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Abstract

Abstract

The increasing integration of the renewable energy sources and growing market share of the electric
vehicles (EVs) have led to a rapid development of research and manufacture of Lithium-ion batteries.
The physicochemical modeling and simulation of the Lithium-ion batteries have been playing a crucial
role in the design and operation of the batteries due to its ability to reflect the internal physicochemical
states which are inaccessible by means of conventional measurement methods. The accuracy and
thus the power of the physicochemical model of a Lithium-ion battery is to a large extent decided
by the parameter set, which is estimated using various methods of different complexity. For the
aforementioned reasons, the estimation of the physicochemical parameters has been a highly focused
research topic. In this present thesis, first an estimation method for the physicochemical parameters
with the distribution of relaxation times (DRT) is proposed, where a theory for the interpretation of the
resulting DRT spectra based on a physicochemical impedance model has been developed. The highly
dynamic parameters such as the solid-electrolyte-interphase (SEI) and the charge transfer parameters
as well as the parameters with a sluggish effect like diffusion are investigated and estimated using
the DRT method. Subsequently, different parameter estimation procedures have been investigated
and compared to analyze the influence of the external ohmic resistance and estimation method on the
parameter identifiability. The experimental results indicate that the state-of-charge (SOC) dependence
of the parameters has considerably changed the parameter identifiability and can significantly improve
the simulation accuracy, which has highlighted the necessity of the combined application of the time
domain and frequency domain methods for the estimation of the physicochemical parameters.

b



Kurzfassung

Die zunehmende Verwendung von erneuerbaren Energiequellen und der wachsende Marktanteil von
Elektrofahrzeugen (EVs) haben zu einer rapiden Entwicklung bei Forschung und Herstellung von
Lithium-Ionen-Batterien geführt. Die physikochemische Modellierung und Simulation von Lithium-
Ionen-Batterien hat beim Design und Betrieb der Batterien aufgrund ihrer Fähigkeit, die internen
physikochemischen Zustandsvariablen wiederzugeben, welche mittels konventioneller Messmethoden
nicht bestimmbar sind, eine wichtige Rolle gespielt. Die Genauigkeit und damit die Stärke des physiko-
chemischen Modells einer Lithium-Ionen-Batterie wird zum großen Teil von dem Parametersatz fest-
gelegt, welcher mittels verschiedener Methoden bestimmt werden kann. Aus den oben genannten Grün-
den ist die Bestimmung der physikochemischen Parameter ein Forschungsthema von großer Bedeutung
geworden. In dieser Arbeit wird zuerst eine Methode zur Bestimmung der physikochemischen Param-
eter mit der Verteilung der Relaxationszeiten (DRT) entwickelt, wo eine auf einem physikochemischen
Impedanzmodell basierende Theorie zur Interpretation der resultierenden DRT Spektren hergeleitet
wird. Die hochdynamischen Kenngrößen wie die Parameter von Solid-Electrolyte-Interphase (SEI),
Ladungsdurchtritt sowie der Diffusion werden mit der DRT untersucht und bestimmt. Anschließend
werden unterschiedliche Parameterbestimmungsverfahren untersucht und miteinander verglichen, um
den Einfluss des externen ohmschen Widerstands und des Parameterbestimmungsverfahrens auf die
Parameteridentifizierbarkeit zu analysieren. Die experimentellen Ergebnisse zeigen, dass die Ab-
hängigkeit der Parameter vom Ladezustand die Parameteridentifizierbarkeit wesentlich geändert und
die Genauigkeit der Simulation verbessert hat, was die Notwendigkeit der kombinierten Anwendung von
Methoden im Zeitbereich und Frequenzbereich für die Bestimmung der physikochemischen Parameter
hervorgehoben hat.
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1 Introduction

In the last few decades, electric vehicles (EV) have been attracting more and more attention and grad-
ually become readily available to the public with an affordable price due to the technology development
and decreasing cost of the energy storage devices. According to the report of the International Energy
Agency, there were more than ten million electric cars on the road in 2020, which have increased for
ca. 50% compared to the statistics in 2019[1]. It has also been predicted in the report that the global
EV stock will surpass 200 million by the year 2030[1]. Currently, Lithium-ion batteries are used as the
mainstream energy sources for EVs. As one of the most costly components in EVs, the Lithium-ion
battery has a decisive influence on the driving range and safety[2]. Hence, electrode materials with a
higher energy density, longer cycle life, lower cost, and improved safety are being consistently devel-
oped. On the other hand, a well designed battery management system (BMS) is indispensable for an
efficient and safe operation of EVs. Typical functions of a BMS include: charging/discharging control,
estimation of SOX (X = charge, power, health, etc.), and so on. In order to realize the aforementioned
functions of the BMS, generally a battery model must be developed and implemented on the microcon-
troller to estimate the internal states which are inaccessible to the measurement system. Depending
on the complexity and the estimated states, equivalent circuit models (ECM), physicochemical models
(PCM), data-driven models etc. have been used in BMSs[3].

For any of the aforementioned applications, a precise identification of the cell parameters is crucial,
otherwise the internal states cannot be accurately estimated. Among all the cell parameters, transport
and kinetic parameters such as reaction rate constant, diffusivity, and conductivity are of particular
importance, because unlike the geometric parameters, these parameters can hardly be measured di-
rectly using measurement equipment. Compared to other methods, the electrochemical impedance
spectroscopy (EIS) is especially suitable for characterizing the dynamic electrochemical processes in-
side Lithium-ion batteries. Meanwhile, the EIS also provides fruitful analyzable information about
the kinetic and transport parameters of the battery cell[4]. Unlike a charging/discharging curve, EIS
can effectively separate the contributions from different processes. The present thesis will focus on the
parameter identification using the EIS technique.

To identify these parameters indirectly, usually an appropriate battery model needs to be selected
and one of multiple external signals must be measured. Then, an optimization program with an
appropriate cost function is established and an algorithm must be properly designed to solve the
resulting optimization problem. Due to the strongly nonlinear nature of the electrochemical systems,
the resulting problems are mostly strongly nonlinear and are inevitably subjected to a high computation
effort and identifiability issues. Although sometimes ECMs may be selected for the reason of simplicity,
a direct correlation of the identification results with the fundamental electrochemical processes is
unclear or even missing.

In the present thesis, a comprehensive theory will be proposed to estimate the transport and kinetic
parameters with the distribution of relaxation times (DRT) method, where only a linear least squares
(LLS) problem needs to be solved, instead of nonlinear optimization problems. Furthermore, an ana-
lytical expression for the DRT spectra is derived based on a physicochemical impedance model instead
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1.1 Parameter Estimation with Electrochemical Impedance Spectroscopy

of ECMs. Finally, the parameter identification results will be validated using highly dynamic load pro-
files. A literature overview on the parameter estimation of Lithium-ion batteries using electrochemical
impedance spectroscopy will be given in the next section.

1.1 Parameter Estimation with Electrochemical Impedance
Spectroscopy

The working principle of the EIS technique is to stimulate the Lithium-ion battery being in an equi-
librium state with a current/potential signal of a small amplitude and varying frequency so that the
electrochemical system is pseudo-linear. Under the pseudo-linear condition, if the excitation signal is
sinusoidal, the response is also sinusoidal at the same frequency and possibly with a different phase
angle. The impedance data in different frequency range contains the information about the corre-
sponding electrochemical processes, such as the solid-electrolyte-interphase (SEI) process, the charge
transfer process, the diffusion in the solid and liquid phases, etc.. The commonly used representation
of an impedance includes the Nyquist plot and the Bode plot. A typical Nyquist plot of the impedance
of a Lithium-ion battery is shown in Fig. 1.1b, where different parts have been marked with numbers.
In the shown Nyquist plot, the real part of the impedance is represented by Z

′ and the imaginary
part is represented by Z ′′ . The impedance curve starts from the left-lower part with the highest fre-
quency to the right-upper part with the lowest frequency. According to the characteristic frequency,
the impedance can be generally divided into four regions: region I has a zero imaginary part and
represents the ohmic resistance of the electrode, which is generally attributed to the ohmic conduction
phenomena in the solid and liquid phase. This process is usually modeled with a resistance element;
region II is mostly attributed to the electrode/current collector contact and is generally described using
a RC or RQ element; region III often gains the most attention and is attributable to the SEI and charge
transfer reactions in the anode and cathode. Both can be modeled using a RC or RQ element; the
impedance in region IV has a remarkable feature that a close to 45° slope can be observed, which can
be explained by the diffusion in the solid particles and electrolyte. The diffusion processes are usually
modeled using the Warburg element of different kinds. Besides the processes depicted in Fig. 1.1, an
inductive behavior may be observed in the impedance of a cylindrical cell due to its spiral structure.
Generally, the inductive part can be observed in the high frequency range and is represented by a
positive imaginary part below the real axis.

The measured impedance can provide fruitful information about the dynamic processes occurring in the
battery, thus enabling the estimation of the electrochemical parameters. To identify the corresponding
kinetic and transport parameters, various methods have been proposed and investigated. Based on
the mathematical methods used, the parameter identification with EIS can be classified in two large
groups. In the following sections, each group will be briefly introduced and a summary will be given
at the end.

1.1.1 Parameter Identification by Model Fitting

In the first group, first an impedance model must be selected to compute the frequency response of
the battery:

Zsim = Z(jω|θ) (1.1)
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1.1 Parameter Estimation with Electrochemical Impedance Spectroscopy

(a) schematic structure of an electrode in LIB
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(c) DRT spectrum corresponding to the impedance

Figure 1.1: A schematic representation of (a): the structure of an electrode and (b): the corresponding
impedance part in each frequency range and (c): the DRT spectrum corresponding to the
shown impedance

where Zsim is the simulated impedance, Z is the defined impedance model, ω is the angular frequency
and ω = 2πf , f is the frequency in Hz, θ is the parameter set of the selected impedance model.
Depending on the model complexity and comprehensiveness, different impedance model classes have
been used. The most widely used model class is the ECM, where the physicochemical processes are
represented by a series of circuit elements such as resistance, capacitance, and RC elements. An
example of an ECM is shown in Fig. 1.2, which consists of an inductance, an ohmic resistance, three
RC elements representing the interface processes, and two Warburg elements modeling the diffusion
phenomena in the active material particles.

L Rohm

CSEI

RSEI

Cdl,1

Rct,1

Cdl,2

Rct,2

ZW,1 ZW,2

Figure 1.2: Typical equivalent circuit impedance model of a Lithium-ion battery

After the impedance model has been defined, a cost function is selected and subsequently minimized
using an appropriate optimization algorithm. In practical applications, generally the least square
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1.1 Parameter Estimation with Electrochemical Impedance Spectroscopy

function is used so that the measurement data can be best fitted by the selected model:

F (θ) =

Nf∑
i=1

{
[<(Zsim,i(jω|θ)− Zm,i)]

2 + [=(Zsim,i(jω|θ)− Zm,i)]
2
}

(1.2)

where Nf is the total number of frequency points, Zm,i is the measured impedance at the frequency
point fi.

Kalogiannis et al.[5] used an equivalent circuit similar to that shown in Fig. 1.2 to extract the cell
parameters with EIS. The proposed circuit was considered to be appropriate because the fitting has
achieved a low fitting residue. Beyond that, no clear proof or further information has been provided
regarding the selection of the circuit elements and structure. In addition, the identified circuit pa-
rameters were directly used to describe the corresponding physicochemical processes without further
explanation. Vyroubal et al.[6] used an equivalent circuit consisting of two RC elements to model the
impedance of of a Lithium-ion battery. The proposed circuit model was fitted to a set of impedance
data at various state of charge (SOC) to extract the parameters. The impedance model was based on a
strong simplification of the electrochemical processes in the electrode so that the porous structure and
the transport processes in the porous structure were not considered in the model. Then, the extracted
parameters were used for a validation purpose and an obvious discrepancy could be observed between
the simulated and the measured voltage profile.

Other than the charge transfer kinetics, the diffusion parameters have also been estimated by fitting
the corresponding diffusion impedance elements to the impedance data. Charbonneau et al.[7] built
an ECM with a Warburg element for the solid diffusion in the spherical solid particles to extract
the diffusion coefficients. Similar to the cases analyzed before, the circuit model is rather based on
a strong simplification. Gabano et al.[8] made a detailed analysis on the single diffusion impedance
elements and estimated the diffusion parameters while considering the parameter sensitivity. Again,
the proposed impedance model is a simplified circuit model with two RC elements and a diffusion
impedance element, the porous electrode structure and the transport processes in the electrolyte were
not considered. To summarize the literature analyzed above, it can be concluded that the parameter
identification with the ECMs and impedance data has two inherent deficiencies: first, the structure of
the ECM used is selected rather in an intuitive manner and no clear explanation and proof has been
given for the selection, i.e., the impedance model is not based on a well formulated physicochemical
model which is able to describe the dynamics in the Lithium-ion battery using the first principle
equations; second, because the impedance models used are strongly simplified and not based on the
first principle equations, a correlation of the estimation results with the physicochemical parameters of
the Lithium-ion battery cannot be obtained, therefore a direct application of the estimated parameters
to a physics-based battery model will most likely be problematic.

Besides the ECMs, a few studies have used the physicochemical impedance model to identify the cell
parameters. Sikha et al.[9; 10] were the first to derive a physicochemical impedance model based on
the well-known pseudo-two-dimensional (p2D) battery model. Furthermore, an analytical solution was
derived and an attempt has been made to estimate the diffusion coefficients in the solid particles with
a simplified version of the proposed model. However, neither an identification of other cell parameters
was given nor any identifiability analysis was carried out. Murbach et al.[11] used an impedance
model based on the p2D model to extract the physicochemical parameters with a local optimization
method. The authors have also concluded in this work that the parameter identifiability when fitting
the impedance data to a physicochemical impedance model could be a potential issue. Huang et al.[12]
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1.1 Parameter Estimation with Electrochemical Impedance Spectroscopy

had also attempted to identify the cell kinetic and transport parameters using a physicochemical
impedance model. The impedance model was fitted to the impedance data using the global-search
algorithm and the fitting program was run 50 times for each SOC to improve the probability of finding
the global optimum. All in all, compared to the ECM, the physicochemical impedance model has
established a direct connection between the estimated parameters and the underlying electrochemical
phenomena. Nevertheless, it can be readily seen that the fitting process is subjected to the parameter
identifiability issue due to the strongly nonlinear nature of the electrochemical systems. Besides, the
higher computational effort of the physicochemical impedance model must be taken into account as
well, if an analytical solution cannot be derived.

1.1.2 Parameter Identification with the Distribution of Relaxation Times

Compared to the model fitting introduced before, the second method group is based on the integral
transform. With the integral transform, the data in frequency domain (impedance) can be transformed
into time constant domain to obtain the distribution spectrum of the relaxation times, also known as
the DRT. The DRT was first used to describe the dielectric relaxation process where the relaxation
process could not be well described by a single Debye-relaxation[13]. Later the concept of DRT was
introduced to describe the interfacial polarization process in materials[14], the solid electrolytes[15],
and the processes in the electrochemical systems[16]. The DRT method can effectively resolve the issue
that the circuit selected to fit the impedance data may be arbitrarily chosen and the impedance data
may be well fitted with circuits of different structures[4]. For the aforementioned reasons, the DRT
method is usually defined as a model-free representation of the impedance data, because no concrete
model has been defined for the investigated devices. In this sense, the physical meaning of the DRT
spectrum does not seem to be fully clear and there still exists a gap between the DRT spectrum and
the physicochemical parameters. A typical DRT spectrum corresponding to the impedance data shown
in Fig. 1.1b is shown in Fig. 1.1c, with time constants as the abscissa and the DRT function as the
ordinate. Three groups of peaks can be observed in the DRT spectrum, which correspond to different
electrochemical processes in the electrode. Peak II has the lowest time constant and represents the
contact impedance between the current collector and the active materials. Peak III corresponds to the
interfacial processes between the active materials and the electrolyte such as the charge transfer and the
SEI process. The peak group IV consists of multiple peaks and is usually attributed to the diffusion in
the solid and liquid phases and has the highest time constants due to the sluggish diffusion phenomena.
Point I in Fig. 1.1b has a zero imaginary part and is usually defined as the ohmic resistance of the
electrode. It is worth mentioning here that the peak attribution stated above is merely in a qualitative
or even an intuitive manner and does not have any physicochemical explanation behind.

Regarding the DRT, most of the research works have been focusing on two topics: calculation of the
DRT and interpretation of the DRT. In the following sections, a brief introduction to the two topics
mentioned above will be given and the unsolved research questions will be discussed.

1.1.2.1 Calculation of the Distribution of Relaxation Spectrum

The original DRT function is usually defined using the following equation:

Zm(jω) = Rohm +

∫ ∞

0

G(τ)

1 + jωτ
dτ (1.3)
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1.1 Parameter Estimation with Electrochemical Impedance Spectroscopy

where τ is the time constant and G(τ) is the DRT function searched for, Rohm is the ohmic resistance.
It is often expected that the time constants will span over several orders of magnitude, thus it is more
convenient to apply the logarithmic scale to the equation defined above. By defining t = log10(τ) and
substituting the defined relation into Eq. 1.3, the following equation can be obtained:

Zm(jω) = Rohm +

∫ ∞

−∞

P (t)

1 + jωτ
dt (1.4)

where the DRT function in logarithmic scale P (t) is related to that in linear scale in the following way:

P (t) = ln (10)τG(τ) (1.5)

To solve for the G(τ) or P (t) function with the given impedance data, the defined integral equation
must be inverted with a properly chosen method. One of the most widely used inversion methods is
the Fourier transform method (FT)[17–21]. Though with the FT method the DRT spectrum can be
conveniently calculated with an analytical solution, the inversion may encounter problems at the upper
and lower frequency limit of the impedance[20].

Another widely used inversion method is a numerical method based on the regularization technique.
To solve Eq. 1.4 numerically, the integral equation must first be discretized and the following linear
least squares problem can be obtained:

x̂ = min
{
‖Ax− b‖22

}
(1.6)

where x is the DRT function being sought, b is the measurement data vector and b = [<(Zm),=(Zm)]ᵀ,
A is the system matrix after the discretization:

A =

<{ 1
1+jωiτj

}
=
{

1
1+jωiτj

}
i=1,...,Nf ;j=1,...,Nτ

(1.7)

where Nf and Nτ are the number of frequencies and time constants respectively. Generally such an
ordinary linear least squares problem (OLS) can be easily solved using the estimator:

x̂ = (AᵀA)−1Aᵀb (1.8)

However, due to the fact that the columns of A are highly colinear and thus the resulting OLS problem
is highly ill-posed. A direct application of Eq. 1.8 to the OLS problem will lead to meaningless results.
Therefore, the regularization technique is used and a penalty term is added to Eq. 1.6 to resolve the
ill-posedness of the OLS problem:

x̂ = min
{
‖Ax− b‖22 + ‖λΓx‖22

}
(1.9)

where Γ is the so-called regularization matrix or the Tikhonov matrix[22], which can be chosen ac-
cording to the desired effect. For example, the identity matrix is selected to achieve a solution with a
smaller norm, other possible candidates include the first-order and second-order derivative matrix. λ is

6



1.2 Thesis Outline

a hyperparameter which is used to tune the effect of the regularization, when λ = 0, the regularization
effect disappears and the regularization problem reduces to an OLS problem. To solve the Tikhonov
regularization problem, the following estimator is given:

x̂reg = (Aᵀ + λΓA)−1Aᵀb (1.10)

Wan et al.[23] and Liu et al.[24] used the regularization method to deconvolute the impedance data
and released the widely used open-source MATLAB® toolbox DRTtools. Nevertheless, this toolbox
has only modeled the effect of RC elements, while the impedance data of a Lithium-ion battery may
contain inductive and capacitive components. Therefore, the impedance data must be preprocessed to
remove the inductive and capacitive components so that the solution of Eq. 1.4 can converge. Danzer
[25] proposed an improved version of the regularization problem which has taken into account the
inductive, resistive-inductive, and capacitive components as well.

1.1.2.2 Interpretation of the Distribution of Relaxation Times Spectrum

While most of the research works are devoted to the calculation of the DRT spectrum using different
algorithms, nearly no attention has been paid to the evaluation and interpretation of the calculated
DRT spectrum. Though the time constant and the polarization resistance of each process can be
calculated from the DRT spectrum with low effort, the correlation of the DRT spectrum to the un-
derlying physicochemical processes are still unclear. Boukamp analyzed the DRT spectrum of a few
common impedance elements including the finite-length Warburg element[26], Havriliak-Negami ele-
ment, and Gerischer element[18] and derived the analytical expression for the DRT spectra. Because
the Havriliak-Negami element and Gerischer element are rather empirical elements, the finite-length
Warbug element is the only element investigated with a clear physical meaning behind.

In summary, while much progress has been made in the calculation of the DRT spectrum, yet a clear
physical meaning has not been assigned to the calculation results and the underlying physicochemical
phenomena cannot be well characterized and explained satisfactorily with the DRT spectrum.

1.2 Thesis Outline

From the literature review made above, the following facts can be summarized about the parameter
identification for the Lithium-ion battery with the impedance data: 1. circuit fitting with ECMs may
lead to ambiguous results regarding the meaning of the fitting results; 2. fitting with PCMs will cause
a higher computational effort compared to that with ECMs and the fitting process will very likely
suffer from identifiability and parameter sensitivity issues, the reliability of the fitting results cannot
be guaranteed; 3. the DRT method can resolve the computation and parameter identifiability issues
by transforming the nonlinear optimization problem into a regularization problem where a unique
analytical solution exists; 4. while the DRT method possesses the advantages of fast calculation speed
and a unique solution, the physical meaning behind the results are still unclear and the results can be
hardly applied to the physicochemical model.

Based on the analysis made above, the motivation of the present thesis can be raised: a theory should
be developed to explain and interpret the DRT spectrum within the context of the physicochemical
model of a Lithium-ion battery, i.e., to enable an estimation of the physicochemical parameters with
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1.2 Thesis Outline

the DRT spectrum while the underlying physicochemical phenomena inside the battery should be
considered as much as possible.

The structure of the present thesis is visualized in Fig. 1.3 and the remainder of the thesis will be
organized as follows: in chapter 2 and 3, the physicochemical modeling of a Lithium-ion battery in
time domain and frequency domain will be introduced respectively, which is used in the rest of the
thesis for the theory development.

Chapter 1: Introduction

Chapter 2: Modeling in time domain

p2D model - time domain

Chapter 4

p2D impedance model - high frequency range

simplification

and modeling

Current collector

Electrolyte

Active material

Surface film
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p2D model
modeling

modeling
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Chapter 5
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Particle size distribution

Chapter 7: Conclusions and outlooks

Bayesian + MCMC sampling
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p2D model - reduced order model

AnodeSeparatorCathode
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d
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Figure 1.3: Outline of the thesis

In chapter 4, the theory to explain and interpret the kinetic parameters in the mid-high frequency
range will be developed. Specifically, a closed-form analytical expression for the DRT spectrum in the
mid-high frequency range will be derived with the p2D model. Consequently, the developed theory is
applied to a commercially available Lithium-ion battery cell, the estimated parameters include the area-
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1.2 Thesis Outline

specific SEI capacitance, resistance, the kinetic reaction rate constant, the double layer capacitance,
and the contact impedance between the electrode and the current collector. Besides, the temperature
and SOC dependence of the parameters will be investigated as well.

In chapter 5, based on the theory and conclusions in chapter 4, a new theory to investigate the DRT
spectrum in mid-low frequency range is developed and correspondingly an analytical expression of the
DRT spectrum in the mid-low frequency range is derived. With the developed theory, the diffusion
coefficients in the solid and liquid phases can be estimated with regard to a physicochemical model,
especially when the ionic conduction and diffusion in the electrolyte are taken into account. Apart from
the model with a uniform particle size, the theory which takes the particle size distribution into account
is also developed, the influence of the nonuniform particle size distribution is analyzed, and the estima-
tion of the diffusion coefficients in such case is investigated. Then a commercially available Lithium-ion
battery cell is used in the lab experiment and the diffusion coefficients are estimated. Furthermore, a
measurement using the galvanostatic intermittent titration technique (GITT) has been conducted on
the same cells, the results are compared and the merits of the DRT method are demonstrated.

In chapter 6, a comparative parameter identification study is conducted to investigate the impact of
the parameter identification method on the parameter identifiability and the model accuracy. In this
present study, the parameter identification performance of the time domain fitting and the combined
method using both time domain and frequency domain fitting will be investigated and compared in
detail. Chapter 7 concludes the thesis and a few suggestions are made regarding the possible research
direction in the future work.
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2 Physicochemical Modeling of the Lithium-ion Battery

In this chapter, the basic working principles and the fundamentals of the physicochemical modeling
of the Lithium-ion battery will be introduced. In section 2.1, the general structure and basic working
principle of a Lithium-ion battery will be briefly explained. In section 2.2, the physicochemical modeling
of a Lithium-ion battery with the well-known Doyle-Fuller-Newman (DFN) model will be explained
and the corresponding equations describing the electrochemical processes in the Lithium-ion battery,
such as the material transport, the charge transfer kinetics, and the conduction phenomena are derived.
Then, a widely spread simplified version of the DFN model, namely the p2D model will derived and
explained in detail. In section 2.3, first the reduced-order-model (ROM) used for the computationally
efficient simulation of a Lithium-ion battery will be introduced; then the sampling method for the
parameter identification study will be presented and briefly explained.

Li+

e- e-

Load

Anode Separator Cathode

Figure 2.1: Schematic structure of a Lithium-ion battery. The battery is discharged and the lithium
ions move from the anode toward the cathode

2.1 Structure and Working Principle of the Lithium-ion Battery

Since its invention, the Lithium-ion battery has been widely applied in diverse scenarios like electric
vehicles, grid-connected energy storage system and consumer electronics due to its high specific power
and energy density. The major improvement of the rechargeable Lithium-ion battery compared to the
traditional throwaway lithium battery is that an intercalation material is used to host the lithium during
charging, so that no spongy lithium metal will be deposited and further lithium loss can be avoided[27].
In principle, a lithium-ion battery consists of an anode, a separator and a cathode, as depicted in Fig.
2.1, where the Lithium-ion battery is being discharged and the lithium ions deintercalate from the
anode, pass through the separator and move to the cathode. Besides, one current collector must be
added to each electrode to serve as the electrical contact to the external circuit as well as the support
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2.2 Physicochemical Modeling of the Lithium-ion Battery in Time Domain

for the coating materials[28]. During charging, the lithium deintercalates from the cathode material,
passes through the separator and moves to the anode. There the lithium will intercalate into the
anode, and vice versa during discharging. The anode and cathode are separated by the separator
to avoid a direct contact so that a short circuit can be prevented. Currently, the anode is mostly
made of carbon-based materials due to their high specific charge capacity and low redox potential[29].
Among the carbons used as the anode material, graphitic carbon material is the most widely used.
The intercalation/deintercalation reaction in the anode can be described by the following equation:

xLi+ + xe− + C6
charging

discharging
LixC6 (2.1)

For the cathode, the most widely used materials are the inorganic transition-metal oxides, which have
gained more attention than other materials such as the organic molecules and polymers[29]. The metal
oxides materials can be classified into different groups according to their crystal structure. Typical
structure of the metal oxides cathode material includes the layered structure (NMC, LCO), disordered
rock-salt structure (α-FeO2), spinel structure (LMN, LMO), and polyanion (LFP)[30]. Similar to the
anode, the chemical reaction in the cathode during the charging and discharging can be represented
by the following equation:

xLi+ + xe− +MO2
discharging

charging
LixMO2 (2.2)

where MO2 is the metal oxide. The separator of the Lithium-ion battery has a microporous structure
and is generally made of polyolefin materials such as polyethylene, polypropylene, or a mixture of the
both[31].

While the basic working principle of a Lithium-ion battery can be well explained by the schematic
structure depicted in Fig. 2.1, such a battery with a single layer coating is unsuitable for practical
applications. Various cell formats and packaging types have been developed for the industrialized
production and practical application. At present, there are three packaging types for the commercially
available Lithium-ion battery: cylindrical, flat jelly roll, and stacking[32], which are depicted in Fig.
2.2. Both the cylindrical and the flat jelly roll structure utilize the similar packaging concept: the
double coated electrode layers (anode, cathode) and the separator are stacked together and then
rolled up to form a jelly roll structure. The stacking structure is formed by stacking the electrode
layers together without rolling-up. Consequently, the formed electrode rolls can be packaged into a
cylindrical metal casing to produce a cylindrical round cell, or a rectangular metal can to produce a
prismatic cell; the stacks can also be packaged into a bag made of aluminium to produce a pouch bag
cell[32].

2.2 Physicochemical Modeling of the Lithium-ion Battery in Time
Domain

Since proposed, the DFN model[33–35] has been widely applied in various application scenarios, such as
simulation[36; 37], design optimization[38; 39], and parameter identification[40–42] of the Lithium-ion
battery. The DFN model is based on the theory of porous electrodes and concentrated solutions and
describes the physicochemical processes using a group of coupled partial differential equations. The
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AnodeSeparatorCathode

x

r

O

r

C(r)

O

Figure 2.2: Different packaging types and the p2D modeling concept for the Lithium-ion battery

DFN model is generally applicable to any 3D geometry, where appropriate numerical methods like the
finite-element-method (FEM) must be applied to solve the model. In most practical applications, the
DFN model has been simplified with reasonable assumptions and the p2D model is derived. The p2D
model assumes that the lithium-ions only move in the direction perpendicular to the electrode layer,
while the concentration and potential difference along the electrode layer can be neglected. Besides,
the electrode is assumed to be homogenized, i.e., at each location the electrode is assumed to be made
of a mixture of the solid and liquid phases. At each location in the electrode, the intercalation/dein-
tercalation in the solid active material particles occurs and the dimension inside the active material
particles is defined as the second dimension (see. Fig. 2.2). To simplify the calculation, usually a
planar, cylindrical or spherical geometry is assumed for the active material particles so that only one
dimension is necessary to describe the material transport inside the particles. Because the second
dimension is only defined in the solid particles and not in the electrode, the model is thus defined as
p2D. The physicochemical model used in this thesis is based on the p2D model.

According to the definition of the p2D model introduced above, four state variables are solved for in
the p2D model:

1. concentration in the electrolyte: cl(x, t) in molm−3

2. potential in the electrolyte: φl(x, t) in V
3. concentration in the solid particles: cs(x, r, t) in molm−3

4. potential in the solid phase: φs(x, t) in V

In the following sections, the equations describing the physicochemical processes in the p2D model will
be derived, the equations are based on the DFN model proposed by Doyle et al.[33–35] and the work
of Newman[43].
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2.2 Physicochemical Modeling of the Lithium-ion Battery in Time Domain

2.2.1 Material Transport in the Electrolyte

The transport and interaction of different species in the electrolyte are driven by the electrochemical
potential gradient. As a result, the electrochemical potential will first be investigated. According to
the theory of the concentrated solutions, the electrochemical potential gradient can be described by
the following equation:

ci∇µi =
∑
j

Kij(vj − vi) = RT
∑
j

cicj
cTDij

(vj − vi) (2.3)

where Kij is the friction or the interaction coefficient between the species i and j and it is assumed
that Kij = Kji. vi and vj are the velocity of the species i and j respectively. R is the gas constant
and T is the temperature in K. Dij is the diffusion coefficient and represents the interaction between
the species. The total concentration of the species in the electrolyte is given as:

cT =
∑
i

ci (2.4)

For a binary electrolyte which contains one cation and one anion, Eq. 2.3 can be simplified to obtain
the following equations:

c+∇µ+ = K0+(v0 − v+) +K+−(v− − v+) (2.5)

for the cation and:

c−∇µ− = K0−(v0 − v−) +K+−(v+ − v−) (2.6)

for the anion. The current flow in the electrolyte is attributed to the transport of the charged species.
As a result, the current density in the electrolyte il is given by the following equation:

il = F
∑
i

ziNi (2.7)

where F is the Faraday constant, zi is the valence of the species, Ni is the flux density. If c+v+ and
c−v− are solved for using Eq. 2.5 and 2.6 and then substituted into Eq. 2.3, the following equations
can be obtained:

N+ = c+v+ = − ν+D
νRT

cT
c0
c∇µe +

ilt
0
+

z+F
+ c+v0 (2.8)

N− = c−v− = − ν−D
νRT

cT
c0
c∇µe +

ilt
0
−

z−F
+ c−v0 (2.9)

where t0i is the transference number of the species i. ν = ν+ + ν−, where ν+ and ν− is the number
of the produced cations and anions when one solvent molecule is dissociated. c is the electrolyte
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concentration and is defined as follows:

c =
c+
ν+

=
c−
ν−

(2.10)

For the electrochemical potential of the ions, the following equation holds:

µe = ν+µ+ + ν−µ− (2.11)

The diffusion coefficient D is defined as follows:

D =
D0+D0−(z+ − z−)
z+D0+ − z−D0−

(2.12)

Here D is a quantity describing the relative diffusion of the ions. The normally measured diffusion
coefficient in the electrolyte is related to D by:

D = D cT
c0

(
1 +

d ln γ+−

d lnm

)
(2.13)

where γ+− is the mean molal activity coefficient and m is the molality. Finally, the concentration
gradient can be represented using the electrochemical potential gradient:

D
νRT

cT
c0
c∇µe = D

(
1− d ln c0

d ln c

)
∇c (2.14)

On the other hand, the concentration of a species can be described using the continuity equation:

∂cl

∂t
= −∇Nl +Rl (2.15)

where Rl is the source or sink of the species. If Eq. 2.14 is substituted into Eq. 2.8 and the resulting
equation is further substituted into Eq. 2.15, the following equation can be obtained:

∂cl

∂t
+∇(clv0) = ∇

[
D

(
1− d ln c0

d ln cl

)
∇cl −

ilt
0
+

z+ν+F

]
+Rl (2.16)

Generally the convection inside a Lithium-ion battery can be neglected so that ∇(clv0) = 0; besides,
it is assumed that the solvent concentration is independent of the electrolyte concentration[43]. As a
result, Eq. 2.16 can be simplified to:

∂cl

∂t
= ∇(D∇cl)−

il∇t0+
z+ν+F

−
t0+∇il
z+ν+F

+Rl (2.17)

2.2.2 Charge Balance in the Solid and Liquid Phase

Considering that the electrolyte is electroneutral, the following equation holds:∑
i

cizi = 0 (2.18)
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Besides the concentration gradient, another driving force for the transport of ions in the electrolyte is
the electric potential. To derive the equation for the electric potential in the electrolyte, the following
general chemical reaction can be defined:

s−M
z−
− + s+M

z+
+ + s0M0 
 ne− (2.19)

Here M+ is the cation, M− is the anion and M0 is the neutral molecules in the electrolyte, e− is the
electron. si is the stoichiometric coefficient and n is the number of the transferred electrons. By using
the thermodynamic principle, the equation derived above can be written as[43]:

s−∇µ− + s+∇µ+ + s0∇µ0 = −nF∇φl (2.20)

The ionic current density in the electrolyte can be represented in terms of the electrochemical poten-
tial[43]:

il = −κ∇φl −
κ

F

(
s+
n+

+
t0+
z+ν+

− s0c

nc0

)
∇µe (2.21)

where κ is the conductivity in the electrolyte. For a binary electrolyte, the following values can
be assumed: s+ = −1, n = 1, ν+ = 1, z+ = 1 and s0 = 0. Following the same principle, the
electrochemical potential gradient is eliminated by substituting Eq. 2.14 into the equation above, and
it is again assumed that the solvent concentration is independent of the ionic concentration. As a
result, the following equation is obtained:

il = −κ∇φl +
2κRT (1− t0+)

F

(
1 +

d ln f±
d ln c

)
∇ ln cl (2.22)

where f± is the activity.

The electric potential in the solid phase is caused by the flux of electrons and the potential distribution
can be described using the Ohm’s law:

is = −σ∇φs (2.23)

where is is the current density in the solid phase and σ is the solid phase conductivity.

2.2.3 Electrode Kinetics

The electrochemical reactions, i.e., the charge transfer reactions occur at the surface of the active
material particles. Here the Butler-Volmer equation is used to calculate the reaction current density[43]:

in = i0

[
exp

(
αaF

RT
η

)
− exp

(
−αcF

RT
η

)]
(2.24)

where in is the reaction current density in Am−2, i0 is the exchange current density in Am−2. αa

and αc are the anodic and cathodic charge transfer coefficient respectively and both are assumed to

15



2.2 Physicochemical Modeling of the Lithium-ion Battery in Time Domain

be equal to 0.5 in this thesis. η is the overpotential over the interface and is defined as follows:

η = φs − φl − UOCP (2.25)

where UOCP is the open circuit potential (OCP) of the electrode. The exchange current density is
defined by the following equation:

i0 = Fkαa
c kαc

a (cs,max − cs,surf)
αacαc

s,surf

(
cl

cl,ref

)αa

(2.26)

where ki is the reaction rate constant in m s−1, cs,max is the maximum possible concentration in the
solid phase in molm−3, cs,surf is the concentration at the surface of the solid phase in molm−3, cl,ref is
the reference concentration in the electrolyte and is assumed to be 1 molm−3.

After the electrochemical reaction current density has been defined with the Butler-Volmer equation,
the sink/source term coupling the solid and liquid phases can be calculated by the following equation:

iv = ∇il (2.27)

Rl =
iv
F

(2.28)

iv is the volumetric reaction current density in Am−3. In most practical applications, it is usually
assumed that all particles in the solid phase have the same particle size. If the particles are assumed
to be spherical, then the total interfacial area inside the unit volume can be calculated as follows:

av =
4πr2

4
3εs
πr3

=
3εs
r

(2.29)

where r is the particle radius, εs is the volume fraction of the active materials, av is the volumetric
interfacial area in m2 m−3 and describes the average interfacial area between the solid and liquid phases.
With the volumetric interfacial area, the volumetric reaction current density can be represented with
regard to the areal reaction current density by the following equation:

iv = avin (2.30)

According to the charge balance in the solid and liquid phases, the total current density in the electrode
must be constant:

∇(is + il) = 0 (2.31)

As a result, the following equation can be obtained:

∇is = −avin (2.32)
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2.2.4 Material Transport in the Solid Phase

The transport of lithium in the solid phase is described using Fick’s law of diffusion:

∂cs

∂t
= ∇(Ds∇cs) (2.33)

where Ds is the diffusion coefficient in the solid phase. If the particles are assumed to be spherical and
the solid phase diffusion coefficient is assumed to be independent of the concentration, the diffusion
equation can be reformulated using spherical coordinate:

∂cs

∂t
= Ds

(
∂2cs
∂r2

+
2

r

∂cs

∂r

)
(2.34)

2.2.5 Modeling the Porous Electrode

The electrode of a Lithium-ion battery consists of a large number of small active material particles,
inactive materials, binder, and the remaining pore is filled with electrolyte. Such an electrode has a
porous structure which has a significant influence on the material transport and electrical conduction.
In the bulk electrolyte, the lithium ions can move without any barrier. However, in the porous media,
the diffusion path of the lithium ions will be hindered by the porous structure and the material transport
will be slowed down. As a result, the bulk values of the transport parameters must be corrected to
account for this slow-down effect.

To describe the slow-down effect caused by the porous structure, the tortuosity has been introduced[44]:

τ =
leff

l
(2.35)

where τ is the tortuosity, leff is the effective path in the porous structure, l is the direct path when
no porous structure exists. According to Doyle et al.[35] the effective transport parameters can be
represented in terms of the bulk value and tortuosity using the following equations:

κ =
εl
τ
κ0 (2.36)

σ =
εs
τ
σ0 (2.37)

Dl =
εl
τ
Dl,0 (2.38)

where εl is the porosity, κ0, σ0 and Dl,0 are the bulk values. On the other hand, the tortuosity can be
defined by the following equation[35]:

τ = ε1−α (2.39)
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where α is the Bruggeman coefficient and is usually assumed to be 1.5 based on the following assump-
tions: all particles are densely packed, have a spherical geometry, and have the same size[45].

2.2.6 Derivation of the p2D Model

If we combine Eq. 2.17, 2.22, 2.23, 2.27, 2.28, 2.30, 2.32, and 3.36 and further assume: 1. t0+ is a
constant; 2. the electrode variables vary only in the direction perpendicular to the electrode layer
(p2D assumption) and consider that the electrode is regarded as superimposed continua, the complete
model equations can be derived and summarized in the follows.

Material balance in the electrolyte:

εl
∂cl

∂t
=

∂

∂x

(
Dl
∂cl

∂x

)
+
av(1− t0+)

F
in (2.40)

Charge balance in the electrolyte:

∂

∂x

(
−κ∂φl

∂x

)
+

2RT (1− t0+)
F

∂

∂x

[
κ

(
1 +

d ln f±
d ln cl

)
∇ ln cl

]
= avin (2.41)

Material balance in the solid phase:

∂cs

∂t
= Ds

(
∂2cs
∂r2

+
2

r

∂cs

∂r

)
(2.42)

Charge balance in the solid phase:

∂

∂x

(
σ
∂φs

∂x

)
= avin (2.43)

Electrode kinetics:

in = i0

[
exp

(
αaF

RT
η

)
− exp

(
−αcF

RT
η

)]
(2.44)

i0 = Fkαa
c kαc

a (cs,max − cs,surf)
αacαc

s,surf

(
cl

cl,ref

)αa

(2.45)

Because there is no active material and thus no charge transfer reaction in the separator, only the
concentration and potential in the electrolyte will be solved in the separator. Therefore, the model
equations for the separator are given as follows:

εl
∂cl

∂t
=

∂

∂x

(
Dl
∂cl

∂x

)
(2.46)

Charge balance in the electrolyte:

∂

∂x

(
−κ∂φl

∂x

)
+

2RT (1− t0+)
F

∂

∂x

[
κ

(
1 +

d ln f±
d ln cl

)
∇ ln cl

]
= 0 (2.47)
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2.3 Parameter Identification in Time Domain with Probability Sampling Method

To solve the derived partial differential equation system, proper boundary conditions must be defined.
At the current collector/anode interface, the potential reference point is defined and the following
boundary condition is defined:

φs|x=0 = 0 (2.48)

The ionic flux cannot penetrate through both current collectors, thus the following boundary conditions
are valid:

∂cl

∂x

∣∣∣∣
x=0,lcell

= 0 (2.49)

∂φl

∂x

∣∣∣∣
x=0,lcell

= 0 (2.50)

where lcell is the total thickness of the electrode layers and lcell = lneg + lsep + lpos. Besides, the total
current density applied to the battery can be defined:

−σ∂φs

∂x

∣∣∣∣
x=0,lcell

= iapp (2.51)

where iapp is the total current density applied to the battery in Am−2 and is defined as:

iapp =
Icell

Acell
(2.52)

where Icell is the total current applied to the battery in A and Acell is the total area of each electrode
layer. At the solid/liquid phase interface, the following boundary condition is defined:

−Ds
∂cs

∂r

∣∣∣∣
r=rp

=
in
F

(2.53)

where rp is the particle radius. Due to symmetry, at the particle center there is no flux:

∂cs

∂r

∣∣∣∣
r=0

= 0 (2.54)

At the anode/separator and separator/cathode interface, the electrolyte concentration, electrolyte
potential, and ionic flux are all continuous and thus the continuity boundary conditions apply.

2.3 Parameter Identification in Time Domain with Probability
Sampling Method

With the physicochemical model introduced in previous sections, the operation performance of a
Lithium-ion battery can be simulated using a group of model parameters and a selected numerical
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2.3 Parameter Identification in Time Domain with Probability Sampling Method

method. In practical applications, while the voltage of the Lithium-ion battery under a given current
profile can be easily measured, the internal states and parameters of the tested Lithium-ion battery
often cannot be determined straightforwardly. To determine some of the parameters, the investigated
battery cell can be disassembled and some parameters can be determined or measured using specific
measurement equipment[37; 46]. Alternatively, an externally measured signal, such as the voltage or
temperature, can be fed into a preselected model and a proper cost function can be defined to form
an optimization problem. The resulting optimization problem can be solved to estimate the unknown
parameters. Generally, a nonlinear least square problem can be defined as follows to identify the model
parameters:

θ̂ = argmin

{
Nm∑
i=1

[Vsim(ti|θ)− Vm(ti)]
2

}
(2.55)

where θ is the model parameter vector, ti is the i-th measurement time point, Nm is the total number
of measurement points. Due to the strongly nonlinear nature of the electrochemical systems, the
resulting optimization problem must be solved using a proper algorithm. The optimization algorithms
used to solve the nonlinear optimization problem include the gradient-based methods[47–49], heuristic
methods[41; 50; 51] and probability-based methods[40; 52]. By using any method mentioned above,
the physicochemical model must be evaluated iteratively for a large number of times, which will lead
to a high computational effort. Therefore, in this thesis a ROM based on the orthogonal collocation
method will be used to reduce the computational burden of the physicochemical model and accelerate
the simulation.

2.3.1 Computationally Efficient Simulation with Reduced Order Model (ROM)

The p2D model of a Lithium-ion battery consists of a series of coupled partial differential equations
and thus demands a high computational effort. In this thesis, the ROM developed by Kosch et al.[53]
based on the Chebyshev polynomials will be used to simulate the Lithium-ion battery.

In order to apply the ROM to the parameter identification, the mathematical model was first reformu-
lated and then implemented in the simulation environment Simscape™. To implement the model, the
original model equations were first reformulated to meet the semantic requirements of the ssc language.
Then the corresponding initial values and variable definitions were added to the script. Subsequently,
all equations and definitions were combined to form a .ssc script which is compilable. Finally, the .ssc
script was compiled to generate a model block in Simulink. The generated model block can be used
with any algorithm implemented in MATLAB® or Simulink.

2.3.2 Parameter Sampling with Bayesian Statistics and
Markov-Chain-Monte-Carlo

In the framework of the parameter identification, Bayesian statistics is a method which can express
and interpret the fitting quality of the selected model parameters from the viewpoint of probability.
Bayesian statistical methods are based on the Bayes’ theorem, which is stated as follows:

P (A|B) =
P (B|A)P (A)

P (B)
(2.56)
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2.3 Parameter Identification in Time Domain with Probability Sampling Method

where A and B are events and P (B) 6= 0 and:

• P (A|B) is the conditional probability of event A given that event B is true
• P (B|A) is the conditional probability of event B given that event A is true
• P (A) and P (B) are the probabilities of event A and B respectively

For a set of measurement data, e.g. a voltage profile measured with a measurement equipment, the
data will be subjected to noise inevitably. Generally, the measurement noise is normally distributed
and the measured value can be represented as follows:

Vm = V̂ + εe (2.57)

where V̂ is the cell voltage without noise, Vm is the measured voltage subjected to noise, εe is the noise
and is normally distributed:

εe ∼ N (0,σ2
e) (2.58)

where the distribution is assumed to have a zero mean and σe is the standard deviation of the distri-
bution. If we assume that the voltage value without noise can be represented by the simulated value,
then (Vm−Vsim) ∼ N (0,σe). The following equation can be obtained by applying the Bayes’ theorem:

P (εe|θ) =
P (θ|εe)P (εe)

P (θ)
(2.59)

where θ represents the collection of all model parameters that should be investigated. The equation
derived above can be reformulated to obtain the following equation:

P (θ|εe) =
P (εe|θ)P (θ)

P (εe)
(2.60)

Because the distribution of εe is decided by the measurement equipment and is independent of the
model parameters, the equation derived above can be further simplified to:

P (θ|εe) ∝ P (θ)P (εe|θ) = P (θ)

Nm∏
i=1

1

σe
√
2π

exp

−1

2

(
V im − V̂ isim(θ)

σe

)2
 (2.61)

P (θ) is the prior probability distribution of the parameters and is generally based on the available
information and knowledge about the estimated parameters. As an informative prior distribution, the
beta-distribution is frequently used. In some cases where there is no information about the parameter
or the information available cannot specify a distribution function, then a uniform distribution can be
used. In this thesis, an informative prior distribution cannot be specified with the available information,
thus a uniform distribution will be used. The lower and upper bound of the estimated parameters will
be set according to the values found in the literature.

Theoretically, with Eq. 2.60 and 2.61 the probability density can be calculated. However, the nor-
malization factor P (εe) is difficult to calculate especially in higher dimensions. Therefore, a sampling
algorithm is applied to sample the parameter space. With the original Markov-Chain-Monte-Carlo
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2.3 Parameter Identification in Time Domain with Probability Sampling Method

(MCMC) algorithm, first a parameter sample is chosen arbitrarily in the parameter space and the
probability is calculated using Bayes’ theorem. Then a candidate sample is generated based on the
current sample using a proposal distribution and the probability is calculated. A commonly used
proposal distribution is the multidimensional normal distribution. The calculated probabilities of the
current and the candidate sample are compared according to a defined criterion. If the criterion is
fulfilled, then the candidate sample will be selected as the next sample and saved in the chain. The
procedures described above will be repeated until a predefined number of samples have been reached.
Various algorithms have been proposed to generate the Markov chain, where one of the most widely
used algorithms is the Metropolis-Hastings (MH) algorithm and its variants[54; 55]. The general MH
algorithm can be briefly summarized using the following pseudo code.

Algorithm 1: Metropolis-Hastings algorithm for parameter sampling
Input : Parameter dimension Nd, Sample size Ns, proposal distribution q(xk), posterior

probability p(x)
Output: Parameter sample chain xk

1 Initialization: k ← 0;
2 Select the initial sample xk ∈ RNd ;
3 while k < Ns do
4 xk+1 = q(xk);
5 π(xk) = p(xk);
6 π(xk+1) = p(xk+1);
7 α = min

(
1, π(xk+1)

π(xk)

)
;

8 accept xk+1 with the probability α;
9 end

The original MCMC algorithm uses constant parameters for the proposal distribution, which will
lead to a slow convergence in some cases. To improve the convergence performance, the adaptive
Metropolis (AM) algorithm has been proposed. The AM algorithm uses a varying covariance matrix
and the covariance matrix will be constantly adapted based on the history of the chain. The covariance
is calculated as follows:

Cov(x0,x1,x2, ...xk) =
1

k

(
k∑
i=0

xix
ᵀ
i − (k + 1)x̄kx̄k

ᵀ

)
(2.62)

where

x̄k =
1

k + 1

k∑
i=0

xk (2.63)

As a result, the AM algorithm is given with the following pseudo code. In this thesis, the AM algorithm
developed by Kumbhare et al.[56] will be used to generate the parameter samples. The adaption step
size is set to t = 4Nd and Nd is the dimension of the parameter space. The initial covariance matrix
is set to the identity matrix, the number of collected parameter samples is 50000.
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2.3 Parameter Identification in Time Domain with Probability Sampling Method

Algorithm 2: Adaptive Metropolis algorithm for parameter sampling
Input : Parameter dimension Nd, Sample size Ns, proposal distribution q(xk, Cov), posterior

probability p(x), adaption step size t
Output: Parameter sample chain xk

1 Initialization: k ← 0;
2 Select the initial sample xk ∈ RNd ;
3 while k < Ns do
4 For every t steps, calculate and update Cov;
5 xk+1 = q(xk, Cov);
6 π(xk) = p(xk);
7 π(xk+1) = p(xk+1);
8 α = min

(
1, π(xk+1)

π(xk)

)
;

9 accept xk+1 with the probability α;
10 end

23



3 Modeling and Characterization of the Lithium-ion
Battery in Frequency Domain

In this chapter, the characterization of the Lithium-ion battery in frequency domain will be introduced.
First, the general working principle of the EIS will be explained. Then the circuit elements commonly
used to model and interpret the impedance will be presented and explained. Next, a physics-based
impedance model based on the p2D model will be derived to model the physicochemical processes in
frequency domain. Finally, the DRT, as a powerful mathematical tool to deconvolute and evaluate the
impedance data, will be introduced.

3.1 The Working Principle of Electrochemical Impedance
Spectroscopy

The EIS, as a frequently used electrochemical characterization method, is powerful at characterizing
materials and their interface properties[57]. Furthermore, the EIS is a nondestructive method and can
be conveniently applied to the tested battery throughout the whole life cycle. The EIS is conducted by
applying a small current/potential signal to the sample and the potential/current response is measured
to calculate the impedance. The measurement technique is usually called galvanostatic electrochemi-
cal impedance spectroscopy (GEIS) in the former case and potentiostatic electrochemical impedance
spectroscopy (PEIS) in the latter case. In the following section, the working principle of the EIS will
be explained at the example of GEIS.

VOC

V0 V = V0 cos(ωt+ ψ) + VOC

t

V

I0 I = I0 cos(ωt)
t

I

Z = Ṽ
Ĩ f

III II I

Z
′

−Z ′′

Figure 3.1: The working principle of the EIS (left) and a typical EIS of a Lithium-ion battery (right).
The shown impedance is separated into three parts which are marked with I, II, and III.

Generally, the EIS of a Lithium-ion battery is measured in equilibrium state with a small excitation
signal so that the whole system can be regarded as pseudo-linear or linear and the measured impedance
should be ideally nonindependent of the magnitude of the applied current. It is assumed that the
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3.1 The Working Principle of Electrochemical Impedance Spectroscopy

measured system is in equilibrium state and has an open circuit voltage VOC. Then a small AC
current signal is applied to the system (see Fig. 3.1):

I = I0 cos(ωt) (3.1)

where I0 is the current amplitude, ω is angular frequency and ω = 2πf , f is the frequency in Hz.
According to the linearity of the system, an AC voltage signal of the same frequency will be super-
imposed on the open circuit voltage of the system (see Fig. 3.1). As a result, the measured voltage
signal can be represented as follows:

V = V0 cos(ωt+ ψ) + VOC (3.2)

where ψ is the phase angle of the voltage signal. According to the working principle of EIS, only the
AC perturbation is used to calculate the impedance. On the other hand, the sinusoidal signal can be
represented using the phasor. As a result, the current and voltage perturbation can be represented as:

Ĩ = I0e
jωt (3.3)

Ṽ = V0e
j(ωt+ψ) (3.4)

The impedance is then defined as:

Z =
Ṽ

Ĩ
=
V0
I0

ej(ωt+ψ)

ejωt
= |Z|ejψ = |Z| cos(jψ) + j|Z| sin(jψ) (3.5)

Eq. 3.5 indicates that the measured impedance can be represented using a complex number with
the corresponding real and imaginary part (see Fig. 3.1). The imaginary part of an impedance is
usually plotted against the real part to obtain the Nyquist plot. In battery engineering, the Nyquist
plot is usually inverted with the positive imaginary axis below the real axis, because the impedance is
generally capacitive in the frequency range of interest. A disadvantage of the Nyquist plot is that it
does not contain any information about the frequency. An example of the impedance of a Lithium-ion
battery is shown in Fig. 3.1. The impedance curve can be roughly separated into three parts which
are marked with I, II, and III. Part I manifests itself as a slope with a ca. 45° angle, which generally
characterizes the diffusion in the solid and liquid phases. Part II consists of one or multiple half circles,
which generally characterize the interfacial processes occurring in the electrode. Part III has a positive
imaginary part and is usually attributed to the inductance of the battery or the measurement cables.

Before the measurement data is subjected to the further evaluation and application, the Kramers-
Kronig test (KKT) is frequently applied to validate the data. To pass the KKT, the tested system
must satisfy the following four criteria[4]: linearity, causality, stability, and finiteness. Assuming that
the aforementioned criteria are satisfied, the imaginary part of the impedance can be calculated using
the following relation, given the real part of the impedance:

Z ′′(ω) = −
(
2ω

π

)∫ ∞

0

Z ′(x)− Z ′(ω)

x2 − ω2
dx (3.6)

25



3.2 Evaluation of Electrochemical Impedance

Similarly, the imaginary part can be calculated using the real part:

Z ′(ω) = Z ′(∞) +
2

π

∫ ∞

0

xZ ′′(x)− ωZ ′′(ω)

x2 − ω2
dx (3.7)

It can be seen from the equations shown above that the KKT requires the integration over an infinite
frequency range, which is practically impossible to carry out. To apply the KKT to the measurement
data, various approximation methods have been proposed as a workaround. For example, the real and
imaginary part of the impedance can be approximated using polynomials of ω and the integration can
be conducted[58–60]. Agarwal et al.[61; 62] proposed to use the Voigt circuit due to the fact that if a
system can be well fitted by a linear circuit , then it must be KKT-compliant. Besides, Boukamp et
al.[63] proposed to apply the distribution of relaxation times to the validation with the KKT. Generally,
the reconstructed impedance data cannot fully coincide with the original measurement data and no
specific quantitative criteria can be defined for the KKT. Usually, the validity of the impedance data
can be tested by comparing the measurement data with the reconstructed data, the measurement data
can be regarded as valid as long as no systematic error pattern has been observed[4].

3.2 Evaluation of Electrochemical Impedance

Although the measured impedance may be evaluated qualitatively with a certain background knowl-
edge, more information can only be extracted with a quantitative evaluation method. To enable a
quantitative evaluation of the impedance, different ideal circuit elements have been used to model the
physical and chemical processes in the Lithium-ion battery. However, the complicated physical and
chemical processes in the Lithium-ion battery can be hardly described satisfactorily using merely a
few ideal circuit elements. A comprehensive connection between the physics-based battery model and
the EIS has not been fully established yet. In this section, the commonly used ideal circuit elements
will be introduced and their properties in the frequency domain will be shown and explained. In the
next section, a physics-based impedance model will be derived and the deep connection of the simple
circuit elements with the physics-based battery model will be established.

The ohmic resistance element is used to describe the processes where the current and voltage have a
simple proportional relationship. The defined proportion factor must be positive, real, and independent
of the frequency. Such processes include the electronic and ionic conduction. The charge transfer
process can be approximated with an ohmic resistance when the excitation current is small enough so
that the current and voltage have a quasi linear relationship. The impedance of an ohmic resistance
is given as:

ZR = R (3.8)

An ohmic resistance can be represented by a single point on the real axis in the Nyquist plot (see Fig.
3.2a).

The inductance is used to model the inductive behavior occurring in the EIS. The impedance of an
inductance always has a phase angle of 90° and lies on the positive imaginary axis (see Fig. 3.2b).
Unlike the ohmic resistance, the impedance of inductance is dependent of the excitation frequency and
will become more and more relevant with increasing frequency. The impedance of an inductance is
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−Z ′′

Z ′
R

R

(a) Ohmic resistance

Z ′′

Z ′
90°

L

(b) Inductance

Figure 3.2: Nyquist plot for (a): ohmic resistance and (b): inductance

given as follows:

ZL = jωL (3.9)

The capacitance is used to model the capacitive behavior of the battery cell. For example, the double
layer capacitance at the solid/liquid phase interface can be modeled using a capacitance. At extremely
low excitation frequency when other dynamic processes such as the charge transfer and diffusion can
be regarded as a resistance, the impedance of the Lithium-ion battery can be approximated using a
capacitance and an ohmic resistance connected in series. The impedance of a capacitance always has
a phase angle of −90° and lies on the negative imaginary axis (see Fig. 3.3a). The impedance of a
capacitance is given as follows:

ZC =
1

jωC
(3.10)

In some practical applications, an impedance with a constant phase angle |ψ| < 90° can be observed
instead of an ideal capacitance, which shows a nonideal capacitive behavior. Such a nonideal capacitive
behavior has been attributed to surface adsorption, impurities, or atomic scale heterogeneity in poly-
crystalline solid electrodes[64–66]. As a result, a special circuit element has been defined to describe
this nonideal capacitive behavior, which is called the constant phase element (CPE). The impedance
of a CPE is given as follows:

ZCPE =
1

(jωC)n
(3.11)

−Z ′′

Z ′
90 °

C

(a) Capacitance

−Z ′′

Z ′

nπ
2

CPE

(b) CPE element

Figure 3.3: Nyquist plot for (a): capacitance and (b): CPE element
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where n is a parameter and usually 0 < n < 1. According to the definition of the CPE, the impedance
lies always on a straight line passing through the origin (see Fig. 3.3b).

Besides single circuit elements, sometimes a group of circuit elements can be connected to model the
processes which cannot be described by a single circuit element. The parallel RC element can be
used to model the interfacial process at the electrode/electrolyte interface, where the charge transfer
is modeled by a resistance and the double layer capacitance is represented by a capacitance. The
impedance of the RC element is given as follows:

ZRC =
R

1 + jωRC
=

R

1 + jωτ
(3.12)

where τ = RC is the time constant of the RC element. By eliminating the frequency in Eq. 3.12, it
can be shown that the impedance of a RC element is an ideal half circle in the Nyquist plot passing
through the origin and with its center on the positive real axis (see Fig. 3.4a). When the frequency
approaches infinity, the RC element can be regarded as short-circuited due to the capacitance:

lim
ω→∞

ZRC(jω) = 0 (3.13)

When the frequency approaches zero, the RC element can be regarded as an ohmic resistance:

lim
ω→0

ZRC(jω) = R (3.14)

For generality, the ideal capacitance in the RC element can be replaced by the CPE to form a new
circuit element, which is usually called the RQ or ZARC element. The impedance of an RQ element
is given as:

ZRQ =
R

1 + (jωC)nR
(3.15)

Similarly, it can be shown that the Nyquist plot of a ZARC element is a part of a circle passing through
the origin and with its center located in the fourth quadrant (see Fig. 3.4b).

−Z ′′

Z ′

C

R

(a) RC-element

−Z ′′

Z ′

O

ψ = (1−n)π
2

C

R

(b) RQ-element

Figure 3.4: Nyquist plot for (a): RC-element and (b): RQ-element

Another group of special circuit elements that has been frequently used to model the physicochemical
processes in the Lithium-ion battery is the Warburg impedance element. The Warbug impedance is
usually applied to describe the diffusion phenomena in the battery. The original Warburg impedance
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3.2 Evaluation of Electrochemical Impedance

assumes a semi-infinite diffuison in a planar geometry and takes the form of a CPE[67; 68]. The
original Warburg impedane is given by the following equation:

ZW =
σW√
ω
− j σW√

ω
(3.16)

f

Z
′

−Z ′′

(a) Planar geometry

f

Z
′

−Z ′′

(b) Cylindrical geometry

f

Z
′

−Z ′′

(c) Spherical geometry

f

Z
′

−Z ′′

(d) FLW

Figure 3.5: The Nyquist plot of the Warburg impedance element in the frequency range 1mHz ∼ 1 kHz
with (a): planar geometry, (b): cylindrical geometry, (c): spherical geometry, and (d) with
transmissive boundary conditions and planar geometry

where σW is the Warburg coefficient. The original Warburg impedance is less often applied to the
impedance of the Lithium-ion battery due to its obvious limitation that the semi-infinite diffusion with
a planar geometry rarely appears in practical applications. To better model the diffusion phenomena
in the Lithium-ion battery, the finite-space Warburg element (FSW) has been derived to describe the
diffusion in the active material particles with a finite size. The FSW impedance for a solid particle
with planar, cylindrical, and spherical geometry is given as follows[69; 70]:

ZW,planar = Rdiff
coth (

√
jωτ0)√

jωτ0
(3.17)

ZW,cylindrical = Rdiff
I0(
√
jωτ0)√

jωτ0I1(
√
jωτ0)

(3.18)

ZW,spherical = Rdiff
tanh (

√
jωτ0)√

jωτ0 − tanh
√
jωτ0

(3.19)

where Ik is the k-order modified Bessel function of first kind. τ0 is the characteristic diffusion time
constant and is given as follows:

τ0 =
r2

Ds
(3.20)

where r is the length of the diffusion path and corresponds to the half thickness for the planar geometry,
the radius of the cylinder for the cylindrical geometry, and the radius of the sphere for the spherical
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geometry. Ds is the solid diffusion coefficient. Rdiff is the diffusional resistance and is defined by the
following equation:

Rdiff =

(
−∂UOCP

∂cs

)
r

FDs
(3.21)

While the Warburg impedance with reflective boundary conditions can be generally used to describe
the solid phase diffusion phenomena, the diffusion in electrolyte is usually related to transmissive
boundary conditions[4; 67; 71; 72]. The Warburg impedance with transmissive boundary conditions is
usually called the finite-length Warburg element (FLW) and is given by the following equation[4; 71;
72]:

ZFLW = Rdiff
tanh (

√
jωτ0)√

jωτ0
(3.22)

where τ0 is the diffusion time constant and Rdiff is the diffusional resistance, which is to be defined
in specific applications. The Nyquist plot of the FLW is shown in Fig. 3.5d. It can be seen that in
high frequency range the FLW shows a CPE behavior, which can be observed in the solid diffusion as
well (see Fig. 3.5a-c). However, unlike the solid diffusion impedance, no capacitive behavior can be
observed for the FLW in low frequency range. Instead, the FLW shows a resistive behavior when the
frequency approaches zero:

lim
ω→0

ZFLW(jω) = Rdiff (3.23)

The unique feature of the FLW that it shows no capacitive behavior in low frequency range has led
to the following fact: the bumped half circle in the Warburg region of the impedance can be used as
an effective indicator for a non-negligible contribution from the liquid diffusion[67; 73]. Furthermore,
this fact has a profound impact on the determination of the solid diffusion coefficient using methods
such as GITT, when the liquid diffusion is no more negligible. A detailed analysis and comparison of
the GITT and DRT regarding the determination of the solid diffusion coefficient will be conducted in
chapter 5.

In summary, the equivalent circuit elements introduced in this section can be used in frequency domain
to model some common physical and chemical phenomena in the Lithium-ion battery. However, the
circuit elements are mostly based on local phenomena, i.e., at a micro-scale level. To describe the
impedance of a Lithium-ion battery with a complicated electrode structure, a more comprehensive
physics-based impedance model must be derived.

3.3 Physicochemical Modeling of the Lithium-ion Battery in
Frequency Domain

In this section, the impedance model of a Lithium-ion battery based on the p2D model will be in-
troduced and an analytical solution for this model will be derived. Unlike the ECM which is phe-
nomenological and is not directly based on any fundamental theory, the physicochemical impedance
model consists of a series of first principle equations describing the material transport and potential
distribution in the porous electrode. In the following sections, first the physics-based impedance model
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based on the well-known p2D model will be introduced, then an analytical solution to the introduced
impedance model will be derived.

3.3.1 Equations for the Electrode Level

According to the measurement principle of the EIS introduced in section 3.1, Eq. 2.40, 2.41 and 2.43
can be reformulated as follows when the Lithium-ion battery is perturbed by a small current/potential
signal:

εl
∂(c̄l + c̃l)

∂t
=

∂

∂x

[
Dl
∂(c̄l + c̃l)

∂x

]
+
av(1− t0+)

F
ĩn (3.24)

∂

∂x

[
−κ∂(φ̄l + φ̃l)

∂x

]
+

2RT (1− t0+)
F

∂

∂x

[
κ

(
1 +

d ln f±
d ln cl

)
∂ ln(c̄l + c̃l)

∂x

]
= avĩn (3.25)

∂

∂x

[
σ
∂(φ̄s + φ̃s)

∂x

]
= avĩn (3.26)

where p̄ is the variable when there is no perturbation and can be regarded as a constant given the
equilibrium state condition. p̃ is the perturbation variable which is assumed to be sinusoidal and
has the same frequency as the excitation signal. Furthermore, it is assumed that: 1. the transport,
electrical, and thermodynamic properties are constant along the electrode thickness and are equal to
the values in equilibrium state, because the parameter variation along the electrode thickness caused
by the perturbation is negligible; 2. the concentration perturbation in the electrolyte is negligible
compared to the equilibrium state so that the following equation holds:

∂ ln(c̄l + c̃l)

∂x

·
=

1

c̄l

∂c̃l

∂x
(3.27)

As a result, the following equations can be obtained:

εl
∂c̃l

∂t
= Dl

∂2c̃l

∂x2
+
av(1− t0+)

F
ĩn (3.28)

−κ∂
2φ̃l

∂x2
+ f1

∂2c̃l

∂x2
= avĩn (3.29)

σ
∂2φ̃s

∂x2
= avĩn (3.30)
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where the coefficient f1 is given as follows:

f1 =
2RT (1− t0+)κ

F c̄l

(
1 +

d ln f±
d ln c

)∣∣∣∣
c=c̄l

(3.31)

Subsequently, the equations derived above are transformed into frequency domain using the Laplace
transform:

sεlCl(s) = Dl
d2Cl(s)

dx2
+
av(1− t0+)

F
In(s) (3.32)

−κd
2Φl(s)

dx2
+ f1

d2Cl(s)

dx2
= avIn(s) (3.33)

σ
d2Φs(s)

dx2
= avIn(s) (3.34)

Similarly, the equations for the separator are given as follows:

sεlCl(s) = Dl
d2Cl(s)

dx2
(3.35)

−κd
2Φl(s)

dx2
+ f1

d2Cl(s)

dx2
= 0 (3.36)

where s = jω is the Laplace variable. Cl(s), Φl(s), Φs(s) and In(s) are the corresponding variables in
the s domain.

3.3.2 Equations for the Particle Level

On the particle level, the charge transfer reaction will occur due to the electrochemical reactions at the
electrode/electrolyte interface. Besides, the double layer capacitance will be constantly charged/dis-
charged by the AC excitation current. The charge transfer reaction will further cause a perturbation
for the solid concentration inside the particle, which is modeled by a FSW element. Outside the active
material particle, a so-called solid-electrolyte-interphase SEI or cathode-electrolyte-interphase (CEI)
is usually formed in the anode and cathode respectively. This outer layer is permeable for the lithium
ions and has a certain capacitance, thus it is modeled using a RC element. The total structure of the
active material surface and the corresponding circuit is shown in Fig. 3.6. In this thesis, the active
material particles are assumed to be spherical and have the same size.

According to the p2D assumption, the reaction current density and thus the impedance at the particle
surface are assumed to be homogeneous. Therefore, the area-specific impedance for the particle can
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Figure 3.6: The surface structure of an active material particle in a Lithium-ion battery and its equiva-
lent circuit model. The active material particles are assumed to have a spherical geometry
and the same size

be represented by the following equation:

Zp =
Rf

1 + sRfCf
+

Rct + ZW

1 + sCdl(Rct + ZW)
(3.37)

where Rf is the area-specific film resistance in Ωm2, Cf is the area-specific capacitance in Fm−2. Rct is
the area-specific charge transfer resistance in Ωm2 and Cdl is the area-specific double layer capacitance
in Fm−2. To derive the expression for the charge transfer resistance given a small excitation current
signal, the Butler-Volmer equation must be linearized. Considering that ex ≈ (1+x) is valid for small
x and αa = αc = 0.5, Eq. 2.44 can be reformulated as:

in,ct = i0

[
1 +

αaF

RT
η −

(
1− αcF

RT
η

)]
=
i0F

RT
η (3.38)

where in,ct is the current density for the charge transfer reaction. As a result, the area-specific charge
transfer resistance is defined as:

Rct =
η

in,ct
=
RT

i0F
(3.39)

The total current density at the interface can be represented with regard to the particle impedance
and the potential difference as follows:

In(s) =
Φs(s)− Φl(s)

Zp
(3.40)

It can be seen that with Eq. 3.32-3.34 and Eq. 3.40 the micro-scale (particle level) can be coupled
with the macro-scale (electrode level) through the reaction current density In(s).

3.3.3 Derivation of the Analytical Solution

To derive the analytical solution for the impedance model, first Eq. 3.40 is substituted into Eq.
3.32-3.34 to eliminate the local reaction current density In(s). The resulting equations are rearranged
and combined to form the following second-order linear ordinary differential equation system, which
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is formulated in the matrix form to ease the solution derivation:

d2

dx2

Cl(s)

Φl(s)

Φs(s)

 =


εls
Dl

av(1−t0+)

DlFZp
−av(1−t0+)

DlFZp

εlf1s
Dlκ

avf1(1−t0+)+DlFav
DlFZpκ

−avf1(1−t0+)+DlFav
DlFZpκ

0 − av
Zpσ

av
Zpσ


Cl(s)

Φl(s)

Φs(s)

 (3.41)

which is further rewritten in the following form:

u
′′
= Au (3.42)

where u is the solution vector and A is the system matrix as shown in Eq. 3.41. To solve the second-
order system, the original system can be transformed into the following equation system to reduce the
order of the system:

v
′
= Bv (3.43)

where v is a new solution vector defined as:

v = [u, u′]ᵀ (3.44)

and the matrix B has the following form:

B =

[
0 I

A 0

]
(3.45)

The resulting first-order system can be easily solved to obtain the solution vector v. Then it can be
shown that the solution vector u has the following form:

u = k1V1 + k2V1x+ k3V2e
λ2x + k4V3e

λ3x + k5V4e
λ4x + k6V5e

λ5x (3.46)

where λi is the i-th eigenvalue and Vi is the corresponding eigenvector of the system matrix B with
the first three rows. Specifically, it can be shown that λ1 = 0 and V1 = [0, 1, 1]ᵀ . ki is the unknown
coefficient. With the same procedure, the solution for the variables in the separator can be obtained:

u = k1V1 + k2V1x+ k3V2e
λ2x + k4V3e

λ3x (3.47)

The unknown coefficient ki can be determined by substituting the boundary conditions Eq. 2.48-2.51
together with the continuity boundary conditions into the solution derived above. The resulting linear
equation system with the unknown coefficients can be solved with two different procedures:

1. The resulting symbolic linear equation system can be solved using the Symbolic Math Toolbox in
MATLAB®. Special attention must be paid to the exponential function in the derived analytical
solution. At high frequency values, the exponential functions may suffer from overflow problems
and give an Inf value. To resolve this issue, the exponential functions can be transformed to the
hyperbolic tangent functions to avoid the overflow problems. Another possible issue is that the
the symbolic analytical solutions may contain lengthy expressions and cannot be evaluated or
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displayed properly.
2. In the calculation of the impedance, the known parameters can be substituted into the linear

equation system so that a numerical linear equation system will be solved instead of a symbolic
equation system. The overflow issue caused by the exponential functions may occur again and
can be resolved by transforming the exponential functions to the hyperbolic tangent functions.

The total impedance of a Lithium-ion battery with an anode, a cathode, and a separator based on the
p2D model can be obtained:

ZPCM =
Φs(s)

ĩapp(s)

∣∣∣∣
x=lcell

(3.48)

3.4 Characterization of the Lithium-ion Battery with the
Distribution of Relaxation Times

Since proposed, the DRT has been applied in various scenarios and to different devices. The original
representation of the DRT only considered the ohmic resistance and the distribution function of the
RC elements[16; 18–20; 74; 75]:

Ze(jω) = Rohm +

∫ ∞

0

G(τ)

1 + jωτ
dτ (3.49)

In the impedance of the Lithium-ion battery, an inductive part can be observed in certain cases due to
the spiral structure of the cylindrical cells or the measurement cables. In such a case, an inductance
has been added to the mathematical model of the DRT problem[24]:

Ze(jω) = Rohm + jωL+

∫ ∞

0

G(τ)

1 + jωτ
dτ (3.50)

In the low frequency range, the impedance of a Lithium-ion battery is dominated by the diffusion in
the solid and liquid phases and the capacitive effect. According to the original definition of the DRT
in Eq. 3.49-3.50, the integral equation becomes divergent when handling the low frequency part. In
such a case, the low frequency part must be removed manually so that the DRT can be applied to
evaluate the impedance in the mid-high frequency range. As a result, the diffusion impedance cannot
be evaluated by the DRT and the corresponding information cannot be extracted. To resolve the
issue caused by the low frequency impedance and consider the effect of the RL element, Danzer[25]
proposed a generalized formulation for the DRT problem by adding a capacitance and an integral for
the distribution function of the RL element. The new formulation is defined by the following equation:

Ze(jω) = Rohm + jωL+
1

jωC
+

∫ ∞

0

jωτH(τ)

1 + jωτ
dτ +

∫ ∞

0

G(τ)

1 + jωτ
dτ (3.51)

With the extended DRT problem defined above, no preprocessing for the impedance data is necessary
and a direct application of the DRT to the raw measurement data is possible. However, in most
practical applications, an ideal capacitive behavior can be seldom seen. Instead, the capacitive part of
the impedance has a form of a CPE element and an application of the DRT with the formulation shown
above will lead to erroneous results (see Fig. 3.7). Therefore, in this thesis an improved formulation
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for the DRT problem by considering the CPE element is proposed:

Ze(jω) = Rohm + jωL+
1

(jωC)n
+

∫ ∞

0

jωτH(τ)

1 + jωτ
dτ +

∫ ∞

0

G(τ)

1 + jωτ
dτ (3.52)

where n is the CPE exponent and 0 < n ≤ 1 is usually valid for the capacitive region of the impedance
of a Lithium-ion battery. The CPE exponent can be determined by conducting a curve-fitting on the
capacitive part of the impedance.

ψ
Z

′

−Z ′′

Figure 3.7: Schematic illustration of an impedance, where the capacitive region is represented by a
CPE element

If the angle of the fitting line is ψ as depicted in Fig. 3.7, then the CPE exponent can be determined
using the following equation:

n =
ψ
π
2

(3.53)

After the CPE exponent has been determined, the integral equation can be solved without the con-
vergence issue. Due to the fact that the time constant can span over a few orders of magnitude, the
logarithmic scale is used instead of the linear scale:

t = log10(τ) (3.54)

By substituting the equation above into Eq. 3.52, the original integral equation can be transformed
into the following form:

Ze = Rohm + jωL+
1

(jωC)n
+

∫ +∞

−∞

jωτQ(t)

1 + jωτ
dt+

∫ +∞

−∞

P (t)

1 + jωτ
dt (3.55)

where Q(t) and P (t) are the distribution functions in logarithmic scale and Q(t) = ln(10)τH(τ) and
P (t) = ln(10)τG(τ). To solve Eq. 3.55 numerically, the integral equation must first be discretized

ti = tmin + (i− 1)∆t (i = 1, 2, 3 · · · ) (3.56)

where tmin is the minimum time constant in logarithmic scale, ∆t is the step size for the time constant
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and is defined as:

∆t =
tmax − tmin

Nt
(3.57)

where tmax is the maximum time constant in logarithmic scale and Nt is the number of time constant
after discretization. In the present thesis, we choose to define the following relation:

Nt = 5Nf (3.58)

where Nf is the number of the frequency points. The maximum and minimum values of the time
constant is defined as:

tmin = log10
(

1

1000fmax

)
(3.59)

tmax = log10
(
1000

fmin

)
(3.60)

To solve the integral equation, both the real and imaginary parts of the impedance are used and the
following measurement data vector is defined:

bm =
[
Z ′

e(jω1) Z ′
e(jω2) . . . Z ′

e(jωNf) Z ′′
e (jω1) Z ′′

e (jω2) . . . Z ′′
e (jωNf)

]ᵀ
(3.61)

The system matrix for the RC elements is generated by discretizing the RC elements:

(ARC)i,j =
1

1 + jωiτj
(i = 1, 2, · · · ,Nf; j = 1, 2, · · · ,Nt) (3.62)

Similarly, the system matrix for the RL elements is generated as follows:

(ARL)i,j =
jωiτj

1 + jωiτj
(i = 1, 2, · · · ,Nf; j = 1, 2, · · · ,Nt) (3.63)

The ohmic resistance, inductance, and CPE element have no distribution functions, therefore their
system matrices are defined as follows:

AR =
[
1 1 . . . 1

]ᵀ
(Nf×1)

(3.64)

AL =
[
jω1 jω2 . . . jωNf

]ᵀ
(Nf×1)

(3.65)

ACPE =
[

1
(jω1)n

1
(jω2)n

. . . 1
(jωNf )

n

]ᵀ
(Nf×1)

(3.66)
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Then, the complete system matrix can be built by combing the system matrix of each component:

Asys =
[
ARC ARL AR AL ACPE

]ᵀ
(3.67)

Considering that both the real and imaginary parts are used for the DRT deconvolution, the final
system matrix is defined as:

ARe,Im =

[
<(Asys)

=(Asys)

]
(3.68)

Finally, the following optimization problem can be defined to solve for the unknowns:[
P (t) Q(t) R L C

]ᵀ
= argmin

{
‖ARe,Imx− bm‖22

}
(3.69)

The optimization problem defined above has the following analytical solution:

x̂ =
(
Aᵀ

Re,ImARe,Im

)−1

Aᵀ
Re,Imbm (3.70)

In the case of the DRT deconvolution, it can be seen from Eq. 3.62-3.63 that the columns of the
system matrix are strongly linearly correlated so that the resulting problem is ill-posed. To resolve the
ill-posedness caused by the collinearity, the Tikhonov regularization is applied to the original problem
and the following reformulated problem can be defined:[

P (t) Q(t) R L C
]ᵀ

= argmin
{
‖ARe,Imx− bm‖22 + λ2 ‖Kx‖22

}
(3.71)

where λ is the regularization parameter and K is the regularization matrix. Because only the two
distribution functions should be regularized, the K matrix is then defined as follows:

K =


INt×Nt

INt×Nt

0

0

0

 (3.72)

Considering further that the distribution functions and the values of the resistance, inductance, and
capacitance should be nonnegative, in this thesis the resulting problem is solved using the function
lsqnonneg in MATLAB®.

3.5 DRT-Analyzer: a Toolbox for the Calculation and Evaluation
of Distribution of Relaxation Times Spectra

To conduct the DRT analysis and ease the data processing, the toolbox ”DRT-Analyzer” has been de-
veloped in this thesis. The toolbox is based on the algorithm in Eq. 3.71 and consists of three sections,
each with the corresponding function: Data validation & DRT calculation, Peak analysis, and
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Results and data export (see Fig. 3.8). In this section the three sections will be introduced and
explained in detail.

Data validation & DRT 
calculation

Peak analysis Results and data export

Data import

𝑍(𝑗𝜔)

Figure 3.8: Flow chart of the toolbox DRT-Analyzer. The toolbox consists of three principal sections:
data validation and DRT calculation, peak analysis and results and data export.

3.5.1 Data Validation and Calculation

To conduct the DRT analysis, first the impedance data of a specific format must be loaded into the
toolbox. Currently, the .txt file exported by the Biologic electrochemical workstation can be accepted.
Alternatively, for non-Biologic users, the impedance data can be saved in .mat files, which can be
also loaded by the toolbox. In this toolbox, multiple impedance data can be loaded and evaluated at
the same time so that a batch processing is possible. Then the process parameters necessary for the
calculation of the DRT spectrum must be defined. First, the regularization parameter λ can be input
into the toolbox to tune the regularization effect, the default value defined in the toolbox is 0.2. Then,
in certain cases the capacitive part of the impedance shows a CPE behavior, thus the CPE exponent
φ must be defined. In this toolbox, the data points used for the calculation of the CPE exponent can
be selected by the user. Based on the selected data points, the curve fitting will be conducted and the
CPE exponent can be calculated (see Fig. 3.9).

As the next step, the DRT calculation can be conducted and the reconstruction error is provided for
the validation purpose. Generally the reconstruction error should be randomly distributed around the
x axis, otherwise the measurement data may be invalid.

3.5.2 Peak Analysis

After the impedance data has been validated and the DRT spectrum has been calculated, the peak
analysis can be conducted to separate the contribution of the overlapping peaks and obtain the time
constants. To conduct the peak analysis, the displayed DRT spectrum must be first switched to the
”peak view” so that the peak location (marked with blue dot, see Fig. 3.10) and boundary (marked
with different colors, see Fig. 3.10) can be automatically recognized by an embedded algorithm and
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Figure 3.9: Calculation of the CPE exponent by curve fitting in different cases. In case b the capacitive
part is much larger and a linear relationship can be clearly observed in the capacitive region.
As a result, case b is more suitable for calculating the CPE exponent

set as the initial values for the peak analysis. Occasionally, not all the peaks can be recognized by
the algorithm, the operator has the option to define additional peaks manually. All defined peaks and
boundaries can be edited by the operator if necessary.
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Figure 3.10: Peak view of the calculated DRT spectrum with the defined peak locations and boundaries.

Next, for each defined peak, one or multiple candidate fitting functions must be selected to conduct
the peak analysis. The detailed information on the candidate functions and optimization algorithms
can be found in chapter 4.

3.5.3 Results and Data Export

After the peak analysis has been finished, the DRT spectrum will be separated with the contribution
of each process observable (see Fig. 3.11). Furthermore, the calculated parameters for each peak will
be displayed in a table (see Fig. 3.11). The polarization resistance, time constant, and CPE exponent
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of each peak will be displayed in the table. Besides, the total ohmic resistance and capacitance of
the evaluated impedance will also be calculated and displayed. Each separated peak as well as the
parameters displayed in the table can be exported to the workspace of MATLAB®.
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Figure 3.11: Results for the peak analysis with (a): the separated peaks showing the contribution of
each process and (b): the calculated parameters of each separated peak, where the time
constant τ is in s and the resistance is in Ω
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4 Investigation of the Distribution of Relaxation Times
of a Porous Electrode Using a Physics-based
Impedance Model

The EIS technique has been applied to the Lithium-ion battery due to its capability of characteriz-
ing the physical and chemical processes with different characteristic frequencies in the battery. The
evaluation of the impedance data requires an properly selected impedance model which includes the
processes of interest. Commonly used impedance models include the ECM and the PCM. While the
ECM has the merits of simple structure and fast computation speed, it is not based on any fundamental
theory and thus lacking a direct connection with the physicochemical parameters of the Lithium-ion
battery. The physicochemical impedance model can compensate for the shortcomings of the ECM but
requires a significantly higher computation effort and has a complicated structure. Therefore, both an
intuitive and a quantitative interpretation of the impedance data with a physicochemical impedance
model remain a challenging task.

To estimate the battery parameters of interest with the selected impedance model and measurement
data, an optimization problem will be established and an appropriate algorithm must be implemented
to solve the problem. Due to the strongly nonlinear nature of the electrochemical systems, the defined
optimization problem will be subjected to identifiability issues inevitably, irrespective whether an ECM
or a physicochemical impedance model is used.

The DRT, since proposed, has been widely applied to the impedance data of various devices. The
DRT can transform the defined nonlinear optimization problems to a linear least square problem and
therefore resolve the identifiability issues. However, when the DRT is applied to estimate the battery
parameters combined with a physicochemical impedance model, a comprehensive theoretical model
must be proposed to interpret the results with regard to the physicochemical impedance model.

For the aforementioned reasons, in this chapter a comprehensive theory has been developed to in-
terpret the DRT spectrum of a Lithium-ion battery in mid-high frequency range with regard to a
physicochemical impedance model. An analytical expression for the DRT spectrum has been derived
and explained using a synthetic impedance data. Furthermore, the developed theory has been applied
to the impedance data of a commercially available Lithium-ion battery cell. The kinetic reaction rate
constant of the anode and cathode as well as the SEI resistivity have been estimated the temperature
dependence of the estimated parameters have been investigated.
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H I G H L I G H T S

• Cell characterization by deep understand-
ing of physics-based impedance model
and DRT.

• Derivation of analytical expressions for
the DRT spectrum of full cell.

• Development of an improved peak anal-
ysis for separating fully overlapping peaks.

• Quantitative relation of microscopic pa-
rameters to the DRT spectrum of elec-
trode.

• Characterization of cell parameters and
their temperature/SOC dependence.

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Keywords:
Electrochemical impedance spectroscopy
Physics-based model
Distribution of relaxation times
Dispersion

A B S T R A C T

Recently, the analysis of the distribution of relaxation times (DRT) has drawn wide attention in battery
engineering due to its nondestructive nature and the ability to separate the electrochemical processes with
different time constants. Since proposed, the DRT is only interpreted using the equivalent circuit model (ECM),
and an interpretation based on physicochemical model is still missing. To characterize the cell parameters and
extract the valuable information more effectively, a new theory is developed based on the deep understanding
of the physics-based impedance model and the DRT method. Particularly, a closed-form analytical expression
for the DRT spectrum is derived, therefore the DRT spectrum can be explained and interpreted with a clear
physical meaning. In addition, it is found that the relaxation time dispersion of EIS may have multiple origins:
the porous structure of the electrode, the regularization technique used to calculate the DRT and the constant
phase element type behavior of the active material particles. Based on the theory developed in this work, an
optimized data analysis framework is created to better interpret the DRT spectrum. Finally, the developed DRT
analysis framework is applied to the impedance data of a commercial LIB to demonstrate its advantages and
effectiveness.

1. Introduction

In recent years, thanks to their rapid development, LIBs are being
deployed in a range of sectors including electric vehicles and stationary
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E-mail address: yulong.zhao@tum.de (Y. Zhao).

energy storage systems. For improved production, modeling and diag-
nostics of LIBs, accurate and fast parameter estimation is indispensable.
To estimate the physicochemical parameters of a battery cell, a set of
external measurement data is fed into an optimization program with
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Nomenclature

Greek letters

𝛼 Variable related to local particle
impedance; charge transfer coefficient,
–

𝛽 Damping factor of dispersion, –
𝛿 Dirac delta function
𝛾 coefficients of terms in cost function
𝜅 Liquid phase conductivity, S m−1

𝜇 Peak location of peak fitting
𝜈∕𝑓 Frequency, Hz
𝜔 angular frequency, rad s−1

𝜙 Exponent for CPE element
𝜎 Solid phase conductivity, S m−1

𝜏 Time constant, s
𝜃 Variable related to local particle impedance

Subscripts

CPE Variables related to CPE element
ct Variables related to charge transfer
e Variables related to electrode
f Variables related to film
loc Variables related to active material parti-

cles
ohm Variables related to ohmic resistance
p Variables related to positive electrode
RC Variables related to an RC element
sep Variables related to the separator
ZARC Variables related to a ZARC element
𝑘 Universal subscript for electrode, 𝑘 =

𝑛, 𝑠𝑒𝑝, 𝑝
𝑛 Variables related to the negative electrode;

variables related to the 𝑛th order dispersion

Symbols

Z Set of integers
F Faraday constant
𝐴 Peak magnitude of peak fitting
𝑎 Pole for meromorphic function expansion
𝑎v Specific volumetric area, m−1

𝑏 Coefficient for meromorphic function ex-
pansion

𝐶 Capacitance, F
𝑐 Magnitude of dispersion peak
𝐺 DRT spectrum function of electrode
𝑔 DRT spectrum function of RC/ZARC ele-

ment
ℎ Peak height of peak fitting
𝑗 Imaginary unit
𝐽 Cost function of peak fitting
𝐿 Inductance, H
𝑙 Electrode thickness, m

a predefined objective function and constraints, which is then solved
using appropriate methods. LIB parameter extraction can be done using
either time domain or frequency domain data. In time domain, the
measured battery current, voltage and temperature data under several
C-rates are used as the input for the optimization [1–9]. In frequency

𝑅 With subscript - resistance, Ω; without
subscript - gas constant, J K−1 mol−1

𝑠 Laplace variable, j𝜔
𝑦 Data for peak fitting
𝑍 Impedance, Ω

domain, the EIS data of the LIB at several state of charge (SOC) points
is used to fit a preselected battery impedance model. Depending on the
model complexity and comprehensiveness, the equivalent circuit model
(ECM) [10–15] and physicochemical model (PCM) [16–20] have been
selected to interpret the EIS data. Due to the strongly nonlinear nature
of the physicochemical impedance model, generally a comprehensive
parameter identifiability analysis must be conducted to pick out the
identifiable parameters [21] and a nonlinear optimization program
must be established to identify the parameters of interest. The meth-
ods based on nonlinear optimization usually require a complicated
algorithm design and large computational effort. Furthermore, they
also suffer from under-fitting or over-fitting problems if the model
used and the estimated parameters are not properly chosen. In recent
years, the DRT analysis has been frequently used for fast parameter
estimation of LIBs due to the fact that it is a linear optimization-
based and nondestructive method. Via DRT analysis, the time constants
and polarization resistance of kinetic processes inside the LIBs can be
determined. Among the investigated publications related to DRT anal-
ysis, some emphasized on the optimization and further development
of the numerical algorithm used to solve the inversion problem [22–
26], some focused on the characterization and interpretation of the
DRT spectrum for electrochemical processes inside the LIBs [27–32],
and some derived and investigated the analytical DRT expressions of
different circuit elements such as RC, constant phase element (CPE),
finite length Warburg element etc. to better understand and interpret
the DRT spectrum [33–36]. A missing yet quite essential piece in the
large puzzle of DRT analysis is: how the DRT spectrum is related to the
fundamental physicochemical processes and fundamental parameters
of LIBs, what mathematical relation exists between them, and how
this could contribute to a better interpretation of DRT results? In this
present work, the questions raised above will be answered and a theory
for characterizing the cell parameters and extracting more valuable
information by the deep understanding of the physics-based impedance
model and the DRT method will be developed. A comparison of the
published works so far regarding the battery model and evaluation
method for the interpretation of the DRT spectra is shown in Table 1.

The remaining part of the work is organized as follows: the detailed
development and analysis of the proposed model is presented in Sec-
tion 2; Section 3 applies the developed framework to the impedance
data of a commercial LIB; Section 4 concludes this work and covers the
outlook for future work.

2. Theory

2.1. Impedance deconvolution with DRT

The DRT analysis is a popular method used to deconvolve the
impedance data, which can effectively resolve the under- or overfitting
problem when trying to fit the impedance data with an ECM. Further-
more, this nonlinear fitting problem can be transformed into a linear
optimization problem; therefore, repeated setting up of optimization
problem and large computation burden can be avoided. In this work,
Eq. (1) is used to model the effects of the RC elements, RL elements,
capacitance and ohmic resistance respectively:

𝑍e = 𝑅ohm + 1
𝑗𝜔𝐶

+ 𝑗𝜔𝐿 + ∫

∞

0

𝑗𝜔𝜏𝐻(𝜏)
1 + 𝑗𝜔𝜏

𝑑𝜏 + ∫

∞

0

𝐺(𝜏)
1 + 𝑗𝜔𝜏

𝑑𝜏 (1)
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Table 1
Comparison of the published works regarding the battery model and methods for the
evaluation of DRT spectra.

Battery model Evaluation

No evaluation Qualitative Quantitative

Not considered [40–42] [43–45] [46,47]
Equivalent circuit model [48] [49] [35,50–53]
Physicochemical model present work

where 𝜔 is the angular frequency, 𝑍e is the measured impedance, 𝑅ohm
is the total ohmic resistance, 𝐻(𝜏) is the distribution function for the
RL elements, 𝐺(𝜏) is the distribution function for the RC elements, 𝐶
is the total capacitance and 𝐿 is the total inductance. To solve the
integral equation numerically, the equation above is discretized and
transformed into a linear equation system. The resulting system is an
ill-posed problem by its nature and cannot be inverted directly, as a
result regularization technique is applied to invert the equation. Finally
the following linear optimization problem is obtained:
[

𝑅ohm, 𝐿, 𝐶, 𝐻(𝜏), 𝐺(𝜏)
]

= argmin
𝑥>0

{

‖𝑨𝒙 − 𝒃‖22 + 𝜆2 ‖
‖

𝒙𝝉‖‖
2
2

}

(2)

where 𝑨 is the system matrix after the integral discretization, 𝒙 is
the total solution vector, 𝑏 represents the measurement data, 𝒙𝝉 is the
component of 𝒙 corresponding to the two distribution functions 𝐺(𝜏)
and 𝐻(𝜏).

2.2. Impedance model

Since proposed, the Pseudo-two-Dimensional (p2D) model devel-
oped by Newman, Doyle et al. [37–39] has been widely applied to LIBs
for different purposes. The p2D model describes the physicochemical
processes inside the LIBs with coupled partial differential and algebraic
equations, which include the fundamental electrochemical parameters
and have a physical meaning behind them. Therefore, the physics-based
impedance model used in this work is derived based on the p2D model.

To derive the impedance model used for LIBs, the p2D model is
transformed from the time domain to the frequency domain using
the Fourier or Laplace transform. With appropriate assumptions, an
analytical solution can be obtained — the detailed model derivation
can be found in Appendix. In this work, we aim to investigate the
kinetic processes occurring mainly in the mid- to high frequency range
(usually from a few Hz to a few kHz), in which the charge transfer
and SEI processes are dominating; the impedance contributions of
diffusion in liquid and solid phases are therefore neglected. Under
these assumptions, the anode, cathode and separator of the LIB can
be regarded as being coupled solely by electrical conduction in the
liquid phase because the diffusion and the concentration gradients in
the liquid phase are neglected. Therefore, the impedance expression for
both the anode and cathode has the same structure and the impedance
of the separator is reduced to an ohmic resistance that represents the
ionic conduction in the liquid phase. Because the p2D model takes
the current density perpendicular to the current collector as model
input, the derived impedance represents an area-specific impedance.
The impedance for each layer is expressed using the following equation:

𝑍e, 𝑘 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑙sep
𝜅sep

, for 𝑘 = sep

𝑙𝑘
𝜅𝑘+𝜎𝑘

+
(𝜅2𝑘+𝜎

2
𝑘) coth (

√

𝜃𝑘𝑙𝑘)

𝜅𝑘𝜎𝑘(𝜅𝑘+𝜎𝑘)
√

𝜃𝑘
+ 2

(𝜅𝑘+𝜎𝑘)
√

𝜃𝑘 sinh (
√

𝜃𝑘𝑙𝑘)
, for 𝑘 ∈ {n, 𝑝}

(3)

where 𝑍e, 𝑘 and 𝑙𝑘 are impedance and thickness of the layer 𝑘. Here,
𝑘 ∈ {n, p, sep} denotes the negative electrode, positive electrode and

the separator respectively. 𝜅 and 𝜎 are the conductivities in the liquid
and solid phases respectively, and 𝜃 is the variable related to the local
particle impedance:

𝜃𝑘 =
(

1
𝜎𝑘

+ 1
𝜅𝑘

) 𝑎v,𝑘
𝑍𝑘, loc(𝑠)

(4)

where 𝑠 is the Laplace variable and 𝑠 = 𝑗𝜔, 𝑍𝑘,loc(𝑠) represents the
area-specific particle impedance and 𝑎v,𝑘 is the volumetric interfacial
area. If the charge transfer and film process are modeled with ideal
RC elements, the local particle impedance can be expressed using the
following equation:

𝑍𝑘, loc(𝑠) =
𝑅𝑘, ct

1 + 𝑠𝜏𝑘, ct
+

𝑅𝑘, f

1 + 𝑠𝜏𝑘, f
(5)

where 𝑅𝑘, ct and 𝑅𝑘, f represent the area-specific charge transfer and film
resistance respectively, 𝜏𝑘, ct and 𝜏𝑘, f represent the characteristic time
constants for the charge transfer and film process at the solid/liquid
interface. If the imperfection of the active material is taken into con-
sideration, the particle impedance will show a frequency dispersion
behavior, where the double-layer capacitance or film capacitance is
described using a constant phase element (CPE) instead of an ideal
capacitance. Martin and Pajkossy believed that the CPE behavior is
more attributable to the specific adsorption caused by impurities in the
electrolyte [54,55]; Kerner claimed that the atomic scale heterogeneity
in polycrystalline solid electrodes, which is often the case when the
extent of macroscopic surface roughness is large, is responsible for the
CPE behavior [56]. When the CPE element is connected to a resistance
in parallel, the resulting impedance curve appears as a circle with its
center below the real axis; therefore, this element is commonly referred
to as a ZARC element. To ensure general applicability, we choose to
derive the theory with both an RC-element and a ZARC element for
particle impedance. The particle impedance with a ZARC element is
expressed as follows:

𝑍𝑘, loc(𝑠) =
𝑅𝑘,ct

1 + (𝑠𝜏𝑘, ct,CPE)𝜙1
+

𝑅𝑘, f

1 + (𝑠𝜏𝑘, f ,CPE)𝜙2
(6)

where 𝜙1 and 𝜙2 are the CPE exponents for the active material/film
and film/electrolyte interface respectively, and 𝜏𝑘, ct,CPE and 𝜏𝑘, f ,CPE
are the corresponding characteristic time constants. As explained, the
impedance expressions for anode, separator and cathode are decou-
pled and thus have the same structure. Hence, the derivation will be
conducted with one electrode and the subscript 𝑘 will be omitted for
simplicity.

2.3. Theory development

2.3.1. Particle impedance with RC-element
The impedance of the electrode 𝑍e is related to the DRT function

via the following integral equation:

𝑍e(𝑠) −𝑍e(∞) = 𝑍e,RC = ∫

∞

0

𝐺(𝜏)
1 + 𝑠𝜏

𝑑𝜏 (7)

where 𝐺(𝜏) is the searched for DRT spectrum function, 𝑍e(∞) is the
impedance when the frequency approaches infinity, i.e. the ohmic re-
sistance of the electrode, and 𝑍e,RC is the electrode impedance without
the ohmic component. To solve for the 𝐺(𝜏) function analytically, the
integral equation must be solved. Considering the complicated form of
the electrode impedance expression, a direct inversion using an inverse
transform table or the formula given by Titchmarsh [57] is rather
impractical. As a result, we choose to derive the inverse transform
with the help of complex function expansion. If we substitute Eq. (5)
into Eq. (3) and (4), a meromorphic function of the Laplace variable
𝑠 is obtained. It can be seen that the resulting meromorphic function
has an infinite number of isolated poles and can thus be expanded.
By applying the Mittag–Leffler expansion theorem to the impedance
expression [58], the following equation is obtained:

𝑍e,RC(𝑠) = 𝑍e,RC(0) +
∞
∑

𝑛=0

(

𝑏𝑛
𝑠 − 𝑎𝑛

+
𝑏𝑛
𝑎𝑛

)

(8)
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where 𝑎𝑛 and 𝑏𝑛 are poles and corresponding expansion coefficients.
Further, if we let 𝑠 approach infinity and note that 𝑍e,RC(∞) = 0, the
following equation is derived:

𝑍e,RC(0) +
∞
∑

𝑛=0

𝑏𝑛
𝑎𝑛

= 0 (9)

As a result, Eq. (8) can be further reduced to the following form:

𝑍e,RC(𝑠) =
∞
∑

𝑛=0

𝑏𝑛
𝑠 − 𝑎𝑛

(10)

Subsequently the inversion can be conducted on Eq. (10) by noting that
equation:
𝑏𝑛

𝑠 − 𝑎𝑛
= ∫

∞

0

𝑔(𝜏)
1 + 𝑠𝜏

𝑑𝜏 (11)

can be easily solved to obtain the solution:

𝑔(𝜏) = −
𝑏𝑛
𝑎𝑛

𝛿
(

𝜏 + 1
𝑎𝑛

)

(12)

where 𝛿(𝜏) represents the Dirac delta function. By combining Eq. (10),
(11) and (12), 𝐺(𝜏) can be expressed by the following equation:

𝐺(𝜏) =
∞
∑

𝑛=0

[

𝑐𝑛𝛿
(

𝜏 + 1
𝑎𝑛

)]

(13)

which produces an infinite sum of Dirac delta functions with the time
constants (−1∕𝑎𝑛) and the magnitude of 𝑐𝑛 = −𝑏𝑛∕𝑎𝑛, indicating a
certain dispersion behavior in the DRT spectrum. We further note
that (−𝑎𝑛) has units of Hertz and is thus interpreted as the dispersion
frequency 𝜈𝑛, (−1∕𝑎𝑛) has units of second and thus represents the
dispersion time constant 𝜏𝑛. As a result, Eq. (13) indicates that the
DRT spectrum of the porous electrode consists of an infinite sum of
Dirac delta peaks with the time constants 𝜏𝑛 or the frequency 𝜈𝑛,
showing a certain pattern of frequency dispersion. To investigate the
dispersion pattern quantitatively, first the dispersion time constants of
the DRT spectrum must be obtained by solving for the singularities of
the impedance expression using the following equations:

𝜃 = 0 (14)

and

sinh(
√

𝜃𝑙) = 0 ⇒
√

𝜃𝑙 = 𝑖𝑛𝜋 𝑛 ∈ Z − {0} (15)

It is readily observed that Eq. (14) has two solutions which corre-
spond to the characteristic time constants of the charge transfer and
film process:

𝜏ct = − 1
𝑎ct,0

(16)

𝜏f = − 1
𝑎f ,0

(17)

We refer to time constants (or frequencies) derived above as zero
order time constants (or frequencies), as they are only decided by
the time constants of the local processes. Similarly, Eq. (15) has an
infinite number of solutions corresponding to the charge transfer and
film processes; upon solving the hyperbolic equation we can obtain:

𝜏ct,𝑛 = − 1
𝑎ct,n

=
2𝛼𝜏f 𝜏ct
𝑓1 − 𝑓2

(18)

𝜏f,𝑛 = − 1
𝑎f ,n

=
2𝛼𝜏f 𝜏f
𝑓1 + 𝑓2

(19)

where 𝑓1 and 𝑓2 are defined as follows:

𝑓1 = 𝛼(𝜏f + 𝜏ct ) + 𝑛2𝜋2(𝑅ct𝜏f + 𝑅f 𝜏ct ) (20)

𝑓2 =
√

[𝑛2𝜋2(𝑅ct𝜏f − 𝑅𝑓 𝜏ct ) + 𝛼(𝜏f − 𝜏ct )]2 + 4𝑛4𝜋4𝑅ct𝑅f 𝜏ct𝜏f (21)

where 𝛼 = 𝑎v𝑙2(1∕𝜅+1∕𝜎), and we refer to the higher order terms (𝑛 ≥ 1)
as harmonics compared to the fundamental terms. For clarity, Eq. (13)
can be rewritten with regard to the two processes:

𝐺(𝜏) =
∞
∑

0

[

𝑐ct,𝑛𝛿(𝜏 − 𝜏ct,𝑛) + 𝑐f,𝑛𝛿(𝜏 − 𝜏f,𝑛)
]

(22)

While the time constants at which the dispersion occurs have been
determined, the magnitude of the dispersion still remains to be calcu-
lated. The coefficients 𝑏𝑛 can be determined using the residue method:

𝑏𝑛 = lim
𝑠→𝑎𝑛

(𝑠 − 𝑎𝑛)𝑍e,RC(𝑠) (23)

Upon substituting the expression for 𝑍e,RC, Eq. (5), (16) and (17)
into the equation above, we can obtain the coefficients for the funda-
mental order term:

𝑏ct,0 =
𝑅ct
𝑎v𝑙𝜏ct

(24)

𝑏f,0 =
𝑅f

𝑎v𝑙𝜏f
(25)

Similarly, the coefficients for the higher order harmonics are given
by:

𝑏ct,𝑛 =
2𝛼𝑙(𝑎ct,𝑛𝜏f + 1)2(𝑎ct,𝑛𝜏ct + 1)2[𝜅2 + 2𝜅𝜎(−1)𝑛 + 𝜎2]

𝑛4𝜋4𝜅𝜎(𝜎 + 𝜅)[𝑅ct𝜏ct (𝑎ct,𝑛𝜏f + 1)2 + 𝑅f 𝜏f (𝑎ct,𝑛𝜏ct + 1)2]
(26)

𝑏f,𝑛 =
2𝛼𝑙(𝑎f,𝑛𝜏f + 1)2(𝑎f,𝑛𝜏ct + 1)2[𝜅2 + 2𝜅𝜎(−1)𝑛 + 𝜎2]

𝑛4𝜋4𝜅𝜎(𝜎 + 𝜅)[𝑅ct𝜏ct (𝑎f,𝑛𝜏f + 1)2 + 𝑅f 𝜏f (𝑎f,𝑛𝜏ct + 1)2]
(27)

From Eq. (26) and (27), we can observe that the magnitudes of
higher order harmonics decay rapidly with 𝑛, which means that in
practice the harmonics can only appear in the DRT spectrum under
certain conditions — we will investigate this aspect in detail later. In
the next section, we will derive the analytical DRT expression with
ZARC elements as the local particle impedance.

2.3.2. Particle impedance with ZARC elements
Based on the DRT expression derived above with RC-elements,

the DRT for particle impedance with ZARC elements instead of ideal
capacitance can be derived by replacing 𝑠𝜙1 and 𝑠𝜙2 in Eq. (6) with 𝑠
and assuming 𝜏ct = (𝜏ct,CPE)𝜙1 and 𝜏f = (𝜏f ,CPE)𝜙2 . On the one hand, with
the same routine as shown in Section 2.3.1, the impedance expression
can be expanded as:

𝑍e,ZARC(𝑠) =
∞
∑

𝑛=0

𝑏ct,𝑛

𝑠𝜙1 − 𝑎ct,𝑛
+

∞
∑

𝑛=0

𝑏f,𝑛

𝑠𝜙2 − 𝑎f,𝑛
(28)

On the other hand, we notice that the normalized DRT of the ZARC
element is described as follows [34]:

1
1 + (𝑠𝜏0)𝜙

= ∫

∞

0

𝑔ZARC(𝜏)
1 + 𝑠𝜏

𝑑𝜏 (29)

𝑔ZARC(𝜏) =
1

2𝜋𝜏
sin(𝜙𝜋)

cosh[𝜙 ln(𝜏∕𝜏0)] + cos(𝜙𝜋)
(30)

where 𝜏0 is the characteristic time constant of the ZARC element.
Combining the Eq. (28), (29) and (30), the total DRT expression can
be written as:

𝐺(𝜏) =
∞
∑

𝑛=0

(

−
𝑏ct,𝑛
𝑎ct,𝑛

)

1
2𝜋𝜏

sin(𝜙1𝜋)
cosh[𝜙1 ln(𝜏∕𝜏ct,CPE,𝑛)] + cos(𝜙1𝜋)

+

∞
∑

𝑛=0

(

−
𝑏f,𝑛
𝑎f,𝑛

)

1
2𝜋𝜏

sin(𝜙2𝜋)
cosh[𝜙2 ln(𝜏∕𝜏f,CPE,𝑛)] + cos(𝜙2𝜋)

(31)

The equation derived above reveals that when RC elements of the
local particle impedance are replaced by ZARC elements, the conclu-
sions about the frequency dispersion still remain true, except that at
each characteristic time constant the Dirac delta peak becomes a peak
defined by Eq. (30). In contrast to the Dirac delta peak with infinite
height and zero width, a peak defined by Eq. (30) has a certain width
and thus shows a dispersion behavior, which is caused by the CPE
element.
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2.4. Theory analysis

In this section, the derived model will be analyzed, especially the
distribution of dispersion time constants and the magnitude of disper-
sion peaks. Subsequently, we will analyze how the conclusions made
can help to better interpret the DRT spectrum.

2.4.1. Dispersion frequency and magnitude
First, the dispersion patterns of time constants are investigated.

Considering Eq. (18) and (19), when 𝑛 is relatively small, they can be
approximated as:

𝜏ct,𝑛 ≈
𝜏ct

(

1 + 𝑛2𝜋2𝑅ct
𝛼

) (32)

𝜏f,𝑛 ≈
𝜏f

(

1 + 𝑛2𝜋2𝑅f
𝛼

) (33)

It is clear that the time constants of the dispersion peaks decrease
with increasing order 𝑛. If the constant terms in the denominator of
Eq. (32) and (33) are neglected, we can further conclude that the
dispersion time constants decrease approximately with 1∕𝑛2. If 𝑛 tends
to infinity, we have:

𝜏ct,∞ = lim
𝑛→∞

(𝜏ct,𝑛) =
𝑅ct𝜏f + 𝑅f 𝜏ct
𝑅ct + 𝑅f

(34)

𝜏f,∞ = lim
𝑛→∞

(𝜏f,𝑛) = 0 (35)

From the analysis above, we can conclude that the dispersion only
occurs in the direction of decreasing time constants and the largest
time constant is the fundamental order time constant. For the charge
transfer process, there exists a cut-off time constant, while for the film
process, the dispersion can approach 0. In addition, the dispersion has
a well-defined pattern with respect to the two processes occurring in
the particle.

For impedance, where the local particle is modeled using RC or
ZARC elements, the highest time constant is always equal to the char-
acteristic time constant of the RC or ZARC elements and will not be
interfered with by the geometric/transport parameters of the porous
electrode, as indicated by Eq. (16) and (17). The polarization resistance
of each process or the magnitude of each fundamental order peak is the
area under each peak, which is calculated by:

𝑐ct,0 = −
𝑏ct,0
𝑎ct,0

=
𝑅ct
𝑎v𝑙

(36)

𝑐f,0 = −
𝑏f,0
𝑎f,0

=
𝑅f
𝑎v𝑙

(37)

These two equations lead to another essential conclusion: even if
the DRT spectrum of the porous electrode shows a certain complicated
dispersion pattern, the main and also the most prominent peak which
can be detected in the DRT spectrum will only be decided by the
specific resistance of the particle and the total interfacial area between
liquid and solid phase and will not be influenced by the electrode
transport parameters. This is exactly the same as the case for the single
particle model (SPM), where the total electrode impedance is calculated
by scaling the local particle impedance using the interfacial area and
electrode thickness:

𝑍e,SPM =
𝑍loc
𝑎v𝑙

(38)

By combining Eq. (18), (19), (26) and (27), it can be observed that
the magnitudes of dispersion peaks decrease with increasing order 𝑛.
For the electrodes of LIBs, 𝜎 > 𝜅 is generally valid, especially for
the anodes, 𝜎 ≫ 𝜅 generally holds, hence, Eq. (26) and (27) can be
approximated as:

𝑏ct,𝑛 ≈
2𝛼𝑙(𝑎ct𝜏f + 1)2(𝑎ct𝜏ct + 1)2

𝑛4𝜋4𝜅[𝑅ct𝜏ct (𝑎ct,𝑛𝜏f + 1)2 + 𝑅f 𝜏f (𝑎ct,𝑛𝜏ct + 1)2]
(39)

𝑏f,𝑛 ≈
2𝛼𝑙(𝑎f,𝑛𝜏f + 1)2(𝑎f,𝑛𝜏ct + 1)2

𝑛4𝜋4𝜅[𝑅ct𝜏ct (𝑎f,𝑛𝜏f + 1)2 + 𝑅f 𝜏f (𝑎f,𝑛𝜏ct + 1)2]
(40)

Recalling that according to Eq. (32) and (33), the characteristic dis-
persion time constants decrease with increasing order, the magnitudes
of dispersion peaks drop even more drastically with increasing order.
When 𝜅 ≈ 𝜎, Eq. (26) and (27) can be approximated as:

𝑏ct,𝑛 ≈

⎧

⎪

⎨

⎪

⎩

0 for odd 𝑛
2𝛼𝑙(𝑎ct 𝜏f+1)2(𝑎ct 𝜏ct+1)2

𝑛4𝜋4𝜅𝜎[𝑅ct 𝜏ct (𝑎ct,𝑛𝜏f+1)2+𝑅f 𝜏f (𝑎ct,𝑛𝜏ct+1)2]
for even 𝑛

(41)

𝑏f,𝑛 ≈

⎧

⎪

⎨

⎪

⎩

0 for odd 𝑛
2𝛼𝑙(𝑎f,𝑛𝜏f+1)2(𝑎f,𝑛𝜏ct+1)2

𝑛4𝜋4𝜅𝜎[𝑅ct 𝜏ct (𝑎f,𝑛𝜏f+1)2+𝑅f 𝜏f (𝑎f,𝑛𝜏ct+1)2]
for even 𝑛

(42)

Eq. (41) and (42) imply that when the conductivities in solid and
liquid phases are close to each other, the odd order of dispersion peaks
will tend to disappear, the next observable dispersion peak is the 2nd
order instead of the 1st order. In reality, if there is no observable
dispersion, it can either be caused by high conductivity in both solid
and liquid phases, or by the condition 𝜅 ≈ 𝜎. Since in most cases the 1st
order dispersion peak can be detected more easily, we further define the
ratio of the magnitude of the 1st order dispersion peak to the magnitude
of fundamental order peak as the damping factor:

𝛽 =
𝑐1
𝑐0

(43)

which is an important parameter characterizing the dispersion behav-
ior. According to Eq. (39)–(42), 𝛽 decreases with increasing 𝜅 and 𝜎,
indicating that the dispersion decays as the conductivity increases. If
the conductivities in both liquid and solid phases are high enough
or have close values, the magnitude of the dispersion peaks will be
negligible and in practice there will be no observable dispersion. Thus
they coincide with the SPM assumption, where both 𝜅 and 𝜎 are large
enough to ensure that the distributed features in the electrode caused
by the transport process can be neglected. The model analysis above
also applies to the case with a ZARC element, since both models have
a similar derivation process and model structure.

Regarding the model analysis on the ZARC element, another essen-
tial conclusion can be made: when the active material particle shows a
CPE-type dispersion for a particular reason such as impurities in the
electrolyte or particle surface inhomogeneity, the CPE behavior will
be directly reflected by the most prominent peak or the fundamental
order peak in the DRT spectrum, and will not be interfered with
by the distributed features of the porous electrode. This conclusion
implies on the one hand that it is possible to evaluate the polarization
resistance and relaxation times of the electrochemical processes on the
microscopic level based on measured cell EIS and on the other hand
that by investigating the DRT spectrum we can determine whether CPE-
type behavior exists in the solid phase particles. In the next section, an
optimized DRT data analysis framework based on the conclusions made
above will be proposed to better interpret the DRT spectrum.

2.5. Adaptive peak analysis method (APAM)

As discussed in the last section, the fundamental order peak, i.e., the
peak with the largest magnitude, will provide us with the necessary
information about the local microscopic process, which can be either
described using RC or ZARC elements. In practical applications, the
calculated DRT spectrum often consist of a series of overlapping peaks,
thus the peak parameters cannot be simply read or calculated. As a
result, a proper peak separation must be conducted by assuming an
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appropriate fitting function for each possible peak and then a nonlinear
curve fitting must be performed. Common candidate functions for peak
analysis with a relatively clear physical meaning include Gaussian
functions and skewed Gaussian functions [59]. In Section 2.2 and
Section 2.3 we have also shown that application of the DRT function
of a ZARC element to peak fitting has a clear physical meaning. It has
been shown that 𝐿2 regularization can be understood as imposing a
Gaussian prior on the solution, a skewed Gaussian function is used
when the impedance data is limited and the spectrum peak has a certain
skewness, which usually occurs when it comes close to the frequency
limit [30]. As for circuit elements like fractal-elements, Gerischer-
elements etc. which thus far have not been assigned a clear physical
meaning, we exclude them from the library of peak fitting candidate
functions. Based on the reasons and assumptions given above, we have
chosen to include Gaussian functions, skewed Gaussian functions and
DRT functions of a ZARC element in the function library.

After deciding candidates, the steps followed to find optimal decom-
position to individual functions are given below:

• The input DRT spectrum is normalized to set the highest data
point to 1.

• Possible peak locations in the DRT spectrum are detected using
a 2nd derivative by Savitzky-Golay filter and a non-optimization
based algorithm (MATLAB’s findpeaks function).

• Then, the operator visually inspects the output of the previous
step to see if any peaks are missed or wrongly located.

• After the peak locations have been selected, the candidate func-
tions to be fitted for each peak are selected. In our case, we select
skewed Gaussian for first and last peaks, and both Gaussian and
DRT function of ZARC element for the peaks in between.

• Then the data, unknown parameters and a warm-start for these
unknown parameters are passed with an appropriate objective
function (Eq. (44)) to a global solver (here, MATLAB’s Glob-
alSearch function), which perturbs the warm-start points to avoid
local optima.

• The output of the global solver is then passed to a local solver
(here, MATLAB’s fmincon) which tries to find a local optimum
according to the same objective function (Eq. (44)).

• It should be noted that only the nonlinear parameters (e.g., 𝜙,
𝜇, skewness etc.) are the decision variables for local and global
solvers. After deciding these parameters, heights can be found
using the linear least squares algorithm (here, MATLAB’s lsqnon-
neg function). Also, since we need to select only one peak per
candidate function, all candidate functions belonging to the same
peak share the same peak location (𝜇) parameter.

• Then, only the candidate with the maximum height for each peak
is selected while the other candidates are discarded. The fitness
of the estimated data points is evaluated using a cost function and
the cost is fed to the local solver. Lastly, the final decision of the
local solver and its cost value is fed to the global solver to decide
the next set of initial values.

The cost function is given by the following equation:

𝐽 = 𝛾1‖𝑦 − 𝑦̂‖22 + 𝛾2‖ℎmin‖1 + 𝛾3‖ℎmin‖
2
2 + 𝛾4‖𝐴‖

2
2 (44)

where 𝑦 is the set of actual (normalized) data points, 𝑦̂ is the set of
estimated data points, ℎmin are height values for candidates except the
candidate with maximum height and 𝐴 denotes the area under each
peak candidate (only for candidates with maximum height for each
peak). Lastly, 𝛾𝑖 values are the weight factors in the cost function that
are found by trial and error.

3. Results and discussion

In this section, the developed model and theory will be applied
to synthetic impedance data generated using assumed parameters;

then the impedance data of a commercial LIB will be analyzed to
derive some fundamental parameters describing the microscopic elec-
trochemical processes. The data processing steps are summarized as
follows:

1. DRT analysis: the DRT analysis is conducted to remove the
inductive part in order to obtain the ohmic resistance and the
DRT spectrum of the LIB.

2. Peak analysis: the developed APAM is applied to find the loca-
tion, magnitude and functional form of each separated peak.

3. Electrochemical parameters are calculated based on the peak
parameters, peaks are attributed to the corresponding electrode
as well as processes.

3.1. Validation with synthetic impedance data

In this section, simulations with synthetic impedance data will
be conducted to validate the proposed model. Two sets of synthetic
impedance data are generated that correspond to two cases: (1) low 𝜎
and 𝜅, 𝜎 ≫ 𝜅; (2) high 𝜅 and 𝜎, 𝜎 ≫ 𝜅. Case 1 generally represents
the electrodes with a limited electronic conductivity, for example, the
LFP electrode, or degraded electrodes with a reduced electrical and
electronic conductivity; case 2 generally represents the electrodes with
a high electronic conductivity, like the graphite anode. To ensure gen-
eral applicability, instead of RC elements, ZARC elements are used for
particle impedance, and a measurement noise is added to the generated
synthetic impedance:

𝑍measured
𝑒 = 𝑍synthetic

𝑒 + 𝜀𝑋𝑍synthetic
𝑒 (45)

where 𝜀 is the noise level and is set to be 1% according to the
measurement accuracy of the test equipment used later to measure
the cell impedance. 𝑋 is a normally distributed random variable,
i.e., 𝑋 ∼  (0, 1). In addition, to demonstrate the advantages and
effectiveness of the DRT for parameter estimation, an ECM with two
serially connected ZARC elements (see Eq. (6)) is created with MATLAB
to fit the impedance data and to extract the cell parameters, then the
extracted parameters will be compared with the results from the DRT
and APAM. For the ECM fitting, the possible numbers and locations of
peaks are first estimated from the DRT spectrum and set as the initial
values for the fitting program, then the optimization program using the
embedded toolbox 𝑀𝑢𝑙𝑡𝑖𝑠𝑡𝑎𝑟𝑡 in MATLAB is run once to estimate the
parameters. To increase the possibility of finding the optimal solution,
the number of starting points is set to 100. The electrode parameters
used in synthetic simulation experiments are listed in Table 2.

The frequency range for generating the impedance is
10 mHz∼100 kHz with 10 points per decade. For reconstruction of the
impedance with the derived analytical DRT spectrum, we choose to use
the fundamental order peaks (P0) and the fundamental order peaks plus
the first 1000 order harmonics (P1000). Practically, as the coefficients
of harmonics generally decay to 0 after the 10th order, (P0 + P1000)
can essentially be regarded as the exact spectrum.

The results for case 1 are shown in Fig. 1. In Fig. 1, the generated
synthetic impedance is compared with the reconstructed impedance
using different methods. For impedance reconstruction with only fun-
damental order peaks, a clear deviation from the reference impedance
can be observed that occurs mainly in the high frequency range. This
observation coincides with the proposed theory that the dispersion
occurs in the direction of smaller time constants or higher frequencies.
Compared to fundamental order reconstruction, both analytical DRT
and numerical DRT can precisely reconstruct the reference impedance
with a relative error less than 2% across the whole frequency range
(see Fig. 1b). The reconstruction error is believed to be mainly caused
by the measurement noise, without noise the error should be much
lower. In Fig. 1c the numerically deconvolved DRT spectrum is shown
together with the analytical DRT, where a minor deviation can be seen,
which is probably caused by the biased nature of the regularization
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Table 2
Electrode parameters for synthetic simulation experiments.

Parameter 𝑅ct [Ω m2] 𝑅f [Ω m2] 𝜏ct [s] 𝜏f [s] 𝜙1 𝜙2 𝑙 [μm] 𝜎 [S∕m] 𝜅 [S∕m] 𝑎v [1∕m]

Case 1: 0.5 0.1 5 × 10−2 5 × 10−3 0.8 0.8 60 0.1 0.01 4.2 × 105

Case 2: 0.5 0.1 5 × 10−2 5 × 10−3 0.8 0.8 60 100 1 4.2 × 105

Fig. 1. Simulation and analysis results for case 1. (a): generated and reconstructed impedance, (b): relative impedance reconstruction error, (c): analytic DRT spectrum compared
with the numerical calculated DRT spectrum, together with the separated peaks using APAM, (d): damping factors for charge transfer and SEI process.

Table 3
Comparison of estimated parameters with reference parameters for case 1.

Parameter 𝑅ct [Ω m2] 𝑅f [Ω m2] 𝜏ct [s] 𝜏f [s] 𝜙1 𝜙2

Reference: 0.5 0.1 5 × 10−2 5 × 10−3 0.8 0.8
Estimated: 0.58 0.066 4.83 × 10−2 4.1 × 10−3 0.74 0.81

method and the measurement noise. Two main peaks with the time
constants 4.83×10−2 s and 4.1×10−3 s can be observed, which represent
the charge transfer and SEI processes respectively. Apart from the
two dominant peaks representing the two corresponding processes,
two smaller peaks with time constant 2.34 × 10−4 s and 3.16 × 10−5
s can be observed. By comparing the peak location and magnitude
as well as the damping factor as shown in Fig. 1d, we can conclude
that these peaks represent the 1st and 2nd order harmonics of the
film process. According to Fig. 1d, the magnitudes of the 1st and
2nd order harmonic are approximately 0.28 and 0.1 times that of
the main peak so that they remain observable. Further higher order
harmonics cannot be clearly resolved because of the regularization
algorithm used and the measurement noise. Furthermore, the existence
and observability of higher order harmonics in the deconvolved DRT
spectrum implies that the electrode may suffer from aging effects which
lead to degraded transport parameters in both solid and liquid phases.
In addition, a few small peaks with the time constant greater than 1𝑠
are observed, we believe that these peaks are rather attributable to the
wider DRT spectrum of ZARC elements than to the noise. The original
peak is splitted into a dominant peak and a few smaller peaks, which
may be caused by nonoptimal regularization parameters and inversion
algorithms, thus justifying the importance of more advanced inversion
techniques.

The model parameters calculated for case 1 using the APAM are
listed in Table 3. It can be readily seen that most parameters are
estimated with a minor error except the SEI resistance, we assume

that the slightly higher error is probably caused by the smaller value
of SEI resistance and the regularization process. The parameters cal-
culated using ECM are not listed here because after repeated trials
no satisfactory solutions have been found; we have also found that
only when the initial values are set to be very close to the optimal
solutions, the optimization algorithm can possibly converge to the
reference solution. However, on the one hand, in practical applications
many peaks can overlap, which makes it extremely difficult to obtain a
reasonable initial guess for resistance value and time constant; on the
other hand, the measurement data is usually exposed to noise, which
will further deteriorate the fitting quality of ECM and highlight the
existing under/over-fitting and parameter sensitivity problems.

The results for case 2 are shown in Fig. 2a in which no significant
impedance deviation can be observed for fundamental order recon-
struction, because in this case dispersion is almost negligible. Although
the relative error of impedance reconstruction using a fundamental
order peak approaches 30% towards the higher frequency limit, the
absolute error is scarcely observable. Instead of many peaks, there are
only two observable dominant peaks in the deconvolved DRT spectrum
(see Fig. 2c), which fulfills the theoretical prediction that the magnitude
of the 1st order harmonic is already smaller than 0.3% of the main
peak (see Fig. 2d). Again the smaller peaks with the time constant
greater than 1𝑠 are assumed to be attributed to the ZARC element. The
calculated model parameters are listed in Table 4, all parameters show
a minor deviation from the reference values except the SEI resistance,
the deviation may be caused by both the regularization and the noise.

To analyze the dispersion phenomenon in a more straightforward
way and relate it to the electrode transport parameters, the logarithmic
damping factor log10(𝛽) (see Eq. (43)) for charge transfer and film
process are calculated and plotted in Fig. 3a and b respectively against
the solid phase conductivity 𝜎 and the ratio 𝜅∕𝜎. For the computation,
all parameters are kept the same as in case 1 and 2 with the exception
of 𝜎 and 𝜅.
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Fig. 2. Simulation and analysis results for case 2, (a): generated and reconstructed impedance, (b): relative impedance reconstruction error, (c): analytic DRT spectrum compared
with the numerical calculated DRT spectrum, together with the separated peaks using APAM, (d): damping factors for charge transfer and SEI process.

Fig. 3. Logarithmic damping factors for (a): charge transfer and (b): film process against 𝜎 and 𝜅∕𝜎.

Table 4
Comparison of estimated parameters with reference parameters for case 2.

Parameter 𝑅ct [Ω m2] 𝑅f [Ω m2] 𝜏ct [s] 𝜏f [s] 𝜙1 𝜙2

Reference: 0.5 0.1 5 × 10−2 5 × 10−3 0.8 0.8
Estimated: 0.56 0.072 4.92 × 10−2 4.2 × 10−3 0.76 0.81

According to Fig. 3, when 𝜅 < 𝜎, 𝛽 decreases with increasing 𝜎 and
𝜅∕𝜎, 𝜅∕𝜎 has a more prominent role than 𝜎. Especially when 𝜎 ≈ 𝜅,
the damping factor is approximately 0 irrespective of the values of 𝜎,
exactly as predicted by Eq. (41) and (42). When 𝜅 > 𝜎 (not normally
valid for LIBs), the damping factor starts to increase with increasing
𝜅∕𝜎, but still decreases with increasing 𝜎. From Fig. 3 we can also see
that the dispersion phenomenon in the DRT spectrum is more likely to
be caused by the film process than charge transfer.

3.2. Application to commercial LIB

In this section, the developed theory is applied to a commercial LIB,
the DRT spectrum will be evaluated and a few fundamental physico-
chemical parameters, including the area-specific SEI resistance and ca-
pacitance, the reaction rate constant and the corresponding activation
energy will be estimated.

3.2.1. Experimental
The commercial cell used in this work is a 3.35 Ah NMC-811/SiC

LIB (INR18650-MJ1,LG Chem), which has been comprehensively
parametrized and investigated by Sturm et al. [60]. The cell impedance
was measured at 4 temperatures: 10 ◦C, 20 ◦C, 30 ◦C and 40 ◦C, at each
temperature the impedance was measured at 11 SOC levels: 5%, 10%,
15%, 20%, 25%, 45%, 65%, 85%, 90%, 95% and 100%, and it was
measured during cell discharging process.

To ensure a correct attribution of the peaks to the corresponding
processes, another cell from the same production lot was fully dis-
charged and then opened in an argon-filled glove-box, a piece of anode
and a piece of cathode with a diameter of 14 mm were punched out
of the anode and cathode respectively. Then each electrode sample
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Fig. 4. Measurement data processing routines.

was assembled together with two pieces of glass fiber separator and
a lithium-metal counter-electrode into a CR2032 type coin cell. The
assembly also includes two aluminum spacers to achieve better elec-
trical contact. Each half cell assembly was filled with 90 𝜇𝐿 of 1M
LiPF6 in 3:7 (wt:wt) ethylene carbonate (EC)/ethyl methyl carbonate
(EMC) electrolyte (99.9% purity, Solvionic). The assembled coin cells
were then rested for 24 h and subjected to two conditioning cycles.
Subsequently the cell voltage of the coin cell with the anode was
adjusted to ca. 0.294 V, the cell voltage of the half cell with the cathode
was adjusted to ca. 3.60 V, the lithiation state in both half cells should
correspond to 10% SOC of the full cell. The impedance of the half cells
was measured at 20 ◦C. The 20 ◦C and 10% SOC were chosen because
under this condition all peaks had similar height and could be well
separated.

All impedance measurement was performed on an electrochemi-
cal workstation (VMP3, Biologic) and in a climate chamber (MKF,
Binder). The frequency range was 10 mHz–10 kHz for full cell and 10
mHz–100 kHz for half cell.

3.2.2. Data processing
In this section the steps for measurement data processing will be

introduced. After the impedance is measured, the impedance data
is subjected to the following data processing routine: first the DRT
analysis is conducted and the deconvolved DRT spectrum is acquired.
Then the DRT spectrum is processed using the developed APAM in
order to separate the contribution of respective processes. In the next
step, the peak attribution is conducted using the coin cell impedance.
Subsequently, the peak parameters are calculated and plotted against
electrode stoichiometry/SOC and temperature, finally the results are
analyzed. The detailed routines are summarized in Fig. 4.

3.2.3. Peak attribution
In this section, the peaks of the DRT spectrum will be attributed to

different processes by comparing the results of the full cell with that
of the half cells. The comparison of the normalized DRT spectra of the
half and full cell are shown in Fig. 5a and b. The DRT spectra of the full
cell at all SOCs and temperatures are shown in Fig. 5c–f. The relevant
peaks in the DRT spectra of full cell are marked with P1–P4.

In Fig. 5b, all peaks of the anode DRT spectra are marked with A1–
A4. By comparing the DRT spectra of the full cell with half cell of the
anode, it can be concluded that all peaks with the time constant of 𝜏

> 0.01 s should be correlated with the processes in the cathode. The
peak A3 is much higher than the neighboring peaks, considering that
the Lithium-metal counter electrode has a relatively smooth surface
and no porous structure, the SEI layer formed on the Lithium-metal
should have a much higher resistance because the interfacial area is
much smaller than that of the porous SiC material. So we attribute
peak A4 and P3 to the charge transfer in the anode, A3 and P2 to
the SEI process. The peak A2 has a time constant of ca. 3 × 10−5 s and
has nearly no SOC dependence (see Fig. 5c–f), therefore it is attributed
to the contact resistance between the active material and the current
collector, this phenomenon has also been reported by Nara et al. and
Illig et al. [53,61]. It is worth noticing that the peaks A1 and C1 appear
in the half cell spectra with similar time constants, we believe that
this may be caused by the half cell assembling process, where possible
new contact surface was formed. The peak attribution is summarized
as follows:

• A1: new contact surface formed during cell assembly
• A2: contact surface between active material and current collector
• A3: SEI layer
• A4: anode charge transfer

In Fig. 5a, all peaks of the cathode DRT spectra are marked with
C1–C7. The peak C3 has similar time constant to that of the peak A3
and P2 and is much higher than the neighboring peaks, therefore C3 is
attributed to the SEI process of the Lithium-metal counter electrode.
The peak C2 has a similar time constant to that of A2 and P1, so
it is attributed to the contact resistance between the active material
and the current collector. The peaks C5–C7 can be only observed
in the spectra of the cathode, naturally they are attributed to the
processes in the cathode. It can be seen that the peaks C6–C7 have a
asymptotically decreasing magnitude (possibly a further smaller peak
between C5 and C6, but overshadowed) and relatively higher time
constants. This can be attributed to the diffusion process in the solid
or liquid phase [36,62]. Between peak C3 and C5 a small peak C4
can be observed, we assume that this peak can be either caused by
the cathode electrolyte interphase (CEI) formed during the half cell
preparation process [45], or by the Lithium-metal counter electrode.
Although the peak C4 has a similar time constant to that of the anode
charge transfer, the possibility that this peak is caused by the anode
charge transfer can be excluded because this peak has been observed
in the spectra of the half cell with the anode. The peak attribution is
summarized as follows:
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Fig. 5. Evaluation of half cell and full cell EIS measurement results and the comparison of half cell with full cell. (a): comparison of the DRT spectra of full cell with that of the
half cell of cathode; (b): comparison of the DRT spectra of full cell with that of the half cell of anode; DRT spectra of full cell at (c): 10 ◦C, (d): 20 ◦C, (e): 30 ◦C and (f): 40 ◦C.
The four investigated peaks in the mid-high frequency area are marked with P1, P2 P3 and P4.

• C1: new contact surface formed during cell assembly
• C2: contact surface between active material and current collector
• C3: SEI layer
• C4: CEI or contribution from the Lithium-metal counter electrode
• C5: cathode charge transfer
• C6–C7: solid or liquid phase diffusion in the cathode

Finally, the peak attribution for the full cell is summarized as
follows:

• P1: contact surface between active material and current collector
• P2: SEI layer
• P3: anode charge transfer
• P4: cathode charge transfer

3.2.4. Evaluation of SEI process
In this section the evaluation results of the SEI process will be

shown and interpreted. The calculated SEI resistance is shown in Fig. 6,
here the area-specific resistance is used for analysis instead of the total
resistance by scaling the total resistance with the total interfacial area
(see Eq. (37)), which is taken from Strum et al. [60]. It can be observed
that the SEI resistance shows a certain SOC dependence that it has a
higher value when approaching the fully charged or discharged state
and a lower value at the medium SOC values. Zhang et al. investigated
the SEI resistance in dependence on the lithiation state and found out
that the SEI resistance is correlated to the differential capacity, the
SEI resistance has a higher value approaching the fully lithiated state
and a lower value approaching the fully delithiated state [63]. Peled
et al. investigated the structure of SEI layer using XPS and TOF-SIMS
and also concluded that the SEI layer is thinner at delithiated state
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Fig. 6. Evaluation results for the SEI process. (a): The area-specific SEI resistance at different SOCs and temperatures; (b): time constants of the SEI process at different SOCs and
temperatures; fitting of the SOC-averaged SEI resistance using the Arrhenius equation.

and thicker at lithiated state [64]. However in the present work we
observe a higher SEI value at both the lithiated and the delithiated
state, a similar behavior has also been reported by Ovejas et al. [65].
We assume that this phenomenon can be partly attributed to the silicon
additive in the anode, because the ‘‘shortcut’’ of the Li-ions through
the SEI layers (cracks) will be blocked due to the particle shrinking
caused by the volume change at the fully delithiated state, as reported
by Pan et al. [50]. On the other hand, some extra SEI materials will
be pushed out to form a secondary SEI layer, which may lead to a
decreased SEI porosity, thus hindering the diffusion of Li-ions through
the SEI layer [66]. The SOC dependence of the SEI resistance is less pro-
nounced at elevated temperatures, due to thermally activated transport
and kinetic processes. The time constant of the SEI process is shown
in Fig. 6b, a similar SOC dependence can be observed, at elevated
temperatures (20–40 ◦C) only a minor temperature dependence can be
seen. To evaluate the temperature dependence of the SEI resistance, the
SEI resistance at each SOC is averaged over the SOC and the results
are plotted in Fig. 6c. The Arrhenius equation is applied to the data
and a clear linear relationship can be observed, the activation energy
is calculated to be 38.9 kJ/mol, which is similar to the values derived
by Yao et al. and Suresh et al. [67,68].

3.2.5. Evaluation of charge transfer process
In this section the evaluation results for the charge transfer pro-

cess will be introduced and analyzed, the calculated exchange current
density will be fitted to derive further physicochemical parameters.
The results for the charge transfer process are shown in Fig. 7. To
better investigate the charge transfer parameters, the exchange current
density is used instead of the charge transfer resistance:

𝑖0 =
R𝑇

𝐴cell𝑎v𝑙𝑅v,ctF
(46)

where 𝐴cell is the total cross-sectional area of the electrode, 𝑅𝑣,ct is the
volumetric charge transfer resistance calculated by the DRT and APAM,
F is the Faraday constant, R is the gas constant. The SOC values are
transformed into the electrode stoichiometry by using the cell balancing
parameters derived in the work of Sturm et al. [60]. The exchange
current density can be modeled using the following equation:

𝑖0 = F𝑘(𝑐𝑠,max − 𝑐𝑠)𝛼c (𝑐𝑠)𝛼a (𝑐l)𝛼a (47)

where 𝑘 is the reaction rate constant, 𝑐𝑠,max is the maximum solid phase
concentration, 𝑐𝑠 is the solid phase concentration, 𝑐𝑙 is the liquid phase
concentration, and 𝛼 is the charge transfer coefficient and is assumed
to be 0.5 in this work. If we substitute 𝜒 = 𝑐𝑠∕𝑐𝑠,max into the above
equation, the following equation can be obtained:

𝑖0 = F𝑘𝑐𝑠,max(1 − 𝜒)𝛼c (𝜒)𝛼a (𝑐l)𝛼a (48)

where 𝜒 is the stoichiometry of the electrode, 𝑐𝑠,max is assumed to be
34684 mol∕m3 for the anode and 50060 mol∕m3 for the cathode; here
the 𝜒 value at any SOC can be calculated using the 𝜒 value at 0% and

100% SOC [60]. We use the above-derived equation to fit the exchange
current density and derive the reaction rate constant.

It is worth noticing that in the course of evaluating the charge
transfer resistance from the DRT spectra, at elevated temperatures the
peak P4 is gradually shifted to the lower time constant area at the
medium SOC state and finally merge with the peak P3 (see Fig. 5e–
f). At first an attempt is made to separate the peaks by reducing
the regularization parameter; however, both peaks stay inseparable,
a further reduced regularization parameter leads to inevaluable DRT
spectrum. This phenomenon also implies that simply applying the ECM
to evaluate the DRT spectrum may cause parameter non-identifiability
problem and lead to erroneous results. In this work we propose a
method to estimate the parameters of the inseparable peaks by com-
bining the DRT spectrum and the fitting equation for the exchange
current density. The method assumes that the exchange current density
for the anode and cathode is modeled using Eq. (48) and the sum of the
volumetric charge transfer resistance for the anode and cathode should
be equal to the value derived from the DRT spectrum, then the curve
fitting problem can be transformed into the following optimization
problem:

𝜃(𝑘n, 𝑘p, 𝑅v,ct,𝑗 ) = argmin
𝜃>0

{ 𝑁
∑

𝑖=1,𝑖≠𝑖𝑛𝑖

[

𝑖0,n,𝑖 −
R𝑇

𝐴cell𝑎v,n𝑙n𝑅v,ct,n,𝑖F

]2

+

𝑁
∑

𝑖=1,𝑖≠𝑖𝑛𝑖

[

𝑖0,p,𝑖 −
R𝑇

𝐴cell𝑎v,p𝑙p𝑅v,ct,p,𝑖F

]2

+
∑

𝑗=𝑖𝑛𝑖

[

𝑖0,n,𝑗 −
R𝑇

𝐴cell𝑎v,n𝑙n𝑅v,ct,n,𝑗F

]2

+

∑

𝑗=𝑖𝑛𝑖

[

𝑖0,p,𝑗 −
R𝑇

𝐴cell𝑎v,p𝑙p𝑅v,ct,p,𝑗F

]2 }

(49)

subjected to the constraint:

𝑅v,ct,n,𝑗 + 𝑅v,ct,p,𝑗 = 𝑅v,ct,total,𝑗 (50)

where 𝑖 indicates the index for all identifiable separated peaks, 𝑁 is the
total number of identifiable cases, 𝑖𝑛𝑖 is the index for the non-identifiable
cases. When peak P3 and P4 are inseparable, we assume that they have
the same time constant. The fitting results are shown in Fig. 7. It can
be seen that the overlapping peaks can be effectively separated and the
peak parameters are close to the predicted values. Nevertheless, it is
worth mentioning that all data points can be fitted with a good quality
except the data points for cathode at the lower delithiated state and at
each temperature, the measurement data tend to lie below the predicted
value, namely, the cathode charge transfer resistance is for some reason
overestimated. We believe that this overestimation is caused by the
interaction of the cathode charge transfer with the diffusion process.
Boukamp et al. investigated the DRT spectrum for solid diffusion and
derived an analytical expression for the DRT spectrum [36]. The derived
theory indicates that the DRT spectrum of the Warburg impedance
shows a certain dispersion pattern, a series of peaks with decreasing
time constant and magnitude are generated in the DRT spectra, which
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Fig. 7. Exchange current density of negative (first row) and positive (second row) electrode calculated with APAM at different lithiation state and temperature. Calculated
area-specific double layer capacitance and the charge transfer time constant for the anode (third row) and cathode (fourth row).

can very likely overlap with the cathode charge transfer peak and
lead to an overestimated charge transfer resistance. This interaction
phenomenon can also be clearly observed in Fig. 5c–f, this behavior
is more pronounced at lower temperatures because the charge transfer
is more sluggish and has larger time constant. For the liquid phase
diffusion a similar dispersion behavior is also expected [62].

The calculated double layer capacitances and charge transfer time
constants for anode and cathode are plotted in Fig. 7i–p. It can be
observed that the time constants of both electrodes have a higher value
when approaching the fully lithiated/delithiated state and decrease
gradually at elevated temperature, the time constant of the cathode
charge transfer also shows a stronger SOC dependence than that of
the anode, which can be readily seen in Fig. 5 as well. The double
layer capacitance of the anode varies only slightly with both the SOC
and the temperature and has an average value of approximately 0.5
F∕m2. The double layer capacitance of the cathode shows a stronger SOC
dependence but nearly no temperature dependence.

To investigate the temperature dependence of the charge trans-
fer, the estimated reaction rate constant is fitted using the Arrhenius
equation and the results are plotted in Fig. 8. The estimated reaction
rate constants range from ca. 2.9 × 10−11 to 2.8 × 10−10 m∕s. At room
temperature (25 ◦C), the reaction rate constant for the NMC811 is
approximately 5.63 × 10−11, which agrees very well with the value
measured by Chowdhury et al. [69]. The calculated activation energy for
the anode and cathode is 43.5 kJ/mol and 52.5 kJ/mol respectively. For
graphite anode similar values of 45–60 kJ/mol have been reported by

Smart et al. [70] depending on the electrolyte composition. For NMC811
no data for charge transfer activation energy has been found in the liter-
ature, a value of 57–69 kJ/mol is reported by Keefe et al. for an NMC532
electrode [71]. The measured activation energy depends strongly on the
material used, the test procedure and even the electrolyte.

4. Conclusions

In this work, a new theory is proposed to characterize the cell
parameters and extract the useful information in a more effective way.
The developed theory indicates that when considering the distributed
nature of the electrode caused by transport phenomena in solid and
liquid phases, the fundamental order peaks of the deconvolved DRT
spectrum are only decided by the local particle impedance and electrode
geometric parameters (thickness, cross-sectional area, particle size etc.).
Therefore, the fundamental peaks can be applied to investigate the
microscopic processes related to solid particles. Besides the fundamental
order peaks, the dispersion peaks exist due to the distributed nature
of the electrode. The dispersion occurs in the direction of decreasing
time constants and magnitude. Especially when the conductivities in the
solid and liquid phases have similar values or become high enough, no
dispersion phenomenon can be observed in practice, which coincides
with the single particle assumption, according to which the transport
process in the liquid phase is simply neglected. Based on the developed
theory, an adaptive peak analysis method is proposed to better interpret
the deconvolved DRT spectrum. The proposed theory and model are
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Fig. 8. Arrhenius plot for reaction rate constant of charge transfer reaction in the (a): anode and (b): cathode.

then applied to a commercial cell to demonstrate its advantage and
effectiveness. The results indicate that the SEI resistance exhibits a
more obvious SOC dependence at lower temperatures, while at higher
temperatures only slight SOC dependence can be observed. The SEI
resistance also shows an obvious temperature dependence and can be
well fitted by Arrhenius equation. The kinetic reaction rate constant for
both the anode and cathode at various temperatures can be well fitted
using the Arrhenius equation, revealing that the charge transfer process
can be assumed to generally obey the Arrhenius equation.

In our future work, we will further work on applying the DRT
spectrum to the characterization of the diffusion phenomenon in the
solid and liquid phase with a physics-based impedance model. Also the
possibility of using mixed-integer programming approaches [72,73] to
select candidate functions for peak fitting and verify the optimality of
the selection will be investigated.
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Appendix. Derivation of impedance model

The p2D model describes the transport processes in electrodes with
a series of partial differential equations [37–39]. The model equations
are transformed into the frequency domain using the Fourier transfor-
mation. All variables in the frequency domain are marked with a tilde
sign. By further assuming that in mid-high frequency range liquid phase
diffusion can be neglected and that the liquid phase current is driven
only by ionic conduction, the model equations can be simplified and
summarized as follows:

𝑖̃𝑙 = −𝜅
𝜙𝑙

𝑑𝑥
(A.1)

𝑑𝑖̃𝑙
𝑑𝑥

= 𝑎v𝑗loc (A.2)

𝜎
𝑑2𝜙𝑠

𝑑𝑥2
= 𝑎v𝑗loc (A.3)

where 𝑖𝑙 is the liquid phase current density, 𝜙𝑙 and 𝜙𝑠 are potentials in
the liquid and solid phase respectively, 𝑗loc is the local reaction current
density and 𝑥 is the spatial coordinate along the electrode thickness. The
potentials in liquid and solid phase are related through the following
equation:

𝜙𝑙 − 𝜙𝑠 = 𝑍loc𝑗loc (A.4)

Then Eq. (A.1) is substituted into Eq. (A.2) and (A.3), 𝑗loc is elimi-
nated by using Eq. (A.4), and the resulting equations can be converted
into matrix form:
𝑑2

𝑑𝑥2

[

𝜙𝑙
𝜙𝑠

]

=
[

−𝑚11 𝑚11
𝑚21 −𝑚21

] [

𝜙𝑙
𝜙𝑠

]

(A.5)

where 𝑚11 = 𝑎𝑣∕(𝜅𝑍loc), 𝑚21 = 𝑎𝑣∕(𝜎𝑍loc). The matrix form can be further
written as 𝒖′′ = 𝑨𝒖 where 𝑨 is the system matrix and 𝒖 is the unknown
variable to be solved for. In order to solve the 2nd order system, the
following block matrix is built:

𝑴 =
(

𝟎 𝑰
𝑨 𝟎

)

(A.6)

and the 2nd order system can be transformed into the following 1st
order system:

𝒗′ = 𝑴𝒗 (A.7)

𝒗 = [𝒖, 𝒖′]𝑇 (A.8)

It can be shown that the general solution of Eq. (A.5) has the
following form:

𝒖 = 𝐶1𝑽 1 + 𝐶2𝑽 1𝑥 + 𝐶3𝑽 2𝑒
𝜆3𝑥 + 𝐶4𝑽 3𝑒

𝜆4𝑥 (A.9)

where 𝜆 is the eigenvalue of block matrix 𝑴 and 𝜆1 = 𝜆2 = 0, 𝐶 is the
unknown coefficient, 𝑽 is 𝐝𝐢𝐚𝐠(𝐼, 0)𝑾 and 𝑾 is the eigenvector of 𝑴 .
The boundary conditions for 𝜙𝑙 and 𝜙𝑠 are:

𝑥 = 0 ∶ −𝜅
𝑑𝜙𝑙

𝑑𝑥
= 0, 𝜙𝑠 = 0 (A.10)

𝑥 = 𝑙 ∶ −𝜅
𝑑𝜙𝑙

𝑑𝑥
= 𝑖app, −𝜎

𝑑𝜙𝑠

𝑑𝑥
= 0 (A.11)

where 𝑖𝑎𝑝𝑝 is the applied current density. If the boundary conditions
are substituted into Eq. (A.9), a linear equation system of unknown
coefficients can be obtained. Note that 𝜆4 = −𝜆3, the system can be
solved to obtain the following solution:

𝐶1 = −
𝑖app 𝑚21

(

𝑚21 + 2𝑚11 e𝑙 𝜆3 + 𝑚21 e2 𝑙 𝜆3
)

𝜅 𝜆3 𝑚11
(

𝑚11 + 𝑚21
) (

e2 𝑙 𝜆3 − 1
) (A.12)
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𝐶2 = −
𝑖app 𝑚21

𝜅
(

𝑚11 + 𝑚21
) (A.13)

𝐶3 = −
𝑖app 𝑚21

(

𝑚21 + 𝑚11 e𝑙 𝜆3
)

𝜅 𝜆3 𝑚11
√

−𝑚11 − 𝑚21
(

e2 𝑙 𝜆3 − 1
) (A.14)

𝐶4 =
𝑖app 𝑚21 e𝑙 𝜆3

(

𝑚11 + 𝑚21 e𝑙 𝜆3
)

𝜅 𝜆3 𝑚11
√

−𝑚11 − 𝑚21
(

e2 𝑙 𝜆3 − 1
) (A.15)

The electrode impedance is defined as:

𝑍𝑒 =
𝜙𝑙,𝑥=𝑙

𝑖app
(A.16)

The solved coefficients are substituted into the equation above and
the resulting expression can be simplified to obtain Eq. (3).
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5 Investigation of the Diffusion Phenomena in
Lithium-ion Batteries with Distribution of Relaxation
Times

While in chapter 4 a comprehensive theory has been developed to explain and interpret the DRT spec-
trum of a Lithium-ion battery with a physicochemical impedance model, the phenomena dominating
in the mid-low frequency range have not been investigated. Such phenomena include the diffusion in
the solid and liquid phase and the differential capacitive effect. One of the most important purposes
of the investigation of the diffusion phenomenon is to estimate the diffusion coefficient, which usually
requires a complicated measurement procedure and the accuracy is also problematic.

One of the most widely used methods for the diffusion coefficient estimation is the GITT. For the
estimation of the solid diffusion coefficient, a current pulse of a defined time period will be applied to
the battery and then the voltage relaxation is measured to calculate the diffusion coefficient. It can
be shown that the GITT method has the following critical limitations:

• the GITT doesn’t take the electrode structure and other processes into account
• the geometry of the solid particles is not considered, instead the diffusion is assumed to be

semi-infinite and in a planar geometry
• under certain circumstances, the diffusion can be dominated by the liquid phase and the solid

diffusion coefficient can be strongly underestimated

In this chapter, first a comprehensive theory has been developed to explain the DRT spectrum of
a Lithium-ion battery in the mid-low frequency range and an analytical expression was derived to
describe the DRT spectrum using the physicochemical parameters. The developed theory explained
the DRT spectrum in the mid-low frequency range, which has also considered the porous structure
of the electrode, the material transport in the electrolyte and the particle geometry. Furthermore,
the developed theory was compared with the GITT regarding the estimation of the solid diffusion
coefficient.

The developed theory was first explained and validated using a series of synthetic impedance data.
Then the solid diffusion coefficients in the anode and cathode of a commercially available Lithium-ion
battery cell have been estimated using both the DRT and the GITT method. The estimation results
were in line with the theoretical prediction.

Author contribution
Yulong Zhao was the principal author tasked with coordinating and writing the paper, developing the
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A B S T R A C T   

The distribution of relaxation times method (DRT) has been widely used to quantify the numbers and charac
terize the properties of the physico-chemical processes inside the Li-ion battery (LIB). While most of the pub
lished works focused on the mid-high frequency range, the processes in the low frequency area, such as diffusion, 
have garnered less attention. The difficulties of applying the DRT to the diffusion processes include the more 
complicated mathematical treatment involved, the unknown influence of the porous electrode on the DRT 
spectra and the evaluation of the measured impedance with the developed theory. The galvanostatic intermittent 
titration technique (GITT) has been widely applied to determine the solid diffusion coefficient for the LIB. 
However, the GITT does not consider the geometry of the active material particles and cannot effectively 
separate the contribution of the solid diffusion from other processes, such as liquid diffusion. In the present work, 
a comprehensive theory is developed to investigate the DRT spectra of a LIB with a physics-based impedance 
model. Furthermore, an analytical expression is developed for the DRT spectra and analyzed in detail. The 
developed theory can help to determine the solid phase diffusion coefficient with a firm physico-chemical 
background. Based on the developed theory, the solid diffusion coefficients of the silicon graphite (SiC) and 
NMC811 are determined with a commercial cell. Besides, the galvanostatic intermittent titration technique 
(GITT) has been applied to the same cells and the measurement results are compared with that using the DRT 
method. The comparison indicates that GITT cannot exclude the influence of the liquid diffusion and the solid 
diffusion coefficients will be underestimated.   

1. Introduction 

With the increasing demand for electric vehicles and renewable en
ergy resources, the pace of technology development and manufacturing 
of Li-ion batteries (LIBs) is speeding up. Currently, various diagnostic 
methods have been used for scientific research and in practical appli
cations. Among them the electrochemical impedance spectroscopy 
(EIS), as a nondestructive diagnostic method, has been used to estimate 
the cell states and identify the internal cell parameters. Besides the EIS 
measurement technology itself, measurement data evaluation and 
interpretation is another knotty yet important engineering problem. For 
LIBs, currently the equivalent circuit model (ECM) is frequently selected 
to fit the measured impedance data and estimate the cell parameters [1, 
2]. However, the structure and the circuit components selected to build 
the ECM strongly rely on the experience and knowledge of the operators. 
Researchers are sometimes faced with the situation in which the same 

set of impedance data can be fitted with multiple ECMs of different 
structures [2]. In addition, the identifiability issue of the resulting 
nonlinear optimization problem may also lead to implausible results, 
which are simply caused by a missing comprehensive sensitivity anal
ysis. This will sometimes result in confusing conclusions that different 
initial guesses lead to different solutions with the same or very close 
residual norm; even though a unique solution exists, it may not be easily 
found without using complicated optimization algorithms that are 
relatively computationally expensive. 

1.1. Determination of the solid diffusivity with DRT 

To get rid of the ambiguity of ECM fitting and resolve the identifi
ability issue, instead of using nonlinear optimization, the distribution of 
relaxation times (DRT) method has been used to deconvolve the EIS data 
[3–5]. For a more comprehensive modeling, the original DRT model is 
extended with ohmic resistance, capacitance and inductance. Moreover, 
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a comprehensive theory will be developed to explain the extended 
model and therefore interpret the results. The extended DRT model used 
in this work consists of an ohmic resistance, a series of parallel RL ele
ments, parallel RC elements and a CPE element: 

Ze = Rohm +
1

(jωC)
ϕ + jωL +

∫ ∞

0

jωτH(τ)
1 + jωτ dτ +

∫ ∞

0

G(τ)
1 + jωτ dτ (1)  

where Ze is the measured impedance, Rohm is the total ohmic resistance, 
H(τ) is the distribution function for the RL elements, G(τ) is the distri
bution function for the RC elements, C is the total capacitance and L is 
the total inductance. To solve the integral equation numerically, the 
equation above is discretized and transformed into a linear equation 
system. The resulting system is ill-posed by its nature and cannot be 
inverted directly. As a result, the regularization technique is applied to 
invert the equation. After discretization and transformation, the 
following linear optimization problem is obtained: 

[H(τ), G(τ), Rohm, L, C] = argmin
x>0

{

‖ Ax − b ‖
2
2 + λ2‖ Kx ‖

2
2

}

(2)  

where λ is the regularization parameter, A is the system matrix after 
discretization, b is the measurement data vector, x is the solution vector, 
K is a matrix defining which variables to regularize. In this work, the 
distribution functions H(τ) and G(τ) are regularized. 

In our previous work [6], we developed a theory to explain the DRT 
spectrum for the fast kinetic processes (charge transfer, SEI etc.) using a 
physics-based impedance model. In this work, we will try to explain the 
DRT spectrum for the kinetic processes with higher time constants, such 
as diffusion in the solid and liquid phase. Boukamp et al. [3,4] derived 
an analytical expression for the DRT spectrum of the 
finite-length-Warburg (FLW) element and investigated the performance 
of the resulting model. Nevertheless, the derived theory is not related to 
the deconvolved DRT spectrum of a LIB and does not have a compre
hensive physico-chemical model behind; in addition, the derived model 
only considered the FLW element with transmissive boundary condi
tions and the capacitive behavior and other possible particle geometries 
are not included. Besides, no particle size distribution (PSD) is consid
ered for the diffusion impedance. The electrode of a LIB consists of a 
large number of solid particles and the pores are filled with electrolyte. A 
complicated physico-chemical model is thus needed to describe the 
processes in the electrode, including the electrochemical reaction, ma
terial transport and the charge balance. Obviously, a simple equivalent 
circuit model with a few circuit elements cannot account for the 

aforementioned processes satisfactorily and the estimation results are 
probably problematic. Furthermore, whether and how the impedance 
and the resulting DRT spectra will be influenced by the aforementioned 
processes is still unknown. Therefore, a comprehensive theory for the 
DRT based on a physico-chemical model is necessary for the correct and 
effective estimation of the solid diffusion coefficients. 

1.2. Determination of the solid diffusivity with GITT 

Since proposed, the GITT has been widely applied to determine the 
solid diffusivity of Li-ion batteries. Due to its simple procedures, the 
original GITT has been used by various works to estimate the solid 
diffusion coefficient [7–12]. In the GITT measurement, the Li-ion bat
tery is placed in an equilibrium state and a current pulse with a small 
amplitude and a duration of Δt is applied to the battery and then the 
battery will be fully relaxed [13]. Assuming that the overpotential 
caused by the dynamic processes without the ohmic conduction inside 
the battery is ΔEt , the change of the equilibrium potential is ΔEs and the 
diffusion length inside the solid phase is L, then the solid diffusion co
efficient can be calculated as follows [13]: 

Ds,GITT =
4L2

πΔt

(
ΔEs

ΔEt

)2

(3) 

The original GITT method applied to a Li-ion battery is based on the 
following assumptions: 1. the active material particles have a planar 
geometry; 2. all active material particles have the same size and no 
particle size distribution is considered; 3. the overpotential contribution 
caused by other dynamic processes, especially the liquid diffusion, is 
neglected; 4. the porous structure of the electrode and thus the transport 
processes inside the porous electrode are not considered. In reality, the 
measured overpotential in the case of a Li-ion battery is expressed by the 
following equation: 

ΔEt = ΔEt,ct + ΔEt,SEI + ΔEt,diff,l + ΔEt,diff,s (4)  

where ΔEt,ct, ΔEt,SEI, ΔEt,diff,l and ΔEt,diff,s represent the overpotential 
attributed to the charge transfer, SEI process, liquid diffusion and solid 
diffusion respectively. In practical applications, the influence of the 
charge transfer and SEI process may be excluded if the sampling rate is 
high enough and an approximate time constant for the charge transfer 
and SEI process is assumed. However, the influence of the liquid diffu
sion usually cannot be effectively excluded because the diffusion time 
constants in the solid and liquid phases are similar. In such a case, the 

Nomenclature 

Greek letters 
δ dirac delta function 
κ liquid phase conductivity, S m− 1 

ϕ exponent for CPE element or fractal diffusion 
σ solid phase conductivity, S m− 1 

τ time constant, s 
θ variable related to local particle impedance 
f frequency, Hz 

Subscripts 
ct variables related to charge transfer 
e variables related to electrode or electrolyte 
f variables related to film 
loc variables related to active material particles 
p variables related to solid particles 
RC variables related to RC element 
v variables related to volume 

ZARC variables related to ZARC element 

Symbols 
F Faraday constant 
a pole for meromorphic function expansion 
av specific volumetric area, m− 1 

b coefficient for meromorphic function expansion 
G DRT spectrum function of electrode 
g DRT spectrum function of RC/ZARC element 
H magnitude of dispersion peak 
j imaginary unit 
l electrode thickness, m 
R resistance (with subscript), Ω; gas constant (without 

subscript), J K− 1 mol− 1 

r particle radius, m 
s laplace variable, jω 
Y admittance, S 
Z impedance, Ω  
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solid phase diffusivity may be underestimated if the overpotential 
caused by the liquid diffusion is non-negligible when compared to that 
caused by the solid diffusion. 

To exclude the influence of the electrolytic diffusion, Kang et al. 
developed an improved GITT method by preparing a high-density bulk 
sample [12]. However, a specially prepared bulk sample with a high 
density was needed for the measurement so that the procedure could not 
be easily applied to commercial cells. Besides, the geometry and the size 
distribution of the particles are not considered. 

1.3. Summary 

From the analysis made above, it can be seen that although the DRT 
method can effectively separate the contribution of different processes 
with regard to the time constants, a comprehensive model for the 
interpretation of the calculated DRT spectra and thus a connection of the 
DRT spectra with the physico-chemical parameters are still missing. 
Similarly, the GITT is based on a strongly simplified case and many 
essential processes have been neglected. 

In this work, we will try to develop a theory that can be used to 
interpret the DRT spectrum regarding the liquid and solid phase diffu
sion processes with a physics-based impedance model, a comparison of 
the method proposed in the present work with the existing methods is 
given in Table 1. Then an analytical expression for the DRT spectrum 
will be derived with the electrochemical parameters and the possible 
influence of the porous structure will be studied. With the developed 
DRT model based on a physico-chemical impedance model, the solid 
diffusion coefficient will be estimated using the DRT spectra. Mean
while, a GITT measurement will be conducted to determine the solid 
diffusion coefficient, the results will be compared to that with the DRT 
and the advantage and effectiveness of the DRT based on a physico- 
chemical model will be demonstrated. The workflow of the present 
work is shown in Fig. 1. 

The rest of the work is organized as follows: in Section 2, an 
analytical expression of the DRT for an electrode based on a physics- 
based impedance model is derived and analyzed; in Section 3, a simu
lation experiment will first be conducted to investigate the derived 

theory, then the DRT spectra of a commercial LIB and two half cells will 
be evaluated and interpreted using the proposed model. Section 4 con
cludes the work. 

2. Theory development 

In this section, the DRT spectra for LIBs will be investigated and an 
analytical expression will be developed using a physics-based imped
ance model. While in our previous work we have focused on the fast 
kinetic processes such as charge transfer and SEI process, in this work we 
will concentrate on the diffusion in the liquid and solid phase. The 
impedance model used is derived using the pseudo-two-dimensional 
(p2D) model developed by Doyle and Newman [14–16]. Considering 
that the liquid phase diffusion coefficient is usually orders of magnitude 
greater than that in the solid phase and that for LIBs that are not strongly 
aged, the liquid phase diffusivity should still be high enough, we choose 
to first neglect the liquid phase diffusion when investigating the solid 
phase diffusion, later the model will be extended by the liquid phase 
diffusion. The derivation of the impedance model for an electrode 
without liquid phase diffusion has been shown in our previous work [6] 
and is thus omitted here. The impedance expression is given by: 

Ze =
le

κ + σ +
(κ2 + σ2)coth

( ̅̅̅
θ

√
le
)

κσ(κ + σ)
̅̅̅
θ

√ +
2

(κ + σ)
̅̅̅
θ

√
sinh

( ̅̅̅
θ

√
le)

(5)  

θ =

(
1
σ +

1
κ

)
1

Zv,loc
=

(
1
σ +

1
κ

)

Yv,loc (6)  

where Ze is the electrode impedance, le is the electrode thickness, κ and σ 
are conductivities in the liquid and solid phases respectively, θ is a 
variable related to the local particle impedance and Zv,loc and Yv,loc are 
the volume-specific particle impedance and admittance respectively. 
The volume-specific impedance instead of the area-specific impedance is 
used to ease the derivation for the case where the PSD is considered. 

2.1. Classification of dispersion phenomena in electrodes 

According to our previous work [6], the porous structure and 
transport phenomena in the electrode will cause dispersion behavior 
with regard to the charge transfer and SEI processes when the diffusion 
is neglected in the mid-high frequency range. In the low frequency range 
where the diffusion cannot be neglected, it is still unclear whether the 
spectra will be influenced by the dispersion and how pronounced it will 
be. Hence, we start by analyzing the dispersion phenomenon in the low 
frequency range. We believe that according to the electrochemical 
processes occurring in an electrode, the spectrum dispersion has two 
origins: the first kind of dispersion is caused by the spatially distributed 
physical or electrochemical processes along the thickness of the elec
trode, such as the electronic/ionic conduction and the distributed 
electrochemical reactions, we refer to the first kind of dispersion as stage 
one dispersion. Another kind of dispersion arises from the local 

Table 1 
Summary and comparison of the GITT and DRT methods used for determination 
of the solid diffusivity.  

Method GITT  DRT 

Reference [7–11] [12]  [4] Present work 

Electrode model no no  no physico-chemical 
Particle geometry planar planar  planar planar/cylindrical/ 

spherical 
Particle size 

distribution 
no no  no yes 

Liquid diffusion – excluded  – considered 
Special treatment 

of sample 
no yes  unknown no  

Fig. 1. Workflow of determination of the solid diffusion coefficient using DRT and a physicochemical impedance model.  
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processes which will locally cause dispersion itself, such as charge 
transfer with a constant phase element (CPE) and the solid phase 
diffusion. We refer to the second kind of dispersion as stage two 
dispersion. Both dispersion behaviors are not simply linearly super
imposed but rather interacting with each other in a sophisticated way, a 
direct investigation of all dispersion phenomena at the same time will 
lead to an overly complicated mathematical problem which does not 
help to resolve the issue. Based on the cause and the scope of impact of 
the dispersion phenomena, we choose to develop the theory with a 
two-step procedure by investigating the dispersion of two stages sepa
rately. In the following sections, we will conduct the model derivation 
starting from stage one dispersion. Then, the stage two dispersion will be 
investigated based on the findings and conclusions from the stage one 
dispersion. 

2.2. Stage one dispersion: electrode level dispersion 

In this section the stage one dispersion phenomenon will be inves
tigated. Upon substituting Eq.  (6) into (5), a meromorphic function of 
the volume-specific admittance Yv,loc is obtained, which can be refor
mulated as an infinite series using the Mittag–Leffler theorem [17]: 

Ze = Ze,Yv,loc,0 +
∑∞

n=0

(
Bn

Yv,loc − An
+

Bn

An

)

(7)  

where An and Bn are the corresponding poles and expansion coefficients 
respectively, Ze,Yv,loc,0 is the electrode impedance when Yv,loc approaches 
zero. If we let Yv,loc approach infinity (equivalent to f→∞) and evaluate 
the resulting equation, the following equation can be obtained: 

Ze,Yv,loc,0 +
∑∞

n=0

Bn

An
=

le

κ + σ (8) 

The equation above is substituted into Eq.  (7) and the following 
simplified equation is obtained: 

Ze =
le

κ + σ +
∑∞

n=0

(
Bn

Yv,loc − An

)

(9) 

In the equation derived above, le/(κ+σ) is the ohmic resistance of the 
electrode. The poles of the expansion are determined by solving the 
following equations: 

θ = 0 (n = 0) (10)  

sinh
( ̅̅̅̅̅

θn
√

le

)
= 0⇒

̅̅̅̅̅
θn

√
le = inπ (n= 1, 2, 3,…) (11) 

The solutions to the equations above are given as: 

A0 = 0 (n= 0) (12)  

An = −
n2π2

le
2( 1

κ +
1
σ

) (n= 1, 2, 3,…) (13) 

And the expansion coefficients Bn are solved for using the residue 
method: 

Bn = lim
Yv,loc→An

(
Yv,loc − An

)
Ze
(
Yv,loc

)
(14)  

which gives the following solutions: 

B0 =
1
le

(15) 

Fig. 2. Circuit approximation used for the model development, with approximation 1 in the upper part and approximation 2 in the lower part of the figure.  
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Bn =
2[κ2 + 2κσ( − 1)n

+ σ2]

le(κ + σ)2 (n= 1, 2, 3,…) (16) 

It can be seen from Eqs. (13) to (16) that the poles are a function of n 
and increase with the factor n2, the expansion coefficients are swinging 
between two constant values and thus not decaying with increasing 
order. A qualitative inspection of Eqs. (9), (13) and (16) indicates that 
even the expansion coefficients are not decaying with increasing order, 
the denominator increases with increasing n because the poles are 
increasing. Through further model investigation, we can confirm that 
the dispersion magnitude decays quickly with the increasing time con
stants, so that for the solid diffusion process the stage one dispersion can 
be practically neglected. In order to show quantitatively that the 
magnitude of dispersion terms decreases with increasing time constants, 
the theorem on residue of composition function can be used to derive the 
coefficients corresponding to each process, the derivation is provided in 
Appendix A.4. 

2.3. Stage two dispersion: particle dispersion 

In the last section, we have analyzed the stage one dispersion in 
detail and concluded that the stage one dispersion can be practically 
neglected in the low frequency range. In this section, we will continue to 
investigate the local dispersion phenomena. 

The area-specific local particle impedance of a LIB is usually 
expressed using the following equation [2]: 

Zloc =
Rf

1 + sRfCf
+

1
1

Rct+RdZd
+ sCdl

(17)  

where Rf and Rct are the film and charge transfer resistances respec
tively, Cf and Cdl are the film and double layer capacitances respectively, 
Zd is the dimensionless diffusion impedance and Rd represents the 
diffusional resistance. For brevity, here we have only considered RC 
elements for charge transfer and SEI process, for ZARC elements a 
similar model can be derived, as shown in our previous work [6]. 

Due to the fact that the diffusion time constants are usually several 
orders of magnitude larger than those of the charge transfer and SEI 
processes, the particle impedance can be approximated with a series 
connection of two RC elements and one diffusion impedance (see Fig. 2): 

Zloc ≈
Rf

1 + sRfCf
+

Rct

1 + sRctCdl
+ RdZd (18) 

We refer to the approximation made above as approximation 1. 
Depending on the geometric shape of the particles, the dimensionless 
diffusion impedance Zd has different forms which are listed in Table 2, 
where U is the open circuit voltage of the electrode, rp is the particle size, 
cs is the concentration of the Li-ions in the particles, τ0 is the charac
teristic diffusion time constant with τ0 = r2

p/Ds. An electrode with a 
uniform particle size (UPS) is only a strongly simplified case. In reality, 
the active material particles inside the electrode have a particular PSD, 
which will modify the diffusion impedance of a LIB in a specific way. In 
the following sections, the dispersion phenomenon as well as the DRT 
spectrum for the solid diffusion will be discussed in two cases: solid 
particles with UPS and PSD. 

2.3.1. Diffusion with uniform particle size 
If the solid particles have a uniform size, the volume-specific particle 

impedance can be obtained by simply scaling the area-specific imped
ance using the volumetric interfacial area av: 

Zv,loc =
Zloc

av
=

1
av

(
Rf

1 + sRfCf
+

Rct

1 + sRctCdl

)

+
1
av

RdZd (19) 

If we first neglect the higher order dispersion terms and only keep the 
0th order terms, Eq.  (9) can be rewritten as: 

Ze,0 =
le

κ + σ
⏟̅̅⏞⏞̅̅⏟

Ohmic resistance

+
1

avle

(
Rf

1 + sRfCf
+

Rct

1 + sRctCdl

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Charge transfer and SEI process

+
1

avle
RdZd

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
Solid diffusion

(20) 

The resulting expression is equivalent to the well-known single 
particle model (SPM) assumption [19] and has a clear physical meaning: 
the first term represents the ohmic resistance of the electrode, the sec
ond term represents the charge transfer and SEI impedance, the last term 
is the diffusion impedance in the solid phase. The approximated elec
trode impedance represented by the equation above assumes that the 
higher order stage one dispersion is neglected, which is only true in the 
low frequency range. For processes with smaller time constants, a 
certain dispersion is expected and will cause discrepancy when 
compared to the original impedance. The dispersion phenomena in the 
mid-high frequency range has been studied in detail in our previous 
work. An alternative way to approximate the total electrode impedance 
is given as: 

Ze,appr = Zhf +
1

avle
RdZd (21)  

where Zhf is the electrode impedance in the mid-high frequency range, in 
which the solid phase diffusion is neglected: 

Zhf =
le

κ + σ +
(κ2 + σ2)coth

( ̅̅̅̅̅̅
θhf

√
le
)

κσ(κ + σ)
̅̅̅̅̅̅
θhf

√ +
2

(κ + σ)
̅̅̅̅̅̅
θhf

√
sinh

( ̅̅̅̅̅̅
θhf

√
le)

(22)  

θhf =

(
1
σ +

1
κ

)(
Rf

1 + sRfCf
+

Rct

1 + sRctCdl

)− 1

(23) 

In order to show the discrepancy caused by the dispersion in the mid- 
high frequency range, we still choose Eq.  (20) to reconstruct the 
impedance and compare the results. Next, to characterize the dispersion 
caused by the local solid diffusion in the particles, the dimensionless 
diffusion impedance Zd is expanded as a sum of a capacitance and an 
infinite number of serially connected RC elements using the Mit
tag–Leffler theorem: 

Zd =
1

sCd
+
∑∞

n=1

Rn

1 + sτn
(24) 

The expansion coefficients and dispersion time constants for parti
cles of different geometries are listed in Table 3 and the detailed deri
vation can be found in Appendices A.1–A.3. When conducting the DRT 
analysis, the ohmic resistance, inductive and capacitive components as 
well as the DRT spectrum will be calculated by an optimization algo
rithm. By combining Eqs. (20) and (24) and considering Table 3, the 
DRT spectrum can be expressed using the following equation: 

Table 2 
Solid diffusion impedance with different geometric shapes [18].  

Particle geometry Planar Cylindrical Spherical 

Zd coth(
̅̅̅̅̅̅̅̅
sτ0)

√

̅̅̅̅̅̅̅sτ0
√

I0(
̅̅̅̅̅̅̅sτ0

√
)

̅̅̅̅̅̅̅sτ0
√ I1(

̅̅̅̅̅̅̅sτ0
√

)

tanh(
̅̅̅̅̅̅̅sτ0

√
)

̅̅̅̅̅̅̅sτ0
√

− tanh(
̅̅̅̅̅̅̅sτ0

√
)

Rd  
(
−

∂U
∂cs

)
rp

FDs   

Table 3 
Expansion parameters of diffusion impedance (see Appendices A.1–A.3).  

Geometry τn Rn Cd λn 

Planar τ0

λ2
n 

2
λ2

n 

τ0 nπ 

Cylindrical τ0

λ2
n 

2
λ2

n 

τ0

2 
J1(λn) = 0 

Spherical τ0

λ2
n 

2
λ2

n 

τ0

3 
tan(λn) = λn  
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G(τ) = 1
avle

[
Rctδ(τ − τct)+Rfδ

(
τ − τf

)]
+
∑∞

n=1

(

−
∂U
∂cs

)
rpRn

avleFDs
δ(τ − τn)

(25) 

We further notice that av = Nϵs/rp and Cd = τ0/N, where N is the 
particle geometry index and N = 1,2, 3 stands for planar, cylindrical and 
spherical particles respectively. The total electrode capacitance is given 
by: 

Ce =
ϵeleF
(
− ∂U

∂cs

) (26) 

Eq.  (25) implies that the DRT spectrum corresponding to the solid 
phase diffusion consists of an infinite sum of Dirac delta functions with 
decreasing magnitude and time constants. We further notice that λn ≈ nπ 
regardless of the particle geometry. Therefore both the dispersion time 
constants and magnitudes also decay approximately with the factor 1 
/n2. By conducting DRT analysis, the diffusion time constants as well as 
the diffusion coefficients can be estimated using the relation listed in 
Table 3 if the particle geometry and size are known. Eq.  (26) indicates 
that the capacitance of the electrode is decided by the electrode thick
ness le, volume fraction of active material ϵs and the differential open 
circuit voltage (dOCV). The magnitude of the prominent peak (peak 
with the largest magnitude and time constants) can be calculated as: 

H1 =

(

−
∂U
∂cs

)
2τ1

3ϵsleF
(27)  

2.3.2. Diffusion with particle size distribution 
In this section, the DRT spectrum for an electrode with a PSD will be 

derived and investigated. In practice, the particles in the electrode have 
a certain size distribution, which has a significant influence on the 
diffusion part of the impedance curve and cannot be neglected [20]. In 
this work, we will try to approximate the analytical DRT spectrum when 
the PSD is taken into account. Based on the theoretical investigation, an 
approximation method is proposed to interpret the DRT spectrum when 
considering the PSD. As in many practical applications of the p2D model 
the solid particles are assumed to be spherical [14–16], thus we choose 
to derive the model with spherical particle geometry. For particles with 
a planar or cylindrical geometry, the same development procedures can 
be performed and similar conclusions can be made. 

In an infinitesimally small volume element, in which the potential in 
the liquid and solid phases can be regarded as spatially constant, the 
volume-specific particle impedance can be defined as: 

Zv,loc =
Φs − Φl

iv,loc
(28)  

where Φs and Φl are potentials in the solid and liquid phases respec
tively, iv,loc is the local volumetric reaction current density. Using the 
PSD, the volumetric current density can be expressed as: 

iv,loc =

∫ ∞

0
4πr2N(r)iloc(r)dr =

∫ ∞

0
4πr2N(r)

Φs − Φl

Zloc(r)
dr (29)  

where r is the particle radius, N(r) is the PSD function inside the unit 
volume and iloc is the local area-specific reaction current density. Upon 
substituting Eq.  (29) into (28), the volumetric particle impedance can 
be formulated as: 

Zv,loc =
Φs − Φl

iv,loc
=

[ ∫ ∞

0

4πr2N(r)
Zloc(r)

dr
]− 1

(30) 

To simplify the model derivation and enable an explicit expression, 
the following assumptions are made:  

1. The ohmic resistance, capacitance and RC elements contribution to 
the local impedance can be approximately separated, to which we 
refer as as approximation 2, as depicted in Fig. 2.  

2. Because the magnitude of the solid diffusion impedance dispersion 
decreases with 1/n2 (see Table 3), the main component of the 
diffusion impedance can be approximated by the the first three RC 
elements with the largest three time constants 
(
∑3

n=11/λ2
n ≈ 0.75

∑∞
n=11/λ2

n), to which we refer as the 3RC 
approximation. 

Due to the fact that the diffusion mainly occurs in the low frequency 
range (f≪1 Hz), we neglect the terms sn (n ≥ 1) in the nominator and 
sn (n ≥ 2) in the denominator when summing the three RC elements 
up. Note that the resistances and time constants are related by λn (see 
Table 3), the following approximated expression is obtained: 

Z3RC =
∑n=3

n=1

Rn

1 + sτn
≈

R3RC

1 + sτ3RC
(31)  

where the corresponding resistance and time constant are given as: 

R3RC =

(

1+
λ1

2λ2
2 + λ1

2λ3
2

λ2
2λ3

2

)

R1 = μR1 (32)  

τ3RC =

(

1+
λ1

2λ2
2 + λ1

2λ3
2

λ2
2λ3

2

)

τ1 = μτ1 (33) 

It can be seen that the approximated resistance and time constant are 
both scaled with the same factor μ which is larger than one. With the 
assumptions and approximations made above, Eq.  (30) can be refor
mulated as: 

Zv,loc =

⎡

⎢
⎢
⎣

∫ ∞

0

4πr2N(r)
Rf

1+sRf Cf
+ Rct

1+sRctCdl

dr

⎤

⎥
⎥
⎦

− 1

+

⎡

⎢
⎢
⎣s
∫ ∞

0
4πr2N(r)

rF

3
(
− ∂U

∂cs

) dr

⎤

⎥
⎥
⎦

− 1

+

⎡

⎢
⎢
⎣

FDsλ2
1

μ
(
− ∂U

∂cs

)

∫ ∞

0
2πrN(r)dr +

sF
(
− ∂U

∂cs

)

∫ ∞

0
2πr3N(r)dr

⎤

⎥
⎥
⎦

− 1

(34) 

Note that the following relations hold for the PSD: 

av =

∫ ∞

0
4πr2N(r)dr (35)  

ϵs =

∫ ∞

0

4
3

πr3N(r)dr (36)  

rp =

∫∞
0 rN(r)dr

Np
=

∫ ∞

0
rP(r)dr (37)  

where av is the volumetric interfacial area defined by the PSD, rp is the 
average particle radius, Np is the total number of the solid particles in 
unit volume, P(r) is the probability density function (PDF) of the particle 
radius. Np and P(r) are defined as: 

Np =

∫ ∞

0
N(r)dr (38)  

P(r) =
N(r)
Np

(39) 

If we substitute Eqs. (35)–(39) into Eq.  (34), the following equation 
is obtained: 
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Zv,loc,3RC =
1
av

(
Rf

1 + sRfCf
+

Rct

1 + sRctCdl

)

+
1

s Fϵs

(− ∂U
∂cs)

+

⎡

⎢
⎢
⎣

2πFDsλ2
1Nprp

μ
(
− ∂U

∂cs

) + s
3Fϵs

2
(
− ∂U

∂cs

)

⎤

⎥
⎥
⎦

− 1

(40) 

After the approximated local volume-specific particle impedance has 
been derived, the impedance must be scaled to obtain the electrode 
impedance. In Section 2.2, the electrode impedance expression has been 
expanded with regard to Yv,loc. Similarly, the dispersion terms are 
neglected here due to the reasons explained before, the final expression 
for the approximated electrode impedance is given as: 

Ze =
le

κ + σ +
1

avle

(
Rf

1 + sRfCf
+

Rct

1 + sRctCdl

)

+
1

s Fleϵs

(− ∂U
∂cs)

+

⎡

⎢
⎢
⎣

2πleFDsλ2
1Nprp

μ
(
− ∂U

∂cs

) + s
3leFϵs

2
(
− ∂U

∂cs

)

⎤

⎥
⎥
⎦

− 1

(41) 

The equation above has a clear physical meaning and can be readily 
interpreted as follows:  

1. The first term is the ohmic resistance of the electrode.  
2. The second term represents the charge transfer and SEI impedance, 

which is simply the scaled local particle impedance and is equivalent 
to the SPM. As explained before, the first and second term can also be 
replaced by the electrode impedance without solid diffusion (see 
Eqs. (22) and (23)) to account for the dispersion terms in the mid- 
high frequency range: 

Ze = Zhf +
1

s Fleϵs

(− ∂U
∂cs)

+

⎡

⎢
⎢
⎣

2πleFDsλ2
1Nprp

μ
(
− ∂U

∂cs

) + s
3leFϵs

2
(
− ∂U

∂cs

)

⎤

⎥
⎥
⎦

− 1

(42)   

3. The third term represents the approximated total electrode capaci
tance when the PSD is also taken into consideration. We can also 
observe that the total electrode capacitance has the same form as that 
of UPS and is thus not dependent on the PSD (see Eq.  (26)). 

4. The last term represents an RC element arising from the solid diffu
sion with the PSD and can be used to estimate the diffusion 
parameters. 

The time constant of the RC element for the solid diffusion with the 
PSD defined above is given as: 

τPSD =
3μϵs

4πDsNpλ2
1rp

(43) 

Similarly, the magnitude of the prominent peak is given as: 

H1,3RC =
μ
(
− ∂U

∂cs

)

2πleFDsλ2
1Nprp

(44) 

The equations derived above indicate that although with the DRT 
spectrum the exact PSD cannot be determined in a straightforward way, 
still it can reflect particular average quantities of the electrode and can 
be used to estimate the diffusivity if specific electrode parameters are 
given. Furthermore, Eq.  (43) also indicates that the time constant, when 
the PSD is considered, cannot be simply calculated using rp

2 /Dsλ2
1, 

which will underestimate the diffusion time constant, especially when 
the PSD has a relatively high variance. Again the approximation and 
analysis made above assume that the higher order terms of the stage one 
dispersion are neglected. For the high frequency processes, the 

dispersion generally cannot be neglected. 

2.4. Fractal diffusion 

In practical applications, it is often found that in the low frequency 
area, instead of an ideal capacitive impedance (|θ| = 90∘), a CPE-type 
impedance (|θ| < 90∘) is observed. Correspondingly, in the Warburg 
region, slightly depressed circles are expected. The existence of such 
non-ideal diffusion behavior is usually attributed to the nonuniform 
diffusion or multiple paths in the system [1]. As a result, the (sτ0) term in 
Table 2 is replaced by (sτ0)

ϕ, where ϕ is the parameter describing the 
fractal diffusion and ϕ ≤ 1. When the fractal diffusion behavior is ex
pected, the characterization method must be adapted to correctly esti
mate the parameters. Eq.  (1) Then the time constants read from the DRT 
spectrum are related to the diffusion coefficients through the following 
equation: 
(

τ0

τn

)ϕ

= λ2
n (45) 

As a prerequisite, the parameter ϕ must first be estimated with the 
capacitive impedance of the EIS. 

2.5. Diffusion in the electrolyte 

When the diffusivity in the electrolyte is large enough so that the 
electrolytic diffusion is no more a limiting factor, the impedance 
contribution of electrolytic diffusion can be practically neglected. In 
most published works related to DRT, the electrolytic diffusion is simply 
neglected, which may potentially cause errors when the assumption 
made above is not fulfilled [5,18,21,22]. Zhou et al. investigated a LIB 
using the DRT and emphasized the importance of considering the elec
trolytic diffusion [23]. However, an investigation of the qualitative and 
quantitative relation between the impedance and the DRT spectrum was 
not provided. Therefore, in this work we will propose an extended model 
to account for the electrolytic diffusion in a simplified way, based on 
which the DRT spectrum will be interpreted and explained. 

To develop the model which can be used to derive the DRT expres
sions for the electrolytic diffusion, an analytical solution is a prerequi
site. Sikha et al. developed an analytical solution for the impedance of a 
LIB and managed to simulate the cell impedance with physicochemical 
parameters [24,25]. Despite the closed-form solution, it cannot be 
directly used to derive the DRT expression due to its complicated form. 
Here we try to separate the contribution of electrolytic diffusion from 
the total impedance. We assume that the reaction current density is 
homogeneous along the electrode thickness, thus the equation for the 
Li-ion transport in the electrolyte is decoupled and can be rewritten as 
follows: 

sϵe c̃e =
∂
∂x

(

De,eff
∂c̃e

∂x

)

+
aṽjloc(1 − t+)

F
(46)  

where c̃e is the liquid phase concentration, De,eff is the effective liquid 
phase diffusivity, s is the laplace variable and s = jω, ̃ jloc is the local 
reaction current density and is related to the total applied current den
sity ̃iapp by: 

j̃loc =
ĩapp

avle
(47) 

The equation derived above is subjected to the following boundary 
conditions: 

De,eff
∂c̃e

∂x
|x=0 = 0 (48)  

c̃e|x=le = 0 (49) 
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Eq.  (46) can be easily solved to obtain the following solution: 

c̃e(x= 0) = ĩapp
1 − t+
Fϵlle

(
1
s
−

1
scosh

( ̅̅̅̅̅̅̅̅sτl,0
√ )

)

(50)  

where τl,0 is the characteristic diffusion time in the electrolyte and is 
defined as follows: 

τl,0 = ϵl
l2
e

Dl,eff
(51) 

The overpotential caused by the electrolytic diffusion in the LIB is 
defined as: 

ηl,diff =
2RT(1 − t+)

Fcl,0

(

1+
∂lnγ
∂lnc

)

Δcl (52) 

Note that the impedance caused by the electrolytic diffusion is: 

Zl,diff =
ηl,diff

ĩapp
(53) 

As a result, the electrolytic diffusion impedance can be expressed: 

Zl,diff =
2RT(1 − t+)2

F2ϵllecl,0

(

1+
∂lnγ
∂lnc

)(
1
s
−

1
scosh

( ̅̅̅̅̅̅̅̅sτl,0
√ )

)

(54) 

By applying the Mittag–Leffler theorem to the impedance expression, 
a series can be obtained: 

Zl,diff =
∑+∞

i=0

bn

s − an
(55)  

where the expansion poles and coefficients are defined as follows: 

an = −
π2
(
n + 1

2

)2

τl,0
(56)  

bn =
4( − 1)n

(1 − t+)2RT
(2n + 1)πF2ϵllecl,0

(

1+
∂lnγ
∂lnc

)

(57) 

The equations derived above indicate that the contribution of the 
electrolytic diffusion corresponds to a series of peaks in the DRT spec
trum with decreasing magnitude and time constants. But as the disper
sion terms decay very fast, usually only one peak can be observed. The 
time constant τl,n and magnitude hn of each peak is calculated as: 

τl,n = −
1
an

=
τl,0

π2
(
n + 1

2

)2 (58)  

hn = −
bn

an
=

32( − 1)n
(1 − t+)RTτl,0

(2n + 1)3π3F2ϵllecl,0

(

1+
∂lnγ
∂lnc

)

(59) 

Because the fundamental order peak has the largest magnitude and 
can be better observed, the time constant of the fundamental order peak 
can be used to estimate the effective diffusivity in the electrolyte. 

2.6. Summary of model and theory 

In the previous sections, we have investigated the DRT spectrum of 
the LIB and the characterization of diffusion in the solid and liquid 
phases. For the case of UPS, given the particle radius, the solid phase 

diffusivity can be simply estimated by reading the time constants from 
the DRT spectrum. When the particle size is nonuniform and has a 
certain PSD, more information about the PSD is needed to estimate the 
diffusivity more accurately. In addition, to account for the diffusion in 
the liquid phase, an extended model is proposed to estimate the effective 
diffusivity in the liquid phase, the diffusivity can be estimated with the 
DRT spectrum, if the electrode thickness and porosity are known. For 
briefness, the proposed models and conclusions are summarized in 
Table 4. 

3. Results and discussion 

In this section, the proposed theory is first investigated and validated 
using synthetic simulation experiments, where the developed model will 
be tested in various cases. Then the theory will be applied to a com
mercial cell, the impedance and DRT spectra will be analyzed and the 

Table 4 
Summary of time constants for diffusion in the solid and liquid phases.  

Physics Solid diffusion Liquid diffusion 

Particle size UPS PSD - 
Time constant r2

p

Dsλ2
1 

3μϵs

4πDsNpλ2
1rp 

4ϵl l2e
π2De,eff 

Approximation 1 1,2,3RC SPM  

Table 5 
Parameters used for simulation experiments.  

Electrode Anode Separator Cathode 

Design and geometric parameters 
Electrode thickness le [µm] 86.7c 12c 66.2c 

Active material volume 
fraction ϵs [%] 

69.4c – 74.5c 

Porosity ϵl [%] 21.6c 45c 17.1c 

Bruggeman coefficient α [ − ] 1.5c 1.5c 1.85c 

Transport parameters 
Ionic conductivity κ [m S− 1] 0.1199bdg 0.3605bdg 0.0455bdg 

Electronic conductivity σ 
[m S− 1] 

57.81bdg – 0.0986bdg 

Solid diffusivity Ds [m2 s− 1] 1 × 10− 13a – 5 × 10− 15a 

Liquid diffusivity Dl [m2 s− 1] 6.47 × 10− 11a 1.94 × 10− 10a 2.46 × 10− 11a 

Thermodynamic parameters 

Differential OCV 
∂U
∂cs 

[Vm− 3 mol− 1] 

Calculated with the data from [26] 

Kinetic parameters 
Reaction rate constant k [ms− 1] 3 × 10− 11c – 1 × 10− 11c 

Film resistance Rf [Ωm2] 0.0035c – 0c 

Double layer capacitance Cdl 

[Fm− 2] 
0.2a – 1a 

Film capacitance Cf [Fm− 2] 0.1a – – 
Simulation parameters 
Frequency f [Hz] 5× 10− 3 ∼ 104 

Number of frequency points Nf 70 (logarithmic) 

a assumed. 
b calculated. 
c Ref. [26]. 
d Ref. [27]. 
g bulk value from literature and effective value calculated using Bruggeman 
relation.  

Table 6 
Summary of the particle size distribution parameters.  

Electrode Anode  Cathode 

Model UPS PSD  UPS PSD 

Case A B C  A B C 

rp,D50 

[µm] 
6.1 6.1 6.1  3.8 3.8 3.8 

rp [µm] 6.1 6.03 6.5  3.8 3.76 4.0 
rmin [µm] – 0.1 0.1  – 0.1 0.1 
Np [ − ] 7.3×

1014 
6.6×

1014 
3.2×

1014  
3.2×

1015 
3.0×

1015 
1.4×

1015 

a [ − ] – 6.5×

10− 6 
7.2×

10− 6  
– 4.0×

10− 6 
4.4×

10− 6 

b [ − ] – 5 2  – 5 2  
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diffusion coefficients will be estimated (Table 6). 

3.1. Synthetic simulation experiments 

In this section, a synthetic simulation experiment will be conducted 
to validate the proposed theory and a detailed analysis of the results will 
be provided. To compare the results with regard to the PSD and show the 
effectiveness of the model when the PSD is considered, three cases are 
investigated. In case A, the UPS is assumed and simulated. In case B, a 
PSD with a moderate variance is assumed. In case C, the variance of the 
PSD is further increased. For both case B and C, the Weibull distribution 
is used, only the distribution parameters are varied. The thermodynamic 
parameters for case A, B and C correspond to 10% SOC. In addition, to 
investigate the SOC dependence of the liquid diffusion and ease the data 

processing for the measurement data, the fourth case D will be investi
gated. In case D, the full order p2D impedance model is used to generate 
the impedance and all parameters are adopted from the case C except 
that the SOC is varied between 10% and 90% SOC. The common elec
trode parameters used for all cases are listed in Tables 5 and 6. The PSDs 
are generated using the following functions: 

N(r) =

⎧
⎪⎨

⎪⎩

Npδ
(
r − rp,D50

)
(UPS)

Np
b
a

(x
a

)b− 1
e(− (x/a)b) (PSD)

(60)  

where a and b are distribution parameters and rp,D50 is the median of the 
particle size. The distribution parameters are determined by the 
following relations: 

Fig. 3. Comparison of original model and the model with approximation 1. (a)–(d): the PSD used for the simulation; (e)–(g): comparison of the reference impedance 
with impedance generated using assumption one; (i)–(k): reconstructed impedance using different orders; (h): generated impedance at different SOCs. 
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a =
rp,D50 − rmin

(ln2)
1
b

(61)  

Np =
ϵs∫∞

0
4
3 πr3P(r)dr

(62) 

The generated UPS/PSDs for case A, B, C and D are shown in 
Fig. 3a–d. In both cases, the median of the particle radius is kept to the 
same value, which is namely the uniform particle size in case A. 

The generated as well as the reconstructed impedances are shown in 
Fig. 3e–k. The comparison of the reference impedance with the imped
ance generated using the approximation 1 is plotted in Fig. 3e–g. No 
visible discrepancy can be observed, thus justifying the approximation 1 
for the model development. Generally this approximation should be 
valid in most cases, as the time constants of the solid diffusion is usually 
orders of magnitude larger than that of the charge transfer and SEI. The 
simulation results for case D are shown in Fig. 3d and h. 

To validate the theory on stage one dispersion, the impedance is 
reconstructed using Eq. (9) with the 0th order and 1000th order 
respectively. To test the performance of the 3RC approximation, the 
impedance is also reconstructed using the 3RC model. All reconstructed 
impedances together with the reference impedance is plotted in 
Fig. 3i–k. Besides, to better visualize the possible deviation between the 
various models, the corresponding DRT spectra are also calculated and 
shown in Fig. 4. In the low frequency area (τ ≥ 1 s) in Fig. 4, two or three 
peaks can be recognized and are marked with P1, P2 and P3. By 
comparing the time constant of each peak with the simulation param
eters, we can conclude that P1 represents the diffusion in the electrolyte, 
P2 is related to the solid phase diffusion in the cathode and P3 is 
attributable to the solid phase diffusion in the anode. 

In case A (see Fig. 3i), we can see that there exists an obvious 
discrepancy between the reference impedance and the 0th order 
reconstruction, and only a minor discrepancy can be observed between 
the reference impedance and the 1000th order reconstruction. We as
sume that the discrepancy has two causes, namely the high frequency 
dispersion and the liquid phase diffusion. This can be confirmed by 
analyzing the DRT spectra in Fig. 4, where discrepancy between the 
reference and the 0th order reconstructed DRT can only be observed at 

the peak P1/P2 representing the liquid diffusion and at the time constant 
10− 4 s where the high frequency dispersion appears. It should be 
mentioned here that the peaks for the solid diffusion in the anode and 
diffusion in the electrolyte are overlapping because of similar time 
constants. In such case, it’s not possible to separate the impedance 
contribution from the electrolyte and the anode. Although the magni
tude of diffusion impedance cannot be precisely calculated, the time 
constant can be accurately reflected. 

In case B (see Fig. 3j), instead of assuming a uniform particle size, the 
solid particles in the electrode are modeled using a size distribution. We 
can see from Fig. 3f that the impedance is quite similar to that in case A 
and a relatively clear transition from the Warburg region into the 
capacitive region can be observed, except that the impedance is slightly 
scaled because of the changed volumetric interfacial area. In the 
capacitive region, impact of the PSD is also observable. Instead of a 
nearly vertical line and an ideal capacitive behavior, the impedance 
shows a slow transition into the ideal capacitive region, which is 
believed to be caused by the larger particles with higher diffusion time 
constants. The DRT spectra for case B (see Fig. 4b) is similar to that of 
case A (see Fig. 4a), the time constants of all peaks are very similar. It is 
worth noting that the peak P3 in Fig. 4b is slightly wider than that of case 
A and extends further into the area of higher time constants. We believe 
that this is caused by the PSD and is in accordance with the observation 
in Fig. 4, where a slow transition into the capacitive region is observed. 

In case C (see Fig. 3k), the transition is further blurred and there 
exists a nearly smooth transition from the Warburg region into the 
capacitive region. In Fig. 4c, the peak P2 is somehow shifted to the area 
of higher time constants and can be observed. We assume that this is 
again caused by the PSD, similar to the diffusion in the cathode. Simi
larly, we can see that the peak with the largest time constant is extended 
for about an order of magnitude compared to case A and the time con
stant defined by the peak is also shifted. The simulation results clearly 
indicate that although the median of the particle size and the diffusion 
coefficients are the same for all the three cases, the position of the peaks 
is changed due to the effect of the PSD. Therefore, estimating the 
diffusion coefficients with the UPS assumption will cause possible er
rors, the magnitude of the errors depend on the variance of the PSD. In 

Fig. 4. Comparison of the the DRT spectra in various cases.  

Y. Zhao et al.                                                                                                                                                                                                                                    

5 Investigation of the Diffusion Phenomena in Lithium-ion Batteries with Distribution of
Relaxation Times

70



Electrochimica Acta 432 (2022) 141174

11

case B and C, it can be seen that the 3RC model can well approximate the 
DRT spectra when the PSD is considered. 

3.2. Application to commercial LIB 

In this section, the developed theory will be applied to a commercial 
LIB, the diffusion coefficient of the Li-ion in the solid and liquid phase 
will be determined by evaluating the DRT spectra of the full cell and half 
cells. 

Table 7 
Description of the components in the coin cells.  

Component Description 

Electrolyte 90 µL of 1M LiPF6 in 3:7 (wt:wt) ethylene carbonate (EC)/ethyl 
methyl carbonate (EMC) electrolyte (99.9% purity, Solvionic) 

Separator Celgard 2325 
Counter- 

electrode 
lithium-metal  

Fig. 5. Scaled impedance of the full cell and impedance of the half cells. (a): Impedance of the full cell and half cell with SiC at 0% SOC used to determine the fractal 
exponent; (b): full cell impedance at 10% (uppermost)–100% (lowermost) SOC; (c): impedance of half cell with SiC at 10% (uppermost)–100% (lowermost) SOC; (d): 
impedance of half cell with NMC811 at 0% (uppermost)–100% (lowermost) SOC. 
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3.2.1. Experimental 
The commercial cell investigated in this work is a 3.35 Ah NMC811/ 

SiC LIB (INR18650-MJ1,LG Chem), which has been partly parametrized 
by Sturm et al. [26] and the fast kinetic processes have been investigated 
in our previous work as well [6]. First, the impedance of a full cell was 
measured at 0%–100% SOC with 10% increment under the temperature 
of 25 ∘C. Then another full cell from the same production lot was fully 
discharged and opened in an argon-filled glove-box, a piece of anode 
and cathode with a diameter of 10.95 mm were punched out of the 
electrode respectively. Because both sides of the electrodes were coated 

with active material, so one side of each sample was scraped off to 
minimize the influence of the backside coating. Then all the components 
were assembled into a 2032-type coin cell and a detailed description of 
the components can be found in Table 7. The assembled coin cells were 
rested for 24 h to improve wetting of the electrode and separator. Next, 
the coin cells were charged/discharged with a current of 800 µA to the 
lithiation state which corresponds to 100% SOC in the full cell. Then the 
impedance of the coin cells at the lithiation states which correspond to 
the 0–100% SOC in the full cell was measured under 25 ∘C. In addition, 
to characterize the diffusion of the Li-ions in graphite at the stage-II 

Fig. 6. DRT spectra of the full cell (solid line) and half cell (dashed line) with SiC at the lithiation state 2%–85.7%. The peaks that are attributed to the SiC are 
marked with red color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(LiC12), the impedance of the full cell at ca. 56% SOC and the coin cells 
at the lithiation state which corresponds to the same SOC in the full cell 
were measured at 25 ∘C. Between each two SOC adjustments, the cells 
were relaxed for 6h. 

For the GITT experiment, the same coin cells were used and the test 
was conducted at the same SOC points as for the impedance measure
ment. At each SOC point, the coin cell was first subjected to a charging 
current pulse with a duration of 600 s and an amplitude of 200 µA. 
Subsequently, the coin cell was relaxed for 2 h and then subjected to a 
discharging current pulse with the same duration and amplitude. The 

same procedure was repeated at each SOC point. At the upper voltage 
limit only discharging current pulse and at the lower voltage limit only 
charging current pulse was applied to protect the coin cell from over
charging and overdischarging. 

The SOC adjustment, impedance measurement and GITT experiment 
were all performed on an electrochemical workstation (VMP3, Biologic), 
the frequency range of the impedance measurement was 10 kHz - 0.5 
mHz for the full cell and 100 kHz - 0.5 mHz for the coin cells, the 
amplitude of the potential perturbation is 10 mV. 

Fig. 7. DRT spectra of the full cell (solid line) and half cell (dashed line) with NMC811 at the lithiation state 22.2%–94.2%. The peaks that are attributed to the 
NMC811 are marked with red color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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3.2.2. Results 
In this section, the measured impedance data will be evaluated, the 

DRT spectra will be calculated and used to estimate the solid diffusion 
coefficients of Li-ions in the SiC and NMC811. In the rest of the work, for 
the purpose of brevity and consistency, we will refer to the lithiation 
state of the SiC and NMC811 in the half cells by using the corresponding 
SOC value in the full cell. The measured impedance data for half and full 
cells are shown in Fig. 5. The impedances at different SOCs are plotted 
against a shifted x-axis to achieve a better view and ease the comparison. 

From Fig. 5, it can be clearly seen that while the full cell impedance is 
subjected to little influence from the liquid phase diffusion, the half cell 
impedance is strongly affected by the liquid phase diffusion, as in the 
low frequency range a big bump/half circle can be observed. For the SiC, 
except at the 0%–20% and 100% SOC, the rest of the impedance data is 
dominated by the liquid phase diffusion, which is superimposed on the 
solid diffusion impedance. For the NMC811, similar behavior can be 
observed, where at 0%–90% SOC the impedance is strongly influenced 
by the liquid diffusion. 

Before the DRT spectra are calculated, a pre-processing step is car
ried out to characterize the fractal diffusion behavior in the solid phase 
and the fractal exponent is calculated. For the full cell, an obvious fractal 
diffusion can be recognized at the 0% SOC. In the capacitive region (see 
Fig. 5a), instead of an ideal capacitance with a 90∘ phase angle, a con
stant phase behavior with an angle smaller than 90∘ can be observed and 
the fractal exponent is calculated to be 0.9294. Similarly, the estimated 
fractal exponent is 0.9353 for the SiC electrode. Because the capacitive 
region of the NMC811 half cell impedance cannot guarantee a reliable 
estimation of the fractal exponent, no fractal diffusion is assumed for the 
NMC811. The calculated fractal exponents are further used for the DRT 
calculation. It is worth mentioning here that including the fractal ex
ponents into the DRT calculation is crucial for the results, because 
without considering the fractal diffusion behavior the constant phase 
behavior will be misinterpreted as a part of the Warburg region and 
peaks with extremely high time constants and large magnitude will be 
obtained, which will lead to erroneous and unrealistic results. 

Due to the fact that no precise information about the magnitude and 
time constants for the liquid phase diffusion is available, the influence of 
the liquid diffusion cannot be directly evaluated. Recalling the results of 
the synthetic simulation experiments, we can find that except for very 
high or low SOCs, the peak for the liquid diffusion only shows a tiny 
change, which can be approximately regarded as invariant in the mid 
SOC range. This feature can be used to remove the contribution of the 
liquid phase diffusion effectively even without precise information 
about the liquid phase diffusion. First, one specific SOC value is chosen 
for each half cell at which the impedance has the least solid phase 
diffusion impedance and the diffusion is dominated by the liquid 
diffusion. Then the DRT spectrum of the chosen SOC is subtracted from 
all DRT spectra in the mid SOC range to derive the approximated spectra 
without the influence of the liquid diffusion. 

For the SiC, the impedance at 40% SOC is chosen as the reference and 
the DRT spectrum at 40% is subtracted from the spectra at the 30%–90% 
SOC. For the NMC811, the impedance at 90% SOC is chosen and the DRT 
spectrum at 90% SOC is subtracted from the spectra at 30%–90% SOC. 
The resulting DRT spectra are shown in Figs. 6 and 7 for the SiC and 
NMC811 respectively. In the following section, the resulting DRT 
spectra will be analyzed, the peak attribution will be performed and the 
solid diffusion coefficients will be estimated. 

0% SOC For the SiC, a dominating solid diffusion impedance can be 
seen (see Fig. 5a) and in the DRT spectra a series of peaks with 
decreasing magnitude and time constants can be observed, which is a 
typical sign of solid diffusion. As a result, peak A1 is attributed to the 
solid diffusion in the SiC, the peaks F2 and A2 are caused by the fre
quency dispersion of the solid diffusion and will be excluded from 
further analysis. Peak F3 is missing in the SiC spectra but appears in the 
full cell, we will return to the attribution of the peak F3 later. Peak A3 
only appears in the half cell, so it is attributed to the liquid diffusion in 

the half cell. It is worth noticing that peak A1 doesn’t fully coincide with 
the peak F1, we assume the deviation arises from the contribution of the 
NMC811, this conclusion will be confirmed later. For the NMC811, C3 
coincides with the peak F3, considering that this peak is later shifted to 
the area of smaller time constants and the magnitude also decreases, we 
attributed F3 and C3 to the charge transfer in the NMC811, which has 
been investigated and confirmed in our previous work as well [6]. Peak 
C1 and F1 share the same time constant, so C1 is attributed to the solid 
diffusion in the NMC811, thus explaining the discrepancy between the 
peak A1 and F1. C2 has a similar time constant to that of A3, so it is 
attributed to the liquid diffusion in the half cell. 

10% SOC Similar to 0% SOC, the SiC half cell shows a significant 
solid diffusion behavior (see Fig. 5c), as a result, the peaks F1 and A1 are 
attributed to the solid diffusion in the SiC. For the NMC811 (see Fig. 5d), 
the magnitude of the peak C1 decreases, which is in accordance with the 
impedance change of the NMC811 half cell. Hence, peak C1 is attributed 
to the NMC811. In both half cells, the magnitude of peak A1 and C1 is 
larger than that of the peak F1, hence, we believe that the liquid diffu
sion in the half cell has also contributed to the peak A1/C1. 

20% SOC From the impedance plot in Fig. 5c it can be seen that solid 
diffusion impedance for the SiC further decreases (see the decreased 
Warburg impedance), which is most likely caused by the decreasing 
dOCV. In the DRT spectra, the peak A1 and F1 are almost overlapping 
(see Fig. 6c), so the peak A1/F1 is attributed to the solid diffusion in the 
SiC. For the NMC811 (see Fig. 7c), the peaks C1 and F1 share the same 
time constant, hence they are also attributed to the solid diffusion in the 
NMC811. 

30% SOC Because the DRT spectrum at the 30% SOC has been chosen 
as the reference for the SiC, no information about solid diffusion in the 
SiC is available. For the NMC811 (see Fig. 7d), F1 and C1 have the same 
time constant, as a result, F1/C1 is attributed to the solid diffusion in the 
NMC811, while C2/C3 is attributed to the rest contribution from the 
liquid diffusion. 

40%–90% SOC In this SOC range, all DRT spectra have a similar form 
and we choose to perform the peak attribution altogether for all these 
SOC values. In the DRT spectra of either material (see Figs. 6e–k and 7 e- 
k), the peaks A1, A2, C1, C2, F1 and F2 are existent at the same time, 
making a direct peak attribution rather difficult. Therefore, we choose to 
conduct the peak attribution in an indirect way. 

In the 40%–90% SOC range, we can notice that the peak F1 and F2 all 
have comparable magnitude, according to Eq.  (27), for the magnitude 
of the prominent peak the following relation holds: 

H1∝

(
− ∂U

∂cs

)

Ds
(63)  

where H1 is the magnitude of the prominent peak. This relation indicates 
if two processes have comparable peak magnitude, then the process with 
higher diffusion coefficient should also have a higher dOCV value. In our 
case, the dOCV of SiC in the 40%–90% SOC range is much smaller than 
that of the NMC811, which means the SiC should also have a smaller 
solid diffusivity and a higher time constant. As a result, we attribute F2/ 
C2 to the solid diffusion in the NMC811 and F1/A1 to the solid diffusion 
in the SiC. It is worth noticing that at the stage-II, the dOCV of the SiC is 
very close to that of the NMC811. Under such condition, if the diffusion 
coefficient (time constant) doesn’t change, then the peak magnitude 
should increase significantly. At stage-II, it can be observed that peak A1 
has increased significantly, thus it is also attributed to the SiC. 

100% SOC By inspecting the DRT spectra of NMC811 (see Fig. 7l), we 
can easily attribute the peak C2/F2 to the solid diffusion in the NMC811. 
Then we can exclude the possibility that the peak F3 is attributed to the 
solid diffusion in the SiC, because the dOCV value and the time constant 
(no matter for F1/F3) both increase, as a result, the peak magnitude 
should increase as well. Hence, the peak A1/F1 is attributed to the solid 
diffusion in the SiC. 

The results for the peak attribution and time constants for the SiC and 
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NMC811 are summarized in the following Table 8. 
After the peak attribution has been performed and the time constants 

for the peaks have been read, the solid diffusion coefficients can be 
estimated. Heenan et al. investigated the solid particle geometry and the 
particle size distribution of the same cell used in the present work [28]. 
According to the measurement of the particle size distribution, both the 
SiC and NMC811 have a wide particle size distribution and thus a large 
particle radius variance. As a result, we use the developed 3RC 
assumption to estimate the solid diffusion coefficients. Besides, the 
fractal diffusion behavior is also accounted for when estimating the 
diffusion coefficients. The estimated solid diffusion coefficients with 
DRT and GITT for the SiC and NMC811 are shown in Fig. 8. 

For the SiC, it can be observed that the solid diffusion coefficients 
estimated at 0.2%, 8.7%, 47.8% (stage-II) and 85.2% lithiation state 
with both DRT and GITT are close to each other. The estimated values at 
the stage-II and 85.2% lithiation state are ca. 1.8× 10− 10 cm2 s− 1 and 1 
× 10− 10 cm2 s− 1 respectively, which are comparable to the values (1.8 ×
10− 10 cm2 s− 1 and 0.5× 10− 10 cm2 s− 1) measured by Umegaki et al. 
[29] with the μ+SR method. Similar values have also been found for the 
same lithiation states in Cabañero et al. [7], Ecker et al. [30], Schmal
stieg and Sauer [31]. Interestingly, the diffusion coefficients estimated 
at other lithiation states using GITT are much lower than that using the 
DRT. Furthermore, the estimated values with GITT using the charging 
and discharging current pulse generally follow a similar pattern. The 
shown pattern resembles the differential open circuit voltage (dOCV) of 
the anode, which has been observed by Cabañero et al. as well [7]. We 
believe that this phenomenon can be explained by analyzing the dOCV 
and the influence of the liquid phase diffusion. To ease the analysis, the 

dOCV of the same material is plotted in the same figure in Fig. 8. 
It can be seen in Fig. 8 that at each lithiation state where the esti

mated values using DRT and GITT coincide with each other, a peak can 
be observed on the dOCV curve. A peak on the dOCV curve indicates that 
when the electrode is perturbed at this lithiation state, the electrode will 
give a higher voltage response compared to other lithiation states. The 
higher voltage response will manifest itself as a higher solid diffusion 
impedance (see Fig. 5) and a higher diffusion-induced overpotential in 
the GITT experiment. On the other hand, during the GITT experiment, 
the overpotential will be inevitably influenced by the liquid diffusion, 
which is invisible in GITT experiment but can be well observed in 
impedance spectra (see Fig. 5). As a result, the total diffusion over
potential is consisted of the contribution of the solid and liquid diffusion: 

ΔEt,diff = ΔEt,diff ,l + ΔEt,diff ,s (64) 

At the lithiation states with higher dOCV values, the ΔEt,diff ,s is non- 
negligible or is even dominating, the estimated diffusion coefficients are 
close to the true values. On the contrary, at the lithiation states with low 
dOCV values, ΔEt,diff ,l≫ΔEt,diff ,s so that the following relation is valid: 

Ds,GITT∝
(

ΔEs

ΔEt,diff,l + Et,diff,s

)2

≪
(

ΔEs

ΔEt,diff,s

)2

(65) 

This equation explains the phenomenon that the solid diffusion co
efficients measured at lithiation states with higher dOCV values are 
much higher than that measured at lithiation states with low dOCV 
values. As a result, the measured diffusion coefficients with GITT follow 
the pattern of the dOCV curve, which has also been observed in Cab
añero et al. [7]. 

For the NMC811, the similar phenomenon can be seen. At the 22.2%, 
36.6% and 51% lithiation states with a higher dOCV value, the diffusion 
coefficients estimated with the DRT and GITT have similar values. At 
other lithiation states, the values estimated with GITT are much lower 
than that with the DRT as expected. The measured solid diffusion co
efficients in the present work are comparable to the values found in 
Chen et al. [32], Noh et al. [33]. 

In summary, the DRT method can be applied to determine the solid 
diffusion coefficient even if the liquid diffusion exists, while the GITT is 
only able to estimate the diffusion coefficient when the diffusion is not 
or less affected by the liquid diffusion. At the lithiation states with low 
dOCV values, the diffusion coefficients will be strongly underestimated 
due to the influence of the liquid diffusion. 

4. Conclusions 

In the present work, a theory is proposed to investigate the diffusion 
processes in a LIB using the DRT spectrum and with a physics-based 

Table 8 
Summary of the peak attribution.  

SOC  SiC  NMC811   

Peak 
attribution 

Time 
constants [s]  

Peak 
attribution 

Time 
constants [s] 

0%  A1 27  C1 39 
10%  A1 39  C1 32 
20%  A1 42  C1 27 
30%  N.A. N.A.  C1 62 
40%  N.A. N.A.  F2 62 
50%  A1 359  F2 39 
60%  A1 298  F2 32 
70%  A1 393  F2/C2 35 
80%  A1 393  C2 47 
90%  A1 327  N.A. N.A. 
100%  A1 519  C2 27 
stage- 

II  
A1 431  F2/C2 38  

Fig. 8. Calculated solid diffusion coefficient of Li-ions in (a): SiC and (b): NMC811 at different lithiation states.  
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impedance model. Furthermore, an analytical expression for the DRT 
spectrum is proposed, which has related the electrochemical parameters 
to the DRT spectrum in an explicit way. Subsequently, simulation and 
lab experiments are conducted to validate the proposed model and the 
solid diffusivity of SiC and NMC811 is estimated using the developed 
model. Besides, GITT experiment has been conducted to estimate the 
solid diffusion coefficients for the SiC and NMC811. The results indicate 
that the GITT can significantly underestimate the solid diffusion co
efficients when the electrode is subjected to the influence from the liquid 
diffusion and the dOCV value is low. Compared to the GITT which is 
based on the voltage measurement in time domain, DRT is based on the 
time constant and does not directly rely on the voltage measurement in 
time domain, even if the liquid diffusion exists, the solid diffusion co
efficient can be reliably estimated. 
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Appendix A. Derivation of series expansion for the diffusion impedance 

A1. Planar solid particle 

Obviously the impedance expression for planar solid particle has a pole of zero, the corresponding expansion coefficient is calculated as: 

b0 = lim
s→0

s
coth(

̅̅̅̅̅̅
sτ)

√

̅̅̅̅
sτ

√ =
1
τ0

(A.1) 

The higher order poles are determined by solving the following equation: 

sinh
̅̅̅̅̅̅̅̅̅
anτ0

√
= 0⇒an = −

n2π2

τ0
(n= 1, 2, 3,…) (A.2) 

The corresponding expansion coefficients are calculated with the same principle: 

bn = lim
s→an

(s − an)
coth(

̅̅̅̅̅̅
sτ)

√

̅̅̅̅
sτ

√ =
2
τ0

(A.3) 

As a result the expansion can be rewritten as: 

coth(
̅̅̅̅̅̅
sτ)

√

̅̅̅̅
sτ

√ =
b0

s
+
∑∞

n=1

bn

s − an
=

1
s 1

b0

+
∑∞

n=1

(

−
bn

an

)
1

1 + s
(
− 1

an

) (A.4) 

If the capacitance term is subtracted from the equation above and the DRT is conducted, the following equation can be obtained: 

G(τ) =
∑∞

n=1
−

bn

an
δ
(

τ+ 1
an

)

(A.5) 

The dispersion time constants given as: 

τn = −
1
an

=
τ0

n2π2 (A.6) 

The dispersion magnitude Rn is calculated as: 

Rn = −
bn

an
=

2
n2π2 (A.7)  

A2. Cylindrical solid particle 

Like the planar solid particle, for cylindrical particle there exists also a pole of zero, the corresponding coefficient is given as: 

b0 = lim
s→0

s
I0
( ̅̅̅̅̅̅sτ0
√ )

̅̅̅̅̅̅sτ0
√ I1

( ̅̅̅̅̅̅sτ0
√ ) =

2
τ0

(A.8) 

The higher order poles are calculated by solving the following equation: 

I1(
̅̅̅̅̅̅
sτ0

√
) = 0 (A.9) 

Because the modified Bessel function above has an imaginary argument, it cannot be solved conveniently, therefore the following relation is 
applied to simplify the equation: 
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Iα(ix) = i− αJα( − x) (A.10) 

where Jα is the Bessel function of the order α. As a result Eq.  (A.9) can be transformed into the following equation: 

J1

(
−

̅̅̅̅̅̅̅̅̅̅̅
|an|τ0

√ )
= 0 (A.11) 

The equation above can be readily solved using a look-up table for zeros of Bessel functions. If we assume the zeros of the Bessel function to be λn, 
then the poles can be expressed as: 

an = −
λ2

n

τ0
(A.12) 

The expansion coefficients are calculated as: 

bn = lim
s→an

(s − an)
I0
( ̅̅̅̅̅̅sτ0
√ )

̅̅̅̅̅̅sτ0
√ I1

( ̅̅̅̅̅̅sτ0
√ ) =

2
τ0

(A.13) 

With the same procedures as shown for planar particles, the dispersion time constants and magnitude are given as: 

τn = −
1
an

=
τ0

λ2
n

(A.14)  

Rn = −
bn

an
=

2
λ2

n
(A.15)  

A3. Spherical solid particles 

The impedance expression has a pole of zero, and the corresponding coefficient is calculated as: 

b0 = lim
s→0

s
tanh

( ̅̅̅̅̅̅sτ0
√ )

̅̅̅̅̅̅sτ0
√

− tanh
( ̅̅̅̅̅̅sτ0
√ ) =

3
τ0

(A.16) 

The higher order poles are determined by solving the following equation: 
̅̅̅̅̅̅̅̅̅
anτ0

√
− tanh(

̅̅̅̅̅̅̅̅̅
anτ0

√
) = 0 (A.17) 

Note that tanh(ix) = itan(x), the equation above can be simplified to: 
̅̅̅̅̅̅̅̅̅̅̅
|an|τ0

√
− tan

( ̅̅̅̅̅̅̅̅̅̅̅
|an|τ0

√ )
= 0 (A.18) 

By using look-up tables or numerical algorithms the equation can be solved conveniently. If we assume the solutions of equation tan(x) = x to be λn, 
then the poles are given as: 

an = −
λ2

n

τ0
(A.19) 

The expansion coefficients are: 

bn = lim
s→an

(s − an)
tanh

( ̅̅̅̅̅̅sτ0
√ )

̅̅̅̅̅̅sτ0
√

− tanh
( ̅̅̅̅̅̅sτ0
√ ) =

2
τ0

(A.20) 

Similarly, the dispersion time constants and magnitude are calculated as: 

τ0 = −
1
an

=
τ0

λ2
n

(A.21)  

Rn = −
bn

an
=

2
λ2

n
(A.22)  

A4. Derivation of dispersion coefficients 

According to the theorem on residue of composition function [34], the expansion coefficients can be calculated in the following way: 

bn = Res
(
Ze
(
Yv,loc

)
,An
)
Yv,loc(an)

′

(A.23)  

where an and bn are the corresponding expansion pole and coefficient of each process. When the frequency is not extremely low and the capacitive 
effect can be neglected, the particle impedance can be approximated as a sum of RC elements, the admittance is thus expressed as: 

Yv,loc =

(
∑∞

i=1

Ri

1 + sτi

)− 1

(A.24) 
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If we consider the k-th RC element, the impedances of all the RC elements with smaller time constants can be approxiamted as an ohmic resistance 
Rk− 1 and the that of the RC elements with larger time constants can be approximated to be zero, therefore we have: 

Yv,loc =

(

Rk− 1 +
Rk

1 + sτk

)− 1

(A.25) 

The pole corresponding to ak is obtained by solving the following equation: 

−
k2π2

l2
e

(
1
κ +

1
σ

) =

(
∑∞

i=1

Ri

1 + sτi

)− 1

(A.26) 

Then the coefficient is calculated to be: 

bk =
BkRkτk

(Rk + Rk− 1 − Rk− 1akτk)
2 (A.27) 

The equation above shows that the dispersion coefficients decreases with the corresponding time constants. Noting that usually the diffusion time 
constants are orders of magnitude greater than that of charge transfer and SEI process, the dispersion for diffusion can be neglected in practice. 
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6 Comparative Study of Parameter Identification with
Frequency and Time Domain Fitting Using a
Physics-Based Battery Model

In chapter 4 and 5, the DRT spectrum of a Lithium-ion battery has been comprehensively investigated
and explained. Furthermore, a few important kinetic parameters including the reaction rate constant,
the resistivity of the SEI and the solid diffusion coefficient have been estimated using a commercially
available Lithium-ion battery cell. Although these kinetic parameters have been estimated, there still
exist other parameters which cannot be estimated using the DRT method, such as the conductivity in
the solid and liquid phases.

Naturally, an important research question can be raised: does the estimation method in time do-
main and frequency domain produce the same results? To reveal the identifiability of the various
estimated parameters, a probability based method has been applied to sample the parameter space.
Another important impact factor when estimating the parameters in time domain is the additional
ohmic resistance caused by the current collector, cell connector and the contact surface between the
current collector and the electrode. Finally, for the aforementioned reasons, four cases were defined to
investigate the parameter identification:

1. All selected parameters were identified with the time domain fitting method; no additional ohmic
resistance was considered in the identification.

2. All selected parameters were identified with the time domain fitting method; an additional ohmic
resistance was considered in the identification.

3. the kinetic parameters identified using the frequency domain method in chapter 4 and 5 were
directly substituted into the model and other selected parameters were still identified using the
time domain fitting; no additional ohmic resistance was considered in the identification.

4. the kinetic parameters identified using the frequency domain method in chapter 4 and 5 were
directly substituted into the model and other selected parameters were still identified using the
time domain fitting; an additional ohmic resistance was considered in the identification.

The parameter identification results indicated: while the solid diffusion coefficients identified in time
and frequency domain were comparable, the reaction rate constants and SEI parameters could not
be identified at all by the time domain fitting method. Besides, the combined idnetification method
produced more reliable results for a few parameters which were identified only in the time domain.

Finally, the parameter identification results were validated using two dynamic load profiles. The
validation results indicated that the consideration of the additional ohmic resistance and the combined
identification method would lead to significantly lower voltage error.
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Abstract: Parameter identification with the pseudo-two-dimensional (p2D) model has been an
important research topic in battery engineering because some of the physicochemical parameters
used in the model can be measured, while some can only be estimated or calculated based on the
measurement data. Various methods, either in the time domain or frequency domain, have been
proposed to identify the parameters of the p2D model. While the methods in each domain bring their
advantages and disadvantages, a comprehensive comparison regarding parameter identifiability
and accuracy is still missing. In this present work, some selected physicochemical parameters of
the p2D model are identified in four different cases and with different methods, either only in the
time domain or with a combined model. Which parameters are identified in the frequency domain is
decided by a comprehensive analysis of the analytical expression for the DRT spectrum. Finally, the
parameter identifiability results are analyzed and the validation results with two highly dynamic
load profiles are shown and compared. The results indicate that the model with ohmic resistance and
the combined method achieves the best performance and the average voltage error is at the level of
12 mV.

Keywords: electrochemical impedance spectroscopy; physics-based model; distribution of relaxation
times; Markov chain Monte Carlo algorithm

1. Introduction

To build a more robust power grid with growing renewable energy sources and to
enable an electrified transportation system, lithium-ion batteries (LIBs) are being increas-
ingly deployed in various sectors, such as stationary energy storage systems and electrical
vehicles. While the demand for LIBs is increasing, a longer lifespan and safer operation
should still be guaranteed. To realize a better design of BMS and ensure a safer operation,
an accurate identification of the cell parameters is imperative [1]. In most cases, to estimate
the cell parameters, a proper objective function will be chosen and an optimization problem
will be established to identify the parameters of interest [2]. Generally, according to the in-
put data for the optimization problem, the identification methods can be roughly classified
into two groups: time domain and frequency domain methods [3]. Time domain methods
use the measurement data gathered in the time domain, such as charging/discharging
curves or pulse test data; frequency domain methods usually refer to electrochemical
impedance spectroscopy (EIS), where the cell impedance is measured as a function of the
frequency of the excitation signal. Due to the different measurement principles, parameters
are identified with different identifiabilities and accuracies [3,4].

1.1. Parameter Identification in Time Domain

For the time domain methods, first, a preselected model is built to model the internal
physicochemical processes of the LIBs. Depending on the desired model complexity and
comprehensiveness, the equivalent circuit model (ECM), reduced-order model (ROM)
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based on the physicochemical model, and full-order physicochemical model (PCM) are
available as potential candidates. The ECM is able to model certain physicochemical
processes using specific circuit elements such as resistance, capacitance, and inductance.
On the one hand, the ECM models the LIBs only in a simplified way, many complicated
electrochemical processes are modeled with a lumped circuit element or even simply ne-
glected; therefore, some physicochemical parameters are not given in the ECM. On the other
hand, due to its easy implementation and fast computational speed, the ECM is favored in
real-time or on-board applications [5–7]. The PCM describes the physicochemical processes
with the first principle equations and the model output (voltage, current, temperature,
etc.) is directly related to the fundamental physicochemical parameters [8–13]. The PCM
usually consists of a group of coupled partial differential equations (PDEs) and the required
computational effort is much higher than that of the ECM. Normally, the PCM must be
solved using numerical methods such as the finite-element-method, which prevents it from
real-time applications and large-scale simulation studies. To resolve the computational bur-
den issue and meanwhile keep the accuracy loss on an acceptable level, the ROM has been
developed by neglecting the less important processes or conducting mathematical simplifi-
cation [14–22]. Compared to the full-order PCM, the computational demand of the ROM
can be largely reduced and the accuracy loss can be generally kept to an acceptable level.

As the next step for parameter identification, an objective function must be selected and
an optimization program with an appropriate algorithm is established to solve the parameter
identification program. Due to the strongly nonlinear nature of the LIB models, the resulting
optimization problem is strongly nonlinear as well and a carefully chosen algorithm must be
applied to solve the problem. Various nonlinear optimization algorithms have been applied
to the parameter identification problem of LIBs, including gradient-based or Hessian-based
methods [6,15,16], heuristic methods [5,9,12,17], and statistical methods [10,13]. ECM-based
parameter identification has a low demand for computational capacity, while a direct connection
with the fundamental physicochemical parameters is usually unclear or even missing, which is
a considerable drawback for the identification of physicochemical parameters and cell design.
The PCM is the most comprehensive model, and relates the physicochemical and geometric
parameters directly to the model output.

While most parameter identification studies focus on model development and opti-
mization algorithms, only a small part of the works considers the parameter identifiability
and sensitivity issues. Forman et al. conducted a parameter identification test and identifia-
bility analysis using the Fisher information [12], where the local parameter identifiability
and variance were determined. Berliner et al. applied the Markov chain Monte Carlo
(MCMC) method to explore the parameter space and identified the quantitative nonlinear
correlation among three parameters [13]. The characterization of the quantitative corre-
lation (especially nonlinear) among multiple (more than two) parameters is an essential
step, because the emphasis has been mostly laid on the analysis of parameter sensitivity
and correlation between only two parameters and an important fact has been neglected: a
coordinated change of multiple parameters (more than two) may lead to the same model
output and a unique global optimum may not exist. As a result, the parameter identi-
fiability analysis suggests that simply minimizing the objective function and analyzing
the local parameter sensitivity cannot guarantee a reliable and physically meaningful
identification result.

1.2. Parameter Identification in Frequency Domain

Parameter identification in the frequency domain is conducted in a similar manner,
where the desired impedance model is selected and an optimization program is established
to estimate the model parameters. Various models have been used to identify the cell
parameters, including the ECM [23–28], ROM [29–31], and PCM [32–35]. The identification
methods used in the aforementioned literature are all based on nonlinear optimization
methods and naturally are faced with the same issues as in the time domain method.
For example, the same impedance data can be fitted using different equivalent circuits with
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different structures and numbers of circuit elements [36], thus the results could be quite
confusing. Moreover, many local optima may exist and it needs more effort to find the global
optimum. Recently, many researchers proposed to use the method distribution of relaxation
times (DRT) to evaluate the impedance data, which is based on linear optimization and
the identifiability issue is no more considerable [37–42]. However, an appropriate model is
still necessary for the interpretation of the DRT results. Until now, most models that have
been used to interpret the DRT results are based on the ECM and a direct relation to the
physicochemical parameters is still missing [42–47].

1.3. Comparison and Unification of Time Domain and Frequency Domain Parameter
Identification Methods

Both time domain methods and frequency domain methods characterize the cell pa-
rameters using a selected model. Due to the different properties of both methods, different
parameters may be estimated with different identifiabilities. Laue et al. [4] investigated the
sensitivity of the p2D model by considering the data both in the time domain and frequency
domain. However, no universal analysis was made regarding the identifiability of the
parameters with impedance data and the results were not validated. Wimarshana et al. [3]
investigated the parameter sensitivity by considering the measurement data in both the
time and frequency domains. Again the parameters were not identified and the results
were not validated and compared, which means that the effectiveness of the combined
procedures is still unknown. After the parameters have been identified, the estimation
results are usually simply validated by inserting the estimated parameters back into the
model and the model will be simulated in a few limited application scenarios, mostly only
with constant charging/discharging current. In most cases, the parametrized model gives
a moderate to low error. As a result, three important questions are raised regarding the
issues mentioned above: (1) How reliable are the parameters identified using the time
domain fitting? (2) If a combined method with both time and frequency domain data is
applied, which parameters will be better identified with impedance data and why? (3) Does
a combined identification method with both the time domain and frequency domain data
optimize the parameter identifiability and lead to better accuracy for the validation? In the
present work, we will focus on the three questions raised above and try to find the answers.

The rest of the work is organized as follows: in Section 2, the used models and
parameter identification procedures will be introduced; in Section 3, lab experiments are
conducted to identify the model parameters and investigate the identifiability with each
method; in Section 4, the results will be discussed; Section 5 concludes the work.

2. Theory and Model Development

In this section, the theoretical fundamentals, procedures, and algorithms used for
different parameter identification methods will be introduced. Then the methodology for
the parameter identifiability and correlation analysis will be explained.

2.1. Parameter Identification in the Time Domain

Since being proposed by Doyle and Newman [48–50], the p2D model has been widely
applied to the design, simulation, and parameter identification of LIBs. The p2D model
describes the internal physicochemical processes using a group of coupled PDEs, thus
requiring a high computation capability. Therefore, a direct application of the p2D model
to parameter identification is rather time-consuming and inefficient because the model
must be iteratively computed a large number of times depending on the parameter iden-
tifiability and convergence rate. As an alternative, the reduced-order model (ROM) has
been proposed by researchers to improve the computation speed, while the accuracy loss
is nearly negligible when the model order is properly chosen. In one of our previous
works, a ROM using the Chebyshev orthogonal collocation method has been developed
and validated [20]. According to the conducted simulation experiment, it is found that the
model with an (8, 5, 7) collocation point configuration in the anode, separator, and cathode,
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respectively, can well approximate the relevant transport processes and the computation
demand is much lower with a degree of freedom (DOF) of ca. 160. The simulation time of
one charging/discharging process tCH/DCH with Matlab/Simulink is about 0.2 s, the model
setting is summarized in Table 1.

Table 1. Summary of the model setting for ROM used for parameter identification test.

Model Type Polynomial Type (nn, ns, np) DOF tCH/DCH

ROM with p2D Chebyshev (8, 5, 7) ca. 160 0.2 s

To assess the quality of the parameter estimation results, various methods have been
proposed to quantify the identifiability of the estimated parameters. Commonly used meth-
ods include the once-at-a-time (OAT) method [3,51], Fisher information matrix (FIM) [12]
and Sobol’ indices [4,52]. In this present work, we choose to use Bayesian statistics com-
bined with the MCMC sampling algorithm for the parameter estimation and identifiability
characterization. The reasons for using the Bayesian MCMC method are as follows: (1) It
quantifies the global identifiability of the parameters because the parameter values are
randomly sampled in the whole defined parameter space. If the sample size is big enough,
an empirical distribution close to the real posterior distribution can be obtained. (2) The
posterior distribution of the parameters is able to characterize the unidentifiability when it
arises either from non-sensitivity or parameter correlation, in both cases, a posterior distri-
bution with a wide credible interval can be observed. (3) The credible interval and thus
the identifiability of parameters can easily be visualized and computed with the resulting
parameter distribution.

In practical applications, the measurement data is generally exposed to a normally
distributed noise with a zero mean:

Vm = V̂m + εe (1)

where Vm is the measured cell voltage, V̂m is the cell voltage without noise, εe is the
measurement noise, and the following distribution is assumed:

εe ∼ N (0, σ2
e ) (2)

where σe is the standard deviation of the noise and is set to 10 mV in this work. As usually
there is no information about the variance of the voltage noise, other proper values can
be used as well and the results should not vary because this is equivalent to adding a
constant to the logarithmic object function values. By using Bayes’ theorem, the conditional
probability of the model parameter θ, given the measurement data, is defined as:

P(θ|Vm) =
P(Vm|θ)P(θ)

P(Vm)
(3)

where P(θ) is the prior distribution for the parameters, which is based on the prior knowl-
edge of the parameter. In certain situations, enough information can be collected to define
an informative prior distribution for the parameter, for example the beta distribution.
In this present work, the prior distribution P(θ) is assumed to be uniformly distributed
between its upper and lower bound because there is no information available to define an
informative prior distribution. In our application, the measurement data Vm are given with
a certain constant distribution, thus P(Vm) can be assumed to be a constant. As a result,
the conditional probability can be reformulated as:

P(θ|Vm) ∝ P(Vm|θ) (4)

The probability of observing the measurement data Vm is equivalent to that of observing
the measurement noise εe given the model parameter θ and can be defined as follows:
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P(Vm|θ) =
Nm

∏
i=1

1
σe
√

2π
exp

−1
2

(
Vm,i − V̂m,i(θ)

σe

)2
 (5)

where i represents the index of the measurement data points and Nm is the total number of
the measured voltage data points. To sample the parameter space, the adaptive Metropolis–
Hastings MCMC algorithm is used to generate the parameter samples [53], the sample size
for each test is set to 50,000 and the desired acceptance rate is set to 0.23 [54].

While the OAT metrics only characterize the sensitivity and possible correlation of a
parameter at a specific location, the Bayesian MCMC sampling results can well characterize
both properties globally. Therefore, to quantify the general identifiability of a parameter,
the following sensitivity index (SI) S is defined:

S =
θmax − θmin

L (6)

where θmax and θmin are the upper and lower bound of the parameter, respectively, and
L is the width of the 95% credible interval (CI) of the parameter. Unlike the equal-tailed-
interval (ETI), in this work the CI of each parameter is calculated using the highest-density-
probability (HDP) concept, where the interval with the highest probability density is
chosen to calculate the CI, as some parameters, such as the diffusion coefficients, can
range for multiple orders of magnitude, the logarithmic scale is used to calculate the SI.
A high sensitivity index implies that the parameter is confined in a small credible interval
compared to the bounds and thus can be reliably estimated, whereas a low SI indicates that
the parameter is practically unidentifiable.

2.2. Parameter Identification in Frequency Domain

According to our previous works on the interpretation of a DRT spectrum using a
physics-based impedance model, the diffusion coefficient in the solid and liquid phases
and the interface parameters such as the kinetic reaction rate constant and the film resis-
tance can be directly determined, if the related geometric parameters are known. For the
Bruggeman coefficients and the conductivities in the solid and liquid phases, the corre-
sponding contribution only appears in the ohmic resistance of the cell and possibly also in
the high-frequency dispersion part of the impedance/DRT. The Bruggeman coefficients also
contribute to the effective transportation in the liquid phase. However, the bulk value of the
liquid diffusivity is usually unknown, thus it is still impossible to estimate the Bruggeman
coefficients using the liquid phase diffusion. Considering that the dispersion of the DRT
spectra in the high-frequency area is usually blurred by contributions of other processes
in practical applications and it is impossible to separate the impedance contribution from
the anode, separator, and cathode, the conductivity in the solid/liquid phase and the
Bruggeman coefficient can be considered as unidentifiable with the DRT method.

Rabissi et al. [55] investigated the sensitivity and identifiability of the physicochemical
parameters with a physicochemical impedance model. However, no general conclusions
have been made with the impedance model regarding the parameter identifiability. To have
a quantitative conclusion on the identifiability, a numerical analysis is still necessary. Based
on the analysis made in our previous works, where the analytical expressions for the DRT
have been derived and interpreted, a universal conclusion can be made regarding the
identifiability of the physicochemical parameters used in the p2D model. Due to the fact
that the DRT spectrum (τ domain) is actually equivalent to the raw impedance data ( f
domain), the conclusions made with the DRT spectrum are also valid for the impedance.
In the DRT spectrum, a process is characterized mainly by two key features: (1) the time
constant of the peak (or the dominant peak) representing the process; (2) the area under the
peak (or the dominant peak) which represents the polarization resistance of the process.
As a result, a parameter is identifiable only when the following conditions are fulfilled:
(1) the time constant of the process related to the parameter cannot be fully coinciding
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with that of another peak at all SOCs; (2) the magnitude of the peak must be clearly visible
and evaluable (at least significantly higher than noise). If any of the two aforementioned
conditions is not fulfilled, the parameter will be unidentifiable, two examples where
condition 1 or 2 are not fulfilled are shown in Figure 1. It is worth mentioning that here
we assume that with each peak/process we aim to identify only one parameter, otherwise
the analytical expression of the DRT spectrum must be analyzed to assess if the multiple
parameters can be identified uniquely at the same time.

Figure 1. The two scenarios where the corresponding processes/parameters are unidentifiable with
(a) overlapping peaks and (b) one peak of a negligible polarization resistance.

In summary, according to the analytical expressions of the DRT spectrum using a physico-
chemical impedance model, a clear deterministic conclusion can be made on the identifiability
of the kinetic and transport parameters. In ideal case that each process has a considerable
polarization resistance and is not fully overlapping with any other process, the identifiability
of the kinetic and transport parameters of interest are summarized in Table 2.

Table 2. Summary of parameter identifiability in the frequency domain.

Parameter Symbol Identifiability Remark

Reaction rate constant k identifiable EIS at multiple SOCs may be necessary
SEI film resistance Rf identifiable -
Solid diffusivity Ds identifiable particle geometric information needed

Liquid diffusivity Dl identifiable usually only an average diffusivity can be estimated due to overlapping
peaks of each electrode layer

Bruggeman coefficient α unidentifiable -
Solid phase conductivity σ unidentifiable may be identifiable in extreme case
Liquid phase conductivity κ unidentifiable may be identifiable in extreme case

2.3. Parameter Correlation Analysis

The reason for the structural non-identifiability is that the effect of the change of one pa-
rameter can be compensated by a coordinated change of some other parameters, thus leading
to the same model output [56]. In such a situation, no unique global optimal solution exists.
If the fitted model has a simple algebraic structure, the parameter correlation can be easily
identified by directly inspecting the structure of the equations. However, the physicochemical
model for a LIB consists of a few PDEs and has a complicated mathematical structure, thus
making it impossible to directly identify the parameter correlation. To the author’s best
knowledge, the parameter correlation analysis found in the literature has only been conducted
on every two parameters, namely pairwise; moreover, the correlation analysis has merely
been conducted by simply plotting the parameter values against each other and no theoretical
model has been used or proposed. In this work, we try to identify the possible quantitative
correlation among multiple parameters based on a theoretical model.

The essence of fitting a battery model to the measured voltage curve lies in the calculation
of the overpotential under the given parameter set and input load profile, because the OCV-
SOC relation can be relatively accurately measured using half cells and regarded as time-
invariant within the measurement period and does not depend on the fitting parameters.
Because the p2D model has no closed-form analytical solutions, we try to approximate
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the cell overpotential using the concept of impedance and seek the possible correlation
relationship among the parameters. According to the origin, the total cell overpotential can be
divided into the liquid phase diffusion overpotential, the solid phase diffusion overpotential,
the conduction overpotential in the liquid and solid phases, and the overpotential caused
by the interfacial processes. Accordingly, we use the diffusional resistance, charge transfer
resistance, and ohmic resistance to analyze the possible correlation:

ηcell = ηl,diff + ηs,diff + ηs,R + ηl,R + ηct + ηf (7)

where the subscripts l and s represent the processes related to the liquid and solid phases,
respectively; diff, ct, R, and f represent the processes related to the diffusion, charge transfer,
ohmic conduction, and film, respectively. Each component can be further separated into
the contributions from the anode, separator, and cathode, if the corresponding components
exist. The corresponding diffusion and activation impedance components are defined
as [57,58]:

ηl,diff =
RT(1− t+)le
2F2cl,0Dl,eff

∝
1

Dl,eff
(8)

ηs,diff =

(
−∂U

∂cs

)
Rp

FDs
∝

1
Ds

(9)

ηct =
RT

Fk(cs,max − cs)0.5c0.5
s c0.5

l,0
∝

1
k

(10)

ηf ∝ Rf (11)

For the overpotential caused by the conduction process in the solid and liquid phases, we
choose to model the corresponding components according to the definition of Nyman et al. [59]
with the single particle assumption. As a result, the following definitions can be obtained:

ηs,R =
le

ε1+α
s σs

∝
1

ε1+α
s σs

(12)

ηl,R =
le

ε1+α
l κl

∝
1

ε1+α
l κl

(13)

where le is the thickness of the electrode or separator. We can easily see that all the overpo-
tential components (left side of Equations (8)–(13)) have the unit of Ωm2 and qualitatively
reflect the impact of the parameters on the cell overpotential. The total cell overpotential
is inversely correlated with the diffusivity, reaction rate constant, and conductivity and
is proportional to the film resistivity. Intuitively, this is also easy to comprehend, since a
higher kinetic or transport parameter will lead to a faster material transport and thus lower
overpotential. Consequently, a possible linear correlation is sought among the following
parameters (combinations) of each electrode:

θcorr =

 1
Dl,n,eff

,
1

Dl,sep,eff
,

1
Dl,p,eff

,
1

Ds,n
,

1
Dl,p

,
1

ε1+αn
s,n σs,n

,
1

ε1+αn
l,n κn

,
1

ε1+αn
l,n κn

,
1

ε
1+αp
l,p κp

,
1

ε
1+αp
s,p σs,p

,
1
kn

,
1
kp

, Rf

 (14)

To eliminate the possible influence of the parameter magnitude, each parameter
(combination) sample vector is normalized by dividing it by the mean value of each sample
vector, and the normalized vector is defined as θ

i
corr. To determine the correlation among

the terms defined above, a linear optimization problem is defined. The linear correlation
coefficients are determined by solving the following linear least square problem:

6 Comparative Study of Parameter Identification with Frequency and Time Domain Fitting Using
a Physics-Based Battery Model

88



Batteries 2022, 8, 222 8 of 24

ρ(θ
i
corr) = argmin


∥∥∥∥∥ Nθ

∑
j=1,j 6=i

ai
jθ

j
corr + βi − θ

i
corr

∥∥∥∥∥
2

 (15)

where ρ represents the coefficient vector corresponding to each tested component sample
vector and Nθ is the total number of the tested components. To assess the fitting quality and
further investigate if a correlation exists, the parameter samples are again reconstructed
using the solved correlation coefficients:

θ
∗
corr =

Nθ

∑
j=1,j 6=i

ai
jθ

j
corr + βi (16)

where θ
∗
corr is the reconstructed parameter sample vector. To visualize the fitting quality

and the possible correlation, the original parameter samples are plotted against the recon-
structed parameter samples θ

∗
corr using the calculated coefficients in Equation (15). If a

correlation is existent, then the data points (θcorr, θ
∗
corr) should lie close to the straight line

θ
∗
corr = θcorr. If the reconstructed data points deviate far from the straight line θ

∗
corr = θcorr,

then the tested component is not correlated with other components regarding the defined
parameter combination. It is worth mentioning here that even if no correlation can be
characterized using the defined relationship, the possibility that the tested component is
correlated with other parameters still cannot be excluded, because they may be correlated
by another unknown relationship. This phenomenon may especially appear in practical
applications because the used model generally cannot describe the real physicochemical
processes in an absolutely precise manner.

2.4. Influence of the External Ohmic Resistance on the Parameter Estimation

In practical applications, besides the conduction process described by the p2D model,
additional ohmic resistance may arise from the cell contact and current collector. While the
p2D model does not take the external ohmic resistance of various origins, such as current
collector and cell contact resistance, into consideration, it may have a considerable impact
on the parameter estimation. When the external ohmic resistance is not considered in the
model, then the ohmic resistance of the cell arises only from the conduction process in
the solid and liquid phases inside the battery cell. However, when the external ohmic
resistance is practically existent but not considered by the model, it can be suspected that
the conductivity and Bruggeman coefficients will almost certainly be underestimated and
overestimated, respectively, because the additional ohmic resistance must be compen-
sated. Reimers et al. investigated the current distribution inside the current collector (CC)
and proposed a model to account for the CC ohmic resistance for different tab arrange-
ments [60]. Generally, the ohmic resistance of an 18,650 round cell measured by impedance
spectroscopy ranges from a few milliohms to a few tens of milliohms. Through a simple
qualitative calculation using the model given by Reimers et al., it can be seen that the CC
ohmic resistance is generally non-negligible compared to the total ohmic resistance of a
cylindrical cell. In this work, the impact of the external ohmic resistance on the parameter
identifiability will be investigated.

2.5. Influence of Parameter Identification Procedure on the Identifiability

While parameter estimation using only time domain or frequency domain methods
can be frequently found in the literature, a comprehensive investigation and comparison
of parameter identification using both time domain and frequency domain methods can
seldomly be found. It has been widely acknowledged that the EIS can provide reliable
parameter estimation results, especially for highly dynamic processes [36]. As a result,
an important research question naturally arises: would a combined method using both
time domain and frequency domain methods significantly optimize the identifiability
and reduce the parameter uncertainty? In the present work, we will try to compare the
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parameter estimation with only the time domain method and with the method combining
the measurement data in both the time and frequency domains. For the time domain
method, all parameters are estimated by fitting the p2D model. According to the conclusions
made in Section 2.2 on the identifiability of the kinetic and transport parameters in the
frequency domain, for the combined method, the selected kinetic parameters including the
kinetic reaction rate constant, solid diffusivity, film resistance, and their SOC dependence
are identified by the DRT method and the parameter values are taken from our previous
work [61,62]. Then these parameters are directly substituted into the model as known
parameters, other parameters are still estimated by fitting the p2D model, which results
in a reduced number of fitted parameters. In this work, we refer to the former model as
the full model and the latter as the combined model. In this work, we will not choose to
identify the liquid phase diffusivity in the frequency domain due to the following reasons:
(1) for fresh cells, the electrolyte degradation and thus the liquid diffusion overpotential
can basically be neglected; (2) it is impossible to identify the bulk liquid diffusivity and the
Bruggeman coefficients separately, as mentioned in Section 2.2.

Altogether, four cases for parameter identification will be investigated in this present
work to characterize the impact of the external ohmic resistance and parameter character-
ization procedures on parameter identifiability and accuracy. The estimated parameters
and corresponding models are summarized in Table 3, a summary of all estimated and
substituted parameters can be found in Table 4.

Table 3. Summary of the investigated model cases and fitted parameters.

Case Circuit Model Fitted Parameters Substituted Parameters

1 1–12 -

2 1–12 -

3 6–12 13–17

4 6–12 13–17

Table 4. Summary of all estimated and substituted parameters in the time and frequency domains.

Number Parameter Scale Bound Reference

Fitted Parameters with p2D Model

1 Bruggeman coefficient αn, (-) linear [0.5, 3.82] [63,64]
2 Bruggeman coefficient αs, (-) linear [0.5, 2.87] [63–65]
3 Bruggeman coefficient αp, (-) linear [0.5, 3.14] [63,64,66,67]
4 Anode solid diffusivity Ds,n,lumped, (m2s−1) log [−15, −12] [63,64]
5 Cathode solid diffusivity Ds,p,lumped, (m2s−1) log [−15, −12] [63,64,66,67]
6 Liquid bulk diffusivity Dl,0, (m2s−1) log [−11, −8.15] [68–71]
7 Liquid bulk conductivity κ0, (Sm−1) log [−0.82, 0.42] [68,70–72]
8 Anode bulk solid phase conductivity σn, (Sm−1) log [0, 2] [63]
9 Cathode bulk solid phase conductivity σp, (Sm−1) log [−3.1, −0.47] [63,67]

10 Anode film resistance R f ,lumped, (Ωm2) log [−5, −1] assumed
11 Anodic reaction rate constant kn, (ms−1) log [−12, −9] [63]
12 Cathodic reaction rate constant kp, (ms−1) log [−12, −9] [63]

Paremeters Determined in Frequency Domain

13 Anode solid diffusivity Ds,n(SOC), (m2s−1) [62]
14 Cathode solid diffusivity Ds,p(SOC), (m2s−1) [62]
15 Film resistivity R f (SOC) (Ωm2) [61]
16 Anodic reaction rate constant kn, (ms−1) [61]
17 Cathodic reaction rate constant kp, (ms−1) [61]
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3. Experiment

The commercial cell used in this work is a 3.35 Ah NMC811/SiC LIB (INR18650-MJ1,
LG Chem, Seoul, Kroea), which has been investigated in our previous works as well. For
parameter estimation in the time domain using the p2D model, the cell was first fully
charged to 100% SOC using a CCCV charging protocol and then relaxed for about 6 h. Then
the cell was discharged using a 1 C current rate until the lower voltage limit was reached.
The test temperature is 25 ◦C. The 1 C discharging data was then used for the parameter
estimation with the Bayesian statistics and MCMC sampling. The MJ1 cell has a single
tab design [63] and the ohmic resistance caused by the ohmic conduction in the current
collector can be calculated as follows [60]:

RCC =
1
3

LCC

(
ρa

Wata
+

ρc

Wctc

)
≈ 11 mΩ (17)

where ρa and ρc are resistivities of the anode and cathode CC, respectively, LCC is the length
of the current collector, Wa and Wc are the widths of the anode and cathode CC, ta and
tc are the thicknesses of the anode and cathode CC. Another origin of ohmic resistance
is the contact resistance between the current collector and the active material, which has
been characterized to be about 1 mΩ in our previous work [61]. The ohmic resistance for
the measurement cable and clamp is assumed to be 1 mΩ. As a result, the total external
ohmic resistance used for the parameter estimation study is 13 mΩ. For each case of
parameter identification, 50,000 samples were collected by the MCMC sampling algorithm,
and the target acceptance rate is set to be 0.23 [54]. For the evaluation of the results, only
the samples after the burn-in period will be used for the data evaluation. The lower and
upper bounds for the parameter estimation are set by referring to the literature and are
summarized in Table 4. Because some parameters can range for several orders of magnitude,
the logarithmic scale is used for the representation and identifiability calculation of the
parameters. To ensure completeness and avoid possible errors caused by the limited
number of references, some values have been adapted moderately.

After the parameter estimation has been conducted and the parameters have been
selected for validation, two application scenarios each with a time period of three hours are
used to validate the parameter estimation results, then the accuracy and effectiveness of the
four investigated cases in each scenario are compared. For each case, the parameter values
used for validation will be selected according to their identifiability and based on a defined
principle, which will be explained in detail later. The load profiles used for the validation
and the distribution of the current rate are shown in Figure 2. All lab experiments were
conducted in a thermal chamber (Vötsch Industrietechnik GmbH) combined with a battery
cycler (CTS, Basytec) under a temperature of 25 ◦C. The overall workflow for the parameter
identification and validation is shown in Figure 3.
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Figure 2. Dynamic load profile used for the validation of parameter estimation. (a) current profile;
(b) distribution of the current rate.
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𝜃

Figure 3. Workflow for the parameter identification and validation conducted in the present work.
The different colors in the simulation results and error analysis sections represent the results of
different test cases.

4. Results and Discussion

In this section, the parameter sampling results will be shown and discussed, then
the estimated parameters will be used to characterize the simulation performance in two
application scenarios with highly dynamic load profiles.

4.1. Parameter Distribution

The parameter sampling results are shown in Figure 4. In the following sections,
the results for each parameter will be discussed.

PD
F

C
D

F

PD
F

C
D

F

PD
F

case 1 case 2 case 3 case 4

C
D

F

Figure 4. Probability distribution of the sampled parameters in the four cases. The probability density
distribution function (PDF) is shown with the histogram and the cumulative distribution function
(CDF) for each PDF is shown with a dashed line using the same color as the PDF.

Bruggeman coefficients. The posterior distributions of the investigated parameters for
the first two cases have a similar form and the parameters have a limited credible interval.
As a result, the Bruggeman coefficients in the first two cases can be regarded as practically
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identifiable. For the third and fourth cases, where the corresponding kinetic and transport
parameters measured in the frequency domain with a SOC dependence are substituted,
the form of the distribution has changed significantly. The Bruggeman coefficients for
the negative electrode and separator show an extended distribution with a much wider
credible interval compared to the first two cases. We can first exclude the possibility that
the change is caused by the external ohmic resistance, as the parameter identifiability in
the first two cases and in the last two cases is similar, respectively. We assume that this
change can be attributed to the substituted transport parameters with SOC dependence,
which has changed the form of the defined parameter space. It can be concluded here that
the substitution of parameters with SOC dependence can have a significant impact on the
parameter identifiability.

Solid phase diffusivity. The solid phase diffusivities are only estimated in the first
two cases and are substituted as known parameters in the third and fourth cases. In both
cases, the PDFs have similar forms. For the negative electrode, the PDFs have a clearly
defined lower bound and are approaching the upper bound of the parameter, which is
consistent with the fact that the diffusion process with a high diffusivity is no longer rate
limiting. Therefore, the solid diffusivity in the anode is assumed to be unidentifiable,
where only the lower bound can be determined. In contrast to the anode diffusivity,
the cathode diffusivity shows a clearly defined peak for the PDF and a narrow credible
interval. Moreover, the diffusivity in the first case is slightly higher than that in the
second case. It is worth noticing that the solid phase diffusivity identified using time
domain fitting has approximately the same order of magnitude as the value identified
in the frequency domain [62], which implies that the diffusivity identified using time
domain fitting may be used as an approximated value when a frequency domain based
identification is not available.

Liquid phase diffusivity. The liquid phase diffusivity in the first two cases shows
a distribution form similar to the solid diffusivity in the anode, where a clearly defined
lower bound can be observed but the distribution approaches the upper bound, which
leads to a non-rate-limiting behavior. In the third and fourth cases, though a peak can
be seen, the credible interval is rather large compared to the parameter bound, thus the
liquid diffusivity is practically unidentifiable in all cases. The unidentifiability is possibly
attributed to the fact that in fresh cells with nondegraded electrolytes, the overpotential
contribution caused by the liquid phase diffusion only amounts to a tiny part of the
overall overpotential.

Liquid phase conductivity. The conductivity in the liquid phase can be well identified
with a narrow credible interval in the first two cases, the identified values are slightly lower
than those identified in the third and fourth cases. In the third and fourth cases, the credible
interval becomes significantly wider and the parameter identifiability is lower than in the
first two cases, this may imply that the liquid phase conduction is no longer a rate-limiting
factor in the model. On the other hand, the distribution form has changed significantly as
well, which can be only explained that the parameter space must have been changed by
the SOC dependence of the substituted parameters. The phenomenon observed above is
consistent with the fact that in fresh cells the liquid phase conduction is generally negligible
and cannot be effectively identified.

Solid phase conductivity. The solid phase conductivity in the negative electrode has
a wide credible interval and is practically unidentifiable in all cases, which is in line with
our expectation that the solid phase conduction process in the anode is usually negligible
due to the high conductivity of graphite [73]. The solid phase conductivity in the cathode
in the first two cases has a wide credible interval and thus is unidentifiable, while in the
third and fourth cases the parameter distribution has a well-defined credible interval and
is thus identifiable. It is again worth noticing that the substitution of the SOC-dependent
parameters in the model can significantly change the form of the posterior distribution
and parameter identifiability irrespective of the external ohmic resistance. The parameter
identified in the third case is lower than that in the fourth case by about an order of
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magnitude, which is very likely caused by the inclusion of the external ohmic resistance
in case 4. The estimated solid phase conductivity in the fourth case is close to the value
measured using other methods [74], thus we tend to believe that the estimated value is
plausible. Another phenomenon worth noticing is that the Bruggeman coefficient of the
cathode in case 3 is lower than that in case 4, but the relation for the solid conductivity is
reversed. Through a simple calculation, it is found that in both cases the effective solid
conductivities in the cathode are nearly the same. By inspecting the equation for the current
distribution in the liquid phase, only the effective solid phase conductivity appears and the
bulk conductivity does not appear anywhere else. Theoretically, the posterior distribution
of the bulk solid conductivity in cathode should give a wide credible interval as in the first
two cases, but according to the results, the parameter turns out to be well identifiable. This
phenomenon can only be ascribed to the SOC dependence of the substituted parameters.
Due to the observed change of the posterior distribution in cases 3 and 4 compared to
that in cases 1 and 2, we can basically draw the conclusion that the combined method can
indeed change the identifiability of some parameters and obtain more reasonable results.

Interfacial parameters. The three interfacial parameters, namely the kinetic reaction
rate constant in both electrodes and the film resistance in the SiC anode, are all unidentifi-
able in all cases. All PDFs show a credible interval almost comparable with the defined
parameter range and a reliable estimation of each parameter is impossible. The results
highlight the importance of choosing suitable characterization methods for different model
parameters. In most cases, only constant charging/discharging data is selected to estab-
lish the identification problem; however, in such cases the current profile generally does
not contain any considerable component with a frequency comparable to the character-
istic frequency of the interfacial processes, which usually ranges from 100 Hz to 1000
Hz [41,61,75].

From the parameter estimation results and discussions made above, the following
conclusions can be made: (1) while the inclusion of the external ohmic resistance may
slightly change the probability distribution of the parameters, it basically does not change
the identifiability of the parameters; (2) the substitution of identified parameters with SOC
dependence may significantly change the posterior distribution of the parameters and
identifiability of the parameters; (3) interfacial parameters may be hard or even impossible
to identify using the time domain fitting method due to the lack of dynamic current
component. The results for the calculated sensitivity indices and credible intervals of the
parameters are summarized in Table 5.

Table 5. Summary of the calculated SI and CI of the parameters

Parameter
Case 1 Case 2 Case 3 Case 4

S CI S CI S CI S CI

αneg 18 [0.50, 0.69] 96 [0.50, 0.53] 5 [0.5, 1.11] 5 [0.50, 1.23]
αsep 5 [2,44, 2.87] 23 [2.77, 2.87] 1 [0.50 2.68] 1 [0.50, 2.71]
αpos 8 [0.72, 1.03] 16 [0.78, 0.94] 4 [0.74, 1.34] 4 [1.15, 1.79]

Ds,neg * 16 [−12.19, −12] 22 [−12.13, −12] - - - -
Ds,pos * 14 [−14.08, −13.87] 25 [−14.24, −14.12] - - - -
Dl,0 * 6 [−8.63 −8.15] 4 [−8.81, −8.15] 3 [−9.36, −8.29] 4 [−8.92, −8.16]
κl,0 * 7 [−0.26, −0.08] 15 [−0.36, −0.28] 3 [0.03, 0.42] 2 [−0.09 0.41]
σneg * 1 [0 1.97] 1 [0.05, 2.00] 1 [0, 1.93] 1 [0, 1.95]
σpos * 1 [−3.07, −0.47] 1 [−3.04, −0.47] 29 [−1.74, −1.65] 9 [−1.06, −0.77]

R f ,neg * 1 [−4.91, −1] 1 [−4.99, −1.14] - - - -
kneg * 1 [−11.97, −9] 1 [−11.94, −9] - - - -
kpos * 1 [−11.97, −9] 1 [−11.91, −9] - - - -

* logarithmic scale; CI = 95% credible interval.
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4.2. Parameter Correlation Analysis

In the last section, the posterior parameter distributions have been characterized,
where some parameters show a wide distribution and prove to be unidentifiable. An-
other important yet unsolved issue is: does any correlation relationship exist among the
unidentifiable parameters? In Section 2.3, the principle for the parameter correlation test
and the parameter combinations used for the test have been introduced. In this section,
the parameter samples will be tested for possible correlation. The results for the sample
evaluation are shown in Figures 5–9. To infer whether one parameter is possibly correlated
with other parameters, the original samples, and the reconstructed sample vectors are
plotted on the same axis. To visualize with which processes the tested process is correlated,
a parameter correlation chart is generated and shown in Figure 10. In the correlation
chart, the number in each column represents the correlation coefficient calculated using
Equation (15). Each group of calculated coefficients is scaled by dividing the coefficients
by the maximum absolute value of the coefficients in this group so that all values will be
transformed into the interval [−1, 1] and are comparable.

The parameter correlations for cases 1 and 2 are shown in Figures 5 and 6. It can
be observed that in both cases the liquid conduction and diffusion in all electrodes and
the solid diffusion in the cathode show an obvious correlation behavior, which indicates
that these processes are correlated with other processes. An unexpected result is that the
solid conduction process in the cathode and the last three kinetic processes seem not to be
correlated with any processes despite that the four parameters corresponding to the four
processes have a wide posterior distribution. The solid conduction in the anode is excluded
from the investigation here due to the fact that the solid conductivity in the graphite anode
is orders of magnitude higher than that in the liquid phase and thus has only negligible
contribution to the model output [73]. Berliner et al. [13] investigated the correlation
relationship for the diffusion coefficients and reaction rate constant using a synthetic
voltage curve and a correlation relationship between 1/kneg and 1/kpos was discovered. We
assume that this correlation may arise from the low current rate used for the experiment.
In such cases, the overpotential is less influenced by the diffusion and the fast kinetic
processes at the particle–electrolyte interface are dominating. Another possible reason for
this unexpected phenomenon is that the correlation relationship in Equation (10) may be
distorted by the time-variant concentration in the solid particles and in the electrolyte. Since
the correlation has been well observed in the work of Berliner et al. [13], we assume that this
could be attributed to the nonuniform liquid phase concentration under 1 C discharging
rate. Furthermore, the clearly defined correlation found in [13] may be attributed to the
synthetic data generated using a well-defined model.

Figure 5. Results of parameter correlation for case 1. It can be observed that all processes except
the conduction in the solid phase, the solid diffusion in the anode, and the interfacial processes are
correlated with each other in different parameter ranges.
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Figure 6. Results of parameter correlation for case 2. Similar to the results of case 1, it can be observed
that all processes except the conduction in the solid phase, the solid diffusion in the anode, and the
interfacial processes are correlated with each other in different parameter ranges.

To find out whether the unidentifiability arises from the non-sensitivity or correlation
relationship of the parameters, the objective function value inside the exponential function
in Equation (5) is plotted for both case 1 and case 2 for each possible parameter combination
(see Figure 7), the results for case 1 are shown in the upper triangular part of the figure
and for case 2 in the lower triangular part. In Figure 7, it can be seen that for case 1 a
clearly defined oval isosurface (marked with a red dashed line) can be seen for some
parameter combinations, where all parameter combinations inside the ellipse have almost
the same objective function value. For the solid conductivity in the cathode, no obvious
correlation pattern can be observed, all data points with similar objective function values
are concentrated in the region close to the lower bound, which coincides with the posterior
distribution. The film resistance is slightly negatively correlated with the anode reaction
rate constant. Similarly, a negative correlation is also seen between the anode and cathode
reaction constant. Moreover, the found correlation relationship exists only in a limited
area of each parameter, for the anode ca. 6× 10−11 ∼ 2× 10−10 ms−1, for the cathode
ca. 3 × 10−11 ∼ 1 × 10−10 ms−1, which corresponds to the peak area in the posterior
distribution for both parameters (see Figure 4). An obvious positive correlation can be
observed between the cathode reaction constant and the film resistance. This may be caused
by the coordinated change of the charge transfer overpotential between the anode and
cathode. The phenomena shown above indicate that the investigations and conclusions
made using synthetic data may not be valid in practical applications, which highlights the
necessity of a comprehensive parameter identifiability analysis in practical applications.

6 Comparative Study of Parameter Identification with Frequency and Time Domain Fitting Using
a Physics-Based Battery Model

96



Batteries 2022, 8, 222 16 of 24

Figure 7. Two-dimensional plot of the objective function value for case 1 (upper triangular) and case 2
(lower triangular). For case 1, an obvious correlation can be observed between the film resistance
and the anodic reaction rate constant, film resistance and the cathodic reaction rate constant, and
anodic reaction rate constant and cathodic reaction rate constant. For case 2, no correlation pattern
can be seen.

For case 2, it can be seen that no clearly defined isoline or isosurface is existent for
any parameter combination, and all global optimum points are nearly evenly distributed.
This phenomenon may have two origins: (1) the isoline or isosurface lies outside the defined
parameter range and cannot be observed here; (2) these parameters have only negligible
influence on the model output.

For cases 3 and 4, similar behavior can be observed in Figures 8 and 9. For all processes
except for the solid conduction in the anode, a good correlation can be observed. The solid
conduction in the anode is not well correlated with other processes, we assume that
this is attributable to the higher conductivity and negligible overpotential caused by the
graphite anode. According to Figure 10c,d, all processes investigated in the correlation
chart are correlated and a unique optimal parameter combination does not exist. It is worth
mentioning here that although the solid conduction in the cathode shows a correlation
relationship with other processes, the solid conductivity in the cathode has a narrow
credible interval (see Figure 4) and is thus regarded as identifiable.
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Figure 8. Results of parameter correlation for case 3. A correlation relation can be observed for each
process except for the solid conduction in the anode.

Figure 9. Results of parameter correlation for case 4. A correlation relation can be observed for each
process except for the solid conduction in the anode.
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Figure 10. Correlation chart for cases 1–4, where each column in the matrix represents the correlation
coefficients with the tested process.

4.3. Selection of Parameters from Posterior Distributions

In previous sections, a comprehensive identifiability and correlation analysis has been
conducted, the results have been shown and explained in detail. However, the resulting
parameter distributions cannot be used as the input for the p2D model to validate the
results; therefore, a point estimate must be selected from the posterior distributions. For the
experimental validation, generally the expected value of each parameter is chosen and
substituted into the model [10]. Nevertheless, the prerequisite for selecting the expected
value as the point estimate is that either all parameters are not correlated or they are only
simply linearly correlated so that for the expected values the linear correlation relationship
is still valid. For example, if we assume that the parameters θ1 and θ2 are linearly correlated
and the following relation holds:

θ1 = αθ2 + β (18)

where α and β are correlation constants. If the expected value operator is applied to both
sides of Equation (18), the following equation is obtained:

E[θ1] = αE[θ2] + β (19)

which implies that for both θ1 and θ2 the expected value can be selected as the point estimate.
However, if θ1 and θ2 are not linearly but instead nonlinearly correlated, for example:

θ1 =
α

θ2
+ β (20)

and then the expected value operator is again applied to both sides of the equation, the fol-
lowing equation can be obtained:

E[θ1] = αE
[

1
θ2

]
+ β 6= α

1
E[θ2]

+ β (21)
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This equation clearly indicates that if the parameters are not linearly correlated, the ex-
pected values of the parameters will not fulfill the correlation relationship. Simply selecting
the expected value for each correlated parameter may lead to an unexpected error. In this
work, the parameter combination used for the experimental validation will be selected
according to the following principle:

1. For parameters with a small credible interval (irrespective of identifiability), the ex-
pected value is selected.

2. For parameters that are practically unidentifiable and there exists no correlation with
other parameters, the expected value is selected.

3. For parameters that are correlated, the expected value of the parameter with the
highest sensitivity index will be calculated and selected for validation, the values of
other parameters will be determined accordingly so that the correlation among the
chosen parameters is still valid. If multiple parameter combinations are possible, then
the combination closest to the expected values is chosen.

According to the principles explained above, the determined parameter values are
summarized in Table 6.

Table 6. Summary of the parameter values selected for the validation test.

Parameter Scale Case 1 Case 2 Case 3 Case 4

αneg linear 0.554 0.511 0.753 0.870
αsep linear 2.736 2.843 1.256 2.756
αpos linear 0.865 0.863 0.801 1.105

Ds,neg log −12.059 −12.042 - -
Ds,pos log −13.986 −14.188 - -
Dl,0 log −8.323 −8.386 −8.964 −9.092
κl,0 log −0.190 −0.327 0.068 0.064
σneg log 0.531 1.967 0.729 0.793
σpos log −2.447 −1.809 −1.696 −0.920

R f ,neg log −2.533 −3.661 - -
kneg log −10.191 −10.352 - -
kpos log −10.595 −9.118 - -

4.4. Validation with Dynamic Load Profile

The results for the parameter validation with the two application scenarios are shown
in Figure 11. In scenario 1, it can be observed that the full model without external ohmic
resistance achieves the worst simulation performance, where the maximum error reaches
about 400 mV and the root-mean-square error (RMSE) is calculated to be 124.7 mV. The volt-
age window of the investigated cell is between 2.5 V and 4.2 V, if the OCV curve is
approximated with a straight line, then an RMSE of 124.7 mV corresponds to a 7.3% aver-
age SOC error, which is unacceptable for a state estimation application. Although in all
cases the parameters are identified with the same discharging profile and the best objective
function values are almost the same and show no qualitative difference, the most primitive
model, namely where all parameters are fitted at the same time and without considering
the external ohmic resistance, shows an unacceptable error and fails to model the dynamic
operation. The results for the full model with the external ohmic resistance become much
better with an RMSE of 35.8 mV, the error is below 100 mV at most times, but a maximum
error of about 200 mV can still be seen. The combined model without the external ohmic
resistance achieves a qualitative improvement, the RMSE is 17.4 mV and corresponds to a
1% average SOC error, assuming a linear relationship between the cell voltage (2.5∼4.2 V)
and the SOC (0∼100%). The combined model with the external ohmic resistance achieves
the best performance with an RMSE of only 12.6 mV, corresponding to a 0.7% average
SOC error.

The results for scenario 2 are similar to that in scenario 1 and the error in all cases is
slightly lower, again the combined model with external resistance achieves the lowest error,
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thus justifying the application of the combined procedure for parameter identification.
To have an overall comparison of the simulation performance for the four cases, the root-
mean-square error (RMSE) has been calculated and listed in Table 7.
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Figure 11. Validation results for for all cases with (a) the voltage profile in scenario 1, (b) voltage
error in scenario 1, (c) voltage profile in scenario 2, and (d) voltage error in scenario 2.

Table 7. Calculated RMSE values for the validation of each case.

RMSE (mV) Case 1 Case 2 Case 3 Case 4

scenario 1 124.7 35.8 17.4 12.6
scenario 2 117.8 31.7 16.1 11.8

5. Conclusions and Outlooks

In this present work, parameter identifiability with the p2D model in four cases is
investigated and analyzed: models with or without external ohmic resistance, a model
with all chosen parameters fitted, and a model where the kinetic parameters determined
in the frequency domain are substituted (combined model). The results of the parameter
space sampling indicate that the external ohmic resistance has a considerable impact on the
parameter identifiability, especially on the bulk conductivity in the solid and liquid phases,
while the results for the Bruggeman coefficients in each electrode layer only show small
differences. In the first two cases, all interface parameters are practically unidentifiable.
For the third and fourth cases, where the values for the kinetic parameters determined using
the EIS are substituted, the parameter identifiability results have changed. Though the
Bruggeman coefficients still cannot be uniquely identified, the bulk conductivities in the
liquid phase and solid conductivity in the cathode are significantly better compared with
the values determined using different methods from the literature.

The parameter correlation analysis indicates that the ohmic conduction and diffusion
processes in the solid and liquid phases are generally correlated, given the constant dis-
charging profile used for the parameter identifiability analysis. The only parameter that can
be identified while considering the external ohmic resistance and the SOC dependence is
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the solid conductivity in the cathode. Therefore, it is worth mentioning again that although
the constant charging/discharging voltage profile can be easily fitted using a properly cho-
sen nonlinear optimization algorithm to extract some physicochemical parameter values,
the reliability and uniqueness of the results are usually problematic.

Then the estimated parameters are substituted into the p2D model and validated
with two highly dynamic load profiles and the simulation results are compared with the
experimentally measured voltage response. The results again confirm that the combined
model with the external ohmic resistance performs the best and achieves an RMSE on
the level of 12 mV. To sum up, the combined type model with both the time domain
and frequency domain method clearly outperforms other model types investigated in
this work and achieves the best RMSE even when the model is simulated with a highly
dynamic profile.

Based on the analysis and conclusions made before, we suggest that the kinetic
parameters such as the reaction rate constants and diffusion coefficients should be estimated
using frequency domain methods. A carefully selected dynamic voltage and current profile
should be used for the parameter identification in the time domain if only the time domain
fitting is used for the parameter identification. The dynamic profiles should at least include
the characteristic frequency components of the corresponding processes and parameters.
Furthermore, we assume that with carefully designed current profiles some of the currently
unidentifiable parameters may become identifiable.
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The following abbreviations are used in this manuscript:

LIB lithium-ion battery
EIS electrochemical impedance spectroscopy
MCMC Markov Chain Monte Carlo
p2D pseudo-two dimensional
ECM equivalent circuit model
PCM physicochemical model
ROM reduced-order model
DRT distribution of relaxation times
DOF degree of freedom
OAT once at a time
FIM Fisher information matrix
HDP highest density probability
ETI equal-tailed interval
CI confidence interval
SI sensitivity index
SOC state of charge
OCV open-circuit voltage
CC current collector
PDF probability density function
CDF cumulative density function
RMSE root-mean-square error
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7 Conclusions and Outlooks

In the present thesis, the application of the DRT technique to the parameter estimation and validation
of the Lithium-ion battery combined with a physicochemical impedance model was investigated com-
prehensively. The analytical expressions of the DRT spectrum in the mid-high and mid-low frequency
range were derived and analyzed. Besides, lab experiments using a commercially available Lithium-ion
battery cell were conducted to estimate a few key kinetic parameters: electrochemical reaction rate
constant, SEI resistivity and the solid phase diffusion coefficient. As a result, the following two key
issues for the parameter estimation using the EIS technique and a physicochemical impedance model
have been resolved:

1. The nonlinear fitting problem which arises when trying to fit the physicochemical impedance
model can be transformed to a LLS problem, which is defined by the DRT and has a unique
solution.

2. A quantitative interpretation of the calculated DRT spectrum based on a physicochemical
impedance model has been proposed, with which the DRT spectrum can be described with
the fundamental theory and the physicochemical parameters.

Furthermore, a comprehensive study was carried out which compared the parameter identifiability
in various combined scenarios and the influence of the additional ohmic resistance was investigated.
The identification results have shown that the identification method does have a significant impact
on the parameter identifiability. Besides, the validation results indicate that the combined parameter
identification method with the additional ohmic resistance achieves the best validation performance.

7.1 Conclusions

Due to the rapidly increasing market share of the Lithium-ion battery in various sectors, an increasingly
number of research works have focused on the development and application of the Lithium-ion battery.
Among the focused research topics, the estimation of the kinetic parameters of the Lithium-ion battery
has gained much attention. On the one hand, an accurate characterization of the battery materials
is crucial for the product development and optimization. On the other hand, numerous application
scenarios of the Lithium-ion battery require an accurate calculation of the battery states such as the
voltage, temperature, and SOC using a properly selected battery model. The selected battery model
must be well parametrized and thus demand the model parameters be accurately estimated. Among
the various characterization techniques, the EIS technique, as a fast and nondestructive technique, has
been widely applied to characterize the Lithium-ion battery. The EIS technique can well separate the
kinetic processes with different characteristic frequencies, which is generally hard to realize with time
domain methods.

Although the EIS technique can provide the measurement data suitable for the estimation of the ki-
netic parameters, still an appropriate impedance model must be selected to evaluate the data. For a
long time, the ECM has been selected as the candidate model for the data evaluation and parameter
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estimation due to the following features: 1. the ECM has a simple structure and thus a low compu-
tation effort, which makes it especially suitable for the parameter estimation problem; 2. the simple
structure of the ECM originates from the intuitive understanding of the physicochemical processes in
the Lithium-ion battery, based on which the process attribution has been made. However, the merits
of the ECM has also revealed its limitations: 1. for a certain application scenario, the structure of
the ECM is usually not unique and strongly relies on the experience of the operators, generally the
same impedance data can be fitted with multiple circuits of different structures; 2. the choice of the
circuit elements along with the structure of the ECM is rather based on a phenomenological under-
standing of the physicochemical processes than any fundamental theory. Hence, the estimation results
can be hardly correlated with the physicochemical parameters of the Lithium-ion battery. To fill the
gap between the measurement results and the physicochemical parameters, instead of the ECM, the
physicochemical impedance model must be used to fit the impedance data. Due to the strongly non-
linear nature of the physicochemical impedance model and complicated mathematical structure, the
model fitting is usually faced with the identifiability issue and the computation effort is significantly
higher than that of the ECM as well.

To effectively distinguish between the processes with different characteristic frequencies and reduce
the computation effort, the DRT method has been frequently applied to the evaluation and interpre-
tation of the impedance data. By using DRT, the impedance data in frequency domain can be easily
transformed into time constant domain (τ domain) and represented by the DRT spectrum. The pro-
cesses with different time constants and amplitude can be effectively separated and clearly visualized
in the spectrum. Nevertheless, the DRT spectrum characterizes the distribution of the time constants
of the RC elements and is thus model-free, the interpretation of the DRT spectrum still requires a
properly selected battery model. As mentioned above, both the physicochemical impedance model and
the DRT method have their respective advantages and limitations. Naturally, a combined use of the
physicochemical impedance model and the DRT technique should be able to resolve the identifiability
and interpretation issue and improved parameter estimation results can be expected.

In chapter 4, the present thesis has focused on the mid-high frequency range and a physicochemical
impedance model based on the well-known p2D model was derived. In the frequency range of interest,
the diffusion phenomena in the solid and liquid phases were neglected due to their sluggish dynamics
and tiny contribution to the impedance. The developed impedance model was combined with the
DRT technique and an analytical expression for the DRT spectrum was derived and analyzed. The
developed theory indicates that the frequency dispersion phenomenon will possibly occur in the high
frequency range and one process will cause more than one peak in the resulting DRT spectrum, the
dispersion occurs in the direction of decreasing amplitude and time constant. This conclusion is
especially crucial for the interpretation of the DRT spectrum and peak attribution, because each peak
will not be necessarily attributed to different processes. Furthermore, the dispersion could also be
erroneously interpreted as multiple different processes, if the spectrum has not been comprehensively
analyzed using the developed theory. Another improvement brought by the developed theory is that
a quantitative relationship has been established between the DRT spectrum and the physicochemical
parameters of the Lithium-ion battery. On this basis, a commercially available Lithium-ion battery
cell was used to estimate the electrochemical reaction rate constants and the SEI parameters under
different temperatures. Besides, the developed theory shows that the CPE type behavior of the solid
particle impedance will lead to another dispersion phenomenon, which can be observed in the DRT
spectrum of the full cell, i.e., a proper fitting function must be selected to conduct the peak analysis.
For this purpose, the adaptive peak analysis method (APAM) has been developed to improve the
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quality of the peak analysis, where not only the peak fitting parameters, but also the functional form
of the fitting functions is optimized. The estimated parameters are consistent and comparable with
the values measured using different techniques. While the derived theory has well explained the DRT
spectrum of a Lithium-ion battery in the mid-high frequency range, attributing each peak to the right
process has been a key issue when evaluating the DRT spectrum. In the present thesis, the peak
attribution was conducted by comparing the DRT spectrum of the coin cells made of the anode and
cathode samples of the full cell. Although the peak attribution can be conducted indirectly and has
proven to be effective in this thesis, the impedance and DRT spectra of the coin cells were disturbed
by the Li-metal counter electrode and the separator inevitably. Therefore, further improvement on the
experimental procedure is then suggested to avoid the disturbance caused by the coin cells.

While in chapter 4 the physicochemical processes in mid-high frequency range have been investigated
and the corresponding parameters were estimated usng the DRT spectrum, in chapter 5 the processes
in mid-low frequency range was investigated, including the diffusion phenomena in the solid and liquid
phases. With the liquid phase diffusion considered, the conduction and diffusion phenomena in the
electrode cannot be decoupled, the mathematical structure of the model thus becomes much more
sophisticated. To ease the model development, the diffusion in the liquid phase was neglected at first
and the assumption 1 was applied. The developed theory indicates that the frequency dispersion
will significantly decay with increasing time constant so that in the mid-low frequency range the
dispersion can be practically neglected. Furthermore, the application scenario where the particle size
distribution was considered has also been investigated and a model for the estimation of the solid
diffusion coefficient has been developed. Besides, a brief mathematical analysis of the GITT was made
and it was concluded that when the contribution of the liquid diffusion cannot be neglected, the solid
diffusion coefficient will be vastly underestimated. The developed theory was then validated using
a group of synthetic experimental data. To validate the developed theory, first a group of synthetic
impedance data was generated and the DRT spectra were calculated using the developed theory and
numerical algorithm respectively. The validation results display that the numerically calculated DRT
spectra coincide well with the theoretical prediction except that the amplitude of the peak for the
liquid diffusion is overestimated. The amplitude discrepancy is believed to be caused by the simplified
model development procedure. However, the calculated time constant for the liquid diffusion agrees
well with the theoretical prediction. Subsequently, the developed model was applied to a commercially
available Lithium-ion battery to estimate the solid diffusion coefficient. The used full cell was opened
and a piece of anode and cathode sample were taken to build the coin cells with a Li-metal counter
electrode. The impedance of the full cell and coin cells were measured at different lithiation states
and then the DRT spectra were calculated to estimate the solid diffusion coefficient of the anode and
cathode material respectively. Meanwhile, the GITT technique has been conducted on the same coin
cells to estimate the solid diffusion coefficient. The estimation results with the DRT technique were
well comparable with the values measured using different methods from the literature. Furthermore,
the results of the solid diffusion coefficient estimation fully meet the expectation that when the low
frequency impedance is dominated by the liquid diffusion, the solid diffusion coefficient would be
strongly underestimated by the GITT method. Specifically, at the lithiation states where the solid
diffusion dominates, both estimation methods gave similar results. In summary, the developed method
can be a promising alternative to the GITT technique, which only provides valid measurement results
when the contribution of the liquid diffusion is practically negligible.

As the EIS technique is only one of the various methods for cell characterization and each method brings
its advantages and disadvantages with regard to computation effort, identifiability, accuracy, etc..
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Therefore a comparative study of the parameter characterization in time and frequency domain has
been conducted in the present thesis. In this study, four cases were created to carry out the parameter
identification and a reduced order physicochemical model was used to accelerate the identification
process. The four cases describe the following application scenarios: time domain fitting without
external ohmic resistance, time domain fitting with external ohmic resistance, combined model without
ohmic resistance, and combined model with ohmic resistance. The parameter identification results
indicate that the SOC dependence of certain parameters brought by the combined model does change
the whole parameter space and some parameters which were unidentifiable in case 1 and 2 became
identifiable in case 3 and 4. Besides, it is worth mentioning that parameters like the Bruggeman
coefficients and anode electronic conductivity are poorly identifiable in all cases. To identify the possible
correlation relationship among the identified parameters, a multidimensional parameter correlation
analysis was conducted. The results indicate that the correlation generally exists among most of the
identified parameters, including the parameters with a well defined credible interval. Furthermore,
it has been shown that the key kinetic parameters can be perfectly estimated in frequency domain,
while time domain fitting method does not bring any benefit. Then the identified parameters in each
case were validated using two highly dynamic load profiles and the root-mean-square-error (RMSE)
was calculated for each case. The validation results indicate, as expected, that time domain fitting
without external ohmic resistance achieves the worst validation performance, the RMSE exceeds 100V.
The combined model with the external ohmic resistance has achieved the best validation performance
with ca. 11mV RMSE. It can be concluded that a combined model will change the parameter space
and lead to improved calculation results in time domain. Furthermore, the investigation conducted
in this chapter also suggests that a constant charging/discharging profile may not be suitable for the
parameter identification application owning to the lack of dynamic current/voltage information.

7.2 Outlooks for Future Work

The present thesis has conducted a systematic investigation of the DRT spectrum of the Lithium-ion
battery combined with a physicochemical impedance model in the mid-high and mid-low frequency
range respectively. Based on the developed theory, the key kinetic parameters of the electrode have
been estimated and validated using two highly dynamic load profiles.

While the research study conducted in this thesis has focused on the characterization of fresh cells,
it might be worthwhile conducting an aging study to investigate the aging mechanisms with the help
of the DRT spectrum. Because the developed theory has assigned a clear physical meaning to the
corresponding peaks, therefore the evolution of the relevant processes can be precisely tracked and
evaluated. Furthermore, a combined application of the DRT technique and other diagnostic methods
like the differential voltage analysis (DVA) may lead to a more comprehensive characterization of the
tested battery cell and provide more reliable conclusions.

In chapter 6 it has been concluded that a combined model will change the whole parameter space and
thus improve the parameter identifiability. However, only a constant discharging profile has been used
for the parameter identification and it turns out that most of the material transport parameters cannot
be reliably estimated. It can be assumed that the poor identifiability of the parameters may arise from
the current and voltage profile, which does not contain enough information about the kinetic processes
necessary for the parameter characterization. As a result, the overpotential components that are crucial
for kinetic processes may be missing. Hence, a properly designed current profile and characterization
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procedure which specifically considers the kinetic processes may help to produce improved parameter
estimation results.
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