.” In:
Principles of Distributed Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 329–342.
isbn: 978-3-642-25873-2.

140

https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/7239.7265
https://doi.org/10.1109/SRDS.2015.32
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/3422648.3422651
https://doi.org/10.1145/1860702.1860704
https://doi.org/10.1145/2450142.2450151
https://doi.org/10.1145/2391229.2391230
https://doi.org/10.1145/2391229.2391230

BIBLIOGRAPHY

[133] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovič, and D.-A. Seredinschi. “The Consensus Number
of a Cryptocurrency.” In: Proceedings of the 2019 ACM Symposium on Principles of Distributed

Computing. PODC ’19. Toronto ON, Canada: ACM, 2019, pp. 307–316. isbn: 9781450362177. doi:
10.1145/3293611.3331589.

[134] G. O. Karame, E. Androulaki, and S. Capkun. “Two Bitcoins at the Price of One? Double-Spending
Attacks on Fast Payments in Bitcoin.” In: (2012).

[135] J.-M. Chang and N. F. Maxemchuk. “Reliable Broadcast Protocols.” In: ACM Trans. Comput. Syst.

2.3 (1984), pp. 251–273. issn: 0734-2071. doi: 10.1145/989.357400.

[136] D. Collins, R. Guerraoui, J. Komatovic, et al. “Online Payments by Merely Broadcasting Messages.”
In: 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
2020, pp. 26–38. doi: 10.1109/DSN48063.2020.00023.

[137] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed. “Federated Learning: A Survey on Enabling
Technologies, Protocols, and Applications.” In: IEEE Access 8 (2020), pp. 140699–140725. doi:
10.1109/ACCESS.2020.3013541.

[138] J. Verbraeken, M. Wolting, J. Katzy, et al. “A Survey on Distributed Machine Learning.” In: ACM
Comput. Surv. 53.2 (Mar. 2020). issn: 0360-0300. doi: 10.1145/3377454.

[139] X. Yin, Y. Zhu, and J. Hu. “A Comprehensive Survey of Privacy-Preserving Federated Learning: A
Taxonomy, Review, and Future Directions.” In: ACM Comput. Surv. 54.6 (2021). issn: 0360-0300.
doi: 10.1145/3460427.

[140] B. Liu, M. Ding, S. Shaham, et al. “When Machine Learning Meets Privacy: A Survey and Outlook.”
In: ACM Comput. Surv. 54.2 (Mar. 2021). issn: 0360-0300. doi: 10.1145/3436755.

[141] K. Bonawitz, H. Eichner, W. Grieskamp, et al. “Towards Federated Learning at Scale: System
Design.” In: 1 (2019), pp. 374–388.

[142] V. Mothukuri, R. M. Parizi, S. Pouriyeh, et al. “A Survey on Security and Privacy of Federated
Learning.” In: Future Generation Computer Systems 115 (2021), pp. 619–640. issn: 0167-739X. doi:
10.1016/j.future.2020.10.007.

[143] L. Lyu, H. Yu, and Q. Yang. “Threats to Federated Learning: A Survey.” In: CoRR abs/2003.02133
(2020). arXiv: 2003.02133.

[144] V. Mugunthan, R. Rahman, and L. Kagal. “BlockFLow: An Accountable and Privacy-Preserving
Solution for Federated Learning.” In: CoRR abs/2007.03856 (2020). arXiv: 2007.03856.

[145] P. Ramanan and K. Nakayama. “BAFFLE : Blockchain Based Aggregator Free Federated Learning.”
In: 2020 IEEE International Conference on Blockchain (Blockchain). 2020, pp. 72–81. doi: 10.1109/
Blockchain50366.2020.00017.

[146] Y. Zhao, J. Zhao, L. Jiang, et al. “Privacy-Preserving Blockchain-Based Federated Learning for IoT
Devices.” In: IEEE Internet of Things Journal 8.3 (2021), pp. 1817–1829. doi: 10.1109/JIOT.
2020.3017377.

141

https://doi.org/10.1145/3293611.3331589
https://doi.org/10.1145/989.357400
https://doi.org/10.1109/DSN48063.2020.00023
https://doi.org/10.1109/ACCESS.2020.3013541
https://doi.org/10.1145/3377454
https://doi.org/10.1145/3460427
https://doi.org/10.1145/3436755
https://doi.org/10.1016/j.future.2020.10.007
https://arxiv.org/abs/2003.02133
https://arxiv.org/abs/2007.03856
https://doi.org/10.1109/Blockchain50366.2020.00017
https://doi.org/10.1109/Blockchain50366.2020.00017
https://doi.org/10.1109/JIOT.2020.3017377
https://doi.org/10.1109/JIOT.2020.3017377

BIBLIOGRAPHY

[147] X. Wu, Z. Wang, J. Zhao, Y. Zhang, and Y. Wu. “FedBC: Blockchain-based Decentralized Federated
Learning.” In: 2020 IEEE International Conference on Arti�cial Intelligence and Computer Applications

(ICAICA). 2020, pp. 217–221. doi: 10.1109/ICAICA50127.2020.9182705.

[148] Y. Hu, W. Xia, J. Xiao, and C. Wu. “GFL: A Decentralized Federated Learning Framework Based On
Blockchain.” In: CoRR abs/2010.10996 (2020). arXiv: 2010.10996.

[149] H. B. Desai, M. S. Ozdayi, and M. Kantarcioglu. “BlockFLA: Accountable Federated Learning via
Hybrid Blockchain Architecture.” In: Proceedings of the Eleventh ACM Conference on Data and

Application Security and Privacy. CODASPY ’21. Virtual Event, USA: ACM, 2021, pp. 101–112. isbn:
9781450381437. doi: 10.1145/3422337.3447837.

[150] Z. Wang and Q. Hu. “Blockchain-based Federated Learning: A Comprehensive Survey.” In: CoRR
abs/2110.02182 (2021). arXiv: 2110.02182.

[151] D. C. Nguyen, M. Ding, Q.-V. Pham, et al. “Federated Learning Meets Blockchain in Edge Computing:
Opportunities and Challenges.” In: IEEE Internet of Things Journal 8.16 (2021), pp. 12806–12825.
doi: 10.1109/JIOT.2021.3072611.

[152] C. Dwork. “Di�erential Privacy: A Survey of Results.” In: Theory and Applications of Models of

Computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–19. isbn: 978-3-540-
79228-4.

[153] J. Benet. IPFS - Content Addressed, Versioned, P2P File System. 2014.

[154] W. Dai, Y. Zhou, N. Dong, H. Zhang, and E. P. Xing. “Toward Understanding the Impact of Staleness
in Distributed Machine Learning.” In: CoRR abs/1810.03264 (2018). arXiv: 1810.03264.

[155] W. Zhang, S. Gupta, X. Lian, and J. Liu. “Staleness-Aware Async-SGD for Distributed Deep
Learning.” In: Proceedings of the Twenty-Fifth International Joint Conference on Arti�cial Intelligence.
IJCAI’16. New York, New York, USA: AAAI Press, 2016, pp. 2350–2356.

[156] Q. Ho, J. Cipar, H. Cui, et al. “More E�ective Distributed ML via a Stale Synchronous Parallel
Parameter Server.” In: Advances in Neural Information Processing Systems. Vol. 26. Curran Associates,
Inc., 2013.

[157] J. Jiang, B. Cui, C. Zhang, and L. Yu. “Heterogeneity-Aware Distributed Parameter Servers.” In:
Proceedings of the 2017 ACM International Conference on Management of Data. SIGMOD ’17. Chicago,
Illinois, USA: ACM, 2017, pp. 463–478. doi: 10.1145/3035918.3035933.

[158] M. Li, D. G. Andersen, J. W. Park, et al. “Scaling Distributed Machine Learning with the Parameter
Server.” In: Proceedings of the 11th USENIX Conference on Operating Systems Design and Implemen-

tation. OSDI’14. Broom�eld, CO: USENIX Association, 2014, pp. 583–598. isbn: 9781931971164.

[159] C. Xie, S. Koyejo, and I. Gupta. “Asynchronous Federated Optimization.” In: CoRR abs/1903.03934
(2019). arXiv: 1903.03934.

[160] P. Sharma, R. Jindal, and M. D. Borah. “Blockchain Technology for Cloud Storage: A Systematic
Literature Review.” In: ACM Comput. Surv. 53.4 (Aug. 2020). issn: 0360-0300. doi: 10.1145/
3403954.

142

https://doi.org/10.1109/ICAICA50127.2020.9182705
https://arxiv.org/abs/2010.10996
https://doi.org/10.1145/3422337.3447837
https://arxiv.org/abs/2110.02182
https://doi.org/10.1109/JIOT.2021.3072611
https://arxiv.org/abs/1810.03264
https://doi.org/10.1145/3035918.3035933
https://arxiv.org/abs/1903.03934
https://doi.org/10.1145/3403954
https://doi.org/10.1145/3403954

BIBLIOGRAPHY

[161] N. Zahed Benisi, M. Aminian, and B. Javadi. “Blockchain-based Decentralized Storage Networks: A
Survey.” In: Journal of Network and Computer Applications 162 (2020), p. 102656. issn: 1084-8045.
doi: 10.1016/j.jnca.2020.102656.

[162] N. Deepa, Q.-V. Pham, D. C. Nguyen, et al. “A Survey on Blockchain for Big Data: Approaches,
Opportunities, and Future Directions.” In: Future Generation Computer Systems 131 (2022), pp. 209–
226. issn: 0167-739X. doi: 10.1016/j.future.2022.01.017.

[163] Storj Labs. Storj: A Decentralized Cloud Storage Network Framework.

[164] D. Vorick and L. Champine. Sia: Simple Decentralized Storage.

[165] Protocol Labs. Filecoin: A Decentralized Storage Network.

[166] S. Ruj, M. S. Rahman, A. Basu, and S. Kiyomoto. “BlockStore: A Secure Decentralized Storage
Framework on Blockchain.” In: 2018 IEEE 32nd International Conference on Advanced Information

Networking and Applications (AINA). 2018, pp. 1096–1103. doi: 10.1109/AINA.2018.
00157.

[167] B. Guidi, A. Michienzi, and L. Ricci. “Evaluating the Decentralisation of Filecoin.” In: DICG ’22.
Quebec, Quebec City, Canada: ACM, 2022, pp. 13–18. isbn: 9781450399289. doi: 10.1145/
3565383.3566108.

[168] R. Vaillant, D. Vasilas, M. Shapiro, and T. L. Nguyen. “CRDTs for Truly Concurrent File Systems.”
In: Proceedings of the 13th ACM Workshop on Hot Topics in Storage and File Systems. HotStorage
’21. Virtual, USA: ACM, 2021, pp. 35–41. isbn: 9781450385503. doi: 10.1145/3465332.
3470872.

[169] V. Tao, M. Shapiro, and V. Rancurel. “Merging Semantics for Con�ict Updates in Geo-Distributed
File Systems.” In: Proceedings of the 8th ACM International Systems and Storage Conference. SYSTOR
’15. Haifa, Israel: ACM, 2015. isbn: 9781450336079. doi: 10.1145/2757667.2757683.

[170] G. Pestana. Con�ict-Free Replicated JSON Implementation in Go. Accessed: 2019-05-05. 2018. url:
https://github.com/gpestana/rdoc.

[171] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and P. Urso. “Evaluating CRDTs for Real-
Time Document Editing.” In: Proceedings of the 11th ACM Symposium on Document Engineering.
DocEng ’11. Mountain View, California, USA: ACM, 2011, pp. 103–112. isbn: 9781450308632. doi:
10.1145/2034691.2034717.

[172] P. van Hardenberg and M. Kleppmann. “PushPin: Towards Production-Quality Peer-to-Peer
Collaboration.” In: Proceedings of the 7th Workshop on Principles and Practice of Consistency for

Distributed Data. PaPoC ’20. Heraklion, Greece: ACM, 2020. isbn: 9781450375245. doi: 10.
1145/3380787.3393683.

[173] B. Chandramouli, G. Prasaad, D. Kossmann, et al. “FASTER: A Concurrent Key-Value Store with
In-Place Updates.” In: Proceedings of the 2018 International Conference on Management of Data.
SIGMOD ’18. Houston, TX, USA: ACM, 2018, pp. 275–290. isbn: 9781450347037. doi: 10.1145/
3183713.3196898.

143

https://doi.org/10.1016/j.jnca.2020.102656
https://doi.org/10.1016/j.future.2022.01.017
https://doi.org/10.1109/AINA.2018.00157
https://doi.org/10.1109/AINA.2018.00157
https://doi.org/10.1145/3565383.3566108
https://doi.org/10.1145/3565383.3566108
https://doi.org/10.1145/3465332.3470872
https://doi.org/10.1145/3465332.3470872
https://doi.org/10.1145/2757667.2757683
https://github.com/gpestana/rdoc
https://doi.org/10.1145/2034691.2034717
https://doi.org/10.1145/3380787.3393683
https://doi.org/10.1145/3380787.3393683
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.1145/3183713.3196898

BIBLIOGRAPHY

[174] M. Zawirski, N. Preguiça, S. Duarte, et al. “Write Fast, Read in the Past: Causal Consistency for
Client-Side Applications.” In: Proceedings of the 16th Annual Middleware Conference. Middleware
’15. Vancouver, BC, Canada: ACM, 2015, pp. 75–87. isbn: 9781450336185. doi: 10.1145/
2814576.2814733.

[175] A.-N. Mehdi, P. Urso, V. Balegas, and N. Perguiça. “Merging OT and CRDT Algorithms.” In:
Proceedings of the First Workshop on Principles and Practice of Eventual Consistency. PaPEC ’14.
Amsterdam, The Netherlands: ACM, 2014. doi: 10.1145/2596631.2596636.

[176] T. Bocek, B. B. Rodrigues, T. Strasser, and B. Stiller. “Blockchains Everywhere - a Use-Case of
Blockchains in the Pharma Supply-Chain.” In: 2017 IFIP/IEEE Symposium on Integrated Network

and Service Management (IM). 2017, pp. 772–777. doi: 10.23919/INM.2017.7987376.

[177] F. Tian. “A Supply Chain Traceability System for Food Safety Based on HACCP, Blockchain and
Internet of Things.” In: 2017 International Conference on Service Systems and Service Management.
2017, pp. 1–6. doi: 10.1109/ICSSSM.2017.7996119.

[178] P. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan Kaufmann, 2009.

[179] TPC-C. url: http://tpc.org/tpcc/.

[180] TPC-H. url: http://tpc.org/tpch/.

[181] Apache Kafka. url: https://kafka.apache.org/.

[182] Apache ZooKeeper. url: https://zookeeper.apache.org/.

[183] Hyperledger Caliper. url: https://hyperledger.github.io/caliper/.

[184] H. Chai and W. Zhao. “Byzantine Fault Tolerance for Services with Commutative Operations.” In:
2014 IEEE International Conference on Services Computing. 2014, pp. 219–226. doi: 10.1109/
SCC.2014.37.

[185] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. OrderlessChain: Do Permissioned Blockchains Need Total

Global Order of Transactions? 2022. doi: 10.48550/ARXIV.2210.01477.

[186] J. Huang, D. He, M. S. Obaidat, et al. “The Application of the Blockchain Technology in Voting
Systems: A Review.” In: ACM Comput. Surv. 54.3 (2021). issn: 0360-0300. doi: 10.1145/
3439725.

[187] S. Gilbert and N. Lynch. “Perspectives on the CAP Theorem.” In: Computer 45.2 (2012), pp. 30–36.
doi: 10.1109/MC.2011.389.

[188] U. Maurer. “Modelling a Public-key Infrastructure.” In: Computer Security — ESORICS 96. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 325–350. isbn: 978-3-540-70675-5.

[189] H. S. Galal and A. M. Youssef. “Veri�able Sealed-Bid Auction on the Ethereum Blockchain.” In:
Financial Cryptography and Data Security: FC 2018 International Workshops, BITCOIN, VOTING, and

WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised Selected Papers. Nieuwpoort, Curaçao: Springer
Berlin Heidelberg, 2018, pp. 265–278. isbn: 978-3-662-58819-2. doi: 10.1007/978-3-662-
58820-8_18.

144

https://doi.org/10.1145/2814576.2814733
https://doi.org/10.1145/2814576.2814733
https://doi.org/10.1145/2596631.2596636
https://doi.org/10.23919/INM.2017.7987376
https://doi.org/10.1109/ICSSSM.2017.7996119
http://tpc.org/tpcc/
http://tpc.org/tpch/
https://kafka.apache.org/
https://zookeeper.apache.org/
https://hyperledger.github.io/caliper/
https://doi.org/10.1109/SCC.2014.37
https://doi.org/10.1109/SCC.2014.37
https://doi.org/10.48550/ARXIV.2210.01477
https://doi.org/10.1145/3439725
https://doi.org/10.1145/3439725
https://doi.org/10.1109/MC.2011.389
https://doi.org/10.1007/978-3-662-58820-8_18
https://doi.org/10.1007/978-3-662-58820-8_18

BIBLIOGRAPHY

[190] D. Sun, S. Xia, C. Sun, and D. Chen. “Operational Transformation for Collaborative Word Pro-
cessing.” In: Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work.
CSCW ’04. Chicago, Illinois, USA: ACM, 2004, pp. 437–446. isbn: 1581138105. doi: 10.1145/
1031607.1031681.

[191] C. Sun and C. Ellis. “Operational Transformation in Real-Time Group Editors: Issues, Algorithms,
and Achievements.” In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative

Work. CSCW ’98. Seattle, Washington, USA: ACM, 1998, pp. 59–68. isbn: 1581130090. doi:
10.1145/289444.289469.

[192] gRPC, a High Performance, Open-Source Universal RPC Framework. url: https://grpc.io/.

[193] J. Bauwens and E. Gonzalez Boix. “Memory E�cient CRDTs in Dynamic Environments.” In:
Proceedings of the 11th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate

Languages. VMIL 2019. Athens, Greece: ACM, 2019, pp. 48–57. isbn: 9781450369879. doi: 10.
1145/3358504.3361231.

[194] M. Kleppmann, A. Wiggins, P. van Hardenberg, and M. McGranaghan. “Local-First Software: You
Own Your Data, in Spite of the Cloud.” In: Proceedings of the 2019 ACM SIGPLAN International

Symposium on New Ideas, New Paradigms, and Re�ections on Programming and Software. Onward!
2019. Athens, Greece: ACM, 2019, pp. 154–178. isbn: 9781450369954. doi:10.1145/3359591.
3359737.

[195] Oracle. Read-Your-Writes Consistency. url: https://bit.ly/3dIAXOp.

[196] S. J. Castiñeira and A. Bieniusa. “Collaborative O�ine Web Applications Using Con�ict-Free
Replicated Data Types.” In: Proceedings of the First Workshop on Principles and Practice of Consistency

for Distributed Data. PaPoC ’15. Bordeaux, France: ACM, 2015. isbn: 9781450335379. doi: 10.
1145/2745947.2745952.

[197] D. Mealha, N. Preguiça, M. C. Gomes, and J. Leitão. “Data Replication on the Cloud/Edge.” In:
Proceedings of the 6th Workshop on Principles and Practice of Consistency for Distributed Data.
PaPoC ’19. Dresden, Germany: ACM, 2019. isbn: 9781450362764. doi: 10.1145/3301419.
3323973.

[198] T. Jungnickel and L. Oldenburg. “Pluto: The CRDT-Driven IMAP Server.” In: Proceedings of the 3rd
International Workshop on Principles and Practice of Consistency for Distributed Data. PaPoC ’17.
Belgrade, Serbia: ACM, 2017. isbn: 9781450349338. doi: 10.1145/3064889.3064891.

[199] A. van der Linde, P. Fouto, J. Leitão, et al. “Legion: Enriching Internet Services with Peer-to-Peer
Interactions.” In: Proceedings of the 26th International Conference on World Wide Web. WWW ’17.
Perth, Australia: International World Wide Web Conferences Steering Committee, 2017, pp. 283–292.
isbn: 9781450349130. doi: 10.1145/3038912.3052673.

[200] M. Najafzadeh, M. Shapiro, and P. Eugster. “Co-Design and Veri�cation of an Available File System.”
In: Veri�cation, Model Checking, and Abstract Interpretation. Springer International Publishing,
2018, pp. 358–381. isbn: 978-3-319-73721-8.

145

https://doi.org/10.1145/1031607.1031681
https://doi.org/10.1145/1031607.1031681
https://doi.org/10.1145/289444.289469
https://grpc.io/
https://doi.org/10.1145/3358504.3361231
https://doi.org/10.1145/3358504.3361231
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
https://bit.ly/3dIAXOp
https://doi.org/10.1145/2745947.2745952
https://doi.org/10.1145/2745947.2745952
https://doi.org/10.1145/3301419.3323973
https://doi.org/10.1145/3301419.3323973
https://doi.org/10.1145/3064889.3064891
https://doi.org/10.1145/3038912.3052673

BIBLIOGRAPHY

[201] S. Laddad, C. Power, M. Milano, A. Cheung, and J. M. Hellerstein. “Katara: Synthesizing CRDTs with
Veri�ed Lifting.” In: Proc. ACM Program. Lang. 6.OOPSLA2 (2022). doi: 10.1145/3563336.

[202] Q. Li, Z. Wen, Z. Wu, et al. “A Survey on Federated Learning Systems: Vision, Hype and Reality
for Data Privacy and Protection.” In: IEEE Transactions on Knowledge and Data Engineering (2021),
pp. 1–1. doi: 10.1109/TKDE.2021.3124599.

[203] Y. Zhou, Q. Ye, and J. Lv. “Communication-E�cient Federated Learning With Compensated Overlap-
FedAvg.” In: IEEE Transactions on Parallel and Distributed Systems 33.1 (2022), pp. 192–205. doi:
10.1109/TPDS.2021.3090331.

[204] L. Bottou. “Large-Scale Machine Learning with Stochastic Gradient Descent.” In: Proceedings of
COMPSTAT’2010. Heidelberg: Physica-Verlag HD, 2010, pp. 177–186. isbn: 978-3-7908-2604-3.

[205] M. Assran, N. Loizou, N. Ballas, and M. G. Rabbat. “Stochastic Gradient Push for Distributed Deep
Learning.” In: vol. abs/1811.10792. 2018. arXiv: 1811.10792.

[206] M. Abadi, A. Chu, I. Goodfellow, et al. “Deep Learning with Di�erential Privacy.” In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security. CCS ’16. Vienna,
Austria: ACM, 2016, pp. 308–318. isbn: 9781450341394. doi: 10.1145/2976749.2978318.

[207] M. Naehrig, K. Lauter, and V. Vaikuntanathan. “Can Homomorphic Encryption Be Practical?” In:
Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop. CCSW ’11. Chicago,
Illinois, USA: ACM, 2011, pp. 113–124. isbn: 9781450310048. doi: 10.1145/2046660.
2046682.

[208] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller. “Evaluating the Visualization
of What a Deep Neural Network Has Learned.” In: IEEE Transactions on Neural Networks and

Learning Systems 28.11 (2017), pp. 2660–2673. doi: 10.1109/TNNLS.2016.2599820.

[209] A. Canziani, A. Paszke, and E. Culurciello. “An Analysis of Deep Neural Network Models for
Practical Applications.” In: CoRR abs/1605.07678 (2016). arXiv: 1605.07678.

[210] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown. “An Introduction to Decision
Tree Modeling.” In: Journal of Chemometrics: A Journal of the Chemometrics Society 18.6 (2004),
pp. 275–285.

[211] TensorFlow. url: https://tensorflow.org/.

[212] Keras Sequential DNN Model. Accessed: 2022-09-15. url: https://tensorflow.org/
tutorials/quickstart/beginner.

[213] MNIST Dataset. url: https://yann.lecun.com/exdb/mnist/.

[214] Y. Mao, Z. Liu, and H.-A. Jacobsen. “Reversible Con�ict-Free Replicated Data Types.” In: Proceedings
of the 23rd Conference on 23rd ACM/IFIP International Middleware Conference. Middleware ’22.
Quebec, QC, Canada: ACM, 2022, pp. 295–307. isbn: 9781450393409. doi: 10.1145/3528535.
3565252.

146

https://doi.org/10.1145/3563336
https://doi.org/10.1109/TKDE.2021.3124599
https://doi.org/10.1109/TPDS.2021.3090331
https://arxiv.org/abs/1811.10792
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1109/TNNLS.2016.2599820
https://arxiv.org/abs/1605.07678
https://tensorflow.org/
https://tensorflow.org/tutorials/quickstart/beginner
https://tensorflow.org/tutorials/quickstart/beginner
https://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/3528535.3565252
https://doi.org/10.1145/3528535.3565252

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Problem Statement
	Approach
	A CRDT-based Approach to Fabric
	A Coordination-free Permissioned Blockchain

	Contributions
	Organization

	Background
	Hyperledger Fabric Permissioned Blockchain
	Architecture
	Fabric's Coordination-based Protocol

	Conflict-free Replicated Data Types
	Invariant Conditions and Invariant Confluence

	Related Work
	Scalability Solutions of Fabric
	CRDTs in non-Byzantine and Byzantine Systems
	Invariant Conditions of Distributed Applications
	Asynchronous Federated Learning in Byzantine Environments
	Blockchain-based File Storage Systems

	FabricCRDT: A CRDT-enabled Permissioned Blockchain
	Multiversion Concurrency Control-based Failures
	Architecture and Design
	System Model
	Design Requirements
	Transaction Lifecycle

	Implementation
	Merging CRDT Transactions
	Enabling JSON CRDT on FabricCRDT

	Potentials and Limitations of FabricCRDT over Fabric
	Evaluation
	Experimental Applications
	Workloads, Control Variables and Metrics
	Experimental Setup
	Experimental Results for IoT Applications
	Discussion

	Summary

	OrderlessChain: A Permissioned Blockchain without Coordination
	System Model
	Architecture and Protocol
	Architecture
	Protocol and Transaction Lifecycle

	Realizing Decentralized Use Cases on OrderlessChain
	Application Modeling
	CRDT Abstractions

	Implementation
	Developing CRDT-enabled Smart Contracts
	Applying CRDT Transactions

	Preserving Invariant Conditions
	Byzantine Fault Tolerance
	Evaluation
	Experimental Applications
	Workloads, Control Variables and Metrics
	Experimental Setup
	Experimental Results for Synthetic Applications
	Experimental Results for the Voting and Auction Applications
	Discussion

	Summary

	Extended Applications of OrderlessChain
	OrderlessFL: A Blockchain-based Federated Learning System
	Architecture and FL Protocol
	flCRDT: A Federated Learning CRDT
	Evaluation

	OrderlessFile: A Blockchain for File Storage
	FileCRDT: A CRDT for File Storage
	Architecture and Protocol
	Evaluation

	Summary

	Conclusions
	Summary
	Future Work

	List of Acronyms and Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

